Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && ((CPU) != CPU_GS464 \
426 || (CPU) != CPU_GS464E \
427 || (CPU) != CPU_GS264E))
428
429 /* Return true if ISA supports move to/from high part of a 64-bit
430 floating-point register. */
431 #define ISA_HAS_MXHC1(ISA) \
432 ((ISA) == ISA_MIPS32R2 \
433 || (ISA) == ISA_MIPS32R3 \
434 || (ISA) == ISA_MIPS32R5 \
435 || (ISA) == ISA_MIPS32R6 \
436 || (ISA) == ISA_MIPS64R2 \
437 || (ISA) == ISA_MIPS64R3 \
438 || (ISA) == ISA_MIPS64R5 \
439 || (ISA) == ISA_MIPS64R6)
440
441 /* Return true if ISA supports legacy NAN. */
442 #define ISA_HAS_LEGACY_NAN(ISA) \
443 ((ISA) == ISA_MIPS1 \
444 || (ISA) == ISA_MIPS2 \
445 || (ISA) == ISA_MIPS3 \
446 || (ISA) == ISA_MIPS4 \
447 || (ISA) == ISA_MIPS5 \
448 || (ISA) == ISA_MIPS32 \
449 || (ISA) == ISA_MIPS32R2 \
450 || (ISA) == ISA_MIPS32R3 \
451 || (ISA) == ISA_MIPS32R5 \
452 || (ISA) == ISA_MIPS64 \
453 || (ISA) == ISA_MIPS64R2 \
454 || (ISA) == ISA_MIPS64R3 \
455 || (ISA) == ISA_MIPS64R5)
456
457 #define GPR_SIZE \
458 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
459 ? 32 \
460 : mips_opts.gp)
461
462 #define FPR_SIZE \
463 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
464 ? 32 \
465 : mips_opts.fp)
466
467 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
468
469 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
470
471 /* True if relocations are stored in-place. */
472 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
473
474 /* The ABI-derived address size. */
475 #define HAVE_64BIT_ADDRESSES \
476 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
477 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
478
479 /* The size of symbolic constants (i.e., expressions of the form
480 "SYMBOL" or "SYMBOL + OFFSET"). */
481 #define HAVE_32BIT_SYMBOLS \
482 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
483 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
484
485 /* Addresses are loaded in different ways, depending on the address size
486 in use. The n32 ABI Documentation also mandates the use of additions
487 with overflow checking, but existing implementations don't follow it. */
488 #define ADDRESS_ADD_INSN \
489 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
490
491 #define ADDRESS_ADDI_INSN \
492 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
493
494 #define ADDRESS_LOAD_INSN \
495 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
496
497 #define ADDRESS_STORE_INSN \
498 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
499
500 /* Return true if the given CPU supports the MIPS16 ASE. */
501 #define CPU_HAS_MIPS16(cpu) \
502 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
503 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
504
505 /* Return true if the given CPU supports the microMIPS ASE. */
506 #define CPU_HAS_MICROMIPS(cpu) 0
507
508 /* True if CPU has a dror instruction. */
509 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
510
511 /* True if CPU has a ror instruction. */
512 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
513
514 /* True if CPU is in the Octeon family */
515 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
516 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
517
518 /* True if CPU has seq/sne and seqi/snei instructions. */
519 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
520
521 /* True, if CPU has support for ldc1 and sdc1. */
522 #define CPU_HAS_LDC1_SDC1(CPU) \
523 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
524
525 /* True if mflo and mfhi can be immediately followed by instructions
526 which write to the HI and LO registers.
527
528 According to MIPS specifications, MIPS ISAs I, II, and III need
529 (at least) two instructions between the reads of HI/LO and
530 instructions which write them, and later ISAs do not. Contradicting
531 the MIPS specifications, some MIPS IV processor user manuals (e.g.
532 the UM for the NEC Vr5000) document needing the instructions between
533 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
534 MIPS64 and later ISAs to have the interlocks, plus any specific
535 earlier-ISA CPUs for which CPU documentation declares that the
536 instructions are really interlocked. */
537 #define hilo_interlocks \
538 (mips_opts.isa == ISA_MIPS32 \
539 || mips_opts.isa == ISA_MIPS32R2 \
540 || mips_opts.isa == ISA_MIPS32R3 \
541 || mips_opts.isa == ISA_MIPS32R5 \
542 || mips_opts.isa == ISA_MIPS32R6 \
543 || mips_opts.isa == ISA_MIPS64 \
544 || mips_opts.isa == ISA_MIPS64R2 \
545 || mips_opts.isa == ISA_MIPS64R3 \
546 || mips_opts.isa == ISA_MIPS64R5 \
547 || mips_opts.isa == ISA_MIPS64R6 \
548 || mips_opts.arch == CPU_R4010 \
549 || mips_opts.arch == CPU_R5900 \
550 || mips_opts.arch == CPU_R10000 \
551 || mips_opts.arch == CPU_R12000 \
552 || mips_opts.arch == CPU_R14000 \
553 || mips_opts.arch == CPU_R16000 \
554 || mips_opts.arch == CPU_RM7000 \
555 || mips_opts.arch == CPU_VR5500 \
556 || mips_opts.micromips \
557 )
558
559 /* Whether the processor uses hardware interlocks to protect reads
560 from the GPRs after they are loaded from memory, and thus does not
561 require nops to be inserted. This applies to instructions marked
562 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
563 level I and microMIPS mode instructions are always interlocked. */
564 #define gpr_interlocks \
565 (mips_opts.isa != ISA_MIPS1 \
566 || mips_opts.arch == CPU_R3900 \
567 || mips_opts.arch == CPU_R5900 \
568 || mips_opts.micromips \
569 )
570
571 /* Whether the processor uses hardware interlocks to avoid delays
572 required by coprocessor instructions, and thus does not require
573 nops to be inserted. This applies to instructions marked
574 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
575 instructions marked INSN_WRITE_COND_CODE and ones marked
576 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
577 levels I, II, and III and microMIPS mode instructions are always
578 interlocked. */
579 /* Itbl support may require additional care here. */
580 #define cop_interlocks \
581 ((mips_opts.isa != ISA_MIPS1 \
582 && mips_opts.isa != ISA_MIPS2 \
583 && mips_opts.isa != ISA_MIPS3) \
584 || mips_opts.arch == CPU_R4300 \
585 || mips_opts.micromips \
586 )
587
588 /* Whether the processor uses hardware interlocks to protect reads
589 from coprocessor registers after they are loaded from memory, and
590 thus does not require nops to be inserted. This applies to
591 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
592 requires at MIPS ISA level I and microMIPS mode instructions are
593 always interlocked. */
594 #define cop_mem_interlocks \
595 (mips_opts.isa != ISA_MIPS1 \
596 || mips_opts.micromips \
597 )
598
599 /* Is this a mfhi or mflo instruction? */
600 #define MF_HILO_INSN(PINFO) \
601 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
602
603 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
604 has been selected. This implies, in particular, that addresses of text
605 labels have their LSB set. */
606 #define HAVE_CODE_COMPRESSION \
607 ((mips_opts.mips16 | mips_opts.micromips) != 0)
608
609 /* The minimum and maximum signed values that can be stored in a GPR. */
610 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
611 #define GPR_SMIN (-GPR_SMAX - 1)
612
613 /* MIPS PIC level. */
614
615 enum mips_pic_level mips_pic;
616
617 /* 1 if we should generate 32 bit offsets from the $gp register in
618 SVR4_PIC mode. Currently has no meaning in other modes. */
619 static int mips_big_got = 0;
620
621 /* 1 if trap instructions should used for overflow rather than break
622 instructions. */
623 static int mips_trap = 0;
624
625 /* 1 if double width floating point constants should not be constructed
626 by assembling two single width halves into two single width floating
627 point registers which just happen to alias the double width destination
628 register. On some architectures this aliasing can be disabled by a bit
629 in the status register, and the setting of this bit cannot be determined
630 automatically at assemble time. */
631 static int mips_disable_float_construction;
632
633 /* Non-zero if any .set noreorder directives were used. */
634
635 static int mips_any_noreorder;
636
637 /* Non-zero if nops should be inserted when the register referenced in
638 an mfhi/mflo instruction is read in the next two instructions. */
639 static int mips_7000_hilo_fix;
640
641 /* The size of objects in the small data section. */
642 static unsigned int g_switch_value = 8;
643 /* Whether the -G option was used. */
644 static int g_switch_seen = 0;
645
646 #define N_RMASK 0xc4
647 #define N_VFP 0xd4
648
649 /* If we can determine in advance that GP optimization won't be
650 possible, we can skip the relaxation stuff that tries to produce
651 GP-relative references. This makes delay slot optimization work
652 better.
653
654 This function can only provide a guess, but it seems to work for
655 gcc output. It needs to guess right for gcc, otherwise gcc
656 will put what it thinks is a GP-relative instruction in a branch
657 delay slot.
658
659 I don't know if a fix is needed for the SVR4_PIC mode. I've only
660 fixed it for the non-PIC mode. KR 95/04/07 */
661 static int nopic_need_relax (symbolS *, int);
662
663 /* handle of the OPCODE hash table */
664 static struct hash_control *op_hash = NULL;
665
666 /* The opcode hash table we use for the mips16. */
667 static struct hash_control *mips16_op_hash = NULL;
668
669 /* The opcode hash table we use for the microMIPS ASE. */
670 static struct hash_control *micromips_op_hash = NULL;
671
672 /* This array holds the chars that always start a comment. If the
673 pre-processor is disabled, these aren't very useful */
674 const char comment_chars[] = "#";
675
676 /* This array holds the chars that only start a comment at the beginning of
677 a line. If the line seems to have the form '# 123 filename'
678 .line and .file directives will appear in the pre-processed output */
679 /* Note that input_file.c hand checks for '#' at the beginning of the
680 first line of the input file. This is because the compiler outputs
681 #NO_APP at the beginning of its output. */
682 /* Also note that C style comments are always supported. */
683 const char line_comment_chars[] = "#";
684
685 /* This array holds machine specific line separator characters. */
686 const char line_separator_chars[] = ";";
687
688 /* Chars that can be used to separate mant from exp in floating point nums */
689 const char EXP_CHARS[] = "eE";
690
691 /* Chars that mean this number is a floating point constant */
692 /* As in 0f12.456 */
693 /* or 0d1.2345e12 */
694 const char FLT_CHARS[] = "rRsSfFdDxXpP";
695
696 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
697 changed in read.c . Ideally it shouldn't have to know about it at all,
698 but nothing is ideal around here.
699 */
700
701 /* Types of printf format used for instruction-related error messages.
702 "I" means int ("%d") and "S" means string ("%s"). */
703 enum mips_insn_error_format {
704 ERR_FMT_PLAIN,
705 ERR_FMT_I,
706 ERR_FMT_SS,
707 };
708
709 /* Information about an error that was found while assembling the current
710 instruction. */
711 struct mips_insn_error {
712 /* We sometimes need to match an instruction against more than one
713 opcode table entry. Errors found during this matching are reported
714 against a particular syntactic argument rather than against the
715 instruction as a whole. We grade these messages so that errors
716 against argument N have a greater priority than an error against
717 any argument < N, since the former implies that arguments up to N
718 were acceptable and that the opcode entry was therefore a closer match.
719 If several matches report an error against the same argument,
720 we only use that error if it is the same in all cases.
721
722 min_argnum is the minimum argument number for which an error message
723 should be accepted. It is 0 if MSG is against the instruction as
724 a whole. */
725 int min_argnum;
726
727 /* The printf()-style message, including its format and arguments. */
728 enum mips_insn_error_format format;
729 const char *msg;
730 union {
731 int i;
732 const char *ss[2];
733 } u;
734 };
735
736 /* The error that should be reported for the current instruction. */
737 static struct mips_insn_error insn_error;
738
739 static int auto_align = 1;
740
741 /* When outputting SVR4 PIC code, the assembler needs to know the
742 offset in the stack frame from which to restore the $gp register.
743 This is set by the .cprestore pseudo-op, and saved in this
744 variable. */
745 static offsetT mips_cprestore_offset = -1;
746
747 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
748 more optimizations, it can use a register value instead of a memory-saved
749 offset and even an other register than $gp as global pointer. */
750 static offsetT mips_cpreturn_offset = -1;
751 static int mips_cpreturn_register = -1;
752 static int mips_gp_register = GP;
753 static int mips_gprel_offset = 0;
754
755 /* Whether mips_cprestore_offset has been set in the current function
756 (or whether it has already been warned about, if not). */
757 static int mips_cprestore_valid = 0;
758
759 /* This is the register which holds the stack frame, as set by the
760 .frame pseudo-op. This is needed to implement .cprestore. */
761 static int mips_frame_reg = SP;
762
763 /* Whether mips_frame_reg has been set in the current function
764 (or whether it has already been warned about, if not). */
765 static int mips_frame_reg_valid = 0;
766
767 /* To output NOP instructions correctly, we need to keep information
768 about the previous two instructions. */
769
770 /* Whether we are optimizing. The default value of 2 means to remove
771 unneeded NOPs and swap branch instructions when possible. A value
772 of 1 means to not swap branches. A value of 0 means to always
773 insert NOPs. */
774 static int mips_optimize = 2;
775
776 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
777 equivalent to seeing no -g option at all. */
778 static int mips_debug = 0;
779
780 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
781 #define MAX_VR4130_NOPS 4
782
783 /* The maximum number of NOPs needed to fill delay slots. */
784 #define MAX_DELAY_NOPS 2
785
786 /* The maximum number of NOPs needed for any purpose. */
787 #define MAX_NOPS 4
788
789 /* A list of previous instructions, with index 0 being the most recent.
790 We need to look back MAX_NOPS instructions when filling delay slots
791 or working around processor errata. We need to look back one
792 instruction further if we're thinking about using history[0] to
793 fill a branch delay slot. */
794 static struct mips_cl_insn history[1 + MAX_NOPS];
795
796 /* Arrays of operands for each instruction. */
797 #define MAX_OPERANDS 6
798 struct mips_operand_array {
799 const struct mips_operand *operand[MAX_OPERANDS];
800 };
801 static struct mips_operand_array *mips_operands;
802 static struct mips_operand_array *mips16_operands;
803 static struct mips_operand_array *micromips_operands;
804
805 /* Nop instructions used by emit_nop. */
806 static struct mips_cl_insn nop_insn;
807 static struct mips_cl_insn mips16_nop_insn;
808 static struct mips_cl_insn micromips_nop16_insn;
809 static struct mips_cl_insn micromips_nop32_insn;
810
811 /* The appropriate nop for the current mode. */
812 #define NOP_INSN (mips_opts.mips16 \
813 ? &mips16_nop_insn \
814 : (mips_opts.micromips \
815 ? (mips_opts.insn32 \
816 ? &micromips_nop32_insn \
817 : &micromips_nop16_insn) \
818 : &nop_insn))
819
820 /* The size of NOP_INSN in bytes. */
821 #define NOP_INSN_SIZE ((mips_opts.mips16 \
822 || (mips_opts.micromips && !mips_opts.insn32)) \
823 ? 2 : 4)
824
825 /* If this is set, it points to a frag holding nop instructions which
826 were inserted before the start of a noreorder section. If those
827 nops turn out to be unnecessary, the size of the frag can be
828 decreased. */
829 static fragS *prev_nop_frag;
830
831 /* The number of nop instructions we created in prev_nop_frag. */
832 static int prev_nop_frag_holds;
833
834 /* The number of nop instructions that we know we need in
835 prev_nop_frag. */
836 static int prev_nop_frag_required;
837
838 /* The number of instructions we've seen since prev_nop_frag. */
839 static int prev_nop_frag_since;
840
841 /* Relocations against symbols are sometimes done in two parts, with a HI
842 relocation and a LO relocation. Each relocation has only 16 bits of
843 space to store an addend. This means that in order for the linker to
844 handle carries correctly, it must be able to locate both the HI and
845 the LO relocation. This means that the relocations must appear in
846 order in the relocation table.
847
848 In order to implement this, we keep track of each unmatched HI
849 relocation. We then sort them so that they immediately precede the
850 corresponding LO relocation. */
851
852 struct mips_hi_fixup
853 {
854 /* Next HI fixup. */
855 struct mips_hi_fixup *next;
856 /* This fixup. */
857 fixS *fixp;
858 /* The section this fixup is in. */
859 segT seg;
860 };
861
862 /* The list of unmatched HI relocs. */
863
864 static struct mips_hi_fixup *mips_hi_fixup_list;
865
866 /* The frag containing the last explicit relocation operator.
867 Null if explicit relocations have not been used. */
868
869 static fragS *prev_reloc_op_frag;
870
871 /* Map mips16 register numbers to normal MIPS register numbers. */
872
873 static const unsigned int mips16_to_32_reg_map[] =
874 {
875 16, 17, 2, 3, 4, 5, 6, 7
876 };
877
878 /* Map microMIPS register numbers to normal MIPS register numbers. */
879
880 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
881
882 /* The microMIPS registers with type h. */
883 static const unsigned int micromips_to_32_reg_h_map1[] =
884 {
885 5, 5, 6, 4, 4, 4, 4, 4
886 };
887 static const unsigned int micromips_to_32_reg_h_map2[] =
888 {
889 6, 7, 7, 21, 22, 5, 6, 7
890 };
891
892 /* The microMIPS registers with type m. */
893 static const unsigned int micromips_to_32_reg_m_map[] =
894 {
895 0, 17, 2, 3, 16, 18, 19, 20
896 };
897
898 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
899
900 /* Classifies the kind of instructions we're interested in when
901 implementing -mfix-vr4120. */
902 enum fix_vr4120_class
903 {
904 FIX_VR4120_MACC,
905 FIX_VR4120_DMACC,
906 FIX_VR4120_MULT,
907 FIX_VR4120_DMULT,
908 FIX_VR4120_DIV,
909 FIX_VR4120_MTHILO,
910 NUM_FIX_VR4120_CLASSES
911 };
912
913 /* ...likewise -mfix-loongson2f-jump. */
914 static bfd_boolean mips_fix_loongson2f_jump;
915
916 /* ...likewise -mfix-loongson2f-nop. */
917 static bfd_boolean mips_fix_loongson2f_nop;
918
919 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
920 static bfd_boolean mips_fix_loongson2f;
921
922 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
923 there must be at least one other instruction between an instruction
924 of type X and an instruction of type Y. */
925 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
926
927 /* True if -mfix-vr4120 is in force. */
928 static int mips_fix_vr4120;
929
930 /* ...likewise -mfix-vr4130. */
931 static int mips_fix_vr4130;
932
933 /* ...likewise -mfix-24k. */
934 static int mips_fix_24k;
935
936 /* ...likewise -mfix-rm7000 */
937 static int mips_fix_rm7000;
938
939 /* ...likewise -mfix-cn63xxp1 */
940 static bfd_boolean mips_fix_cn63xxp1;
941
942 /* ...likewise -mfix-r5900 */
943 static bfd_boolean mips_fix_r5900;
944 static bfd_boolean mips_fix_r5900_explicit;
945
946 /* We don't relax branches by default, since this causes us to expand
947 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
948 fail to compute the offset before expanding the macro to the most
949 efficient expansion. */
950
951 static int mips_relax_branch;
952
953 /* TRUE if checks are suppressed for invalid branches between ISA modes.
954 Needed for broken assembly produced by some GCC versions and some
955 sloppy code out there, where branches to data labels are present. */
956 static bfd_boolean mips_ignore_branch_isa;
957 \f
958 /* The expansion of many macros depends on the type of symbol that
959 they refer to. For example, when generating position-dependent code,
960 a macro that refers to a symbol may have two different expansions,
961 one which uses GP-relative addresses and one which uses absolute
962 addresses. When generating SVR4-style PIC, a macro may have
963 different expansions for local and global symbols.
964
965 We handle these situations by generating both sequences and putting
966 them in variant frags. In position-dependent code, the first sequence
967 will be the GP-relative one and the second sequence will be the
968 absolute one. In SVR4 PIC, the first sequence will be for global
969 symbols and the second will be for local symbols.
970
971 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
972 SECOND are the lengths of the two sequences in bytes. These fields
973 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
974 the subtype has the following flags:
975
976 RELAX_PIC
977 Set if generating PIC code.
978
979 RELAX_USE_SECOND
980 Set if it has been decided that we should use the second
981 sequence instead of the first.
982
983 RELAX_SECOND_LONGER
984 Set in the first variant frag if the macro's second implementation
985 is longer than its first. This refers to the macro as a whole,
986 not an individual relaxation.
987
988 RELAX_NOMACRO
989 Set in the first variant frag if the macro appeared in a .set nomacro
990 block and if one alternative requires a warning but the other does not.
991
992 RELAX_DELAY_SLOT
993 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
994 delay slot.
995
996 RELAX_DELAY_SLOT_16BIT
997 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
998 16-bit instruction.
999
1000 RELAX_DELAY_SLOT_SIZE_FIRST
1001 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
1002 the macro is of the wrong size for the branch delay slot.
1003
1004 RELAX_DELAY_SLOT_SIZE_SECOND
1005 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1006 the macro is of the wrong size for the branch delay slot.
1007
1008 The frag's "opcode" points to the first fixup for relaxable code.
1009
1010 Relaxable macros are generated using a sequence such as:
1011
1012 relax_start (SYMBOL);
1013 ... generate first expansion ...
1014 relax_switch ();
1015 ... generate second expansion ...
1016 relax_end ();
1017
1018 The code and fixups for the unwanted alternative are discarded
1019 by md_convert_frag. */
1020 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1021 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1022
1023 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1024 #define RELAX_SECOND(X) ((X) & 0xff)
1025 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1026 #define RELAX_USE_SECOND 0x20000
1027 #define RELAX_SECOND_LONGER 0x40000
1028 #define RELAX_NOMACRO 0x80000
1029 #define RELAX_DELAY_SLOT 0x100000
1030 #define RELAX_DELAY_SLOT_16BIT 0x200000
1031 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1032 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1033
1034 /* Branch without likely bit. If label is out of range, we turn:
1035
1036 beq reg1, reg2, label
1037 delay slot
1038
1039 into
1040
1041 bne reg1, reg2, 0f
1042 nop
1043 j label
1044 0: delay slot
1045
1046 with the following opcode replacements:
1047
1048 beq <-> bne
1049 blez <-> bgtz
1050 bltz <-> bgez
1051 bc1f <-> bc1t
1052
1053 bltzal <-> bgezal (with jal label instead of j label)
1054
1055 Even though keeping the delay slot instruction in the delay slot of
1056 the branch would be more efficient, it would be very tricky to do
1057 correctly, because we'd have to introduce a variable frag *after*
1058 the delay slot instruction, and expand that instead. Let's do it
1059 the easy way for now, even if the branch-not-taken case now costs
1060 one additional instruction. Out-of-range branches are not supposed
1061 to be common, anyway.
1062
1063 Branch likely. If label is out of range, we turn:
1064
1065 beql reg1, reg2, label
1066 delay slot (annulled if branch not taken)
1067
1068 into
1069
1070 beql reg1, reg2, 1f
1071 nop
1072 beql $0, $0, 2f
1073 nop
1074 1: j[al] label
1075 delay slot (executed only if branch taken)
1076 2:
1077
1078 It would be possible to generate a shorter sequence by losing the
1079 likely bit, generating something like:
1080
1081 bne reg1, reg2, 0f
1082 nop
1083 j[al] label
1084 delay slot (executed only if branch taken)
1085 0:
1086
1087 beql -> bne
1088 bnel -> beq
1089 blezl -> bgtz
1090 bgtzl -> blez
1091 bltzl -> bgez
1092 bgezl -> bltz
1093 bc1fl -> bc1t
1094 bc1tl -> bc1f
1095
1096 bltzall -> bgezal (with jal label instead of j label)
1097 bgezall -> bltzal (ditto)
1098
1099
1100 but it's not clear that it would actually improve performance. */
1101 #define RELAX_BRANCH_ENCODE(at, pic, \
1102 uncond, likely, link, toofar) \
1103 ((relax_substateT) \
1104 (0xc0000000 \
1105 | ((at) & 0x1f) \
1106 | ((pic) ? 0x20 : 0) \
1107 | ((toofar) ? 0x40 : 0) \
1108 | ((link) ? 0x80 : 0) \
1109 | ((likely) ? 0x100 : 0) \
1110 | ((uncond) ? 0x200 : 0)))
1111 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1112 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1113 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1114 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1115 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1116 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1117 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1118
1119 /* For mips16 code, we use an entirely different form of relaxation.
1120 mips16 supports two versions of most instructions which take
1121 immediate values: a small one which takes some small value, and a
1122 larger one which takes a 16 bit value. Since branches also follow
1123 this pattern, relaxing these values is required.
1124
1125 We can assemble both mips16 and normal MIPS code in a single
1126 object. Therefore, we need to support this type of relaxation at
1127 the same time that we support the relaxation described above. We
1128 use the high bit of the subtype field to distinguish these cases.
1129
1130 The information we store for this type of relaxation is the
1131 argument code found in the opcode file for this relocation, whether
1132 the user explicitly requested a small or extended form, and whether
1133 the relocation is in a jump or jal delay slot. That tells us the
1134 size of the value, and how it should be stored. We also store
1135 whether the fragment is considered to be extended or not. We also
1136 store whether this is known to be a branch to a different section,
1137 whether we have tried to relax this frag yet, and whether we have
1138 ever extended a PC relative fragment because of a shift count. */
1139 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1140 small, ext, \
1141 dslot, jal_dslot) \
1142 (0x80000000 \
1143 | ((type) & 0xff) \
1144 | ((e2) ? 0x100 : 0) \
1145 | ((pic) ? 0x200 : 0) \
1146 | ((sym32) ? 0x400 : 0) \
1147 | ((nomacro) ? 0x800 : 0) \
1148 | ((small) ? 0x1000 : 0) \
1149 | ((ext) ? 0x2000 : 0) \
1150 | ((dslot) ? 0x4000 : 0) \
1151 | ((jal_dslot) ? 0x8000 : 0))
1152
1153 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1154 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1155 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1156 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1157 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1158 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1159 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1160 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1161 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1162 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1163
1164 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1165 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1166 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1167 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1168 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1169 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1170 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1171 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1172 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1173
1174 /* For microMIPS code, we use relaxation similar to one we use for
1175 MIPS16 code. Some instructions that take immediate values support
1176 two encodings: a small one which takes some small value, and a
1177 larger one which takes a 16 bit value. As some branches also follow
1178 this pattern, relaxing these values is required.
1179
1180 We can assemble both microMIPS and normal MIPS code in a single
1181 object. Therefore, we need to support this type of relaxation at
1182 the same time that we support the relaxation described above. We
1183 use one of the high bits of the subtype field to distinguish these
1184 cases.
1185
1186 The information we store for this type of relaxation is the argument
1187 code found in the opcode file for this relocation, the register
1188 selected as the assembler temporary, whether in the 32-bit
1189 instruction mode, whether the branch is unconditional, whether it is
1190 compact, whether there is no delay-slot instruction available to fill
1191 in, whether it stores the link address implicitly in $ra, whether
1192 relaxation of out-of-range 32-bit branches to a sequence of
1193 instructions is enabled, and whether the displacement of a branch is
1194 too large to fit as an immediate argument of a 16-bit and a 32-bit
1195 branch, respectively. */
1196 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1197 uncond, compact, link, nods, \
1198 relax32, toofar16, toofar32) \
1199 (0x40000000 \
1200 | ((type) & 0xff) \
1201 | (((at) & 0x1f) << 8) \
1202 | ((insn32) ? 0x2000 : 0) \
1203 | ((pic) ? 0x4000 : 0) \
1204 | ((uncond) ? 0x8000 : 0) \
1205 | ((compact) ? 0x10000 : 0) \
1206 | ((link) ? 0x20000 : 0) \
1207 | ((nods) ? 0x40000 : 0) \
1208 | ((relax32) ? 0x80000 : 0) \
1209 | ((toofar16) ? 0x100000 : 0) \
1210 | ((toofar32) ? 0x200000 : 0))
1211 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1212 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1213 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1214 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1215 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1216 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1217 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1218 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1219 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1220 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1221
1222 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1223 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1224 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1225 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1226 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1227 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1228
1229 /* Sign-extend 16-bit value X. */
1230 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1231
1232 /* Is the given value a sign-extended 32-bit value? */
1233 #define IS_SEXT_32BIT_NUM(x) \
1234 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1235 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1236
1237 /* Is the given value a sign-extended 16-bit value? */
1238 #define IS_SEXT_16BIT_NUM(x) \
1239 (((x) &~ (offsetT) 0x7fff) == 0 \
1240 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1241
1242 /* Is the given value a sign-extended 12-bit value? */
1243 #define IS_SEXT_12BIT_NUM(x) \
1244 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1245
1246 /* Is the given value a sign-extended 9-bit value? */
1247 #define IS_SEXT_9BIT_NUM(x) \
1248 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1249
1250 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1251 #define IS_ZEXT_32BIT_NUM(x) \
1252 (((x) &~ (offsetT) 0xffffffff) == 0 \
1253 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1254
1255 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1256 SHIFT places. */
1257 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1258 (((STRUCT) >> (SHIFT)) & (MASK))
1259
1260 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1261 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1262 (!(MICROMIPS) \
1263 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1264 : EXTRACT_BITS ((INSN).insn_opcode, \
1265 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1266 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1267 EXTRACT_BITS ((INSN).insn_opcode, \
1268 MIPS16OP_MASK_##FIELD, \
1269 MIPS16OP_SH_##FIELD)
1270
1271 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1272 #define MIPS16_EXTEND (0xf000U << 16)
1273 \f
1274 /* Whether or not we are emitting a branch-likely macro. */
1275 static bfd_boolean emit_branch_likely_macro = FALSE;
1276
1277 /* Global variables used when generating relaxable macros. See the
1278 comment above RELAX_ENCODE for more details about how relaxation
1279 is used. */
1280 static struct {
1281 /* 0 if we're not emitting a relaxable macro.
1282 1 if we're emitting the first of the two relaxation alternatives.
1283 2 if we're emitting the second alternative. */
1284 int sequence;
1285
1286 /* The first relaxable fixup in the current frag. (In other words,
1287 the first fixup that refers to relaxable code.) */
1288 fixS *first_fixup;
1289
1290 /* sizes[0] says how many bytes of the first alternative are stored in
1291 the current frag. Likewise sizes[1] for the second alternative. */
1292 unsigned int sizes[2];
1293
1294 /* The symbol on which the choice of sequence depends. */
1295 symbolS *symbol;
1296 } mips_relax;
1297 \f
1298 /* Global variables used to decide whether a macro needs a warning. */
1299 static struct {
1300 /* True if the macro is in a branch delay slot. */
1301 bfd_boolean delay_slot_p;
1302
1303 /* Set to the length in bytes required if the macro is in a delay slot
1304 that requires a specific length of instruction, otherwise zero. */
1305 unsigned int delay_slot_length;
1306
1307 /* For relaxable macros, sizes[0] is the length of the first alternative
1308 in bytes and sizes[1] is the length of the second alternative.
1309 For non-relaxable macros, both elements give the length of the
1310 macro in bytes. */
1311 unsigned int sizes[2];
1312
1313 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1314 instruction of the first alternative in bytes and first_insn_sizes[1]
1315 is the length of the first instruction of the second alternative.
1316 For non-relaxable macros, both elements give the length of the first
1317 instruction in bytes.
1318
1319 Set to zero if we haven't yet seen the first instruction. */
1320 unsigned int first_insn_sizes[2];
1321
1322 /* For relaxable macros, insns[0] is the number of instructions for the
1323 first alternative and insns[1] is the number of instructions for the
1324 second alternative.
1325
1326 For non-relaxable macros, both elements give the number of
1327 instructions for the macro. */
1328 unsigned int insns[2];
1329
1330 /* The first variant frag for this macro. */
1331 fragS *first_frag;
1332 } mips_macro_warning;
1333 \f
1334 /* Prototypes for static functions. */
1335
1336 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1337
1338 static void append_insn
1339 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1340 bfd_boolean expansionp);
1341 static void mips_no_prev_insn (void);
1342 static void macro_build (expressionS *, const char *, const char *, ...);
1343 static void mips16_macro_build
1344 (expressionS *, const char *, const char *, va_list *);
1345 static void load_register (int, expressionS *, int);
1346 static void macro_start (void);
1347 static void macro_end (void);
1348 static void macro (struct mips_cl_insn *ip, char *str);
1349 static void mips16_macro (struct mips_cl_insn * ip);
1350 static void mips_ip (char *str, struct mips_cl_insn * ip);
1351 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1352 static unsigned long mips16_immed_extend (offsetT, unsigned int);
1353 static void mips16_immed
1354 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1355 unsigned int, unsigned long *);
1356 static size_t my_getSmallExpression
1357 (expressionS *, bfd_reloc_code_real_type *, char *);
1358 static void my_getExpression (expressionS *, char *);
1359 static void s_align (int);
1360 static void s_change_sec (int);
1361 static void s_change_section (int);
1362 static void s_cons (int);
1363 static void s_float_cons (int);
1364 static void s_mips_globl (int);
1365 static void s_option (int);
1366 static void s_mipsset (int);
1367 static void s_abicalls (int);
1368 static void s_cpload (int);
1369 static void s_cpsetup (int);
1370 static void s_cplocal (int);
1371 static void s_cprestore (int);
1372 static void s_cpreturn (int);
1373 static void s_dtprelword (int);
1374 static void s_dtpreldword (int);
1375 static void s_tprelword (int);
1376 static void s_tpreldword (int);
1377 static void s_gpvalue (int);
1378 static void s_gpword (int);
1379 static void s_gpdword (int);
1380 static void s_ehword (int);
1381 static void s_cpadd (int);
1382 static void s_insn (int);
1383 static void s_nan (int);
1384 static void s_module (int);
1385 static void s_mips_ent (int);
1386 static void s_mips_end (int);
1387 static void s_mips_frame (int);
1388 static void s_mips_mask (int reg_type);
1389 static void s_mips_stab (int);
1390 static void s_mips_weakext (int);
1391 static void s_mips_file (int);
1392 static void s_mips_loc (int);
1393 static bfd_boolean pic_need_relax (symbolS *);
1394 static int relaxed_branch_length (fragS *, asection *, int);
1395 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1396 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1397 static void file_mips_check_options (void);
1398
1399 /* Table and functions used to map between CPU/ISA names, and
1400 ISA levels, and CPU numbers. */
1401
1402 struct mips_cpu_info
1403 {
1404 const char *name; /* CPU or ISA name. */
1405 int flags; /* MIPS_CPU_* flags. */
1406 int ase; /* Set of ASEs implemented by the CPU. */
1407 int isa; /* ISA level. */
1408 int cpu; /* CPU number (default CPU if ISA). */
1409 };
1410
1411 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1412
1413 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1414 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1415 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1416 \f
1417 /* Command-line options. */
1418 const char *md_shortopts = "O::g::G:";
1419
1420 enum options
1421 {
1422 OPTION_MARCH = OPTION_MD_BASE,
1423 OPTION_MTUNE,
1424 OPTION_MIPS1,
1425 OPTION_MIPS2,
1426 OPTION_MIPS3,
1427 OPTION_MIPS4,
1428 OPTION_MIPS5,
1429 OPTION_MIPS32,
1430 OPTION_MIPS64,
1431 OPTION_MIPS32R2,
1432 OPTION_MIPS32R3,
1433 OPTION_MIPS32R5,
1434 OPTION_MIPS32R6,
1435 OPTION_MIPS64R2,
1436 OPTION_MIPS64R3,
1437 OPTION_MIPS64R5,
1438 OPTION_MIPS64R6,
1439 OPTION_MIPS16,
1440 OPTION_NO_MIPS16,
1441 OPTION_MIPS3D,
1442 OPTION_NO_MIPS3D,
1443 OPTION_MDMX,
1444 OPTION_NO_MDMX,
1445 OPTION_DSP,
1446 OPTION_NO_DSP,
1447 OPTION_MT,
1448 OPTION_NO_MT,
1449 OPTION_VIRT,
1450 OPTION_NO_VIRT,
1451 OPTION_MSA,
1452 OPTION_NO_MSA,
1453 OPTION_SMARTMIPS,
1454 OPTION_NO_SMARTMIPS,
1455 OPTION_DSPR2,
1456 OPTION_NO_DSPR2,
1457 OPTION_DSPR3,
1458 OPTION_NO_DSPR3,
1459 OPTION_EVA,
1460 OPTION_NO_EVA,
1461 OPTION_XPA,
1462 OPTION_NO_XPA,
1463 OPTION_MICROMIPS,
1464 OPTION_NO_MICROMIPS,
1465 OPTION_MCU,
1466 OPTION_NO_MCU,
1467 OPTION_MIPS16E2,
1468 OPTION_NO_MIPS16E2,
1469 OPTION_CRC,
1470 OPTION_NO_CRC,
1471 OPTION_M4650,
1472 OPTION_NO_M4650,
1473 OPTION_M4010,
1474 OPTION_NO_M4010,
1475 OPTION_M4100,
1476 OPTION_NO_M4100,
1477 OPTION_M3900,
1478 OPTION_NO_M3900,
1479 OPTION_M7000_HILO_FIX,
1480 OPTION_MNO_7000_HILO_FIX,
1481 OPTION_FIX_24K,
1482 OPTION_NO_FIX_24K,
1483 OPTION_FIX_RM7000,
1484 OPTION_NO_FIX_RM7000,
1485 OPTION_FIX_LOONGSON2F_JUMP,
1486 OPTION_NO_FIX_LOONGSON2F_JUMP,
1487 OPTION_FIX_LOONGSON2F_NOP,
1488 OPTION_NO_FIX_LOONGSON2F_NOP,
1489 OPTION_FIX_VR4120,
1490 OPTION_NO_FIX_VR4120,
1491 OPTION_FIX_VR4130,
1492 OPTION_NO_FIX_VR4130,
1493 OPTION_FIX_CN63XXP1,
1494 OPTION_NO_FIX_CN63XXP1,
1495 OPTION_FIX_R5900,
1496 OPTION_NO_FIX_R5900,
1497 OPTION_TRAP,
1498 OPTION_BREAK,
1499 OPTION_EB,
1500 OPTION_EL,
1501 OPTION_FP32,
1502 OPTION_GP32,
1503 OPTION_CONSTRUCT_FLOATS,
1504 OPTION_NO_CONSTRUCT_FLOATS,
1505 OPTION_FP64,
1506 OPTION_FPXX,
1507 OPTION_GP64,
1508 OPTION_RELAX_BRANCH,
1509 OPTION_NO_RELAX_BRANCH,
1510 OPTION_IGNORE_BRANCH_ISA,
1511 OPTION_NO_IGNORE_BRANCH_ISA,
1512 OPTION_INSN32,
1513 OPTION_NO_INSN32,
1514 OPTION_MSHARED,
1515 OPTION_MNO_SHARED,
1516 OPTION_MSYM32,
1517 OPTION_MNO_SYM32,
1518 OPTION_SOFT_FLOAT,
1519 OPTION_HARD_FLOAT,
1520 OPTION_SINGLE_FLOAT,
1521 OPTION_DOUBLE_FLOAT,
1522 OPTION_32,
1523 OPTION_CALL_SHARED,
1524 OPTION_CALL_NONPIC,
1525 OPTION_NON_SHARED,
1526 OPTION_XGOT,
1527 OPTION_MABI,
1528 OPTION_N32,
1529 OPTION_64,
1530 OPTION_MDEBUG,
1531 OPTION_NO_MDEBUG,
1532 OPTION_PDR,
1533 OPTION_NO_PDR,
1534 OPTION_MVXWORKS_PIC,
1535 OPTION_NAN,
1536 OPTION_ODD_SPREG,
1537 OPTION_NO_ODD_SPREG,
1538 OPTION_GINV,
1539 OPTION_NO_GINV,
1540 OPTION_LOONGSON_MMI,
1541 OPTION_NO_LOONGSON_MMI,
1542 OPTION_LOONGSON_CAM,
1543 OPTION_NO_LOONGSON_CAM,
1544 OPTION_LOONGSON_EXT,
1545 OPTION_NO_LOONGSON_EXT,
1546 OPTION_LOONGSON_EXT2,
1547 OPTION_NO_LOONGSON_EXT2,
1548 OPTION_END_OF_ENUM
1549 };
1550
1551 struct option md_longopts[] =
1552 {
1553 /* Options which specify architecture. */
1554 {"march", required_argument, NULL, OPTION_MARCH},
1555 {"mtune", required_argument, NULL, OPTION_MTUNE},
1556 {"mips0", no_argument, NULL, OPTION_MIPS1},
1557 {"mips1", no_argument, NULL, OPTION_MIPS1},
1558 {"mips2", no_argument, NULL, OPTION_MIPS2},
1559 {"mips3", no_argument, NULL, OPTION_MIPS3},
1560 {"mips4", no_argument, NULL, OPTION_MIPS4},
1561 {"mips5", no_argument, NULL, OPTION_MIPS5},
1562 {"mips32", no_argument, NULL, OPTION_MIPS32},
1563 {"mips64", no_argument, NULL, OPTION_MIPS64},
1564 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1565 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1566 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1567 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1568 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1569 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1570 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1571 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1572
1573 /* Options which specify Application Specific Extensions (ASEs). */
1574 {"mips16", no_argument, NULL, OPTION_MIPS16},
1575 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1576 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1577 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1578 {"mdmx", no_argument, NULL, OPTION_MDMX},
1579 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1580 {"mdsp", no_argument, NULL, OPTION_DSP},
1581 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1582 {"mmt", no_argument, NULL, OPTION_MT},
1583 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1584 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1585 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1586 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1587 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1588 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1589 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1590 {"meva", no_argument, NULL, OPTION_EVA},
1591 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1592 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1593 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1594 {"mmcu", no_argument, NULL, OPTION_MCU},
1595 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1596 {"mvirt", no_argument, NULL, OPTION_VIRT},
1597 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1598 {"mmsa", no_argument, NULL, OPTION_MSA},
1599 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1600 {"mxpa", no_argument, NULL, OPTION_XPA},
1601 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1602 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1603 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
1604 {"mcrc", no_argument, NULL, OPTION_CRC},
1605 {"mno-crc", no_argument, NULL, OPTION_NO_CRC},
1606 {"mginv", no_argument, NULL, OPTION_GINV},
1607 {"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
1608 {"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
1609 {"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
1610 {"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
1611 {"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
1612 {"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
1613 {"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
1614 {"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
1615 {"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
1616
1617 /* Old-style architecture options. Don't add more of these. */
1618 {"m4650", no_argument, NULL, OPTION_M4650},
1619 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1620 {"m4010", no_argument, NULL, OPTION_M4010},
1621 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1622 {"m4100", no_argument, NULL, OPTION_M4100},
1623 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1624 {"m3900", no_argument, NULL, OPTION_M3900},
1625 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1626
1627 /* Options which enable bug fixes. */
1628 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1629 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1630 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1631 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1632 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1633 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1634 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1635 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1636 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1637 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1638 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1639 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1640 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1641 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1642 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1643 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1644 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1645 {"mfix-r5900", no_argument, NULL, OPTION_FIX_R5900},
1646 {"mno-fix-r5900", no_argument, NULL, OPTION_NO_FIX_R5900},
1647
1648 /* Miscellaneous options. */
1649 {"trap", no_argument, NULL, OPTION_TRAP},
1650 {"no-break", no_argument, NULL, OPTION_TRAP},
1651 {"break", no_argument, NULL, OPTION_BREAK},
1652 {"no-trap", no_argument, NULL, OPTION_BREAK},
1653 {"EB", no_argument, NULL, OPTION_EB},
1654 {"EL", no_argument, NULL, OPTION_EL},
1655 {"mfp32", no_argument, NULL, OPTION_FP32},
1656 {"mgp32", no_argument, NULL, OPTION_GP32},
1657 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1658 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1659 {"mfp64", no_argument, NULL, OPTION_FP64},
1660 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1661 {"mgp64", no_argument, NULL, OPTION_GP64},
1662 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1663 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1664 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1665 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1666 {"minsn32", no_argument, NULL, OPTION_INSN32},
1667 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1668 {"mshared", no_argument, NULL, OPTION_MSHARED},
1669 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1670 {"msym32", no_argument, NULL, OPTION_MSYM32},
1671 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1672 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1673 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1674 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1675 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1676 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1677 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1678
1679 /* Strictly speaking this next option is ELF specific,
1680 but we allow it for other ports as well in order to
1681 make testing easier. */
1682 {"32", no_argument, NULL, OPTION_32},
1683
1684 /* ELF-specific options. */
1685 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1686 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1687 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1688 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1689 {"xgot", no_argument, NULL, OPTION_XGOT},
1690 {"mabi", required_argument, NULL, OPTION_MABI},
1691 {"n32", no_argument, NULL, OPTION_N32},
1692 {"64", no_argument, NULL, OPTION_64},
1693 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1694 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1695 {"mpdr", no_argument, NULL, OPTION_PDR},
1696 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1697 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1698 {"mnan", required_argument, NULL, OPTION_NAN},
1699
1700 {NULL, no_argument, NULL, 0}
1701 };
1702 size_t md_longopts_size = sizeof (md_longopts);
1703 \f
1704 /* Information about either an Application Specific Extension or an
1705 optional architecture feature that, for simplicity, we treat in the
1706 same way as an ASE. */
1707 struct mips_ase
1708 {
1709 /* The name of the ASE, used in both the command-line and .set options. */
1710 const char *name;
1711
1712 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1713 and 64-bit architectures, the flags here refer to the subset that
1714 is available on both. */
1715 unsigned int flags;
1716
1717 /* The ASE_* flag used for instructions that are available on 64-bit
1718 architectures but that are not included in FLAGS. */
1719 unsigned int flags64;
1720
1721 /* The command-line options that turn the ASE on and off. */
1722 int option_on;
1723 int option_off;
1724
1725 /* The minimum required architecture revisions for MIPS32, MIPS64,
1726 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1727 int mips32_rev;
1728 int mips64_rev;
1729 int micromips32_rev;
1730 int micromips64_rev;
1731
1732 /* The architecture where the ASE was removed or -1 if the extension has not
1733 been removed. */
1734 int rem_rev;
1735 };
1736
1737 /* A table of all supported ASEs. */
1738 static const struct mips_ase mips_ases[] = {
1739 { "dsp", ASE_DSP, ASE_DSP64,
1740 OPTION_DSP, OPTION_NO_DSP,
1741 2, 2, 2, 2,
1742 -1 },
1743
1744 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1745 OPTION_DSPR2, OPTION_NO_DSPR2,
1746 2, 2, 2, 2,
1747 -1 },
1748
1749 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1750 OPTION_DSPR3, OPTION_NO_DSPR3,
1751 6, 6, -1, -1,
1752 -1 },
1753
1754 { "eva", ASE_EVA, 0,
1755 OPTION_EVA, OPTION_NO_EVA,
1756 2, 2, 2, 2,
1757 -1 },
1758
1759 { "mcu", ASE_MCU, 0,
1760 OPTION_MCU, OPTION_NO_MCU,
1761 2, 2, 2, 2,
1762 -1 },
1763
1764 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1765 { "mdmx", ASE_MDMX, 0,
1766 OPTION_MDMX, OPTION_NO_MDMX,
1767 -1, 1, -1, -1,
1768 6 },
1769
1770 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1771 { "mips3d", ASE_MIPS3D, 0,
1772 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1773 2, 1, -1, -1,
1774 6 },
1775
1776 { "mt", ASE_MT, 0,
1777 OPTION_MT, OPTION_NO_MT,
1778 2, 2, -1, -1,
1779 -1 },
1780
1781 { "smartmips", ASE_SMARTMIPS, 0,
1782 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1783 1, -1, -1, -1,
1784 6 },
1785
1786 { "virt", ASE_VIRT, ASE_VIRT64,
1787 OPTION_VIRT, OPTION_NO_VIRT,
1788 2, 2, 2, 2,
1789 -1 },
1790
1791 { "msa", ASE_MSA, ASE_MSA64,
1792 OPTION_MSA, OPTION_NO_MSA,
1793 2, 2, 2, 2,
1794 -1 },
1795
1796 { "xpa", ASE_XPA, 0,
1797 OPTION_XPA, OPTION_NO_XPA,
1798 2, 2, 2, 2,
1799 -1 },
1800
1801 { "mips16e2", ASE_MIPS16E2, 0,
1802 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1803 2, 2, -1, -1,
1804 6 },
1805
1806 { "crc", ASE_CRC, ASE_CRC64,
1807 OPTION_CRC, OPTION_NO_CRC,
1808 6, 6, -1, -1,
1809 -1 },
1810
1811 { "ginv", ASE_GINV, 0,
1812 OPTION_GINV, OPTION_NO_GINV,
1813 6, 6, 6, 6,
1814 -1 },
1815
1816 { "loongson-mmi", ASE_LOONGSON_MMI, 0,
1817 OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
1818 0, 0, -1, -1,
1819 -1 },
1820
1821 { "loongson-cam", ASE_LOONGSON_CAM, 0,
1822 OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
1823 0, 0, -1, -1,
1824 -1 },
1825
1826 { "loongson-ext", ASE_LOONGSON_EXT, 0,
1827 OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
1828 0, 0, -1, -1,
1829 -1 },
1830
1831 { "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
1832 OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
1833 0, 0, -1, -1,
1834 -1 },
1835 };
1836
1837 /* The set of ASEs that require -mfp64. */
1838 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1839
1840 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1841 static const unsigned int mips_ase_groups[] = {
1842 ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
1843 ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
1844 };
1845 \f
1846 /* Pseudo-op table.
1847
1848 The following pseudo-ops from the Kane and Heinrich MIPS book
1849 should be defined here, but are currently unsupported: .alias,
1850 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1851
1852 The following pseudo-ops from the Kane and Heinrich MIPS book are
1853 specific to the type of debugging information being generated, and
1854 should be defined by the object format: .aent, .begin, .bend,
1855 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1856 .vreg.
1857
1858 The following pseudo-ops from the Kane and Heinrich MIPS book are
1859 not MIPS CPU specific, but are also not specific to the object file
1860 format. This file is probably the best place to define them, but
1861 they are not currently supported: .asm0, .endr, .lab, .struct. */
1862
1863 static const pseudo_typeS mips_pseudo_table[] =
1864 {
1865 /* MIPS specific pseudo-ops. */
1866 {"option", s_option, 0},
1867 {"set", s_mipsset, 0},
1868 {"rdata", s_change_sec, 'r'},
1869 {"sdata", s_change_sec, 's'},
1870 {"livereg", s_ignore, 0},
1871 {"abicalls", s_abicalls, 0},
1872 {"cpload", s_cpload, 0},
1873 {"cpsetup", s_cpsetup, 0},
1874 {"cplocal", s_cplocal, 0},
1875 {"cprestore", s_cprestore, 0},
1876 {"cpreturn", s_cpreturn, 0},
1877 {"dtprelword", s_dtprelword, 0},
1878 {"dtpreldword", s_dtpreldword, 0},
1879 {"tprelword", s_tprelword, 0},
1880 {"tpreldword", s_tpreldword, 0},
1881 {"gpvalue", s_gpvalue, 0},
1882 {"gpword", s_gpword, 0},
1883 {"gpdword", s_gpdword, 0},
1884 {"ehword", s_ehword, 0},
1885 {"cpadd", s_cpadd, 0},
1886 {"insn", s_insn, 0},
1887 {"nan", s_nan, 0},
1888 {"module", s_module, 0},
1889
1890 /* Relatively generic pseudo-ops that happen to be used on MIPS
1891 chips. */
1892 {"asciiz", stringer, 8 + 1},
1893 {"bss", s_change_sec, 'b'},
1894 {"err", s_err, 0},
1895 {"half", s_cons, 1},
1896 {"dword", s_cons, 3},
1897 {"weakext", s_mips_weakext, 0},
1898 {"origin", s_org, 0},
1899 {"repeat", s_rept, 0},
1900
1901 /* For MIPS this is non-standard, but we define it for consistency. */
1902 {"sbss", s_change_sec, 'B'},
1903
1904 /* These pseudo-ops are defined in read.c, but must be overridden
1905 here for one reason or another. */
1906 {"align", s_align, 0},
1907 {"byte", s_cons, 0},
1908 {"data", s_change_sec, 'd'},
1909 {"double", s_float_cons, 'd'},
1910 {"float", s_float_cons, 'f'},
1911 {"globl", s_mips_globl, 0},
1912 {"global", s_mips_globl, 0},
1913 {"hword", s_cons, 1},
1914 {"int", s_cons, 2},
1915 {"long", s_cons, 2},
1916 {"octa", s_cons, 4},
1917 {"quad", s_cons, 3},
1918 {"section", s_change_section, 0},
1919 {"short", s_cons, 1},
1920 {"single", s_float_cons, 'f'},
1921 {"stabd", s_mips_stab, 'd'},
1922 {"stabn", s_mips_stab, 'n'},
1923 {"stabs", s_mips_stab, 's'},
1924 {"text", s_change_sec, 't'},
1925 {"word", s_cons, 2},
1926
1927 { "extern", ecoff_directive_extern, 0},
1928
1929 { NULL, NULL, 0 },
1930 };
1931
1932 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1933 {
1934 /* These pseudo-ops should be defined by the object file format.
1935 However, a.out doesn't support them, so we have versions here. */
1936 {"aent", s_mips_ent, 1},
1937 {"bgnb", s_ignore, 0},
1938 {"end", s_mips_end, 0},
1939 {"endb", s_ignore, 0},
1940 {"ent", s_mips_ent, 0},
1941 {"file", s_mips_file, 0},
1942 {"fmask", s_mips_mask, 'F'},
1943 {"frame", s_mips_frame, 0},
1944 {"loc", s_mips_loc, 0},
1945 {"mask", s_mips_mask, 'R'},
1946 {"verstamp", s_ignore, 0},
1947 { NULL, NULL, 0 },
1948 };
1949
1950 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1951 purpose of the `.dc.a' internal pseudo-op. */
1952
1953 int
1954 mips_address_bytes (void)
1955 {
1956 file_mips_check_options ();
1957 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1958 }
1959
1960 extern void pop_insert (const pseudo_typeS *);
1961
1962 void
1963 mips_pop_insert (void)
1964 {
1965 pop_insert (mips_pseudo_table);
1966 if (! ECOFF_DEBUGGING)
1967 pop_insert (mips_nonecoff_pseudo_table);
1968 }
1969 \f
1970 /* Symbols labelling the current insn. */
1971
1972 struct insn_label_list
1973 {
1974 struct insn_label_list *next;
1975 symbolS *label;
1976 };
1977
1978 static struct insn_label_list *free_insn_labels;
1979 #define label_list tc_segment_info_data.labels
1980
1981 static void mips_clear_insn_labels (void);
1982 static void mips_mark_labels (void);
1983 static void mips_compressed_mark_labels (void);
1984
1985 static inline void
1986 mips_clear_insn_labels (void)
1987 {
1988 struct insn_label_list **pl;
1989 segment_info_type *si;
1990
1991 if (now_seg)
1992 {
1993 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1994 ;
1995
1996 si = seg_info (now_seg);
1997 *pl = si->label_list;
1998 si->label_list = NULL;
1999 }
2000 }
2001
2002 /* Mark instruction labels in MIPS16/microMIPS mode. */
2003
2004 static inline void
2005 mips_mark_labels (void)
2006 {
2007 if (HAVE_CODE_COMPRESSION)
2008 mips_compressed_mark_labels ();
2009 }
2010 \f
2011 static char *expr_end;
2012
2013 /* An expression in a macro instruction. This is set by mips_ip and
2014 mips16_ip and when populated is always an O_constant. */
2015
2016 static expressionS imm_expr;
2017
2018 /* The relocatable field in an instruction and the relocs associated
2019 with it. These variables are used for instructions like LUI and
2020 JAL as well as true offsets. They are also used for address
2021 operands in macros. */
2022
2023 static expressionS offset_expr;
2024 static bfd_reloc_code_real_type offset_reloc[3]
2025 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2026
2027 /* This is set to the resulting size of the instruction to be produced
2028 by mips16_ip if an explicit extension is used or by mips_ip if an
2029 explicit size is supplied. */
2030
2031 static unsigned int forced_insn_length;
2032
2033 /* True if we are assembling an instruction. All dot symbols defined during
2034 this time should be treated as code labels. */
2035
2036 static bfd_boolean mips_assembling_insn;
2037
2038 /* The pdr segment for per procedure frame/regmask info. Not used for
2039 ECOFF debugging. */
2040
2041 static segT pdr_seg;
2042
2043 /* The default target format to use. */
2044
2045 #if defined (TE_FreeBSD)
2046 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2047 #elif defined (TE_TMIPS)
2048 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2049 #else
2050 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2051 #endif
2052
2053 const char *
2054 mips_target_format (void)
2055 {
2056 switch (OUTPUT_FLAVOR)
2057 {
2058 case bfd_target_elf_flavour:
2059 #ifdef TE_VXWORKS
2060 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
2061 return (target_big_endian
2062 ? "elf32-bigmips-vxworks"
2063 : "elf32-littlemips-vxworks");
2064 #endif
2065 return (target_big_endian
2066 ? (HAVE_64BIT_OBJECTS
2067 ? ELF_TARGET ("elf64-", "big")
2068 : (HAVE_NEWABI
2069 ? ELF_TARGET ("elf32-n", "big")
2070 : ELF_TARGET ("elf32-", "big")))
2071 : (HAVE_64BIT_OBJECTS
2072 ? ELF_TARGET ("elf64-", "little")
2073 : (HAVE_NEWABI
2074 ? ELF_TARGET ("elf32-n", "little")
2075 : ELF_TARGET ("elf32-", "little"))));
2076 default:
2077 abort ();
2078 return NULL;
2079 }
2080 }
2081
2082 /* Return the ISA revision that is currently in use, or 0 if we are
2083 generating code for MIPS V or below. */
2084
2085 static int
2086 mips_isa_rev (void)
2087 {
2088 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2089 return 2;
2090
2091 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2092 return 3;
2093
2094 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2095 return 5;
2096
2097 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2098 return 6;
2099
2100 /* microMIPS implies revision 2 or above. */
2101 if (mips_opts.micromips)
2102 return 2;
2103
2104 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2105 return 1;
2106
2107 return 0;
2108 }
2109
2110 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2111
2112 static unsigned int
2113 mips_ase_mask (unsigned int flags)
2114 {
2115 unsigned int i;
2116
2117 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2118 if (flags & mips_ase_groups[i])
2119 flags |= mips_ase_groups[i];
2120 return flags;
2121 }
2122
2123 /* Check whether the current ISA supports ASE. Issue a warning if
2124 appropriate. */
2125
2126 static void
2127 mips_check_isa_supports_ase (const struct mips_ase *ase)
2128 {
2129 const char *base;
2130 int min_rev, size;
2131 static unsigned int warned_isa;
2132 static unsigned int warned_fp32;
2133
2134 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2135 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2136 else
2137 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2138 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2139 && (warned_isa & ase->flags) != ase->flags)
2140 {
2141 warned_isa |= ase->flags;
2142 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2143 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2144 if (min_rev < 0)
2145 as_warn (_("the %d-bit %s architecture does not support the"
2146 " `%s' extension"), size, base, ase->name);
2147 else
2148 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2149 ase->name, base, size, min_rev);
2150 }
2151 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2152 && (warned_isa & ase->flags) != ase->flags)
2153 {
2154 warned_isa |= ase->flags;
2155 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2156 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2157 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2158 ase->name, base, size, ase->rem_rev);
2159 }
2160
2161 if ((ase->flags & FP64_ASES)
2162 && mips_opts.fp != 64
2163 && (warned_fp32 & ase->flags) != ase->flags)
2164 {
2165 warned_fp32 |= ase->flags;
2166 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2167 }
2168 }
2169
2170 /* Check all enabled ASEs to see whether they are supported by the
2171 chosen architecture. */
2172
2173 static void
2174 mips_check_isa_supports_ases (void)
2175 {
2176 unsigned int i, mask;
2177
2178 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2179 {
2180 mask = mips_ase_mask (mips_ases[i].flags);
2181 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2182 mips_check_isa_supports_ase (&mips_ases[i]);
2183 }
2184 }
2185
2186 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2187 that were affected. */
2188
2189 static unsigned int
2190 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2191 bfd_boolean enabled_p)
2192 {
2193 unsigned int mask;
2194
2195 mask = mips_ase_mask (ase->flags);
2196 opts->ase &= ~mask;
2197
2198 /* Clear combination ASE flags, which need to be recalculated based on
2199 updated regular ASE settings. */
2200 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT);
2201
2202 if (enabled_p)
2203 opts->ase |= ase->flags;
2204
2205 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2206 instructions which are only valid when both ASEs are enabled.
2207 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2208 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2209 {
2210 opts->ase |= ASE_XPA_VIRT;
2211 mask |= ASE_XPA_VIRT;
2212 }
2213 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2214 {
2215 opts->ase |= ASE_MIPS16E2_MT;
2216 mask |= ASE_MIPS16E2_MT;
2217 }
2218
2219 return mask;
2220 }
2221
2222 /* Return the ASE called NAME, or null if none. */
2223
2224 static const struct mips_ase *
2225 mips_lookup_ase (const char *name)
2226 {
2227 unsigned int i;
2228
2229 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2230 if (strcmp (name, mips_ases[i].name) == 0)
2231 return &mips_ases[i];
2232 return NULL;
2233 }
2234
2235 /* Return the length of a microMIPS instruction in bytes. If bits of
2236 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2237 otherwise it is a 32-bit instruction. */
2238
2239 static inline unsigned int
2240 micromips_insn_length (const struct mips_opcode *mo)
2241 {
2242 return mips_opcode_32bit_p (mo) ? 4 : 2;
2243 }
2244
2245 /* Return the length of MIPS16 instruction OPCODE. */
2246
2247 static inline unsigned int
2248 mips16_opcode_length (unsigned long opcode)
2249 {
2250 return (opcode >> 16) == 0 ? 2 : 4;
2251 }
2252
2253 /* Return the length of instruction INSN. */
2254
2255 static inline unsigned int
2256 insn_length (const struct mips_cl_insn *insn)
2257 {
2258 if (mips_opts.micromips)
2259 return micromips_insn_length (insn->insn_mo);
2260 else if (mips_opts.mips16)
2261 return mips16_opcode_length (insn->insn_opcode);
2262 else
2263 return 4;
2264 }
2265
2266 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2267
2268 static void
2269 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2270 {
2271 size_t i;
2272
2273 insn->insn_mo = mo;
2274 insn->insn_opcode = mo->match;
2275 insn->frag = NULL;
2276 insn->where = 0;
2277 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2278 insn->fixp[i] = NULL;
2279 insn->fixed_p = (mips_opts.noreorder > 0);
2280 insn->noreorder_p = (mips_opts.noreorder > 0);
2281 insn->mips16_absolute_jump_p = 0;
2282 insn->complete_p = 0;
2283 insn->cleared_p = 0;
2284 }
2285
2286 /* Get a list of all the operands in INSN. */
2287
2288 static const struct mips_operand_array *
2289 insn_operands (const struct mips_cl_insn *insn)
2290 {
2291 if (insn->insn_mo >= &mips_opcodes[0]
2292 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2293 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2294
2295 if (insn->insn_mo >= &mips16_opcodes[0]
2296 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2297 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2298
2299 if (insn->insn_mo >= &micromips_opcodes[0]
2300 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2301 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2302
2303 abort ();
2304 }
2305
2306 /* Get a description of operand OPNO of INSN. */
2307
2308 static const struct mips_operand *
2309 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2310 {
2311 const struct mips_operand_array *operands;
2312
2313 operands = insn_operands (insn);
2314 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2315 abort ();
2316 return operands->operand[opno];
2317 }
2318
2319 /* Install UVAL as the value of OPERAND in INSN. */
2320
2321 static inline void
2322 insn_insert_operand (struct mips_cl_insn *insn,
2323 const struct mips_operand *operand, unsigned int uval)
2324 {
2325 if (mips_opts.mips16
2326 && operand->type == OP_INT && operand->lsb == 0
2327 && mips_opcode_32bit_p (insn->insn_mo))
2328 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2329 else
2330 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2331 }
2332
2333 /* Extract the value of OPERAND from INSN. */
2334
2335 static inline unsigned
2336 insn_extract_operand (const struct mips_cl_insn *insn,
2337 const struct mips_operand *operand)
2338 {
2339 return mips_extract_operand (operand, insn->insn_opcode);
2340 }
2341
2342 /* Record the current MIPS16/microMIPS mode in now_seg. */
2343
2344 static void
2345 mips_record_compressed_mode (void)
2346 {
2347 segment_info_type *si;
2348
2349 si = seg_info (now_seg);
2350 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2351 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2352 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2353 si->tc_segment_info_data.micromips = mips_opts.micromips;
2354 }
2355
2356 /* Read a standard MIPS instruction from BUF. */
2357
2358 static unsigned long
2359 read_insn (char *buf)
2360 {
2361 if (target_big_endian)
2362 return bfd_getb32 ((bfd_byte *) buf);
2363 else
2364 return bfd_getl32 ((bfd_byte *) buf);
2365 }
2366
2367 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2368 the next byte. */
2369
2370 static char *
2371 write_insn (char *buf, unsigned int insn)
2372 {
2373 md_number_to_chars (buf, insn, 4);
2374 return buf + 4;
2375 }
2376
2377 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2378 has length LENGTH. */
2379
2380 static unsigned long
2381 read_compressed_insn (char *buf, unsigned int length)
2382 {
2383 unsigned long insn;
2384 unsigned int i;
2385
2386 insn = 0;
2387 for (i = 0; i < length; i += 2)
2388 {
2389 insn <<= 16;
2390 if (target_big_endian)
2391 insn |= bfd_getb16 ((char *) buf);
2392 else
2393 insn |= bfd_getl16 ((char *) buf);
2394 buf += 2;
2395 }
2396 return insn;
2397 }
2398
2399 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2400 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2401
2402 static char *
2403 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2404 {
2405 unsigned int i;
2406
2407 for (i = 0; i < length; i += 2)
2408 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2409 return buf + length;
2410 }
2411
2412 /* Install INSN at the location specified by its "frag" and "where" fields. */
2413
2414 static void
2415 install_insn (const struct mips_cl_insn *insn)
2416 {
2417 char *f = insn->frag->fr_literal + insn->where;
2418 if (HAVE_CODE_COMPRESSION)
2419 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2420 else
2421 write_insn (f, insn->insn_opcode);
2422 mips_record_compressed_mode ();
2423 }
2424
2425 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2426 and install the opcode in the new location. */
2427
2428 static void
2429 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2430 {
2431 size_t i;
2432
2433 insn->frag = frag;
2434 insn->where = where;
2435 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2436 if (insn->fixp[i] != NULL)
2437 {
2438 insn->fixp[i]->fx_frag = frag;
2439 insn->fixp[i]->fx_where = where;
2440 }
2441 install_insn (insn);
2442 }
2443
2444 /* Add INSN to the end of the output. */
2445
2446 static void
2447 add_fixed_insn (struct mips_cl_insn *insn)
2448 {
2449 char *f = frag_more (insn_length (insn));
2450 move_insn (insn, frag_now, f - frag_now->fr_literal);
2451 }
2452
2453 /* Start a variant frag and move INSN to the start of the variant part,
2454 marking it as fixed. The other arguments are as for frag_var. */
2455
2456 static void
2457 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2458 relax_substateT subtype, symbolS *symbol, offsetT offset)
2459 {
2460 frag_grow (max_chars);
2461 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2462 insn->fixed_p = 1;
2463 frag_var (rs_machine_dependent, max_chars, var,
2464 subtype, symbol, offset, NULL);
2465 }
2466
2467 /* Insert N copies of INSN into the history buffer, starting at
2468 position FIRST. Neither FIRST nor N need to be clipped. */
2469
2470 static void
2471 insert_into_history (unsigned int first, unsigned int n,
2472 const struct mips_cl_insn *insn)
2473 {
2474 if (mips_relax.sequence != 2)
2475 {
2476 unsigned int i;
2477
2478 for (i = ARRAY_SIZE (history); i-- > first;)
2479 if (i >= first + n)
2480 history[i] = history[i - n];
2481 else
2482 history[i] = *insn;
2483 }
2484 }
2485
2486 /* Clear the error in insn_error. */
2487
2488 static void
2489 clear_insn_error (void)
2490 {
2491 memset (&insn_error, 0, sizeof (insn_error));
2492 }
2493
2494 /* Possibly record error message MSG for the current instruction.
2495 If the error is about a particular argument, ARGNUM is the 1-based
2496 number of that argument, otherwise it is 0. FORMAT is the format
2497 of MSG. Return true if MSG was used, false if the current message
2498 was kept. */
2499
2500 static bfd_boolean
2501 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2502 const char *msg)
2503 {
2504 if (argnum == 0)
2505 {
2506 /* Give priority to errors against specific arguments, and to
2507 the first whole-instruction message. */
2508 if (insn_error.msg)
2509 return FALSE;
2510 }
2511 else
2512 {
2513 /* Keep insn_error if it is against a later argument. */
2514 if (argnum < insn_error.min_argnum)
2515 return FALSE;
2516
2517 /* If both errors are against the same argument but are different,
2518 give up on reporting a specific error for this argument.
2519 See the comment about mips_insn_error for details. */
2520 if (argnum == insn_error.min_argnum
2521 && insn_error.msg
2522 && strcmp (insn_error.msg, msg) != 0)
2523 {
2524 insn_error.msg = 0;
2525 insn_error.min_argnum += 1;
2526 return FALSE;
2527 }
2528 }
2529 insn_error.min_argnum = argnum;
2530 insn_error.format = format;
2531 insn_error.msg = msg;
2532 return TRUE;
2533 }
2534
2535 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2536 as for set_insn_error_format. */
2537
2538 static void
2539 set_insn_error (int argnum, const char *msg)
2540 {
2541 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2542 }
2543
2544 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2545 as for set_insn_error_format. */
2546
2547 static void
2548 set_insn_error_i (int argnum, const char *msg, int i)
2549 {
2550 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2551 insn_error.u.i = i;
2552 }
2553
2554 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2555 are as for set_insn_error_format. */
2556
2557 static void
2558 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2559 {
2560 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2561 {
2562 insn_error.u.ss[0] = s1;
2563 insn_error.u.ss[1] = s2;
2564 }
2565 }
2566
2567 /* Report the error in insn_error, which is against assembly code STR. */
2568
2569 static void
2570 report_insn_error (const char *str)
2571 {
2572 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2573
2574 switch (insn_error.format)
2575 {
2576 case ERR_FMT_PLAIN:
2577 as_bad (msg, str);
2578 break;
2579
2580 case ERR_FMT_I:
2581 as_bad (msg, insn_error.u.i, str);
2582 break;
2583
2584 case ERR_FMT_SS:
2585 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2586 break;
2587 }
2588
2589 free ((char *) msg);
2590 }
2591
2592 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2593 the idea is to make it obvious at a glance that each errata is
2594 included. */
2595
2596 static void
2597 init_vr4120_conflicts (void)
2598 {
2599 #define CONFLICT(FIRST, SECOND) \
2600 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2601
2602 /* Errata 21 - [D]DIV[U] after [D]MACC */
2603 CONFLICT (MACC, DIV);
2604 CONFLICT (DMACC, DIV);
2605
2606 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2607 CONFLICT (DMULT, DMULT);
2608 CONFLICT (DMULT, DMACC);
2609 CONFLICT (DMACC, DMULT);
2610 CONFLICT (DMACC, DMACC);
2611
2612 /* Errata 24 - MT{LO,HI} after [D]MACC */
2613 CONFLICT (MACC, MTHILO);
2614 CONFLICT (DMACC, MTHILO);
2615
2616 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2617 instruction is executed immediately after a MACC or DMACC
2618 instruction, the result of [either instruction] is incorrect." */
2619 CONFLICT (MACC, MULT);
2620 CONFLICT (MACC, DMULT);
2621 CONFLICT (DMACC, MULT);
2622 CONFLICT (DMACC, DMULT);
2623
2624 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2625 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2626 DDIV or DDIVU instruction, the result of the MACC or
2627 DMACC instruction is incorrect.". */
2628 CONFLICT (DMULT, MACC);
2629 CONFLICT (DMULT, DMACC);
2630 CONFLICT (DIV, MACC);
2631 CONFLICT (DIV, DMACC);
2632
2633 #undef CONFLICT
2634 }
2635
2636 struct regname {
2637 const char *name;
2638 unsigned int num;
2639 };
2640
2641 #define RNUM_MASK 0x00000ff
2642 #define RTYPE_MASK 0x0ffff00
2643 #define RTYPE_NUM 0x0000100
2644 #define RTYPE_FPU 0x0000200
2645 #define RTYPE_FCC 0x0000400
2646 #define RTYPE_VEC 0x0000800
2647 #define RTYPE_GP 0x0001000
2648 #define RTYPE_CP0 0x0002000
2649 #define RTYPE_PC 0x0004000
2650 #define RTYPE_ACC 0x0008000
2651 #define RTYPE_CCC 0x0010000
2652 #define RTYPE_VI 0x0020000
2653 #define RTYPE_VF 0x0040000
2654 #define RTYPE_R5900_I 0x0080000
2655 #define RTYPE_R5900_Q 0x0100000
2656 #define RTYPE_R5900_R 0x0200000
2657 #define RTYPE_R5900_ACC 0x0400000
2658 #define RTYPE_MSA 0x0800000
2659 #define RWARN 0x8000000
2660
2661 #define GENERIC_REGISTER_NUMBERS \
2662 {"$0", RTYPE_NUM | 0}, \
2663 {"$1", RTYPE_NUM | 1}, \
2664 {"$2", RTYPE_NUM | 2}, \
2665 {"$3", RTYPE_NUM | 3}, \
2666 {"$4", RTYPE_NUM | 4}, \
2667 {"$5", RTYPE_NUM | 5}, \
2668 {"$6", RTYPE_NUM | 6}, \
2669 {"$7", RTYPE_NUM | 7}, \
2670 {"$8", RTYPE_NUM | 8}, \
2671 {"$9", RTYPE_NUM | 9}, \
2672 {"$10", RTYPE_NUM | 10}, \
2673 {"$11", RTYPE_NUM | 11}, \
2674 {"$12", RTYPE_NUM | 12}, \
2675 {"$13", RTYPE_NUM | 13}, \
2676 {"$14", RTYPE_NUM | 14}, \
2677 {"$15", RTYPE_NUM | 15}, \
2678 {"$16", RTYPE_NUM | 16}, \
2679 {"$17", RTYPE_NUM | 17}, \
2680 {"$18", RTYPE_NUM | 18}, \
2681 {"$19", RTYPE_NUM | 19}, \
2682 {"$20", RTYPE_NUM | 20}, \
2683 {"$21", RTYPE_NUM | 21}, \
2684 {"$22", RTYPE_NUM | 22}, \
2685 {"$23", RTYPE_NUM | 23}, \
2686 {"$24", RTYPE_NUM | 24}, \
2687 {"$25", RTYPE_NUM | 25}, \
2688 {"$26", RTYPE_NUM | 26}, \
2689 {"$27", RTYPE_NUM | 27}, \
2690 {"$28", RTYPE_NUM | 28}, \
2691 {"$29", RTYPE_NUM | 29}, \
2692 {"$30", RTYPE_NUM | 30}, \
2693 {"$31", RTYPE_NUM | 31}
2694
2695 #define FPU_REGISTER_NAMES \
2696 {"$f0", RTYPE_FPU | 0}, \
2697 {"$f1", RTYPE_FPU | 1}, \
2698 {"$f2", RTYPE_FPU | 2}, \
2699 {"$f3", RTYPE_FPU | 3}, \
2700 {"$f4", RTYPE_FPU | 4}, \
2701 {"$f5", RTYPE_FPU | 5}, \
2702 {"$f6", RTYPE_FPU | 6}, \
2703 {"$f7", RTYPE_FPU | 7}, \
2704 {"$f8", RTYPE_FPU | 8}, \
2705 {"$f9", RTYPE_FPU | 9}, \
2706 {"$f10", RTYPE_FPU | 10}, \
2707 {"$f11", RTYPE_FPU | 11}, \
2708 {"$f12", RTYPE_FPU | 12}, \
2709 {"$f13", RTYPE_FPU | 13}, \
2710 {"$f14", RTYPE_FPU | 14}, \
2711 {"$f15", RTYPE_FPU | 15}, \
2712 {"$f16", RTYPE_FPU | 16}, \
2713 {"$f17", RTYPE_FPU | 17}, \
2714 {"$f18", RTYPE_FPU | 18}, \
2715 {"$f19", RTYPE_FPU | 19}, \
2716 {"$f20", RTYPE_FPU | 20}, \
2717 {"$f21", RTYPE_FPU | 21}, \
2718 {"$f22", RTYPE_FPU | 22}, \
2719 {"$f23", RTYPE_FPU | 23}, \
2720 {"$f24", RTYPE_FPU | 24}, \
2721 {"$f25", RTYPE_FPU | 25}, \
2722 {"$f26", RTYPE_FPU | 26}, \
2723 {"$f27", RTYPE_FPU | 27}, \
2724 {"$f28", RTYPE_FPU | 28}, \
2725 {"$f29", RTYPE_FPU | 29}, \
2726 {"$f30", RTYPE_FPU | 30}, \
2727 {"$f31", RTYPE_FPU | 31}
2728
2729 #define FPU_CONDITION_CODE_NAMES \
2730 {"$fcc0", RTYPE_FCC | 0}, \
2731 {"$fcc1", RTYPE_FCC | 1}, \
2732 {"$fcc2", RTYPE_FCC | 2}, \
2733 {"$fcc3", RTYPE_FCC | 3}, \
2734 {"$fcc4", RTYPE_FCC | 4}, \
2735 {"$fcc5", RTYPE_FCC | 5}, \
2736 {"$fcc6", RTYPE_FCC | 6}, \
2737 {"$fcc7", RTYPE_FCC | 7}
2738
2739 #define COPROC_CONDITION_CODE_NAMES \
2740 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2741 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2742 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2743 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2744 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2745 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2746 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2747 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2748
2749 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2750 {"$a4", RTYPE_GP | 8}, \
2751 {"$a5", RTYPE_GP | 9}, \
2752 {"$a6", RTYPE_GP | 10}, \
2753 {"$a7", RTYPE_GP | 11}, \
2754 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2755 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2756 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2757 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2758 {"$t0", RTYPE_GP | 12}, \
2759 {"$t1", RTYPE_GP | 13}, \
2760 {"$t2", RTYPE_GP | 14}, \
2761 {"$t3", RTYPE_GP | 15}
2762
2763 #define O32_SYMBOLIC_REGISTER_NAMES \
2764 {"$t0", RTYPE_GP | 8}, \
2765 {"$t1", RTYPE_GP | 9}, \
2766 {"$t2", RTYPE_GP | 10}, \
2767 {"$t3", RTYPE_GP | 11}, \
2768 {"$t4", RTYPE_GP | 12}, \
2769 {"$t5", RTYPE_GP | 13}, \
2770 {"$t6", RTYPE_GP | 14}, \
2771 {"$t7", RTYPE_GP | 15}, \
2772 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2773 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2774 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2775 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2776
2777 /* Remaining symbolic register names */
2778 #define SYMBOLIC_REGISTER_NAMES \
2779 {"$zero", RTYPE_GP | 0}, \
2780 {"$at", RTYPE_GP | 1}, \
2781 {"$AT", RTYPE_GP | 1}, \
2782 {"$v0", RTYPE_GP | 2}, \
2783 {"$v1", RTYPE_GP | 3}, \
2784 {"$a0", RTYPE_GP | 4}, \
2785 {"$a1", RTYPE_GP | 5}, \
2786 {"$a2", RTYPE_GP | 6}, \
2787 {"$a3", RTYPE_GP | 7}, \
2788 {"$s0", RTYPE_GP | 16}, \
2789 {"$s1", RTYPE_GP | 17}, \
2790 {"$s2", RTYPE_GP | 18}, \
2791 {"$s3", RTYPE_GP | 19}, \
2792 {"$s4", RTYPE_GP | 20}, \
2793 {"$s5", RTYPE_GP | 21}, \
2794 {"$s6", RTYPE_GP | 22}, \
2795 {"$s7", RTYPE_GP | 23}, \
2796 {"$t8", RTYPE_GP | 24}, \
2797 {"$t9", RTYPE_GP | 25}, \
2798 {"$k0", RTYPE_GP | 26}, \
2799 {"$kt0", RTYPE_GP | 26}, \
2800 {"$k1", RTYPE_GP | 27}, \
2801 {"$kt1", RTYPE_GP | 27}, \
2802 {"$gp", RTYPE_GP | 28}, \
2803 {"$sp", RTYPE_GP | 29}, \
2804 {"$s8", RTYPE_GP | 30}, \
2805 {"$fp", RTYPE_GP | 30}, \
2806 {"$ra", RTYPE_GP | 31}
2807
2808 #define MIPS16_SPECIAL_REGISTER_NAMES \
2809 {"$pc", RTYPE_PC | 0}
2810
2811 #define MDMX_VECTOR_REGISTER_NAMES \
2812 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2813 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2814 {"$v2", RTYPE_VEC | 2}, \
2815 {"$v3", RTYPE_VEC | 3}, \
2816 {"$v4", RTYPE_VEC | 4}, \
2817 {"$v5", RTYPE_VEC | 5}, \
2818 {"$v6", RTYPE_VEC | 6}, \
2819 {"$v7", RTYPE_VEC | 7}, \
2820 {"$v8", RTYPE_VEC | 8}, \
2821 {"$v9", RTYPE_VEC | 9}, \
2822 {"$v10", RTYPE_VEC | 10}, \
2823 {"$v11", RTYPE_VEC | 11}, \
2824 {"$v12", RTYPE_VEC | 12}, \
2825 {"$v13", RTYPE_VEC | 13}, \
2826 {"$v14", RTYPE_VEC | 14}, \
2827 {"$v15", RTYPE_VEC | 15}, \
2828 {"$v16", RTYPE_VEC | 16}, \
2829 {"$v17", RTYPE_VEC | 17}, \
2830 {"$v18", RTYPE_VEC | 18}, \
2831 {"$v19", RTYPE_VEC | 19}, \
2832 {"$v20", RTYPE_VEC | 20}, \
2833 {"$v21", RTYPE_VEC | 21}, \
2834 {"$v22", RTYPE_VEC | 22}, \
2835 {"$v23", RTYPE_VEC | 23}, \
2836 {"$v24", RTYPE_VEC | 24}, \
2837 {"$v25", RTYPE_VEC | 25}, \
2838 {"$v26", RTYPE_VEC | 26}, \
2839 {"$v27", RTYPE_VEC | 27}, \
2840 {"$v28", RTYPE_VEC | 28}, \
2841 {"$v29", RTYPE_VEC | 29}, \
2842 {"$v30", RTYPE_VEC | 30}, \
2843 {"$v31", RTYPE_VEC | 31}
2844
2845 #define R5900_I_NAMES \
2846 {"$I", RTYPE_R5900_I | 0}
2847
2848 #define R5900_Q_NAMES \
2849 {"$Q", RTYPE_R5900_Q | 0}
2850
2851 #define R5900_R_NAMES \
2852 {"$R", RTYPE_R5900_R | 0}
2853
2854 #define R5900_ACC_NAMES \
2855 {"$ACC", RTYPE_R5900_ACC | 0 }
2856
2857 #define MIPS_DSP_ACCUMULATOR_NAMES \
2858 {"$ac0", RTYPE_ACC | 0}, \
2859 {"$ac1", RTYPE_ACC | 1}, \
2860 {"$ac2", RTYPE_ACC | 2}, \
2861 {"$ac3", RTYPE_ACC | 3}
2862
2863 static const struct regname reg_names[] = {
2864 GENERIC_REGISTER_NUMBERS,
2865 FPU_REGISTER_NAMES,
2866 FPU_CONDITION_CODE_NAMES,
2867 COPROC_CONDITION_CODE_NAMES,
2868
2869 /* The $txx registers depends on the abi,
2870 these will be added later into the symbol table from
2871 one of the tables below once mips_abi is set after
2872 parsing of arguments from the command line. */
2873 SYMBOLIC_REGISTER_NAMES,
2874
2875 MIPS16_SPECIAL_REGISTER_NAMES,
2876 MDMX_VECTOR_REGISTER_NAMES,
2877 R5900_I_NAMES,
2878 R5900_Q_NAMES,
2879 R5900_R_NAMES,
2880 R5900_ACC_NAMES,
2881 MIPS_DSP_ACCUMULATOR_NAMES,
2882 {0, 0}
2883 };
2884
2885 static const struct regname reg_names_o32[] = {
2886 O32_SYMBOLIC_REGISTER_NAMES,
2887 {0, 0}
2888 };
2889
2890 static const struct regname reg_names_n32n64[] = {
2891 N32N64_SYMBOLIC_REGISTER_NAMES,
2892 {0, 0}
2893 };
2894
2895 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2896 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2897 of these register symbols, return the associated vector register,
2898 otherwise return SYMVAL itself. */
2899
2900 static unsigned int
2901 mips_prefer_vec_regno (unsigned int symval)
2902 {
2903 if ((symval & -2) == (RTYPE_GP | 2))
2904 return RTYPE_VEC | (symval & 1);
2905 return symval;
2906 }
2907
2908 /* Return true if string [S, E) is a valid register name, storing its
2909 symbol value in *SYMVAL_PTR if so. */
2910
2911 static bfd_boolean
2912 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2913 {
2914 char save_c;
2915 symbolS *symbol;
2916
2917 /* Terminate name. */
2918 save_c = *e;
2919 *e = '\0';
2920
2921 /* Look up the name. */
2922 symbol = symbol_find (s);
2923 *e = save_c;
2924
2925 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2926 return FALSE;
2927
2928 *symval_ptr = S_GET_VALUE (symbol);
2929 return TRUE;
2930 }
2931
2932 /* Return true if the string at *SPTR is a valid register name. Allow it
2933 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2934 is nonnull.
2935
2936 When returning true, move *SPTR past the register, store the
2937 register's symbol value in *SYMVAL_PTR and the channel mask in
2938 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2939 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2940 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2941
2942 static bfd_boolean
2943 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2944 unsigned int *channels_ptr)
2945 {
2946 char *s, *e, *m;
2947 const char *q;
2948 unsigned int channels, symval, bit;
2949
2950 /* Find end of name. */
2951 s = e = *sptr;
2952 if (is_name_beginner (*e))
2953 ++e;
2954 while (is_part_of_name (*e))
2955 ++e;
2956
2957 channels = 0;
2958 if (!mips_parse_register_1 (s, e, &symval))
2959 {
2960 if (!channels_ptr)
2961 return FALSE;
2962
2963 /* Eat characters from the end of the string that are valid
2964 channel suffixes. The preceding register must be $ACC or
2965 end with a digit, so there is no ambiguity. */
2966 bit = 1;
2967 m = e;
2968 for (q = "wzyx"; *q; q++, bit <<= 1)
2969 if (m > s && m[-1] == *q)
2970 {
2971 --m;
2972 channels |= bit;
2973 }
2974
2975 if (channels == 0
2976 || !mips_parse_register_1 (s, m, &symval)
2977 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2978 return FALSE;
2979 }
2980
2981 *sptr = e;
2982 *symval_ptr = symval;
2983 if (channels_ptr)
2984 *channels_ptr = channels;
2985 return TRUE;
2986 }
2987
2988 /* Check if SPTR points at a valid register specifier according to TYPES.
2989 If so, then return 1, advance S to consume the specifier and store
2990 the register's number in REGNOP, otherwise return 0. */
2991
2992 static int
2993 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2994 {
2995 unsigned int regno;
2996
2997 if (mips_parse_register (s, &regno, NULL))
2998 {
2999 if (types & RTYPE_VEC)
3000 regno = mips_prefer_vec_regno (regno);
3001 if (regno & types)
3002 regno &= RNUM_MASK;
3003 else
3004 regno = ~0;
3005 }
3006 else
3007 {
3008 if (types & RWARN)
3009 as_warn (_("unrecognized register name `%s'"), *s);
3010 regno = ~0;
3011 }
3012 if (regnop)
3013 *regnop = regno;
3014 return regno <= RNUM_MASK;
3015 }
3016
3017 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
3018 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
3019
3020 static char *
3021 mips_parse_vu0_channels (char *s, unsigned int *channels)
3022 {
3023 unsigned int i;
3024
3025 *channels = 0;
3026 for (i = 0; i < 4; i++)
3027 if (*s == "xyzw"[i])
3028 {
3029 *channels |= 1 << (3 - i);
3030 ++s;
3031 }
3032 return s;
3033 }
3034
3035 /* Token types for parsed operand lists. */
3036 enum mips_operand_token_type {
3037 /* A plain register, e.g. $f2. */
3038 OT_REG,
3039
3040 /* A 4-bit XYZW channel mask. */
3041 OT_CHANNELS,
3042
3043 /* A constant vector index, e.g. [1]. */
3044 OT_INTEGER_INDEX,
3045
3046 /* A register vector index, e.g. [$2]. */
3047 OT_REG_INDEX,
3048
3049 /* A continuous range of registers, e.g. $s0-$s4. */
3050 OT_REG_RANGE,
3051
3052 /* A (possibly relocated) expression. */
3053 OT_INTEGER,
3054
3055 /* A floating-point value. */
3056 OT_FLOAT,
3057
3058 /* A single character. This can be '(', ')' or ',', but '(' only appears
3059 before OT_REGs. */
3060 OT_CHAR,
3061
3062 /* A doubled character, either "--" or "++". */
3063 OT_DOUBLE_CHAR,
3064
3065 /* The end of the operand list. */
3066 OT_END
3067 };
3068
3069 /* A parsed operand token. */
3070 struct mips_operand_token
3071 {
3072 /* The type of token. */
3073 enum mips_operand_token_type type;
3074 union
3075 {
3076 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3077 unsigned int regno;
3078
3079 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3080 unsigned int channels;
3081
3082 /* The integer value of an OT_INTEGER_INDEX. */
3083 addressT index;
3084
3085 /* The two register symbol values involved in an OT_REG_RANGE. */
3086 struct {
3087 unsigned int regno1;
3088 unsigned int regno2;
3089 } reg_range;
3090
3091 /* The value of an OT_INTEGER. The value is represented as an
3092 expression and the relocation operators that were applied to
3093 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3094 relocation operators were used. */
3095 struct {
3096 expressionS value;
3097 bfd_reloc_code_real_type relocs[3];
3098 } integer;
3099
3100 /* The binary data for an OT_FLOAT constant, and the number of bytes
3101 in the constant. */
3102 struct {
3103 unsigned char data[8];
3104 int length;
3105 } flt;
3106
3107 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3108 char ch;
3109 } u;
3110 };
3111
3112 /* An obstack used to construct lists of mips_operand_tokens. */
3113 static struct obstack mips_operand_tokens;
3114
3115 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3116
3117 static void
3118 mips_add_token (struct mips_operand_token *token,
3119 enum mips_operand_token_type type)
3120 {
3121 token->type = type;
3122 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3123 }
3124
3125 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3126 and OT_REG tokens for them if so, and return a pointer to the first
3127 unconsumed character. Return null otherwise. */
3128
3129 static char *
3130 mips_parse_base_start (char *s)
3131 {
3132 struct mips_operand_token token;
3133 unsigned int regno, channels;
3134 bfd_boolean decrement_p;
3135
3136 if (*s != '(')
3137 return 0;
3138
3139 ++s;
3140 SKIP_SPACE_TABS (s);
3141
3142 /* Only match "--" as part of a base expression. In other contexts "--X"
3143 is a double negative. */
3144 decrement_p = (s[0] == '-' && s[1] == '-');
3145 if (decrement_p)
3146 {
3147 s += 2;
3148 SKIP_SPACE_TABS (s);
3149 }
3150
3151 /* Allow a channel specifier because that leads to better error messages
3152 than treating something like "$vf0x++" as an expression. */
3153 if (!mips_parse_register (&s, &regno, &channels))
3154 return 0;
3155
3156 token.u.ch = '(';
3157 mips_add_token (&token, OT_CHAR);
3158
3159 if (decrement_p)
3160 {
3161 token.u.ch = '-';
3162 mips_add_token (&token, OT_DOUBLE_CHAR);
3163 }
3164
3165 token.u.regno = regno;
3166 mips_add_token (&token, OT_REG);
3167
3168 if (channels)
3169 {
3170 token.u.channels = channels;
3171 mips_add_token (&token, OT_CHANNELS);
3172 }
3173
3174 /* For consistency, only match "++" as part of base expressions too. */
3175 SKIP_SPACE_TABS (s);
3176 if (s[0] == '+' && s[1] == '+')
3177 {
3178 s += 2;
3179 token.u.ch = '+';
3180 mips_add_token (&token, OT_DOUBLE_CHAR);
3181 }
3182
3183 return s;
3184 }
3185
3186 /* Parse one or more tokens from S. Return a pointer to the first
3187 unconsumed character on success. Return null if an error was found
3188 and store the error text in insn_error. FLOAT_FORMAT is as for
3189 mips_parse_arguments. */
3190
3191 static char *
3192 mips_parse_argument_token (char *s, char float_format)
3193 {
3194 char *end, *save_in;
3195 const char *err;
3196 unsigned int regno1, regno2, channels;
3197 struct mips_operand_token token;
3198
3199 /* First look for "($reg", since we want to treat that as an
3200 OT_CHAR and OT_REG rather than an expression. */
3201 end = mips_parse_base_start (s);
3202 if (end)
3203 return end;
3204
3205 /* Handle other characters that end up as OT_CHARs. */
3206 if (*s == ')' || *s == ',')
3207 {
3208 token.u.ch = *s;
3209 mips_add_token (&token, OT_CHAR);
3210 ++s;
3211 return s;
3212 }
3213
3214 /* Handle tokens that start with a register. */
3215 if (mips_parse_register (&s, &regno1, &channels))
3216 {
3217 if (channels)
3218 {
3219 /* A register and a VU0 channel suffix. */
3220 token.u.regno = regno1;
3221 mips_add_token (&token, OT_REG);
3222
3223 token.u.channels = channels;
3224 mips_add_token (&token, OT_CHANNELS);
3225 return s;
3226 }
3227
3228 SKIP_SPACE_TABS (s);
3229 if (*s == '-')
3230 {
3231 /* A register range. */
3232 ++s;
3233 SKIP_SPACE_TABS (s);
3234 if (!mips_parse_register (&s, &regno2, NULL))
3235 {
3236 set_insn_error (0, _("invalid register range"));
3237 return 0;
3238 }
3239
3240 token.u.reg_range.regno1 = regno1;
3241 token.u.reg_range.regno2 = regno2;
3242 mips_add_token (&token, OT_REG_RANGE);
3243 return s;
3244 }
3245
3246 /* Add the register itself. */
3247 token.u.regno = regno1;
3248 mips_add_token (&token, OT_REG);
3249
3250 /* Check for a vector index. */
3251 if (*s == '[')
3252 {
3253 ++s;
3254 SKIP_SPACE_TABS (s);
3255 if (mips_parse_register (&s, &token.u.regno, NULL))
3256 mips_add_token (&token, OT_REG_INDEX);
3257 else
3258 {
3259 expressionS element;
3260
3261 my_getExpression (&element, s);
3262 if (element.X_op != O_constant)
3263 {
3264 set_insn_error (0, _("vector element must be constant"));
3265 return 0;
3266 }
3267 s = expr_end;
3268 token.u.index = element.X_add_number;
3269 mips_add_token (&token, OT_INTEGER_INDEX);
3270 }
3271 SKIP_SPACE_TABS (s);
3272 if (*s != ']')
3273 {
3274 set_insn_error (0, _("missing `]'"));
3275 return 0;
3276 }
3277 ++s;
3278 }
3279 return s;
3280 }
3281
3282 if (float_format)
3283 {
3284 /* First try to treat expressions as floats. */
3285 save_in = input_line_pointer;
3286 input_line_pointer = s;
3287 err = md_atof (float_format, (char *) token.u.flt.data,
3288 &token.u.flt.length);
3289 end = input_line_pointer;
3290 input_line_pointer = save_in;
3291 if (err && *err)
3292 {
3293 set_insn_error (0, err);
3294 return 0;
3295 }
3296 if (s != end)
3297 {
3298 mips_add_token (&token, OT_FLOAT);
3299 return end;
3300 }
3301 }
3302
3303 /* Treat everything else as an integer expression. */
3304 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3305 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3306 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3307 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3308 s = expr_end;
3309 mips_add_token (&token, OT_INTEGER);
3310 return s;
3311 }
3312
3313 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3314 if expressions should be treated as 32-bit floating-point constants,
3315 'd' if they should be treated as 64-bit floating-point constants,
3316 or 0 if they should be treated as integer expressions (the usual case).
3317
3318 Return a list of tokens on success, otherwise return 0. The caller
3319 must obstack_free the list after use. */
3320
3321 static struct mips_operand_token *
3322 mips_parse_arguments (char *s, char float_format)
3323 {
3324 struct mips_operand_token token;
3325
3326 SKIP_SPACE_TABS (s);
3327 while (*s)
3328 {
3329 s = mips_parse_argument_token (s, float_format);
3330 if (!s)
3331 {
3332 obstack_free (&mips_operand_tokens,
3333 obstack_finish (&mips_operand_tokens));
3334 return 0;
3335 }
3336 SKIP_SPACE_TABS (s);
3337 }
3338 mips_add_token (&token, OT_END);
3339 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3340 }
3341
3342 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3343 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3344
3345 static bfd_boolean
3346 is_opcode_valid (const struct mips_opcode *mo)
3347 {
3348 int isa = mips_opts.isa;
3349 int ase = mips_opts.ase;
3350 int fp_s, fp_d;
3351 unsigned int i;
3352
3353 if (ISA_HAS_64BIT_REGS (isa))
3354 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3355 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3356 ase |= mips_ases[i].flags64;
3357
3358 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3359 return FALSE;
3360
3361 /* Check whether the instruction or macro requires single-precision or
3362 double-precision floating-point support. Note that this information is
3363 stored differently in the opcode table for insns and macros. */
3364 if (mo->pinfo == INSN_MACRO)
3365 {
3366 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3367 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3368 }
3369 else
3370 {
3371 fp_s = mo->pinfo & FP_S;
3372 fp_d = mo->pinfo & FP_D;
3373 }
3374
3375 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3376 return FALSE;
3377
3378 if (fp_s && mips_opts.soft_float)
3379 return FALSE;
3380
3381 return TRUE;
3382 }
3383
3384 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3385 selected ISA and architecture. */
3386
3387 static bfd_boolean
3388 is_opcode_valid_16 (const struct mips_opcode *mo)
3389 {
3390 int isa = mips_opts.isa;
3391 int ase = mips_opts.ase;
3392 unsigned int i;
3393
3394 if (ISA_HAS_64BIT_REGS (isa))
3395 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3396 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3397 ase |= mips_ases[i].flags64;
3398
3399 return opcode_is_member (mo, isa, ase, mips_opts.arch);
3400 }
3401
3402 /* Return TRUE if the size of the microMIPS opcode MO matches one
3403 explicitly requested. Always TRUE in the standard MIPS mode.
3404 Use is_size_valid_16 for MIPS16 opcodes. */
3405
3406 static bfd_boolean
3407 is_size_valid (const struct mips_opcode *mo)
3408 {
3409 if (!mips_opts.micromips)
3410 return TRUE;
3411
3412 if (mips_opts.insn32)
3413 {
3414 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3415 return FALSE;
3416 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3417 return FALSE;
3418 }
3419 if (!forced_insn_length)
3420 return TRUE;
3421 if (mo->pinfo == INSN_MACRO)
3422 return FALSE;
3423 return forced_insn_length == micromips_insn_length (mo);
3424 }
3425
3426 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3427 explicitly requested. */
3428
3429 static bfd_boolean
3430 is_size_valid_16 (const struct mips_opcode *mo)
3431 {
3432 if (!forced_insn_length)
3433 return TRUE;
3434 if (mo->pinfo == INSN_MACRO)
3435 return FALSE;
3436 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3437 return FALSE;
3438 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3439 return FALSE;
3440 return TRUE;
3441 }
3442
3443 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3444 of the preceding instruction. Always TRUE in the standard MIPS mode.
3445
3446 We don't accept macros in 16-bit delay slots to avoid a case where
3447 a macro expansion fails because it relies on a preceding 32-bit real
3448 instruction to have matched and does not handle the operands correctly.
3449 The only macros that may expand to 16-bit instructions are JAL that
3450 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3451 and BGT (that likewise cannot be placed in a delay slot) that decay to
3452 a NOP. In all these cases the macros precede any corresponding real
3453 instruction definitions in the opcode table, so they will match in the
3454 second pass where the size of the delay slot is ignored and therefore
3455 produce correct code. */
3456
3457 static bfd_boolean
3458 is_delay_slot_valid (const struct mips_opcode *mo)
3459 {
3460 if (!mips_opts.micromips)
3461 return TRUE;
3462
3463 if (mo->pinfo == INSN_MACRO)
3464 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3465 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3466 && micromips_insn_length (mo) != 4)
3467 return FALSE;
3468 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3469 && micromips_insn_length (mo) != 2)
3470 return FALSE;
3471
3472 return TRUE;
3473 }
3474
3475 /* For consistency checking, verify that all bits of OPCODE are specified
3476 either by the match/mask part of the instruction definition, or by the
3477 operand list. Also build up a list of operands in OPERANDS.
3478
3479 INSN_BITS says which bits of the instruction are significant.
3480 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3481 provides the mips_operand description of each operand. DECODE_OPERAND
3482 is null for MIPS16 instructions. */
3483
3484 static int
3485 validate_mips_insn (const struct mips_opcode *opcode,
3486 unsigned long insn_bits,
3487 const struct mips_operand *(*decode_operand) (const char *),
3488 struct mips_operand_array *operands)
3489 {
3490 const char *s;
3491 unsigned long used_bits, doubled, undefined, opno, mask;
3492 const struct mips_operand *operand;
3493
3494 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3495 if ((mask & opcode->match) != opcode->match)
3496 {
3497 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3498 opcode->name, opcode->args);
3499 return 0;
3500 }
3501 used_bits = 0;
3502 opno = 0;
3503 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3504 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3505 for (s = opcode->args; *s; ++s)
3506 switch (*s)
3507 {
3508 case ',':
3509 case '(':
3510 case ')':
3511 break;
3512
3513 case '#':
3514 s++;
3515 break;
3516
3517 default:
3518 if (!decode_operand)
3519 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3520 else
3521 operand = decode_operand (s);
3522 if (!operand && opcode->pinfo != INSN_MACRO)
3523 {
3524 as_bad (_("internal: unknown operand type: %s %s"),
3525 opcode->name, opcode->args);
3526 return 0;
3527 }
3528 gas_assert (opno < MAX_OPERANDS);
3529 operands->operand[opno] = operand;
3530 if (!decode_operand && operand
3531 && operand->type == OP_INT && operand->lsb == 0
3532 && mips_opcode_32bit_p (opcode))
3533 used_bits |= mips16_immed_extend (-1, operand->size);
3534 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3535 {
3536 used_bits = mips_insert_operand (operand, used_bits, -1);
3537 if (operand->type == OP_MDMX_IMM_REG)
3538 /* Bit 5 is the format selector (OB vs QH). The opcode table
3539 has separate entries for each format. */
3540 used_bits &= ~(1 << (operand->lsb + 5));
3541 if (operand->type == OP_ENTRY_EXIT_LIST)
3542 used_bits &= ~(mask & 0x700);
3543 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3544 operand field that cannot be fully described with LSB/SIZE. */
3545 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3546 used_bits &= ~0x6000;
3547 }
3548 /* Skip prefix characters. */
3549 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3550 ++s;
3551 opno += 1;
3552 break;
3553 }
3554 doubled = used_bits & mask & insn_bits;
3555 if (doubled)
3556 {
3557 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3558 " %s %s"), doubled, opcode->name, opcode->args);
3559 return 0;
3560 }
3561 used_bits |= mask;
3562 undefined = ~used_bits & insn_bits;
3563 if (opcode->pinfo != INSN_MACRO && undefined)
3564 {
3565 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3566 undefined, opcode->name, opcode->args);
3567 return 0;
3568 }
3569 used_bits &= ~insn_bits;
3570 if (used_bits)
3571 {
3572 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3573 used_bits, opcode->name, opcode->args);
3574 return 0;
3575 }
3576 return 1;
3577 }
3578
3579 /* The MIPS16 version of validate_mips_insn. */
3580
3581 static int
3582 validate_mips16_insn (const struct mips_opcode *opcode,
3583 struct mips_operand_array *operands)
3584 {
3585 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3586
3587 return validate_mips_insn (opcode, insn_bits, 0, operands);
3588 }
3589
3590 /* The microMIPS version of validate_mips_insn. */
3591
3592 static int
3593 validate_micromips_insn (const struct mips_opcode *opc,
3594 struct mips_operand_array *operands)
3595 {
3596 unsigned long insn_bits;
3597 unsigned long major;
3598 unsigned int length;
3599
3600 if (opc->pinfo == INSN_MACRO)
3601 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3602 operands);
3603
3604 length = micromips_insn_length (opc);
3605 if (length != 2 && length != 4)
3606 {
3607 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3608 "%s %s"), length, opc->name, opc->args);
3609 return 0;
3610 }
3611 major = opc->match >> (10 + 8 * (length - 2));
3612 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3613 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3614 {
3615 as_bad (_("internal error: bad microMIPS opcode "
3616 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3617 return 0;
3618 }
3619
3620 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3621 insn_bits = 1 << 4 * length;
3622 insn_bits <<= 4 * length;
3623 insn_bits -= 1;
3624 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3625 operands);
3626 }
3627
3628 /* This function is called once, at assembler startup time. It should set up
3629 all the tables, etc. that the MD part of the assembler will need. */
3630
3631 void
3632 md_begin (void)
3633 {
3634 const char *retval = NULL;
3635 int i = 0;
3636 int broken = 0;
3637
3638 if (mips_pic != NO_PIC)
3639 {
3640 if (g_switch_seen && g_switch_value != 0)
3641 as_bad (_("-G may not be used in position-independent code"));
3642 g_switch_value = 0;
3643 }
3644 else if (mips_abicalls)
3645 {
3646 if (g_switch_seen && g_switch_value != 0)
3647 as_bad (_("-G may not be used with abicalls"));
3648 g_switch_value = 0;
3649 }
3650
3651 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3652 as_warn (_("could not set architecture and machine"));
3653
3654 op_hash = hash_new ();
3655
3656 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3657 for (i = 0; i < NUMOPCODES;)
3658 {
3659 const char *name = mips_opcodes[i].name;
3660
3661 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3662 if (retval != NULL)
3663 {
3664 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3665 mips_opcodes[i].name, retval);
3666 /* Probably a memory allocation problem? Give up now. */
3667 as_fatal (_("broken assembler, no assembly attempted"));
3668 }
3669 do
3670 {
3671 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3672 decode_mips_operand, &mips_operands[i]))
3673 broken = 1;
3674 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3675 {
3676 create_insn (&nop_insn, mips_opcodes + i);
3677 if (mips_fix_loongson2f_nop)
3678 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3679 nop_insn.fixed_p = 1;
3680 }
3681 ++i;
3682 }
3683 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3684 }
3685
3686 mips16_op_hash = hash_new ();
3687 mips16_operands = XCNEWVEC (struct mips_operand_array,
3688 bfd_mips16_num_opcodes);
3689
3690 i = 0;
3691 while (i < bfd_mips16_num_opcodes)
3692 {
3693 const char *name = mips16_opcodes[i].name;
3694
3695 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3696 if (retval != NULL)
3697 as_fatal (_("internal: can't hash `%s': %s"),
3698 mips16_opcodes[i].name, retval);
3699 do
3700 {
3701 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3702 broken = 1;
3703 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3704 {
3705 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3706 mips16_nop_insn.fixed_p = 1;
3707 }
3708 ++i;
3709 }
3710 while (i < bfd_mips16_num_opcodes
3711 && strcmp (mips16_opcodes[i].name, name) == 0);
3712 }
3713
3714 micromips_op_hash = hash_new ();
3715 micromips_operands = XCNEWVEC (struct mips_operand_array,
3716 bfd_micromips_num_opcodes);
3717
3718 i = 0;
3719 while (i < bfd_micromips_num_opcodes)
3720 {
3721 const char *name = micromips_opcodes[i].name;
3722
3723 retval = hash_insert (micromips_op_hash, name,
3724 (void *) &micromips_opcodes[i]);
3725 if (retval != NULL)
3726 as_fatal (_("internal: can't hash `%s': %s"),
3727 micromips_opcodes[i].name, retval);
3728 do
3729 {
3730 struct mips_cl_insn *micromips_nop_insn;
3731
3732 if (!validate_micromips_insn (&micromips_opcodes[i],
3733 &micromips_operands[i]))
3734 broken = 1;
3735
3736 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3737 {
3738 if (micromips_insn_length (micromips_opcodes + i) == 2)
3739 micromips_nop_insn = &micromips_nop16_insn;
3740 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3741 micromips_nop_insn = &micromips_nop32_insn;
3742 else
3743 continue;
3744
3745 if (micromips_nop_insn->insn_mo == NULL
3746 && strcmp (name, "nop") == 0)
3747 {
3748 create_insn (micromips_nop_insn, micromips_opcodes + i);
3749 micromips_nop_insn->fixed_p = 1;
3750 }
3751 }
3752 }
3753 while (++i < bfd_micromips_num_opcodes
3754 && strcmp (micromips_opcodes[i].name, name) == 0);
3755 }
3756
3757 if (broken)
3758 as_fatal (_("broken assembler, no assembly attempted"));
3759
3760 /* We add all the general register names to the symbol table. This
3761 helps us detect invalid uses of them. */
3762 for (i = 0; reg_names[i].name; i++)
3763 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3764 reg_names[i].num, /* & RNUM_MASK, */
3765 &zero_address_frag));
3766 if (HAVE_NEWABI)
3767 for (i = 0; reg_names_n32n64[i].name; i++)
3768 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3769 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3770 &zero_address_frag));
3771 else
3772 for (i = 0; reg_names_o32[i].name; i++)
3773 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3774 reg_names_o32[i].num, /* & RNUM_MASK, */
3775 &zero_address_frag));
3776
3777 for (i = 0; i < 32; i++)
3778 {
3779 char regname[6];
3780
3781 /* R5900 VU0 floating-point register. */
3782 sprintf (regname, "$vf%d", i);
3783 symbol_table_insert (symbol_new (regname, reg_section,
3784 RTYPE_VF | i, &zero_address_frag));
3785
3786 /* R5900 VU0 integer register. */
3787 sprintf (regname, "$vi%d", i);
3788 symbol_table_insert (symbol_new (regname, reg_section,
3789 RTYPE_VI | i, &zero_address_frag));
3790
3791 /* MSA register. */
3792 sprintf (regname, "$w%d", i);
3793 symbol_table_insert (symbol_new (regname, reg_section,
3794 RTYPE_MSA | i, &zero_address_frag));
3795 }
3796
3797 obstack_init (&mips_operand_tokens);
3798
3799 mips_no_prev_insn ();
3800
3801 mips_gprmask = 0;
3802 mips_cprmask[0] = 0;
3803 mips_cprmask[1] = 0;
3804 mips_cprmask[2] = 0;
3805 mips_cprmask[3] = 0;
3806
3807 /* set the default alignment for the text section (2**2) */
3808 record_alignment (text_section, 2);
3809
3810 bfd_set_gp_size (stdoutput, g_switch_value);
3811
3812 /* On a native system other than VxWorks, sections must be aligned
3813 to 16 byte boundaries. When configured for an embedded ELF
3814 target, we don't bother. */
3815 if (strncmp (TARGET_OS, "elf", 3) != 0
3816 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3817 {
3818 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3819 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3820 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3821 }
3822
3823 /* Create a .reginfo section for register masks and a .mdebug
3824 section for debugging information. */
3825 {
3826 segT seg;
3827 subsegT subseg;
3828 flagword flags;
3829 segT sec;
3830
3831 seg = now_seg;
3832 subseg = now_subseg;
3833
3834 /* The ABI says this section should be loaded so that the
3835 running program can access it. However, we don't load it
3836 if we are configured for an embedded target */
3837 flags = SEC_READONLY | SEC_DATA;
3838 if (strncmp (TARGET_OS, "elf", 3) != 0)
3839 flags |= SEC_ALLOC | SEC_LOAD;
3840
3841 if (mips_abi != N64_ABI)
3842 {
3843 sec = subseg_new (".reginfo", (subsegT) 0);
3844
3845 bfd_set_section_flags (stdoutput, sec, flags);
3846 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3847
3848 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3849 }
3850 else
3851 {
3852 /* The 64-bit ABI uses a .MIPS.options section rather than
3853 .reginfo section. */
3854 sec = subseg_new (".MIPS.options", (subsegT) 0);
3855 bfd_set_section_flags (stdoutput, sec, flags);
3856 bfd_set_section_alignment (stdoutput, sec, 3);
3857
3858 /* Set up the option header. */
3859 {
3860 Elf_Internal_Options opthdr;
3861 char *f;
3862
3863 opthdr.kind = ODK_REGINFO;
3864 opthdr.size = (sizeof (Elf_External_Options)
3865 + sizeof (Elf64_External_RegInfo));
3866 opthdr.section = 0;
3867 opthdr.info = 0;
3868 f = frag_more (sizeof (Elf_External_Options));
3869 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3870 (Elf_External_Options *) f);
3871
3872 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3873 }
3874 }
3875
3876 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3877 bfd_set_section_flags (stdoutput, sec,
3878 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3879 bfd_set_section_alignment (stdoutput, sec, 3);
3880 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3881
3882 if (ECOFF_DEBUGGING)
3883 {
3884 sec = subseg_new (".mdebug", (subsegT) 0);
3885 (void) bfd_set_section_flags (stdoutput, sec,
3886 SEC_HAS_CONTENTS | SEC_READONLY);
3887 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3888 }
3889 else if (mips_flag_pdr)
3890 {
3891 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3892 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3893 SEC_READONLY | SEC_RELOC
3894 | SEC_DEBUGGING);
3895 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3896 }
3897
3898 subseg_set (seg, subseg);
3899 }
3900
3901 if (mips_fix_vr4120)
3902 init_vr4120_conflicts ();
3903 }
3904
3905 static inline void
3906 fpabi_incompatible_with (int fpabi, const char *what)
3907 {
3908 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3909 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3910 }
3911
3912 static inline void
3913 fpabi_requires (int fpabi, const char *what)
3914 {
3915 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3916 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3917 }
3918
3919 /* Check -mabi and register sizes against the specified FP ABI. */
3920 static void
3921 check_fpabi (int fpabi)
3922 {
3923 switch (fpabi)
3924 {
3925 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3926 if (file_mips_opts.soft_float)
3927 fpabi_incompatible_with (fpabi, "softfloat");
3928 else if (file_mips_opts.single_float)
3929 fpabi_incompatible_with (fpabi, "singlefloat");
3930 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3931 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3932 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3933 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3934 break;
3935
3936 case Val_GNU_MIPS_ABI_FP_XX:
3937 if (mips_abi != O32_ABI)
3938 fpabi_requires (fpabi, "-mabi=32");
3939 else if (file_mips_opts.soft_float)
3940 fpabi_incompatible_with (fpabi, "softfloat");
3941 else if (file_mips_opts.single_float)
3942 fpabi_incompatible_with (fpabi, "singlefloat");
3943 else if (file_mips_opts.fp != 0)
3944 fpabi_requires (fpabi, "fp=xx");
3945 break;
3946
3947 case Val_GNU_MIPS_ABI_FP_64A:
3948 case Val_GNU_MIPS_ABI_FP_64:
3949 if (mips_abi != O32_ABI)
3950 fpabi_requires (fpabi, "-mabi=32");
3951 else if (file_mips_opts.soft_float)
3952 fpabi_incompatible_with (fpabi, "softfloat");
3953 else if (file_mips_opts.single_float)
3954 fpabi_incompatible_with (fpabi, "singlefloat");
3955 else if (file_mips_opts.fp != 64)
3956 fpabi_requires (fpabi, "fp=64");
3957 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3958 fpabi_incompatible_with (fpabi, "nooddspreg");
3959 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3960 fpabi_requires (fpabi, "nooddspreg");
3961 break;
3962
3963 case Val_GNU_MIPS_ABI_FP_SINGLE:
3964 if (file_mips_opts.soft_float)
3965 fpabi_incompatible_with (fpabi, "softfloat");
3966 else if (!file_mips_opts.single_float)
3967 fpabi_requires (fpabi, "singlefloat");
3968 break;
3969
3970 case Val_GNU_MIPS_ABI_FP_SOFT:
3971 if (!file_mips_opts.soft_float)
3972 fpabi_requires (fpabi, "softfloat");
3973 break;
3974
3975 case Val_GNU_MIPS_ABI_FP_OLD_64:
3976 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3977 Tag_GNU_MIPS_ABI_FP, fpabi);
3978 break;
3979
3980 case Val_GNU_MIPS_ABI_FP_NAN2008:
3981 /* Silently ignore compatibility value. */
3982 break;
3983
3984 default:
3985 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3986 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3987 break;
3988 }
3989 }
3990
3991 /* Perform consistency checks on the current options. */
3992
3993 static void
3994 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3995 {
3996 /* Check the size of integer registers agrees with the ABI and ISA. */
3997 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3998 as_bad (_("`gp=64' used with a 32-bit processor"));
3999 else if (abi_checks
4000 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
4001 as_bad (_("`gp=32' used with a 64-bit ABI"));
4002 else if (abi_checks
4003 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
4004 as_bad (_("`gp=64' used with a 32-bit ABI"));
4005
4006 /* Check the size of the float registers agrees with the ABI and ISA. */
4007 switch (opts->fp)
4008 {
4009 case 0:
4010 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
4011 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
4012 else if (opts->single_float == 1)
4013 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
4014 break;
4015 case 64:
4016 if (!ISA_HAS_64BIT_FPRS (opts->isa))
4017 as_bad (_("`fp=64' used with a 32-bit fpu"));
4018 else if (abi_checks
4019 && ABI_NEEDS_32BIT_REGS (mips_abi)
4020 && !ISA_HAS_MXHC1 (opts->isa))
4021 as_warn (_("`fp=64' used with a 32-bit ABI"));
4022 break;
4023 case 32:
4024 if (abi_checks
4025 && ABI_NEEDS_64BIT_REGS (mips_abi))
4026 as_warn (_("`fp=32' used with a 64-bit ABI"));
4027 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
4028 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
4029 break;
4030 default:
4031 as_bad (_("Unknown size of floating point registers"));
4032 break;
4033 }
4034
4035 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
4036 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4037
4038 if (opts->micromips == 1 && opts->mips16 == 1)
4039 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
4040 else if (ISA_IS_R6 (opts->isa)
4041 && (opts->micromips == 1
4042 || opts->mips16 == 1))
4043 as_fatal (_("`%s' cannot be used with `%s'"),
4044 opts->micromips ? "micromips" : "mips16",
4045 mips_cpu_info_from_isa (opts->isa)->name);
4046
4047 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
4048 as_fatal (_("branch relaxation is not supported in `%s'"),
4049 mips_cpu_info_from_isa (opts->isa)->name);
4050 }
4051
4052 /* Perform consistency checks on the module level options exactly once.
4053 This is a deferred check that happens:
4054 at the first .set directive
4055 or, at the first pseudo op that generates code (inc .dc.a)
4056 or, at the first instruction
4057 or, at the end. */
4058
4059 static void
4060 file_mips_check_options (void)
4061 {
4062 const struct mips_cpu_info *arch_info = 0;
4063
4064 if (file_mips_opts_checked)
4065 return;
4066
4067 /* The following code determines the register size.
4068 Similar code was added to GCC 3.3 (see override_options() in
4069 config/mips/mips.c). The GAS and GCC code should be kept in sync
4070 as much as possible. */
4071
4072 if (file_mips_opts.gp < 0)
4073 {
4074 /* Infer the integer register size from the ABI and processor.
4075 Restrict ourselves to 32-bit registers if that's all the
4076 processor has, or if the ABI cannot handle 64-bit registers. */
4077 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4078 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4079 ? 32 : 64;
4080 }
4081
4082 if (file_mips_opts.fp < 0)
4083 {
4084 /* No user specified float register size.
4085 ??? GAS treats single-float processors as though they had 64-bit
4086 float registers (although it complains when double-precision
4087 instructions are used). As things stand, saying they have 32-bit
4088 registers would lead to spurious "register must be even" messages.
4089 So here we assume float registers are never smaller than the
4090 integer ones. */
4091 if (file_mips_opts.gp == 64)
4092 /* 64-bit integer registers implies 64-bit float registers. */
4093 file_mips_opts.fp = 64;
4094 else if ((file_mips_opts.ase & FP64_ASES)
4095 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4096 /* Handle ASEs that require 64-bit float registers, if possible. */
4097 file_mips_opts.fp = 64;
4098 else if (ISA_IS_R6 (mips_opts.isa))
4099 /* R6 implies 64-bit float registers. */
4100 file_mips_opts.fp = 64;
4101 else
4102 /* 32-bit float registers. */
4103 file_mips_opts.fp = 32;
4104 }
4105
4106 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
4107
4108 /* Disable operations on odd-numbered floating-point registers by default
4109 when using the FPXX ABI. */
4110 if (file_mips_opts.oddspreg < 0)
4111 {
4112 if (file_mips_opts.fp == 0)
4113 file_mips_opts.oddspreg = 0;
4114 else
4115 file_mips_opts.oddspreg = 1;
4116 }
4117
4118 /* End of GCC-shared inference code. */
4119
4120 /* This flag is set when we have a 64-bit capable CPU but use only
4121 32-bit wide registers. Note that EABI does not use it. */
4122 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4123 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4124 || mips_abi == O32_ABI))
4125 mips_32bitmode = 1;
4126
4127 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4128 as_bad (_("trap exception not supported at ISA 1"));
4129
4130 /* If the selected architecture includes support for ASEs, enable
4131 generation of code for them. */
4132 if (file_mips_opts.mips16 == -1)
4133 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4134 if (file_mips_opts.micromips == -1)
4135 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4136 ? 1 : 0;
4137
4138 if (mips_nan2008 == -1)
4139 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4140 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4141 as_fatal (_("`%s' does not support legacy NaN"),
4142 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4143
4144 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4145 being selected implicitly. */
4146 if (file_mips_opts.fp != 64)
4147 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4148
4149 /* If the user didn't explicitly select or deselect a particular ASE,
4150 use the default setting for the CPU. */
4151 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4152
4153 /* Set up the current options. These may change throughout assembly. */
4154 mips_opts = file_mips_opts;
4155
4156 mips_check_isa_supports_ases ();
4157 mips_check_options (&file_mips_opts, TRUE);
4158 file_mips_opts_checked = TRUE;
4159
4160 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4161 as_warn (_("could not set architecture and machine"));
4162 }
4163
4164 void
4165 md_assemble (char *str)
4166 {
4167 struct mips_cl_insn insn;
4168 bfd_reloc_code_real_type unused_reloc[3]
4169 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4170
4171 file_mips_check_options ();
4172
4173 imm_expr.X_op = O_absent;
4174 offset_expr.X_op = O_absent;
4175 offset_reloc[0] = BFD_RELOC_UNUSED;
4176 offset_reloc[1] = BFD_RELOC_UNUSED;
4177 offset_reloc[2] = BFD_RELOC_UNUSED;
4178
4179 mips_mark_labels ();
4180 mips_assembling_insn = TRUE;
4181 clear_insn_error ();
4182
4183 if (mips_opts.mips16)
4184 mips16_ip (str, &insn);
4185 else
4186 {
4187 mips_ip (str, &insn);
4188 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4189 str, insn.insn_opcode));
4190 }
4191
4192 if (insn_error.msg)
4193 report_insn_error (str);
4194 else if (insn.insn_mo->pinfo == INSN_MACRO)
4195 {
4196 macro_start ();
4197 if (mips_opts.mips16)
4198 mips16_macro (&insn);
4199 else
4200 macro (&insn, str);
4201 macro_end ();
4202 }
4203 else
4204 {
4205 if (offset_expr.X_op != O_absent)
4206 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4207 else
4208 append_insn (&insn, NULL, unused_reloc, FALSE);
4209 }
4210
4211 mips_assembling_insn = FALSE;
4212 }
4213
4214 /* Convenience functions for abstracting away the differences between
4215 MIPS16 and non-MIPS16 relocations. */
4216
4217 static inline bfd_boolean
4218 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4219 {
4220 switch (reloc)
4221 {
4222 case BFD_RELOC_MIPS16_JMP:
4223 case BFD_RELOC_MIPS16_GPREL:
4224 case BFD_RELOC_MIPS16_GOT16:
4225 case BFD_RELOC_MIPS16_CALL16:
4226 case BFD_RELOC_MIPS16_HI16_S:
4227 case BFD_RELOC_MIPS16_HI16:
4228 case BFD_RELOC_MIPS16_LO16:
4229 case BFD_RELOC_MIPS16_16_PCREL_S1:
4230 return TRUE;
4231
4232 default:
4233 return FALSE;
4234 }
4235 }
4236
4237 static inline bfd_boolean
4238 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4239 {
4240 switch (reloc)
4241 {
4242 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4243 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4244 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4245 case BFD_RELOC_MICROMIPS_GPREL16:
4246 case BFD_RELOC_MICROMIPS_JMP:
4247 case BFD_RELOC_MICROMIPS_HI16:
4248 case BFD_RELOC_MICROMIPS_HI16_S:
4249 case BFD_RELOC_MICROMIPS_LO16:
4250 case BFD_RELOC_MICROMIPS_LITERAL:
4251 case BFD_RELOC_MICROMIPS_GOT16:
4252 case BFD_RELOC_MICROMIPS_CALL16:
4253 case BFD_RELOC_MICROMIPS_GOT_HI16:
4254 case BFD_RELOC_MICROMIPS_GOT_LO16:
4255 case BFD_RELOC_MICROMIPS_CALL_HI16:
4256 case BFD_RELOC_MICROMIPS_CALL_LO16:
4257 case BFD_RELOC_MICROMIPS_SUB:
4258 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4259 case BFD_RELOC_MICROMIPS_GOT_OFST:
4260 case BFD_RELOC_MICROMIPS_GOT_DISP:
4261 case BFD_RELOC_MICROMIPS_HIGHEST:
4262 case BFD_RELOC_MICROMIPS_HIGHER:
4263 case BFD_RELOC_MICROMIPS_SCN_DISP:
4264 case BFD_RELOC_MICROMIPS_JALR:
4265 return TRUE;
4266
4267 default:
4268 return FALSE;
4269 }
4270 }
4271
4272 static inline bfd_boolean
4273 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4274 {
4275 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4276 }
4277
4278 static inline bfd_boolean
4279 b_reloc_p (bfd_reloc_code_real_type reloc)
4280 {
4281 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4282 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4283 || reloc == BFD_RELOC_16_PCREL_S2
4284 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4285 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4286 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4287 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4288 }
4289
4290 static inline bfd_boolean
4291 got16_reloc_p (bfd_reloc_code_real_type reloc)
4292 {
4293 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4294 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4295 }
4296
4297 static inline bfd_boolean
4298 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4299 {
4300 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4301 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4302 }
4303
4304 static inline bfd_boolean
4305 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4306 {
4307 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4308 || reloc == BFD_RELOC_MICROMIPS_LO16);
4309 }
4310
4311 static inline bfd_boolean
4312 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4313 {
4314 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4315 }
4316
4317 static inline bfd_boolean
4318 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4319 {
4320 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4321 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4322 }
4323
4324 /* Return true if RELOC is a PC-relative relocation that does not have
4325 full address range. */
4326
4327 static inline bfd_boolean
4328 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4329 {
4330 switch (reloc)
4331 {
4332 case BFD_RELOC_16_PCREL_S2:
4333 case BFD_RELOC_MIPS16_16_PCREL_S1:
4334 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4335 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4336 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4337 case BFD_RELOC_MIPS_21_PCREL_S2:
4338 case BFD_RELOC_MIPS_26_PCREL_S2:
4339 case BFD_RELOC_MIPS_18_PCREL_S3:
4340 case BFD_RELOC_MIPS_19_PCREL_S2:
4341 return TRUE;
4342
4343 case BFD_RELOC_32_PCREL:
4344 case BFD_RELOC_HI16_S_PCREL:
4345 case BFD_RELOC_LO16_PCREL:
4346 return HAVE_64BIT_ADDRESSES;
4347
4348 default:
4349 return FALSE;
4350 }
4351 }
4352
4353 /* Return true if the given relocation might need a matching %lo().
4354 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4355 need a matching %lo() when applied to local symbols. */
4356
4357 static inline bfd_boolean
4358 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4359 {
4360 return (HAVE_IN_PLACE_ADDENDS
4361 && (hi16_reloc_p (reloc)
4362 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4363 all GOT16 relocations evaluate to "G". */
4364 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4365 }
4366
4367 /* Return the type of %lo() reloc needed by RELOC, given that
4368 reloc_needs_lo_p. */
4369
4370 static inline bfd_reloc_code_real_type
4371 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4372 {
4373 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4374 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4375 : BFD_RELOC_LO16));
4376 }
4377
4378 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4379 relocation. */
4380
4381 static inline bfd_boolean
4382 fixup_has_matching_lo_p (fixS *fixp)
4383 {
4384 return (fixp->fx_next != NULL
4385 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4386 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4387 && fixp->fx_offset == fixp->fx_next->fx_offset);
4388 }
4389
4390 /* Move all labels in LABELS to the current insertion point. TEXT_P
4391 says whether the labels refer to text or data. */
4392
4393 static void
4394 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4395 {
4396 struct insn_label_list *l;
4397 valueT val;
4398
4399 for (l = labels; l != NULL; l = l->next)
4400 {
4401 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4402 symbol_set_frag (l->label, frag_now);
4403 val = (valueT) frag_now_fix ();
4404 /* MIPS16/microMIPS text labels are stored as odd. */
4405 if (text_p && HAVE_CODE_COMPRESSION)
4406 ++val;
4407 S_SET_VALUE (l->label, val);
4408 }
4409 }
4410
4411 /* Move all labels in insn_labels to the current insertion point
4412 and treat them as text labels. */
4413
4414 static void
4415 mips_move_text_labels (void)
4416 {
4417 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4418 }
4419
4420 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4421
4422 static bfd_boolean
4423 s_is_linkonce (symbolS *sym, segT from_seg)
4424 {
4425 bfd_boolean linkonce = FALSE;
4426 segT symseg = S_GET_SEGMENT (sym);
4427
4428 if (symseg != from_seg && !S_IS_LOCAL (sym))
4429 {
4430 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4431 linkonce = TRUE;
4432 /* The GNU toolchain uses an extension for ELF: a section
4433 beginning with the magic string .gnu.linkonce is a
4434 linkonce section. */
4435 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4436 sizeof ".gnu.linkonce" - 1) == 0)
4437 linkonce = TRUE;
4438 }
4439 return linkonce;
4440 }
4441
4442 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4443 linker to handle them specially, such as generating jalx instructions
4444 when needed. We also make them odd for the duration of the assembly,
4445 in order to generate the right sort of code. We will make them even
4446 in the adjust_symtab routine, while leaving them marked. This is
4447 convenient for the debugger and the disassembler. The linker knows
4448 to make them odd again. */
4449
4450 static void
4451 mips_compressed_mark_label (symbolS *label)
4452 {
4453 gas_assert (HAVE_CODE_COMPRESSION);
4454
4455 if (mips_opts.mips16)
4456 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4457 else
4458 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4459 if ((S_GET_VALUE (label) & 1) == 0
4460 /* Don't adjust the address if the label is global or weak, or
4461 in a link-once section, since we'll be emitting symbol reloc
4462 references to it which will be patched up by the linker, and
4463 the final value of the symbol may or may not be MIPS16/microMIPS. */
4464 && !S_IS_WEAK (label)
4465 && !S_IS_EXTERNAL (label)
4466 && !s_is_linkonce (label, now_seg))
4467 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4468 }
4469
4470 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4471
4472 static void
4473 mips_compressed_mark_labels (void)
4474 {
4475 struct insn_label_list *l;
4476
4477 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4478 mips_compressed_mark_label (l->label);
4479 }
4480
4481 /* End the current frag. Make it a variant frag and record the
4482 relaxation info. */
4483
4484 static void
4485 relax_close_frag (void)
4486 {
4487 mips_macro_warning.first_frag = frag_now;
4488 frag_var (rs_machine_dependent, 0, 0,
4489 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4490 mips_pic != NO_PIC),
4491 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4492
4493 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4494 mips_relax.first_fixup = 0;
4495 }
4496
4497 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4498 See the comment above RELAX_ENCODE for more details. */
4499
4500 static void
4501 relax_start (symbolS *symbol)
4502 {
4503 gas_assert (mips_relax.sequence == 0);
4504 mips_relax.sequence = 1;
4505 mips_relax.symbol = symbol;
4506 }
4507
4508 /* Start generating the second version of a relaxable sequence.
4509 See the comment above RELAX_ENCODE for more details. */
4510
4511 static void
4512 relax_switch (void)
4513 {
4514 gas_assert (mips_relax.sequence == 1);
4515 mips_relax.sequence = 2;
4516 }
4517
4518 /* End the current relaxable sequence. */
4519
4520 static void
4521 relax_end (void)
4522 {
4523 gas_assert (mips_relax.sequence == 2);
4524 relax_close_frag ();
4525 mips_relax.sequence = 0;
4526 }
4527
4528 /* Return true if IP is a delayed branch or jump. */
4529
4530 static inline bfd_boolean
4531 delayed_branch_p (const struct mips_cl_insn *ip)
4532 {
4533 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4534 | INSN_COND_BRANCH_DELAY
4535 | INSN_COND_BRANCH_LIKELY)) != 0;
4536 }
4537
4538 /* Return true if IP is a compact branch or jump. */
4539
4540 static inline bfd_boolean
4541 compact_branch_p (const struct mips_cl_insn *ip)
4542 {
4543 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4544 | INSN2_COND_BRANCH)) != 0;
4545 }
4546
4547 /* Return true if IP is an unconditional branch or jump. */
4548
4549 static inline bfd_boolean
4550 uncond_branch_p (const struct mips_cl_insn *ip)
4551 {
4552 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4553 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4554 }
4555
4556 /* Return true if IP is a branch-likely instruction. */
4557
4558 static inline bfd_boolean
4559 branch_likely_p (const struct mips_cl_insn *ip)
4560 {
4561 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4562 }
4563
4564 /* Return the type of nop that should be used to fill the delay slot
4565 of delayed branch IP. */
4566
4567 static struct mips_cl_insn *
4568 get_delay_slot_nop (const struct mips_cl_insn *ip)
4569 {
4570 if (mips_opts.micromips
4571 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4572 return &micromips_nop32_insn;
4573 return NOP_INSN;
4574 }
4575
4576 /* Return a mask that has bit N set if OPCODE reads the register(s)
4577 in operand N. */
4578
4579 static unsigned int
4580 insn_read_mask (const struct mips_opcode *opcode)
4581 {
4582 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4583 }
4584
4585 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4586 in operand N. */
4587
4588 static unsigned int
4589 insn_write_mask (const struct mips_opcode *opcode)
4590 {
4591 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4592 }
4593
4594 /* Return a mask of the registers specified by operand OPERAND of INSN.
4595 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4596 is set. */
4597
4598 static unsigned int
4599 operand_reg_mask (const struct mips_cl_insn *insn,
4600 const struct mips_operand *operand,
4601 unsigned int type_mask)
4602 {
4603 unsigned int uval, vsel;
4604
4605 switch (operand->type)
4606 {
4607 case OP_INT:
4608 case OP_MAPPED_INT:
4609 case OP_MSB:
4610 case OP_PCREL:
4611 case OP_PERF_REG:
4612 case OP_ADDIUSP_INT:
4613 case OP_ENTRY_EXIT_LIST:
4614 case OP_REPEAT_DEST_REG:
4615 case OP_REPEAT_PREV_REG:
4616 case OP_PC:
4617 case OP_VU0_SUFFIX:
4618 case OP_VU0_MATCH_SUFFIX:
4619 case OP_IMM_INDEX:
4620 abort ();
4621
4622 case OP_REG28:
4623 return 1 << 28;
4624
4625 case OP_REG:
4626 case OP_OPTIONAL_REG:
4627 {
4628 const struct mips_reg_operand *reg_op;
4629
4630 reg_op = (const struct mips_reg_operand *) operand;
4631 if (!(type_mask & (1 << reg_op->reg_type)))
4632 return 0;
4633 uval = insn_extract_operand (insn, operand);
4634 return 1 << mips_decode_reg_operand (reg_op, uval);
4635 }
4636
4637 case OP_REG_PAIR:
4638 {
4639 const struct mips_reg_pair_operand *pair_op;
4640
4641 pair_op = (const struct mips_reg_pair_operand *) operand;
4642 if (!(type_mask & (1 << pair_op->reg_type)))
4643 return 0;
4644 uval = insn_extract_operand (insn, operand);
4645 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4646 }
4647
4648 case OP_CLO_CLZ_DEST:
4649 if (!(type_mask & (1 << OP_REG_GP)))
4650 return 0;
4651 uval = insn_extract_operand (insn, operand);
4652 return (1 << (uval & 31)) | (1 << (uval >> 5));
4653
4654 case OP_SAME_RS_RT:
4655 if (!(type_mask & (1 << OP_REG_GP)))
4656 return 0;
4657 uval = insn_extract_operand (insn, operand);
4658 gas_assert ((uval & 31) == (uval >> 5));
4659 return 1 << (uval & 31);
4660
4661 case OP_CHECK_PREV:
4662 case OP_NON_ZERO_REG:
4663 if (!(type_mask & (1 << OP_REG_GP)))
4664 return 0;
4665 uval = insn_extract_operand (insn, operand);
4666 return 1 << (uval & 31);
4667
4668 case OP_LWM_SWM_LIST:
4669 abort ();
4670
4671 case OP_SAVE_RESTORE_LIST:
4672 abort ();
4673
4674 case OP_MDMX_IMM_REG:
4675 if (!(type_mask & (1 << OP_REG_VEC)))
4676 return 0;
4677 uval = insn_extract_operand (insn, operand);
4678 vsel = uval >> 5;
4679 if ((vsel & 0x18) == 0x18)
4680 return 0;
4681 return 1 << (uval & 31);
4682
4683 case OP_REG_INDEX:
4684 if (!(type_mask & (1 << OP_REG_GP)))
4685 return 0;
4686 return 1 << insn_extract_operand (insn, operand);
4687 }
4688 abort ();
4689 }
4690
4691 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4692 where bit N of OPNO_MASK is set if operand N should be included.
4693 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4694 is set. */
4695
4696 static unsigned int
4697 insn_reg_mask (const struct mips_cl_insn *insn,
4698 unsigned int type_mask, unsigned int opno_mask)
4699 {
4700 unsigned int opno, reg_mask;
4701
4702 opno = 0;
4703 reg_mask = 0;
4704 while (opno_mask != 0)
4705 {
4706 if (opno_mask & 1)
4707 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4708 opno_mask >>= 1;
4709 opno += 1;
4710 }
4711 return reg_mask;
4712 }
4713
4714 /* Return the mask of core registers that IP reads. */
4715
4716 static unsigned int
4717 gpr_read_mask (const struct mips_cl_insn *ip)
4718 {
4719 unsigned long pinfo, pinfo2;
4720 unsigned int mask;
4721
4722 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4723 pinfo = ip->insn_mo->pinfo;
4724 pinfo2 = ip->insn_mo->pinfo2;
4725 if (pinfo & INSN_UDI)
4726 {
4727 /* UDI instructions have traditionally been assumed to read RS
4728 and RT. */
4729 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4730 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4731 }
4732 if (pinfo & INSN_READ_GPR_24)
4733 mask |= 1 << 24;
4734 if (pinfo2 & INSN2_READ_GPR_16)
4735 mask |= 1 << 16;
4736 if (pinfo2 & INSN2_READ_SP)
4737 mask |= 1 << SP;
4738 if (pinfo2 & INSN2_READ_GPR_31)
4739 mask |= 1 << 31;
4740 /* Don't include register 0. */
4741 return mask & ~1;
4742 }
4743
4744 /* Return the mask of core registers that IP writes. */
4745
4746 static unsigned int
4747 gpr_write_mask (const struct mips_cl_insn *ip)
4748 {
4749 unsigned long pinfo, pinfo2;
4750 unsigned int mask;
4751
4752 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4753 pinfo = ip->insn_mo->pinfo;
4754 pinfo2 = ip->insn_mo->pinfo2;
4755 if (pinfo & INSN_WRITE_GPR_24)
4756 mask |= 1 << 24;
4757 if (pinfo & INSN_WRITE_GPR_31)
4758 mask |= 1 << 31;
4759 if (pinfo & INSN_UDI)
4760 /* UDI instructions have traditionally been assumed to write to RD. */
4761 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4762 if (pinfo2 & INSN2_WRITE_SP)
4763 mask |= 1 << SP;
4764 /* Don't include register 0. */
4765 return mask & ~1;
4766 }
4767
4768 /* Return the mask of floating-point registers that IP reads. */
4769
4770 static unsigned int
4771 fpr_read_mask (const struct mips_cl_insn *ip)
4772 {
4773 unsigned long pinfo;
4774 unsigned int mask;
4775
4776 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4777 | (1 << OP_REG_MSA)),
4778 insn_read_mask (ip->insn_mo));
4779 pinfo = ip->insn_mo->pinfo;
4780 /* Conservatively treat all operands to an FP_D instruction are doubles.
4781 (This is overly pessimistic for things like cvt.d.s.) */
4782 if (FPR_SIZE != 64 && (pinfo & FP_D))
4783 mask |= mask << 1;
4784 return mask;
4785 }
4786
4787 /* Return the mask of floating-point registers that IP writes. */
4788
4789 static unsigned int
4790 fpr_write_mask (const struct mips_cl_insn *ip)
4791 {
4792 unsigned long pinfo;
4793 unsigned int mask;
4794
4795 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4796 | (1 << OP_REG_MSA)),
4797 insn_write_mask (ip->insn_mo));
4798 pinfo = ip->insn_mo->pinfo;
4799 /* Conservatively treat all operands to an FP_D instruction are doubles.
4800 (This is overly pessimistic for things like cvt.s.d.) */
4801 if (FPR_SIZE != 64 && (pinfo & FP_D))
4802 mask |= mask << 1;
4803 return mask;
4804 }
4805
4806 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4807 Check whether that is allowed. */
4808
4809 static bfd_boolean
4810 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4811 {
4812 const char *s = insn->name;
4813 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4814 || FPR_SIZE == 64)
4815 && mips_opts.oddspreg;
4816
4817 if (insn->pinfo == INSN_MACRO)
4818 /* Let a macro pass, we'll catch it later when it is expanded. */
4819 return TRUE;
4820
4821 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4822 otherwise it depends on oddspreg. */
4823 if ((insn->pinfo & FP_S)
4824 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4825 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4826 return FPR_SIZE == 32 || oddspreg;
4827
4828 /* Allow odd registers for single-precision ops and double-precision if the
4829 floating-point registers are 64-bit wide. */
4830 switch (insn->pinfo & (FP_S | FP_D))
4831 {
4832 case FP_S:
4833 case 0:
4834 return oddspreg;
4835 case FP_D:
4836 return FPR_SIZE == 64;
4837 default:
4838 break;
4839 }
4840
4841 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4842 s = strchr (insn->name, '.');
4843 if (s != NULL && opnum == 2)
4844 s = strchr (s + 1, '.');
4845 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4846 return oddspreg;
4847
4848 return FPR_SIZE == 64;
4849 }
4850
4851 /* Information about an instruction argument that we're trying to match. */
4852 struct mips_arg_info
4853 {
4854 /* The instruction so far. */
4855 struct mips_cl_insn *insn;
4856
4857 /* The first unconsumed operand token. */
4858 struct mips_operand_token *token;
4859
4860 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4861 int opnum;
4862
4863 /* The 1-based argument number, for error reporting. This does not
4864 count elided optional registers, etc.. */
4865 int argnum;
4866
4867 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4868 unsigned int last_regno;
4869
4870 /* If the first operand was an OP_REG, this is the register that it
4871 specified, otherwise it is ILLEGAL_REG. */
4872 unsigned int dest_regno;
4873
4874 /* The value of the last OP_INT operand. Only used for OP_MSB,
4875 where it gives the lsb position. */
4876 unsigned int last_op_int;
4877
4878 /* If true, match routines should assume that no later instruction
4879 alternative matches and should therefore be as accommodating as
4880 possible. Match routines should not report errors if something
4881 is only invalid for !LAX_MATCH. */
4882 bfd_boolean lax_match;
4883
4884 /* True if a reference to the current AT register was seen. */
4885 bfd_boolean seen_at;
4886 };
4887
4888 /* Record that the argument is out of range. */
4889
4890 static void
4891 match_out_of_range (struct mips_arg_info *arg)
4892 {
4893 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4894 }
4895
4896 /* Record that the argument isn't constant but needs to be. */
4897
4898 static void
4899 match_not_constant (struct mips_arg_info *arg)
4900 {
4901 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4902 arg->argnum);
4903 }
4904
4905 /* Try to match an OT_CHAR token for character CH. Consume the token
4906 and return true on success, otherwise return false. */
4907
4908 static bfd_boolean
4909 match_char (struct mips_arg_info *arg, char ch)
4910 {
4911 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4912 {
4913 ++arg->token;
4914 if (ch == ',')
4915 arg->argnum += 1;
4916 return TRUE;
4917 }
4918 return FALSE;
4919 }
4920
4921 /* Try to get an expression from the next tokens in ARG. Consume the
4922 tokens and return true on success, storing the expression value in
4923 VALUE and relocation types in R. */
4924
4925 static bfd_boolean
4926 match_expression (struct mips_arg_info *arg, expressionS *value,
4927 bfd_reloc_code_real_type *r)
4928 {
4929 /* If the next token is a '(' that was parsed as being part of a base
4930 expression, assume we have an elided offset. The later match will fail
4931 if this turns out to be wrong. */
4932 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4933 {
4934 value->X_op = O_constant;
4935 value->X_add_number = 0;
4936 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4937 return TRUE;
4938 }
4939
4940 /* Reject register-based expressions such as "0+$2" and "(($2))".
4941 For plain registers the default error seems more appropriate. */
4942 if (arg->token->type == OT_INTEGER
4943 && arg->token->u.integer.value.X_op == O_register)
4944 {
4945 set_insn_error (arg->argnum, _("register value used as expression"));
4946 return FALSE;
4947 }
4948
4949 if (arg->token->type == OT_INTEGER)
4950 {
4951 *value = arg->token->u.integer.value;
4952 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4953 ++arg->token;
4954 return TRUE;
4955 }
4956
4957 set_insn_error_i
4958 (arg->argnum, _("operand %d must be an immediate expression"),
4959 arg->argnum);
4960 return FALSE;
4961 }
4962
4963 /* Try to get a constant expression from the next tokens in ARG. Consume
4964 the tokens and return true on success, storing the constant value
4965 in *VALUE. */
4966
4967 static bfd_boolean
4968 match_const_int (struct mips_arg_info *arg, offsetT *value)
4969 {
4970 expressionS ex;
4971 bfd_reloc_code_real_type r[3];
4972
4973 if (!match_expression (arg, &ex, r))
4974 return FALSE;
4975
4976 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4977 *value = ex.X_add_number;
4978 else
4979 {
4980 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
4981 match_out_of_range (arg);
4982 else
4983 match_not_constant (arg);
4984 return FALSE;
4985 }
4986 return TRUE;
4987 }
4988
4989 /* Return the RTYPE_* flags for a register operand of type TYPE that
4990 appears in instruction OPCODE. */
4991
4992 static unsigned int
4993 convert_reg_type (const struct mips_opcode *opcode,
4994 enum mips_reg_operand_type type)
4995 {
4996 switch (type)
4997 {
4998 case OP_REG_GP:
4999 return RTYPE_NUM | RTYPE_GP;
5000
5001 case OP_REG_FP:
5002 /* Allow vector register names for MDMX if the instruction is a 64-bit
5003 FPR load, store or move (including moves to and from GPRs). */
5004 if ((mips_opts.ase & ASE_MDMX)
5005 && (opcode->pinfo & FP_D)
5006 && (opcode->pinfo & (INSN_COPROC_MOVE
5007 | INSN_COPROC_MEMORY_DELAY
5008 | INSN_LOAD_COPROC
5009 | INSN_LOAD_MEMORY
5010 | INSN_STORE_MEMORY)))
5011 return RTYPE_FPU | RTYPE_VEC;
5012 return RTYPE_FPU;
5013
5014 case OP_REG_CCC:
5015 if (opcode->pinfo & (FP_D | FP_S))
5016 return RTYPE_CCC | RTYPE_FCC;
5017 return RTYPE_CCC;
5018
5019 case OP_REG_VEC:
5020 if (opcode->membership & INSN_5400)
5021 return RTYPE_FPU;
5022 return RTYPE_FPU | RTYPE_VEC;
5023
5024 case OP_REG_ACC:
5025 return RTYPE_ACC;
5026
5027 case OP_REG_COPRO:
5028 if (opcode->name[strlen (opcode->name) - 1] == '0')
5029 return RTYPE_NUM | RTYPE_CP0;
5030 return RTYPE_NUM;
5031
5032 case OP_REG_HW:
5033 return RTYPE_NUM;
5034
5035 case OP_REG_VI:
5036 return RTYPE_NUM | RTYPE_VI;
5037
5038 case OP_REG_VF:
5039 return RTYPE_NUM | RTYPE_VF;
5040
5041 case OP_REG_R5900_I:
5042 return RTYPE_R5900_I;
5043
5044 case OP_REG_R5900_Q:
5045 return RTYPE_R5900_Q;
5046
5047 case OP_REG_R5900_R:
5048 return RTYPE_R5900_R;
5049
5050 case OP_REG_R5900_ACC:
5051 return RTYPE_R5900_ACC;
5052
5053 case OP_REG_MSA:
5054 return RTYPE_MSA;
5055
5056 case OP_REG_MSA_CTRL:
5057 return RTYPE_NUM;
5058 }
5059 abort ();
5060 }
5061
5062 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5063
5064 static void
5065 check_regno (struct mips_arg_info *arg,
5066 enum mips_reg_operand_type type, unsigned int regno)
5067 {
5068 if (AT && type == OP_REG_GP && regno == AT)
5069 arg->seen_at = TRUE;
5070
5071 if (type == OP_REG_FP
5072 && (regno & 1) != 0
5073 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
5074 {
5075 /* This was a warning prior to introducing O32 FPXX and FP64 support
5076 so maintain a warning for FP32 but raise an error for the new
5077 cases. */
5078 if (FPR_SIZE == 32)
5079 as_warn (_("float register should be even, was %d"), regno);
5080 else
5081 as_bad (_("float register should be even, was %d"), regno);
5082 }
5083
5084 if (type == OP_REG_CCC)
5085 {
5086 const char *name;
5087 size_t length;
5088
5089 name = arg->insn->insn_mo->name;
5090 length = strlen (name);
5091 if ((regno & 1) != 0
5092 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5093 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
5094 as_warn (_("condition code register should be even for %s, was %d"),
5095 name, regno);
5096
5097 if ((regno & 3) != 0
5098 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
5099 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5100 name, regno);
5101 }
5102 }
5103
5104 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5105 a register of type TYPE. Return true on success, storing the register
5106 number in *REGNO and warning about any dubious uses. */
5107
5108 static bfd_boolean
5109 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5110 unsigned int symval, unsigned int *regno)
5111 {
5112 if (type == OP_REG_VEC)
5113 symval = mips_prefer_vec_regno (symval);
5114 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5115 return FALSE;
5116
5117 *regno = symval & RNUM_MASK;
5118 check_regno (arg, type, *regno);
5119 return TRUE;
5120 }
5121
5122 /* Try to interpret the next token in ARG as a register of type TYPE.
5123 Consume the token and return true on success, storing the register
5124 number in *REGNO. Return false on failure. */
5125
5126 static bfd_boolean
5127 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5128 unsigned int *regno)
5129 {
5130 if (arg->token->type == OT_REG
5131 && match_regno (arg, type, arg->token->u.regno, regno))
5132 {
5133 ++arg->token;
5134 return TRUE;
5135 }
5136 return FALSE;
5137 }
5138
5139 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5140 Consume the token and return true on success, storing the register numbers
5141 in *REGNO1 and *REGNO2. Return false on failure. */
5142
5143 static bfd_boolean
5144 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5145 unsigned int *regno1, unsigned int *regno2)
5146 {
5147 if (match_reg (arg, type, regno1))
5148 {
5149 *regno2 = *regno1;
5150 return TRUE;
5151 }
5152 if (arg->token->type == OT_REG_RANGE
5153 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5154 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5155 && *regno1 <= *regno2)
5156 {
5157 ++arg->token;
5158 return TRUE;
5159 }
5160 return FALSE;
5161 }
5162
5163 /* OP_INT matcher. */
5164
5165 static bfd_boolean
5166 match_int_operand (struct mips_arg_info *arg,
5167 const struct mips_operand *operand_base)
5168 {
5169 const struct mips_int_operand *operand;
5170 unsigned int uval;
5171 int min_val, max_val, factor;
5172 offsetT sval;
5173
5174 operand = (const struct mips_int_operand *) operand_base;
5175 factor = 1 << operand->shift;
5176 min_val = mips_int_operand_min (operand);
5177 max_val = mips_int_operand_max (operand);
5178
5179 if (operand_base->lsb == 0
5180 && operand_base->size == 16
5181 && operand->shift == 0
5182 && operand->bias == 0
5183 && (operand->max_val == 32767 || operand->max_val == 65535))
5184 {
5185 /* The operand can be relocated. */
5186 if (!match_expression (arg, &offset_expr, offset_reloc))
5187 return FALSE;
5188
5189 if (offset_expr.X_op == O_big)
5190 {
5191 match_out_of_range (arg);
5192 return FALSE;
5193 }
5194
5195 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5196 /* Relocation operators were used. Accept the argument and
5197 leave the relocation value in offset_expr and offset_relocs
5198 for the caller to process. */
5199 return TRUE;
5200
5201 if (offset_expr.X_op != O_constant)
5202 {
5203 /* Accept non-constant operands if no later alternative matches,
5204 leaving it for the caller to process. */
5205 if (!arg->lax_match)
5206 {
5207 match_not_constant (arg);
5208 return FALSE;
5209 }
5210 offset_reloc[0] = BFD_RELOC_LO16;
5211 return TRUE;
5212 }
5213
5214 /* Clear the global state; we're going to install the operand
5215 ourselves. */
5216 sval = offset_expr.X_add_number;
5217 offset_expr.X_op = O_absent;
5218
5219 /* For compatibility with older assemblers, we accept
5220 0x8000-0xffff as signed 16-bit numbers when only
5221 signed numbers are allowed. */
5222 if (sval > max_val)
5223 {
5224 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5225 if (!arg->lax_match && sval <= max_val)
5226 {
5227 match_out_of_range (arg);
5228 return FALSE;
5229 }
5230 }
5231 }
5232 else
5233 {
5234 if (!match_const_int (arg, &sval))
5235 return FALSE;
5236 }
5237
5238 arg->last_op_int = sval;
5239
5240 if (sval < min_val || sval > max_val || sval % factor)
5241 {
5242 match_out_of_range (arg);
5243 return FALSE;
5244 }
5245
5246 uval = (unsigned int) sval >> operand->shift;
5247 uval -= operand->bias;
5248
5249 /* Handle -mfix-cn63xxp1. */
5250 if (arg->opnum == 1
5251 && mips_fix_cn63xxp1
5252 && !mips_opts.micromips
5253 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5254 switch (uval)
5255 {
5256 case 5:
5257 case 25:
5258 case 26:
5259 case 27:
5260 case 28:
5261 case 29:
5262 case 30:
5263 case 31:
5264 /* These are ok. */
5265 break;
5266
5267 default:
5268 /* The rest must be changed to 28. */
5269 uval = 28;
5270 break;
5271 }
5272
5273 insn_insert_operand (arg->insn, operand_base, uval);
5274 return TRUE;
5275 }
5276
5277 /* OP_MAPPED_INT matcher. */
5278
5279 static bfd_boolean
5280 match_mapped_int_operand (struct mips_arg_info *arg,
5281 const struct mips_operand *operand_base)
5282 {
5283 const struct mips_mapped_int_operand *operand;
5284 unsigned int uval, num_vals;
5285 offsetT sval;
5286
5287 operand = (const struct mips_mapped_int_operand *) operand_base;
5288 if (!match_const_int (arg, &sval))
5289 return FALSE;
5290
5291 num_vals = 1 << operand_base->size;
5292 for (uval = 0; uval < num_vals; uval++)
5293 if (operand->int_map[uval] == sval)
5294 break;
5295 if (uval == num_vals)
5296 {
5297 match_out_of_range (arg);
5298 return FALSE;
5299 }
5300
5301 insn_insert_operand (arg->insn, operand_base, uval);
5302 return TRUE;
5303 }
5304
5305 /* OP_MSB matcher. */
5306
5307 static bfd_boolean
5308 match_msb_operand (struct mips_arg_info *arg,
5309 const struct mips_operand *operand_base)
5310 {
5311 const struct mips_msb_operand *operand;
5312 int min_val, max_val, max_high;
5313 offsetT size, sval, high;
5314
5315 operand = (const struct mips_msb_operand *) operand_base;
5316 min_val = operand->bias;
5317 max_val = min_val + (1 << operand_base->size) - 1;
5318 max_high = operand->opsize;
5319
5320 if (!match_const_int (arg, &size))
5321 return FALSE;
5322
5323 high = size + arg->last_op_int;
5324 sval = operand->add_lsb ? high : size;
5325
5326 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5327 {
5328 match_out_of_range (arg);
5329 return FALSE;
5330 }
5331 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5332 return TRUE;
5333 }
5334
5335 /* OP_REG matcher. */
5336
5337 static bfd_boolean
5338 match_reg_operand (struct mips_arg_info *arg,
5339 const struct mips_operand *operand_base)
5340 {
5341 const struct mips_reg_operand *operand;
5342 unsigned int regno, uval, num_vals;
5343
5344 operand = (const struct mips_reg_operand *) operand_base;
5345 if (!match_reg (arg, operand->reg_type, &regno))
5346 return FALSE;
5347
5348 if (operand->reg_map)
5349 {
5350 num_vals = 1 << operand->root.size;
5351 for (uval = 0; uval < num_vals; uval++)
5352 if (operand->reg_map[uval] == regno)
5353 break;
5354 if (num_vals == uval)
5355 return FALSE;
5356 }
5357 else
5358 uval = regno;
5359
5360 arg->last_regno = regno;
5361 if (arg->opnum == 1)
5362 arg->dest_regno = regno;
5363 insn_insert_operand (arg->insn, operand_base, uval);
5364 return TRUE;
5365 }
5366
5367 /* OP_REG_PAIR matcher. */
5368
5369 static bfd_boolean
5370 match_reg_pair_operand (struct mips_arg_info *arg,
5371 const struct mips_operand *operand_base)
5372 {
5373 const struct mips_reg_pair_operand *operand;
5374 unsigned int regno1, regno2, uval, num_vals;
5375
5376 operand = (const struct mips_reg_pair_operand *) operand_base;
5377 if (!match_reg (arg, operand->reg_type, &regno1)
5378 || !match_char (arg, ',')
5379 || !match_reg (arg, operand->reg_type, &regno2))
5380 return FALSE;
5381
5382 num_vals = 1 << operand_base->size;
5383 for (uval = 0; uval < num_vals; uval++)
5384 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5385 break;
5386 if (uval == num_vals)
5387 return FALSE;
5388
5389 insn_insert_operand (arg->insn, operand_base, uval);
5390 return TRUE;
5391 }
5392
5393 /* OP_PCREL matcher. The caller chooses the relocation type. */
5394
5395 static bfd_boolean
5396 match_pcrel_operand (struct mips_arg_info *arg)
5397 {
5398 bfd_reloc_code_real_type r[3];
5399
5400 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5401 }
5402
5403 /* OP_PERF_REG matcher. */
5404
5405 static bfd_boolean
5406 match_perf_reg_operand (struct mips_arg_info *arg,
5407 const struct mips_operand *operand)
5408 {
5409 offsetT sval;
5410
5411 if (!match_const_int (arg, &sval))
5412 return FALSE;
5413
5414 if (sval != 0
5415 && (sval != 1
5416 || (mips_opts.arch == CPU_R5900
5417 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5418 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5419 {
5420 set_insn_error (arg->argnum, _("invalid performance register"));
5421 return FALSE;
5422 }
5423
5424 insn_insert_operand (arg->insn, operand, sval);
5425 return TRUE;
5426 }
5427
5428 /* OP_ADDIUSP matcher. */
5429
5430 static bfd_boolean
5431 match_addiusp_operand (struct mips_arg_info *arg,
5432 const struct mips_operand *operand)
5433 {
5434 offsetT sval;
5435 unsigned int uval;
5436
5437 if (!match_const_int (arg, &sval))
5438 return FALSE;
5439
5440 if (sval % 4)
5441 {
5442 match_out_of_range (arg);
5443 return FALSE;
5444 }
5445
5446 sval /= 4;
5447 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5448 {
5449 match_out_of_range (arg);
5450 return FALSE;
5451 }
5452
5453 uval = (unsigned int) sval;
5454 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5455 insn_insert_operand (arg->insn, operand, uval);
5456 return TRUE;
5457 }
5458
5459 /* OP_CLO_CLZ_DEST matcher. */
5460
5461 static bfd_boolean
5462 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5463 const struct mips_operand *operand)
5464 {
5465 unsigned int regno;
5466
5467 if (!match_reg (arg, OP_REG_GP, &regno))
5468 return FALSE;
5469
5470 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5471 return TRUE;
5472 }
5473
5474 /* OP_CHECK_PREV matcher. */
5475
5476 static bfd_boolean
5477 match_check_prev_operand (struct mips_arg_info *arg,
5478 const struct mips_operand *operand_base)
5479 {
5480 const struct mips_check_prev_operand *operand;
5481 unsigned int regno;
5482
5483 operand = (const struct mips_check_prev_operand *) operand_base;
5484
5485 if (!match_reg (arg, OP_REG_GP, &regno))
5486 return FALSE;
5487
5488 if (!operand->zero_ok && regno == 0)
5489 return FALSE;
5490
5491 if ((operand->less_than_ok && regno < arg->last_regno)
5492 || (operand->greater_than_ok && regno > arg->last_regno)
5493 || (operand->equal_ok && regno == arg->last_regno))
5494 {
5495 arg->last_regno = regno;
5496 insn_insert_operand (arg->insn, operand_base, regno);
5497 return TRUE;
5498 }
5499
5500 return FALSE;
5501 }
5502
5503 /* OP_SAME_RS_RT matcher. */
5504
5505 static bfd_boolean
5506 match_same_rs_rt_operand (struct mips_arg_info *arg,
5507 const struct mips_operand *operand)
5508 {
5509 unsigned int regno;
5510
5511 if (!match_reg (arg, OP_REG_GP, &regno))
5512 return FALSE;
5513
5514 if (regno == 0)
5515 {
5516 set_insn_error (arg->argnum, _("the source register must not be $0"));
5517 return FALSE;
5518 }
5519
5520 arg->last_regno = regno;
5521
5522 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5523 return TRUE;
5524 }
5525
5526 /* OP_LWM_SWM_LIST matcher. */
5527
5528 static bfd_boolean
5529 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5530 const struct mips_operand *operand)
5531 {
5532 unsigned int reglist, sregs, ra, regno1, regno2;
5533 struct mips_arg_info reset;
5534
5535 reglist = 0;
5536 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5537 return FALSE;
5538 do
5539 {
5540 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5541 {
5542 reglist |= 1 << FP;
5543 regno2 = S7;
5544 }
5545 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5546 reset = *arg;
5547 }
5548 while (match_char (arg, ',')
5549 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5550 *arg = reset;
5551
5552 if (operand->size == 2)
5553 {
5554 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5555
5556 s0, ra
5557 s0, s1, ra, s2, s3
5558 s0-s2, ra
5559
5560 and any permutations of these. */
5561 if ((reglist & 0xfff1ffff) != 0x80010000)
5562 return FALSE;
5563
5564 sregs = (reglist >> 17) & 7;
5565 ra = 0;
5566 }
5567 else
5568 {
5569 /* The list must include at least one of ra and s0-sN,
5570 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5571 which are $23 and $30 respectively.) E.g.:
5572
5573 ra
5574 s0
5575 ra, s0, s1, s2
5576 s0-s8
5577 s0-s5, ra
5578
5579 and any permutations of these. */
5580 if ((reglist & 0x3f00ffff) != 0)
5581 return FALSE;
5582
5583 ra = (reglist >> 27) & 0x10;
5584 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5585 }
5586 sregs += 1;
5587 if ((sregs & -sregs) != sregs)
5588 return FALSE;
5589
5590 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5591 return TRUE;
5592 }
5593
5594 /* OP_ENTRY_EXIT_LIST matcher. */
5595
5596 static unsigned int
5597 match_entry_exit_operand (struct mips_arg_info *arg,
5598 const struct mips_operand *operand)
5599 {
5600 unsigned int mask;
5601 bfd_boolean is_exit;
5602
5603 /* The format is the same for both ENTRY and EXIT, but the constraints
5604 are different. */
5605 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5606 mask = (is_exit ? 7 << 3 : 0);
5607 do
5608 {
5609 unsigned int regno1, regno2;
5610 bfd_boolean is_freg;
5611
5612 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5613 is_freg = FALSE;
5614 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5615 is_freg = TRUE;
5616 else
5617 return FALSE;
5618
5619 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5620 {
5621 mask &= ~(7 << 3);
5622 mask |= (5 + regno2) << 3;
5623 }
5624 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5625 mask |= (regno2 - 3) << 3;
5626 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5627 mask |= (regno2 - 15) << 1;
5628 else if (regno1 == RA && regno2 == RA)
5629 mask |= 1;
5630 else
5631 return FALSE;
5632 }
5633 while (match_char (arg, ','));
5634
5635 insn_insert_operand (arg->insn, operand, mask);
5636 return TRUE;
5637 }
5638
5639 /* Encode regular MIPS SAVE/RESTORE instruction operands according to
5640 the argument register mask AMASK, the number of static registers
5641 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5642 respectively, and the frame size FRAME_SIZE. */
5643
5644 static unsigned int
5645 mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5646 unsigned int ra, unsigned int s0, unsigned int s1,
5647 unsigned int frame_size)
5648 {
5649 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5650 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5651 }
5652
5653 /* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5654 argument register mask AMASK, the number of static registers saved
5655 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5656 respectively, and the frame size FRAME_SIZE. */
5657
5658 static unsigned int
5659 mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5660 unsigned int ra, unsigned int s0, unsigned int s1,
5661 unsigned int frame_size)
5662 {
5663 unsigned int args;
5664
5665 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5666 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5667 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5668 | ((frame_size & 0xf0) << 16));
5669 return args;
5670 }
5671
5672 /* OP_SAVE_RESTORE_LIST matcher. */
5673
5674 static bfd_boolean
5675 match_save_restore_list_operand (struct mips_arg_info *arg)
5676 {
5677 unsigned int opcode, args, statics, sregs;
5678 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5679 unsigned int arg_mask, ra, s0, s1;
5680 offsetT frame_size;
5681
5682 opcode = arg->insn->insn_opcode;
5683 frame_size = 0;
5684 num_frame_sizes = 0;
5685 args = 0;
5686 statics = 0;
5687 sregs = 0;
5688 ra = 0;
5689 s0 = 0;
5690 s1 = 0;
5691 do
5692 {
5693 unsigned int regno1, regno2;
5694
5695 if (arg->token->type == OT_INTEGER)
5696 {
5697 /* Handle the frame size. */
5698 if (!match_const_int (arg, &frame_size))
5699 return FALSE;
5700 num_frame_sizes += 1;
5701 }
5702 else
5703 {
5704 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5705 return FALSE;
5706
5707 while (regno1 <= regno2)
5708 {
5709 if (regno1 >= 4 && regno1 <= 7)
5710 {
5711 if (num_frame_sizes == 0)
5712 /* args $a0-$a3 */
5713 args |= 1 << (regno1 - 4);
5714 else
5715 /* statics $a0-$a3 */
5716 statics |= 1 << (regno1 - 4);
5717 }
5718 else if (regno1 >= 16 && regno1 <= 23)
5719 /* $s0-$s7 */
5720 sregs |= 1 << (regno1 - 16);
5721 else if (regno1 == 30)
5722 /* $s8 */
5723 sregs |= 1 << 8;
5724 else if (regno1 == 31)
5725 /* Add $ra to insn. */
5726 ra = 1;
5727 else
5728 return FALSE;
5729 regno1 += 1;
5730 if (regno1 == 24)
5731 regno1 = 30;
5732 }
5733 }
5734 }
5735 while (match_char (arg, ','));
5736
5737 /* Encode args/statics combination. */
5738 if (args & statics)
5739 return FALSE;
5740 else if (args == 0xf)
5741 /* All $a0-$a3 are args. */
5742 arg_mask = MIPS_SVRS_ALL_ARGS;
5743 else if (statics == 0xf)
5744 /* All $a0-$a3 are statics. */
5745 arg_mask = MIPS_SVRS_ALL_STATICS;
5746 else
5747 {
5748 /* Count arg registers. */
5749 num_args = 0;
5750 while (args & 0x1)
5751 {
5752 args >>= 1;
5753 num_args += 1;
5754 }
5755 if (args != 0)
5756 return FALSE;
5757
5758 /* Count static registers. */
5759 num_statics = 0;
5760 while (statics & 0x8)
5761 {
5762 statics = (statics << 1) & 0xf;
5763 num_statics += 1;
5764 }
5765 if (statics != 0)
5766 return FALSE;
5767
5768 /* Encode args/statics. */
5769 arg_mask = (num_args << 2) | num_statics;
5770 }
5771
5772 /* Encode $s0/$s1. */
5773 if (sregs & (1 << 0)) /* $s0 */
5774 s0 = 1;
5775 if (sregs & (1 << 1)) /* $s1 */
5776 s1 = 1;
5777 sregs >>= 2;
5778
5779 /* Encode $s2-$s8. */
5780 num_sregs = 0;
5781 while (sregs & 1)
5782 {
5783 sregs >>= 1;
5784 num_sregs += 1;
5785 }
5786 if (sregs != 0)
5787 return FALSE;
5788
5789 /* Encode frame size. */
5790 if (num_frame_sizes == 0)
5791 {
5792 set_insn_error (arg->argnum, _("missing frame size"));
5793 return FALSE;
5794 }
5795 if (num_frame_sizes > 1)
5796 {
5797 set_insn_error (arg->argnum, _("frame size specified twice"));
5798 return FALSE;
5799 }
5800 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5801 {
5802 set_insn_error (arg->argnum, _("invalid frame size"));
5803 return FALSE;
5804 }
5805 frame_size /= 8;
5806
5807 /* Finally build the instruction. */
5808 if (mips_opts.mips16)
5809 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5810 frame_size);
5811 else if (!mips_opts.micromips)
5812 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5813 frame_size);
5814 else
5815 abort ();
5816
5817 arg->insn->insn_opcode = opcode;
5818 return TRUE;
5819 }
5820
5821 /* OP_MDMX_IMM_REG matcher. */
5822
5823 static bfd_boolean
5824 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5825 const struct mips_operand *operand)
5826 {
5827 unsigned int regno, uval;
5828 bfd_boolean is_qh;
5829 const struct mips_opcode *opcode;
5830
5831 /* The mips_opcode records whether this is an octobyte or quadhalf
5832 instruction. Start out with that bit in place. */
5833 opcode = arg->insn->insn_mo;
5834 uval = mips_extract_operand (operand, opcode->match);
5835 is_qh = (uval != 0);
5836
5837 if (arg->token->type == OT_REG)
5838 {
5839 if ((opcode->membership & INSN_5400)
5840 && strcmp (opcode->name, "rzu.ob") == 0)
5841 {
5842 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5843 arg->argnum);
5844 return FALSE;
5845 }
5846
5847 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5848 return FALSE;
5849 ++arg->token;
5850
5851 /* Check whether this is a vector register or a broadcast of
5852 a single element. */
5853 if (arg->token->type == OT_INTEGER_INDEX)
5854 {
5855 if (arg->token->u.index > (is_qh ? 3 : 7))
5856 {
5857 set_insn_error (arg->argnum, _("invalid element selector"));
5858 return FALSE;
5859 }
5860 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5861 ++arg->token;
5862 }
5863 else
5864 {
5865 /* A full vector. */
5866 if ((opcode->membership & INSN_5400)
5867 && (strcmp (opcode->name, "sll.ob") == 0
5868 || strcmp (opcode->name, "srl.ob") == 0))
5869 {
5870 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5871 arg->argnum);
5872 return FALSE;
5873 }
5874
5875 if (is_qh)
5876 uval |= MDMX_FMTSEL_VEC_QH << 5;
5877 else
5878 uval |= MDMX_FMTSEL_VEC_OB << 5;
5879 }
5880 uval |= regno;
5881 }
5882 else
5883 {
5884 offsetT sval;
5885
5886 if (!match_const_int (arg, &sval))
5887 return FALSE;
5888 if (sval < 0 || sval > 31)
5889 {
5890 match_out_of_range (arg);
5891 return FALSE;
5892 }
5893 uval |= (sval & 31);
5894 if (is_qh)
5895 uval |= MDMX_FMTSEL_IMM_QH << 5;
5896 else
5897 uval |= MDMX_FMTSEL_IMM_OB << 5;
5898 }
5899 insn_insert_operand (arg->insn, operand, uval);
5900 return TRUE;
5901 }
5902
5903 /* OP_IMM_INDEX matcher. */
5904
5905 static bfd_boolean
5906 match_imm_index_operand (struct mips_arg_info *arg,
5907 const struct mips_operand *operand)
5908 {
5909 unsigned int max_val;
5910
5911 if (arg->token->type != OT_INTEGER_INDEX)
5912 return FALSE;
5913
5914 max_val = (1 << operand->size) - 1;
5915 if (arg->token->u.index > max_val)
5916 {
5917 match_out_of_range (arg);
5918 return FALSE;
5919 }
5920 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5921 ++arg->token;
5922 return TRUE;
5923 }
5924
5925 /* OP_REG_INDEX matcher. */
5926
5927 static bfd_boolean
5928 match_reg_index_operand (struct mips_arg_info *arg,
5929 const struct mips_operand *operand)
5930 {
5931 unsigned int regno;
5932
5933 if (arg->token->type != OT_REG_INDEX)
5934 return FALSE;
5935
5936 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5937 return FALSE;
5938
5939 insn_insert_operand (arg->insn, operand, regno);
5940 ++arg->token;
5941 return TRUE;
5942 }
5943
5944 /* OP_PC matcher. */
5945
5946 static bfd_boolean
5947 match_pc_operand (struct mips_arg_info *arg)
5948 {
5949 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5950 {
5951 ++arg->token;
5952 return TRUE;
5953 }
5954 return FALSE;
5955 }
5956
5957 /* OP_REG28 matcher. */
5958
5959 static bfd_boolean
5960 match_reg28_operand (struct mips_arg_info *arg)
5961 {
5962 unsigned int regno;
5963
5964 if (arg->token->type == OT_REG
5965 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5966 && regno == GP)
5967 {
5968 ++arg->token;
5969 return TRUE;
5970 }
5971 return FALSE;
5972 }
5973
5974 /* OP_NON_ZERO_REG matcher. */
5975
5976 static bfd_boolean
5977 match_non_zero_reg_operand (struct mips_arg_info *arg,
5978 const struct mips_operand *operand)
5979 {
5980 unsigned int regno;
5981
5982 if (!match_reg (arg, OP_REG_GP, &regno))
5983 return FALSE;
5984
5985 if (regno == 0)
5986 return FALSE;
5987
5988 arg->last_regno = regno;
5989 insn_insert_operand (arg->insn, operand, regno);
5990 return TRUE;
5991 }
5992
5993 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5994 register that we need to match. */
5995
5996 static bfd_boolean
5997 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5998 {
5999 unsigned int regno;
6000
6001 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
6002 }
6003
6004 /* Try to match a floating-point constant from ARG for LI.S or LI.D.
6005 LENGTH is the length of the value in bytes (4 for float, 8 for double)
6006 and USING_GPRS says whether the destination is a GPR rather than an FPR.
6007
6008 Return the constant in IMM and OFFSET as follows:
6009
6010 - If the constant should be loaded via memory, set IMM to O_absent and
6011 OFFSET to the memory address.
6012
6013 - Otherwise, if the constant should be loaded into two 32-bit registers,
6014 set IMM to the O_constant to load into the high register and OFFSET
6015 to the corresponding value for the low register.
6016
6017 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
6018
6019 These constants only appear as the last operand in an instruction,
6020 and every instruction that accepts them in any variant accepts them
6021 in all variants. This means we don't have to worry about backing out
6022 any changes if the instruction does not match. We just match
6023 unconditionally and report an error if the constant is invalid. */
6024
6025 static bfd_boolean
6026 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
6027 expressionS *offset, int length, bfd_boolean using_gprs)
6028 {
6029 char *p;
6030 segT seg, new_seg;
6031 subsegT subseg;
6032 const char *newname;
6033 unsigned char *data;
6034
6035 /* Where the constant is placed is based on how the MIPS assembler
6036 does things:
6037
6038 length == 4 && using_gprs -- immediate value only
6039 length == 8 && using_gprs -- .rdata or immediate value
6040 length == 4 && !using_gprs -- .lit4 or immediate value
6041 length == 8 && !using_gprs -- .lit8 or immediate value
6042
6043 The .lit4 and .lit8 sections are only used if permitted by the
6044 -G argument. */
6045 if (arg->token->type != OT_FLOAT)
6046 {
6047 set_insn_error (arg->argnum, _("floating-point expression required"));
6048 return FALSE;
6049 }
6050
6051 gas_assert (arg->token->u.flt.length == length);
6052 data = arg->token->u.flt.data;
6053 ++arg->token;
6054
6055 /* Handle 32-bit constants for which an immediate value is best. */
6056 if (length == 4
6057 && (using_gprs
6058 || g_switch_value < 4
6059 || (data[0] == 0 && data[1] == 0)
6060 || (data[2] == 0 && data[3] == 0)))
6061 {
6062 imm->X_op = O_constant;
6063 if (!target_big_endian)
6064 imm->X_add_number = bfd_getl32 (data);
6065 else
6066 imm->X_add_number = bfd_getb32 (data);
6067 offset->X_op = O_absent;
6068 return TRUE;
6069 }
6070
6071 /* Handle 64-bit constants for which an immediate value is best. */
6072 if (length == 8
6073 && !mips_disable_float_construction
6074 /* Constants can only be constructed in GPRs and copied to FPRs if the
6075 GPRs are at least as wide as the FPRs or MTHC1 is available.
6076 Unlike most tests for 32-bit floating-point registers this check
6077 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6078 permit 64-bit moves without MXHC1.
6079 Force the constant into memory otherwise. */
6080 && (using_gprs
6081 || GPR_SIZE == 64
6082 || ISA_HAS_MXHC1 (mips_opts.isa)
6083 || FPR_SIZE == 32)
6084 && ((data[0] == 0 && data[1] == 0)
6085 || (data[2] == 0 && data[3] == 0))
6086 && ((data[4] == 0 && data[5] == 0)
6087 || (data[6] == 0 && data[7] == 0)))
6088 {
6089 /* The value is simple enough to load with a couple of instructions.
6090 If using 32-bit registers, set IMM to the high order 32 bits and
6091 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6092 64 bit constant. */
6093 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
6094 {
6095 imm->X_op = O_constant;
6096 offset->X_op = O_constant;
6097 if (!target_big_endian)
6098 {
6099 imm->X_add_number = bfd_getl32 (data + 4);
6100 offset->X_add_number = bfd_getl32 (data);
6101 }
6102 else
6103 {
6104 imm->X_add_number = bfd_getb32 (data);
6105 offset->X_add_number = bfd_getb32 (data + 4);
6106 }
6107 if (offset->X_add_number == 0)
6108 offset->X_op = O_absent;
6109 }
6110 else
6111 {
6112 imm->X_op = O_constant;
6113 if (!target_big_endian)
6114 imm->X_add_number = bfd_getl64 (data);
6115 else
6116 imm->X_add_number = bfd_getb64 (data);
6117 offset->X_op = O_absent;
6118 }
6119 return TRUE;
6120 }
6121
6122 /* Switch to the right section. */
6123 seg = now_seg;
6124 subseg = now_subseg;
6125 if (length == 4)
6126 {
6127 gas_assert (!using_gprs && g_switch_value >= 4);
6128 newname = ".lit4";
6129 }
6130 else
6131 {
6132 if (using_gprs || g_switch_value < 8)
6133 newname = RDATA_SECTION_NAME;
6134 else
6135 newname = ".lit8";
6136 }
6137
6138 new_seg = subseg_new (newname, (subsegT) 0);
6139 bfd_set_section_flags (stdoutput, new_seg,
6140 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6141 frag_align (length == 4 ? 2 : 3, 0, 0);
6142 if (strncmp (TARGET_OS, "elf", 3) != 0)
6143 record_alignment (new_seg, 4);
6144 else
6145 record_alignment (new_seg, length == 4 ? 2 : 3);
6146 if (seg == now_seg)
6147 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
6148
6149 /* Set the argument to the current address in the section. */
6150 imm->X_op = O_absent;
6151 offset->X_op = O_symbol;
6152 offset->X_add_symbol = symbol_temp_new_now ();
6153 offset->X_add_number = 0;
6154
6155 /* Put the floating point number into the section. */
6156 p = frag_more (length);
6157 memcpy (p, data, length);
6158
6159 /* Switch back to the original section. */
6160 subseg_set (seg, subseg);
6161 return TRUE;
6162 }
6163
6164 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6165 them. */
6166
6167 static bfd_boolean
6168 match_vu0_suffix_operand (struct mips_arg_info *arg,
6169 const struct mips_operand *operand,
6170 bfd_boolean match_p)
6171 {
6172 unsigned int uval;
6173
6174 /* The operand can be an XYZW mask or a single 2-bit channel index
6175 (with X being 0). */
6176 gas_assert (operand->size == 2 || operand->size == 4);
6177
6178 /* The suffix can be omitted when it is already part of the opcode. */
6179 if (arg->token->type != OT_CHANNELS)
6180 return match_p;
6181
6182 uval = arg->token->u.channels;
6183 if (operand->size == 2)
6184 {
6185 /* Check that a single bit is set and convert it into a 2-bit index. */
6186 if ((uval & -uval) != uval)
6187 return FALSE;
6188 uval = 4 - ffs (uval);
6189 }
6190
6191 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6192 return FALSE;
6193
6194 ++arg->token;
6195 if (!match_p)
6196 insn_insert_operand (arg->insn, operand, uval);
6197 return TRUE;
6198 }
6199
6200 /* Try to match a token from ARG against OPERAND. Consume the token
6201 and return true on success, otherwise return false. */
6202
6203 static bfd_boolean
6204 match_operand (struct mips_arg_info *arg,
6205 const struct mips_operand *operand)
6206 {
6207 switch (operand->type)
6208 {
6209 case OP_INT:
6210 return match_int_operand (arg, operand);
6211
6212 case OP_MAPPED_INT:
6213 return match_mapped_int_operand (arg, operand);
6214
6215 case OP_MSB:
6216 return match_msb_operand (arg, operand);
6217
6218 case OP_REG:
6219 case OP_OPTIONAL_REG:
6220 return match_reg_operand (arg, operand);
6221
6222 case OP_REG_PAIR:
6223 return match_reg_pair_operand (arg, operand);
6224
6225 case OP_PCREL:
6226 return match_pcrel_operand (arg);
6227
6228 case OP_PERF_REG:
6229 return match_perf_reg_operand (arg, operand);
6230
6231 case OP_ADDIUSP_INT:
6232 return match_addiusp_operand (arg, operand);
6233
6234 case OP_CLO_CLZ_DEST:
6235 return match_clo_clz_dest_operand (arg, operand);
6236
6237 case OP_LWM_SWM_LIST:
6238 return match_lwm_swm_list_operand (arg, operand);
6239
6240 case OP_ENTRY_EXIT_LIST:
6241 return match_entry_exit_operand (arg, operand);
6242
6243 case OP_SAVE_RESTORE_LIST:
6244 return match_save_restore_list_operand (arg);
6245
6246 case OP_MDMX_IMM_REG:
6247 return match_mdmx_imm_reg_operand (arg, operand);
6248
6249 case OP_REPEAT_DEST_REG:
6250 return match_tied_reg_operand (arg, arg->dest_regno);
6251
6252 case OP_REPEAT_PREV_REG:
6253 return match_tied_reg_operand (arg, arg->last_regno);
6254
6255 case OP_PC:
6256 return match_pc_operand (arg);
6257
6258 case OP_REG28:
6259 return match_reg28_operand (arg);
6260
6261 case OP_VU0_SUFFIX:
6262 return match_vu0_suffix_operand (arg, operand, FALSE);
6263
6264 case OP_VU0_MATCH_SUFFIX:
6265 return match_vu0_suffix_operand (arg, operand, TRUE);
6266
6267 case OP_IMM_INDEX:
6268 return match_imm_index_operand (arg, operand);
6269
6270 case OP_REG_INDEX:
6271 return match_reg_index_operand (arg, operand);
6272
6273 case OP_SAME_RS_RT:
6274 return match_same_rs_rt_operand (arg, operand);
6275
6276 case OP_CHECK_PREV:
6277 return match_check_prev_operand (arg, operand);
6278
6279 case OP_NON_ZERO_REG:
6280 return match_non_zero_reg_operand (arg, operand);
6281 }
6282 abort ();
6283 }
6284
6285 /* ARG is the state after successfully matching an instruction.
6286 Issue any queued-up warnings. */
6287
6288 static void
6289 check_completed_insn (struct mips_arg_info *arg)
6290 {
6291 if (arg->seen_at)
6292 {
6293 if (AT == ATREG)
6294 as_warn (_("used $at without \".set noat\""));
6295 else
6296 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6297 }
6298 }
6299
6300 /* Return true if modifying general-purpose register REG needs a delay. */
6301
6302 static bfd_boolean
6303 reg_needs_delay (unsigned int reg)
6304 {
6305 unsigned long prev_pinfo;
6306
6307 prev_pinfo = history[0].insn_mo->pinfo;
6308 if (!mips_opts.noreorder
6309 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6310 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6311 && (gpr_write_mask (&history[0]) & (1 << reg)))
6312 return TRUE;
6313
6314 return FALSE;
6315 }
6316
6317 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6318 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6319 by VR4120 errata. */
6320
6321 static unsigned int
6322 classify_vr4120_insn (const char *name)
6323 {
6324 if (strncmp (name, "macc", 4) == 0)
6325 return FIX_VR4120_MACC;
6326 if (strncmp (name, "dmacc", 5) == 0)
6327 return FIX_VR4120_DMACC;
6328 if (strncmp (name, "mult", 4) == 0)
6329 return FIX_VR4120_MULT;
6330 if (strncmp (name, "dmult", 5) == 0)
6331 return FIX_VR4120_DMULT;
6332 if (strstr (name, "div"))
6333 return FIX_VR4120_DIV;
6334 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6335 return FIX_VR4120_MTHILO;
6336 return NUM_FIX_VR4120_CLASSES;
6337 }
6338
6339 #define INSN_ERET 0x42000018
6340 #define INSN_DERET 0x4200001f
6341 #define INSN_DMULT 0x1c
6342 #define INSN_DMULTU 0x1d
6343
6344 /* Return the number of instructions that must separate INSN1 and INSN2,
6345 where INSN1 is the earlier instruction. Return the worst-case value
6346 for any INSN2 if INSN2 is null. */
6347
6348 static unsigned int
6349 insns_between (const struct mips_cl_insn *insn1,
6350 const struct mips_cl_insn *insn2)
6351 {
6352 unsigned long pinfo1, pinfo2;
6353 unsigned int mask;
6354
6355 /* If INFO2 is null, pessimistically assume that all flags are set for
6356 the second instruction. */
6357 pinfo1 = insn1->insn_mo->pinfo;
6358 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6359
6360 /* For most targets, write-after-read dependencies on the HI and LO
6361 registers must be separated by at least two instructions. */
6362 if (!hilo_interlocks)
6363 {
6364 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6365 return 2;
6366 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6367 return 2;
6368 }
6369
6370 /* If we're working around r7000 errata, there must be two instructions
6371 between an mfhi or mflo and any instruction that uses the result. */
6372 if (mips_7000_hilo_fix
6373 && !mips_opts.micromips
6374 && MF_HILO_INSN (pinfo1)
6375 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6376 return 2;
6377
6378 /* If we're working around 24K errata, one instruction is required
6379 if an ERET or DERET is followed by a branch instruction. */
6380 if (mips_fix_24k && !mips_opts.micromips)
6381 {
6382 if (insn1->insn_opcode == INSN_ERET
6383 || insn1->insn_opcode == INSN_DERET)
6384 {
6385 if (insn2 == NULL
6386 || insn2->insn_opcode == INSN_ERET
6387 || insn2->insn_opcode == INSN_DERET
6388 || delayed_branch_p (insn2))
6389 return 1;
6390 }
6391 }
6392
6393 /* If we're working around PMC RM7000 errata, there must be three
6394 nops between a dmult and a load instruction. */
6395 if (mips_fix_rm7000 && !mips_opts.micromips)
6396 {
6397 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6398 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6399 {
6400 if (pinfo2 & INSN_LOAD_MEMORY)
6401 return 3;
6402 }
6403 }
6404
6405 /* If working around VR4120 errata, check for combinations that need
6406 a single intervening instruction. */
6407 if (mips_fix_vr4120 && !mips_opts.micromips)
6408 {
6409 unsigned int class1, class2;
6410
6411 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6412 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6413 {
6414 if (insn2 == NULL)
6415 return 1;
6416 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6417 if (vr4120_conflicts[class1] & (1 << class2))
6418 return 1;
6419 }
6420 }
6421
6422 if (!HAVE_CODE_COMPRESSION)
6423 {
6424 /* Check for GPR or coprocessor load delays. All such delays
6425 are on the RT register. */
6426 /* Itbl support may require additional care here. */
6427 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6428 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6429 {
6430 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6431 return 1;
6432 }
6433
6434 /* Check for generic coprocessor hazards.
6435
6436 This case is not handled very well. There is no special
6437 knowledge of CP0 handling, and the coprocessors other than
6438 the floating point unit are not distinguished at all. */
6439 /* Itbl support may require additional care here. FIXME!
6440 Need to modify this to include knowledge about
6441 user specified delays! */
6442 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6443 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6444 {
6445 /* Handle cases where INSN1 writes to a known general coprocessor
6446 register. There must be a one instruction delay before INSN2
6447 if INSN2 reads that register, otherwise no delay is needed. */
6448 mask = fpr_write_mask (insn1);
6449 if (mask != 0)
6450 {
6451 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6452 return 1;
6453 }
6454 else
6455 {
6456 /* Read-after-write dependencies on the control registers
6457 require a two-instruction gap. */
6458 if ((pinfo1 & INSN_WRITE_COND_CODE)
6459 && (pinfo2 & INSN_READ_COND_CODE))
6460 return 2;
6461
6462 /* We don't know exactly what INSN1 does. If INSN2 is
6463 also a coprocessor instruction, assume there must be
6464 a one instruction gap. */
6465 if (pinfo2 & INSN_COP)
6466 return 1;
6467 }
6468 }
6469
6470 /* Check for read-after-write dependencies on the coprocessor
6471 control registers in cases where INSN1 does not need a general
6472 coprocessor delay. This means that INSN1 is a floating point
6473 comparison instruction. */
6474 /* Itbl support may require additional care here. */
6475 else if (!cop_interlocks
6476 && (pinfo1 & INSN_WRITE_COND_CODE)
6477 && (pinfo2 & INSN_READ_COND_CODE))
6478 return 1;
6479 }
6480
6481 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6482 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6483 and pause. */
6484 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6485 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6486 || (insn2 && delayed_branch_p (insn2))))
6487 return 1;
6488
6489 return 0;
6490 }
6491
6492 /* Return the number of nops that would be needed to work around the
6493 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6494 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6495 that are contained within the first IGNORE instructions of HIST. */
6496
6497 static int
6498 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6499 const struct mips_cl_insn *insn)
6500 {
6501 int i, j;
6502 unsigned int mask;
6503
6504 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6505 are not affected by the errata. */
6506 if (insn != 0
6507 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6508 || strcmp (insn->insn_mo->name, "mtlo") == 0
6509 || strcmp (insn->insn_mo->name, "mthi") == 0))
6510 return 0;
6511
6512 /* Search for the first MFLO or MFHI. */
6513 for (i = 0; i < MAX_VR4130_NOPS; i++)
6514 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6515 {
6516 /* Extract the destination register. */
6517 mask = gpr_write_mask (&hist[i]);
6518
6519 /* No nops are needed if INSN reads that register. */
6520 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6521 return 0;
6522
6523 /* ...or if any of the intervening instructions do. */
6524 for (j = 0; j < i; j++)
6525 if (gpr_read_mask (&hist[j]) & mask)
6526 return 0;
6527
6528 if (i >= ignore)
6529 return MAX_VR4130_NOPS - i;
6530 }
6531 return 0;
6532 }
6533
6534 #define BASE_REG_EQ(INSN1, INSN2) \
6535 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6536 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6537
6538 /* Return the minimum alignment for this store instruction. */
6539
6540 static int
6541 fix_24k_align_to (const struct mips_opcode *mo)
6542 {
6543 if (strcmp (mo->name, "sh") == 0)
6544 return 2;
6545
6546 if (strcmp (mo->name, "swc1") == 0
6547 || strcmp (mo->name, "swc2") == 0
6548 || strcmp (mo->name, "sw") == 0
6549 || strcmp (mo->name, "sc") == 0
6550 || strcmp (mo->name, "s.s") == 0)
6551 return 4;
6552
6553 if (strcmp (mo->name, "sdc1") == 0
6554 || strcmp (mo->name, "sdc2") == 0
6555 || strcmp (mo->name, "s.d") == 0)
6556 return 8;
6557
6558 /* sb, swl, swr */
6559 return 1;
6560 }
6561
6562 struct fix_24k_store_info
6563 {
6564 /* Immediate offset, if any, for this store instruction. */
6565 short off;
6566 /* Alignment required by this store instruction. */
6567 int align_to;
6568 /* True for register offsets. */
6569 int register_offset;
6570 };
6571
6572 /* Comparison function used by qsort. */
6573
6574 static int
6575 fix_24k_sort (const void *a, const void *b)
6576 {
6577 const struct fix_24k_store_info *pos1 = a;
6578 const struct fix_24k_store_info *pos2 = b;
6579
6580 return (pos1->off - pos2->off);
6581 }
6582
6583 /* INSN is a store instruction. Try to record the store information
6584 in STINFO. Return false if the information isn't known. */
6585
6586 static bfd_boolean
6587 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6588 const struct mips_cl_insn *insn)
6589 {
6590 /* The instruction must have a known offset. */
6591 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6592 return FALSE;
6593
6594 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6595 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6596 return TRUE;
6597 }
6598
6599 /* Return the number of nops that would be needed to work around the 24k
6600 "lost data on stores during refill" errata if instruction INSN
6601 immediately followed the 2 instructions described by HIST.
6602 Ignore hazards that are contained within the first IGNORE
6603 instructions of HIST.
6604
6605 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6606 for the data cache refills and store data. The following describes
6607 the scenario where the store data could be lost.
6608
6609 * A data cache miss, due to either a load or a store, causing fill
6610 data to be supplied by the memory subsystem
6611 * The first three doublewords of fill data are returned and written
6612 into the cache
6613 * A sequence of four stores occurs in consecutive cycles around the
6614 final doubleword of the fill:
6615 * Store A
6616 * Store B
6617 * Store C
6618 * Zero, One or more instructions
6619 * Store D
6620
6621 The four stores A-D must be to different doublewords of the line that
6622 is being filled. The fourth instruction in the sequence above permits
6623 the fill of the final doubleword to be transferred from the FSB into
6624 the cache. In the sequence above, the stores may be either integer
6625 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6626 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6627 different doublewords on the line. If the floating point unit is
6628 running in 1:2 mode, it is not possible to create the sequence above
6629 using only floating point store instructions.
6630
6631 In this case, the cache line being filled is incorrectly marked
6632 invalid, thereby losing the data from any store to the line that
6633 occurs between the original miss and the completion of the five
6634 cycle sequence shown above.
6635
6636 The workarounds are:
6637
6638 * Run the data cache in write-through mode.
6639 * Insert a non-store instruction between
6640 Store A and Store B or Store B and Store C. */
6641
6642 static int
6643 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6644 const struct mips_cl_insn *insn)
6645 {
6646 struct fix_24k_store_info pos[3];
6647 int align, i, base_offset;
6648
6649 if (ignore >= 2)
6650 return 0;
6651
6652 /* If the previous instruction wasn't a store, there's nothing to
6653 worry about. */
6654 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6655 return 0;
6656
6657 /* If the instructions after the previous one are unknown, we have
6658 to assume the worst. */
6659 if (!insn)
6660 return 1;
6661
6662 /* Check whether we are dealing with three consecutive stores. */
6663 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6664 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6665 return 0;
6666
6667 /* If we don't know the relationship between the store addresses,
6668 assume the worst. */
6669 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6670 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6671 return 1;
6672
6673 if (!fix_24k_record_store_info (&pos[0], insn)
6674 || !fix_24k_record_store_info (&pos[1], &hist[0])
6675 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6676 return 1;
6677
6678 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6679
6680 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6681 X bytes and such that the base register + X is known to be aligned
6682 to align bytes. */
6683
6684 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6685 align = 8;
6686 else
6687 {
6688 align = pos[0].align_to;
6689 base_offset = pos[0].off;
6690 for (i = 1; i < 3; i++)
6691 if (align < pos[i].align_to)
6692 {
6693 align = pos[i].align_to;
6694 base_offset = pos[i].off;
6695 }
6696 for (i = 0; i < 3; i++)
6697 pos[i].off -= base_offset;
6698 }
6699
6700 pos[0].off &= ~align + 1;
6701 pos[1].off &= ~align + 1;
6702 pos[2].off &= ~align + 1;
6703
6704 /* If any two stores write to the same chunk, they also write to the
6705 same doubleword. The offsets are still sorted at this point. */
6706 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6707 return 0;
6708
6709 /* A range of at least 9 bytes is needed for the stores to be in
6710 non-overlapping doublewords. */
6711 if (pos[2].off - pos[0].off <= 8)
6712 return 0;
6713
6714 if (pos[2].off - pos[1].off >= 24
6715 || pos[1].off - pos[0].off >= 24
6716 || pos[2].off - pos[0].off >= 32)
6717 return 0;
6718
6719 return 1;
6720 }
6721
6722 /* Return the number of nops that would be needed if instruction INSN
6723 immediately followed the MAX_NOPS instructions given by HIST,
6724 where HIST[0] is the most recent instruction. Ignore hazards
6725 between INSN and the first IGNORE instructions in HIST.
6726
6727 If INSN is null, return the worse-case number of nops for any
6728 instruction. */
6729
6730 static int
6731 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6732 const struct mips_cl_insn *insn)
6733 {
6734 int i, nops, tmp_nops;
6735
6736 nops = 0;
6737 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6738 {
6739 tmp_nops = insns_between (hist + i, insn) - i;
6740 if (tmp_nops > nops)
6741 nops = tmp_nops;
6742 }
6743
6744 if (mips_fix_vr4130 && !mips_opts.micromips)
6745 {
6746 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6747 if (tmp_nops > nops)
6748 nops = tmp_nops;
6749 }
6750
6751 if (mips_fix_24k && !mips_opts.micromips)
6752 {
6753 tmp_nops = nops_for_24k (ignore, hist, insn);
6754 if (tmp_nops > nops)
6755 nops = tmp_nops;
6756 }
6757
6758 return nops;
6759 }
6760
6761 /* The variable arguments provide NUM_INSNS extra instructions that
6762 might be added to HIST. Return the largest number of nops that
6763 would be needed after the extended sequence, ignoring hazards
6764 in the first IGNORE instructions. */
6765
6766 static int
6767 nops_for_sequence (int num_insns, int ignore,
6768 const struct mips_cl_insn *hist, ...)
6769 {
6770 va_list args;
6771 struct mips_cl_insn buffer[MAX_NOPS];
6772 struct mips_cl_insn *cursor;
6773 int nops;
6774
6775 va_start (args, hist);
6776 cursor = buffer + num_insns;
6777 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6778 while (cursor > buffer)
6779 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6780
6781 nops = nops_for_insn (ignore, buffer, NULL);
6782 va_end (args);
6783 return nops;
6784 }
6785
6786 /* Like nops_for_insn, but if INSN is a branch, take into account the
6787 worst-case delay for the branch target. */
6788
6789 static int
6790 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6791 const struct mips_cl_insn *insn)
6792 {
6793 int nops, tmp_nops;
6794
6795 nops = nops_for_insn (ignore, hist, insn);
6796 if (delayed_branch_p (insn))
6797 {
6798 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6799 hist, insn, get_delay_slot_nop (insn));
6800 if (tmp_nops > nops)
6801 nops = tmp_nops;
6802 }
6803 else if (compact_branch_p (insn))
6804 {
6805 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6806 if (tmp_nops > nops)
6807 nops = tmp_nops;
6808 }
6809 return nops;
6810 }
6811
6812 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6813
6814 static void
6815 fix_loongson2f_nop (struct mips_cl_insn * ip)
6816 {
6817 gas_assert (!HAVE_CODE_COMPRESSION);
6818 if (strcmp (ip->insn_mo->name, "nop") == 0)
6819 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6820 }
6821
6822 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6823 jr target pc &= 'hffff_ffff_cfff_ffff. */
6824
6825 static void
6826 fix_loongson2f_jump (struct mips_cl_insn * ip)
6827 {
6828 gas_assert (!HAVE_CODE_COMPRESSION);
6829 if (strcmp (ip->insn_mo->name, "j") == 0
6830 || strcmp (ip->insn_mo->name, "jr") == 0
6831 || strcmp (ip->insn_mo->name, "jalr") == 0)
6832 {
6833 int sreg;
6834 expressionS ep;
6835
6836 if (! mips_opts.at)
6837 return;
6838
6839 sreg = EXTRACT_OPERAND (0, RS, *ip);
6840 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6841 return;
6842
6843 ep.X_op = O_constant;
6844 ep.X_add_number = 0xcfff0000;
6845 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6846 ep.X_add_number = 0xffff;
6847 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6848 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6849 }
6850 }
6851
6852 static void
6853 fix_loongson2f (struct mips_cl_insn * ip)
6854 {
6855 if (mips_fix_loongson2f_nop)
6856 fix_loongson2f_nop (ip);
6857
6858 if (mips_fix_loongson2f_jump)
6859 fix_loongson2f_jump (ip);
6860 }
6861
6862 /* IP is a branch that has a delay slot, and we need to fill it
6863 automatically. Return true if we can do that by swapping IP
6864 with the previous instruction.
6865 ADDRESS_EXPR is an operand of the instruction to be used with
6866 RELOC_TYPE. */
6867
6868 static bfd_boolean
6869 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6870 bfd_reloc_code_real_type *reloc_type)
6871 {
6872 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6873 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6874 unsigned int fpr_read, prev_fpr_write;
6875
6876 /* -O2 and above is required for this optimization. */
6877 if (mips_optimize < 2)
6878 return FALSE;
6879
6880 /* If we have seen .set volatile or .set nomove, don't optimize. */
6881 if (mips_opts.nomove)
6882 return FALSE;
6883
6884 /* We can't swap if the previous instruction's position is fixed. */
6885 if (history[0].fixed_p)
6886 return FALSE;
6887
6888 /* If the previous previous insn was in a .set noreorder, we can't
6889 swap. Actually, the MIPS assembler will swap in this situation.
6890 However, gcc configured -with-gnu-as will generate code like
6891
6892 .set noreorder
6893 lw $4,XXX
6894 .set reorder
6895 INSN
6896 bne $4,$0,foo
6897
6898 in which we can not swap the bne and INSN. If gcc is not configured
6899 -with-gnu-as, it does not output the .set pseudo-ops. */
6900 if (history[1].noreorder_p)
6901 return FALSE;
6902
6903 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6904 This means that the previous instruction was a 4-byte one anyhow. */
6905 if (mips_opts.mips16 && history[0].fixp[0])
6906 return FALSE;
6907
6908 /* If the branch is itself the target of a branch, we can not swap.
6909 We cheat on this; all we check for is whether there is a label on
6910 this instruction. If there are any branches to anything other than
6911 a label, users must use .set noreorder. */
6912 if (seg_info (now_seg)->label_list)
6913 return FALSE;
6914
6915 /* If the previous instruction is in a variant frag other than this
6916 branch's one, we cannot do the swap. This does not apply to
6917 MIPS16 code, which uses variant frags for different purposes. */
6918 if (!mips_opts.mips16
6919 && history[0].frag
6920 && history[0].frag->fr_type == rs_machine_dependent)
6921 return FALSE;
6922
6923 /* We do not swap with instructions that cannot architecturally
6924 be placed in a branch delay slot, such as SYNC or ERET. We
6925 also refrain from swapping with a trap instruction, since it
6926 complicates trap handlers to have the trap instruction be in
6927 a delay slot. */
6928 prev_pinfo = history[0].insn_mo->pinfo;
6929 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6930 return FALSE;
6931
6932 /* Check for conflicts between the branch and the instructions
6933 before the candidate delay slot. */
6934 if (nops_for_insn (0, history + 1, ip) > 0)
6935 return FALSE;
6936
6937 /* Check for conflicts between the swapped sequence and the
6938 target of the branch. */
6939 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6940 return FALSE;
6941
6942 /* If the branch reads a register that the previous
6943 instruction sets, we can not swap. */
6944 gpr_read = gpr_read_mask (ip);
6945 prev_gpr_write = gpr_write_mask (&history[0]);
6946 if (gpr_read & prev_gpr_write)
6947 return FALSE;
6948
6949 fpr_read = fpr_read_mask (ip);
6950 prev_fpr_write = fpr_write_mask (&history[0]);
6951 if (fpr_read & prev_fpr_write)
6952 return FALSE;
6953
6954 /* If the branch writes a register that the previous
6955 instruction sets, we can not swap. */
6956 gpr_write = gpr_write_mask (ip);
6957 if (gpr_write & prev_gpr_write)
6958 return FALSE;
6959
6960 /* If the branch writes a register that the previous
6961 instruction reads, we can not swap. */
6962 prev_gpr_read = gpr_read_mask (&history[0]);
6963 if (gpr_write & prev_gpr_read)
6964 return FALSE;
6965
6966 /* If one instruction sets a condition code and the
6967 other one uses a condition code, we can not swap. */
6968 pinfo = ip->insn_mo->pinfo;
6969 if ((pinfo & INSN_READ_COND_CODE)
6970 && (prev_pinfo & INSN_WRITE_COND_CODE))
6971 return FALSE;
6972 if ((pinfo & INSN_WRITE_COND_CODE)
6973 && (prev_pinfo & INSN_READ_COND_CODE))
6974 return FALSE;
6975
6976 /* If the previous instruction uses the PC, we can not swap. */
6977 prev_pinfo2 = history[0].insn_mo->pinfo2;
6978 if (prev_pinfo2 & INSN2_READ_PC)
6979 return FALSE;
6980
6981 /* If the previous instruction has an incorrect size for a fixed
6982 branch delay slot in microMIPS mode, we cannot swap. */
6983 pinfo2 = ip->insn_mo->pinfo2;
6984 if (mips_opts.micromips
6985 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6986 && insn_length (history) != 2)
6987 return FALSE;
6988 if (mips_opts.micromips
6989 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6990 && insn_length (history) != 4)
6991 return FALSE;
6992
6993 /* On the R5900 short loops need to be fixed by inserting a NOP in the
6994 branch delay slot.
6995
6996 The short loop bug under certain conditions causes loops to execute
6997 only once or twice. We must ensure that the assembler never
6998 generates loops that satisfy all of the following conditions:
6999
7000 - a loop consists of less than or equal to six instructions
7001 (including the branch delay slot);
7002 - a loop contains only one conditional branch instruction at the end
7003 of the loop;
7004 - a loop does not contain any other branch or jump instructions;
7005 - a branch delay slot of the loop is not NOP (EE 2.9 or later).
7006
7007 We need to do this because of a hardware bug in the R5900 chip. */
7008 if (mips_fix_r5900
7009 /* Check if instruction has a parameter, ignore "j $31". */
7010 && (address_expr != NULL)
7011 /* Parameter must be 16 bit. */
7012 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
7013 /* Branch to same segment. */
7014 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
7015 /* Branch to same code fragment. */
7016 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
7017 /* Can only calculate branch offset if value is known. */
7018 && symbol_constant_p (address_expr->X_add_symbol)
7019 /* Check if branch is really conditional. */
7020 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
7021 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
7022 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
7023 {
7024 int distance;
7025 /* Check if loop is shorter than or equal to 6 instructions
7026 including branch and delay slot. */
7027 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
7028 if (distance <= 20)
7029 {
7030 int i;
7031 int rv;
7032
7033 rv = FALSE;
7034 /* When the loop includes branches or jumps,
7035 it is not a short loop. */
7036 for (i = 0; i < (distance / 4); i++)
7037 {
7038 if ((history[i].cleared_p)
7039 || delayed_branch_p (&history[i]))
7040 {
7041 rv = TRUE;
7042 break;
7043 }
7044 }
7045 if (!rv)
7046 {
7047 /* Insert nop after branch to fix short loop. */
7048 return FALSE;
7049 }
7050 }
7051 }
7052
7053 return TRUE;
7054 }
7055
7056 /* Decide how we should add IP to the instruction stream.
7057 ADDRESS_EXPR is an operand of the instruction to be used with
7058 RELOC_TYPE. */
7059
7060 static enum append_method
7061 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
7062 bfd_reloc_code_real_type *reloc_type)
7063 {
7064 /* The relaxed version of a macro sequence must be inherently
7065 hazard-free. */
7066 if (mips_relax.sequence == 2)
7067 return APPEND_ADD;
7068
7069 /* We must not dabble with instructions in a ".set noreorder" block. */
7070 if (mips_opts.noreorder)
7071 return APPEND_ADD;
7072
7073 /* Otherwise, it's our responsibility to fill branch delay slots. */
7074 if (delayed_branch_p (ip))
7075 {
7076 if (!branch_likely_p (ip)
7077 && can_swap_branch_p (ip, address_expr, reloc_type))
7078 return APPEND_SWAP;
7079
7080 if (mips_opts.mips16
7081 && ISA_SUPPORTS_MIPS16E
7082 && gpr_read_mask (ip) != 0)
7083 return APPEND_ADD_COMPACT;
7084
7085 if (mips_opts.micromips
7086 && ((ip->insn_opcode & 0xffe0) == 0x4580
7087 || (!forced_insn_length
7088 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7089 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7090 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7091 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7092 return APPEND_ADD_COMPACT;
7093
7094 return APPEND_ADD_WITH_NOP;
7095 }
7096
7097 return APPEND_ADD;
7098 }
7099
7100 /* IP is an instruction whose opcode we have just changed, END points
7101 to the end of the opcode table processed. Point IP->insn_mo to the
7102 new opcode's definition. */
7103
7104 static void
7105 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
7106 {
7107 const struct mips_opcode *mo;
7108
7109 for (mo = ip->insn_mo; mo < end; mo++)
7110 if (mo->pinfo != INSN_MACRO
7111 && (ip->insn_opcode & mo->mask) == mo->match)
7112 {
7113 ip->insn_mo = mo;
7114 return;
7115 }
7116 abort ();
7117 }
7118
7119 /* IP is a MIPS16 instruction whose opcode we have just changed.
7120 Point IP->insn_mo to the new opcode's definition. */
7121
7122 static void
7123 find_altered_mips16_opcode (struct mips_cl_insn *ip)
7124 {
7125 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7126 }
7127
7128 /* IP is a microMIPS instruction whose opcode we have just changed.
7129 Point IP->insn_mo to the new opcode's definition. */
7130
7131 static void
7132 find_altered_micromips_opcode (struct mips_cl_insn *ip)
7133 {
7134 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7135 }
7136
7137 /* For microMIPS macros, we need to generate a local number label
7138 as the target of branches. */
7139 #define MICROMIPS_LABEL_CHAR '\037'
7140 static unsigned long micromips_target_label;
7141 static char micromips_target_name[32];
7142
7143 static char *
7144 micromips_label_name (void)
7145 {
7146 char *p = micromips_target_name;
7147 char symbol_name_temporary[24];
7148 unsigned long l;
7149 int i;
7150
7151 if (*p)
7152 return p;
7153
7154 i = 0;
7155 l = micromips_target_label;
7156 #ifdef LOCAL_LABEL_PREFIX
7157 *p++ = LOCAL_LABEL_PREFIX;
7158 #endif
7159 *p++ = 'L';
7160 *p++ = MICROMIPS_LABEL_CHAR;
7161 do
7162 {
7163 symbol_name_temporary[i++] = l % 10 + '0';
7164 l /= 10;
7165 }
7166 while (l != 0);
7167 while (i > 0)
7168 *p++ = symbol_name_temporary[--i];
7169 *p = '\0';
7170
7171 return micromips_target_name;
7172 }
7173
7174 static void
7175 micromips_label_expr (expressionS *label_expr)
7176 {
7177 label_expr->X_op = O_symbol;
7178 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7179 label_expr->X_add_number = 0;
7180 }
7181
7182 static void
7183 micromips_label_inc (void)
7184 {
7185 micromips_target_label++;
7186 *micromips_target_name = '\0';
7187 }
7188
7189 static void
7190 micromips_add_label (void)
7191 {
7192 symbolS *s;
7193
7194 s = colon (micromips_label_name ());
7195 micromips_label_inc ();
7196 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7197 }
7198
7199 /* If assembling microMIPS code, then return the microMIPS reloc
7200 corresponding to the requested one if any. Otherwise return
7201 the reloc unchanged. */
7202
7203 static bfd_reloc_code_real_type
7204 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7205 {
7206 static const bfd_reloc_code_real_type relocs[][2] =
7207 {
7208 /* Keep sorted incrementally by the left-hand key. */
7209 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7210 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7211 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7212 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7213 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7214 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7215 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7216 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7217 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7218 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7219 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7220 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7221 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7222 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7223 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7224 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7225 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7226 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7227 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7228 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7229 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7230 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7231 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7232 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7233 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7234 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7235 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7236 };
7237 bfd_reloc_code_real_type r;
7238 size_t i;
7239
7240 if (!mips_opts.micromips)
7241 return reloc;
7242 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7243 {
7244 r = relocs[i][0];
7245 if (r > reloc)
7246 return reloc;
7247 if (r == reloc)
7248 return relocs[i][1];
7249 }
7250 return reloc;
7251 }
7252
7253 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7254 Return true on success, storing the resolved value in RESULT. */
7255
7256 static bfd_boolean
7257 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7258 offsetT *result)
7259 {
7260 switch (reloc)
7261 {
7262 case BFD_RELOC_MIPS_HIGHEST:
7263 case BFD_RELOC_MICROMIPS_HIGHEST:
7264 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7265 return TRUE;
7266
7267 case BFD_RELOC_MIPS_HIGHER:
7268 case BFD_RELOC_MICROMIPS_HIGHER:
7269 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7270 return TRUE;
7271
7272 case BFD_RELOC_HI16_S:
7273 case BFD_RELOC_HI16_S_PCREL:
7274 case BFD_RELOC_MICROMIPS_HI16_S:
7275 case BFD_RELOC_MIPS16_HI16_S:
7276 *result = ((operand + 0x8000) >> 16) & 0xffff;
7277 return TRUE;
7278
7279 case BFD_RELOC_HI16:
7280 case BFD_RELOC_MICROMIPS_HI16:
7281 case BFD_RELOC_MIPS16_HI16:
7282 *result = (operand >> 16) & 0xffff;
7283 return TRUE;
7284
7285 case BFD_RELOC_LO16:
7286 case BFD_RELOC_LO16_PCREL:
7287 case BFD_RELOC_MICROMIPS_LO16:
7288 case BFD_RELOC_MIPS16_LO16:
7289 *result = operand & 0xffff;
7290 return TRUE;
7291
7292 case BFD_RELOC_UNUSED:
7293 *result = operand;
7294 return TRUE;
7295
7296 default:
7297 return FALSE;
7298 }
7299 }
7300
7301 /* Output an instruction. IP is the instruction information.
7302 ADDRESS_EXPR is an operand of the instruction to be used with
7303 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7304 a macro expansion. */
7305
7306 static void
7307 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7308 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7309 {
7310 unsigned long prev_pinfo2, pinfo;
7311 bfd_boolean relaxed_branch = FALSE;
7312 enum append_method method;
7313 bfd_boolean relax32;
7314 int branch_disp;
7315
7316 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7317 fix_loongson2f (ip);
7318
7319 file_ase_mips16 |= mips_opts.mips16;
7320 file_ase_micromips |= mips_opts.micromips;
7321
7322 prev_pinfo2 = history[0].insn_mo->pinfo2;
7323 pinfo = ip->insn_mo->pinfo;
7324
7325 /* Don't raise alarm about `nods' frags as they'll fill in the right
7326 kind of nop in relaxation if required. */
7327 if (mips_opts.micromips
7328 && !expansionp
7329 && !(history[0].frag
7330 && history[0].frag->fr_type == rs_machine_dependent
7331 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7332 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7333 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7334 && micromips_insn_length (ip->insn_mo) != 2)
7335 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7336 && micromips_insn_length (ip->insn_mo) != 4)))
7337 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7338 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7339
7340 if (address_expr == NULL)
7341 ip->complete_p = 1;
7342 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7343 && reloc_type[1] == BFD_RELOC_UNUSED
7344 && reloc_type[2] == BFD_RELOC_UNUSED
7345 && address_expr->X_op == O_constant)
7346 {
7347 switch (*reloc_type)
7348 {
7349 case BFD_RELOC_MIPS_JMP:
7350 {
7351 int shift;
7352
7353 /* Shift is 2, unusually, for microMIPS JALX. */
7354 shift = (mips_opts.micromips
7355 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7356 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7357 as_bad (_("jump to misaligned address (0x%lx)"),
7358 (unsigned long) address_expr->X_add_number);
7359 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7360 & 0x3ffffff);
7361 ip->complete_p = 1;
7362 }
7363 break;
7364
7365 case BFD_RELOC_MIPS16_JMP:
7366 if ((address_expr->X_add_number & 3) != 0)
7367 as_bad (_("jump to misaligned address (0x%lx)"),
7368 (unsigned long) address_expr->X_add_number);
7369 ip->insn_opcode |=
7370 (((address_expr->X_add_number & 0x7c0000) << 3)
7371 | ((address_expr->X_add_number & 0xf800000) >> 7)
7372 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7373 ip->complete_p = 1;
7374 break;
7375
7376 case BFD_RELOC_16_PCREL_S2:
7377 {
7378 int shift;
7379
7380 shift = mips_opts.micromips ? 1 : 2;
7381 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7382 as_bad (_("branch to misaligned address (0x%lx)"),
7383 (unsigned long) address_expr->X_add_number);
7384 if (!mips_relax_branch)
7385 {
7386 if ((address_expr->X_add_number + (1 << (shift + 15)))
7387 & ~((1 << (shift + 16)) - 1))
7388 as_bad (_("branch address range overflow (0x%lx)"),
7389 (unsigned long) address_expr->X_add_number);
7390 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7391 & 0xffff);
7392 }
7393 }
7394 break;
7395
7396 case BFD_RELOC_MIPS_21_PCREL_S2:
7397 {
7398 int shift;
7399
7400 shift = 2;
7401 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7402 as_bad (_("branch to misaligned address (0x%lx)"),
7403 (unsigned long) address_expr->X_add_number);
7404 if ((address_expr->X_add_number + (1 << (shift + 20)))
7405 & ~((1 << (shift + 21)) - 1))
7406 as_bad (_("branch address range overflow (0x%lx)"),
7407 (unsigned long) address_expr->X_add_number);
7408 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7409 & 0x1fffff);
7410 }
7411 break;
7412
7413 case BFD_RELOC_MIPS_26_PCREL_S2:
7414 {
7415 int shift;
7416
7417 shift = 2;
7418 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7419 as_bad (_("branch to misaligned address (0x%lx)"),
7420 (unsigned long) address_expr->X_add_number);
7421 if ((address_expr->X_add_number + (1 << (shift + 25)))
7422 & ~((1 << (shift + 26)) - 1))
7423 as_bad (_("branch address range overflow (0x%lx)"),
7424 (unsigned long) address_expr->X_add_number);
7425 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7426 & 0x3ffffff);
7427 }
7428 break;
7429
7430 default:
7431 {
7432 offsetT value;
7433
7434 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7435 &value))
7436 {
7437 ip->insn_opcode |= value & 0xffff;
7438 ip->complete_p = 1;
7439 }
7440 }
7441 break;
7442 }
7443 }
7444
7445 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7446 {
7447 /* There are a lot of optimizations we could do that we don't.
7448 In particular, we do not, in general, reorder instructions.
7449 If you use gcc with optimization, it will reorder
7450 instructions and generally do much more optimization then we
7451 do here; repeating all that work in the assembler would only
7452 benefit hand written assembly code, and does not seem worth
7453 it. */
7454 int nops = (mips_optimize == 0
7455 ? nops_for_insn (0, history, NULL)
7456 : nops_for_insn_or_target (0, history, ip));
7457 if (nops > 0)
7458 {
7459 fragS *old_frag;
7460 unsigned long old_frag_offset;
7461 int i;
7462
7463 old_frag = frag_now;
7464 old_frag_offset = frag_now_fix ();
7465
7466 for (i = 0; i < nops; i++)
7467 add_fixed_insn (NOP_INSN);
7468 insert_into_history (0, nops, NOP_INSN);
7469
7470 if (listing)
7471 {
7472 listing_prev_line ();
7473 /* We may be at the start of a variant frag. In case we
7474 are, make sure there is enough space for the frag
7475 after the frags created by listing_prev_line. The
7476 argument to frag_grow here must be at least as large
7477 as the argument to all other calls to frag_grow in
7478 this file. We don't have to worry about being in the
7479 middle of a variant frag, because the variants insert
7480 all needed nop instructions themselves. */
7481 frag_grow (40);
7482 }
7483
7484 mips_move_text_labels ();
7485
7486 #ifndef NO_ECOFF_DEBUGGING
7487 if (ECOFF_DEBUGGING)
7488 ecoff_fix_loc (old_frag, old_frag_offset);
7489 #endif
7490 }
7491 }
7492 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7493 {
7494 int nops;
7495
7496 /* Work out how many nops in prev_nop_frag are needed by IP,
7497 ignoring hazards generated by the first prev_nop_frag_since
7498 instructions. */
7499 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7500 gas_assert (nops <= prev_nop_frag_holds);
7501
7502 /* Enforce NOPS as a minimum. */
7503 if (nops > prev_nop_frag_required)
7504 prev_nop_frag_required = nops;
7505
7506 if (prev_nop_frag_holds == prev_nop_frag_required)
7507 {
7508 /* Settle for the current number of nops. Update the history
7509 accordingly (for the benefit of any future .set reorder code). */
7510 prev_nop_frag = NULL;
7511 insert_into_history (prev_nop_frag_since,
7512 prev_nop_frag_holds, NOP_INSN);
7513 }
7514 else
7515 {
7516 /* Allow this instruction to replace one of the nops that was
7517 tentatively added to prev_nop_frag. */
7518 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7519 prev_nop_frag_holds--;
7520 prev_nop_frag_since++;
7521 }
7522 }
7523
7524 method = get_append_method (ip, address_expr, reloc_type);
7525 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7526
7527 dwarf2_emit_insn (0);
7528 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7529 so "move" the instruction address accordingly.
7530
7531 Also, it doesn't seem appropriate for the assembler to reorder .loc
7532 entries. If this instruction is a branch that we are going to swap
7533 with the previous instruction, the two instructions should be
7534 treated as a unit, and the debug information for both instructions
7535 should refer to the start of the branch sequence. Using the
7536 current position is certainly wrong when swapping a 32-bit branch
7537 and a 16-bit delay slot, since the current position would then be
7538 in the middle of a branch. */
7539 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7540
7541 relax32 = (mips_relax_branch
7542 /* Don't try branch relaxation within .set nomacro, or within
7543 .set noat if we use $at for PIC computations. If it turns
7544 out that the branch was out-of-range, we'll get an error. */
7545 && !mips_opts.warn_about_macros
7546 && (mips_opts.at || mips_pic == NO_PIC)
7547 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7548 as they have no complementing branches. */
7549 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7550
7551 if (!HAVE_CODE_COMPRESSION
7552 && address_expr
7553 && relax32
7554 && *reloc_type == BFD_RELOC_16_PCREL_S2
7555 && delayed_branch_p (ip))
7556 {
7557 relaxed_branch = TRUE;
7558 add_relaxed_insn (ip, (relaxed_branch_length
7559 (NULL, NULL,
7560 uncond_branch_p (ip) ? -1
7561 : branch_likely_p (ip) ? 1
7562 : 0)), 4,
7563 RELAX_BRANCH_ENCODE
7564 (AT, mips_pic != NO_PIC,
7565 uncond_branch_p (ip),
7566 branch_likely_p (ip),
7567 pinfo & INSN_WRITE_GPR_31,
7568 0),
7569 address_expr->X_add_symbol,
7570 address_expr->X_add_number);
7571 *reloc_type = BFD_RELOC_UNUSED;
7572 }
7573 else if (mips_opts.micromips
7574 && address_expr
7575 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7576 || *reloc_type > BFD_RELOC_UNUSED)
7577 && (delayed_branch_p (ip) || compact_branch_p (ip))
7578 /* Don't try branch relaxation when users specify
7579 16-bit/32-bit instructions. */
7580 && !forced_insn_length)
7581 {
7582 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7583 && *reloc_type > BFD_RELOC_UNUSED);
7584 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7585 int uncond = uncond_branch_p (ip) ? -1 : 0;
7586 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7587 int nods = method == APPEND_ADD_WITH_NOP;
7588 int al = pinfo & INSN_WRITE_GPR_31;
7589 int length32 = nods ? 8 : 4;
7590
7591 gas_assert (address_expr != NULL);
7592 gas_assert (!mips_relax.sequence);
7593
7594 relaxed_branch = TRUE;
7595 if (nods)
7596 method = APPEND_ADD;
7597 if (relax32)
7598 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7599 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7600 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7601 mips_pic != NO_PIC,
7602 uncond, compact, al, nods,
7603 relax32, 0, 0),
7604 address_expr->X_add_symbol,
7605 address_expr->X_add_number);
7606 *reloc_type = BFD_RELOC_UNUSED;
7607 }
7608 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7609 {
7610 bfd_boolean require_unextended;
7611 bfd_boolean require_extended;
7612 symbolS *symbol;
7613 offsetT offset;
7614
7615 if (forced_insn_length != 0)
7616 {
7617 require_unextended = forced_insn_length == 2;
7618 require_extended = forced_insn_length == 4;
7619 }
7620 else
7621 {
7622 require_unextended = (mips_opts.noautoextend
7623 && !mips_opcode_32bit_p (ip->insn_mo));
7624 require_extended = 0;
7625 }
7626
7627 /* We need to set up a variant frag. */
7628 gas_assert (address_expr != NULL);
7629 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7630 symbol created by `make_expr_symbol' may not get a necessary
7631 external relocation produced. */
7632 if (address_expr->X_op == O_symbol)
7633 {
7634 symbol = address_expr->X_add_symbol;
7635 offset = address_expr->X_add_number;
7636 }
7637 else
7638 {
7639 symbol = make_expr_symbol (address_expr);
7640 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7641 offset = 0;
7642 }
7643 add_relaxed_insn (ip, 12, 0,
7644 RELAX_MIPS16_ENCODE
7645 (*reloc_type - BFD_RELOC_UNUSED,
7646 mips_opts.ase & ASE_MIPS16E2,
7647 mips_pic != NO_PIC,
7648 HAVE_32BIT_SYMBOLS,
7649 mips_opts.warn_about_macros,
7650 require_unextended, require_extended,
7651 delayed_branch_p (&history[0]),
7652 history[0].mips16_absolute_jump_p),
7653 symbol, offset);
7654 }
7655 else if (mips_opts.mips16 && insn_length (ip) == 2)
7656 {
7657 if (!delayed_branch_p (ip))
7658 /* Make sure there is enough room to swap this instruction with
7659 a following jump instruction. */
7660 frag_grow (6);
7661 add_fixed_insn (ip);
7662 }
7663 else
7664 {
7665 if (mips_opts.mips16
7666 && mips_opts.noreorder
7667 && delayed_branch_p (&history[0]))
7668 as_warn (_("extended instruction in delay slot"));
7669
7670 if (mips_relax.sequence)
7671 {
7672 /* If we've reached the end of this frag, turn it into a variant
7673 frag and record the information for the instructions we've
7674 written so far. */
7675 if (frag_room () < 4)
7676 relax_close_frag ();
7677 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7678 }
7679
7680 if (mips_relax.sequence != 2)
7681 {
7682 if (mips_macro_warning.first_insn_sizes[0] == 0)
7683 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7684 mips_macro_warning.sizes[0] += insn_length (ip);
7685 mips_macro_warning.insns[0]++;
7686 }
7687 if (mips_relax.sequence != 1)
7688 {
7689 if (mips_macro_warning.first_insn_sizes[1] == 0)
7690 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7691 mips_macro_warning.sizes[1] += insn_length (ip);
7692 mips_macro_warning.insns[1]++;
7693 }
7694
7695 if (mips_opts.mips16)
7696 {
7697 ip->fixed_p = 1;
7698 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7699 }
7700 add_fixed_insn (ip);
7701 }
7702
7703 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7704 {
7705 bfd_reloc_code_real_type final_type[3];
7706 reloc_howto_type *howto0;
7707 reloc_howto_type *howto;
7708 int i;
7709
7710 /* Perform any necessary conversion to microMIPS relocations
7711 and find out how many relocations there actually are. */
7712 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7713 final_type[i] = micromips_map_reloc (reloc_type[i]);
7714
7715 /* In a compound relocation, it is the final (outermost)
7716 operator that determines the relocated field. */
7717 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7718 if (!howto)
7719 abort ();
7720
7721 if (i > 1)
7722 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7723 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7724 bfd_get_reloc_size (howto),
7725 address_expr,
7726 howto0 && howto0->pc_relative,
7727 final_type[0]);
7728 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7729 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7730
7731 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7732 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7733 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7734
7735 /* These relocations can have an addend that won't fit in
7736 4 octets for 64bit assembly. */
7737 if (GPR_SIZE == 64
7738 && ! howto->partial_inplace
7739 && (reloc_type[0] == BFD_RELOC_16
7740 || reloc_type[0] == BFD_RELOC_32
7741 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7742 || reloc_type[0] == BFD_RELOC_GPREL16
7743 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7744 || reloc_type[0] == BFD_RELOC_GPREL32
7745 || reloc_type[0] == BFD_RELOC_64
7746 || reloc_type[0] == BFD_RELOC_CTOR
7747 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7748 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7749 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7750 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7751 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7752 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7753 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7754 || hi16_reloc_p (reloc_type[0])
7755 || lo16_reloc_p (reloc_type[0])))
7756 ip->fixp[0]->fx_no_overflow = 1;
7757
7758 /* These relocations can have an addend that won't fit in 2 octets. */
7759 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7760 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7761 ip->fixp[0]->fx_no_overflow = 1;
7762
7763 if (mips_relax.sequence)
7764 {
7765 if (mips_relax.first_fixup == 0)
7766 mips_relax.first_fixup = ip->fixp[0];
7767 }
7768 else if (reloc_needs_lo_p (*reloc_type))
7769 {
7770 struct mips_hi_fixup *hi_fixup;
7771
7772 /* Reuse the last entry if it already has a matching %lo. */
7773 hi_fixup = mips_hi_fixup_list;
7774 if (hi_fixup == 0
7775 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7776 {
7777 hi_fixup = XNEW (struct mips_hi_fixup);
7778 hi_fixup->next = mips_hi_fixup_list;
7779 mips_hi_fixup_list = hi_fixup;
7780 }
7781 hi_fixup->fixp = ip->fixp[0];
7782 hi_fixup->seg = now_seg;
7783 }
7784
7785 /* Add fixups for the second and third relocations, if given.
7786 Note that the ABI allows the second relocation to be
7787 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7788 moment we only use RSS_UNDEF, but we could add support
7789 for the others if it ever becomes necessary. */
7790 for (i = 1; i < 3; i++)
7791 if (reloc_type[i] != BFD_RELOC_UNUSED)
7792 {
7793 ip->fixp[i] = fix_new (ip->frag, ip->where,
7794 ip->fixp[0]->fx_size, NULL, 0,
7795 FALSE, final_type[i]);
7796
7797 /* Use fx_tcbit to mark compound relocs. */
7798 ip->fixp[0]->fx_tcbit = 1;
7799 ip->fixp[i]->fx_tcbit = 1;
7800 }
7801 }
7802
7803 /* Update the register mask information. */
7804 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7805 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7806
7807 switch (method)
7808 {
7809 case APPEND_ADD:
7810 insert_into_history (0, 1, ip);
7811 break;
7812
7813 case APPEND_ADD_WITH_NOP:
7814 {
7815 struct mips_cl_insn *nop;
7816
7817 insert_into_history (0, 1, ip);
7818 nop = get_delay_slot_nop (ip);
7819 add_fixed_insn (nop);
7820 insert_into_history (0, 1, nop);
7821 if (mips_relax.sequence)
7822 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7823 }
7824 break;
7825
7826 case APPEND_ADD_COMPACT:
7827 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7828 if (mips_opts.mips16)
7829 {
7830 ip->insn_opcode |= 0x0080;
7831 find_altered_mips16_opcode (ip);
7832 }
7833 /* Convert microMIPS instructions. */
7834 else if (mips_opts.micromips)
7835 {
7836 /* jr16->jrc */
7837 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7838 ip->insn_opcode |= 0x0020;
7839 /* b16->bc */
7840 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7841 ip->insn_opcode = 0x40e00000;
7842 /* beqz16->beqzc, bnez16->bnezc */
7843 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7844 {
7845 unsigned long regno;
7846
7847 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7848 regno &= MICROMIPSOP_MASK_MD;
7849 regno = micromips_to_32_reg_d_map[regno];
7850 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7851 | (regno << MICROMIPSOP_SH_RS)
7852 | 0x40a00000) ^ 0x00400000;
7853 }
7854 /* beqz->beqzc, bnez->bnezc */
7855 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7856 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7857 | ((ip->insn_opcode >> 7) & 0x00400000)
7858 | 0x40a00000) ^ 0x00400000;
7859 /* beq $0->beqzc, bne $0->bnezc */
7860 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7861 ip->insn_opcode = (((ip->insn_opcode >>
7862 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7863 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7864 | ((ip->insn_opcode >> 7) & 0x00400000)
7865 | 0x40a00000) ^ 0x00400000;
7866 else
7867 abort ();
7868 find_altered_micromips_opcode (ip);
7869 }
7870 else
7871 abort ();
7872 install_insn (ip);
7873 insert_into_history (0, 1, ip);
7874 break;
7875
7876 case APPEND_SWAP:
7877 {
7878 struct mips_cl_insn delay = history[0];
7879
7880 if (relaxed_branch || delay.frag != ip->frag)
7881 {
7882 /* Add the delay slot instruction to the end of the
7883 current frag and shrink the fixed part of the
7884 original frag. If the branch occupies the tail of
7885 the latter, move it backwards to cover the gap. */
7886 delay.frag->fr_fix -= branch_disp;
7887 if (delay.frag == ip->frag)
7888 move_insn (ip, ip->frag, ip->where - branch_disp);
7889 add_fixed_insn (&delay);
7890 }
7891 else
7892 {
7893 /* If this is not a relaxed branch and we are in the
7894 same frag, then just swap the instructions. */
7895 move_insn (ip, delay.frag, delay.where);
7896 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7897 }
7898 history[0] = *ip;
7899 delay.fixed_p = 1;
7900 insert_into_history (0, 1, &delay);
7901 }
7902 break;
7903 }
7904
7905 /* If we have just completed an unconditional branch, clear the history. */
7906 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7907 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7908 {
7909 unsigned int i;
7910
7911 mips_no_prev_insn ();
7912
7913 for (i = 0; i < ARRAY_SIZE (history); i++)
7914 history[i].cleared_p = 1;
7915 }
7916
7917 /* We need to emit a label at the end of branch-likely macros. */
7918 if (emit_branch_likely_macro)
7919 {
7920 emit_branch_likely_macro = FALSE;
7921 micromips_add_label ();
7922 }
7923
7924 /* We just output an insn, so the next one doesn't have a label. */
7925 mips_clear_insn_labels ();
7926 }
7927
7928 /* Forget that there was any previous instruction or label.
7929 When BRANCH is true, the branch history is also flushed. */
7930
7931 static void
7932 mips_no_prev_insn (void)
7933 {
7934 prev_nop_frag = NULL;
7935 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7936 mips_clear_insn_labels ();
7937 }
7938
7939 /* This function must be called before we emit something other than
7940 instructions. It is like mips_no_prev_insn except that it inserts
7941 any NOPS that might be needed by previous instructions. */
7942
7943 void
7944 mips_emit_delays (void)
7945 {
7946 if (! mips_opts.noreorder)
7947 {
7948 int nops = nops_for_insn (0, history, NULL);
7949 if (nops > 0)
7950 {
7951 while (nops-- > 0)
7952 add_fixed_insn (NOP_INSN);
7953 mips_move_text_labels ();
7954 }
7955 }
7956 mips_no_prev_insn ();
7957 }
7958
7959 /* Start a (possibly nested) noreorder block. */
7960
7961 static void
7962 start_noreorder (void)
7963 {
7964 if (mips_opts.noreorder == 0)
7965 {
7966 unsigned int i;
7967 int nops;
7968
7969 /* None of the instructions before the .set noreorder can be moved. */
7970 for (i = 0; i < ARRAY_SIZE (history); i++)
7971 history[i].fixed_p = 1;
7972
7973 /* Insert any nops that might be needed between the .set noreorder
7974 block and the previous instructions. We will later remove any
7975 nops that turn out not to be needed. */
7976 nops = nops_for_insn (0, history, NULL);
7977 if (nops > 0)
7978 {
7979 if (mips_optimize != 0)
7980 {
7981 /* Record the frag which holds the nop instructions, so
7982 that we can remove them if we don't need them. */
7983 frag_grow (nops * NOP_INSN_SIZE);
7984 prev_nop_frag = frag_now;
7985 prev_nop_frag_holds = nops;
7986 prev_nop_frag_required = 0;
7987 prev_nop_frag_since = 0;
7988 }
7989
7990 for (; nops > 0; --nops)
7991 add_fixed_insn (NOP_INSN);
7992
7993 /* Move on to a new frag, so that it is safe to simply
7994 decrease the size of prev_nop_frag. */
7995 frag_wane (frag_now);
7996 frag_new (0);
7997 mips_move_text_labels ();
7998 }
7999 mips_mark_labels ();
8000 mips_clear_insn_labels ();
8001 }
8002 mips_opts.noreorder++;
8003 mips_any_noreorder = 1;
8004 }
8005
8006 /* End a nested noreorder block. */
8007
8008 static void
8009 end_noreorder (void)
8010 {
8011 mips_opts.noreorder--;
8012 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
8013 {
8014 /* Commit to inserting prev_nop_frag_required nops and go back to
8015 handling nop insertion the .set reorder way. */
8016 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
8017 * NOP_INSN_SIZE);
8018 insert_into_history (prev_nop_frag_since,
8019 prev_nop_frag_required, NOP_INSN);
8020 prev_nop_frag = NULL;
8021 }
8022 }
8023
8024 /* Sign-extend 32-bit mode constants that have bit 31 set and all
8025 higher bits unset. */
8026
8027 static void
8028 normalize_constant_expr (expressionS *ex)
8029 {
8030 if (ex->X_op == O_constant
8031 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8032 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8033 - 0x80000000);
8034 }
8035
8036 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
8037 all higher bits unset. */
8038
8039 static void
8040 normalize_address_expr (expressionS *ex)
8041 {
8042 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
8043 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
8044 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8045 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8046 - 0x80000000);
8047 }
8048
8049 /* Try to match TOKENS against OPCODE, storing the result in INSN.
8050 Return true if the match was successful.
8051
8052 OPCODE_EXTRA is a value that should be ORed into the opcode
8053 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8054 there are more alternatives after OPCODE and SOFT_MATCH is
8055 as for mips_arg_info. */
8056
8057 static bfd_boolean
8058 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8059 struct mips_operand_token *tokens, unsigned int opcode_extra,
8060 bfd_boolean lax_match, bfd_boolean complete_p)
8061 {
8062 const char *args;
8063 struct mips_arg_info arg;
8064 const struct mips_operand *operand;
8065 char c;
8066
8067 imm_expr.X_op = O_absent;
8068 offset_expr.X_op = O_absent;
8069 offset_reloc[0] = BFD_RELOC_UNUSED;
8070 offset_reloc[1] = BFD_RELOC_UNUSED;
8071 offset_reloc[2] = BFD_RELOC_UNUSED;
8072
8073 create_insn (insn, opcode);
8074 /* When no opcode suffix is specified, assume ".xyzw". */
8075 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8076 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8077 else
8078 insn->insn_opcode |= opcode_extra;
8079 memset (&arg, 0, sizeof (arg));
8080 arg.insn = insn;
8081 arg.token = tokens;
8082 arg.argnum = 1;
8083 arg.last_regno = ILLEGAL_REG;
8084 arg.dest_regno = ILLEGAL_REG;
8085 arg.lax_match = lax_match;
8086 for (args = opcode->args;; ++args)
8087 {
8088 if (arg.token->type == OT_END)
8089 {
8090 /* Handle unary instructions in which only one operand is given.
8091 The source is then the same as the destination. */
8092 if (arg.opnum == 1 && *args == ',')
8093 {
8094 operand = (mips_opts.micromips
8095 ? decode_micromips_operand (args + 1)
8096 : decode_mips_operand (args + 1));
8097 if (operand && mips_optional_operand_p (operand))
8098 {
8099 arg.token = tokens;
8100 arg.argnum = 1;
8101 continue;
8102 }
8103 }
8104
8105 /* Treat elided base registers as $0. */
8106 if (strcmp (args, "(b)") == 0)
8107 args += 3;
8108
8109 if (args[0] == '+')
8110 switch (args[1])
8111 {
8112 case 'K':
8113 case 'N':
8114 /* The register suffix is optional. */
8115 args += 2;
8116 break;
8117 }
8118
8119 /* Fail the match if there were too few operands. */
8120 if (*args)
8121 return FALSE;
8122
8123 /* Successful match. */
8124 if (!complete_p)
8125 return TRUE;
8126 clear_insn_error ();
8127 if (arg.dest_regno == arg.last_regno
8128 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
8129 {
8130 if (arg.opnum == 2)
8131 set_insn_error
8132 (0, _("source and destination must be different"));
8133 else if (arg.last_regno == 31)
8134 set_insn_error
8135 (0, _("a destination register must be supplied"));
8136 }
8137 else if (arg.last_regno == 31
8138 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8139 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8140 set_insn_error (0, _("the source register must not be $31"));
8141 check_completed_insn (&arg);
8142 return TRUE;
8143 }
8144
8145 /* Fail the match if the line has too many operands. */
8146 if (*args == 0)
8147 return FALSE;
8148
8149 /* Handle characters that need to match exactly. */
8150 if (*args == '(' || *args == ')' || *args == ',')
8151 {
8152 if (match_char (&arg, *args))
8153 continue;
8154 return FALSE;
8155 }
8156 if (*args == '#')
8157 {
8158 ++args;
8159 if (arg.token->type == OT_DOUBLE_CHAR
8160 && arg.token->u.ch == *args)
8161 {
8162 ++arg.token;
8163 continue;
8164 }
8165 return FALSE;
8166 }
8167
8168 /* Handle special macro operands. Work out the properties of
8169 other operands. */
8170 arg.opnum += 1;
8171 switch (*args)
8172 {
8173 case '-':
8174 switch (args[1])
8175 {
8176 case 'A':
8177 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8178 break;
8179
8180 case 'B':
8181 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8182 break;
8183 }
8184 break;
8185
8186 case '+':
8187 switch (args[1])
8188 {
8189 case 'i':
8190 *offset_reloc = BFD_RELOC_MIPS_JMP;
8191 break;
8192
8193 case '\'':
8194 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8195 break;
8196
8197 case '\"':
8198 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8199 break;
8200 }
8201 break;
8202
8203 case 'I':
8204 if (!match_const_int (&arg, &imm_expr.X_add_number))
8205 return FALSE;
8206 imm_expr.X_op = O_constant;
8207 if (GPR_SIZE == 32)
8208 normalize_constant_expr (&imm_expr);
8209 continue;
8210
8211 case 'A':
8212 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8213 {
8214 /* Assume that the offset has been elided and that what
8215 we saw was a base register. The match will fail later
8216 if that assumption turns out to be wrong. */
8217 offset_expr.X_op = O_constant;
8218 offset_expr.X_add_number = 0;
8219 }
8220 else
8221 {
8222 if (!match_expression (&arg, &offset_expr, offset_reloc))
8223 return FALSE;
8224 normalize_address_expr (&offset_expr);
8225 }
8226 continue;
8227
8228 case 'F':
8229 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8230 8, TRUE))
8231 return FALSE;
8232 continue;
8233
8234 case 'L':
8235 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8236 8, FALSE))
8237 return FALSE;
8238 continue;
8239
8240 case 'f':
8241 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8242 4, TRUE))
8243 return FALSE;
8244 continue;
8245
8246 case 'l':
8247 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8248 4, FALSE))
8249 return FALSE;
8250 continue;
8251
8252 case 'p':
8253 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8254 break;
8255
8256 case 'a':
8257 *offset_reloc = BFD_RELOC_MIPS_JMP;
8258 break;
8259
8260 case 'm':
8261 gas_assert (mips_opts.micromips);
8262 c = args[1];
8263 switch (c)
8264 {
8265 case 'D':
8266 case 'E':
8267 if (!forced_insn_length)
8268 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8269 else if (c == 'D')
8270 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8271 else
8272 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8273 break;
8274 }
8275 break;
8276 }
8277
8278 operand = (mips_opts.micromips
8279 ? decode_micromips_operand (args)
8280 : decode_mips_operand (args));
8281 if (!operand)
8282 abort ();
8283
8284 /* Skip prefixes. */
8285 if (*args == '+' || *args == 'm' || *args == '-')
8286 args++;
8287
8288 if (mips_optional_operand_p (operand)
8289 && args[1] == ','
8290 && (arg.token[0].type != OT_REG
8291 || arg.token[1].type == OT_END))
8292 {
8293 /* Assume that the register has been elided and is the
8294 same as the first operand. */
8295 arg.token = tokens;
8296 arg.argnum = 1;
8297 }
8298
8299 if (!match_operand (&arg, operand))
8300 return FALSE;
8301 }
8302 }
8303
8304 /* Like match_insn, but for MIPS16. */
8305
8306 static bfd_boolean
8307 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8308 struct mips_operand_token *tokens)
8309 {
8310 const char *args;
8311 const struct mips_operand *operand;
8312 const struct mips_operand *ext_operand;
8313 bfd_boolean pcrel = FALSE;
8314 int required_insn_length;
8315 struct mips_arg_info arg;
8316 int relax_char;
8317
8318 if (forced_insn_length)
8319 required_insn_length = forced_insn_length;
8320 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8321 required_insn_length = 2;
8322 else
8323 required_insn_length = 0;
8324
8325 create_insn (insn, opcode);
8326 imm_expr.X_op = O_absent;
8327 offset_expr.X_op = O_absent;
8328 offset_reloc[0] = BFD_RELOC_UNUSED;
8329 offset_reloc[1] = BFD_RELOC_UNUSED;
8330 offset_reloc[2] = BFD_RELOC_UNUSED;
8331 relax_char = 0;
8332
8333 memset (&arg, 0, sizeof (arg));
8334 arg.insn = insn;
8335 arg.token = tokens;
8336 arg.argnum = 1;
8337 arg.last_regno = ILLEGAL_REG;
8338 arg.dest_regno = ILLEGAL_REG;
8339 relax_char = 0;
8340 for (args = opcode->args;; ++args)
8341 {
8342 int c;
8343
8344 if (arg.token->type == OT_END)
8345 {
8346 offsetT value;
8347
8348 /* Handle unary instructions in which only one operand is given.
8349 The source is then the same as the destination. */
8350 if (arg.opnum == 1 && *args == ',')
8351 {
8352 operand = decode_mips16_operand (args[1], FALSE);
8353 if (operand && mips_optional_operand_p (operand))
8354 {
8355 arg.token = tokens;
8356 arg.argnum = 1;
8357 continue;
8358 }
8359 }
8360
8361 /* Fail the match if there were too few operands. */
8362 if (*args)
8363 return FALSE;
8364
8365 /* Successful match. Stuff the immediate value in now, if
8366 we can. */
8367 clear_insn_error ();
8368 if (opcode->pinfo == INSN_MACRO)
8369 {
8370 gas_assert (relax_char == 0 || relax_char == 'p');
8371 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8372 }
8373 else if (relax_char
8374 && offset_expr.X_op == O_constant
8375 && !pcrel
8376 && calculate_reloc (*offset_reloc,
8377 offset_expr.X_add_number,
8378 &value))
8379 {
8380 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8381 required_insn_length, &insn->insn_opcode);
8382 offset_expr.X_op = O_absent;
8383 *offset_reloc = BFD_RELOC_UNUSED;
8384 }
8385 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8386 {
8387 if (required_insn_length == 2)
8388 set_insn_error (0, _("invalid unextended operand value"));
8389 else if (!mips_opcode_32bit_p (opcode))
8390 {
8391 forced_insn_length = 4;
8392 insn->insn_opcode |= MIPS16_EXTEND;
8393 }
8394 }
8395 else if (relax_char)
8396 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8397
8398 check_completed_insn (&arg);
8399 return TRUE;
8400 }
8401
8402 /* Fail the match if the line has too many operands. */
8403 if (*args == 0)
8404 return FALSE;
8405
8406 /* Handle characters that need to match exactly. */
8407 if (*args == '(' || *args == ')' || *args == ',')
8408 {
8409 if (match_char (&arg, *args))
8410 continue;
8411 return FALSE;
8412 }
8413
8414 arg.opnum += 1;
8415 c = *args;
8416 switch (c)
8417 {
8418 case 'p':
8419 case 'q':
8420 case 'A':
8421 case 'B':
8422 case 'E':
8423 case 'V':
8424 case 'u':
8425 relax_char = c;
8426 break;
8427
8428 case 'I':
8429 if (!match_const_int (&arg, &imm_expr.X_add_number))
8430 return FALSE;
8431 imm_expr.X_op = O_constant;
8432 if (GPR_SIZE == 32)
8433 normalize_constant_expr (&imm_expr);
8434 continue;
8435
8436 case 'a':
8437 case 'i':
8438 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8439 break;
8440 }
8441
8442 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8443 if (!operand)
8444 abort ();
8445
8446 if (operand->type == OP_PCREL)
8447 pcrel = TRUE;
8448 else
8449 {
8450 ext_operand = decode_mips16_operand (c, TRUE);
8451 if (operand != ext_operand)
8452 {
8453 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8454 {
8455 offset_expr.X_op = O_constant;
8456 offset_expr.X_add_number = 0;
8457 relax_char = c;
8458 continue;
8459 }
8460
8461 if (!match_expression (&arg, &offset_expr, offset_reloc))
8462 return FALSE;
8463
8464 /* '8' is used for SLTI(U) and has traditionally not
8465 been allowed to take relocation operators. */
8466 if (offset_reloc[0] != BFD_RELOC_UNUSED
8467 && (ext_operand->size != 16 || c == '8'))
8468 {
8469 match_not_constant (&arg);
8470 return FALSE;
8471 }
8472
8473 if (offset_expr.X_op == O_big)
8474 {
8475 match_out_of_range (&arg);
8476 return FALSE;
8477 }
8478
8479 relax_char = c;
8480 continue;
8481 }
8482 }
8483
8484 if (mips_optional_operand_p (operand)
8485 && args[1] == ','
8486 && (arg.token[0].type != OT_REG
8487 || arg.token[1].type == OT_END))
8488 {
8489 /* Assume that the register has been elided and is the
8490 same as the first operand. */
8491 arg.token = tokens;
8492 arg.argnum = 1;
8493 }
8494
8495 if (!match_operand (&arg, operand))
8496 return FALSE;
8497 }
8498 }
8499
8500 /* Record that the current instruction is invalid for the current ISA. */
8501
8502 static void
8503 match_invalid_for_isa (void)
8504 {
8505 set_insn_error_ss
8506 (0, _("opcode not supported on this processor: %s (%s)"),
8507 mips_cpu_info_from_arch (mips_opts.arch)->name,
8508 mips_cpu_info_from_isa (mips_opts.isa)->name);
8509 }
8510
8511 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8512 Return true if a definite match or failure was found, storing any match
8513 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8514 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8515 tried and failed to match under normal conditions and now want to try a
8516 more relaxed match. */
8517
8518 static bfd_boolean
8519 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8520 const struct mips_opcode *past, struct mips_operand_token *tokens,
8521 int opcode_extra, bfd_boolean lax_match)
8522 {
8523 const struct mips_opcode *opcode;
8524 const struct mips_opcode *invalid_delay_slot;
8525 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8526
8527 /* Search for a match, ignoring alternatives that don't satisfy the
8528 current ISA or forced_length. */
8529 invalid_delay_slot = 0;
8530 seen_valid_for_isa = FALSE;
8531 seen_valid_for_size = FALSE;
8532 opcode = first;
8533 do
8534 {
8535 gas_assert (strcmp (opcode->name, first->name) == 0);
8536 if (is_opcode_valid (opcode))
8537 {
8538 seen_valid_for_isa = TRUE;
8539 if (is_size_valid (opcode))
8540 {
8541 bfd_boolean delay_slot_ok;
8542
8543 seen_valid_for_size = TRUE;
8544 delay_slot_ok = is_delay_slot_valid (opcode);
8545 if (match_insn (insn, opcode, tokens, opcode_extra,
8546 lax_match, delay_slot_ok))
8547 {
8548 if (!delay_slot_ok)
8549 {
8550 if (!invalid_delay_slot)
8551 invalid_delay_slot = opcode;
8552 }
8553 else
8554 return TRUE;
8555 }
8556 }
8557 }
8558 ++opcode;
8559 }
8560 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8561
8562 /* If the only matches we found had the wrong length for the delay slot,
8563 pick the first such match. We'll issue an appropriate warning later. */
8564 if (invalid_delay_slot)
8565 {
8566 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8567 lax_match, TRUE))
8568 return TRUE;
8569 abort ();
8570 }
8571
8572 /* Handle the case where we didn't try to match an instruction because
8573 all the alternatives were incompatible with the current ISA. */
8574 if (!seen_valid_for_isa)
8575 {
8576 match_invalid_for_isa ();
8577 return TRUE;
8578 }
8579
8580 /* Handle the case where we didn't try to match an instruction because
8581 all the alternatives were of the wrong size. */
8582 if (!seen_valid_for_size)
8583 {
8584 if (mips_opts.insn32)
8585 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8586 else
8587 set_insn_error_i
8588 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8589 8 * forced_insn_length);
8590 return TRUE;
8591 }
8592
8593 return FALSE;
8594 }
8595
8596 /* Like match_insns, but for MIPS16. */
8597
8598 static bfd_boolean
8599 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8600 struct mips_operand_token *tokens)
8601 {
8602 const struct mips_opcode *opcode;
8603 bfd_boolean seen_valid_for_isa;
8604 bfd_boolean seen_valid_for_size;
8605
8606 /* Search for a match, ignoring alternatives that don't satisfy the
8607 current ISA. There are no separate entries for extended forms so
8608 we deal with forced_length later. */
8609 seen_valid_for_isa = FALSE;
8610 seen_valid_for_size = FALSE;
8611 opcode = first;
8612 do
8613 {
8614 gas_assert (strcmp (opcode->name, first->name) == 0);
8615 if (is_opcode_valid_16 (opcode))
8616 {
8617 seen_valid_for_isa = TRUE;
8618 if (is_size_valid_16 (opcode))
8619 {
8620 seen_valid_for_size = TRUE;
8621 if (match_mips16_insn (insn, opcode, tokens))
8622 return TRUE;
8623 }
8624 }
8625 ++opcode;
8626 }
8627 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8628 && strcmp (opcode->name, first->name) == 0);
8629
8630 /* Handle the case where we didn't try to match an instruction because
8631 all the alternatives were incompatible with the current ISA. */
8632 if (!seen_valid_for_isa)
8633 {
8634 match_invalid_for_isa ();
8635 return TRUE;
8636 }
8637
8638 /* Handle the case where we didn't try to match an instruction because
8639 all the alternatives were of the wrong size. */
8640 if (!seen_valid_for_size)
8641 {
8642 if (forced_insn_length == 2)
8643 set_insn_error
8644 (0, _("unrecognized unextended version of MIPS16 opcode"));
8645 else
8646 set_insn_error
8647 (0, _("unrecognized extended version of MIPS16 opcode"));
8648 return TRUE;
8649 }
8650
8651 return FALSE;
8652 }
8653
8654 /* Set up global variables for the start of a new macro. */
8655
8656 static void
8657 macro_start (void)
8658 {
8659 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8660 memset (&mips_macro_warning.first_insn_sizes, 0,
8661 sizeof (mips_macro_warning.first_insn_sizes));
8662 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8663 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8664 && delayed_branch_p (&history[0]));
8665 if (history[0].frag
8666 && history[0].frag->fr_type == rs_machine_dependent
8667 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8668 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8669 mips_macro_warning.delay_slot_length = 0;
8670 else
8671 switch (history[0].insn_mo->pinfo2
8672 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8673 {
8674 case INSN2_BRANCH_DELAY_32BIT:
8675 mips_macro_warning.delay_slot_length = 4;
8676 break;
8677 case INSN2_BRANCH_DELAY_16BIT:
8678 mips_macro_warning.delay_slot_length = 2;
8679 break;
8680 default:
8681 mips_macro_warning.delay_slot_length = 0;
8682 break;
8683 }
8684 mips_macro_warning.first_frag = NULL;
8685 }
8686
8687 /* Given that a macro is longer than one instruction or of the wrong size,
8688 return the appropriate warning for it. Return null if no warning is
8689 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8690 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8691 and RELAX_NOMACRO. */
8692
8693 static const char *
8694 macro_warning (relax_substateT subtype)
8695 {
8696 if (subtype & RELAX_DELAY_SLOT)
8697 return _("macro instruction expanded into multiple instructions"
8698 " in a branch delay slot");
8699 else if (subtype & RELAX_NOMACRO)
8700 return _("macro instruction expanded into multiple instructions");
8701 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8702 | RELAX_DELAY_SLOT_SIZE_SECOND))
8703 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8704 ? _("macro instruction expanded into a wrong size instruction"
8705 " in a 16-bit branch delay slot")
8706 : _("macro instruction expanded into a wrong size instruction"
8707 " in a 32-bit branch delay slot"));
8708 else
8709 return 0;
8710 }
8711
8712 /* Finish up a macro. Emit warnings as appropriate. */
8713
8714 static void
8715 macro_end (void)
8716 {
8717 /* Relaxation warning flags. */
8718 relax_substateT subtype = 0;
8719
8720 /* Check delay slot size requirements. */
8721 if (mips_macro_warning.delay_slot_length == 2)
8722 subtype |= RELAX_DELAY_SLOT_16BIT;
8723 if (mips_macro_warning.delay_slot_length != 0)
8724 {
8725 if (mips_macro_warning.delay_slot_length
8726 != mips_macro_warning.first_insn_sizes[0])
8727 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8728 if (mips_macro_warning.delay_slot_length
8729 != mips_macro_warning.first_insn_sizes[1])
8730 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8731 }
8732
8733 /* Check instruction count requirements. */
8734 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8735 {
8736 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8737 subtype |= RELAX_SECOND_LONGER;
8738 if (mips_opts.warn_about_macros)
8739 subtype |= RELAX_NOMACRO;
8740 if (mips_macro_warning.delay_slot_p)
8741 subtype |= RELAX_DELAY_SLOT;
8742 }
8743
8744 /* If both alternatives fail to fill a delay slot correctly,
8745 emit the warning now. */
8746 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8747 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8748 {
8749 relax_substateT s;
8750 const char *msg;
8751
8752 s = subtype & (RELAX_DELAY_SLOT_16BIT
8753 | RELAX_DELAY_SLOT_SIZE_FIRST
8754 | RELAX_DELAY_SLOT_SIZE_SECOND);
8755 msg = macro_warning (s);
8756 if (msg != NULL)
8757 as_warn ("%s", msg);
8758 subtype &= ~s;
8759 }
8760
8761 /* If both implementations are longer than 1 instruction, then emit the
8762 warning now. */
8763 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8764 {
8765 relax_substateT s;
8766 const char *msg;
8767
8768 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8769 msg = macro_warning (s);
8770 if (msg != NULL)
8771 as_warn ("%s", msg);
8772 subtype &= ~s;
8773 }
8774
8775 /* If any flags still set, then one implementation might need a warning
8776 and the other either will need one of a different kind or none at all.
8777 Pass any remaining flags over to relaxation. */
8778 if (mips_macro_warning.first_frag != NULL)
8779 mips_macro_warning.first_frag->fr_subtype |= subtype;
8780 }
8781
8782 /* Instruction operand formats used in macros that vary between
8783 standard MIPS and microMIPS code. */
8784
8785 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8786 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8787 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8788 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8789 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8790 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8791 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8792 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8793
8794 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8795 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8796 : cop12_fmt[mips_opts.micromips])
8797 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8798 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8799 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8800 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8801 : mem12_fmt[mips_opts.micromips])
8802 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8803 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8804 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8805
8806 /* Read a macro's relocation codes from *ARGS and store them in *R.
8807 The first argument in *ARGS will be either the code for a single
8808 relocation or -1 followed by the three codes that make up a
8809 composite relocation. */
8810
8811 static void
8812 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8813 {
8814 int i, next;
8815
8816 next = va_arg (*args, int);
8817 if (next >= 0)
8818 r[0] = (bfd_reloc_code_real_type) next;
8819 else
8820 {
8821 for (i = 0; i < 3; i++)
8822 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8823 /* This function is only used for 16-bit relocation fields.
8824 To make the macro code simpler, treat an unrelocated value
8825 in the same way as BFD_RELOC_LO16. */
8826 if (r[0] == BFD_RELOC_UNUSED)
8827 r[0] = BFD_RELOC_LO16;
8828 }
8829 }
8830
8831 /* Build an instruction created by a macro expansion. This is passed
8832 a pointer to the count of instructions created so far, an
8833 expression, the name of the instruction to build, an operand format
8834 string, and corresponding arguments. */
8835
8836 static void
8837 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8838 {
8839 const struct mips_opcode *mo = NULL;
8840 bfd_reloc_code_real_type r[3];
8841 const struct mips_opcode *amo;
8842 const struct mips_operand *operand;
8843 struct hash_control *hash;
8844 struct mips_cl_insn insn;
8845 va_list args;
8846 unsigned int uval;
8847
8848 va_start (args, fmt);
8849
8850 if (mips_opts.mips16)
8851 {
8852 mips16_macro_build (ep, name, fmt, &args);
8853 va_end (args);
8854 return;
8855 }
8856
8857 r[0] = BFD_RELOC_UNUSED;
8858 r[1] = BFD_RELOC_UNUSED;
8859 r[2] = BFD_RELOC_UNUSED;
8860 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8861 amo = (struct mips_opcode *) hash_find (hash, name);
8862 gas_assert (amo);
8863 gas_assert (strcmp (name, amo->name) == 0);
8864
8865 do
8866 {
8867 /* Search until we get a match for NAME. It is assumed here that
8868 macros will never generate MDMX, MIPS-3D, or MT instructions.
8869 We try to match an instruction that fulfills the branch delay
8870 slot instruction length requirement (if any) of the previous
8871 instruction. While doing this we record the first instruction
8872 seen that matches all the other conditions and use it anyway
8873 if the requirement cannot be met; we will issue an appropriate
8874 warning later on. */
8875 if (strcmp (fmt, amo->args) == 0
8876 && amo->pinfo != INSN_MACRO
8877 && is_opcode_valid (amo)
8878 && is_size_valid (amo))
8879 {
8880 if (is_delay_slot_valid (amo))
8881 {
8882 mo = amo;
8883 break;
8884 }
8885 else if (!mo)
8886 mo = amo;
8887 }
8888
8889 ++amo;
8890 gas_assert (amo->name);
8891 }
8892 while (strcmp (name, amo->name) == 0);
8893
8894 gas_assert (mo);
8895 create_insn (&insn, mo);
8896 for (; *fmt; ++fmt)
8897 {
8898 switch (*fmt)
8899 {
8900 case ',':
8901 case '(':
8902 case ')':
8903 case 'z':
8904 break;
8905
8906 case 'i':
8907 case 'j':
8908 macro_read_relocs (&args, r);
8909 gas_assert (*r == BFD_RELOC_GPREL16
8910 || *r == BFD_RELOC_MIPS_HIGHER
8911 || *r == BFD_RELOC_HI16_S
8912 || *r == BFD_RELOC_LO16
8913 || *r == BFD_RELOC_MIPS_GOT_OFST
8914 || (mips_opts.micromips
8915 && (*r == BFD_RELOC_16
8916 || *r == BFD_RELOC_MIPS_GOT16
8917 || *r == BFD_RELOC_MIPS_CALL16
8918 || *r == BFD_RELOC_MIPS_GOT_HI16
8919 || *r == BFD_RELOC_MIPS_GOT_LO16
8920 || *r == BFD_RELOC_MIPS_CALL_HI16
8921 || *r == BFD_RELOC_MIPS_CALL_LO16
8922 || *r == BFD_RELOC_MIPS_SUB
8923 || *r == BFD_RELOC_MIPS_GOT_PAGE
8924 || *r == BFD_RELOC_MIPS_HIGHEST
8925 || *r == BFD_RELOC_MIPS_GOT_DISP
8926 || *r == BFD_RELOC_MIPS_TLS_GD
8927 || *r == BFD_RELOC_MIPS_TLS_LDM
8928 || *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
8929 || *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
8930 || *r == BFD_RELOC_MIPS_TLS_GOTTPREL
8931 || *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
8932 || *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
8933 break;
8934
8935 case 'o':
8936 macro_read_relocs (&args, r);
8937 break;
8938
8939 case 'u':
8940 macro_read_relocs (&args, r);
8941 gas_assert (ep != NULL
8942 && (ep->X_op == O_constant
8943 || (ep->X_op == O_symbol
8944 && (*r == BFD_RELOC_MIPS_HIGHEST
8945 || *r == BFD_RELOC_HI16_S
8946 || *r == BFD_RELOC_HI16
8947 || *r == BFD_RELOC_GPREL16
8948 || *r == BFD_RELOC_MIPS_GOT_HI16
8949 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8950 break;
8951
8952 case 'p':
8953 gas_assert (ep != NULL);
8954
8955 /*
8956 * This allows macro() to pass an immediate expression for
8957 * creating short branches without creating a symbol.
8958 *
8959 * We don't allow branch relaxation for these branches, as
8960 * they should only appear in ".set nomacro" anyway.
8961 */
8962 if (ep->X_op == O_constant)
8963 {
8964 /* For microMIPS we always use relocations for branches.
8965 So we should not resolve immediate values. */
8966 gas_assert (!mips_opts.micromips);
8967
8968 if ((ep->X_add_number & 3) != 0)
8969 as_bad (_("branch to misaligned address (0x%lx)"),
8970 (unsigned long) ep->X_add_number);
8971 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8972 as_bad (_("branch address range overflow (0x%lx)"),
8973 (unsigned long) ep->X_add_number);
8974 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8975 ep = NULL;
8976 }
8977 else
8978 *r = BFD_RELOC_16_PCREL_S2;
8979 break;
8980
8981 case 'a':
8982 gas_assert (ep != NULL);
8983 *r = BFD_RELOC_MIPS_JMP;
8984 break;
8985
8986 default:
8987 operand = (mips_opts.micromips
8988 ? decode_micromips_operand (fmt)
8989 : decode_mips_operand (fmt));
8990 if (!operand)
8991 abort ();
8992
8993 uval = va_arg (args, int);
8994 if (operand->type == OP_CLO_CLZ_DEST)
8995 uval |= (uval << 5);
8996 insn_insert_operand (&insn, operand, uval);
8997
8998 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8999 ++fmt;
9000 break;
9001 }
9002 }
9003 va_end (args);
9004 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9005
9006 append_insn (&insn, ep, r, TRUE);
9007 }
9008
9009 static void
9010 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
9011 va_list *args)
9012 {
9013 struct mips_opcode *mo;
9014 struct mips_cl_insn insn;
9015 const struct mips_operand *operand;
9016 bfd_reloc_code_real_type r[3]
9017 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
9018
9019 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9020 gas_assert (mo);
9021 gas_assert (strcmp (name, mo->name) == 0);
9022
9023 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
9024 {
9025 ++mo;
9026 gas_assert (mo->name);
9027 gas_assert (strcmp (name, mo->name) == 0);
9028 }
9029
9030 create_insn (&insn, mo);
9031 for (; *fmt; ++fmt)
9032 {
9033 int c;
9034
9035 c = *fmt;
9036 switch (c)
9037 {
9038 case ',':
9039 case '(':
9040 case ')':
9041 break;
9042
9043 case '.':
9044 case 'S':
9045 case 'P':
9046 case 'R':
9047 break;
9048
9049 case '<':
9050 case '5':
9051 case 'F':
9052 case 'H':
9053 case 'W':
9054 case 'D':
9055 case 'j':
9056 case '8':
9057 case 'V':
9058 case 'C':
9059 case 'U':
9060 case 'k':
9061 case 'K':
9062 case 'p':
9063 case 'q':
9064 {
9065 offsetT value;
9066
9067 gas_assert (ep != NULL);
9068
9069 if (ep->X_op != O_constant)
9070 *r = (int) BFD_RELOC_UNUSED + c;
9071 else if (calculate_reloc (*r, ep->X_add_number, &value))
9072 {
9073 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
9074 ep = NULL;
9075 *r = BFD_RELOC_UNUSED;
9076 }
9077 }
9078 break;
9079
9080 default:
9081 operand = decode_mips16_operand (c, FALSE);
9082 if (!operand)
9083 abort ();
9084
9085 insn_insert_operand (&insn, operand, va_arg (*args, int));
9086 break;
9087 }
9088 }
9089
9090 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9091
9092 append_insn (&insn, ep, r, TRUE);
9093 }
9094
9095 /*
9096 * Generate a "jalr" instruction with a relocation hint to the called
9097 * function. This occurs in NewABI PIC code.
9098 */
9099 static void
9100 macro_build_jalr (expressionS *ep, int cprestore)
9101 {
9102 static const bfd_reloc_code_real_type jalr_relocs[2]
9103 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9104 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9105 const char *jalr;
9106 char *f = NULL;
9107
9108 if (MIPS_JALR_HINT_P (ep))
9109 {
9110 frag_grow (8);
9111 f = frag_more (0);
9112 }
9113 if (mips_opts.micromips)
9114 {
9115 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9116 ? "jalr" : "jalrs");
9117 if (MIPS_JALR_HINT_P (ep)
9118 || mips_opts.insn32
9119 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9120 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9121 else
9122 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9123 }
9124 else
9125 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
9126 if (MIPS_JALR_HINT_P (ep))
9127 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
9128 }
9129
9130 /*
9131 * Generate a "lui" instruction.
9132 */
9133 static void
9134 macro_build_lui (expressionS *ep, int regnum)
9135 {
9136 gas_assert (! mips_opts.mips16);
9137
9138 if (ep->X_op != O_constant)
9139 {
9140 gas_assert (ep->X_op == O_symbol);
9141 /* _gp_disp is a special case, used from s_cpload.
9142 __gnu_local_gp is used if mips_no_shared. */
9143 gas_assert (mips_pic == NO_PIC
9144 || (! HAVE_NEWABI
9145 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9146 || (! mips_in_shared
9147 && strcmp (S_GET_NAME (ep->X_add_symbol),
9148 "__gnu_local_gp") == 0));
9149 }
9150
9151 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
9152 }
9153
9154 /* Generate a sequence of instructions to do a load or store from a constant
9155 offset off of a base register (breg) into/from a target register (treg),
9156 using AT if necessary. */
9157 static void
9158 macro_build_ldst_constoffset (expressionS *ep, const char *op,
9159 int treg, int breg, int dbl)
9160 {
9161 gas_assert (ep->X_op == O_constant);
9162
9163 /* Sign-extending 32-bit constants makes their handling easier. */
9164 if (!dbl)
9165 normalize_constant_expr (ep);
9166
9167 /* Right now, this routine can only handle signed 32-bit constants. */
9168 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
9169 as_warn (_("operand overflow"));
9170
9171 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9172 {
9173 /* Signed 16-bit offset will fit in the op. Easy! */
9174 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
9175 }
9176 else
9177 {
9178 /* 32-bit offset, need multiple instructions and AT, like:
9179 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9180 addu $tempreg,$tempreg,$breg
9181 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9182 to handle the complete offset. */
9183 macro_build_lui (ep, AT);
9184 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9185 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
9186
9187 if (!mips_opts.at)
9188 as_bad (_("macro used $at after \".set noat\""));
9189 }
9190 }
9191
9192 /* set_at()
9193 * Generates code to set the $at register to true (one)
9194 * if reg is less than the immediate expression.
9195 */
9196 static void
9197 set_at (int reg, int unsignedp)
9198 {
9199 if (imm_expr.X_add_number >= -0x8000
9200 && imm_expr.X_add_number < 0x8000)
9201 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9202 AT, reg, BFD_RELOC_LO16);
9203 else
9204 {
9205 load_register (AT, &imm_expr, GPR_SIZE == 64);
9206 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
9207 }
9208 }
9209
9210 /* Count the leading zeroes by performing a binary chop. This is a
9211 bulky bit of source, but performance is a LOT better for the
9212 majority of values than a simple loop to count the bits:
9213 for (lcnt = 0; (lcnt < 32); lcnt++)
9214 if ((v) & (1 << (31 - lcnt)))
9215 break;
9216 However it is not code size friendly, and the gain will drop a bit
9217 on certain cached systems.
9218 */
9219 #define COUNT_TOP_ZEROES(v) \
9220 (((v) & ~0xffff) == 0 \
9221 ? ((v) & ~0xff) == 0 \
9222 ? ((v) & ~0xf) == 0 \
9223 ? ((v) & ~0x3) == 0 \
9224 ? ((v) & ~0x1) == 0 \
9225 ? !(v) \
9226 ? 32 \
9227 : 31 \
9228 : 30 \
9229 : ((v) & ~0x7) == 0 \
9230 ? 29 \
9231 : 28 \
9232 : ((v) & ~0x3f) == 0 \
9233 ? ((v) & ~0x1f) == 0 \
9234 ? 27 \
9235 : 26 \
9236 : ((v) & ~0x7f) == 0 \
9237 ? 25 \
9238 : 24 \
9239 : ((v) & ~0xfff) == 0 \
9240 ? ((v) & ~0x3ff) == 0 \
9241 ? ((v) & ~0x1ff) == 0 \
9242 ? 23 \
9243 : 22 \
9244 : ((v) & ~0x7ff) == 0 \
9245 ? 21 \
9246 : 20 \
9247 : ((v) & ~0x3fff) == 0 \
9248 ? ((v) & ~0x1fff) == 0 \
9249 ? 19 \
9250 : 18 \
9251 : ((v) & ~0x7fff) == 0 \
9252 ? 17 \
9253 : 16 \
9254 : ((v) & ~0xffffff) == 0 \
9255 ? ((v) & ~0xfffff) == 0 \
9256 ? ((v) & ~0x3ffff) == 0 \
9257 ? ((v) & ~0x1ffff) == 0 \
9258 ? 15 \
9259 : 14 \
9260 : ((v) & ~0x7ffff) == 0 \
9261 ? 13 \
9262 : 12 \
9263 : ((v) & ~0x3fffff) == 0 \
9264 ? ((v) & ~0x1fffff) == 0 \
9265 ? 11 \
9266 : 10 \
9267 : ((v) & ~0x7fffff) == 0 \
9268 ? 9 \
9269 : 8 \
9270 : ((v) & ~0xfffffff) == 0 \
9271 ? ((v) & ~0x3ffffff) == 0 \
9272 ? ((v) & ~0x1ffffff) == 0 \
9273 ? 7 \
9274 : 6 \
9275 : ((v) & ~0x7ffffff) == 0 \
9276 ? 5 \
9277 : 4 \
9278 : ((v) & ~0x3fffffff) == 0 \
9279 ? ((v) & ~0x1fffffff) == 0 \
9280 ? 3 \
9281 : 2 \
9282 : ((v) & ~0x7fffffff) == 0 \
9283 ? 1 \
9284 : 0)
9285
9286 /* load_register()
9287 * This routine generates the least number of instructions necessary to load
9288 * an absolute expression value into a register.
9289 */
9290 static void
9291 load_register (int reg, expressionS *ep, int dbl)
9292 {
9293 int freg;
9294 expressionS hi32, lo32;
9295
9296 if (ep->X_op != O_big)
9297 {
9298 gas_assert (ep->X_op == O_constant);
9299
9300 /* Sign-extending 32-bit constants makes their handling easier. */
9301 if (!dbl)
9302 normalize_constant_expr (ep);
9303
9304 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9305 {
9306 /* We can handle 16 bit signed values with an addiu to
9307 $zero. No need to ever use daddiu here, since $zero and
9308 the result are always correct in 32 bit mode. */
9309 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9310 return;
9311 }
9312 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9313 {
9314 /* We can handle 16 bit unsigned values with an ori to
9315 $zero. */
9316 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9317 return;
9318 }
9319 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9320 {
9321 /* 32 bit values require an lui. */
9322 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9323 if ((ep->X_add_number & 0xffff) != 0)
9324 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9325 return;
9326 }
9327 }
9328
9329 /* The value is larger than 32 bits. */
9330
9331 if (!dbl || GPR_SIZE == 32)
9332 {
9333 char value[32];
9334
9335 sprintf_vma (value, ep->X_add_number);
9336 as_bad (_("number (0x%s) larger than 32 bits"), value);
9337 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9338 return;
9339 }
9340
9341 if (ep->X_op != O_big)
9342 {
9343 hi32 = *ep;
9344 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9345 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9346 hi32.X_add_number &= 0xffffffff;
9347 lo32 = *ep;
9348 lo32.X_add_number &= 0xffffffff;
9349 }
9350 else
9351 {
9352 gas_assert (ep->X_add_number > 2);
9353 if (ep->X_add_number == 3)
9354 generic_bignum[3] = 0;
9355 else if (ep->X_add_number > 4)
9356 as_bad (_("number larger than 64 bits"));
9357 lo32.X_op = O_constant;
9358 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9359 hi32.X_op = O_constant;
9360 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9361 }
9362
9363 if (hi32.X_add_number == 0)
9364 freg = 0;
9365 else
9366 {
9367 int shift, bit;
9368 unsigned long hi, lo;
9369
9370 if (hi32.X_add_number == (offsetT) 0xffffffff)
9371 {
9372 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9373 {
9374 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9375 return;
9376 }
9377 if (lo32.X_add_number & 0x80000000)
9378 {
9379 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9380 if (lo32.X_add_number & 0xffff)
9381 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9382 return;
9383 }
9384 }
9385
9386 /* Check for 16bit shifted constant. We know that hi32 is
9387 non-zero, so start the mask on the first bit of the hi32
9388 value. */
9389 shift = 17;
9390 do
9391 {
9392 unsigned long himask, lomask;
9393
9394 if (shift < 32)
9395 {
9396 himask = 0xffff >> (32 - shift);
9397 lomask = (0xffff << shift) & 0xffffffff;
9398 }
9399 else
9400 {
9401 himask = 0xffff << (shift - 32);
9402 lomask = 0;
9403 }
9404 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9405 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9406 {
9407 expressionS tmp;
9408
9409 tmp.X_op = O_constant;
9410 if (shift < 32)
9411 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9412 | (lo32.X_add_number >> shift));
9413 else
9414 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9415 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9416 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9417 reg, reg, (shift >= 32) ? shift - 32 : shift);
9418 return;
9419 }
9420 ++shift;
9421 }
9422 while (shift <= (64 - 16));
9423
9424 /* Find the bit number of the lowest one bit, and store the
9425 shifted value in hi/lo. */
9426 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9427 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9428 if (lo != 0)
9429 {
9430 bit = 0;
9431 while ((lo & 1) == 0)
9432 {
9433 lo >>= 1;
9434 ++bit;
9435 }
9436 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9437 hi >>= bit;
9438 }
9439 else
9440 {
9441 bit = 32;
9442 while ((hi & 1) == 0)
9443 {
9444 hi >>= 1;
9445 ++bit;
9446 }
9447 lo = hi;
9448 hi = 0;
9449 }
9450
9451 /* Optimize if the shifted value is a (power of 2) - 1. */
9452 if ((hi == 0 && ((lo + 1) & lo) == 0)
9453 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9454 {
9455 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9456 if (shift != 0)
9457 {
9458 expressionS tmp;
9459
9460 /* This instruction will set the register to be all
9461 ones. */
9462 tmp.X_op = O_constant;
9463 tmp.X_add_number = (offsetT) -1;
9464 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9465 if (bit != 0)
9466 {
9467 bit += shift;
9468 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9469 reg, reg, (bit >= 32) ? bit - 32 : bit);
9470 }
9471 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9472 reg, reg, (shift >= 32) ? shift - 32 : shift);
9473 return;
9474 }
9475 }
9476
9477 /* Sign extend hi32 before calling load_register, because we can
9478 generally get better code when we load a sign extended value. */
9479 if ((hi32.X_add_number & 0x80000000) != 0)
9480 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9481 load_register (reg, &hi32, 0);
9482 freg = reg;
9483 }
9484 if ((lo32.X_add_number & 0xffff0000) == 0)
9485 {
9486 if (freg != 0)
9487 {
9488 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9489 freg = reg;
9490 }
9491 }
9492 else
9493 {
9494 expressionS mid16;
9495
9496 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9497 {
9498 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9499 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9500 return;
9501 }
9502
9503 if (freg != 0)
9504 {
9505 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9506 freg = reg;
9507 }
9508 mid16 = lo32;
9509 mid16.X_add_number >>= 16;
9510 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9511 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9512 freg = reg;
9513 }
9514 if ((lo32.X_add_number & 0xffff) != 0)
9515 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9516 }
9517
9518 static inline void
9519 load_delay_nop (void)
9520 {
9521 if (!gpr_interlocks)
9522 macro_build (NULL, "nop", "");
9523 }
9524
9525 /* Load an address into a register. */
9526
9527 static void
9528 load_address (int reg, expressionS *ep, int *used_at)
9529 {
9530 if (ep->X_op != O_constant
9531 && ep->X_op != O_symbol)
9532 {
9533 as_bad (_("expression too complex"));
9534 ep->X_op = O_constant;
9535 }
9536
9537 if (ep->X_op == O_constant)
9538 {
9539 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9540 return;
9541 }
9542
9543 if (mips_pic == NO_PIC)
9544 {
9545 /* If this is a reference to a GP relative symbol, we want
9546 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9547 Otherwise we want
9548 lui $reg,<sym> (BFD_RELOC_HI16_S)
9549 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9550 If we have an addend, we always use the latter form.
9551
9552 With 64bit address space and a usable $at we want
9553 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9554 lui $at,<sym> (BFD_RELOC_HI16_S)
9555 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9556 daddiu $at,<sym> (BFD_RELOC_LO16)
9557 dsll32 $reg,0
9558 daddu $reg,$reg,$at
9559
9560 If $at is already in use, we use a path which is suboptimal
9561 on superscalar processors.
9562 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9563 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9564 dsll $reg,16
9565 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9566 dsll $reg,16
9567 daddiu $reg,<sym> (BFD_RELOC_LO16)
9568
9569 For GP relative symbols in 64bit address space we can use
9570 the same sequence as in 32bit address space. */
9571 if (HAVE_64BIT_SYMBOLS)
9572 {
9573 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9574 && !nopic_need_relax (ep->X_add_symbol, 1))
9575 {
9576 relax_start (ep->X_add_symbol);
9577 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9578 mips_gp_register, BFD_RELOC_GPREL16);
9579 relax_switch ();
9580 }
9581
9582 if (*used_at == 0 && mips_opts.at)
9583 {
9584 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9585 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9586 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9587 BFD_RELOC_MIPS_HIGHER);
9588 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9589 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9590 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9591 *used_at = 1;
9592 }
9593 else
9594 {
9595 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9596 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9597 BFD_RELOC_MIPS_HIGHER);
9598 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9599 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9600 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9601 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9602 }
9603
9604 if (mips_relax.sequence)
9605 relax_end ();
9606 }
9607 else
9608 {
9609 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9610 && !nopic_need_relax (ep->X_add_symbol, 1))
9611 {
9612 relax_start (ep->X_add_symbol);
9613 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9614 mips_gp_register, BFD_RELOC_GPREL16);
9615 relax_switch ();
9616 }
9617 macro_build_lui (ep, reg);
9618 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9619 reg, reg, BFD_RELOC_LO16);
9620 if (mips_relax.sequence)
9621 relax_end ();
9622 }
9623 }
9624 else if (!mips_big_got)
9625 {
9626 expressionS ex;
9627
9628 /* If this is a reference to an external symbol, we want
9629 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9630 Otherwise we want
9631 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9632 nop
9633 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9634 If there is a constant, it must be added in after.
9635
9636 If we have NewABI, we want
9637 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9638 unless we're referencing a global symbol with a non-zero
9639 offset, in which case cst must be added separately. */
9640 if (HAVE_NEWABI)
9641 {
9642 if (ep->X_add_number)
9643 {
9644 ex.X_add_number = ep->X_add_number;
9645 ep->X_add_number = 0;
9646 relax_start (ep->X_add_symbol);
9647 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9648 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9649 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9650 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9651 ex.X_op = O_constant;
9652 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9653 reg, reg, BFD_RELOC_LO16);
9654 ep->X_add_number = ex.X_add_number;
9655 relax_switch ();
9656 }
9657 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9658 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9659 if (mips_relax.sequence)
9660 relax_end ();
9661 }
9662 else
9663 {
9664 ex.X_add_number = ep->X_add_number;
9665 ep->X_add_number = 0;
9666 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9667 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9668 load_delay_nop ();
9669 relax_start (ep->X_add_symbol);
9670 relax_switch ();
9671 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9672 BFD_RELOC_LO16);
9673 relax_end ();
9674
9675 if (ex.X_add_number != 0)
9676 {
9677 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9678 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9679 ex.X_op = O_constant;
9680 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9681 reg, reg, BFD_RELOC_LO16);
9682 }
9683 }
9684 }
9685 else if (mips_big_got)
9686 {
9687 expressionS ex;
9688
9689 /* This is the large GOT case. If this is a reference to an
9690 external symbol, we want
9691 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9692 addu $reg,$reg,$gp
9693 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9694
9695 Otherwise, for a reference to a local symbol in old ABI, we want
9696 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9697 nop
9698 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9699 If there is a constant, it must be added in after.
9700
9701 In the NewABI, for local symbols, with or without offsets, we want:
9702 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9703 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9704 */
9705 if (HAVE_NEWABI)
9706 {
9707 ex.X_add_number = ep->X_add_number;
9708 ep->X_add_number = 0;
9709 relax_start (ep->X_add_symbol);
9710 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9711 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9712 reg, reg, mips_gp_register);
9713 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9714 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9715 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9716 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9717 else if (ex.X_add_number)
9718 {
9719 ex.X_op = O_constant;
9720 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9721 BFD_RELOC_LO16);
9722 }
9723
9724 ep->X_add_number = ex.X_add_number;
9725 relax_switch ();
9726 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9727 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9728 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9729 BFD_RELOC_MIPS_GOT_OFST);
9730 relax_end ();
9731 }
9732 else
9733 {
9734 ex.X_add_number = ep->X_add_number;
9735 ep->X_add_number = 0;
9736 relax_start (ep->X_add_symbol);
9737 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9738 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9739 reg, reg, mips_gp_register);
9740 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9741 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9742 relax_switch ();
9743 if (reg_needs_delay (mips_gp_register))
9744 {
9745 /* We need a nop before loading from $gp. This special
9746 check is required because the lui which starts the main
9747 instruction stream does not refer to $gp, and so will not
9748 insert the nop which may be required. */
9749 macro_build (NULL, "nop", "");
9750 }
9751 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9752 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9753 load_delay_nop ();
9754 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9755 BFD_RELOC_LO16);
9756 relax_end ();
9757
9758 if (ex.X_add_number != 0)
9759 {
9760 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9761 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9762 ex.X_op = O_constant;
9763 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9764 BFD_RELOC_LO16);
9765 }
9766 }
9767 }
9768 else
9769 abort ();
9770
9771 if (!mips_opts.at && *used_at == 1)
9772 as_bad (_("macro used $at after \".set noat\""));
9773 }
9774
9775 /* Move the contents of register SOURCE into register DEST. */
9776
9777 static void
9778 move_register (int dest, int source)
9779 {
9780 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9781 instruction specifically requires a 32-bit one. */
9782 if (mips_opts.micromips
9783 && !mips_opts.insn32
9784 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9785 macro_build (NULL, "move", "mp,mj", dest, source);
9786 else
9787 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9788 }
9789
9790 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9791 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9792 The two alternatives are:
9793
9794 Global symbol Local symbol
9795 ------------- ------------
9796 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9797 ... ...
9798 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9799
9800 load_got_offset emits the first instruction and add_got_offset
9801 emits the second for a 16-bit offset or add_got_offset_hilo emits
9802 a sequence to add a 32-bit offset using a scratch register. */
9803
9804 static void
9805 load_got_offset (int dest, expressionS *local)
9806 {
9807 expressionS global;
9808
9809 global = *local;
9810 global.X_add_number = 0;
9811
9812 relax_start (local->X_add_symbol);
9813 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9814 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9815 relax_switch ();
9816 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9817 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9818 relax_end ();
9819 }
9820
9821 static void
9822 add_got_offset (int dest, expressionS *local)
9823 {
9824 expressionS global;
9825
9826 global.X_op = O_constant;
9827 global.X_op_symbol = NULL;
9828 global.X_add_symbol = NULL;
9829 global.X_add_number = local->X_add_number;
9830
9831 relax_start (local->X_add_symbol);
9832 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9833 dest, dest, BFD_RELOC_LO16);
9834 relax_switch ();
9835 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9836 relax_end ();
9837 }
9838
9839 static void
9840 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9841 {
9842 expressionS global;
9843 int hold_mips_optimize;
9844
9845 global.X_op = O_constant;
9846 global.X_op_symbol = NULL;
9847 global.X_add_symbol = NULL;
9848 global.X_add_number = local->X_add_number;
9849
9850 relax_start (local->X_add_symbol);
9851 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9852 relax_switch ();
9853 /* Set mips_optimize around the lui instruction to avoid
9854 inserting an unnecessary nop after the lw. */
9855 hold_mips_optimize = mips_optimize;
9856 mips_optimize = 2;
9857 macro_build_lui (&global, tmp);
9858 mips_optimize = hold_mips_optimize;
9859 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9860 relax_end ();
9861
9862 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9863 }
9864
9865 /* Emit a sequence of instructions to emulate a branch likely operation.
9866 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9867 is its complementing branch with the original condition negated.
9868 CALL is set if the original branch specified the link operation.
9869 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9870
9871 Code like this is produced in the noreorder mode:
9872
9873 BRNEG <args>, 1f
9874 nop
9875 b <sym>
9876 delay slot (executed only if branch taken)
9877 1:
9878
9879 or, if CALL is set:
9880
9881 BRNEG <args>, 1f
9882 nop
9883 bal <sym>
9884 delay slot (executed only if branch taken)
9885 1:
9886
9887 In the reorder mode the delay slot would be filled with a nop anyway,
9888 so code produced is simply:
9889
9890 BR <args>, <sym>
9891 nop
9892
9893 This function is used when producing code for the microMIPS ASE that
9894 does not implement branch likely instructions in hardware. */
9895
9896 static void
9897 macro_build_branch_likely (const char *br, const char *brneg,
9898 int call, expressionS *ep, const char *fmt,
9899 unsigned int sreg, unsigned int treg)
9900 {
9901 int noreorder = mips_opts.noreorder;
9902 expressionS expr1;
9903
9904 gas_assert (mips_opts.micromips);
9905 start_noreorder ();
9906 if (noreorder)
9907 {
9908 micromips_label_expr (&expr1);
9909 macro_build (&expr1, brneg, fmt, sreg, treg);
9910 macro_build (NULL, "nop", "");
9911 macro_build (ep, call ? "bal" : "b", "p");
9912
9913 /* Set to true so that append_insn adds a label. */
9914 emit_branch_likely_macro = TRUE;
9915 }
9916 else
9917 {
9918 macro_build (ep, br, fmt, sreg, treg);
9919 macro_build (NULL, "nop", "");
9920 }
9921 end_noreorder ();
9922 }
9923
9924 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9925 the condition code tested. EP specifies the branch target. */
9926
9927 static void
9928 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9929 {
9930 const int call = 0;
9931 const char *brneg;
9932 const char *br;
9933
9934 switch (type)
9935 {
9936 case M_BC1FL:
9937 br = "bc1f";
9938 brneg = "bc1t";
9939 break;
9940 case M_BC1TL:
9941 br = "bc1t";
9942 brneg = "bc1f";
9943 break;
9944 case M_BC2FL:
9945 br = "bc2f";
9946 brneg = "bc2t";
9947 break;
9948 case M_BC2TL:
9949 br = "bc2t";
9950 brneg = "bc2f";
9951 break;
9952 default:
9953 abort ();
9954 }
9955 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9956 }
9957
9958 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9959 the register tested. EP specifies the branch target. */
9960
9961 static void
9962 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9963 {
9964 const char *brneg = NULL;
9965 const char *br;
9966 int call = 0;
9967
9968 switch (type)
9969 {
9970 case M_BGEZ:
9971 br = "bgez";
9972 break;
9973 case M_BGEZL:
9974 br = mips_opts.micromips ? "bgez" : "bgezl";
9975 brneg = "bltz";
9976 break;
9977 case M_BGEZALL:
9978 gas_assert (mips_opts.micromips);
9979 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9980 brneg = "bltz";
9981 call = 1;
9982 break;
9983 case M_BGTZ:
9984 br = "bgtz";
9985 break;
9986 case M_BGTZL:
9987 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9988 brneg = "blez";
9989 break;
9990 case M_BLEZ:
9991 br = "blez";
9992 break;
9993 case M_BLEZL:
9994 br = mips_opts.micromips ? "blez" : "blezl";
9995 brneg = "bgtz";
9996 break;
9997 case M_BLTZ:
9998 br = "bltz";
9999 break;
10000 case M_BLTZL:
10001 br = mips_opts.micromips ? "bltz" : "bltzl";
10002 brneg = "bgez";
10003 break;
10004 case M_BLTZALL:
10005 gas_assert (mips_opts.micromips);
10006 br = mips_opts.insn32 ? "bltzal" : "bltzals";
10007 brneg = "bgez";
10008 call = 1;
10009 break;
10010 default:
10011 abort ();
10012 }
10013 if (mips_opts.micromips && brneg)
10014 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
10015 else
10016 macro_build (ep, br, "s,p", sreg);
10017 }
10018
10019 /* Emit a three-argument branch macro specified by TYPE, using SREG and
10020 TREG as the registers tested. EP specifies the branch target. */
10021
10022 static void
10023 macro_build_branch_rsrt (int type, expressionS *ep,
10024 unsigned int sreg, unsigned int treg)
10025 {
10026 const char *brneg = NULL;
10027 const int call = 0;
10028 const char *br;
10029
10030 switch (type)
10031 {
10032 case M_BEQ:
10033 case M_BEQ_I:
10034 br = "beq";
10035 break;
10036 case M_BEQL:
10037 case M_BEQL_I:
10038 br = mips_opts.micromips ? "beq" : "beql";
10039 brneg = "bne";
10040 break;
10041 case M_BNE:
10042 case M_BNE_I:
10043 br = "bne";
10044 break;
10045 case M_BNEL:
10046 case M_BNEL_I:
10047 br = mips_opts.micromips ? "bne" : "bnel";
10048 brneg = "beq";
10049 break;
10050 default:
10051 abort ();
10052 }
10053 if (mips_opts.micromips && brneg)
10054 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
10055 else
10056 macro_build (ep, br, "s,t,p", sreg, treg);
10057 }
10058
10059 /* Return the high part that should be loaded in order to make the low
10060 part of VALUE accessible using an offset of OFFBITS bits. */
10061
10062 static offsetT
10063 offset_high_part (offsetT value, unsigned int offbits)
10064 {
10065 offsetT bias;
10066 addressT low_mask;
10067
10068 if (offbits == 0)
10069 return value;
10070 bias = 1 << (offbits - 1);
10071 low_mask = bias * 2 - 1;
10072 return (value + bias) & ~low_mask;
10073 }
10074
10075 /* Return true if the value stored in offset_expr and offset_reloc
10076 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10077 amount that the caller wants to add without inducing overflow
10078 and ALIGN is the known alignment of the value in bytes. */
10079
10080 static bfd_boolean
10081 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
10082 {
10083 if (offbits == 16)
10084 {
10085 /* Accept any relocation operator if overflow isn't a concern. */
10086 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
10087 return TRUE;
10088
10089 /* These relocations are guaranteed not to overflow in correct links. */
10090 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
10091 || gprel16_reloc_p (*offset_reloc))
10092 return TRUE;
10093 }
10094 if (offset_expr.X_op == O_constant
10095 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10096 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
10097 return TRUE;
10098 return FALSE;
10099 }
10100
10101 /*
10102 * Build macros
10103 * This routine implements the seemingly endless macro or synthesized
10104 * instructions and addressing modes in the mips assembly language. Many
10105 * of these macros are simple and are similar to each other. These could
10106 * probably be handled by some kind of table or grammar approach instead of
10107 * this verbose method. Others are not simple macros but are more like
10108 * optimizing code generation.
10109 * One interesting optimization is when several store macros appear
10110 * consecutively that would load AT with the upper half of the same address.
10111 * The ensuing load upper instructions are omitted. This implies some kind
10112 * of global optimization. We currently only optimize within a single macro.
10113 * For many of the load and store macros if the address is specified as a
10114 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10115 * first load register 'at' with zero and use it as the base register. The
10116 * mips assembler simply uses register $zero. Just one tiny optimization
10117 * we're missing.
10118 */
10119 static void
10120 macro (struct mips_cl_insn *ip, char *str)
10121 {
10122 const struct mips_operand_array *operands;
10123 unsigned int breg, i;
10124 unsigned int tempreg;
10125 int mask;
10126 int used_at = 0;
10127 expressionS label_expr;
10128 expressionS expr1;
10129 expressionS *ep;
10130 const char *s;
10131 const char *s2;
10132 const char *fmt;
10133 int likely = 0;
10134 int coproc = 0;
10135 int offbits = 16;
10136 int call = 0;
10137 int jals = 0;
10138 int dbl = 0;
10139 int imm = 0;
10140 int ust = 0;
10141 int lp = 0;
10142 bfd_boolean large_offset;
10143 int off;
10144 int hold_mips_optimize;
10145 unsigned int align;
10146 unsigned int op[MAX_OPERANDS];
10147
10148 gas_assert (! mips_opts.mips16);
10149
10150 operands = insn_operands (ip);
10151 for (i = 0; i < MAX_OPERANDS; i++)
10152 if (operands->operand[i])
10153 op[i] = insn_extract_operand (ip, operands->operand[i]);
10154 else
10155 op[i] = -1;
10156
10157 mask = ip->insn_mo->mask;
10158
10159 label_expr.X_op = O_constant;
10160 label_expr.X_op_symbol = NULL;
10161 label_expr.X_add_symbol = NULL;
10162 label_expr.X_add_number = 0;
10163
10164 expr1.X_op = O_constant;
10165 expr1.X_op_symbol = NULL;
10166 expr1.X_add_symbol = NULL;
10167 expr1.X_add_number = 1;
10168 align = 1;
10169
10170 switch (mask)
10171 {
10172 case M_DABS:
10173 dbl = 1;
10174 /* Fall through. */
10175 case M_ABS:
10176 /* bgez $a0,1f
10177 move v0,$a0
10178 sub v0,$zero,$a0
10179 1:
10180 */
10181
10182 start_noreorder ();
10183
10184 if (mips_opts.micromips)
10185 micromips_label_expr (&label_expr);
10186 else
10187 label_expr.X_add_number = 8;
10188 macro_build (&label_expr, "bgez", "s,p", op[1]);
10189 if (op[0] == op[1])
10190 macro_build (NULL, "nop", "");
10191 else
10192 move_register (op[0], op[1]);
10193 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
10194 if (mips_opts.micromips)
10195 micromips_add_label ();
10196
10197 end_noreorder ();
10198 break;
10199
10200 case M_ADD_I:
10201 s = "addi";
10202 s2 = "add";
10203 goto do_addi;
10204 case M_ADDU_I:
10205 s = "addiu";
10206 s2 = "addu";
10207 goto do_addi;
10208 case M_DADD_I:
10209 dbl = 1;
10210 s = "daddi";
10211 s2 = "dadd";
10212 if (!mips_opts.micromips)
10213 goto do_addi;
10214 if (imm_expr.X_add_number >= -0x200
10215 && imm_expr.X_add_number < 0x200)
10216 {
10217 macro_build (NULL, s, "t,r,.", op[0], op[1],
10218 (int) imm_expr.X_add_number);
10219 break;
10220 }
10221 goto do_addi_i;
10222 case M_DADDU_I:
10223 dbl = 1;
10224 s = "daddiu";
10225 s2 = "daddu";
10226 do_addi:
10227 if (imm_expr.X_add_number >= -0x8000
10228 && imm_expr.X_add_number < 0x8000)
10229 {
10230 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10231 break;
10232 }
10233 do_addi_i:
10234 used_at = 1;
10235 load_register (AT, &imm_expr, dbl);
10236 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10237 break;
10238
10239 case M_AND_I:
10240 s = "andi";
10241 s2 = "and";
10242 goto do_bit;
10243 case M_OR_I:
10244 s = "ori";
10245 s2 = "or";
10246 goto do_bit;
10247 case M_NOR_I:
10248 s = "";
10249 s2 = "nor";
10250 goto do_bit;
10251 case M_XOR_I:
10252 s = "xori";
10253 s2 = "xor";
10254 do_bit:
10255 if (imm_expr.X_add_number >= 0
10256 && imm_expr.X_add_number < 0x10000)
10257 {
10258 if (mask != M_NOR_I)
10259 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10260 else
10261 {
10262 macro_build (&imm_expr, "ori", "t,r,i",
10263 op[0], op[1], BFD_RELOC_LO16);
10264 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10265 }
10266 break;
10267 }
10268
10269 used_at = 1;
10270 load_register (AT, &imm_expr, GPR_SIZE == 64);
10271 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10272 break;
10273
10274 case M_BALIGN:
10275 switch (imm_expr.X_add_number)
10276 {
10277 case 0:
10278 macro_build (NULL, "nop", "");
10279 break;
10280 case 2:
10281 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10282 break;
10283 case 1:
10284 case 3:
10285 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10286 (int) imm_expr.X_add_number);
10287 break;
10288 default:
10289 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10290 (unsigned long) imm_expr.X_add_number);
10291 break;
10292 }
10293 break;
10294
10295 case M_BC1FL:
10296 case M_BC1TL:
10297 case M_BC2FL:
10298 case M_BC2TL:
10299 gas_assert (mips_opts.micromips);
10300 macro_build_branch_ccl (mask, &offset_expr,
10301 EXTRACT_OPERAND (1, BCC, *ip));
10302 break;
10303
10304 case M_BEQ_I:
10305 case M_BEQL_I:
10306 case M_BNE_I:
10307 case M_BNEL_I:
10308 if (imm_expr.X_add_number == 0)
10309 op[1] = 0;
10310 else
10311 {
10312 op[1] = AT;
10313 used_at = 1;
10314 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10315 }
10316 /* Fall through. */
10317 case M_BEQL:
10318 case M_BNEL:
10319 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10320 break;
10321
10322 case M_BGEL:
10323 likely = 1;
10324 /* Fall through. */
10325 case M_BGE:
10326 if (op[1] == 0)
10327 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10328 else if (op[0] == 0)
10329 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10330 else
10331 {
10332 used_at = 1;
10333 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10334 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10335 &offset_expr, AT, ZERO);
10336 }
10337 break;
10338
10339 case M_BGEZL:
10340 case M_BGEZALL:
10341 case M_BGTZL:
10342 case M_BLEZL:
10343 case M_BLTZL:
10344 case M_BLTZALL:
10345 macro_build_branch_rs (mask, &offset_expr, op[0]);
10346 break;
10347
10348 case M_BGTL_I:
10349 likely = 1;
10350 /* Fall through. */
10351 case M_BGT_I:
10352 /* Check for > max integer. */
10353 if (imm_expr.X_add_number >= GPR_SMAX)
10354 {
10355 do_false:
10356 /* Result is always false. */
10357 if (! likely)
10358 macro_build (NULL, "nop", "");
10359 else
10360 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10361 break;
10362 }
10363 ++imm_expr.X_add_number;
10364 /* FALLTHROUGH */
10365 case M_BGE_I:
10366 case M_BGEL_I:
10367 if (mask == M_BGEL_I)
10368 likely = 1;
10369 if (imm_expr.X_add_number == 0)
10370 {
10371 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10372 &offset_expr, op[0]);
10373 break;
10374 }
10375 if (imm_expr.X_add_number == 1)
10376 {
10377 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10378 &offset_expr, op[0]);
10379 break;
10380 }
10381 if (imm_expr.X_add_number <= GPR_SMIN)
10382 {
10383 do_true:
10384 /* result is always true */
10385 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10386 macro_build (&offset_expr, "b", "p");
10387 break;
10388 }
10389 used_at = 1;
10390 set_at (op[0], 0);
10391 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10392 &offset_expr, AT, ZERO);
10393 break;
10394
10395 case M_BGEUL:
10396 likely = 1;
10397 /* Fall through. */
10398 case M_BGEU:
10399 if (op[1] == 0)
10400 goto do_true;
10401 else if (op[0] == 0)
10402 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10403 &offset_expr, ZERO, op[1]);
10404 else
10405 {
10406 used_at = 1;
10407 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10408 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10409 &offset_expr, AT, ZERO);
10410 }
10411 break;
10412
10413 case M_BGTUL_I:
10414 likely = 1;
10415 /* Fall through. */
10416 case M_BGTU_I:
10417 if (op[0] == 0
10418 || (GPR_SIZE == 32
10419 && imm_expr.X_add_number == -1))
10420 goto do_false;
10421 ++imm_expr.X_add_number;
10422 /* FALLTHROUGH */
10423 case M_BGEU_I:
10424 case M_BGEUL_I:
10425 if (mask == M_BGEUL_I)
10426 likely = 1;
10427 if (imm_expr.X_add_number == 0)
10428 goto do_true;
10429 else if (imm_expr.X_add_number == 1)
10430 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10431 &offset_expr, op[0], ZERO);
10432 else
10433 {
10434 used_at = 1;
10435 set_at (op[0], 1);
10436 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10437 &offset_expr, AT, ZERO);
10438 }
10439 break;
10440
10441 case M_BGTL:
10442 likely = 1;
10443 /* Fall through. */
10444 case M_BGT:
10445 if (op[1] == 0)
10446 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10447 else if (op[0] == 0)
10448 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10449 else
10450 {
10451 used_at = 1;
10452 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10453 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10454 &offset_expr, AT, ZERO);
10455 }
10456 break;
10457
10458 case M_BGTUL:
10459 likely = 1;
10460 /* Fall through. */
10461 case M_BGTU:
10462 if (op[1] == 0)
10463 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10464 &offset_expr, op[0], ZERO);
10465 else if (op[0] == 0)
10466 goto do_false;
10467 else
10468 {
10469 used_at = 1;
10470 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10471 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10472 &offset_expr, AT, ZERO);
10473 }
10474 break;
10475
10476 case M_BLEL:
10477 likely = 1;
10478 /* Fall through. */
10479 case M_BLE:
10480 if (op[1] == 0)
10481 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10482 else if (op[0] == 0)
10483 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10484 else
10485 {
10486 used_at = 1;
10487 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10488 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10489 &offset_expr, AT, ZERO);
10490 }
10491 break;
10492
10493 case M_BLEL_I:
10494 likely = 1;
10495 /* Fall through. */
10496 case M_BLE_I:
10497 if (imm_expr.X_add_number >= GPR_SMAX)
10498 goto do_true;
10499 ++imm_expr.X_add_number;
10500 /* FALLTHROUGH */
10501 case M_BLT_I:
10502 case M_BLTL_I:
10503 if (mask == M_BLTL_I)
10504 likely = 1;
10505 if (imm_expr.X_add_number == 0)
10506 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10507 else if (imm_expr.X_add_number == 1)
10508 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10509 else
10510 {
10511 used_at = 1;
10512 set_at (op[0], 0);
10513 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10514 &offset_expr, AT, ZERO);
10515 }
10516 break;
10517
10518 case M_BLEUL:
10519 likely = 1;
10520 /* Fall through. */
10521 case M_BLEU:
10522 if (op[1] == 0)
10523 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10524 &offset_expr, op[0], ZERO);
10525 else if (op[0] == 0)
10526 goto do_true;
10527 else
10528 {
10529 used_at = 1;
10530 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10531 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10532 &offset_expr, AT, ZERO);
10533 }
10534 break;
10535
10536 case M_BLEUL_I:
10537 likely = 1;
10538 /* Fall through. */
10539 case M_BLEU_I:
10540 if (op[0] == 0
10541 || (GPR_SIZE == 32
10542 && imm_expr.X_add_number == -1))
10543 goto do_true;
10544 ++imm_expr.X_add_number;
10545 /* FALLTHROUGH */
10546 case M_BLTU_I:
10547 case M_BLTUL_I:
10548 if (mask == M_BLTUL_I)
10549 likely = 1;
10550 if (imm_expr.X_add_number == 0)
10551 goto do_false;
10552 else if (imm_expr.X_add_number == 1)
10553 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10554 &offset_expr, op[0], ZERO);
10555 else
10556 {
10557 used_at = 1;
10558 set_at (op[0], 1);
10559 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10560 &offset_expr, AT, ZERO);
10561 }
10562 break;
10563
10564 case M_BLTL:
10565 likely = 1;
10566 /* Fall through. */
10567 case M_BLT:
10568 if (op[1] == 0)
10569 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10570 else if (op[0] == 0)
10571 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10572 else
10573 {
10574 used_at = 1;
10575 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10576 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10577 &offset_expr, AT, ZERO);
10578 }
10579 break;
10580
10581 case M_BLTUL:
10582 likely = 1;
10583 /* Fall through. */
10584 case M_BLTU:
10585 if (op[1] == 0)
10586 goto do_false;
10587 else if (op[0] == 0)
10588 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10589 &offset_expr, ZERO, op[1]);
10590 else
10591 {
10592 used_at = 1;
10593 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10594 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10595 &offset_expr, AT, ZERO);
10596 }
10597 break;
10598
10599 case M_DDIV_3:
10600 dbl = 1;
10601 /* Fall through. */
10602 case M_DIV_3:
10603 s = "mflo";
10604 goto do_div3;
10605 case M_DREM_3:
10606 dbl = 1;
10607 /* Fall through. */
10608 case M_REM_3:
10609 s = "mfhi";
10610 do_div3:
10611 if (op[2] == 0)
10612 {
10613 as_warn (_("divide by zero"));
10614 if (mips_trap)
10615 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10616 else
10617 macro_build (NULL, "break", BRK_FMT, 7);
10618 break;
10619 }
10620
10621 start_noreorder ();
10622 if (mips_trap)
10623 {
10624 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10625 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10626 }
10627 else
10628 {
10629 if (mips_opts.micromips)
10630 micromips_label_expr (&label_expr);
10631 else
10632 label_expr.X_add_number = 8;
10633 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10634 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10635 macro_build (NULL, "break", BRK_FMT, 7);
10636 if (mips_opts.micromips)
10637 micromips_add_label ();
10638 }
10639 expr1.X_add_number = -1;
10640 used_at = 1;
10641 load_register (AT, &expr1, dbl);
10642 if (mips_opts.micromips)
10643 micromips_label_expr (&label_expr);
10644 else
10645 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10646 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10647 if (dbl)
10648 {
10649 expr1.X_add_number = 1;
10650 load_register (AT, &expr1, dbl);
10651 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10652 }
10653 else
10654 {
10655 expr1.X_add_number = 0x80000000;
10656 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10657 }
10658 if (mips_trap)
10659 {
10660 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10661 /* We want to close the noreorder block as soon as possible, so
10662 that later insns are available for delay slot filling. */
10663 end_noreorder ();
10664 }
10665 else
10666 {
10667 if (mips_opts.micromips)
10668 micromips_label_expr (&label_expr);
10669 else
10670 label_expr.X_add_number = 8;
10671 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10672 macro_build (NULL, "nop", "");
10673
10674 /* We want to close the noreorder block as soon as possible, so
10675 that later insns are available for delay slot filling. */
10676 end_noreorder ();
10677
10678 macro_build (NULL, "break", BRK_FMT, 6);
10679 }
10680 if (mips_opts.micromips)
10681 micromips_add_label ();
10682 macro_build (NULL, s, MFHL_FMT, op[0]);
10683 break;
10684
10685 case M_DIV_3I:
10686 s = "div";
10687 s2 = "mflo";
10688 goto do_divi;
10689 case M_DIVU_3I:
10690 s = "divu";
10691 s2 = "mflo";
10692 goto do_divi;
10693 case M_REM_3I:
10694 s = "div";
10695 s2 = "mfhi";
10696 goto do_divi;
10697 case M_REMU_3I:
10698 s = "divu";
10699 s2 = "mfhi";
10700 goto do_divi;
10701 case M_DDIV_3I:
10702 dbl = 1;
10703 s = "ddiv";
10704 s2 = "mflo";
10705 goto do_divi;
10706 case M_DDIVU_3I:
10707 dbl = 1;
10708 s = "ddivu";
10709 s2 = "mflo";
10710 goto do_divi;
10711 case M_DREM_3I:
10712 dbl = 1;
10713 s = "ddiv";
10714 s2 = "mfhi";
10715 goto do_divi;
10716 case M_DREMU_3I:
10717 dbl = 1;
10718 s = "ddivu";
10719 s2 = "mfhi";
10720 do_divi:
10721 if (imm_expr.X_add_number == 0)
10722 {
10723 as_warn (_("divide by zero"));
10724 if (mips_trap)
10725 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10726 else
10727 macro_build (NULL, "break", BRK_FMT, 7);
10728 break;
10729 }
10730 if (imm_expr.X_add_number == 1)
10731 {
10732 if (strcmp (s2, "mflo") == 0)
10733 move_register (op[0], op[1]);
10734 else
10735 move_register (op[0], ZERO);
10736 break;
10737 }
10738 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10739 {
10740 if (strcmp (s2, "mflo") == 0)
10741 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10742 else
10743 move_register (op[0], ZERO);
10744 break;
10745 }
10746
10747 used_at = 1;
10748 load_register (AT, &imm_expr, dbl);
10749 macro_build (NULL, s, "z,s,t", op[1], AT);
10750 macro_build (NULL, s2, MFHL_FMT, op[0]);
10751 break;
10752
10753 case M_DIVU_3:
10754 s = "divu";
10755 s2 = "mflo";
10756 goto do_divu3;
10757 case M_REMU_3:
10758 s = "divu";
10759 s2 = "mfhi";
10760 goto do_divu3;
10761 case M_DDIVU_3:
10762 s = "ddivu";
10763 s2 = "mflo";
10764 goto do_divu3;
10765 case M_DREMU_3:
10766 s = "ddivu";
10767 s2 = "mfhi";
10768 do_divu3:
10769 start_noreorder ();
10770 if (mips_trap)
10771 {
10772 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10773 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10774 /* We want to close the noreorder block as soon as possible, so
10775 that later insns are available for delay slot filling. */
10776 end_noreorder ();
10777 }
10778 else
10779 {
10780 if (mips_opts.micromips)
10781 micromips_label_expr (&label_expr);
10782 else
10783 label_expr.X_add_number = 8;
10784 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10785 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10786
10787 /* We want to close the noreorder block as soon as possible, so
10788 that later insns are available for delay slot filling. */
10789 end_noreorder ();
10790 macro_build (NULL, "break", BRK_FMT, 7);
10791 if (mips_opts.micromips)
10792 micromips_add_label ();
10793 }
10794 macro_build (NULL, s2, MFHL_FMT, op[0]);
10795 break;
10796
10797 case M_DLCA_AB:
10798 dbl = 1;
10799 /* Fall through. */
10800 case M_LCA_AB:
10801 call = 1;
10802 goto do_la;
10803 case M_DLA_AB:
10804 dbl = 1;
10805 /* Fall through. */
10806 case M_LA_AB:
10807 do_la:
10808 /* Load the address of a symbol into a register. If breg is not
10809 zero, we then add a base register to it. */
10810
10811 breg = op[2];
10812 if (dbl && GPR_SIZE == 32)
10813 as_warn (_("dla used to load 32-bit register; recommend using la "
10814 "instead"));
10815
10816 if (!dbl && HAVE_64BIT_OBJECTS)
10817 as_warn (_("la used to load 64-bit address; recommend using dla "
10818 "instead"));
10819
10820 if (small_offset_p (0, align, 16))
10821 {
10822 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10823 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10824 break;
10825 }
10826
10827 if (mips_opts.at && (op[0] == breg))
10828 {
10829 tempreg = AT;
10830 used_at = 1;
10831 }
10832 else
10833 tempreg = op[0];
10834
10835 if (offset_expr.X_op != O_symbol
10836 && offset_expr.X_op != O_constant)
10837 {
10838 as_bad (_("expression too complex"));
10839 offset_expr.X_op = O_constant;
10840 }
10841
10842 if (offset_expr.X_op == O_constant)
10843 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10844 else if (mips_pic == NO_PIC)
10845 {
10846 /* If this is a reference to a GP relative symbol, we want
10847 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10848 Otherwise we want
10849 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10850 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10851 If we have a constant, we need two instructions anyhow,
10852 so we may as well always use the latter form.
10853
10854 With 64bit address space and a usable $at we want
10855 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10856 lui $at,<sym> (BFD_RELOC_HI16_S)
10857 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10858 daddiu $at,<sym> (BFD_RELOC_LO16)
10859 dsll32 $tempreg,0
10860 daddu $tempreg,$tempreg,$at
10861
10862 If $at is already in use, we use a path which is suboptimal
10863 on superscalar processors.
10864 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10865 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10866 dsll $tempreg,16
10867 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10868 dsll $tempreg,16
10869 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10870
10871 For GP relative symbols in 64bit address space we can use
10872 the same sequence as in 32bit address space. */
10873 if (HAVE_64BIT_SYMBOLS)
10874 {
10875 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10876 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10877 {
10878 relax_start (offset_expr.X_add_symbol);
10879 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10880 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10881 relax_switch ();
10882 }
10883
10884 if (used_at == 0 && mips_opts.at)
10885 {
10886 macro_build (&offset_expr, "lui", LUI_FMT,
10887 tempreg, BFD_RELOC_MIPS_HIGHEST);
10888 macro_build (&offset_expr, "lui", LUI_FMT,
10889 AT, BFD_RELOC_HI16_S);
10890 macro_build (&offset_expr, "daddiu", "t,r,j",
10891 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10892 macro_build (&offset_expr, "daddiu", "t,r,j",
10893 AT, AT, BFD_RELOC_LO16);
10894 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10895 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10896 used_at = 1;
10897 }
10898 else
10899 {
10900 macro_build (&offset_expr, "lui", LUI_FMT,
10901 tempreg, BFD_RELOC_MIPS_HIGHEST);
10902 macro_build (&offset_expr, "daddiu", "t,r,j",
10903 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10904 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10905 macro_build (&offset_expr, "daddiu", "t,r,j",
10906 tempreg, tempreg, BFD_RELOC_HI16_S);
10907 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10908 macro_build (&offset_expr, "daddiu", "t,r,j",
10909 tempreg, tempreg, BFD_RELOC_LO16);
10910 }
10911
10912 if (mips_relax.sequence)
10913 relax_end ();
10914 }
10915 else
10916 {
10917 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10918 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10919 {
10920 relax_start (offset_expr.X_add_symbol);
10921 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10922 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10923 relax_switch ();
10924 }
10925 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10926 as_bad (_("offset too large"));
10927 macro_build_lui (&offset_expr, tempreg);
10928 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10929 tempreg, tempreg, BFD_RELOC_LO16);
10930 if (mips_relax.sequence)
10931 relax_end ();
10932 }
10933 }
10934 else if (!mips_big_got && !HAVE_NEWABI)
10935 {
10936 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10937
10938 /* If this is a reference to an external symbol, and there
10939 is no constant, we want
10940 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10941 or for lca or if tempreg is PIC_CALL_REG
10942 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10943 For a local symbol, we want
10944 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10945 nop
10946 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10947
10948 If we have a small constant, and this is a reference to
10949 an external symbol, we want
10950 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10951 nop
10952 addiu $tempreg,$tempreg,<constant>
10953 For a local symbol, we want the same instruction
10954 sequence, but we output a BFD_RELOC_LO16 reloc on the
10955 addiu instruction.
10956
10957 If we have a large constant, and this is a reference to
10958 an external symbol, we want
10959 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10960 lui $at,<hiconstant>
10961 addiu $at,$at,<loconstant>
10962 addu $tempreg,$tempreg,$at
10963 For a local symbol, we want the same instruction
10964 sequence, but we output a BFD_RELOC_LO16 reloc on the
10965 addiu instruction.
10966 */
10967
10968 if (offset_expr.X_add_number == 0)
10969 {
10970 if (mips_pic == SVR4_PIC
10971 && breg == 0
10972 && (call || tempreg == PIC_CALL_REG))
10973 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10974
10975 relax_start (offset_expr.X_add_symbol);
10976 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10977 lw_reloc_type, mips_gp_register);
10978 if (breg != 0)
10979 {
10980 /* We're going to put in an addu instruction using
10981 tempreg, so we may as well insert the nop right
10982 now. */
10983 load_delay_nop ();
10984 }
10985 relax_switch ();
10986 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10987 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10988 load_delay_nop ();
10989 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10990 tempreg, tempreg, BFD_RELOC_LO16);
10991 relax_end ();
10992 /* FIXME: If breg == 0, and the next instruction uses
10993 $tempreg, then if this variant case is used an extra
10994 nop will be generated. */
10995 }
10996 else if (offset_expr.X_add_number >= -0x8000
10997 && offset_expr.X_add_number < 0x8000)
10998 {
10999 load_got_offset (tempreg, &offset_expr);
11000 load_delay_nop ();
11001 add_got_offset (tempreg, &offset_expr);
11002 }
11003 else
11004 {
11005 expr1.X_add_number = offset_expr.X_add_number;
11006 offset_expr.X_add_number =
11007 SEXT_16BIT (offset_expr.X_add_number);
11008 load_got_offset (tempreg, &offset_expr);
11009 offset_expr.X_add_number = expr1.X_add_number;
11010 /* If we are going to add in a base register, and the
11011 target register and the base register are the same,
11012 then we are using AT as a temporary register. Since
11013 we want to load the constant into AT, we add our
11014 current AT (from the global offset table) and the
11015 register into the register now, and pretend we were
11016 not using a base register. */
11017 if (breg == op[0])
11018 {
11019 load_delay_nop ();
11020 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11021 op[0], AT, breg);
11022 breg = 0;
11023 tempreg = op[0];
11024 }
11025 add_got_offset_hilo (tempreg, &offset_expr, AT);
11026 used_at = 1;
11027 }
11028 }
11029 else if (!mips_big_got && HAVE_NEWABI)
11030 {
11031 int add_breg_early = 0;
11032
11033 /* If this is a reference to an external, and there is no
11034 constant, or local symbol (*), with or without a
11035 constant, we want
11036 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11037 or for lca or if tempreg is PIC_CALL_REG
11038 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11039
11040 If we have a small constant, and this is a reference to
11041 an external symbol, we want
11042 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11043 addiu $tempreg,$tempreg,<constant>
11044
11045 If we have a large constant, and this is a reference to
11046 an external symbol, we want
11047 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11048 lui $at,<hiconstant>
11049 addiu $at,$at,<loconstant>
11050 addu $tempreg,$tempreg,$at
11051
11052 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11053 local symbols, even though it introduces an additional
11054 instruction. */
11055
11056 if (offset_expr.X_add_number)
11057 {
11058 expr1.X_add_number = offset_expr.X_add_number;
11059 offset_expr.X_add_number = 0;
11060
11061 relax_start (offset_expr.X_add_symbol);
11062 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11063 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11064
11065 if (expr1.X_add_number >= -0x8000
11066 && expr1.X_add_number < 0x8000)
11067 {
11068 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11069 tempreg, tempreg, BFD_RELOC_LO16);
11070 }
11071 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11072 {
11073 unsigned int dreg;
11074
11075 /* If we are going to add in a base register, and the
11076 target register and the base register are the same,
11077 then we are using AT as a temporary register. Since
11078 we want to load the constant into AT, we add our
11079 current AT (from the global offset table) and the
11080 register into the register now, and pretend we were
11081 not using a base register. */
11082 if (breg != op[0])
11083 dreg = tempreg;
11084 else
11085 {
11086 gas_assert (tempreg == AT);
11087 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11088 op[0], AT, breg);
11089 dreg = op[0];
11090 add_breg_early = 1;
11091 }
11092
11093 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11094 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11095 dreg, dreg, AT);
11096
11097 used_at = 1;
11098 }
11099 else
11100 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11101
11102 relax_switch ();
11103 offset_expr.X_add_number = expr1.X_add_number;
11104
11105 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11106 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11107 if (add_breg_early)
11108 {
11109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11110 op[0], tempreg, breg);
11111 breg = 0;
11112 tempreg = op[0];
11113 }
11114 relax_end ();
11115 }
11116 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
11117 {
11118 relax_start (offset_expr.X_add_symbol);
11119 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11120 BFD_RELOC_MIPS_CALL16, mips_gp_register);
11121 relax_switch ();
11122 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11123 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11124 relax_end ();
11125 }
11126 else
11127 {
11128 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11129 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11130 }
11131 }
11132 else if (mips_big_got && !HAVE_NEWABI)
11133 {
11134 int gpdelay;
11135 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11136 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11137 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11138
11139 /* This is the large GOT case. If this is a reference to an
11140 external symbol, and there is no constant, we want
11141 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11142 addu $tempreg,$tempreg,$gp
11143 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11144 or for lca or if tempreg is PIC_CALL_REG
11145 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11146 addu $tempreg,$tempreg,$gp
11147 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11148 For a local symbol, we want
11149 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11150 nop
11151 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11152
11153 If we have a small constant, and this is a reference to
11154 an external symbol, we want
11155 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11156 addu $tempreg,$tempreg,$gp
11157 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11158 nop
11159 addiu $tempreg,$tempreg,<constant>
11160 For a local symbol, we want
11161 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11162 nop
11163 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11164
11165 If we have a large constant, and this is a reference to
11166 an external symbol, we want
11167 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11168 addu $tempreg,$tempreg,$gp
11169 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11170 lui $at,<hiconstant>
11171 addiu $at,$at,<loconstant>
11172 addu $tempreg,$tempreg,$at
11173 For a local symbol, we want
11174 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11175 lui $at,<hiconstant>
11176 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11177 addu $tempreg,$tempreg,$at
11178 */
11179
11180 expr1.X_add_number = offset_expr.X_add_number;
11181 offset_expr.X_add_number = 0;
11182 relax_start (offset_expr.X_add_symbol);
11183 gpdelay = reg_needs_delay (mips_gp_register);
11184 if (expr1.X_add_number == 0 && breg == 0
11185 && (call || tempreg == PIC_CALL_REG))
11186 {
11187 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11188 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11189 }
11190 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11191 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11192 tempreg, tempreg, mips_gp_register);
11193 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11194 tempreg, lw_reloc_type, tempreg);
11195 if (expr1.X_add_number == 0)
11196 {
11197 if (breg != 0)
11198 {
11199 /* We're going to put in an addu instruction using
11200 tempreg, so we may as well insert the nop right
11201 now. */
11202 load_delay_nop ();
11203 }
11204 }
11205 else if (expr1.X_add_number >= -0x8000
11206 && expr1.X_add_number < 0x8000)
11207 {
11208 load_delay_nop ();
11209 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11210 tempreg, tempreg, BFD_RELOC_LO16);
11211 }
11212 else
11213 {
11214 unsigned int dreg;
11215
11216 /* If we are going to add in a base register, and the
11217 target register and the base register are the same,
11218 then we are using AT as a temporary register. Since
11219 we want to load the constant into AT, we add our
11220 current AT (from the global offset table) and the
11221 register into the register now, and pretend we were
11222 not using a base register. */
11223 if (breg != op[0])
11224 dreg = tempreg;
11225 else
11226 {
11227 gas_assert (tempreg == AT);
11228 load_delay_nop ();
11229 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11230 op[0], AT, breg);
11231 dreg = op[0];
11232 }
11233
11234 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11235 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11236
11237 used_at = 1;
11238 }
11239 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11240 relax_switch ();
11241
11242 if (gpdelay)
11243 {
11244 /* This is needed because this instruction uses $gp, but
11245 the first instruction on the main stream does not. */
11246 macro_build (NULL, "nop", "");
11247 }
11248
11249 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11250 local_reloc_type, mips_gp_register);
11251 if (expr1.X_add_number >= -0x8000
11252 && expr1.X_add_number < 0x8000)
11253 {
11254 load_delay_nop ();
11255 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11256 tempreg, tempreg, BFD_RELOC_LO16);
11257 /* FIXME: If add_number is 0, and there was no base
11258 register, the external symbol case ended with a load,
11259 so if the symbol turns out to not be external, and
11260 the next instruction uses tempreg, an unnecessary nop
11261 will be inserted. */
11262 }
11263 else
11264 {
11265 if (breg == op[0])
11266 {
11267 /* We must add in the base register now, as in the
11268 external symbol case. */
11269 gas_assert (tempreg == AT);
11270 load_delay_nop ();
11271 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11272 op[0], AT, breg);
11273 tempreg = op[0];
11274 /* We set breg to 0 because we have arranged to add
11275 it in in both cases. */
11276 breg = 0;
11277 }
11278
11279 macro_build_lui (&expr1, AT);
11280 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11281 AT, AT, BFD_RELOC_LO16);
11282 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11283 tempreg, tempreg, AT);
11284 used_at = 1;
11285 }
11286 relax_end ();
11287 }
11288 else if (mips_big_got && HAVE_NEWABI)
11289 {
11290 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11291 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11292 int add_breg_early = 0;
11293
11294 /* This is the large GOT case. If this is a reference to an
11295 external symbol, and there is no constant, we want
11296 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11297 add $tempreg,$tempreg,$gp
11298 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11299 or for lca or if tempreg is PIC_CALL_REG
11300 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11301 add $tempreg,$tempreg,$gp
11302 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11303
11304 If we have a small constant, and this is a reference to
11305 an external symbol, we want
11306 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11307 add $tempreg,$tempreg,$gp
11308 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11309 addi $tempreg,$tempreg,<constant>
11310
11311 If we have a large constant, and this is a reference to
11312 an external symbol, we want
11313 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11314 addu $tempreg,$tempreg,$gp
11315 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11316 lui $at,<hiconstant>
11317 addi $at,$at,<loconstant>
11318 add $tempreg,$tempreg,$at
11319
11320 If we have NewABI, and we know it's a local symbol, we want
11321 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11322 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11323 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11324
11325 relax_start (offset_expr.X_add_symbol);
11326
11327 expr1.X_add_number = offset_expr.X_add_number;
11328 offset_expr.X_add_number = 0;
11329
11330 if (expr1.X_add_number == 0 && breg == 0
11331 && (call || tempreg == PIC_CALL_REG))
11332 {
11333 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11334 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11335 }
11336 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11337 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11338 tempreg, tempreg, mips_gp_register);
11339 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11340 tempreg, lw_reloc_type, tempreg);
11341
11342 if (expr1.X_add_number == 0)
11343 ;
11344 else if (expr1.X_add_number >= -0x8000
11345 && expr1.X_add_number < 0x8000)
11346 {
11347 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11348 tempreg, tempreg, BFD_RELOC_LO16);
11349 }
11350 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11351 {
11352 unsigned int dreg;
11353
11354 /* If we are going to add in a base register, and the
11355 target register and the base register are the same,
11356 then we are using AT as a temporary register. Since
11357 we want to load the constant into AT, we add our
11358 current AT (from the global offset table) and the
11359 register into the register now, and pretend we were
11360 not using a base register. */
11361 if (breg != op[0])
11362 dreg = tempreg;
11363 else
11364 {
11365 gas_assert (tempreg == AT);
11366 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11367 op[0], AT, breg);
11368 dreg = op[0];
11369 add_breg_early = 1;
11370 }
11371
11372 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11373 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11374
11375 used_at = 1;
11376 }
11377 else
11378 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11379
11380 relax_switch ();
11381 offset_expr.X_add_number = expr1.X_add_number;
11382 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11383 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11384 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11385 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11386 if (add_breg_early)
11387 {
11388 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11389 op[0], tempreg, breg);
11390 breg = 0;
11391 tempreg = op[0];
11392 }
11393 relax_end ();
11394 }
11395 else
11396 abort ();
11397
11398 if (breg != 0)
11399 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11400 break;
11401
11402 case M_MSGSND:
11403 gas_assert (!mips_opts.micromips);
11404 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11405 break;
11406
11407 case M_MSGLD:
11408 gas_assert (!mips_opts.micromips);
11409 macro_build (NULL, "c2", "C", 0x02);
11410 break;
11411
11412 case M_MSGLD_T:
11413 gas_assert (!mips_opts.micromips);
11414 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11415 break;
11416
11417 case M_MSGWAIT:
11418 gas_assert (!mips_opts.micromips);
11419 macro_build (NULL, "c2", "C", 3);
11420 break;
11421
11422 case M_MSGWAIT_T:
11423 gas_assert (!mips_opts.micromips);
11424 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11425 break;
11426
11427 case M_J_A:
11428 /* The j instruction may not be used in PIC code, since it
11429 requires an absolute address. We convert it to a b
11430 instruction. */
11431 if (mips_pic == NO_PIC)
11432 macro_build (&offset_expr, "j", "a");
11433 else
11434 macro_build (&offset_expr, "b", "p");
11435 break;
11436
11437 /* The jal instructions must be handled as macros because when
11438 generating PIC code they expand to multi-instruction
11439 sequences. Normally they are simple instructions. */
11440 case M_JALS_1:
11441 op[1] = op[0];
11442 op[0] = RA;
11443 /* Fall through. */
11444 case M_JALS_2:
11445 gas_assert (mips_opts.micromips);
11446 if (mips_opts.insn32)
11447 {
11448 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11449 break;
11450 }
11451 jals = 1;
11452 goto jal;
11453 case M_JAL_1:
11454 op[1] = op[0];
11455 op[0] = RA;
11456 /* Fall through. */
11457 case M_JAL_2:
11458 jal:
11459 if (mips_pic == NO_PIC)
11460 {
11461 s = jals ? "jalrs" : "jalr";
11462 if (mips_opts.micromips
11463 && !mips_opts.insn32
11464 && op[0] == RA
11465 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11466 macro_build (NULL, s, "mj", op[1]);
11467 else
11468 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11469 }
11470 else
11471 {
11472 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11473 && mips_cprestore_offset >= 0);
11474
11475 if (op[1] != PIC_CALL_REG)
11476 as_warn (_("MIPS PIC call to register other than $25"));
11477
11478 s = ((mips_opts.micromips
11479 && !mips_opts.insn32
11480 && (!mips_opts.noreorder || cprestore))
11481 ? "jalrs" : "jalr");
11482 if (mips_opts.micromips
11483 && !mips_opts.insn32
11484 && op[0] == RA
11485 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11486 macro_build (NULL, s, "mj", op[1]);
11487 else
11488 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11489 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11490 {
11491 if (mips_cprestore_offset < 0)
11492 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11493 else
11494 {
11495 if (!mips_frame_reg_valid)
11496 {
11497 as_warn (_("no .frame pseudo-op used in PIC code"));
11498 /* Quiet this warning. */
11499 mips_frame_reg_valid = 1;
11500 }
11501 if (!mips_cprestore_valid)
11502 {
11503 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11504 /* Quiet this warning. */
11505 mips_cprestore_valid = 1;
11506 }
11507 if (mips_opts.noreorder)
11508 macro_build (NULL, "nop", "");
11509 expr1.X_add_number = mips_cprestore_offset;
11510 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11511 mips_gp_register,
11512 mips_frame_reg,
11513 HAVE_64BIT_ADDRESSES);
11514 }
11515 }
11516 }
11517
11518 break;
11519
11520 case M_JALS_A:
11521 gas_assert (mips_opts.micromips);
11522 if (mips_opts.insn32)
11523 {
11524 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11525 break;
11526 }
11527 jals = 1;
11528 /* Fall through. */
11529 case M_JAL_A:
11530 if (mips_pic == NO_PIC)
11531 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11532 else if (mips_pic == SVR4_PIC)
11533 {
11534 /* If this is a reference to an external symbol, and we are
11535 using a small GOT, we want
11536 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11537 nop
11538 jalr $ra,$25
11539 nop
11540 lw $gp,cprestore($sp)
11541 The cprestore value is set using the .cprestore
11542 pseudo-op. If we are using a big GOT, we want
11543 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11544 addu $25,$25,$gp
11545 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11546 nop
11547 jalr $ra,$25
11548 nop
11549 lw $gp,cprestore($sp)
11550 If the symbol is not external, we want
11551 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11552 nop
11553 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11554 jalr $ra,$25
11555 nop
11556 lw $gp,cprestore($sp)
11557
11558 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11559 sequences above, minus nops, unless the symbol is local,
11560 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11561 GOT_DISP. */
11562 if (HAVE_NEWABI)
11563 {
11564 if (!mips_big_got)
11565 {
11566 relax_start (offset_expr.X_add_symbol);
11567 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11568 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11569 mips_gp_register);
11570 relax_switch ();
11571 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11572 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11573 mips_gp_register);
11574 relax_end ();
11575 }
11576 else
11577 {
11578 relax_start (offset_expr.X_add_symbol);
11579 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11580 BFD_RELOC_MIPS_CALL_HI16);
11581 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11582 PIC_CALL_REG, mips_gp_register);
11583 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11584 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11585 PIC_CALL_REG);
11586 relax_switch ();
11587 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11588 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11589 mips_gp_register);
11590 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11591 PIC_CALL_REG, PIC_CALL_REG,
11592 BFD_RELOC_MIPS_GOT_OFST);
11593 relax_end ();
11594 }
11595
11596 macro_build_jalr (&offset_expr, 0);
11597 }
11598 else
11599 {
11600 relax_start (offset_expr.X_add_symbol);
11601 if (!mips_big_got)
11602 {
11603 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11604 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11605 mips_gp_register);
11606 load_delay_nop ();
11607 relax_switch ();
11608 }
11609 else
11610 {
11611 int gpdelay;
11612
11613 gpdelay = reg_needs_delay (mips_gp_register);
11614 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11615 BFD_RELOC_MIPS_CALL_HI16);
11616 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11617 PIC_CALL_REG, mips_gp_register);
11618 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11619 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11620 PIC_CALL_REG);
11621 load_delay_nop ();
11622 relax_switch ();
11623 if (gpdelay)
11624 macro_build (NULL, "nop", "");
11625 }
11626 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11627 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11628 mips_gp_register);
11629 load_delay_nop ();
11630 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11631 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11632 relax_end ();
11633 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11634
11635 if (mips_cprestore_offset < 0)
11636 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11637 else
11638 {
11639 if (!mips_frame_reg_valid)
11640 {
11641 as_warn (_("no .frame pseudo-op used in PIC code"));
11642 /* Quiet this warning. */
11643 mips_frame_reg_valid = 1;
11644 }
11645 if (!mips_cprestore_valid)
11646 {
11647 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11648 /* Quiet this warning. */
11649 mips_cprestore_valid = 1;
11650 }
11651 if (mips_opts.noreorder)
11652 macro_build (NULL, "nop", "");
11653 expr1.X_add_number = mips_cprestore_offset;
11654 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11655 mips_gp_register,
11656 mips_frame_reg,
11657 HAVE_64BIT_ADDRESSES);
11658 }
11659 }
11660 }
11661 else if (mips_pic == VXWORKS_PIC)
11662 as_bad (_("non-PIC jump used in PIC library"));
11663 else
11664 abort ();
11665
11666 break;
11667
11668 case M_LBUE_AB:
11669 s = "lbue";
11670 fmt = "t,+j(b)";
11671 offbits = 9;
11672 goto ld_st;
11673 case M_LHUE_AB:
11674 s = "lhue";
11675 fmt = "t,+j(b)";
11676 offbits = 9;
11677 goto ld_st;
11678 case M_LBE_AB:
11679 s = "lbe";
11680 fmt = "t,+j(b)";
11681 offbits = 9;
11682 goto ld_st;
11683 case M_LHE_AB:
11684 s = "lhe";
11685 fmt = "t,+j(b)";
11686 offbits = 9;
11687 goto ld_st;
11688 case M_LLE_AB:
11689 s = "lle";
11690 fmt = "t,+j(b)";
11691 offbits = 9;
11692 goto ld_st;
11693 case M_LWE_AB:
11694 s = "lwe";
11695 fmt = "t,+j(b)";
11696 offbits = 9;
11697 goto ld_st;
11698 case M_LWLE_AB:
11699 s = "lwle";
11700 fmt = "t,+j(b)";
11701 offbits = 9;
11702 goto ld_st;
11703 case M_LWRE_AB:
11704 s = "lwre";
11705 fmt = "t,+j(b)";
11706 offbits = 9;
11707 goto ld_st;
11708 case M_SBE_AB:
11709 s = "sbe";
11710 fmt = "t,+j(b)";
11711 offbits = 9;
11712 goto ld_st;
11713 case M_SCE_AB:
11714 s = "sce";
11715 fmt = "t,+j(b)";
11716 offbits = 9;
11717 goto ld_st;
11718 case M_SHE_AB:
11719 s = "she";
11720 fmt = "t,+j(b)";
11721 offbits = 9;
11722 goto ld_st;
11723 case M_SWE_AB:
11724 s = "swe";
11725 fmt = "t,+j(b)";
11726 offbits = 9;
11727 goto ld_st;
11728 case M_SWLE_AB:
11729 s = "swle";
11730 fmt = "t,+j(b)";
11731 offbits = 9;
11732 goto ld_st;
11733 case M_SWRE_AB:
11734 s = "swre";
11735 fmt = "t,+j(b)";
11736 offbits = 9;
11737 goto ld_st;
11738 case M_ACLR_AB:
11739 s = "aclr";
11740 fmt = "\\,~(b)";
11741 offbits = 12;
11742 goto ld_st;
11743 case M_ASET_AB:
11744 s = "aset";
11745 fmt = "\\,~(b)";
11746 offbits = 12;
11747 goto ld_st;
11748 case M_LB_AB:
11749 s = "lb";
11750 fmt = "t,o(b)";
11751 goto ld;
11752 case M_LBU_AB:
11753 s = "lbu";
11754 fmt = "t,o(b)";
11755 goto ld;
11756 case M_LH_AB:
11757 s = "lh";
11758 fmt = "t,o(b)";
11759 goto ld;
11760 case M_LHU_AB:
11761 s = "lhu";
11762 fmt = "t,o(b)";
11763 goto ld;
11764 case M_LW_AB:
11765 s = "lw";
11766 fmt = "t,o(b)";
11767 goto ld;
11768 case M_LWC0_AB:
11769 gas_assert (!mips_opts.micromips);
11770 s = "lwc0";
11771 fmt = "E,o(b)";
11772 /* Itbl support may require additional care here. */
11773 coproc = 1;
11774 goto ld_st;
11775 case M_LWC1_AB:
11776 s = "lwc1";
11777 fmt = "T,o(b)";
11778 /* Itbl support may require additional care here. */
11779 coproc = 1;
11780 goto ld_st;
11781 case M_LWC2_AB:
11782 s = "lwc2";
11783 fmt = COP12_FMT;
11784 offbits = (mips_opts.micromips ? 12
11785 : ISA_IS_R6 (mips_opts.isa) ? 11
11786 : 16);
11787 /* Itbl support may require additional care here. */
11788 coproc = 1;
11789 goto ld_st;
11790 case M_LWC3_AB:
11791 gas_assert (!mips_opts.micromips);
11792 s = "lwc3";
11793 fmt = "E,o(b)";
11794 /* Itbl support may require additional care here. */
11795 coproc = 1;
11796 goto ld_st;
11797 case M_LWL_AB:
11798 s = "lwl";
11799 fmt = MEM12_FMT;
11800 offbits = (mips_opts.micromips ? 12 : 16);
11801 goto ld_st;
11802 case M_LWR_AB:
11803 s = "lwr";
11804 fmt = MEM12_FMT;
11805 offbits = (mips_opts.micromips ? 12 : 16);
11806 goto ld_st;
11807 case M_LDC1_AB:
11808 s = "ldc1";
11809 fmt = "T,o(b)";
11810 /* Itbl support may require additional care here. */
11811 coproc = 1;
11812 goto ld_st;
11813 case M_LDC2_AB:
11814 s = "ldc2";
11815 fmt = COP12_FMT;
11816 offbits = (mips_opts.micromips ? 12
11817 : ISA_IS_R6 (mips_opts.isa) ? 11
11818 : 16);
11819 /* Itbl support may require additional care here. */
11820 coproc = 1;
11821 goto ld_st;
11822 case M_LQC2_AB:
11823 s = "lqc2";
11824 fmt = "+7,o(b)";
11825 /* Itbl support may require additional care here. */
11826 coproc = 1;
11827 goto ld_st;
11828 case M_LDC3_AB:
11829 s = "ldc3";
11830 fmt = "E,o(b)";
11831 /* Itbl support may require additional care here. */
11832 coproc = 1;
11833 goto ld_st;
11834 case M_LDL_AB:
11835 s = "ldl";
11836 fmt = MEM12_FMT;
11837 offbits = (mips_opts.micromips ? 12 : 16);
11838 goto ld_st;
11839 case M_LDR_AB:
11840 s = "ldr";
11841 fmt = MEM12_FMT;
11842 offbits = (mips_opts.micromips ? 12 : 16);
11843 goto ld_st;
11844 case M_LL_AB:
11845 s = "ll";
11846 fmt = LL_SC_FMT;
11847 offbits = (mips_opts.micromips ? 12
11848 : ISA_IS_R6 (mips_opts.isa) ? 9
11849 : 16);
11850 goto ld;
11851 case M_LLD_AB:
11852 s = "lld";
11853 fmt = LL_SC_FMT;
11854 offbits = (mips_opts.micromips ? 12
11855 : ISA_IS_R6 (mips_opts.isa) ? 9
11856 : 16);
11857 goto ld;
11858 case M_LWU_AB:
11859 s = "lwu";
11860 fmt = MEM12_FMT;
11861 offbits = (mips_opts.micromips ? 12 : 16);
11862 goto ld;
11863 case M_LWP_AB:
11864 gas_assert (mips_opts.micromips);
11865 s = "lwp";
11866 fmt = "t,~(b)";
11867 offbits = 12;
11868 lp = 1;
11869 goto ld;
11870 case M_LDP_AB:
11871 gas_assert (mips_opts.micromips);
11872 s = "ldp";
11873 fmt = "t,~(b)";
11874 offbits = 12;
11875 lp = 1;
11876 goto ld;
11877 case M_LWM_AB:
11878 gas_assert (mips_opts.micromips);
11879 s = "lwm";
11880 fmt = "n,~(b)";
11881 offbits = 12;
11882 goto ld_st;
11883 case M_LDM_AB:
11884 gas_assert (mips_opts.micromips);
11885 s = "ldm";
11886 fmt = "n,~(b)";
11887 offbits = 12;
11888 goto ld_st;
11889
11890 ld:
11891 /* We don't want to use $0 as tempreg. */
11892 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11893 goto ld_st;
11894 else
11895 tempreg = op[0] + lp;
11896 goto ld_noat;
11897
11898 case M_SB_AB:
11899 s = "sb";
11900 fmt = "t,o(b)";
11901 goto ld_st;
11902 case M_SH_AB:
11903 s = "sh";
11904 fmt = "t,o(b)";
11905 goto ld_st;
11906 case M_SW_AB:
11907 s = "sw";
11908 fmt = "t,o(b)";
11909 goto ld_st;
11910 case M_SWC0_AB:
11911 gas_assert (!mips_opts.micromips);
11912 s = "swc0";
11913 fmt = "E,o(b)";
11914 /* Itbl support may require additional care here. */
11915 coproc = 1;
11916 goto ld_st;
11917 case M_SWC1_AB:
11918 s = "swc1";
11919 fmt = "T,o(b)";
11920 /* Itbl support may require additional care here. */
11921 coproc = 1;
11922 goto ld_st;
11923 case M_SWC2_AB:
11924 s = "swc2";
11925 fmt = COP12_FMT;
11926 offbits = (mips_opts.micromips ? 12
11927 : ISA_IS_R6 (mips_opts.isa) ? 11
11928 : 16);
11929 /* Itbl support may require additional care here. */
11930 coproc = 1;
11931 goto ld_st;
11932 case M_SWC3_AB:
11933 gas_assert (!mips_opts.micromips);
11934 s = "swc3";
11935 fmt = "E,o(b)";
11936 /* Itbl support may require additional care here. */
11937 coproc = 1;
11938 goto ld_st;
11939 case M_SWL_AB:
11940 s = "swl";
11941 fmt = MEM12_FMT;
11942 offbits = (mips_opts.micromips ? 12 : 16);
11943 goto ld_st;
11944 case M_SWR_AB:
11945 s = "swr";
11946 fmt = MEM12_FMT;
11947 offbits = (mips_opts.micromips ? 12 : 16);
11948 goto ld_st;
11949 case M_SC_AB:
11950 s = "sc";
11951 fmt = LL_SC_FMT;
11952 offbits = (mips_opts.micromips ? 12
11953 : ISA_IS_R6 (mips_opts.isa) ? 9
11954 : 16);
11955 goto ld_st;
11956 case M_SCD_AB:
11957 s = "scd";
11958 fmt = LL_SC_FMT;
11959 offbits = (mips_opts.micromips ? 12
11960 : ISA_IS_R6 (mips_opts.isa) ? 9
11961 : 16);
11962 goto ld_st;
11963 case M_CACHE_AB:
11964 s = "cache";
11965 fmt = (mips_opts.micromips ? "k,~(b)"
11966 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11967 : "k,o(b)");
11968 offbits = (mips_opts.micromips ? 12
11969 : ISA_IS_R6 (mips_opts.isa) ? 9
11970 : 16);
11971 goto ld_st;
11972 case M_CACHEE_AB:
11973 s = "cachee";
11974 fmt = "k,+j(b)";
11975 offbits = 9;
11976 goto ld_st;
11977 case M_PREF_AB:
11978 s = "pref";
11979 fmt = (mips_opts.micromips ? "k,~(b)"
11980 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11981 : "k,o(b)");
11982 offbits = (mips_opts.micromips ? 12
11983 : ISA_IS_R6 (mips_opts.isa) ? 9
11984 : 16);
11985 goto ld_st;
11986 case M_PREFE_AB:
11987 s = "prefe";
11988 fmt = "k,+j(b)";
11989 offbits = 9;
11990 goto ld_st;
11991 case M_SDC1_AB:
11992 s = "sdc1";
11993 fmt = "T,o(b)";
11994 coproc = 1;
11995 /* Itbl support may require additional care here. */
11996 goto ld_st;
11997 case M_SDC2_AB:
11998 s = "sdc2";
11999 fmt = COP12_FMT;
12000 offbits = (mips_opts.micromips ? 12
12001 : ISA_IS_R6 (mips_opts.isa) ? 11
12002 : 16);
12003 /* Itbl support may require additional care here. */
12004 coproc = 1;
12005 goto ld_st;
12006 case M_SQC2_AB:
12007 s = "sqc2";
12008 fmt = "+7,o(b)";
12009 /* Itbl support may require additional care here. */
12010 coproc = 1;
12011 goto ld_st;
12012 case M_SDC3_AB:
12013 gas_assert (!mips_opts.micromips);
12014 s = "sdc3";
12015 fmt = "E,o(b)";
12016 /* Itbl support may require additional care here. */
12017 coproc = 1;
12018 goto ld_st;
12019 case M_SDL_AB:
12020 s = "sdl";
12021 fmt = MEM12_FMT;
12022 offbits = (mips_opts.micromips ? 12 : 16);
12023 goto ld_st;
12024 case M_SDR_AB:
12025 s = "sdr";
12026 fmt = MEM12_FMT;
12027 offbits = (mips_opts.micromips ? 12 : 16);
12028 goto ld_st;
12029 case M_SWP_AB:
12030 gas_assert (mips_opts.micromips);
12031 s = "swp";
12032 fmt = "t,~(b)";
12033 offbits = 12;
12034 goto ld_st;
12035 case M_SDP_AB:
12036 gas_assert (mips_opts.micromips);
12037 s = "sdp";
12038 fmt = "t,~(b)";
12039 offbits = 12;
12040 goto ld_st;
12041 case M_SWM_AB:
12042 gas_assert (mips_opts.micromips);
12043 s = "swm";
12044 fmt = "n,~(b)";
12045 offbits = 12;
12046 goto ld_st;
12047 case M_SDM_AB:
12048 gas_assert (mips_opts.micromips);
12049 s = "sdm";
12050 fmt = "n,~(b)";
12051 offbits = 12;
12052
12053 ld_st:
12054 tempreg = AT;
12055 ld_noat:
12056 breg = op[2];
12057 if (small_offset_p (0, align, 16))
12058 {
12059 /* The first case exists for M_LD_AB and M_SD_AB, which are
12060 macros for o32 but which should act like normal instructions
12061 otherwise. */
12062 if (offbits == 16)
12063 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
12064 offset_reloc[1], offset_reloc[2], breg);
12065 else if (small_offset_p (0, align, offbits))
12066 {
12067 if (offbits == 0)
12068 macro_build (NULL, s, fmt, op[0], breg);
12069 else
12070 macro_build (NULL, s, fmt, op[0],
12071 (int) offset_expr.X_add_number, breg);
12072 }
12073 else
12074 {
12075 if (tempreg == AT)
12076 used_at = 1;
12077 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
12078 tempreg, breg, -1, offset_reloc[0],
12079 offset_reloc[1], offset_reloc[2]);
12080 if (offbits == 0)
12081 macro_build (NULL, s, fmt, op[0], tempreg);
12082 else
12083 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12084 }
12085 break;
12086 }
12087
12088 if (tempreg == AT)
12089 used_at = 1;
12090
12091 if (offset_expr.X_op != O_constant
12092 && offset_expr.X_op != O_symbol)
12093 {
12094 as_bad (_("expression too complex"));
12095 offset_expr.X_op = O_constant;
12096 }
12097
12098 if (HAVE_32BIT_ADDRESSES
12099 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12100 {
12101 char value [32];
12102
12103 sprintf_vma (value, offset_expr.X_add_number);
12104 as_bad (_("number (0x%s) larger than 32 bits"), value);
12105 }
12106
12107 /* A constant expression in PIC code can be handled just as it
12108 is in non PIC code. */
12109 if (offset_expr.X_op == O_constant)
12110 {
12111 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12112 offbits == 0 ? 16 : offbits);
12113 offset_expr.X_add_number -= expr1.X_add_number;
12114
12115 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12116 if (breg != 0)
12117 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12118 tempreg, tempreg, breg);
12119 if (offbits == 0)
12120 {
12121 if (offset_expr.X_add_number != 0)
12122 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
12123 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
12124 macro_build (NULL, s, fmt, op[0], tempreg);
12125 }
12126 else if (offbits == 16)
12127 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12128 else
12129 macro_build (NULL, s, fmt, op[0],
12130 (int) offset_expr.X_add_number, tempreg);
12131 }
12132 else if (offbits != 16)
12133 {
12134 /* The offset field is too narrow to be used for a low-part
12135 relocation, so load the whole address into the auxiliary
12136 register. */
12137 load_address (tempreg, &offset_expr, &used_at);
12138 if (breg != 0)
12139 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12140 tempreg, tempreg, breg);
12141 if (offbits == 0)
12142 macro_build (NULL, s, fmt, op[0], tempreg);
12143 else
12144 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12145 }
12146 else if (mips_pic == NO_PIC)
12147 {
12148 /* If this is a reference to a GP relative symbol, and there
12149 is no base register, we want
12150 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12151 Otherwise, if there is no base register, we want
12152 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12153 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12154 If we have a constant, we need two instructions anyhow,
12155 so we always use the latter form.
12156
12157 If we have a base register, and this is a reference to a
12158 GP relative symbol, we want
12159 addu $tempreg,$breg,$gp
12160 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12161 Otherwise we want
12162 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12163 addu $tempreg,$tempreg,$breg
12164 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12165 With a constant we always use the latter case.
12166
12167 With 64bit address space and no base register and $at usable,
12168 we want
12169 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12170 lui $at,<sym> (BFD_RELOC_HI16_S)
12171 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12172 dsll32 $tempreg,0
12173 daddu $tempreg,$at
12174 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12175 If we have a base register, we want
12176 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12177 lui $at,<sym> (BFD_RELOC_HI16_S)
12178 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12179 daddu $at,$breg
12180 dsll32 $tempreg,0
12181 daddu $tempreg,$at
12182 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12183
12184 Without $at we can't generate the optimal path for superscalar
12185 processors here since this would require two temporary registers.
12186 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12187 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12188 dsll $tempreg,16
12189 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12190 dsll $tempreg,16
12191 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12192 If we have a base register, we want
12193 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12194 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12195 dsll $tempreg,16
12196 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12197 dsll $tempreg,16
12198 daddu $tempreg,$tempreg,$breg
12199 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12200
12201 For GP relative symbols in 64bit address space we can use
12202 the same sequence as in 32bit address space. */
12203 if (HAVE_64BIT_SYMBOLS)
12204 {
12205 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12206 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12207 {
12208 relax_start (offset_expr.X_add_symbol);
12209 if (breg == 0)
12210 {
12211 macro_build (&offset_expr, s, fmt, op[0],
12212 BFD_RELOC_GPREL16, mips_gp_register);
12213 }
12214 else
12215 {
12216 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12217 tempreg, breg, mips_gp_register);
12218 macro_build (&offset_expr, s, fmt, op[0],
12219 BFD_RELOC_GPREL16, tempreg);
12220 }
12221 relax_switch ();
12222 }
12223
12224 if (used_at == 0 && mips_opts.at)
12225 {
12226 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12227 BFD_RELOC_MIPS_HIGHEST);
12228 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12229 BFD_RELOC_HI16_S);
12230 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12231 tempreg, BFD_RELOC_MIPS_HIGHER);
12232 if (breg != 0)
12233 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12234 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12235 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12236 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12237 tempreg);
12238 used_at = 1;
12239 }
12240 else
12241 {
12242 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12243 BFD_RELOC_MIPS_HIGHEST);
12244 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12245 tempreg, BFD_RELOC_MIPS_HIGHER);
12246 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12247 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12248 tempreg, BFD_RELOC_HI16_S);
12249 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12250 if (breg != 0)
12251 macro_build (NULL, "daddu", "d,v,t",
12252 tempreg, tempreg, breg);
12253 macro_build (&offset_expr, s, fmt, op[0],
12254 BFD_RELOC_LO16, tempreg);
12255 }
12256
12257 if (mips_relax.sequence)
12258 relax_end ();
12259 break;
12260 }
12261
12262 if (breg == 0)
12263 {
12264 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12265 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12266 {
12267 relax_start (offset_expr.X_add_symbol);
12268 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12269 mips_gp_register);
12270 relax_switch ();
12271 }
12272 macro_build_lui (&offset_expr, tempreg);
12273 macro_build (&offset_expr, s, fmt, op[0],
12274 BFD_RELOC_LO16, tempreg);
12275 if (mips_relax.sequence)
12276 relax_end ();
12277 }
12278 else
12279 {
12280 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12281 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12282 {
12283 relax_start (offset_expr.X_add_symbol);
12284 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12285 tempreg, breg, mips_gp_register);
12286 macro_build (&offset_expr, s, fmt, op[0],
12287 BFD_RELOC_GPREL16, tempreg);
12288 relax_switch ();
12289 }
12290 macro_build_lui (&offset_expr, tempreg);
12291 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12292 tempreg, tempreg, breg);
12293 macro_build (&offset_expr, s, fmt, op[0],
12294 BFD_RELOC_LO16, tempreg);
12295 if (mips_relax.sequence)
12296 relax_end ();
12297 }
12298 }
12299 else if (!mips_big_got)
12300 {
12301 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12302
12303 /* If this is a reference to an external symbol, we want
12304 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12305 nop
12306 <op> op[0],0($tempreg)
12307 Otherwise we want
12308 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12309 nop
12310 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12311 <op> op[0],0($tempreg)
12312
12313 For NewABI, we want
12314 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12315 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12316
12317 If there is a base register, we add it to $tempreg before
12318 the <op>. If there is a constant, we stick it in the
12319 <op> instruction. We don't handle constants larger than
12320 16 bits, because we have no way to load the upper 16 bits
12321 (actually, we could handle them for the subset of cases
12322 in which we are not using $at). */
12323 gas_assert (offset_expr.X_op == O_symbol);
12324 if (HAVE_NEWABI)
12325 {
12326 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12327 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12328 if (breg != 0)
12329 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12330 tempreg, tempreg, breg);
12331 macro_build (&offset_expr, s, fmt, op[0],
12332 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12333 break;
12334 }
12335 expr1.X_add_number = offset_expr.X_add_number;
12336 offset_expr.X_add_number = 0;
12337 if (expr1.X_add_number < -0x8000
12338 || expr1.X_add_number >= 0x8000)
12339 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12340 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12341 lw_reloc_type, mips_gp_register);
12342 load_delay_nop ();
12343 relax_start (offset_expr.X_add_symbol);
12344 relax_switch ();
12345 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12346 tempreg, BFD_RELOC_LO16);
12347 relax_end ();
12348 if (breg != 0)
12349 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12350 tempreg, tempreg, breg);
12351 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12352 }
12353 else if (mips_big_got && !HAVE_NEWABI)
12354 {
12355 int gpdelay;
12356
12357 /* If this is a reference to an external symbol, we want
12358 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12359 addu $tempreg,$tempreg,$gp
12360 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12361 <op> op[0],0($tempreg)
12362 Otherwise we want
12363 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12364 nop
12365 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12366 <op> op[0],0($tempreg)
12367 If there is a base register, we add it to $tempreg before
12368 the <op>. If there is a constant, we stick it in the
12369 <op> instruction. We don't handle constants larger than
12370 16 bits, because we have no way to load the upper 16 bits
12371 (actually, we could handle them for the subset of cases
12372 in which we are not using $at). */
12373 gas_assert (offset_expr.X_op == O_symbol);
12374 expr1.X_add_number = offset_expr.X_add_number;
12375 offset_expr.X_add_number = 0;
12376 if (expr1.X_add_number < -0x8000
12377 || expr1.X_add_number >= 0x8000)
12378 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12379 gpdelay = reg_needs_delay (mips_gp_register);
12380 relax_start (offset_expr.X_add_symbol);
12381 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12382 BFD_RELOC_MIPS_GOT_HI16);
12383 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12384 mips_gp_register);
12385 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12386 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12387 relax_switch ();
12388 if (gpdelay)
12389 macro_build (NULL, "nop", "");
12390 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12391 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12392 load_delay_nop ();
12393 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12394 tempreg, BFD_RELOC_LO16);
12395 relax_end ();
12396
12397 if (breg != 0)
12398 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12399 tempreg, tempreg, breg);
12400 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12401 }
12402 else if (mips_big_got && HAVE_NEWABI)
12403 {
12404 /* If this is a reference to an external symbol, we want
12405 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12406 add $tempreg,$tempreg,$gp
12407 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12408 <op> op[0],<ofst>($tempreg)
12409 Otherwise, for local symbols, we want:
12410 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12411 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12412 gas_assert (offset_expr.X_op == O_symbol);
12413 expr1.X_add_number = offset_expr.X_add_number;
12414 offset_expr.X_add_number = 0;
12415 if (expr1.X_add_number < -0x8000
12416 || expr1.X_add_number >= 0x8000)
12417 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12418 relax_start (offset_expr.X_add_symbol);
12419 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12420 BFD_RELOC_MIPS_GOT_HI16);
12421 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12422 mips_gp_register);
12423 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12424 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12425 if (breg != 0)
12426 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12427 tempreg, tempreg, breg);
12428 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12429
12430 relax_switch ();
12431 offset_expr.X_add_number = expr1.X_add_number;
12432 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12433 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12434 if (breg != 0)
12435 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12436 tempreg, tempreg, breg);
12437 macro_build (&offset_expr, s, fmt, op[0],
12438 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12439 relax_end ();
12440 }
12441 else
12442 abort ();
12443
12444 break;
12445
12446 case M_JRADDIUSP:
12447 gas_assert (mips_opts.micromips);
12448 gas_assert (mips_opts.insn32);
12449 start_noreorder ();
12450 macro_build (NULL, "jr", "s", RA);
12451 expr1.X_add_number = op[0] << 2;
12452 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12453 end_noreorder ();
12454 break;
12455
12456 case M_JRC:
12457 gas_assert (mips_opts.micromips);
12458 gas_assert (mips_opts.insn32);
12459 macro_build (NULL, "jr", "s", op[0]);
12460 if (mips_opts.noreorder)
12461 macro_build (NULL, "nop", "");
12462 break;
12463
12464 case M_LI:
12465 case M_LI_S:
12466 load_register (op[0], &imm_expr, 0);
12467 break;
12468
12469 case M_DLI:
12470 load_register (op[0], &imm_expr, 1);
12471 break;
12472
12473 case M_LI_SS:
12474 if (imm_expr.X_op == O_constant)
12475 {
12476 used_at = 1;
12477 load_register (AT, &imm_expr, 0);
12478 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12479 break;
12480 }
12481 else
12482 {
12483 gas_assert (imm_expr.X_op == O_absent
12484 && offset_expr.X_op == O_symbol
12485 && strcmp (segment_name (S_GET_SEGMENT
12486 (offset_expr.X_add_symbol)),
12487 ".lit4") == 0
12488 && offset_expr.X_add_number == 0);
12489 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12490 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12491 break;
12492 }
12493
12494 case M_LI_D:
12495 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12496 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12497 order 32 bits of the value and the low order 32 bits are either
12498 zero or in OFFSET_EXPR. */
12499 if (imm_expr.X_op == O_constant)
12500 {
12501 if (GPR_SIZE == 64)
12502 load_register (op[0], &imm_expr, 1);
12503 else
12504 {
12505 int hreg, lreg;
12506
12507 if (target_big_endian)
12508 {
12509 hreg = op[0];
12510 lreg = op[0] + 1;
12511 }
12512 else
12513 {
12514 hreg = op[0] + 1;
12515 lreg = op[0];
12516 }
12517
12518 if (hreg <= 31)
12519 load_register (hreg, &imm_expr, 0);
12520 if (lreg <= 31)
12521 {
12522 if (offset_expr.X_op == O_absent)
12523 move_register (lreg, 0);
12524 else
12525 {
12526 gas_assert (offset_expr.X_op == O_constant);
12527 load_register (lreg, &offset_expr, 0);
12528 }
12529 }
12530 }
12531 break;
12532 }
12533 gas_assert (imm_expr.X_op == O_absent);
12534
12535 /* We know that sym is in the .rdata section. First we get the
12536 upper 16 bits of the address. */
12537 if (mips_pic == NO_PIC)
12538 {
12539 macro_build_lui (&offset_expr, AT);
12540 used_at = 1;
12541 }
12542 else
12543 {
12544 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12545 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12546 used_at = 1;
12547 }
12548
12549 /* Now we load the register(s). */
12550 if (GPR_SIZE == 64)
12551 {
12552 used_at = 1;
12553 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12554 BFD_RELOC_LO16, AT);
12555 }
12556 else
12557 {
12558 used_at = 1;
12559 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12560 BFD_RELOC_LO16, AT);
12561 if (op[0] != RA)
12562 {
12563 /* FIXME: How in the world do we deal with the possible
12564 overflow here? */
12565 offset_expr.X_add_number += 4;
12566 macro_build (&offset_expr, "lw", "t,o(b)",
12567 op[0] + 1, BFD_RELOC_LO16, AT);
12568 }
12569 }
12570 break;
12571
12572 case M_LI_DD:
12573 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12574 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12575 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12576 the value and the low order 32 bits are either zero or in
12577 OFFSET_EXPR. */
12578 if (imm_expr.X_op == O_constant)
12579 {
12580 used_at = 1;
12581 load_register (AT, &imm_expr, FPR_SIZE == 64);
12582 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12583 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12584 else
12585 {
12586 if (ISA_HAS_MXHC1 (mips_opts.isa))
12587 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12588 else if (FPR_SIZE != 32)
12589 as_bad (_("Unable to generate `%s' compliant code "
12590 "without mthc1"),
12591 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12592 else
12593 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12594 if (offset_expr.X_op == O_absent)
12595 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12596 else
12597 {
12598 gas_assert (offset_expr.X_op == O_constant);
12599 load_register (AT, &offset_expr, 0);
12600 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12601 }
12602 }
12603 break;
12604 }
12605
12606 gas_assert (imm_expr.X_op == O_absent
12607 && offset_expr.X_op == O_symbol
12608 && offset_expr.X_add_number == 0);
12609 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12610 if (strcmp (s, ".lit8") == 0)
12611 {
12612 op[2] = mips_gp_register;
12613 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12614 offset_reloc[1] = BFD_RELOC_UNUSED;
12615 offset_reloc[2] = BFD_RELOC_UNUSED;
12616 }
12617 else
12618 {
12619 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12620 used_at = 1;
12621 if (mips_pic != NO_PIC)
12622 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12623 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12624 else
12625 {
12626 /* FIXME: This won't work for a 64 bit address. */
12627 macro_build_lui (&offset_expr, AT);
12628 }
12629
12630 op[2] = AT;
12631 offset_reloc[0] = BFD_RELOC_LO16;
12632 offset_reloc[1] = BFD_RELOC_UNUSED;
12633 offset_reloc[2] = BFD_RELOC_UNUSED;
12634 }
12635 align = 8;
12636 /* Fall through */
12637
12638 case M_L_DAB:
12639 /*
12640 * The MIPS assembler seems to check for X_add_number not
12641 * being double aligned and generating:
12642 * lui at,%hi(foo+1)
12643 * addu at,at,v1
12644 * addiu at,at,%lo(foo+1)
12645 * lwc1 f2,0(at)
12646 * lwc1 f3,4(at)
12647 * But, the resulting address is the same after relocation so why
12648 * generate the extra instruction?
12649 */
12650 /* Itbl support may require additional care here. */
12651 coproc = 1;
12652 fmt = "T,o(b)";
12653 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12654 {
12655 s = "ldc1";
12656 goto ld_st;
12657 }
12658 s = "lwc1";
12659 goto ldd_std;
12660
12661 case M_S_DAB:
12662 gas_assert (!mips_opts.micromips);
12663 /* Itbl support may require additional care here. */
12664 coproc = 1;
12665 fmt = "T,o(b)";
12666 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12667 {
12668 s = "sdc1";
12669 goto ld_st;
12670 }
12671 s = "swc1";
12672 goto ldd_std;
12673
12674 case M_LQ_AB:
12675 fmt = "t,o(b)";
12676 s = "lq";
12677 goto ld;
12678
12679 case M_SQ_AB:
12680 fmt = "t,o(b)";
12681 s = "sq";
12682 goto ld_st;
12683
12684 case M_LD_AB:
12685 fmt = "t,o(b)";
12686 if (GPR_SIZE == 64)
12687 {
12688 s = "ld";
12689 goto ld;
12690 }
12691 s = "lw";
12692 goto ldd_std;
12693
12694 case M_SD_AB:
12695 fmt = "t,o(b)";
12696 if (GPR_SIZE == 64)
12697 {
12698 s = "sd";
12699 goto ld_st;
12700 }
12701 s = "sw";
12702
12703 ldd_std:
12704 /* Even on a big endian machine $fn comes before $fn+1. We have
12705 to adjust when loading from memory. We set coproc if we must
12706 load $fn+1 first. */
12707 /* Itbl support may require additional care here. */
12708 if (!target_big_endian)
12709 coproc = 0;
12710
12711 breg = op[2];
12712 if (small_offset_p (0, align, 16))
12713 {
12714 ep = &offset_expr;
12715 if (!small_offset_p (4, align, 16))
12716 {
12717 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12718 -1, offset_reloc[0], offset_reloc[1],
12719 offset_reloc[2]);
12720 expr1.X_add_number = 0;
12721 ep = &expr1;
12722 breg = AT;
12723 used_at = 1;
12724 offset_reloc[0] = BFD_RELOC_LO16;
12725 offset_reloc[1] = BFD_RELOC_UNUSED;
12726 offset_reloc[2] = BFD_RELOC_UNUSED;
12727 }
12728 if (strcmp (s, "lw") == 0 && op[0] == breg)
12729 {
12730 ep->X_add_number += 4;
12731 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12732 offset_reloc[1], offset_reloc[2], breg);
12733 ep->X_add_number -= 4;
12734 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12735 offset_reloc[1], offset_reloc[2], breg);
12736 }
12737 else
12738 {
12739 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12740 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12741 breg);
12742 ep->X_add_number += 4;
12743 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12744 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12745 breg);
12746 }
12747 break;
12748 }
12749
12750 if (offset_expr.X_op != O_symbol
12751 && offset_expr.X_op != O_constant)
12752 {
12753 as_bad (_("expression too complex"));
12754 offset_expr.X_op = O_constant;
12755 }
12756
12757 if (HAVE_32BIT_ADDRESSES
12758 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12759 {
12760 char value [32];
12761
12762 sprintf_vma (value, offset_expr.X_add_number);
12763 as_bad (_("number (0x%s) larger than 32 bits"), value);
12764 }
12765
12766 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12767 {
12768 /* If this is a reference to a GP relative symbol, we want
12769 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12770 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12771 If we have a base register, we use this
12772 addu $at,$breg,$gp
12773 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12774 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12775 If this is not a GP relative symbol, we want
12776 lui $at,<sym> (BFD_RELOC_HI16_S)
12777 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12778 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12779 If there is a base register, we add it to $at after the
12780 lui instruction. If there is a constant, we always use
12781 the last case. */
12782 if (offset_expr.X_op == O_symbol
12783 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12784 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12785 {
12786 relax_start (offset_expr.X_add_symbol);
12787 if (breg == 0)
12788 {
12789 tempreg = mips_gp_register;
12790 }
12791 else
12792 {
12793 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12794 AT, breg, mips_gp_register);
12795 tempreg = AT;
12796 used_at = 1;
12797 }
12798
12799 /* Itbl support may require additional care here. */
12800 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12801 BFD_RELOC_GPREL16, tempreg);
12802 offset_expr.X_add_number += 4;
12803
12804 /* Set mips_optimize to 2 to avoid inserting an
12805 undesired nop. */
12806 hold_mips_optimize = mips_optimize;
12807 mips_optimize = 2;
12808 /* Itbl support may require additional care here. */
12809 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12810 BFD_RELOC_GPREL16, tempreg);
12811 mips_optimize = hold_mips_optimize;
12812
12813 relax_switch ();
12814
12815 offset_expr.X_add_number -= 4;
12816 }
12817 used_at = 1;
12818 if (offset_high_part (offset_expr.X_add_number, 16)
12819 != offset_high_part (offset_expr.X_add_number + 4, 16))
12820 {
12821 load_address (AT, &offset_expr, &used_at);
12822 offset_expr.X_op = O_constant;
12823 offset_expr.X_add_number = 0;
12824 }
12825 else
12826 macro_build_lui (&offset_expr, AT);
12827 if (breg != 0)
12828 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12829 /* Itbl support may require additional care here. */
12830 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12831 BFD_RELOC_LO16, AT);
12832 /* FIXME: How do we handle overflow here? */
12833 offset_expr.X_add_number += 4;
12834 /* Itbl support may require additional care here. */
12835 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12836 BFD_RELOC_LO16, AT);
12837 if (mips_relax.sequence)
12838 relax_end ();
12839 }
12840 else if (!mips_big_got)
12841 {
12842 /* If this is a reference to an external symbol, we want
12843 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12844 nop
12845 <op> op[0],0($at)
12846 <op> op[0]+1,4($at)
12847 Otherwise we want
12848 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12849 nop
12850 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12851 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12852 If there is a base register we add it to $at before the
12853 lwc1 instructions. If there is a constant we include it
12854 in the lwc1 instructions. */
12855 used_at = 1;
12856 expr1.X_add_number = offset_expr.X_add_number;
12857 if (expr1.X_add_number < -0x8000
12858 || expr1.X_add_number >= 0x8000 - 4)
12859 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12860 load_got_offset (AT, &offset_expr);
12861 load_delay_nop ();
12862 if (breg != 0)
12863 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12864
12865 /* Set mips_optimize to 2 to avoid inserting an undesired
12866 nop. */
12867 hold_mips_optimize = mips_optimize;
12868 mips_optimize = 2;
12869
12870 /* Itbl support may require additional care here. */
12871 relax_start (offset_expr.X_add_symbol);
12872 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12873 BFD_RELOC_LO16, AT);
12874 expr1.X_add_number += 4;
12875 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12876 BFD_RELOC_LO16, AT);
12877 relax_switch ();
12878 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12879 BFD_RELOC_LO16, AT);
12880 offset_expr.X_add_number += 4;
12881 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12882 BFD_RELOC_LO16, AT);
12883 relax_end ();
12884
12885 mips_optimize = hold_mips_optimize;
12886 }
12887 else if (mips_big_got)
12888 {
12889 int gpdelay;
12890
12891 /* If this is a reference to an external symbol, we want
12892 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12893 addu $at,$at,$gp
12894 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12895 nop
12896 <op> op[0],0($at)
12897 <op> op[0]+1,4($at)
12898 Otherwise we want
12899 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12900 nop
12901 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12902 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12903 If there is a base register we add it to $at before the
12904 lwc1 instructions. If there is a constant we include it
12905 in the lwc1 instructions. */
12906 used_at = 1;
12907 expr1.X_add_number = offset_expr.X_add_number;
12908 offset_expr.X_add_number = 0;
12909 if (expr1.X_add_number < -0x8000
12910 || expr1.X_add_number >= 0x8000 - 4)
12911 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12912 gpdelay = reg_needs_delay (mips_gp_register);
12913 relax_start (offset_expr.X_add_symbol);
12914 macro_build (&offset_expr, "lui", LUI_FMT,
12915 AT, BFD_RELOC_MIPS_GOT_HI16);
12916 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12917 AT, AT, mips_gp_register);
12918 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12919 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12920 load_delay_nop ();
12921 if (breg != 0)
12922 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12923 /* Itbl support may require additional care here. */
12924 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12925 BFD_RELOC_LO16, AT);
12926 expr1.X_add_number += 4;
12927
12928 /* Set mips_optimize to 2 to avoid inserting an undesired
12929 nop. */
12930 hold_mips_optimize = mips_optimize;
12931 mips_optimize = 2;
12932 /* Itbl support may require additional care here. */
12933 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12934 BFD_RELOC_LO16, AT);
12935 mips_optimize = hold_mips_optimize;
12936 expr1.X_add_number -= 4;
12937
12938 relax_switch ();
12939 offset_expr.X_add_number = expr1.X_add_number;
12940 if (gpdelay)
12941 macro_build (NULL, "nop", "");
12942 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12943 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12944 load_delay_nop ();
12945 if (breg != 0)
12946 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12947 /* Itbl support may require additional care here. */
12948 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12949 BFD_RELOC_LO16, AT);
12950 offset_expr.X_add_number += 4;
12951
12952 /* Set mips_optimize to 2 to avoid inserting an undesired
12953 nop. */
12954 hold_mips_optimize = mips_optimize;
12955 mips_optimize = 2;
12956 /* Itbl support may require additional care here. */
12957 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12958 BFD_RELOC_LO16, AT);
12959 mips_optimize = hold_mips_optimize;
12960 relax_end ();
12961 }
12962 else
12963 abort ();
12964
12965 break;
12966
12967 case M_SAA_AB:
12968 s = "saa";
12969 goto saa_saad;
12970 case M_SAAD_AB:
12971 s = "saad";
12972 saa_saad:
12973 gas_assert (!mips_opts.micromips);
12974 offbits = 0;
12975 fmt = "t,(b)";
12976 goto ld_st;
12977
12978 /* New code added to support COPZ instructions.
12979 This code builds table entries out of the macros in mip_opcodes.
12980 R4000 uses interlocks to handle coproc delays.
12981 Other chips (like the R3000) require nops to be inserted for delays.
12982
12983 FIXME: Currently, we require that the user handle delays.
12984 In order to fill delay slots for non-interlocked chips,
12985 we must have a way to specify delays based on the coprocessor.
12986 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12987 What are the side-effects of the cop instruction?
12988 What cache support might we have and what are its effects?
12989 Both coprocessor & memory require delays. how long???
12990 What registers are read/set/modified?
12991
12992 If an itbl is provided to interpret cop instructions,
12993 this knowledge can be encoded in the itbl spec. */
12994
12995 case M_COP0:
12996 s = "c0";
12997 goto copz;
12998 case M_COP1:
12999 s = "c1";
13000 goto copz;
13001 case M_COP2:
13002 s = "c2";
13003 goto copz;
13004 case M_COP3:
13005 s = "c3";
13006 copz:
13007 gas_assert (!mips_opts.micromips);
13008 /* For now we just do C (same as Cz). The parameter will be
13009 stored in insn_opcode by mips_ip. */
13010 macro_build (NULL, s, "C", (int) ip->insn_opcode);
13011 break;
13012
13013 case M_MOVE:
13014 move_register (op[0], op[1]);
13015 break;
13016
13017 case M_MOVEP:
13018 gas_assert (mips_opts.micromips);
13019 gas_assert (mips_opts.insn32);
13020 move_register (micromips_to_32_reg_h_map1[op[0]],
13021 micromips_to_32_reg_m_map[op[1]]);
13022 move_register (micromips_to_32_reg_h_map2[op[0]],
13023 micromips_to_32_reg_n_map[op[2]]);
13024 break;
13025
13026 case M_DMUL:
13027 dbl = 1;
13028 /* Fall through. */
13029 case M_MUL:
13030 if (mips_opts.arch == CPU_R5900)
13031 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
13032 op[2]);
13033 else
13034 {
13035 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
13036 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13037 }
13038 break;
13039
13040 case M_DMUL_I:
13041 dbl = 1;
13042 /* Fall through. */
13043 case M_MUL_I:
13044 /* The MIPS assembler some times generates shifts and adds. I'm
13045 not trying to be that fancy. GCC should do this for us
13046 anyway. */
13047 used_at = 1;
13048 load_register (AT, &imm_expr, dbl);
13049 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
13050 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13051 break;
13052
13053 case M_DMULO_I:
13054 dbl = 1;
13055 /* Fall through. */
13056 case M_MULO_I:
13057 imm = 1;
13058 goto do_mulo;
13059
13060 case M_DMULO:
13061 dbl = 1;
13062 /* Fall through. */
13063 case M_MULO:
13064 do_mulo:
13065 start_noreorder ();
13066 used_at = 1;
13067 if (imm)
13068 load_register (AT, &imm_expr, dbl);
13069 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
13070 op[1], imm ? AT : op[2]);
13071 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13072 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
13073 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13074 if (mips_trap)
13075 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
13076 else
13077 {
13078 if (mips_opts.micromips)
13079 micromips_label_expr (&label_expr);
13080 else
13081 label_expr.X_add_number = 8;
13082 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
13083 macro_build (NULL, "nop", "");
13084 macro_build (NULL, "break", BRK_FMT, 6);
13085 if (mips_opts.micromips)
13086 micromips_add_label ();
13087 }
13088 end_noreorder ();
13089 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13090 break;
13091
13092 case M_DMULOU_I:
13093 dbl = 1;
13094 /* Fall through. */
13095 case M_MULOU_I:
13096 imm = 1;
13097 goto do_mulou;
13098
13099 case M_DMULOU:
13100 dbl = 1;
13101 /* Fall through. */
13102 case M_MULOU:
13103 do_mulou:
13104 start_noreorder ();
13105 used_at = 1;
13106 if (imm)
13107 load_register (AT, &imm_expr, dbl);
13108 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
13109 op[1], imm ? AT : op[2]);
13110 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13111 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13112 if (mips_trap)
13113 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
13114 else
13115 {
13116 if (mips_opts.micromips)
13117 micromips_label_expr (&label_expr);
13118 else
13119 label_expr.X_add_number = 8;
13120 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
13121 macro_build (NULL, "nop", "");
13122 macro_build (NULL, "break", BRK_FMT, 6);
13123 if (mips_opts.micromips)
13124 micromips_add_label ();
13125 }
13126 end_noreorder ();
13127 break;
13128
13129 case M_DROL:
13130 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13131 {
13132 if (op[0] == op[1])
13133 {
13134 tempreg = AT;
13135 used_at = 1;
13136 }
13137 else
13138 tempreg = op[0];
13139 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13140 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
13141 break;
13142 }
13143 used_at = 1;
13144 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13145 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13146 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13147 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13148 break;
13149
13150 case M_ROL:
13151 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13152 {
13153 if (op[0] == op[1])
13154 {
13155 tempreg = AT;
13156 used_at = 1;
13157 }
13158 else
13159 tempreg = op[0];
13160 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13161 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
13162 break;
13163 }
13164 used_at = 1;
13165 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13166 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13167 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13168 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13169 break;
13170
13171 case M_DROL_I:
13172 {
13173 unsigned int rot;
13174 const char *l;
13175 const char *rr;
13176
13177 rot = imm_expr.X_add_number & 0x3f;
13178 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13179 {
13180 rot = (64 - rot) & 0x3f;
13181 if (rot >= 32)
13182 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13183 else
13184 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13185 break;
13186 }
13187 if (rot == 0)
13188 {
13189 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13190 break;
13191 }
13192 l = (rot < 0x20) ? "dsll" : "dsll32";
13193 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
13194 rot &= 0x1f;
13195 used_at = 1;
13196 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13197 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13198 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13199 }
13200 break;
13201
13202 case M_ROL_I:
13203 {
13204 unsigned int rot;
13205
13206 rot = imm_expr.X_add_number & 0x1f;
13207 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13208 {
13209 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13210 (32 - rot) & 0x1f);
13211 break;
13212 }
13213 if (rot == 0)
13214 {
13215 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13216 break;
13217 }
13218 used_at = 1;
13219 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13220 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13221 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13222 }
13223 break;
13224
13225 case M_DROR:
13226 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13227 {
13228 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13229 break;
13230 }
13231 used_at = 1;
13232 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13233 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13234 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13235 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13236 break;
13237
13238 case M_ROR:
13239 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13240 {
13241 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13242 break;
13243 }
13244 used_at = 1;
13245 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13246 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13247 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13248 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13249 break;
13250
13251 case M_DROR_I:
13252 {
13253 unsigned int rot;
13254 const char *l;
13255 const char *rr;
13256
13257 rot = imm_expr.X_add_number & 0x3f;
13258 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13259 {
13260 if (rot >= 32)
13261 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13262 else
13263 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13264 break;
13265 }
13266 if (rot == 0)
13267 {
13268 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13269 break;
13270 }
13271 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13272 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13273 rot &= 0x1f;
13274 used_at = 1;
13275 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13276 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13277 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13278 }
13279 break;
13280
13281 case M_ROR_I:
13282 {
13283 unsigned int rot;
13284
13285 rot = imm_expr.X_add_number & 0x1f;
13286 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13287 {
13288 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13289 break;
13290 }
13291 if (rot == 0)
13292 {
13293 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13294 break;
13295 }
13296 used_at = 1;
13297 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13298 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13299 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13300 }
13301 break;
13302
13303 case M_SEQ:
13304 if (op[1] == 0)
13305 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13306 else if (op[2] == 0)
13307 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13308 else
13309 {
13310 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13311 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13312 }
13313 break;
13314
13315 case M_SEQ_I:
13316 if (imm_expr.X_add_number == 0)
13317 {
13318 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13319 break;
13320 }
13321 if (op[1] == 0)
13322 {
13323 as_warn (_("instruction %s: result is always false"),
13324 ip->insn_mo->name);
13325 move_register (op[0], 0);
13326 break;
13327 }
13328 if (CPU_HAS_SEQ (mips_opts.arch)
13329 && -512 <= imm_expr.X_add_number
13330 && imm_expr.X_add_number < 512)
13331 {
13332 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13333 (int) imm_expr.X_add_number);
13334 break;
13335 }
13336 if (imm_expr.X_add_number >= 0
13337 && imm_expr.X_add_number < 0x10000)
13338 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13339 else if (imm_expr.X_add_number > -0x8000
13340 && imm_expr.X_add_number < 0)
13341 {
13342 imm_expr.X_add_number = -imm_expr.X_add_number;
13343 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13344 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13345 }
13346 else if (CPU_HAS_SEQ (mips_opts.arch))
13347 {
13348 used_at = 1;
13349 load_register (AT, &imm_expr, GPR_SIZE == 64);
13350 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13351 break;
13352 }
13353 else
13354 {
13355 load_register (AT, &imm_expr, GPR_SIZE == 64);
13356 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13357 used_at = 1;
13358 }
13359 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13360 break;
13361
13362 case M_SGE: /* X >= Y <==> not (X < Y) */
13363 s = "slt";
13364 goto sge;
13365 case M_SGEU:
13366 s = "sltu";
13367 sge:
13368 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13369 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13370 break;
13371
13372 case M_SGE_I: /* X >= I <==> not (X < I) */
13373 case M_SGEU_I:
13374 if (imm_expr.X_add_number >= -0x8000
13375 && imm_expr.X_add_number < 0x8000)
13376 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13377 op[0], op[1], BFD_RELOC_LO16);
13378 else
13379 {
13380 load_register (AT, &imm_expr, GPR_SIZE == 64);
13381 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13382 op[0], op[1], AT);
13383 used_at = 1;
13384 }
13385 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13386 break;
13387
13388 case M_SGT: /* X > Y <==> Y < X */
13389 s = "slt";
13390 goto sgt;
13391 case M_SGTU:
13392 s = "sltu";
13393 sgt:
13394 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13395 break;
13396
13397 case M_SGT_I: /* X > I <==> I < X */
13398 s = "slt";
13399 goto sgti;
13400 case M_SGTU_I:
13401 s = "sltu";
13402 sgti:
13403 used_at = 1;
13404 load_register (AT, &imm_expr, GPR_SIZE == 64);
13405 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13406 break;
13407
13408 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13409 s = "slt";
13410 goto sle;
13411 case M_SLEU:
13412 s = "sltu";
13413 sle:
13414 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13415 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13416 break;
13417
13418 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13419 s = "slt";
13420 goto slei;
13421 case M_SLEU_I:
13422 s = "sltu";
13423 slei:
13424 used_at = 1;
13425 load_register (AT, &imm_expr, GPR_SIZE == 64);
13426 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13427 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13428 break;
13429
13430 case M_SLT_I:
13431 if (imm_expr.X_add_number >= -0x8000
13432 && imm_expr.X_add_number < 0x8000)
13433 {
13434 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13435 BFD_RELOC_LO16);
13436 break;
13437 }
13438 used_at = 1;
13439 load_register (AT, &imm_expr, GPR_SIZE == 64);
13440 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13441 break;
13442
13443 case M_SLTU_I:
13444 if (imm_expr.X_add_number >= -0x8000
13445 && imm_expr.X_add_number < 0x8000)
13446 {
13447 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13448 BFD_RELOC_LO16);
13449 break;
13450 }
13451 used_at = 1;
13452 load_register (AT, &imm_expr, GPR_SIZE == 64);
13453 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13454 break;
13455
13456 case M_SNE:
13457 if (op[1] == 0)
13458 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13459 else if (op[2] == 0)
13460 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13461 else
13462 {
13463 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13464 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13465 }
13466 break;
13467
13468 case M_SNE_I:
13469 if (imm_expr.X_add_number == 0)
13470 {
13471 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13472 break;
13473 }
13474 if (op[1] == 0)
13475 {
13476 as_warn (_("instruction %s: result is always true"),
13477 ip->insn_mo->name);
13478 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13479 op[0], 0, BFD_RELOC_LO16);
13480 break;
13481 }
13482 if (CPU_HAS_SEQ (mips_opts.arch)
13483 && -512 <= imm_expr.X_add_number
13484 && imm_expr.X_add_number < 512)
13485 {
13486 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13487 (int) imm_expr.X_add_number);
13488 break;
13489 }
13490 if (imm_expr.X_add_number >= 0
13491 && imm_expr.X_add_number < 0x10000)
13492 {
13493 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13494 BFD_RELOC_LO16);
13495 }
13496 else if (imm_expr.X_add_number > -0x8000
13497 && imm_expr.X_add_number < 0)
13498 {
13499 imm_expr.X_add_number = -imm_expr.X_add_number;
13500 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13501 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13502 }
13503 else if (CPU_HAS_SEQ (mips_opts.arch))
13504 {
13505 used_at = 1;
13506 load_register (AT, &imm_expr, GPR_SIZE == 64);
13507 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13508 break;
13509 }
13510 else
13511 {
13512 load_register (AT, &imm_expr, GPR_SIZE == 64);
13513 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13514 used_at = 1;
13515 }
13516 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13517 break;
13518
13519 case M_SUB_I:
13520 s = "addi";
13521 s2 = "sub";
13522 goto do_subi;
13523 case M_SUBU_I:
13524 s = "addiu";
13525 s2 = "subu";
13526 goto do_subi;
13527 case M_DSUB_I:
13528 dbl = 1;
13529 s = "daddi";
13530 s2 = "dsub";
13531 if (!mips_opts.micromips)
13532 goto do_subi;
13533 if (imm_expr.X_add_number > -0x200
13534 && imm_expr.X_add_number <= 0x200)
13535 {
13536 macro_build (NULL, s, "t,r,.", op[0], op[1],
13537 (int) -imm_expr.X_add_number);
13538 break;
13539 }
13540 goto do_subi_i;
13541 case M_DSUBU_I:
13542 dbl = 1;
13543 s = "daddiu";
13544 s2 = "dsubu";
13545 do_subi:
13546 if (imm_expr.X_add_number > -0x8000
13547 && imm_expr.X_add_number <= 0x8000)
13548 {
13549 imm_expr.X_add_number = -imm_expr.X_add_number;
13550 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13551 break;
13552 }
13553 do_subi_i:
13554 used_at = 1;
13555 load_register (AT, &imm_expr, dbl);
13556 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13557 break;
13558
13559 case M_TEQ_I:
13560 s = "teq";
13561 goto trap;
13562 case M_TGE_I:
13563 s = "tge";
13564 goto trap;
13565 case M_TGEU_I:
13566 s = "tgeu";
13567 goto trap;
13568 case M_TLT_I:
13569 s = "tlt";
13570 goto trap;
13571 case M_TLTU_I:
13572 s = "tltu";
13573 goto trap;
13574 case M_TNE_I:
13575 s = "tne";
13576 trap:
13577 used_at = 1;
13578 load_register (AT, &imm_expr, GPR_SIZE == 64);
13579 macro_build (NULL, s, "s,t", op[0], AT);
13580 break;
13581
13582 case M_TRUNCWS:
13583 case M_TRUNCWD:
13584 gas_assert (!mips_opts.micromips);
13585 gas_assert (mips_opts.isa == ISA_MIPS1);
13586 used_at = 1;
13587
13588 /*
13589 * Is the double cfc1 instruction a bug in the mips assembler;
13590 * or is there a reason for it?
13591 */
13592 start_noreorder ();
13593 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13594 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13595 macro_build (NULL, "nop", "");
13596 expr1.X_add_number = 3;
13597 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13598 expr1.X_add_number = 2;
13599 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13600 macro_build (NULL, "ctc1", "t,G", AT, RA);
13601 macro_build (NULL, "nop", "");
13602 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13603 op[0], op[1]);
13604 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13605 macro_build (NULL, "nop", "");
13606 end_noreorder ();
13607 break;
13608
13609 case M_ULH_AB:
13610 s = "lb";
13611 s2 = "lbu";
13612 off = 1;
13613 goto uld_st;
13614 case M_ULHU_AB:
13615 s = "lbu";
13616 s2 = "lbu";
13617 off = 1;
13618 goto uld_st;
13619 case M_ULW_AB:
13620 s = "lwl";
13621 s2 = "lwr";
13622 offbits = (mips_opts.micromips ? 12 : 16);
13623 off = 3;
13624 goto uld_st;
13625 case M_ULD_AB:
13626 s = "ldl";
13627 s2 = "ldr";
13628 offbits = (mips_opts.micromips ? 12 : 16);
13629 off = 7;
13630 goto uld_st;
13631 case M_USH_AB:
13632 s = "sb";
13633 s2 = "sb";
13634 off = 1;
13635 ust = 1;
13636 goto uld_st;
13637 case M_USW_AB:
13638 s = "swl";
13639 s2 = "swr";
13640 offbits = (mips_opts.micromips ? 12 : 16);
13641 off = 3;
13642 ust = 1;
13643 goto uld_st;
13644 case M_USD_AB:
13645 s = "sdl";
13646 s2 = "sdr";
13647 offbits = (mips_opts.micromips ? 12 : 16);
13648 off = 7;
13649 ust = 1;
13650
13651 uld_st:
13652 breg = op[2];
13653 large_offset = !small_offset_p (off, align, offbits);
13654 ep = &offset_expr;
13655 expr1.X_add_number = 0;
13656 if (large_offset)
13657 {
13658 used_at = 1;
13659 tempreg = AT;
13660 if (small_offset_p (0, align, 16))
13661 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13662 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13663 else
13664 {
13665 load_address (tempreg, ep, &used_at);
13666 if (breg != 0)
13667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13668 tempreg, tempreg, breg);
13669 }
13670 offset_reloc[0] = BFD_RELOC_LO16;
13671 offset_reloc[1] = BFD_RELOC_UNUSED;
13672 offset_reloc[2] = BFD_RELOC_UNUSED;
13673 breg = tempreg;
13674 tempreg = op[0];
13675 ep = &expr1;
13676 }
13677 else if (!ust && op[0] == breg)
13678 {
13679 used_at = 1;
13680 tempreg = AT;
13681 }
13682 else
13683 tempreg = op[0];
13684
13685 if (off == 1)
13686 goto ulh_sh;
13687
13688 if (!target_big_endian)
13689 ep->X_add_number += off;
13690 if (offbits == 12)
13691 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13692 else
13693 macro_build (ep, s, "t,o(b)", tempreg, -1,
13694 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13695
13696 if (!target_big_endian)
13697 ep->X_add_number -= off;
13698 else
13699 ep->X_add_number += off;
13700 if (offbits == 12)
13701 macro_build (NULL, s2, "t,~(b)",
13702 tempreg, (int) ep->X_add_number, breg);
13703 else
13704 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13705 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13706
13707 /* If necessary, move the result in tempreg to the final destination. */
13708 if (!ust && op[0] != tempreg)
13709 {
13710 /* Protect second load's delay slot. */
13711 load_delay_nop ();
13712 move_register (op[0], tempreg);
13713 }
13714 break;
13715
13716 ulh_sh:
13717 used_at = 1;
13718 if (target_big_endian == ust)
13719 ep->X_add_number += off;
13720 tempreg = ust || large_offset ? op[0] : AT;
13721 macro_build (ep, s, "t,o(b)", tempreg, -1,
13722 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13723
13724 /* For halfword transfers we need a temporary register to shuffle
13725 bytes. Unfortunately for M_USH_A we have none available before
13726 the next store as AT holds the base address. We deal with this
13727 case by clobbering TREG and then restoring it as with ULH. */
13728 tempreg = ust == large_offset ? op[0] : AT;
13729 if (ust)
13730 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13731
13732 if (target_big_endian == ust)
13733 ep->X_add_number -= off;
13734 else
13735 ep->X_add_number += off;
13736 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13737 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13738
13739 /* For M_USH_A re-retrieve the LSB. */
13740 if (ust && large_offset)
13741 {
13742 if (target_big_endian)
13743 ep->X_add_number += off;
13744 else
13745 ep->X_add_number -= off;
13746 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13747 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13748 }
13749 /* For ULH and M_USH_A OR the LSB in. */
13750 if (!ust || large_offset)
13751 {
13752 tempreg = !large_offset ? AT : op[0];
13753 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13754 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13755 }
13756 break;
13757
13758 default:
13759 /* FIXME: Check if this is one of the itbl macros, since they
13760 are added dynamically. */
13761 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13762 break;
13763 }
13764 if (!mips_opts.at && used_at)
13765 as_bad (_("macro used $at after \".set noat\""));
13766 }
13767
13768 /* Implement macros in mips16 mode. */
13769
13770 static void
13771 mips16_macro (struct mips_cl_insn *ip)
13772 {
13773 const struct mips_operand_array *operands;
13774 int mask;
13775 int tmp;
13776 expressionS expr1;
13777 int dbl;
13778 const char *s, *s2, *s3;
13779 unsigned int op[MAX_OPERANDS];
13780 unsigned int i;
13781
13782 mask = ip->insn_mo->mask;
13783
13784 operands = insn_operands (ip);
13785 for (i = 0; i < MAX_OPERANDS; i++)
13786 if (operands->operand[i])
13787 op[i] = insn_extract_operand (ip, operands->operand[i]);
13788 else
13789 op[i] = -1;
13790
13791 expr1.X_op = O_constant;
13792 expr1.X_op_symbol = NULL;
13793 expr1.X_add_symbol = NULL;
13794 expr1.X_add_number = 1;
13795
13796 dbl = 0;
13797
13798 switch (mask)
13799 {
13800 default:
13801 abort ();
13802
13803 case M_DDIV_3:
13804 dbl = 1;
13805 /* Fall through. */
13806 case M_DIV_3:
13807 s = "mflo";
13808 goto do_div3;
13809 case M_DREM_3:
13810 dbl = 1;
13811 /* Fall through. */
13812 case M_REM_3:
13813 s = "mfhi";
13814 do_div3:
13815 start_noreorder ();
13816 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13817 expr1.X_add_number = 2;
13818 macro_build (&expr1, "bnez", "x,p", op[2]);
13819 macro_build (NULL, "break", "6", 7);
13820
13821 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13822 since that causes an overflow. We should do that as well,
13823 but I don't see how to do the comparisons without a temporary
13824 register. */
13825 end_noreorder ();
13826 macro_build (NULL, s, "x", op[0]);
13827 break;
13828
13829 case M_DIVU_3:
13830 s = "divu";
13831 s2 = "mflo";
13832 goto do_divu3;
13833 case M_REMU_3:
13834 s = "divu";
13835 s2 = "mfhi";
13836 goto do_divu3;
13837 case M_DDIVU_3:
13838 s = "ddivu";
13839 s2 = "mflo";
13840 goto do_divu3;
13841 case M_DREMU_3:
13842 s = "ddivu";
13843 s2 = "mfhi";
13844 do_divu3:
13845 start_noreorder ();
13846 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13847 expr1.X_add_number = 2;
13848 macro_build (&expr1, "bnez", "x,p", op[2]);
13849 macro_build (NULL, "break", "6", 7);
13850 end_noreorder ();
13851 macro_build (NULL, s2, "x", op[0]);
13852 break;
13853
13854 case M_DMUL:
13855 dbl = 1;
13856 /* Fall through. */
13857 case M_MUL:
13858 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13859 macro_build (NULL, "mflo", "x", op[0]);
13860 break;
13861
13862 case M_DSUBU_I:
13863 dbl = 1;
13864 goto do_subu;
13865 case M_SUBU_I:
13866 do_subu:
13867 imm_expr.X_add_number = -imm_expr.X_add_number;
13868 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13869 break;
13870
13871 case M_SUBU_I_2:
13872 imm_expr.X_add_number = -imm_expr.X_add_number;
13873 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13874 break;
13875
13876 case M_DSUBU_I_2:
13877 imm_expr.X_add_number = -imm_expr.X_add_number;
13878 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13879 break;
13880
13881 case M_BEQ:
13882 s = "cmp";
13883 s2 = "bteqz";
13884 goto do_branch;
13885 case M_BNE:
13886 s = "cmp";
13887 s2 = "btnez";
13888 goto do_branch;
13889 case M_BLT:
13890 s = "slt";
13891 s2 = "btnez";
13892 goto do_branch;
13893 case M_BLTU:
13894 s = "sltu";
13895 s2 = "btnez";
13896 goto do_branch;
13897 case M_BLE:
13898 s = "slt";
13899 s2 = "bteqz";
13900 goto do_reverse_branch;
13901 case M_BLEU:
13902 s = "sltu";
13903 s2 = "bteqz";
13904 goto do_reverse_branch;
13905 case M_BGE:
13906 s = "slt";
13907 s2 = "bteqz";
13908 goto do_branch;
13909 case M_BGEU:
13910 s = "sltu";
13911 s2 = "bteqz";
13912 goto do_branch;
13913 case M_BGT:
13914 s = "slt";
13915 s2 = "btnez";
13916 goto do_reverse_branch;
13917 case M_BGTU:
13918 s = "sltu";
13919 s2 = "btnez";
13920
13921 do_reverse_branch:
13922 tmp = op[1];
13923 op[1] = op[0];
13924 op[0] = tmp;
13925
13926 do_branch:
13927 macro_build (NULL, s, "x,y", op[0], op[1]);
13928 macro_build (&offset_expr, s2, "p");
13929 break;
13930
13931 case M_BEQ_I:
13932 s = "cmpi";
13933 s2 = "bteqz";
13934 s3 = "x,U";
13935 goto do_branch_i;
13936 case M_BNE_I:
13937 s = "cmpi";
13938 s2 = "btnez";
13939 s3 = "x,U";
13940 goto do_branch_i;
13941 case M_BLT_I:
13942 s = "slti";
13943 s2 = "btnez";
13944 s3 = "x,8";
13945 goto do_branch_i;
13946 case M_BLTU_I:
13947 s = "sltiu";
13948 s2 = "btnez";
13949 s3 = "x,8";
13950 goto do_branch_i;
13951 case M_BLE_I:
13952 s = "slti";
13953 s2 = "btnez";
13954 s3 = "x,8";
13955 goto do_addone_branch_i;
13956 case M_BLEU_I:
13957 s = "sltiu";
13958 s2 = "btnez";
13959 s3 = "x,8";
13960 goto do_addone_branch_i;
13961 case M_BGE_I:
13962 s = "slti";
13963 s2 = "bteqz";
13964 s3 = "x,8";
13965 goto do_branch_i;
13966 case M_BGEU_I:
13967 s = "sltiu";
13968 s2 = "bteqz";
13969 s3 = "x,8";
13970 goto do_branch_i;
13971 case M_BGT_I:
13972 s = "slti";
13973 s2 = "bteqz";
13974 s3 = "x,8";
13975 goto do_addone_branch_i;
13976 case M_BGTU_I:
13977 s = "sltiu";
13978 s2 = "bteqz";
13979 s3 = "x,8";
13980
13981 do_addone_branch_i:
13982 ++imm_expr.X_add_number;
13983
13984 do_branch_i:
13985 macro_build (&imm_expr, s, s3, op[0]);
13986 macro_build (&offset_expr, s2, "p");
13987 break;
13988
13989 case M_ABS:
13990 expr1.X_add_number = 0;
13991 macro_build (&expr1, "slti", "x,8", op[1]);
13992 if (op[0] != op[1])
13993 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13994 expr1.X_add_number = 2;
13995 macro_build (&expr1, "bteqz", "p");
13996 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13997 break;
13998 }
13999 }
14000
14001 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
14002 opcode bits in *OPCODE_EXTRA. */
14003
14004 static struct mips_opcode *
14005 mips_lookup_insn (struct hash_control *hash, const char *start,
14006 ssize_t length, unsigned int *opcode_extra)
14007 {
14008 char *name, *dot, *p;
14009 unsigned int mask, suffix;
14010 ssize_t opend;
14011 struct mips_opcode *insn;
14012
14013 /* Make a copy of the instruction so that we can fiddle with it. */
14014 name = xstrndup (start, length);
14015
14016 /* Look up the instruction as-is. */
14017 insn = (struct mips_opcode *) hash_find (hash, name);
14018 if (insn)
14019 goto end;
14020
14021 dot = strchr (name, '.');
14022 if (dot && dot[1])
14023 {
14024 /* Try to interpret the text after the dot as a VU0 channel suffix. */
14025 p = mips_parse_vu0_channels (dot + 1, &mask);
14026 if (*p == 0 && mask != 0)
14027 {
14028 *dot = 0;
14029 insn = (struct mips_opcode *) hash_find (hash, name);
14030 *dot = '.';
14031 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
14032 {
14033 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
14034 goto end;
14035 }
14036 }
14037 }
14038
14039 if (mips_opts.micromips)
14040 {
14041 /* See if there's an instruction size override suffix,
14042 either `16' or `32', at the end of the mnemonic proper,
14043 that defines the operation, i.e. before the first `.'
14044 character if any. Strip it and retry. */
14045 opend = dot != NULL ? dot - name : length;
14046 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
14047 suffix = 2;
14048 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
14049 suffix = 4;
14050 else
14051 suffix = 0;
14052 if (suffix)
14053 {
14054 memmove (name + opend - 2, name + opend, length - opend + 1);
14055 insn = (struct mips_opcode *) hash_find (hash, name);
14056 if (insn)
14057 {
14058 forced_insn_length = suffix;
14059 goto end;
14060 }
14061 }
14062 }
14063
14064 insn = NULL;
14065 end:
14066 free (name);
14067 return insn;
14068 }
14069
14070 /* Assemble an instruction into its binary format. If the instruction
14071 is a macro, set imm_expr and offset_expr to the values associated
14072 with "I" and "A" operands respectively. Otherwise store the value
14073 of the relocatable field (if any) in offset_expr. In both cases
14074 set offset_reloc to the relocation operators applied to offset_expr. */
14075
14076 static void
14077 mips_ip (char *str, struct mips_cl_insn *insn)
14078 {
14079 const struct mips_opcode *first, *past;
14080 struct hash_control *hash;
14081 char format;
14082 size_t end;
14083 struct mips_operand_token *tokens;
14084 unsigned int opcode_extra;
14085
14086 if (mips_opts.micromips)
14087 {
14088 hash = micromips_op_hash;
14089 past = &micromips_opcodes[bfd_micromips_num_opcodes];
14090 }
14091 else
14092 {
14093 hash = op_hash;
14094 past = &mips_opcodes[NUMOPCODES];
14095 }
14096 forced_insn_length = 0;
14097 opcode_extra = 0;
14098
14099 /* We first try to match an instruction up to a space or to the end. */
14100 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14101 continue;
14102
14103 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14104 if (first == NULL)
14105 {
14106 set_insn_error (0, _("unrecognized opcode"));
14107 return;
14108 }
14109
14110 if (strcmp (first->name, "li.s") == 0)
14111 format = 'f';
14112 else if (strcmp (first->name, "li.d") == 0)
14113 format = 'd';
14114 else
14115 format = 0;
14116 tokens = mips_parse_arguments (str + end, format);
14117 if (!tokens)
14118 return;
14119
14120 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
14121 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
14122 set_insn_error (0, _("invalid operands"));
14123
14124 obstack_free (&mips_operand_tokens, tokens);
14125 }
14126
14127 /* As for mips_ip, but used when assembling MIPS16 code.
14128 Also set forced_insn_length to the resulting instruction size in
14129 bytes if the user explicitly requested a small or extended instruction. */
14130
14131 static void
14132 mips16_ip (char *str, struct mips_cl_insn *insn)
14133 {
14134 char *end, *s, c;
14135 struct mips_opcode *first;
14136 struct mips_operand_token *tokens;
14137 unsigned int l;
14138
14139 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
14140 ;
14141 end = s;
14142 c = *end;
14143
14144 l = 0;
14145 switch (c)
14146 {
14147 case '\0':
14148 break;
14149
14150 case ' ':
14151 s++;
14152 break;
14153
14154 case '.':
14155 s++;
14156 if (*s == 't')
14157 {
14158 l = 2;
14159 s++;
14160 }
14161 else if (*s == 'e')
14162 {
14163 l = 4;
14164 s++;
14165 }
14166 if (*s == '\0')
14167 break;
14168 else if (*s++ == ' ')
14169 break;
14170 set_insn_error (0, _("unrecognized opcode"));
14171 return;
14172 }
14173 forced_insn_length = l;
14174
14175 *end = 0;
14176 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
14177 *end = c;
14178
14179 if (!first)
14180 {
14181 set_insn_error (0, _("unrecognized opcode"));
14182 return;
14183 }
14184
14185 tokens = mips_parse_arguments (s, 0);
14186 if (!tokens)
14187 return;
14188
14189 if (!match_mips16_insns (insn, first, tokens))
14190 set_insn_error (0, _("invalid operands"));
14191
14192 obstack_free (&mips_operand_tokens, tokens);
14193 }
14194
14195 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14196 NBITS is the number of significant bits in VAL. */
14197
14198 static unsigned long
14199 mips16_immed_extend (offsetT val, unsigned int nbits)
14200 {
14201 int extval;
14202
14203 extval = 0;
14204 val &= (1U << nbits) - 1;
14205 if (nbits == 16 || nbits == 9)
14206 {
14207 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14208 val &= 0x1f;
14209 }
14210 else if (nbits == 15)
14211 {
14212 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14213 val &= 0xf;
14214 }
14215 else if (nbits == 6)
14216 {
14217 extval = ((val & 0x1f) << 6) | (val & 0x20);
14218 val = 0;
14219 }
14220 return (extval << 16) | val;
14221 }
14222
14223 /* Like decode_mips16_operand, but require the operand to be defined and
14224 require it to be an integer. */
14225
14226 static const struct mips_int_operand *
14227 mips16_immed_operand (int type, bfd_boolean extended_p)
14228 {
14229 const struct mips_operand *operand;
14230
14231 operand = decode_mips16_operand (type, extended_p);
14232 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14233 abort ();
14234 return (const struct mips_int_operand *) operand;
14235 }
14236
14237 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14238
14239 static bfd_boolean
14240 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14241 bfd_reloc_code_real_type reloc, offsetT sval)
14242 {
14243 int min_val, max_val;
14244
14245 min_val = mips_int_operand_min (operand);
14246 max_val = mips_int_operand_max (operand);
14247 if (reloc != BFD_RELOC_UNUSED)
14248 {
14249 if (min_val < 0)
14250 sval = SEXT_16BIT (sval);
14251 else
14252 sval &= 0xffff;
14253 }
14254
14255 return (sval >= min_val
14256 && sval <= max_val
14257 && (sval & ((1 << operand->shift) - 1)) == 0);
14258 }
14259
14260 /* Install immediate value VAL into MIPS16 instruction *INSN,
14261 extending it if necessary. The instruction in *INSN may
14262 already be extended.
14263
14264 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14265 if none. In the former case, VAL is a 16-bit number with no
14266 defined signedness.
14267
14268 TYPE is the type of the immediate field. USER_INSN_LENGTH
14269 is the length that the user requested, or 0 if none. */
14270
14271 static void
14272 mips16_immed (const char *file, unsigned int line, int type,
14273 bfd_reloc_code_real_type reloc, offsetT val,
14274 unsigned int user_insn_length, unsigned long *insn)
14275 {
14276 const struct mips_int_operand *operand;
14277 unsigned int uval, length;
14278
14279 operand = mips16_immed_operand (type, FALSE);
14280 if (!mips16_immed_in_range_p (operand, reloc, val))
14281 {
14282 /* We need an extended instruction. */
14283 if (user_insn_length == 2)
14284 as_bad_where (file, line, _("invalid unextended operand value"));
14285 else
14286 *insn |= MIPS16_EXTEND;
14287 }
14288 else if (user_insn_length == 4)
14289 {
14290 /* The operand doesn't force an unextended instruction to be extended.
14291 Warn if the user wanted an extended instruction anyway. */
14292 *insn |= MIPS16_EXTEND;
14293 as_warn_where (file, line,
14294 _("extended operand requested but not required"));
14295 }
14296
14297 length = mips16_opcode_length (*insn);
14298 if (length == 4)
14299 {
14300 operand = mips16_immed_operand (type, TRUE);
14301 if (!mips16_immed_in_range_p (operand, reloc, val))
14302 as_bad_where (file, line,
14303 _("operand value out of range for instruction"));
14304 }
14305 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14306 if (length == 2 || operand->root.lsb != 0)
14307 *insn = mips_insert_operand (&operand->root, *insn, uval);
14308 else
14309 *insn |= mips16_immed_extend (uval, operand->root.size);
14310 }
14311 \f
14312 struct percent_op_match
14313 {
14314 const char *str;
14315 bfd_reloc_code_real_type reloc;
14316 };
14317
14318 static const struct percent_op_match mips_percent_op[] =
14319 {
14320 {"%lo", BFD_RELOC_LO16},
14321 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14322 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14323 {"%call16", BFD_RELOC_MIPS_CALL16},
14324 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14325 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14326 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14327 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14328 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14329 {"%got", BFD_RELOC_MIPS_GOT16},
14330 {"%gp_rel", BFD_RELOC_GPREL16},
14331 {"%gprel", BFD_RELOC_GPREL16},
14332 {"%half", BFD_RELOC_16},
14333 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14334 {"%higher", BFD_RELOC_MIPS_HIGHER},
14335 {"%neg", BFD_RELOC_MIPS_SUB},
14336 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14337 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14338 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14339 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14340 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14341 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14342 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14343 {"%hi", BFD_RELOC_HI16_S},
14344 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14345 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14346 };
14347
14348 static const struct percent_op_match mips16_percent_op[] =
14349 {
14350 {"%lo", BFD_RELOC_MIPS16_LO16},
14351 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14352 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14353 {"%got", BFD_RELOC_MIPS16_GOT16},
14354 {"%call16", BFD_RELOC_MIPS16_CALL16},
14355 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14356 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14357 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14358 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14359 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14360 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14361 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14362 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14363 };
14364
14365
14366 /* Return true if *STR points to a relocation operator. When returning true,
14367 move *STR over the operator and store its relocation code in *RELOC.
14368 Leave both *STR and *RELOC alone when returning false. */
14369
14370 static bfd_boolean
14371 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14372 {
14373 const struct percent_op_match *percent_op;
14374 size_t limit, i;
14375
14376 if (mips_opts.mips16)
14377 {
14378 percent_op = mips16_percent_op;
14379 limit = ARRAY_SIZE (mips16_percent_op);
14380 }
14381 else
14382 {
14383 percent_op = mips_percent_op;
14384 limit = ARRAY_SIZE (mips_percent_op);
14385 }
14386
14387 for (i = 0; i < limit; i++)
14388 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14389 {
14390 int len = strlen (percent_op[i].str);
14391
14392 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14393 continue;
14394
14395 *str += strlen (percent_op[i].str);
14396 *reloc = percent_op[i].reloc;
14397
14398 /* Check whether the output BFD supports this relocation.
14399 If not, issue an error and fall back on something safe. */
14400 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14401 {
14402 as_bad (_("relocation %s isn't supported by the current ABI"),
14403 percent_op[i].str);
14404 *reloc = BFD_RELOC_UNUSED;
14405 }
14406 return TRUE;
14407 }
14408 return FALSE;
14409 }
14410
14411
14412 /* Parse string STR as a 16-bit relocatable operand. Store the
14413 expression in *EP and the relocations in the array starting
14414 at RELOC. Return the number of relocation operators used.
14415
14416 On exit, EXPR_END points to the first character after the expression. */
14417
14418 static size_t
14419 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14420 char *str)
14421 {
14422 bfd_reloc_code_real_type reversed_reloc[3];
14423 size_t reloc_index, i;
14424 int crux_depth, str_depth;
14425 char *crux;
14426
14427 /* Search for the start of the main expression, recoding relocations
14428 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14429 of the main expression and with CRUX_DEPTH containing the number
14430 of open brackets at that point. */
14431 reloc_index = -1;
14432 str_depth = 0;
14433 do
14434 {
14435 reloc_index++;
14436 crux = str;
14437 crux_depth = str_depth;
14438
14439 /* Skip over whitespace and brackets, keeping count of the number
14440 of brackets. */
14441 while (*str == ' ' || *str == '\t' || *str == '(')
14442 if (*str++ == '(')
14443 str_depth++;
14444 }
14445 while (*str == '%'
14446 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14447 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14448
14449 my_getExpression (ep, crux);
14450 str = expr_end;
14451
14452 /* Match every open bracket. */
14453 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14454 if (*str++ == ')')
14455 crux_depth--;
14456
14457 if (crux_depth > 0)
14458 as_bad (_("unclosed '('"));
14459
14460 expr_end = str;
14461
14462 if (reloc_index != 0)
14463 {
14464 prev_reloc_op_frag = frag_now;
14465 for (i = 0; i < reloc_index; i++)
14466 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14467 }
14468
14469 return reloc_index;
14470 }
14471
14472 static void
14473 my_getExpression (expressionS *ep, char *str)
14474 {
14475 char *save_in;
14476
14477 save_in = input_line_pointer;
14478 input_line_pointer = str;
14479 expression (ep);
14480 expr_end = input_line_pointer;
14481 input_line_pointer = save_in;
14482 }
14483
14484 const char *
14485 md_atof (int type, char *litP, int *sizeP)
14486 {
14487 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14488 }
14489
14490 void
14491 md_number_to_chars (char *buf, valueT val, int n)
14492 {
14493 if (target_big_endian)
14494 number_to_chars_bigendian (buf, val, n);
14495 else
14496 number_to_chars_littleendian (buf, val, n);
14497 }
14498 \f
14499 static int support_64bit_objects(void)
14500 {
14501 const char **list, **l;
14502 int yes;
14503
14504 list = bfd_target_list ();
14505 for (l = list; *l != NULL; l++)
14506 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14507 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14508 break;
14509 yes = (*l != NULL);
14510 free (list);
14511 return yes;
14512 }
14513
14514 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14515 NEW_VALUE. Warn if another value was already specified. Note:
14516 we have to defer parsing the -march and -mtune arguments in order
14517 to handle 'from-abi' correctly, since the ABI might be specified
14518 in a later argument. */
14519
14520 static void
14521 mips_set_option_string (const char **string_ptr, const char *new_value)
14522 {
14523 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14524 as_warn (_("a different %s was already specified, is now %s"),
14525 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14526 new_value);
14527
14528 *string_ptr = new_value;
14529 }
14530
14531 int
14532 md_parse_option (int c, const char *arg)
14533 {
14534 unsigned int i;
14535
14536 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14537 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14538 {
14539 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14540 c == mips_ases[i].option_on);
14541 return 1;
14542 }
14543
14544 switch (c)
14545 {
14546 case OPTION_CONSTRUCT_FLOATS:
14547 mips_disable_float_construction = 0;
14548 break;
14549
14550 case OPTION_NO_CONSTRUCT_FLOATS:
14551 mips_disable_float_construction = 1;
14552 break;
14553
14554 case OPTION_TRAP:
14555 mips_trap = 1;
14556 break;
14557
14558 case OPTION_BREAK:
14559 mips_trap = 0;
14560 break;
14561
14562 case OPTION_EB:
14563 target_big_endian = 1;
14564 break;
14565
14566 case OPTION_EL:
14567 target_big_endian = 0;
14568 break;
14569
14570 case 'O':
14571 if (arg == NULL)
14572 mips_optimize = 1;
14573 else if (arg[0] == '0')
14574 mips_optimize = 0;
14575 else if (arg[0] == '1')
14576 mips_optimize = 1;
14577 else
14578 mips_optimize = 2;
14579 break;
14580
14581 case 'g':
14582 if (arg == NULL)
14583 mips_debug = 2;
14584 else
14585 mips_debug = atoi (arg);
14586 break;
14587
14588 case OPTION_MIPS1:
14589 file_mips_opts.isa = ISA_MIPS1;
14590 break;
14591
14592 case OPTION_MIPS2:
14593 file_mips_opts.isa = ISA_MIPS2;
14594 break;
14595
14596 case OPTION_MIPS3:
14597 file_mips_opts.isa = ISA_MIPS3;
14598 break;
14599
14600 case OPTION_MIPS4:
14601 file_mips_opts.isa = ISA_MIPS4;
14602 break;
14603
14604 case OPTION_MIPS5:
14605 file_mips_opts.isa = ISA_MIPS5;
14606 break;
14607
14608 case OPTION_MIPS32:
14609 file_mips_opts.isa = ISA_MIPS32;
14610 break;
14611
14612 case OPTION_MIPS32R2:
14613 file_mips_opts.isa = ISA_MIPS32R2;
14614 break;
14615
14616 case OPTION_MIPS32R3:
14617 file_mips_opts.isa = ISA_MIPS32R3;
14618 break;
14619
14620 case OPTION_MIPS32R5:
14621 file_mips_opts.isa = ISA_MIPS32R5;
14622 break;
14623
14624 case OPTION_MIPS32R6:
14625 file_mips_opts.isa = ISA_MIPS32R6;
14626 break;
14627
14628 case OPTION_MIPS64R2:
14629 file_mips_opts.isa = ISA_MIPS64R2;
14630 break;
14631
14632 case OPTION_MIPS64R3:
14633 file_mips_opts.isa = ISA_MIPS64R3;
14634 break;
14635
14636 case OPTION_MIPS64R5:
14637 file_mips_opts.isa = ISA_MIPS64R5;
14638 break;
14639
14640 case OPTION_MIPS64R6:
14641 file_mips_opts.isa = ISA_MIPS64R6;
14642 break;
14643
14644 case OPTION_MIPS64:
14645 file_mips_opts.isa = ISA_MIPS64;
14646 break;
14647
14648 case OPTION_MTUNE:
14649 mips_set_option_string (&mips_tune_string, arg);
14650 break;
14651
14652 case OPTION_MARCH:
14653 mips_set_option_string (&mips_arch_string, arg);
14654 break;
14655
14656 case OPTION_M4650:
14657 mips_set_option_string (&mips_arch_string, "4650");
14658 mips_set_option_string (&mips_tune_string, "4650");
14659 break;
14660
14661 case OPTION_NO_M4650:
14662 break;
14663
14664 case OPTION_M4010:
14665 mips_set_option_string (&mips_arch_string, "4010");
14666 mips_set_option_string (&mips_tune_string, "4010");
14667 break;
14668
14669 case OPTION_NO_M4010:
14670 break;
14671
14672 case OPTION_M4100:
14673 mips_set_option_string (&mips_arch_string, "4100");
14674 mips_set_option_string (&mips_tune_string, "4100");
14675 break;
14676
14677 case OPTION_NO_M4100:
14678 break;
14679
14680 case OPTION_M3900:
14681 mips_set_option_string (&mips_arch_string, "3900");
14682 mips_set_option_string (&mips_tune_string, "3900");
14683 break;
14684
14685 case OPTION_NO_M3900:
14686 break;
14687
14688 case OPTION_MICROMIPS:
14689 if (file_mips_opts.mips16 == 1)
14690 {
14691 as_bad (_("-mmicromips cannot be used with -mips16"));
14692 return 0;
14693 }
14694 file_mips_opts.micromips = 1;
14695 mips_no_prev_insn ();
14696 break;
14697
14698 case OPTION_NO_MICROMIPS:
14699 file_mips_opts.micromips = 0;
14700 mips_no_prev_insn ();
14701 break;
14702
14703 case OPTION_MIPS16:
14704 if (file_mips_opts.micromips == 1)
14705 {
14706 as_bad (_("-mips16 cannot be used with -micromips"));
14707 return 0;
14708 }
14709 file_mips_opts.mips16 = 1;
14710 mips_no_prev_insn ();
14711 break;
14712
14713 case OPTION_NO_MIPS16:
14714 file_mips_opts.mips16 = 0;
14715 mips_no_prev_insn ();
14716 break;
14717
14718 case OPTION_FIX_24K:
14719 mips_fix_24k = 1;
14720 break;
14721
14722 case OPTION_NO_FIX_24K:
14723 mips_fix_24k = 0;
14724 break;
14725
14726 case OPTION_FIX_RM7000:
14727 mips_fix_rm7000 = 1;
14728 break;
14729
14730 case OPTION_NO_FIX_RM7000:
14731 mips_fix_rm7000 = 0;
14732 break;
14733
14734 case OPTION_FIX_LOONGSON2F_JUMP:
14735 mips_fix_loongson2f_jump = TRUE;
14736 break;
14737
14738 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14739 mips_fix_loongson2f_jump = FALSE;
14740 break;
14741
14742 case OPTION_FIX_LOONGSON2F_NOP:
14743 mips_fix_loongson2f_nop = TRUE;
14744 break;
14745
14746 case OPTION_NO_FIX_LOONGSON2F_NOP:
14747 mips_fix_loongson2f_nop = FALSE;
14748 break;
14749
14750 case OPTION_FIX_VR4120:
14751 mips_fix_vr4120 = 1;
14752 break;
14753
14754 case OPTION_NO_FIX_VR4120:
14755 mips_fix_vr4120 = 0;
14756 break;
14757
14758 case OPTION_FIX_VR4130:
14759 mips_fix_vr4130 = 1;
14760 break;
14761
14762 case OPTION_NO_FIX_VR4130:
14763 mips_fix_vr4130 = 0;
14764 break;
14765
14766 case OPTION_FIX_CN63XXP1:
14767 mips_fix_cn63xxp1 = TRUE;
14768 break;
14769
14770 case OPTION_NO_FIX_CN63XXP1:
14771 mips_fix_cn63xxp1 = FALSE;
14772 break;
14773
14774 case OPTION_FIX_R5900:
14775 mips_fix_r5900 = TRUE;
14776 mips_fix_r5900_explicit = TRUE;
14777 break;
14778
14779 case OPTION_NO_FIX_R5900:
14780 mips_fix_r5900 = FALSE;
14781 mips_fix_r5900_explicit = TRUE;
14782 break;
14783
14784 case OPTION_RELAX_BRANCH:
14785 mips_relax_branch = 1;
14786 break;
14787
14788 case OPTION_NO_RELAX_BRANCH:
14789 mips_relax_branch = 0;
14790 break;
14791
14792 case OPTION_IGNORE_BRANCH_ISA:
14793 mips_ignore_branch_isa = TRUE;
14794 break;
14795
14796 case OPTION_NO_IGNORE_BRANCH_ISA:
14797 mips_ignore_branch_isa = FALSE;
14798 break;
14799
14800 case OPTION_INSN32:
14801 file_mips_opts.insn32 = TRUE;
14802 break;
14803
14804 case OPTION_NO_INSN32:
14805 file_mips_opts.insn32 = FALSE;
14806 break;
14807
14808 case OPTION_MSHARED:
14809 mips_in_shared = TRUE;
14810 break;
14811
14812 case OPTION_MNO_SHARED:
14813 mips_in_shared = FALSE;
14814 break;
14815
14816 case OPTION_MSYM32:
14817 file_mips_opts.sym32 = TRUE;
14818 break;
14819
14820 case OPTION_MNO_SYM32:
14821 file_mips_opts.sym32 = FALSE;
14822 break;
14823
14824 /* When generating ELF code, we permit -KPIC and -call_shared to
14825 select SVR4_PIC, and -non_shared to select no PIC. This is
14826 intended to be compatible with Irix 5. */
14827 case OPTION_CALL_SHARED:
14828 mips_pic = SVR4_PIC;
14829 mips_abicalls = TRUE;
14830 break;
14831
14832 case OPTION_CALL_NONPIC:
14833 mips_pic = NO_PIC;
14834 mips_abicalls = TRUE;
14835 break;
14836
14837 case OPTION_NON_SHARED:
14838 mips_pic = NO_PIC;
14839 mips_abicalls = FALSE;
14840 break;
14841
14842 /* The -xgot option tells the assembler to use 32 bit offsets
14843 when accessing the got in SVR4_PIC mode. It is for Irix
14844 compatibility. */
14845 case OPTION_XGOT:
14846 mips_big_got = 1;
14847 break;
14848
14849 case 'G':
14850 g_switch_value = atoi (arg);
14851 g_switch_seen = 1;
14852 break;
14853
14854 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14855 and -mabi=64. */
14856 case OPTION_32:
14857 mips_abi = O32_ABI;
14858 break;
14859
14860 case OPTION_N32:
14861 mips_abi = N32_ABI;
14862 break;
14863
14864 case OPTION_64:
14865 mips_abi = N64_ABI;
14866 if (!support_64bit_objects())
14867 as_fatal (_("no compiled in support for 64 bit object file format"));
14868 break;
14869
14870 case OPTION_GP32:
14871 file_mips_opts.gp = 32;
14872 break;
14873
14874 case OPTION_GP64:
14875 file_mips_opts.gp = 64;
14876 break;
14877
14878 case OPTION_FP32:
14879 file_mips_opts.fp = 32;
14880 break;
14881
14882 case OPTION_FPXX:
14883 file_mips_opts.fp = 0;
14884 break;
14885
14886 case OPTION_FP64:
14887 file_mips_opts.fp = 64;
14888 break;
14889
14890 case OPTION_ODD_SPREG:
14891 file_mips_opts.oddspreg = 1;
14892 break;
14893
14894 case OPTION_NO_ODD_SPREG:
14895 file_mips_opts.oddspreg = 0;
14896 break;
14897
14898 case OPTION_SINGLE_FLOAT:
14899 file_mips_opts.single_float = 1;
14900 break;
14901
14902 case OPTION_DOUBLE_FLOAT:
14903 file_mips_opts.single_float = 0;
14904 break;
14905
14906 case OPTION_SOFT_FLOAT:
14907 file_mips_opts.soft_float = 1;
14908 break;
14909
14910 case OPTION_HARD_FLOAT:
14911 file_mips_opts.soft_float = 0;
14912 break;
14913
14914 case OPTION_MABI:
14915 if (strcmp (arg, "32") == 0)
14916 mips_abi = O32_ABI;
14917 else if (strcmp (arg, "o64") == 0)
14918 mips_abi = O64_ABI;
14919 else if (strcmp (arg, "n32") == 0)
14920 mips_abi = N32_ABI;
14921 else if (strcmp (arg, "64") == 0)
14922 {
14923 mips_abi = N64_ABI;
14924 if (! support_64bit_objects())
14925 as_fatal (_("no compiled in support for 64 bit object file "
14926 "format"));
14927 }
14928 else if (strcmp (arg, "eabi") == 0)
14929 mips_abi = EABI_ABI;
14930 else
14931 {
14932 as_fatal (_("invalid abi -mabi=%s"), arg);
14933 return 0;
14934 }
14935 break;
14936
14937 case OPTION_M7000_HILO_FIX:
14938 mips_7000_hilo_fix = TRUE;
14939 break;
14940
14941 case OPTION_MNO_7000_HILO_FIX:
14942 mips_7000_hilo_fix = FALSE;
14943 break;
14944
14945 case OPTION_MDEBUG:
14946 mips_flag_mdebug = TRUE;
14947 break;
14948
14949 case OPTION_NO_MDEBUG:
14950 mips_flag_mdebug = FALSE;
14951 break;
14952
14953 case OPTION_PDR:
14954 mips_flag_pdr = TRUE;
14955 break;
14956
14957 case OPTION_NO_PDR:
14958 mips_flag_pdr = FALSE;
14959 break;
14960
14961 case OPTION_MVXWORKS_PIC:
14962 mips_pic = VXWORKS_PIC;
14963 break;
14964
14965 case OPTION_NAN:
14966 if (strcmp (arg, "2008") == 0)
14967 mips_nan2008 = 1;
14968 else if (strcmp (arg, "legacy") == 0)
14969 mips_nan2008 = 0;
14970 else
14971 {
14972 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14973 return 0;
14974 }
14975 break;
14976
14977 default:
14978 return 0;
14979 }
14980
14981 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14982
14983 return 1;
14984 }
14985 \f
14986 /* Set up globals to tune for the ISA or processor described by INFO. */
14987
14988 static void
14989 mips_set_tune (const struct mips_cpu_info *info)
14990 {
14991 if (info != 0)
14992 mips_tune = info->cpu;
14993 }
14994
14995
14996 void
14997 mips_after_parse_args (void)
14998 {
14999 const struct mips_cpu_info *arch_info = 0;
15000 const struct mips_cpu_info *tune_info = 0;
15001
15002 /* GP relative stuff not working for PE */
15003 if (strncmp (TARGET_OS, "pe", 2) == 0)
15004 {
15005 if (g_switch_seen && g_switch_value != 0)
15006 as_bad (_("-G not supported in this configuration"));
15007 g_switch_value = 0;
15008 }
15009
15010 if (mips_abi == NO_ABI)
15011 mips_abi = MIPS_DEFAULT_ABI;
15012
15013 /* The following code determines the architecture.
15014 Similar code was added to GCC 3.3 (see override_options() in
15015 config/mips/mips.c). The GAS and GCC code should be kept in sync
15016 as much as possible. */
15017
15018 if (mips_arch_string != 0)
15019 arch_info = mips_parse_cpu ("-march", mips_arch_string);
15020
15021 if (file_mips_opts.isa != ISA_UNKNOWN)
15022 {
15023 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
15024 ISA level specified by -mipsN, while arch_info->isa contains
15025 the -march selection (if any). */
15026 if (arch_info != 0)
15027 {
15028 /* -march takes precedence over -mipsN, since it is more descriptive.
15029 There's no harm in specifying both as long as the ISA levels
15030 are the same. */
15031 if (file_mips_opts.isa != arch_info->isa)
15032 as_bad (_("-%s conflicts with the other architecture options,"
15033 " which imply -%s"),
15034 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
15035 mips_cpu_info_from_isa (arch_info->isa)->name);
15036 }
15037 else
15038 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
15039 }
15040
15041 if (arch_info == 0)
15042 {
15043 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15044 gas_assert (arch_info);
15045 }
15046
15047 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15048 as_bad (_("-march=%s is not compatible with the selected ABI"),
15049 arch_info->name);
15050
15051 file_mips_opts.arch = arch_info->cpu;
15052 file_mips_opts.isa = arch_info->isa;
15053
15054 /* Set up initial mips_opts state. */
15055 mips_opts = file_mips_opts;
15056
15057 /* For the R5900 default to `-mfix-r5900' unless the user told otherwise. */
15058 if (!mips_fix_r5900_explicit)
15059 mips_fix_r5900 = file_mips_opts.arch == CPU_R5900;
15060
15061 /* The register size inference code is now placed in
15062 file_mips_check_options. */
15063
15064 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15065 processor. */
15066 if (mips_tune_string != 0)
15067 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15068
15069 if (tune_info == 0)
15070 mips_set_tune (arch_info);
15071 else
15072 mips_set_tune (tune_info);
15073
15074 if (mips_flag_mdebug < 0)
15075 mips_flag_mdebug = 0;
15076 }
15077 \f
15078 void
15079 mips_init_after_args (void)
15080 {
15081 /* initialize opcodes */
15082 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15083 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15084 }
15085
15086 long
15087 md_pcrel_from (fixS *fixP)
15088 {
15089 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15090 switch (fixP->fx_r_type)
15091 {
15092 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15093 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15094 /* Return the address of the delay slot. */
15095 return addr + 2;
15096
15097 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15098 case BFD_RELOC_MICROMIPS_JMP:
15099 case BFD_RELOC_MIPS16_16_PCREL_S1:
15100 case BFD_RELOC_16_PCREL_S2:
15101 case BFD_RELOC_MIPS_21_PCREL_S2:
15102 case BFD_RELOC_MIPS_26_PCREL_S2:
15103 case BFD_RELOC_MIPS_JMP:
15104 /* Return the address of the delay slot. */
15105 return addr + 4;
15106
15107 case BFD_RELOC_MIPS_18_PCREL_S3:
15108 /* Return the aligned address of the doubleword containing
15109 the instruction. */
15110 return addr & ~7;
15111
15112 default:
15113 return addr;
15114 }
15115 }
15116
15117 /* This is called before the symbol table is processed. In order to
15118 work with gcc when using mips-tfile, we must keep all local labels.
15119 However, in other cases, we want to discard them. If we were
15120 called with -g, but we didn't see any debugging information, it may
15121 mean that gcc is smuggling debugging information through to
15122 mips-tfile, in which case we must generate all local labels. */
15123
15124 void
15125 mips_frob_file_before_adjust (void)
15126 {
15127 #ifndef NO_ECOFF_DEBUGGING
15128 if (ECOFF_DEBUGGING
15129 && mips_debug != 0
15130 && ! ecoff_debugging_seen)
15131 flag_keep_locals = 1;
15132 #endif
15133 }
15134
15135 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15136 the corresponding LO16 reloc. This is called before md_apply_fix and
15137 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15138 relocation operators.
15139
15140 For our purposes, a %lo() expression matches a %got() or %hi()
15141 expression if:
15142
15143 (a) it refers to the same symbol; and
15144 (b) the offset applied in the %lo() expression is no lower than
15145 the offset applied in the %got() or %hi().
15146
15147 (b) allows us to cope with code like:
15148
15149 lui $4,%hi(foo)
15150 lh $4,%lo(foo+2)($4)
15151
15152 ...which is legal on RELA targets, and has a well-defined behaviour
15153 if the user knows that adding 2 to "foo" will not induce a carry to
15154 the high 16 bits.
15155
15156 When several %lo()s match a particular %got() or %hi(), we use the
15157 following rules to distinguish them:
15158
15159 (1) %lo()s with smaller offsets are a better match than %lo()s with
15160 higher offsets.
15161
15162 (2) %lo()s with no matching %got() or %hi() are better than those
15163 that already have a matching %got() or %hi().
15164
15165 (3) later %lo()s are better than earlier %lo()s.
15166
15167 These rules are applied in order.
15168
15169 (1) means, among other things, that %lo()s with identical offsets are
15170 chosen if they exist.
15171
15172 (2) means that we won't associate several high-part relocations with
15173 the same low-part relocation unless there's no alternative. Having
15174 several high parts for the same low part is a GNU extension; this rule
15175 allows careful users to avoid it.
15176
15177 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15178 with the last high-part relocation being at the front of the list.
15179 It therefore makes sense to choose the last matching low-part
15180 relocation, all other things being equal. It's also easier
15181 to code that way. */
15182
15183 void
15184 mips_frob_file (void)
15185 {
15186 struct mips_hi_fixup *l;
15187 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15188
15189 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15190 {
15191 segment_info_type *seginfo;
15192 bfd_boolean matched_lo_p;
15193 fixS **hi_pos, **lo_pos, **pos;
15194
15195 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15196
15197 /* If a GOT16 relocation turns out to be against a global symbol,
15198 there isn't supposed to be a matching LO. Ignore %gots against
15199 constants; we'll report an error for those later. */
15200 if (got16_reloc_p (l->fixp->fx_r_type)
15201 && !(l->fixp->fx_addsy
15202 && pic_need_relax (l->fixp->fx_addsy)))
15203 continue;
15204
15205 /* Check quickly whether the next fixup happens to be a matching %lo. */
15206 if (fixup_has_matching_lo_p (l->fixp))
15207 continue;
15208
15209 seginfo = seg_info (l->seg);
15210
15211 /* Set HI_POS to the position of this relocation in the chain.
15212 Set LO_POS to the position of the chosen low-part relocation.
15213 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15214 relocation that matches an immediately-preceding high-part
15215 relocation. */
15216 hi_pos = NULL;
15217 lo_pos = NULL;
15218 matched_lo_p = FALSE;
15219 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15220
15221 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15222 {
15223 if (*pos == l->fixp)
15224 hi_pos = pos;
15225
15226 if ((*pos)->fx_r_type == looking_for_rtype
15227 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15228 && (*pos)->fx_offset >= l->fixp->fx_offset
15229 && (lo_pos == NULL
15230 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15231 || (!matched_lo_p
15232 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15233 lo_pos = pos;
15234
15235 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15236 && fixup_has_matching_lo_p (*pos));
15237 }
15238
15239 /* If we found a match, remove the high-part relocation from its
15240 current position and insert it before the low-part relocation.
15241 Make the offsets match so that fixup_has_matching_lo_p()
15242 will return true.
15243
15244 We don't warn about unmatched high-part relocations since some
15245 versions of gcc have been known to emit dead "lui ...%hi(...)"
15246 instructions. */
15247 if (lo_pos != NULL)
15248 {
15249 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15250 if (l->fixp->fx_next != *lo_pos)
15251 {
15252 *hi_pos = l->fixp->fx_next;
15253 l->fixp->fx_next = *lo_pos;
15254 *lo_pos = l->fixp;
15255 }
15256 }
15257 }
15258 }
15259
15260 int
15261 mips_force_relocation (fixS *fixp)
15262 {
15263 if (generic_force_reloc (fixp))
15264 return 1;
15265
15266 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15267 so that the linker relaxation can update targets. */
15268 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15269 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15270 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15271 return 1;
15272
15273 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15274 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15275 microMIPS symbols so that we can do cross-mode branch diagnostics
15276 and BAL to JALX conversion by the linker. */
15277 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15278 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15279 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15280 && fixp->fx_addsy
15281 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15282 return 1;
15283
15284 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15285 if (ISA_IS_R6 (file_mips_opts.isa)
15286 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15287 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15288 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15289 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15290 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15291 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15292 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15293 return 1;
15294
15295 return 0;
15296 }
15297
15298 /* Implement TC_FORCE_RELOCATION_ABS. */
15299
15300 bfd_boolean
15301 mips_force_relocation_abs (fixS *fixp)
15302 {
15303 if (generic_force_reloc (fixp))
15304 return TRUE;
15305
15306 /* These relocations do not have enough bits in the in-place addend
15307 to hold an arbitrary absolute section's offset. */
15308 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15309 return TRUE;
15310
15311 return FALSE;
15312 }
15313
15314 /* Read the instruction associated with RELOC from BUF. */
15315
15316 static unsigned int
15317 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15318 {
15319 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15320 return read_compressed_insn (buf, 4);
15321 else
15322 return read_insn (buf);
15323 }
15324
15325 /* Write instruction INSN to BUF, given that it has been relocated
15326 by RELOC. */
15327
15328 static void
15329 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15330 unsigned long insn)
15331 {
15332 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15333 write_compressed_insn (buf, insn, 4);
15334 else
15335 write_insn (buf, insn);
15336 }
15337
15338 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15339 to a symbol in another ISA mode, which cannot be converted to JALX. */
15340
15341 static bfd_boolean
15342 fix_bad_cross_mode_jump_p (fixS *fixP)
15343 {
15344 unsigned long opcode;
15345 int other;
15346 char *buf;
15347
15348 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15349 return FALSE;
15350
15351 other = S_GET_OTHER (fixP->fx_addsy);
15352 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15353 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15354 switch (fixP->fx_r_type)
15355 {
15356 case BFD_RELOC_MIPS_JMP:
15357 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15358 case BFD_RELOC_MICROMIPS_JMP:
15359 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15360 default:
15361 return FALSE;
15362 }
15363 }
15364
15365 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15366 jump to a symbol in the same ISA mode. */
15367
15368 static bfd_boolean
15369 fix_bad_same_mode_jalx_p (fixS *fixP)
15370 {
15371 unsigned long opcode;
15372 int other;
15373 char *buf;
15374
15375 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15376 return FALSE;
15377
15378 other = S_GET_OTHER (fixP->fx_addsy);
15379 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15380 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15381 switch (fixP->fx_r_type)
15382 {
15383 case BFD_RELOC_MIPS_JMP:
15384 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15385 case BFD_RELOC_MIPS16_JMP:
15386 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15387 case BFD_RELOC_MICROMIPS_JMP:
15388 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15389 default:
15390 return FALSE;
15391 }
15392 }
15393
15394 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15395 to a symbol whose value plus addend is not aligned according to the
15396 ultimate (after linker relaxation) jump instruction's immediate field
15397 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15398 regular MIPS code, to (1 << 2). */
15399
15400 static bfd_boolean
15401 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15402 {
15403 bfd_boolean micro_to_mips_p;
15404 valueT val;
15405 int other;
15406
15407 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15408 return FALSE;
15409
15410 other = S_GET_OTHER (fixP->fx_addsy);
15411 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15412 val += fixP->fx_offset;
15413 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15414 && !ELF_ST_IS_MICROMIPS (other));
15415 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15416 != ELF_ST_IS_COMPRESSED (other));
15417 }
15418
15419 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15420 to a symbol whose annotation indicates another ISA mode. For absolute
15421 symbols check the ISA bit instead.
15422
15423 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15424 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15425 MIPS symbols and associated with BAL instructions as these instructions
15426 may be converted to JALX by the linker. */
15427
15428 static bfd_boolean
15429 fix_bad_cross_mode_branch_p (fixS *fixP)
15430 {
15431 bfd_boolean absolute_p;
15432 unsigned long opcode;
15433 asection *symsec;
15434 valueT val;
15435 int other;
15436 char *buf;
15437
15438 if (mips_ignore_branch_isa)
15439 return FALSE;
15440
15441 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15442 return FALSE;
15443
15444 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15445 absolute_p = bfd_is_abs_section (symsec);
15446
15447 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15448 other = S_GET_OTHER (fixP->fx_addsy);
15449
15450 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15451 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15452 switch (fixP->fx_r_type)
15453 {
15454 case BFD_RELOC_16_PCREL_S2:
15455 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15456 && opcode != 0x0411);
15457 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15458 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15459 && opcode != 0x4060);
15460 case BFD_RELOC_MIPS_21_PCREL_S2:
15461 case BFD_RELOC_MIPS_26_PCREL_S2:
15462 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15463 case BFD_RELOC_MIPS16_16_PCREL_S1:
15464 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15465 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15466 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15467 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15468 default:
15469 abort ();
15470 }
15471 }
15472
15473 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15474 branch instruction pointed to by FIXP is not aligned according to the
15475 branch instruction's immediate field requirement. We need the addend
15476 to preserve the ISA bit and also the sum must not have bit 2 set. We
15477 must explicitly OR in the ISA bit from symbol annotation as the bit
15478 won't be set in the symbol's value then. */
15479
15480 static bfd_boolean
15481 fix_bad_misaligned_branch_p (fixS *fixP)
15482 {
15483 bfd_boolean absolute_p;
15484 asection *symsec;
15485 valueT isa_bit;
15486 valueT val;
15487 valueT off;
15488 int other;
15489
15490 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15491 return FALSE;
15492
15493 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15494 absolute_p = bfd_is_abs_section (symsec);
15495
15496 val = S_GET_VALUE (fixP->fx_addsy);
15497 other = S_GET_OTHER (fixP->fx_addsy);
15498 off = fixP->fx_offset;
15499
15500 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15501 val |= ELF_ST_IS_COMPRESSED (other);
15502 val += off;
15503 return (val & 0x3) != isa_bit;
15504 }
15505
15506 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15507 and its calculated value VAL. */
15508
15509 static void
15510 fix_validate_branch (fixS *fixP, valueT val)
15511 {
15512 if (fixP->fx_done && (val & 0x3) != 0)
15513 as_bad_where (fixP->fx_file, fixP->fx_line,
15514 _("branch to misaligned address (0x%lx)"),
15515 (long) (val + md_pcrel_from (fixP)));
15516 else if (fix_bad_cross_mode_branch_p (fixP))
15517 as_bad_where (fixP->fx_file, fixP->fx_line,
15518 _("branch to a symbol in another ISA mode"));
15519 else if (fix_bad_misaligned_branch_p (fixP))
15520 as_bad_where (fixP->fx_file, fixP->fx_line,
15521 _("branch to misaligned address (0x%lx)"),
15522 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15523 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15524 as_bad_where (fixP->fx_file, fixP->fx_line,
15525 _("cannot encode misaligned addend "
15526 "in the relocatable field (0x%lx)"),
15527 (long) fixP->fx_offset);
15528 }
15529
15530 /* Apply a fixup to the object file. */
15531
15532 void
15533 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15534 {
15535 char *buf;
15536 unsigned long insn;
15537 reloc_howto_type *howto;
15538
15539 if (fixP->fx_pcrel)
15540 switch (fixP->fx_r_type)
15541 {
15542 case BFD_RELOC_16_PCREL_S2:
15543 case BFD_RELOC_MIPS16_16_PCREL_S1:
15544 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15545 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15546 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15547 case BFD_RELOC_32_PCREL:
15548 case BFD_RELOC_MIPS_21_PCREL_S2:
15549 case BFD_RELOC_MIPS_26_PCREL_S2:
15550 case BFD_RELOC_MIPS_18_PCREL_S3:
15551 case BFD_RELOC_MIPS_19_PCREL_S2:
15552 case BFD_RELOC_HI16_S_PCREL:
15553 case BFD_RELOC_LO16_PCREL:
15554 break;
15555
15556 case BFD_RELOC_32:
15557 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15558 break;
15559
15560 default:
15561 as_bad_where (fixP->fx_file, fixP->fx_line,
15562 _("PC-relative reference to a different section"));
15563 break;
15564 }
15565
15566 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15567 that have no MIPS ELF equivalent. */
15568 if (fixP->fx_r_type != BFD_RELOC_8)
15569 {
15570 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15571 if (!howto)
15572 return;
15573 }
15574
15575 gas_assert (fixP->fx_size == 2
15576 || fixP->fx_size == 4
15577 || fixP->fx_r_type == BFD_RELOC_8
15578 || fixP->fx_r_type == BFD_RELOC_16
15579 || fixP->fx_r_type == BFD_RELOC_64
15580 || fixP->fx_r_type == BFD_RELOC_CTOR
15581 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15582 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15583 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15584 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15585 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15586 || fixP->fx_r_type == BFD_RELOC_NONE);
15587
15588 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15589
15590 /* Don't treat parts of a composite relocation as done. There are two
15591 reasons for this:
15592
15593 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15594 should nevertheless be emitted if the first part is.
15595
15596 (2) In normal usage, composite relocations are never assembly-time
15597 constants. The easiest way of dealing with the pathological
15598 exceptions is to generate a relocation against STN_UNDEF and
15599 leave everything up to the linker. */
15600 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15601 fixP->fx_done = 1;
15602
15603 switch (fixP->fx_r_type)
15604 {
15605 case BFD_RELOC_MIPS_TLS_GD:
15606 case BFD_RELOC_MIPS_TLS_LDM:
15607 case BFD_RELOC_MIPS_TLS_DTPREL32:
15608 case BFD_RELOC_MIPS_TLS_DTPREL64:
15609 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15610 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15611 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15612 case BFD_RELOC_MIPS_TLS_TPREL32:
15613 case BFD_RELOC_MIPS_TLS_TPREL64:
15614 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15615 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15616 case BFD_RELOC_MICROMIPS_TLS_GD:
15617 case BFD_RELOC_MICROMIPS_TLS_LDM:
15618 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15619 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15620 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15621 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15622 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15623 case BFD_RELOC_MIPS16_TLS_GD:
15624 case BFD_RELOC_MIPS16_TLS_LDM:
15625 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15626 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15627 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15628 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15629 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15630 if (fixP->fx_addsy)
15631 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15632 else
15633 as_bad_where (fixP->fx_file, fixP->fx_line,
15634 _("TLS relocation against a constant"));
15635 break;
15636
15637 case BFD_RELOC_MIPS_JMP:
15638 case BFD_RELOC_MIPS16_JMP:
15639 case BFD_RELOC_MICROMIPS_JMP:
15640 {
15641 int shift;
15642
15643 gas_assert (!fixP->fx_done);
15644
15645 /* Shift is 2, unusually, for microMIPS JALX. */
15646 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15647 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15648 shift = 1;
15649 else
15650 shift = 2;
15651
15652 if (fix_bad_cross_mode_jump_p (fixP))
15653 as_bad_where (fixP->fx_file, fixP->fx_line,
15654 _("jump to a symbol in another ISA mode"));
15655 else if (fix_bad_same_mode_jalx_p (fixP))
15656 as_bad_where (fixP->fx_file, fixP->fx_line,
15657 _("JALX to a symbol in the same ISA mode"));
15658 else if (fix_bad_misaligned_jump_p (fixP, shift))
15659 as_bad_where (fixP->fx_file, fixP->fx_line,
15660 _("jump to misaligned address (0x%lx)"),
15661 (long) (S_GET_VALUE (fixP->fx_addsy)
15662 + fixP->fx_offset));
15663 else if (HAVE_IN_PLACE_ADDENDS
15664 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15665 as_bad_where (fixP->fx_file, fixP->fx_line,
15666 _("cannot encode misaligned addend "
15667 "in the relocatable field (0x%lx)"),
15668 (long) fixP->fx_offset);
15669 }
15670 /* Fall through. */
15671
15672 case BFD_RELOC_MIPS_SHIFT5:
15673 case BFD_RELOC_MIPS_SHIFT6:
15674 case BFD_RELOC_MIPS_GOT_DISP:
15675 case BFD_RELOC_MIPS_GOT_PAGE:
15676 case BFD_RELOC_MIPS_GOT_OFST:
15677 case BFD_RELOC_MIPS_SUB:
15678 case BFD_RELOC_MIPS_INSERT_A:
15679 case BFD_RELOC_MIPS_INSERT_B:
15680 case BFD_RELOC_MIPS_DELETE:
15681 case BFD_RELOC_MIPS_HIGHEST:
15682 case BFD_RELOC_MIPS_HIGHER:
15683 case BFD_RELOC_MIPS_SCN_DISP:
15684 case BFD_RELOC_MIPS_REL16:
15685 case BFD_RELOC_MIPS_RELGOT:
15686 case BFD_RELOC_MIPS_JALR:
15687 case BFD_RELOC_HI16:
15688 case BFD_RELOC_HI16_S:
15689 case BFD_RELOC_LO16:
15690 case BFD_RELOC_GPREL16:
15691 case BFD_RELOC_MIPS_LITERAL:
15692 case BFD_RELOC_MIPS_CALL16:
15693 case BFD_RELOC_MIPS_GOT16:
15694 case BFD_RELOC_GPREL32:
15695 case BFD_RELOC_MIPS_GOT_HI16:
15696 case BFD_RELOC_MIPS_GOT_LO16:
15697 case BFD_RELOC_MIPS_CALL_HI16:
15698 case BFD_RELOC_MIPS_CALL_LO16:
15699 case BFD_RELOC_HI16_S_PCREL:
15700 case BFD_RELOC_LO16_PCREL:
15701 case BFD_RELOC_MIPS16_GPREL:
15702 case BFD_RELOC_MIPS16_GOT16:
15703 case BFD_RELOC_MIPS16_CALL16:
15704 case BFD_RELOC_MIPS16_HI16:
15705 case BFD_RELOC_MIPS16_HI16_S:
15706 case BFD_RELOC_MIPS16_LO16:
15707 case BFD_RELOC_MICROMIPS_GOT_DISP:
15708 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15709 case BFD_RELOC_MICROMIPS_GOT_OFST:
15710 case BFD_RELOC_MICROMIPS_SUB:
15711 case BFD_RELOC_MICROMIPS_HIGHEST:
15712 case BFD_RELOC_MICROMIPS_HIGHER:
15713 case BFD_RELOC_MICROMIPS_SCN_DISP:
15714 case BFD_RELOC_MICROMIPS_JALR:
15715 case BFD_RELOC_MICROMIPS_HI16:
15716 case BFD_RELOC_MICROMIPS_HI16_S:
15717 case BFD_RELOC_MICROMIPS_LO16:
15718 case BFD_RELOC_MICROMIPS_GPREL16:
15719 case BFD_RELOC_MICROMIPS_LITERAL:
15720 case BFD_RELOC_MICROMIPS_CALL16:
15721 case BFD_RELOC_MICROMIPS_GOT16:
15722 case BFD_RELOC_MICROMIPS_GOT_HI16:
15723 case BFD_RELOC_MICROMIPS_GOT_LO16:
15724 case BFD_RELOC_MICROMIPS_CALL_HI16:
15725 case BFD_RELOC_MICROMIPS_CALL_LO16:
15726 case BFD_RELOC_MIPS_EH:
15727 if (fixP->fx_done)
15728 {
15729 offsetT value;
15730
15731 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15732 {
15733 insn = read_reloc_insn (buf, fixP->fx_r_type);
15734 if (mips16_reloc_p (fixP->fx_r_type))
15735 insn |= mips16_immed_extend (value, 16);
15736 else
15737 insn |= (value & 0xffff);
15738 write_reloc_insn (buf, fixP->fx_r_type, insn);
15739 }
15740 else
15741 as_bad_where (fixP->fx_file, fixP->fx_line,
15742 _("unsupported constant in relocation"));
15743 }
15744 break;
15745
15746 case BFD_RELOC_64:
15747 /* This is handled like BFD_RELOC_32, but we output a sign
15748 extended value if we are only 32 bits. */
15749 if (fixP->fx_done)
15750 {
15751 if (8 <= sizeof (valueT))
15752 md_number_to_chars (buf, *valP, 8);
15753 else
15754 {
15755 valueT hiv;
15756
15757 if ((*valP & 0x80000000) != 0)
15758 hiv = 0xffffffff;
15759 else
15760 hiv = 0;
15761 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15762 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15763 }
15764 }
15765 break;
15766
15767 case BFD_RELOC_RVA:
15768 case BFD_RELOC_32:
15769 case BFD_RELOC_32_PCREL:
15770 case BFD_RELOC_16:
15771 case BFD_RELOC_8:
15772 /* If we are deleting this reloc entry, we must fill in the
15773 value now. This can happen if we have a .word which is not
15774 resolved when it appears but is later defined. */
15775 if (fixP->fx_done)
15776 md_number_to_chars (buf, *valP, fixP->fx_size);
15777 break;
15778
15779 case BFD_RELOC_MIPS_21_PCREL_S2:
15780 fix_validate_branch (fixP, *valP);
15781 if (!fixP->fx_done)
15782 break;
15783
15784 if (*valP + 0x400000 <= 0x7fffff)
15785 {
15786 insn = read_insn (buf);
15787 insn |= (*valP >> 2) & 0x1fffff;
15788 write_insn (buf, insn);
15789 }
15790 else
15791 as_bad_where (fixP->fx_file, fixP->fx_line,
15792 _("branch out of range"));
15793 break;
15794
15795 case BFD_RELOC_MIPS_26_PCREL_S2:
15796 fix_validate_branch (fixP, *valP);
15797 if (!fixP->fx_done)
15798 break;
15799
15800 if (*valP + 0x8000000 <= 0xfffffff)
15801 {
15802 insn = read_insn (buf);
15803 insn |= (*valP >> 2) & 0x3ffffff;
15804 write_insn (buf, insn);
15805 }
15806 else
15807 as_bad_where (fixP->fx_file, fixP->fx_line,
15808 _("branch out of range"));
15809 break;
15810
15811 case BFD_RELOC_MIPS_18_PCREL_S3:
15812 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15813 as_bad_where (fixP->fx_file, fixP->fx_line,
15814 _("PC-relative access using misaligned symbol (%lx)"),
15815 (long) S_GET_VALUE (fixP->fx_addsy));
15816 if ((fixP->fx_offset & 0x7) != 0)
15817 as_bad_where (fixP->fx_file, fixP->fx_line,
15818 _("PC-relative access using misaligned offset (%lx)"),
15819 (long) fixP->fx_offset);
15820 if (!fixP->fx_done)
15821 break;
15822
15823 if (*valP + 0x100000 <= 0x1fffff)
15824 {
15825 insn = read_insn (buf);
15826 insn |= (*valP >> 3) & 0x3ffff;
15827 write_insn (buf, insn);
15828 }
15829 else
15830 as_bad_where (fixP->fx_file, fixP->fx_line,
15831 _("PC-relative access out of range"));
15832 break;
15833
15834 case BFD_RELOC_MIPS_19_PCREL_S2:
15835 if ((*valP & 0x3) != 0)
15836 as_bad_where (fixP->fx_file, fixP->fx_line,
15837 _("PC-relative access to misaligned address (%lx)"),
15838 (long) *valP);
15839 if (!fixP->fx_done)
15840 break;
15841
15842 if (*valP + 0x100000 <= 0x1fffff)
15843 {
15844 insn = read_insn (buf);
15845 insn |= (*valP >> 2) & 0x7ffff;
15846 write_insn (buf, insn);
15847 }
15848 else
15849 as_bad_where (fixP->fx_file, fixP->fx_line,
15850 _("PC-relative access out of range"));
15851 break;
15852
15853 case BFD_RELOC_16_PCREL_S2:
15854 fix_validate_branch (fixP, *valP);
15855
15856 /* We need to save the bits in the instruction since fixup_segment()
15857 might be deleting the relocation entry (i.e., a branch within
15858 the current segment). */
15859 if (! fixP->fx_done)
15860 break;
15861
15862 /* Update old instruction data. */
15863 insn = read_insn (buf);
15864
15865 if (*valP + 0x20000 <= 0x3ffff)
15866 {
15867 insn |= (*valP >> 2) & 0xffff;
15868 write_insn (buf, insn);
15869 }
15870 else if (fixP->fx_tcbit2
15871 && fixP->fx_done
15872 && fixP->fx_frag->fr_address >= text_section->vma
15873 && (fixP->fx_frag->fr_address
15874 < text_section->vma + bfd_get_section_size (text_section))
15875 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15876 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15877 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15878 {
15879 /* The branch offset is too large. If this is an
15880 unconditional branch, and we are not generating PIC code,
15881 we can convert it to an absolute jump instruction. */
15882 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15883 insn = 0x0c000000; /* jal */
15884 else
15885 insn = 0x08000000; /* j */
15886 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15887 fixP->fx_done = 0;
15888 fixP->fx_addsy = section_symbol (text_section);
15889 *valP += md_pcrel_from (fixP);
15890 write_insn (buf, insn);
15891 }
15892 else
15893 {
15894 /* If we got here, we have branch-relaxation disabled,
15895 and there's nothing we can do to fix this instruction
15896 without turning it into a longer sequence. */
15897 as_bad_where (fixP->fx_file, fixP->fx_line,
15898 _("branch out of range"));
15899 }
15900 break;
15901
15902 case BFD_RELOC_MIPS16_16_PCREL_S1:
15903 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15904 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15905 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15906 gas_assert (!fixP->fx_done);
15907 if (fix_bad_cross_mode_branch_p (fixP))
15908 as_bad_where (fixP->fx_file, fixP->fx_line,
15909 _("branch to a symbol in another ISA mode"));
15910 else if (fixP->fx_addsy
15911 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15912 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15913 && (fixP->fx_offset & 0x1) != 0)
15914 as_bad_where (fixP->fx_file, fixP->fx_line,
15915 _("branch to misaligned address (0x%lx)"),
15916 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15917 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15918 as_bad_where (fixP->fx_file, fixP->fx_line,
15919 _("cannot encode misaligned addend "
15920 "in the relocatable field (0x%lx)"),
15921 (long) fixP->fx_offset);
15922 break;
15923
15924 case BFD_RELOC_VTABLE_INHERIT:
15925 fixP->fx_done = 0;
15926 if (fixP->fx_addsy
15927 && !S_IS_DEFINED (fixP->fx_addsy)
15928 && !S_IS_WEAK (fixP->fx_addsy))
15929 S_SET_WEAK (fixP->fx_addsy);
15930 break;
15931
15932 case BFD_RELOC_NONE:
15933 case BFD_RELOC_VTABLE_ENTRY:
15934 fixP->fx_done = 0;
15935 break;
15936
15937 default:
15938 abort ();
15939 }
15940
15941 /* Remember value for tc_gen_reloc. */
15942 fixP->fx_addnumber = *valP;
15943 }
15944
15945 static symbolS *
15946 get_symbol (void)
15947 {
15948 int c;
15949 char *name;
15950 symbolS *p;
15951
15952 c = get_symbol_name (&name);
15953 p = (symbolS *) symbol_find_or_make (name);
15954 (void) restore_line_pointer (c);
15955 return p;
15956 }
15957
15958 /* Align the current frag to a given power of two. If a particular
15959 fill byte should be used, FILL points to an integer that contains
15960 that byte, otherwise FILL is null.
15961
15962 This function used to have the comment:
15963
15964 The MIPS assembler also automatically adjusts any preceding label.
15965
15966 The implementation therefore applied the adjustment to a maximum of
15967 one label. However, other label adjustments are applied to batches
15968 of labels, and adjusting just one caused problems when new labels
15969 were added for the sake of debugging or unwind information.
15970 We therefore adjust all preceding labels (given as LABELS) instead. */
15971
15972 static void
15973 mips_align (int to, int *fill, struct insn_label_list *labels)
15974 {
15975 mips_emit_delays ();
15976 mips_record_compressed_mode ();
15977 if (fill == NULL && subseg_text_p (now_seg))
15978 frag_align_code (to, 0);
15979 else
15980 frag_align (to, fill ? *fill : 0, 0);
15981 record_alignment (now_seg, to);
15982 mips_move_labels (labels, FALSE);
15983 }
15984
15985 /* Align to a given power of two. .align 0 turns off the automatic
15986 alignment used by the data creating pseudo-ops. */
15987
15988 static void
15989 s_align (int x ATTRIBUTE_UNUSED)
15990 {
15991 int temp, fill_value, *fill_ptr;
15992 long max_alignment = 28;
15993
15994 /* o Note that the assembler pulls down any immediately preceding label
15995 to the aligned address.
15996 o It's not documented but auto alignment is reinstated by
15997 a .align pseudo instruction.
15998 o Note also that after auto alignment is turned off the mips assembler
15999 issues an error on attempt to assemble an improperly aligned data item.
16000 We don't. */
16001
16002 temp = get_absolute_expression ();
16003 if (temp > max_alignment)
16004 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
16005 else if (temp < 0)
16006 {
16007 as_warn (_("alignment negative, 0 assumed"));
16008 temp = 0;
16009 }
16010 if (*input_line_pointer == ',')
16011 {
16012 ++input_line_pointer;
16013 fill_value = get_absolute_expression ();
16014 fill_ptr = &fill_value;
16015 }
16016 else
16017 fill_ptr = 0;
16018 if (temp)
16019 {
16020 segment_info_type *si = seg_info (now_seg);
16021 struct insn_label_list *l = si->label_list;
16022 /* Auto alignment should be switched on by next section change. */
16023 auto_align = 1;
16024 mips_align (temp, fill_ptr, l);
16025 }
16026 else
16027 {
16028 auto_align = 0;
16029 }
16030
16031 demand_empty_rest_of_line ();
16032 }
16033
16034 static void
16035 s_change_sec (int sec)
16036 {
16037 segT seg;
16038
16039 /* The ELF backend needs to know that we are changing sections, so
16040 that .previous works correctly. We could do something like check
16041 for an obj_section_change_hook macro, but that might be confusing
16042 as it would not be appropriate to use it in the section changing
16043 functions in read.c, since obj-elf.c intercepts those. FIXME:
16044 This should be cleaner, somehow. */
16045 obj_elf_section_change_hook ();
16046
16047 mips_emit_delays ();
16048
16049 switch (sec)
16050 {
16051 case 't':
16052 s_text (0);
16053 break;
16054 case 'd':
16055 s_data (0);
16056 break;
16057 case 'b':
16058 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16059 demand_empty_rest_of_line ();
16060 break;
16061
16062 case 'r':
16063 seg = subseg_new (RDATA_SECTION_NAME,
16064 (subsegT) get_absolute_expression ());
16065 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16066 | SEC_READONLY | SEC_RELOC
16067 | SEC_DATA));
16068 if (strncmp (TARGET_OS, "elf", 3) != 0)
16069 record_alignment (seg, 4);
16070 demand_empty_rest_of_line ();
16071 break;
16072
16073 case 's':
16074 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16075 bfd_set_section_flags (stdoutput, seg,
16076 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16077 if (strncmp (TARGET_OS, "elf", 3) != 0)
16078 record_alignment (seg, 4);
16079 demand_empty_rest_of_line ();
16080 break;
16081
16082 case 'B':
16083 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16084 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16085 if (strncmp (TARGET_OS, "elf", 3) != 0)
16086 record_alignment (seg, 4);
16087 demand_empty_rest_of_line ();
16088 break;
16089 }
16090
16091 auto_align = 1;
16092 }
16093
16094 void
16095 s_change_section (int ignore ATTRIBUTE_UNUSED)
16096 {
16097 char *saved_ilp;
16098 char *section_name;
16099 char c, endc;
16100 char next_c = 0;
16101 int section_type;
16102 int section_flag;
16103 int section_entry_size;
16104 int section_alignment;
16105
16106 saved_ilp = input_line_pointer;
16107 endc = get_symbol_name (&section_name);
16108 c = (endc == '"' ? input_line_pointer[1] : endc);
16109 if (c)
16110 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
16111
16112 /* Do we have .section Name<,"flags">? */
16113 if (c != ',' || (c == ',' && next_c == '"'))
16114 {
16115 /* Just after name is now '\0'. */
16116 (void) restore_line_pointer (endc);
16117 input_line_pointer = saved_ilp;
16118 obj_elf_section (ignore);
16119 return;
16120 }
16121
16122 section_name = xstrdup (section_name);
16123 c = restore_line_pointer (endc);
16124
16125 input_line_pointer++;
16126
16127 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16128 if (c == ',')
16129 section_type = get_absolute_expression ();
16130 else
16131 section_type = 0;
16132
16133 if (*input_line_pointer++ == ',')
16134 section_flag = get_absolute_expression ();
16135 else
16136 section_flag = 0;
16137
16138 if (*input_line_pointer++ == ',')
16139 section_entry_size = get_absolute_expression ();
16140 else
16141 section_entry_size = 0;
16142
16143 if (*input_line_pointer++ == ',')
16144 section_alignment = get_absolute_expression ();
16145 else
16146 section_alignment = 0;
16147
16148 /* FIXME: really ignore? */
16149 (void) section_alignment;
16150
16151 /* When using the generic form of .section (as implemented by obj-elf.c),
16152 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16153 traditionally had to fall back on the more common @progbits instead.
16154
16155 There's nothing really harmful in this, since bfd will correct
16156 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16157 means that, for backwards compatibility, the special_section entries
16158 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16159
16160 Even so, we shouldn't force users of the MIPS .section syntax to
16161 incorrectly label the sections as SHT_PROGBITS. The best compromise
16162 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16163 generic type-checking code. */
16164 if (section_type == SHT_MIPS_DWARF)
16165 section_type = SHT_PROGBITS;
16166
16167 obj_elf_change_section (section_name, section_type, 0, section_flag,
16168 section_entry_size, 0, 0, 0);
16169
16170 if (now_seg->name != section_name)
16171 free (section_name);
16172 }
16173
16174 void
16175 mips_enable_auto_align (void)
16176 {
16177 auto_align = 1;
16178 }
16179
16180 static void
16181 s_cons (int log_size)
16182 {
16183 segment_info_type *si = seg_info (now_seg);
16184 struct insn_label_list *l = si->label_list;
16185
16186 mips_emit_delays ();
16187 if (log_size > 0 && auto_align)
16188 mips_align (log_size, 0, l);
16189 cons (1 << log_size);
16190 mips_clear_insn_labels ();
16191 }
16192
16193 static void
16194 s_float_cons (int type)
16195 {
16196 segment_info_type *si = seg_info (now_seg);
16197 struct insn_label_list *l = si->label_list;
16198
16199 mips_emit_delays ();
16200
16201 if (auto_align)
16202 {
16203 if (type == 'd')
16204 mips_align (3, 0, l);
16205 else
16206 mips_align (2, 0, l);
16207 }
16208
16209 float_cons (type);
16210 mips_clear_insn_labels ();
16211 }
16212
16213 /* Handle .globl. We need to override it because on Irix 5 you are
16214 permitted to say
16215 .globl foo .text
16216 where foo is an undefined symbol, to mean that foo should be
16217 considered to be the address of a function. */
16218
16219 static void
16220 s_mips_globl (int x ATTRIBUTE_UNUSED)
16221 {
16222 char *name;
16223 int c;
16224 symbolS *symbolP;
16225 flagword flag;
16226
16227 do
16228 {
16229 c = get_symbol_name (&name);
16230 symbolP = symbol_find_or_make (name);
16231 S_SET_EXTERNAL (symbolP);
16232
16233 *input_line_pointer = c;
16234 SKIP_WHITESPACE_AFTER_NAME ();
16235
16236 /* On Irix 5, every global symbol that is not explicitly labelled as
16237 being a function is apparently labelled as being an object. */
16238 flag = BSF_OBJECT;
16239
16240 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16241 && (*input_line_pointer != ','))
16242 {
16243 char *secname;
16244 asection *sec;
16245
16246 c = get_symbol_name (&secname);
16247 sec = bfd_get_section_by_name (stdoutput, secname);
16248 if (sec == NULL)
16249 as_bad (_("%s: no such section"), secname);
16250 (void) restore_line_pointer (c);
16251
16252 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16253 flag = BSF_FUNCTION;
16254 }
16255
16256 symbol_get_bfdsym (symbolP)->flags |= flag;
16257
16258 c = *input_line_pointer;
16259 if (c == ',')
16260 {
16261 input_line_pointer++;
16262 SKIP_WHITESPACE ();
16263 if (is_end_of_line[(unsigned char) *input_line_pointer])
16264 c = '\n';
16265 }
16266 }
16267 while (c == ',');
16268
16269 demand_empty_rest_of_line ();
16270 }
16271
16272 static void
16273 s_option (int x ATTRIBUTE_UNUSED)
16274 {
16275 char *opt;
16276 char c;
16277
16278 c = get_symbol_name (&opt);
16279
16280 if (*opt == 'O')
16281 {
16282 /* FIXME: What does this mean? */
16283 }
16284 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16285 {
16286 int i;
16287
16288 i = atoi (opt + 3);
16289 if (i != 0 && i != 2)
16290 as_bad (_(".option pic%d not supported"), i);
16291 else if (mips_pic == VXWORKS_PIC)
16292 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16293 else if (i == 0)
16294 mips_pic = NO_PIC;
16295 else if (i == 2)
16296 {
16297 mips_pic = SVR4_PIC;
16298 mips_abicalls = TRUE;
16299 }
16300
16301 if (mips_pic == SVR4_PIC)
16302 {
16303 if (g_switch_seen && g_switch_value != 0)
16304 as_warn (_("-G may not be used with SVR4 PIC code"));
16305 g_switch_value = 0;
16306 bfd_set_gp_size (stdoutput, 0);
16307 }
16308 }
16309 else
16310 as_warn (_("unrecognized option \"%s\""), opt);
16311
16312 (void) restore_line_pointer (c);
16313 demand_empty_rest_of_line ();
16314 }
16315
16316 /* This structure is used to hold a stack of .set values. */
16317
16318 struct mips_option_stack
16319 {
16320 struct mips_option_stack *next;
16321 struct mips_set_options options;
16322 };
16323
16324 static struct mips_option_stack *mips_opts_stack;
16325
16326 /* Return status for .set/.module option handling. */
16327
16328 enum code_option_type
16329 {
16330 /* Unrecognized option. */
16331 OPTION_TYPE_BAD = -1,
16332
16333 /* Ordinary option. */
16334 OPTION_TYPE_NORMAL,
16335
16336 /* ISA changing option. */
16337 OPTION_TYPE_ISA
16338 };
16339
16340 /* Handle common .set/.module options. Return status indicating option
16341 type. */
16342
16343 static enum code_option_type
16344 parse_code_option (char * name)
16345 {
16346 bfd_boolean isa_set = FALSE;
16347 const struct mips_ase *ase;
16348
16349 if (strncmp (name, "at=", 3) == 0)
16350 {
16351 char *s = name + 3;
16352
16353 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16354 as_bad (_("unrecognized register name `%s'"), s);
16355 }
16356 else if (strcmp (name, "at") == 0)
16357 mips_opts.at = ATREG;
16358 else if (strcmp (name, "noat") == 0)
16359 mips_opts.at = ZERO;
16360 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16361 mips_opts.nomove = 0;
16362 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16363 mips_opts.nomove = 1;
16364 else if (strcmp (name, "bopt") == 0)
16365 mips_opts.nobopt = 0;
16366 else if (strcmp (name, "nobopt") == 0)
16367 mips_opts.nobopt = 1;
16368 else if (strcmp (name, "gp=32") == 0)
16369 mips_opts.gp = 32;
16370 else if (strcmp (name, "gp=64") == 0)
16371 mips_opts.gp = 64;
16372 else if (strcmp (name, "fp=32") == 0)
16373 mips_opts.fp = 32;
16374 else if (strcmp (name, "fp=xx") == 0)
16375 mips_opts.fp = 0;
16376 else if (strcmp (name, "fp=64") == 0)
16377 mips_opts.fp = 64;
16378 else if (strcmp (name, "softfloat") == 0)
16379 mips_opts.soft_float = 1;
16380 else if (strcmp (name, "hardfloat") == 0)
16381 mips_opts.soft_float = 0;
16382 else if (strcmp (name, "singlefloat") == 0)
16383 mips_opts.single_float = 1;
16384 else if (strcmp (name, "doublefloat") == 0)
16385 mips_opts.single_float = 0;
16386 else if (strcmp (name, "nooddspreg") == 0)
16387 mips_opts.oddspreg = 0;
16388 else if (strcmp (name, "oddspreg") == 0)
16389 mips_opts.oddspreg = 1;
16390 else if (strcmp (name, "mips16") == 0
16391 || strcmp (name, "MIPS-16") == 0)
16392 mips_opts.mips16 = 1;
16393 else if (strcmp (name, "nomips16") == 0
16394 || strcmp (name, "noMIPS-16") == 0)
16395 mips_opts.mips16 = 0;
16396 else if (strcmp (name, "micromips") == 0)
16397 mips_opts.micromips = 1;
16398 else if (strcmp (name, "nomicromips") == 0)
16399 mips_opts.micromips = 0;
16400 else if (name[0] == 'n'
16401 && name[1] == 'o'
16402 && (ase = mips_lookup_ase (name + 2)))
16403 mips_set_ase (ase, &mips_opts, FALSE);
16404 else if ((ase = mips_lookup_ase (name)))
16405 mips_set_ase (ase, &mips_opts, TRUE);
16406 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16407 {
16408 /* Permit the user to change the ISA and architecture on the fly.
16409 Needless to say, misuse can cause serious problems. */
16410 if (strncmp (name, "arch=", 5) == 0)
16411 {
16412 const struct mips_cpu_info *p;
16413
16414 p = mips_parse_cpu ("internal use", name + 5);
16415 if (!p)
16416 as_bad (_("unknown architecture %s"), name + 5);
16417 else
16418 {
16419 mips_opts.arch = p->cpu;
16420 mips_opts.isa = p->isa;
16421 isa_set = TRUE;
16422 }
16423 }
16424 else if (strncmp (name, "mips", 4) == 0)
16425 {
16426 const struct mips_cpu_info *p;
16427
16428 p = mips_parse_cpu ("internal use", name);
16429 if (!p)
16430 as_bad (_("unknown ISA level %s"), name + 4);
16431 else
16432 {
16433 mips_opts.arch = p->cpu;
16434 mips_opts.isa = p->isa;
16435 isa_set = TRUE;
16436 }
16437 }
16438 else
16439 as_bad (_("unknown ISA or architecture %s"), name);
16440 }
16441 else if (strcmp (name, "autoextend") == 0)
16442 mips_opts.noautoextend = 0;
16443 else if (strcmp (name, "noautoextend") == 0)
16444 mips_opts.noautoextend = 1;
16445 else if (strcmp (name, "insn32") == 0)
16446 mips_opts.insn32 = TRUE;
16447 else if (strcmp (name, "noinsn32") == 0)
16448 mips_opts.insn32 = FALSE;
16449 else if (strcmp (name, "sym32") == 0)
16450 mips_opts.sym32 = TRUE;
16451 else if (strcmp (name, "nosym32") == 0)
16452 mips_opts.sym32 = FALSE;
16453 else
16454 return OPTION_TYPE_BAD;
16455
16456 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16457 }
16458
16459 /* Handle the .set pseudo-op. */
16460
16461 static void
16462 s_mipsset (int x ATTRIBUTE_UNUSED)
16463 {
16464 enum code_option_type type = OPTION_TYPE_NORMAL;
16465 char *name = input_line_pointer, ch;
16466
16467 file_mips_check_options ();
16468
16469 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16470 ++input_line_pointer;
16471 ch = *input_line_pointer;
16472 *input_line_pointer = '\0';
16473
16474 if (strchr (name, ','))
16475 {
16476 /* Generic ".set" directive; use the generic handler. */
16477 *input_line_pointer = ch;
16478 input_line_pointer = name;
16479 s_set (0);
16480 return;
16481 }
16482
16483 if (strcmp (name, "reorder") == 0)
16484 {
16485 if (mips_opts.noreorder)
16486 end_noreorder ();
16487 }
16488 else if (strcmp (name, "noreorder") == 0)
16489 {
16490 if (!mips_opts.noreorder)
16491 start_noreorder ();
16492 }
16493 else if (strcmp (name, "macro") == 0)
16494 mips_opts.warn_about_macros = 0;
16495 else if (strcmp (name, "nomacro") == 0)
16496 {
16497 if (mips_opts.noreorder == 0)
16498 as_bad (_("`noreorder' must be set before `nomacro'"));
16499 mips_opts.warn_about_macros = 1;
16500 }
16501 else if (strcmp (name, "gp=default") == 0)
16502 mips_opts.gp = file_mips_opts.gp;
16503 else if (strcmp (name, "fp=default") == 0)
16504 mips_opts.fp = file_mips_opts.fp;
16505 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16506 {
16507 mips_opts.isa = file_mips_opts.isa;
16508 mips_opts.arch = file_mips_opts.arch;
16509 mips_opts.gp = file_mips_opts.gp;
16510 mips_opts.fp = file_mips_opts.fp;
16511 }
16512 else if (strcmp (name, "push") == 0)
16513 {
16514 struct mips_option_stack *s;
16515
16516 s = XNEW (struct mips_option_stack);
16517 s->next = mips_opts_stack;
16518 s->options = mips_opts;
16519 mips_opts_stack = s;
16520 }
16521 else if (strcmp (name, "pop") == 0)
16522 {
16523 struct mips_option_stack *s;
16524
16525 s = mips_opts_stack;
16526 if (s == NULL)
16527 as_bad (_(".set pop with no .set push"));
16528 else
16529 {
16530 /* If we're changing the reorder mode we need to handle
16531 delay slots correctly. */
16532 if (s->options.noreorder && ! mips_opts.noreorder)
16533 start_noreorder ();
16534 else if (! s->options.noreorder && mips_opts.noreorder)
16535 end_noreorder ();
16536
16537 mips_opts = s->options;
16538 mips_opts_stack = s->next;
16539 free (s);
16540 }
16541 }
16542 else
16543 {
16544 type = parse_code_option (name);
16545 if (type == OPTION_TYPE_BAD)
16546 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16547 }
16548
16549 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16550 registers based on what is supported by the arch/cpu. */
16551 if (type == OPTION_TYPE_ISA)
16552 {
16553 switch (mips_opts.isa)
16554 {
16555 case 0:
16556 break;
16557 case ISA_MIPS1:
16558 /* MIPS I cannot support FPXX. */
16559 mips_opts.fp = 32;
16560 /* fall-through. */
16561 case ISA_MIPS2:
16562 case ISA_MIPS32:
16563 case ISA_MIPS32R2:
16564 case ISA_MIPS32R3:
16565 case ISA_MIPS32R5:
16566 mips_opts.gp = 32;
16567 if (mips_opts.fp != 0)
16568 mips_opts.fp = 32;
16569 break;
16570 case ISA_MIPS32R6:
16571 mips_opts.gp = 32;
16572 mips_opts.fp = 64;
16573 break;
16574 case ISA_MIPS3:
16575 case ISA_MIPS4:
16576 case ISA_MIPS5:
16577 case ISA_MIPS64:
16578 case ISA_MIPS64R2:
16579 case ISA_MIPS64R3:
16580 case ISA_MIPS64R5:
16581 case ISA_MIPS64R6:
16582 mips_opts.gp = 64;
16583 if (mips_opts.fp != 0)
16584 {
16585 if (mips_opts.arch == CPU_R5900)
16586 mips_opts.fp = 32;
16587 else
16588 mips_opts.fp = 64;
16589 }
16590 break;
16591 default:
16592 as_bad (_("unknown ISA level %s"), name + 4);
16593 break;
16594 }
16595 }
16596
16597 mips_check_options (&mips_opts, FALSE);
16598
16599 mips_check_isa_supports_ases ();
16600 *input_line_pointer = ch;
16601 demand_empty_rest_of_line ();
16602 }
16603
16604 /* Handle the .module pseudo-op. */
16605
16606 static void
16607 s_module (int ignore ATTRIBUTE_UNUSED)
16608 {
16609 char *name = input_line_pointer, ch;
16610
16611 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16612 ++input_line_pointer;
16613 ch = *input_line_pointer;
16614 *input_line_pointer = '\0';
16615
16616 if (!file_mips_opts_checked)
16617 {
16618 if (parse_code_option (name) == OPTION_TYPE_BAD)
16619 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16620
16621 /* Update module level settings from mips_opts. */
16622 file_mips_opts = mips_opts;
16623 }
16624 else
16625 as_bad (_(".module is not permitted after generating code"));
16626
16627 *input_line_pointer = ch;
16628 demand_empty_rest_of_line ();
16629 }
16630
16631 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16632 .option pic2. It means to generate SVR4 PIC calls. */
16633
16634 static void
16635 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16636 {
16637 mips_pic = SVR4_PIC;
16638 mips_abicalls = TRUE;
16639
16640 if (g_switch_seen && g_switch_value != 0)
16641 as_warn (_("-G may not be used with SVR4 PIC code"));
16642 g_switch_value = 0;
16643
16644 bfd_set_gp_size (stdoutput, 0);
16645 demand_empty_rest_of_line ();
16646 }
16647
16648 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16649 PIC code. It sets the $gp register for the function based on the
16650 function address, which is in the register named in the argument.
16651 This uses a relocation against _gp_disp, which is handled specially
16652 by the linker. The result is:
16653 lui $gp,%hi(_gp_disp)
16654 addiu $gp,$gp,%lo(_gp_disp)
16655 addu $gp,$gp,.cpload argument
16656 The .cpload argument is normally $25 == $t9.
16657
16658 The -mno-shared option changes this to:
16659 lui $gp,%hi(__gnu_local_gp)
16660 addiu $gp,$gp,%lo(__gnu_local_gp)
16661 and the argument is ignored. This saves an instruction, but the
16662 resulting code is not position independent; it uses an absolute
16663 address for __gnu_local_gp. Thus code assembled with -mno-shared
16664 can go into an ordinary executable, but not into a shared library. */
16665
16666 static void
16667 s_cpload (int ignore ATTRIBUTE_UNUSED)
16668 {
16669 expressionS ex;
16670 int reg;
16671 int in_shared;
16672
16673 file_mips_check_options ();
16674
16675 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16676 .cpload is ignored. */
16677 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16678 {
16679 s_ignore (0);
16680 return;
16681 }
16682
16683 if (mips_opts.mips16)
16684 {
16685 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16686 ignore_rest_of_line ();
16687 return;
16688 }
16689
16690 /* .cpload should be in a .set noreorder section. */
16691 if (mips_opts.noreorder == 0)
16692 as_warn (_(".cpload not in noreorder section"));
16693
16694 reg = tc_get_register (0);
16695
16696 /* If we need to produce a 64-bit address, we are better off using
16697 the default instruction sequence. */
16698 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16699
16700 ex.X_op = O_symbol;
16701 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16702 "__gnu_local_gp");
16703 ex.X_op_symbol = NULL;
16704 ex.X_add_number = 0;
16705
16706 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16707 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16708
16709 mips_mark_labels ();
16710 mips_assembling_insn = TRUE;
16711
16712 macro_start ();
16713 macro_build_lui (&ex, mips_gp_register);
16714 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16715 mips_gp_register, BFD_RELOC_LO16);
16716 if (in_shared)
16717 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16718 mips_gp_register, reg);
16719 macro_end ();
16720
16721 mips_assembling_insn = FALSE;
16722 demand_empty_rest_of_line ();
16723 }
16724
16725 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16726 .cpsetup $reg1, offset|$reg2, label
16727
16728 If offset is given, this results in:
16729 sd $gp, offset($sp)
16730 lui $gp, %hi(%neg(%gp_rel(label)))
16731 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16732 daddu $gp, $gp, $reg1
16733
16734 If $reg2 is given, this results in:
16735 or $reg2, $gp, $0
16736 lui $gp, %hi(%neg(%gp_rel(label)))
16737 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16738 daddu $gp, $gp, $reg1
16739 $reg1 is normally $25 == $t9.
16740
16741 The -mno-shared option replaces the last three instructions with
16742 lui $gp,%hi(_gp)
16743 addiu $gp,$gp,%lo(_gp) */
16744
16745 static void
16746 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16747 {
16748 expressionS ex_off;
16749 expressionS ex_sym;
16750 int reg1;
16751
16752 file_mips_check_options ();
16753
16754 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16755 We also need NewABI support. */
16756 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16757 {
16758 s_ignore (0);
16759 return;
16760 }
16761
16762 if (mips_opts.mips16)
16763 {
16764 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16765 ignore_rest_of_line ();
16766 return;
16767 }
16768
16769 reg1 = tc_get_register (0);
16770 SKIP_WHITESPACE ();
16771 if (*input_line_pointer != ',')
16772 {
16773 as_bad (_("missing argument separator ',' for .cpsetup"));
16774 return;
16775 }
16776 else
16777 ++input_line_pointer;
16778 SKIP_WHITESPACE ();
16779 if (*input_line_pointer == '$')
16780 {
16781 mips_cpreturn_register = tc_get_register (0);
16782 mips_cpreturn_offset = -1;
16783 }
16784 else
16785 {
16786 mips_cpreturn_offset = get_absolute_expression ();
16787 mips_cpreturn_register = -1;
16788 }
16789 SKIP_WHITESPACE ();
16790 if (*input_line_pointer != ',')
16791 {
16792 as_bad (_("missing argument separator ',' for .cpsetup"));
16793 return;
16794 }
16795 else
16796 ++input_line_pointer;
16797 SKIP_WHITESPACE ();
16798 expression (&ex_sym);
16799
16800 mips_mark_labels ();
16801 mips_assembling_insn = TRUE;
16802
16803 macro_start ();
16804 if (mips_cpreturn_register == -1)
16805 {
16806 ex_off.X_op = O_constant;
16807 ex_off.X_add_symbol = NULL;
16808 ex_off.X_op_symbol = NULL;
16809 ex_off.X_add_number = mips_cpreturn_offset;
16810
16811 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16812 BFD_RELOC_LO16, SP);
16813 }
16814 else
16815 move_register (mips_cpreturn_register, mips_gp_register);
16816
16817 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16818 {
16819 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16820 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16821 BFD_RELOC_HI16_S);
16822
16823 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16824 mips_gp_register, -1, BFD_RELOC_GPREL16,
16825 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16826
16827 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16828 mips_gp_register, reg1);
16829 }
16830 else
16831 {
16832 expressionS ex;
16833
16834 ex.X_op = O_symbol;
16835 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16836 ex.X_op_symbol = NULL;
16837 ex.X_add_number = 0;
16838
16839 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16840 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16841
16842 macro_build_lui (&ex, mips_gp_register);
16843 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16844 mips_gp_register, BFD_RELOC_LO16);
16845 }
16846
16847 macro_end ();
16848
16849 mips_assembling_insn = FALSE;
16850 demand_empty_rest_of_line ();
16851 }
16852
16853 static void
16854 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16855 {
16856 file_mips_check_options ();
16857
16858 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16859 .cplocal is ignored. */
16860 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16861 {
16862 s_ignore (0);
16863 return;
16864 }
16865
16866 if (mips_opts.mips16)
16867 {
16868 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16869 ignore_rest_of_line ();
16870 return;
16871 }
16872
16873 mips_gp_register = tc_get_register (0);
16874 demand_empty_rest_of_line ();
16875 }
16876
16877 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16878 offset from $sp. The offset is remembered, and after making a PIC
16879 call $gp is restored from that location. */
16880
16881 static void
16882 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16883 {
16884 expressionS ex;
16885
16886 file_mips_check_options ();
16887
16888 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16889 .cprestore is ignored. */
16890 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16891 {
16892 s_ignore (0);
16893 return;
16894 }
16895
16896 if (mips_opts.mips16)
16897 {
16898 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16899 ignore_rest_of_line ();
16900 return;
16901 }
16902
16903 mips_cprestore_offset = get_absolute_expression ();
16904 mips_cprestore_valid = 1;
16905
16906 ex.X_op = O_constant;
16907 ex.X_add_symbol = NULL;
16908 ex.X_op_symbol = NULL;
16909 ex.X_add_number = mips_cprestore_offset;
16910
16911 mips_mark_labels ();
16912 mips_assembling_insn = TRUE;
16913
16914 macro_start ();
16915 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16916 SP, HAVE_64BIT_ADDRESSES);
16917 macro_end ();
16918
16919 mips_assembling_insn = FALSE;
16920 demand_empty_rest_of_line ();
16921 }
16922
16923 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16924 was given in the preceding .cpsetup, it results in:
16925 ld $gp, offset($sp)
16926
16927 If a register $reg2 was given there, it results in:
16928 or $gp, $reg2, $0 */
16929
16930 static void
16931 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16932 {
16933 expressionS ex;
16934
16935 file_mips_check_options ();
16936
16937 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16938 We also need NewABI support. */
16939 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16940 {
16941 s_ignore (0);
16942 return;
16943 }
16944
16945 if (mips_opts.mips16)
16946 {
16947 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16948 ignore_rest_of_line ();
16949 return;
16950 }
16951
16952 mips_mark_labels ();
16953 mips_assembling_insn = TRUE;
16954
16955 macro_start ();
16956 if (mips_cpreturn_register == -1)
16957 {
16958 ex.X_op = O_constant;
16959 ex.X_add_symbol = NULL;
16960 ex.X_op_symbol = NULL;
16961 ex.X_add_number = mips_cpreturn_offset;
16962
16963 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16964 }
16965 else
16966 move_register (mips_gp_register, mips_cpreturn_register);
16967
16968 macro_end ();
16969
16970 mips_assembling_insn = FALSE;
16971 demand_empty_rest_of_line ();
16972 }
16973
16974 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16975 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16976 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16977 debug information or MIPS16 TLS. */
16978
16979 static void
16980 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16981 bfd_reloc_code_real_type rtype)
16982 {
16983 expressionS ex;
16984 char *p;
16985
16986 expression (&ex);
16987
16988 if (ex.X_op != O_symbol)
16989 {
16990 as_bad (_("unsupported use of %s"), dirstr);
16991 ignore_rest_of_line ();
16992 }
16993
16994 p = frag_more (bytes);
16995 md_number_to_chars (p, 0, bytes);
16996 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16997 demand_empty_rest_of_line ();
16998 mips_clear_insn_labels ();
16999 }
17000
17001 /* Handle .dtprelword. */
17002
17003 static void
17004 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
17005 {
17006 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
17007 }
17008
17009 /* Handle .dtpreldword. */
17010
17011 static void
17012 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
17013 {
17014 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
17015 }
17016
17017 /* Handle .tprelword. */
17018
17019 static void
17020 s_tprelword (int ignore ATTRIBUTE_UNUSED)
17021 {
17022 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
17023 }
17024
17025 /* Handle .tpreldword. */
17026
17027 static void
17028 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
17029 {
17030 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
17031 }
17032
17033 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17034 code. It sets the offset to use in gp_rel relocations. */
17035
17036 static void
17037 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
17038 {
17039 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17040 We also need NewABI support. */
17041 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17042 {
17043 s_ignore (0);
17044 return;
17045 }
17046
17047 mips_gprel_offset = get_absolute_expression ();
17048
17049 demand_empty_rest_of_line ();
17050 }
17051
17052 /* Handle the .gpword pseudo-op. This is used when generating PIC
17053 code. It generates a 32 bit GP relative reloc. */
17054
17055 static void
17056 s_gpword (int ignore ATTRIBUTE_UNUSED)
17057 {
17058 segment_info_type *si;
17059 struct insn_label_list *l;
17060 expressionS ex;
17061 char *p;
17062
17063 /* When not generating PIC code, this is treated as .word. */
17064 if (mips_pic != SVR4_PIC)
17065 {
17066 s_cons (2);
17067 return;
17068 }
17069
17070 si = seg_info (now_seg);
17071 l = si->label_list;
17072 mips_emit_delays ();
17073 if (auto_align)
17074 mips_align (2, 0, l);
17075
17076 expression (&ex);
17077 mips_clear_insn_labels ();
17078
17079 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17080 {
17081 as_bad (_("unsupported use of .gpword"));
17082 ignore_rest_of_line ();
17083 }
17084
17085 p = frag_more (4);
17086 md_number_to_chars (p, 0, 4);
17087 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17088 BFD_RELOC_GPREL32);
17089
17090 demand_empty_rest_of_line ();
17091 }
17092
17093 static void
17094 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17095 {
17096 segment_info_type *si;
17097 struct insn_label_list *l;
17098 expressionS ex;
17099 char *p;
17100
17101 /* When not generating PIC code, this is treated as .dword. */
17102 if (mips_pic != SVR4_PIC)
17103 {
17104 s_cons (3);
17105 return;
17106 }
17107
17108 si = seg_info (now_seg);
17109 l = si->label_list;
17110 mips_emit_delays ();
17111 if (auto_align)
17112 mips_align (3, 0, l);
17113
17114 expression (&ex);
17115 mips_clear_insn_labels ();
17116
17117 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17118 {
17119 as_bad (_("unsupported use of .gpdword"));
17120 ignore_rest_of_line ();
17121 }
17122
17123 p = frag_more (8);
17124 md_number_to_chars (p, 0, 8);
17125 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17126 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17127
17128 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17129 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17130 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17131
17132 demand_empty_rest_of_line ();
17133 }
17134
17135 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17136 tables. It generates a R_MIPS_EH reloc. */
17137
17138 static void
17139 s_ehword (int ignore ATTRIBUTE_UNUSED)
17140 {
17141 expressionS ex;
17142 char *p;
17143
17144 mips_emit_delays ();
17145
17146 expression (&ex);
17147 mips_clear_insn_labels ();
17148
17149 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17150 {
17151 as_bad (_("unsupported use of .ehword"));
17152 ignore_rest_of_line ();
17153 }
17154
17155 p = frag_more (4);
17156 md_number_to_chars (p, 0, 4);
17157 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17158 BFD_RELOC_32_PCREL);
17159
17160 demand_empty_rest_of_line ();
17161 }
17162
17163 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17164 tables in SVR4 PIC code. */
17165
17166 static void
17167 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17168 {
17169 int reg;
17170
17171 file_mips_check_options ();
17172
17173 /* This is ignored when not generating SVR4 PIC code. */
17174 if (mips_pic != SVR4_PIC)
17175 {
17176 s_ignore (0);
17177 return;
17178 }
17179
17180 mips_mark_labels ();
17181 mips_assembling_insn = TRUE;
17182
17183 /* Add $gp to the register named as an argument. */
17184 macro_start ();
17185 reg = tc_get_register (0);
17186 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17187 macro_end ();
17188
17189 mips_assembling_insn = FALSE;
17190 demand_empty_rest_of_line ();
17191 }
17192
17193 /* Handle the .insn pseudo-op. This marks instruction labels in
17194 mips16/micromips mode. This permits the linker to handle them specially,
17195 such as generating jalx instructions when needed. We also make
17196 them odd for the duration of the assembly, in order to generate the
17197 right sort of code. We will make them even in the adjust_symtab
17198 routine, while leaving them marked. This is convenient for the
17199 debugger and the disassembler. The linker knows to make them odd
17200 again. */
17201
17202 static void
17203 s_insn (int ignore ATTRIBUTE_UNUSED)
17204 {
17205 file_mips_check_options ();
17206 file_ase_mips16 |= mips_opts.mips16;
17207 file_ase_micromips |= mips_opts.micromips;
17208
17209 mips_mark_labels ();
17210
17211 demand_empty_rest_of_line ();
17212 }
17213
17214 /* Handle the .nan pseudo-op. */
17215
17216 static void
17217 s_nan (int ignore ATTRIBUTE_UNUSED)
17218 {
17219 static const char str_legacy[] = "legacy";
17220 static const char str_2008[] = "2008";
17221 size_t i;
17222
17223 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17224
17225 if (i == sizeof (str_2008) - 1
17226 && memcmp (input_line_pointer, str_2008, i) == 0)
17227 mips_nan2008 = 1;
17228 else if (i == sizeof (str_legacy) - 1
17229 && memcmp (input_line_pointer, str_legacy, i) == 0)
17230 {
17231 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17232 mips_nan2008 = 0;
17233 else
17234 as_bad (_("`%s' does not support legacy NaN"),
17235 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17236 }
17237 else
17238 as_bad (_("bad .nan directive"));
17239
17240 input_line_pointer += i;
17241 demand_empty_rest_of_line ();
17242 }
17243
17244 /* Handle a .stab[snd] directive. Ideally these directives would be
17245 implemented in a transparent way, so that removing them would not
17246 have any effect on the generated instructions. However, s_stab
17247 internally changes the section, so in practice we need to decide
17248 now whether the preceding label marks compressed code. We do not
17249 support changing the compression mode of a label after a .stab*
17250 directive, such as in:
17251
17252 foo:
17253 .stabs ...
17254 .set mips16
17255
17256 so the current mode wins. */
17257
17258 static void
17259 s_mips_stab (int type)
17260 {
17261 file_mips_check_options ();
17262 mips_mark_labels ();
17263 s_stab (type);
17264 }
17265
17266 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17267
17268 static void
17269 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17270 {
17271 char *name;
17272 int c;
17273 symbolS *symbolP;
17274 expressionS exp;
17275
17276 c = get_symbol_name (&name);
17277 symbolP = symbol_find_or_make (name);
17278 S_SET_WEAK (symbolP);
17279 *input_line_pointer = c;
17280
17281 SKIP_WHITESPACE_AFTER_NAME ();
17282
17283 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17284 {
17285 if (S_IS_DEFINED (symbolP))
17286 {
17287 as_bad (_("ignoring attempt to redefine symbol %s"),
17288 S_GET_NAME (symbolP));
17289 ignore_rest_of_line ();
17290 return;
17291 }
17292
17293 if (*input_line_pointer == ',')
17294 {
17295 ++input_line_pointer;
17296 SKIP_WHITESPACE ();
17297 }
17298
17299 expression (&exp);
17300 if (exp.X_op != O_symbol)
17301 {
17302 as_bad (_("bad .weakext directive"));
17303 ignore_rest_of_line ();
17304 return;
17305 }
17306 symbol_set_value_expression (symbolP, &exp);
17307 }
17308
17309 demand_empty_rest_of_line ();
17310 }
17311
17312 /* Parse a register string into a number. Called from the ECOFF code
17313 to parse .frame. The argument is non-zero if this is the frame
17314 register, so that we can record it in mips_frame_reg. */
17315
17316 int
17317 tc_get_register (int frame)
17318 {
17319 unsigned int reg;
17320
17321 SKIP_WHITESPACE ();
17322 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17323 reg = 0;
17324 if (frame)
17325 {
17326 mips_frame_reg = reg != 0 ? reg : SP;
17327 mips_frame_reg_valid = 1;
17328 mips_cprestore_valid = 0;
17329 }
17330 return reg;
17331 }
17332
17333 valueT
17334 md_section_align (asection *seg, valueT addr)
17335 {
17336 int align = bfd_get_section_alignment (stdoutput, seg);
17337
17338 /* We don't need to align ELF sections to the full alignment.
17339 However, Irix 5 may prefer that we align them at least to a 16
17340 byte boundary. We don't bother to align the sections if we
17341 are targeted for an embedded system. */
17342 if (strncmp (TARGET_OS, "elf", 3) == 0)
17343 return addr;
17344 if (align > 4)
17345 align = 4;
17346
17347 return ((addr + (1 << align) - 1) & -(1 << align));
17348 }
17349
17350 /* Utility routine, called from above as well. If called while the
17351 input file is still being read, it's only an approximation. (For
17352 example, a symbol may later become defined which appeared to be
17353 undefined earlier.) */
17354
17355 static int
17356 nopic_need_relax (symbolS *sym, int before_relaxing)
17357 {
17358 if (sym == 0)
17359 return 0;
17360
17361 if (g_switch_value > 0)
17362 {
17363 const char *symname;
17364 int change;
17365
17366 /* Find out whether this symbol can be referenced off the $gp
17367 register. It can be if it is smaller than the -G size or if
17368 it is in the .sdata or .sbss section. Certain symbols can
17369 not be referenced off the $gp, although it appears as though
17370 they can. */
17371 symname = S_GET_NAME (sym);
17372 if (symname != (const char *) NULL
17373 && (strcmp (symname, "eprol") == 0
17374 || strcmp (symname, "etext") == 0
17375 || strcmp (symname, "_gp") == 0
17376 || strcmp (symname, "edata") == 0
17377 || strcmp (symname, "_fbss") == 0
17378 || strcmp (symname, "_fdata") == 0
17379 || strcmp (symname, "_ftext") == 0
17380 || strcmp (symname, "end") == 0
17381 || strcmp (symname, "_gp_disp") == 0))
17382 change = 1;
17383 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17384 && (0
17385 #ifndef NO_ECOFF_DEBUGGING
17386 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17387 && (symbol_get_obj (sym)->ecoff_extern_size
17388 <= g_switch_value))
17389 #endif
17390 /* We must defer this decision until after the whole
17391 file has been read, since there might be a .extern
17392 after the first use of this symbol. */
17393 || (before_relaxing
17394 #ifndef NO_ECOFF_DEBUGGING
17395 && symbol_get_obj (sym)->ecoff_extern_size == 0
17396 #endif
17397 && S_GET_VALUE (sym) == 0)
17398 || (S_GET_VALUE (sym) != 0
17399 && S_GET_VALUE (sym) <= g_switch_value)))
17400 change = 0;
17401 else
17402 {
17403 const char *segname;
17404
17405 segname = segment_name (S_GET_SEGMENT (sym));
17406 gas_assert (strcmp (segname, ".lit8") != 0
17407 && strcmp (segname, ".lit4") != 0);
17408 change = (strcmp (segname, ".sdata") != 0
17409 && strcmp (segname, ".sbss") != 0
17410 && strncmp (segname, ".sdata.", 7) != 0
17411 && strncmp (segname, ".sbss.", 6) != 0
17412 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17413 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17414 }
17415 return change;
17416 }
17417 else
17418 /* We are not optimizing for the $gp register. */
17419 return 1;
17420 }
17421
17422
17423 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17424
17425 static bfd_boolean
17426 pic_need_relax (symbolS *sym)
17427 {
17428 asection *symsec;
17429
17430 /* Handle the case of a symbol equated to another symbol. */
17431 while (symbol_equated_reloc_p (sym))
17432 {
17433 symbolS *n;
17434
17435 /* It's possible to get a loop here in a badly written program. */
17436 n = symbol_get_value_expression (sym)->X_add_symbol;
17437 if (n == sym)
17438 break;
17439 sym = n;
17440 }
17441
17442 if (symbol_section_p (sym))
17443 return TRUE;
17444
17445 symsec = S_GET_SEGMENT (sym);
17446
17447 /* This must duplicate the test in adjust_reloc_syms. */
17448 return (!bfd_is_und_section (symsec)
17449 && !bfd_is_abs_section (symsec)
17450 && !bfd_is_com_section (symsec)
17451 /* A global or weak symbol is treated as external. */
17452 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17453 }
17454 \f
17455 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17456 convert a section-relative value VAL to the equivalent PC-relative
17457 value. */
17458
17459 static offsetT
17460 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17461 offsetT val, long stretch)
17462 {
17463 fragS *sym_frag;
17464 addressT addr;
17465
17466 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17467
17468 sym_frag = symbol_get_frag (fragp->fr_symbol);
17469
17470 /* If the relax_marker of the symbol fragment differs from the
17471 relax_marker of this fragment, we have not yet adjusted the
17472 symbol fragment fr_address. We want to add in STRETCH in
17473 order to get a better estimate of the address. This
17474 particularly matters because of the shift bits. */
17475 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17476 {
17477 fragS *f;
17478
17479 /* Adjust stretch for any alignment frag. Note that if have
17480 been expanding the earlier code, the symbol may be
17481 defined in what appears to be an earlier frag. FIXME:
17482 This doesn't handle the fr_subtype field, which specifies
17483 a maximum number of bytes to skip when doing an
17484 alignment. */
17485 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17486 {
17487 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17488 {
17489 if (stretch < 0)
17490 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17491 else
17492 stretch &= ~((1 << (int) f->fr_offset) - 1);
17493 if (stretch == 0)
17494 break;
17495 }
17496 }
17497 if (f != NULL)
17498 val += stretch;
17499 }
17500
17501 addr = fragp->fr_address + fragp->fr_fix;
17502
17503 /* The base address rules are complicated. The base address of
17504 a branch is the following instruction. The base address of a
17505 PC relative load or add is the instruction itself, but if it
17506 is in a delay slot (in which case it can not be extended) use
17507 the address of the instruction whose delay slot it is in. */
17508 if (pcrel_op->include_isa_bit)
17509 {
17510 addr += 2;
17511
17512 /* If we are currently assuming that this frag should be
17513 extended, then the current address is two bytes higher. */
17514 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17515 addr += 2;
17516
17517 /* Ignore the low bit in the target, since it will be set
17518 for a text label. */
17519 val &= -2;
17520 }
17521 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17522 addr -= 4;
17523 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17524 addr -= 2;
17525
17526 val -= addr & -(1 << pcrel_op->align_log2);
17527
17528 return val;
17529 }
17530
17531 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17532 extended opcode. SEC is the section the frag is in. */
17533
17534 static int
17535 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17536 {
17537 const struct mips_int_operand *operand;
17538 offsetT val;
17539 segT symsec;
17540 int type;
17541
17542 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17543 return 0;
17544 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17545 return 1;
17546
17547 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17548 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17549 operand = mips16_immed_operand (type, FALSE);
17550 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17551 || (operand->root.type == OP_PCREL
17552 ? sec != symsec
17553 : !bfd_is_abs_section (symsec)))
17554 return 1;
17555
17556 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17557
17558 if (operand->root.type == OP_PCREL)
17559 {
17560 const struct mips_pcrel_operand *pcrel_op;
17561 offsetT maxtiny;
17562
17563 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17564 return 1;
17565
17566 pcrel_op = (const struct mips_pcrel_operand *) operand;
17567 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17568
17569 /* If any of the shifted bits are set, we must use an extended
17570 opcode. If the address depends on the size of this
17571 instruction, this can lead to a loop, so we arrange to always
17572 use an extended opcode. */
17573 if ((val & ((1 << operand->shift) - 1)) != 0)
17574 {
17575 fragp->fr_subtype =
17576 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17577 return 1;
17578 }
17579
17580 /* If we are about to mark a frag as extended because the value
17581 is precisely the next value above maxtiny, then there is a
17582 chance of an infinite loop as in the following code:
17583 la $4,foo
17584 .skip 1020
17585 .align 2
17586 foo:
17587 In this case when the la is extended, foo is 0x3fc bytes
17588 away, so the la can be shrunk, but then foo is 0x400 away, so
17589 the la must be extended. To avoid this loop, we mark the
17590 frag as extended if it was small, and is about to become
17591 extended with the next value above maxtiny. */
17592 maxtiny = mips_int_operand_max (operand);
17593 if (val == maxtiny + (1 << operand->shift)
17594 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17595 {
17596 fragp->fr_subtype =
17597 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17598 return 1;
17599 }
17600 }
17601
17602 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17603 }
17604
17605 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17606 macro expansion. SEC is the section the frag is in. We only
17607 support PC-relative instructions (LA, DLA, LW, LD) here, in
17608 non-PIC code using 32-bit addressing. */
17609
17610 static int
17611 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17612 {
17613 const struct mips_pcrel_operand *pcrel_op;
17614 const struct mips_int_operand *operand;
17615 offsetT val;
17616 segT symsec;
17617 int type;
17618
17619 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17620
17621 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17622 return 0;
17623 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17624 return 0;
17625
17626 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17627 switch (type)
17628 {
17629 case 'A':
17630 case 'B':
17631 case 'E':
17632 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17633 if (bfd_is_abs_section (symsec))
17634 return 1;
17635 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17636 return 0;
17637 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17638 return 1;
17639
17640 operand = mips16_immed_operand (type, TRUE);
17641 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17642 pcrel_op = (const struct mips_pcrel_operand *) operand;
17643 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17644
17645 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17646
17647 default:
17648 return 0;
17649 }
17650 }
17651
17652 /* Compute the length of a branch sequence, and adjust the
17653 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17654 worst-case length is computed, with UPDATE being used to indicate
17655 whether an unconditional (-1), branch-likely (+1) or regular (0)
17656 branch is to be computed. */
17657 static int
17658 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17659 {
17660 bfd_boolean toofar;
17661 int length;
17662
17663 if (fragp
17664 && S_IS_DEFINED (fragp->fr_symbol)
17665 && !S_IS_WEAK (fragp->fr_symbol)
17666 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17667 {
17668 addressT addr;
17669 offsetT val;
17670
17671 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17672
17673 addr = fragp->fr_address + fragp->fr_fix + 4;
17674
17675 val -= addr;
17676
17677 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17678 }
17679 else
17680 /* If the symbol is not defined or it's in a different segment,
17681 we emit the long sequence. */
17682 toofar = TRUE;
17683
17684 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17685 fragp->fr_subtype
17686 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17687 RELAX_BRANCH_PIC (fragp->fr_subtype),
17688 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17689 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17690 RELAX_BRANCH_LINK (fragp->fr_subtype),
17691 toofar);
17692
17693 length = 4;
17694 if (toofar)
17695 {
17696 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17697 length += 8;
17698
17699 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17700 {
17701 /* Additional space for PIC loading of target address. */
17702 length += 8;
17703 if (mips_opts.isa == ISA_MIPS1)
17704 /* Additional space for $at-stabilizing nop. */
17705 length += 4;
17706 }
17707
17708 /* If branch is conditional. */
17709 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17710 length += 8;
17711 }
17712
17713 return length;
17714 }
17715
17716 /* Get a FRAG's branch instruction delay slot size, either from the
17717 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17718 or SHORT_INSN_SIZE otherwise. */
17719
17720 static int
17721 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17722 {
17723 char *buf = fragp->fr_literal + fragp->fr_fix;
17724
17725 if (al)
17726 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17727 else
17728 return short_insn_size;
17729 }
17730
17731 /* Compute the length of a branch sequence, and adjust the
17732 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17733 worst-case length is computed, with UPDATE being used to indicate
17734 whether an unconditional (-1), or regular (0) branch is to be
17735 computed. */
17736
17737 static int
17738 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17739 {
17740 bfd_boolean insn32 = TRUE;
17741 bfd_boolean nods = TRUE;
17742 bfd_boolean pic = TRUE;
17743 bfd_boolean al = TRUE;
17744 int short_insn_size;
17745 bfd_boolean toofar;
17746 int length;
17747
17748 if (fragp)
17749 {
17750 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17751 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17752 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17753 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17754 }
17755 short_insn_size = insn32 ? 4 : 2;
17756
17757 if (fragp
17758 && S_IS_DEFINED (fragp->fr_symbol)
17759 && !S_IS_WEAK (fragp->fr_symbol)
17760 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17761 {
17762 addressT addr;
17763 offsetT val;
17764
17765 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17766 /* Ignore the low bit in the target, since it will be set
17767 for a text label. */
17768 if ((val & 1) != 0)
17769 --val;
17770
17771 addr = fragp->fr_address + fragp->fr_fix + 4;
17772
17773 val -= addr;
17774
17775 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17776 }
17777 else
17778 /* If the symbol is not defined or it's in a different segment,
17779 we emit the long sequence. */
17780 toofar = TRUE;
17781
17782 if (fragp && update
17783 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17784 fragp->fr_subtype = (toofar
17785 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17786 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17787
17788 length = 4;
17789 if (toofar)
17790 {
17791 bfd_boolean compact_known = fragp != NULL;
17792 bfd_boolean compact = FALSE;
17793 bfd_boolean uncond;
17794
17795 if (fragp)
17796 {
17797 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17798 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17799 }
17800 else
17801 uncond = update < 0;
17802
17803 /* If label is out of range, we turn branch <br>:
17804
17805 <br> label # 4 bytes
17806 0:
17807
17808 into:
17809
17810 j label # 4 bytes
17811 nop # 2/4 bytes if
17812 # compact && (!PIC || insn32)
17813 0:
17814 */
17815 if ((!pic || insn32) && (!compact_known || compact))
17816 length += short_insn_size;
17817
17818 /* If assembling PIC code, we further turn:
17819
17820 j label # 4 bytes
17821
17822 into:
17823
17824 lw/ld at, %got(label)(gp) # 4 bytes
17825 d/addiu at, %lo(label) # 4 bytes
17826 jr/c at # 2/4 bytes
17827 */
17828 if (pic)
17829 length += 4 + short_insn_size;
17830
17831 /* Add an extra nop if the jump has no compact form and we need
17832 to fill the delay slot. */
17833 if ((!pic || al) && nods)
17834 length += (fragp
17835 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17836 : short_insn_size);
17837
17838 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17839
17840 <brneg> 0f # 4 bytes
17841 nop # 2/4 bytes if !compact
17842 */
17843 if (!uncond)
17844 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17845 }
17846 else if (nods)
17847 {
17848 /* Add an extra nop to fill the delay slot. */
17849 gas_assert (fragp);
17850 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17851 }
17852
17853 return length;
17854 }
17855
17856 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17857 bit accordingly. */
17858
17859 static int
17860 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17861 {
17862 bfd_boolean toofar;
17863
17864 if (fragp
17865 && S_IS_DEFINED (fragp->fr_symbol)
17866 && !S_IS_WEAK (fragp->fr_symbol)
17867 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17868 {
17869 addressT addr;
17870 offsetT val;
17871 int type;
17872
17873 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17874 /* Ignore the low bit in the target, since it will be set
17875 for a text label. */
17876 if ((val & 1) != 0)
17877 --val;
17878
17879 /* Assume this is a 2-byte branch. */
17880 addr = fragp->fr_address + fragp->fr_fix + 2;
17881
17882 /* We try to avoid the infinite loop by not adding 2 more bytes for
17883 long branches. */
17884
17885 val -= addr;
17886
17887 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17888 if (type == 'D')
17889 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17890 else if (type == 'E')
17891 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17892 else
17893 abort ();
17894 }
17895 else
17896 /* If the symbol is not defined or it's in a different segment,
17897 we emit a normal 32-bit branch. */
17898 toofar = TRUE;
17899
17900 if (fragp && update
17901 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17902 fragp->fr_subtype
17903 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17904 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17905
17906 if (toofar)
17907 return 4;
17908
17909 return 2;
17910 }
17911
17912 /* Estimate the size of a frag before relaxing. Unless this is the
17913 mips16, we are not really relaxing here, and the final size is
17914 encoded in the subtype information. For the mips16, we have to
17915 decide whether we are using an extended opcode or not. */
17916
17917 int
17918 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17919 {
17920 int change;
17921
17922 if (RELAX_BRANCH_P (fragp->fr_subtype))
17923 {
17924
17925 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17926
17927 return fragp->fr_var;
17928 }
17929
17930 if (RELAX_MIPS16_P (fragp->fr_subtype))
17931 {
17932 /* We don't want to modify the EXTENDED bit here; it might get us
17933 into infinite loops. We change it only in mips_relax_frag(). */
17934 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17935 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
17936 else
17937 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17938 }
17939
17940 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17941 {
17942 int length = 4;
17943
17944 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17945 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17946 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17947 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17948 fragp->fr_var = length;
17949
17950 return length;
17951 }
17952
17953 if (mips_pic == VXWORKS_PIC)
17954 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17955 change = 0;
17956 else if (RELAX_PIC (fragp->fr_subtype))
17957 change = pic_need_relax (fragp->fr_symbol);
17958 else
17959 change = nopic_need_relax (fragp->fr_symbol, 0);
17960
17961 if (change)
17962 {
17963 fragp->fr_subtype |= RELAX_USE_SECOND;
17964 return -RELAX_FIRST (fragp->fr_subtype);
17965 }
17966 else
17967 return -RELAX_SECOND (fragp->fr_subtype);
17968 }
17969
17970 /* This is called to see whether a reloc against a defined symbol
17971 should be converted into a reloc against a section. */
17972
17973 int
17974 mips_fix_adjustable (fixS *fixp)
17975 {
17976 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17977 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17978 return 0;
17979
17980 if (fixp->fx_addsy == NULL)
17981 return 1;
17982
17983 /* Allow relocs used for EH tables. */
17984 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17985 return 1;
17986
17987 /* If symbol SYM is in a mergeable section, relocations of the form
17988 SYM + 0 can usually be made section-relative. The mergeable data
17989 is then identified by the section offset rather than by the symbol.
17990
17991 However, if we're generating REL LO16 relocations, the offset is split
17992 between the LO16 and partnering high part relocation. The linker will
17993 need to recalculate the complete offset in order to correctly identify
17994 the merge data.
17995
17996 The linker has traditionally not looked for the partnering high part
17997 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17998 placed anywhere. Rather than break backwards compatibility by changing
17999 this, it seems better not to force the issue, and instead keep the
18000 original symbol. This will work with either linker behavior. */
18001 if ((lo16_reloc_p (fixp->fx_r_type)
18002 || reloc_needs_lo_p (fixp->fx_r_type))
18003 && HAVE_IN_PLACE_ADDENDS
18004 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
18005 return 0;
18006
18007 /* There is no place to store an in-place offset for JALR relocations. */
18008 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
18009 return 0;
18010
18011 /* Likewise an in-range offset of limited PC-relative relocations may
18012 overflow the in-place relocatable field if recalculated against the
18013 start address of the symbol's containing section.
18014
18015 Also, PC relative relocations for MIPS R6 need to be symbol rather than
18016 section relative to allow linker relaxations to be performed later on. */
18017 if (limited_pcrel_reloc_p (fixp->fx_r_type)
18018 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
18019 return 0;
18020
18021 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
18022 to a floating-point stub. The same is true for non-R_MIPS16_26
18023 relocations against MIPS16 functions; in this case, the stub becomes
18024 the function's canonical address.
18025
18026 Floating-point stubs are stored in unique .mips16.call.* or
18027 .mips16.fn.* sections. If a stub T for function F is in section S,
18028 the first relocation in section S must be against F; this is how the
18029 linker determines the target function. All relocations that might
18030 resolve to T must also be against F. We therefore have the following
18031 restrictions, which are given in an intentionally-redundant way:
18032
18033 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
18034 symbols.
18035
18036 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18037 if that stub might be used.
18038
18039 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18040 symbols.
18041
18042 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18043 that stub might be used.
18044
18045 There is a further restriction:
18046
18047 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
18048 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
18049 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18050 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18051 against MIPS16 or microMIPS symbols because we need to keep the
18052 MIPS16 or microMIPS symbol for the purpose of mode mismatch
18053 detection and JAL or BAL to JALX instruction conversion in the
18054 linker.
18055
18056 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
18057 against a MIPS16 symbol. We deal with (5) by additionally leaving
18058 alone any jump and branch relocations against a microMIPS symbol.
18059
18060 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18061 relocation against some symbol R, no relocation against R may be
18062 reduced. (Note that this deals with (2) as well as (1) because
18063 relocations against global symbols will never be reduced on ELF
18064 targets.) This approach is a little simpler than trying to detect
18065 stub sections, and gives the "all or nothing" per-symbol consistency
18066 that we have for MIPS16 symbols. */
18067 if (fixp->fx_subsy == NULL
18068 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
18069 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
18070 && (jmp_reloc_p (fixp->fx_r_type)
18071 || b_reloc_p (fixp->fx_r_type)))
18072 || *symbol_get_tc (fixp->fx_addsy)))
18073 return 0;
18074
18075 return 1;
18076 }
18077
18078 /* Translate internal representation of relocation info to BFD target
18079 format. */
18080
18081 arelent **
18082 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
18083 {
18084 static arelent *retval[4];
18085 arelent *reloc;
18086 bfd_reloc_code_real_type code;
18087
18088 memset (retval, 0, sizeof(retval));
18089 reloc = retval[0] = XCNEW (arelent);
18090 reloc->sym_ptr_ptr = XNEW (asymbol *);
18091 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18092 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18093
18094 if (fixp->fx_pcrel)
18095 {
18096 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
18097 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
18098 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18099 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
18100 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
18101 || fixp->fx_r_type == BFD_RELOC_32_PCREL
18102 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
18103 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
18104 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
18105 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
18106 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
18107 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
18108
18109 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18110 Relocations want only the symbol offset. */
18111 switch (fixp->fx_r_type)
18112 {
18113 case BFD_RELOC_MIPS_18_PCREL_S3:
18114 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18115 break;
18116 default:
18117 reloc->addend = fixp->fx_addnumber + reloc->address;
18118 break;
18119 }
18120 }
18121 else if (HAVE_IN_PLACE_ADDENDS
18122 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18123 && (read_compressed_insn (fixp->fx_frag->fr_literal
18124 + fixp->fx_where, 4) >> 26) == 0x3c)
18125 {
18126 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18127 addend accordingly. */
18128 reloc->addend = fixp->fx_addnumber >> 1;
18129 }
18130 else
18131 reloc->addend = fixp->fx_addnumber;
18132
18133 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18134 entry to be used in the relocation's section offset. */
18135 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18136 {
18137 reloc->address = reloc->addend;
18138 reloc->addend = 0;
18139 }
18140
18141 code = fixp->fx_r_type;
18142
18143 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18144 if (reloc->howto == NULL)
18145 {
18146 as_bad_where (fixp->fx_file, fixp->fx_line,
18147 _("cannot represent %s relocation in this object file"
18148 " format"),
18149 bfd_get_reloc_code_name (code));
18150 retval[0] = NULL;
18151 }
18152
18153 return retval;
18154 }
18155
18156 /* Relax a machine dependent frag. This returns the amount by which
18157 the current size of the frag should change. */
18158
18159 int
18160 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18161 {
18162 if (RELAX_BRANCH_P (fragp->fr_subtype))
18163 {
18164 offsetT old_var = fragp->fr_var;
18165
18166 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18167
18168 return fragp->fr_var - old_var;
18169 }
18170
18171 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18172 {
18173 offsetT old_var = fragp->fr_var;
18174 offsetT new_var = 4;
18175
18176 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18177 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18178 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18179 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18180 fragp->fr_var = new_var;
18181
18182 return new_var - old_var;
18183 }
18184
18185 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18186 return 0;
18187
18188 if (!mips16_extended_frag (fragp, sec, stretch))
18189 {
18190 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18191 {
18192 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18193 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
18194 }
18195 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18196 {
18197 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18198 return -2;
18199 }
18200 else
18201 return 0;
18202 }
18203 else if (!mips16_macro_frag (fragp, sec, stretch))
18204 {
18205 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18206 {
18207 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18208 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18209 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
18210 }
18211 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18212 {
18213 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18214 return 2;
18215 }
18216 else
18217 return 0;
18218 }
18219 else
18220 {
18221 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18222 return 0;
18223 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18224 {
18225 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18226 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18227 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
18228 }
18229 else
18230 {
18231 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18232 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
18233 }
18234 }
18235
18236 return 0;
18237 }
18238
18239 /* Convert a machine dependent frag. */
18240
18241 void
18242 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18243 {
18244 if (RELAX_BRANCH_P (fragp->fr_subtype))
18245 {
18246 char *buf;
18247 unsigned long insn;
18248 fixS *fixp;
18249
18250 buf = fragp->fr_literal + fragp->fr_fix;
18251 insn = read_insn (buf);
18252
18253 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18254 {
18255 /* We generate a fixup instead of applying it right now
18256 because, if there are linker relaxations, we're going to
18257 need the relocations. */
18258 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18259 fragp->fr_symbol, fragp->fr_offset,
18260 TRUE, BFD_RELOC_16_PCREL_S2);
18261 fixp->fx_file = fragp->fr_file;
18262 fixp->fx_line = fragp->fr_line;
18263
18264 buf = write_insn (buf, insn);
18265 }
18266 else
18267 {
18268 int i;
18269
18270 as_warn_where (fragp->fr_file, fragp->fr_line,
18271 _("relaxed out-of-range branch into a jump"));
18272
18273 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18274 goto uncond;
18275
18276 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18277 {
18278 /* Reverse the branch. */
18279 switch ((insn >> 28) & 0xf)
18280 {
18281 case 4:
18282 if ((insn & 0xff000000) == 0x47000000
18283 || (insn & 0xff600000) == 0x45600000)
18284 {
18285 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18286 reversed by tweaking bit 23. */
18287 insn ^= 0x00800000;
18288 }
18289 else
18290 {
18291 /* bc[0-3][tf]l? instructions can have the condition
18292 reversed by tweaking a single TF bit, and their
18293 opcodes all have 0x4???????. */
18294 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18295 insn ^= 0x00010000;
18296 }
18297 break;
18298
18299 case 0:
18300 /* bltz 0x04000000 bgez 0x04010000
18301 bltzal 0x04100000 bgezal 0x04110000 */
18302 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18303 insn ^= 0x00010000;
18304 break;
18305
18306 case 1:
18307 /* beq 0x10000000 bne 0x14000000
18308 blez 0x18000000 bgtz 0x1c000000 */
18309 insn ^= 0x04000000;
18310 break;
18311
18312 default:
18313 abort ();
18314 }
18315 }
18316
18317 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18318 {
18319 /* Clear the and-link bit. */
18320 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18321
18322 /* bltzal 0x04100000 bgezal 0x04110000
18323 bltzall 0x04120000 bgezall 0x04130000 */
18324 insn &= ~0x00100000;
18325 }
18326
18327 /* Branch over the branch (if the branch was likely) or the
18328 full jump (not likely case). Compute the offset from the
18329 current instruction to branch to. */
18330 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18331 i = 16;
18332 else
18333 {
18334 /* How many bytes in instructions we've already emitted? */
18335 i = buf - fragp->fr_literal - fragp->fr_fix;
18336 /* How many bytes in instructions from here to the end? */
18337 i = fragp->fr_var - i;
18338 }
18339 /* Convert to instruction count. */
18340 i >>= 2;
18341 /* Branch counts from the next instruction. */
18342 i--;
18343 insn |= i;
18344 /* Branch over the jump. */
18345 buf = write_insn (buf, insn);
18346
18347 /* nop */
18348 buf = write_insn (buf, 0);
18349
18350 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18351 {
18352 /* beql $0, $0, 2f */
18353 insn = 0x50000000;
18354 /* Compute the PC offset from the current instruction to
18355 the end of the variable frag. */
18356 /* How many bytes in instructions we've already emitted? */
18357 i = buf - fragp->fr_literal - fragp->fr_fix;
18358 /* How many bytes in instructions from here to the end? */
18359 i = fragp->fr_var - i;
18360 /* Convert to instruction count. */
18361 i >>= 2;
18362 /* Don't decrement i, because we want to branch over the
18363 delay slot. */
18364 insn |= i;
18365
18366 buf = write_insn (buf, insn);
18367 buf = write_insn (buf, 0);
18368 }
18369
18370 uncond:
18371 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18372 {
18373 /* j or jal. */
18374 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18375 ? 0x0c000000 : 0x08000000);
18376
18377 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18378 fragp->fr_symbol, fragp->fr_offset,
18379 FALSE, BFD_RELOC_MIPS_JMP);
18380 fixp->fx_file = fragp->fr_file;
18381 fixp->fx_line = fragp->fr_line;
18382
18383 buf = write_insn (buf, insn);
18384 }
18385 else
18386 {
18387 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18388
18389 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18390 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18391 insn |= at << OP_SH_RT;
18392
18393 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18394 fragp->fr_symbol, fragp->fr_offset,
18395 FALSE, BFD_RELOC_MIPS_GOT16);
18396 fixp->fx_file = fragp->fr_file;
18397 fixp->fx_line = fragp->fr_line;
18398
18399 buf = write_insn (buf, insn);
18400
18401 if (mips_opts.isa == ISA_MIPS1)
18402 /* nop */
18403 buf = write_insn (buf, 0);
18404
18405 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18406 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18407 insn |= at << OP_SH_RS | at << OP_SH_RT;
18408
18409 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18410 fragp->fr_symbol, fragp->fr_offset,
18411 FALSE, BFD_RELOC_LO16);
18412 fixp->fx_file = fragp->fr_file;
18413 fixp->fx_line = fragp->fr_line;
18414
18415 buf = write_insn (buf, insn);
18416
18417 /* j(al)r $at. */
18418 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18419 insn = 0x0000f809;
18420 else
18421 insn = 0x00000008;
18422 insn |= at << OP_SH_RS;
18423
18424 buf = write_insn (buf, insn);
18425 }
18426 }
18427
18428 fragp->fr_fix += fragp->fr_var;
18429 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18430 return;
18431 }
18432
18433 /* Relax microMIPS branches. */
18434 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18435 {
18436 char *buf = fragp->fr_literal + fragp->fr_fix;
18437 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18438 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18439 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18440 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18441 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18442 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18443 bfd_boolean short_ds;
18444 unsigned long insn;
18445 fixS *fixp;
18446
18447 fragp->fr_fix += fragp->fr_var;
18448
18449 /* Handle 16-bit branches that fit or are forced to fit. */
18450 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18451 {
18452 /* We generate a fixup instead of applying it right now,
18453 because if there is linker relaxation, we're going to
18454 need the relocations. */
18455 switch (type)
18456 {
18457 case 'D':
18458 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18459 fragp->fr_symbol, fragp->fr_offset,
18460 TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1);
18461 break;
18462 case 'E':
18463 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18464 fragp->fr_symbol, fragp->fr_offset,
18465 TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1);
18466 break;
18467 default:
18468 abort ();
18469 }
18470
18471 fixp->fx_file = fragp->fr_file;
18472 fixp->fx_line = fragp->fr_line;
18473
18474 /* These relocations can have an addend that won't fit in
18475 2 octets. */
18476 fixp->fx_no_overflow = 1;
18477
18478 return;
18479 }
18480
18481 /* Handle 32-bit branches that fit or are forced to fit. */
18482 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18483 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18484 {
18485 /* We generate a fixup instead of applying it right now,
18486 because if there is linker relaxation, we're going to
18487 need the relocations. */
18488 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18489 fragp->fr_symbol, fragp->fr_offset,
18490 TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
18491 fixp->fx_file = fragp->fr_file;
18492 fixp->fx_line = fragp->fr_line;
18493
18494 if (type == 0)
18495 {
18496 insn = read_compressed_insn (buf, 4);
18497 buf += 4;
18498
18499 if (nods)
18500 {
18501 /* Check the short-delay-slot bit. */
18502 if (!al || (insn & 0x02000000) != 0)
18503 buf = write_compressed_insn (buf, 0x0c00, 2);
18504 else
18505 buf = write_compressed_insn (buf, 0x00000000, 4);
18506 }
18507
18508 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18509 return;
18510 }
18511 }
18512
18513 /* Relax 16-bit branches to 32-bit branches. */
18514 if (type != 0)
18515 {
18516 insn = read_compressed_insn (buf, 2);
18517
18518 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18519 insn = 0x94000000; /* beq */
18520 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18521 {
18522 unsigned long regno;
18523
18524 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18525 regno = micromips_to_32_reg_d_map [regno];
18526 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18527 insn |= regno << MICROMIPSOP_SH_RS;
18528 }
18529 else
18530 abort ();
18531
18532 /* Nothing else to do, just write it out. */
18533 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18534 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18535 {
18536 buf = write_compressed_insn (buf, insn, 4);
18537 if (nods)
18538 buf = write_compressed_insn (buf, 0x0c00, 2);
18539 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18540 return;
18541 }
18542 }
18543 else
18544 insn = read_compressed_insn (buf, 4);
18545
18546 /* Relax 32-bit branches to a sequence of instructions. */
18547 as_warn_where (fragp->fr_file, fragp->fr_line,
18548 _("relaxed out-of-range branch into a jump"));
18549
18550 /* Set the short-delay-slot bit. */
18551 short_ds = !al || (insn & 0x02000000) != 0;
18552
18553 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18554 {
18555 symbolS *l;
18556
18557 /* Reverse the branch. */
18558 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18559 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18560 insn ^= 0x20000000;
18561 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18562 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18563 || (insn & 0xffe00000) == 0x40800000 /* blez */
18564 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18565 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18566 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18567 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18568 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18569 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18570 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18571 insn ^= 0x00400000;
18572 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18573 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18574 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18575 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18576 insn ^= 0x00200000;
18577 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18578 BNZ.df */
18579 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18580 BNZ.V */
18581 insn ^= 0x00800000;
18582 else
18583 abort ();
18584
18585 if (al)
18586 {
18587 /* Clear the and-link and short-delay-slot bits. */
18588 gas_assert ((insn & 0xfda00000) == 0x40200000);
18589
18590 /* bltzal 0x40200000 bgezal 0x40600000 */
18591 /* bltzals 0x42200000 bgezals 0x42600000 */
18592 insn &= ~0x02200000;
18593 }
18594
18595 /* Make a label at the end for use with the branch. */
18596 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18597 micromips_label_inc ();
18598 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18599
18600 /* Refer to it. */
18601 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18602 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18603 fixp->fx_file = fragp->fr_file;
18604 fixp->fx_line = fragp->fr_line;
18605
18606 /* Branch over the jump. */
18607 buf = write_compressed_insn (buf, insn, 4);
18608
18609 if (!compact)
18610 {
18611 /* nop */
18612 if (insn32)
18613 buf = write_compressed_insn (buf, 0x00000000, 4);
18614 else
18615 buf = write_compressed_insn (buf, 0x0c00, 2);
18616 }
18617 }
18618
18619 if (!pic)
18620 {
18621 unsigned long jal = (short_ds || nods
18622 ? 0x74000000 : 0xf4000000); /* jal/s */
18623
18624 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18625 insn = al ? jal : 0xd4000000;
18626
18627 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18628 fragp->fr_symbol, fragp->fr_offset,
18629 FALSE, BFD_RELOC_MICROMIPS_JMP);
18630 fixp->fx_file = fragp->fr_file;
18631 fixp->fx_line = fragp->fr_line;
18632
18633 buf = write_compressed_insn (buf, insn, 4);
18634
18635 if (compact || nods)
18636 {
18637 /* nop */
18638 if (insn32)
18639 buf = write_compressed_insn (buf, 0x00000000, 4);
18640 else
18641 buf = write_compressed_insn (buf, 0x0c00, 2);
18642 }
18643 }
18644 else
18645 {
18646 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18647
18648 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18649 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18650 insn |= at << MICROMIPSOP_SH_RT;
18651
18652 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18653 fragp->fr_symbol, fragp->fr_offset,
18654 FALSE, BFD_RELOC_MICROMIPS_GOT16);
18655 fixp->fx_file = fragp->fr_file;
18656 fixp->fx_line = fragp->fr_line;
18657
18658 buf = write_compressed_insn (buf, insn, 4);
18659
18660 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18661 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18662 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18663
18664 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18665 fragp->fr_symbol, fragp->fr_offset,
18666 FALSE, BFD_RELOC_MICROMIPS_LO16);
18667 fixp->fx_file = fragp->fr_file;
18668 fixp->fx_line = fragp->fr_line;
18669
18670 buf = write_compressed_insn (buf, insn, 4);
18671
18672 if (insn32)
18673 {
18674 /* jr/jalr $at */
18675 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18676 insn |= at << MICROMIPSOP_SH_RS;
18677
18678 buf = write_compressed_insn (buf, insn, 4);
18679
18680 if (compact || nods)
18681 /* nop */
18682 buf = write_compressed_insn (buf, 0x00000000, 4);
18683 }
18684 else
18685 {
18686 /* jr/jrc/jalr/jalrs $at */
18687 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18688 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18689
18690 insn = al ? jalr : jr;
18691 insn |= at << MICROMIPSOP_SH_MJ;
18692
18693 buf = write_compressed_insn (buf, insn, 2);
18694 if (al && nods)
18695 {
18696 /* nop */
18697 if (short_ds)
18698 buf = write_compressed_insn (buf, 0x0c00, 2);
18699 else
18700 buf = write_compressed_insn (buf, 0x00000000, 4);
18701 }
18702 }
18703 }
18704
18705 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18706 return;
18707 }
18708
18709 if (RELAX_MIPS16_P (fragp->fr_subtype))
18710 {
18711 int type;
18712 const struct mips_int_operand *operand;
18713 offsetT val;
18714 char *buf;
18715 unsigned int user_length;
18716 bfd_boolean need_reloc;
18717 unsigned long insn;
18718 bfd_boolean mac;
18719 bfd_boolean ext;
18720 segT symsec;
18721
18722 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18723 operand = mips16_immed_operand (type, FALSE);
18724
18725 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18726 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18727 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18728
18729 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18730 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18731 || (operand->root.type == OP_PCREL && !mac
18732 ? asec != symsec
18733 : !bfd_is_abs_section (symsec)));
18734
18735 if (operand->root.type == OP_PCREL && !mac)
18736 {
18737 const struct mips_pcrel_operand *pcrel_op;
18738
18739 pcrel_op = (const struct mips_pcrel_operand *) operand;
18740
18741 if (pcrel_op->include_isa_bit && !need_reloc)
18742 {
18743 if (!mips_ignore_branch_isa
18744 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18745 as_bad_where (fragp->fr_file, fragp->fr_line,
18746 _("branch to a symbol in another ISA mode"));
18747 else if ((fragp->fr_offset & 0x1) != 0)
18748 as_bad_where (fragp->fr_file, fragp->fr_line,
18749 _("branch to misaligned address (0x%lx)"),
18750 (long) val);
18751 }
18752
18753 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
18754
18755 /* Make sure the section winds up with the alignment we have
18756 assumed. */
18757 if (operand->shift > 0)
18758 record_alignment (asec, operand->shift);
18759 }
18760
18761 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18762 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18763 {
18764 if (mac)
18765 as_warn_where (fragp->fr_file, fragp->fr_line,
18766 _("macro instruction expanded into multiple "
18767 "instructions in a branch delay slot"));
18768 else if (ext)
18769 as_warn_where (fragp->fr_file, fragp->fr_line,
18770 _("extended instruction in a branch delay slot"));
18771 }
18772 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
18773 as_warn_where (fragp->fr_file, fragp->fr_line,
18774 _("macro instruction expanded into multiple "
18775 "instructions"));
18776
18777 buf = fragp->fr_literal + fragp->fr_fix;
18778
18779 insn = read_compressed_insn (buf, 2);
18780 if (ext)
18781 insn |= MIPS16_EXTEND;
18782
18783 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18784 user_length = 4;
18785 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18786 user_length = 2;
18787 else
18788 user_length = 0;
18789
18790 if (mac)
18791 {
18792 unsigned long reg;
18793 unsigned long new;
18794 unsigned long op;
18795 bfd_boolean e2;
18796
18797 gas_assert (type == 'A' || type == 'B' || type == 'E');
18798 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
18799
18800 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
18801
18802 if (need_reloc)
18803 {
18804 fixS *fixp;
18805
18806 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18807
18808 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18809 fragp->fr_symbol, fragp->fr_offset,
18810 FALSE, BFD_RELOC_MIPS16_HI16_S);
18811 fixp->fx_file = fragp->fr_file;
18812 fixp->fx_line = fragp->fr_line;
18813
18814 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
18815 fragp->fr_symbol, fragp->fr_offset,
18816 FALSE, BFD_RELOC_MIPS16_LO16);
18817 fixp->fx_file = fragp->fr_file;
18818 fixp->fx_line = fragp->fr_line;
18819
18820 val = 0;
18821 }
18822
18823 switch (insn & 0xf800)
18824 {
18825 case 0x0800: /* ADDIU */
18826 reg = (insn >> 8) & 0x7;
18827 op = 0xf0004800 | (reg << 8);
18828 break;
18829 case 0xb000: /* LW */
18830 reg = (insn >> 8) & 0x7;
18831 op = 0xf0009800 | (reg << 8) | (reg << 5);
18832 break;
18833 case 0xf800: /* I64 */
18834 reg = (insn >> 5) & 0x7;
18835 switch (insn & 0x0700)
18836 {
18837 case 0x0400: /* LD */
18838 op = 0xf0003800 | (reg << 8) | (reg << 5);
18839 break;
18840 case 0x0600: /* DADDIU */
18841 op = 0xf000fd00 | (reg << 5);
18842 break;
18843 default:
18844 abort ();
18845 }
18846 break;
18847 default:
18848 abort ();
18849 }
18850
18851 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
18852 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18853 buf = write_compressed_insn (buf, new, 4);
18854 if (!e2)
18855 {
18856 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18857 buf = write_compressed_insn (buf, new, 4);
18858 }
18859 op |= mips16_immed_extend (val, 16);
18860 buf = write_compressed_insn (buf, op, 4);
18861
18862 fragp->fr_fix += e2 ? 8 : 12;
18863 }
18864 else
18865 {
18866 unsigned int length = ext ? 4 : 2;
18867
18868 if (need_reloc)
18869 {
18870 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18871 fixS *fixp;
18872
18873 switch (type)
18874 {
18875 case 'p':
18876 case 'q':
18877 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18878 break;
18879 default:
18880 break;
18881 }
18882 if (mac || reloc == BFD_RELOC_NONE)
18883 as_bad_where (fragp->fr_file, fragp->fr_line,
18884 _("unsupported relocation"));
18885 else if (ext)
18886 {
18887 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18888 fragp->fr_symbol, fragp->fr_offset,
18889 TRUE, reloc);
18890 fixp->fx_file = fragp->fr_file;
18891 fixp->fx_line = fragp->fr_line;
18892 }
18893 else
18894 as_bad_where (fragp->fr_file, fragp->fr_line,
18895 _("invalid unextended operand value"));
18896 }
18897 else
18898 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18899 BFD_RELOC_UNUSED, val, user_length, &insn);
18900
18901 gas_assert (mips16_opcode_length (insn) == length);
18902 write_compressed_insn (buf, insn, length);
18903 fragp->fr_fix += length;
18904 }
18905 }
18906 else
18907 {
18908 relax_substateT subtype = fragp->fr_subtype;
18909 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18910 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18911 int first, second;
18912 fixS *fixp;
18913
18914 first = RELAX_FIRST (subtype);
18915 second = RELAX_SECOND (subtype);
18916 fixp = (fixS *) fragp->fr_opcode;
18917
18918 /* If the delay slot chosen does not match the size of the instruction,
18919 then emit a warning. */
18920 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18921 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18922 {
18923 relax_substateT s;
18924 const char *msg;
18925
18926 s = subtype & (RELAX_DELAY_SLOT_16BIT
18927 | RELAX_DELAY_SLOT_SIZE_FIRST
18928 | RELAX_DELAY_SLOT_SIZE_SECOND);
18929 msg = macro_warning (s);
18930 if (msg != NULL)
18931 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18932 subtype &= ~s;
18933 }
18934
18935 /* Possibly emit a warning if we've chosen the longer option. */
18936 if (use_second == second_longer)
18937 {
18938 relax_substateT s;
18939 const char *msg;
18940
18941 s = (subtype
18942 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18943 msg = macro_warning (s);
18944 if (msg != NULL)
18945 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18946 subtype &= ~s;
18947 }
18948
18949 /* Go through all the fixups for the first sequence. Disable them
18950 (by marking them as done) if we're going to use the second
18951 sequence instead. */
18952 while (fixp
18953 && fixp->fx_frag == fragp
18954 && fixp->fx_where < fragp->fr_fix - second)
18955 {
18956 if (subtype & RELAX_USE_SECOND)
18957 fixp->fx_done = 1;
18958 fixp = fixp->fx_next;
18959 }
18960
18961 /* Go through the fixups for the second sequence. Disable them if
18962 we're going to use the first sequence, otherwise adjust their
18963 addresses to account for the relaxation. */
18964 while (fixp && fixp->fx_frag == fragp)
18965 {
18966 if (subtype & RELAX_USE_SECOND)
18967 fixp->fx_where -= first;
18968 else
18969 fixp->fx_done = 1;
18970 fixp = fixp->fx_next;
18971 }
18972
18973 /* Now modify the frag contents. */
18974 if (subtype & RELAX_USE_SECOND)
18975 {
18976 char *start;
18977
18978 start = fragp->fr_literal + fragp->fr_fix - first - second;
18979 memmove (start, start + first, second);
18980 fragp->fr_fix -= first;
18981 }
18982 else
18983 fragp->fr_fix -= second;
18984 }
18985 }
18986
18987 /* This function is called after the relocs have been generated.
18988 We've been storing mips16 text labels as odd. Here we convert them
18989 back to even for the convenience of the debugger. */
18990
18991 void
18992 mips_frob_file_after_relocs (void)
18993 {
18994 asymbol **syms;
18995 unsigned int count, i;
18996
18997 syms = bfd_get_outsymbols (stdoutput);
18998 count = bfd_get_symcount (stdoutput);
18999 for (i = 0; i < count; i++, syms++)
19000 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
19001 && ((*syms)->value & 1) != 0)
19002 {
19003 (*syms)->value &= ~1;
19004 /* If the symbol has an odd size, it was probably computed
19005 incorrectly, so adjust that as well. */
19006 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
19007 ++elf_symbol (*syms)->internal_elf_sym.st_size;
19008 }
19009 }
19010
19011 /* This function is called whenever a label is defined, including fake
19012 labels instantiated off the dot special symbol. It is used when
19013 handling branch delays; if a branch has a label, we assume we cannot
19014 move it. This also bumps the value of the symbol by 1 in compressed
19015 code. */
19016
19017 static void
19018 mips_record_label (symbolS *sym)
19019 {
19020 segment_info_type *si = seg_info (now_seg);
19021 struct insn_label_list *l;
19022
19023 if (free_insn_labels == NULL)
19024 l = XNEW (struct insn_label_list);
19025 else
19026 {
19027 l = free_insn_labels;
19028 free_insn_labels = l->next;
19029 }
19030
19031 l->label = sym;
19032 l->next = si->label_list;
19033 si->label_list = l;
19034 }
19035
19036 /* This function is called as tc_frob_label() whenever a label is defined
19037 and adds a DWARF-2 record we only want for true labels. */
19038
19039 void
19040 mips_define_label (symbolS *sym)
19041 {
19042 mips_record_label (sym);
19043 dwarf2_emit_label (sym);
19044 }
19045
19046 /* This function is called by tc_new_dot_label whenever a new dot symbol
19047 is defined. */
19048
19049 void
19050 mips_add_dot_label (symbolS *sym)
19051 {
19052 mips_record_label (sym);
19053 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
19054 mips_compressed_mark_label (sym);
19055 }
19056 \f
19057 /* Converting ASE flags from internal to .MIPS.abiflags values. */
19058 static unsigned int
19059 mips_convert_ase_flags (int ase)
19060 {
19061 unsigned int ext_ases = 0;
19062
19063 if (ase & ASE_DSP)
19064 ext_ases |= AFL_ASE_DSP;
19065 if (ase & ASE_DSPR2)
19066 ext_ases |= AFL_ASE_DSPR2;
19067 if (ase & ASE_DSPR3)
19068 ext_ases |= AFL_ASE_DSPR3;
19069 if (ase & ASE_EVA)
19070 ext_ases |= AFL_ASE_EVA;
19071 if (ase & ASE_MCU)
19072 ext_ases |= AFL_ASE_MCU;
19073 if (ase & ASE_MDMX)
19074 ext_ases |= AFL_ASE_MDMX;
19075 if (ase & ASE_MIPS3D)
19076 ext_ases |= AFL_ASE_MIPS3D;
19077 if (ase & ASE_MT)
19078 ext_ases |= AFL_ASE_MT;
19079 if (ase & ASE_SMARTMIPS)
19080 ext_ases |= AFL_ASE_SMARTMIPS;
19081 if (ase & ASE_VIRT)
19082 ext_ases |= AFL_ASE_VIRT;
19083 if (ase & ASE_MSA)
19084 ext_ases |= AFL_ASE_MSA;
19085 if (ase & ASE_XPA)
19086 ext_ases |= AFL_ASE_XPA;
19087 if (ase & ASE_MIPS16E2)
19088 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
19089 if (ase & ASE_CRC)
19090 ext_ases |= AFL_ASE_CRC;
19091 if (ase & ASE_GINV)
19092 ext_ases |= AFL_ASE_GINV;
19093 if (ase & ASE_LOONGSON_MMI)
19094 ext_ases |= AFL_ASE_LOONGSON_MMI;
19095 if (ase & ASE_LOONGSON_CAM)
19096 ext_ases |= AFL_ASE_LOONGSON_CAM;
19097 if (ase & ASE_LOONGSON_EXT)
19098 ext_ases |= AFL_ASE_LOONGSON_EXT;
19099 if (ase & ASE_LOONGSON_EXT2)
19100 ext_ases |= AFL_ASE_LOONGSON_EXT2;
19101
19102 return ext_ases;
19103 }
19104 /* Some special processing for a MIPS ELF file. */
19105
19106 void
19107 mips_elf_final_processing (void)
19108 {
19109 int fpabi;
19110 Elf_Internal_ABIFlags_v0 flags;
19111
19112 flags.version = 0;
19113 flags.isa_rev = 0;
19114 switch (file_mips_opts.isa)
19115 {
19116 case INSN_ISA1:
19117 flags.isa_level = 1;
19118 break;
19119 case INSN_ISA2:
19120 flags.isa_level = 2;
19121 break;
19122 case INSN_ISA3:
19123 flags.isa_level = 3;
19124 break;
19125 case INSN_ISA4:
19126 flags.isa_level = 4;
19127 break;
19128 case INSN_ISA5:
19129 flags.isa_level = 5;
19130 break;
19131 case INSN_ISA32:
19132 flags.isa_level = 32;
19133 flags.isa_rev = 1;
19134 break;
19135 case INSN_ISA32R2:
19136 flags.isa_level = 32;
19137 flags.isa_rev = 2;
19138 break;
19139 case INSN_ISA32R3:
19140 flags.isa_level = 32;
19141 flags.isa_rev = 3;
19142 break;
19143 case INSN_ISA32R5:
19144 flags.isa_level = 32;
19145 flags.isa_rev = 5;
19146 break;
19147 case INSN_ISA32R6:
19148 flags.isa_level = 32;
19149 flags.isa_rev = 6;
19150 break;
19151 case INSN_ISA64:
19152 flags.isa_level = 64;
19153 flags.isa_rev = 1;
19154 break;
19155 case INSN_ISA64R2:
19156 flags.isa_level = 64;
19157 flags.isa_rev = 2;
19158 break;
19159 case INSN_ISA64R3:
19160 flags.isa_level = 64;
19161 flags.isa_rev = 3;
19162 break;
19163 case INSN_ISA64R5:
19164 flags.isa_level = 64;
19165 flags.isa_rev = 5;
19166 break;
19167 case INSN_ISA64R6:
19168 flags.isa_level = 64;
19169 flags.isa_rev = 6;
19170 break;
19171 }
19172
19173 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19174 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19175 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19176 : (file_mips_opts.fp == 64) ? AFL_REG_64
19177 : AFL_REG_32;
19178 flags.cpr2_size = AFL_REG_NONE;
19179 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19180 Tag_GNU_MIPS_ABI_FP);
19181 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19182 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19183 if (file_ase_mips16)
19184 flags.ases |= AFL_ASE_MIPS16;
19185 if (file_ase_micromips)
19186 flags.ases |= AFL_ASE_MICROMIPS;
19187 flags.flags1 = 0;
19188 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19189 || file_mips_opts.fp == 64)
19190 && file_mips_opts.oddspreg)
19191 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19192 flags.flags2 = 0;
19193
19194 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19195 ((Elf_External_ABIFlags_v0 *)
19196 mips_flags_frag));
19197
19198 /* Write out the register information. */
19199 if (mips_abi != N64_ABI)
19200 {
19201 Elf32_RegInfo s;
19202
19203 s.ri_gprmask = mips_gprmask;
19204 s.ri_cprmask[0] = mips_cprmask[0];
19205 s.ri_cprmask[1] = mips_cprmask[1];
19206 s.ri_cprmask[2] = mips_cprmask[2];
19207 s.ri_cprmask[3] = mips_cprmask[3];
19208 /* The gp_value field is set by the MIPS ELF backend. */
19209
19210 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19211 ((Elf32_External_RegInfo *)
19212 mips_regmask_frag));
19213 }
19214 else
19215 {
19216 Elf64_Internal_RegInfo s;
19217
19218 s.ri_gprmask = mips_gprmask;
19219 s.ri_pad = 0;
19220 s.ri_cprmask[0] = mips_cprmask[0];
19221 s.ri_cprmask[1] = mips_cprmask[1];
19222 s.ri_cprmask[2] = mips_cprmask[2];
19223 s.ri_cprmask[3] = mips_cprmask[3];
19224 /* The gp_value field is set by the MIPS ELF backend. */
19225
19226 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19227 ((Elf64_External_RegInfo *)
19228 mips_regmask_frag));
19229 }
19230
19231 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19232 sort of BFD interface for this. */
19233 if (mips_any_noreorder)
19234 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19235 if (mips_pic != NO_PIC)
19236 {
19237 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19238 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19239 }
19240 if (mips_abicalls)
19241 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19242
19243 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19244 defined at present; this might need to change in future. */
19245 if (file_ase_mips16)
19246 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19247 if (file_ase_micromips)
19248 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19249 if (file_mips_opts.ase & ASE_MDMX)
19250 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19251
19252 /* Set the MIPS ELF ABI flags. */
19253 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19254 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19255 else if (mips_abi == O64_ABI)
19256 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19257 else if (mips_abi == EABI_ABI)
19258 {
19259 if (file_mips_opts.gp == 64)
19260 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19261 else
19262 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19263 }
19264
19265 /* Nothing to do for N32_ABI or N64_ABI. */
19266
19267 if (mips_32bitmode)
19268 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19269
19270 if (mips_nan2008 == 1)
19271 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19272
19273 /* 32 bit code with 64 bit FP registers. */
19274 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19275 Tag_GNU_MIPS_ABI_FP);
19276 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19277 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19278 }
19279 \f
19280 typedef struct proc {
19281 symbolS *func_sym;
19282 symbolS *func_end_sym;
19283 unsigned long reg_mask;
19284 unsigned long reg_offset;
19285 unsigned long fpreg_mask;
19286 unsigned long fpreg_offset;
19287 unsigned long frame_offset;
19288 unsigned long frame_reg;
19289 unsigned long pc_reg;
19290 } procS;
19291
19292 static procS cur_proc;
19293 static procS *cur_proc_ptr;
19294 static int numprocs;
19295
19296 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19297 as "2", and a normal nop as "0". */
19298
19299 #define NOP_OPCODE_MIPS 0
19300 #define NOP_OPCODE_MIPS16 1
19301 #define NOP_OPCODE_MICROMIPS 2
19302
19303 char
19304 mips_nop_opcode (void)
19305 {
19306 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19307 return NOP_OPCODE_MICROMIPS;
19308 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19309 return NOP_OPCODE_MIPS16;
19310 else
19311 return NOP_OPCODE_MIPS;
19312 }
19313
19314 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19315 32-bit microMIPS NOPs here (if applicable). */
19316
19317 void
19318 mips_handle_align (fragS *fragp)
19319 {
19320 char nop_opcode;
19321 char *p;
19322 int bytes, size, excess;
19323 valueT opcode;
19324
19325 if (fragp->fr_type != rs_align_code)
19326 return;
19327
19328 p = fragp->fr_literal + fragp->fr_fix;
19329 nop_opcode = *p;
19330 switch (nop_opcode)
19331 {
19332 case NOP_OPCODE_MICROMIPS:
19333 opcode = micromips_nop32_insn.insn_opcode;
19334 size = 4;
19335 break;
19336 case NOP_OPCODE_MIPS16:
19337 opcode = mips16_nop_insn.insn_opcode;
19338 size = 2;
19339 break;
19340 case NOP_OPCODE_MIPS:
19341 default:
19342 opcode = nop_insn.insn_opcode;
19343 size = 4;
19344 break;
19345 }
19346
19347 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19348 excess = bytes % size;
19349
19350 /* Handle the leading part if we're not inserting a whole number of
19351 instructions, and make it the end of the fixed part of the frag.
19352 Try to fit in a short microMIPS NOP if applicable and possible,
19353 and use zeroes otherwise. */
19354 gas_assert (excess < 4);
19355 fragp->fr_fix += excess;
19356 switch (excess)
19357 {
19358 case 3:
19359 *p++ = '\0';
19360 /* Fall through. */
19361 case 2:
19362 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19363 {
19364 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19365 break;
19366 }
19367 *p++ = '\0';
19368 /* Fall through. */
19369 case 1:
19370 *p++ = '\0';
19371 /* Fall through. */
19372 case 0:
19373 break;
19374 }
19375
19376 md_number_to_chars (p, opcode, size);
19377 fragp->fr_var = size;
19378 }
19379
19380 static long
19381 get_number (void)
19382 {
19383 int negative = 0;
19384 long val = 0;
19385
19386 if (*input_line_pointer == '-')
19387 {
19388 ++input_line_pointer;
19389 negative = 1;
19390 }
19391 if (!ISDIGIT (*input_line_pointer))
19392 as_bad (_("expected simple number"));
19393 if (input_line_pointer[0] == '0')
19394 {
19395 if (input_line_pointer[1] == 'x')
19396 {
19397 input_line_pointer += 2;
19398 while (ISXDIGIT (*input_line_pointer))
19399 {
19400 val <<= 4;
19401 val |= hex_value (*input_line_pointer++);
19402 }
19403 return negative ? -val : val;
19404 }
19405 else
19406 {
19407 ++input_line_pointer;
19408 while (ISDIGIT (*input_line_pointer))
19409 {
19410 val <<= 3;
19411 val |= *input_line_pointer++ - '0';
19412 }
19413 return negative ? -val : val;
19414 }
19415 }
19416 if (!ISDIGIT (*input_line_pointer))
19417 {
19418 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19419 *input_line_pointer, *input_line_pointer);
19420 as_warn (_("invalid number"));
19421 return -1;
19422 }
19423 while (ISDIGIT (*input_line_pointer))
19424 {
19425 val *= 10;
19426 val += *input_line_pointer++ - '0';
19427 }
19428 return negative ? -val : val;
19429 }
19430
19431 /* The .file directive; just like the usual .file directive, but there
19432 is an initial number which is the ECOFF file index. In the non-ECOFF
19433 case .file implies DWARF-2. */
19434
19435 static void
19436 s_mips_file (int x ATTRIBUTE_UNUSED)
19437 {
19438 static int first_file_directive = 0;
19439
19440 if (ECOFF_DEBUGGING)
19441 {
19442 get_number ();
19443 s_app_file (0);
19444 }
19445 else
19446 {
19447 char *filename;
19448
19449 filename = dwarf2_directive_filename ();
19450
19451 /* Versions of GCC up to 3.1 start files with a ".file"
19452 directive even for stabs output. Make sure that this
19453 ".file" is handled. Note that you need a version of GCC
19454 after 3.1 in order to support DWARF-2 on MIPS. */
19455 if (filename != NULL && ! first_file_directive)
19456 {
19457 (void) new_logical_line (filename, -1);
19458 s_app_file_string (filename, 0);
19459 }
19460 first_file_directive = 1;
19461 }
19462 }
19463
19464 /* The .loc directive, implying DWARF-2. */
19465
19466 static void
19467 s_mips_loc (int x ATTRIBUTE_UNUSED)
19468 {
19469 if (!ECOFF_DEBUGGING)
19470 dwarf2_directive_loc (0);
19471 }
19472
19473 /* The .end directive. */
19474
19475 static void
19476 s_mips_end (int x ATTRIBUTE_UNUSED)
19477 {
19478 symbolS *p;
19479
19480 /* Following functions need their own .frame and .cprestore directives. */
19481 mips_frame_reg_valid = 0;
19482 mips_cprestore_valid = 0;
19483
19484 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19485 {
19486 p = get_symbol ();
19487 demand_empty_rest_of_line ();
19488 }
19489 else
19490 p = NULL;
19491
19492 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19493 as_warn (_(".end not in text section"));
19494
19495 if (!cur_proc_ptr)
19496 {
19497 as_warn (_(".end directive without a preceding .ent directive"));
19498 demand_empty_rest_of_line ();
19499 return;
19500 }
19501
19502 if (p != NULL)
19503 {
19504 gas_assert (S_GET_NAME (p));
19505 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19506 as_warn (_(".end symbol does not match .ent symbol"));
19507
19508 if (debug_type == DEBUG_STABS)
19509 stabs_generate_asm_endfunc (S_GET_NAME (p),
19510 S_GET_NAME (p));
19511 }
19512 else
19513 as_warn (_(".end directive missing or unknown symbol"));
19514
19515 /* Create an expression to calculate the size of the function. */
19516 if (p && cur_proc_ptr)
19517 {
19518 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19519 expressionS *exp = XNEW (expressionS);
19520
19521 obj->size = exp;
19522 exp->X_op = O_subtract;
19523 exp->X_add_symbol = symbol_temp_new_now ();
19524 exp->X_op_symbol = p;
19525 exp->X_add_number = 0;
19526
19527 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19528 }
19529
19530 #ifdef md_flush_pending_output
19531 md_flush_pending_output ();
19532 #endif
19533
19534 /* Generate a .pdr section. */
19535 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19536 {
19537 segT saved_seg = now_seg;
19538 subsegT saved_subseg = now_subseg;
19539 expressionS exp;
19540 char *fragp;
19541
19542 gas_assert (pdr_seg);
19543 subseg_set (pdr_seg, 0);
19544
19545 /* Write the symbol. */
19546 exp.X_op = O_symbol;
19547 exp.X_add_symbol = p;
19548 exp.X_add_number = 0;
19549 emit_expr (&exp, 4);
19550
19551 fragp = frag_more (7 * 4);
19552
19553 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19554 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19555 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19556 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19557 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19558 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19559 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19560
19561 subseg_set (saved_seg, saved_subseg);
19562 }
19563
19564 cur_proc_ptr = NULL;
19565 }
19566
19567 /* The .aent and .ent directives. */
19568
19569 static void
19570 s_mips_ent (int aent)
19571 {
19572 symbolS *symbolP;
19573
19574 symbolP = get_symbol ();
19575 if (*input_line_pointer == ',')
19576 ++input_line_pointer;
19577 SKIP_WHITESPACE ();
19578 if (ISDIGIT (*input_line_pointer)
19579 || *input_line_pointer == '-')
19580 get_number ();
19581
19582 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19583 as_warn (_(".ent or .aent not in text section"));
19584
19585 if (!aent && cur_proc_ptr)
19586 as_warn (_("missing .end"));
19587
19588 if (!aent)
19589 {
19590 /* This function needs its own .frame and .cprestore directives. */
19591 mips_frame_reg_valid = 0;
19592 mips_cprestore_valid = 0;
19593
19594 cur_proc_ptr = &cur_proc;
19595 memset (cur_proc_ptr, '\0', sizeof (procS));
19596
19597 cur_proc_ptr->func_sym = symbolP;
19598
19599 ++numprocs;
19600
19601 if (debug_type == DEBUG_STABS)
19602 stabs_generate_asm_func (S_GET_NAME (symbolP),
19603 S_GET_NAME (symbolP));
19604 }
19605
19606 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19607
19608 demand_empty_rest_of_line ();
19609 }
19610
19611 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19612 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19613 s_mips_frame is used so that we can set the PDR information correctly.
19614 We can't use the ecoff routines because they make reference to the ecoff
19615 symbol table (in the mdebug section). */
19616
19617 static void
19618 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19619 {
19620 if (ECOFF_DEBUGGING)
19621 s_ignore (ignore);
19622 else
19623 {
19624 long val;
19625
19626 if (cur_proc_ptr == (procS *) NULL)
19627 {
19628 as_warn (_(".frame outside of .ent"));
19629 demand_empty_rest_of_line ();
19630 return;
19631 }
19632
19633 cur_proc_ptr->frame_reg = tc_get_register (1);
19634
19635 SKIP_WHITESPACE ();
19636 if (*input_line_pointer++ != ','
19637 || get_absolute_expression_and_terminator (&val) != ',')
19638 {
19639 as_warn (_("bad .frame directive"));
19640 --input_line_pointer;
19641 demand_empty_rest_of_line ();
19642 return;
19643 }
19644
19645 cur_proc_ptr->frame_offset = val;
19646 cur_proc_ptr->pc_reg = tc_get_register (0);
19647
19648 demand_empty_rest_of_line ();
19649 }
19650 }
19651
19652 /* The .fmask and .mask directives. If the mdebug section is present
19653 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19654 embedded targets, s_mips_mask is used so that we can set the PDR
19655 information correctly. We can't use the ecoff routines because they
19656 make reference to the ecoff symbol table (in the mdebug section). */
19657
19658 static void
19659 s_mips_mask (int reg_type)
19660 {
19661 if (ECOFF_DEBUGGING)
19662 s_ignore (reg_type);
19663 else
19664 {
19665 long mask, off;
19666
19667 if (cur_proc_ptr == (procS *) NULL)
19668 {
19669 as_warn (_(".mask/.fmask outside of .ent"));
19670 demand_empty_rest_of_line ();
19671 return;
19672 }
19673
19674 if (get_absolute_expression_and_terminator (&mask) != ',')
19675 {
19676 as_warn (_("bad .mask/.fmask directive"));
19677 --input_line_pointer;
19678 demand_empty_rest_of_line ();
19679 return;
19680 }
19681
19682 off = get_absolute_expression ();
19683
19684 if (reg_type == 'F')
19685 {
19686 cur_proc_ptr->fpreg_mask = mask;
19687 cur_proc_ptr->fpreg_offset = off;
19688 }
19689 else
19690 {
19691 cur_proc_ptr->reg_mask = mask;
19692 cur_proc_ptr->reg_offset = off;
19693 }
19694
19695 demand_empty_rest_of_line ();
19696 }
19697 }
19698
19699 /* A table describing all the processors gas knows about. Names are
19700 matched in the order listed.
19701
19702 To ease comparison, please keep this table in the same order as
19703 gcc's mips_cpu_info_table[]. */
19704 static const struct mips_cpu_info mips_cpu_info_table[] =
19705 {
19706 /* Entries for generic ISAs */
19707 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19708 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19709 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19710 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19711 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19712 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19713 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19714 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19715 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19716 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19717 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19718 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19719 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19720 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19721 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19722
19723 /* MIPS I */
19724 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19725 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19726 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19727
19728 /* MIPS II */
19729 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19730
19731 /* MIPS III */
19732 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19733 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19734 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19735 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19736 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19737 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19738 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19739 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19740 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19741 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19742 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19743 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19744 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19745 /* ST Microelectronics Loongson 2E and 2F cores */
19746 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19747 { "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
19748
19749 /* MIPS IV */
19750 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19751 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19752 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19753 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19754 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19755 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19756 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19757 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19758 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19759 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19760 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19761 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19762 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19763 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19764 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19765
19766 /* MIPS 32 */
19767 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19768 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19769 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19770 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19771
19772 /* MIPS 32 Release 2 */
19773 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19774 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19775 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19776 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19777 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19778 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19779 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19780 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19781 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19782 ISA_MIPS32R2, CPU_MIPS32R2 },
19783 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19784 ISA_MIPS32R2, CPU_MIPS32R2 },
19785 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19786 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19787 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19788 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19789 /* Deprecated forms of the above. */
19790 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19791 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19792 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19793 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19794 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19795 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19796 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19797 /* Deprecated forms of the above. */
19798 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19799 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19800 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19801 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19802 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19803 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19804 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19805 /* Deprecated forms of the above. */
19806 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19807 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19808 /* 34Kn is a 34kc without DSP. */
19809 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19810 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19811 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19812 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19813 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19814 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19815 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19816 /* Deprecated forms of the above. */
19817 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19818 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19819 /* 1004K cores are multiprocessor versions of the 34K. */
19820 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19821 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19822 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19823 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19824 /* interaptiv is the new name for 1004kf */
19825 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19826 { "interaptiv-mr2", 0,
19827 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
19828 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
19829 /* M5100 family */
19830 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19831 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19832 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19833 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19834
19835 /* MIPS 64 */
19836 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19837 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19838 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19839 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19840
19841 /* Broadcom SB-1 CPU core */
19842 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19843 /* Broadcom SB-1A CPU core */
19844 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19845
19846 /* MIPS 64 Release 2 */
19847 /* Loongson CPU core */
19848 /* -march=loongson3a is an alias of -march=gs464 for compatibility */
19849 { "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
19850 ISA_MIPS64R2, CPU_GS464 },
19851 { "gs464", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
19852 ISA_MIPS64R2, CPU_GS464 },
19853 { "gs464e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
19854 | ASE_LOONGSON_EXT2, ISA_MIPS64R2, CPU_GS464E },
19855 { "gs264e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
19856 | ASE_LOONGSON_EXT2 | ASE_MSA | ASE_MSA64, ISA_MIPS64R2, CPU_GS264E },
19857
19858 /* Cavium Networks Octeon CPU core */
19859 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19860 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19861 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19862 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19863
19864 /* RMI Xlr */
19865 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19866
19867 /* Broadcom XLP.
19868 XLP is mostly like XLR, with the prominent exception that it is
19869 MIPS64R2 rather than MIPS64. */
19870 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19871
19872 /* MIPS 64 Release 6 */
19873 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19874 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19875
19876 /* End marker */
19877 { NULL, 0, 0, 0, 0 }
19878 };
19879
19880
19881 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19882 with a final "000" replaced by "k". Ignore case.
19883
19884 Note: this function is shared between GCC and GAS. */
19885
19886 static bfd_boolean
19887 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19888 {
19889 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19890 given++, canonical++;
19891
19892 return ((*given == 0 && *canonical == 0)
19893 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19894 }
19895
19896
19897 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19898 CPU name. We've traditionally allowed a lot of variation here.
19899
19900 Note: this function is shared between GCC and GAS. */
19901
19902 static bfd_boolean
19903 mips_matching_cpu_name_p (const char *canonical, const char *given)
19904 {
19905 /* First see if the name matches exactly, or with a final "000"
19906 turned into "k". */
19907 if (mips_strict_matching_cpu_name_p (canonical, given))
19908 return TRUE;
19909
19910 /* If not, try comparing based on numerical designation alone.
19911 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19912 if (TOLOWER (*given) == 'r')
19913 given++;
19914 if (!ISDIGIT (*given))
19915 return FALSE;
19916
19917 /* Skip over some well-known prefixes in the canonical name,
19918 hoping to find a number there too. */
19919 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19920 canonical += 2;
19921 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19922 canonical += 2;
19923 else if (TOLOWER (canonical[0]) == 'r')
19924 canonical += 1;
19925
19926 return mips_strict_matching_cpu_name_p (canonical, given);
19927 }
19928
19929
19930 /* Parse an option that takes the name of a processor as its argument.
19931 OPTION is the name of the option and CPU_STRING is the argument.
19932 Return the corresponding processor enumeration if the CPU_STRING is
19933 recognized, otherwise report an error and return null.
19934
19935 A similar function exists in GCC. */
19936
19937 static const struct mips_cpu_info *
19938 mips_parse_cpu (const char *option, const char *cpu_string)
19939 {
19940 const struct mips_cpu_info *p;
19941
19942 /* 'from-abi' selects the most compatible architecture for the given
19943 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19944 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19945 version. Look first at the -mgp options, if given, otherwise base
19946 the choice on MIPS_DEFAULT_64BIT.
19947
19948 Treat NO_ABI like the EABIs. One reason to do this is that the
19949 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19950 architecture. This code picks MIPS I for 'mips' and MIPS III for
19951 'mips64', just as we did in the days before 'from-abi'. */
19952 if (strcasecmp (cpu_string, "from-abi") == 0)
19953 {
19954 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19955 return mips_cpu_info_from_isa (ISA_MIPS1);
19956
19957 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19958 return mips_cpu_info_from_isa (ISA_MIPS3);
19959
19960 if (file_mips_opts.gp >= 0)
19961 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19962 ? ISA_MIPS1 : ISA_MIPS3);
19963
19964 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19965 ? ISA_MIPS3
19966 : ISA_MIPS1);
19967 }
19968
19969 /* 'default' has traditionally been a no-op. Probably not very useful. */
19970 if (strcasecmp (cpu_string, "default") == 0)
19971 return 0;
19972
19973 for (p = mips_cpu_info_table; p->name != 0; p++)
19974 if (mips_matching_cpu_name_p (p->name, cpu_string))
19975 return p;
19976
19977 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19978 return 0;
19979 }
19980
19981 /* Return the canonical processor information for ISA (a member of the
19982 ISA_MIPS* enumeration). */
19983
19984 static const struct mips_cpu_info *
19985 mips_cpu_info_from_isa (int isa)
19986 {
19987 int i;
19988
19989 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19990 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19991 && isa == mips_cpu_info_table[i].isa)
19992 return (&mips_cpu_info_table[i]);
19993
19994 return NULL;
19995 }
19996
19997 static const struct mips_cpu_info *
19998 mips_cpu_info_from_arch (int arch)
19999 {
20000 int i;
20001
20002 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20003 if (arch == mips_cpu_info_table[i].cpu)
20004 return (&mips_cpu_info_table[i]);
20005
20006 return NULL;
20007 }
20008 \f
20009 static void
20010 show (FILE *stream, const char *string, int *col_p, int *first_p)
20011 {
20012 if (*first_p)
20013 {
20014 fprintf (stream, "%24s", "");
20015 *col_p = 24;
20016 }
20017 else
20018 {
20019 fprintf (stream, ", ");
20020 *col_p += 2;
20021 }
20022
20023 if (*col_p + strlen (string) > 72)
20024 {
20025 fprintf (stream, "\n%24s", "");
20026 *col_p = 24;
20027 }
20028
20029 fprintf (stream, "%s", string);
20030 *col_p += strlen (string);
20031
20032 *first_p = 0;
20033 }
20034
20035 void
20036 md_show_usage (FILE *stream)
20037 {
20038 int column, first;
20039 size_t i;
20040
20041 fprintf (stream, _("\
20042 MIPS options:\n\
20043 -EB generate big endian output\n\
20044 -EL generate little endian output\n\
20045 -g, -g2 do not remove unneeded NOPs or swap branches\n\
20046 -G NUM allow referencing objects up to NUM bytes\n\
20047 implicitly with the gp register [default 8]\n"));
20048 fprintf (stream, _("\
20049 -mips1 generate MIPS ISA I instructions\n\
20050 -mips2 generate MIPS ISA II instructions\n\
20051 -mips3 generate MIPS ISA III instructions\n\
20052 -mips4 generate MIPS ISA IV instructions\n\
20053 -mips5 generate MIPS ISA V instructions\n\
20054 -mips32 generate MIPS32 ISA instructions\n\
20055 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
20056 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
20057 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
20058 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
20059 -mips64 generate MIPS64 ISA instructions\n\
20060 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
20061 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
20062 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
20063 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
20064 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20065
20066 first = 1;
20067
20068 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20069 show (stream, mips_cpu_info_table[i].name, &column, &first);
20070 show (stream, "from-abi", &column, &first);
20071 fputc ('\n', stream);
20072
20073 fprintf (stream, _("\
20074 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20075 -no-mCPU don't generate code specific to CPU.\n\
20076 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20077
20078 first = 1;
20079
20080 show (stream, "3900", &column, &first);
20081 show (stream, "4010", &column, &first);
20082 show (stream, "4100", &column, &first);
20083 show (stream, "4650", &column, &first);
20084 fputc ('\n', stream);
20085
20086 fprintf (stream, _("\
20087 -mips16 generate mips16 instructions\n\
20088 -no-mips16 do not generate mips16 instructions\n"));
20089 fprintf (stream, _("\
20090 -mmips16e2 generate MIPS16e2 instructions\n\
20091 -mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20092 fprintf (stream, _("\
20093 -mmicromips generate microMIPS instructions\n\
20094 -mno-micromips do not generate microMIPS instructions\n"));
20095 fprintf (stream, _("\
20096 -msmartmips generate smartmips instructions\n\
20097 -mno-smartmips do not generate smartmips instructions\n"));
20098 fprintf (stream, _("\
20099 -mdsp generate DSP instructions\n\
20100 -mno-dsp do not generate DSP instructions\n"));
20101 fprintf (stream, _("\
20102 -mdspr2 generate DSP R2 instructions\n\
20103 -mno-dspr2 do not generate DSP R2 instructions\n"));
20104 fprintf (stream, _("\
20105 -mdspr3 generate DSP R3 instructions\n\
20106 -mno-dspr3 do not generate DSP R3 instructions\n"));
20107 fprintf (stream, _("\
20108 -mmt generate MT instructions\n\
20109 -mno-mt do not generate MT instructions\n"));
20110 fprintf (stream, _("\
20111 -mmcu generate MCU instructions\n\
20112 -mno-mcu do not generate MCU instructions\n"));
20113 fprintf (stream, _("\
20114 -mmsa generate MSA instructions\n\
20115 -mno-msa do not generate MSA instructions\n"));
20116 fprintf (stream, _("\
20117 -mxpa generate eXtended Physical Address (XPA) instructions\n\
20118 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20119 fprintf (stream, _("\
20120 -mvirt generate Virtualization instructions\n\
20121 -mno-virt do not generate Virtualization instructions\n"));
20122 fprintf (stream, _("\
20123 -mcrc generate CRC instructions\n\
20124 -mno-crc do not generate CRC instructions\n"));
20125 fprintf (stream, _("\
20126 -mginv generate Global INValidate (GINV) instructions\n\
20127 -mno-ginv do not generate Global INValidate instructions\n"));
20128 fprintf (stream, _("\
20129 -mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20130 -mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20131 fprintf (stream, _("\
20132 -mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20133 -mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20134 fprintf (stream, _("\
20135 -mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20136 -mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20137 fprintf (stream, _("\
20138 -mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
20139 -mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
20140 fprintf (stream, _("\
20141 -minsn32 only generate 32-bit microMIPS instructions\n\
20142 -mno-insn32 generate all microMIPS instructions\n"));
20143 fprintf (stream, _("\
20144 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20145 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
20146 -mfix-vr4120 work around certain VR4120 errata\n\
20147 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
20148 -mfix-24k insert a nop after ERET and DERET instructions\n\
20149 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
20150 -mfix-r5900 work around R5900 short loop errata\n\
20151 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20152 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
20153 -msym32 assume all symbols have 32-bit values\n\
20154 -O0 do not remove unneeded NOPs, do not swap branches\n\
20155 -O, -O1 remove unneeded NOPs, do not swap branches\n\
20156 -O2 remove unneeded NOPs and swap branches\n\
20157 --trap, --no-break trap exception on div by 0 and mult overflow\n\
20158 --break, --no-trap break exception on div by 0 and mult overflow\n"));
20159 fprintf (stream, _("\
20160 -mhard-float allow floating-point instructions\n\
20161 -msoft-float do not allow floating-point instructions\n\
20162 -msingle-float only allow 32-bit floating-point operations\n\
20163 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
20164 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
20165 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
20166 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20167 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
20168 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20169
20170 first = 1;
20171
20172 show (stream, "legacy", &column, &first);
20173 show (stream, "2008", &column, &first);
20174
20175 fputc ('\n', stream);
20176
20177 fprintf (stream, _("\
20178 -KPIC, -call_shared generate SVR4 position independent code\n\
20179 -call_nonpic generate non-PIC code that can operate with DSOs\n\
20180 -mvxworks-pic generate VxWorks position independent code\n\
20181 -non_shared do not generate code that can operate with DSOs\n\
20182 -xgot assume a 32 bit GOT\n\
20183 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
20184 -mshared, -mno-shared disable/enable .cpload optimization for\n\
20185 position dependent (non shared) code\n\
20186 -mabi=ABI create ABI conformant object file for:\n"));
20187
20188 first = 1;
20189
20190 show (stream, "32", &column, &first);
20191 show (stream, "o64", &column, &first);
20192 show (stream, "n32", &column, &first);
20193 show (stream, "64", &column, &first);
20194 show (stream, "eabi", &column, &first);
20195
20196 fputc ('\n', stream);
20197
20198 fprintf (stream, _("\
20199 -32 create o32 ABI object file%s\n"),
20200 MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
20201 fprintf (stream, _("\
20202 -n32 create n32 ABI object file%s\n"),
20203 MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
20204 fprintf (stream, _("\
20205 -64 create 64 ABI object file%s\n"),
20206 MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
20207 }
20208
20209 #ifdef TE_IRIX
20210 enum dwarf2_format
20211 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
20212 {
20213 if (HAVE_64BIT_SYMBOLS)
20214 return dwarf2_format_64bit_irix;
20215 else
20216 return dwarf2_format_32bit;
20217 }
20218 #endif
20219
20220 int
20221 mips_dwarf2_addr_size (void)
20222 {
20223 if (HAVE_64BIT_OBJECTS)
20224 return 8;
20225 else
20226 return 4;
20227 }
20228
20229 /* Standard calling conventions leave the CFA at SP on entry. */
20230 void
20231 mips_cfi_frame_initial_instructions (void)
20232 {
20233 cfi_add_CFA_def_cfa_register (SP);
20234 }
20235
20236 int
20237 tc_mips_regname_to_dw2regnum (char *regname)
20238 {
20239 unsigned int regnum = -1;
20240 unsigned int reg;
20241
20242 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20243 regnum = reg;
20244
20245 return regnum;
20246 }
20247
20248 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20249 Given a symbolic attribute NAME, return the proper integer value.
20250 Returns -1 if the attribute is not known. */
20251
20252 int
20253 mips_convert_symbolic_attribute (const char *name)
20254 {
20255 static const struct
20256 {
20257 const char * name;
20258 const int tag;
20259 }
20260 attribute_table[] =
20261 {
20262 #define T(tag) {#tag, tag}
20263 T (Tag_GNU_MIPS_ABI_FP),
20264 T (Tag_GNU_MIPS_ABI_MSA),
20265 #undef T
20266 };
20267 unsigned int i;
20268
20269 if (name == NULL)
20270 return -1;
20271
20272 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20273 if (streq (name, attribute_table[i].name))
20274 return attribute_table[i].tag;
20275
20276 return -1;
20277 }
20278
20279 void
20280 md_mips_end (void)
20281 {
20282 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20283
20284 mips_emit_delays ();
20285 if (cur_proc_ptr)
20286 as_warn (_("missing .end at end of assembly"));
20287
20288 /* Just in case no code was emitted, do the consistency check. */
20289 file_mips_check_options ();
20290
20291 /* Set a floating-point ABI if the user did not. */
20292 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20293 {
20294 /* Perform consistency checks on the floating-point ABI. */
20295 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20296 Tag_GNU_MIPS_ABI_FP);
20297 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20298 check_fpabi (fpabi);
20299 }
20300 else
20301 {
20302 /* Soft-float gets precedence over single-float, the two options should
20303 not be used together so this should not matter. */
20304 if (file_mips_opts.soft_float == 1)
20305 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20306 /* Single-float gets precedence over all double_float cases. */
20307 else if (file_mips_opts.single_float == 1)
20308 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20309 else
20310 {
20311 switch (file_mips_opts.fp)
20312 {
20313 case 32:
20314 if (file_mips_opts.gp == 32)
20315 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20316 break;
20317 case 0:
20318 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20319 break;
20320 case 64:
20321 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20322 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20323 else if (file_mips_opts.gp == 32)
20324 fpabi = Val_GNU_MIPS_ABI_FP_64;
20325 else
20326 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20327 break;
20328 }
20329 }
20330
20331 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20332 Tag_GNU_MIPS_ABI_FP, fpabi);
20333 }
20334 }
20335
20336 /* Returns the relocation type required for a particular CFI encoding. */
20337
20338 bfd_reloc_code_real_type
20339 mips_cfi_reloc_for_encoding (int encoding)
20340 {
20341 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20342 return BFD_RELOC_32_PCREL;
20343 else return BFD_RELOC_NONE;
20344 }
This page took 0.450958 seconds and 4 git commands to generate.