gas: Add .enqcmd and noenqcmd directives
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /*
102 'templates' is for grouping together 'template' structures for opcodes
103 of the same name. This is only used for storing the insns in the grand
104 ole hash table of insns.
105 The templates themselves start at START and range up to (but not including)
106 END.
107 */
108 typedef struct
109 {
110 const insn_template *start;
111 const insn_template *end;
112 }
113 templates;
114
115 /* 386 operand encoding bytes: see 386 book for details of this. */
116 typedef struct
117 {
118 unsigned int regmem; /* codes register or memory operand */
119 unsigned int reg; /* codes register operand (or extended opcode) */
120 unsigned int mode; /* how to interpret regmem & reg */
121 }
122 modrm_byte;
123
124 /* x86-64 extension prefix. */
125 typedef int rex_byte;
126
127 /* 386 opcode byte to code indirect addressing. */
128 typedef struct
129 {
130 unsigned base;
131 unsigned index;
132 unsigned scale;
133 }
134 sib_byte;
135
136 /* x86 arch names, types and features */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 enum processor_type type; /* arch type */
142 i386_cpu_flags flags; /* cpu feature flags */
143 unsigned int skip; /* show_arch should skip this. */
144 }
145 arch_entry;
146
147 /* Used to turn off indicated flags. */
148 typedef struct
149 {
150 const char *name; /* arch name */
151 unsigned int len; /* arch string length */
152 i386_cpu_flags flags; /* cpu feature flags */
153 }
154 noarch_entry;
155
156 static void update_code_flag (int, int);
157 static void set_code_flag (int);
158 static void set_16bit_gcc_code_flag (int);
159 static void set_intel_syntax (int);
160 static void set_intel_mnemonic (int);
161 static void set_allow_index_reg (int);
162 static void set_check (int);
163 static void set_cpu_arch (int);
164 #ifdef TE_PE
165 static void pe_directive_secrel (int);
166 #endif
167 static void signed_cons (int);
168 static char *output_invalid (int c);
169 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
170 const char *);
171 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
172 const char *);
173 static int i386_att_operand (char *);
174 static int i386_intel_operand (char *, int);
175 static int i386_intel_simplify (expressionS *);
176 static int i386_intel_parse_name (const char *, expressionS *);
177 static const reg_entry *parse_register (char *, char **);
178 static char *parse_insn (char *, char *);
179 static char *parse_operands (char *, const char *);
180 static void swap_operands (void);
181 static void swap_2_operands (int, int);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* This struct describes rounding control and SAE in the instruction. */
214 struct RC_Operation
215 {
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225 };
226
227 static struct RC_Operation rc_op;
228
229 /* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232 struct Mask_Operation
233 {
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238 };
239
240 static struct Mask_Operation mask_op;
241
242 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244 struct Broadcast_Operation
245 {
246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
251
252 /* Number of bytes to broadcast. */
253 int bytes;
254 };
255
256 static struct Broadcast_Operation broadcast_op;
257
258 /* VEX prefix. */
259 typedef struct
260 {
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266 } vex_prefix;
267
268 /* 'md_assemble ()' gathers together information and puts it into a
269 i386_insn. */
270
271 union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
278 enum i386_error
279 {
280 operand_size_mismatch,
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
288 unsupported,
289 invalid_vsib_address,
290 invalid_vector_register_set,
291 unsupported_vector_index_register,
292 unsupported_broadcast,
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
300 };
301
302 struct _i386_insn
303 {
304 /* TM holds the template for the insn were currently assembling. */
305 insn_template tm;
306
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
309 char suffix;
310
311 /* OPERANDS gives the number of given operands. */
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
316 operands. */
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
320 use OP[i] for the corresponding operand. */
321 i386_operand_type types[MAX_OPERANDS];
322
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
326
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329 #define Operand_PCrel 1
330 #define Operand_Mem 2
331
332 /* Relocation type for operand */
333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
334
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
342 explicit segment overrides are given. */
343 const seg_entry *seg[2];
344
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
353 /* Has MMX register operands. */
354 bfd_boolean has_regmmx;
355
356 /* Has XMM register operands. */
357 bfd_boolean has_regxmm;
358
359 /* Has YMM register operands. */
360 bfd_boolean has_regymm;
361
362 /* Has ZMM register operands. */
363 bfd_boolean has_regzmm;
364
365 /* RM and SIB are the modrm byte and the sib byte where the
366 addressing modes of this insn are encoded. */
367 modrm_byte rm;
368 rex_byte rex;
369 rex_byte vrex;
370 sib_byte sib;
371 vex_prefix vex;
372
373 /* Masking attributes. */
374 struct Mask_Operation *mask;
375
376 /* Rounding control and SAE attributes. */
377 struct RC_Operation *rounding;
378
379 /* Broadcasting attributes. */
380 struct Broadcast_Operation *broadcast;
381
382 /* Compressed disp8*N attribute. */
383 unsigned int memshift;
384
385 /* Prefer load or store in encoding. */
386 enum
387 {
388 dir_encoding_default = 0,
389 dir_encoding_load,
390 dir_encoding_store,
391 dir_encoding_swap
392 } dir_encoding;
393
394 /* Prefer 8bit or 32bit displacement in encoding. */
395 enum
396 {
397 disp_encoding_default = 0,
398 disp_encoding_8bit,
399 disp_encoding_32bit
400 } disp_encoding;
401
402 /* Prefer the REX byte in encoding. */
403 bfd_boolean rex_encoding;
404
405 /* Disable instruction size optimization. */
406 bfd_boolean no_optimize;
407
408 /* How to encode vector instructions. */
409 enum
410 {
411 vex_encoding_default = 0,
412 vex_encoding_vex2,
413 vex_encoding_vex3,
414 vex_encoding_evex
415 } vec_encoding;
416
417 /* REP prefix. */
418 const char *rep_prefix;
419
420 /* HLE prefix. */
421 const char *hle_prefix;
422
423 /* Have BND prefix. */
424 const char *bnd_prefix;
425
426 /* Have NOTRACK prefix. */
427 const char *notrack_prefix;
428
429 /* Error message. */
430 enum i386_error error;
431 };
432
433 typedef struct _i386_insn i386_insn;
434
435 /* Link RC type with corresponding string, that'll be looked for in
436 asm. */
437 struct RC_name
438 {
439 enum rc_type type;
440 const char *name;
441 unsigned int len;
442 };
443
444 static const struct RC_name RC_NamesTable[] =
445 {
446 { rne, STRING_COMMA_LEN ("rn-sae") },
447 { rd, STRING_COMMA_LEN ("rd-sae") },
448 { ru, STRING_COMMA_LEN ("ru-sae") },
449 { rz, STRING_COMMA_LEN ("rz-sae") },
450 { saeonly, STRING_COMMA_LEN ("sae") },
451 };
452
453 /* List of chars besides those in app.c:symbol_chars that can start an
454 operand. Used to prevent the scrubber eating vital white-space. */
455 const char extra_symbol_chars[] = "*%-([{}"
456 #ifdef LEX_AT
457 "@"
458 #endif
459 #ifdef LEX_QM
460 "?"
461 #endif
462 ;
463
464 #if (defined (TE_I386AIX) \
465 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
466 && !defined (TE_GNU) \
467 && !defined (TE_LINUX) \
468 && !defined (TE_NACL) \
469 && !defined (TE_FreeBSD) \
470 && !defined (TE_DragonFly) \
471 && !defined (TE_NetBSD)))
472 /* This array holds the chars that always start a comment. If the
473 pre-processor is disabled, these aren't very useful. The option
474 --divide will remove '/' from this list. */
475 const char *i386_comment_chars = "#/";
476 #define SVR4_COMMENT_CHARS 1
477 #define PREFIX_SEPARATOR '\\'
478
479 #else
480 const char *i386_comment_chars = "#";
481 #define PREFIX_SEPARATOR '/'
482 #endif
483
484 /* This array holds the chars that only start a comment at the beginning of
485 a line. If the line seems to have the form '# 123 filename'
486 .line and .file directives will appear in the pre-processed output.
487 Note that input_file.c hand checks for '#' at the beginning of the
488 first line of the input file. This is because the compiler outputs
489 #NO_APP at the beginning of its output.
490 Also note that comments started like this one will always work if
491 '/' isn't otherwise defined. */
492 const char line_comment_chars[] = "#/";
493
494 const char line_separator_chars[] = ";";
495
496 /* Chars that can be used to separate mant from exp in floating point
497 nums. */
498 const char EXP_CHARS[] = "eE";
499
500 /* Chars that mean this number is a floating point constant
501 As in 0f12.456
502 or 0d1.2345e12. */
503 const char FLT_CHARS[] = "fFdDxX";
504
505 /* Tables for lexical analysis. */
506 static char mnemonic_chars[256];
507 static char register_chars[256];
508 static char operand_chars[256];
509 static char identifier_chars[256];
510 static char digit_chars[256];
511
512 /* Lexical macros. */
513 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
514 #define is_operand_char(x) (operand_chars[(unsigned char) x])
515 #define is_register_char(x) (register_chars[(unsigned char) x])
516 #define is_space_char(x) ((x) == ' ')
517 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
518 #define is_digit_char(x) (digit_chars[(unsigned char) x])
519
520 /* All non-digit non-letter characters that may occur in an operand. */
521 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
522
523 /* md_assemble() always leaves the strings it's passed unaltered. To
524 effect this we maintain a stack of saved characters that we've smashed
525 with '\0's (indicating end of strings for various sub-fields of the
526 assembler instruction). */
527 static char save_stack[32];
528 static char *save_stack_p;
529 #define END_STRING_AND_SAVE(s) \
530 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
531 #define RESTORE_END_STRING(s) \
532 do { *(s) = *--save_stack_p; } while (0)
533
534 /* The instruction we're assembling. */
535 static i386_insn i;
536
537 /* Possible templates for current insn. */
538 static const templates *current_templates;
539
540 /* Per instruction expressionS buffers: max displacements & immediates. */
541 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
542 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
543
544 /* Current operand we are working on. */
545 static int this_operand = -1;
546
547 /* We support four different modes. FLAG_CODE variable is used to distinguish
548 these. */
549
550 enum flag_code {
551 CODE_32BIT,
552 CODE_16BIT,
553 CODE_64BIT };
554
555 static enum flag_code flag_code;
556 static unsigned int object_64bit;
557 static unsigned int disallow_64bit_reloc;
558 static int use_rela_relocations = 0;
559
560 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
561 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
562 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
563
564 /* The ELF ABI to use. */
565 enum x86_elf_abi
566 {
567 I386_ABI,
568 X86_64_ABI,
569 X86_64_X32_ABI
570 };
571
572 static enum x86_elf_abi x86_elf_abi = I386_ABI;
573 #endif
574
575 #if defined (TE_PE) || defined (TE_PEP)
576 /* Use big object file format. */
577 static int use_big_obj = 0;
578 #endif
579
580 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
581 /* 1 if generating code for a shared library. */
582 static int shared = 0;
583 #endif
584
585 /* 1 for intel syntax,
586 0 if att syntax. */
587 static int intel_syntax = 0;
588
589 /* 1 for Intel64 ISA,
590 0 if AMD64 ISA. */
591 static int intel64;
592
593 /* 1 for intel mnemonic,
594 0 if att mnemonic. */
595 static int intel_mnemonic = !SYSV386_COMPAT;
596
597 /* 1 if pseudo registers are permitted. */
598 static int allow_pseudo_reg = 0;
599
600 /* 1 if register prefix % not required. */
601 static int allow_naked_reg = 0;
602
603 /* 1 if the assembler should add BND prefix for all control-transferring
604 instructions supporting it, even if this prefix wasn't specified
605 explicitly. */
606 static int add_bnd_prefix = 0;
607
608 /* 1 if pseudo index register, eiz/riz, is allowed . */
609 static int allow_index_reg = 0;
610
611 /* 1 if the assembler should ignore LOCK prefix, even if it was
612 specified explicitly. */
613 static int omit_lock_prefix = 0;
614
615 /* 1 if the assembler should encode lfence, mfence, and sfence as
616 "lock addl $0, (%{re}sp)". */
617 static int avoid_fence = 0;
618
619 /* 1 if the assembler should generate relax relocations. */
620
621 static int generate_relax_relocations
622 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
623
624 static enum check_kind
625 {
626 check_none = 0,
627 check_warning,
628 check_error
629 }
630 sse_check, operand_check = check_warning;
631
632 /* Optimization:
633 1. Clear the REX_W bit with register operand if possible.
634 2. Above plus use 128bit vector instruction to clear the full vector
635 register.
636 */
637 static int optimize = 0;
638
639 /* Optimization:
640 1. Clear the REX_W bit with register operand if possible.
641 2. Above plus use 128bit vector instruction to clear the full vector
642 register.
643 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
644 "testb $imm7,%r8".
645 */
646 static int optimize_for_space = 0;
647
648 /* Register prefix used for error message. */
649 static const char *register_prefix = "%";
650
651 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
652 leave, push, and pop instructions so that gcc has the same stack
653 frame as in 32 bit mode. */
654 static char stackop_size = '\0';
655
656 /* Non-zero to optimize code alignment. */
657 int optimize_align_code = 1;
658
659 /* Non-zero to quieten some warnings. */
660 static int quiet_warnings = 0;
661
662 /* CPU name. */
663 static const char *cpu_arch_name = NULL;
664 static char *cpu_sub_arch_name = NULL;
665
666 /* CPU feature flags. */
667 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
668
669 /* If we have selected a cpu we are generating instructions for. */
670 static int cpu_arch_tune_set = 0;
671
672 /* Cpu we are generating instructions for. */
673 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
674
675 /* CPU feature flags of cpu we are generating instructions for. */
676 static i386_cpu_flags cpu_arch_tune_flags;
677
678 /* CPU instruction set architecture used. */
679 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
680
681 /* CPU feature flags of instruction set architecture used. */
682 i386_cpu_flags cpu_arch_isa_flags;
683
684 /* If set, conditional jumps are not automatically promoted to handle
685 larger than a byte offset. */
686 static unsigned int no_cond_jump_promotion = 0;
687
688 /* Encode SSE instructions with VEX prefix. */
689 static unsigned int sse2avx;
690
691 /* Encode scalar AVX instructions with specific vector length. */
692 static enum
693 {
694 vex128 = 0,
695 vex256
696 } avxscalar;
697
698 /* Encode VEX WIG instructions with specific vex.w. */
699 static enum
700 {
701 vexw0 = 0,
702 vexw1
703 } vexwig;
704
705 /* Encode scalar EVEX LIG instructions with specific vector length. */
706 static enum
707 {
708 evexl128 = 0,
709 evexl256,
710 evexl512
711 } evexlig;
712
713 /* Encode EVEX WIG instructions with specific evex.w. */
714 static enum
715 {
716 evexw0 = 0,
717 evexw1
718 } evexwig;
719
720 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
721 static enum rc_type evexrcig = rne;
722
723 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
724 static symbolS *GOT_symbol;
725
726 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
727 unsigned int x86_dwarf2_return_column;
728
729 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
730 int x86_cie_data_alignment;
731
732 /* Interface to relax_segment.
733 There are 3 major relax states for 386 jump insns because the
734 different types of jumps add different sizes to frags when we're
735 figuring out what sort of jump to choose to reach a given label. */
736
737 /* Types. */
738 #define UNCOND_JUMP 0
739 #define COND_JUMP 1
740 #define COND_JUMP86 2
741
742 /* Sizes. */
743 #define CODE16 1
744 #define SMALL 0
745 #define SMALL16 (SMALL | CODE16)
746 #define BIG 2
747 #define BIG16 (BIG | CODE16)
748
749 #ifndef INLINE
750 #ifdef __GNUC__
751 #define INLINE __inline__
752 #else
753 #define INLINE
754 #endif
755 #endif
756
757 #define ENCODE_RELAX_STATE(type, size) \
758 ((relax_substateT) (((type) << 2) | (size)))
759 #define TYPE_FROM_RELAX_STATE(s) \
760 ((s) >> 2)
761 #define DISP_SIZE_FROM_RELAX_STATE(s) \
762 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
763
764 /* This table is used by relax_frag to promote short jumps to long
765 ones where necessary. SMALL (short) jumps may be promoted to BIG
766 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
767 don't allow a short jump in a 32 bit code segment to be promoted to
768 a 16 bit offset jump because it's slower (requires data size
769 prefix), and doesn't work, unless the destination is in the bottom
770 64k of the code segment (The top 16 bits of eip are zeroed). */
771
772 const relax_typeS md_relax_table[] =
773 {
774 /* The fields are:
775 1) most positive reach of this state,
776 2) most negative reach of this state,
777 3) how many bytes this mode will have in the variable part of the frag
778 4) which index into the table to try if we can't fit into this one. */
779
780 /* UNCOND_JUMP states. */
781 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
782 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
783 /* dword jmp adds 4 bytes to frag:
784 0 extra opcode bytes, 4 displacement bytes. */
785 {0, 0, 4, 0},
786 /* word jmp adds 2 byte2 to frag:
787 0 extra opcode bytes, 2 displacement bytes. */
788 {0, 0, 2, 0},
789
790 /* COND_JUMP states. */
791 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
792 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
793 /* dword conditionals adds 5 bytes to frag:
794 1 extra opcode byte, 4 displacement bytes. */
795 {0, 0, 5, 0},
796 /* word conditionals add 3 bytes to frag:
797 1 extra opcode byte, 2 displacement bytes. */
798 {0, 0, 3, 0},
799
800 /* COND_JUMP86 states. */
801 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
802 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
803 /* dword conditionals adds 5 bytes to frag:
804 1 extra opcode byte, 4 displacement bytes. */
805 {0, 0, 5, 0},
806 /* word conditionals add 4 bytes to frag:
807 1 displacement byte and a 3 byte long branch insn. */
808 {0, 0, 4, 0}
809 };
810
811 static const arch_entry cpu_arch[] =
812 {
813 /* Do not replace the first two entries - i386_target_format()
814 relies on them being there in this order. */
815 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
816 CPU_GENERIC32_FLAGS, 0 },
817 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
818 CPU_GENERIC64_FLAGS, 0 },
819 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
820 CPU_NONE_FLAGS, 0 },
821 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
822 CPU_I186_FLAGS, 0 },
823 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
824 CPU_I286_FLAGS, 0 },
825 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
826 CPU_I386_FLAGS, 0 },
827 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
828 CPU_I486_FLAGS, 0 },
829 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
830 CPU_I586_FLAGS, 0 },
831 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
832 CPU_I686_FLAGS, 0 },
833 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
834 CPU_I586_FLAGS, 0 },
835 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
836 CPU_PENTIUMPRO_FLAGS, 0 },
837 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
838 CPU_P2_FLAGS, 0 },
839 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
840 CPU_P3_FLAGS, 0 },
841 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
842 CPU_P4_FLAGS, 0 },
843 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
844 CPU_CORE_FLAGS, 0 },
845 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
846 CPU_NOCONA_FLAGS, 0 },
847 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
848 CPU_CORE_FLAGS, 1 },
849 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
850 CPU_CORE_FLAGS, 0 },
851 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
852 CPU_CORE2_FLAGS, 1 },
853 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
854 CPU_CORE2_FLAGS, 0 },
855 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
856 CPU_COREI7_FLAGS, 0 },
857 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
858 CPU_L1OM_FLAGS, 0 },
859 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
860 CPU_K1OM_FLAGS, 0 },
861 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
862 CPU_IAMCU_FLAGS, 0 },
863 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
864 CPU_K6_FLAGS, 0 },
865 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
866 CPU_K6_2_FLAGS, 0 },
867 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
868 CPU_ATHLON_FLAGS, 0 },
869 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
870 CPU_K8_FLAGS, 1 },
871 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
872 CPU_K8_FLAGS, 0 },
873 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
874 CPU_K8_FLAGS, 0 },
875 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
876 CPU_AMDFAM10_FLAGS, 0 },
877 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
878 CPU_BDVER1_FLAGS, 0 },
879 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
880 CPU_BDVER2_FLAGS, 0 },
881 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
882 CPU_BDVER3_FLAGS, 0 },
883 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
884 CPU_BDVER4_FLAGS, 0 },
885 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
886 CPU_ZNVER1_FLAGS, 0 },
887 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
888 CPU_ZNVER2_FLAGS, 0 },
889 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
890 CPU_BTVER1_FLAGS, 0 },
891 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
892 CPU_BTVER2_FLAGS, 0 },
893 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
894 CPU_8087_FLAGS, 0 },
895 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
896 CPU_287_FLAGS, 0 },
897 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
898 CPU_387_FLAGS, 0 },
899 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
900 CPU_687_FLAGS, 0 },
901 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
902 CPU_CMOV_FLAGS, 0 },
903 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
904 CPU_FXSR_FLAGS, 0 },
905 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
906 CPU_MMX_FLAGS, 0 },
907 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
908 CPU_SSE_FLAGS, 0 },
909 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
910 CPU_SSE2_FLAGS, 0 },
911 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
912 CPU_SSE3_FLAGS, 0 },
913 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
914 CPU_SSSE3_FLAGS, 0 },
915 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
916 CPU_SSE4_1_FLAGS, 0 },
917 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
918 CPU_SSE4_2_FLAGS, 0 },
919 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
920 CPU_SSE4_2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
922 CPU_AVX_FLAGS, 0 },
923 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
924 CPU_AVX2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
926 CPU_AVX512F_FLAGS, 0 },
927 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
928 CPU_AVX512CD_FLAGS, 0 },
929 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
930 CPU_AVX512ER_FLAGS, 0 },
931 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
932 CPU_AVX512PF_FLAGS, 0 },
933 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
934 CPU_AVX512DQ_FLAGS, 0 },
935 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
936 CPU_AVX512BW_FLAGS, 0 },
937 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
938 CPU_AVX512VL_FLAGS, 0 },
939 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
940 CPU_VMX_FLAGS, 0 },
941 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
942 CPU_VMFUNC_FLAGS, 0 },
943 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
944 CPU_SMX_FLAGS, 0 },
945 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
946 CPU_XSAVE_FLAGS, 0 },
947 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
948 CPU_XSAVEOPT_FLAGS, 0 },
949 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
950 CPU_XSAVEC_FLAGS, 0 },
951 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
952 CPU_XSAVES_FLAGS, 0 },
953 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
954 CPU_AES_FLAGS, 0 },
955 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
956 CPU_PCLMUL_FLAGS, 0 },
957 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
958 CPU_PCLMUL_FLAGS, 1 },
959 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
960 CPU_FSGSBASE_FLAGS, 0 },
961 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
962 CPU_RDRND_FLAGS, 0 },
963 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
964 CPU_F16C_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
966 CPU_BMI2_FLAGS, 0 },
967 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
968 CPU_FMA_FLAGS, 0 },
969 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
970 CPU_FMA4_FLAGS, 0 },
971 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
972 CPU_XOP_FLAGS, 0 },
973 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
974 CPU_LWP_FLAGS, 0 },
975 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
976 CPU_MOVBE_FLAGS, 0 },
977 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
978 CPU_CX16_FLAGS, 0 },
979 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
980 CPU_EPT_FLAGS, 0 },
981 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
982 CPU_LZCNT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
984 CPU_HLE_FLAGS, 0 },
985 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
986 CPU_RTM_FLAGS, 0 },
987 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
988 CPU_INVPCID_FLAGS, 0 },
989 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
990 CPU_CLFLUSH_FLAGS, 0 },
991 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
992 CPU_NOP_FLAGS, 0 },
993 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
994 CPU_SYSCALL_FLAGS, 0 },
995 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
996 CPU_RDTSCP_FLAGS, 0 },
997 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
998 CPU_3DNOW_FLAGS, 0 },
999 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1000 CPU_3DNOWA_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1002 CPU_PADLOCK_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1004 CPU_SVME_FLAGS, 1 },
1005 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1006 CPU_SVME_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1010 CPU_ABM_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1012 CPU_BMI_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1014 CPU_TBM_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1016 CPU_ADX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1018 CPU_RDSEED_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1020 CPU_PRFCHW_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1022 CPU_SMAP_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1024 CPU_MPX_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1026 CPU_SHA_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1028 CPU_CLFLUSHOPT_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1030 CPU_PREFETCHWT1_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1032 CPU_SE1_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1034 CPU_CLWB_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1036 CPU_AVX512IFMA_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1038 CPU_AVX512VBMI_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1040 CPU_AVX512_4FMAPS_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512_4VNNIW_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_VBMI2_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_VNNI_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_BITALG_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1052 CPU_CLZERO_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1054 CPU_MWAITX_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1056 CPU_OSPKE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1058 CPU_RDPID_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1060 CPU_PTWRITE_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1062 CPU_IBT_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1064 CPU_SHSTK_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1066 CPU_GFNI_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1068 CPU_VAES_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1070 CPU_VPCLMULQDQ_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1072 CPU_WBNOINVD_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1074 CPU_PCONFIG_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1076 CPU_WAITPKG_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1078 CPU_CLDEMOTE_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1080 CPU_MOVDIRI_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1082 CPU_MOVDIR64B_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1084 CPU_AVX512_BF16_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1086 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1088 CPU_ENQCMD_FLAGS, 0 },
1089 };
1090
1091 static const noarch_entry cpu_noarch[] =
1092 {
1093 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1094 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1095 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1096 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1097 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1098 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1099 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1100 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1101 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1102 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1103 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1104 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1105 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1106 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1107 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1108 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1109 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1110 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1111 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1112 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1113 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1114 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1115 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1124 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1125 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1126 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1127 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1128 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1129 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1130 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1131 };
1132
1133 #ifdef I386COFF
1134 /* Like s_lcomm_internal in gas/read.c but the alignment string
1135 is allowed to be optional. */
1136
1137 static symbolS *
1138 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1139 {
1140 addressT align = 0;
1141
1142 SKIP_WHITESPACE ();
1143
1144 if (needs_align
1145 && *input_line_pointer == ',')
1146 {
1147 align = parse_align (needs_align - 1);
1148
1149 if (align == (addressT) -1)
1150 return NULL;
1151 }
1152 else
1153 {
1154 if (size >= 8)
1155 align = 3;
1156 else if (size >= 4)
1157 align = 2;
1158 else if (size >= 2)
1159 align = 1;
1160 else
1161 align = 0;
1162 }
1163
1164 bss_alloc (symbolP, size, align);
1165 return symbolP;
1166 }
1167
1168 static void
1169 pe_lcomm (int needs_align)
1170 {
1171 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1172 }
1173 #endif
1174
1175 const pseudo_typeS md_pseudo_table[] =
1176 {
1177 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1178 {"align", s_align_bytes, 0},
1179 #else
1180 {"align", s_align_ptwo, 0},
1181 #endif
1182 {"arch", set_cpu_arch, 0},
1183 #ifndef I386COFF
1184 {"bss", s_bss, 0},
1185 #else
1186 {"lcomm", pe_lcomm, 1},
1187 #endif
1188 {"ffloat", float_cons, 'f'},
1189 {"dfloat", float_cons, 'd'},
1190 {"tfloat", float_cons, 'x'},
1191 {"value", cons, 2},
1192 {"slong", signed_cons, 4},
1193 {"noopt", s_ignore, 0},
1194 {"optim", s_ignore, 0},
1195 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1196 {"code16", set_code_flag, CODE_16BIT},
1197 {"code32", set_code_flag, CODE_32BIT},
1198 #ifdef BFD64
1199 {"code64", set_code_flag, CODE_64BIT},
1200 #endif
1201 {"intel_syntax", set_intel_syntax, 1},
1202 {"att_syntax", set_intel_syntax, 0},
1203 {"intel_mnemonic", set_intel_mnemonic, 1},
1204 {"att_mnemonic", set_intel_mnemonic, 0},
1205 {"allow_index_reg", set_allow_index_reg, 1},
1206 {"disallow_index_reg", set_allow_index_reg, 0},
1207 {"sse_check", set_check, 0},
1208 {"operand_check", set_check, 1},
1209 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1210 {"largecomm", handle_large_common, 0},
1211 #else
1212 {"file", dwarf2_directive_file, 0},
1213 {"loc", dwarf2_directive_loc, 0},
1214 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1215 #endif
1216 #ifdef TE_PE
1217 {"secrel32", pe_directive_secrel, 0},
1218 #endif
1219 {0, 0, 0}
1220 };
1221
1222 /* For interface with expression (). */
1223 extern char *input_line_pointer;
1224
1225 /* Hash table for instruction mnemonic lookup. */
1226 static struct hash_control *op_hash;
1227
1228 /* Hash table for register lookup. */
1229 static struct hash_control *reg_hash;
1230 \f
1231 /* Various efficient no-op patterns for aligning code labels.
1232 Note: Don't try to assemble the instructions in the comments.
1233 0L and 0w are not legal. */
1234 static const unsigned char f32_1[] =
1235 {0x90}; /* nop */
1236 static const unsigned char f32_2[] =
1237 {0x66,0x90}; /* xchg %ax,%ax */
1238 static const unsigned char f32_3[] =
1239 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1240 static const unsigned char f32_4[] =
1241 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1242 static const unsigned char f32_6[] =
1243 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1244 static const unsigned char f32_7[] =
1245 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1246 static const unsigned char f16_3[] =
1247 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1248 static const unsigned char f16_4[] =
1249 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1250 static const unsigned char jump_disp8[] =
1251 {0xeb}; /* jmp disp8 */
1252 static const unsigned char jump32_disp32[] =
1253 {0xe9}; /* jmp disp32 */
1254 static const unsigned char jump16_disp32[] =
1255 {0x66,0xe9}; /* jmp disp32 */
1256 /* 32-bit NOPs patterns. */
1257 static const unsigned char *const f32_patt[] = {
1258 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1259 };
1260 /* 16-bit NOPs patterns. */
1261 static const unsigned char *const f16_patt[] = {
1262 f32_1, f32_2, f16_3, f16_4
1263 };
1264 /* nopl (%[re]ax) */
1265 static const unsigned char alt_3[] =
1266 {0x0f,0x1f,0x00};
1267 /* nopl 0(%[re]ax) */
1268 static const unsigned char alt_4[] =
1269 {0x0f,0x1f,0x40,0x00};
1270 /* nopl 0(%[re]ax,%[re]ax,1) */
1271 static const unsigned char alt_5[] =
1272 {0x0f,0x1f,0x44,0x00,0x00};
1273 /* nopw 0(%[re]ax,%[re]ax,1) */
1274 static const unsigned char alt_6[] =
1275 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1276 /* nopl 0L(%[re]ax) */
1277 static const unsigned char alt_7[] =
1278 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1279 /* nopl 0L(%[re]ax,%[re]ax,1) */
1280 static const unsigned char alt_8[] =
1281 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1282 /* nopw 0L(%[re]ax,%[re]ax,1) */
1283 static const unsigned char alt_9[] =
1284 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1285 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1286 static const unsigned char alt_10[] =
1287 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1288 /* data16 nopw %cs:0L(%eax,%eax,1) */
1289 static const unsigned char alt_11[] =
1290 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1291 /* 32-bit and 64-bit NOPs patterns. */
1292 static const unsigned char *const alt_patt[] = {
1293 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1294 alt_9, alt_10, alt_11
1295 };
1296
1297 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1298 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1299
1300 static void
1301 i386_output_nops (char *where, const unsigned char *const *patt,
1302 int count, int max_single_nop_size)
1303
1304 {
1305 /* Place the longer NOP first. */
1306 int last;
1307 int offset;
1308 const unsigned char *nops;
1309
1310 if (max_single_nop_size < 1)
1311 {
1312 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1313 max_single_nop_size);
1314 return;
1315 }
1316
1317 nops = patt[max_single_nop_size - 1];
1318
1319 /* Use the smaller one if the requsted one isn't available. */
1320 if (nops == NULL)
1321 {
1322 max_single_nop_size--;
1323 nops = patt[max_single_nop_size - 1];
1324 }
1325
1326 last = count % max_single_nop_size;
1327
1328 count -= last;
1329 for (offset = 0; offset < count; offset += max_single_nop_size)
1330 memcpy (where + offset, nops, max_single_nop_size);
1331
1332 if (last)
1333 {
1334 nops = patt[last - 1];
1335 if (nops == NULL)
1336 {
1337 /* Use the smaller one plus one-byte NOP if the needed one
1338 isn't available. */
1339 last--;
1340 nops = patt[last - 1];
1341 memcpy (where + offset, nops, last);
1342 where[offset + last] = *patt[0];
1343 }
1344 else
1345 memcpy (where + offset, nops, last);
1346 }
1347 }
1348
1349 static INLINE int
1350 fits_in_imm7 (offsetT num)
1351 {
1352 return (num & 0x7f) == num;
1353 }
1354
1355 static INLINE int
1356 fits_in_imm31 (offsetT num)
1357 {
1358 return (num & 0x7fffffff) == num;
1359 }
1360
1361 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1362 single NOP instruction LIMIT. */
1363
1364 void
1365 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1366 {
1367 const unsigned char *const *patt = NULL;
1368 int max_single_nop_size;
1369 /* Maximum number of NOPs before switching to jump over NOPs. */
1370 int max_number_of_nops;
1371
1372 switch (fragP->fr_type)
1373 {
1374 case rs_fill_nop:
1375 case rs_align_code:
1376 break;
1377 default:
1378 return;
1379 }
1380
1381 /* We need to decide which NOP sequence to use for 32bit and
1382 64bit. When -mtune= is used:
1383
1384 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1385 PROCESSOR_GENERIC32, f32_patt will be used.
1386 2. For the rest, alt_patt will be used.
1387
1388 When -mtune= isn't used, alt_patt will be used if
1389 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1390 be used.
1391
1392 When -march= or .arch is used, we can't use anything beyond
1393 cpu_arch_isa_flags. */
1394
1395 if (flag_code == CODE_16BIT)
1396 {
1397 patt = f16_patt;
1398 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1399 /* Limit number of NOPs to 2 in 16-bit mode. */
1400 max_number_of_nops = 2;
1401 }
1402 else
1403 {
1404 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1405 {
1406 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1407 switch (cpu_arch_tune)
1408 {
1409 case PROCESSOR_UNKNOWN:
1410 /* We use cpu_arch_isa_flags to check if we SHOULD
1411 optimize with nops. */
1412 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1413 patt = alt_patt;
1414 else
1415 patt = f32_patt;
1416 break;
1417 case PROCESSOR_PENTIUM4:
1418 case PROCESSOR_NOCONA:
1419 case PROCESSOR_CORE:
1420 case PROCESSOR_CORE2:
1421 case PROCESSOR_COREI7:
1422 case PROCESSOR_L1OM:
1423 case PROCESSOR_K1OM:
1424 case PROCESSOR_GENERIC64:
1425 case PROCESSOR_K6:
1426 case PROCESSOR_ATHLON:
1427 case PROCESSOR_K8:
1428 case PROCESSOR_AMDFAM10:
1429 case PROCESSOR_BD:
1430 case PROCESSOR_ZNVER:
1431 case PROCESSOR_BT:
1432 patt = alt_patt;
1433 break;
1434 case PROCESSOR_I386:
1435 case PROCESSOR_I486:
1436 case PROCESSOR_PENTIUM:
1437 case PROCESSOR_PENTIUMPRO:
1438 case PROCESSOR_IAMCU:
1439 case PROCESSOR_GENERIC32:
1440 patt = f32_patt;
1441 break;
1442 }
1443 }
1444 else
1445 {
1446 switch (fragP->tc_frag_data.tune)
1447 {
1448 case PROCESSOR_UNKNOWN:
1449 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1450 PROCESSOR_UNKNOWN. */
1451 abort ();
1452 break;
1453
1454 case PROCESSOR_I386:
1455 case PROCESSOR_I486:
1456 case PROCESSOR_PENTIUM:
1457 case PROCESSOR_IAMCU:
1458 case PROCESSOR_K6:
1459 case PROCESSOR_ATHLON:
1460 case PROCESSOR_K8:
1461 case PROCESSOR_AMDFAM10:
1462 case PROCESSOR_BD:
1463 case PROCESSOR_ZNVER:
1464 case PROCESSOR_BT:
1465 case PROCESSOR_GENERIC32:
1466 /* We use cpu_arch_isa_flags to check if we CAN optimize
1467 with nops. */
1468 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1469 patt = alt_patt;
1470 else
1471 patt = f32_patt;
1472 break;
1473 case PROCESSOR_PENTIUMPRO:
1474 case PROCESSOR_PENTIUM4:
1475 case PROCESSOR_NOCONA:
1476 case PROCESSOR_CORE:
1477 case PROCESSOR_CORE2:
1478 case PROCESSOR_COREI7:
1479 case PROCESSOR_L1OM:
1480 case PROCESSOR_K1OM:
1481 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1482 patt = alt_patt;
1483 else
1484 patt = f32_patt;
1485 break;
1486 case PROCESSOR_GENERIC64:
1487 patt = alt_patt;
1488 break;
1489 }
1490 }
1491
1492 if (patt == f32_patt)
1493 {
1494 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1495 /* Limit number of NOPs to 2 for older processors. */
1496 max_number_of_nops = 2;
1497 }
1498 else
1499 {
1500 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1501 /* Limit number of NOPs to 7 for newer processors. */
1502 max_number_of_nops = 7;
1503 }
1504 }
1505
1506 if (limit == 0)
1507 limit = max_single_nop_size;
1508
1509 if (fragP->fr_type == rs_fill_nop)
1510 {
1511 /* Output NOPs for .nop directive. */
1512 if (limit > max_single_nop_size)
1513 {
1514 as_bad_where (fragP->fr_file, fragP->fr_line,
1515 _("invalid single nop size: %d "
1516 "(expect within [0, %d])"),
1517 limit, max_single_nop_size);
1518 return;
1519 }
1520 }
1521 else
1522 fragP->fr_var = count;
1523
1524 if ((count / max_single_nop_size) > max_number_of_nops)
1525 {
1526 /* Generate jump over NOPs. */
1527 offsetT disp = count - 2;
1528 if (fits_in_imm7 (disp))
1529 {
1530 /* Use "jmp disp8" if possible. */
1531 count = disp;
1532 where[0] = jump_disp8[0];
1533 where[1] = count;
1534 where += 2;
1535 }
1536 else
1537 {
1538 unsigned int size_of_jump;
1539
1540 if (flag_code == CODE_16BIT)
1541 {
1542 where[0] = jump16_disp32[0];
1543 where[1] = jump16_disp32[1];
1544 size_of_jump = 2;
1545 }
1546 else
1547 {
1548 where[0] = jump32_disp32[0];
1549 size_of_jump = 1;
1550 }
1551
1552 count -= size_of_jump + 4;
1553 if (!fits_in_imm31 (count))
1554 {
1555 as_bad_where (fragP->fr_file, fragP->fr_line,
1556 _("jump over nop padding out of range"));
1557 return;
1558 }
1559
1560 md_number_to_chars (where + size_of_jump, count, 4);
1561 where += size_of_jump + 4;
1562 }
1563 }
1564
1565 /* Generate multiple NOPs. */
1566 i386_output_nops (where, patt, count, limit);
1567 }
1568
1569 static INLINE int
1570 operand_type_all_zero (const union i386_operand_type *x)
1571 {
1572 switch (ARRAY_SIZE(x->array))
1573 {
1574 case 3:
1575 if (x->array[2])
1576 return 0;
1577 /* Fall through. */
1578 case 2:
1579 if (x->array[1])
1580 return 0;
1581 /* Fall through. */
1582 case 1:
1583 return !x->array[0];
1584 default:
1585 abort ();
1586 }
1587 }
1588
1589 static INLINE void
1590 operand_type_set (union i386_operand_type *x, unsigned int v)
1591 {
1592 switch (ARRAY_SIZE(x->array))
1593 {
1594 case 3:
1595 x->array[2] = v;
1596 /* Fall through. */
1597 case 2:
1598 x->array[1] = v;
1599 /* Fall through. */
1600 case 1:
1601 x->array[0] = v;
1602 /* Fall through. */
1603 break;
1604 default:
1605 abort ();
1606 }
1607 }
1608
1609 static INLINE int
1610 operand_type_equal (const union i386_operand_type *x,
1611 const union i386_operand_type *y)
1612 {
1613 switch (ARRAY_SIZE(x->array))
1614 {
1615 case 3:
1616 if (x->array[2] != y->array[2])
1617 return 0;
1618 /* Fall through. */
1619 case 2:
1620 if (x->array[1] != y->array[1])
1621 return 0;
1622 /* Fall through. */
1623 case 1:
1624 return x->array[0] == y->array[0];
1625 break;
1626 default:
1627 abort ();
1628 }
1629 }
1630
1631 static INLINE int
1632 cpu_flags_all_zero (const union i386_cpu_flags *x)
1633 {
1634 switch (ARRAY_SIZE(x->array))
1635 {
1636 case 4:
1637 if (x->array[3])
1638 return 0;
1639 /* Fall through. */
1640 case 3:
1641 if (x->array[2])
1642 return 0;
1643 /* Fall through. */
1644 case 2:
1645 if (x->array[1])
1646 return 0;
1647 /* Fall through. */
1648 case 1:
1649 return !x->array[0];
1650 default:
1651 abort ();
1652 }
1653 }
1654
1655 static INLINE int
1656 cpu_flags_equal (const union i386_cpu_flags *x,
1657 const union i386_cpu_flags *y)
1658 {
1659 switch (ARRAY_SIZE(x->array))
1660 {
1661 case 4:
1662 if (x->array[3] != y->array[3])
1663 return 0;
1664 /* Fall through. */
1665 case 3:
1666 if (x->array[2] != y->array[2])
1667 return 0;
1668 /* Fall through. */
1669 case 2:
1670 if (x->array[1] != y->array[1])
1671 return 0;
1672 /* Fall through. */
1673 case 1:
1674 return x->array[0] == y->array[0];
1675 break;
1676 default:
1677 abort ();
1678 }
1679 }
1680
1681 static INLINE int
1682 cpu_flags_check_cpu64 (i386_cpu_flags f)
1683 {
1684 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1685 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1686 }
1687
1688 static INLINE i386_cpu_flags
1689 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1690 {
1691 switch (ARRAY_SIZE (x.array))
1692 {
1693 case 4:
1694 x.array [3] &= y.array [3];
1695 /* Fall through. */
1696 case 3:
1697 x.array [2] &= y.array [2];
1698 /* Fall through. */
1699 case 2:
1700 x.array [1] &= y.array [1];
1701 /* Fall through. */
1702 case 1:
1703 x.array [0] &= y.array [0];
1704 break;
1705 default:
1706 abort ();
1707 }
1708 return x;
1709 }
1710
1711 static INLINE i386_cpu_flags
1712 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1713 {
1714 switch (ARRAY_SIZE (x.array))
1715 {
1716 case 4:
1717 x.array [3] |= y.array [3];
1718 /* Fall through. */
1719 case 3:
1720 x.array [2] |= y.array [2];
1721 /* Fall through. */
1722 case 2:
1723 x.array [1] |= y.array [1];
1724 /* Fall through. */
1725 case 1:
1726 x.array [0] |= y.array [0];
1727 break;
1728 default:
1729 abort ();
1730 }
1731 return x;
1732 }
1733
1734 static INLINE i386_cpu_flags
1735 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1736 {
1737 switch (ARRAY_SIZE (x.array))
1738 {
1739 case 4:
1740 x.array [3] &= ~y.array [3];
1741 /* Fall through. */
1742 case 3:
1743 x.array [2] &= ~y.array [2];
1744 /* Fall through. */
1745 case 2:
1746 x.array [1] &= ~y.array [1];
1747 /* Fall through. */
1748 case 1:
1749 x.array [0] &= ~y.array [0];
1750 break;
1751 default:
1752 abort ();
1753 }
1754 return x;
1755 }
1756
1757 #define CPU_FLAGS_ARCH_MATCH 0x1
1758 #define CPU_FLAGS_64BIT_MATCH 0x2
1759
1760 #define CPU_FLAGS_PERFECT_MATCH \
1761 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1762
1763 /* Return CPU flags match bits. */
1764
1765 static int
1766 cpu_flags_match (const insn_template *t)
1767 {
1768 i386_cpu_flags x = t->cpu_flags;
1769 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1770
1771 x.bitfield.cpu64 = 0;
1772 x.bitfield.cpuno64 = 0;
1773
1774 if (cpu_flags_all_zero (&x))
1775 {
1776 /* This instruction is available on all archs. */
1777 match |= CPU_FLAGS_ARCH_MATCH;
1778 }
1779 else
1780 {
1781 /* This instruction is available only on some archs. */
1782 i386_cpu_flags cpu = cpu_arch_flags;
1783
1784 /* AVX512VL is no standalone feature - match it and then strip it. */
1785 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1786 return match;
1787 x.bitfield.cpuavx512vl = 0;
1788
1789 cpu = cpu_flags_and (x, cpu);
1790 if (!cpu_flags_all_zero (&cpu))
1791 {
1792 if (x.bitfield.cpuavx)
1793 {
1794 /* We need to check a few extra flags with AVX. */
1795 if (cpu.bitfield.cpuavx
1796 && (!t->opcode_modifier.sse2avx || sse2avx)
1797 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1798 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1799 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1800 match |= CPU_FLAGS_ARCH_MATCH;
1801 }
1802 else if (x.bitfield.cpuavx512f)
1803 {
1804 /* We need to check a few extra flags with AVX512F. */
1805 if (cpu.bitfield.cpuavx512f
1806 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1807 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1808 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1809 match |= CPU_FLAGS_ARCH_MATCH;
1810 }
1811 else
1812 match |= CPU_FLAGS_ARCH_MATCH;
1813 }
1814 }
1815 return match;
1816 }
1817
1818 static INLINE i386_operand_type
1819 operand_type_and (i386_operand_type x, i386_operand_type y)
1820 {
1821 switch (ARRAY_SIZE (x.array))
1822 {
1823 case 3:
1824 x.array [2] &= y.array [2];
1825 /* Fall through. */
1826 case 2:
1827 x.array [1] &= y.array [1];
1828 /* Fall through. */
1829 case 1:
1830 x.array [0] &= y.array [0];
1831 break;
1832 default:
1833 abort ();
1834 }
1835 return x;
1836 }
1837
1838 static INLINE i386_operand_type
1839 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1840 {
1841 switch (ARRAY_SIZE (x.array))
1842 {
1843 case 3:
1844 x.array [2] &= ~y.array [2];
1845 /* Fall through. */
1846 case 2:
1847 x.array [1] &= ~y.array [1];
1848 /* Fall through. */
1849 case 1:
1850 x.array [0] &= ~y.array [0];
1851 break;
1852 default:
1853 abort ();
1854 }
1855 return x;
1856 }
1857
1858 static INLINE i386_operand_type
1859 operand_type_or (i386_operand_type x, i386_operand_type y)
1860 {
1861 switch (ARRAY_SIZE (x.array))
1862 {
1863 case 3:
1864 x.array [2] |= y.array [2];
1865 /* Fall through. */
1866 case 2:
1867 x.array [1] |= y.array [1];
1868 /* Fall through. */
1869 case 1:
1870 x.array [0] |= y.array [0];
1871 break;
1872 default:
1873 abort ();
1874 }
1875 return x;
1876 }
1877
1878 static INLINE i386_operand_type
1879 operand_type_xor (i386_operand_type x, i386_operand_type y)
1880 {
1881 switch (ARRAY_SIZE (x.array))
1882 {
1883 case 3:
1884 x.array [2] ^= y.array [2];
1885 /* Fall through. */
1886 case 2:
1887 x.array [1] ^= y.array [1];
1888 /* Fall through. */
1889 case 1:
1890 x.array [0] ^= y.array [0];
1891 break;
1892 default:
1893 abort ();
1894 }
1895 return x;
1896 }
1897
1898 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1899 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1900 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1901 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1902 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1903 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1904 static const i386_operand_type anydisp
1905 = OPERAND_TYPE_ANYDISP;
1906 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1907 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1908 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1909 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1910 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1911 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1912 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1913 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1914 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1915 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1916 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1917 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1918
1919 enum operand_type
1920 {
1921 reg,
1922 imm,
1923 disp,
1924 anymem
1925 };
1926
1927 static INLINE int
1928 operand_type_check (i386_operand_type t, enum operand_type c)
1929 {
1930 switch (c)
1931 {
1932 case reg:
1933 return t.bitfield.reg;
1934
1935 case imm:
1936 return (t.bitfield.imm8
1937 || t.bitfield.imm8s
1938 || t.bitfield.imm16
1939 || t.bitfield.imm32
1940 || t.bitfield.imm32s
1941 || t.bitfield.imm64);
1942
1943 case disp:
1944 return (t.bitfield.disp8
1945 || t.bitfield.disp16
1946 || t.bitfield.disp32
1947 || t.bitfield.disp32s
1948 || t.bitfield.disp64);
1949
1950 case anymem:
1951 return (t.bitfield.disp8
1952 || t.bitfield.disp16
1953 || t.bitfield.disp32
1954 || t.bitfield.disp32s
1955 || t.bitfield.disp64
1956 || t.bitfield.baseindex);
1957
1958 default:
1959 abort ();
1960 }
1961
1962 return 0;
1963 }
1964
1965 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1966 between operand GIVEN and opeand WANTED for instruction template T. */
1967
1968 static INLINE int
1969 match_operand_size (const insn_template *t, unsigned int wanted,
1970 unsigned int given)
1971 {
1972 return !((i.types[given].bitfield.byte
1973 && !t->operand_types[wanted].bitfield.byte)
1974 || (i.types[given].bitfield.word
1975 && !t->operand_types[wanted].bitfield.word)
1976 || (i.types[given].bitfield.dword
1977 && !t->operand_types[wanted].bitfield.dword)
1978 || (i.types[given].bitfield.qword
1979 && !t->operand_types[wanted].bitfield.qword)
1980 || (i.types[given].bitfield.tbyte
1981 && !t->operand_types[wanted].bitfield.tbyte));
1982 }
1983
1984 /* Return 1 if there is no conflict in SIMD register between operand
1985 GIVEN and opeand WANTED for instruction template T. */
1986
1987 static INLINE int
1988 match_simd_size (const insn_template *t, unsigned int wanted,
1989 unsigned int given)
1990 {
1991 return !((i.types[given].bitfield.xmmword
1992 && !t->operand_types[wanted].bitfield.xmmword)
1993 || (i.types[given].bitfield.ymmword
1994 && !t->operand_types[wanted].bitfield.ymmword)
1995 || (i.types[given].bitfield.zmmword
1996 && !t->operand_types[wanted].bitfield.zmmword));
1997 }
1998
1999 /* Return 1 if there is no conflict in any size between operand GIVEN
2000 and opeand WANTED for instruction template T. */
2001
2002 static INLINE int
2003 match_mem_size (const insn_template *t, unsigned int wanted,
2004 unsigned int given)
2005 {
2006 return (match_operand_size (t, wanted, given)
2007 && !((i.types[given].bitfield.unspecified
2008 && !i.broadcast
2009 && !t->operand_types[wanted].bitfield.unspecified)
2010 || (i.types[given].bitfield.fword
2011 && !t->operand_types[wanted].bitfield.fword)
2012 /* For scalar opcode templates to allow register and memory
2013 operands at the same time, some special casing is needed
2014 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2015 down-conversion vpmov*. */
2016 || ((t->operand_types[wanted].bitfield.regsimd
2017 && !t->opcode_modifier.broadcast
2018 && (t->operand_types[wanted].bitfield.byte
2019 || t->operand_types[wanted].bitfield.word
2020 || t->operand_types[wanted].bitfield.dword
2021 || t->operand_types[wanted].bitfield.qword))
2022 ? (i.types[given].bitfield.xmmword
2023 || i.types[given].bitfield.ymmword
2024 || i.types[given].bitfield.zmmword)
2025 : !match_simd_size(t, wanted, given))));
2026 }
2027
2028 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2029 operands for instruction template T, and it has MATCH_REVERSE set if there
2030 is no size conflict on any operands for the template with operands reversed
2031 (and the template allows for reversing in the first place). */
2032
2033 #define MATCH_STRAIGHT 1
2034 #define MATCH_REVERSE 2
2035
2036 static INLINE unsigned int
2037 operand_size_match (const insn_template *t)
2038 {
2039 unsigned int j, match = MATCH_STRAIGHT;
2040
2041 /* Don't check jump instructions. */
2042 if (t->opcode_modifier.jump
2043 || t->opcode_modifier.jumpbyte
2044 || t->opcode_modifier.jumpdword
2045 || t->opcode_modifier.jumpintersegment)
2046 return match;
2047
2048 /* Check memory and accumulator operand size. */
2049 for (j = 0; j < i.operands; j++)
2050 {
2051 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
2052 && t->operand_types[j].bitfield.anysize)
2053 continue;
2054
2055 if (t->operand_types[j].bitfield.reg
2056 && !match_operand_size (t, j, j))
2057 {
2058 match = 0;
2059 break;
2060 }
2061
2062 if (t->operand_types[j].bitfield.regsimd
2063 && !match_simd_size (t, j, j))
2064 {
2065 match = 0;
2066 break;
2067 }
2068
2069 if (t->operand_types[j].bitfield.acc
2070 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2071 {
2072 match = 0;
2073 break;
2074 }
2075
2076 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2077 {
2078 match = 0;
2079 break;
2080 }
2081 }
2082
2083 if (!t->opcode_modifier.d)
2084 {
2085 mismatch:
2086 if (!match)
2087 i.error = operand_size_mismatch;
2088 return match;
2089 }
2090
2091 /* Check reverse. */
2092 gas_assert (i.operands >= 2 && i.operands <= 3);
2093
2094 for (j = 0; j < i.operands; j++)
2095 {
2096 unsigned int given = i.operands - j - 1;
2097
2098 if (t->operand_types[j].bitfield.reg
2099 && !match_operand_size (t, j, given))
2100 goto mismatch;
2101
2102 if (t->operand_types[j].bitfield.regsimd
2103 && !match_simd_size (t, j, given))
2104 goto mismatch;
2105
2106 if (t->operand_types[j].bitfield.acc
2107 && (!match_operand_size (t, j, given)
2108 || !match_simd_size (t, j, given)))
2109 goto mismatch;
2110
2111 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2112 goto mismatch;
2113 }
2114
2115 return match | MATCH_REVERSE;
2116 }
2117
2118 static INLINE int
2119 operand_type_match (i386_operand_type overlap,
2120 i386_operand_type given)
2121 {
2122 i386_operand_type temp = overlap;
2123
2124 temp.bitfield.jumpabsolute = 0;
2125 temp.bitfield.unspecified = 0;
2126 temp.bitfield.byte = 0;
2127 temp.bitfield.word = 0;
2128 temp.bitfield.dword = 0;
2129 temp.bitfield.fword = 0;
2130 temp.bitfield.qword = 0;
2131 temp.bitfield.tbyte = 0;
2132 temp.bitfield.xmmword = 0;
2133 temp.bitfield.ymmword = 0;
2134 temp.bitfield.zmmword = 0;
2135 if (operand_type_all_zero (&temp))
2136 goto mismatch;
2137
2138 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2139 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2140 return 1;
2141
2142 mismatch:
2143 i.error = operand_type_mismatch;
2144 return 0;
2145 }
2146
2147 /* If given types g0 and g1 are registers they must be of the same type
2148 unless the expected operand type register overlap is null.
2149 Memory operand size of certain SIMD instructions is also being checked
2150 here. */
2151
2152 static INLINE int
2153 operand_type_register_match (i386_operand_type g0,
2154 i386_operand_type t0,
2155 i386_operand_type g1,
2156 i386_operand_type t1)
2157 {
2158 if (!g0.bitfield.reg
2159 && !g0.bitfield.regsimd
2160 && (!operand_type_check (g0, anymem)
2161 || g0.bitfield.unspecified
2162 || !t0.bitfield.regsimd))
2163 return 1;
2164
2165 if (!g1.bitfield.reg
2166 && !g1.bitfield.regsimd
2167 && (!operand_type_check (g1, anymem)
2168 || g1.bitfield.unspecified
2169 || !t1.bitfield.regsimd))
2170 return 1;
2171
2172 if (g0.bitfield.byte == g1.bitfield.byte
2173 && g0.bitfield.word == g1.bitfield.word
2174 && g0.bitfield.dword == g1.bitfield.dword
2175 && g0.bitfield.qword == g1.bitfield.qword
2176 && g0.bitfield.xmmword == g1.bitfield.xmmword
2177 && g0.bitfield.ymmword == g1.bitfield.ymmword
2178 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2179 return 1;
2180
2181 if (!(t0.bitfield.byte & t1.bitfield.byte)
2182 && !(t0.bitfield.word & t1.bitfield.word)
2183 && !(t0.bitfield.dword & t1.bitfield.dword)
2184 && !(t0.bitfield.qword & t1.bitfield.qword)
2185 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2186 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2187 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2188 return 1;
2189
2190 i.error = register_type_mismatch;
2191
2192 return 0;
2193 }
2194
2195 static INLINE unsigned int
2196 register_number (const reg_entry *r)
2197 {
2198 unsigned int nr = r->reg_num;
2199
2200 if (r->reg_flags & RegRex)
2201 nr += 8;
2202
2203 if (r->reg_flags & RegVRex)
2204 nr += 16;
2205
2206 return nr;
2207 }
2208
2209 static INLINE unsigned int
2210 mode_from_disp_size (i386_operand_type t)
2211 {
2212 if (t.bitfield.disp8)
2213 return 1;
2214 else if (t.bitfield.disp16
2215 || t.bitfield.disp32
2216 || t.bitfield.disp32s)
2217 return 2;
2218 else
2219 return 0;
2220 }
2221
2222 static INLINE int
2223 fits_in_signed_byte (addressT num)
2224 {
2225 return num + 0x80 <= 0xff;
2226 }
2227
2228 static INLINE int
2229 fits_in_unsigned_byte (addressT num)
2230 {
2231 return num <= 0xff;
2232 }
2233
2234 static INLINE int
2235 fits_in_unsigned_word (addressT num)
2236 {
2237 return num <= 0xffff;
2238 }
2239
2240 static INLINE int
2241 fits_in_signed_word (addressT num)
2242 {
2243 return num + 0x8000 <= 0xffff;
2244 }
2245
2246 static INLINE int
2247 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2248 {
2249 #ifndef BFD64
2250 return 1;
2251 #else
2252 return num + 0x80000000 <= 0xffffffff;
2253 #endif
2254 } /* fits_in_signed_long() */
2255
2256 static INLINE int
2257 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2258 {
2259 #ifndef BFD64
2260 return 1;
2261 #else
2262 return num <= 0xffffffff;
2263 #endif
2264 } /* fits_in_unsigned_long() */
2265
2266 static INLINE int
2267 fits_in_disp8 (offsetT num)
2268 {
2269 int shift = i.memshift;
2270 unsigned int mask;
2271
2272 if (shift == -1)
2273 abort ();
2274
2275 mask = (1 << shift) - 1;
2276
2277 /* Return 0 if NUM isn't properly aligned. */
2278 if ((num & mask))
2279 return 0;
2280
2281 /* Check if NUM will fit in 8bit after shift. */
2282 return fits_in_signed_byte (num >> shift);
2283 }
2284
2285 static INLINE int
2286 fits_in_imm4 (offsetT num)
2287 {
2288 return (num & 0xf) == num;
2289 }
2290
2291 static i386_operand_type
2292 smallest_imm_type (offsetT num)
2293 {
2294 i386_operand_type t;
2295
2296 operand_type_set (&t, 0);
2297 t.bitfield.imm64 = 1;
2298
2299 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2300 {
2301 /* This code is disabled on the 486 because all the Imm1 forms
2302 in the opcode table are slower on the i486. They're the
2303 versions with the implicitly specified single-position
2304 displacement, which has another syntax if you really want to
2305 use that form. */
2306 t.bitfield.imm1 = 1;
2307 t.bitfield.imm8 = 1;
2308 t.bitfield.imm8s = 1;
2309 t.bitfield.imm16 = 1;
2310 t.bitfield.imm32 = 1;
2311 t.bitfield.imm32s = 1;
2312 }
2313 else if (fits_in_signed_byte (num))
2314 {
2315 t.bitfield.imm8 = 1;
2316 t.bitfield.imm8s = 1;
2317 t.bitfield.imm16 = 1;
2318 t.bitfield.imm32 = 1;
2319 t.bitfield.imm32s = 1;
2320 }
2321 else if (fits_in_unsigned_byte (num))
2322 {
2323 t.bitfield.imm8 = 1;
2324 t.bitfield.imm16 = 1;
2325 t.bitfield.imm32 = 1;
2326 t.bitfield.imm32s = 1;
2327 }
2328 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2329 {
2330 t.bitfield.imm16 = 1;
2331 t.bitfield.imm32 = 1;
2332 t.bitfield.imm32s = 1;
2333 }
2334 else if (fits_in_signed_long (num))
2335 {
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_long (num))
2340 t.bitfield.imm32 = 1;
2341
2342 return t;
2343 }
2344
2345 static offsetT
2346 offset_in_range (offsetT val, int size)
2347 {
2348 addressT mask;
2349
2350 switch (size)
2351 {
2352 case 1: mask = ((addressT) 1 << 8) - 1; break;
2353 case 2: mask = ((addressT) 1 << 16) - 1; break;
2354 case 4: mask = ((addressT) 2 << 31) - 1; break;
2355 #ifdef BFD64
2356 case 8: mask = ((addressT) 2 << 63) - 1; break;
2357 #endif
2358 default: abort ();
2359 }
2360
2361 #ifdef BFD64
2362 /* If BFD64, sign extend val for 32bit address mode. */
2363 if (flag_code != CODE_64BIT
2364 || i.prefix[ADDR_PREFIX])
2365 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2366 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2367 #endif
2368
2369 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2370 {
2371 char buf1[40], buf2[40];
2372
2373 sprint_value (buf1, val);
2374 sprint_value (buf2, val & mask);
2375 as_warn (_("%s shortened to %s"), buf1, buf2);
2376 }
2377 return val & mask;
2378 }
2379
2380 enum PREFIX_GROUP
2381 {
2382 PREFIX_EXIST = 0,
2383 PREFIX_LOCK,
2384 PREFIX_REP,
2385 PREFIX_DS,
2386 PREFIX_OTHER
2387 };
2388
2389 /* Returns
2390 a. PREFIX_EXIST if attempting to add a prefix where one from the
2391 same class already exists.
2392 b. PREFIX_LOCK if lock prefix is added.
2393 c. PREFIX_REP if rep/repne prefix is added.
2394 d. PREFIX_DS if ds prefix is added.
2395 e. PREFIX_OTHER if other prefix is added.
2396 */
2397
2398 static enum PREFIX_GROUP
2399 add_prefix (unsigned int prefix)
2400 {
2401 enum PREFIX_GROUP ret = PREFIX_OTHER;
2402 unsigned int q;
2403
2404 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2405 && flag_code == CODE_64BIT)
2406 {
2407 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2408 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2409 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2410 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2411 ret = PREFIX_EXIST;
2412 q = REX_PREFIX;
2413 }
2414 else
2415 {
2416 switch (prefix)
2417 {
2418 default:
2419 abort ();
2420
2421 case DS_PREFIX_OPCODE:
2422 ret = PREFIX_DS;
2423 /* Fall through. */
2424 case CS_PREFIX_OPCODE:
2425 case ES_PREFIX_OPCODE:
2426 case FS_PREFIX_OPCODE:
2427 case GS_PREFIX_OPCODE:
2428 case SS_PREFIX_OPCODE:
2429 q = SEG_PREFIX;
2430 break;
2431
2432 case REPNE_PREFIX_OPCODE:
2433 case REPE_PREFIX_OPCODE:
2434 q = REP_PREFIX;
2435 ret = PREFIX_REP;
2436 break;
2437
2438 case LOCK_PREFIX_OPCODE:
2439 q = LOCK_PREFIX;
2440 ret = PREFIX_LOCK;
2441 break;
2442
2443 case FWAIT_OPCODE:
2444 q = WAIT_PREFIX;
2445 break;
2446
2447 case ADDR_PREFIX_OPCODE:
2448 q = ADDR_PREFIX;
2449 break;
2450
2451 case DATA_PREFIX_OPCODE:
2452 q = DATA_PREFIX;
2453 break;
2454 }
2455 if (i.prefix[q] != 0)
2456 ret = PREFIX_EXIST;
2457 }
2458
2459 if (ret)
2460 {
2461 if (!i.prefix[q])
2462 ++i.prefixes;
2463 i.prefix[q] |= prefix;
2464 }
2465 else
2466 as_bad (_("same type of prefix used twice"));
2467
2468 return ret;
2469 }
2470
2471 static void
2472 update_code_flag (int value, int check)
2473 {
2474 PRINTF_LIKE ((*as_error));
2475
2476 flag_code = (enum flag_code) value;
2477 if (flag_code == CODE_64BIT)
2478 {
2479 cpu_arch_flags.bitfield.cpu64 = 1;
2480 cpu_arch_flags.bitfield.cpuno64 = 0;
2481 }
2482 else
2483 {
2484 cpu_arch_flags.bitfield.cpu64 = 0;
2485 cpu_arch_flags.bitfield.cpuno64 = 1;
2486 }
2487 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2488 {
2489 if (check)
2490 as_error = as_fatal;
2491 else
2492 as_error = as_bad;
2493 (*as_error) (_("64bit mode not supported on `%s'."),
2494 cpu_arch_name ? cpu_arch_name : default_arch);
2495 }
2496 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2497 {
2498 if (check)
2499 as_error = as_fatal;
2500 else
2501 as_error = as_bad;
2502 (*as_error) (_("32bit mode not supported on `%s'."),
2503 cpu_arch_name ? cpu_arch_name : default_arch);
2504 }
2505 stackop_size = '\0';
2506 }
2507
2508 static void
2509 set_code_flag (int value)
2510 {
2511 update_code_flag (value, 0);
2512 }
2513
2514 static void
2515 set_16bit_gcc_code_flag (int new_code_flag)
2516 {
2517 flag_code = (enum flag_code) new_code_flag;
2518 if (flag_code != CODE_16BIT)
2519 abort ();
2520 cpu_arch_flags.bitfield.cpu64 = 0;
2521 cpu_arch_flags.bitfield.cpuno64 = 1;
2522 stackop_size = LONG_MNEM_SUFFIX;
2523 }
2524
2525 static void
2526 set_intel_syntax (int syntax_flag)
2527 {
2528 /* Find out if register prefixing is specified. */
2529 int ask_naked_reg = 0;
2530
2531 SKIP_WHITESPACE ();
2532 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2533 {
2534 char *string;
2535 int e = get_symbol_name (&string);
2536
2537 if (strcmp (string, "prefix") == 0)
2538 ask_naked_reg = 1;
2539 else if (strcmp (string, "noprefix") == 0)
2540 ask_naked_reg = -1;
2541 else
2542 as_bad (_("bad argument to syntax directive."));
2543 (void) restore_line_pointer (e);
2544 }
2545 demand_empty_rest_of_line ();
2546
2547 intel_syntax = syntax_flag;
2548
2549 if (ask_naked_reg == 0)
2550 allow_naked_reg = (intel_syntax
2551 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2552 else
2553 allow_naked_reg = (ask_naked_reg < 0);
2554
2555 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2556
2557 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2558 identifier_chars['$'] = intel_syntax ? '$' : 0;
2559 register_prefix = allow_naked_reg ? "" : "%";
2560 }
2561
2562 static void
2563 set_intel_mnemonic (int mnemonic_flag)
2564 {
2565 intel_mnemonic = mnemonic_flag;
2566 }
2567
2568 static void
2569 set_allow_index_reg (int flag)
2570 {
2571 allow_index_reg = flag;
2572 }
2573
2574 static void
2575 set_check (int what)
2576 {
2577 enum check_kind *kind;
2578 const char *str;
2579
2580 if (what)
2581 {
2582 kind = &operand_check;
2583 str = "operand";
2584 }
2585 else
2586 {
2587 kind = &sse_check;
2588 str = "sse";
2589 }
2590
2591 SKIP_WHITESPACE ();
2592
2593 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2594 {
2595 char *string;
2596 int e = get_symbol_name (&string);
2597
2598 if (strcmp (string, "none") == 0)
2599 *kind = check_none;
2600 else if (strcmp (string, "warning") == 0)
2601 *kind = check_warning;
2602 else if (strcmp (string, "error") == 0)
2603 *kind = check_error;
2604 else
2605 as_bad (_("bad argument to %s_check directive."), str);
2606 (void) restore_line_pointer (e);
2607 }
2608 else
2609 as_bad (_("missing argument for %s_check directive"), str);
2610
2611 demand_empty_rest_of_line ();
2612 }
2613
2614 static void
2615 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2616 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2617 {
2618 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2619 static const char *arch;
2620
2621 /* Intel LIOM is only supported on ELF. */
2622 if (!IS_ELF)
2623 return;
2624
2625 if (!arch)
2626 {
2627 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2628 use default_arch. */
2629 arch = cpu_arch_name;
2630 if (!arch)
2631 arch = default_arch;
2632 }
2633
2634 /* If we are targeting Intel MCU, we must enable it. */
2635 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2636 || new_flag.bitfield.cpuiamcu)
2637 return;
2638
2639 /* If we are targeting Intel L1OM, we must enable it. */
2640 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2641 || new_flag.bitfield.cpul1om)
2642 return;
2643
2644 /* If we are targeting Intel K1OM, we must enable it. */
2645 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2646 || new_flag.bitfield.cpuk1om)
2647 return;
2648
2649 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2650 #endif
2651 }
2652
2653 static void
2654 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2655 {
2656 SKIP_WHITESPACE ();
2657
2658 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2659 {
2660 char *string;
2661 int e = get_symbol_name (&string);
2662 unsigned int j;
2663 i386_cpu_flags flags;
2664
2665 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2666 {
2667 if (strcmp (string, cpu_arch[j].name) == 0)
2668 {
2669 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2670
2671 if (*string != '.')
2672 {
2673 cpu_arch_name = cpu_arch[j].name;
2674 cpu_sub_arch_name = NULL;
2675 cpu_arch_flags = cpu_arch[j].flags;
2676 if (flag_code == CODE_64BIT)
2677 {
2678 cpu_arch_flags.bitfield.cpu64 = 1;
2679 cpu_arch_flags.bitfield.cpuno64 = 0;
2680 }
2681 else
2682 {
2683 cpu_arch_flags.bitfield.cpu64 = 0;
2684 cpu_arch_flags.bitfield.cpuno64 = 1;
2685 }
2686 cpu_arch_isa = cpu_arch[j].type;
2687 cpu_arch_isa_flags = cpu_arch[j].flags;
2688 if (!cpu_arch_tune_set)
2689 {
2690 cpu_arch_tune = cpu_arch_isa;
2691 cpu_arch_tune_flags = cpu_arch_isa_flags;
2692 }
2693 break;
2694 }
2695
2696 flags = cpu_flags_or (cpu_arch_flags,
2697 cpu_arch[j].flags);
2698
2699 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2700 {
2701 if (cpu_sub_arch_name)
2702 {
2703 char *name = cpu_sub_arch_name;
2704 cpu_sub_arch_name = concat (name,
2705 cpu_arch[j].name,
2706 (const char *) NULL);
2707 free (name);
2708 }
2709 else
2710 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2711 cpu_arch_flags = flags;
2712 cpu_arch_isa_flags = flags;
2713 }
2714 else
2715 cpu_arch_isa_flags
2716 = cpu_flags_or (cpu_arch_isa_flags,
2717 cpu_arch[j].flags);
2718 (void) restore_line_pointer (e);
2719 demand_empty_rest_of_line ();
2720 return;
2721 }
2722 }
2723
2724 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2725 {
2726 /* Disable an ISA extension. */
2727 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2728 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2729 {
2730 flags = cpu_flags_and_not (cpu_arch_flags,
2731 cpu_noarch[j].flags);
2732 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2733 {
2734 if (cpu_sub_arch_name)
2735 {
2736 char *name = cpu_sub_arch_name;
2737 cpu_sub_arch_name = concat (name, string,
2738 (const char *) NULL);
2739 free (name);
2740 }
2741 else
2742 cpu_sub_arch_name = xstrdup (string);
2743 cpu_arch_flags = flags;
2744 cpu_arch_isa_flags = flags;
2745 }
2746 (void) restore_line_pointer (e);
2747 demand_empty_rest_of_line ();
2748 return;
2749 }
2750
2751 j = ARRAY_SIZE (cpu_arch);
2752 }
2753
2754 if (j >= ARRAY_SIZE (cpu_arch))
2755 as_bad (_("no such architecture: `%s'"), string);
2756
2757 *input_line_pointer = e;
2758 }
2759 else
2760 as_bad (_("missing cpu architecture"));
2761
2762 no_cond_jump_promotion = 0;
2763 if (*input_line_pointer == ','
2764 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2765 {
2766 char *string;
2767 char e;
2768
2769 ++input_line_pointer;
2770 e = get_symbol_name (&string);
2771
2772 if (strcmp (string, "nojumps") == 0)
2773 no_cond_jump_promotion = 1;
2774 else if (strcmp (string, "jumps") == 0)
2775 ;
2776 else
2777 as_bad (_("no such architecture modifier: `%s'"), string);
2778
2779 (void) restore_line_pointer (e);
2780 }
2781
2782 demand_empty_rest_of_line ();
2783 }
2784
2785 enum bfd_architecture
2786 i386_arch (void)
2787 {
2788 if (cpu_arch_isa == PROCESSOR_L1OM)
2789 {
2790 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2791 || flag_code != CODE_64BIT)
2792 as_fatal (_("Intel L1OM is 64bit ELF only"));
2793 return bfd_arch_l1om;
2794 }
2795 else if (cpu_arch_isa == PROCESSOR_K1OM)
2796 {
2797 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2798 || flag_code != CODE_64BIT)
2799 as_fatal (_("Intel K1OM is 64bit ELF only"));
2800 return bfd_arch_k1om;
2801 }
2802 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2803 {
2804 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2805 || flag_code == CODE_64BIT)
2806 as_fatal (_("Intel MCU is 32bit ELF only"));
2807 return bfd_arch_iamcu;
2808 }
2809 else
2810 return bfd_arch_i386;
2811 }
2812
2813 unsigned long
2814 i386_mach (void)
2815 {
2816 if (!strncmp (default_arch, "x86_64", 6))
2817 {
2818 if (cpu_arch_isa == PROCESSOR_L1OM)
2819 {
2820 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2821 || default_arch[6] != '\0')
2822 as_fatal (_("Intel L1OM is 64bit ELF only"));
2823 return bfd_mach_l1om;
2824 }
2825 else if (cpu_arch_isa == PROCESSOR_K1OM)
2826 {
2827 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2828 || default_arch[6] != '\0')
2829 as_fatal (_("Intel K1OM is 64bit ELF only"));
2830 return bfd_mach_k1om;
2831 }
2832 else if (default_arch[6] == '\0')
2833 return bfd_mach_x86_64;
2834 else
2835 return bfd_mach_x64_32;
2836 }
2837 else if (!strcmp (default_arch, "i386")
2838 || !strcmp (default_arch, "iamcu"))
2839 {
2840 if (cpu_arch_isa == PROCESSOR_IAMCU)
2841 {
2842 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2843 as_fatal (_("Intel MCU is 32bit ELF only"));
2844 return bfd_mach_i386_iamcu;
2845 }
2846 else
2847 return bfd_mach_i386_i386;
2848 }
2849 else
2850 as_fatal (_("unknown architecture"));
2851 }
2852 \f
2853 void
2854 md_begin (void)
2855 {
2856 const char *hash_err;
2857
2858 /* Support pseudo prefixes like {disp32}. */
2859 lex_type ['{'] = LEX_BEGIN_NAME;
2860
2861 /* Initialize op_hash hash table. */
2862 op_hash = hash_new ();
2863
2864 {
2865 const insn_template *optab;
2866 templates *core_optab;
2867
2868 /* Setup for loop. */
2869 optab = i386_optab;
2870 core_optab = XNEW (templates);
2871 core_optab->start = optab;
2872
2873 while (1)
2874 {
2875 ++optab;
2876 if (optab->name == NULL
2877 || strcmp (optab->name, (optab - 1)->name) != 0)
2878 {
2879 /* different name --> ship out current template list;
2880 add to hash table; & begin anew. */
2881 core_optab->end = optab;
2882 hash_err = hash_insert (op_hash,
2883 (optab - 1)->name,
2884 (void *) core_optab);
2885 if (hash_err)
2886 {
2887 as_fatal (_("can't hash %s: %s"),
2888 (optab - 1)->name,
2889 hash_err);
2890 }
2891 if (optab->name == NULL)
2892 break;
2893 core_optab = XNEW (templates);
2894 core_optab->start = optab;
2895 }
2896 }
2897 }
2898
2899 /* Initialize reg_hash hash table. */
2900 reg_hash = hash_new ();
2901 {
2902 const reg_entry *regtab;
2903 unsigned int regtab_size = i386_regtab_size;
2904
2905 for (regtab = i386_regtab; regtab_size--; regtab++)
2906 {
2907 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2908 if (hash_err)
2909 as_fatal (_("can't hash %s: %s"),
2910 regtab->reg_name,
2911 hash_err);
2912 }
2913 }
2914
2915 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2916 {
2917 int c;
2918 char *p;
2919
2920 for (c = 0; c < 256; c++)
2921 {
2922 if (ISDIGIT (c))
2923 {
2924 digit_chars[c] = c;
2925 mnemonic_chars[c] = c;
2926 register_chars[c] = c;
2927 operand_chars[c] = c;
2928 }
2929 else if (ISLOWER (c))
2930 {
2931 mnemonic_chars[c] = c;
2932 register_chars[c] = c;
2933 operand_chars[c] = c;
2934 }
2935 else if (ISUPPER (c))
2936 {
2937 mnemonic_chars[c] = TOLOWER (c);
2938 register_chars[c] = mnemonic_chars[c];
2939 operand_chars[c] = c;
2940 }
2941 else if (c == '{' || c == '}')
2942 {
2943 mnemonic_chars[c] = c;
2944 operand_chars[c] = c;
2945 }
2946
2947 if (ISALPHA (c) || ISDIGIT (c))
2948 identifier_chars[c] = c;
2949 else if (c >= 128)
2950 {
2951 identifier_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 }
2955
2956 #ifdef LEX_AT
2957 identifier_chars['@'] = '@';
2958 #endif
2959 #ifdef LEX_QM
2960 identifier_chars['?'] = '?';
2961 operand_chars['?'] = '?';
2962 #endif
2963 digit_chars['-'] = '-';
2964 mnemonic_chars['_'] = '_';
2965 mnemonic_chars['-'] = '-';
2966 mnemonic_chars['.'] = '.';
2967 identifier_chars['_'] = '_';
2968 identifier_chars['.'] = '.';
2969
2970 for (p = operand_special_chars; *p != '\0'; p++)
2971 operand_chars[(unsigned char) *p] = *p;
2972 }
2973
2974 if (flag_code == CODE_64BIT)
2975 {
2976 #if defined (OBJ_COFF) && defined (TE_PE)
2977 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2978 ? 32 : 16);
2979 #else
2980 x86_dwarf2_return_column = 16;
2981 #endif
2982 x86_cie_data_alignment = -8;
2983 }
2984 else
2985 {
2986 x86_dwarf2_return_column = 8;
2987 x86_cie_data_alignment = -4;
2988 }
2989 }
2990
2991 void
2992 i386_print_statistics (FILE *file)
2993 {
2994 hash_print_statistics (file, "i386 opcode", op_hash);
2995 hash_print_statistics (file, "i386 register", reg_hash);
2996 }
2997 \f
2998 #ifdef DEBUG386
2999
3000 /* Debugging routines for md_assemble. */
3001 static void pte (insn_template *);
3002 static void pt (i386_operand_type);
3003 static void pe (expressionS *);
3004 static void ps (symbolS *);
3005
3006 static void
3007 pi (char *line, i386_insn *x)
3008 {
3009 unsigned int j;
3010
3011 fprintf (stdout, "%s: template ", line);
3012 pte (&x->tm);
3013 fprintf (stdout, " address: base %s index %s scale %x\n",
3014 x->base_reg ? x->base_reg->reg_name : "none",
3015 x->index_reg ? x->index_reg->reg_name : "none",
3016 x->log2_scale_factor);
3017 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3018 x->rm.mode, x->rm.reg, x->rm.regmem);
3019 fprintf (stdout, " sib: base %x index %x scale %x\n",
3020 x->sib.base, x->sib.index, x->sib.scale);
3021 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3022 (x->rex & REX_W) != 0,
3023 (x->rex & REX_R) != 0,
3024 (x->rex & REX_X) != 0,
3025 (x->rex & REX_B) != 0);
3026 for (j = 0; j < x->operands; j++)
3027 {
3028 fprintf (stdout, " #%d: ", j + 1);
3029 pt (x->types[j]);
3030 fprintf (stdout, "\n");
3031 if (x->types[j].bitfield.reg
3032 || x->types[j].bitfield.regmmx
3033 || x->types[j].bitfield.regsimd
3034 || x->types[j].bitfield.sreg2
3035 || x->types[j].bitfield.sreg3
3036 || x->types[j].bitfield.control
3037 || x->types[j].bitfield.debug
3038 || x->types[j].bitfield.test)
3039 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3040 if (operand_type_check (x->types[j], imm))
3041 pe (x->op[j].imms);
3042 if (operand_type_check (x->types[j], disp))
3043 pe (x->op[j].disps);
3044 }
3045 }
3046
3047 static void
3048 pte (insn_template *t)
3049 {
3050 unsigned int j;
3051 fprintf (stdout, " %d operands ", t->operands);
3052 fprintf (stdout, "opcode %x ", t->base_opcode);
3053 if (t->extension_opcode != None)
3054 fprintf (stdout, "ext %x ", t->extension_opcode);
3055 if (t->opcode_modifier.d)
3056 fprintf (stdout, "D");
3057 if (t->opcode_modifier.w)
3058 fprintf (stdout, "W");
3059 fprintf (stdout, "\n");
3060 for (j = 0; j < t->operands; j++)
3061 {
3062 fprintf (stdout, " #%d type ", j + 1);
3063 pt (t->operand_types[j]);
3064 fprintf (stdout, "\n");
3065 }
3066 }
3067
3068 static void
3069 pe (expressionS *e)
3070 {
3071 fprintf (stdout, " operation %d\n", e->X_op);
3072 fprintf (stdout, " add_number %ld (%lx)\n",
3073 (long) e->X_add_number, (long) e->X_add_number);
3074 if (e->X_add_symbol)
3075 {
3076 fprintf (stdout, " add_symbol ");
3077 ps (e->X_add_symbol);
3078 fprintf (stdout, "\n");
3079 }
3080 if (e->X_op_symbol)
3081 {
3082 fprintf (stdout, " op_symbol ");
3083 ps (e->X_op_symbol);
3084 fprintf (stdout, "\n");
3085 }
3086 }
3087
3088 static void
3089 ps (symbolS *s)
3090 {
3091 fprintf (stdout, "%s type %s%s",
3092 S_GET_NAME (s),
3093 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3094 segment_name (S_GET_SEGMENT (s)));
3095 }
3096
3097 static struct type_name
3098 {
3099 i386_operand_type mask;
3100 const char *name;
3101 }
3102 const type_names[] =
3103 {
3104 { OPERAND_TYPE_REG8, "r8" },
3105 { OPERAND_TYPE_REG16, "r16" },
3106 { OPERAND_TYPE_REG32, "r32" },
3107 { OPERAND_TYPE_REG64, "r64" },
3108 { OPERAND_TYPE_IMM8, "i8" },
3109 { OPERAND_TYPE_IMM8, "i8s" },
3110 { OPERAND_TYPE_IMM16, "i16" },
3111 { OPERAND_TYPE_IMM32, "i32" },
3112 { OPERAND_TYPE_IMM32S, "i32s" },
3113 { OPERAND_TYPE_IMM64, "i64" },
3114 { OPERAND_TYPE_IMM1, "i1" },
3115 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3116 { OPERAND_TYPE_DISP8, "d8" },
3117 { OPERAND_TYPE_DISP16, "d16" },
3118 { OPERAND_TYPE_DISP32, "d32" },
3119 { OPERAND_TYPE_DISP32S, "d32s" },
3120 { OPERAND_TYPE_DISP64, "d64" },
3121 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3122 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3123 { OPERAND_TYPE_CONTROL, "control reg" },
3124 { OPERAND_TYPE_TEST, "test reg" },
3125 { OPERAND_TYPE_DEBUG, "debug reg" },
3126 { OPERAND_TYPE_FLOATREG, "FReg" },
3127 { OPERAND_TYPE_FLOATACC, "FAcc" },
3128 { OPERAND_TYPE_SREG2, "SReg2" },
3129 { OPERAND_TYPE_SREG3, "SReg3" },
3130 { OPERAND_TYPE_ACC, "Acc" },
3131 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3132 { OPERAND_TYPE_REGMMX, "rMMX" },
3133 { OPERAND_TYPE_REGXMM, "rXMM" },
3134 { OPERAND_TYPE_REGYMM, "rYMM" },
3135 { OPERAND_TYPE_REGZMM, "rZMM" },
3136 { OPERAND_TYPE_REGMASK, "Mask reg" },
3137 { OPERAND_TYPE_ESSEG, "es" },
3138 };
3139
3140 static void
3141 pt (i386_operand_type t)
3142 {
3143 unsigned int j;
3144 i386_operand_type a;
3145
3146 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3147 {
3148 a = operand_type_and (t, type_names[j].mask);
3149 if (!operand_type_all_zero (&a))
3150 fprintf (stdout, "%s, ", type_names[j].name);
3151 }
3152 fflush (stdout);
3153 }
3154
3155 #endif /* DEBUG386 */
3156 \f
3157 static bfd_reloc_code_real_type
3158 reloc (unsigned int size,
3159 int pcrel,
3160 int sign,
3161 bfd_reloc_code_real_type other)
3162 {
3163 if (other != NO_RELOC)
3164 {
3165 reloc_howto_type *rel;
3166
3167 if (size == 8)
3168 switch (other)
3169 {
3170 case BFD_RELOC_X86_64_GOT32:
3171 return BFD_RELOC_X86_64_GOT64;
3172 break;
3173 case BFD_RELOC_X86_64_GOTPLT64:
3174 return BFD_RELOC_X86_64_GOTPLT64;
3175 break;
3176 case BFD_RELOC_X86_64_PLTOFF64:
3177 return BFD_RELOC_X86_64_PLTOFF64;
3178 break;
3179 case BFD_RELOC_X86_64_GOTPC32:
3180 other = BFD_RELOC_X86_64_GOTPC64;
3181 break;
3182 case BFD_RELOC_X86_64_GOTPCREL:
3183 other = BFD_RELOC_X86_64_GOTPCREL64;
3184 break;
3185 case BFD_RELOC_X86_64_TPOFF32:
3186 other = BFD_RELOC_X86_64_TPOFF64;
3187 break;
3188 case BFD_RELOC_X86_64_DTPOFF32:
3189 other = BFD_RELOC_X86_64_DTPOFF64;
3190 break;
3191 default:
3192 break;
3193 }
3194
3195 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3196 if (other == BFD_RELOC_SIZE32)
3197 {
3198 if (size == 8)
3199 other = BFD_RELOC_SIZE64;
3200 if (pcrel)
3201 {
3202 as_bad (_("there are no pc-relative size relocations"));
3203 return NO_RELOC;
3204 }
3205 }
3206 #endif
3207
3208 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3209 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3210 sign = -1;
3211
3212 rel = bfd_reloc_type_lookup (stdoutput, other);
3213 if (!rel)
3214 as_bad (_("unknown relocation (%u)"), other);
3215 else if (size != bfd_get_reloc_size (rel))
3216 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3217 bfd_get_reloc_size (rel),
3218 size);
3219 else if (pcrel && !rel->pc_relative)
3220 as_bad (_("non-pc-relative relocation for pc-relative field"));
3221 else if ((rel->complain_on_overflow == complain_overflow_signed
3222 && !sign)
3223 || (rel->complain_on_overflow == complain_overflow_unsigned
3224 && sign > 0))
3225 as_bad (_("relocated field and relocation type differ in signedness"));
3226 else
3227 return other;
3228 return NO_RELOC;
3229 }
3230
3231 if (pcrel)
3232 {
3233 if (!sign)
3234 as_bad (_("there are no unsigned pc-relative relocations"));
3235 switch (size)
3236 {
3237 case 1: return BFD_RELOC_8_PCREL;
3238 case 2: return BFD_RELOC_16_PCREL;
3239 case 4: return BFD_RELOC_32_PCREL;
3240 case 8: return BFD_RELOC_64_PCREL;
3241 }
3242 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3243 }
3244 else
3245 {
3246 if (sign > 0)
3247 switch (size)
3248 {
3249 case 4: return BFD_RELOC_X86_64_32S;
3250 }
3251 else
3252 switch (size)
3253 {
3254 case 1: return BFD_RELOC_8;
3255 case 2: return BFD_RELOC_16;
3256 case 4: return BFD_RELOC_32;
3257 case 8: return BFD_RELOC_64;
3258 }
3259 as_bad (_("cannot do %s %u byte relocation"),
3260 sign > 0 ? "signed" : "unsigned", size);
3261 }
3262
3263 return NO_RELOC;
3264 }
3265
3266 /* Here we decide which fixups can be adjusted to make them relative to
3267 the beginning of the section instead of the symbol. Basically we need
3268 to make sure that the dynamic relocations are done correctly, so in
3269 some cases we force the original symbol to be used. */
3270
3271 int
3272 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3273 {
3274 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3275 if (!IS_ELF)
3276 return 1;
3277
3278 /* Don't adjust pc-relative references to merge sections in 64-bit
3279 mode. */
3280 if (use_rela_relocations
3281 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3282 && fixP->fx_pcrel)
3283 return 0;
3284
3285 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3286 and changed later by validate_fix. */
3287 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3288 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3289 return 0;
3290
3291 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3292 for size relocations. */
3293 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3294 || fixP->fx_r_type == BFD_RELOC_SIZE64
3295 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3296 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3297 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3298 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3299 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3300 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3301 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3302 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3303 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3304 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3305 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3306 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3307 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3308 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3309 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3310 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3311 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3312 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3313 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3314 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3315 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3316 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3317 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3318 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3319 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3320 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3321 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3322 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3323 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3324 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3325 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3326 return 0;
3327 #endif
3328 return 1;
3329 }
3330
3331 static int
3332 intel_float_operand (const char *mnemonic)
3333 {
3334 /* Note that the value returned is meaningful only for opcodes with (memory)
3335 operands, hence the code here is free to improperly handle opcodes that
3336 have no operands (for better performance and smaller code). */
3337
3338 if (mnemonic[0] != 'f')
3339 return 0; /* non-math */
3340
3341 switch (mnemonic[1])
3342 {
3343 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3344 the fs segment override prefix not currently handled because no
3345 call path can make opcodes without operands get here */
3346 case 'i':
3347 return 2 /* integer op */;
3348 case 'l':
3349 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3350 return 3; /* fldcw/fldenv */
3351 break;
3352 case 'n':
3353 if (mnemonic[2] != 'o' /* fnop */)
3354 return 3; /* non-waiting control op */
3355 break;
3356 case 'r':
3357 if (mnemonic[2] == 's')
3358 return 3; /* frstor/frstpm */
3359 break;
3360 case 's':
3361 if (mnemonic[2] == 'a')
3362 return 3; /* fsave */
3363 if (mnemonic[2] == 't')
3364 {
3365 switch (mnemonic[3])
3366 {
3367 case 'c': /* fstcw */
3368 case 'd': /* fstdw */
3369 case 'e': /* fstenv */
3370 case 's': /* fsts[gw] */
3371 return 3;
3372 }
3373 }
3374 break;
3375 case 'x':
3376 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3377 return 0; /* fxsave/fxrstor are not really math ops */
3378 break;
3379 }
3380
3381 return 1;
3382 }
3383
3384 /* Build the VEX prefix. */
3385
3386 static void
3387 build_vex_prefix (const insn_template *t)
3388 {
3389 unsigned int register_specifier;
3390 unsigned int implied_prefix;
3391 unsigned int vector_length;
3392 unsigned int w;
3393
3394 /* Check register specifier. */
3395 if (i.vex.register_specifier)
3396 {
3397 register_specifier =
3398 ~register_number (i.vex.register_specifier) & 0xf;
3399 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3400 }
3401 else
3402 register_specifier = 0xf;
3403
3404 /* Use 2-byte VEX prefix by swapping destination and source operand
3405 if there are more than 1 register operand. */
3406 if (i.reg_operands > 1
3407 && i.vec_encoding != vex_encoding_vex3
3408 && i.dir_encoding == dir_encoding_default
3409 && i.operands == i.reg_operands
3410 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3411 && i.tm.opcode_modifier.vexopcode == VEX0F
3412 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3413 && i.rex == REX_B)
3414 {
3415 unsigned int xchg = i.operands - 1;
3416 union i386_op temp_op;
3417 i386_operand_type temp_type;
3418
3419 temp_type = i.types[xchg];
3420 i.types[xchg] = i.types[0];
3421 i.types[0] = temp_type;
3422 temp_op = i.op[xchg];
3423 i.op[xchg] = i.op[0];
3424 i.op[0] = temp_op;
3425
3426 gas_assert (i.rm.mode == 3);
3427
3428 i.rex = REX_R;
3429 xchg = i.rm.regmem;
3430 i.rm.regmem = i.rm.reg;
3431 i.rm.reg = xchg;
3432
3433 if (i.tm.opcode_modifier.d)
3434 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3435 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3436 else /* Use the next insn. */
3437 i.tm = t[1];
3438 }
3439
3440 if (i.tm.opcode_modifier.vex == VEXScalar)
3441 vector_length = avxscalar;
3442 else if (i.tm.opcode_modifier.vex == VEX256)
3443 vector_length = 1;
3444 else
3445 {
3446 unsigned int op;
3447
3448 /* Determine vector length from the last multi-length vector
3449 operand. */
3450 vector_length = 0;
3451 for (op = t->operands; op--;)
3452 if (t->operand_types[op].bitfield.xmmword
3453 && t->operand_types[op].bitfield.ymmword
3454 && i.types[op].bitfield.ymmword)
3455 {
3456 vector_length = 1;
3457 break;
3458 }
3459 }
3460
3461 switch ((i.tm.base_opcode >> 8) & 0xff)
3462 {
3463 case 0:
3464 implied_prefix = 0;
3465 break;
3466 case DATA_PREFIX_OPCODE:
3467 implied_prefix = 1;
3468 break;
3469 case REPE_PREFIX_OPCODE:
3470 implied_prefix = 2;
3471 break;
3472 case REPNE_PREFIX_OPCODE:
3473 implied_prefix = 3;
3474 break;
3475 default:
3476 abort ();
3477 }
3478
3479 /* Check the REX.W bit and VEXW. */
3480 if (i.tm.opcode_modifier.vexw == VEXWIG)
3481 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3482 else if (i.tm.opcode_modifier.vexw)
3483 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3484 else
3485 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3486
3487 /* Use 2-byte VEX prefix if possible. */
3488 if (w == 0
3489 && i.vec_encoding != vex_encoding_vex3
3490 && i.tm.opcode_modifier.vexopcode == VEX0F
3491 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3492 {
3493 /* 2-byte VEX prefix. */
3494 unsigned int r;
3495
3496 i.vex.length = 2;
3497 i.vex.bytes[0] = 0xc5;
3498
3499 /* Check the REX.R bit. */
3500 r = (i.rex & REX_R) ? 0 : 1;
3501 i.vex.bytes[1] = (r << 7
3502 | register_specifier << 3
3503 | vector_length << 2
3504 | implied_prefix);
3505 }
3506 else
3507 {
3508 /* 3-byte VEX prefix. */
3509 unsigned int m;
3510
3511 i.vex.length = 3;
3512
3513 switch (i.tm.opcode_modifier.vexopcode)
3514 {
3515 case VEX0F:
3516 m = 0x1;
3517 i.vex.bytes[0] = 0xc4;
3518 break;
3519 case VEX0F38:
3520 m = 0x2;
3521 i.vex.bytes[0] = 0xc4;
3522 break;
3523 case VEX0F3A:
3524 m = 0x3;
3525 i.vex.bytes[0] = 0xc4;
3526 break;
3527 case XOP08:
3528 m = 0x8;
3529 i.vex.bytes[0] = 0x8f;
3530 break;
3531 case XOP09:
3532 m = 0x9;
3533 i.vex.bytes[0] = 0x8f;
3534 break;
3535 case XOP0A:
3536 m = 0xa;
3537 i.vex.bytes[0] = 0x8f;
3538 break;
3539 default:
3540 abort ();
3541 }
3542
3543 /* The high 3 bits of the second VEX byte are 1's compliment
3544 of RXB bits from REX. */
3545 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3546
3547 i.vex.bytes[2] = (w << 7
3548 | register_specifier << 3
3549 | vector_length << 2
3550 | implied_prefix);
3551 }
3552 }
3553
3554 static INLINE bfd_boolean
3555 is_evex_encoding (const insn_template *t)
3556 {
3557 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3558 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3559 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3560 }
3561
3562 static INLINE bfd_boolean
3563 is_any_vex_encoding (const insn_template *t)
3564 {
3565 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3566 || is_evex_encoding (t);
3567 }
3568
3569 /* Build the EVEX prefix. */
3570
3571 static void
3572 build_evex_prefix (void)
3573 {
3574 unsigned int register_specifier;
3575 unsigned int implied_prefix;
3576 unsigned int m, w;
3577 rex_byte vrex_used = 0;
3578
3579 /* Check register specifier. */
3580 if (i.vex.register_specifier)
3581 {
3582 gas_assert ((i.vrex & REX_X) == 0);
3583
3584 register_specifier = i.vex.register_specifier->reg_num;
3585 if ((i.vex.register_specifier->reg_flags & RegRex))
3586 register_specifier += 8;
3587 /* The upper 16 registers are encoded in the fourth byte of the
3588 EVEX prefix. */
3589 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3590 i.vex.bytes[3] = 0x8;
3591 register_specifier = ~register_specifier & 0xf;
3592 }
3593 else
3594 {
3595 register_specifier = 0xf;
3596
3597 /* Encode upper 16 vector index register in the fourth byte of
3598 the EVEX prefix. */
3599 if (!(i.vrex & REX_X))
3600 i.vex.bytes[3] = 0x8;
3601 else
3602 vrex_used |= REX_X;
3603 }
3604
3605 switch ((i.tm.base_opcode >> 8) & 0xff)
3606 {
3607 case 0:
3608 implied_prefix = 0;
3609 break;
3610 case DATA_PREFIX_OPCODE:
3611 implied_prefix = 1;
3612 break;
3613 case REPE_PREFIX_OPCODE:
3614 implied_prefix = 2;
3615 break;
3616 case REPNE_PREFIX_OPCODE:
3617 implied_prefix = 3;
3618 break;
3619 default:
3620 abort ();
3621 }
3622
3623 /* 4 byte EVEX prefix. */
3624 i.vex.length = 4;
3625 i.vex.bytes[0] = 0x62;
3626
3627 /* mmmm bits. */
3628 switch (i.tm.opcode_modifier.vexopcode)
3629 {
3630 case VEX0F:
3631 m = 1;
3632 break;
3633 case VEX0F38:
3634 m = 2;
3635 break;
3636 case VEX0F3A:
3637 m = 3;
3638 break;
3639 default:
3640 abort ();
3641 break;
3642 }
3643
3644 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3645 bits from REX. */
3646 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3647
3648 /* The fifth bit of the second EVEX byte is 1's compliment of the
3649 REX_R bit in VREX. */
3650 if (!(i.vrex & REX_R))
3651 i.vex.bytes[1] |= 0x10;
3652 else
3653 vrex_used |= REX_R;
3654
3655 if ((i.reg_operands + i.imm_operands) == i.operands)
3656 {
3657 /* When all operands are registers, the REX_X bit in REX is not
3658 used. We reuse it to encode the upper 16 registers, which is
3659 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3660 as 1's compliment. */
3661 if ((i.vrex & REX_B))
3662 {
3663 vrex_used |= REX_B;
3664 i.vex.bytes[1] &= ~0x40;
3665 }
3666 }
3667
3668 /* EVEX instructions shouldn't need the REX prefix. */
3669 i.vrex &= ~vrex_used;
3670 gas_assert (i.vrex == 0);
3671
3672 /* Check the REX.W bit and VEXW. */
3673 if (i.tm.opcode_modifier.vexw == VEXWIG)
3674 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3675 else if (i.tm.opcode_modifier.vexw)
3676 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3677 else
3678 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3679
3680 /* Encode the U bit. */
3681 implied_prefix |= 0x4;
3682
3683 /* The third byte of the EVEX prefix. */
3684 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3685
3686 /* The fourth byte of the EVEX prefix. */
3687 /* The zeroing-masking bit. */
3688 if (i.mask && i.mask->zeroing)
3689 i.vex.bytes[3] |= 0x80;
3690
3691 /* Don't always set the broadcast bit if there is no RC. */
3692 if (!i.rounding)
3693 {
3694 /* Encode the vector length. */
3695 unsigned int vec_length;
3696
3697 if (!i.tm.opcode_modifier.evex
3698 || i.tm.opcode_modifier.evex == EVEXDYN)
3699 {
3700 unsigned int op;
3701
3702 /* Determine vector length from the last multi-length vector
3703 operand. */
3704 vec_length = 0;
3705 for (op = i.operands; op--;)
3706 if (i.tm.operand_types[op].bitfield.xmmword
3707 + i.tm.operand_types[op].bitfield.ymmword
3708 + i.tm.operand_types[op].bitfield.zmmword > 1)
3709 {
3710 if (i.types[op].bitfield.zmmword)
3711 {
3712 i.tm.opcode_modifier.evex = EVEX512;
3713 break;
3714 }
3715 else if (i.types[op].bitfield.ymmword)
3716 {
3717 i.tm.opcode_modifier.evex = EVEX256;
3718 break;
3719 }
3720 else if (i.types[op].bitfield.xmmword)
3721 {
3722 i.tm.opcode_modifier.evex = EVEX128;
3723 break;
3724 }
3725 else if (i.broadcast && (int) op == i.broadcast->operand)
3726 {
3727 switch (i.broadcast->bytes)
3728 {
3729 case 64:
3730 i.tm.opcode_modifier.evex = EVEX512;
3731 break;
3732 case 32:
3733 i.tm.opcode_modifier.evex = EVEX256;
3734 break;
3735 case 16:
3736 i.tm.opcode_modifier.evex = EVEX128;
3737 break;
3738 default:
3739 abort ();
3740 }
3741 break;
3742 }
3743 }
3744
3745 if (op >= MAX_OPERANDS)
3746 abort ();
3747 }
3748
3749 switch (i.tm.opcode_modifier.evex)
3750 {
3751 case EVEXLIG: /* LL' is ignored */
3752 vec_length = evexlig << 5;
3753 break;
3754 case EVEX128:
3755 vec_length = 0 << 5;
3756 break;
3757 case EVEX256:
3758 vec_length = 1 << 5;
3759 break;
3760 case EVEX512:
3761 vec_length = 2 << 5;
3762 break;
3763 default:
3764 abort ();
3765 break;
3766 }
3767 i.vex.bytes[3] |= vec_length;
3768 /* Encode the broadcast bit. */
3769 if (i.broadcast)
3770 i.vex.bytes[3] |= 0x10;
3771 }
3772 else
3773 {
3774 if (i.rounding->type != saeonly)
3775 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3776 else
3777 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3778 }
3779
3780 if (i.mask && i.mask->mask)
3781 i.vex.bytes[3] |= i.mask->mask->reg_num;
3782 }
3783
3784 static void
3785 process_immext (void)
3786 {
3787 expressionS *exp;
3788
3789 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3790 && i.operands > 0)
3791 {
3792 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3793 with an opcode suffix which is coded in the same place as an
3794 8-bit immediate field would be.
3795 Here we check those operands and remove them afterwards. */
3796 unsigned int x;
3797
3798 for (x = 0; x < i.operands; x++)
3799 if (register_number (i.op[x].regs) != x)
3800 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3801 register_prefix, i.op[x].regs->reg_name, x + 1,
3802 i.tm.name);
3803
3804 i.operands = 0;
3805 }
3806
3807 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3808 {
3809 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3810 suffix which is coded in the same place as an 8-bit immediate
3811 field would be.
3812 Here we check those operands and remove them afterwards. */
3813 unsigned int x;
3814
3815 if (i.operands != 3)
3816 abort();
3817
3818 for (x = 0; x < 2; x++)
3819 if (register_number (i.op[x].regs) != x)
3820 goto bad_register_operand;
3821
3822 /* Check for third operand for mwaitx/monitorx insn. */
3823 if (register_number (i.op[x].regs)
3824 != (x + (i.tm.extension_opcode == 0xfb)))
3825 {
3826 bad_register_operand:
3827 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3828 register_prefix, i.op[x].regs->reg_name, x+1,
3829 i.tm.name);
3830 }
3831
3832 i.operands = 0;
3833 }
3834
3835 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3836 which is coded in the same place as an 8-bit immediate field
3837 would be. Here we fake an 8-bit immediate operand from the
3838 opcode suffix stored in tm.extension_opcode.
3839
3840 AVX instructions also use this encoding, for some of
3841 3 argument instructions. */
3842
3843 gas_assert (i.imm_operands <= 1
3844 && (i.operands <= 2
3845 || (is_any_vex_encoding (&i.tm)
3846 && i.operands <= 4)));
3847
3848 exp = &im_expressions[i.imm_operands++];
3849 i.op[i.operands].imms = exp;
3850 i.types[i.operands] = imm8;
3851 i.operands++;
3852 exp->X_op = O_constant;
3853 exp->X_add_number = i.tm.extension_opcode;
3854 i.tm.extension_opcode = None;
3855 }
3856
3857
3858 static int
3859 check_hle (void)
3860 {
3861 switch (i.tm.opcode_modifier.hleprefixok)
3862 {
3863 default:
3864 abort ();
3865 case HLEPrefixNone:
3866 as_bad (_("invalid instruction `%s' after `%s'"),
3867 i.tm.name, i.hle_prefix);
3868 return 0;
3869 case HLEPrefixLock:
3870 if (i.prefix[LOCK_PREFIX])
3871 return 1;
3872 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3873 return 0;
3874 case HLEPrefixAny:
3875 return 1;
3876 case HLEPrefixRelease:
3877 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3878 {
3879 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3880 i.tm.name);
3881 return 0;
3882 }
3883 if (i.mem_operands == 0
3884 || !operand_type_check (i.types[i.operands - 1], anymem))
3885 {
3886 as_bad (_("memory destination needed for instruction `%s'"
3887 " after `xrelease'"), i.tm.name);
3888 return 0;
3889 }
3890 return 1;
3891 }
3892 }
3893
3894 /* Try the shortest encoding by shortening operand size. */
3895
3896 static void
3897 optimize_encoding (void)
3898 {
3899 int j;
3900
3901 if (optimize_for_space
3902 && i.reg_operands == 1
3903 && i.imm_operands == 1
3904 && !i.types[1].bitfield.byte
3905 && i.op[0].imms->X_op == O_constant
3906 && fits_in_imm7 (i.op[0].imms->X_add_number)
3907 && ((i.tm.base_opcode == 0xa8
3908 && i.tm.extension_opcode == None)
3909 || (i.tm.base_opcode == 0xf6
3910 && i.tm.extension_opcode == 0x0)))
3911 {
3912 /* Optimize: -Os:
3913 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3914 */
3915 unsigned int base_regnum = i.op[1].regs->reg_num;
3916 if (flag_code == CODE_64BIT || base_regnum < 4)
3917 {
3918 i.types[1].bitfield.byte = 1;
3919 /* Ignore the suffix. */
3920 i.suffix = 0;
3921 if (base_regnum >= 4
3922 && !(i.op[1].regs->reg_flags & RegRex))
3923 {
3924 /* Handle SP, BP, SI and DI registers. */
3925 if (i.types[1].bitfield.word)
3926 j = 16;
3927 else if (i.types[1].bitfield.dword)
3928 j = 32;
3929 else
3930 j = 48;
3931 i.op[1].regs -= j;
3932 }
3933 }
3934 }
3935 else if (flag_code == CODE_64BIT
3936 && ((i.types[1].bitfield.qword
3937 && i.reg_operands == 1
3938 && i.imm_operands == 1
3939 && i.op[0].imms->X_op == O_constant
3940 && ((i.tm.base_opcode == 0xb0
3941 && i.tm.extension_opcode == None
3942 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3943 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3944 && (((i.tm.base_opcode == 0x24
3945 || i.tm.base_opcode == 0xa8)
3946 && i.tm.extension_opcode == None)
3947 || (i.tm.base_opcode == 0x80
3948 && i.tm.extension_opcode == 0x4)
3949 || ((i.tm.base_opcode == 0xf6
3950 || i.tm.base_opcode == 0xc6)
3951 && i.tm.extension_opcode == 0x0)))))
3952 || (i.types[0].bitfield.qword
3953 && ((i.reg_operands == 2
3954 && i.op[0].regs == i.op[1].regs
3955 && ((i.tm.base_opcode == 0x30
3956 || i.tm.base_opcode == 0x28)
3957 && i.tm.extension_opcode == None))
3958 || (i.reg_operands == 1
3959 && i.operands == 1
3960 && i.tm.base_opcode == 0x30
3961 && i.tm.extension_opcode == None)))))
3962 {
3963 /* Optimize: -O:
3964 andq $imm31, %r64 -> andl $imm31, %r32
3965 testq $imm31, %r64 -> testl $imm31, %r32
3966 xorq %r64, %r64 -> xorl %r32, %r32
3967 subq %r64, %r64 -> subl %r32, %r32
3968 movq $imm31, %r64 -> movl $imm31, %r32
3969 movq $imm32, %r64 -> movl $imm32, %r32
3970 */
3971 i.tm.opcode_modifier.norex64 = 1;
3972 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3973 {
3974 /* Handle
3975 movq $imm31, %r64 -> movl $imm31, %r32
3976 movq $imm32, %r64 -> movl $imm32, %r32
3977 */
3978 i.tm.operand_types[0].bitfield.imm32 = 1;
3979 i.tm.operand_types[0].bitfield.imm32s = 0;
3980 i.tm.operand_types[0].bitfield.imm64 = 0;
3981 i.types[0].bitfield.imm32 = 1;
3982 i.types[0].bitfield.imm32s = 0;
3983 i.types[0].bitfield.imm64 = 0;
3984 i.types[1].bitfield.dword = 1;
3985 i.types[1].bitfield.qword = 0;
3986 if (i.tm.base_opcode == 0xc6)
3987 {
3988 /* Handle
3989 movq $imm31, %r64 -> movl $imm31, %r32
3990 */
3991 i.tm.base_opcode = 0xb0;
3992 i.tm.extension_opcode = None;
3993 i.tm.opcode_modifier.shortform = 1;
3994 i.tm.opcode_modifier.modrm = 0;
3995 }
3996 }
3997 }
3998 else if (i.reg_operands == 3
3999 && i.op[0].regs == i.op[1].regs
4000 && !i.types[2].bitfield.xmmword
4001 && (i.tm.opcode_modifier.vex
4002 || ((!i.mask || i.mask->zeroing)
4003 && !i.rounding
4004 && is_evex_encoding (&i.tm)
4005 && (i.vec_encoding != vex_encoding_evex
4006 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4007 || i.tm.cpu_flags.bitfield.cpuavx512vl
4008 || (i.tm.operand_types[2].bitfield.zmmword
4009 && i.types[2].bitfield.ymmword))))
4010 && ((i.tm.base_opcode == 0x55
4011 || i.tm.base_opcode == 0x6655
4012 || i.tm.base_opcode == 0x66df
4013 || i.tm.base_opcode == 0x57
4014 || i.tm.base_opcode == 0x6657
4015 || i.tm.base_opcode == 0x66ef
4016 || i.tm.base_opcode == 0x66f8
4017 || i.tm.base_opcode == 0x66f9
4018 || i.tm.base_opcode == 0x66fa
4019 || i.tm.base_opcode == 0x66fb
4020 || i.tm.base_opcode == 0x42
4021 || i.tm.base_opcode == 0x6642
4022 || i.tm.base_opcode == 0x47
4023 || i.tm.base_opcode == 0x6647)
4024 && i.tm.extension_opcode == None))
4025 {
4026 /* Optimize: -O1:
4027 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4028 vpsubq and vpsubw:
4029 EVEX VOP %zmmM, %zmmM, %zmmN
4030 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4031 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4032 EVEX VOP %ymmM, %ymmM, %ymmN
4033 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4034 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4035 VEX VOP %ymmM, %ymmM, %ymmN
4036 -> VEX VOP %xmmM, %xmmM, %xmmN
4037 VOP, one of vpandn and vpxor:
4038 VEX VOP %ymmM, %ymmM, %ymmN
4039 -> VEX VOP %xmmM, %xmmM, %xmmN
4040 VOP, one of vpandnd and vpandnq:
4041 EVEX VOP %zmmM, %zmmM, %zmmN
4042 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4043 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4044 EVEX VOP %ymmM, %ymmM, %ymmN
4045 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4046 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4047 VOP, one of vpxord and vpxorq:
4048 EVEX VOP %zmmM, %zmmM, %zmmN
4049 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4050 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4051 EVEX VOP %ymmM, %ymmM, %ymmN
4052 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4053 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4054 VOP, one of kxord and kxorq:
4055 VEX VOP %kM, %kM, %kN
4056 -> VEX kxorw %kM, %kM, %kN
4057 VOP, one of kandnd and kandnq:
4058 VEX VOP %kM, %kM, %kN
4059 -> VEX kandnw %kM, %kM, %kN
4060 */
4061 if (is_evex_encoding (&i.tm))
4062 {
4063 if (i.vec_encoding != vex_encoding_evex)
4064 {
4065 i.tm.opcode_modifier.vex = VEX128;
4066 i.tm.opcode_modifier.vexw = VEXW0;
4067 i.tm.opcode_modifier.evex = 0;
4068 }
4069 else if (optimize > 1)
4070 i.tm.opcode_modifier.evex = EVEX128;
4071 else
4072 return;
4073 }
4074 else if (i.tm.operand_types[0].bitfield.regmask)
4075 {
4076 i.tm.base_opcode &= 0xff;
4077 i.tm.opcode_modifier.vexw = VEXW0;
4078 }
4079 else
4080 i.tm.opcode_modifier.vex = VEX128;
4081
4082 if (i.tm.opcode_modifier.vex)
4083 for (j = 0; j < 3; j++)
4084 {
4085 i.types[j].bitfield.xmmword = 1;
4086 i.types[j].bitfield.ymmword = 0;
4087 }
4088 }
4089 else if (i.vec_encoding != vex_encoding_evex
4090 && !i.types[0].bitfield.zmmword
4091 && !i.types[1].bitfield.zmmword
4092 && !i.mask
4093 && is_evex_encoding (&i.tm)
4094 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4095 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4096 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4097 && i.tm.extension_opcode == None)
4098 {
4099 /* Optimize: -O1:
4100 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4101 vmovdqu32 and vmovdqu64:
4102 EVEX VOP %xmmM, %xmmN
4103 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4104 EVEX VOP %ymmM, %ymmN
4105 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4106 EVEX VOP %xmmM, mem
4107 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4108 EVEX VOP %ymmM, mem
4109 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4110 EVEX VOP mem, %xmmN
4111 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4112 EVEX VOP mem, %ymmN
4113 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4114 */
4115 for (j = 0; j < 2; j++)
4116 if (operand_type_check (i.types[j], disp)
4117 && i.op[j].disps->X_op == O_constant)
4118 {
4119 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4120 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4121 bytes, we choose EVEX Disp8 over VEX Disp32. */
4122 int evex_disp8, vex_disp8;
4123 unsigned int memshift = i.memshift;
4124 offsetT n = i.op[j].disps->X_add_number;
4125
4126 evex_disp8 = fits_in_disp8 (n);
4127 i.memshift = 0;
4128 vex_disp8 = fits_in_disp8 (n);
4129 if (evex_disp8 != vex_disp8)
4130 {
4131 i.memshift = memshift;
4132 return;
4133 }
4134
4135 i.types[j].bitfield.disp8 = vex_disp8;
4136 break;
4137 }
4138 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4139 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4140 i.tm.opcode_modifier.vex
4141 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4142 i.tm.opcode_modifier.vexw = VEXW0;
4143 i.tm.opcode_modifier.evex = 0;
4144 i.tm.opcode_modifier.masking = 0;
4145 i.tm.opcode_modifier.disp8memshift = 0;
4146 i.memshift = 0;
4147 for (j = 0; j < 2; j++)
4148 if (operand_type_check (i.types[j], disp)
4149 && i.op[j].disps->X_op == O_constant)
4150 {
4151 i.types[j].bitfield.disp8
4152 = fits_in_disp8 (i.op[j].disps->X_add_number);
4153 break;
4154 }
4155 }
4156 }
4157
4158 /* This is the guts of the machine-dependent assembler. LINE points to a
4159 machine dependent instruction. This function is supposed to emit
4160 the frags/bytes it assembles to. */
4161
4162 void
4163 md_assemble (char *line)
4164 {
4165 unsigned int j;
4166 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4167 const insn_template *t;
4168
4169 /* Initialize globals. */
4170 memset (&i, '\0', sizeof (i));
4171 for (j = 0; j < MAX_OPERANDS; j++)
4172 i.reloc[j] = NO_RELOC;
4173 memset (disp_expressions, '\0', sizeof (disp_expressions));
4174 memset (im_expressions, '\0', sizeof (im_expressions));
4175 save_stack_p = save_stack;
4176
4177 /* First parse an instruction mnemonic & call i386_operand for the operands.
4178 We assume that the scrubber has arranged it so that line[0] is the valid
4179 start of a (possibly prefixed) mnemonic. */
4180
4181 line = parse_insn (line, mnemonic);
4182 if (line == NULL)
4183 return;
4184 mnem_suffix = i.suffix;
4185
4186 line = parse_operands (line, mnemonic);
4187 this_operand = -1;
4188 xfree (i.memop1_string);
4189 i.memop1_string = NULL;
4190 if (line == NULL)
4191 return;
4192
4193 /* Now we've parsed the mnemonic into a set of templates, and have the
4194 operands at hand. */
4195
4196 /* All intel opcodes have reversed operands except for "bound" and
4197 "enter". We also don't reverse intersegment "jmp" and "call"
4198 instructions with 2 immediate operands so that the immediate segment
4199 precedes the offset, as it does when in AT&T mode. */
4200 if (intel_syntax
4201 && i.operands > 1
4202 && (strcmp (mnemonic, "bound") != 0)
4203 && (strcmp (mnemonic, "invlpga") != 0)
4204 && !(operand_type_check (i.types[0], imm)
4205 && operand_type_check (i.types[1], imm)))
4206 swap_operands ();
4207
4208 /* The order of the immediates should be reversed
4209 for 2 immediates extrq and insertq instructions */
4210 if (i.imm_operands == 2
4211 && (strcmp (mnemonic, "extrq") == 0
4212 || strcmp (mnemonic, "insertq") == 0))
4213 swap_2_operands (0, 1);
4214
4215 if (i.imm_operands)
4216 optimize_imm ();
4217
4218 /* Don't optimize displacement for movabs since it only takes 64bit
4219 displacement. */
4220 if (i.disp_operands
4221 && i.disp_encoding != disp_encoding_32bit
4222 && (flag_code != CODE_64BIT
4223 || strcmp (mnemonic, "movabs") != 0))
4224 optimize_disp ();
4225
4226 /* Next, we find a template that matches the given insn,
4227 making sure the overlap of the given operands types is consistent
4228 with the template operand types. */
4229
4230 if (!(t = match_template (mnem_suffix)))
4231 return;
4232
4233 if (sse_check != check_none
4234 && !i.tm.opcode_modifier.noavx
4235 && !i.tm.cpu_flags.bitfield.cpuavx
4236 && (i.tm.cpu_flags.bitfield.cpusse
4237 || i.tm.cpu_flags.bitfield.cpusse2
4238 || i.tm.cpu_flags.bitfield.cpusse3
4239 || i.tm.cpu_flags.bitfield.cpussse3
4240 || i.tm.cpu_flags.bitfield.cpusse4_1
4241 || i.tm.cpu_flags.bitfield.cpusse4_2
4242 || i.tm.cpu_flags.bitfield.cpupclmul
4243 || i.tm.cpu_flags.bitfield.cpuaes
4244 || i.tm.cpu_flags.bitfield.cpugfni))
4245 {
4246 (sse_check == check_warning
4247 ? as_warn
4248 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4249 }
4250
4251 /* Zap movzx and movsx suffix. The suffix has been set from
4252 "word ptr" or "byte ptr" on the source operand in Intel syntax
4253 or extracted from mnemonic in AT&T syntax. But we'll use
4254 the destination register to choose the suffix for encoding. */
4255 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4256 {
4257 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4258 there is no suffix, the default will be byte extension. */
4259 if (i.reg_operands != 2
4260 && !i.suffix
4261 && intel_syntax)
4262 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4263
4264 i.suffix = 0;
4265 }
4266
4267 if (i.tm.opcode_modifier.fwait)
4268 if (!add_prefix (FWAIT_OPCODE))
4269 return;
4270
4271 /* Check if REP prefix is OK. */
4272 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4273 {
4274 as_bad (_("invalid instruction `%s' after `%s'"),
4275 i.tm.name, i.rep_prefix);
4276 return;
4277 }
4278
4279 /* Check for lock without a lockable instruction. Destination operand
4280 must be memory unless it is xchg (0x86). */
4281 if (i.prefix[LOCK_PREFIX]
4282 && (!i.tm.opcode_modifier.islockable
4283 || i.mem_operands == 0
4284 || (i.tm.base_opcode != 0x86
4285 && !operand_type_check (i.types[i.operands - 1], anymem))))
4286 {
4287 as_bad (_("expecting lockable instruction after `lock'"));
4288 return;
4289 }
4290
4291 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4292 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4293 {
4294 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4295 return;
4296 }
4297
4298 /* Check if HLE prefix is OK. */
4299 if (i.hle_prefix && !check_hle ())
4300 return;
4301
4302 /* Check BND prefix. */
4303 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4304 as_bad (_("expecting valid branch instruction after `bnd'"));
4305
4306 /* Check NOTRACK prefix. */
4307 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4308 as_bad (_("expecting indirect branch instruction after `notrack'"));
4309
4310 if (i.tm.cpu_flags.bitfield.cpumpx)
4311 {
4312 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4313 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4314 else if (flag_code != CODE_16BIT
4315 ? i.prefix[ADDR_PREFIX]
4316 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4317 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4318 }
4319
4320 /* Insert BND prefix. */
4321 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4322 {
4323 if (!i.prefix[BND_PREFIX])
4324 add_prefix (BND_PREFIX_OPCODE);
4325 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4326 {
4327 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4328 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4329 }
4330 }
4331
4332 /* Check string instruction segment overrides. */
4333 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4334 {
4335 if (!check_string ())
4336 return;
4337 i.disp_operands = 0;
4338 }
4339
4340 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4341 optimize_encoding ();
4342
4343 if (!process_suffix ())
4344 return;
4345
4346 /* Update operand types. */
4347 for (j = 0; j < i.operands; j++)
4348 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4349
4350 /* Make still unresolved immediate matches conform to size of immediate
4351 given in i.suffix. */
4352 if (!finalize_imm ())
4353 return;
4354
4355 if (i.types[0].bitfield.imm1)
4356 i.imm_operands = 0; /* kludge for shift insns. */
4357
4358 /* We only need to check those implicit registers for instructions
4359 with 3 operands or less. */
4360 if (i.operands <= 3)
4361 for (j = 0; j < i.operands; j++)
4362 if (i.types[j].bitfield.inoutportreg
4363 || i.types[j].bitfield.shiftcount
4364 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4365 i.reg_operands--;
4366
4367 /* ImmExt should be processed after SSE2AVX. */
4368 if (!i.tm.opcode_modifier.sse2avx
4369 && i.tm.opcode_modifier.immext)
4370 process_immext ();
4371
4372 /* For insns with operands there are more diddles to do to the opcode. */
4373 if (i.operands)
4374 {
4375 if (!process_operands ())
4376 return;
4377 }
4378 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4379 {
4380 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4381 as_warn (_("translating to `%sp'"), i.tm.name);
4382 }
4383
4384 if (is_any_vex_encoding (&i.tm))
4385 {
4386 if (flag_code == CODE_16BIT)
4387 {
4388 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4389 i.tm.name);
4390 return;
4391 }
4392
4393 if (i.tm.opcode_modifier.vex)
4394 build_vex_prefix (t);
4395 else
4396 build_evex_prefix ();
4397 }
4398
4399 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4400 instructions may define INT_OPCODE as well, so avoid this corner
4401 case for those instructions that use MODRM. */
4402 if (i.tm.base_opcode == INT_OPCODE
4403 && !i.tm.opcode_modifier.modrm
4404 && i.op[0].imms->X_add_number == 3)
4405 {
4406 i.tm.base_opcode = INT3_OPCODE;
4407 i.imm_operands = 0;
4408 }
4409
4410 if ((i.tm.opcode_modifier.jump
4411 || i.tm.opcode_modifier.jumpbyte
4412 || i.tm.opcode_modifier.jumpdword)
4413 && i.op[0].disps->X_op == O_constant)
4414 {
4415 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4416 the absolute address given by the constant. Since ix86 jumps and
4417 calls are pc relative, we need to generate a reloc. */
4418 i.op[0].disps->X_add_symbol = &abs_symbol;
4419 i.op[0].disps->X_op = O_symbol;
4420 }
4421
4422 if (i.tm.opcode_modifier.rex64)
4423 i.rex |= REX_W;
4424
4425 /* For 8 bit registers we need an empty rex prefix. Also if the
4426 instruction already has a prefix, we need to convert old
4427 registers to new ones. */
4428
4429 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4430 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4431 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4432 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4433 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4434 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4435 && i.rex != 0))
4436 {
4437 int x;
4438
4439 i.rex |= REX_OPCODE;
4440 for (x = 0; x < 2; x++)
4441 {
4442 /* Look for 8 bit operand that uses old registers. */
4443 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4444 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4445 {
4446 /* In case it is "hi" register, give up. */
4447 if (i.op[x].regs->reg_num > 3)
4448 as_bad (_("can't encode register '%s%s' in an "
4449 "instruction requiring REX prefix."),
4450 register_prefix, i.op[x].regs->reg_name);
4451
4452 /* Otherwise it is equivalent to the extended register.
4453 Since the encoding doesn't change this is merely
4454 cosmetic cleanup for debug output. */
4455
4456 i.op[x].regs = i.op[x].regs + 8;
4457 }
4458 }
4459 }
4460
4461 if (i.rex == 0 && i.rex_encoding)
4462 {
4463 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4464 that uses legacy register. If it is "hi" register, don't add
4465 the REX_OPCODE byte. */
4466 int x;
4467 for (x = 0; x < 2; x++)
4468 if (i.types[x].bitfield.reg
4469 && i.types[x].bitfield.byte
4470 && (i.op[x].regs->reg_flags & RegRex64) == 0
4471 && i.op[x].regs->reg_num > 3)
4472 {
4473 i.rex_encoding = FALSE;
4474 break;
4475 }
4476
4477 if (i.rex_encoding)
4478 i.rex = REX_OPCODE;
4479 }
4480
4481 if (i.rex != 0)
4482 add_prefix (REX_OPCODE | i.rex);
4483
4484 /* We are ready to output the insn. */
4485 output_insn ();
4486 }
4487
4488 static char *
4489 parse_insn (char *line, char *mnemonic)
4490 {
4491 char *l = line;
4492 char *token_start = l;
4493 char *mnem_p;
4494 int supported;
4495 const insn_template *t;
4496 char *dot_p = NULL;
4497
4498 while (1)
4499 {
4500 mnem_p = mnemonic;
4501 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4502 {
4503 if (*mnem_p == '.')
4504 dot_p = mnem_p;
4505 mnem_p++;
4506 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4507 {
4508 as_bad (_("no such instruction: `%s'"), token_start);
4509 return NULL;
4510 }
4511 l++;
4512 }
4513 if (!is_space_char (*l)
4514 && *l != END_OF_INSN
4515 && (intel_syntax
4516 || (*l != PREFIX_SEPARATOR
4517 && *l != ',')))
4518 {
4519 as_bad (_("invalid character %s in mnemonic"),
4520 output_invalid (*l));
4521 return NULL;
4522 }
4523 if (token_start == l)
4524 {
4525 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4526 as_bad (_("expecting prefix; got nothing"));
4527 else
4528 as_bad (_("expecting mnemonic; got nothing"));
4529 return NULL;
4530 }
4531
4532 /* Look up instruction (or prefix) via hash table. */
4533 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4534
4535 if (*l != END_OF_INSN
4536 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4537 && current_templates
4538 && current_templates->start->opcode_modifier.isprefix)
4539 {
4540 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4541 {
4542 as_bad ((flag_code != CODE_64BIT
4543 ? _("`%s' is only supported in 64-bit mode")
4544 : _("`%s' is not supported in 64-bit mode")),
4545 current_templates->start->name);
4546 return NULL;
4547 }
4548 /* If we are in 16-bit mode, do not allow addr16 or data16.
4549 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4550 if ((current_templates->start->opcode_modifier.size == SIZE16
4551 || current_templates->start->opcode_modifier.size == SIZE32)
4552 && flag_code != CODE_64BIT
4553 && ((current_templates->start->opcode_modifier.size == SIZE32)
4554 ^ (flag_code == CODE_16BIT)))
4555 {
4556 as_bad (_("redundant %s prefix"),
4557 current_templates->start->name);
4558 return NULL;
4559 }
4560 if (current_templates->start->opcode_length == 0)
4561 {
4562 /* Handle pseudo prefixes. */
4563 switch (current_templates->start->base_opcode)
4564 {
4565 case 0x0:
4566 /* {disp8} */
4567 i.disp_encoding = disp_encoding_8bit;
4568 break;
4569 case 0x1:
4570 /* {disp32} */
4571 i.disp_encoding = disp_encoding_32bit;
4572 break;
4573 case 0x2:
4574 /* {load} */
4575 i.dir_encoding = dir_encoding_load;
4576 break;
4577 case 0x3:
4578 /* {store} */
4579 i.dir_encoding = dir_encoding_store;
4580 break;
4581 case 0x4:
4582 /* {vex2} */
4583 i.vec_encoding = vex_encoding_vex2;
4584 break;
4585 case 0x5:
4586 /* {vex3} */
4587 i.vec_encoding = vex_encoding_vex3;
4588 break;
4589 case 0x6:
4590 /* {evex} */
4591 i.vec_encoding = vex_encoding_evex;
4592 break;
4593 case 0x7:
4594 /* {rex} */
4595 i.rex_encoding = TRUE;
4596 break;
4597 case 0x8:
4598 /* {nooptimize} */
4599 i.no_optimize = TRUE;
4600 break;
4601 default:
4602 abort ();
4603 }
4604 }
4605 else
4606 {
4607 /* Add prefix, checking for repeated prefixes. */
4608 switch (add_prefix (current_templates->start->base_opcode))
4609 {
4610 case PREFIX_EXIST:
4611 return NULL;
4612 case PREFIX_DS:
4613 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4614 i.notrack_prefix = current_templates->start->name;
4615 break;
4616 case PREFIX_REP:
4617 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4618 i.hle_prefix = current_templates->start->name;
4619 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4620 i.bnd_prefix = current_templates->start->name;
4621 else
4622 i.rep_prefix = current_templates->start->name;
4623 break;
4624 default:
4625 break;
4626 }
4627 }
4628 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4629 token_start = ++l;
4630 }
4631 else
4632 break;
4633 }
4634
4635 if (!current_templates)
4636 {
4637 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4638 Check if we should swap operand or force 32bit displacement in
4639 encoding. */
4640 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4641 i.dir_encoding = dir_encoding_swap;
4642 else if (mnem_p - 3 == dot_p
4643 && dot_p[1] == 'd'
4644 && dot_p[2] == '8')
4645 i.disp_encoding = disp_encoding_8bit;
4646 else if (mnem_p - 4 == dot_p
4647 && dot_p[1] == 'd'
4648 && dot_p[2] == '3'
4649 && dot_p[3] == '2')
4650 i.disp_encoding = disp_encoding_32bit;
4651 else
4652 goto check_suffix;
4653 mnem_p = dot_p;
4654 *dot_p = '\0';
4655 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4656 }
4657
4658 if (!current_templates)
4659 {
4660 check_suffix:
4661 if (mnem_p > mnemonic)
4662 {
4663 /* See if we can get a match by trimming off a suffix. */
4664 switch (mnem_p[-1])
4665 {
4666 case WORD_MNEM_SUFFIX:
4667 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4668 i.suffix = SHORT_MNEM_SUFFIX;
4669 else
4670 /* Fall through. */
4671 case BYTE_MNEM_SUFFIX:
4672 case QWORD_MNEM_SUFFIX:
4673 i.suffix = mnem_p[-1];
4674 mnem_p[-1] = '\0';
4675 current_templates = (const templates *) hash_find (op_hash,
4676 mnemonic);
4677 break;
4678 case SHORT_MNEM_SUFFIX:
4679 case LONG_MNEM_SUFFIX:
4680 if (!intel_syntax)
4681 {
4682 i.suffix = mnem_p[-1];
4683 mnem_p[-1] = '\0';
4684 current_templates = (const templates *) hash_find (op_hash,
4685 mnemonic);
4686 }
4687 break;
4688
4689 /* Intel Syntax. */
4690 case 'd':
4691 if (intel_syntax)
4692 {
4693 if (intel_float_operand (mnemonic) == 1)
4694 i.suffix = SHORT_MNEM_SUFFIX;
4695 else
4696 i.suffix = LONG_MNEM_SUFFIX;
4697 mnem_p[-1] = '\0';
4698 current_templates = (const templates *) hash_find (op_hash,
4699 mnemonic);
4700 }
4701 break;
4702 }
4703 }
4704
4705 if (!current_templates)
4706 {
4707 as_bad (_("no such instruction: `%s'"), token_start);
4708 return NULL;
4709 }
4710 }
4711
4712 if (current_templates->start->opcode_modifier.jump
4713 || current_templates->start->opcode_modifier.jumpbyte)
4714 {
4715 /* Check for a branch hint. We allow ",pt" and ",pn" for
4716 predict taken and predict not taken respectively.
4717 I'm not sure that branch hints actually do anything on loop
4718 and jcxz insns (JumpByte) for current Pentium4 chips. They
4719 may work in the future and it doesn't hurt to accept them
4720 now. */
4721 if (l[0] == ',' && l[1] == 'p')
4722 {
4723 if (l[2] == 't')
4724 {
4725 if (!add_prefix (DS_PREFIX_OPCODE))
4726 return NULL;
4727 l += 3;
4728 }
4729 else if (l[2] == 'n')
4730 {
4731 if (!add_prefix (CS_PREFIX_OPCODE))
4732 return NULL;
4733 l += 3;
4734 }
4735 }
4736 }
4737 /* Any other comma loses. */
4738 if (*l == ',')
4739 {
4740 as_bad (_("invalid character %s in mnemonic"),
4741 output_invalid (*l));
4742 return NULL;
4743 }
4744
4745 /* Check if instruction is supported on specified architecture. */
4746 supported = 0;
4747 for (t = current_templates->start; t < current_templates->end; ++t)
4748 {
4749 supported |= cpu_flags_match (t);
4750 if (supported == CPU_FLAGS_PERFECT_MATCH)
4751 {
4752 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4753 as_warn (_("use .code16 to ensure correct addressing mode"));
4754
4755 return l;
4756 }
4757 }
4758
4759 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4760 as_bad (flag_code == CODE_64BIT
4761 ? _("`%s' is not supported in 64-bit mode")
4762 : _("`%s' is only supported in 64-bit mode"),
4763 current_templates->start->name);
4764 else
4765 as_bad (_("`%s' is not supported on `%s%s'"),
4766 current_templates->start->name,
4767 cpu_arch_name ? cpu_arch_name : default_arch,
4768 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4769
4770 return NULL;
4771 }
4772
4773 static char *
4774 parse_operands (char *l, const char *mnemonic)
4775 {
4776 char *token_start;
4777
4778 /* 1 if operand is pending after ','. */
4779 unsigned int expecting_operand = 0;
4780
4781 /* Non-zero if operand parens not balanced. */
4782 unsigned int paren_not_balanced;
4783
4784 while (*l != END_OF_INSN)
4785 {
4786 /* Skip optional white space before operand. */
4787 if (is_space_char (*l))
4788 ++l;
4789 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4790 {
4791 as_bad (_("invalid character %s before operand %d"),
4792 output_invalid (*l),
4793 i.operands + 1);
4794 return NULL;
4795 }
4796 token_start = l; /* After white space. */
4797 paren_not_balanced = 0;
4798 while (paren_not_balanced || *l != ',')
4799 {
4800 if (*l == END_OF_INSN)
4801 {
4802 if (paren_not_balanced)
4803 {
4804 if (!intel_syntax)
4805 as_bad (_("unbalanced parenthesis in operand %d."),
4806 i.operands + 1);
4807 else
4808 as_bad (_("unbalanced brackets in operand %d."),
4809 i.operands + 1);
4810 return NULL;
4811 }
4812 else
4813 break; /* we are done */
4814 }
4815 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4816 {
4817 as_bad (_("invalid character %s in operand %d"),
4818 output_invalid (*l),
4819 i.operands + 1);
4820 return NULL;
4821 }
4822 if (!intel_syntax)
4823 {
4824 if (*l == '(')
4825 ++paren_not_balanced;
4826 if (*l == ')')
4827 --paren_not_balanced;
4828 }
4829 else
4830 {
4831 if (*l == '[')
4832 ++paren_not_balanced;
4833 if (*l == ']')
4834 --paren_not_balanced;
4835 }
4836 l++;
4837 }
4838 if (l != token_start)
4839 { /* Yes, we've read in another operand. */
4840 unsigned int operand_ok;
4841 this_operand = i.operands++;
4842 if (i.operands > MAX_OPERANDS)
4843 {
4844 as_bad (_("spurious operands; (%d operands/instruction max)"),
4845 MAX_OPERANDS);
4846 return NULL;
4847 }
4848 i.types[this_operand].bitfield.unspecified = 1;
4849 /* Now parse operand adding info to 'i' as we go along. */
4850 END_STRING_AND_SAVE (l);
4851
4852 if (i.mem_operands > 1)
4853 {
4854 as_bad (_("too many memory references for `%s'"),
4855 mnemonic);
4856 return 0;
4857 }
4858
4859 if (intel_syntax)
4860 operand_ok =
4861 i386_intel_operand (token_start,
4862 intel_float_operand (mnemonic));
4863 else
4864 operand_ok = i386_att_operand (token_start);
4865
4866 RESTORE_END_STRING (l);
4867 if (!operand_ok)
4868 return NULL;
4869 }
4870 else
4871 {
4872 if (expecting_operand)
4873 {
4874 expecting_operand_after_comma:
4875 as_bad (_("expecting operand after ','; got nothing"));
4876 return NULL;
4877 }
4878 if (*l == ',')
4879 {
4880 as_bad (_("expecting operand before ','; got nothing"));
4881 return NULL;
4882 }
4883 }
4884
4885 /* Now *l must be either ',' or END_OF_INSN. */
4886 if (*l == ',')
4887 {
4888 if (*++l == END_OF_INSN)
4889 {
4890 /* Just skip it, if it's \n complain. */
4891 goto expecting_operand_after_comma;
4892 }
4893 expecting_operand = 1;
4894 }
4895 }
4896 return l;
4897 }
4898
4899 static void
4900 swap_2_operands (int xchg1, int xchg2)
4901 {
4902 union i386_op temp_op;
4903 i386_operand_type temp_type;
4904 unsigned int temp_flags;
4905 enum bfd_reloc_code_real temp_reloc;
4906
4907 temp_type = i.types[xchg2];
4908 i.types[xchg2] = i.types[xchg1];
4909 i.types[xchg1] = temp_type;
4910
4911 temp_flags = i.flags[xchg2];
4912 i.flags[xchg2] = i.flags[xchg1];
4913 i.flags[xchg1] = temp_flags;
4914
4915 temp_op = i.op[xchg2];
4916 i.op[xchg2] = i.op[xchg1];
4917 i.op[xchg1] = temp_op;
4918
4919 temp_reloc = i.reloc[xchg2];
4920 i.reloc[xchg2] = i.reloc[xchg1];
4921 i.reloc[xchg1] = temp_reloc;
4922
4923 if (i.mask)
4924 {
4925 if (i.mask->operand == xchg1)
4926 i.mask->operand = xchg2;
4927 else if (i.mask->operand == xchg2)
4928 i.mask->operand = xchg1;
4929 }
4930 if (i.broadcast)
4931 {
4932 if (i.broadcast->operand == xchg1)
4933 i.broadcast->operand = xchg2;
4934 else if (i.broadcast->operand == xchg2)
4935 i.broadcast->operand = xchg1;
4936 }
4937 if (i.rounding)
4938 {
4939 if (i.rounding->operand == xchg1)
4940 i.rounding->operand = xchg2;
4941 else if (i.rounding->operand == xchg2)
4942 i.rounding->operand = xchg1;
4943 }
4944 }
4945
4946 static void
4947 swap_operands (void)
4948 {
4949 switch (i.operands)
4950 {
4951 case 5:
4952 case 4:
4953 swap_2_operands (1, i.operands - 2);
4954 /* Fall through. */
4955 case 3:
4956 case 2:
4957 swap_2_operands (0, i.operands - 1);
4958 break;
4959 default:
4960 abort ();
4961 }
4962
4963 if (i.mem_operands == 2)
4964 {
4965 const seg_entry *temp_seg;
4966 temp_seg = i.seg[0];
4967 i.seg[0] = i.seg[1];
4968 i.seg[1] = temp_seg;
4969 }
4970 }
4971
4972 /* Try to ensure constant immediates are represented in the smallest
4973 opcode possible. */
4974 static void
4975 optimize_imm (void)
4976 {
4977 char guess_suffix = 0;
4978 int op;
4979
4980 if (i.suffix)
4981 guess_suffix = i.suffix;
4982 else if (i.reg_operands)
4983 {
4984 /* Figure out a suffix from the last register operand specified.
4985 We can't do this properly yet, ie. excluding InOutPortReg,
4986 but the following works for instructions with immediates.
4987 In any case, we can't set i.suffix yet. */
4988 for (op = i.operands; --op >= 0;)
4989 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4990 {
4991 guess_suffix = BYTE_MNEM_SUFFIX;
4992 break;
4993 }
4994 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4995 {
4996 guess_suffix = WORD_MNEM_SUFFIX;
4997 break;
4998 }
4999 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5000 {
5001 guess_suffix = LONG_MNEM_SUFFIX;
5002 break;
5003 }
5004 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5005 {
5006 guess_suffix = QWORD_MNEM_SUFFIX;
5007 break;
5008 }
5009 }
5010 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5011 guess_suffix = WORD_MNEM_SUFFIX;
5012
5013 for (op = i.operands; --op >= 0;)
5014 if (operand_type_check (i.types[op], imm))
5015 {
5016 switch (i.op[op].imms->X_op)
5017 {
5018 case O_constant:
5019 /* If a suffix is given, this operand may be shortened. */
5020 switch (guess_suffix)
5021 {
5022 case LONG_MNEM_SUFFIX:
5023 i.types[op].bitfield.imm32 = 1;
5024 i.types[op].bitfield.imm64 = 1;
5025 break;
5026 case WORD_MNEM_SUFFIX:
5027 i.types[op].bitfield.imm16 = 1;
5028 i.types[op].bitfield.imm32 = 1;
5029 i.types[op].bitfield.imm32s = 1;
5030 i.types[op].bitfield.imm64 = 1;
5031 break;
5032 case BYTE_MNEM_SUFFIX:
5033 i.types[op].bitfield.imm8 = 1;
5034 i.types[op].bitfield.imm8s = 1;
5035 i.types[op].bitfield.imm16 = 1;
5036 i.types[op].bitfield.imm32 = 1;
5037 i.types[op].bitfield.imm32s = 1;
5038 i.types[op].bitfield.imm64 = 1;
5039 break;
5040 }
5041
5042 /* If this operand is at most 16 bits, convert it
5043 to a signed 16 bit number before trying to see
5044 whether it will fit in an even smaller size.
5045 This allows a 16-bit operand such as $0xffe0 to
5046 be recognised as within Imm8S range. */
5047 if ((i.types[op].bitfield.imm16)
5048 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5049 {
5050 i.op[op].imms->X_add_number =
5051 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5052 }
5053 #ifdef BFD64
5054 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5055 if ((i.types[op].bitfield.imm32)
5056 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5057 == 0))
5058 {
5059 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5060 ^ ((offsetT) 1 << 31))
5061 - ((offsetT) 1 << 31));
5062 }
5063 #endif
5064 i.types[op]
5065 = operand_type_or (i.types[op],
5066 smallest_imm_type (i.op[op].imms->X_add_number));
5067
5068 /* We must avoid matching of Imm32 templates when 64bit
5069 only immediate is available. */
5070 if (guess_suffix == QWORD_MNEM_SUFFIX)
5071 i.types[op].bitfield.imm32 = 0;
5072 break;
5073
5074 case O_absent:
5075 case O_register:
5076 abort ();
5077
5078 /* Symbols and expressions. */
5079 default:
5080 /* Convert symbolic operand to proper sizes for matching, but don't
5081 prevent matching a set of insns that only supports sizes other
5082 than those matching the insn suffix. */
5083 {
5084 i386_operand_type mask, allowed;
5085 const insn_template *t;
5086
5087 operand_type_set (&mask, 0);
5088 operand_type_set (&allowed, 0);
5089
5090 for (t = current_templates->start;
5091 t < current_templates->end;
5092 ++t)
5093 allowed = operand_type_or (allowed,
5094 t->operand_types[op]);
5095 switch (guess_suffix)
5096 {
5097 case QWORD_MNEM_SUFFIX:
5098 mask.bitfield.imm64 = 1;
5099 mask.bitfield.imm32s = 1;
5100 break;
5101 case LONG_MNEM_SUFFIX:
5102 mask.bitfield.imm32 = 1;
5103 break;
5104 case WORD_MNEM_SUFFIX:
5105 mask.bitfield.imm16 = 1;
5106 break;
5107 case BYTE_MNEM_SUFFIX:
5108 mask.bitfield.imm8 = 1;
5109 break;
5110 default:
5111 break;
5112 }
5113 allowed = operand_type_and (mask, allowed);
5114 if (!operand_type_all_zero (&allowed))
5115 i.types[op] = operand_type_and (i.types[op], mask);
5116 }
5117 break;
5118 }
5119 }
5120 }
5121
5122 /* Try to use the smallest displacement type too. */
5123 static void
5124 optimize_disp (void)
5125 {
5126 int op;
5127
5128 for (op = i.operands; --op >= 0;)
5129 if (operand_type_check (i.types[op], disp))
5130 {
5131 if (i.op[op].disps->X_op == O_constant)
5132 {
5133 offsetT op_disp = i.op[op].disps->X_add_number;
5134
5135 if (i.types[op].bitfield.disp16
5136 && (op_disp & ~(offsetT) 0xffff) == 0)
5137 {
5138 /* If this operand is at most 16 bits, convert
5139 to a signed 16 bit number and don't use 64bit
5140 displacement. */
5141 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5142 i.types[op].bitfield.disp64 = 0;
5143 }
5144 #ifdef BFD64
5145 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5146 if (i.types[op].bitfield.disp32
5147 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5148 {
5149 /* If this operand is at most 32 bits, convert
5150 to a signed 32 bit number and don't use 64bit
5151 displacement. */
5152 op_disp &= (((offsetT) 2 << 31) - 1);
5153 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5154 i.types[op].bitfield.disp64 = 0;
5155 }
5156 #endif
5157 if (!op_disp && i.types[op].bitfield.baseindex)
5158 {
5159 i.types[op].bitfield.disp8 = 0;
5160 i.types[op].bitfield.disp16 = 0;
5161 i.types[op].bitfield.disp32 = 0;
5162 i.types[op].bitfield.disp32s = 0;
5163 i.types[op].bitfield.disp64 = 0;
5164 i.op[op].disps = 0;
5165 i.disp_operands--;
5166 }
5167 else if (flag_code == CODE_64BIT)
5168 {
5169 if (fits_in_signed_long (op_disp))
5170 {
5171 i.types[op].bitfield.disp64 = 0;
5172 i.types[op].bitfield.disp32s = 1;
5173 }
5174 if (i.prefix[ADDR_PREFIX]
5175 && fits_in_unsigned_long (op_disp))
5176 i.types[op].bitfield.disp32 = 1;
5177 }
5178 if ((i.types[op].bitfield.disp32
5179 || i.types[op].bitfield.disp32s
5180 || i.types[op].bitfield.disp16)
5181 && fits_in_disp8 (op_disp))
5182 i.types[op].bitfield.disp8 = 1;
5183 }
5184 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5185 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5186 {
5187 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5188 i.op[op].disps, 0, i.reloc[op]);
5189 i.types[op].bitfield.disp8 = 0;
5190 i.types[op].bitfield.disp16 = 0;
5191 i.types[op].bitfield.disp32 = 0;
5192 i.types[op].bitfield.disp32s = 0;
5193 i.types[op].bitfield.disp64 = 0;
5194 }
5195 else
5196 /* We only support 64bit displacement on constants. */
5197 i.types[op].bitfield.disp64 = 0;
5198 }
5199 }
5200
5201 /* Return 1 if there is a match in broadcast bytes between operand
5202 GIVEN and instruction template T. */
5203
5204 static INLINE int
5205 match_broadcast_size (const insn_template *t, unsigned int given)
5206 {
5207 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5208 && i.types[given].bitfield.byte)
5209 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5210 && i.types[given].bitfield.word)
5211 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5212 && i.types[given].bitfield.dword)
5213 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5214 && i.types[given].bitfield.qword));
5215 }
5216
5217 /* Check if operands are valid for the instruction. */
5218
5219 static int
5220 check_VecOperands (const insn_template *t)
5221 {
5222 unsigned int op;
5223 i386_cpu_flags cpu;
5224 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5225
5226 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5227 any one operand are implicity requiring AVX512VL support if the actual
5228 operand size is YMMword or XMMword. Since this function runs after
5229 template matching, there's no need to check for YMMword/XMMword in
5230 the template. */
5231 cpu = cpu_flags_and (t->cpu_flags, avx512);
5232 if (!cpu_flags_all_zero (&cpu)
5233 && !t->cpu_flags.bitfield.cpuavx512vl
5234 && !cpu_arch_flags.bitfield.cpuavx512vl)
5235 {
5236 for (op = 0; op < t->operands; ++op)
5237 {
5238 if (t->operand_types[op].bitfield.zmmword
5239 && (i.types[op].bitfield.ymmword
5240 || i.types[op].bitfield.xmmword))
5241 {
5242 i.error = unsupported;
5243 return 1;
5244 }
5245 }
5246 }
5247
5248 /* Without VSIB byte, we can't have a vector register for index. */
5249 if (!t->opcode_modifier.vecsib
5250 && i.index_reg
5251 && (i.index_reg->reg_type.bitfield.xmmword
5252 || i.index_reg->reg_type.bitfield.ymmword
5253 || i.index_reg->reg_type.bitfield.zmmword))
5254 {
5255 i.error = unsupported_vector_index_register;
5256 return 1;
5257 }
5258
5259 /* Check if default mask is allowed. */
5260 if (t->opcode_modifier.nodefmask
5261 && (!i.mask || i.mask->mask->reg_num == 0))
5262 {
5263 i.error = no_default_mask;
5264 return 1;
5265 }
5266
5267 /* For VSIB byte, we need a vector register for index, and all vector
5268 registers must be distinct. */
5269 if (t->opcode_modifier.vecsib)
5270 {
5271 if (!i.index_reg
5272 || !((t->opcode_modifier.vecsib == VecSIB128
5273 && i.index_reg->reg_type.bitfield.xmmword)
5274 || (t->opcode_modifier.vecsib == VecSIB256
5275 && i.index_reg->reg_type.bitfield.ymmword)
5276 || (t->opcode_modifier.vecsib == VecSIB512
5277 && i.index_reg->reg_type.bitfield.zmmword)))
5278 {
5279 i.error = invalid_vsib_address;
5280 return 1;
5281 }
5282
5283 gas_assert (i.reg_operands == 2 || i.mask);
5284 if (i.reg_operands == 2 && !i.mask)
5285 {
5286 gas_assert (i.types[0].bitfield.regsimd);
5287 gas_assert (i.types[0].bitfield.xmmword
5288 || i.types[0].bitfield.ymmword);
5289 gas_assert (i.types[2].bitfield.regsimd);
5290 gas_assert (i.types[2].bitfield.xmmword
5291 || i.types[2].bitfield.ymmword);
5292 if (operand_check == check_none)
5293 return 0;
5294 if (register_number (i.op[0].regs)
5295 != register_number (i.index_reg)
5296 && register_number (i.op[2].regs)
5297 != register_number (i.index_reg)
5298 && register_number (i.op[0].regs)
5299 != register_number (i.op[2].regs))
5300 return 0;
5301 if (operand_check == check_error)
5302 {
5303 i.error = invalid_vector_register_set;
5304 return 1;
5305 }
5306 as_warn (_("mask, index, and destination registers should be distinct"));
5307 }
5308 else if (i.reg_operands == 1 && i.mask)
5309 {
5310 if (i.types[1].bitfield.regsimd
5311 && (i.types[1].bitfield.xmmword
5312 || i.types[1].bitfield.ymmword
5313 || i.types[1].bitfield.zmmword)
5314 && (register_number (i.op[1].regs)
5315 == register_number (i.index_reg)))
5316 {
5317 if (operand_check == check_error)
5318 {
5319 i.error = invalid_vector_register_set;
5320 return 1;
5321 }
5322 if (operand_check != check_none)
5323 as_warn (_("index and destination registers should be distinct"));
5324 }
5325 }
5326 }
5327
5328 /* Check if broadcast is supported by the instruction and is applied
5329 to the memory operand. */
5330 if (i.broadcast)
5331 {
5332 i386_operand_type type, overlap;
5333
5334 /* Check if specified broadcast is supported in this instruction,
5335 and its broadcast bytes match the memory operand. */
5336 op = i.broadcast->operand;
5337 if (!t->opcode_modifier.broadcast
5338 || !(i.flags[op] & Operand_Mem)
5339 || (!i.types[op].bitfield.unspecified
5340 && !match_broadcast_size (t, op)))
5341 {
5342 bad_broadcast:
5343 i.error = unsupported_broadcast;
5344 return 1;
5345 }
5346
5347 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5348 * i.broadcast->type);
5349 operand_type_set (&type, 0);
5350 switch (i.broadcast->bytes)
5351 {
5352 case 2:
5353 type.bitfield.word = 1;
5354 break;
5355 case 4:
5356 type.bitfield.dword = 1;
5357 break;
5358 case 8:
5359 type.bitfield.qword = 1;
5360 break;
5361 case 16:
5362 type.bitfield.xmmword = 1;
5363 break;
5364 case 32:
5365 type.bitfield.ymmword = 1;
5366 break;
5367 case 64:
5368 type.bitfield.zmmword = 1;
5369 break;
5370 default:
5371 goto bad_broadcast;
5372 }
5373
5374 overlap = operand_type_and (type, t->operand_types[op]);
5375 if (operand_type_all_zero (&overlap))
5376 goto bad_broadcast;
5377
5378 if (t->opcode_modifier.checkregsize)
5379 {
5380 unsigned int j;
5381
5382 type.bitfield.baseindex = 1;
5383 for (j = 0; j < i.operands; ++j)
5384 {
5385 if (j != op
5386 && !operand_type_register_match(i.types[j],
5387 t->operand_types[j],
5388 type,
5389 t->operand_types[op]))
5390 goto bad_broadcast;
5391 }
5392 }
5393 }
5394 /* If broadcast is supported in this instruction, we need to check if
5395 operand of one-element size isn't specified without broadcast. */
5396 else if (t->opcode_modifier.broadcast && i.mem_operands)
5397 {
5398 /* Find memory operand. */
5399 for (op = 0; op < i.operands; op++)
5400 if (operand_type_check (i.types[op], anymem))
5401 break;
5402 gas_assert (op < i.operands);
5403 /* Check size of the memory operand. */
5404 if (match_broadcast_size (t, op))
5405 {
5406 i.error = broadcast_needed;
5407 return 1;
5408 }
5409 }
5410 else
5411 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5412
5413 /* Check if requested masking is supported. */
5414 if (i.mask)
5415 {
5416 switch (t->opcode_modifier.masking)
5417 {
5418 case BOTH_MASKING:
5419 break;
5420 case MERGING_MASKING:
5421 if (i.mask->zeroing)
5422 {
5423 case 0:
5424 i.error = unsupported_masking;
5425 return 1;
5426 }
5427 break;
5428 case DYNAMIC_MASKING:
5429 /* Memory destinations allow only merging masking. */
5430 if (i.mask->zeroing && i.mem_operands)
5431 {
5432 /* Find memory operand. */
5433 for (op = 0; op < i.operands; op++)
5434 if (i.flags[op] & Operand_Mem)
5435 break;
5436 gas_assert (op < i.operands);
5437 if (op == i.operands - 1)
5438 {
5439 i.error = unsupported_masking;
5440 return 1;
5441 }
5442 }
5443 break;
5444 default:
5445 abort ();
5446 }
5447 }
5448
5449 /* Check if masking is applied to dest operand. */
5450 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5451 {
5452 i.error = mask_not_on_destination;
5453 return 1;
5454 }
5455
5456 /* Check RC/SAE. */
5457 if (i.rounding)
5458 {
5459 if ((i.rounding->type != saeonly
5460 && !t->opcode_modifier.staticrounding)
5461 || (i.rounding->type == saeonly
5462 && (t->opcode_modifier.staticrounding
5463 || !t->opcode_modifier.sae)))
5464 {
5465 i.error = unsupported_rc_sae;
5466 return 1;
5467 }
5468 /* If the instruction has several immediate operands and one of
5469 them is rounding, the rounding operand should be the last
5470 immediate operand. */
5471 if (i.imm_operands > 1
5472 && i.rounding->operand != (int) (i.imm_operands - 1))
5473 {
5474 i.error = rc_sae_operand_not_last_imm;
5475 return 1;
5476 }
5477 }
5478
5479 /* Check vector Disp8 operand. */
5480 if (t->opcode_modifier.disp8memshift
5481 && i.disp_encoding != disp_encoding_32bit)
5482 {
5483 if (i.broadcast)
5484 i.memshift = t->opcode_modifier.broadcast - 1;
5485 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5486 i.memshift = t->opcode_modifier.disp8memshift;
5487 else
5488 {
5489 const i386_operand_type *type = NULL;
5490
5491 i.memshift = 0;
5492 for (op = 0; op < i.operands; op++)
5493 if (operand_type_check (i.types[op], anymem))
5494 {
5495 if (t->opcode_modifier.evex == EVEXLIG)
5496 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5497 else if (t->operand_types[op].bitfield.xmmword
5498 + t->operand_types[op].bitfield.ymmword
5499 + t->operand_types[op].bitfield.zmmword <= 1)
5500 type = &t->operand_types[op];
5501 else if (!i.types[op].bitfield.unspecified)
5502 type = &i.types[op];
5503 }
5504 else if (i.types[op].bitfield.regsimd
5505 && t->opcode_modifier.evex != EVEXLIG)
5506 {
5507 if (i.types[op].bitfield.zmmword)
5508 i.memshift = 6;
5509 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5510 i.memshift = 5;
5511 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5512 i.memshift = 4;
5513 }
5514
5515 if (type)
5516 {
5517 if (type->bitfield.zmmword)
5518 i.memshift = 6;
5519 else if (type->bitfield.ymmword)
5520 i.memshift = 5;
5521 else if (type->bitfield.xmmword)
5522 i.memshift = 4;
5523 }
5524
5525 /* For the check in fits_in_disp8(). */
5526 if (i.memshift == 0)
5527 i.memshift = -1;
5528 }
5529
5530 for (op = 0; op < i.operands; op++)
5531 if (operand_type_check (i.types[op], disp)
5532 && i.op[op].disps->X_op == O_constant)
5533 {
5534 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5535 {
5536 i.types[op].bitfield.disp8 = 1;
5537 return 0;
5538 }
5539 i.types[op].bitfield.disp8 = 0;
5540 }
5541 }
5542
5543 i.memshift = 0;
5544
5545 return 0;
5546 }
5547
5548 /* Check if operands are valid for the instruction. Update VEX
5549 operand types. */
5550
5551 static int
5552 VEX_check_operands (const insn_template *t)
5553 {
5554 if (i.vec_encoding == vex_encoding_evex)
5555 {
5556 /* This instruction must be encoded with EVEX prefix. */
5557 if (!is_evex_encoding (t))
5558 {
5559 i.error = unsupported;
5560 return 1;
5561 }
5562 return 0;
5563 }
5564
5565 if (!t->opcode_modifier.vex)
5566 {
5567 /* This instruction template doesn't have VEX prefix. */
5568 if (i.vec_encoding != vex_encoding_default)
5569 {
5570 i.error = unsupported;
5571 return 1;
5572 }
5573 return 0;
5574 }
5575
5576 /* Only check VEX_Imm4, which must be the first operand. */
5577 if (t->operand_types[0].bitfield.vec_imm4)
5578 {
5579 if (i.op[0].imms->X_op != O_constant
5580 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5581 {
5582 i.error = bad_imm4;
5583 return 1;
5584 }
5585
5586 /* Turn off Imm8 so that update_imm won't complain. */
5587 i.types[0] = vec_imm4;
5588 }
5589
5590 return 0;
5591 }
5592
5593 static const insn_template *
5594 match_template (char mnem_suffix)
5595 {
5596 /* Points to template once we've found it. */
5597 const insn_template *t;
5598 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5599 i386_operand_type overlap4;
5600 unsigned int found_reverse_match;
5601 i386_opcode_modifier suffix_check, mnemsuf_check;
5602 i386_operand_type operand_types [MAX_OPERANDS];
5603 int addr_prefix_disp;
5604 unsigned int j;
5605 unsigned int found_cpu_match, size_match;
5606 unsigned int check_register;
5607 enum i386_error specific_error = 0;
5608
5609 #if MAX_OPERANDS != 5
5610 # error "MAX_OPERANDS must be 5."
5611 #endif
5612
5613 found_reverse_match = 0;
5614 addr_prefix_disp = -1;
5615
5616 memset (&suffix_check, 0, sizeof (suffix_check));
5617 if (intel_syntax && i.broadcast)
5618 /* nothing */;
5619 else if (i.suffix == BYTE_MNEM_SUFFIX)
5620 suffix_check.no_bsuf = 1;
5621 else if (i.suffix == WORD_MNEM_SUFFIX)
5622 suffix_check.no_wsuf = 1;
5623 else if (i.suffix == SHORT_MNEM_SUFFIX)
5624 suffix_check.no_ssuf = 1;
5625 else if (i.suffix == LONG_MNEM_SUFFIX)
5626 suffix_check.no_lsuf = 1;
5627 else if (i.suffix == QWORD_MNEM_SUFFIX)
5628 suffix_check.no_qsuf = 1;
5629 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5630 suffix_check.no_ldsuf = 1;
5631
5632 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5633 if (intel_syntax)
5634 {
5635 switch (mnem_suffix)
5636 {
5637 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5638 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5639 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5640 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5641 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5642 }
5643 }
5644
5645 /* Must have right number of operands. */
5646 i.error = number_of_operands_mismatch;
5647
5648 for (t = current_templates->start; t < current_templates->end; t++)
5649 {
5650 addr_prefix_disp = -1;
5651 found_reverse_match = 0;
5652
5653 if (i.operands != t->operands)
5654 continue;
5655
5656 /* Check processor support. */
5657 i.error = unsupported;
5658 found_cpu_match = (cpu_flags_match (t)
5659 == CPU_FLAGS_PERFECT_MATCH);
5660 if (!found_cpu_match)
5661 continue;
5662
5663 /* Check AT&T mnemonic. */
5664 i.error = unsupported_with_intel_mnemonic;
5665 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5666 continue;
5667
5668 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5669 i.error = unsupported_syntax;
5670 if ((intel_syntax && t->opcode_modifier.attsyntax)
5671 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5672 || (intel64 && t->opcode_modifier.amd64)
5673 || (!intel64 && t->opcode_modifier.intel64))
5674 continue;
5675
5676 /* Check the suffix, except for some instructions in intel mode. */
5677 i.error = invalid_instruction_suffix;
5678 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5679 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5680 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5681 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5682 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5683 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5684 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5685 continue;
5686 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5687 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5688 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5689 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5690 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5691 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5692 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5693 continue;
5694
5695 size_match = operand_size_match (t);
5696 if (!size_match)
5697 continue;
5698
5699 for (j = 0; j < MAX_OPERANDS; j++)
5700 operand_types[j] = t->operand_types[j];
5701
5702 /* In general, don't allow 64-bit operands in 32-bit mode. */
5703 if (i.suffix == QWORD_MNEM_SUFFIX
5704 && flag_code != CODE_64BIT
5705 && (intel_syntax
5706 ? (!t->opcode_modifier.ignoresize
5707 && !t->opcode_modifier.broadcast
5708 && !intel_float_operand (t->name))
5709 : intel_float_operand (t->name) != 2)
5710 && ((!operand_types[0].bitfield.regmmx
5711 && !operand_types[0].bitfield.regsimd)
5712 || (!operand_types[t->operands > 1].bitfield.regmmx
5713 && !operand_types[t->operands > 1].bitfield.regsimd))
5714 && (t->base_opcode != 0x0fc7
5715 || t->extension_opcode != 1 /* cmpxchg8b */))
5716 continue;
5717
5718 /* In general, don't allow 32-bit operands on pre-386. */
5719 else if (i.suffix == LONG_MNEM_SUFFIX
5720 && !cpu_arch_flags.bitfield.cpui386
5721 && (intel_syntax
5722 ? (!t->opcode_modifier.ignoresize
5723 && !intel_float_operand (t->name))
5724 : intel_float_operand (t->name) != 2)
5725 && ((!operand_types[0].bitfield.regmmx
5726 && !operand_types[0].bitfield.regsimd)
5727 || (!operand_types[t->operands > 1].bitfield.regmmx
5728 && !operand_types[t->operands > 1].bitfield.regsimd)))
5729 continue;
5730
5731 /* Do not verify operands when there are none. */
5732 else
5733 {
5734 if (!t->operands)
5735 /* We've found a match; break out of loop. */
5736 break;
5737 }
5738
5739 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5740 into Disp32/Disp16/Disp32 operand. */
5741 if (i.prefix[ADDR_PREFIX] != 0)
5742 {
5743 /* There should be only one Disp operand. */
5744 switch (flag_code)
5745 {
5746 case CODE_16BIT:
5747 for (j = 0; j < MAX_OPERANDS; j++)
5748 {
5749 if (operand_types[j].bitfield.disp16)
5750 {
5751 addr_prefix_disp = j;
5752 operand_types[j].bitfield.disp32 = 1;
5753 operand_types[j].bitfield.disp16 = 0;
5754 break;
5755 }
5756 }
5757 break;
5758 case CODE_32BIT:
5759 for (j = 0; j < MAX_OPERANDS; j++)
5760 {
5761 if (operand_types[j].bitfield.disp32)
5762 {
5763 addr_prefix_disp = j;
5764 operand_types[j].bitfield.disp32 = 0;
5765 operand_types[j].bitfield.disp16 = 1;
5766 break;
5767 }
5768 }
5769 break;
5770 case CODE_64BIT:
5771 for (j = 0; j < MAX_OPERANDS; j++)
5772 {
5773 if (operand_types[j].bitfield.disp64)
5774 {
5775 addr_prefix_disp = j;
5776 operand_types[j].bitfield.disp64 = 0;
5777 operand_types[j].bitfield.disp32 = 1;
5778 break;
5779 }
5780 }
5781 break;
5782 }
5783 }
5784
5785 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5786 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5787 continue;
5788
5789 /* We check register size if needed. */
5790 if (t->opcode_modifier.checkregsize)
5791 {
5792 check_register = (1 << t->operands) - 1;
5793 if (i.broadcast)
5794 check_register &= ~(1 << i.broadcast->operand);
5795 }
5796 else
5797 check_register = 0;
5798
5799 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5800 switch (t->operands)
5801 {
5802 case 1:
5803 if (!operand_type_match (overlap0, i.types[0]))
5804 continue;
5805 break;
5806 case 2:
5807 /* xchg %eax, %eax is a special case. It is an alias for nop
5808 only in 32bit mode and we can use opcode 0x90. In 64bit
5809 mode, we can't use 0x90 for xchg %eax, %eax since it should
5810 zero-extend %eax to %rax. */
5811 if (flag_code == CODE_64BIT
5812 && t->base_opcode == 0x90
5813 && operand_type_equal (&i.types [0], &acc32)
5814 && operand_type_equal (&i.types [1], &acc32))
5815 continue;
5816 /* xrelease mov %eax, <disp> is another special case. It must not
5817 match the accumulator-only encoding of mov. */
5818 if (flag_code != CODE_64BIT
5819 && i.hle_prefix
5820 && t->base_opcode == 0xa0
5821 && i.types[0].bitfield.acc
5822 && operand_type_check (i.types[1], anymem))
5823 continue;
5824 /* Fall through. */
5825
5826 case 3:
5827 if (!(size_match & MATCH_STRAIGHT))
5828 goto check_reverse;
5829 /* Reverse direction of operands if swapping is possible in the first
5830 place (operands need to be symmetric) and
5831 - the load form is requested, and the template is a store form,
5832 - the store form is requested, and the template is a load form,
5833 - the non-default (swapped) form is requested. */
5834 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5835 if (t->opcode_modifier.d && i.reg_operands == i.operands
5836 && !operand_type_all_zero (&overlap1))
5837 switch (i.dir_encoding)
5838 {
5839 case dir_encoding_load:
5840 if (operand_type_check (operand_types[i.operands - 1], anymem)
5841 || operand_types[i.operands - 1].bitfield.regmem)
5842 goto check_reverse;
5843 break;
5844
5845 case dir_encoding_store:
5846 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5847 && !operand_types[i.operands - 1].bitfield.regmem)
5848 goto check_reverse;
5849 break;
5850
5851 case dir_encoding_swap:
5852 goto check_reverse;
5853
5854 case dir_encoding_default:
5855 break;
5856 }
5857 /* If we want store form, we skip the current load. */
5858 if ((i.dir_encoding == dir_encoding_store
5859 || i.dir_encoding == dir_encoding_swap)
5860 && i.mem_operands == 0
5861 && t->opcode_modifier.load)
5862 continue;
5863 /* Fall through. */
5864 case 4:
5865 case 5:
5866 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5867 if (!operand_type_match (overlap0, i.types[0])
5868 || !operand_type_match (overlap1, i.types[1])
5869 || ((check_register & 3) == 3
5870 && !operand_type_register_match (i.types[0],
5871 operand_types[0],
5872 i.types[1],
5873 operand_types[1])))
5874 {
5875 /* Check if other direction is valid ... */
5876 if (!t->opcode_modifier.d)
5877 continue;
5878
5879 check_reverse:
5880 if (!(size_match & MATCH_REVERSE))
5881 continue;
5882 /* Try reversing direction of operands. */
5883 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5884 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5885 if (!operand_type_match (overlap0, i.types[0])
5886 || !operand_type_match (overlap1, i.types[i.operands - 1])
5887 || (check_register
5888 && !operand_type_register_match (i.types[0],
5889 operand_types[i.operands - 1],
5890 i.types[i.operands - 1],
5891 operand_types[0])))
5892 {
5893 /* Does not match either direction. */
5894 continue;
5895 }
5896 /* found_reverse_match holds which of D or FloatR
5897 we've found. */
5898 if (!t->opcode_modifier.d)
5899 found_reverse_match = 0;
5900 else if (operand_types[0].bitfield.tbyte)
5901 found_reverse_match = Opcode_FloatD;
5902 else if (operand_types[0].bitfield.xmmword
5903 || operand_types[i.operands - 1].bitfield.xmmword
5904 || operand_types[0].bitfield.regmmx
5905 || operand_types[i.operands - 1].bitfield.regmmx
5906 || is_any_vex_encoding(t))
5907 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5908 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5909 else
5910 found_reverse_match = Opcode_D;
5911 if (t->opcode_modifier.floatr)
5912 found_reverse_match |= Opcode_FloatR;
5913 }
5914 else
5915 {
5916 /* Found a forward 2 operand match here. */
5917 switch (t->operands)
5918 {
5919 case 5:
5920 overlap4 = operand_type_and (i.types[4],
5921 operand_types[4]);
5922 /* Fall through. */
5923 case 4:
5924 overlap3 = operand_type_and (i.types[3],
5925 operand_types[3]);
5926 /* Fall through. */
5927 case 3:
5928 overlap2 = operand_type_and (i.types[2],
5929 operand_types[2]);
5930 break;
5931 }
5932
5933 switch (t->operands)
5934 {
5935 case 5:
5936 if (!operand_type_match (overlap4, i.types[4])
5937 || !operand_type_register_match (i.types[3],
5938 operand_types[3],
5939 i.types[4],
5940 operand_types[4]))
5941 continue;
5942 /* Fall through. */
5943 case 4:
5944 if (!operand_type_match (overlap3, i.types[3])
5945 || ((check_register & 0xa) == 0xa
5946 && !operand_type_register_match (i.types[1],
5947 operand_types[1],
5948 i.types[3],
5949 operand_types[3]))
5950 || ((check_register & 0xc) == 0xc
5951 && !operand_type_register_match (i.types[2],
5952 operand_types[2],
5953 i.types[3],
5954 operand_types[3])))
5955 continue;
5956 /* Fall through. */
5957 case 3:
5958 /* Here we make use of the fact that there are no
5959 reverse match 3 operand instructions. */
5960 if (!operand_type_match (overlap2, i.types[2])
5961 || ((check_register & 5) == 5
5962 && !operand_type_register_match (i.types[0],
5963 operand_types[0],
5964 i.types[2],
5965 operand_types[2]))
5966 || ((check_register & 6) == 6
5967 && !operand_type_register_match (i.types[1],
5968 operand_types[1],
5969 i.types[2],
5970 operand_types[2])))
5971 continue;
5972 break;
5973 }
5974 }
5975 /* Found either forward/reverse 2, 3 or 4 operand match here:
5976 slip through to break. */
5977 }
5978 if (!found_cpu_match)
5979 continue;
5980
5981 /* Check if vector and VEX operands are valid. */
5982 if (check_VecOperands (t) || VEX_check_operands (t))
5983 {
5984 specific_error = i.error;
5985 continue;
5986 }
5987
5988 /* We've found a match; break out of loop. */
5989 break;
5990 }
5991
5992 if (t == current_templates->end)
5993 {
5994 /* We found no match. */
5995 const char *err_msg;
5996 switch (specific_error ? specific_error : i.error)
5997 {
5998 default:
5999 abort ();
6000 case operand_size_mismatch:
6001 err_msg = _("operand size mismatch");
6002 break;
6003 case operand_type_mismatch:
6004 err_msg = _("operand type mismatch");
6005 break;
6006 case register_type_mismatch:
6007 err_msg = _("register type mismatch");
6008 break;
6009 case number_of_operands_mismatch:
6010 err_msg = _("number of operands mismatch");
6011 break;
6012 case invalid_instruction_suffix:
6013 err_msg = _("invalid instruction suffix");
6014 break;
6015 case bad_imm4:
6016 err_msg = _("constant doesn't fit in 4 bits");
6017 break;
6018 case unsupported_with_intel_mnemonic:
6019 err_msg = _("unsupported with Intel mnemonic");
6020 break;
6021 case unsupported_syntax:
6022 err_msg = _("unsupported syntax");
6023 break;
6024 case unsupported:
6025 as_bad (_("unsupported instruction `%s'"),
6026 current_templates->start->name);
6027 return NULL;
6028 case invalid_vsib_address:
6029 err_msg = _("invalid VSIB address");
6030 break;
6031 case invalid_vector_register_set:
6032 err_msg = _("mask, index, and destination registers must be distinct");
6033 break;
6034 case unsupported_vector_index_register:
6035 err_msg = _("unsupported vector index register");
6036 break;
6037 case unsupported_broadcast:
6038 err_msg = _("unsupported broadcast");
6039 break;
6040 case broadcast_needed:
6041 err_msg = _("broadcast is needed for operand of such type");
6042 break;
6043 case unsupported_masking:
6044 err_msg = _("unsupported masking");
6045 break;
6046 case mask_not_on_destination:
6047 err_msg = _("mask not on destination operand");
6048 break;
6049 case no_default_mask:
6050 err_msg = _("default mask isn't allowed");
6051 break;
6052 case unsupported_rc_sae:
6053 err_msg = _("unsupported static rounding/sae");
6054 break;
6055 case rc_sae_operand_not_last_imm:
6056 if (intel_syntax)
6057 err_msg = _("RC/SAE operand must precede immediate operands");
6058 else
6059 err_msg = _("RC/SAE operand must follow immediate operands");
6060 break;
6061 case invalid_register_operand:
6062 err_msg = _("invalid register operand");
6063 break;
6064 }
6065 as_bad (_("%s for `%s'"), err_msg,
6066 current_templates->start->name);
6067 return NULL;
6068 }
6069
6070 if (!quiet_warnings)
6071 {
6072 if (!intel_syntax
6073 && (i.types[0].bitfield.jumpabsolute
6074 != operand_types[0].bitfield.jumpabsolute))
6075 {
6076 as_warn (_("indirect %s without `*'"), t->name);
6077 }
6078
6079 if (t->opcode_modifier.isprefix
6080 && t->opcode_modifier.ignoresize)
6081 {
6082 /* Warn them that a data or address size prefix doesn't
6083 affect assembly of the next line of code. */
6084 as_warn (_("stand-alone `%s' prefix"), t->name);
6085 }
6086 }
6087
6088 /* Copy the template we found. */
6089 i.tm = *t;
6090
6091 if (addr_prefix_disp != -1)
6092 i.tm.operand_types[addr_prefix_disp]
6093 = operand_types[addr_prefix_disp];
6094
6095 if (found_reverse_match)
6096 {
6097 /* If we found a reverse match we must alter the opcode
6098 direction bit. found_reverse_match holds bits to change
6099 (different for int & float insns). */
6100
6101 i.tm.base_opcode ^= found_reverse_match;
6102
6103 i.tm.operand_types[0] = operand_types[i.operands - 1];
6104 i.tm.operand_types[i.operands - 1] = operand_types[0];
6105 }
6106
6107 return t;
6108 }
6109
6110 static int
6111 check_string (void)
6112 {
6113 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
6114 if (i.tm.operand_types[mem_op].bitfield.esseg)
6115 {
6116 if (i.seg[0] != NULL && i.seg[0] != &es)
6117 {
6118 as_bad (_("`%s' operand %d must use `%ses' segment"),
6119 i.tm.name,
6120 mem_op + 1,
6121 register_prefix);
6122 return 0;
6123 }
6124 /* There's only ever one segment override allowed per instruction.
6125 This instruction possibly has a legal segment override on the
6126 second operand, so copy the segment to where non-string
6127 instructions store it, allowing common code. */
6128 i.seg[0] = i.seg[1];
6129 }
6130 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6131 {
6132 if (i.seg[1] != NULL && i.seg[1] != &es)
6133 {
6134 as_bad (_("`%s' operand %d must use `%ses' segment"),
6135 i.tm.name,
6136 mem_op + 2,
6137 register_prefix);
6138 return 0;
6139 }
6140 }
6141 return 1;
6142 }
6143
6144 static int
6145 process_suffix (void)
6146 {
6147 /* If matched instruction specifies an explicit instruction mnemonic
6148 suffix, use it. */
6149 if (i.tm.opcode_modifier.size == SIZE16)
6150 i.suffix = WORD_MNEM_SUFFIX;
6151 else if (i.tm.opcode_modifier.size == SIZE32)
6152 i.suffix = LONG_MNEM_SUFFIX;
6153 else if (i.tm.opcode_modifier.size == SIZE64)
6154 i.suffix = QWORD_MNEM_SUFFIX;
6155 else if (i.reg_operands)
6156 {
6157 /* If there's no instruction mnemonic suffix we try to invent one
6158 based on register operands. */
6159 if (!i.suffix)
6160 {
6161 /* We take i.suffix from the last register operand specified,
6162 Destination register type is more significant than source
6163 register type. crc32 in SSE4.2 prefers source register
6164 type. */
6165 if (i.tm.base_opcode == 0xf20f38f0 && i.types[0].bitfield.reg)
6166 {
6167 if (i.types[0].bitfield.byte)
6168 i.suffix = BYTE_MNEM_SUFFIX;
6169 else if (i.types[0].bitfield.word)
6170 i.suffix = WORD_MNEM_SUFFIX;
6171 else if (i.types[0].bitfield.dword)
6172 i.suffix = LONG_MNEM_SUFFIX;
6173 else if (i.types[0].bitfield.qword)
6174 i.suffix = QWORD_MNEM_SUFFIX;
6175 }
6176
6177 if (!i.suffix)
6178 {
6179 int op;
6180
6181 if (i.tm.base_opcode == 0xf20f38f0)
6182 {
6183 /* We have to know the operand size for crc32. */
6184 as_bad (_("ambiguous memory operand size for `%s`"),
6185 i.tm.name);
6186 return 0;
6187 }
6188
6189 for (op = i.operands; --op >= 0;)
6190 if (!i.tm.operand_types[op].bitfield.inoutportreg
6191 && !i.tm.operand_types[op].bitfield.shiftcount)
6192 {
6193 if (!i.types[op].bitfield.reg)
6194 continue;
6195 if (i.types[op].bitfield.byte)
6196 i.suffix = BYTE_MNEM_SUFFIX;
6197 else if (i.types[op].bitfield.word)
6198 i.suffix = WORD_MNEM_SUFFIX;
6199 else if (i.types[op].bitfield.dword)
6200 i.suffix = LONG_MNEM_SUFFIX;
6201 else if (i.types[op].bitfield.qword)
6202 i.suffix = QWORD_MNEM_SUFFIX;
6203 else
6204 continue;
6205 break;
6206 }
6207 }
6208 }
6209 else if (i.suffix == BYTE_MNEM_SUFFIX)
6210 {
6211 if (intel_syntax
6212 && i.tm.opcode_modifier.ignoresize
6213 && i.tm.opcode_modifier.no_bsuf)
6214 i.suffix = 0;
6215 else if (!check_byte_reg ())
6216 return 0;
6217 }
6218 else if (i.suffix == LONG_MNEM_SUFFIX)
6219 {
6220 if (intel_syntax
6221 && i.tm.opcode_modifier.ignoresize
6222 && i.tm.opcode_modifier.no_lsuf
6223 && !i.tm.opcode_modifier.todword
6224 && !i.tm.opcode_modifier.toqword)
6225 i.suffix = 0;
6226 else if (!check_long_reg ())
6227 return 0;
6228 }
6229 else if (i.suffix == QWORD_MNEM_SUFFIX)
6230 {
6231 if (intel_syntax
6232 && i.tm.opcode_modifier.ignoresize
6233 && i.tm.opcode_modifier.no_qsuf
6234 && !i.tm.opcode_modifier.todword
6235 && !i.tm.opcode_modifier.toqword)
6236 i.suffix = 0;
6237 else if (!check_qword_reg ())
6238 return 0;
6239 }
6240 else if (i.suffix == WORD_MNEM_SUFFIX)
6241 {
6242 if (intel_syntax
6243 && i.tm.opcode_modifier.ignoresize
6244 && i.tm.opcode_modifier.no_wsuf)
6245 i.suffix = 0;
6246 else if (!check_word_reg ())
6247 return 0;
6248 }
6249 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6250 /* Do nothing if the instruction is going to ignore the prefix. */
6251 ;
6252 else
6253 abort ();
6254 }
6255 else if (i.tm.opcode_modifier.defaultsize
6256 && !i.suffix
6257 /* exclude fldenv/frstor/fsave/fstenv */
6258 && i.tm.opcode_modifier.no_ssuf)
6259 {
6260 if (stackop_size == LONG_MNEM_SUFFIX
6261 && i.tm.base_opcode == 0xcf)
6262 {
6263 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6264 .code16gcc directive to support 16-bit mode with
6265 32-bit address. For IRET without a suffix, generate
6266 16-bit IRET (opcode 0xcf) to return from an interrupt
6267 handler. */
6268 i.suffix = WORD_MNEM_SUFFIX;
6269 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6270 }
6271 else
6272 i.suffix = stackop_size;
6273 }
6274 else if (intel_syntax
6275 && !i.suffix
6276 && (i.tm.operand_types[0].bitfield.jumpabsolute
6277 || i.tm.opcode_modifier.jumpbyte
6278 || i.tm.opcode_modifier.jumpintersegment
6279 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6280 && i.tm.extension_opcode <= 3)))
6281 {
6282 switch (flag_code)
6283 {
6284 case CODE_64BIT:
6285 if (!i.tm.opcode_modifier.no_qsuf)
6286 {
6287 i.suffix = QWORD_MNEM_SUFFIX;
6288 break;
6289 }
6290 /* Fall through. */
6291 case CODE_32BIT:
6292 if (!i.tm.opcode_modifier.no_lsuf)
6293 i.suffix = LONG_MNEM_SUFFIX;
6294 break;
6295 case CODE_16BIT:
6296 if (!i.tm.opcode_modifier.no_wsuf)
6297 i.suffix = WORD_MNEM_SUFFIX;
6298 break;
6299 }
6300 }
6301
6302 if (!i.suffix)
6303 {
6304 if (!intel_syntax)
6305 {
6306 if (i.tm.opcode_modifier.w)
6307 {
6308 as_bad (_("no instruction mnemonic suffix given and "
6309 "no register operands; can't size instruction"));
6310 return 0;
6311 }
6312 }
6313 else
6314 {
6315 unsigned int suffixes;
6316
6317 suffixes = !i.tm.opcode_modifier.no_bsuf;
6318 if (!i.tm.opcode_modifier.no_wsuf)
6319 suffixes |= 1 << 1;
6320 if (!i.tm.opcode_modifier.no_lsuf)
6321 suffixes |= 1 << 2;
6322 if (!i.tm.opcode_modifier.no_ldsuf)
6323 suffixes |= 1 << 3;
6324 if (!i.tm.opcode_modifier.no_ssuf)
6325 suffixes |= 1 << 4;
6326 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6327 suffixes |= 1 << 5;
6328
6329 /* There are more than suffix matches. */
6330 if (i.tm.opcode_modifier.w
6331 || ((suffixes & (suffixes - 1))
6332 && !i.tm.opcode_modifier.defaultsize
6333 && !i.tm.opcode_modifier.ignoresize))
6334 {
6335 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6336 return 0;
6337 }
6338 }
6339 }
6340
6341 /* Change the opcode based on the operand size given by i.suffix. */
6342 switch (i.suffix)
6343 {
6344 /* Size floating point instruction. */
6345 case LONG_MNEM_SUFFIX:
6346 if (i.tm.opcode_modifier.floatmf)
6347 {
6348 i.tm.base_opcode ^= 4;
6349 break;
6350 }
6351 /* fall through */
6352 case WORD_MNEM_SUFFIX:
6353 case QWORD_MNEM_SUFFIX:
6354 /* It's not a byte, select word/dword operation. */
6355 if (i.tm.opcode_modifier.w)
6356 {
6357 if (i.tm.opcode_modifier.shortform)
6358 i.tm.base_opcode |= 8;
6359 else
6360 i.tm.base_opcode |= 1;
6361 }
6362 /* fall through */
6363 case SHORT_MNEM_SUFFIX:
6364 /* Now select between word & dword operations via the operand
6365 size prefix, except for instructions that will ignore this
6366 prefix anyway. */
6367 if (i.reg_operands > 0
6368 && i.types[0].bitfield.reg
6369 && i.tm.opcode_modifier.addrprefixopreg
6370 && (i.tm.opcode_modifier.immext
6371 || i.operands == 1))
6372 {
6373 /* The address size override prefix changes the size of the
6374 first operand. */
6375 if ((flag_code == CODE_32BIT
6376 && i.op[0].regs->reg_type.bitfield.word)
6377 || (flag_code != CODE_32BIT
6378 && i.op[0].regs->reg_type.bitfield.dword))
6379 if (!add_prefix (ADDR_PREFIX_OPCODE))
6380 return 0;
6381 }
6382 else if (i.suffix != QWORD_MNEM_SUFFIX
6383 && !i.tm.opcode_modifier.ignoresize
6384 && !i.tm.opcode_modifier.floatmf
6385 && !i.tm.opcode_modifier.vex
6386 && !i.tm.opcode_modifier.vexopcode
6387 && !is_evex_encoding (&i.tm)
6388 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6389 || (flag_code == CODE_64BIT
6390 && i.tm.opcode_modifier.jumpbyte)))
6391 {
6392 unsigned int prefix = DATA_PREFIX_OPCODE;
6393
6394 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6395 prefix = ADDR_PREFIX_OPCODE;
6396
6397 if (!add_prefix (prefix))
6398 return 0;
6399 }
6400
6401 /* Set mode64 for an operand. */
6402 if (i.suffix == QWORD_MNEM_SUFFIX
6403 && flag_code == CODE_64BIT
6404 && !i.tm.opcode_modifier.norex64
6405 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6406 need rex64. */
6407 && ! (i.operands == 2
6408 && i.tm.base_opcode == 0x90
6409 && i.tm.extension_opcode == None
6410 && operand_type_equal (&i.types [0], &acc64)
6411 && operand_type_equal (&i.types [1], &acc64)))
6412 i.rex |= REX_W;
6413
6414 break;
6415 }
6416
6417 if (i.reg_operands != 0
6418 && i.operands > 1
6419 && i.tm.opcode_modifier.addrprefixopreg
6420 && !i.tm.opcode_modifier.immext)
6421 {
6422 /* Check invalid register operand when the address size override
6423 prefix changes the size of register operands. */
6424 unsigned int op;
6425 enum { need_word, need_dword, need_qword } need;
6426
6427 if (flag_code == CODE_32BIT)
6428 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6429 else
6430 {
6431 if (i.prefix[ADDR_PREFIX])
6432 need = need_dword;
6433 else
6434 need = flag_code == CODE_64BIT ? need_qword : need_word;
6435 }
6436
6437 for (op = 0; op < i.operands; op++)
6438 if (i.types[op].bitfield.reg
6439 && ((need == need_word
6440 && !i.op[op].regs->reg_type.bitfield.word)
6441 || (need == need_dword
6442 && !i.op[op].regs->reg_type.bitfield.dword)
6443 || (need == need_qword
6444 && !i.op[op].regs->reg_type.bitfield.qword)))
6445 {
6446 as_bad (_("invalid register operand size for `%s'"),
6447 i.tm.name);
6448 return 0;
6449 }
6450 }
6451
6452 return 1;
6453 }
6454
6455 static int
6456 check_byte_reg (void)
6457 {
6458 int op;
6459
6460 for (op = i.operands; --op >= 0;)
6461 {
6462 /* Skip non-register operands. */
6463 if (!i.types[op].bitfield.reg)
6464 continue;
6465
6466 /* If this is an eight bit register, it's OK. If it's the 16 or
6467 32 bit version of an eight bit register, we will just use the
6468 low portion, and that's OK too. */
6469 if (i.types[op].bitfield.byte)
6470 continue;
6471
6472 /* I/O port address operands are OK too. */
6473 if (i.tm.operand_types[op].bitfield.inoutportreg)
6474 continue;
6475
6476 /* crc32 doesn't generate this warning. */
6477 if (i.tm.base_opcode == 0xf20f38f0)
6478 continue;
6479
6480 if ((i.types[op].bitfield.word
6481 || i.types[op].bitfield.dword
6482 || i.types[op].bitfield.qword)
6483 && i.op[op].regs->reg_num < 4
6484 /* Prohibit these changes in 64bit mode, since the lowering
6485 would be more complicated. */
6486 && flag_code != CODE_64BIT)
6487 {
6488 #if REGISTER_WARNINGS
6489 if (!quiet_warnings)
6490 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6491 register_prefix,
6492 (i.op[op].regs + (i.types[op].bitfield.word
6493 ? REGNAM_AL - REGNAM_AX
6494 : REGNAM_AL - REGNAM_EAX))->reg_name,
6495 register_prefix,
6496 i.op[op].regs->reg_name,
6497 i.suffix);
6498 #endif
6499 continue;
6500 }
6501 /* Any other register is bad. */
6502 if (i.types[op].bitfield.reg
6503 || i.types[op].bitfield.regmmx
6504 || i.types[op].bitfield.regsimd
6505 || i.types[op].bitfield.sreg2
6506 || i.types[op].bitfield.sreg3
6507 || i.types[op].bitfield.control
6508 || i.types[op].bitfield.debug
6509 || i.types[op].bitfield.test)
6510 {
6511 as_bad (_("`%s%s' not allowed with `%s%c'"),
6512 register_prefix,
6513 i.op[op].regs->reg_name,
6514 i.tm.name,
6515 i.suffix);
6516 return 0;
6517 }
6518 }
6519 return 1;
6520 }
6521
6522 static int
6523 check_long_reg (void)
6524 {
6525 int op;
6526
6527 for (op = i.operands; --op >= 0;)
6528 /* Skip non-register operands. */
6529 if (!i.types[op].bitfield.reg)
6530 continue;
6531 /* Reject eight bit registers, except where the template requires
6532 them. (eg. movzb) */
6533 else if (i.types[op].bitfield.byte
6534 && (i.tm.operand_types[op].bitfield.reg
6535 || i.tm.operand_types[op].bitfield.acc)
6536 && (i.tm.operand_types[op].bitfield.word
6537 || i.tm.operand_types[op].bitfield.dword))
6538 {
6539 as_bad (_("`%s%s' not allowed with `%s%c'"),
6540 register_prefix,
6541 i.op[op].regs->reg_name,
6542 i.tm.name,
6543 i.suffix);
6544 return 0;
6545 }
6546 /* Warn if the e prefix on a general reg is missing. */
6547 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6548 && i.types[op].bitfield.word
6549 && (i.tm.operand_types[op].bitfield.reg
6550 || i.tm.operand_types[op].bitfield.acc)
6551 && i.tm.operand_types[op].bitfield.dword)
6552 {
6553 /* Prohibit these changes in the 64bit mode, since the
6554 lowering is more complicated. */
6555 if (flag_code == CODE_64BIT)
6556 {
6557 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6558 register_prefix, i.op[op].regs->reg_name,
6559 i.suffix);
6560 return 0;
6561 }
6562 #if REGISTER_WARNINGS
6563 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6564 register_prefix,
6565 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6566 register_prefix, i.op[op].regs->reg_name, i.suffix);
6567 #endif
6568 }
6569 /* Warn if the r prefix on a general reg is present. */
6570 else if (i.types[op].bitfield.qword
6571 && (i.tm.operand_types[op].bitfield.reg
6572 || i.tm.operand_types[op].bitfield.acc)
6573 && i.tm.operand_types[op].bitfield.dword)
6574 {
6575 if (intel_syntax
6576 && i.tm.opcode_modifier.toqword
6577 && !i.types[0].bitfield.regsimd)
6578 {
6579 /* Convert to QWORD. We want REX byte. */
6580 i.suffix = QWORD_MNEM_SUFFIX;
6581 }
6582 else
6583 {
6584 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6585 register_prefix, i.op[op].regs->reg_name,
6586 i.suffix);
6587 return 0;
6588 }
6589 }
6590 return 1;
6591 }
6592
6593 static int
6594 check_qword_reg (void)
6595 {
6596 int op;
6597
6598 for (op = i.operands; --op >= 0; )
6599 /* Skip non-register operands. */
6600 if (!i.types[op].bitfield.reg)
6601 continue;
6602 /* Reject eight bit registers, except where the template requires
6603 them. (eg. movzb) */
6604 else if (i.types[op].bitfield.byte
6605 && (i.tm.operand_types[op].bitfield.reg
6606 || i.tm.operand_types[op].bitfield.acc)
6607 && (i.tm.operand_types[op].bitfield.word
6608 || i.tm.operand_types[op].bitfield.dword))
6609 {
6610 as_bad (_("`%s%s' not allowed with `%s%c'"),
6611 register_prefix,
6612 i.op[op].regs->reg_name,
6613 i.tm.name,
6614 i.suffix);
6615 return 0;
6616 }
6617 /* Warn if the r prefix on a general reg is missing. */
6618 else if ((i.types[op].bitfield.word
6619 || i.types[op].bitfield.dword)
6620 && (i.tm.operand_types[op].bitfield.reg
6621 || i.tm.operand_types[op].bitfield.acc)
6622 && i.tm.operand_types[op].bitfield.qword)
6623 {
6624 /* Prohibit these changes in the 64bit mode, since the
6625 lowering is more complicated. */
6626 if (intel_syntax
6627 && i.tm.opcode_modifier.todword
6628 && !i.types[0].bitfield.regsimd)
6629 {
6630 /* Convert to DWORD. We don't want REX byte. */
6631 i.suffix = LONG_MNEM_SUFFIX;
6632 }
6633 else
6634 {
6635 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6636 register_prefix, i.op[op].regs->reg_name,
6637 i.suffix);
6638 return 0;
6639 }
6640 }
6641 return 1;
6642 }
6643
6644 static int
6645 check_word_reg (void)
6646 {
6647 int op;
6648 for (op = i.operands; --op >= 0;)
6649 /* Skip non-register operands. */
6650 if (!i.types[op].bitfield.reg)
6651 continue;
6652 /* Reject eight bit registers, except where the template requires
6653 them. (eg. movzb) */
6654 else if (i.types[op].bitfield.byte
6655 && (i.tm.operand_types[op].bitfield.reg
6656 || i.tm.operand_types[op].bitfield.acc)
6657 && (i.tm.operand_types[op].bitfield.word
6658 || i.tm.operand_types[op].bitfield.dword))
6659 {
6660 as_bad (_("`%s%s' not allowed with `%s%c'"),
6661 register_prefix,
6662 i.op[op].regs->reg_name,
6663 i.tm.name,
6664 i.suffix);
6665 return 0;
6666 }
6667 /* Warn if the e or r prefix on a general reg is present. */
6668 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6669 && (i.types[op].bitfield.dword
6670 || i.types[op].bitfield.qword)
6671 && (i.tm.operand_types[op].bitfield.reg
6672 || i.tm.operand_types[op].bitfield.acc)
6673 && i.tm.operand_types[op].bitfield.word)
6674 {
6675 /* Prohibit these changes in the 64bit mode, since the
6676 lowering is more complicated. */
6677 if (flag_code == CODE_64BIT)
6678 {
6679 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6680 register_prefix, i.op[op].regs->reg_name,
6681 i.suffix);
6682 return 0;
6683 }
6684 #if REGISTER_WARNINGS
6685 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6686 register_prefix,
6687 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6688 register_prefix, i.op[op].regs->reg_name, i.suffix);
6689 #endif
6690 }
6691 return 1;
6692 }
6693
6694 static int
6695 update_imm (unsigned int j)
6696 {
6697 i386_operand_type overlap = i.types[j];
6698 if ((overlap.bitfield.imm8
6699 || overlap.bitfield.imm8s
6700 || overlap.bitfield.imm16
6701 || overlap.bitfield.imm32
6702 || overlap.bitfield.imm32s
6703 || overlap.bitfield.imm64)
6704 && !operand_type_equal (&overlap, &imm8)
6705 && !operand_type_equal (&overlap, &imm8s)
6706 && !operand_type_equal (&overlap, &imm16)
6707 && !operand_type_equal (&overlap, &imm32)
6708 && !operand_type_equal (&overlap, &imm32s)
6709 && !operand_type_equal (&overlap, &imm64))
6710 {
6711 if (i.suffix)
6712 {
6713 i386_operand_type temp;
6714
6715 operand_type_set (&temp, 0);
6716 if (i.suffix == BYTE_MNEM_SUFFIX)
6717 {
6718 temp.bitfield.imm8 = overlap.bitfield.imm8;
6719 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6720 }
6721 else if (i.suffix == WORD_MNEM_SUFFIX)
6722 temp.bitfield.imm16 = overlap.bitfield.imm16;
6723 else if (i.suffix == QWORD_MNEM_SUFFIX)
6724 {
6725 temp.bitfield.imm64 = overlap.bitfield.imm64;
6726 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6727 }
6728 else
6729 temp.bitfield.imm32 = overlap.bitfield.imm32;
6730 overlap = temp;
6731 }
6732 else if (operand_type_equal (&overlap, &imm16_32_32s)
6733 || operand_type_equal (&overlap, &imm16_32)
6734 || operand_type_equal (&overlap, &imm16_32s))
6735 {
6736 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6737 overlap = imm16;
6738 else
6739 overlap = imm32s;
6740 }
6741 if (!operand_type_equal (&overlap, &imm8)
6742 && !operand_type_equal (&overlap, &imm8s)
6743 && !operand_type_equal (&overlap, &imm16)
6744 && !operand_type_equal (&overlap, &imm32)
6745 && !operand_type_equal (&overlap, &imm32s)
6746 && !operand_type_equal (&overlap, &imm64))
6747 {
6748 as_bad (_("no instruction mnemonic suffix given; "
6749 "can't determine immediate size"));
6750 return 0;
6751 }
6752 }
6753 i.types[j] = overlap;
6754
6755 return 1;
6756 }
6757
6758 static int
6759 finalize_imm (void)
6760 {
6761 unsigned int j, n;
6762
6763 /* Update the first 2 immediate operands. */
6764 n = i.operands > 2 ? 2 : i.operands;
6765 if (n)
6766 {
6767 for (j = 0; j < n; j++)
6768 if (update_imm (j) == 0)
6769 return 0;
6770
6771 /* The 3rd operand can't be immediate operand. */
6772 gas_assert (operand_type_check (i.types[2], imm) == 0);
6773 }
6774
6775 return 1;
6776 }
6777
6778 static int
6779 process_operands (void)
6780 {
6781 /* Default segment register this instruction will use for memory
6782 accesses. 0 means unknown. This is only for optimizing out
6783 unnecessary segment overrides. */
6784 const seg_entry *default_seg = 0;
6785
6786 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6787 {
6788 unsigned int dupl = i.operands;
6789 unsigned int dest = dupl - 1;
6790 unsigned int j;
6791
6792 /* The destination must be an xmm register. */
6793 gas_assert (i.reg_operands
6794 && MAX_OPERANDS > dupl
6795 && operand_type_equal (&i.types[dest], &regxmm));
6796
6797 if (i.tm.operand_types[0].bitfield.acc
6798 && i.tm.operand_types[0].bitfield.xmmword)
6799 {
6800 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6801 {
6802 /* Keep xmm0 for instructions with VEX prefix and 3
6803 sources. */
6804 i.tm.operand_types[0].bitfield.acc = 0;
6805 i.tm.operand_types[0].bitfield.regsimd = 1;
6806 goto duplicate;
6807 }
6808 else
6809 {
6810 /* We remove the first xmm0 and keep the number of
6811 operands unchanged, which in fact duplicates the
6812 destination. */
6813 for (j = 1; j < i.operands; j++)
6814 {
6815 i.op[j - 1] = i.op[j];
6816 i.types[j - 1] = i.types[j];
6817 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6818 }
6819 }
6820 }
6821 else if (i.tm.opcode_modifier.implicit1stxmm0)
6822 {
6823 gas_assert ((MAX_OPERANDS - 1) > dupl
6824 && (i.tm.opcode_modifier.vexsources
6825 == VEX3SOURCES));
6826
6827 /* Add the implicit xmm0 for instructions with VEX prefix
6828 and 3 sources. */
6829 for (j = i.operands; j > 0; j--)
6830 {
6831 i.op[j] = i.op[j - 1];
6832 i.types[j] = i.types[j - 1];
6833 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6834 }
6835 i.op[0].regs
6836 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6837 i.types[0] = regxmm;
6838 i.tm.operand_types[0] = regxmm;
6839
6840 i.operands += 2;
6841 i.reg_operands += 2;
6842 i.tm.operands += 2;
6843
6844 dupl++;
6845 dest++;
6846 i.op[dupl] = i.op[dest];
6847 i.types[dupl] = i.types[dest];
6848 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6849 }
6850 else
6851 {
6852 duplicate:
6853 i.operands++;
6854 i.reg_operands++;
6855 i.tm.operands++;
6856
6857 i.op[dupl] = i.op[dest];
6858 i.types[dupl] = i.types[dest];
6859 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6860 }
6861
6862 if (i.tm.opcode_modifier.immext)
6863 process_immext ();
6864 }
6865 else if (i.tm.operand_types[0].bitfield.acc
6866 && i.tm.operand_types[0].bitfield.xmmword)
6867 {
6868 unsigned int j;
6869
6870 for (j = 1; j < i.operands; j++)
6871 {
6872 i.op[j - 1] = i.op[j];
6873 i.types[j - 1] = i.types[j];
6874
6875 /* We need to adjust fields in i.tm since they are used by
6876 build_modrm_byte. */
6877 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6878 }
6879
6880 i.operands--;
6881 i.reg_operands--;
6882 i.tm.operands--;
6883 }
6884 else if (i.tm.opcode_modifier.implicitquadgroup)
6885 {
6886 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6887
6888 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6889 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6890 regnum = register_number (i.op[1].regs);
6891 first_reg_in_group = regnum & ~3;
6892 last_reg_in_group = first_reg_in_group + 3;
6893 if (regnum != first_reg_in_group)
6894 as_warn (_("source register `%s%s' implicitly denotes"
6895 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6896 register_prefix, i.op[1].regs->reg_name,
6897 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6898 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6899 i.tm.name);
6900 }
6901 else if (i.tm.opcode_modifier.regkludge)
6902 {
6903 /* The imul $imm, %reg instruction is converted into
6904 imul $imm, %reg, %reg, and the clr %reg instruction
6905 is converted into xor %reg, %reg. */
6906
6907 unsigned int first_reg_op;
6908
6909 if (operand_type_check (i.types[0], reg))
6910 first_reg_op = 0;
6911 else
6912 first_reg_op = 1;
6913 /* Pretend we saw the extra register operand. */
6914 gas_assert (i.reg_operands == 1
6915 && i.op[first_reg_op + 1].regs == 0);
6916 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6917 i.types[first_reg_op + 1] = i.types[first_reg_op];
6918 i.operands++;
6919 i.reg_operands++;
6920 }
6921
6922 if (i.tm.opcode_modifier.shortform)
6923 {
6924 if (i.types[0].bitfield.sreg2
6925 || i.types[0].bitfield.sreg3)
6926 {
6927 if (i.tm.base_opcode == POP_SEG_SHORT
6928 && i.op[0].regs->reg_num == 1)
6929 {
6930 as_bad (_("you can't `pop %scs'"), register_prefix);
6931 return 0;
6932 }
6933 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6934 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6935 i.rex |= REX_B;
6936 }
6937 else
6938 {
6939 /* The register or float register operand is in operand
6940 0 or 1. */
6941 unsigned int op;
6942
6943 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6944 || operand_type_check (i.types[0], reg))
6945 op = 0;
6946 else
6947 op = 1;
6948 /* Register goes in low 3 bits of opcode. */
6949 i.tm.base_opcode |= i.op[op].regs->reg_num;
6950 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6951 i.rex |= REX_B;
6952 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6953 {
6954 /* Warn about some common errors, but press on regardless.
6955 The first case can be generated by gcc (<= 2.8.1). */
6956 if (i.operands == 2)
6957 {
6958 /* Reversed arguments on faddp, fsubp, etc. */
6959 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6960 register_prefix, i.op[!intel_syntax].regs->reg_name,
6961 register_prefix, i.op[intel_syntax].regs->reg_name);
6962 }
6963 else
6964 {
6965 /* Extraneous `l' suffix on fp insn. */
6966 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6967 register_prefix, i.op[0].regs->reg_name);
6968 }
6969 }
6970 }
6971 }
6972 else if (i.tm.opcode_modifier.modrm)
6973 {
6974 /* The opcode is completed (modulo i.tm.extension_opcode which
6975 must be put into the modrm byte). Now, we make the modrm and
6976 index base bytes based on all the info we've collected. */
6977
6978 default_seg = build_modrm_byte ();
6979 }
6980 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6981 {
6982 default_seg = &ds;
6983 }
6984 else if (i.tm.opcode_modifier.isstring)
6985 {
6986 /* For the string instructions that allow a segment override
6987 on one of their operands, the default segment is ds. */
6988 default_seg = &ds;
6989 }
6990
6991 if (i.tm.base_opcode == 0x8d /* lea */
6992 && i.seg[0]
6993 && !quiet_warnings)
6994 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6995
6996 /* If a segment was explicitly specified, and the specified segment
6997 is not the default, use an opcode prefix to select it. If we
6998 never figured out what the default segment is, then default_seg
6999 will be zero at this point, and the specified segment prefix will
7000 always be used. */
7001 if ((i.seg[0]) && (i.seg[0] != default_seg))
7002 {
7003 if (!add_prefix (i.seg[0]->seg_prefix))
7004 return 0;
7005 }
7006 return 1;
7007 }
7008
7009 static const seg_entry *
7010 build_modrm_byte (void)
7011 {
7012 const seg_entry *default_seg = 0;
7013 unsigned int source, dest;
7014 int vex_3_sources;
7015
7016 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7017 if (vex_3_sources)
7018 {
7019 unsigned int nds, reg_slot;
7020 expressionS *exp;
7021
7022 dest = i.operands - 1;
7023 nds = dest - 1;
7024
7025 /* There are 2 kinds of instructions:
7026 1. 5 operands: 4 register operands or 3 register operands
7027 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
7028 VexW0 or VexW1. The destination must be either XMM, YMM or
7029 ZMM register.
7030 2. 4 operands: 4 register operands or 3 register operands
7031 plus 1 memory operand, with VexXDS. */
7032 gas_assert ((i.reg_operands == 4
7033 || (i.reg_operands == 3 && i.mem_operands == 1))
7034 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7035 && i.tm.opcode_modifier.vexw
7036 && i.tm.operand_types[dest].bitfield.regsimd);
7037
7038 /* If VexW1 is set, the first non-immediate operand is the source and
7039 the second non-immediate one is encoded in the immediate operand. */
7040 if (i.tm.opcode_modifier.vexw == VEXW1)
7041 {
7042 source = i.imm_operands;
7043 reg_slot = i.imm_operands + 1;
7044 }
7045 else
7046 {
7047 source = i.imm_operands + 1;
7048 reg_slot = i.imm_operands;
7049 }
7050
7051 if (i.imm_operands == 0)
7052 {
7053 /* When there is no immediate operand, generate an 8bit
7054 immediate operand to encode the first operand. */
7055 exp = &im_expressions[i.imm_operands++];
7056 i.op[i.operands].imms = exp;
7057 i.types[i.operands] = imm8;
7058 i.operands++;
7059
7060 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7061 exp->X_op = O_constant;
7062 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7063 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7064 }
7065 else
7066 {
7067 unsigned int imm_slot;
7068
7069 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
7070
7071 if (i.tm.opcode_modifier.immext)
7072 {
7073 /* When ImmExt is set, the immediate byte is the last
7074 operand. */
7075 imm_slot = i.operands - 1;
7076 source--;
7077 reg_slot--;
7078 }
7079 else
7080 {
7081 imm_slot = 0;
7082
7083 /* Turn on Imm8 so that output_imm will generate it. */
7084 i.types[imm_slot].bitfield.imm8 = 1;
7085 }
7086
7087 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
7088 i.op[imm_slot].imms->X_add_number
7089 |= register_number (i.op[reg_slot].regs) << 4;
7090 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7091 }
7092
7093 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
7094 i.vex.register_specifier = i.op[nds].regs;
7095 }
7096 else
7097 source = dest = 0;
7098
7099 /* i.reg_operands MUST be the number of real register operands;
7100 implicit registers do not count. If there are 3 register
7101 operands, it must be a instruction with VexNDS. For a
7102 instruction with VexNDD, the destination register is encoded
7103 in VEX prefix. If there are 4 register operands, it must be
7104 a instruction with VEX prefix and 3 sources. */
7105 if (i.mem_operands == 0
7106 && ((i.reg_operands == 2
7107 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7108 || (i.reg_operands == 3
7109 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7110 || (i.reg_operands == 4 && vex_3_sources)))
7111 {
7112 switch (i.operands)
7113 {
7114 case 2:
7115 source = 0;
7116 break;
7117 case 3:
7118 /* When there are 3 operands, one of them may be immediate,
7119 which may be the first or the last operand. Otherwise,
7120 the first operand must be shift count register (cl) or it
7121 is an instruction with VexNDS. */
7122 gas_assert (i.imm_operands == 1
7123 || (i.imm_operands == 0
7124 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7125 || i.types[0].bitfield.shiftcount)));
7126 if (operand_type_check (i.types[0], imm)
7127 || i.types[0].bitfield.shiftcount)
7128 source = 1;
7129 else
7130 source = 0;
7131 break;
7132 case 4:
7133 /* When there are 4 operands, the first two must be 8bit
7134 immediate operands. The source operand will be the 3rd
7135 one.
7136
7137 For instructions with VexNDS, if the first operand
7138 an imm8, the source operand is the 2nd one. If the last
7139 operand is imm8, the source operand is the first one. */
7140 gas_assert ((i.imm_operands == 2
7141 && i.types[0].bitfield.imm8
7142 && i.types[1].bitfield.imm8)
7143 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7144 && i.imm_operands == 1
7145 && (i.types[0].bitfield.imm8
7146 || i.types[i.operands - 1].bitfield.imm8
7147 || i.rounding)));
7148 if (i.imm_operands == 2)
7149 source = 2;
7150 else
7151 {
7152 if (i.types[0].bitfield.imm8)
7153 source = 1;
7154 else
7155 source = 0;
7156 }
7157 break;
7158 case 5:
7159 if (is_evex_encoding (&i.tm))
7160 {
7161 /* For EVEX instructions, when there are 5 operands, the
7162 first one must be immediate operand. If the second one
7163 is immediate operand, the source operand is the 3th
7164 one. If the last one is immediate operand, the source
7165 operand is the 2nd one. */
7166 gas_assert (i.imm_operands == 2
7167 && i.tm.opcode_modifier.sae
7168 && operand_type_check (i.types[0], imm));
7169 if (operand_type_check (i.types[1], imm))
7170 source = 2;
7171 else if (operand_type_check (i.types[4], imm))
7172 source = 1;
7173 else
7174 abort ();
7175 }
7176 break;
7177 default:
7178 abort ();
7179 }
7180
7181 if (!vex_3_sources)
7182 {
7183 dest = source + 1;
7184
7185 /* RC/SAE operand could be between DEST and SRC. That happens
7186 when one operand is GPR and the other one is XMM/YMM/ZMM
7187 register. */
7188 if (i.rounding && i.rounding->operand == (int) dest)
7189 dest++;
7190
7191 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7192 {
7193 /* For instructions with VexNDS, the register-only source
7194 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7195 register. It is encoded in VEX prefix. We need to
7196 clear RegMem bit before calling operand_type_equal. */
7197
7198 i386_operand_type op;
7199 unsigned int vvvv;
7200
7201 /* Check register-only source operand when two source
7202 operands are swapped. */
7203 if (!i.tm.operand_types[source].bitfield.baseindex
7204 && i.tm.operand_types[dest].bitfield.baseindex)
7205 {
7206 vvvv = source;
7207 source = dest;
7208 }
7209 else
7210 vvvv = dest;
7211
7212 op = i.tm.operand_types[vvvv];
7213 op.bitfield.regmem = 0;
7214 if ((dest + 1) >= i.operands
7215 || ((!op.bitfield.reg
7216 || (!op.bitfield.dword && !op.bitfield.qword))
7217 && !op.bitfield.regsimd
7218 && !operand_type_equal (&op, &regmask)))
7219 abort ();
7220 i.vex.register_specifier = i.op[vvvv].regs;
7221 dest++;
7222 }
7223 }
7224
7225 i.rm.mode = 3;
7226 /* One of the register operands will be encoded in the i.tm.reg
7227 field, the other in the combined i.tm.mode and i.tm.regmem
7228 fields. If no form of this instruction supports a memory
7229 destination operand, then we assume the source operand may
7230 sometimes be a memory operand and so we need to store the
7231 destination in the i.rm.reg field. */
7232 if (!i.tm.operand_types[dest].bitfield.regmem
7233 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7234 {
7235 i.rm.reg = i.op[dest].regs->reg_num;
7236 i.rm.regmem = i.op[source].regs->reg_num;
7237 if (i.op[dest].regs->reg_type.bitfield.regmmx
7238 || i.op[source].regs->reg_type.bitfield.regmmx)
7239 i.has_regmmx = TRUE;
7240 else if (i.op[dest].regs->reg_type.bitfield.regsimd
7241 || i.op[source].regs->reg_type.bitfield.regsimd)
7242 {
7243 if (i.types[dest].bitfield.zmmword
7244 || i.types[source].bitfield.zmmword)
7245 i.has_regzmm = TRUE;
7246 else if (i.types[dest].bitfield.ymmword
7247 || i.types[source].bitfield.ymmword)
7248 i.has_regymm = TRUE;
7249 else
7250 i.has_regxmm = TRUE;
7251 }
7252 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7253 i.rex |= REX_R;
7254 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7255 i.vrex |= REX_R;
7256 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7257 i.rex |= REX_B;
7258 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7259 i.vrex |= REX_B;
7260 }
7261 else
7262 {
7263 i.rm.reg = i.op[source].regs->reg_num;
7264 i.rm.regmem = i.op[dest].regs->reg_num;
7265 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7266 i.rex |= REX_B;
7267 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7268 i.vrex |= REX_B;
7269 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7270 i.rex |= REX_R;
7271 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7272 i.vrex |= REX_R;
7273 }
7274 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7275 {
7276 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7277 abort ();
7278 i.rex &= ~REX_R;
7279 add_prefix (LOCK_PREFIX_OPCODE);
7280 }
7281 }
7282 else
7283 { /* If it's not 2 reg operands... */
7284 unsigned int mem;
7285
7286 if (i.mem_operands)
7287 {
7288 unsigned int fake_zero_displacement = 0;
7289 unsigned int op;
7290
7291 for (op = 0; op < i.operands; op++)
7292 if (operand_type_check (i.types[op], anymem))
7293 break;
7294 gas_assert (op < i.operands);
7295
7296 if (i.tm.opcode_modifier.vecsib)
7297 {
7298 if (i.index_reg->reg_num == RegIZ)
7299 abort ();
7300
7301 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7302 if (!i.base_reg)
7303 {
7304 i.sib.base = NO_BASE_REGISTER;
7305 i.sib.scale = i.log2_scale_factor;
7306 i.types[op].bitfield.disp8 = 0;
7307 i.types[op].bitfield.disp16 = 0;
7308 i.types[op].bitfield.disp64 = 0;
7309 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7310 {
7311 /* Must be 32 bit */
7312 i.types[op].bitfield.disp32 = 1;
7313 i.types[op].bitfield.disp32s = 0;
7314 }
7315 else
7316 {
7317 i.types[op].bitfield.disp32 = 0;
7318 i.types[op].bitfield.disp32s = 1;
7319 }
7320 }
7321 i.sib.index = i.index_reg->reg_num;
7322 if ((i.index_reg->reg_flags & RegRex) != 0)
7323 i.rex |= REX_X;
7324 if ((i.index_reg->reg_flags & RegVRex) != 0)
7325 i.vrex |= REX_X;
7326 }
7327
7328 default_seg = &ds;
7329
7330 if (i.base_reg == 0)
7331 {
7332 i.rm.mode = 0;
7333 if (!i.disp_operands)
7334 fake_zero_displacement = 1;
7335 if (i.index_reg == 0)
7336 {
7337 i386_operand_type newdisp;
7338
7339 gas_assert (!i.tm.opcode_modifier.vecsib);
7340 /* Operand is just <disp> */
7341 if (flag_code == CODE_64BIT)
7342 {
7343 /* 64bit mode overwrites the 32bit absolute
7344 addressing by RIP relative addressing and
7345 absolute addressing is encoded by one of the
7346 redundant SIB forms. */
7347 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7348 i.sib.base = NO_BASE_REGISTER;
7349 i.sib.index = NO_INDEX_REGISTER;
7350 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7351 }
7352 else if ((flag_code == CODE_16BIT)
7353 ^ (i.prefix[ADDR_PREFIX] != 0))
7354 {
7355 i.rm.regmem = NO_BASE_REGISTER_16;
7356 newdisp = disp16;
7357 }
7358 else
7359 {
7360 i.rm.regmem = NO_BASE_REGISTER;
7361 newdisp = disp32;
7362 }
7363 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7364 i.types[op] = operand_type_or (i.types[op], newdisp);
7365 }
7366 else if (!i.tm.opcode_modifier.vecsib)
7367 {
7368 /* !i.base_reg && i.index_reg */
7369 if (i.index_reg->reg_num == RegIZ)
7370 i.sib.index = NO_INDEX_REGISTER;
7371 else
7372 i.sib.index = i.index_reg->reg_num;
7373 i.sib.base = NO_BASE_REGISTER;
7374 i.sib.scale = i.log2_scale_factor;
7375 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7376 i.types[op].bitfield.disp8 = 0;
7377 i.types[op].bitfield.disp16 = 0;
7378 i.types[op].bitfield.disp64 = 0;
7379 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7380 {
7381 /* Must be 32 bit */
7382 i.types[op].bitfield.disp32 = 1;
7383 i.types[op].bitfield.disp32s = 0;
7384 }
7385 else
7386 {
7387 i.types[op].bitfield.disp32 = 0;
7388 i.types[op].bitfield.disp32s = 1;
7389 }
7390 if ((i.index_reg->reg_flags & RegRex) != 0)
7391 i.rex |= REX_X;
7392 }
7393 }
7394 /* RIP addressing for 64bit mode. */
7395 else if (i.base_reg->reg_num == RegIP)
7396 {
7397 gas_assert (!i.tm.opcode_modifier.vecsib);
7398 i.rm.regmem = NO_BASE_REGISTER;
7399 i.types[op].bitfield.disp8 = 0;
7400 i.types[op].bitfield.disp16 = 0;
7401 i.types[op].bitfield.disp32 = 0;
7402 i.types[op].bitfield.disp32s = 1;
7403 i.types[op].bitfield.disp64 = 0;
7404 i.flags[op] |= Operand_PCrel;
7405 if (! i.disp_operands)
7406 fake_zero_displacement = 1;
7407 }
7408 else if (i.base_reg->reg_type.bitfield.word)
7409 {
7410 gas_assert (!i.tm.opcode_modifier.vecsib);
7411 switch (i.base_reg->reg_num)
7412 {
7413 case 3: /* (%bx) */
7414 if (i.index_reg == 0)
7415 i.rm.regmem = 7;
7416 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7417 i.rm.regmem = i.index_reg->reg_num - 6;
7418 break;
7419 case 5: /* (%bp) */
7420 default_seg = &ss;
7421 if (i.index_reg == 0)
7422 {
7423 i.rm.regmem = 6;
7424 if (operand_type_check (i.types[op], disp) == 0)
7425 {
7426 /* fake (%bp) into 0(%bp) */
7427 i.types[op].bitfield.disp8 = 1;
7428 fake_zero_displacement = 1;
7429 }
7430 }
7431 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7432 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7433 break;
7434 default: /* (%si) -> 4 or (%di) -> 5 */
7435 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7436 }
7437 i.rm.mode = mode_from_disp_size (i.types[op]);
7438 }
7439 else /* i.base_reg and 32/64 bit mode */
7440 {
7441 if (flag_code == CODE_64BIT
7442 && operand_type_check (i.types[op], disp))
7443 {
7444 i.types[op].bitfield.disp16 = 0;
7445 i.types[op].bitfield.disp64 = 0;
7446 if (i.prefix[ADDR_PREFIX] == 0)
7447 {
7448 i.types[op].bitfield.disp32 = 0;
7449 i.types[op].bitfield.disp32s = 1;
7450 }
7451 else
7452 {
7453 i.types[op].bitfield.disp32 = 1;
7454 i.types[op].bitfield.disp32s = 0;
7455 }
7456 }
7457
7458 if (!i.tm.opcode_modifier.vecsib)
7459 i.rm.regmem = i.base_reg->reg_num;
7460 if ((i.base_reg->reg_flags & RegRex) != 0)
7461 i.rex |= REX_B;
7462 i.sib.base = i.base_reg->reg_num;
7463 /* x86-64 ignores REX prefix bit here to avoid decoder
7464 complications. */
7465 if (!(i.base_reg->reg_flags & RegRex)
7466 && (i.base_reg->reg_num == EBP_REG_NUM
7467 || i.base_reg->reg_num == ESP_REG_NUM))
7468 default_seg = &ss;
7469 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7470 {
7471 fake_zero_displacement = 1;
7472 i.types[op].bitfield.disp8 = 1;
7473 }
7474 i.sib.scale = i.log2_scale_factor;
7475 if (i.index_reg == 0)
7476 {
7477 gas_assert (!i.tm.opcode_modifier.vecsib);
7478 /* <disp>(%esp) becomes two byte modrm with no index
7479 register. We've already stored the code for esp
7480 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7481 Any base register besides %esp will not use the
7482 extra modrm byte. */
7483 i.sib.index = NO_INDEX_REGISTER;
7484 }
7485 else if (!i.tm.opcode_modifier.vecsib)
7486 {
7487 if (i.index_reg->reg_num == RegIZ)
7488 i.sib.index = NO_INDEX_REGISTER;
7489 else
7490 i.sib.index = i.index_reg->reg_num;
7491 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7492 if ((i.index_reg->reg_flags & RegRex) != 0)
7493 i.rex |= REX_X;
7494 }
7495
7496 if (i.disp_operands
7497 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7498 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7499 i.rm.mode = 0;
7500 else
7501 {
7502 if (!fake_zero_displacement
7503 && !i.disp_operands
7504 && i.disp_encoding)
7505 {
7506 fake_zero_displacement = 1;
7507 if (i.disp_encoding == disp_encoding_8bit)
7508 i.types[op].bitfield.disp8 = 1;
7509 else
7510 i.types[op].bitfield.disp32 = 1;
7511 }
7512 i.rm.mode = mode_from_disp_size (i.types[op]);
7513 }
7514 }
7515
7516 if (fake_zero_displacement)
7517 {
7518 /* Fakes a zero displacement assuming that i.types[op]
7519 holds the correct displacement size. */
7520 expressionS *exp;
7521
7522 gas_assert (i.op[op].disps == 0);
7523 exp = &disp_expressions[i.disp_operands++];
7524 i.op[op].disps = exp;
7525 exp->X_op = O_constant;
7526 exp->X_add_number = 0;
7527 exp->X_add_symbol = (symbolS *) 0;
7528 exp->X_op_symbol = (symbolS *) 0;
7529 }
7530
7531 mem = op;
7532 }
7533 else
7534 mem = ~0;
7535
7536 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7537 {
7538 if (operand_type_check (i.types[0], imm))
7539 i.vex.register_specifier = NULL;
7540 else
7541 {
7542 /* VEX.vvvv encodes one of the sources when the first
7543 operand is not an immediate. */
7544 if (i.tm.opcode_modifier.vexw == VEXW0)
7545 i.vex.register_specifier = i.op[0].regs;
7546 else
7547 i.vex.register_specifier = i.op[1].regs;
7548 }
7549
7550 /* Destination is a XMM register encoded in the ModRM.reg
7551 and VEX.R bit. */
7552 i.rm.reg = i.op[2].regs->reg_num;
7553 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7554 i.rex |= REX_R;
7555
7556 /* ModRM.rm and VEX.B encodes the other source. */
7557 if (!i.mem_operands)
7558 {
7559 i.rm.mode = 3;
7560
7561 if (i.tm.opcode_modifier.vexw == VEXW0)
7562 i.rm.regmem = i.op[1].regs->reg_num;
7563 else
7564 i.rm.regmem = i.op[0].regs->reg_num;
7565
7566 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7567 i.rex |= REX_B;
7568 }
7569 }
7570 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7571 {
7572 i.vex.register_specifier = i.op[2].regs;
7573 if (!i.mem_operands)
7574 {
7575 i.rm.mode = 3;
7576 i.rm.regmem = i.op[1].regs->reg_num;
7577 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7578 i.rex |= REX_B;
7579 }
7580 }
7581 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7582 (if any) based on i.tm.extension_opcode. Again, we must be
7583 careful to make sure that segment/control/debug/test/MMX
7584 registers are coded into the i.rm.reg field. */
7585 else if (i.reg_operands)
7586 {
7587 unsigned int op;
7588 unsigned int vex_reg = ~0;
7589
7590 for (op = 0; op < i.operands; op++)
7591 {
7592 if (i.types[op].bitfield.reg
7593 || i.types[op].bitfield.regbnd
7594 || i.types[op].bitfield.regmask
7595 || i.types[op].bitfield.sreg2
7596 || i.types[op].bitfield.sreg3
7597 || i.types[op].bitfield.control
7598 || i.types[op].bitfield.debug
7599 || i.types[op].bitfield.test)
7600 break;
7601 if (i.types[op].bitfield.regsimd)
7602 {
7603 if (i.types[op].bitfield.zmmword)
7604 i.has_regzmm = TRUE;
7605 else if (i.types[op].bitfield.ymmword)
7606 i.has_regymm = TRUE;
7607 else
7608 i.has_regxmm = TRUE;
7609 break;
7610 }
7611 if (i.types[op].bitfield.regmmx)
7612 {
7613 i.has_regmmx = TRUE;
7614 break;
7615 }
7616 }
7617
7618 if (vex_3_sources)
7619 op = dest;
7620 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7621 {
7622 /* For instructions with VexNDS, the register-only
7623 source operand is encoded in VEX prefix. */
7624 gas_assert (mem != (unsigned int) ~0);
7625
7626 if (op > mem)
7627 {
7628 vex_reg = op++;
7629 gas_assert (op < i.operands);
7630 }
7631 else
7632 {
7633 /* Check register-only source operand when two source
7634 operands are swapped. */
7635 if (!i.tm.operand_types[op].bitfield.baseindex
7636 && i.tm.operand_types[op + 1].bitfield.baseindex)
7637 {
7638 vex_reg = op;
7639 op += 2;
7640 gas_assert (mem == (vex_reg + 1)
7641 && op < i.operands);
7642 }
7643 else
7644 {
7645 vex_reg = op + 1;
7646 gas_assert (vex_reg < i.operands);
7647 }
7648 }
7649 }
7650 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7651 {
7652 /* For instructions with VexNDD, the register destination
7653 is encoded in VEX prefix. */
7654 if (i.mem_operands == 0)
7655 {
7656 /* There is no memory operand. */
7657 gas_assert ((op + 2) == i.operands);
7658 vex_reg = op + 1;
7659 }
7660 else
7661 {
7662 /* There are only 2 non-immediate operands. */
7663 gas_assert (op < i.imm_operands + 2
7664 && i.operands == i.imm_operands + 2);
7665 vex_reg = i.imm_operands + 1;
7666 }
7667 }
7668 else
7669 gas_assert (op < i.operands);
7670
7671 if (vex_reg != (unsigned int) ~0)
7672 {
7673 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7674
7675 if ((!type->bitfield.reg
7676 || (!type->bitfield.dword && !type->bitfield.qword))
7677 && !type->bitfield.regsimd
7678 && !operand_type_equal (type, &regmask))
7679 abort ();
7680
7681 i.vex.register_specifier = i.op[vex_reg].regs;
7682 }
7683
7684 /* Don't set OP operand twice. */
7685 if (vex_reg != op)
7686 {
7687 /* If there is an extension opcode to put here, the
7688 register number must be put into the regmem field. */
7689 if (i.tm.extension_opcode != None)
7690 {
7691 i.rm.regmem = i.op[op].regs->reg_num;
7692 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7693 i.rex |= REX_B;
7694 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7695 i.vrex |= REX_B;
7696 }
7697 else
7698 {
7699 i.rm.reg = i.op[op].regs->reg_num;
7700 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7701 i.rex |= REX_R;
7702 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7703 i.vrex |= REX_R;
7704 }
7705 }
7706
7707 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7708 must set it to 3 to indicate this is a register operand
7709 in the regmem field. */
7710 if (!i.mem_operands)
7711 i.rm.mode = 3;
7712 }
7713
7714 /* Fill in i.rm.reg field with extension opcode (if any). */
7715 if (i.tm.extension_opcode != None)
7716 i.rm.reg = i.tm.extension_opcode;
7717 }
7718 return default_seg;
7719 }
7720
7721 static void
7722 output_branch (void)
7723 {
7724 char *p;
7725 int size;
7726 int code16;
7727 int prefix;
7728 relax_substateT subtype;
7729 symbolS *sym;
7730 offsetT off;
7731
7732 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7733 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7734
7735 prefix = 0;
7736 if (i.prefix[DATA_PREFIX] != 0)
7737 {
7738 prefix = 1;
7739 i.prefixes -= 1;
7740 code16 ^= CODE16;
7741 }
7742 /* Pentium4 branch hints. */
7743 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7744 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7745 {
7746 prefix++;
7747 i.prefixes--;
7748 }
7749 if (i.prefix[REX_PREFIX] != 0)
7750 {
7751 prefix++;
7752 i.prefixes--;
7753 }
7754
7755 /* BND prefixed jump. */
7756 if (i.prefix[BND_PREFIX] != 0)
7757 {
7758 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7759 i.prefixes -= 1;
7760 }
7761
7762 if (i.prefixes != 0 && !intel_syntax)
7763 as_warn (_("skipping prefixes on this instruction"));
7764
7765 /* It's always a symbol; End frag & setup for relax.
7766 Make sure there is enough room in this frag for the largest
7767 instruction we may generate in md_convert_frag. This is 2
7768 bytes for the opcode and room for the prefix and largest
7769 displacement. */
7770 frag_grow (prefix + 2 + 4);
7771 /* Prefix and 1 opcode byte go in fr_fix. */
7772 p = frag_more (prefix + 1);
7773 if (i.prefix[DATA_PREFIX] != 0)
7774 *p++ = DATA_PREFIX_OPCODE;
7775 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7776 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7777 *p++ = i.prefix[SEG_PREFIX];
7778 if (i.prefix[REX_PREFIX] != 0)
7779 *p++ = i.prefix[REX_PREFIX];
7780 *p = i.tm.base_opcode;
7781
7782 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7783 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7784 else if (cpu_arch_flags.bitfield.cpui386)
7785 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7786 else
7787 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7788 subtype |= code16;
7789
7790 sym = i.op[0].disps->X_add_symbol;
7791 off = i.op[0].disps->X_add_number;
7792
7793 if (i.op[0].disps->X_op != O_constant
7794 && i.op[0].disps->X_op != O_symbol)
7795 {
7796 /* Handle complex expressions. */
7797 sym = make_expr_symbol (i.op[0].disps);
7798 off = 0;
7799 }
7800
7801 /* 1 possible extra opcode + 4 byte displacement go in var part.
7802 Pass reloc in fr_var. */
7803 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7804 }
7805
7806 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7807 /* Return TRUE iff PLT32 relocation should be used for branching to
7808 symbol S. */
7809
7810 static bfd_boolean
7811 need_plt32_p (symbolS *s)
7812 {
7813 /* PLT32 relocation is ELF only. */
7814 if (!IS_ELF)
7815 return FALSE;
7816
7817 #ifdef TE_SOLARIS
7818 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7819 krtld support it. */
7820 return FALSE;
7821 #endif
7822
7823 /* Since there is no need to prepare for PLT branch on x86-64, we
7824 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7825 be used as a marker for 32-bit PC-relative branches. */
7826 if (!object_64bit)
7827 return FALSE;
7828
7829 /* Weak or undefined symbol need PLT32 relocation. */
7830 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7831 return TRUE;
7832
7833 /* Non-global symbol doesn't need PLT32 relocation. */
7834 if (! S_IS_EXTERNAL (s))
7835 return FALSE;
7836
7837 /* Other global symbols need PLT32 relocation. NB: Symbol with
7838 non-default visibilities are treated as normal global symbol
7839 so that PLT32 relocation can be used as a marker for 32-bit
7840 PC-relative branches. It is useful for linker relaxation. */
7841 return TRUE;
7842 }
7843 #endif
7844
7845 static void
7846 output_jump (void)
7847 {
7848 char *p;
7849 int size;
7850 fixS *fixP;
7851 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7852
7853 if (i.tm.opcode_modifier.jumpbyte)
7854 {
7855 /* This is a loop or jecxz type instruction. */
7856 size = 1;
7857 if (i.prefix[ADDR_PREFIX] != 0)
7858 {
7859 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7860 i.prefixes -= 1;
7861 }
7862 /* Pentium4 branch hints. */
7863 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7864 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7865 {
7866 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7867 i.prefixes--;
7868 }
7869 }
7870 else
7871 {
7872 int code16;
7873
7874 code16 = 0;
7875 if (flag_code == CODE_16BIT)
7876 code16 = CODE16;
7877
7878 if (i.prefix[DATA_PREFIX] != 0)
7879 {
7880 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7881 i.prefixes -= 1;
7882 code16 ^= CODE16;
7883 }
7884
7885 size = 4;
7886 if (code16)
7887 size = 2;
7888 }
7889
7890 if (i.prefix[REX_PREFIX] != 0)
7891 {
7892 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7893 i.prefixes -= 1;
7894 }
7895
7896 /* BND prefixed jump. */
7897 if (i.prefix[BND_PREFIX] != 0)
7898 {
7899 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7900 i.prefixes -= 1;
7901 }
7902
7903 if (i.prefixes != 0 && !intel_syntax)
7904 as_warn (_("skipping prefixes on this instruction"));
7905
7906 p = frag_more (i.tm.opcode_length + size);
7907 switch (i.tm.opcode_length)
7908 {
7909 case 2:
7910 *p++ = i.tm.base_opcode >> 8;
7911 /* Fall through. */
7912 case 1:
7913 *p++ = i.tm.base_opcode;
7914 break;
7915 default:
7916 abort ();
7917 }
7918
7919 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7920 if (size == 4
7921 && jump_reloc == NO_RELOC
7922 && need_plt32_p (i.op[0].disps->X_add_symbol))
7923 jump_reloc = BFD_RELOC_X86_64_PLT32;
7924 #endif
7925
7926 jump_reloc = reloc (size, 1, 1, jump_reloc);
7927
7928 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7929 i.op[0].disps, 1, jump_reloc);
7930
7931 /* All jumps handled here are signed, but don't use a signed limit
7932 check for 32 and 16 bit jumps as we want to allow wrap around at
7933 4G and 64k respectively. */
7934 if (size == 1)
7935 fixP->fx_signed = 1;
7936 }
7937
7938 static void
7939 output_interseg_jump (void)
7940 {
7941 char *p;
7942 int size;
7943 int prefix;
7944 int code16;
7945
7946 code16 = 0;
7947 if (flag_code == CODE_16BIT)
7948 code16 = CODE16;
7949
7950 prefix = 0;
7951 if (i.prefix[DATA_PREFIX] != 0)
7952 {
7953 prefix = 1;
7954 i.prefixes -= 1;
7955 code16 ^= CODE16;
7956 }
7957 if (i.prefix[REX_PREFIX] != 0)
7958 {
7959 prefix++;
7960 i.prefixes -= 1;
7961 }
7962
7963 size = 4;
7964 if (code16)
7965 size = 2;
7966
7967 if (i.prefixes != 0 && !intel_syntax)
7968 as_warn (_("skipping prefixes on this instruction"));
7969
7970 /* 1 opcode; 2 segment; offset */
7971 p = frag_more (prefix + 1 + 2 + size);
7972
7973 if (i.prefix[DATA_PREFIX] != 0)
7974 *p++ = DATA_PREFIX_OPCODE;
7975
7976 if (i.prefix[REX_PREFIX] != 0)
7977 *p++ = i.prefix[REX_PREFIX];
7978
7979 *p++ = i.tm.base_opcode;
7980 if (i.op[1].imms->X_op == O_constant)
7981 {
7982 offsetT n = i.op[1].imms->X_add_number;
7983
7984 if (size == 2
7985 && !fits_in_unsigned_word (n)
7986 && !fits_in_signed_word (n))
7987 {
7988 as_bad (_("16-bit jump out of range"));
7989 return;
7990 }
7991 md_number_to_chars (p, n, size);
7992 }
7993 else
7994 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7995 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7996 if (i.op[0].imms->X_op != O_constant)
7997 as_bad (_("can't handle non absolute segment in `%s'"),
7998 i.tm.name);
7999 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8000 }
8001
8002 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8003 void
8004 x86_cleanup (void)
8005 {
8006 char *p;
8007 asection *seg = now_seg;
8008 subsegT subseg = now_subseg;
8009 asection *sec;
8010 unsigned int alignment, align_size_1;
8011 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8012 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8013 unsigned int padding;
8014
8015 if (!IS_ELF || !x86_used_note)
8016 return;
8017
8018 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8019
8020 /* The .note.gnu.property section layout:
8021
8022 Field Length Contents
8023 ---- ---- ----
8024 n_namsz 4 4
8025 n_descsz 4 The note descriptor size
8026 n_type 4 NT_GNU_PROPERTY_TYPE_0
8027 n_name 4 "GNU"
8028 n_desc n_descsz The program property array
8029 .... .... ....
8030 */
8031
8032 /* Create the .note.gnu.property section. */
8033 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8034 bfd_set_section_flags (stdoutput, sec,
8035 (SEC_ALLOC
8036 | SEC_LOAD
8037 | SEC_DATA
8038 | SEC_HAS_CONTENTS
8039 | SEC_READONLY));
8040
8041 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8042 {
8043 align_size_1 = 7;
8044 alignment = 3;
8045 }
8046 else
8047 {
8048 align_size_1 = 3;
8049 alignment = 2;
8050 }
8051
8052 bfd_set_section_alignment (stdoutput, sec, alignment);
8053 elf_section_type (sec) = SHT_NOTE;
8054
8055 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8056 + 4-byte data */
8057 isa_1_descsz_raw = 4 + 4 + 4;
8058 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8059 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8060
8061 feature_2_descsz_raw = isa_1_descsz;
8062 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8063 + 4-byte data */
8064 feature_2_descsz_raw += 4 + 4 + 4;
8065 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8066 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8067 & ~align_size_1);
8068
8069 descsz = feature_2_descsz;
8070 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8071 p = frag_more (4 + 4 + 4 + 4 + descsz);
8072
8073 /* Write n_namsz. */
8074 md_number_to_chars (p, (valueT) 4, 4);
8075
8076 /* Write n_descsz. */
8077 md_number_to_chars (p + 4, (valueT) descsz, 4);
8078
8079 /* Write n_type. */
8080 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8081
8082 /* Write n_name. */
8083 memcpy (p + 4 * 3, "GNU", 4);
8084
8085 /* Write 4-byte type. */
8086 md_number_to_chars (p + 4 * 4,
8087 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8088
8089 /* Write 4-byte data size. */
8090 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8091
8092 /* Write 4-byte data. */
8093 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8094
8095 /* Zero out paddings. */
8096 padding = isa_1_descsz - isa_1_descsz_raw;
8097 if (padding)
8098 memset (p + 4 * 7, 0, padding);
8099
8100 /* Write 4-byte type. */
8101 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8102 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8103
8104 /* Write 4-byte data size. */
8105 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8106
8107 /* Write 4-byte data. */
8108 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8109 (valueT) x86_feature_2_used, 4);
8110
8111 /* Zero out paddings. */
8112 padding = feature_2_descsz - feature_2_descsz_raw;
8113 if (padding)
8114 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8115
8116 /* We probably can't restore the current segment, for there likely
8117 isn't one yet... */
8118 if (seg && subseg)
8119 subseg_set (seg, subseg);
8120 }
8121 #endif
8122
8123 static void
8124 output_insn (void)
8125 {
8126 fragS *insn_start_frag;
8127 offsetT insn_start_off;
8128
8129 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8130 if (IS_ELF && x86_used_note)
8131 {
8132 if (i.tm.cpu_flags.bitfield.cpucmov)
8133 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8134 if (i.tm.cpu_flags.bitfield.cpusse)
8135 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8136 if (i.tm.cpu_flags.bitfield.cpusse2)
8137 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8138 if (i.tm.cpu_flags.bitfield.cpusse3)
8139 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8140 if (i.tm.cpu_flags.bitfield.cpussse3)
8141 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8142 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8143 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8144 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8145 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8146 if (i.tm.cpu_flags.bitfield.cpuavx)
8147 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8148 if (i.tm.cpu_flags.bitfield.cpuavx2)
8149 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8150 if (i.tm.cpu_flags.bitfield.cpufma)
8151 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8152 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8153 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8154 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8155 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8156 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8157 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8158 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8159 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8160 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8161 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8162 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8163 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8164 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8165 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8166 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8167 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8168 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8169 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8170 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8171 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8172 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8173 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8174 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8175 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8176 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8177 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8178 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8179 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8180 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8181 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8182
8183 if (i.tm.cpu_flags.bitfield.cpu8087
8184 || i.tm.cpu_flags.bitfield.cpu287
8185 || i.tm.cpu_flags.bitfield.cpu387
8186 || i.tm.cpu_flags.bitfield.cpu687
8187 || i.tm.cpu_flags.bitfield.cpufisttp)
8188 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8189 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8190 Xfence instructions. */
8191 if (i.tm.base_opcode != 0xf18
8192 && i.tm.base_opcode != 0xf0d
8193 && i.tm.base_opcode != 0xfae
8194 && (i.has_regmmx
8195 || i.tm.cpu_flags.bitfield.cpummx
8196 || i.tm.cpu_flags.bitfield.cpua3dnow
8197 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8198 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8199 if (i.has_regxmm)
8200 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8201 if (i.has_regymm)
8202 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8203 if (i.has_regzmm)
8204 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8205 if (i.tm.cpu_flags.bitfield.cpufxsr)
8206 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8207 if (i.tm.cpu_flags.bitfield.cpuxsave)
8208 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8209 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8210 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8211 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8212 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8213 }
8214 #endif
8215
8216 /* Tie dwarf2 debug info to the address at the start of the insn.
8217 We can't do this after the insn has been output as the current
8218 frag may have been closed off. eg. by frag_var. */
8219 dwarf2_emit_insn (0);
8220
8221 insn_start_frag = frag_now;
8222 insn_start_off = frag_now_fix ();
8223
8224 /* Output jumps. */
8225 if (i.tm.opcode_modifier.jump)
8226 output_branch ();
8227 else if (i.tm.opcode_modifier.jumpbyte
8228 || i.tm.opcode_modifier.jumpdword)
8229 output_jump ();
8230 else if (i.tm.opcode_modifier.jumpintersegment)
8231 output_interseg_jump ();
8232 else
8233 {
8234 /* Output normal instructions here. */
8235 char *p;
8236 unsigned char *q;
8237 unsigned int j;
8238 unsigned int prefix;
8239
8240 if (avoid_fence
8241 && i.tm.base_opcode == 0xfae
8242 && i.operands == 1
8243 && i.imm_operands == 1
8244 && (i.op[0].imms->X_add_number == 0xe8
8245 || i.op[0].imms->X_add_number == 0xf0
8246 || i.op[0].imms->X_add_number == 0xf8))
8247 {
8248 /* Encode lfence, mfence, and sfence as
8249 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8250 offsetT val = 0x240483f0ULL;
8251 p = frag_more (5);
8252 md_number_to_chars (p, val, 5);
8253 return;
8254 }
8255
8256 /* Some processors fail on LOCK prefix. This options makes
8257 assembler ignore LOCK prefix and serves as a workaround. */
8258 if (omit_lock_prefix)
8259 {
8260 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8261 return;
8262 i.prefix[LOCK_PREFIX] = 0;
8263 }
8264
8265 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8266 don't need the explicit prefix. */
8267 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8268 {
8269 switch (i.tm.opcode_length)
8270 {
8271 case 3:
8272 if (i.tm.base_opcode & 0xff000000)
8273 {
8274 prefix = (i.tm.base_opcode >> 24) & 0xff;
8275 add_prefix (prefix);
8276 }
8277 break;
8278 case 2:
8279 if ((i.tm.base_opcode & 0xff0000) != 0)
8280 {
8281 prefix = (i.tm.base_opcode >> 16) & 0xff;
8282 if (!i.tm.cpu_flags.bitfield.cpupadlock
8283 || prefix != REPE_PREFIX_OPCODE
8284 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8285 add_prefix (prefix);
8286 }
8287 break;
8288 case 1:
8289 break;
8290 case 0:
8291 /* Check for pseudo prefixes. */
8292 as_bad_where (insn_start_frag->fr_file,
8293 insn_start_frag->fr_line,
8294 _("pseudo prefix without instruction"));
8295 return;
8296 default:
8297 abort ();
8298 }
8299
8300 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8301 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8302 R_X86_64_GOTTPOFF relocation so that linker can safely
8303 perform IE->LE optimization. */
8304 if (x86_elf_abi == X86_64_X32_ABI
8305 && i.operands == 2
8306 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8307 && i.prefix[REX_PREFIX] == 0)
8308 add_prefix (REX_OPCODE);
8309 #endif
8310
8311 /* The prefix bytes. */
8312 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8313 if (*q)
8314 FRAG_APPEND_1_CHAR (*q);
8315 }
8316 else
8317 {
8318 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8319 if (*q)
8320 switch (j)
8321 {
8322 case REX_PREFIX:
8323 /* REX byte is encoded in VEX prefix. */
8324 break;
8325 case SEG_PREFIX:
8326 case ADDR_PREFIX:
8327 FRAG_APPEND_1_CHAR (*q);
8328 break;
8329 default:
8330 /* There should be no other prefixes for instructions
8331 with VEX prefix. */
8332 abort ();
8333 }
8334
8335 /* For EVEX instructions i.vrex should become 0 after
8336 build_evex_prefix. For VEX instructions upper 16 registers
8337 aren't available, so VREX should be 0. */
8338 if (i.vrex)
8339 abort ();
8340 /* Now the VEX prefix. */
8341 p = frag_more (i.vex.length);
8342 for (j = 0; j < i.vex.length; j++)
8343 p[j] = i.vex.bytes[j];
8344 }
8345
8346 /* Now the opcode; be careful about word order here! */
8347 if (i.tm.opcode_length == 1)
8348 {
8349 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8350 }
8351 else
8352 {
8353 switch (i.tm.opcode_length)
8354 {
8355 case 4:
8356 p = frag_more (4);
8357 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8358 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8359 break;
8360 case 3:
8361 p = frag_more (3);
8362 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8363 break;
8364 case 2:
8365 p = frag_more (2);
8366 break;
8367 default:
8368 abort ();
8369 break;
8370 }
8371
8372 /* Put out high byte first: can't use md_number_to_chars! */
8373 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8374 *p = i.tm.base_opcode & 0xff;
8375 }
8376
8377 /* Now the modrm byte and sib byte (if present). */
8378 if (i.tm.opcode_modifier.modrm)
8379 {
8380 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8381 | i.rm.reg << 3
8382 | i.rm.mode << 6));
8383 /* If i.rm.regmem == ESP (4)
8384 && i.rm.mode != (Register mode)
8385 && not 16 bit
8386 ==> need second modrm byte. */
8387 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8388 && i.rm.mode != 3
8389 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8390 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8391 | i.sib.index << 3
8392 | i.sib.scale << 6));
8393 }
8394
8395 if (i.disp_operands)
8396 output_disp (insn_start_frag, insn_start_off);
8397
8398 if (i.imm_operands)
8399 output_imm (insn_start_frag, insn_start_off);
8400 }
8401
8402 #ifdef DEBUG386
8403 if (flag_debug)
8404 {
8405 pi ("" /*line*/, &i);
8406 }
8407 #endif /* DEBUG386 */
8408 }
8409
8410 /* Return the size of the displacement operand N. */
8411
8412 static int
8413 disp_size (unsigned int n)
8414 {
8415 int size = 4;
8416
8417 if (i.types[n].bitfield.disp64)
8418 size = 8;
8419 else if (i.types[n].bitfield.disp8)
8420 size = 1;
8421 else if (i.types[n].bitfield.disp16)
8422 size = 2;
8423 return size;
8424 }
8425
8426 /* Return the size of the immediate operand N. */
8427
8428 static int
8429 imm_size (unsigned int n)
8430 {
8431 int size = 4;
8432 if (i.types[n].bitfield.imm64)
8433 size = 8;
8434 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8435 size = 1;
8436 else if (i.types[n].bitfield.imm16)
8437 size = 2;
8438 return size;
8439 }
8440
8441 static void
8442 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8443 {
8444 char *p;
8445 unsigned int n;
8446
8447 for (n = 0; n < i.operands; n++)
8448 {
8449 if (operand_type_check (i.types[n], disp))
8450 {
8451 if (i.op[n].disps->X_op == O_constant)
8452 {
8453 int size = disp_size (n);
8454 offsetT val = i.op[n].disps->X_add_number;
8455
8456 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8457 size);
8458 p = frag_more (size);
8459 md_number_to_chars (p, val, size);
8460 }
8461 else
8462 {
8463 enum bfd_reloc_code_real reloc_type;
8464 int size = disp_size (n);
8465 int sign = i.types[n].bitfield.disp32s;
8466 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8467 fixS *fixP;
8468
8469 /* We can't have 8 bit displacement here. */
8470 gas_assert (!i.types[n].bitfield.disp8);
8471
8472 /* The PC relative address is computed relative
8473 to the instruction boundary, so in case immediate
8474 fields follows, we need to adjust the value. */
8475 if (pcrel && i.imm_operands)
8476 {
8477 unsigned int n1;
8478 int sz = 0;
8479
8480 for (n1 = 0; n1 < i.operands; n1++)
8481 if (operand_type_check (i.types[n1], imm))
8482 {
8483 /* Only one immediate is allowed for PC
8484 relative address. */
8485 gas_assert (sz == 0);
8486 sz = imm_size (n1);
8487 i.op[n].disps->X_add_number -= sz;
8488 }
8489 /* We should find the immediate. */
8490 gas_assert (sz != 0);
8491 }
8492
8493 p = frag_more (size);
8494 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8495 if (GOT_symbol
8496 && GOT_symbol == i.op[n].disps->X_add_symbol
8497 && (((reloc_type == BFD_RELOC_32
8498 || reloc_type == BFD_RELOC_X86_64_32S
8499 || (reloc_type == BFD_RELOC_64
8500 && object_64bit))
8501 && (i.op[n].disps->X_op == O_symbol
8502 || (i.op[n].disps->X_op == O_add
8503 && ((symbol_get_value_expression
8504 (i.op[n].disps->X_op_symbol)->X_op)
8505 == O_subtract))))
8506 || reloc_type == BFD_RELOC_32_PCREL))
8507 {
8508 offsetT add;
8509
8510 if (insn_start_frag == frag_now)
8511 add = (p - frag_now->fr_literal) - insn_start_off;
8512 else
8513 {
8514 fragS *fr;
8515
8516 add = insn_start_frag->fr_fix - insn_start_off;
8517 for (fr = insn_start_frag->fr_next;
8518 fr && fr != frag_now; fr = fr->fr_next)
8519 add += fr->fr_fix;
8520 add += p - frag_now->fr_literal;
8521 }
8522
8523 if (!object_64bit)
8524 {
8525 reloc_type = BFD_RELOC_386_GOTPC;
8526 i.op[n].imms->X_add_number += add;
8527 }
8528 else if (reloc_type == BFD_RELOC_64)
8529 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8530 else
8531 /* Don't do the adjustment for x86-64, as there
8532 the pcrel addressing is relative to the _next_
8533 insn, and that is taken care of in other code. */
8534 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8535 }
8536 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8537 size, i.op[n].disps, pcrel,
8538 reloc_type);
8539 /* Check for "call/jmp *mem", "mov mem, %reg",
8540 "test %reg, mem" and "binop mem, %reg" where binop
8541 is one of adc, add, and, cmp, or, sbb, sub, xor
8542 instructions without data prefix. Always generate
8543 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8544 if (i.prefix[DATA_PREFIX] == 0
8545 && (generate_relax_relocations
8546 || (!object_64bit
8547 && i.rm.mode == 0
8548 && i.rm.regmem == 5))
8549 && (i.rm.mode == 2
8550 || (i.rm.mode == 0 && i.rm.regmem == 5))
8551 && ((i.operands == 1
8552 && i.tm.base_opcode == 0xff
8553 && (i.rm.reg == 2 || i.rm.reg == 4))
8554 || (i.operands == 2
8555 && (i.tm.base_opcode == 0x8b
8556 || i.tm.base_opcode == 0x85
8557 || (i.tm.base_opcode & 0xc7) == 0x03))))
8558 {
8559 if (object_64bit)
8560 {
8561 fixP->fx_tcbit = i.rex != 0;
8562 if (i.base_reg
8563 && (i.base_reg->reg_num == RegIP))
8564 fixP->fx_tcbit2 = 1;
8565 }
8566 else
8567 fixP->fx_tcbit2 = 1;
8568 }
8569 }
8570 }
8571 }
8572 }
8573
8574 static void
8575 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8576 {
8577 char *p;
8578 unsigned int n;
8579
8580 for (n = 0; n < i.operands; n++)
8581 {
8582 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8583 if (i.rounding && (int) n == i.rounding->operand)
8584 continue;
8585
8586 if (operand_type_check (i.types[n], imm))
8587 {
8588 if (i.op[n].imms->X_op == O_constant)
8589 {
8590 int size = imm_size (n);
8591 offsetT val;
8592
8593 val = offset_in_range (i.op[n].imms->X_add_number,
8594 size);
8595 p = frag_more (size);
8596 md_number_to_chars (p, val, size);
8597 }
8598 else
8599 {
8600 /* Not absolute_section.
8601 Need a 32-bit fixup (don't support 8bit
8602 non-absolute imms). Try to support other
8603 sizes ... */
8604 enum bfd_reloc_code_real reloc_type;
8605 int size = imm_size (n);
8606 int sign;
8607
8608 if (i.types[n].bitfield.imm32s
8609 && (i.suffix == QWORD_MNEM_SUFFIX
8610 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8611 sign = 1;
8612 else
8613 sign = 0;
8614
8615 p = frag_more (size);
8616 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8617
8618 /* This is tough to explain. We end up with this one if we
8619 * have operands that look like
8620 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8621 * obtain the absolute address of the GOT, and it is strongly
8622 * preferable from a performance point of view to avoid using
8623 * a runtime relocation for this. The actual sequence of
8624 * instructions often look something like:
8625 *
8626 * call .L66
8627 * .L66:
8628 * popl %ebx
8629 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8630 *
8631 * The call and pop essentially return the absolute address
8632 * of the label .L66 and store it in %ebx. The linker itself
8633 * will ultimately change the first operand of the addl so
8634 * that %ebx points to the GOT, but to keep things simple, the
8635 * .o file must have this operand set so that it generates not
8636 * the absolute address of .L66, but the absolute address of
8637 * itself. This allows the linker itself simply treat a GOTPC
8638 * relocation as asking for a pcrel offset to the GOT to be
8639 * added in, and the addend of the relocation is stored in the
8640 * operand field for the instruction itself.
8641 *
8642 * Our job here is to fix the operand so that it would add
8643 * the correct offset so that %ebx would point to itself. The
8644 * thing that is tricky is that .-.L66 will point to the
8645 * beginning of the instruction, so we need to further modify
8646 * the operand so that it will point to itself. There are
8647 * other cases where you have something like:
8648 *
8649 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8650 *
8651 * and here no correction would be required. Internally in
8652 * the assembler we treat operands of this form as not being
8653 * pcrel since the '.' is explicitly mentioned, and I wonder
8654 * whether it would simplify matters to do it this way. Who
8655 * knows. In earlier versions of the PIC patches, the
8656 * pcrel_adjust field was used to store the correction, but
8657 * since the expression is not pcrel, I felt it would be
8658 * confusing to do it this way. */
8659
8660 if ((reloc_type == BFD_RELOC_32
8661 || reloc_type == BFD_RELOC_X86_64_32S
8662 || reloc_type == BFD_RELOC_64)
8663 && GOT_symbol
8664 && GOT_symbol == i.op[n].imms->X_add_symbol
8665 && (i.op[n].imms->X_op == O_symbol
8666 || (i.op[n].imms->X_op == O_add
8667 && ((symbol_get_value_expression
8668 (i.op[n].imms->X_op_symbol)->X_op)
8669 == O_subtract))))
8670 {
8671 offsetT add;
8672
8673 if (insn_start_frag == frag_now)
8674 add = (p - frag_now->fr_literal) - insn_start_off;
8675 else
8676 {
8677 fragS *fr;
8678
8679 add = insn_start_frag->fr_fix - insn_start_off;
8680 for (fr = insn_start_frag->fr_next;
8681 fr && fr != frag_now; fr = fr->fr_next)
8682 add += fr->fr_fix;
8683 add += p - frag_now->fr_literal;
8684 }
8685
8686 if (!object_64bit)
8687 reloc_type = BFD_RELOC_386_GOTPC;
8688 else if (size == 4)
8689 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8690 else if (size == 8)
8691 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8692 i.op[n].imms->X_add_number += add;
8693 }
8694 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8695 i.op[n].imms, 0, reloc_type);
8696 }
8697 }
8698 }
8699 }
8700 \f
8701 /* x86_cons_fix_new is called via the expression parsing code when a
8702 reloc is needed. We use this hook to get the correct .got reloc. */
8703 static int cons_sign = -1;
8704
8705 void
8706 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8707 expressionS *exp, bfd_reloc_code_real_type r)
8708 {
8709 r = reloc (len, 0, cons_sign, r);
8710
8711 #ifdef TE_PE
8712 if (exp->X_op == O_secrel)
8713 {
8714 exp->X_op = O_symbol;
8715 r = BFD_RELOC_32_SECREL;
8716 }
8717 #endif
8718
8719 fix_new_exp (frag, off, len, exp, 0, r);
8720 }
8721
8722 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8723 purpose of the `.dc.a' internal pseudo-op. */
8724
8725 int
8726 x86_address_bytes (void)
8727 {
8728 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8729 return 4;
8730 return stdoutput->arch_info->bits_per_address / 8;
8731 }
8732
8733 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8734 || defined (LEX_AT)
8735 # define lex_got(reloc, adjust, types) NULL
8736 #else
8737 /* Parse operands of the form
8738 <symbol>@GOTOFF+<nnn>
8739 and similar .plt or .got references.
8740
8741 If we find one, set up the correct relocation in RELOC and copy the
8742 input string, minus the `@GOTOFF' into a malloc'd buffer for
8743 parsing by the calling routine. Return this buffer, and if ADJUST
8744 is non-null set it to the length of the string we removed from the
8745 input line. Otherwise return NULL. */
8746 static char *
8747 lex_got (enum bfd_reloc_code_real *rel,
8748 int *adjust,
8749 i386_operand_type *types)
8750 {
8751 /* Some of the relocations depend on the size of what field is to
8752 be relocated. But in our callers i386_immediate and i386_displacement
8753 we don't yet know the operand size (this will be set by insn
8754 matching). Hence we record the word32 relocation here,
8755 and adjust the reloc according to the real size in reloc(). */
8756 static const struct {
8757 const char *str;
8758 int len;
8759 const enum bfd_reloc_code_real rel[2];
8760 const i386_operand_type types64;
8761 } gotrel[] = {
8762 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8763 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8764 BFD_RELOC_SIZE32 },
8765 OPERAND_TYPE_IMM32_64 },
8766 #endif
8767 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8768 BFD_RELOC_X86_64_PLTOFF64 },
8769 OPERAND_TYPE_IMM64 },
8770 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8771 BFD_RELOC_X86_64_PLT32 },
8772 OPERAND_TYPE_IMM32_32S_DISP32 },
8773 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8774 BFD_RELOC_X86_64_GOTPLT64 },
8775 OPERAND_TYPE_IMM64_DISP64 },
8776 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8777 BFD_RELOC_X86_64_GOTOFF64 },
8778 OPERAND_TYPE_IMM64_DISP64 },
8779 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8780 BFD_RELOC_X86_64_GOTPCREL },
8781 OPERAND_TYPE_IMM32_32S_DISP32 },
8782 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8783 BFD_RELOC_X86_64_TLSGD },
8784 OPERAND_TYPE_IMM32_32S_DISP32 },
8785 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8786 _dummy_first_bfd_reloc_code_real },
8787 OPERAND_TYPE_NONE },
8788 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8789 BFD_RELOC_X86_64_TLSLD },
8790 OPERAND_TYPE_IMM32_32S_DISP32 },
8791 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8792 BFD_RELOC_X86_64_GOTTPOFF },
8793 OPERAND_TYPE_IMM32_32S_DISP32 },
8794 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8795 BFD_RELOC_X86_64_TPOFF32 },
8796 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8797 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8798 _dummy_first_bfd_reloc_code_real },
8799 OPERAND_TYPE_NONE },
8800 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8801 BFD_RELOC_X86_64_DTPOFF32 },
8802 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8803 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8804 _dummy_first_bfd_reloc_code_real },
8805 OPERAND_TYPE_NONE },
8806 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8807 _dummy_first_bfd_reloc_code_real },
8808 OPERAND_TYPE_NONE },
8809 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8810 BFD_RELOC_X86_64_GOT32 },
8811 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8812 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8813 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8814 OPERAND_TYPE_IMM32_32S_DISP32 },
8815 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8816 BFD_RELOC_X86_64_TLSDESC_CALL },
8817 OPERAND_TYPE_IMM32_32S_DISP32 },
8818 };
8819 char *cp;
8820 unsigned int j;
8821
8822 #if defined (OBJ_MAYBE_ELF)
8823 if (!IS_ELF)
8824 return NULL;
8825 #endif
8826
8827 for (cp = input_line_pointer; *cp != '@'; cp++)
8828 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8829 return NULL;
8830
8831 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8832 {
8833 int len = gotrel[j].len;
8834 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8835 {
8836 if (gotrel[j].rel[object_64bit] != 0)
8837 {
8838 int first, second;
8839 char *tmpbuf, *past_reloc;
8840
8841 *rel = gotrel[j].rel[object_64bit];
8842
8843 if (types)
8844 {
8845 if (flag_code != CODE_64BIT)
8846 {
8847 types->bitfield.imm32 = 1;
8848 types->bitfield.disp32 = 1;
8849 }
8850 else
8851 *types = gotrel[j].types64;
8852 }
8853
8854 if (j != 0 && GOT_symbol == NULL)
8855 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8856
8857 /* The length of the first part of our input line. */
8858 first = cp - input_line_pointer;
8859
8860 /* The second part goes from after the reloc token until
8861 (and including) an end_of_line char or comma. */
8862 past_reloc = cp + 1 + len;
8863 cp = past_reloc;
8864 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8865 ++cp;
8866 second = cp + 1 - past_reloc;
8867
8868 /* Allocate and copy string. The trailing NUL shouldn't
8869 be necessary, but be safe. */
8870 tmpbuf = XNEWVEC (char, first + second + 2);
8871 memcpy (tmpbuf, input_line_pointer, first);
8872 if (second != 0 && *past_reloc != ' ')
8873 /* Replace the relocation token with ' ', so that
8874 errors like foo@GOTOFF1 will be detected. */
8875 tmpbuf[first++] = ' ';
8876 else
8877 /* Increment length by 1 if the relocation token is
8878 removed. */
8879 len++;
8880 if (adjust)
8881 *adjust = len;
8882 memcpy (tmpbuf + first, past_reloc, second);
8883 tmpbuf[first + second] = '\0';
8884 return tmpbuf;
8885 }
8886
8887 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8888 gotrel[j].str, 1 << (5 + object_64bit));
8889 return NULL;
8890 }
8891 }
8892
8893 /* Might be a symbol version string. Don't as_bad here. */
8894 return NULL;
8895 }
8896 #endif
8897
8898 #ifdef TE_PE
8899 #ifdef lex_got
8900 #undef lex_got
8901 #endif
8902 /* Parse operands of the form
8903 <symbol>@SECREL32+<nnn>
8904
8905 If we find one, set up the correct relocation in RELOC and copy the
8906 input string, minus the `@SECREL32' into a malloc'd buffer for
8907 parsing by the calling routine. Return this buffer, and if ADJUST
8908 is non-null set it to the length of the string we removed from the
8909 input line. Otherwise return NULL.
8910
8911 This function is copied from the ELF version above adjusted for PE targets. */
8912
8913 static char *
8914 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8915 int *adjust ATTRIBUTE_UNUSED,
8916 i386_operand_type *types)
8917 {
8918 static const struct
8919 {
8920 const char *str;
8921 int len;
8922 const enum bfd_reloc_code_real rel[2];
8923 const i386_operand_type types64;
8924 }
8925 gotrel[] =
8926 {
8927 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8928 BFD_RELOC_32_SECREL },
8929 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8930 };
8931
8932 char *cp;
8933 unsigned j;
8934
8935 for (cp = input_line_pointer; *cp != '@'; cp++)
8936 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8937 return NULL;
8938
8939 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8940 {
8941 int len = gotrel[j].len;
8942
8943 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8944 {
8945 if (gotrel[j].rel[object_64bit] != 0)
8946 {
8947 int first, second;
8948 char *tmpbuf, *past_reloc;
8949
8950 *rel = gotrel[j].rel[object_64bit];
8951 if (adjust)
8952 *adjust = len;
8953
8954 if (types)
8955 {
8956 if (flag_code != CODE_64BIT)
8957 {
8958 types->bitfield.imm32 = 1;
8959 types->bitfield.disp32 = 1;
8960 }
8961 else
8962 *types = gotrel[j].types64;
8963 }
8964
8965 /* The length of the first part of our input line. */
8966 first = cp - input_line_pointer;
8967
8968 /* The second part goes from after the reloc token until
8969 (and including) an end_of_line char or comma. */
8970 past_reloc = cp + 1 + len;
8971 cp = past_reloc;
8972 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8973 ++cp;
8974 second = cp + 1 - past_reloc;
8975
8976 /* Allocate and copy string. The trailing NUL shouldn't
8977 be necessary, but be safe. */
8978 tmpbuf = XNEWVEC (char, first + second + 2);
8979 memcpy (tmpbuf, input_line_pointer, first);
8980 if (second != 0 && *past_reloc != ' ')
8981 /* Replace the relocation token with ' ', so that
8982 errors like foo@SECLREL321 will be detected. */
8983 tmpbuf[first++] = ' ';
8984 memcpy (tmpbuf + first, past_reloc, second);
8985 tmpbuf[first + second] = '\0';
8986 return tmpbuf;
8987 }
8988
8989 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8990 gotrel[j].str, 1 << (5 + object_64bit));
8991 return NULL;
8992 }
8993 }
8994
8995 /* Might be a symbol version string. Don't as_bad here. */
8996 return NULL;
8997 }
8998
8999 #endif /* TE_PE */
9000
9001 bfd_reloc_code_real_type
9002 x86_cons (expressionS *exp, int size)
9003 {
9004 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9005
9006 intel_syntax = -intel_syntax;
9007
9008 exp->X_md = 0;
9009 if (size == 4 || (object_64bit && size == 8))
9010 {
9011 /* Handle @GOTOFF and the like in an expression. */
9012 char *save;
9013 char *gotfree_input_line;
9014 int adjust = 0;
9015
9016 save = input_line_pointer;
9017 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9018 if (gotfree_input_line)
9019 input_line_pointer = gotfree_input_line;
9020
9021 expression (exp);
9022
9023 if (gotfree_input_line)
9024 {
9025 /* expression () has merrily parsed up to the end of line,
9026 or a comma - in the wrong buffer. Transfer how far
9027 input_line_pointer has moved to the right buffer. */
9028 input_line_pointer = (save
9029 + (input_line_pointer - gotfree_input_line)
9030 + adjust);
9031 free (gotfree_input_line);
9032 if (exp->X_op == O_constant
9033 || exp->X_op == O_absent
9034 || exp->X_op == O_illegal
9035 || exp->X_op == O_register
9036 || exp->X_op == O_big)
9037 {
9038 char c = *input_line_pointer;
9039 *input_line_pointer = 0;
9040 as_bad (_("missing or invalid expression `%s'"), save);
9041 *input_line_pointer = c;
9042 }
9043 else if ((got_reloc == BFD_RELOC_386_PLT32
9044 || got_reloc == BFD_RELOC_X86_64_PLT32)
9045 && exp->X_op != O_symbol)
9046 {
9047 char c = *input_line_pointer;
9048 *input_line_pointer = 0;
9049 as_bad (_("invalid PLT expression `%s'"), save);
9050 *input_line_pointer = c;
9051 }
9052 }
9053 }
9054 else
9055 expression (exp);
9056
9057 intel_syntax = -intel_syntax;
9058
9059 if (intel_syntax)
9060 i386_intel_simplify (exp);
9061
9062 return got_reloc;
9063 }
9064
9065 static void
9066 signed_cons (int size)
9067 {
9068 if (flag_code == CODE_64BIT)
9069 cons_sign = 1;
9070 cons (size);
9071 cons_sign = -1;
9072 }
9073
9074 #ifdef TE_PE
9075 static void
9076 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9077 {
9078 expressionS exp;
9079
9080 do
9081 {
9082 expression (&exp);
9083 if (exp.X_op == O_symbol)
9084 exp.X_op = O_secrel;
9085
9086 emit_expr (&exp, 4);
9087 }
9088 while (*input_line_pointer++ == ',');
9089
9090 input_line_pointer--;
9091 demand_empty_rest_of_line ();
9092 }
9093 #endif
9094
9095 /* Handle Vector operations. */
9096
9097 static char *
9098 check_VecOperations (char *op_string, char *op_end)
9099 {
9100 const reg_entry *mask;
9101 const char *saved;
9102 char *end_op;
9103
9104 while (*op_string
9105 && (op_end == NULL || op_string < op_end))
9106 {
9107 saved = op_string;
9108 if (*op_string == '{')
9109 {
9110 op_string++;
9111
9112 /* Check broadcasts. */
9113 if (strncmp (op_string, "1to", 3) == 0)
9114 {
9115 int bcst_type;
9116
9117 if (i.broadcast)
9118 goto duplicated_vec_op;
9119
9120 op_string += 3;
9121 if (*op_string == '8')
9122 bcst_type = 8;
9123 else if (*op_string == '4')
9124 bcst_type = 4;
9125 else if (*op_string == '2')
9126 bcst_type = 2;
9127 else if (*op_string == '1'
9128 && *(op_string+1) == '6')
9129 {
9130 bcst_type = 16;
9131 op_string++;
9132 }
9133 else
9134 {
9135 as_bad (_("Unsupported broadcast: `%s'"), saved);
9136 return NULL;
9137 }
9138 op_string++;
9139
9140 broadcast_op.type = bcst_type;
9141 broadcast_op.operand = this_operand;
9142 broadcast_op.bytes = 0;
9143 i.broadcast = &broadcast_op;
9144 }
9145 /* Check masking operation. */
9146 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9147 {
9148 /* k0 can't be used for write mask. */
9149 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9150 {
9151 as_bad (_("`%s%s' can't be used for write mask"),
9152 register_prefix, mask->reg_name);
9153 return NULL;
9154 }
9155
9156 if (!i.mask)
9157 {
9158 mask_op.mask = mask;
9159 mask_op.zeroing = 0;
9160 mask_op.operand = this_operand;
9161 i.mask = &mask_op;
9162 }
9163 else
9164 {
9165 if (i.mask->mask)
9166 goto duplicated_vec_op;
9167
9168 i.mask->mask = mask;
9169
9170 /* Only "{z}" is allowed here. No need to check
9171 zeroing mask explicitly. */
9172 if (i.mask->operand != this_operand)
9173 {
9174 as_bad (_("invalid write mask `%s'"), saved);
9175 return NULL;
9176 }
9177 }
9178
9179 op_string = end_op;
9180 }
9181 /* Check zeroing-flag for masking operation. */
9182 else if (*op_string == 'z')
9183 {
9184 if (!i.mask)
9185 {
9186 mask_op.mask = NULL;
9187 mask_op.zeroing = 1;
9188 mask_op.operand = this_operand;
9189 i.mask = &mask_op;
9190 }
9191 else
9192 {
9193 if (i.mask->zeroing)
9194 {
9195 duplicated_vec_op:
9196 as_bad (_("duplicated `%s'"), saved);
9197 return NULL;
9198 }
9199
9200 i.mask->zeroing = 1;
9201
9202 /* Only "{%k}" is allowed here. No need to check mask
9203 register explicitly. */
9204 if (i.mask->operand != this_operand)
9205 {
9206 as_bad (_("invalid zeroing-masking `%s'"),
9207 saved);
9208 return NULL;
9209 }
9210 }
9211
9212 op_string++;
9213 }
9214 else
9215 goto unknown_vec_op;
9216
9217 if (*op_string != '}')
9218 {
9219 as_bad (_("missing `}' in `%s'"), saved);
9220 return NULL;
9221 }
9222 op_string++;
9223
9224 /* Strip whitespace since the addition of pseudo prefixes
9225 changed how the scrubber treats '{'. */
9226 if (is_space_char (*op_string))
9227 ++op_string;
9228
9229 continue;
9230 }
9231 unknown_vec_op:
9232 /* We don't know this one. */
9233 as_bad (_("unknown vector operation: `%s'"), saved);
9234 return NULL;
9235 }
9236
9237 if (i.mask && i.mask->zeroing && !i.mask->mask)
9238 {
9239 as_bad (_("zeroing-masking only allowed with write mask"));
9240 return NULL;
9241 }
9242
9243 return op_string;
9244 }
9245
9246 static int
9247 i386_immediate (char *imm_start)
9248 {
9249 char *save_input_line_pointer;
9250 char *gotfree_input_line;
9251 segT exp_seg = 0;
9252 expressionS *exp;
9253 i386_operand_type types;
9254
9255 operand_type_set (&types, ~0);
9256
9257 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9258 {
9259 as_bad (_("at most %d immediate operands are allowed"),
9260 MAX_IMMEDIATE_OPERANDS);
9261 return 0;
9262 }
9263
9264 exp = &im_expressions[i.imm_operands++];
9265 i.op[this_operand].imms = exp;
9266
9267 if (is_space_char (*imm_start))
9268 ++imm_start;
9269
9270 save_input_line_pointer = input_line_pointer;
9271 input_line_pointer = imm_start;
9272
9273 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9274 if (gotfree_input_line)
9275 input_line_pointer = gotfree_input_line;
9276
9277 exp_seg = expression (exp);
9278
9279 SKIP_WHITESPACE ();
9280
9281 /* Handle vector operations. */
9282 if (*input_line_pointer == '{')
9283 {
9284 input_line_pointer = check_VecOperations (input_line_pointer,
9285 NULL);
9286 if (input_line_pointer == NULL)
9287 return 0;
9288 }
9289
9290 if (*input_line_pointer)
9291 as_bad (_("junk `%s' after expression"), input_line_pointer);
9292
9293 input_line_pointer = save_input_line_pointer;
9294 if (gotfree_input_line)
9295 {
9296 free (gotfree_input_line);
9297
9298 if (exp->X_op == O_constant || exp->X_op == O_register)
9299 exp->X_op = O_illegal;
9300 }
9301
9302 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9303 }
9304
9305 static int
9306 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9307 i386_operand_type types, const char *imm_start)
9308 {
9309 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9310 {
9311 if (imm_start)
9312 as_bad (_("missing or invalid immediate expression `%s'"),
9313 imm_start);
9314 return 0;
9315 }
9316 else if (exp->X_op == O_constant)
9317 {
9318 /* Size it properly later. */
9319 i.types[this_operand].bitfield.imm64 = 1;
9320 /* If not 64bit, sign extend val. */
9321 if (flag_code != CODE_64BIT
9322 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9323 exp->X_add_number
9324 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9325 }
9326 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9327 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9328 && exp_seg != absolute_section
9329 && exp_seg != text_section
9330 && exp_seg != data_section
9331 && exp_seg != bss_section
9332 && exp_seg != undefined_section
9333 && !bfd_is_com_section (exp_seg))
9334 {
9335 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9336 return 0;
9337 }
9338 #endif
9339 else if (!intel_syntax && exp_seg == reg_section)
9340 {
9341 if (imm_start)
9342 as_bad (_("illegal immediate register operand %s"), imm_start);
9343 return 0;
9344 }
9345 else
9346 {
9347 /* This is an address. The size of the address will be
9348 determined later, depending on destination register,
9349 suffix, or the default for the section. */
9350 i.types[this_operand].bitfield.imm8 = 1;
9351 i.types[this_operand].bitfield.imm16 = 1;
9352 i.types[this_operand].bitfield.imm32 = 1;
9353 i.types[this_operand].bitfield.imm32s = 1;
9354 i.types[this_operand].bitfield.imm64 = 1;
9355 i.types[this_operand] = operand_type_and (i.types[this_operand],
9356 types);
9357 }
9358
9359 return 1;
9360 }
9361
9362 static char *
9363 i386_scale (char *scale)
9364 {
9365 offsetT val;
9366 char *save = input_line_pointer;
9367
9368 input_line_pointer = scale;
9369 val = get_absolute_expression ();
9370
9371 switch (val)
9372 {
9373 case 1:
9374 i.log2_scale_factor = 0;
9375 break;
9376 case 2:
9377 i.log2_scale_factor = 1;
9378 break;
9379 case 4:
9380 i.log2_scale_factor = 2;
9381 break;
9382 case 8:
9383 i.log2_scale_factor = 3;
9384 break;
9385 default:
9386 {
9387 char sep = *input_line_pointer;
9388
9389 *input_line_pointer = '\0';
9390 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9391 scale);
9392 *input_line_pointer = sep;
9393 input_line_pointer = save;
9394 return NULL;
9395 }
9396 }
9397 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9398 {
9399 as_warn (_("scale factor of %d without an index register"),
9400 1 << i.log2_scale_factor);
9401 i.log2_scale_factor = 0;
9402 }
9403 scale = input_line_pointer;
9404 input_line_pointer = save;
9405 return scale;
9406 }
9407
9408 static int
9409 i386_displacement (char *disp_start, char *disp_end)
9410 {
9411 expressionS *exp;
9412 segT exp_seg = 0;
9413 char *save_input_line_pointer;
9414 char *gotfree_input_line;
9415 int override;
9416 i386_operand_type bigdisp, types = anydisp;
9417 int ret;
9418
9419 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9420 {
9421 as_bad (_("at most %d displacement operands are allowed"),
9422 MAX_MEMORY_OPERANDS);
9423 return 0;
9424 }
9425
9426 operand_type_set (&bigdisp, 0);
9427 if ((i.types[this_operand].bitfield.jumpabsolute)
9428 || (!current_templates->start->opcode_modifier.jump
9429 && !current_templates->start->opcode_modifier.jumpdword))
9430 {
9431 bigdisp.bitfield.disp32 = 1;
9432 override = (i.prefix[ADDR_PREFIX] != 0);
9433 if (flag_code == CODE_64BIT)
9434 {
9435 if (!override)
9436 {
9437 bigdisp.bitfield.disp32s = 1;
9438 bigdisp.bitfield.disp64 = 1;
9439 }
9440 }
9441 else if ((flag_code == CODE_16BIT) ^ override)
9442 {
9443 bigdisp.bitfield.disp32 = 0;
9444 bigdisp.bitfield.disp16 = 1;
9445 }
9446 }
9447 else
9448 {
9449 /* For PC-relative branches, the width of the displacement
9450 is dependent upon data size, not address size. */
9451 override = (i.prefix[DATA_PREFIX] != 0);
9452 if (flag_code == CODE_64BIT)
9453 {
9454 if (override || i.suffix == WORD_MNEM_SUFFIX)
9455 bigdisp.bitfield.disp16 = 1;
9456 else
9457 {
9458 bigdisp.bitfield.disp32 = 1;
9459 bigdisp.bitfield.disp32s = 1;
9460 }
9461 }
9462 else
9463 {
9464 if (!override)
9465 override = (i.suffix == (flag_code != CODE_16BIT
9466 ? WORD_MNEM_SUFFIX
9467 : LONG_MNEM_SUFFIX));
9468 bigdisp.bitfield.disp32 = 1;
9469 if ((flag_code == CODE_16BIT) ^ override)
9470 {
9471 bigdisp.bitfield.disp32 = 0;
9472 bigdisp.bitfield.disp16 = 1;
9473 }
9474 }
9475 }
9476 i.types[this_operand] = operand_type_or (i.types[this_operand],
9477 bigdisp);
9478
9479 exp = &disp_expressions[i.disp_operands];
9480 i.op[this_operand].disps = exp;
9481 i.disp_operands++;
9482 save_input_line_pointer = input_line_pointer;
9483 input_line_pointer = disp_start;
9484 END_STRING_AND_SAVE (disp_end);
9485
9486 #ifndef GCC_ASM_O_HACK
9487 #define GCC_ASM_O_HACK 0
9488 #endif
9489 #if GCC_ASM_O_HACK
9490 END_STRING_AND_SAVE (disp_end + 1);
9491 if (i.types[this_operand].bitfield.baseIndex
9492 && displacement_string_end[-1] == '+')
9493 {
9494 /* This hack is to avoid a warning when using the "o"
9495 constraint within gcc asm statements.
9496 For instance:
9497
9498 #define _set_tssldt_desc(n,addr,limit,type) \
9499 __asm__ __volatile__ ( \
9500 "movw %w2,%0\n\t" \
9501 "movw %w1,2+%0\n\t" \
9502 "rorl $16,%1\n\t" \
9503 "movb %b1,4+%0\n\t" \
9504 "movb %4,5+%0\n\t" \
9505 "movb $0,6+%0\n\t" \
9506 "movb %h1,7+%0\n\t" \
9507 "rorl $16,%1" \
9508 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9509
9510 This works great except that the output assembler ends
9511 up looking a bit weird if it turns out that there is
9512 no offset. You end up producing code that looks like:
9513
9514 #APP
9515 movw $235,(%eax)
9516 movw %dx,2+(%eax)
9517 rorl $16,%edx
9518 movb %dl,4+(%eax)
9519 movb $137,5+(%eax)
9520 movb $0,6+(%eax)
9521 movb %dh,7+(%eax)
9522 rorl $16,%edx
9523 #NO_APP
9524
9525 So here we provide the missing zero. */
9526
9527 *displacement_string_end = '0';
9528 }
9529 #endif
9530 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9531 if (gotfree_input_line)
9532 input_line_pointer = gotfree_input_line;
9533
9534 exp_seg = expression (exp);
9535
9536 SKIP_WHITESPACE ();
9537 if (*input_line_pointer)
9538 as_bad (_("junk `%s' after expression"), input_line_pointer);
9539 #if GCC_ASM_O_HACK
9540 RESTORE_END_STRING (disp_end + 1);
9541 #endif
9542 input_line_pointer = save_input_line_pointer;
9543 if (gotfree_input_line)
9544 {
9545 free (gotfree_input_line);
9546
9547 if (exp->X_op == O_constant || exp->X_op == O_register)
9548 exp->X_op = O_illegal;
9549 }
9550
9551 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9552
9553 RESTORE_END_STRING (disp_end);
9554
9555 return ret;
9556 }
9557
9558 static int
9559 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9560 i386_operand_type types, const char *disp_start)
9561 {
9562 i386_operand_type bigdisp;
9563 int ret = 1;
9564
9565 /* We do this to make sure that the section symbol is in
9566 the symbol table. We will ultimately change the relocation
9567 to be relative to the beginning of the section. */
9568 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9569 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9570 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9571 {
9572 if (exp->X_op != O_symbol)
9573 goto inv_disp;
9574
9575 if (S_IS_LOCAL (exp->X_add_symbol)
9576 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9577 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9578 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9579 exp->X_op = O_subtract;
9580 exp->X_op_symbol = GOT_symbol;
9581 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9582 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9583 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9584 i.reloc[this_operand] = BFD_RELOC_64;
9585 else
9586 i.reloc[this_operand] = BFD_RELOC_32;
9587 }
9588
9589 else if (exp->X_op == O_absent
9590 || exp->X_op == O_illegal
9591 || exp->X_op == O_big)
9592 {
9593 inv_disp:
9594 as_bad (_("missing or invalid displacement expression `%s'"),
9595 disp_start);
9596 ret = 0;
9597 }
9598
9599 else if (flag_code == CODE_64BIT
9600 && !i.prefix[ADDR_PREFIX]
9601 && exp->X_op == O_constant)
9602 {
9603 /* Since displacement is signed extended to 64bit, don't allow
9604 disp32 and turn off disp32s if they are out of range. */
9605 i.types[this_operand].bitfield.disp32 = 0;
9606 if (!fits_in_signed_long (exp->X_add_number))
9607 {
9608 i.types[this_operand].bitfield.disp32s = 0;
9609 if (i.types[this_operand].bitfield.baseindex)
9610 {
9611 as_bad (_("0x%lx out range of signed 32bit displacement"),
9612 (long) exp->X_add_number);
9613 ret = 0;
9614 }
9615 }
9616 }
9617
9618 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9619 else if (exp->X_op != O_constant
9620 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9621 && exp_seg != absolute_section
9622 && exp_seg != text_section
9623 && exp_seg != data_section
9624 && exp_seg != bss_section
9625 && exp_seg != undefined_section
9626 && !bfd_is_com_section (exp_seg))
9627 {
9628 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9629 ret = 0;
9630 }
9631 #endif
9632
9633 /* Check if this is a displacement only operand. */
9634 bigdisp = i.types[this_operand];
9635 bigdisp.bitfield.disp8 = 0;
9636 bigdisp.bitfield.disp16 = 0;
9637 bigdisp.bitfield.disp32 = 0;
9638 bigdisp.bitfield.disp32s = 0;
9639 bigdisp.bitfield.disp64 = 0;
9640 if (operand_type_all_zero (&bigdisp))
9641 i.types[this_operand] = operand_type_and (i.types[this_operand],
9642 types);
9643
9644 return ret;
9645 }
9646
9647 /* Return the active addressing mode, taking address override and
9648 registers forming the address into consideration. Update the
9649 address override prefix if necessary. */
9650
9651 static enum flag_code
9652 i386_addressing_mode (void)
9653 {
9654 enum flag_code addr_mode;
9655
9656 if (i.prefix[ADDR_PREFIX])
9657 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9658 else
9659 {
9660 addr_mode = flag_code;
9661
9662 #if INFER_ADDR_PREFIX
9663 if (i.mem_operands == 0)
9664 {
9665 /* Infer address prefix from the first memory operand. */
9666 const reg_entry *addr_reg = i.base_reg;
9667
9668 if (addr_reg == NULL)
9669 addr_reg = i.index_reg;
9670
9671 if (addr_reg)
9672 {
9673 if (addr_reg->reg_type.bitfield.dword)
9674 addr_mode = CODE_32BIT;
9675 else if (flag_code != CODE_64BIT
9676 && addr_reg->reg_type.bitfield.word)
9677 addr_mode = CODE_16BIT;
9678
9679 if (addr_mode != flag_code)
9680 {
9681 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9682 i.prefixes += 1;
9683 /* Change the size of any displacement too. At most one
9684 of Disp16 or Disp32 is set.
9685 FIXME. There doesn't seem to be any real need for
9686 separate Disp16 and Disp32 flags. The same goes for
9687 Imm16 and Imm32. Removing them would probably clean
9688 up the code quite a lot. */
9689 if (flag_code != CODE_64BIT
9690 && (i.types[this_operand].bitfield.disp16
9691 || i.types[this_operand].bitfield.disp32))
9692 i.types[this_operand]
9693 = operand_type_xor (i.types[this_operand], disp16_32);
9694 }
9695 }
9696 }
9697 #endif
9698 }
9699
9700 return addr_mode;
9701 }
9702
9703 /* Make sure the memory operand we've been dealt is valid.
9704 Return 1 on success, 0 on a failure. */
9705
9706 static int
9707 i386_index_check (const char *operand_string)
9708 {
9709 const char *kind = "base/index";
9710 enum flag_code addr_mode = i386_addressing_mode ();
9711
9712 if (current_templates->start->opcode_modifier.isstring
9713 && !current_templates->start->opcode_modifier.immext
9714 && (current_templates->end[-1].opcode_modifier.isstring
9715 || i.mem_operands))
9716 {
9717 /* Memory operands of string insns are special in that they only allow
9718 a single register (rDI, rSI, or rBX) as their memory address. */
9719 const reg_entry *expected_reg;
9720 static const char *di_si[][2] =
9721 {
9722 { "esi", "edi" },
9723 { "si", "di" },
9724 { "rsi", "rdi" }
9725 };
9726 static const char *bx[] = { "ebx", "bx", "rbx" };
9727
9728 kind = "string address";
9729
9730 if (current_templates->start->opcode_modifier.repprefixok)
9731 {
9732 i386_operand_type type = current_templates->end[-1].operand_types[0];
9733
9734 if (!type.bitfield.baseindex
9735 || ((!i.mem_operands != !intel_syntax)
9736 && current_templates->end[-1].operand_types[1]
9737 .bitfield.baseindex))
9738 type = current_templates->end[-1].operand_types[1];
9739 expected_reg = hash_find (reg_hash,
9740 di_si[addr_mode][type.bitfield.esseg]);
9741
9742 }
9743 else
9744 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9745
9746 if (i.base_reg != expected_reg
9747 || i.index_reg
9748 || operand_type_check (i.types[this_operand], disp))
9749 {
9750 /* The second memory operand must have the same size as
9751 the first one. */
9752 if (i.mem_operands
9753 && i.base_reg
9754 && !((addr_mode == CODE_64BIT
9755 && i.base_reg->reg_type.bitfield.qword)
9756 || (addr_mode == CODE_32BIT
9757 ? i.base_reg->reg_type.bitfield.dword
9758 : i.base_reg->reg_type.bitfield.word)))
9759 goto bad_address;
9760
9761 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9762 operand_string,
9763 intel_syntax ? '[' : '(',
9764 register_prefix,
9765 expected_reg->reg_name,
9766 intel_syntax ? ']' : ')');
9767 return 1;
9768 }
9769 else
9770 return 1;
9771
9772 bad_address:
9773 as_bad (_("`%s' is not a valid %s expression"),
9774 operand_string, kind);
9775 return 0;
9776 }
9777 else
9778 {
9779 if (addr_mode != CODE_16BIT)
9780 {
9781 /* 32-bit/64-bit checks. */
9782 if ((i.base_reg
9783 && ((addr_mode == CODE_64BIT
9784 ? !i.base_reg->reg_type.bitfield.qword
9785 : !i.base_reg->reg_type.bitfield.dword)
9786 || (i.index_reg && i.base_reg->reg_num == RegIP)
9787 || i.base_reg->reg_num == RegIZ))
9788 || (i.index_reg
9789 && !i.index_reg->reg_type.bitfield.xmmword
9790 && !i.index_reg->reg_type.bitfield.ymmword
9791 && !i.index_reg->reg_type.bitfield.zmmword
9792 && ((addr_mode == CODE_64BIT
9793 ? !i.index_reg->reg_type.bitfield.qword
9794 : !i.index_reg->reg_type.bitfield.dword)
9795 || !i.index_reg->reg_type.bitfield.baseindex)))
9796 goto bad_address;
9797
9798 /* bndmk, bndldx, and bndstx have special restrictions. */
9799 if (current_templates->start->base_opcode == 0xf30f1b
9800 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9801 {
9802 /* They cannot use RIP-relative addressing. */
9803 if (i.base_reg && i.base_reg->reg_num == RegIP)
9804 {
9805 as_bad (_("`%s' cannot be used here"), operand_string);
9806 return 0;
9807 }
9808
9809 /* bndldx and bndstx ignore their scale factor. */
9810 if (current_templates->start->base_opcode != 0xf30f1b
9811 && i.log2_scale_factor)
9812 as_warn (_("register scaling is being ignored here"));
9813 }
9814 }
9815 else
9816 {
9817 /* 16-bit checks. */
9818 if ((i.base_reg
9819 && (!i.base_reg->reg_type.bitfield.word
9820 || !i.base_reg->reg_type.bitfield.baseindex))
9821 || (i.index_reg
9822 && (!i.index_reg->reg_type.bitfield.word
9823 || !i.index_reg->reg_type.bitfield.baseindex
9824 || !(i.base_reg
9825 && i.base_reg->reg_num < 6
9826 && i.index_reg->reg_num >= 6
9827 && i.log2_scale_factor == 0))))
9828 goto bad_address;
9829 }
9830 }
9831 return 1;
9832 }
9833
9834 /* Handle vector immediates. */
9835
9836 static int
9837 RC_SAE_immediate (const char *imm_start)
9838 {
9839 unsigned int match_found, j;
9840 const char *pstr = imm_start;
9841 expressionS *exp;
9842
9843 if (*pstr != '{')
9844 return 0;
9845
9846 pstr++;
9847 match_found = 0;
9848 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9849 {
9850 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9851 {
9852 if (!i.rounding)
9853 {
9854 rc_op.type = RC_NamesTable[j].type;
9855 rc_op.operand = this_operand;
9856 i.rounding = &rc_op;
9857 }
9858 else
9859 {
9860 as_bad (_("duplicated `%s'"), imm_start);
9861 return 0;
9862 }
9863 pstr += RC_NamesTable[j].len;
9864 match_found = 1;
9865 break;
9866 }
9867 }
9868 if (!match_found)
9869 return 0;
9870
9871 if (*pstr++ != '}')
9872 {
9873 as_bad (_("Missing '}': '%s'"), imm_start);
9874 return 0;
9875 }
9876 /* RC/SAE immediate string should contain nothing more. */;
9877 if (*pstr != 0)
9878 {
9879 as_bad (_("Junk after '}': '%s'"), imm_start);
9880 return 0;
9881 }
9882
9883 exp = &im_expressions[i.imm_operands++];
9884 i.op[this_operand].imms = exp;
9885
9886 exp->X_op = O_constant;
9887 exp->X_add_number = 0;
9888 exp->X_add_symbol = (symbolS *) 0;
9889 exp->X_op_symbol = (symbolS *) 0;
9890
9891 i.types[this_operand].bitfield.imm8 = 1;
9892 return 1;
9893 }
9894
9895 /* Only string instructions can have a second memory operand, so
9896 reduce current_templates to just those if it contains any. */
9897 static int
9898 maybe_adjust_templates (void)
9899 {
9900 const insn_template *t;
9901
9902 gas_assert (i.mem_operands == 1);
9903
9904 for (t = current_templates->start; t < current_templates->end; ++t)
9905 if (t->opcode_modifier.isstring)
9906 break;
9907
9908 if (t < current_templates->end)
9909 {
9910 static templates aux_templates;
9911 bfd_boolean recheck;
9912
9913 aux_templates.start = t;
9914 for (; t < current_templates->end; ++t)
9915 if (!t->opcode_modifier.isstring)
9916 break;
9917 aux_templates.end = t;
9918
9919 /* Determine whether to re-check the first memory operand. */
9920 recheck = (aux_templates.start != current_templates->start
9921 || t != current_templates->end);
9922
9923 current_templates = &aux_templates;
9924
9925 if (recheck)
9926 {
9927 i.mem_operands = 0;
9928 if (i.memop1_string != NULL
9929 && i386_index_check (i.memop1_string) == 0)
9930 return 0;
9931 i.mem_operands = 1;
9932 }
9933 }
9934
9935 return 1;
9936 }
9937
9938 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9939 on error. */
9940
9941 static int
9942 i386_att_operand (char *operand_string)
9943 {
9944 const reg_entry *r;
9945 char *end_op;
9946 char *op_string = operand_string;
9947
9948 if (is_space_char (*op_string))
9949 ++op_string;
9950
9951 /* We check for an absolute prefix (differentiating,
9952 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9953 if (*op_string == ABSOLUTE_PREFIX)
9954 {
9955 ++op_string;
9956 if (is_space_char (*op_string))
9957 ++op_string;
9958 i.types[this_operand].bitfield.jumpabsolute = 1;
9959 }
9960
9961 /* Check if operand is a register. */
9962 if ((r = parse_register (op_string, &end_op)) != NULL)
9963 {
9964 i386_operand_type temp;
9965
9966 /* Check for a segment override by searching for ':' after a
9967 segment register. */
9968 op_string = end_op;
9969 if (is_space_char (*op_string))
9970 ++op_string;
9971 if (*op_string == ':'
9972 && (r->reg_type.bitfield.sreg2
9973 || r->reg_type.bitfield.sreg3))
9974 {
9975 switch (r->reg_num)
9976 {
9977 case 0:
9978 i.seg[i.mem_operands] = &es;
9979 break;
9980 case 1:
9981 i.seg[i.mem_operands] = &cs;
9982 break;
9983 case 2:
9984 i.seg[i.mem_operands] = &ss;
9985 break;
9986 case 3:
9987 i.seg[i.mem_operands] = &ds;
9988 break;
9989 case 4:
9990 i.seg[i.mem_operands] = &fs;
9991 break;
9992 case 5:
9993 i.seg[i.mem_operands] = &gs;
9994 break;
9995 }
9996
9997 /* Skip the ':' and whitespace. */
9998 ++op_string;
9999 if (is_space_char (*op_string))
10000 ++op_string;
10001
10002 if (!is_digit_char (*op_string)
10003 && !is_identifier_char (*op_string)
10004 && *op_string != '('
10005 && *op_string != ABSOLUTE_PREFIX)
10006 {
10007 as_bad (_("bad memory operand `%s'"), op_string);
10008 return 0;
10009 }
10010 /* Handle case of %es:*foo. */
10011 if (*op_string == ABSOLUTE_PREFIX)
10012 {
10013 ++op_string;
10014 if (is_space_char (*op_string))
10015 ++op_string;
10016 i.types[this_operand].bitfield.jumpabsolute = 1;
10017 }
10018 goto do_memory_reference;
10019 }
10020
10021 /* Handle vector operations. */
10022 if (*op_string == '{')
10023 {
10024 op_string = check_VecOperations (op_string, NULL);
10025 if (op_string == NULL)
10026 return 0;
10027 }
10028
10029 if (*op_string)
10030 {
10031 as_bad (_("junk `%s' after register"), op_string);
10032 return 0;
10033 }
10034 temp = r->reg_type;
10035 temp.bitfield.baseindex = 0;
10036 i.types[this_operand] = operand_type_or (i.types[this_operand],
10037 temp);
10038 i.types[this_operand].bitfield.unspecified = 0;
10039 i.op[this_operand].regs = r;
10040 i.reg_operands++;
10041 }
10042 else if (*op_string == REGISTER_PREFIX)
10043 {
10044 as_bad (_("bad register name `%s'"), op_string);
10045 return 0;
10046 }
10047 else if (*op_string == IMMEDIATE_PREFIX)
10048 {
10049 ++op_string;
10050 if (i.types[this_operand].bitfield.jumpabsolute)
10051 {
10052 as_bad (_("immediate operand illegal with absolute jump"));
10053 return 0;
10054 }
10055 if (!i386_immediate (op_string))
10056 return 0;
10057 }
10058 else if (RC_SAE_immediate (operand_string))
10059 {
10060 /* If it is a RC or SAE immediate, do nothing. */
10061 ;
10062 }
10063 else if (is_digit_char (*op_string)
10064 || is_identifier_char (*op_string)
10065 || *op_string == '"'
10066 || *op_string == '(')
10067 {
10068 /* This is a memory reference of some sort. */
10069 char *base_string;
10070
10071 /* Start and end of displacement string expression (if found). */
10072 char *displacement_string_start;
10073 char *displacement_string_end;
10074 char *vop_start;
10075
10076 do_memory_reference:
10077 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10078 return 0;
10079 if ((i.mem_operands == 1
10080 && !current_templates->start->opcode_modifier.isstring)
10081 || i.mem_operands == 2)
10082 {
10083 as_bad (_("too many memory references for `%s'"),
10084 current_templates->start->name);
10085 return 0;
10086 }
10087
10088 /* Check for base index form. We detect the base index form by
10089 looking for an ')' at the end of the operand, searching
10090 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10091 after the '('. */
10092 base_string = op_string + strlen (op_string);
10093
10094 /* Handle vector operations. */
10095 vop_start = strchr (op_string, '{');
10096 if (vop_start && vop_start < base_string)
10097 {
10098 if (check_VecOperations (vop_start, base_string) == NULL)
10099 return 0;
10100 base_string = vop_start;
10101 }
10102
10103 --base_string;
10104 if (is_space_char (*base_string))
10105 --base_string;
10106
10107 /* If we only have a displacement, set-up for it to be parsed later. */
10108 displacement_string_start = op_string;
10109 displacement_string_end = base_string + 1;
10110
10111 if (*base_string == ')')
10112 {
10113 char *temp_string;
10114 unsigned int parens_balanced = 1;
10115 /* We've already checked that the number of left & right ()'s are
10116 equal, so this loop will not be infinite. */
10117 do
10118 {
10119 base_string--;
10120 if (*base_string == ')')
10121 parens_balanced++;
10122 if (*base_string == '(')
10123 parens_balanced--;
10124 }
10125 while (parens_balanced);
10126
10127 temp_string = base_string;
10128
10129 /* Skip past '(' and whitespace. */
10130 ++base_string;
10131 if (is_space_char (*base_string))
10132 ++base_string;
10133
10134 if (*base_string == ','
10135 || ((i.base_reg = parse_register (base_string, &end_op))
10136 != NULL))
10137 {
10138 displacement_string_end = temp_string;
10139
10140 i.types[this_operand].bitfield.baseindex = 1;
10141
10142 if (i.base_reg)
10143 {
10144 base_string = end_op;
10145 if (is_space_char (*base_string))
10146 ++base_string;
10147 }
10148
10149 /* There may be an index reg or scale factor here. */
10150 if (*base_string == ',')
10151 {
10152 ++base_string;
10153 if (is_space_char (*base_string))
10154 ++base_string;
10155
10156 if ((i.index_reg = parse_register (base_string, &end_op))
10157 != NULL)
10158 {
10159 base_string = end_op;
10160 if (is_space_char (*base_string))
10161 ++base_string;
10162 if (*base_string == ',')
10163 {
10164 ++base_string;
10165 if (is_space_char (*base_string))
10166 ++base_string;
10167 }
10168 else if (*base_string != ')')
10169 {
10170 as_bad (_("expecting `,' or `)' "
10171 "after index register in `%s'"),
10172 operand_string);
10173 return 0;
10174 }
10175 }
10176 else if (*base_string == REGISTER_PREFIX)
10177 {
10178 end_op = strchr (base_string, ',');
10179 if (end_op)
10180 *end_op = '\0';
10181 as_bad (_("bad register name `%s'"), base_string);
10182 return 0;
10183 }
10184
10185 /* Check for scale factor. */
10186 if (*base_string != ')')
10187 {
10188 char *end_scale = i386_scale (base_string);
10189
10190 if (!end_scale)
10191 return 0;
10192
10193 base_string = end_scale;
10194 if (is_space_char (*base_string))
10195 ++base_string;
10196 if (*base_string != ')')
10197 {
10198 as_bad (_("expecting `)' "
10199 "after scale factor in `%s'"),
10200 operand_string);
10201 return 0;
10202 }
10203 }
10204 else if (!i.index_reg)
10205 {
10206 as_bad (_("expecting index register or scale factor "
10207 "after `,'; got '%c'"),
10208 *base_string);
10209 return 0;
10210 }
10211 }
10212 else if (*base_string != ')')
10213 {
10214 as_bad (_("expecting `,' or `)' "
10215 "after base register in `%s'"),
10216 operand_string);
10217 return 0;
10218 }
10219 }
10220 else if (*base_string == REGISTER_PREFIX)
10221 {
10222 end_op = strchr (base_string, ',');
10223 if (end_op)
10224 *end_op = '\0';
10225 as_bad (_("bad register name `%s'"), base_string);
10226 return 0;
10227 }
10228 }
10229
10230 /* If there's an expression beginning the operand, parse it,
10231 assuming displacement_string_start and
10232 displacement_string_end are meaningful. */
10233 if (displacement_string_start != displacement_string_end)
10234 {
10235 if (!i386_displacement (displacement_string_start,
10236 displacement_string_end))
10237 return 0;
10238 }
10239
10240 /* Special case for (%dx) while doing input/output op. */
10241 if (i.base_reg
10242 && i.base_reg->reg_type.bitfield.inoutportreg
10243 && i.index_reg == 0
10244 && i.log2_scale_factor == 0
10245 && i.seg[i.mem_operands] == 0
10246 && !operand_type_check (i.types[this_operand], disp))
10247 {
10248 i.types[this_operand] = i.base_reg->reg_type;
10249 return 1;
10250 }
10251
10252 if (i386_index_check (operand_string) == 0)
10253 return 0;
10254 i.flags[this_operand] |= Operand_Mem;
10255 if (i.mem_operands == 0)
10256 i.memop1_string = xstrdup (operand_string);
10257 i.mem_operands++;
10258 }
10259 else
10260 {
10261 /* It's not a memory operand; argh! */
10262 as_bad (_("invalid char %s beginning operand %d `%s'"),
10263 output_invalid (*op_string),
10264 this_operand + 1,
10265 op_string);
10266 return 0;
10267 }
10268 return 1; /* Normal return. */
10269 }
10270 \f
10271 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10272 that an rs_machine_dependent frag may reach. */
10273
10274 unsigned int
10275 i386_frag_max_var (fragS *frag)
10276 {
10277 /* The only relaxable frags are for jumps.
10278 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10279 gas_assert (frag->fr_type == rs_machine_dependent);
10280 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10281 }
10282
10283 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10284 static int
10285 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10286 {
10287 /* STT_GNU_IFUNC symbol must go through PLT. */
10288 if ((symbol_get_bfdsym (fr_symbol)->flags
10289 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10290 return 0;
10291
10292 if (!S_IS_EXTERNAL (fr_symbol))
10293 /* Symbol may be weak or local. */
10294 return !S_IS_WEAK (fr_symbol);
10295
10296 /* Global symbols with non-default visibility can't be preempted. */
10297 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10298 return 1;
10299
10300 if (fr_var != NO_RELOC)
10301 switch ((enum bfd_reloc_code_real) fr_var)
10302 {
10303 case BFD_RELOC_386_PLT32:
10304 case BFD_RELOC_X86_64_PLT32:
10305 /* Symbol with PLT relocation may be preempted. */
10306 return 0;
10307 default:
10308 abort ();
10309 }
10310
10311 /* Global symbols with default visibility in a shared library may be
10312 preempted by another definition. */
10313 return !shared;
10314 }
10315 #endif
10316
10317 /* md_estimate_size_before_relax()
10318
10319 Called just before relax() for rs_machine_dependent frags. The x86
10320 assembler uses these frags to handle variable size jump
10321 instructions.
10322
10323 Any symbol that is now undefined will not become defined.
10324 Return the correct fr_subtype in the frag.
10325 Return the initial "guess for variable size of frag" to caller.
10326 The guess is actually the growth beyond the fixed part. Whatever
10327 we do to grow the fixed or variable part contributes to our
10328 returned value. */
10329
10330 int
10331 md_estimate_size_before_relax (fragS *fragP, segT segment)
10332 {
10333 /* We've already got fragP->fr_subtype right; all we have to do is
10334 check for un-relaxable symbols. On an ELF system, we can't relax
10335 an externally visible symbol, because it may be overridden by a
10336 shared library. */
10337 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10338 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10339 || (IS_ELF
10340 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10341 fragP->fr_var))
10342 #endif
10343 #if defined (OBJ_COFF) && defined (TE_PE)
10344 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10345 && S_IS_WEAK (fragP->fr_symbol))
10346 #endif
10347 )
10348 {
10349 /* Symbol is undefined in this segment, or we need to keep a
10350 reloc so that weak symbols can be overridden. */
10351 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10352 enum bfd_reloc_code_real reloc_type;
10353 unsigned char *opcode;
10354 int old_fr_fix;
10355
10356 if (fragP->fr_var != NO_RELOC)
10357 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10358 else if (size == 2)
10359 reloc_type = BFD_RELOC_16_PCREL;
10360 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10361 else if (need_plt32_p (fragP->fr_symbol))
10362 reloc_type = BFD_RELOC_X86_64_PLT32;
10363 #endif
10364 else
10365 reloc_type = BFD_RELOC_32_PCREL;
10366
10367 old_fr_fix = fragP->fr_fix;
10368 opcode = (unsigned char *) fragP->fr_opcode;
10369
10370 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10371 {
10372 case UNCOND_JUMP:
10373 /* Make jmp (0xeb) a (d)word displacement jump. */
10374 opcode[0] = 0xe9;
10375 fragP->fr_fix += size;
10376 fix_new (fragP, old_fr_fix, size,
10377 fragP->fr_symbol,
10378 fragP->fr_offset, 1,
10379 reloc_type);
10380 break;
10381
10382 case COND_JUMP86:
10383 if (size == 2
10384 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10385 {
10386 /* Negate the condition, and branch past an
10387 unconditional jump. */
10388 opcode[0] ^= 1;
10389 opcode[1] = 3;
10390 /* Insert an unconditional jump. */
10391 opcode[2] = 0xe9;
10392 /* We added two extra opcode bytes, and have a two byte
10393 offset. */
10394 fragP->fr_fix += 2 + 2;
10395 fix_new (fragP, old_fr_fix + 2, 2,
10396 fragP->fr_symbol,
10397 fragP->fr_offset, 1,
10398 reloc_type);
10399 break;
10400 }
10401 /* Fall through. */
10402
10403 case COND_JUMP:
10404 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10405 {
10406 fixS *fixP;
10407
10408 fragP->fr_fix += 1;
10409 fixP = fix_new (fragP, old_fr_fix, 1,
10410 fragP->fr_symbol,
10411 fragP->fr_offset, 1,
10412 BFD_RELOC_8_PCREL);
10413 fixP->fx_signed = 1;
10414 break;
10415 }
10416
10417 /* This changes the byte-displacement jump 0x7N
10418 to the (d)word-displacement jump 0x0f,0x8N. */
10419 opcode[1] = opcode[0] + 0x10;
10420 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10421 /* We've added an opcode byte. */
10422 fragP->fr_fix += 1 + size;
10423 fix_new (fragP, old_fr_fix + 1, size,
10424 fragP->fr_symbol,
10425 fragP->fr_offset, 1,
10426 reloc_type);
10427 break;
10428
10429 default:
10430 BAD_CASE (fragP->fr_subtype);
10431 break;
10432 }
10433 frag_wane (fragP);
10434 return fragP->fr_fix - old_fr_fix;
10435 }
10436
10437 /* Guess size depending on current relax state. Initially the relax
10438 state will correspond to a short jump and we return 1, because
10439 the variable part of the frag (the branch offset) is one byte
10440 long. However, we can relax a section more than once and in that
10441 case we must either set fr_subtype back to the unrelaxed state,
10442 or return the value for the appropriate branch. */
10443 return md_relax_table[fragP->fr_subtype].rlx_length;
10444 }
10445
10446 /* Called after relax() is finished.
10447
10448 In: Address of frag.
10449 fr_type == rs_machine_dependent.
10450 fr_subtype is what the address relaxed to.
10451
10452 Out: Any fixSs and constants are set up.
10453 Caller will turn frag into a ".space 0". */
10454
10455 void
10456 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10457 fragS *fragP)
10458 {
10459 unsigned char *opcode;
10460 unsigned char *where_to_put_displacement = NULL;
10461 offsetT target_address;
10462 offsetT opcode_address;
10463 unsigned int extension = 0;
10464 offsetT displacement_from_opcode_start;
10465
10466 opcode = (unsigned char *) fragP->fr_opcode;
10467
10468 /* Address we want to reach in file space. */
10469 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10470
10471 /* Address opcode resides at in file space. */
10472 opcode_address = fragP->fr_address + fragP->fr_fix;
10473
10474 /* Displacement from opcode start to fill into instruction. */
10475 displacement_from_opcode_start = target_address - opcode_address;
10476
10477 if ((fragP->fr_subtype & BIG) == 0)
10478 {
10479 /* Don't have to change opcode. */
10480 extension = 1; /* 1 opcode + 1 displacement */
10481 where_to_put_displacement = &opcode[1];
10482 }
10483 else
10484 {
10485 if (no_cond_jump_promotion
10486 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10487 as_warn_where (fragP->fr_file, fragP->fr_line,
10488 _("long jump required"));
10489
10490 switch (fragP->fr_subtype)
10491 {
10492 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10493 extension = 4; /* 1 opcode + 4 displacement */
10494 opcode[0] = 0xe9;
10495 where_to_put_displacement = &opcode[1];
10496 break;
10497
10498 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10499 extension = 2; /* 1 opcode + 2 displacement */
10500 opcode[0] = 0xe9;
10501 where_to_put_displacement = &opcode[1];
10502 break;
10503
10504 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10505 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10506 extension = 5; /* 2 opcode + 4 displacement */
10507 opcode[1] = opcode[0] + 0x10;
10508 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10509 where_to_put_displacement = &opcode[2];
10510 break;
10511
10512 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10513 extension = 3; /* 2 opcode + 2 displacement */
10514 opcode[1] = opcode[0] + 0x10;
10515 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10516 where_to_put_displacement = &opcode[2];
10517 break;
10518
10519 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10520 extension = 4;
10521 opcode[0] ^= 1;
10522 opcode[1] = 3;
10523 opcode[2] = 0xe9;
10524 where_to_put_displacement = &opcode[3];
10525 break;
10526
10527 default:
10528 BAD_CASE (fragP->fr_subtype);
10529 break;
10530 }
10531 }
10532
10533 /* If size if less then four we are sure that the operand fits,
10534 but if it's 4, then it could be that the displacement is larger
10535 then -/+ 2GB. */
10536 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10537 && object_64bit
10538 && ((addressT) (displacement_from_opcode_start - extension
10539 + ((addressT) 1 << 31))
10540 > (((addressT) 2 << 31) - 1)))
10541 {
10542 as_bad_where (fragP->fr_file, fragP->fr_line,
10543 _("jump target out of range"));
10544 /* Make us emit 0. */
10545 displacement_from_opcode_start = extension;
10546 }
10547 /* Now put displacement after opcode. */
10548 md_number_to_chars ((char *) where_to_put_displacement,
10549 (valueT) (displacement_from_opcode_start - extension),
10550 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10551 fragP->fr_fix += extension;
10552 }
10553 \f
10554 /* Apply a fixup (fixP) to segment data, once it has been determined
10555 by our caller that we have all the info we need to fix it up.
10556
10557 Parameter valP is the pointer to the value of the bits.
10558
10559 On the 386, immediates, displacements, and data pointers are all in
10560 the same (little-endian) format, so we don't need to care about which
10561 we are handling. */
10562
10563 void
10564 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10565 {
10566 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10567 valueT value = *valP;
10568
10569 #if !defined (TE_Mach)
10570 if (fixP->fx_pcrel)
10571 {
10572 switch (fixP->fx_r_type)
10573 {
10574 default:
10575 break;
10576
10577 case BFD_RELOC_64:
10578 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10579 break;
10580 case BFD_RELOC_32:
10581 case BFD_RELOC_X86_64_32S:
10582 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10583 break;
10584 case BFD_RELOC_16:
10585 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10586 break;
10587 case BFD_RELOC_8:
10588 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10589 break;
10590 }
10591 }
10592
10593 if (fixP->fx_addsy != NULL
10594 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10595 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10596 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10597 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10598 && !use_rela_relocations)
10599 {
10600 /* This is a hack. There should be a better way to handle this.
10601 This covers for the fact that bfd_install_relocation will
10602 subtract the current location (for partial_inplace, PC relative
10603 relocations); see more below. */
10604 #ifndef OBJ_AOUT
10605 if (IS_ELF
10606 #ifdef TE_PE
10607 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10608 #endif
10609 )
10610 value += fixP->fx_where + fixP->fx_frag->fr_address;
10611 #endif
10612 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10613 if (IS_ELF)
10614 {
10615 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10616
10617 if ((sym_seg == seg
10618 || (symbol_section_p (fixP->fx_addsy)
10619 && sym_seg != absolute_section))
10620 && !generic_force_reloc (fixP))
10621 {
10622 /* Yes, we add the values in twice. This is because
10623 bfd_install_relocation subtracts them out again. I think
10624 bfd_install_relocation is broken, but I don't dare change
10625 it. FIXME. */
10626 value += fixP->fx_where + fixP->fx_frag->fr_address;
10627 }
10628 }
10629 #endif
10630 #if defined (OBJ_COFF) && defined (TE_PE)
10631 /* For some reason, the PE format does not store a
10632 section address offset for a PC relative symbol. */
10633 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10634 || S_IS_WEAK (fixP->fx_addsy))
10635 value += md_pcrel_from (fixP);
10636 #endif
10637 }
10638 #if defined (OBJ_COFF) && defined (TE_PE)
10639 if (fixP->fx_addsy != NULL
10640 && S_IS_WEAK (fixP->fx_addsy)
10641 /* PR 16858: Do not modify weak function references. */
10642 && ! fixP->fx_pcrel)
10643 {
10644 #if !defined (TE_PEP)
10645 /* For x86 PE weak function symbols are neither PC-relative
10646 nor do they set S_IS_FUNCTION. So the only reliable way
10647 to detect them is to check the flags of their containing
10648 section. */
10649 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10650 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10651 ;
10652 else
10653 #endif
10654 value -= S_GET_VALUE (fixP->fx_addsy);
10655 }
10656 #endif
10657
10658 /* Fix a few things - the dynamic linker expects certain values here,
10659 and we must not disappoint it. */
10660 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10661 if (IS_ELF && fixP->fx_addsy)
10662 switch (fixP->fx_r_type)
10663 {
10664 case BFD_RELOC_386_PLT32:
10665 case BFD_RELOC_X86_64_PLT32:
10666 /* Make the jump instruction point to the address of the operand.
10667 At runtime we merely add the offset to the actual PLT entry.
10668 NB: Subtract the offset size only for jump instructions. */
10669 if (fixP->fx_pcrel)
10670 value = -4;
10671 break;
10672
10673 case BFD_RELOC_386_TLS_GD:
10674 case BFD_RELOC_386_TLS_LDM:
10675 case BFD_RELOC_386_TLS_IE_32:
10676 case BFD_RELOC_386_TLS_IE:
10677 case BFD_RELOC_386_TLS_GOTIE:
10678 case BFD_RELOC_386_TLS_GOTDESC:
10679 case BFD_RELOC_X86_64_TLSGD:
10680 case BFD_RELOC_X86_64_TLSLD:
10681 case BFD_RELOC_X86_64_GOTTPOFF:
10682 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10683 value = 0; /* Fully resolved at runtime. No addend. */
10684 /* Fallthrough */
10685 case BFD_RELOC_386_TLS_LE:
10686 case BFD_RELOC_386_TLS_LDO_32:
10687 case BFD_RELOC_386_TLS_LE_32:
10688 case BFD_RELOC_X86_64_DTPOFF32:
10689 case BFD_RELOC_X86_64_DTPOFF64:
10690 case BFD_RELOC_X86_64_TPOFF32:
10691 case BFD_RELOC_X86_64_TPOFF64:
10692 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10693 break;
10694
10695 case BFD_RELOC_386_TLS_DESC_CALL:
10696 case BFD_RELOC_X86_64_TLSDESC_CALL:
10697 value = 0; /* Fully resolved at runtime. No addend. */
10698 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10699 fixP->fx_done = 0;
10700 return;
10701
10702 case BFD_RELOC_VTABLE_INHERIT:
10703 case BFD_RELOC_VTABLE_ENTRY:
10704 fixP->fx_done = 0;
10705 return;
10706
10707 default:
10708 break;
10709 }
10710 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10711 *valP = value;
10712 #endif /* !defined (TE_Mach) */
10713
10714 /* Are we finished with this relocation now? */
10715 if (fixP->fx_addsy == NULL)
10716 fixP->fx_done = 1;
10717 #if defined (OBJ_COFF) && defined (TE_PE)
10718 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10719 {
10720 fixP->fx_done = 0;
10721 /* Remember value for tc_gen_reloc. */
10722 fixP->fx_addnumber = value;
10723 /* Clear out the frag for now. */
10724 value = 0;
10725 }
10726 #endif
10727 else if (use_rela_relocations)
10728 {
10729 fixP->fx_no_overflow = 1;
10730 /* Remember value for tc_gen_reloc. */
10731 fixP->fx_addnumber = value;
10732 value = 0;
10733 }
10734
10735 md_number_to_chars (p, value, fixP->fx_size);
10736 }
10737 \f
10738 const char *
10739 md_atof (int type, char *litP, int *sizeP)
10740 {
10741 /* This outputs the LITTLENUMs in REVERSE order;
10742 in accord with the bigendian 386. */
10743 return ieee_md_atof (type, litP, sizeP, FALSE);
10744 }
10745 \f
10746 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10747
10748 static char *
10749 output_invalid (int c)
10750 {
10751 if (ISPRINT (c))
10752 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10753 "'%c'", c);
10754 else
10755 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10756 "(0x%x)", (unsigned char) c);
10757 return output_invalid_buf;
10758 }
10759
10760 /* REG_STRING starts *before* REGISTER_PREFIX. */
10761
10762 static const reg_entry *
10763 parse_real_register (char *reg_string, char **end_op)
10764 {
10765 char *s = reg_string;
10766 char *p;
10767 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10768 const reg_entry *r;
10769
10770 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10771 if (*s == REGISTER_PREFIX)
10772 ++s;
10773
10774 if (is_space_char (*s))
10775 ++s;
10776
10777 p = reg_name_given;
10778 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10779 {
10780 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10781 return (const reg_entry *) NULL;
10782 s++;
10783 }
10784
10785 /* For naked regs, make sure that we are not dealing with an identifier.
10786 This prevents confusing an identifier like `eax_var' with register
10787 `eax'. */
10788 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10789 return (const reg_entry *) NULL;
10790
10791 *end_op = s;
10792
10793 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10794
10795 /* Handle floating point regs, allowing spaces in the (i) part. */
10796 if (r == i386_regtab /* %st is first entry of table */)
10797 {
10798 if (!cpu_arch_flags.bitfield.cpu8087
10799 && !cpu_arch_flags.bitfield.cpu287
10800 && !cpu_arch_flags.bitfield.cpu387)
10801 return (const reg_entry *) NULL;
10802
10803 if (is_space_char (*s))
10804 ++s;
10805 if (*s == '(')
10806 {
10807 ++s;
10808 if (is_space_char (*s))
10809 ++s;
10810 if (*s >= '0' && *s <= '7')
10811 {
10812 int fpr = *s - '0';
10813 ++s;
10814 if (is_space_char (*s))
10815 ++s;
10816 if (*s == ')')
10817 {
10818 *end_op = s + 1;
10819 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10820 know (r);
10821 return r + fpr;
10822 }
10823 }
10824 /* We have "%st(" then garbage. */
10825 return (const reg_entry *) NULL;
10826 }
10827 }
10828
10829 if (r == NULL || allow_pseudo_reg)
10830 return r;
10831
10832 if (operand_type_all_zero (&r->reg_type))
10833 return (const reg_entry *) NULL;
10834
10835 if ((r->reg_type.bitfield.dword
10836 || r->reg_type.bitfield.sreg3
10837 || r->reg_type.bitfield.control
10838 || r->reg_type.bitfield.debug
10839 || r->reg_type.bitfield.test)
10840 && !cpu_arch_flags.bitfield.cpui386)
10841 return (const reg_entry *) NULL;
10842
10843 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10844 return (const reg_entry *) NULL;
10845
10846 if (!cpu_arch_flags.bitfield.cpuavx512f)
10847 {
10848 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10849 return (const reg_entry *) NULL;
10850
10851 if (!cpu_arch_flags.bitfield.cpuavx)
10852 {
10853 if (r->reg_type.bitfield.ymmword)
10854 return (const reg_entry *) NULL;
10855
10856 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10857 return (const reg_entry *) NULL;
10858 }
10859 }
10860
10861 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10862 return (const reg_entry *) NULL;
10863
10864 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10865 if (!allow_index_reg && r->reg_num == RegIZ)
10866 return (const reg_entry *) NULL;
10867
10868 /* Upper 16 vector registers are only available with VREX in 64bit
10869 mode, and require EVEX encoding. */
10870 if (r->reg_flags & RegVRex)
10871 {
10872 if (!cpu_arch_flags.bitfield.cpuavx512f
10873 || flag_code != CODE_64BIT)
10874 return (const reg_entry *) NULL;
10875
10876 i.vec_encoding = vex_encoding_evex;
10877 }
10878
10879 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10880 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10881 && flag_code != CODE_64BIT)
10882 return (const reg_entry *) NULL;
10883
10884 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10885 return (const reg_entry *) NULL;
10886
10887 return r;
10888 }
10889
10890 /* REG_STRING starts *before* REGISTER_PREFIX. */
10891
10892 static const reg_entry *
10893 parse_register (char *reg_string, char **end_op)
10894 {
10895 const reg_entry *r;
10896
10897 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10898 r = parse_real_register (reg_string, end_op);
10899 else
10900 r = NULL;
10901 if (!r)
10902 {
10903 char *save = input_line_pointer;
10904 char c;
10905 symbolS *symbolP;
10906
10907 input_line_pointer = reg_string;
10908 c = get_symbol_name (&reg_string);
10909 symbolP = symbol_find (reg_string);
10910 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10911 {
10912 const expressionS *e = symbol_get_value_expression (symbolP);
10913
10914 know (e->X_op == O_register);
10915 know (e->X_add_number >= 0
10916 && (valueT) e->X_add_number < i386_regtab_size);
10917 r = i386_regtab + e->X_add_number;
10918 if ((r->reg_flags & RegVRex))
10919 i.vec_encoding = vex_encoding_evex;
10920 *end_op = input_line_pointer;
10921 }
10922 *input_line_pointer = c;
10923 input_line_pointer = save;
10924 }
10925 return r;
10926 }
10927
10928 int
10929 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10930 {
10931 const reg_entry *r;
10932 char *end = input_line_pointer;
10933
10934 *end = *nextcharP;
10935 r = parse_register (name, &input_line_pointer);
10936 if (r && end <= input_line_pointer)
10937 {
10938 *nextcharP = *input_line_pointer;
10939 *input_line_pointer = 0;
10940 e->X_op = O_register;
10941 e->X_add_number = r - i386_regtab;
10942 return 1;
10943 }
10944 input_line_pointer = end;
10945 *end = 0;
10946 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10947 }
10948
10949 void
10950 md_operand (expressionS *e)
10951 {
10952 char *end;
10953 const reg_entry *r;
10954
10955 switch (*input_line_pointer)
10956 {
10957 case REGISTER_PREFIX:
10958 r = parse_real_register (input_line_pointer, &end);
10959 if (r)
10960 {
10961 e->X_op = O_register;
10962 e->X_add_number = r - i386_regtab;
10963 input_line_pointer = end;
10964 }
10965 break;
10966
10967 case '[':
10968 gas_assert (intel_syntax);
10969 end = input_line_pointer++;
10970 expression (e);
10971 if (*input_line_pointer == ']')
10972 {
10973 ++input_line_pointer;
10974 e->X_op_symbol = make_expr_symbol (e);
10975 e->X_add_symbol = NULL;
10976 e->X_add_number = 0;
10977 e->X_op = O_index;
10978 }
10979 else
10980 {
10981 e->X_op = O_absent;
10982 input_line_pointer = end;
10983 }
10984 break;
10985 }
10986 }
10987
10988 \f
10989 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10990 const char *md_shortopts = "kVQ:sqnO::";
10991 #else
10992 const char *md_shortopts = "qnO::";
10993 #endif
10994
10995 #define OPTION_32 (OPTION_MD_BASE + 0)
10996 #define OPTION_64 (OPTION_MD_BASE + 1)
10997 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10998 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10999 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11000 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11001 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11002 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11003 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11004 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11005 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11006 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11007 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11008 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11009 #define OPTION_X32 (OPTION_MD_BASE + 14)
11010 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11011 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11012 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11013 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11014 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11015 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11016 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11017 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11018 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11019 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11020 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11021 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11022
11023 struct option md_longopts[] =
11024 {
11025 {"32", no_argument, NULL, OPTION_32},
11026 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11027 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11028 {"64", no_argument, NULL, OPTION_64},
11029 #endif
11030 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11031 {"x32", no_argument, NULL, OPTION_X32},
11032 {"mshared", no_argument, NULL, OPTION_MSHARED},
11033 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11034 #endif
11035 {"divide", no_argument, NULL, OPTION_DIVIDE},
11036 {"march", required_argument, NULL, OPTION_MARCH},
11037 {"mtune", required_argument, NULL, OPTION_MTUNE},
11038 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11039 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11040 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11041 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11042 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11043 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11044 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11045 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11046 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11047 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11048 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11049 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11050 # if defined (TE_PE) || defined (TE_PEP)
11051 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11052 #endif
11053 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11054 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11055 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11056 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11057 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11058 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11059 {NULL, no_argument, NULL, 0}
11060 };
11061 size_t md_longopts_size = sizeof (md_longopts);
11062
11063 int
11064 md_parse_option (int c, const char *arg)
11065 {
11066 unsigned int j;
11067 char *arch, *next, *saved;
11068
11069 switch (c)
11070 {
11071 case 'n':
11072 optimize_align_code = 0;
11073 break;
11074
11075 case 'q':
11076 quiet_warnings = 1;
11077 break;
11078
11079 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11080 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11081 should be emitted or not. FIXME: Not implemented. */
11082 case 'Q':
11083 break;
11084
11085 /* -V: SVR4 argument to print version ID. */
11086 case 'V':
11087 print_version_id ();
11088 break;
11089
11090 /* -k: Ignore for FreeBSD compatibility. */
11091 case 'k':
11092 break;
11093
11094 case 's':
11095 /* -s: On i386 Solaris, this tells the native assembler to use
11096 .stab instead of .stab.excl. We always use .stab anyhow. */
11097 break;
11098
11099 case OPTION_MSHARED:
11100 shared = 1;
11101 break;
11102
11103 case OPTION_X86_USED_NOTE:
11104 if (strcasecmp (arg, "yes") == 0)
11105 x86_used_note = 1;
11106 else if (strcasecmp (arg, "no") == 0)
11107 x86_used_note = 0;
11108 else
11109 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11110 break;
11111
11112
11113 #endif
11114 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11115 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11116 case OPTION_64:
11117 {
11118 const char **list, **l;
11119
11120 list = bfd_target_list ();
11121 for (l = list; *l != NULL; l++)
11122 if (CONST_STRNEQ (*l, "elf64-x86-64")
11123 || strcmp (*l, "coff-x86-64") == 0
11124 || strcmp (*l, "pe-x86-64") == 0
11125 || strcmp (*l, "pei-x86-64") == 0
11126 || strcmp (*l, "mach-o-x86-64") == 0)
11127 {
11128 default_arch = "x86_64";
11129 break;
11130 }
11131 if (*l == NULL)
11132 as_fatal (_("no compiled in support for x86_64"));
11133 free (list);
11134 }
11135 break;
11136 #endif
11137
11138 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11139 case OPTION_X32:
11140 if (IS_ELF)
11141 {
11142 const char **list, **l;
11143
11144 list = bfd_target_list ();
11145 for (l = list; *l != NULL; l++)
11146 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11147 {
11148 default_arch = "x86_64:32";
11149 break;
11150 }
11151 if (*l == NULL)
11152 as_fatal (_("no compiled in support for 32bit x86_64"));
11153 free (list);
11154 }
11155 else
11156 as_fatal (_("32bit x86_64 is only supported for ELF"));
11157 break;
11158 #endif
11159
11160 case OPTION_32:
11161 default_arch = "i386";
11162 break;
11163
11164 case OPTION_DIVIDE:
11165 #ifdef SVR4_COMMENT_CHARS
11166 {
11167 char *n, *t;
11168 const char *s;
11169
11170 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11171 t = n;
11172 for (s = i386_comment_chars; *s != '\0'; s++)
11173 if (*s != '/')
11174 *t++ = *s;
11175 *t = '\0';
11176 i386_comment_chars = n;
11177 }
11178 #endif
11179 break;
11180
11181 case OPTION_MARCH:
11182 saved = xstrdup (arg);
11183 arch = saved;
11184 /* Allow -march=+nosse. */
11185 if (*arch == '+')
11186 arch++;
11187 do
11188 {
11189 if (*arch == '.')
11190 as_fatal (_("invalid -march= option: `%s'"), arg);
11191 next = strchr (arch, '+');
11192 if (next)
11193 *next++ = '\0';
11194 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11195 {
11196 if (strcmp (arch, cpu_arch [j].name) == 0)
11197 {
11198 /* Processor. */
11199 if (! cpu_arch[j].flags.bitfield.cpui386)
11200 continue;
11201
11202 cpu_arch_name = cpu_arch[j].name;
11203 cpu_sub_arch_name = NULL;
11204 cpu_arch_flags = cpu_arch[j].flags;
11205 cpu_arch_isa = cpu_arch[j].type;
11206 cpu_arch_isa_flags = cpu_arch[j].flags;
11207 if (!cpu_arch_tune_set)
11208 {
11209 cpu_arch_tune = cpu_arch_isa;
11210 cpu_arch_tune_flags = cpu_arch_isa_flags;
11211 }
11212 break;
11213 }
11214 else if (*cpu_arch [j].name == '.'
11215 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11216 {
11217 /* ISA extension. */
11218 i386_cpu_flags flags;
11219
11220 flags = cpu_flags_or (cpu_arch_flags,
11221 cpu_arch[j].flags);
11222
11223 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11224 {
11225 if (cpu_sub_arch_name)
11226 {
11227 char *name = cpu_sub_arch_name;
11228 cpu_sub_arch_name = concat (name,
11229 cpu_arch[j].name,
11230 (const char *) NULL);
11231 free (name);
11232 }
11233 else
11234 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11235 cpu_arch_flags = flags;
11236 cpu_arch_isa_flags = flags;
11237 }
11238 else
11239 cpu_arch_isa_flags
11240 = cpu_flags_or (cpu_arch_isa_flags,
11241 cpu_arch[j].flags);
11242 break;
11243 }
11244 }
11245
11246 if (j >= ARRAY_SIZE (cpu_arch))
11247 {
11248 /* Disable an ISA extension. */
11249 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11250 if (strcmp (arch, cpu_noarch [j].name) == 0)
11251 {
11252 i386_cpu_flags flags;
11253
11254 flags = cpu_flags_and_not (cpu_arch_flags,
11255 cpu_noarch[j].flags);
11256 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11257 {
11258 if (cpu_sub_arch_name)
11259 {
11260 char *name = cpu_sub_arch_name;
11261 cpu_sub_arch_name = concat (arch,
11262 (const char *) NULL);
11263 free (name);
11264 }
11265 else
11266 cpu_sub_arch_name = xstrdup (arch);
11267 cpu_arch_flags = flags;
11268 cpu_arch_isa_flags = flags;
11269 }
11270 break;
11271 }
11272
11273 if (j >= ARRAY_SIZE (cpu_noarch))
11274 j = ARRAY_SIZE (cpu_arch);
11275 }
11276
11277 if (j >= ARRAY_SIZE (cpu_arch))
11278 as_fatal (_("invalid -march= option: `%s'"), arg);
11279
11280 arch = next;
11281 }
11282 while (next != NULL);
11283 free (saved);
11284 break;
11285
11286 case OPTION_MTUNE:
11287 if (*arg == '.')
11288 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11289 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11290 {
11291 if (strcmp (arg, cpu_arch [j].name) == 0)
11292 {
11293 cpu_arch_tune_set = 1;
11294 cpu_arch_tune = cpu_arch [j].type;
11295 cpu_arch_tune_flags = cpu_arch[j].flags;
11296 break;
11297 }
11298 }
11299 if (j >= ARRAY_SIZE (cpu_arch))
11300 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11301 break;
11302
11303 case OPTION_MMNEMONIC:
11304 if (strcasecmp (arg, "att") == 0)
11305 intel_mnemonic = 0;
11306 else if (strcasecmp (arg, "intel") == 0)
11307 intel_mnemonic = 1;
11308 else
11309 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11310 break;
11311
11312 case OPTION_MSYNTAX:
11313 if (strcasecmp (arg, "att") == 0)
11314 intel_syntax = 0;
11315 else if (strcasecmp (arg, "intel") == 0)
11316 intel_syntax = 1;
11317 else
11318 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11319 break;
11320
11321 case OPTION_MINDEX_REG:
11322 allow_index_reg = 1;
11323 break;
11324
11325 case OPTION_MNAKED_REG:
11326 allow_naked_reg = 1;
11327 break;
11328
11329 case OPTION_MSSE2AVX:
11330 sse2avx = 1;
11331 break;
11332
11333 case OPTION_MSSE_CHECK:
11334 if (strcasecmp (arg, "error") == 0)
11335 sse_check = check_error;
11336 else if (strcasecmp (arg, "warning") == 0)
11337 sse_check = check_warning;
11338 else if (strcasecmp (arg, "none") == 0)
11339 sse_check = check_none;
11340 else
11341 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11342 break;
11343
11344 case OPTION_MOPERAND_CHECK:
11345 if (strcasecmp (arg, "error") == 0)
11346 operand_check = check_error;
11347 else if (strcasecmp (arg, "warning") == 0)
11348 operand_check = check_warning;
11349 else if (strcasecmp (arg, "none") == 0)
11350 operand_check = check_none;
11351 else
11352 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11353 break;
11354
11355 case OPTION_MAVXSCALAR:
11356 if (strcasecmp (arg, "128") == 0)
11357 avxscalar = vex128;
11358 else if (strcasecmp (arg, "256") == 0)
11359 avxscalar = vex256;
11360 else
11361 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11362 break;
11363
11364 case OPTION_MVEXWIG:
11365 if (strcmp (arg, "0") == 0)
11366 vexwig = evexw0;
11367 else if (strcmp (arg, "1") == 0)
11368 vexwig = evexw1;
11369 else
11370 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11371 break;
11372
11373 case OPTION_MADD_BND_PREFIX:
11374 add_bnd_prefix = 1;
11375 break;
11376
11377 case OPTION_MEVEXLIG:
11378 if (strcmp (arg, "128") == 0)
11379 evexlig = evexl128;
11380 else if (strcmp (arg, "256") == 0)
11381 evexlig = evexl256;
11382 else if (strcmp (arg, "512") == 0)
11383 evexlig = evexl512;
11384 else
11385 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11386 break;
11387
11388 case OPTION_MEVEXRCIG:
11389 if (strcmp (arg, "rne") == 0)
11390 evexrcig = rne;
11391 else if (strcmp (arg, "rd") == 0)
11392 evexrcig = rd;
11393 else if (strcmp (arg, "ru") == 0)
11394 evexrcig = ru;
11395 else if (strcmp (arg, "rz") == 0)
11396 evexrcig = rz;
11397 else
11398 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11399 break;
11400
11401 case OPTION_MEVEXWIG:
11402 if (strcmp (arg, "0") == 0)
11403 evexwig = evexw0;
11404 else if (strcmp (arg, "1") == 0)
11405 evexwig = evexw1;
11406 else
11407 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11408 break;
11409
11410 # if defined (TE_PE) || defined (TE_PEP)
11411 case OPTION_MBIG_OBJ:
11412 use_big_obj = 1;
11413 break;
11414 #endif
11415
11416 case OPTION_MOMIT_LOCK_PREFIX:
11417 if (strcasecmp (arg, "yes") == 0)
11418 omit_lock_prefix = 1;
11419 else if (strcasecmp (arg, "no") == 0)
11420 omit_lock_prefix = 0;
11421 else
11422 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11423 break;
11424
11425 case OPTION_MFENCE_AS_LOCK_ADD:
11426 if (strcasecmp (arg, "yes") == 0)
11427 avoid_fence = 1;
11428 else if (strcasecmp (arg, "no") == 0)
11429 avoid_fence = 0;
11430 else
11431 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11432 break;
11433
11434 case OPTION_MRELAX_RELOCATIONS:
11435 if (strcasecmp (arg, "yes") == 0)
11436 generate_relax_relocations = 1;
11437 else if (strcasecmp (arg, "no") == 0)
11438 generate_relax_relocations = 0;
11439 else
11440 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11441 break;
11442
11443 case OPTION_MAMD64:
11444 intel64 = 0;
11445 break;
11446
11447 case OPTION_MINTEL64:
11448 intel64 = 1;
11449 break;
11450
11451 case 'O':
11452 if (arg == NULL)
11453 {
11454 optimize = 1;
11455 /* Turn off -Os. */
11456 optimize_for_space = 0;
11457 }
11458 else if (*arg == 's')
11459 {
11460 optimize_for_space = 1;
11461 /* Turn on all encoding optimizations. */
11462 optimize = INT_MAX;
11463 }
11464 else
11465 {
11466 optimize = atoi (arg);
11467 /* Turn off -Os. */
11468 optimize_for_space = 0;
11469 }
11470 break;
11471
11472 default:
11473 return 0;
11474 }
11475 return 1;
11476 }
11477
11478 #define MESSAGE_TEMPLATE \
11479 " "
11480
11481 static char *
11482 output_message (FILE *stream, char *p, char *message, char *start,
11483 int *left_p, const char *name, int len)
11484 {
11485 int size = sizeof (MESSAGE_TEMPLATE);
11486 int left = *left_p;
11487
11488 /* Reserve 2 spaces for ", " or ",\0" */
11489 left -= len + 2;
11490
11491 /* Check if there is any room. */
11492 if (left >= 0)
11493 {
11494 if (p != start)
11495 {
11496 *p++ = ',';
11497 *p++ = ' ';
11498 }
11499 p = mempcpy (p, name, len);
11500 }
11501 else
11502 {
11503 /* Output the current message now and start a new one. */
11504 *p++ = ',';
11505 *p = '\0';
11506 fprintf (stream, "%s\n", message);
11507 p = start;
11508 left = size - (start - message) - len - 2;
11509
11510 gas_assert (left >= 0);
11511
11512 p = mempcpy (p, name, len);
11513 }
11514
11515 *left_p = left;
11516 return p;
11517 }
11518
11519 static void
11520 show_arch (FILE *stream, int ext, int check)
11521 {
11522 static char message[] = MESSAGE_TEMPLATE;
11523 char *start = message + 27;
11524 char *p;
11525 int size = sizeof (MESSAGE_TEMPLATE);
11526 int left;
11527 const char *name;
11528 int len;
11529 unsigned int j;
11530
11531 p = start;
11532 left = size - (start - message);
11533 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11534 {
11535 /* Should it be skipped? */
11536 if (cpu_arch [j].skip)
11537 continue;
11538
11539 name = cpu_arch [j].name;
11540 len = cpu_arch [j].len;
11541 if (*name == '.')
11542 {
11543 /* It is an extension. Skip if we aren't asked to show it. */
11544 if (ext)
11545 {
11546 name++;
11547 len--;
11548 }
11549 else
11550 continue;
11551 }
11552 else if (ext)
11553 {
11554 /* It is an processor. Skip if we show only extension. */
11555 continue;
11556 }
11557 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11558 {
11559 /* It is an impossible processor - skip. */
11560 continue;
11561 }
11562
11563 p = output_message (stream, p, message, start, &left, name, len);
11564 }
11565
11566 /* Display disabled extensions. */
11567 if (ext)
11568 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11569 {
11570 name = cpu_noarch [j].name;
11571 len = cpu_noarch [j].len;
11572 p = output_message (stream, p, message, start, &left, name,
11573 len);
11574 }
11575
11576 *p = '\0';
11577 fprintf (stream, "%s\n", message);
11578 }
11579
11580 void
11581 md_show_usage (FILE *stream)
11582 {
11583 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11584 fprintf (stream, _("\
11585 -Q ignored\n\
11586 -V print assembler version number\n\
11587 -k ignored\n"));
11588 #endif
11589 fprintf (stream, _("\
11590 -n Do not optimize code alignment\n\
11591 -q quieten some warnings\n"));
11592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11593 fprintf (stream, _("\
11594 -s ignored\n"));
11595 #endif
11596 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11597 || defined (TE_PE) || defined (TE_PEP))
11598 fprintf (stream, _("\
11599 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11600 #endif
11601 #ifdef SVR4_COMMENT_CHARS
11602 fprintf (stream, _("\
11603 --divide do not treat `/' as a comment character\n"));
11604 #else
11605 fprintf (stream, _("\
11606 --divide ignored\n"));
11607 #endif
11608 fprintf (stream, _("\
11609 -march=CPU[,+EXTENSION...]\n\
11610 generate code for CPU and EXTENSION, CPU is one of:\n"));
11611 show_arch (stream, 0, 1);
11612 fprintf (stream, _("\
11613 EXTENSION is combination of:\n"));
11614 show_arch (stream, 1, 0);
11615 fprintf (stream, _("\
11616 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11617 show_arch (stream, 0, 0);
11618 fprintf (stream, _("\
11619 -msse2avx encode SSE instructions with VEX prefix\n"));
11620 fprintf (stream, _("\
11621 -msse-check=[none|error|warning] (default: warning)\n\
11622 check SSE instructions\n"));
11623 fprintf (stream, _("\
11624 -moperand-check=[none|error|warning] (default: warning)\n\
11625 check operand combinations for validity\n"));
11626 fprintf (stream, _("\
11627 -mavxscalar=[128|256] (default: 128)\n\
11628 encode scalar AVX instructions with specific vector\n\
11629 length\n"));
11630 fprintf (stream, _("\
11631 -mvexwig=[0|1] (default: 0)\n\
11632 encode VEX instructions with specific VEX.W value\n\
11633 for VEX.W bit ignored instructions\n"));
11634 fprintf (stream, _("\
11635 -mevexlig=[128|256|512] (default: 128)\n\
11636 encode scalar EVEX instructions with specific vector\n\
11637 length\n"));
11638 fprintf (stream, _("\
11639 -mevexwig=[0|1] (default: 0)\n\
11640 encode EVEX instructions with specific EVEX.W value\n\
11641 for EVEX.W bit ignored instructions\n"));
11642 fprintf (stream, _("\
11643 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11644 encode EVEX instructions with specific EVEX.RC value\n\
11645 for SAE-only ignored instructions\n"));
11646 fprintf (stream, _("\
11647 -mmnemonic=[att|intel] "));
11648 if (SYSV386_COMPAT)
11649 fprintf (stream, _("(default: att)\n"));
11650 else
11651 fprintf (stream, _("(default: intel)\n"));
11652 fprintf (stream, _("\
11653 use AT&T/Intel mnemonic\n"));
11654 fprintf (stream, _("\
11655 -msyntax=[att|intel] (default: att)\n\
11656 use AT&T/Intel syntax\n"));
11657 fprintf (stream, _("\
11658 -mindex-reg support pseudo index registers\n"));
11659 fprintf (stream, _("\
11660 -mnaked-reg don't require `%%' prefix for registers\n"));
11661 fprintf (stream, _("\
11662 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11663 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11664 fprintf (stream, _("\
11665 -mshared disable branch optimization for shared code\n"));
11666 fprintf (stream, _("\
11667 -mx86-used-note=[no|yes] "));
11668 if (DEFAULT_X86_USED_NOTE)
11669 fprintf (stream, _("(default: yes)\n"));
11670 else
11671 fprintf (stream, _("(default: no)\n"));
11672 fprintf (stream, _("\
11673 generate x86 used ISA and feature properties\n"));
11674 #endif
11675 #if defined (TE_PE) || defined (TE_PEP)
11676 fprintf (stream, _("\
11677 -mbig-obj generate big object files\n"));
11678 #endif
11679 fprintf (stream, _("\
11680 -momit-lock-prefix=[no|yes] (default: no)\n\
11681 strip all lock prefixes\n"));
11682 fprintf (stream, _("\
11683 -mfence-as-lock-add=[no|yes] (default: no)\n\
11684 encode lfence, mfence and sfence as\n\
11685 lock addl $0x0, (%%{re}sp)\n"));
11686 fprintf (stream, _("\
11687 -mrelax-relocations=[no|yes] "));
11688 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11689 fprintf (stream, _("(default: yes)\n"));
11690 else
11691 fprintf (stream, _("(default: no)\n"));
11692 fprintf (stream, _("\
11693 generate relax relocations\n"));
11694 fprintf (stream, _("\
11695 -mamd64 accept only AMD64 ISA [default]\n"));
11696 fprintf (stream, _("\
11697 -mintel64 accept only Intel64 ISA\n"));
11698 }
11699
11700 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11701 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11702 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11703
11704 /* Pick the target format to use. */
11705
11706 const char *
11707 i386_target_format (void)
11708 {
11709 if (!strncmp (default_arch, "x86_64", 6))
11710 {
11711 update_code_flag (CODE_64BIT, 1);
11712 if (default_arch[6] == '\0')
11713 x86_elf_abi = X86_64_ABI;
11714 else
11715 x86_elf_abi = X86_64_X32_ABI;
11716 }
11717 else if (!strcmp (default_arch, "i386"))
11718 update_code_flag (CODE_32BIT, 1);
11719 else if (!strcmp (default_arch, "iamcu"))
11720 {
11721 update_code_flag (CODE_32BIT, 1);
11722 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11723 {
11724 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11725 cpu_arch_name = "iamcu";
11726 cpu_sub_arch_name = NULL;
11727 cpu_arch_flags = iamcu_flags;
11728 cpu_arch_isa = PROCESSOR_IAMCU;
11729 cpu_arch_isa_flags = iamcu_flags;
11730 if (!cpu_arch_tune_set)
11731 {
11732 cpu_arch_tune = cpu_arch_isa;
11733 cpu_arch_tune_flags = cpu_arch_isa_flags;
11734 }
11735 }
11736 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11737 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11738 cpu_arch_name);
11739 }
11740 else
11741 as_fatal (_("unknown architecture"));
11742
11743 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11744 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11745 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11746 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11747
11748 switch (OUTPUT_FLAVOR)
11749 {
11750 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11751 case bfd_target_aout_flavour:
11752 return AOUT_TARGET_FORMAT;
11753 #endif
11754 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11755 # if defined (TE_PE) || defined (TE_PEP)
11756 case bfd_target_coff_flavour:
11757 if (flag_code == CODE_64BIT)
11758 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11759 else
11760 return "pe-i386";
11761 # elif defined (TE_GO32)
11762 case bfd_target_coff_flavour:
11763 return "coff-go32";
11764 # else
11765 case bfd_target_coff_flavour:
11766 return "coff-i386";
11767 # endif
11768 #endif
11769 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11770 case bfd_target_elf_flavour:
11771 {
11772 const char *format;
11773
11774 switch (x86_elf_abi)
11775 {
11776 default:
11777 format = ELF_TARGET_FORMAT;
11778 break;
11779 case X86_64_ABI:
11780 use_rela_relocations = 1;
11781 object_64bit = 1;
11782 format = ELF_TARGET_FORMAT64;
11783 break;
11784 case X86_64_X32_ABI:
11785 use_rela_relocations = 1;
11786 object_64bit = 1;
11787 disallow_64bit_reloc = 1;
11788 format = ELF_TARGET_FORMAT32;
11789 break;
11790 }
11791 if (cpu_arch_isa == PROCESSOR_L1OM)
11792 {
11793 if (x86_elf_abi != X86_64_ABI)
11794 as_fatal (_("Intel L1OM is 64bit only"));
11795 return ELF_TARGET_L1OM_FORMAT;
11796 }
11797 else if (cpu_arch_isa == PROCESSOR_K1OM)
11798 {
11799 if (x86_elf_abi != X86_64_ABI)
11800 as_fatal (_("Intel K1OM is 64bit only"));
11801 return ELF_TARGET_K1OM_FORMAT;
11802 }
11803 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11804 {
11805 if (x86_elf_abi != I386_ABI)
11806 as_fatal (_("Intel MCU is 32bit only"));
11807 return ELF_TARGET_IAMCU_FORMAT;
11808 }
11809 else
11810 return format;
11811 }
11812 #endif
11813 #if defined (OBJ_MACH_O)
11814 case bfd_target_mach_o_flavour:
11815 if (flag_code == CODE_64BIT)
11816 {
11817 use_rela_relocations = 1;
11818 object_64bit = 1;
11819 return "mach-o-x86-64";
11820 }
11821 else
11822 return "mach-o-i386";
11823 #endif
11824 default:
11825 abort ();
11826 return NULL;
11827 }
11828 }
11829
11830 #endif /* OBJ_MAYBE_ more than one */
11831 \f
11832 symbolS *
11833 md_undefined_symbol (char *name)
11834 {
11835 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11836 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11837 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11838 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11839 {
11840 if (!GOT_symbol)
11841 {
11842 if (symbol_find (name))
11843 as_bad (_("GOT already in symbol table"));
11844 GOT_symbol = symbol_new (name, undefined_section,
11845 (valueT) 0, &zero_address_frag);
11846 };
11847 return GOT_symbol;
11848 }
11849 return 0;
11850 }
11851
11852 /* Round up a section size to the appropriate boundary. */
11853
11854 valueT
11855 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11856 {
11857 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11858 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11859 {
11860 /* For a.out, force the section size to be aligned. If we don't do
11861 this, BFD will align it for us, but it will not write out the
11862 final bytes of the section. This may be a bug in BFD, but it is
11863 easier to fix it here since that is how the other a.out targets
11864 work. */
11865 int align;
11866
11867 align = bfd_get_section_alignment (stdoutput, segment);
11868 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11869 }
11870 #endif
11871
11872 return size;
11873 }
11874
11875 /* On the i386, PC-relative offsets are relative to the start of the
11876 next instruction. That is, the address of the offset, plus its
11877 size, since the offset is always the last part of the insn. */
11878
11879 long
11880 md_pcrel_from (fixS *fixP)
11881 {
11882 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11883 }
11884
11885 #ifndef I386COFF
11886
11887 static void
11888 s_bss (int ignore ATTRIBUTE_UNUSED)
11889 {
11890 int temp;
11891
11892 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11893 if (IS_ELF)
11894 obj_elf_section_change_hook ();
11895 #endif
11896 temp = get_absolute_expression ();
11897 subseg_set (bss_section, (subsegT) temp);
11898 demand_empty_rest_of_line ();
11899 }
11900
11901 #endif
11902
11903 void
11904 i386_validate_fix (fixS *fixp)
11905 {
11906 if (fixp->fx_subsy)
11907 {
11908 if (fixp->fx_subsy == GOT_symbol)
11909 {
11910 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11911 {
11912 if (!object_64bit)
11913 abort ();
11914 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11915 if (fixp->fx_tcbit2)
11916 fixp->fx_r_type = (fixp->fx_tcbit
11917 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11918 : BFD_RELOC_X86_64_GOTPCRELX);
11919 else
11920 #endif
11921 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11922 }
11923 else
11924 {
11925 if (!object_64bit)
11926 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11927 else
11928 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11929 }
11930 fixp->fx_subsy = 0;
11931 }
11932 }
11933 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11934 else if (!object_64bit)
11935 {
11936 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11937 && fixp->fx_tcbit2)
11938 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11939 }
11940 #endif
11941 }
11942
11943 arelent *
11944 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11945 {
11946 arelent *rel;
11947 bfd_reloc_code_real_type code;
11948
11949 switch (fixp->fx_r_type)
11950 {
11951 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11952 case BFD_RELOC_SIZE32:
11953 case BFD_RELOC_SIZE64:
11954 if (S_IS_DEFINED (fixp->fx_addsy)
11955 && !S_IS_EXTERNAL (fixp->fx_addsy))
11956 {
11957 /* Resolve size relocation against local symbol to size of
11958 the symbol plus addend. */
11959 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11960 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11961 && !fits_in_unsigned_long (value))
11962 as_bad_where (fixp->fx_file, fixp->fx_line,
11963 _("symbol size computation overflow"));
11964 fixp->fx_addsy = NULL;
11965 fixp->fx_subsy = NULL;
11966 md_apply_fix (fixp, (valueT *) &value, NULL);
11967 return NULL;
11968 }
11969 #endif
11970 /* Fall through. */
11971
11972 case BFD_RELOC_X86_64_PLT32:
11973 case BFD_RELOC_X86_64_GOT32:
11974 case BFD_RELOC_X86_64_GOTPCREL:
11975 case BFD_RELOC_X86_64_GOTPCRELX:
11976 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11977 case BFD_RELOC_386_PLT32:
11978 case BFD_RELOC_386_GOT32:
11979 case BFD_RELOC_386_GOT32X:
11980 case BFD_RELOC_386_GOTOFF:
11981 case BFD_RELOC_386_GOTPC:
11982 case BFD_RELOC_386_TLS_GD:
11983 case BFD_RELOC_386_TLS_LDM:
11984 case BFD_RELOC_386_TLS_LDO_32:
11985 case BFD_RELOC_386_TLS_IE_32:
11986 case BFD_RELOC_386_TLS_IE:
11987 case BFD_RELOC_386_TLS_GOTIE:
11988 case BFD_RELOC_386_TLS_LE_32:
11989 case BFD_RELOC_386_TLS_LE:
11990 case BFD_RELOC_386_TLS_GOTDESC:
11991 case BFD_RELOC_386_TLS_DESC_CALL:
11992 case BFD_RELOC_X86_64_TLSGD:
11993 case BFD_RELOC_X86_64_TLSLD:
11994 case BFD_RELOC_X86_64_DTPOFF32:
11995 case BFD_RELOC_X86_64_DTPOFF64:
11996 case BFD_RELOC_X86_64_GOTTPOFF:
11997 case BFD_RELOC_X86_64_TPOFF32:
11998 case BFD_RELOC_X86_64_TPOFF64:
11999 case BFD_RELOC_X86_64_GOTOFF64:
12000 case BFD_RELOC_X86_64_GOTPC32:
12001 case BFD_RELOC_X86_64_GOT64:
12002 case BFD_RELOC_X86_64_GOTPCREL64:
12003 case BFD_RELOC_X86_64_GOTPC64:
12004 case BFD_RELOC_X86_64_GOTPLT64:
12005 case BFD_RELOC_X86_64_PLTOFF64:
12006 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12007 case BFD_RELOC_X86_64_TLSDESC_CALL:
12008 case BFD_RELOC_RVA:
12009 case BFD_RELOC_VTABLE_ENTRY:
12010 case BFD_RELOC_VTABLE_INHERIT:
12011 #ifdef TE_PE
12012 case BFD_RELOC_32_SECREL:
12013 #endif
12014 code = fixp->fx_r_type;
12015 break;
12016 case BFD_RELOC_X86_64_32S:
12017 if (!fixp->fx_pcrel)
12018 {
12019 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12020 code = fixp->fx_r_type;
12021 break;
12022 }
12023 /* Fall through. */
12024 default:
12025 if (fixp->fx_pcrel)
12026 {
12027 switch (fixp->fx_size)
12028 {
12029 default:
12030 as_bad_where (fixp->fx_file, fixp->fx_line,
12031 _("can not do %d byte pc-relative relocation"),
12032 fixp->fx_size);
12033 code = BFD_RELOC_32_PCREL;
12034 break;
12035 case 1: code = BFD_RELOC_8_PCREL; break;
12036 case 2: code = BFD_RELOC_16_PCREL; break;
12037 case 4: code = BFD_RELOC_32_PCREL; break;
12038 #ifdef BFD64
12039 case 8: code = BFD_RELOC_64_PCREL; break;
12040 #endif
12041 }
12042 }
12043 else
12044 {
12045 switch (fixp->fx_size)
12046 {
12047 default:
12048 as_bad_where (fixp->fx_file, fixp->fx_line,
12049 _("can not do %d byte relocation"),
12050 fixp->fx_size);
12051 code = BFD_RELOC_32;
12052 break;
12053 case 1: code = BFD_RELOC_8; break;
12054 case 2: code = BFD_RELOC_16; break;
12055 case 4: code = BFD_RELOC_32; break;
12056 #ifdef BFD64
12057 case 8: code = BFD_RELOC_64; break;
12058 #endif
12059 }
12060 }
12061 break;
12062 }
12063
12064 if ((code == BFD_RELOC_32
12065 || code == BFD_RELOC_32_PCREL
12066 || code == BFD_RELOC_X86_64_32S)
12067 && GOT_symbol
12068 && fixp->fx_addsy == GOT_symbol)
12069 {
12070 if (!object_64bit)
12071 code = BFD_RELOC_386_GOTPC;
12072 else
12073 code = BFD_RELOC_X86_64_GOTPC32;
12074 }
12075 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12076 && GOT_symbol
12077 && fixp->fx_addsy == GOT_symbol)
12078 {
12079 code = BFD_RELOC_X86_64_GOTPC64;
12080 }
12081
12082 rel = XNEW (arelent);
12083 rel->sym_ptr_ptr = XNEW (asymbol *);
12084 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12085
12086 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12087
12088 if (!use_rela_relocations)
12089 {
12090 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12091 vtable entry to be used in the relocation's section offset. */
12092 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12093 rel->address = fixp->fx_offset;
12094 #if defined (OBJ_COFF) && defined (TE_PE)
12095 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12096 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12097 else
12098 #endif
12099 rel->addend = 0;
12100 }
12101 /* Use the rela in 64bit mode. */
12102 else
12103 {
12104 if (disallow_64bit_reloc)
12105 switch (code)
12106 {
12107 case BFD_RELOC_X86_64_DTPOFF64:
12108 case BFD_RELOC_X86_64_TPOFF64:
12109 case BFD_RELOC_64_PCREL:
12110 case BFD_RELOC_X86_64_GOTOFF64:
12111 case BFD_RELOC_X86_64_GOT64:
12112 case BFD_RELOC_X86_64_GOTPCREL64:
12113 case BFD_RELOC_X86_64_GOTPC64:
12114 case BFD_RELOC_X86_64_GOTPLT64:
12115 case BFD_RELOC_X86_64_PLTOFF64:
12116 as_bad_where (fixp->fx_file, fixp->fx_line,
12117 _("cannot represent relocation type %s in x32 mode"),
12118 bfd_get_reloc_code_name (code));
12119 break;
12120 default:
12121 break;
12122 }
12123
12124 if (!fixp->fx_pcrel)
12125 rel->addend = fixp->fx_offset;
12126 else
12127 switch (code)
12128 {
12129 case BFD_RELOC_X86_64_PLT32:
12130 case BFD_RELOC_X86_64_GOT32:
12131 case BFD_RELOC_X86_64_GOTPCREL:
12132 case BFD_RELOC_X86_64_GOTPCRELX:
12133 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12134 case BFD_RELOC_X86_64_TLSGD:
12135 case BFD_RELOC_X86_64_TLSLD:
12136 case BFD_RELOC_X86_64_GOTTPOFF:
12137 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12138 case BFD_RELOC_X86_64_TLSDESC_CALL:
12139 rel->addend = fixp->fx_offset - fixp->fx_size;
12140 break;
12141 default:
12142 rel->addend = (section->vma
12143 - fixp->fx_size
12144 + fixp->fx_addnumber
12145 + md_pcrel_from (fixp));
12146 break;
12147 }
12148 }
12149
12150 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12151 if (rel->howto == NULL)
12152 {
12153 as_bad_where (fixp->fx_file, fixp->fx_line,
12154 _("cannot represent relocation type %s"),
12155 bfd_get_reloc_code_name (code));
12156 /* Set howto to a garbage value so that we can keep going. */
12157 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12158 gas_assert (rel->howto != NULL);
12159 }
12160
12161 return rel;
12162 }
12163
12164 #include "tc-i386-intel.c"
12165
12166 void
12167 tc_x86_parse_to_dw2regnum (expressionS *exp)
12168 {
12169 int saved_naked_reg;
12170 char saved_register_dot;
12171
12172 saved_naked_reg = allow_naked_reg;
12173 allow_naked_reg = 1;
12174 saved_register_dot = register_chars['.'];
12175 register_chars['.'] = '.';
12176 allow_pseudo_reg = 1;
12177 expression_and_evaluate (exp);
12178 allow_pseudo_reg = 0;
12179 register_chars['.'] = saved_register_dot;
12180 allow_naked_reg = saved_naked_reg;
12181
12182 if (exp->X_op == O_register && exp->X_add_number >= 0)
12183 {
12184 if ((addressT) exp->X_add_number < i386_regtab_size)
12185 {
12186 exp->X_op = O_constant;
12187 exp->X_add_number = i386_regtab[exp->X_add_number]
12188 .dw2_regnum[flag_code >> 1];
12189 }
12190 else
12191 exp->X_op = O_illegal;
12192 }
12193 }
12194
12195 void
12196 tc_x86_frame_initial_instructions (void)
12197 {
12198 static unsigned int sp_regno[2];
12199
12200 if (!sp_regno[flag_code >> 1])
12201 {
12202 char *saved_input = input_line_pointer;
12203 char sp[][4] = {"esp", "rsp"};
12204 expressionS exp;
12205
12206 input_line_pointer = sp[flag_code >> 1];
12207 tc_x86_parse_to_dw2regnum (&exp);
12208 gas_assert (exp.X_op == O_constant);
12209 sp_regno[flag_code >> 1] = exp.X_add_number;
12210 input_line_pointer = saved_input;
12211 }
12212
12213 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12214 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12215 }
12216
12217 int
12218 x86_dwarf2_addr_size (void)
12219 {
12220 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12221 if (x86_elf_abi == X86_64_X32_ABI)
12222 return 4;
12223 #endif
12224 return bfd_arch_bits_per_address (stdoutput) / 8;
12225 }
12226
12227 int
12228 i386_elf_section_type (const char *str, size_t len)
12229 {
12230 if (flag_code == CODE_64BIT
12231 && len == sizeof ("unwind") - 1
12232 && strncmp (str, "unwind", 6) == 0)
12233 return SHT_X86_64_UNWIND;
12234
12235 return -1;
12236 }
12237
12238 #ifdef TE_SOLARIS
12239 void
12240 i386_solaris_fix_up_eh_frame (segT sec)
12241 {
12242 if (flag_code == CODE_64BIT)
12243 elf_section_type (sec) = SHT_X86_64_UNWIND;
12244 }
12245 #endif
12246
12247 #ifdef TE_PE
12248 void
12249 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12250 {
12251 expressionS exp;
12252
12253 exp.X_op = O_secrel;
12254 exp.X_add_symbol = symbol;
12255 exp.X_add_number = 0;
12256 emit_expr (&exp, size);
12257 }
12258 #endif
12259
12260 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12261 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12262
12263 bfd_vma
12264 x86_64_section_letter (int letter, const char **ptr_msg)
12265 {
12266 if (flag_code == CODE_64BIT)
12267 {
12268 if (letter == 'l')
12269 return SHF_X86_64_LARGE;
12270
12271 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12272 }
12273 else
12274 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12275 return -1;
12276 }
12277
12278 bfd_vma
12279 x86_64_section_word (char *str, size_t len)
12280 {
12281 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12282 return SHF_X86_64_LARGE;
12283
12284 return -1;
12285 }
12286
12287 static void
12288 handle_large_common (int small ATTRIBUTE_UNUSED)
12289 {
12290 if (flag_code != CODE_64BIT)
12291 {
12292 s_comm_internal (0, elf_common_parse);
12293 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12294 }
12295 else
12296 {
12297 static segT lbss_section;
12298 asection *saved_com_section_ptr = elf_com_section_ptr;
12299 asection *saved_bss_section = bss_section;
12300
12301 if (lbss_section == NULL)
12302 {
12303 flagword applicable;
12304 segT seg = now_seg;
12305 subsegT subseg = now_subseg;
12306
12307 /* The .lbss section is for local .largecomm symbols. */
12308 lbss_section = subseg_new (".lbss", 0);
12309 applicable = bfd_applicable_section_flags (stdoutput);
12310 bfd_set_section_flags (stdoutput, lbss_section,
12311 applicable & SEC_ALLOC);
12312 seg_info (lbss_section)->bss = 1;
12313
12314 subseg_set (seg, subseg);
12315 }
12316
12317 elf_com_section_ptr = &_bfd_elf_large_com_section;
12318 bss_section = lbss_section;
12319
12320 s_comm_internal (0, elf_common_parse);
12321
12322 elf_com_section_ptr = saved_com_section_ptr;
12323 bss_section = saved_bss_section;
12324 }
12325 }
12326 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.26164 seconds and 5 git commands to generate.