532ed7acfac0b91a434e566250123e66fda1c9ba
[deliverable/binutils-gdb.git] / gas / doc / as.texi
1 \input texinfo @c -*-Texinfo-*-
2 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
3 @c UPDATE!! On future updates--
4 @c (1) check for new machine-dep cmdline options in
5 @c md_parse_option definitions in config/tc-*.c
6 @c (2) for platform-specific directives, examine md_pseudo_op
7 @c in config/tc-*.c
8 @c (3) for object-format specific directives, examine obj_pseudo_op
9 @c in config/obj-*.c
10 @c (4) portable directives in potable[] in read.c
11 @c %**start of header
12 @setfilename as.info
13 @c ---config---
14 @macro gcctabopt{body}
15 @code{\body\}
16 @end macro
17 @c defaults, config file may override:
18 @set have-stabs
19 @c ---
20 @c man begin NAME
21 @c ---
22 @include asconfig.texi
23 @include bfdver.texi
24 @c ---
25 @c man end
26 @c ---
27 @c common OR combinations of conditions
28 @ifset COFF
29 @set COFF-ELF
30 @end ifset
31 @ifset ELF
32 @set COFF-ELF
33 @end ifset
34 @ifset AOUT
35 @set aout
36 @end ifset
37 @ifset ARM/Thumb
38 @set ARM
39 @end ifset
40 @ifset Blackfin
41 @set Blackfin
42 @end ifset
43 @ifset BPF
44 @set BPF
45 @end ifset
46 @ifset H8/300
47 @set H8
48 @end ifset
49 @ifset SH
50 @set H8
51 @end ifset
52 @ifset HPPA
53 @set abnormal-separator
54 @end ifset
55 @c ------------
56 @ifset GENERIC
57 @settitle Using @value{AS}
58 @end ifset
59 @ifclear GENERIC
60 @settitle Using @value{AS} (@value{TARGET})
61 @end ifclear
62 @setchapternewpage odd
63 @c %**end of header
64
65 @c @smallbook
66 @c @set SMALL
67 @c WARE! Some of the machine-dependent sections contain tables of machine
68 @c instructions. Except in multi-column format, these tables look silly.
69 @c Unfortunately, Texinfo doesn't have a general-purpose multi-col format, so
70 @c the multi-col format is faked within @example sections.
71 @c
72 @c Again unfortunately, the natural size that fits on a page, for these tables,
73 @c is different depending on whether or not smallbook is turned on.
74 @c This matters, because of order: text flow switches columns at each page
75 @c break.
76 @c
77 @c The format faked in this source works reasonably well for smallbook,
78 @c not well for the default large-page format. This manual expects that if you
79 @c turn on @smallbook, you will also uncomment the "@set SMALL" to enable the
80 @c tables in question. You can turn on one without the other at your
81 @c discretion, of course.
82 @ifinfo
83 @set SMALL
84 @c the insn tables look just as silly in info files regardless of smallbook,
85 @c might as well show 'em anyways.
86 @end ifinfo
87
88 @ifnottex
89 @dircategory Software development
90 @direntry
91 * As: (as). The GNU assembler.
92 * Gas: (as). The GNU assembler.
93 @end direntry
94 @end ifnottex
95
96 @finalout
97 @syncodeindex ky cp
98
99 @copying
100 This file documents the GNU Assembler "@value{AS}".
101
102 @c man begin COPYRIGHT
103 Copyright @copyright{} 1991-2019 Free Software Foundation, Inc.
104
105 Permission is granted to copy, distribute and/or modify this document
106 under the terms of the GNU Free Documentation License, Version 1.3
107 or any later version published by the Free Software Foundation;
108 with no Invariant Sections, with no Front-Cover Texts, and with no
109 Back-Cover Texts. A copy of the license is included in the
110 section entitled ``GNU Free Documentation License''.
111
112 @c man end
113 @end copying
114
115 @titlepage
116 @title Using @value{AS}
117 @subtitle The @sc{gnu} Assembler
118 @ifclear GENERIC
119 @subtitle for the @value{TARGET} family
120 @end ifclear
121 @ifset VERSION_PACKAGE
122 @sp 1
123 @subtitle @value{VERSION_PACKAGE}
124 @end ifset
125 @sp 1
126 @subtitle Version @value{VERSION}
127 @sp 1
128 @sp 13
129 The Free Software Foundation Inc.@: thanks The Nice Computer
130 Company of Australia for loaning Dean Elsner to write the
131 first (Vax) version of @command{as} for Project @sc{gnu}.
132 The proprietors, management and staff of TNCCA thank FSF for
133 distracting the boss while they got some work
134 done.
135 @sp 3
136 @author Dean Elsner, Jay Fenlason & friends
137 @page
138 @tex
139 {\parskip=0pt
140 \hfill {\it Using {\tt @value{AS}}}\par
141 \hfill Edited by Cygnus Support\par
142 }
143 %"boxit" macro for figures:
144 %Modified from Knuth's ``boxit'' macro from TeXbook (answer to exercise 21.3)
145 \gdef\boxit#1#2{\vbox{\hrule\hbox{\vrule\kern3pt
146 \vbox{\parindent=0pt\parskip=0pt\hsize=#1\kern3pt\strut\hfil
147 #2\hfil\strut\kern3pt}\kern3pt\vrule}\hrule}}%box with visible outline
148 \gdef\ibox#1#2{\hbox to #1{#2\hfil}\kern8pt}% invisible box
149 @end tex
150
151 @vskip 0pt plus 1filll
152 Copyright @copyright{} 1991-2019 Free Software Foundation, Inc.
153
154 Permission is granted to copy, distribute and/or modify this document
155 under the terms of the GNU Free Documentation License, Version 1.3
156 or any later version published by the Free Software Foundation;
157 with no Invariant Sections, with no Front-Cover Texts, and with no
158 Back-Cover Texts. A copy of the license is included in the
159 section entitled ``GNU Free Documentation License''.
160
161 @end titlepage
162 @contents
163
164 @ifnottex
165 @node Top
166 @top Using @value{AS}
167
168 This file is a user guide to the @sc{gnu} assembler @command{@value{AS}}
169 @ifset VERSION_PACKAGE
170 @value{VERSION_PACKAGE}
171 @end ifset
172 version @value{VERSION}.
173 @ifclear GENERIC
174 This version of the file describes @command{@value{AS}} configured to generate
175 code for @value{TARGET} architectures.
176 @end ifclear
177
178 This document is distributed under the terms of the GNU Free
179 Documentation License. A copy of the license is included in the
180 section entitled ``GNU Free Documentation License''.
181
182 @menu
183 * Overview:: Overview
184 * Invoking:: Command-Line Options
185 * Syntax:: Syntax
186 * Sections:: Sections and Relocation
187 * Symbols:: Symbols
188 * Expressions:: Expressions
189 * Pseudo Ops:: Assembler Directives
190 @ifset ELF
191 * Object Attributes:: Object Attributes
192 @end ifset
193 * Machine Dependencies:: Machine Dependent Features
194 * Reporting Bugs:: Reporting Bugs
195 * Acknowledgements:: Who Did What
196 * GNU Free Documentation License:: GNU Free Documentation License
197 * AS Index:: AS Index
198 @end menu
199 @end ifnottex
200
201 @node Overview
202 @chapter Overview
203 @iftex
204 This manual is a user guide to the @sc{gnu} assembler @command{@value{AS}}.
205 @ifclear GENERIC
206 This version of the manual describes @command{@value{AS}} configured to generate
207 code for @value{TARGET} architectures.
208 @end ifclear
209 @end iftex
210
211 @cindex invocation summary
212 @cindex option summary
213 @cindex summary of options
214 Here is a brief summary of how to invoke @command{@value{AS}}. For details,
215 see @ref{Invoking,,Command-Line Options}.
216
217 @c man title AS the portable GNU assembler.
218
219 @ignore
220 @c man begin SEEALSO
221 gcc(1), ld(1), and the Info entries for @file{binutils} and @file{ld}.
222 @c man end
223 @end ignore
224
225 @c We don't use deffn and friends for the following because they seem
226 @c to be limited to one line for the header.
227 @smallexample
228 @c man begin SYNOPSIS
229 @value{AS} [@b{-a}[@b{cdghlns}][=@var{file}]] [@b{--alternate}] [@b{-D}]
230 [@b{--compress-debug-sections}] [@b{--nocompress-debug-sections}]
231 [@b{--debug-prefix-map} @var{old}=@var{new}]
232 [@b{--defsym} @var{sym}=@var{val}] [@b{-f}] [@b{-g}] [@b{--gstabs}]
233 [@b{--gstabs+}] [@b{--gdwarf-2}] [@b{--gdwarf-sections}]
234 [@b{--gdwarf-cie-version}=@var{VERSION}]
235 [@b{--help}] [@b{-I} @var{dir}] [@b{-J}]
236 [@b{-K}] [@b{-L}] [@b{--listing-lhs-width}=@var{NUM}]
237 [@b{--listing-lhs-width2}=@var{NUM}] [@b{--listing-rhs-width}=@var{NUM}]
238 [@b{--listing-cont-lines}=@var{NUM}] [@b{--keep-locals}]
239 [@b{--no-pad-sections}]
240 [@b{-o} @var{objfile}] [@b{-R}]
241 [@b{--hash-size}=@var{NUM}] [@b{--reduce-memory-overheads}]
242 [@b{--statistics}]
243 [@b{-v}] [@b{-version}] [@b{--version}]
244 [@b{-W}] [@b{--warn}] [@b{--fatal-warnings}] [@b{-w}] [@b{-x}]
245 [@b{-Z}] [@b{@@@var{FILE}}]
246 [@b{--sectname-subst}] [@b{--size-check=[error|warning]}]
247 [@b{--elf-stt-common=[no|yes]}]
248 [@b{--generate-missing-build-notes=[no|yes]}]
249 [@b{--target-help}] [@var{target-options}]
250 [@b{--}|@var{files} @dots{}]
251 @c
252 @c man end
253 @c Target dependent options are listed below. Keep the list sorted.
254 @c Add an empty line for separation.
255 @c man begin TARGET
256 @ifset AARCH64
257
258 @emph{Target AArch64 options:}
259 [@b{-EB}|@b{-EL}]
260 [@b{-mabi}=@var{ABI}]
261 @end ifset
262 @ifset ALPHA
263
264 @emph{Target Alpha options:}
265 [@b{-m@var{cpu}}]
266 [@b{-mdebug} | @b{-no-mdebug}]
267 [@b{-replace} | @b{-noreplace}]
268 [@b{-relax}] [@b{-g}] [@b{-G@var{size}}]
269 [@b{-F}] [@b{-32addr}]
270 @end ifset
271 @ifset ARC
272
273 @emph{Target ARC options:}
274 [@b{-mcpu=@var{cpu}}]
275 [@b{-mA6}|@b{-mARC600}|@b{-mARC601}|@b{-mA7}|@b{-mARC700}|@b{-mEM}|@b{-mHS}]
276 [@b{-mcode-density}]
277 [@b{-mrelax}]
278 [@b{-EB}|@b{-EL}]
279 @end ifset
280 @ifset ARM
281
282 @emph{Target ARM options:}
283 @c Don't document the deprecated options
284 [@b{-mcpu}=@var{processor}[+@var{extension}@dots{}]]
285 [@b{-march}=@var{architecture}[+@var{extension}@dots{}]]
286 [@b{-mfpu}=@var{floating-point-format}]
287 [@b{-mfloat-abi}=@var{abi}]
288 [@b{-meabi}=@var{ver}]
289 [@b{-mthumb}]
290 [@b{-EB}|@b{-EL}]
291 [@b{-mapcs-32}|@b{-mapcs-26}|@b{-mapcs-float}|
292 @b{-mapcs-reentrant}]
293 [@b{-mthumb-interwork}] [@b{-k}]
294 @end ifset
295 @ifset Blackfin
296
297 @emph{Target Blackfin options:}
298 [@b{-mcpu}=@var{processor}[-@var{sirevision}]]
299 [@b{-mfdpic}]
300 [@b{-mno-fdpic}]
301 [@b{-mnopic}]
302 @end ifset
303 @ifset BPF
304
305 @emph{Target BPF options:}
306 [@b{-EL}] [@b{-EB}]
307 @end ifset
308 @ifset CRIS
309
310 @emph{Target CRIS options:}
311 [@b{--underscore} | @b{--no-underscore}]
312 [@b{--pic}] [@b{-N}]
313 [@b{--emulation=criself} | @b{--emulation=crisaout}]
314 [@b{--march=v0_v10} | @b{--march=v10} | @b{--march=v32} | @b{--march=common_v10_v32}]
315 @c Deprecated -- deliberately not documented.
316 @c [@b{-h}] [@b{-H}]
317 @end ifset
318 @ifset CSKY
319
320 @emph{Target C-SKY options:}
321 [@b{-march=@var{arch}}] [@b{-mcpu=@var{cpu}}]
322 [@b{-EL}] [@b{-mlittle-endian}] [@b{-EB}] [@b{-mbig-endian}]
323 [@b{-fpic}] [@b{-pic}]
324 [@b{-mljump}] [@b{-mno-ljump}]
325 [@b{-force2bsr}] [@b{-mforce2bsr}] [@b{-no-force2bsr}] [@b{-mno-force2bsr}]
326 [@b{-jsri2bsr}] [@b{-mjsri2bsr}] [@b{-no-jsri2bsr }] [@b{-mno-jsri2bsr}]
327 [@b{-mnolrw }] [@b{-mno-lrw}]
328 [@b{-melrw}] [@b{-mno-elrw}]
329 [@b{-mlaf }] [@b{-mliterals-after-func}]
330 [@b{-mno-laf}] [@b{-mno-literals-after-func}]
331 [@b{-mlabr}] [@b{-mliterals-after-br}]
332 [@b{-mno-labr}] [@b{-mnoliterals-after-br}]
333 [@b{-mistack}] [@b{-mno-istack}]
334 [@b{-mhard-float}] [@b{-mmp}] [@b{-mcp}] [@b{-mcache}]
335 [@b{-msecurity}] [@b{-mtrust}]
336 [@b{-mdsp}] [@b{-medsp}] [@b{-mvdsp}]
337 @end ifset
338 @ifset D10V
339
340 @emph{Target D10V options:}
341 [@b{-O}]
342 @end ifset
343 @ifset D30V
344
345 @emph{Target D30V options:}
346 [@b{-O}|@b{-n}|@b{-N}]
347 @end ifset
348 @ifset EPIPHANY
349
350 @emph{Target EPIPHANY options:}
351 [@b{-mepiphany}|@b{-mepiphany16}]
352 @end ifset
353 @ifset H8
354
355 @emph{Target H8/300 options:}
356 [-h-tick-hex]
357 @end ifset
358 @ifset HPPA
359 @c HPPA has no machine-dependent assembler options (yet).
360 @end ifset
361 @ifset I80386
362
363 @emph{Target i386 options:}
364 [@b{--32}|@b{--x32}|@b{--64}] [@b{-n}]
365 [@b{-march}=@var{CPU}[+@var{EXTENSION}@dots{}]] [@b{-mtune}=@var{CPU}]
366 @end ifset
367 @ifset IA64
368
369 @emph{Target IA-64 options:}
370 [@b{-mconstant-gp}|@b{-mauto-pic}]
371 [@b{-milp32}|@b{-milp64}|@b{-mlp64}|@b{-mp64}]
372 [@b{-mle}|@b{mbe}]
373 [@b{-mtune=itanium1}|@b{-mtune=itanium2}]
374 [@b{-munwind-check=warning}|@b{-munwind-check=error}]
375 [@b{-mhint.b=ok}|@b{-mhint.b=warning}|@b{-mhint.b=error}]
376 [@b{-x}|@b{-xexplicit}] [@b{-xauto}] [@b{-xdebug}]
377 @end ifset
378 @ifset IP2K
379
380 @emph{Target IP2K options:}
381 [@b{-mip2022}|@b{-mip2022ext}]
382 @end ifset
383 @ifset M32C
384
385 @emph{Target M32C options:}
386 [@b{-m32c}|@b{-m16c}] [-relax] [-h-tick-hex]
387 @end ifset
388 @ifset M32R
389
390 @emph{Target M32R options:}
391 [@b{--m32rx}|@b{--[no-]warn-explicit-parallel-conflicts}|
392 @b{--W[n]p}]
393 @end ifset
394 @ifset M680X0
395
396 @emph{Target M680X0 options:}
397 [@b{-l}] [@b{-m68000}|@b{-m68010}|@b{-m68020}|@dots{}]
398 @end ifset
399 @ifset M68HC11
400
401 @emph{Target M68HC11 options:}
402 [@b{-m68hc11}|@b{-m68hc12}|@b{-m68hcs12}|@b{-mm9s12x}|@b{-mm9s12xg}]
403 [@b{-mshort}|@b{-mlong}]
404 [@b{-mshort-double}|@b{-mlong-double}]
405 [@b{--force-long-branches}] [@b{--short-branches}]
406 [@b{--strict-direct-mode}] [@b{--print-insn-syntax}]
407 [@b{--print-opcodes}] [@b{--generate-example}]
408 @end ifset
409 @ifset MCORE
410
411 @emph{Target MCORE options:}
412 [@b{-jsri2bsr}] [@b{-sifilter}] [@b{-relax}]
413 [@b{-mcpu=[210|340]}]
414 @end ifset
415 @ifset METAG
416
417 @emph{Target Meta options:}
418 [@b{-mcpu=@var{cpu}}] [@b{-mfpu=@var{cpu}}] [@b{-mdsp=@var{cpu}}]
419 @end ifset
420 @ifset MICROBLAZE
421 @emph{Target MICROBLAZE options:}
422 @c MicroBlaze has no machine-dependent assembler options.
423 @end ifset
424 @ifset MIPS
425
426 @emph{Target MIPS options:}
427 [@b{-nocpp}] [@b{-EL}] [@b{-EB}] [@b{-O}[@var{optimization level}]]
428 [@b{-g}[@var{debug level}]] [@b{-G} @var{num}] [@b{-KPIC}] [@b{-call_shared}]
429 [@b{-non_shared}] [@b{-xgot} [@b{-mvxworks-pic}]
430 [@b{-mabi}=@var{ABI}] [@b{-32}] [@b{-n32}] [@b{-64}] [@b{-mfp32}] [@b{-mgp32}]
431 [@b{-mfp64}] [@b{-mgp64}] [@b{-mfpxx}]
432 [@b{-modd-spreg}] [@b{-mno-odd-spreg}]
433 [@b{-march}=@var{CPU}] [@b{-mtune}=@var{CPU}] [@b{-mips1}] [@b{-mips2}]
434 [@b{-mips3}] [@b{-mips4}] [@b{-mips5}] [@b{-mips32}] [@b{-mips32r2}]
435 [@b{-mips32r3}] [@b{-mips32r5}] [@b{-mips32r6}] [@b{-mips64}] [@b{-mips64r2}]
436 [@b{-mips64r3}] [@b{-mips64r5}] [@b{-mips64r6}]
437 [@b{-construct-floats}] [@b{-no-construct-floats}]
438 [@b{-mignore-branch-isa}] [@b{-mno-ignore-branch-isa}]
439 [@b{-mnan=@var{encoding}}]
440 [@b{-trap}] [@b{-no-break}] [@b{-break}] [@b{-no-trap}]
441 [@b{-mips16}] [@b{-no-mips16}]
442 [@b{-mmips16e2}] [@b{-mno-mips16e2}]
443 [@b{-mmicromips}] [@b{-mno-micromips}]
444 [@b{-msmartmips}] [@b{-mno-smartmips}]
445 [@b{-mips3d}] [@b{-no-mips3d}]
446 [@b{-mdmx}] [@b{-no-mdmx}]
447 [@b{-mdsp}] [@b{-mno-dsp}]
448 [@b{-mdspr2}] [@b{-mno-dspr2}]
449 [@b{-mdspr3}] [@b{-mno-dspr3}]
450 [@b{-mmsa}] [@b{-mno-msa}]
451 [@b{-mxpa}] [@b{-mno-xpa}]
452 [@b{-mmt}] [@b{-mno-mt}]
453 [@b{-mmcu}] [@b{-mno-mcu}]
454 [@b{-mcrc}] [@b{-mno-crc}]
455 [@b{-mginv}] [@b{-mno-ginv}]
456 [@b{-mloongson-mmi}] [@b{-mno-loongson-mmi}]
457 [@b{-mloongson-cam}] [@b{-mno-loongson-cam}]
458 [@b{-mloongson-ext}] [@b{-mno-loongson-ext}]
459 [@b{-mloongson-ext2}] [@b{-mno-loongson-ext2}]
460 [@b{-minsn32}] [@b{-mno-insn32}]
461 [@b{-mfix7000}] [@b{-mno-fix7000}]
462 [@b{-mfix-rm7000}] [@b{-mno-fix-rm7000}]
463 [@b{-mfix-vr4120}] [@b{-mno-fix-vr4120}]
464 [@b{-mfix-vr4130}] [@b{-mno-fix-vr4130}]
465 [@b{-mfix-r5900}] [@b{-mno-fix-r5900}]
466 [@b{-mdebug}] [@b{-no-mdebug}]
467 [@b{-mpdr}] [@b{-mno-pdr}]
468 @end ifset
469 @ifset MMIX
470
471 @emph{Target MMIX options:}
472 [@b{--fixed-special-register-names}] [@b{--globalize-symbols}]
473 [@b{--gnu-syntax}] [@b{--relax}] [@b{--no-predefined-symbols}]
474 [@b{--no-expand}] [@b{--no-merge-gregs}] [@b{-x}]
475 [@b{--linker-allocated-gregs}]
476 @end ifset
477 @ifset NIOSII
478
479 @emph{Target Nios II options:}
480 [@b{-relax-all}] [@b{-relax-section}] [@b{-no-relax}]
481 [@b{-EB}] [@b{-EL}]
482 @end ifset
483 @ifset NDS32
484
485 @emph{Target NDS32 options:}
486 [@b{-EL}] [@b{-EB}] [@b{-O}] [@b{-Os}] [@b{-mcpu=@var{cpu}}]
487 [@b{-misa=@var{isa}}] [@b{-mabi=@var{abi}}] [@b{-mall-ext}]
488 [@b{-m[no-]16-bit}] [@b{-m[no-]perf-ext}] [@b{-m[no-]perf2-ext}]
489 [@b{-m[no-]string-ext}] [@b{-m[no-]dsp-ext}] [@b{-m[no-]mac}] [@b{-m[no-]div}]
490 [@b{-m[no-]audio-isa-ext}] [@b{-m[no-]fpu-sp-ext}] [@b{-m[no-]fpu-dp-ext}]
491 [@b{-m[no-]fpu-fma}] [@b{-mfpu-freg=@var{FREG}}] [@b{-mreduced-regs}]
492 [@b{-mfull-regs}] [@b{-m[no-]dx-regs}] [@b{-mpic}] [@b{-mno-relax}]
493 [@b{-mb2bb}]
494 @end ifset
495 @ifset OPENRISC
496 @c OpenRISC has no machine-dependent assembler options.
497 @end ifset
498 @ifset PDP11
499
500 @emph{Target PDP11 options:}
501 [@b{-mpic}|@b{-mno-pic}] [@b{-mall}] [@b{-mno-extensions}]
502 [@b{-m}@var{extension}|@b{-mno-}@var{extension}]
503 [@b{-m}@var{cpu}] [@b{-m}@var{machine}]
504 @end ifset
505 @ifset PJ
506
507 @emph{Target picoJava options:}
508 [@b{-mb}|@b{-me}]
509 @end ifset
510 @ifset PPC
511
512 @emph{Target PowerPC options:}
513 [@b{-a32}|@b{-a64}]
514 [@b{-mpwrx}|@b{-mpwr2}|@b{-mpwr}|@b{-m601}|@b{-mppc}|@b{-mppc32}|@b{-m603}|@b{-m604}|@b{-m403}|@b{-m405}|
515 @b{-m440}|@b{-m464}|@b{-m476}|@b{-m7400}|@b{-m7410}|@b{-m7450}|@b{-m7455}|@b{-m750cl}|@b{-mgekko}|
516 @b{-mbroadway}|@b{-mppc64}|@b{-m620}|@b{-me500}|@b{-e500x2}|@b{-me500mc}|@b{-me500mc64}|@b{-me5500}|
517 @b{-me6500}|@b{-mppc64bridge}|@b{-mbooke}|@b{-mpower4}|@b{-mpwr4}|@b{-mpower5}|@b{-mpwr5}|@b{-mpwr5x}|
518 @b{-mpower6}|@b{-mpwr6}|@b{-mpower7}|@b{-mpwr7}|@b{-mpower8}|@b{-mpwr8}|@b{-mpower9}|@b{-mpwr9}@b{-ma2}|
519 @b{-mcell}|@b{-mspe}|@b{-mspe2}|@b{-mtitan}|@b{-me300}|@b{-mcom}]
520 [@b{-many}] [@b{-maltivec}|@b{-mvsx}|@b{-mhtm}|@b{-mvle}]
521 [@b{-mregnames}|@b{-mno-regnames}]
522 [@b{-mrelocatable}|@b{-mrelocatable-lib}|@b{-K PIC}] [@b{-memb}]
523 [@b{-mlittle}|@b{-mlittle-endian}|@b{-le}|@b{-mbig}|@b{-mbig-endian}|@b{-be}]
524 [@b{-msolaris}|@b{-mno-solaris}]
525 [@b{-nops=@var{count}}]
526 @end ifset
527 @ifset PRU
528
529 @emph{Target PRU options:}
530 [@b{-link-relax}]
531 [@b{-mnolink-relax}]
532 [@b{-mno-warn-regname-label}]
533 @end ifset
534 @ifset RISCV
535
536 @emph{Target RISC-V options:}
537 [@b{-fpic}|@b{-fPIC}|@b{-fno-pic}]
538 [@b{-march}=@var{ISA}]
539 [@b{-mabi}=@var{ABI}]
540 @end ifset
541 @ifset RL78
542
543 @emph{Target RL78 options:}
544 [@b{-mg10}]
545 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
546 @end ifset
547 @ifset RX
548
549 @emph{Target RX options:}
550 [@b{-mlittle-endian}|@b{-mbig-endian}]
551 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
552 [@b{-muse-conventional-section-names}]
553 [@b{-msmall-data-limit}]
554 [@b{-mpid}]
555 [@b{-mrelax}]
556 [@b{-mint-register=@var{number}}]
557 [@b{-mgcc-abi}|@b{-mrx-abi}]
558 @end ifset
559 @ifset S390
560
561 @emph{Target s390 options:}
562 [@b{-m31}|@b{-m64}] [@b{-mesa}|@b{-mzarch}] [@b{-march}=@var{CPU}]
563 [@b{-mregnames}|@b{-mno-regnames}]
564 [@b{-mwarn-areg-zero}]
565 @end ifset
566 @ifset SCORE
567
568 @emph{Target SCORE options:}
569 [@b{-EB}][@b{-EL}][@b{-FIXDD}][@b{-NWARN}]
570 [@b{-SCORE5}][@b{-SCORE5U}][@b{-SCORE7}][@b{-SCORE3}]
571 [@b{-march=score7}][@b{-march=score3}]
572 [@b{-USE_R1}][@b{-KPIC}][@b{-O0}][@b{-G} @var{num}][@b{-V}]
573 @end ifset
574 @ifset SPARC
575
576 @emph{Target SPARC options:}
577 @c The order here is important. See c-sparc.texi.
578 [@b{-Av6}|@b{-Av7}|@b{-Av8}|@b{-Aleon}|@b{-Asparclet}|@b{-Asparclite}
579 @b{-Av8plus}|@b{-Av8plusa}|@b{-Av8plusb}|@b{-Av8plusc}|@b{-Av8plusd}
580 @b{-Av8plusv}|@b{-Av8plusm}|@b{-Av9}|@b{-Av9a}|@b{-Av9b}|@b{-Av9c}
581 @b{-Av9d}|@b{-Av9e}|@b{-Av9v}|@b{-Av9m}|@b{-Asparc}|@b{-Asparcvis}
582 @b{-Asparcvis2}|@b{-Asparcfmaf}|@b{-Asparcima}|@b{-Asparcvis3}
583 @b{-Asparcvisr}|@b{-Asparc5}]
584 [@b{-xarch=v8plus}|@b{-xarch=v8plusa}]|@b{-xarch=v8plusb}|@b{-xarch=v8plusc}
585 @b{-xarch=v8plusd}|@b{-xarch=v8plusv}|@b{-xarch=v8plusm}|@b{-xarch=v9}
586 @b{-xarch=v9a}|@b{-xarch=v9b}|@b{-xarch=v9c}|@b{-xarch=v9d}|@b{-xarch=v9e}
587 @b{-xarch=v9v}|@b{-xarch=v9m}|@b{-xarch=sparc}|@b{-xarch=sparcvis}
588 @b{-xarch=sparcvis2}|@b{-xarch=sparcfmaf}|@b{-xarch=sparcima}
589 @b{-xarch=sparcvis3}|@b{-xarch=sparcvisr}|@b{-xarch=sparc5}
590 @b{-bump}]
591 [@b{-32}|@b{-64}]
592 [@b{--enforce-aligned-data}][@b{--dcti-couples-detect}]
593 @end ifset
594 @ifset TIC54X
595
596 @emph{Target TIC54X options:}
597 [@b{-mcpu=54[123589]}|@b{-mcpu=54[56]lp}] [@b{-mfar-mode}|@b{-mf}]
598 [@b{-merrors-to-file} @var{<filename>}|@b{-me} @var{<filename>}]
599 @end ifset
600 @ifset TIC6X
601
602 @emph{Target TIC6X options:}
603 [@b{-march=@var{arch}}] [@b{-mbig-endian}|@b{-mlittle-endian}]
604 [@b{-mdsbt}|@b{-mno-dsbt}] [@b{-mpid=no}|@b{-mpid=near}|@b{-mpid=far}]
605 [@b{-mpic}|@b{-mno-pic}]
606 @end ifset
607 @ifset TILEGX
608
609 @emph{Target TILE-Gx options:}
610 [@b{-m32}|@b{-m64}][@b{-EB}][@b{-EL}]
611 @end ifset
612 @ifset TILEPRO
613 @c TILEPro has no machine-dependent assembler options
614 @end ifset
615 @ifset VISIUM
616
617 @emph{Target Visium options:}
618 [@b{-mtune=@var{arch}}]
619 @end ifset
620 @ifset XTENSA
621
622 @emph{Target Xtensa options:}
623 [@b{--[no-]text-section-literals}] [@b{--[no-]auto-litpools}]
624 [@b{--[no-]absolute-literals}]
625 [@b{--[no-]target-align}] [@b{--[no-]longcalls}]
626 [@b{--[no-]transform}]
627 [@b{--rename-section} @var{oldname}=@var{newname}]
628 [@b{--[no-]trampolines}]
629 @end ifset
630 @ifset Z80
631
632 @emph{Target Z80 options:}
633 [@b{-z80}] [@b{-r800}]
634 [@b{ -ignore-undocumented-instructions}] [@b{-Wnud}]
635 [@b{ -ignore-unportable-instructions}] [@b{-Wnup}]
636 [@b{ -warn-undocumented-instructions}] [@b{-Wud}]
637 [@b{ -warn-unportable-instructions}] [@b{-Wup}]
638 [@b{ -forbid-undocumented-instructions}] [@b{-Fud}]
639 [@b{ -forbid-unportable-instructions}] [@b{-Fup}]
640 @end ifset
641 @ifset Z8000
642
643 @c Z8000 has no machine-dependent assembler options
644 @end ifset
645
646 @c man end
647 @end smallexample
648
649 @c man begin OPTIONS
650
651 @table @gcctabopt
652 @include at-file.texi
653
654 @item -a[cdghlmns]
655 Turn on listings, in any of a variety of ways:
656
657 @table @gcctabopt
658 @item -ac
659 omit false conditionals
660
661 @item -ad
662 omit debugging directives
663
664 @item -ag
665 include general information, like @value{AS} version and options passed
666
667 @item -ah
668 include high-level source
669
670 @item -al
671 include assembly
672
673 @item -am
674 include macro expansions
675
676 @item -an
677 omit forms processing
678
679 @item -as
680 include symbols
681
682 @item =file
683 set the name of the listing file
684 @end table
685
686 You may combine these options; for example, use @samp{-aln} for assembly
687 listing without forms processing. The @samp{=file} option, if used, must be
688 the last one. By itself, @samp{-a} defaults to @samp{-ahls}.
689
690 @item --alternate
691 Begin in alternate macro mode.
692 @ifclear man
693 @xref{Altmacro,,@code{.altmacro}}.
694 @end ifclear
695
696 @item --compress-debug-sections
697 Compress DWARF debug sections using zlib with SHF_COMPRESSED from the
698 ELF ABI. The resulting object file may not be compatible with older
699 linkers and object file utilities. Note if compression would make a
700 given section @emph{larger} then it is not compressed.
701
702 @ifset ELF
703 @cindex @samp{--compress-debug-sections=} option
704 @item --compress-debug-sections=none
705 @itemx --compress-debug-sections=zlib
706 @itemx --compress-debug-sections=zlib-gnu
707 @itemx --compress-debug-sections=zlib-gabi
708 These options control how DWARF debug sections are compressed.
709 @option{--compress-debug-sections=none} is equivalent to
710 @option{--nocompress-debug-sections}.
711 @option{--compress-debug-sections=zlib} and
712 @option{--compress-debug-sections=zlib-gabi} are equivalent to
713 @option{--compress-debug-sections}.
714 @option{--compress-debug-sections=zlib-gnu} compresses DWARF debug
715 sections using zlib. The debug sections are renamed to begin with
716 @samp{.zdebug}. Note if compression would make a given section
717 @emph{larger} then it is not compressed nor renamed.
718
719 @end ifset
720
721 @item --nocompress-debug-sections
722 Do not compress DWARF debug sections. This is usually the default for all
723 targets except the x86/x86_64, but a configure time option can be used to
724 override this.
725
726 @item -D
727 Ignored. This option is accepted for script compatibility with calls to
728 other assemblers.
729
730 @item --debug-prefix-map @var{old}=@var{new}
731 When assembling files in directory @file{@var{old}}, record debugging
732 information describing them as in @file{@var{new}} instead.
733
734 @item --defsym @var{sym}=@var{value}
735 Define the symbol @var{sym} to be @var{value} before assembling the input file.
736 @var{value} must be an integer constant. As in C, a leading @samp{0x}
737 indicates a hexadecimal value, and a leading @samp{0} indicates an octal
738 value. The value of the symbol can be overridden inside a source file via the
739 use of a @code{.set} pseudo-op.
740
741 @item -f
742 ``fast''---skip whitespace and comment preprocessing (assume source is
743 compiler output).
744
745 @item -g
746 @itemx --gen-debug
747 Generate debugging information for each assembler source line using whichever
748 debug format is preferred by the target. This currently means either STABS,
749 ECOFF or DWARF2.
750
751 @item --gstabs
752 Generate stabs debugging information for each assembler line. This
753 may help debugging assembler code, if the debugger can handle it.
754
755 @item --gstabs+
756 Generate stabs debugging information for each assembler line, with GNU
757 extensions that probably only gdb can handle, and that could make other
758 debuggers crash or refuse to read your program. This
759 may help debugging assembler code. Currently the only GNU extension is
760 the location of the current working directory at assembling time.
761
762 @item --gdwarf-2
763 Generate DWARF2 debugging information for each assembler line. This
764 may help debugging assembler code, if the debugger can handle it. Note---this
765 option is only supported by some targets, not all of them.
766
767 @item --gdwarf-sections
768 Instead of creating a .debug_line section, create a series of
769 .debug_line.@var{foo} sections where @var{foo} is the name of the
770 corresponding code section. For example a code section called @var{.text.func}
771 will have its dwarf line number information placed into a section called
772 @var{.debug_line.text.func}. If the code section is just called @var{.text}
773 then debug line section will still be called just @var{.debug_line} without any
774 suffix.
775
776 @item --gdwarf-cie-version=@var{version}
777 Control which version of DWARF Common Information Entries (CIEs) are produced.
778 When this flag is not specificed the default is version 1, though some targets
779 can modify this default. Other possible values for @var{version} are 3 or 4.
780
781 @ifset ELF
782 @item --size-check=error
783 @itemx --size-check=warning
784 Issue an error or warning for invalid ELF .size directive.
785
786 @item --elf-stt-common=no
787 @itemx --elf-stt-common=yes
788 These options control whether the ELF assembler should generate common
789 symbols with the @code{STT_COMMON} type. The default can be controlled
790 by a configure option @option{--enable-elf-stt-common}.
791
792 @item --generate-missing-build-notes=yes
793 @itemx --generate-missing-build-notes=no
794 These options control whether the ELF assembler should generate GNU Build
795 attribute notes if none are present in the input sources.
796 The default can be controlled by the @option{--enable-generate-build-notes}
797 configure option.
798
799 @end ifset
800
801 @item --help
802 Print a summary of the command-line options and exit.
803
804 @item --target-help
805 Print a summary of all target specific options and exit.
806
807 @item -I @var{dir}
808 Add directory @var{dir} to the search list for @code{.include} directives.
809
810 @item -J
811 Don't warn about signed overflow.
812
813 @item -K
814 @ifclear DIFF-TBL-KLUGE
815 This option is accepted but has no effect on the @value{TARGET} family.
816 @end ifclear
817 @ifset DIFF-TBL-KLUGE
818 Issue warnings when difference tables altered for long displacements.
819 @end ifset
820
821 @item -L
822 @itemx --keep-locals
823 Keep (in the symbol table) local symbols. These symbols start with
824 system-specific local label prefixes, typically @samp{.L} for ELF systems
825 or @samp{L} for traditional a.out systems.
826 @ifclear man
827 @xref{Symbol Names}.
828 @end ifclear
829
830 @item --listing-lhs-width=@var{number}
831 Set the maximum width, in words, of the output data column for an assembler
832 listing to @var{number}.
833
834 @item --listing-lhs-width2=@var{number}
835 Set the maximum width, in words, of the output data column for continuation
836 lines in an assembler listing to @var{number}.
837
838 @item --listing-rhs-width=@var{number}
839 Set the maximum width of an input source line, as displayed in a listing, to
840 @var{number} bytes.
841
842 @item --listing-cont-lines=@var{number}
843 Set the maximum number of lines printed in a listing for a single line of input
844 to @var{number} + 1.
845
846 @item --no-pad-sections
847 Stop the assembler for padding the ends of output sections to the alignment
848 of that section. The default is to pad the sections, but this can waste space
849 which might be needed on targets which have tight memory constraints.
850
851 @item -o @var{objfile}
852 Name the object-file output from @command{@value{AS}} @var{objfile}.
853
854 @item -R
855 Fold the data section into the text section.
856
857 @item --hash-size=@var{number}
858 Set the default size of GAS's hash tables to a prime number close to
859 @var{number}. Increasing this value can reduce the length of time it takes the
860 assembler to perform its tasks, at the expense of increasing the assembler's
861 memory requirements. Similarly reducing this value can reduce the memory
862 requirements at the expense of speed.
863
864 @item --reduce-memory-overheads
865 This option reduces GAS's memory requirements, at the expense of making the
866 assembly processes slower. Currently this switch is a synonym for
867 @samp{--hash-size=4051}, but in the future it may have other effects as well.
868
869 @ifset ELF
870 @item --sectname-subst
871 Honor substitution sequences in section names.
872 @ifclear man
873 @xref{Section Name Substitutions,,@code{.section @var{name}}}.
874 @end ifclear
875 @end ifset
876
877 @item --statistics
878 Print the maximum space (in bytes) and total time (in seconds) used by
879 assembly.
880
881 @item --strip-local-absolute
882 Remove local absolute symbols from the outgoing symbol table.
883
884 @item -v
885 @itemx -version
886 Print the @command{as} version.
887
888 @item --version
889 Print the @command{as} version and exit.
890
891 @item -W
892 @itemx --no-warn
893 Suppress warning messages.
894
895 @item --fatal-warnings
896 Treat warnings as errors.
897
898 @item --warn
899 Don't suppress warning messages or treat them as errors.
900
901 @item -w
902 Ignored.
903
904 @item -x
905 Ignored.
906
907 @item -Z
908 Generate an object file even after errors.
909
910 @item -- | @var{files} @dots{}
911 Standard input, or source files to assemble.
912
913 @end table
914 @c man end
915
916 @ifset AARCH64
917
918 @ifclear man
919 @xref{AArch64 Options}, for the options available when @value{AS} is configured
920 for the 64-bit mode of the ARM Architecture (AArch64).
921 @end ifclear
922
923 @ifset man
924 @c man begin OPTIONS
925 The following options are available when @value{AS} is configured for the
926 64-bit mode of the ARM Architecture (AArch64).
927 @c man end
928 @c man begin INCLUDE
929 @include c-aarch64.texi
930 @c ended inside the included file
931 @end ifset
932
933 @end ifset
934
935 @ifset ALPHA
936
937 @ifclear man
938 @xref{Alpha Options}, for the options available when @value{AS} is configured
939 for an Alpha processor.
940 @end ifclear
941
942 @ifset man
943 @c man begin OPTIONS
944 The following options are available when @value{AS} is configured for an Alpha
945 processor.
946 @c man end
947 @c man begin INCLUDE
948 @include c-alpha.texi
949 @c ended inside the included file
950 @end ifset
951
952 @end ifset
953
954 @c man begin OPTIONS
955 @ifset ARC
956 The following options are available when @value{AS} is configured for an ARC
957 processor.
958
959 @table @gcctabopt
960 @item -mcpu=@var{cpu}
961 This option selects the core processor variant.
962 @item -EB | -EL
963 Select either big-endian (-EB) or little-endian (-EL) output.
964 @item -mcode-density
965 Enable Code Density extenssion instructions.
966 @end table
967 @end ifset
968
969 @ifset ARM
970 The following options are available when @value{AS} is configured for the ARM
971 processor family.
972
973 @table @gcctabopt
974 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
975 Specify which ARM processor variant is the target.
976 @item -march=@var{architecture}[+@var{extension}@dots{}]
977 Specify which ARM architecture variant is used by the target.
978 @item -mfpu=@var{floating-point-format}
979 Select which Floating Point architecture is the target.
980 @item -mfloat-abi=@var{abi}
981 Select which floating point ABI is in use.
982 @item -mthumb
983 Enable Thumb only instruction decoding.
984 @item -mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
985 Select which procedure calling convention is in use.
986 @item -EB | -EL
987 Select either big-endian (-EB) or little-endian (-EL) output.
988 @item -mthumb-interwork
989 Specify that the code has been generated with interworking between Thumb and
990 ARM code in mind.
991 @item -mccs
992 Turns on CodeComposer Studio assembly syntax compatibility mode.
993 @item -k
994 Specify that PIC code has been generated.
995 @end table
996 @end ifset
997 @c man end
998
999 @ifset Blackfin
1000
1001 @ifclear man
1002 @xref{Blackfin Options}, for the options available when @value{AS} is
1003 configured for the Blackfin processor family.
1004 @end ifclear
1005
1006 @ifset man
1007 @c man begin OPTIONS
1008 The following options are available when @value{AS} is configured for
1009 the Blackfin processor family.
1010 @c man end
1011 @c man begin INCLUDE
1012 @include c-bfin.texi
1013 @c ended inside the included file
1014 @end ifset
1015
1016 @end ifset
1017
1018 @ifset BPF
1019
1020 @ifclear man
1021 @xref{BPF Options}, for the options available when @value{AS} is
1022 configured for the Linux kernel BPF processor family.
1023 @end ifclear
1024
1025 @ifset man
1026 @c man begin OPTIONS
1027 The following options are available when @value{AS} is configured for
1028 the Linux kernel BPF processor family.
1029 @c man end
1030 @c man begin INCLUDE
1031 @include c-bpf.texi
1032 @c ended inside the included file
1033 @end ifset
1034
1035 @end ifset
1036
1037 @c man begin OPTIONS
1038 @ifset CRIS
1039 See the info pages for documentation of the CRIS-specific options.
1040 @end ifset
1041
1042 @ifset CSKY
1043
1044 @ifclear man
1045 @xref{C-SKY Options}, for the options available when @value{AS} is
1046 configured for the C-SKY processor family.
1047 @end ifclear
1048
1049 @ifset man
1050 @c man begin OPTIONS
1051 The following options are available when @value{AS} is configured for
1052 the C-SKY processor family.
1053 @c man end
1054 @c man begin INCLUDE
1055 @include c-csky.texi
1056 @c ended inside the included file
1057 @end ifset
1058
1059 @end ifset
1060
1061 @ifset D10V
1062 The following options are available when @value{AS} is configured for
1063 a D10V processor.
1064 @table @gcctabopt
1065 @cindex D10V optimization
1066 @cindex optimization, D10V
1067 @item -O
1068 Optimize output by parallelizing instructions.
1069 @end table
1070 @end ifset
1071
1072 @ifset D30V
1073 The following options are available when @value{AS} is configured for a D30V
1074 processor.
1075 @table @gcctabopt
1076 @cindex D30V optimization
1077 @cindex optimization, D30V
1078 @item -O
1079 Optimize output by parallelizing instructions.
1080
1081 @cindex D30V nops
1082 @item -n
1083 Warn when nops are generated.
1084
1085 @cindex D30V nops after 32-bit multiply
1086 @item -N
1087 Warn when a nop after a 32-bit multiply instruction is generated.
1088 @end table
1089 @end ifset
1090 @c man end
1091
1092 @ifset EPIPHANY
1093 The following options are available when @value{AS} is configured for the
1094 Adapteva EPIPHANY series.
1095
1096 @ifclear man
1097 @xref{Epiphany Options}, for the options available when @value{AS} is
1098 configured for an Epiphany processor.
1099 @end ifclear
1100
1101 @ifset man
1102 @c man begin OPTIONS
1103 The following options are available when @value{AS} is configured for
1104 an Epiphany processor.
1105 @c man end
1106 @c man begin INCLUDE
1107 @include c-epiphany.texi
1108 @c ended inside the included file
1109 @end ifset
1110
1111 @end ifset
1112
1113 @ifset H8300
1114
1115 @ifclear man
1116 @xref{H8/300 Options}, for the options available when @value{AS} is configured
1117 for an H8/300 processor.
1118 @end ifclear
1119
1120 @ifset man
1121 @c man begin OPTIONS
1122 The following options are available when @value{AS} is configured for an H8/300
1123 processor.
1124 @c man end
1125 @c man begin INCLUDE
1126 @include c-h8300.texi
1127 @c ended inside the included file
1128 @end ifset
1129
1130 @end ifset
1131
1132 @ifset I80386
1133
1134 @ifclear man
1135 @xref{i386-Options}, for the options available when @value{AS} is
1136 configured for an i386 processor.
1137 @end ifclear
1138
1139 @ifset man
1140 @c man begin OPTIONS
1141 The following options are available when @value{AS} is configured for
1142 an i386 processor.
1143 @c man end
1144 @c man begin INCLUDE
1145 @include c-i386.texi
1146 @c ended inside the included file
1147 @end ifset
1148
1149 @end ifset
1150
1151 @c man begin OPTIONS
1152 @ifset IP2K
1153 The following options are available when @value{AS} is configured for the
1154 Ubicom IP2K series.
1155
1156 @table @gcctabopt
1157
1158 @item -mip2022ext
1159 Specifies that the extended IP2022 instructions are allowed.
1160
1161 @item -mip2022
1162 Restores the default behaviour, which restricts the permitted instructions to
1163 just the basic IP2022 ones.
1164
1165 @end table
1166 @end ifset
1167
1168 @ifset M32C
1169 The following options are available when @value{AS} is configured for the
1170 Renesas M32C and M16C processors.
1171
1172 @table @gcctabopt
1173
1174 @item -m32c
1175 Assemble M32C instructions.
1176
1177 @item -m16c
1178 Assemble M16C instructions (the default).
1179
1180 @item -relax
1181 Enable support for link-time relaxations.
1182
1183 @item -h-tick-hex
1184 Support H'00 style hex constants in addition to 0x00 style.
1185
1186 @end table
1187 @end ifset
1188
1189 @ifset M32R
1190 The following options are available when @value{AS} is configured for the
1191 Renesas M32R (formerly Mitsubishi M32R) series.
1192
1193 @table @gcctabopt
1194
1195 @item --m32rx
1196 Specify which processor in the M32R family is the target. The default
1197 is normally the M32R, but this option changes it to the M32RX.
1198
1199 @item --warn-explicit-parallel-conflicts or --Wp
1200 Produce warning messages when questionable parallel constructs are
1201 encountered.
1202
1203 @item --no-warn-explicit-parallel-conflicts or --Wnp
1204 Do not produce warning messages when questionable parallel constructs are
1205 encountered.
1206
1207 @end table
1208 @end ifset
1209
1210 @ifset M680X0
1211 The following options are available when @value{AS} is configured for the
1212 Motorola 68000 series.
1213
1214 @table @gcctabopt
1215
1216 @item -l
1217 Shorten references to undefined symbols, to one word instead of two.
1218
1219 @item -m68000 | -m68008 | -m68010 | -m68020 | -m68030
1220 @itemx | -m68040 | -m68060 | -m68302 | -m68331 | -m68332
1221 @itemx | -m68333 | -m68340 | -mcpu32 | -m5200
1222 Specify what processor in the 68000 family is the target. The default
1223 is normally the 68020, but this can be changed at configuration time.
1224
1225 @item -m68881 | -m68882 | -mno-68881 | -mno-68882
1226 The target machine does (or does not) have a floating-point coprocessor.
1227 The default is to assume a coprocessor for 68020, 68030, and cpu32. Although
1228 the basic 68000 is not compatible with the 68881, a combination of the
1229 two can be specified, since it's possible to do emulation of the
1230 coprocessor instructions with the main processor.
1231
1232 @item -m68851 | -mno-68851
1233 The target machine does (or does not) have a memory-management
1234 unit coprocessor. The default is to assume an MMU for 68020 and up.
1235
1236 @end table
1237 @end ifset
1238
1239 @ifset NIOSII
1240
1241 @ifclear man
1242 @xref{Nios II Options}, for the options available when @value{AS} is configured
1243 for an Altera Nios II processor.
1244 @end ifclear
1245
1246 @ifset man
1247 @c man begin OPTIONS
1248 The following options are available when @value{AS} is configured for an
1249 Altera Nios II processor.
1250 @c man end
1251 @c man begin INCLUDE
1252 @include c-nios2.texi
1253 @c ended inside the included file
1254 @end ifset
1255 @end ifset
1256
1257 @ifset PDP11
1258
1259 For details about the PDP-11 machine dependent features options,
1260 see @ref{PDP-11-Options}.
1261
1262 @table @gcctabopt
1263 @item -mpic | -mno-pic
1264 Generate position-independent (or position-dependent) code. The
1265 default is @option{-mpic}.
1266
1267 @item -mall
1268 @itemx -mall-extensions
1269 Enable all instruction set extensions. This is the default.
1270
1271 @item -mno-extensions
1272 Disable all instruction set extensions.
1273
1274 @item -m@var{extension} | -mno-@var{extension}
1275 Enable (or disable) a particular instruction set extension.
1276
1277 @item -m@var{cpu}
1278 Enable the instruction set extensions supported by a particular CPU, and
1279 disable all other extensions.
1280
1281 @item -m@var{machine}
1282 Enable the instruction set extensions supported by a particular machine
1283 model, and disable all other extensions.
1284 @end table
1285
1286 @end ifset
1287
1288 @ifset PJ
1289 The following options are available when @value{AS} is configured for
1290 a picoJava processor.
1291
1292 @table @gcctabopt
1293
1294 @cindex PJ endianness
1295 @cindex endianness, PJ
1296 @cindex big endian output, PJ
1297 @item -mb
1298 Generate ``big endian'' format output.
1299
1300 @cindex little endian output, PJ
1301 @item -ml
1302 Generate ``little endian'' format output.
1303
1304 @end table
1305 @end ifset
1306
1307 @ifset PRU
1308
1309 @ifclear man
1310 @xref{PRU Options}, for the options available when @value{AS} is configured
1311 for a PRU processor.
1312 @end ifclear
1313
1314 @ifset man
1315 @c man begin OPTIONS
1316 The following options are available when @value{AS} is configured for a
1317 PRU processor.
1318 @c man end
1319 @c man begin INCLUDE
1320 @include c-pru.texi
1321 @c ended inside the included file
1322 @end ifset
1323 @end ifset
1324
1325 @ifset M68HC11
1326 The following options are available when @value{AS} is configured for the
1327 Motorola 68HC11 or 68HC12 series.
1328
1329 @table @gcctabopt
1330
1331 @item -m68hc11 | -m68hc12 | -m68hcs12 | -mm9s12x | -mm9s12xg
1332 Specify what processor is the target. The default is
1333 defined by the configuration option when building the assembler.
1334
1335 @item --xgate-ramoffset
1336 Instruct the linker to offset RAM addresses from S12X address space into
1337 XGATE address space.
1338
1339 @item -mshort
1340 Specify to use the 16-bit integer ABI.
1341
1342 @item -mlong
1343 Specify to use the 32-bit integer ABI.
1344
1345 @item -mshort-double
1346 Specify to use the 32-bit double ABI.
1347
1348 @item -mlong-double
1349 Specify to use the 64-bit double ABI.
1350
1351 @item --force-long-branches
1352 Relative branches are turned into absolute ones. This concerns
1353 conditional branches, unconditional branches and branches to a
1354 sub routine.
1355
1356 @item -S | --short-branches
1357 Do not turn relative branches into absolute ones
1358 when the offset is out of range.
1359
1360 @item --strict-direct-mode
1361 Do not turn the direct addressing mode into extended addressing mode
1362 when the instruction does not support direct addressing mode.
1363
1364 @item --print-insn-syntax
1365 Print the syntax of instruction in case of error.
1366
1367 @item --print-opcodes
1368 Print the list of instructions with syntax and then exit.
1369
1370 @item --generate-example
1371 Print an example of instruction for each possible instruction and then exit.
1372 This option is only useful for testing @command{@value{AS}}.
1373
1374 @end table
1375 @end ifset
1376
1377 @ifset SPARC
1378 The following options are available when @command{@value{AS}} is configured
1379 for the SPARC architecture:
1380
1381 @table @gcctabopt
1382 @item -Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
1383 @itemx -Av8plus | -Av8plusa | -Av9 | -Av9a
1384 Explicitly select a variant of the SPARC architecture.
1385
1386 @samp{-Av8plus} and @samp{-Av8plusa} select a 32 bit environment.
1387 @samp{-Av9} and @samp{-Av9a} select a 64 bit environment.
1388
1389 @samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
1390 UltraSPARC extensions.
1391
1392 @item -xarch=v8plus | -xarch=v8plusa
1393 For compatibility with the Solaris v9 assembler. These options are
1394 equivalent to -Av8plus and -Av8plusa, respectively.
1395
1396 @item -bump
1397 Warn when the assembler switches to another architecture.
1398 @end table
1399 @end ifset
1400
1401 @ifset TIC54X
1402 The following options are available when @value{AS} is configured for the 'c54x
1403 architecture.
1404
1405 @table @gcctabopt
1406 @item -mfar-mode
1407 Enable extended addressing mode. All addresses and relocations will assume
1408 extended addressing (usually 23 bits).
1409 @item -mcpu=@var{CPU_VERSION}
1410 Sets the CPU version being compiled for.
1411 @item -merrors-to-file @var{FILENAME}
1412 Redirect error output to a file, for broken systems which don't support such
1413 behaviour in the shell.
1414 @end table
1415 @end ifset
1416
1417 @ifset MIPS
1418 @c man begin OPTIONS
1419 The following options are available when @value{AS} is configured for
1420 a MIPS processor.
1421
1422 @table @gcctabopt
1423 @item -G @var{num}
1424 This option sets the largest size of an object that can be referenced
1425 implicitly with the @code{gp} register. It is only accepted for targets that
1426 use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
1427
1428 @cindex MIPS endianness
1429 @cindex endianness, MIPS
1430 @cindex big endian output, MIPS
1431 @item -EB
1432 Generate ``big endian'' format output.
1433
1434 @cindex little endian output, MIPS
1435 @item -EL
1436 Generate ``little endian'' format output.
1437
1438 @cindex MIPS ISA
1439 @item -mips1
1440 @itemx -mips2
1441 @itemx -mips3
1442 @itemx -mips4
1443 @itemx -mips5
1444 @itemx -mips32
1445 @itemx -mips32r2
1446 @itemx -mips32r3
1447 @itemx -mips32r5
1448 @itemx -mips32r6
1449 @itemx -mips64
1450 @itemx -mips64r2
1451 @itemx -mips64r3
1452 @itemx -mips64r5
1453 @itemx -mips64r6
1454 Generate code for a particular MIPS Instruction Set Architecture level.
1455 @samp{-mips1} is an alias for @samp{-march=r3000}, @samp{-mips2} is an
1456 alias for @samp{-march=r6000}, @samp{-mips3} is an alias for
1457 @samp{-march=r4000} and @samp{-mips4} is an alias for @samp{-march=r8000}.
1458 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
1459 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
1460 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to generic
1461 MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32 Release 5, MIPS32
1462 Release 6, MIPS64, MIPS64 Release 2, MIPS64 Release 3, MIPS64 Release 5, and
1463 MIPS64 Release 6 ISA processors, respectively.
1464
1465 @item -march=@var{cpu}
1466 Generate code for a particular MIPS CPU.
1467
1468 @item -mtune=@var{cpu}
1469 Schedule and tune for a particular MIPS CPU.
1470
1471 @item -mfix7000
1472 @itemx -mno-fix7000
1473 Cause nops to be inserted if the read of the destination register
1474 of an mfhi or mflo instruction occurs in the following two instructions.
1475
1476 @item -mfix-rm7000
1477 @itemx -mno-fix-rm7000
1478 Cause nops to be inserted if a dmult or dmultu instruction is
1479 followed by a load instruction.
1480
1481 @item -mfix-r5900
1482 @itemx -mno-fix-r5900
1483 Do not attempt to schedule the preceding instruction into the delay slot
1484 of a branch instruction placed at the end of a short loop of six
1485 instructions or fewer and always schedule a @code{nop} instruction there
1486 instead. The short loop bug under certain conditions causes loops to
1487 execute only once or twice, due to a hardware bug in the R5900 chip.
1488
1489 @item -mdebug
1490 @itemx -no-mdebug
1491 Cause stabs-style debugging output to go into an ECOFF-style .mdebug
1492 section instead of the standard ELF .stabs sections.
1493
1494 @item -mpdr
1495 @itemx -mno-pdr
1496 Control generation of @code{.pdr} sections.
1497
1498 @item -mgp32
1499 @itemx -mfp32
1500 The register sizes are normally inferred from the ISA and ABI, but these
1501 flags force a certain group of registers to be treated as 32 bits wide at
1502 all times. @samp{-mgp32} controls the size of general-purpose registers
1503 and @samp{-mfp32} controls the size of floating-point registers.
1504
1505 @item -mgp64
1506 @itemx -mfp64
1507 The register sizes are normally inferred from the ISA and ABI, but these
1508 flags force a certain group of registers to be treated as 64 bits wide at
1509 all times. @samp{-mgp64} controls the size of general-purpose registers
1510 and @samp{-mfp64} controls the size of floating-point registers.
1511
1512 @item -mfpxx
1513 The register sizes are normally inferred from the ISA and ABI, but using
1514 this flag in combination with @samp{-mabi=32} enables an ABI variant
1515 which will operate correctly with floating-point registers which are
1516 32 or 64 bits wide.
1517
1518 @item -modd-spreg
1519 @itemx -mno-odd-spreg
1520 Enable use of floating-point operations on odd-numbered single-precision
1521 registers when supported by the ISA. @samp{-mfpxx} implies
1522 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}.
1523
1524 @item -mips16
1525 @itemx -no-mips16
1526 Generate code for the MIPS 16 processor. This is equivalent to putting
1527 @code{.module mips16} at the start of the assembly file. @samp{-no-mips16}
1528 turns off this option.
1529
1530 @item -mmips16e2
1531 @itemx -mno-mips16e2
1532 Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent
1533 to putting @code{.module mips16e2} at the start of the assembly file.
1534 @samp{-mno-mips16e2} turns off this option.
1535
1536 @item -mmicromips
1537 @itemx -mno-micromips
1538 Generate code for the microMIPS processor. This is equivalent to putting
1539 @code{.module micromips} at the start of the assembly file.
1540 @samp{-mno-micromips} turns off this option. This is equivalent to putting
1541 @code{.module nomicromips} at the start of the assembly file.
1542
1543 @item -msmartmips
1544 @itemx -mno-smartmips
1545 Enables the SmartMIPS extension to the MIPS32 instruction set. This is
1546 equivalent to putting @code{.module smartmips} at the start of the assembly
1547 file. @samp{-mno-smartmips} turns off this option.
1548
1549 @item -mips3d
1550 @itemx -no-mips3d
1551 Generate code for the MIPS-3D Application Specific Extension.
1552 This tells the assembler to accept MIPS-3D instructions.
1553 @samp{-no-mips3d} turns off this option.
1554
1555 @item -mdmx
1556 @itemx -no-mdmx
1557 Generate code for the MDMX Application Specific Extension.
1558 This tells the assembler to accept MDMX instructions.
1559 @samp{-no-mdmx} turns off this option.
1560
1561 @item -mdsp
1562 @itemx -mno-dsp
1563 Generate code for the DSP Release 1 Application Specific Extension.
1564 This tells the assembler to accept DSP Release 1 instructions.
1565 @samp{-mno-dsp} turns off this option.
1566
1567 @item -mdspr2
1568 @itemx -mno-dspr2
1569 Generate code for the DSP Release 2 Application Specific Extension.
1570 This option implies @samp{-mdsp}.
1571 This tells the assembler to accept DSP Release 2 instructions.
1572 @samp{-mno-dspr2} turns off this option.
1573
1574 @item -mdspr3
1575 @itemx -mno-dspr3
1576 Generate code for the DSP Release 3 Application Specific Extension.
1577 This option implies @samp{-mdsp} and @samp{-mdspr2}.
1578 This tells the assembler to accept DSP Release 3 instructions.
1579 @samp{-mno-dspr3} turns off this option.
1580
1581 @item -mmsa
1582 @itemx -mno-msa
1583 Generate code for the MIPS SIMD Architecture Extension.
1584 This tells the assembler to accept MSA instructions.
1585 @samp{-mno-msa} turns off this option.
1586
1587 @item -mxpa
1588 @itemx -mno-xpa
1589 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
1590 This tells the assembler to accept XPA instructions.
1591 @samp{-mno-xpa} turns off this option.
1592
1593 @item -mmt
1594 @itemx -mno-mt
1595 Generate code for the MT Application Specific Extension.
1596 This tells the assembler to accept MT instructions.
1597 @samp{-mno-mt} turns off this option.
1598
1599 @item -mmcu
1600 @itemx -mno-mcu
1601 Generate code for the MCU Application Specific Extension.
1602 This tells the assembler to accept MCU instructions.
1603 @samp{-mno-mcu} turns off this option.
1604
1605 @item -mcrc
1606 @itemx -mno-crc
1607 Generate code for the MIPS cyclic redundancy check (CRC) Application
1608 Specific Extension. This tells the assembler to accept CRC instructions.
1609 @samp{-mno-crc} turns off this option.
1610
1611 @item -mginv
1612 @itemx -mno-ginv
1613 Generate code for the Global INValidate (GINV) Application Specific
1614 Extension. This tells the assembler to accept GINV instructions.
1615 @samp{-mno-ginv} turns off this option.
1616
1617 @item -mloongson-mmi
1618 @itemx -mno-loongson-mmi
1619 Generate code for the Loongson MultiMedia extensions Instructions (MMI)
1620 Application Specific Extension. This tells the assembler to accept MMI
1621 instructions.
1622 @samp{-mno-loongson-mmi} turns off this option.
1623
1624 @item -mloongson-cam
1625 @itemx -mno-loongson-cam
1626 Generate code for the Loongson Content Address Memory (CAM) instructions.
1627 This tells the assembler to accept Loongson CAM instructions.
1628 @samp{-mno-loongson-cam} turns off this option.
1629
1630 @item -mloongson-ext
1631 @itemx -mno-loongson-ext
1632 Generate code for the Loongson EXTensions (EXT) instructions.
1633 This tells the assembler to accept Loongson EXT instructions.
1634 @samp{-mno-loongson-ext} turns off this option.
1635
1636 @item -mloongson-ext2
1637 @itemx -mno-loongson-ext2
1638 Generate code for the Loongson EXTensions R2 (EXT2) instructions.
1639 This option implies @samp{-mloongson-ext}.
1640 This tells the assembler to accept Loongson EXT2 instructions.
1641 @samp{-mno-loongson-ext2} turns off this option.
1642
1643 @item -minsn32
1644 @itemx -mno-insn32
1645 Only use 32-bit instruction encodings when generating code for the
1646 microMIPS processor. This option inhibits the use of any 16-bit
1647 instructions. This is equivalent to putting @code{.set insn32} at
1648 the start of the assembly file. @samp{-mno-insn32} turns off this
1649 option. This is equivalent to putting @code{.set noinsn32} at the
1650 start of the assembly file. By default @samp{-mno-insn32} is
1651 selected, allowing all instructions to be used.
1652
1653 @item --construct-floats
1654 @itemx --no-construct-floats
1655 The @samp{--no-construct-floats} option disables the construction of
1656 double width floating point constants by loading the two halves of the
1657 value into the two single width floating point registers that make up
1658 the double width register. By default @samp{--construct-floats} is
1659 selected, allowing construction of these floating point constants.
1660
1661 @item --relax-branch
1662 @itemx --no-relax-branch
1663 The @samp{--relax-branch} option enables the relaxation of out-of-range
1664 branches. By default @samp{--no-relax-branch} is selected, causing any
1665 out-of-range branches to produce an error.
1666
1667 @item -mignore-branch-isa
1668 @itemx -mno-ignore-branch-isa
1669 Ignore branch checks for invalid transitions between ISA modes. The
1670 semantics of branches does not provide for an ISA mode switch, so in
1671 most cases the ISA mode a branch has been encoded for has to be the
1672 same as the ISA mode of the branch's target label. Therefore GAS has
1673 checks implemented that verify in branch assembly that the two ISA
1674 modes match. @samp{-mignore-branch-isa} disables these checks. By
1675 default @samp{-mno-ignore-branch-isa} is selected, causing any invalid
1676 branch requiring a transition between ISA modes to produce an error.
1677
1678 @item -mnan=@var{encoding}
1679 Select between the IEEE 754-2008 (@option{-mnan=2008}) or the legacy
1680 (@option{-mnan=legacy}) NaN encoding format. The latter is the default.
1681
1682 @cindex emulation
1683 @item --emulation=@var{name}
1684 This option was formerly used to switch between ELF and ECOFF output
1685 on targets like IRIX 5 that supported both. MIPS ECOFF support was
1686 removed in GAS 2.24, so the option now serves little purpose.
1687 It is retained for backwards compatibility.
1688
1689 The available configuration names are: @samp{mipself}, @samp{mipslelf} and
1690 @samp{mipsbelf}. Choosing @samp{mipself} now has no effect, since the output
1691 is always ELF. @samp{mipslelf} and @samp{mipsbelf} select little- and
1692 big-endian output respectively, but @samp{-EL} and @samp{-EB} are now the
1693 preferred options instead.
1694
1695 @item -nocpp
1696 @command{@value{AS}} ignores this option. It is accepted for compatibility with
1697 the native tools.
1698
1699 @item --trap
1700 @itemx --no-trap
1701 @itemx --break
1702 @itemx --no-break
1703 Control how to deal with multiplication overflow and division by zero.
1704 @samp{--trap} or @samp{--no-break} (which are synonyms) take a trap exception
1705 (and only work for Instruction Set Architecture level 2 and higher);
1706 @samp{--break} or @samp{--no-trap} (also synonyms, and the default) take a
1707 break exception.
1708
1709 @item -n
1710 When this option is used, @command{@value{AS}} will issue a warning every
1711 time it generates a nop instruction from a macro.
1712 @end table
1713 @c man end
1714 @end ifset
1715
1716 @ifset MCORE
1717 The following options are available when @value{AS} is configured for
1718 an MCore processor.
1719
1720 @table @gcctabopt
1721 @item -jsri2bsr
1722 @itemx -nojsri2bsr
1723 Enable or disable the JSRI to BSR transformation. By default this is enabled.
1724 The command-line option @samp{-nojsri2bsr} can be used to disable it.
1725
1726 @item -sifilter
1727 @itemx -nosifilter
1728 Enable or disable the silicon filter behaviour. By default this is disabled.
1729 The default can be overridden by the @samp{-sifilter} command-line option.
1730
1731 @item -relax
1732 Alter jump instructions for long displacements.
1733
1734 @item -mcpu=[210|340]
1735 Select the cpu type on the target hardware. This controls which instructions
1736 can be assembled.
1737
1738 @item -EB
1739 Assemble for a big endian target.
1740
1741 @item -EL
1742 Assemble for a little endian target.
1743
1744 @end table
1745 @end ifset
1746 @c man end
1747
1748 @ifset METAG
1749
1750 @ifclear man
1751 @xref{Meta Options}, for the options available when @value{AS} is configured
1752 for a Meta processor.
1753 @end ifclear
1754
1755 @ifset man
1756 @c man begin OPTIONS
1757 The following options are available when @value{AS} is configured for a
1758 Meta processor.
1759 @c man end
1760 @c man begin INCLUDE
1761 @include c-metag.texi
1762 @c ended inside the included file
1763 @end ifset
1764
1765 @end ifset
1766
1767 @c man begin OPTIONS
1768 @ifset MMIX
1769 See the info pages for documentation of the MMIX-specific options.
1770 @end ifset
1771
1772 @ifset NDS32
1773
1774 @ifclear man
1775 @xref{NDS32 Options}, for the options available when @value{AS} is configured
1776 for a NDS32 processor.
1777 @end ifclear
1778 @c ended inside the included file
1779 @end ifset
1780
1781 @ifset man
1782 @c man begin OPTIONS
1783 The following options are available when @value{AS} is configured for a
1784 NDS32 processor.
1785 @c man end
1786 @c man begin INCLUDE
1787 @include c-nds32.texi
1788 @c ended inside the included file
1789 @end ifset
1790
1791 @c man end
1792 @ifset PPC
1793
1794 @ifclear man
1795 @xref{PowerPC-Opts}, for the options available when @value{AS} is configured
1796 for a PowerPC processor.
1797 @end ifclear
1798
1799 @ifset man
1800 @c man begin OPTIONS
1801 The following options are available when @value{AS} is configured for a
1802 PowerPC processor.
1803 @c man end
1804 @c man begin INCLUDE
1805 @include c-ppc.texi
1806 @c ended inside the included file
1807 @end ifset
1808
1809 @end ifset
1810
1811 @ifset RISCV
1812
1813 @ifclear man
1814 @xref{RISC-V-Options}, for the options available when @value{AS} is configured
1815 for a RISC-V processor.
1816 @end ifclear
1817
1818 @ifset man
1819 @c man begin OPTIONS
1820 The following options are available when @value{AS} is configured for a
1821 RISC-V processor.
1822 @c man end
1823 @c man begin INCLUDE
1824 @include c-riscv.texi
1825 @c ended inside the included file
1826 @end ifset
1827
1828 @end ifset
1829
1830 @c man begin OPTIONS
1831 @ifset RX
1832 See the info pages for documentation of the RX-specific options.
1833 @end ifset
1834
1835 @ifset S390
1836 The following options are available when @value{AS} is configured for the s390
1837 processor family.
1838
1839 @table @gcctabopt
1840 @item -m31
1841 @itemx -m64
1842 Select the word size, either 31/32 bits or 64 bits.
1843 @item -mesa
1844 @item -mzarch
1845 Select the architecture mode, either the Enterprise System
1846 Architecture (esa) or the z/Architecture mode (zarch).
1847 @item -march=@var{processor}
1848 Specify which s390 processor variant is the target, @samp{g5} (or
1849 @samp{arch3}), @samp{g6}, @samp{z900} (or @samp{arch5}), @samp{z990} (or
1850 @samp{arch6}), @samp{z9-109}, @samp{z9-ec} (or @samp{arch7}), @samp{z10} (or
1851 @samp{arch8}), @samp{z196} (or @samp{arch9}), @samp{zEC12} (or @samp{arch10}),
1852 @samp{z13} (or @samp{arch11}), @samp{z14} (or @samp{arch12}), or @samp{z15}
1853 (or @samp{arch13}).
1854 @item -mregnames
1855 @itemx -mno-regnames
1856 Allow or disallow symbolic names for registers.
1857 @item -mwarn-areg-zero
1858 Warn whenever the operand for a base or index register has been specified
1859 but evaluates to zero.
1860 @end table
1861 @end ifset
1862 @c man end
1863
1864 @ifset TIC6X
1865
1866 @ifclear man
1867 @xref{TIC6X Options}, for the options available when @value{AS} is configured
1868 for a TMS320C6000 processor.
1869 @end ifclear
1870
1871 @ifset man
1872 @c man begin OPTIONS
1873 The following options are available when @value{AS} is configured for a
1874 TMS320C6000 processor.
1875 @c man end
1876 @c man begin INCLUDE
1877 @include c-tic6x.texi
1878 @c ended inside the included file
1879 @end ifset
1880
1881 @end ifset
1882
1883 @ifset TILEGX
1884
1885 @ifclear man
1886 @xref{TILE-Gx Options}, for the options available when @value{AS} is configured
1887 for a TILE-Gx processor.
1888 @end ifclear
1889
1890 @ifset man
1891 @c man begin OPTIONS
1892 The following options are available when @value{AS} is configured for a TILE-Gx
1893 processor.
1894 @c man end
1895 @c man begin INCLUDE
1896 @include c-tilegx.texi
1897 @c ended inside the included file
1898 @end ifset
1899
1900 @end ifset
1901
1902 @ifset VISIUM
1903
1904 @ifclear man
1905 @xref{Visium Options}, for the options available when @value{AS} is configured
1906 for a Visium processor.
1907 @end ifclear
1908
1909 @ifset man
1910 @c man begin OPTIONS
1911 The following option is available when @value{AS} is configured for a Visium
1912 processor.
1913 @c man end
1914 @c man begin INCLUDE
1915 @include c-visium.texi
1916 @c ended inside the included file
1917 @end ifset
1918
1919 @end ifset
1920
1921 @ifset XTENSA
1922
1923 @ifclear man
1924 @xref{Xtensa Options}, for the options available when @value{AS} is configured
1925 for an Xtensa processor.
1926 @end ifclear
1927
1928 @ifset man
1929 @c man begin OPTIONS
1930 The following options are available when @value{AS} is configured for an
1931 Xtensa processor.
1932 @c man end
1933 @c man begin INCLUDE
1934 @include c-xtensa.texi
1935 @c ended inside the included file
1936 @end ifset
1937
1938 @end ifset
1939
1940 @c man begin OPTIONS
1941
1942 @ifset Z80
1943 The following options are available when @value{AS} is configured for
1944 a Z80 family processor.
1945 @table @gcctabopt
1946 @item -z80
1947 Assemble for Z80 processor.
1948 @item -r800
1949 Assemble for R800 processor.
1950 @item -ignore-undocumented-instructions
1951 @itemx -Wnud
1952 Assemble undocumented Z80 instructions that also work on R800 without warning.
1953 @item -ignore-unportable-instructions
1954 @itemx -Wnup
1955 Assemble all undocumented Z80 instructions without warning.
1956 @item -warn-undocumented-instructions
1957 @itemx -Wud
1958 Issue a warning for undocumented Z80 instructions that also work on R800.
1959 @item -warn-unportable-instructions
1960 @itemx -Wup
1961 Issue a warning for undocumented Z80 instructions that do not work on R800.
1962 @item -forbid-undocumented-instructions
1963 @itemx -Fud
1964 Treat all undocumented instructions as errors.
1965 @item -forbid-unportable-instructions
1966 @itemx -Fup
1967 Treat undocumented Z80 instructions that do not work on R800 as errors.
1968 @end table
1969 @end ifset
1970
1971 @c man end
1972
1973 @menu
1974 * Manual:: Structure of this Manual
1975 * GNU Assembler:: The GNU Assembler
1976 * Object Formats:: Object File Formats
1977 * Command Line:: Command Line
1978 * Input Files:: Input Files
1979 * Object:: Output (Object) File
1980 * Errors:: Error and Warning Messages
1981 @end menu
1982
1983 @node Manual
1984 @section Structure of this Manual
1985
1986 @cindex manual, structure and purpose
1987 This manual is intended to describe what you need to know to use
1988 @sc{gnu} @command{@value{AS}}. We cover the syntax expected in source files, including
1989 notation for symbols, constants, and expressions; the directives that
1990 @command{@value{AS}} understands; and of course how to invoke @command{@value{AS}}.
1991
1992 @ifclear GENERIC
1993 We also cover special features in the @value{TARGET}
1994 configuration of @command{@value{AS}}, including assembler directives.
1995 @end ifclear
1996 @ifset GENERIC
1997 This manual also describes some of the machine-dependent features of
1998 various flavors of the assembler.
1999 @end ifset
2000
2001 @cindex machine instructions (not covered)
2002 On the other hand, this manual is @emph{not} intended as an introduction
2003 to programming in assembly language---let alone programming in general!
2004 In a similar vein, we make no attempt to introduce the machine
2005 architecture; we do @emph{not} describe the instruction set, standard
2006 mnemonics, registers or addressing modes that are standard to a
2007 particular architecture.
2008 @ifset GENERIC
2009 You may want to consult the manufacturer's
2010 machine architecture manual for this information.
2011 @end ifset
2012 @ifclear GENERIC
2013 @ifset H8/300
2014 For information on the H8/300 machine instruction set, see @cite{H8/300
2015 Series Programming Manual}. For the H8/300H, see @cite{H8/300H Series
2016 Programming Manual} (Renesas).
2017 @end ifset
2018 @ifset SH
2019 For information on the Renesas (formerly Hitachi) / SuperH SH machine instruction set,
2020 see @cite{SH-Microcomputer User's Manual} (Renesas) or
2021 @cite{SH-4 32-bit CPU Core Architecture} (SuperH) and
2022 @cite{SuperH (SH) 64-Bit RISC Series} (SuperH).
2023 @end ifset
2024 @ifset Z8000
2025 For information on the Z8000 machine instruction set, see @cite{Z8000 CPU Technical Manual}
2026 @end ifset
2027 @end ifclear
2028
2029 @c I think this is premature---doc@cygnus.com, 17jan1991
2030 @ignore
2031 Throughout this manual, we assume that you are running @dfn{GNU},
2032 the portable operating system from the @dfn{Free Software
2033 Foundation, Inc.}. This restricts our attention to certain kinds of
2034 computer (in particular, the kinds of computers that @sc{gnu} can run on);
2035 once this assumption is granted examples and definitions need less
2036 qualification.
2037
2038 @command{@value{AS}} is part of a team of programs that turn a high-level
2039 human-readable series of instructions into a low-level
2040 computer-readable series of instructions. Different versions of
2041 @command{@value{AS}} are used for different kinds of computer.
2042 @end ignore
2043
2044 @c There used to be a section "Terminology" here, which defined
2045 @c "contents", "byte", "word", and "long". Defining "word" to any
2046 @c particular size is confusing when the .word directive may generate 16
2047 @c bits on one machine and 32 bits on another; in general, for the user
2048 @c version of this manual, none of these terms seem essential to define.
2049 @c They were used very little even in the former draft of the manual;
2050 @c this draft makes an effort to avoid them (except in names of
2051 @c directives).
2052
2053 @node GNU Assembler
2054 @section The GNU Assembler
2055
2056 @c man begin DESCRIPTION
2057
2058 @sc{gnu} @command{as} is really a family of assemblers.
2059 @ifclear GENERIC
2060 This manual describes @command{@value{AS}}, a member of that family which is
2061 configured for the @value{TARGET} architectures.
2062 @end ifclear
2063 If you use (or have used) the @sc{gnu} assembler on one architecture, you
2064 should find a fairly similar environment when you use it on another
2065 architecture. Each version has much in common with the others,
2066 including object file formats, most assembler directives (often called
2067 @dfn{pseudo-ops}) and assembler syntax.@refill
2068
2069 @cindex purpose of @sc{gnu} assembler
2070 @command{@value{AS}} is primarily intended to assemble the output of the
2071 @sc{gnu} C compiler @code{@value{GCC}} for use by the linker
2072 @code{@value{LD}}. Nevertheless, we've tried to make @command{@value{AS}}
2073 assemble correctly everything that other assemblers for the same
2074 machine would assemble.
2075 @ifset VAX
2076 Any exceptions are documented explicitly (@pxref{Machine Dependencies}).
2077 @end ifset
2078 @ifset M680X0
2079 @c This remark should appear in generic version of manual; assumption
2080 @c here is that generic version sets M680x0.
2081 This doesn't mean @command{@value{AS}} always uses the same syntax as another
2082 assembler for the same architecture; for example, we know of several
2083 incompatible versions of 680x0 assembly language syntax.
2084 @end ifset
2085
2086 @c man end
2087
2088 Unlike older assemblers, @command{@value{AS}} is designed to assemble a source
2089 program in one pass of the source file. This has a subtle impact on the
2090 @kbd{.org} directive (@pxref{Org,,@code{.org}}).
2091
2092 @node Object Formats
2093 @section Object File Formats
2094
2095 @cindex object file format
2096 The @sc{gnu} assembler can be configured to produce several alternative
2097 object file formats. For the most part, this does not affect how you
2098 write assembly language programs; but directives for debugging symbols
2099 are typically different in different file formats. @xref{Symbol
2100 Attributes,,Symbol Attributes}.
2101 @ifclear GENERIC
2102 @ifclear MULTI-OBJ
2103 For the @value{TARGET} target, @command{@value{AS}} is configured to produce
2104 @value{OBJ-NAME} format object files.
2105 @end ifclear
2106 @c The following should exhaust all configs that set MULTI-OBJ, ideally
2107 @ifset HPPA
2108 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
2109 SOM or ELF format object files.
2110 @end ifset
2111 @end ifclear
2112
2113 @node Command Line
2114 @section Command Line
2115
2116 @cindex command line conventions
2117
2118 After the program name @command{@value{AS}}, the command line may contain
2119 options and file names. Options may appear in any order, and may be
2120 before, after, or between file names. The order of file names is
2121 significant.
2122
2123 @cindex standard input, as input file
2124 @kindex --
2125 @file{--} (two hyphens) by itself names the standard input file
2126 explicitly, as one of the files for @command{@value{AS}} to assemble.
2127
2128 @cindex options, command line
2129 Except for @samp{--} any command-line argument that begins with a
2130 hyphen (@samp{-}) is an option. Each option changes the behavior of
2131 @command{@value{AS}}. No option changes the way another option works. An
2132 option is a @samp{-} followed by one or more letters; the case of
2133 the letter is important. All options are optional.
2134
2135 Some options expect exactly one file name to follow them. The file
2136 name may either immediately follow the option's letter (compatible
2137 with older assemblers) or it may be the next command argument (@sc{gnu}
2138 standard). These two command lines are equivalent:
2139
2140 @smallexample
2141 @value{AS} -o my-object-file.o mumble.s
2142 @value{AS} -omy-object-file.o mumble.s
2143 @end smallexample
2144
2145 @node Input Files
2146 @section Input Files
2147
2148 @cindex input
2149 @cindex source program
2150 @cindex files, input
2151 We use the phrase @dfn{source program}, abbreviated @dfn{source}, to
2152 describe the program input to one run of @command{@value{AS}}. The program may
2153 be in one or more files; how the source is partitioned into files
2154 doesn't change the meaning of the source.
2155
2156 @c I added "con" prefix to "catenation" just to prove I can overcome my
2157 @c APL training... doc@cygnus.com
2158 The source program is a concatenation of the text in all the files, in the
2159 order specified.
2160
2161 @c man begin DESCRIPTION
2162 Each time you run @command{@value{AS}} it assembles exactly one source
2163 program. The source program is made up of one or more files.
2164 (The standard input is also a file.)
2165
2166 You give @command{@value{AS}} a command line that has zero or more input file
2167 names. The input files are read (from left file name to right). A
2168 command-line argument (in any position) that has no special meaning
2169 is taken to be an input file name.
2170
2171 If you give @command{@value{AS}} no file names it attempts to read one input file
2172 from the @command{@value{AS}} standard input, which is normally your terminal. You
2173 may have to type @key{ctl-D} to tell @command{@value{AS}} there is no more program
2174 to assemble.
2175
2176 Use @samp{--} if you need to explicitly name the standard input file
2177 in your command line.
2178
2179 If the source is empty, @command{@value{AS}} produces a small, empty object
2180 file.
2181
2182 @c man end
2183
2184 @subheading Filenames and Line-numbers
2185
2186 @cindex input file linenumbers
2187 @cindex line numbers, in input files
2188 There are two ways of locating a line in the input file (or files) and
2189 either may be used in reporting error messages. One way refers to a line
2190 number in a physical file; the other refers to a line number in a
2191 ``logical'' file. @xref{Errors, ,Error and Warning Messages}.
2192
2193 @dfn{Physical files} are those files named in the command line given
2194 to @command{@value{AS}}.
2195
2196 @dfn{Logical files} are simply names declared explicitly by assembler
2197 directives; they bear no relation to physical files. Logical file names help
2198 error messages reflect the original source file, when @command{@value{AS}} source
2199 is itself synthesized from other files. @command{@value{AS}} understands the
2200 @samp{#} directives emitted by the @code{@value{GCC}} preprocessor. See also
2201 @ref{File,,@code{.file}}.
2202
2203 @node Object
2204 @section Output (Object) File
2205
2206 @cindex object file
2207 @cindex output file
2208 @kindex a.out
2209 @kindex .o
2210 Every time you run @command{@value{AS}} it produces an output file, which is
2211 your assembly language program translated into numbers. This file
2212 is the object file. Its default name is @code{a.out}.
2213 You can give it another name by using the @option{-o} option. Conventionally,
2214 object file names end with @file{.o}. The default name is used for historical
2215 reasons: older assemblers were capable of assembling self-contained programs
2216 directly into a runnable program. (For some formats, this isn't currently
2217 possible, but it can be done for the @code{a.out} format.)
2218
2219 @cindex linker
2220 @kindex ld
2221 The object file is meant for input to the linker @code{@value{LD}}. It contains
2222 assembled program code, information to help @code{@value{LD}} integrate
2223 the assembled program into a runnable file, and (optionally) symbolic
2224 information for the debugger.
2225
2226 @c link above to some info file(s) like the description of a.out.
2227 @c don't forget to describe @sc{gnu} info as well as Unix lossage.
2228
2229 @node Errors
2230 @section Error and Warning Messages
2231
2232 @c man begin DESCRIPTION
2233
2234 @cindex error messages
2235 @cindex warning messages
2236 @cindex messages from assembler
2237 @command{@value{AS}} may write warnings and error messages to the standard error
2238 file (usually your terminal). This should not happen when a compiler
2239 runs @command{@value{AS}} automatically. Warnings report an assumption made so
2240 that @command{@value{AS}} could keep assembling a flawed program; errors report a
2241 grave problem that stops the assembly.
2242
2243 @c man end
2244
2245 @cindex format of warning messages
2246 Warning messages have the format
2247
2248 @smallexample
2249 file_name:@b{NNN}:Warning Message Text
2250 @end smallexample
2251
2252 @noindent
2253 @cindex file names and line numbers, in warnings/errors
2254 (where @b{NNN} is a line number). If both a logical file name
2255 (@pxref{File,,@code{.file}}) and a logical line number
2256 @ifset GENERIC
2257 (@pxref{Line,,@code{.line}})
2258 @end ifset
2259 have been given then they will be used, otherwise the file name and line number
2260 in the current assembler source file will be used. The message text is
2261 intended to be self explanatory (in the grand Unix tradition).
2262
2263 Note the file name must be set via the logical version of the @code{.file}
2264 directive, not the DWARF2 version of the @code{.file} directive. For example:
2265
2266 @smallexample
2267 .file 2 "bar.c"
2268 error_assembler_source
2269 .file "foo.c"
2270 .line 30
2271 error_c_source
2272 @end smallexample
2273
2274 produces this output:
2275
2276 @smallexample
2277 Assembler messages:
2278 asm.s:2: Error: no such instruction: `error_assembler_source'
2279 foo.c:31: Error: no such instruction: `error_c_source'
2280 @end smallexample
2281
2282 @cindex format of error messages
2283 Error messages have the format
2284
2285 @smallexample
2286 file_name:@b{NNN}:FATAL:Error Message Text
2287 @end smallexample
2288
2289 The file name and line number are derived as for warning
2290 messages. The actual message text may be rather less explanatory
2291 because many of them aren't supposed to happen.
2292
2293 @node Invoking
2294 @chapter Command-Line Options
2295
2296 @cindex options, all versions of assembler
2297 This chapter describes command-line options available in @emph{all}
2298 versions of the @sc{gnu} assembler; see @ref{Machine Dependencies},
2299 for options specific
2300 @ifclear GENERIC
2301 to the @value{TARGET} target.
2302 @end ifclear
2303 @ifset GENERIC
2304 to particular machine architectures.
2305 @end ifset
2306
2307 @c man begin DESCRIPTION
2308
2309 If you are invoking @command{@value{AS}} via the @sc{gnu} C compiler,
2310 you can use the @samp{-Wa} option to pass arguments through to the assembler.
2311 The assembler arguments must be separated from each other (and the @samp{-Wa})
2312 by commas. For example:
2313
2314 @smallexample
2315 gcc -c -g -O -Wa,-alh,-L file.c
2316 @end smallexample
2317
2318 @noindent
2319 This passes two options to the assembler: @samp{-alh} (emit a listing to
2320 standard output with high-level and assembly source) and @samp{-L} (retain
2321 local symbols in the symbol table).
2322
2323 Usually you do not need to use this @samp{-Wa} mechanism, since many compiler
2324 command-line options are automatically passed to the assembler by the compiler.
2325 (You can call the @sc{gnu} compiler driver with the @samp{-v} option to see
2326 precisely what options it passes to each compilation pass, including the
2327 assembler.)
2328
2329 @c man end
2330
2331 @menu
2332 * a:: -a[cdghlns] enable listings
2333 * alternate:: --alternate enable alternate macro syntax
2334 * D:: -D for compatibility
2335 * f:: -f to work faster
2336 * I:: -I for .include search path
2337 @ifclear DIFF-TBL-KLUGE
2338 * K:: -K for compatibility
2339 @end ifclear
2340 @ifset DIFF-TBL-KLUGE
2341 * K:: -K for difference tables
2342 @end ifset
2343
2344 * L:: -L to retain local symbols
2345 * listing:: --listing-XXX to configure listing output
2346 * M:: -M or --mri to assemble in MRI compatibility mode
2347 * MD:: --MD for dependency tracking
2348 * no-pad-sections:: --no-pad-sections to stop section padding
2349 * o:: -o to name the object file
2350 * R:: -R to join data and text sections
2351 * statistics:: --statistics to see statistics about assembly
2352 * traditional-format:: --traditional-format for compatible output
2353 * v:: -v to announce version
2354 * W:: -W, --no-warn, --warn, --fatal-warnings to control warnings
2355 * Z:: -Z to make object file even after errors
2356 @end menu
2357
2358 @node a
2359 @section Enable Listings: @option{-a[cdghlns]}
2360
2361 @kindex -a
2362 @kindex -ac
2363 @kindex -ad
2364 @kindex -ag
2365 @kindex -ah
2366 @kindex -al
2367 @kindex -an
2368 @kindex -as
2369 @cindex listings, enabling
2370 @cindex assembly listings, enabling
2371
2372 These options enable listing output from the assembler. By itself,
2373 @samp{-a} requests high-level, assembly, and symbols listing.
2374 You can use other letters to select specific options for the list:
2375 @samp{-ah} requests a high-level language listing,
2376 @samp{-al} requests an output-program assembly listing, and
2377 @samp{-as} requests a symbol table listing.
2378 High-level listings require that a compiler debugging option like
2379 @samp{-g} be used, and that assembly listings (@samp{-al}) be requested
2380 also.
2381
2382 Use the @samp{-ag} option to print a first section with general assembly
2383 information, like @value{AS} version, switches passed, or time stamp.
2384
2385 Use the @samp{-ac} option to omit false conditionals from a listing. Any lines
2386 which are not assembled because of a false @code{.if} (or @code{.ifdef}, or any
2387 other conditional), or a true @code{.if} followed by an @code{.else}, will be
2388 omitted from the listing.
2389
2390 Use the @samp{-ad} option to omit debugging directives from the
2391 listing.
2392
2393 Once you have specified one of these options, you can further control
2394 listing output and its appearance using the directives @code{.list},
2395 @code{.nolist}, @code{.psize}, @code{.eject}, @code{.title}, and
2396 @code{.sbttl}.
2397 The @samp{-an} option turns off all forms processing.
2398 If you do not request listing output with one of the @samp{-a} options, the
2399 listing-control directives have no effect.
2400
2401 The letters after @samp{-a} may be combined into one option,
2402 @emph{e.g.}, @samp{-aln}.
2403
2404 Note if the assembler source is coming from the standard input (e.g.,
2405 because it
2406 is being created by @code{@value{GCC}} and the @samp{-pipe} command-line switch
2407 is being used) then the listing will not contain any comments or preprocessor
2408 directives. This is because the listing code buffers input source lines from
2409 stdin only after they have been preprocessed by the assembler. This reduces
2410 memory usage and makes the code more efficient.
2411
2412 @node alternate
2413 @section @option{--alternate}
2414
2415 @kindex --alternate
2416 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
2417
2418 @node D
2419 @section @option{-D}
2420
2421 @kindex -D
2422 This option has no effect whatsoever, but it is accepted to make it more
2423 likely that scripts written for other assemblers also work with
2424 @command{@value{AS}}.
2425
2426 @node f
2427 @section Work Faster: @option{-f}
2428
2429 @kindex -f
2430 @cindex trusted compiler
2431 @cindex faster processing (@option{-f})
2432 @samp{-f} should only be used when assembling programs written by a
2433 (trusted) compiler. @samp{-f} stops the assembler from doing whitespace
2434 and comment preprocessing on
2435 the input file(s) before assembling them. @xref{Preprocessing,
2436 ,Preprocessing}.
2437
2438 @quotation
2439 @emph{Warning:} if you use @samp{-f} when the files actually need to be
2440 preprocessed (if they contain comments, for example), @command{@value{AS}} does
2441 not work correctly.
2442 @end quotation
2443
2444 @node I
2445 @section @code{.include} Search Path: @option{-I} @var{path}
2446
2447 @kindex -I @var{path}
2448 @cindex paths for @code{.include}
2449 @cindex search path for @code{.include}
2450 @cindex @code{include} directive search path
2451 Use this option to add a @var{path} to the list of directories
2452 @command{@value{AS}} searches for files specified in @code{.include}
2453 directives (@pxref{Include,,@code{.include}}). You may use @option{-I} as
2454 many times as necessary to include a variety of paths. The current
2455 working directory is always searched first; after that, @command{@value{AS}}
2456 searches any @samp{-I} directories in the same order as they were
2457 specified (left to right) on the command line.
2458
2459 @node K
2460 @section Difference Tables: @option{-K}
2461
2462 @kindex -K
2463 @ifclear DIFF-TBL-KLUGE
2464 On the @value{TARGET} family, this option is allowed, but has no effect. It is
2465 permitted for compatibility with the @sc{gnu} assembler on other platforms,
2466 where it can be used to warn when the assembler alters the machine code
2467 generated for @samp{.word} directives in difference tables. The @value{TARGET}
2468 family does not have the addressing limitations that sometimes lead to this
2469 alteration on other platforms.
2470 @end ifclear
2471
2472 @ifset DIFF-TBL-KLUGE
2473 @cindex difference tables, warning
2474 @cindex warning for altered difference tables
2475 @command{@value{AS}} sometimes alters the code emitted for directives of the
2476 form @samp{.word @var{sym1}-@var{sym2}}. @xref{Word,,@code{.word}}.
2477 You can use the @samp{-K} option if you want a warning issued when this
2478 is done.
2479 @end ifset
2480
2481 @node L
2482 @section Include Local Symbols: @option{-L}
2483
2484 @kindex -L
2485 @cindex local symbols, retaining in output
2486 Symbols beginning with system-specific local label prefixes, typically
2487 @samp{.L} for ELF systems or @samp{L} for traditional a.out systems, are
2488 called @dfn{local symbols}. @xref{Symbol Names}. Normally you do not see
2489 such symbols when debugging, because they are intended for the use of
2490 programs (like compilers) that compose assembler programs, not for your
2491 notice. Normally both @command{@value{AS}} and @code{@value{LD}} discard
2492 such symbols, so you do not normally debug with them.
2493
2494 This option tells @command{@value{AS}} to retain those local symbols
2495 in the object file. Usually if you do this you also tell the linker
2496 @code{@value{LD}} to preserve those symbols.
2497
2498 @node listing
2499 @section Configuring listing output: @option{--listing}
2500
2501 The listing feature of the assembler can be enabled via the command-line switch
2502 @samp{-a} (@pxref{a}). This feature combines the input source file(s) with a
2503 hex dump of the corresponding locations in the output object file, and displays
2504 them as a listing file. The format of this listing can be controlled by
2505 directives inside the assembler source (i.e., @code{.list} (@pxref{List}),
2506 @code{.title} (@pxref{Title}), @code{.sbttl} (@pxref{Sbttl}),
2507 @code{.psize} (@pxref{Psize}), and
2508 @code{.eject} (@pxref{Eject}) and also by the following switches:
2509
2510 @table @gcctabopt
2511 @item --listing-lhs-width=@samp{number}
2512 @kindex --listing-lhs-width
2513 @cindex Width of first line disassembly output
2514 Sets the maximum width, in words, of the first line of the hex byte dump. This
2515 dump appears on the left hand side of the listing output.
2516
2517 @item --listing-lhs-width2=@samp{number}
2518 @kindex --listing-lhs-width2
2519 @cindex Width of continuation lines of disassembly output
2520 Sets the maximum width, in words, of any further lines of the hex byte dump for
2521 a given input source line. If this value is not specified, it defaults to being
2522 the same as the value specified for @samp{--listing-lhs-width}. If neither
2523 switch is used the default is to one.
2524
2525 @item --listing-rhs-width=@samp{number}
2526 @kindex --listing-rhs-width
2527 @cindex Width of source line output
2528 Sets the maximum width, in characters, of the source line that is displayed
2529 alongside the hex dump. The default value for this parameter is 100. The
2530 source line is displayed on the right hand side of the listing output.
2531
2532 @item --listing-cont-lines=@samp{number}
2533 @kindex --listing-cont-lines
2534 @cindex Maximum number of continuation lines
2535 Sets the maximum number of continuation lines of hex dump that will be
2536 displayed for a given single line of source input. The default value is 4.
2537 @end table
2538
2539 @node M
2540 @section Assemble in MRI Compatibility Mode: @option{-M}
2541
2542 @kindex -M
2543 @cindex MRI compatibility mode
2544 The @option{-M} or @option{--mri} option selects MRI compatibility mode. This
2545 changes the syntax and pseudo-op handling of @command{@value{AS}} to make it
2546 compatible with the @code{ASM68K} assembler from Microtec Research.
2547 The exact nature of the
2548 MRI syntax will not be documented here; see the MRI manuals for more
2549 information. Note in particular that the handling of macros and macro
2550 arguments is somewhat different. The purpose of this option is to permit
2551 assembling existing MRI assembler code using @command{@value{AS}}.
2552
2553 The MRI compatibility is not complete. Certain operations of the MRI assembler
2554 depend upon its object file format, and can not be supported using other object
2555 file formats. Supporting these would require enhancing each object file format
2556 individually. These are:
2557
2558 @itemize @bullet
2559 @item global symbols in common section
2560
2561 The m68k MRI assembler supports common sections which are merged by the linker.
2562 Other object file formats do not support this. @command{@value{AS}} handles
2563 common sections by treating them as a single common symbol. It permits local
2564 symbols to be defined within a common section, but it can not support global
2565 symbols, since it has no way to describe them.
2566
2567 @item complex relocations
2568
2569 The MRI assemblers support relocations against a negated section address, and
2570 relocations which combine the start addresses of two or more sections. These
2571 are not support by other object file formats.
2572
2573 @item @code{END} pseudo-op specifying start address
2574
2575 The MRI @code{END} pseudo-op permits the specification of a start address.
2576 This is not supported by other object file formats. The start address may
2577 instead be specified using the @option{-e} option to the linker, or in a linker
2578 script.
2579
2580 @item @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops
2581
2582 The MRI @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops assign a module
2583 name to the output file. This is not supported by other object file formats.
2584
2585 @item @code{ORG} pseudo-op
2586
2587 The m68k MRI @code{ORG} pseudo-op begins an absolute section at a given
2588 address. This differs from the usual @command{@value{AS}} @code{.org} pseudo-op,
2589 which changes the location within the current section. Absolute sections are
2590 not supported by other object file formats. The address of a section may be
2591 assigned within a linker script.
2592 @end itemize
2593
2594 There are some other features of the MRI assembler which are not supported by
2595 @command{@value{AS}}, typically either because they are difficult or because they
2596 seem of little consequence. Some of these may be supported in future releases.
2597
2598 @itemize @bullet
2599
2600 @item EBCDIC strings
2601
2602 EBCDIC strings are not supported.
2603
2604 @item packed binary coded decimal
2605
2606 Packed binary coded decimal is not supported. This means that the @code{DC.P}
2607 and @code{DCB.P} pseudo-ops are not supported.
2608
2609 @item @code{FEQU} pseudo-op
2610
2611 The m68k @code{FEQU} pseudo-op is not supported.
2612
2613 @item @code{NOOBJ} pseudo-op
2614
2615 The m68k @code{NOOBJ} pseudo-op is not supported.
2616
2617 @item @code{OPT} branch control options
2618
2619 The m68k @code{OPT} branch control options---@code{B}, @code{BRS}, @code{BRB},
2620 @code{BRL}, and @code{BRW}---are ignored. @command{@value{AS}} automatically
2621 relaxes all branches, whether forward or backward, to an appropriate size, so
2622 these options serve no purpose.
2623
2624 @item @code{OPT} list control options
2625
2626 The following m68k @code{OPT} list control options are ignored: @code{C},
2627 @code{CEX}, @code{CL}, @code{CRE}, @code{E}, @code{G}, @code{I}, @code{M},
2628 @code{MEX}, @code{MC}, @code{MD}, @code{X}.
2629
2630 @item other @code{OPT} options
2631
2632 The following m68k @code{OPT} options are ignored: @code{NEST}, @code{O},
2633 @code{OLD}, @code{OP}, @code{P}, @code{PCO}, @code{PCR}, @code{PCS}, @code{R}.
2634
2635 @item @code{OPT} @code{D} option is default
2636
2637 The m68k @code{OPT} @code{D} option is the default, unlike the MRI assembler.
2638 @code{OPT NOD} may be used to turn it off.
2639
2640 @item @code{XREF} pseudo-op.
2641
2642 The m68k @code{XREF} pseudo-op is ignored.
2643
2644 @end itemize
2645
2646 @node MD
2647 @section Dependency Tracking: @option{--MD}
2648
2649 @kindex --MD
2650 @cindex dependency tracking
2651 @cindex make rules
2652
2653 @command{@value{AS}} can generate a dependency file for the file it creates. This
2654 file consists of a single rule suitable for @code{make} describing the
2655 dependencies of the main source file.
2656
2657 The rule is written to the file named in its argument.
2658
2659 This feature is used in the automatic updating of makefiles.
2660
2661 @node no-pad-sections
2662 @section Output Section Padding
2663 @kindex --no-pad-sections
2664 @cindex output section padding
2665 Normally the assembler will pad the end of each output section up to its
2666 alignment boundary. But this can waste space, which can be significant on
2667 memory constrained targets. So the @option{--no-pad-sections} option will
2668 disable this behaviour.
2669
2670 @node o
2671 @section Name the Object File: @option{-o}
2672
2673 @kindex -o
2674 @cindex naming object file
2675 @cindex object file name
2676 There is always one object file output when you run @command{@value{AS}}. By
2677 default it has the name @file{a.out}.
2678 You use this option (which takes exactly one filename) to give the
2679 object file a different name.
2680
2681 Whatever the object file is called, @command{@value{AS}} overwrites any
2682 existing file of the same name.
2683
2684 @node R
2685 @section Join Data and Text Sections: @option{-R}
2686
2687 @kindex -R
2688 @cindex data and text sections, joining
2689 @cindex text and data sections, joining
2690 @cindex joining text and data sections
2691 @cindex merging text and data sections
2692 @option{-R} tells @command{@value{AS}} to write the object file as if all
2693 data-section data lives in the text section. This is only done at
2694 the very last moment: your binary data are the same, but data
2695 section parts are relocated differently. The data section part of
2696 your object file is zero bytes long because all its bytes are
2697 appended to the text section. (@xref{Sections,,Sections and Relocation}.)
2698
2699 When you specify @option{-R} it would be possible to generate shorter
2700 address displacements (because we do not have to cross between text and
2701 data section). We refrain from doing this simply for compatibility with
2702 older versions of @command{@value{AS}}. In future, @option{-R} may work this way.
2703
2704 @ifset COFF-ELF
2705 When @command{@value{AS}} is configured for COFF or ELF output,
2706 this option is only useful if you use sections named @samp{.text} and
2707 @samp{.data}.
2708 @end ifset
2709
2710 @ifset HPPA
2711 @option{-R} is not supported for any of the HPPA targets. Using
2712 @option{-R} generates a warning from @command{@value{AS}}.
2713 @end ifset
2714
2715 @node statistics
2716 @section Display Assembly Statistics: @option{--statistics}
2717
2718 @kindex --statistics
2719 @cindex statistics, about assembly
2720 @cindex time, total for assembly
2721 @cindex space used, maximum for assembly
2722 Use @samp{--statistics} to display two statistics about the resources used by
2723 @command{@value{AS}}: the maximum amount of space allocated during the assembly
2724 (in bytes), and the total execution time taken for the assembly (in @sc{cpu}
2725 seconds).
2726
2727 @node traditional-format
2728 @section Compatible Output: @option{--traditional-format}
2729
2730 @kindex --traditional-format
2731 For some targets, the output of @command{@value{AS}} is different in some ways
2732 from the output of some existing assembler. This switch requests
2733 @command{@value{AS}} to use the traditional format instead.
2734
2735 For example, it disables the exception frame optimizations which
2736 @command{@value{AS}} normally does by default on @code{@value{GCC}} output.
2737
2738 @node v
2739 @section Announce Version: @option{-v}
2740
2741 @kindex -v
2742 @kindex -version
2743 @cindex assembler version
2744 @cindex version of assembler
2745 You can find out what version of as is running by including the
2746 option @samp{-v} (which you can also spell as @samp{-version}) on the
2747 command line.
2748
2749 @node W
2750 @section Control Warnings: @option{-W}, @option{--warn}, @option{--no-warn}, @option{--fatal-warnings}
2751
2752 @command{@value{AS}} should never give a warning or error message when
2753 assembling compiler output. But programs written by people often
2754 cause @command{@value{AS}} to give a warning that a particular assumption was
2755 made. All such warnings are directed to the standard error file.
2756
2757 @kindex -W
2758 @kindex --no-warn
2759 @cindex suppressing warnings
2760 @cindex warnings, suppressing
2761 If you use the @option{-W} and @option{--no-warn} options, no warnings are issued.
2762 This only affects the warning messages: it does not change any particular of
2763 how @command{@value{AS}} assembles your file. Errors, which stop the assembly,
2764 are still reported.
2765
2766 @kindex --fatal-warnings
2767 @cindex errors, caused by warnings
2768 @cindex warnings, causing error
2769 If you use the @option{--fatal-warnings} option, @command{@value{AS}} considers
2770 files that generate warnings to be in error.
2771
2772 @kindex --warn
2773 @cindex warnings, switching on
2774 You can switch these options off again by specifying @option{--warn}, which
2775 causes warnings to be output as usual.
2776
2777 @node Z
2778 @section Generate Object File in Spite of Errors: @option{-Z}
2779 @cindex object file, after errors
2780 @cindex errors, continuing after
2781 After an error message, @command{@value{AS}} normally produces no output. If for
2782 some reason you are interested in object file output even after
2783 @command{@value{AS}} gives an error message on your program, use the @samp{-Z}
2784 option. If there are any errors, @command{@value{AS}} continues anyways, and
2785 writes an object file after a final warning message of the form @samp{@var{n}
2786 errors, @var{m} warnings, generating bad object file.}
2787
2788 @node Syntax
2789 @chapter Syntax
2790
2791 @cindex machine-independent syntax
2792 @cindex syntax, machine-independent
2793 This chapter describes the machine-independent syntax allowed in a
2794 source file. @command{@value{AS}} syntax is similar to what many other
2795 assemblers use; it is inspired by the BSD 4.2
2796 @ifclear VAX
2797 assembler.
2798 @end ifclear
2799 @ifset VAX
2800 assembler, except that @command{@value{AS}} does not assemble Vax bit-fields.
2801 @end ifset
2802
2803 @menu
2804 * Preprocessing:: Preprocessing
2805 * Whitespace:: Whitespace
2806 * Comments:: Comments
2807 * Symbol Intro:: Symbols
2808 * Statements:: Statements
2809 * Constants:: Constants
2810 @end menu
2811
2812 @node Preprocessing
2813 @section Preprocessing
2814
2815 @cindex preprocessing
2816 The @command{@value{AS}} internal preprocessor:
2817 @itemize @bullet
2818 @cindex whitespace, removed by preprocessor
2819 @item
2820 adjusts and removes extra whitespace. It leaves one space or tab before
2821 the keywords on a line, and turns any other whitespace on the line into
2822 a single space.
2823
2824 @cindex comments, removed by preprocessor
2825 @item
2826 removes all comments, replacing them with a single space, or an
2827 appropriate number of newlines.
2828
2829 @cindex constants, converted by preprocessor
2830 @item
2831 converts character constants into the appropriate numeric values.
2832 @end itemize
2833
2834 It does not do macro processing, include file handling, or
2835 anything else you may get from your C compiler's preprocessor. You can
2836 do include file processing with the @code{.include} directive
2837 (@pxref{Include,,@code{.include}}). You can use the @sc{gnu} C compiler driver
2838 to get other ``CPP'' style preprocessing by giving the input file a
2839 @samp{.S} suffix. @xref{Overall Options, ,Options Controlling the Kind of
2840 Output, gcc info, Using GNU CC}.
2841
2842 Excess whitespace, comments, and character constants
2843 cannot be used in the portions of the input text that are not
2844 preprocessed.
2845
2846 @cindex turning preprocessing on and off
2847 @cindex preprocessing, turning on and off
2848 @kindex #NO_APP
2849 @kindex #APP
2850 If the first line of an input file is @code{#NO_APP} or if you use the
2851 @samp{-f} option, whitespace and comments are not removed from the input file.
2852 Within an input file, you can ask for whitespace and comment removal in
2853 specific portions of the by putting a line that says @code{#APP} before the
2854 text that may contain whitespace or comments, and putting a line that says
2855 @code{#NO_APP} after this text. This feature is mainly intend to support
2856 @code{asm} statements in compilers whose output is otherwise free of comments
2857 and whitespace.
2858
2859 @node Whitespace
2860 @section Whitespace
2861
2862 @cindex whitespace
2863 @dfn{Whitespace} is one or more blanks or tabs, in any order.
2864 Whitespace is used to separate symbols, and to make programs neater for
2865 people to read. Unless within character constants
2866 (@pxref{Characters,,Character Constants}), any whitespace means the same
2867 as exactly one space.
2868
2869 @node Comments
2870 @section Comments
2871
2872 @cindex comments
2873 There are two ways of rendering comments to @command{@value{AS}}. In both
2874 cases the comment is equivalent to one space.
2875
2876 Anything from @samp{/*} through the next @samp{*/} is a comment.
2877 This means you may not nest these comments.
2878
2879 @smallexample
2880 /*
2881 The only way to include a newline ('\n') in a comment
2882 is to use this sort of comment.
2883 */
2884
2885 /* This sort of comment does not nest. */
2886 @end smallexample
2887
2888 @cindex line comment character
2889 Anything from a @dfn{line comment} character up to the next newline is
2890 considered a comment and is ignored. The line comment character is target
2891 specific, and some targets multiple comment characters. Some targets also have
2892 line comment characters that only work if they are the first character on a
2893 line. Some targets use a sequence of two characters to introduce a line
2894 comment. Some targets can also change their line comment characters depending
2895 upon command-line options that have been used. For more details see the
2896 @emph{Syntax} section in the documentation for individual targets.
2897
2898 If the line comment character is the hash sign (@samp{#}) then it still has the
2899 special ability to enable and disable preprocessing (@pxref{Preprocessing}) and
2900 to specify logical line numbers:
2901
2902 @kindex #
2903 @cindex lines starting with @code{#}
2904 @cindex logical line numbers
2905 To be compatible with past assemblers, lines that begin with @samp{#} have a
2906 special interpretation. Following the @samp{#} should be an absolute
2907 expression (@pxref{Expressions}): the logical line number of the @emph{next}
2908 line. Then a string (@pxref{Strings, ,Strings}) is allowed: if present it is a
2909 new logical file name. The rest of the line, if any, should be whitespace.
2910
2911 If the first non-whitespace characters on the line are not numeric,
2912 the line is ignored. (Just like a comment.)
2913
2914 @smallexample
2915 # This is an ordinary comment.
2916 # 42-6 "new_file_name" # New logical file name
2917 # This is logical line # 36.
2918 @end smallexample
2919 This feature is deprecated, and may disappear from future versions
2920 of @command{@value{AS}}.
2921
2922 @node Symbol Intro
2923 @section Symbols
2924
2925 @cindex characters used in symbols
2926 @ifclear SPECIAL-SYMS
2927 A @dfn{symbol} is one or more characters chosen from the set of all
2928 letters (both upper and lower case), digits and the three characters
2929 @samp{_.$}.
2930 @end ifclear
2931 @ifset SPECIAL-SYMS
2932 @ifclear GENERIC
2933 @ifset H8
2934 A @dfn{symbol} is one or more characters chosen from the set of all
2935 letters (both upper and lower case), digits and the three characters
2936 @samp{._$}. (Save that, on the H8/300 only, you may not use @samp{$} in
2937 symbol names.)
2938 @end ifset
2939 @end ifclear
2940 @end ifset
2941 @ifset GENERIC
2942 On most machines, you can also use @code{$} in symbol names; exceptions
2943 are noted in @ref{Machine Dependencies}.
2944 @end ifset
2945 No symbol may begin with a digit. Case is significant.
2946 There is no length limit; all characters are significant. Multibyte characters
2947 are supported. Symbols are delimited by characters not in that set, or by the
2948 beginning of a file (since the source program must end with a newline, the end
2949 of a file is not a possible symbol delimiter). @xref{Symbols}.
2950
2951 Symbol names may also be enclosed in double quote @code{"} characters. In such
2952 cases any characters are allowed, except for the NUL character. If a double
2953 quote character is to be included in the symbol name it must be preceeded by a
2954 backslash @code{\} character.
2955 @cindex length of symbols
2956
2957 @node Statements
2958 @section Statements
2959
2960 @cindex statements, structure of
2961 @cindex line separator character
2962 @cindex statement separator character
2963
2964 A @dfn{statement} ends at a newline character (@samp{\n}) or a
2965 @dfn{line separator character}. The line separator character is target
2966 specific and described in the @emph{Syntax} section of each
2967 target's documentation. Not all targets support a line separator character.
2968 The newline or line separator character is considered to be part of the
2969 preceding statement. Newlines and separators within character constants are an
2970 exception: they do not end statements.
2971
2972 @cindex newline, required at file end
2973 @cindex EOF, newline must precede
2974 It is an error to end any statement with end-of-file: the last
2975 character of any input file should be a newline.@refill
2976
2977 An empty statement is allowed, and may include whitespace. It is ignored.
2978
2979 @cindex instructions and directives
2980 @cindex directives and instructions
2981 @c "key symbol" is not used elsewhere in the document; seems pedantic to
2982 @c @defn{} it in that case, as was done previously... doc@cygnus.com,
2983 @c 13feb91.
2984 A statement begins with zero or more labels, optionally followed by a
2985 key symbol which determines what kind of statement it is. The key
2986 symbol determines the syntax of the rest of the statement. If the
2987 symbol begins with a dot @samp{.} then the statement is an assembler
2988 directive: typically valid for any computer. If the symbol begins with
2989 a letter the statement is an assembly language @dfn{instruction}: it
2990 assembles into a machine language instruction.
2991 @ifset GENERIC
2992 Different versions of @command{@value{AS}} for different computers
2993 recognize different instructions. In fact, the same symbol may
2994 represent a different instruction in a different computer's assembly
2995 language.@refill
2996 @end ifset
2997
2998 @cindex @code{:} (label)
2999 @cindex label (@code{:})
3000 A label is a symbol immediately followed by a colon (@code{:}).
3001 Whitespace before a label or after a colon is permitted, but you may not
3002 have whitespace between a label's symbol and its colon. @xref{Labels}.
3003
3004 @ifset HPPA
3005 For HPPA targets, labels need not be immediately followed by a colon, but
3006 the definition of a label must begin in column zero. This also implies that
3007 only one label may be defined on each line.
3008 @end ifset
3009
3010 @smallexample
3011 label: .directive followed by something
3012 another_label: # This is an empty statement.
3013 instruction operand_1, operand_2, @dots{}
3014 @end smallexample
3015
3016 @node Constants
3017 @section Constants
3018
3019 @cindex constants
3020 A constant is a number, written so that its value is known by
3021 inspection, without knowing any context. Like this:
3022 @smallexample
3023 @group
3024 .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
3025 .ascii "Ring the bell\7" # A string constant.
3026 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
3027 .float 0f-314159265358979323846264338327\
3028 95028841971.693993751E-40 # - pi, a flonum.
3029 @end group
3030 @end smallexample
3031
3032 @menu
3033 * Characters:: Character Constants
3034 * Numbers:: Number Constants
3035 @end menu
3036
3037 @node Characters
3038 @subsection Character Constants
3039
3040 @cindex character constants
3041 @cindex constants, character
3042 There are two kinds of character constants. A @dfn{character} stands
3043 for one character in one byte and its value may be used in
3044 numeric expressions. String constants (properly called string
3045 @emph{literals}) are potentially many bytes and their values may not be
3046 used in arithmetic expressions.
3047
3048 @menu
3049 * Strings:: Strings
3050 * Chars:: Characters
3051 @end menu
3052
3053 @node Strings
3054 @subsubsection Strings
3055
3056 @cindex string constants
3057 @cindex constants, string
3058 A @dfn{string} is written between double-quotes. It may contain
3059 double-quotes or null characters. The way to get special characters
3060 into a string is to @dfn{escape} these characters: precede them with
3061 a backslash @samp{\} character. For example @samp{\\} represents
3062 one backslash: the first @code{\} is an escape which tells
3063 @command{@value{AS}} to interpret the second character literally as a backslash
3064 (which prevents @command{@value{AS}} from recognizing the second @code{\} as an
3065 escape character). The complete list of escapes follows.
3066
3067 @cindex escape codes, character
3068 @cindex character escape codes
3069 @c NOTE: Cindex entries must not start with a backlash character.
3070 @c NOTE: This confuses the pdf2texi script when it is creating the
3071 @c NOTE: index based upon the first character and so it generates:
3072 @c NOTE: \initial {\\}
3073 @c NOTE: which then results in the error message:
3074 @c NOTE: Argument of \\ has an extra }.
3075 @c NOTE: So in the index entries below a space character has been
3076 @c NOTE: prepended to avoid this problem.
3077 @table @kbd
3078 @c @item \a
3079 @c Mnemonic for ACKnowledge; for ASCII this is octal code 007.
3080 @c
3081 @cindex @code{ \b} (backspace character)
3082 @cindex backspace (@code{\b})
3083 @item \b
3084 Mnemonic for backspace; for ASCII this is octal code 010.
3085
3086 @c @item \e
3087 @c Mnemonic for EOText; for ASCII this is octal code 004.
3088 @c
3089 @cindex @code{ \f} (formfeed character)
3090 @cindex formfeed (@code{\f})
3091 @item backslash-f
3092 Mnemonic for FormFeed; for ASCII this is octal code 014.
3093
3094 @cindex @code{ \n} (newline character)
3095 @cindex newline (@code{\n})
3096 @item \n
3097 Mnemonic for newline; for ASCII this is octal code 012.
3098
3099 @c @item \p
3100 @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}.
3101 @c
3102 @cindex @code{ \r} (carriage return character)
3103 @cindex carriage return (@code{backslash-r})
3104 @item \r
3105 Mnemonic for carriage-Return; for ASCII this is octal code 015.
3106
3107 @c @item \s
3108 @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with
3109 @c other assemblers.
3110 @c
3111 @cindex @code{ \t} (tab)
3112 @cindex tab (@code{\t})
3113 @item \t
3114 Mnemonic for horizontal Tab; for ASCII this is octal code 011.
3115
3116 @c @item \v
3117 @c Mnemonic for Vertical tab; for ASCII this is octal code 013.
3118 @c @item \x @var{digit} @var{digit} @var{digit}
3119 @c A hexadecimal character code. The numeric code is 3 hexadecimal digits.
3120 @c
3121 @cindex @code{ \@var{ddd}} (octal character code)
3122 @cindex octal character code (@code{\@var{ddd}})
3123 @item \ @var{digit} @var{digit} @var{digit}
3124 An octal character code. The numeric code is 3 octal digits.
3125 For compatibility with other Unix systems, 8 and 9 are accepted as digits:
3126 for example, @code{\008} has the value 010, and @code{\009} the value 011.
3127
3128 @cindex @code{ \@var{xd...}} (hex character code)
3129 @cindex hex character code (@code{\@var{xd...}})
3130 @item \@code{x} @var{hex-digits...}
3131 A hex character code. All trailing hex digits are combined. Either upper or
3132 lower case @code{x} works.
3133
3134 @cindex @code{ \\} (@samp{\} character)
3135 @cindex backslash (@code{\\})
3136 @item \\
3137 Represents one @samp{\} character.
3138
3139 @c @item \'
3140 @c Represents one @samp{'} (accent acute) character.
3141 @c This is needed in single character literals
3142 @c (@xref{Characters,,Character Constants}.) to represent
3143 @c a @samp{'}.
3144 @c
3145 @cindex @code{ \"} (doublequote character)
3146 @cindex doublequote (@code{\"})
3147 @item \"
3148 Represents one @samp{"} character. Needed in strings to represent
3149 this character, because an unescaped @samp{"} would end the string.
3150
3151 @item \ @var{anything-else}
3152 Any other character when escaped by @kbd{\} gives a warning, but
3153 assembles as if the @samp{\} was not present. The idea is that if
3154 you used an escape sequence you clearly didn't want the literal
3155 interpretation of the following character. However @command{@value{AS}} has no
3156 other interpretation, so @command{@value{AS}} knows it is giving you the wrong
3157 code and warns you of the fact.
3158 @end table
3159
3160 Which characters are escapable, and what those escapes represent,
3161 varies widely among assemblers. The current set is what we think
3162 the BSD 4.2 assembler recognizes, and is a subset of what most C
3163 compilers recognize. If you are in doubt, do not use an escape
3164 sequence.
3165
3166 @node Chars
3167 @subsubsection Characters
3168
3169 @cindex single character constant
3170 @cindex character, single
3171 @cindex constant, single character
3172 A single character may be written as a single quote immediately followed by
3173 that character. Some backslash escapes apply to characters, @code{\b},
3174 @code{\f}, @code{\n}, @code{\r}, @code{\t}, and @code{\"} with the same meaning
3175 as for strings, plus @code{\'} for a single quote. So if you want to write the
3176 character backslash, you must write @kbd{'\\} where the first @code{\} escapes
3177 the second @code{\}. As you can see, the quote is an acute accent, not a grave
3178 accent. A newline
3179 @ifclear GENERIC
3180 @ifclear abnormal-separator
3181 (or semicolon @samp{;})
3182 @end ifclear
3183 @ifset abnormal-separator
3184 @ifset H8
3185 (or dollar sign @samp{$}, for the H8/300; or semicolon @samp{;} for the
3186 Renesas SH)
3187 @end ifset
3188 @end ifset
3189 @end ifclear
3190 immediately following an acute accent is taken as a literal character
3191 and does not count as the end of a statement. The value of a character
3192 constant in a numeric expression is the machine's byte-wide code for
3193 that character. @command{@value{AS}} assumes your character code is ASCII:
3194 @kbd{'A} means 65, @kbd{'B} means 66, and so on. @refill
3195
3196 @node Numbers
3197 @subsection Number Constants
3198
3199 @cindex constants, number
3200 @cindex number constants
3201 @command{@value{AS}} distinguishes three kinds of numbers according to how they
3202 are stored in the target machine. @emph{Integers} are numbers that
3203 would fit into an @code{int} in the C language. @emph{Bignums} are
3204 integers, but they are stored in more than 32 bits. @emph{Flonums}
3205 are floating point numbers, described below.
3206
3207 @menu
3208 * Integers:: Integers
3209 * Bignums:: Bignums
3210 * Flonums:: Flonums
3211 @ifclear GENERIC
3212 @end ifclear
3213 @end menu
3214
3215 @node Integers
3216 @subsubsection Integers
3217 @cindex integers
3218 @cindex constants, integer
3219
3220 @cindex binary integers
3221 @cindex integers, binary
3222 A binary integer is @samp{0b} or @samp{0B} followed by zero or more of
3223 the binary digits @samp{01}.
3224
3225 @cindex octal integers
3226 @cindex integers, octal
3227 An octal integer is @samp{0} followed by zero or more of the octal
3228 digits (@samp{01234567}).
3229
3230 @cindex decimal integers
3231 @cindex integers, decimal
3232 A decimal integer starts with a non-zero digit followed by zero or
3233 more digits (@samp{0123456789}).
3234
3235 @cindex hexadecimal integers
3236 @cindex integers, hexadecimal
3237 A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or
3238 more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}.
3239
3240 Integers have the usual values. To denote a negative integer, use
3241 the prefix operator @samp{-} discussed under expressions
3242 (@pxref{Prefix Ops,,Prefix Operators}).
3243
3244 @node Bignums
3245 @subsubsection Bignums
3246
3247 @cindex bignums
3248 @cindex constants, bignum
3249 A @dfn{bignum} has the same syntax and semantics as an integer
3250 except that the number (or its negative) takes more than 32 bits to
3251 represent in binary. The distinction is made because in some places
3252 integers are permitted while bignums are not.
3253
3254 @node Flonums
3255 @subsubsection Flonums
3256 @cindex flonums
3257 @cindex floating point numbers
3258 @cindex constants, floating point
3259
3260 @cindex precision, floating point
3261 A @dfn{flonum} represents a floating point number. The translation is
3262 indirect: a decimal floating point number from the text is converted by
3263 @command{@value{AS}} to a generic binary floating point number of more than
3264 sufficient precision. This generic floating point number is converted
3265 to a particular computer's floating point format (or formats) by a
3266 portion of @command{@value{AS}} specialized to that computer.
3267
3268 A flonum is written by writing (in order)
3269 @itemize @bullet
3270 @item
3271 The digit @samp{0}.
3272 @ifset HPPA
3273 (@samp{0} is optional on the HPPA.)
3274 @end ifset
3275
3276 @item
3277 A letter, to tell @command{@value{AS}} the rest of the number is a flonum.
3278 @ifset GENERIC
3279 @kbd{e} is recommended. Case is not important.
3280 @ignore
3281 @c FIXME: verify if flonum syntax really this vague for most cases
3282 (Any otherwise illegal letter works here, but that might be changed. Vax BSD
3283 4.2 assembler seems to allow any of @samp{defghDEFGH}.)
3284 @end ignore
3285
3286 On the H8/300 and Renesas / SuperH SH architectures, the letter must be
3287 one of the letters @samp{DFPRSX} (in upper or lower case).
3288
3289 On the ARC, the letter must be one of the letters @samp{DFRS}
3290 (in upper or lower case).
3291
3292 On the HPPA architecture, the letter must be @samp{E} (upper case only).
3293 @end ifset
3294 @ifclear GENERIC
3295 @ifset ARC
3296 One of the letters @samp{DFRS} (in upper or lower case).
3297 @end ifset
3298 @ifset H8
3299 One of the letters @samp{DFPRSX} (in upper or lower case).
3300 @end ifset
3301 @ifset HPPA
3302 The letter @samp{E} (upper case only).
3303 @end ifset
3304 @end ifclear
3305
3306 @item
3307 An optional sign: either @samp{+} or @samp{-}.
3308
3309 @item
3310 An optional @dfn{integer part}: zero or more decimal digits.
3311
3312 @item
3313 An optional @dfn{fractional part}: @samp{.} followed by zero
3314 or more decimal digits.
3315
3316 @item
3317 An optional exponent, consisting of:
3318
3319 @itemize @bullet
3320 @item
3321 An @samp{E} or @samp{e}.
3322 @c I can't find a config where "EXP_CHARS" is other than 'eE', but in
3323 @c principle this can perfectly well be different on different targets.
3324 @item
3325 Optional sign: either @samp{+} or @samp{-}.
3326 @item
3327 One or more decimal digits.
3328 @end itemize
3329
3330 @end itemize
3331
3332 At least one of the integer part or the fractional part must be
3333 present. The floating point number has the usual base-10 value.
3334
3335 @command{@value{AS}} does all processing using integers. Flonums are computed
3336 independently of any floating point hardware in the computer running
3337 @command{@value{AS}}.
3338
3339 @node Sections
3340 @chapter Sections and Relocation
3341 @cindex sections
3342 @cindex relocation
3343
3344 @menu
3345 * Secs Background:: Background
3346 * Ld Sections:: Linker Sections
3347 * As Sections:: Assembler Internal Sections
3348 * Sub-Sections:: Sub-Sections
3349 * bss:: bss Section
3350 @end menu
3351
3352 @node Secs Background
3353 @section Background
3354
3355 Roughly, a section is a range of addresses, with no gaps; all data
3356 ``in'' those addresses is treated the same for some particular purpose.
3357 For example there may be a ``read only'' section.
3358
3359 @cindex linker, and assembler
3360 @cindex assembler, and linker
3361 The linker @code{@value{LD}} reads many object files (partial programs) and
3362 combines their contents to form a runnable program. When @command{@value{AS}}
3363 emits an object file, the partial program is assumed to start at address 0.
3364 @code{@value{LD}} assigns the final addresses for the partial program, so that
3365 different partial programs do not overlap. This is actually an
3366 oversimplification, but it suffices to explain how @command{@value{AS}} uses
3367 sections.
3368
3369 @code{@value{LD}} moves blocks of bytes of your program to their run-time
3370 addresses. These blocks slide to their run-time addresses as rigid
3371 units; their length does not change and neither does the order of bytes
3372 within them. Such a rigid unit is called a @emph{section}. Assigning
3373 run-time addresses to sections is called @dfn{relocation}. It includes
3374 the task of adjusting mentions of object-file addresses so they refer to
3375 the proper run-time addresses.
3376 @ifset H8
3377 For the H8/300, and for the Renesas / SuperH SH,
3378 @command{@value{AS}} pads sections if needed to
3379 ensure they end on a word (sixteen bit) boundary.
3380 @end ifset
3381
3382 @cindex standard assembler sections
3383 An object file written by @command{@value{AS}} has at least three sections, any
3384 of which may be empty. These are named @dfn{text}, @dfn{data} and
3385 @dfn{bss} sections.
3386
3387 @ifset COFF-ELF
3388 @ifset GENERIC
3389 When it generates COFF or ELF output,
3390 @end ifset
3391 @command{@value{AS}} can also generate whatever other named sections you specify
3392 using the @samp{.section} directive (@pxref{Section,,@code{.section}}).
3393 If you do not use any directives that place output in the @samp{.text}
3394 or @samp{.data} sections, these sections still exist, but are empty.
3395 @end ifset
3396
3397 @ifset HPPA
3398 @ifset GENERIC
3399 When @command{@value{AS}} generates SOM or ELF output for the HPPA,
3400 @end ifset
3401 @command{@value{AS}} can also generate whatever other named sections you
3402 specify using the @samp{.space} and @samp{.subspace} directives. See
3403 @cite{HP9000 Series 800 Assembly Language Reference Manual}
3404 (HP 92432-90001) for details on the @samp{.space} and @samp{.subspace}
3405 assembler directives.
3406
3407 @ifset SOM
3408 Additionally, @command{@value{AS}} uses different names for the standard
3409 text, data, and bss sections when generating SOM output. Program text
3410 is placed into the @samp{$CODE$} section, data into @samp{$DATA$}, and
3411 BSS into @samp{$BSS$}.
3412 @end ifset
3413 @end ifset
3414
3415 Within the object file, the text section starts at address @code{0}, the
3416 data section follows, and the bss section follows the data section.
3417
3418 @ifset HPPA
3419 When generating either SOM or ELF output files on the HPPA, the text
3420 section starts at address @code{0}, the data section at address
3421 @code{0x4000000}, and the bss section follows the data section.
3422 @end ifset
3423
3424 To let @code{@value{LD}} know which data changes when the sections are
3425 relocated, and how to change that data, @command{@value{AS}} also writes to the
3426 object file details of the relocation needed. To perform relocation
3427 @code{@value{LD}} must know, each time an address in the object
3428 file is mentioned:
3429 @itemize @bullet
3430 @item
3431 Where in the object file is the beginning of this reference to
3432 an address?
3433 @item
3434 How long (in bytes) is this reference?
3435 @item
3436 Which section does the address refer to? What is the numeric value of
3437 @display
3438 (@var{address}) @minus{} (@var{start-address of section})?
3439 @end display
3440 @item
3441 Is the reference to an address ``Program-Counter relative''?
3442 @end itemize
3443
3444 @cindex addresses, format of
3445 @cindex section-relative addressing
3446 In fact, every address @command{@value{AS}} ever uses is expressed as
3447 @display
3448 (@var{section}) + (@var{offset into section})
3449 @end display
3450 @noindent
3451 Further, most expressions @command{@value{AS}} computes have this section-relative
3452 nature.
3453 @ifset SOM
3454 (For some object formats, such as SOM for the HPPA, some expressions are
3455 symbol-relative instead.)
3456 @end ifset
3457
3458 In this manual we use the notation @{@var{secname} @var{N}@} to mean ``offset
3459 @var{N} into section @var{secname}.''
3460
3461 Apart from text, data and bss sections you need to know about the
3462 @dfn{absolute} section. When @code{@value{LD}} mixes partial programs,
3463 addresses in the absolute section remain unchanged. For example, address
3464 @code{@{absolute 0@}} is ``relocated'' to run-time address 0 by
3465 @code{@value{LD}}. Although the linker never arranges two partial programs'
3466 data sections with overlapping addresses after linking, @emph{by definition}
3467 their absolute sections must overlap. Address @code{@{absolute@ 239@}} in one
3468 part of a program is always the same address when the program is running as
3469 address @code{@{absolute@ 239@}} in any other part of the program.
3470
3471 The idea of sections is extended to the @dfn{undefined} section. Any
3472 address whose section is unknown at assembly time is by definition
3473 rendered @{undefined @var{U}@}---where @var{U} is filled in later.
3474 Since numbers are always defined, the only way to generate an undefined
3475 address is to mention an undefined symbol. A reference to a named
3476 common block would be such a symbol: its value is unknown at assembly
3477 time so it has section @emph{undefined}.
3478
3479 By analogy the word @emph{section} is used to describe groups of sections in
3480 the linked program. @code{@value{LD}} puts all partial programs' text
3481 sections in contiguous addresses in the linked program. It is
3482 customary to refer to the @emph{text section} of a program, meaning all
3483 the addresses of all partial programs' text sections. Likewise for
3484 data and bss sections.
3485
3486 Some sections are manipulated by @code{@value{LD}}; others are invented for
3487 use of @command{@value{AS}} and have no meaning except during assembly.
3488
3489 @node Ld Sections
3490 @section Linker Sections
3491 @code{@value{LD}} deals with just four kinds of sections, summarized below.
3492
3493 @table @strong
3494
3495 @ifset COFF-ELF
3496 @cindex named sections
3497 @cindex sections, named
3498 @item named sections
3499 @end ifset
3500 @ifset aout
3501 @cindex text section
3502 @cindex data section
3503 @itemx text section
3504 @itemx data section
3505 @end ifset
3506 These sections hold your program. @command{@value{AS}} and @code{@value{LD}} treat them as
3507 separate but equal sections. Anything you can say of one section is
3508 true of another.
3509 @c @ifset aout
3510 When the program is running, however, it is
3511 customary for the text section to be unalterable. The
3512 text section is often shared among processes: it contains
3513 instructions, constants and the like. The data section of a running
3514 program is usually alterable: for example, C variables would be stored
3515 in the data section.
3516 @c @end ifset
3517
3518 @cindex bss section
3519 @item bss section
3520 This section contains zeroed bytes when your program begins running. It
3521 is used to hold uninitialized variables or common storage. The length of
3522 each partial program's bss section is important, but because it starts
3523 out containing zeroed bytes there is no need to store explicit zero
3524 bytes in the object file. The bss section was invented to eliminate
3525 those explicit zeros from object files.
3526
3527 @cindex absolute section
3528 @item absolute section
3529 Address 0 of this section is always ``relocated'' to runtime address 0.
3530 This is useful if you want to refer to an address that @code{@value{LD}} must
3531 not change when relocating. In this sense we speak of absolute
3532 addresses being ``unrelocatable'': they do not change during relocation.
3533
3534 @cindex undefined section
3535 @item undefined section
3536 This ``section'' is a catch-all for address references to objects not in
3537 the preceding sections.
3538 @c FIXME: ref to some other doc on obj-file formats could go here.
3539 @end table
3540
3541 @cindex relocation example
3542 An idealized example of three relocatable sections follows.
3543 @ifset COFF-ELF
3544 The example uses the traditional section names @samp{.text} and @samp{.data}.
3545 @end ifset
3546 Memory addresses are on the horizontal axis.
3547
3548 @c TEXI2ROFF-KILL
3549 @ifnottex
3550 @c END TEXI2ROFF-KILL
3551 @smallexample
3552 +-----+----+--+
3553 partial program # 1: |ttttt|dddd|00|
3554 +-----+----+--+
3555
3556 text data bss
3557 seg. seg. seg.
3558
3559 +---+---+---+
3560 partial program # 2: |TTT|DDD|000|
3561 +---+---+---+
3562
3563 +--+---+-----+--+----+---+-----+~~
3564 linked program: | |TTT|ttttt| |dddd|DDD|00000|
3565 +--+---+-----+--+----+---+-----+~~
3566
3567 addresses: 0 @dots{}
3568 @end smallexample
3569 @c TEXI2ROFF-KILL
3570 @end ifnottex
3571 @need 5000
3572 @tex
3573 \bigskip
3574 \line{\it Partial program \#1: \hfil}
3575 \line{\ibox{2.5cm}{\tt text}\ibox{2cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3576 \line{\boxit{2.5cm}{\tt ttttt}\boxit{2cm}{\tt dddd}\boxit{1cm}{\tt 00}\hfil}
3577
3578 \line{\it Partial program \#2: \hfil}
3579 \line{\ibox{1cm}{\tt text}\ibox{1.5cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3580 \line{\boxit{1cm}{\tt TTT}\boxit{1.5cm}{\tt DDDD}\boxit{1cm}{\tt 000}\hfil}
3581
3582 \line{\it linked program: \hfil}
3583 \line{\ibox{.5cm}{}\ibox{1cm}{\tt text}\ibox{2.5cm}{}\ibox{.75cm}{}\ibox{2cm}{\tt data}\ibox{1.5cm}{}\ibox{2cm}{\tt bss}\hfil}
3584 \line{\boxit{.5cm}{}\boxit{1cm}{\tt TTT}\boxit{2.5cm}{\tt
3585 ttttt}\boxit{.75cm}{}\boxit{2cm}{\tt dddd}\boxit{1.5cm}{\tt
3586 DDDD}\boxit{2cm}{\tt 00000}\ \dots\hfil}
3587
3588 \line{\it addresses: \hfil}
3589 \line{0\dots\hfil}
3590
3591 @end tex
3592 @c END TEXI2ROFF-KILL
3593
3594 @node As Sections
3595 @section Assembler Internal Sections
3596
3597 @cindex internal assembler sections
3598 @cindex sections in messages, internal
3599 These sections are meant only for the internal use of @command{@value{AS}}. They
3600 have no meaning at run-time. You do not really need to know about these
3601 sections for most purposes; but they can be mentioned in @command{@value{AS}}
3602 warning messages, so it might be helpful to have an idea of their
3603 meanings to @command{@value{AS}}. These sections are used to permit the
3604 value of every expression in your assembly language program to be a
3605 section-relative address.
3606
3607 @table @b
3608 @cindex assembler internal logic error
3609 @item ASSEMBLER-INTERNAL-LOGIC-ERROR!
3610 An internal assembler logic error has been found. This means there is a
3611 bug in the assembler.
3612
3613 @cindex expr (internal section)
3614 @item expr section
3615 The assembler stores complex expression internally as combinations of
3616 symbols. When it needs to represent an expression as a symbol, it puts
3617 it in the expr section.
3618 @c FIXME item debug
3619 @c FIXME item transfer[t] vector preload
3620 @c FIXME item transfer[t] vector postload
3621 @c FIXME item register
3622 @end table
3623
3624 @node Sub-Sections
3625 @section Sub-Sections
3626
3627 @cindex numbered subsections
3628 @cindex grouping data
3629 @ifset aout
3630 Assembled bytes
3631 @ifset COFF-ELF
3632 conventionally
3633 @end ifset
3634 fall into two sections: text and data.
3635 @end ifset
3636 You may have separate groups of
3637 @ifset GENERIC
3638 data in named sections
3639 @end ifset
3640 @ifclear GENERIC
3641 @ifclear aout
3642 data in named sections
3643 @end ifclear
3644 @ifset aout
3645 text or data
3646 @end ifset
3647 @end ifclear
3648 that you want to end up near to each other in the object file, even though they
3649 are not contiguous in the assembler source. @command{@value{AS}} allows you to
3650 use @dfn{subsections} for this purpose. Within each section, there can be
3651 numbered subsections with values from 0 to 8192. Objects assembled into the
3652 same subsection go into the object file together with other objects in the same
3653 subsection. For example, a compiler might want to store constants in the text
3654 section, but might not want to have them interspersed with the program being
3655 assembled. In this case, the compiler could issue a @samp{.text 0} before each
3656 section of code being output, and a @samp{.text 1} before each group of
3657 constants being output.
3658
3659 Subsections are optional. If you do not use subsections, everything
3660 goes in subsection number zero.
3661
3662 @ifset GENERIC
3663 Each subsection is zero-padded up to a multiple of four bytes.
3664 (Subsections may be padded a different amount on different flavors
3665 of @command{@value{AS}}.)
3666 @end ifset
3667 @ifclear GENERIC
3668 @ifset H8
3669 On the H8/300 platform, each subsection is zero-padded to a word
3670 boundary (two bytes).
3671 The same is true on the Renesas SH.
3672 @end ifset
3673 @end ifclear
3674
3675 Subsections appear in your object file in numeric order, lowest numbered
3676 to highest. (All this to be compatible with other people's assemblers.)
3677 The object file contains no representation of subsections; @code{@value{LD}} and
3678 other programs that manipulate object files see no trace of them.
3679 They just see all your text subsections as a text section, and all your
3680 data subsections as a data section.
3681
3682 To specify which subsection you want subsequent statements assembled
3683 into, use a numeric argument to specify it, in a @samp{.text
3684 @var{expression}} or a @samp{.data @var{expression}} statement.
3685 @ifset COFF
3686 @ifset GENERIC
3687 When generating COFF output, you
3688 @end ifset
3689 @ifclear GENERIC
3690 You
3691 @end ifclear
3692 can also use an extra subsection
3693 argument with arbitrary named sections: @samp{.section @var{name},
3694 @var{expression}}.
3695 @end ifset
3696 @ifset ELF
3697 @ifset GENERIC
3698 When generating ELF output, you
3699 @end ifset
3700 @ifclear GENERIC
3701 You
3702 @end ifclear
3703 can also use the @code{.subsection} directive (@pxref{SubSection})
3704 to specify a subsection: @samp{.subsection @var{expression}}.
3705 @end ifset
3706 @var{Expression} should be an absolute expression
3707 (@pxref{Expressions}). If you just say @samp{.text} then @samp{.text 0}
3708 is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly
3709 begins in @code{text 0}. For instance:
3710 @smallexample
3711 .text 0 # The default subsection is text 0 anyway.
3712 .ascii "This lives in the first text subsection. *"
3713 .text 1
3714 .ascii "But this lives in the second text subsection."
3715 .data 0
3716 .ascii "This lives in the data section,"
3717 .ascii "in the first data subsection."
3718 .text 0
3719 .ascii "This lives in the first text section,"
3720 .ascii "immediately following the asterisk (*)."
3721 @end smallexample
3722
3723 Each section has a @dfn{location counter} incremented by one for every byte
3724 assembled into that section. Because subsections are merely a convenience
3725 restricted to @command{@value{AS}} there is no concept of a subsection location
3726 counter. There is no way to directly manipulate a location counter---but the
3727 @code{.align} directive changes it, and any label definition captures its
3728 current value. The location counter of the section where statements are being
3729 assembled is said to be the @dfn{active} location counter.
3730
3731 @node bss
3732 @section bss Section
3733
3734 @cindex bss section
3735 @cindex common variable storage
3736 The bss section is used for local common variable storage.
3737 You may allocate address space in the bss section, but you may
3738 not dictate data to load into it before your program executes. When
3739 your program starts running, all the contents of the bss
3740 section are zeroed bytes.
3741
3742 The @code{.lcomm} pseudo-op defines a symbol in the bss section; see
3743 @ref{Lcomm,,@code{.lcomm}}.
3744
3745 The @code{.comm} pseudo-op may be used to declare a common symbol, which is
3746 another form of uninitialized symbol; see @ref{Comm,,@code{.comm}}.
3747
3748 @ifset GENERIC
3749 When assembling for a target which supports multiple sections, such as ELF or
3750 COFF, you may switch into the @code{.bss} section and define symbols as usual;
3751 see @ref{Section,,@code{.section}}. You may only assemble zero values into the
3752 section. Typically the section will only contain symbol definitions and
3753 @code{.skip} directives (@pxref{Skip,,@code{.skip}}).
3754 @end ifset
3755
3756 @node Symbols
3757 @chapter Symbols
3758
3759 @cindex symbols
3760 Symbols are a central concept: the programmer uses symbols to name
3761 things, the linker uses symbols to link, and the debugger uses symbols
3762 to debug.
3763
3764 @quotation
3765 @cindex debuggers, and symbol order
3766 @emph{Warning:} @command{@value{AS}} does not place symbols in the object file in
3767 the same order they were declared. This may break some debuggers.
3768 @end quotation
3769
3770 @menu
3771 * Labels:: Labels
3772 * Setting Symbols:: Giving Symbols Other Values
3773 * Symbol Names:: Symbol Names
3774 * Dot:: The Special Dot Symbol
3775 * Symbol Attributes:: Symbol Attributes
3776 @end menu
3777
3778 @node Labels
3779 @section Labels
3780
3781 @cindex labels
3782 A @dfn{label} is written as a symbol immediately followed by a colon
3783 @samp{:}. The symbol then represents the current value of the
3784 active location counter, and is, for example, a suitable instruction
3785 operand. You are warned if you use the same symbol to represent two
3786 different locations: the first definition overrides any other
3787 definitions.
3788
3789 @ifset HPPA
3790 On the HPPA, the usual form for a label need not be immediately followed by a
3791 colon, but instead must start in column zero. Only one label may be defined on
3792 a single line. To work around this, the HPPA version of @command{@value{AS}} also
3793 provides a special directive @code{.label} for defining labels more flexibly.
3794 @end ifset
3795
3796 @node Setting Symbols
3797 @section Giving Symbols Other Values
3798
3799 @cindex assigning values to symbols
3800 @cindex symbol values, assigning
3801 A symbol can be given an arbitrary value by writing a symbol, followed
3802 by an equals sign @samp{=}, followed by an expression
3803 (@pxref{Expressions}). This is equivalent to using the @code{.set}
3804 directive. @xref{Set,,@code{.set}}. In the same way, using a double
3805 equals sign @samp{=}@samp{=} here represents an equivalent of the
3806 @code{.eqv} directive. @xref{Eqv,,@code{.eqv}}.
3807
3808 @ifset Blackfin
3809 Blackfin does not support symbol assignment with @samp{=}.
3810 @end ifset
3811
3812 @node Symbol Names
3813 @section Symbol Names
3814
3815 @cindex symbol names
3816 @cindex names, symbol
3817 @ifclear SPECIAL-SYMS
3818 Symbol names begin with a letter or with one of @samp{._}. On most
3819 machines, you can also use @code{$} in symbol names; exceptions are
3820 noted in @ref{Machine Dependencies}. That character may be followed by any
3821 string of digits, letters, dollar signs (unless otherwise noted for a
3822 particular target machine), and underscores.
3823 @end ifclear
3824 @ifset SPECIAL-SYMS
3825 @ifset H8
3826 Symbol names begin with a letter or with one of @samp{._}. On the
3827 Renesas SH you can also use @code{$} in symbol names. That
3828 character may be followed by any string of digits, letters, dollar signs (save
3829 on the H8/300), and underscores.
3830 @end ifset
3831 @end ifset
3832
3833 Case of letters is significant: @code{foo} is a different symbol name
3834 than @code{Foo}.
3835
3836 Symbol names do not start with a digit. An exception to this rule is made for
3837 Local Labels. See below.
3838
3839 Multibyte characters are supported. To generate a symbol name containing
3840 multibyte characters enclose it within double quotes and use escape codes. cf
3841 @xref{Strings}. Generating a multibyte symbol name from a label is not
3842 currently supported.
3843
3844 Each symbol has exactly one name. Each name in an assembly language program
3845 refers to exactly one symbol. You may use that symbol name any number of times
3846 in a program.
3847
3848 @subheading Local Symbol Names
3849
3850 @cindex local symbol names
3851 @cindex symbol names, local
3852 A local symbol is any symbol beginning with certain local label prefixes.
3853 By default, the local label prefix is @samp{.L} for ELF systems or
3854 @samp{L} for traditional a.out systems, but each target may have its own
3855 set of local label prefixes.
3856 @ifset HPPA
3857 On the HPPA local symbols begin with @samp{L$}.
3858 @end ifset
3859
3860 Local symbols are defined and used within the assembler, but they are
3861 normally not saved in object files. Thus, they are not visible when debugging.
3862 You may use the @samp{-L} option (@pxref{L, ,Include Local Symbols})
3863 to retain the local symbols in the object files.
3864
3865 @subheading Local Labels
3866
3867 @cindex local labels
3868 @cindex temporary symbol names
3869 @cindex symbol names, temporary
3870 Local labels are different from local symbols. Local labels help compilers and
3871 programmers use names temporarily. They create symbols which are guaranteed to
3872 be unique over the entire scope of the input source code and which can be
3873 referred to by a simple notation. To define a local label, write a label of
3874 the form @samp{@b{N}:} (where @b{N} represents any non-negative integer).
3875 To refer to the most recent previous definition of that label write
3876 @samp{@b{N}b}, using the same number as when you defined the label. To refer
3877 to the next definition of a local label, write @samp{@b{N}f}. The @samp{b}
3878 stands for ``backwards'' and the @samp{f} stands for ``forwards''.
3879
3880 There is no restriction on how you can use these labels, and you can reuse them
3881 too. So that it is possible to repeatedly define the same local label (using
3882 the same number @samp{@b{N}}), although you can only refer to the most recently
3883 defined local label of that number (for a backwards reference) or the next
3884 definition of a specific local label for a forward reference. It is also worth
3885 noting that the first 10 local labels (@samp{@b{0:}}@dots{}@samp{@b{9:}}) are
3886 implemented in a slightly more efficient manner than the others.
3887
3888 Here is an example:
3889
3890 @smallexample
3891 1: branch 1f
3892 2: branch 1b
3893 1: branch 2f
3894 2: branch 1b
3895 @end smallexample
3896
3897 Which is the equivalent of:
3898
3899 @smallexample
3900 label_1: branch label_3
3901 label_2: branch label_1
3902 label_3: branch label_4
3903 label_4: branch label_3
3904 @end smallexample
3905
3906 Local label names are only a notational device. They are immediately
3907 transformed into more conventional symbol names before the assembler uses them.
3908 The symbol names are stored in the symbol table, appear in error messages, and
3909 are optionally emitted to the object file. The names are constructed using
3910 these parts:
3911
3912 @table @code
3913 @item @emph{local label prefix}
3914 All local symbols begin with the system-specific local label prefix.
3915 Normally both @command{@value{AS}} and @code{@value{LD}} forget symbols
3916 that start with the local label prefix. These labels are
3917 used for symbols you are never intended to see. If you use the
3918 @samp{-L} option then @command{@value{AS}} retains these symbols in the
3919 object file. If you also instruct @code{@value{LD}} to retain these symbols,
3920 you may use them in debugging.
3921
3922 @item @var{number}
3923 This is the number that was used in the local label definition. So if the
3924 label is written @samp{55:} then the number is @samp{55}.
3925
3926 @item @kbd{C-B}
3927 This unusual character is included so you do not accidentally invent a symbol
3928 of the same name. The character has ASCII value of @samp{\002} (control-B).
3929
3930 @item @emph{ordinal number}
3931 This is a serial number to keep the labels distinct. The first definition of
3932 @samp{0:} gets the number @samp{1}. The 15th definition of @samp{0:} gets the
3933 number @samp{15}, and so on. Likewise the first definition of @samp{1:} gets
3934 the number @samp{1} and its 15th definition gets @samp{15} as well.
3935 @end table
3936
3937 So for example, the first @code{1:} may be named @code{.L1@kbd{C-B}1}, and
3938 the 44th @code{3:} may be named @code{.L3@kbd{C-B}44}.
3939
3940 @subheading Dollar Local Labels
3941 @cindex dollar local symbols
3942
3943 On some targets @code{@value{AS}} also supports an even more local form of
3944 local labels called dollar labels. These labels go out of scope (i.e., they
3945 become undefined) as soon as a non-local label is defined. Thus they remain
3946 valid for only a small region of the input source code. Normal local labels,
3947 by contrast, remain in scope for the entire file, or until they are redefined
3948 by another occurrence of the same local label.
3949
3950 Dollar labels are defined in exactly the same way as ordinary local labels,
3951 except that they have a dollar sign suffix to their numeric value, e.g.,
3952 @samp{@b{55$:}}.
3953
3954 They can also be distinguished from ordinary local labels by their transformed
3955 names which use ASCII character @samp{\001} (control-A) as the magic character
3956 to distinguish them from ordinary labels. For example, the fifth definition of
3957 @samp{6$} may be named @samp{.L6@kbd{C-A}5}.
3958
3959 @node Dot
3960 @section The Special Dot Symbol
3961
3962 @cindex dot (symbol)
3963 @cindex @code{.} (symbol)
3964 @cindex current address
3965 @cindex location counter
3966 The special symbol @samp{.} refers to the current address that
3967 @command{@value{AS}} is assembling into. Thus, the expression @samp{melvin:
3968 .long .} defines @code{melvin} to contain its own address.
3969 Assigning a value to @code{.} is treated the same as a @code{.org}
3970 directive.
3971 @ifclear no-space-dir
3972 Thus, the expression @samp{.=.+4} is the same as saying
3973 @samp{.space 4}.
3974 @end ifclear
3975
3976 @node Symbol Attributes
3977 @section Symbol Attributes
3978
3979 @cindex symbol attributes
3980 @cindex attributes, symbol
3981 Every symbol has, as well as its name, the attributes ``Value'' and
3982 ``Type''. Depending on output format, symbols can also have auxiliary
3983 attributes.
3984 @ifset INTERNALS
3985 The detailed definitions are in @file{a.out.h}.
3986 @end ifset
3987
3988 If you use a symbol without defining it, @command{@value{AS}} assumes zero for
3989 all these attributes, and probably won't warn you. This makes the
3990 symbol an externally defined symbol, which is generally what you
3991 would want.
3992
3993 @menu
3994 * Symbol Value:: Value
3995 * Symbol Type:: Type
3996 @ifset aout
3997 * a.out Symbols:: Symbol Attributes: @code{a.out}
3998 @end ifset
3999 @ifset COFF
4000 * COFF Symbols:: Symbol Attributes for COFF
4001 @end ifset
4002 @ifset SOM
4003 * SOM Symbols:: Symbol Attributes for SOM
4004 @end ifset
4005 @end menu
4006
4007 @node Symbol Value
4008 @subsection Value
4009
4010 @cindex value of a symbol
4011 @cindex symbol value
4012 The value of a symbol is (usually) 32 bits. For a symbol which labels a
4013 location in the text, data, bss or absolute sections the value is the
4014 number of addresses from the start of that section to the label.
4015 Naturally for text, data and bss sections the value of a symbol changes
4016 as @code{@value{LD}} changes section base addresses during linking. Absolute
4017 symbols' values do not change during linking: that is why they are
4018 called absolute.
4019
4020 The value of an undefined symbol is treated in a special way. If it is
4021 0 then the symbol is not defined in this assembler source file, and
4022 @code{@value{LD}} tries to determine its value from other files linked into the
4023 same program. You make this kind of symbol simply by mentioning a symbol
4024 name without defining it. A non-zero value represents a @code{.comm}
4025 common declaration. The value is how much common storage to reserve, in
4026 bytes (addresses). The symbol refers to the first address of the
4027 allocated storage.
4028
4029 @node Symbol Type
4030 @subsection Type
4031
4032 @cindex type of a symbol
4033 @cindex symbol type
4034 The type attribute of a symbol contains relocation (section)
4035 information, any flag settings indicating that a symbol is external, and
4036 (optionally), other information for linkers and debuggers. The exact
4037 format depends on the object-code output format in use.
4038
4039 @ifset aout
4040 @node a.out Symbols
4041 @subsection Symbol Attributes: @code{a.out}
4042
4043 @cindex @code{a.out} symbol attributes
4044 @cindex symbol attributes, @code{a.out}
4045
4046 @menu
4047 * Symbol Desc:: Descriptor
4048 * Symbol Other:: Other
4049 @end menu
4050
4051 @node Symbol Desc
4052 @subsubsection Descriptor
4053
4054 @cindex descriptor, of @code{a.out} symbol
4055 This is an arbitrary 16-bit value. You may establish a symbol's
4056 descriptor value by using a @code{.desc} statement
4057 (@pxref{Desc,,@code{.desc}}). A descriptor value means nothing to
4058 @command{@value{AS}}.
4059
4060 @node Symbol Other
4061 @subsubsection Other
4062
4063 @cindex other attribute, of @code{a.out} symbol
4064 This is an arbitrary 8-bit value. It means nothing to @command{@value{AS}}.
4065 @end ifset
4066
4067 @ifset COFF
4068 @node COFF Symbols
4069 @subsection Symbol Attributes for COFF
4070
4071 @cindex COFF symbol attributes
4072 @cindex symbol attributes, COFF
4073
4074 The COFF format supports a multitude of auxiliary symbol attributes;
4075 like the primary symbol attributes, they are set between @code{.def} and
4076 @code{.endef} directives.
4077
4078 @subsubsection Primary Attributes
4079
4080 @cindex primary attributes, COFF symbols
4081 The symbol name is set with @code{.def}; the value and type,
4082 respectively, with @code{.val} and @code{.type}.
4083
4084 @subsubsection Auxiliary Attributes
4085
4086 @cindex auxiliary attributes, COFF symbols
4087 The @command{@value{AS}} directives @code{.dim}, @code{.line}, @code{.scl},
4088 @code{.size}, @code{.tag}, and @code{.weak} can generate auxiliary symbol
4089 table information for COFF.
4090 @end ifset
4091
4092 @ifset SOM
4093 @node SOM Symbols
4094 @subsection Symbol Attributes for SOM
4095
4096 @cindex SOM symbol attributes
4097 @cindex symbol attributes, SOM
4098
4099 The SOM format for the HPPA supports a multitude of symbol attributes set with
4100 the @code{.EXPORT} and @code{.IMPORT} directives.
4101
4102 The attributes are described in @cite{HP9000 Series 800 Assembly
4103 Language Reference Manual} (HP 92432-90001) under the @code{IMPORT} and
4104 @code{EXPORT} assembler directive documentation.
4105 @end ifset
4106
4107 @node Expressions
4108 @chapter Expressions
4109
4110 @cindex expressions
4111 @cindex addresses
4112 @cindex numeric values
4113 An @dfn{expression} specifies an address or numeric value.
4114 Whitespace may precede and/or follow an expression.
4115
4116 The result of an expression must be an absolute number, or else an offset into
4117 a particular section. If an expression is not absolute, and there is not
4118 enough information when @command{@value{AS}} sees the expression to know its
4119 section, a second pass over the source program might be necessary to interpret
4120 the expression---but the second pass is currently not implemented.
4121 @command{@value{AS}} aborts with an error message in this situation.
4122
4123 @menu
4124 * Empty Exprs:: Empty Expressions
4125 * Integer Exprs:: Integer Expressions
4126 @end menu
4127
4128 @node Empty Exprs
4129 @section Empty Expressions
4130
4131 @cindex empty expressions
4132 @cindex expressions, empty
4133 An empty expression has no value: it is just whitespace or null.
4134 Wherever an absolute expression is required, you may omit the
4135 expression, and @command{@value{AS}} assumes a value of (absolute) 0. This
4136 is compatible with other assemblers.
4137
4138 @node Integer Exprs
4139 @section Integer Expressions
4140
4141 @cindex integer expressions
4142 @cindex expressions, integer
4143 An @dfn{integer expression} is one or more @emph{arguments} delimited
4144 by @emph{operators}.
4145
4146 @menu
4147 * Arguments:: Arguments
4148 * Operators:: Operators
4149 * Prefix Ops:: Prefix Operators
4150 * Infix Ops:: Infix Operators
4151 @end menu
4152
4153 @node Arguments
4154 @subsection Arguments
4155
4156 @cindex expression arguments
4157 @cindex arguments in expressions
4158 @cindex operands in expressions
4159 @cindex arithmetic operands
4160 @dfn{Arguments} are symbols, numbers or subexpressions. In other
4161 contexts arguments are sometimes called ``arithmetic operands''. In
4162 this manual, to avoid confusing them with the ``instruction operands'' of
4163 the machine language, we use the term ``argument'' to refer to parts of
4164 expressions only, reserving the word ``operand'' to refer only to machine
4165 instruction operands.
4166
4167 Symbols are evaluated to yield @{@var{section} @var{NNN}@} where
4168 @var{section} is one of text, data, bss, absolute,
4169 or undefined. @var{NNN} is a signed, 2's complement 32 bit
4170 integer.
4171
4172 Numbers are usually integers.
4173
4174 A number can be a flonum or bignum. In this case, you are warned
4175 that only the low order 32 bits are used, and @command{@value{AS}} pretends
4176 these 32 bits are an integer. You may write integer-manipulating
4177 instructions that act on exotic constants, compatible with other
4178 assemblers.
4179
4180 @cindex subexpressions
4181 Subexpressions are a left parenthesis @samp{(} followed by an integer
4182 expression, followed by a right parenthesis @samp{)}; or a prefix
4183 operator followed by an argument.
4184
4185 @node Operators
4186 @subsection Operators
4187
4188 @cindex operators, in expressions
4189 @cindex arithmetic functions
4190 @cindex functions, in expressions
4191 @dfn{Operators} are arithmetic functions, like @code{+} or @code{%}. Prefix
4192 operators are followed by an argument. Infix operators appear
4193 between their arguments. Operators may be preceded and/or followed by
4194 whitespace.
4195
4196 @node Prefix Ops
4197 @subsection Prefix Operator
4198
4199 @cindex prefix operators
4200 @command{@value{AS}} has the following @dfn{prefix operators}. They each take
4201 one argument, which must be absolute.
4202
4203 @c the tex/end tex stuff surrounding this small table is meant to make
4204 @c it align, on the printed page, with the similar table in the next
4205 @c section (which is inside an enumerate).
4206 @tex
4207 \global\advance\leftskip by \itemindent
4208 @end tex
4209
4210 @table @code
4211 @item -
4212 @dfn{Negation}. Two's complement negation.
4213 @item ~
4214 @dfn{Complementation}. Bitwise not.
4215 @end table
4216
4217 @tex
4218 \global\advance\leftskip by -\itemindent
4219 @end tex
4220
4221 @node Infix Ops
4222 @subsection Infix Operators
4223
4224 @cindex infix operators
4225 @cindex operators, permitted arguments
4226 @dfn{Infix operators} take two arguments, one on either side. Operators
4227 have precedence, but operations with equal precedence are performed left
4228 to right. Apart from @code{+} or @option{-}, both arguments must be
4229 absolute, and the result is absolute.
4230
4231 @enumerate
4232 @cindex operator precedence
4233 @cindex precedence of operators
4234
4235 @item
4236 Highest Precedence
4237
4238 @table @code
4239 @item *
4240 @dfn{Multiplication}.
4241
4242 @item /
4243 @dfn{Division}. Truncation is the same as the C operator @samp{/}
4244
4245 @item %
4246 @dfn{Remainder}.
4247
4248 @item <<
4249 @dfn{Shift Left}. Same as the C operator @samp{<<}.
4250
4251 @item >>
4252 @dfn{Shift Right}. Same as the C operator @samp{>>}.
4253 @end table
4254
4255 @item
4256 Intermediate precedence
4257
4258 @table @code
4259 @item |
4260
4261 @dfn{Bitwise Inclusive Or}.
4262
4263 @item &
4264 @dfn{Bitwise And}.
4265
4266 @item ^
4267 @dfn{Bitwise Exclusive Or}.
4268
4269 @item !
4270 @dfn{Bitwise Or Not}.
4271 @end table
4272
4273 @item
4274 Low Precedence
4275
4276 @table @code
4277 @cindex addition, permitted arguments
4278 @cindex plus, permitted arguments
4279 @cindex arguments for addition
4280 @item +
4281 @dfn{Addition}. If either argument is absolute, the result has the section of
4282 the other argument. You may not add together arguments from different
4283 sections.
4284
4285 @cindex subtraction, permitted arguments
4286 @cindex minus, permitted arguments
4287 @cindex arguments for subtraction
4288 @item -
4289 @dfn{Subtraction}. If the right argument is absolute, the
4290 result has the section of the left argument.
4291 If both arguments are in the same section, the result is absolute.
4292 You may not subtract arguments from different sections.
4293 @c FIXME is there still something useful to say about undefined - undefined ?
4294
4295 @cindex comparison expressions
4296 @cindex expressions, comparison
4297 @item ==
4298 @dfn{Is Equal To}
4299 @item <>
4300 @itemx !=
4301 @dfn{Is Not Equal To}
4302 @item <
4303 @dfn{Is Less Than}
4304 @item >
4305 @dfn{Is Greater Than}
4306 @item >=
4307 @dfn{Is Greater Than Or Equal To}
4308 @item <=
4309 @dfn{Is Less Than Or Equal To}
4310
4311 The comparison operators can be used as infix operators. A true results has a
4312 value of -1 whereas a false result has a value of 0. Note, these operators
4313 perform signed comparisons.
4314 @end table
4315
4316 @item Lowest Precedence
4317
4318 @table @code
4319 @item &&
4320 @dfn{Logical And}.
4321
4322 @item ||
4323 @dfn{Logical Or}.
4324
4325 These two logical operations can be used to combine the results of sub
4326 expressions. Note, unlike the comparison operators a true result returns a
4327 value of 1 but a false results does still return 0. Also note that the logical
4328 or operator has a slightly lower precedence than logical and.
4329
4330 @end table
4331 @end enumerate
4332
4333 In short, it's only meaningful to add or subtract the @emph{offsets} in an
4334 address; you can only have a defined section in one of the two arguments.
4335
4336 @node Pseudo Ops
4337 @chapter Assembler Directives
4338
4339 @cindex directives, machine independent
4340 @cindex pseudo-ops, machine independent
4341 @cindex machine independent directives
4342 All assembler directives have names that begin with a period (@samp{.}).
4343 The names are case insensitive for most targets, and usually written
4344 in lower case.
4345
4346 This chapter discusses directives that are available regardless of the
4347 target machine configuration for the @sc{gnu} assembler.
4348 @ifset GENERIC
4349 Some machine configurations provide additional directives.
4350 @xref{Machine Dependencies}.
4351 @end ifset
4352 @ifclear GENERIC
4353 @ifset machine-directives
4354 @xref{Machine Dependencies}, for additional directives.
4355 @end ifset
4356 @end ifclear
4357
4358 @menu
4359 * Abort:: @code{.abort}
4360 @ifset COFF
4361 * ABORT (COFF):: @code{.ABORT}
4362 @end ifset
4363
4364 * Align:: @code{.align @var{abs-expr} , @var{abs-expr}}
4365 * Altmacro:: @code{.altmacro}
4366 * Ascii:: @code{.ascii "@var{string}"}@dots{}
4367 * Asciz:: @code{.asciz "@var{string}"}@dots{}
4368 * Balign:: @code{.balign @var{abs-expr} , @var{abs-expr}}
4369 * Bundle directives:: @code{.bundle_align_mode @var{abs-expr}}, etc
4370 * Byte:: @code{.byte @var{expressions}}
4371 * CFI directives:: @code{.cfi_startproc [simple]}, @code{.cfi_endproc}, etc.
4372 * Comm:: @code{.comm @var{symbol} , @var{length} }
4373 * Data:: @code{.data @var{subsection}}
4374 * Dc:: @code{.dc[@var{size}] @var{expressions}}
4375 * Dcb:: @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
4376 * Ds:: @code{.ds[@var{size}] @var{number} [,@var{fill}]}
4377 @ifset COFF
4378 * Def:: @code{.def @var{name}}
4379 @end ifset
4380 @ifset aout
4381 * Desc:: @code{.desc @var{symbol}, @var{abs-expression}}
4382 @end ifset
4383 @ifset COFF
4384 * Dim:: @code{.dim}
4385 @end ifset
4386
4387 * Double:: @code{.double @var{flonums}}
4388 * Eject:: @code{.eject}
4389 * Else:: @code{.else}
4390 * Elseif:: @code{.elseif}
4391 * End:: @code{.end}
4392 @ifset COFF
4393 * Endef:: @code{.endef}
4394 @end ifset
4395
4396 * Endfunc:: @code{.endfunc}
4397 * Endif:: @code{.endif}
4398 * Equ:: @code{.equ @var{symbol}, @var{expression}}
4399 * Equiv:: @code{.equiv @var{symbol}, @var{expression}}
4400 * Eqv:: @code{.eqv @var{symbol}, @var{expression}}
4401 * Err:: @code{.err}
4402 * Error:: @code{.error @var{string}}
4403 * Exitm:: @code{.exitm}
4404 * Extern:: @code{.extern}
4405 * Fail:: @code{.fail}
4406 * File:: @code{.file}
4407 * Fill:: @code{.fill @var{repeat} , @var{size} , @var{value}}
4408 * Float:: @code{.float @var{flonums}}
4409 * Func:: @code{.func}
4410 * Global:: @code{.global @var{symbol}}, @code{.globl @var{symbol}}
4411 @ifset ELF
4412 * Gnu_attribute:: @code{.gnu_attribute @var{tag},@var{value}}
4413 * Hidden:: @code{.hidden @var{names}}
4414 @end ifset
4415
4416 * hword:: @code{.hword @var{expressions}}
4417 * Ident:: @code{.ident}
4418 * If:: @code{.if @var{absolute expression}}
4419 * Incbin:: @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
4420 * Include:: @code{.include "@var{file}"}
4421 * Int:: @code{.int @var{expressions}}
4422 @ifset ELF
4423 * Internal:: @code{.internal @var{names}}
4424 @end ifset
4425
4426 * Irp:: @code{.irp @var{symbol},@var{values}}@dots{}
4427 * Irpc:: @code{.irpc @var{symbol},@var{values}}@dots{}
4428 * Lcomm:: @code{.lcomm @var{symbol} , @var{length}}
4429 * Lflags:: @code{.lflags}
4430 @ifclear no-line-dir
4431 * Line:: @code{.line @var{line-number}}
4432 @end ifclear
4433
4434 * Linkonce:: @code{.linkonce [@var{type}]}
4435 * List:: @code{.list}
4436 * Ln:: @code{.ln @var{line-number}}
4437 * Loc:: @code{.loc @var{fileno} @var{lineno}}
4438 * Loc_mark_labels:: @code{.loc_mark_labels @var{enable}}
4439 @ifset ELF
4440 * Local:: @code{.local @var{names}}
4441 @end ifset
4442
4443 * Long:: @code{.long @var{expressions}}
4444 @ignore
4445 * Lsym:: @code{.lsym @var{symbol}, @var{expression}}
4446 @end ignore
4447
4448 * Macro:: @code{.macro @var{name} @var{args}}@dots{}
4449 * MRI:: @code{.mri @var{val}}
4450 * Noaltmacro:: @code{.noaltmacro}
4451 * Nolist:: @code{.nolist}
4452 * Nops:: @code{.nops @var{size}[, @var{control}]}
4453 * Octa:: @code{.octa @var{bignums}}
4454 * Offset:: @code{.offset @var{loc}}
4455 * Org:: @code{.org @var{new-lc}, @var{fill}}
4456 * P2align:: @code{.p2align @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
4457 @ifset ELF
4458 * PopSection:: @code{.popsection}
4459 * Previous:: @code{.previous}
4460 @end ifset
4461
4462 * Print:: @code{.print @var{string}}
4463 @ifset ELF
4464 * Protected:: @code{.protected @var{names}}
4465 @end ifset
4466
4467 * Psize:: @code{.psize @var{lines}, @var{columns}}
4468 * Purgem:: @code{.purgem @var{name}}
4469 @ifset ELF
4470 * PushSection:: @code{.pushsection @var{name}}
4471 @end ifset
4472
4473 * Quad:: @code{.quad @var{bignums}}
4474 * Reloc:: @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
4475 * Rept:: @code{.rept @var{count}}
4476 * Sbttl:: @code{.sbttl "@var{subheading}"}
4477 @ifset COFF
4478 * Scl:: @code{.scl @var{class}}
4479 @end ifset
4480 @ifset COFF-ELF
4481 * Section:: @code{.section @var{name}[, @var{flags}]}
4482 @end ifset
4483
4484 * Set:: @code{.set @var{symbol}, @var{expression}}
4485 * Short:: @code{.short @var{expressions}}
4486 * Single:: @code{.single @var{flonums}}
4487 @ifset COFF-ELF
4488 * Size:: @code{.size [@var{name} , @var{expression}]}
4489 @end ifset
4490 @ifclear no-space-dir
4491 * Skip:: @code{.skip @var{size} [,@var{fill}]}
4492 @end ifclear
4493
4494 * Sleb128:: @code{.sleb128 @var{expressions}}
4495 @ifclear no-space-dir
4496 * Space:: @code{.space @var{size} [,@var{fill}]}
4497 @end ifclear
4498 @ifset have-stabs
4499 * Stab:: @code{.stabd, .stabn, .stabs}
4500 @end ifset
4501
4502 * String:: @code{.string "@var{str}"}, @code{.string8 "@var{str}"}, @code{.string16 "@var{str}"}, @code{.string32 "@var{str}"}, @code{.string64 "@var{str}"}
4503 * Struct:: @code{.struct @var{expression}}
4504 @ifset ELF
4505 * SubSection:: @code{.subsection}
4506 * Symver:: @code{.symver @var{name},@var{name2@@nodename}}
4507 @end ifset
4508
4509 @ifset COFF
4510 * Tag:: @code{.tag @var{structname}}
4511 @end ifset
4512
4513 * Text:: @code{.text @var{subsection}}
4514 * Title:: @code{.title "@var{heading}"}
4515 @ifset COFF-ELF
4516 * Type:: @code{.type <@var{int} | @var{name} , @var{type description}>}
4517 @end ifset
4518
4519 * Uleb128:: @code{.uleb128 @var{expressions}}
4520 @ifset COFF
4521 * Val:: @code{.val @var{addr}}
4522 @end ifset
4523
4524 @ifset ELF
4525 * Version:: @code{.version "@var{string}"}
4526 * VTableEntry:: @code{.vtable_entry @var{table}, @var{offset}}
4527 * VTableInherit:: @code{.vtable_inherit @var{child}, @var{parent}}
4528 @end ifset
4529
4530 * Warning:: @code{.warning @var{string}}
4531 * Weak:: @code{.weak @var{names}}
4532 * Weakref:: @code{.weakref @var{alias}, @var{symbol}}
4533 * Word:: @code{.word @var{expressions}}
4534 @ifclear no-space-dir
4535 * Zero:: @code{.zero @var{size}}
4536 @end ifclear
4537 @ifset ELF
4538 * 2byte:: @code{.2byte @var{expressions}}
4539 * 4byte:: @code{.4byte @var{expressions}}
4540 * 8byte:: @code{.8byte @var{bignums}}
4541 @end ifset
4542 * Deprecated:: Deprecated Directives
4543 @end menu
4544
4545 @node Abort
4546 @section @code{.abort}
4547
4548 @cindex @code{abort} directive
4549 @cindex stopping the assembly
4550 This directive stops the assembly immediately. It is for
4551 compatibility with other assemblers. The original idea was that the
4552 assembly language source would be piped into the assembler. If the sender
4553 of the source quit, it could use this directive tells @command{@value{AS}} to
4554 quit also. One day @code{.abort} will not be supported.
4555
4556 @ifset COFF
4557 @node ABORT (COFF)
4558 @section @code{.ABORT} (COFF)
4559
4560 @cindex @code{ABORT} directive
4561 When producing COFF output, @command{@value{AS}} accepts this directive as a
4562 synonym for @samp{.abort}.
4563
4564 @end ifset
4565
4566 @node Align
4567 @section @code{.align @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
4568
4569 @cindex padding the location counter
4570 @cindex @code{align} directive
4571 Pad the location counter (in the current subsection) to a particular storage
4572 boundary. The first expression (which must be absolute) is the alignment
4573 required, as described below.
4574
4575 The second expression (also absolute) gives the fill value to be stored in the
4576 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4577 padding bytes are normally zero. However, on most systems, if the section is
4578 marked as containing code and the fill value is omitted, the space is filled
4579 with no-op instructions.
4580
4581 The third expression is also absolute, and is also optional. If it is present,
4582 it is the maximum number of bytes that should be skipped by this alignment
4583 directive. If doing the alignment would require skipping more bytes than the
4584 specified maximum, then the alignment is not done at all. You can omit the
4585 fill value (the second argument) entirely by simply using two commas after the
4586 required alignment; this can be useful if you want the alignment to be filled
4587 with no-op instructions when appropriate.
4588
4589 The way the required alignment is specified varies from system to system.
4590 For the arc, hppa, i386 using ELF, iq2000, m68k, or1k,
4591 s390, sparc, tic4x, tic80 and xtensa, the first expression is the
4592 alignment request in bytes. For example @samp{.align 8} advances
4593 the location counter until it is a multiple of 8. If the location counter
4594 is already a multiple of 8, no change is needed. For the tic54x, the
4595 first expression is the alignment request in words.
4596
4597 For other systems, including ppc, i386 using a.out format, arm and
4598 strongarm, it is the
4599 number of low-order zero bits the location counter must have after
4600 advancement. For example @samp{.align 3} advances the location
4601 counter until it is a multiple of 8. If the location counter is already a
4602 multiple of 8, no change is needed.
4603
4604 This inconsistency is due to the different behaviors of the various
4605 native assemblers for these systems which GAS must emulate.
4606 GAS also provides @code{.balign} and @code{.p2align} directives,
4607 described later, which have a consistent behavior across all
4608 architectures (but are specific to GAS).
4609
4610 @node Altmacro
4611 @section @code{.altmacro}
4612 Enable alternate macro mode, enabling:
4613
4614 @ftable @code
4615 @item LOCAL @var{name} [ , @dots{} ]
4616 One additional directive, @code{LOCAL}, is available. It is used to
4617 generate a string replacement for each of the @var{name} arguments, and
4618 replace any instances of @var{name} in each macro expansion. The
4619 replacement string is unique in the assembly, and different for each
4620 separate macro expansion. @code{LOCAL} allows you to write macros that
4621 define symbols, without fear of conflict between separate macro expansions.
4622
4623 @item String delimiters
4624 You can write strings delimited in these other ways besides
4625 @code{"@var{string}"}:
4626
4627 @table @code
4628 @item '@var{string}'
4629 You can delimit strings with single-quote characters.
4630
4631 @item <@var{string}>
4632 You can delimit strings with matching angle brackets.
4633 @end table
4634
4635 @item single-character string escape
4636 To include any single character literally in a string (even if the
4637 character would otherwise have some special meaning), you can prefix the
4638 character with @samp{!} (an exclamation mark). For example, you can
4639 write @samp{<4.3 !> 5.4!!>} to get the literal text @samp{4.3 > 5.4!}.
4640
4641 @item Expression results as strings
4642 You can write @samp{%@var{expr}} to evaluate the expression @var{expr}
4643 and use the result as a string.
4644 @end ftable
4645
4646 @node Ascii
4647 @section @code{.ascii "@var{string}"}@dots{}
4648
4649 @cindex @code{ascii} directive
4650 @cindex string literals
4651 @code{.ascii} expects zero or more string literals (@pxref{Strings})
4652 separated by commas. It assembles each string (with no automatic
4653 trailing zero byte) into consecutive addresses.
4654
4655 @node Asciz
4656 @section @code{.asciz "@var{string}"}@dots{}
4657
4658 @cindex @code{asciz} directive
4659 @cindex zero-terminated strings
4660 @cindex null-terminated strings
4661 @code{.asciz} is just like @code{.ascii}, but each string is followed by
4662 a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''.
4663
4664 @node Balign
4665 @section @code{.balign[wl] @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
4666
4667 @cindex padding the location counter given number of bytes
4668 @cindex @code{balign} directive
4669 Pad the location counter (in the current subsection) to a particular
4670 storage boundary. The first expression (which must be absolute) is the
4671 alignment request in bytes. For example @samp{.balign 8} advances
4672 the location counter until it is a multiple of 8. If the location counter
4673 is already a multiple of 8, no change is needed.
4674
4675 The second expression (also absolute) gives the fill value to be stored in the
4676 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4677 padding bytes are normally zero. However, on most systems, if the section is
4678 marked as containing code and the fill value is omitted, the space is filled
4679 with no-op instructions.
4680
4681 The third expression is also absolute, and is also optional. If it is present,
4682 it is the maximum number of bytes that should be skipped by this alignment
4683 directive. If doing the alignment would require skipping more bytes than the
4684 specified maximum, then the alignment is not done at all. You can omit the
4685 fill value (the second argument) entirely by simply using two commas after the
4686 required alignment; this can be useful if you want the alignment to be filled
4687 with no-op instructions when appropriate.
4688
4689 @cindex @code{balignw} directive
4690 @cindex @code{balignl} directive
4691 The @code{.balignw} and @code{.balignl} directives are variants of the
4692 @code{.balign} directive. The @code{.balignw} directive treats the fill
4693 pattern as a two byte word value. The @code{.balignl} directives treats the
4694 fill pattern as a four byte longword value. For example, @code{.balignw
4695 4,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
4696 filled in with the value 0x368d (the exact placement of the bytes depends upon
4697 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
4698 undefined.
4699
4700 @node Bundle directives
4701 @section Bundle directives
4702 @subsection @code{.bundle_align_mode @var{abs-expr}}
4703 @cindex @code{bundle_align_mode} directive
4704 @cindex bundle
4705 @cindex instruction bundle
4706 @cindex aligned instruction bundle
4707 @code{.bundle_align_mode} enables or disables @dfn{aligned instruction
4708 bundle} mode. In this mode, sequences of adjacent instructions are grouped
4709 into fixed-sized @dfn{bundles}. If the argument is zero, this mode is
4710 disabled (which is the default state). If the argument it not zero, it
4711 gives the size of an instruction bundle as a power of two (as for the
4712 @code{.p2align} directive, @pxref{P2align}).
4713
4714 For some targets, it's an ABI requirement that no instruction may span a
4715 certain aligned boundary. A @dfn{bundle} is simply a sequence of
4716 instructions that starts on an aligned boundary. For example, if
4717 @var{abs-expr} is @code{5} then the bundle size is 32, so each aligned
4718 chunk of 32 bytes is a bundle. When aligned instruction bundle mode is in
4719 effect, no single instruction may span a boundary between bundles. If an
4720 instruction would start too close to the end of a bundle for the length of
4721 that particular instruction to fit within the bundle, then the space at the
4722 end of that bundle is filled with no-op instructions so the instruction
4723 starts in the next bundle. As a corollary, it's an error if any single
4724 instruction's encoding is longer than the bundle size.
4725
4726 @subsection @code{.bundle_lock} and @code{.bundle_unlock}
4727 @cindex @code{bundle_lock} directive
4728 @cindex @code{bundle_unlock} directive
4729 The @code{.bundle_lock} and directive @code{.bundle_unlock} directives
4730 allow explicit control over instruction bundle padding. These directives
4731 are only valid when @code{.bundle_align_mode} has been used to enable
4732 aligned instruction bundle mode. It's an error if they appear when
4733 @code{.bundle_align_mode} has not been used at all, or when the last
4734 directive was @w{@code{.bundle_align_mode 0}}.
4735
4736 @cindex bundle-locked
4737 For some targets, it's an ABI requirement that certain instructions may
4738 appear only as part of specified permissible sequences of multiple
4739 instructions, all within the same bundle. A pair of @code{.bundle_lock}
4740 and @code{.bundle_unlock} directives define a @dfn{bundle-locked}
4741 instruction sequence. For purposes of aligned instruction bundle mode, a
4742 sequence starting with @code{.bundle_lock} and ending with
4743 @code{.bundle_unlock} is treated as a single instruction. That is, the
4744 entire sequence must fit into a single bundle and may not span a bundle
4745 boundary. If necessary, no-op instructions will be inserted before the
4746 first instruction of the sequence so that the whole sequence starts on an
4747 aligned bundle boundary. It's an error if the sequence is longer than the
4748 bundle size.
4749
4750 For convenience when using @code{.bundle_lock} and @code{.bundle_unlock}
4751 inside assembler macros (@pxref{Macro}), bundle-locked sequences may be
4752 nested. That is, a second @code{.bundle_lock} directive before the next
4753 @code{.bundle_unlock} directive has no effect except that it must be
4754 matched by another closing @code{.bundle_unlock} so that there is the
4755 same number of @code{.bundle_lock} and @code{.bundle_unlock} directives.
4756
4757 @node Byte
4758 @section @code{.byte @var{expressions}}
4759
4760 @cindex @code{byte} directive
4761 @cindex integers, one byte
4762 @code{.byte} expects zero or more expressions, separated by commas.
4763 Each expression is assembled into the next byte.
4764
4765 @node CFI directives
4766 @section CFI directives
4767 @subsection @code{.cfi_sections @var{section_list}}
4768 @cindex @code{cfi_sections} directive
4769 @code{.cfi_sections} may be used to specify whether CFI directives
4770 should emit @code{.eh_frame} section and/or @code{.debug_frame} section.
4771 If @var{section_list} is @code{.eh_frame}, @code{.eh_frame} is emitted,
4772 if @var{section_list} is @code{.debug_frame}, @code{.debug_frame} is emitted.
4773 To emit both use @code{.eh_frame, .debug_frame}. The default if this
4774 directive is not used is @code{.cfi_sections .eh_frame}.
4775
4776 On targets that support compact unwinding tables these can be generated
4777 by specifying @code{.eh_frame_entry} instead of @code{.eh_frame}.
4778
4779 Some targets may support an additional name, such as @code{.c6xabi.exidx}
4780 which is used by the @value{TIC6X} target.
4781
4782 The @code{.cfi_sections} directive can be repeated, with the same or different
4783 arguments, provided that CFI generation has not yet started. Once CFI
4784 generation has started however the section list is fixed and any attempts to
4785 redefine it will result in an error.
4786
4787 @subsection @code{.cfi_startproc [simple]}
4788 @cindex @code{cfi_startproc} directive
4789 @code{.cfi_startproc} is used at the beginning of each function that
4790 should have an entry in @code{.eh_frame}. It initializes some internal
4791 data structures. Don't forget to close the function by
4792 @code{.cfi_endproc}.
4793
4794 Unless @code{.cfi_startproc} is used along with parameter @code{simple}
4795 it also emits some architecture dependent initial CFI instructions.
4796
4797 @subsection @code{.cfi_endproc}
4798 @cindex @code{cfi_endproc} directive
4799 @code{.cfi_endproc} is used at the end of a function where it closes its
4800 unwind entry previously opened by
4801 @code{.cfi_startproc}, and emits it to @code{.eh_frame}.
4802
4803 @subsection @code{.cfi_personality @var{encoding} [, @var{exp}]}
4804 @cindex @code{cfi_personality} directive
4805 @code{.cfi_personality} defines personality routine and its encoding.
4806 @var{encoding} must be a constant determining how the personality
4807 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), second
4808 argument is not present, otherwise second argument should be
4809 a constant or a symbol name. When using indirect encodings,
4810 the symbol provided should be the location where personality
4811 can be loaded from, not the personality routine itself.
4812 The default after @code{.cfi_startproc} is @code{.cfi_personality 0xff},
4813 no personality routine.
4814
4815 @subsection @code{.cfi_personality_id @var{id}}
4816 @cindex @code{cfi_personality_id} directive
4817 @code{cfi_personality_id} defines a personality routine by its index as
4818 defined in a compact unwinding format.
4819 Only valid when generating compact EH frames (i.e.
4820 with @code{.cfi_sections eh_frame_entry}.
4821
4822 @subsection @code{.cfi_fde_data [@var{opcode1} [, @dots{}]]}
4823 @cindex @code{cfi_fde_data} directive
4824 @code{cfi_fde_data} is used to describe the compact unwind opcodes to be
4825 used for the current function. These are emitted inline in the
4826 @code{.eh_frame_entry} section if small enough and there is no LSDA, or
4827 in the @code{.gnu.extab} section otherwise.
4828 Only valid when generating compact EH frames (i.e.
4829 with @code{.cfi_sections eh_frame_entry}.
4830
4831 @subsection @code{.cfi_lsda @var{encoding} [, @var{exp}]}
4832 @code{.cfi_lsda} defines LSDA and its encoding.
4833 @var{encoding} must be a constant determining how the LSDA
4834 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), the second
4835 argument is not present, otherwise the second argument should be a constant
4836 or a symbol name. The default after @code{.cfi_startproc} is @code{.cfi_lsda 0xff},
4837 meaning that no LSDA is present.
4838
4839 @subsection @code{.cfi_inline_lsda} [@var{align}]
4840 @code{.cfi_inline_lsda} marks the start of a LSDA data section and
4841 switches to the corresponding @code{.gnu.extab} section.
4842 Must be preceded by a CFI block containing a @code{.cfi_lsda} directive.
4843 Only valid when generating compact EH frames (i.e.
4844 with @code{.cfi_sections eh_frame_entry}.
4845
4846 The table header and unwinding opcodes will be generated at this point,
4847 so that they are immediately followed by the LSDA data. The symbol
4848 referenced by the @code{.cfi_lsda} directive should still be defined
4849 in case a fallback FDE based encoding is used. The LSDA data is terminated
4850 by a section directive.
4851
4852 The optional @var{align} argument specifies the alignment required.
4853 The alignment is specified as a power of two, as with the
4854 @code{.p2align} directive.
4855
4856 @subsection @code{.cfi_def_cfa @var{register}, @var{offset}}
4857 @code{.cfi_def_cfa} defines a rule for computing CFA as: @i{take
4858 address from @var{register} and add @var{offset} to it}.
4859
4860 @subsection @code{.cfi_def_cfa_register @var{register}}
4861 @code{.cfi_def_cfa_register} modifies a rule for computing CFA. From
4862 now on @var{register} will be used instead of the old one. Offset
4863 remains the same.
4864
4865 @subsection @code{.cfi_def_cfa_offset @var{offset}}
4866 @code{.cfi_def_cfa_offset} modifies a rule for computing CFA. Register
4867 remains the same, but @var{offset} is new. Note that it is the
4868 absolute offset that will be added to a defined register to compute
4869 CFA address.
4870
4871 @subsection @code{.cfi_adjust_cfa_offset @var{offset}}
4872 Same as @code{.cfi_def_cfa_offset} but @var{offset} is a relative
4873 value that is added/subtracted from the previous offset.
4874
4875 @subsection @code{.cfi_offset @var{register}, @var{offset}}
4876 Previous value of @var{register} is saved at offset @var{offset} from
4877 CFA.
4878
4879 @subsection @code{.cfi_val_offset @var{register}, @var{offset}}
4880 Previous value of @var{register} is CFA + @var{offset}.
4881
4882 @subsection @code{.cfi_rel_offset @var{register}, @var{offset}}
4883 Previous value of @var{register} is saved at offset @var{offset} from
4884 the current CFA register. This is transformed to @code{.cfi_offset}
4885 using the known displacement of the CFA register from the CFA.
4886 This is often easier to use, because the number will match the
4887 code it's annotating.
4888
4889 @subsection @code{.cfi_register @var{register1}, @var{register2}}
4890 Previous value of @var{register1} is saved in register @var{register2}.
4891
4892 @subsection @code{.cfi_restore @var{register}}
4893 @code{.cfi_restore} says that the rule for @var{register} is now the
4894 same as it was at the beginning of the function, after all initial
4895 instruction added by @code{.cfi_startproc} were executed.
4896
4897 @subsection @code{.cfi_undefined @var{register}}
4898 From now on the previous value of @var{register} can't be restored anymore.
4899
4900 @subsection @code{.cfi_same_value @var{register}}
4901 Current value of @var{register} is the same like in the previous frame,
4902 i.e. no restoration needed.
4903
4904 @subsection @code{.cfi_remember_state} and @code{.cfi_restore_state}
4905 @code{.cfi_remember_state} pushes the set of rules for every register onto an
4906 implicit stack, while @code{.cfi_restore_state} pops them off the stack and
4907 places them in the current row. This is useful for situations where you have
4908 multiple @code{.cfi_*} directives that need to be undone due to the control
4909 flow of the program. For example, we could have something like this (assuming
4910 the CFA is the value of @code{rbp}):
4911
4912 @smallexample
4913 je label
4914 popq %rbx
4915 .cfi_restore %rbx
4916 popq %r12
4917 .cfi_restore %r12
4918 popq %rbp
4919 .cfi_restore %rbp
4920 .cfi_def_cfa %rsp, 8
4921 ret
4922 label:
4923 /* Do something else */
4924 @end smallexample
4925
4926 Here, we want the @code{.cfi} directives to affect only the rows corresponding
4927 to the instructions before @code{label}. This means we'd have to add multiple
4928 @code{.cfi} directives after @code{label} to recreate the original save
4929 locations of the registers, as well as setting the CFA back to the value of
4930 @code{rbp}. This would be clumsy, and result in a larger binary size. Instead,
4931 we can write:
4932
4933 @smallexample
4934 je label
4935 popq %rbx
4936 .cfi_remember_state
4937 .cfi_restore %rbx
4938 popq %r12
4939 .cfi_restore %r12
4940 popq %rbp
4941 .cfi_restore %rbp
4942 .cfi_def_cfa %rsp, 8
4943 ret
4944 label:
4945 .cfi_restore_state
4946 /* Do something else */
4947 @end smallexample
4948
4949 That way, the rules for the instructions after @code{label} will be the same
4950 as before the first @code{.cfi_restore} without having to use multiple
4951 @code{.cfi} directives.
4952
4953 @subsection @code{.cfi_return_column @var{register}}
4954 Change return column @var{register}, i.e. the return address is either
4955 directly in @var{register} or can be accessed by rules for @var{register}.
4956
4957 @subsection @code{.cfi_signal_frame}
4958 Mark current function as signal trampoline.
4959
4960 @subsection @code{.cfi_window_save}
4961 SPARC register window has been saved.
4962
4963 @subsection @code{.cfi_escape} @var{expression}[, @dots{}]
4964 Allows the user to add arbitrary bytes to the unwind info. One
4965 might use this to add OS-specific CFI opcodes, or generic CFI
4966 opcodes that GAS does not yet support.
4967
4968 @subsection @code{.cfi_val_encoded_addr @var{register}, @var{encoding}, @var{label}}
4969 The current value of @var{register} is @var{label}. The value of @var{label}
4970 will be encoded in the output file according to @var{encoding}; see the
4971 description of @code{.cfi_personality} for details on this encoding.
4972
4973 The usefulness of equating a register to a fixed label is probably
4974 limited to the return address register. Here, it can be useful to
4975 mark a code segment that has only one return address which is reached
4976 by a direct branch and no copy of the return address exists in memory
4977 or another register.
4978
4979 @node Comm
4980 @section @code{.comm @var{symbol} , @var{length} }
4981
4982 @cindex @code{comm} directive
4983 @cindex symbol, common
4984 @code{.comm} declares a common symbol named @var{symbol}. When linking, a
4985 common symbol in one object file may be merged with a defined or common symbol
4986 of the same name in another object file. If @code{@value{LD}} does not see a
4987 definition for the symbol--just one or more common symbols--then it will
4988 allocate @var{length} bytes of uninitialized memory. @var{length} must be an
4989 absolute expression. If @code{@value{LD}} sees multiple common symbols with
4990 the same name, and they do not all have the same size, it will allocate space
4991 using the largest size.
4992
4993 @ifset COFF-ELF
4994 When using ELF or (as a GNU extension) PE, the @code{.comm} directive takes
4995 an optional third argument. This is the desired alignment of the symbol,
4996 specified for ELF as a byte boundary (for example, an alignment of 16 means
4997 that the least significant 4 bits of the address should be zero), and for PE
4998 as a power of two (for example, an alignment of 5 means aligned to a 32-byte
4999 boundary). The alignment must be an absolute expression, and it must be a
5000 power of two. If @code{@value{LD}} allocates uninitialized memory for the
5001 common symbol, it will use the alignment when placing the symbol. If no
5002 alignment is specified, @command{@value{AS}} will set the alignment to the
5003 largest power of two less than or equal to the size of the symbol, up to a
5004 maximum of 16 on ELF, or the default section alignment of 4 on PE@footnote{This
5005 is not the same as the executable image file alignment controlled by @code{@value{LD}}'s
5006 @samp{--section-alignment} option; image file sections in PE are aligned to
5007 multiples of 4096, which is far too large an alignment for ordinary variables.
5008 It is rather the default alignment for (non-debug) sections within object
5009 (@samp{*.o}) files, which are less strictly aligned.}.
5010 @end ifset
5011
5012 @ifset HPPA
5013 The syntax for @code{.comm} differs slightly on the HPPA. The syntax is
5014 @samp{@var{symbol} .comm, @var{length}}; @var{symbol} is optional.
5015 @end ifset
5016
5017 @node Data
5018 @section @code{.data @var{subsection}}
5019 @cindex @code{data} directive
5020
5021 @code{.data} tells @command{@value{AS}} to assemble the following statements onto the
5022 end of the data subsection numbered @var{subsection} (which is an
5023 absolute expression). If @var{subsection} is omitted, it defaults
5024 to zero.
5025
5026 @node Dc
5027 @section @code{.dc[@var{size}] @var{expressions}}
5028 @cindex @code{dc} directive
5029
5030 The @code{.dc} directive expects zero or more @var{expressions} separated by
5031 commas. These expressions are evaluated and their values inserted into the
5032 current section. The size of the emitted value depends upon the suffix to the
5033 @code{.dc} directive:
5034
5035 @table @code
5036 @item @samp{.a}
5037 Emits N-bit values, where N is the size of an address on the target system.
5038 @item @samp{.b}
5039 Emits 8-bit values.
5040 @item @samp{.d}
5041 Emits double precision floating-point values.
5042 @item @samp{.l}
5043 Emits 32-bit values.
5044 @item @samp{.s}
5045 Emits single precision floating-point values.
5046 @item @samp{.w}
5047 Emits 16-bit values.
5048 Note - this is true even on targets where the @code{.word} directive would emit
5049 32-bit values.
5050 @item @samp{.x}
5051 Emits long double precision floating-point values.
5052 @end table
5053
5054 If no suffix is used then @samp{.w} is assumed.
5055
5056 The byte ordering is target dependent, as is the size and format of floating
5057 point values.
5058
5059 @node Dcb
5060 @section @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
5061 @cindex @code{dcb} directive
5062 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5063 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5064 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5065 @var{size} suffix, if present, must be one of:
5066
5067 @table @code
5068 @item @samp{.b}
5069 Emits single byte values.
5070 @item @samp{.d}
5071 Emits double-precision floating point values.
5072 @item @samp{.l}
5073 Emits 4-byte values.
5074 @item @samp{.s}
5075 Emits single-precision floating point values.
5076 @item @samp{.w}
5077 Emits 2-byte values.
5078 @item @samp{.x}
5079 Emits long double-precision floating point values.
5080 @end table
5081
5082 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5083
5084 The byte ordering is target dependent, as is the size and format of floating
5085 point values.
5086
5087 @node Ds
5088 @section @code{.ds[@var{size}] @var{number} [,@var{fill}]}
5089 @cindex @code{ds} directive
5090 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5091 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5092 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5093 @var{size} suffix, if present, must be one of:
5094
5095 @table @code
5096 @item @samp{.b}
5097 Emits single byte values.
5098 @item @samp{.d}
5099 Emits 8-byte values.
5100 @item @samp{.l}
5101 Emits 4-byte values.
5102 @item @samp{.p}
5103 Emits 12-byte values.
5104 @item @samp{.s}
5105 Emits 4-byte values.
5106 @item @samp{.w}
5107 Emits 2-byte values.
5108 @item @samp{.x}
5109 Emits 12-byte values.
5110 @end table
5111
5112 Note - unlike the @code{.dcb} directive the @samp{.d}, @samp{.s} and @samp{.x}
5113 suffixes do not indicate that floating-point values are to be inserted.
5114
5115 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5116
5117 The byte ordering is target dependent.
5118
5119
5120 @ifset COFF
5121 @node Def
5122 @section @code{.def @var{name}}
5123
5124 @cindex @code{def} directive
5125 @cindex COFF symbols, debugging
5126 @cindex debugging COFF symbols
5127 Begin defining debugging information for a symbol @var{name}; the
5128 definition extends until the @code{.endef} directive is encountered.
5129 @end ifset
5130
5131 @ifset aout
5132 @node Desc
5133 @section @code{.desc @var{symbol}, @var{abs-expression}}
5134
5135 @cindex @code{desc} directive
5136 @cindex COFF symbol descriptor
5137 @cindex symbol descriptor, COFF
5138 This directive sets the descriptor of the symbol (@pxref{Symbol Attributes})
5139 to the low 16 bits of an absolute expression.
5140
5141 @ifset COFF
5142 The @samp{.desc} directive is not available when @command{@value{AS}} is
5143 configured for COFF output; it is only for @code{a.out} or @code{b.out}
5144 object format. For the sake of compatibility, @command{@value{AS}} accepts
5145 it, but produces no output, when configured for COFF.
5146 @end ifset
5147 @end ifset
5148
5149 @ifset COFF
5150 @node Dim
5151 @section @code{.dim}
5152
5153 @cindex @code{dim} directive
5154 @cindex COFF auxiliary symbol information
5155 @cindex auxiliary symbol information, COFF
5156 This directive is generated by compilers to include auxiliary debugging
5157 information in the symbol table. It is only permitted inside
5158 @code{.def}/@code{.endef} pairs.
5159 @end ifset
5160
5161 @node Double
5162 @section @code{.double @var{flonums}}
5163
5164 @cindex @code{double} directive
5165 @cindex floating point numbers (double)
5166 @code{.double} expects zero or more flonums, separated by commas. It
5167 assembles floating point numbers.
5168 @ifset GENERIC
5169 The exact kind of floating point numbers emitted depends on how
5170 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
5171 @end ifset
5172 @ifclear GENERIC
5173 @ifset IEEEFLOAT
5174 On the @value{TARGET} family @samp{.double} emits 64-bit floating-point numbers
5175 in @sc{ieee} format.
5176 @end ifset
5177 @end ifclear
5178
5179 @node Eject
5180 @section @code{.eject}
5181
5182 @cindex @code{eject} directive
5183 @cindex new page, in listings
5184 @cindex page, in listings
5185 @cindex listing control: new page
5186 Force a page break at this point, when generating assembly listings.
5187
5188 @node Else
5189 @section @code{.else}
5190
5191 @cindex @code{else} directive
5192 @code{.else} is part of the @command{@value{AS}} support for conditional
5193 assembly; see @ref{If,,@code{.if}}. It marks the beginning of a section
5194 of code to be assembled if the condition for the preceding @code{.if}
5195 was false.
5196
5197 @node Elseif
5198 @section @code{.elseif}
5199
5200 @cindex @code{elseif} directive
5201 @code{.elseif} is part of the @command{@value{AS}} support for conditional
5202 assembly; see @ref{If,,@code{.if}}. It is shorthand for beginning a new
5203 @code{.if} block that would otherwise fill the entire @code{.else} section.
5204
5205 @node End
5206 @section @code{.end}
5207
5208 @cindex @code{end} directive
5209 @code{.end} marks the end of the assembly file. @command{@value{AS}} does not
5210 process anything in the file past the @code{.end} directive.
5211
5212 @ifset COFF
5213 @node Endef
5214 @section @code{.endef}
5215
5216 @cindex @code{endef} directive
5217 This directive flags the end of a symbol definition begun with
5218 @code{.def}.
5219 @end ifset
5220
5221 @node Endfunc
5222 @section @code{.endfunc}
5223 @cindex @code{endfunc} directive
5224 @code{.endfunc} marks the end of a function specified with @code{.func}.
5225
5226 @node Endif
5227 @section @code{.endif}
5228
5229 @cindex @code{endif} directive
5230 @code{.endif} is part of the @command{@value{AS}} support for conditional assembly;
5231 it marks the end of a block of code that is only assembled
5232 conditionally. @xref{If,,@code{.if}}.
5233
5234 @node Equ
5235 @section @code{.equ @var{symbol}, @var{expression}}
5236
5237 @cindex @code{equ} directive
5238 @cindex assigning values to symbols
5239 @cindex symbols, assigning values to
5240 This directive sets the value of @var{symbol} to @var{expression}.
5241 It is synonymous with @samp{.set}; see @ref{Set,,@code{.set}}.
5242
5243 @ifset HPPA
5244 The syntax for @code{equ} on the HPPA is
5245 @samp{@var{symbol} .equ @var{expression}}.
5246 @end ifset
5247
5248 @ifset Z80
5249 The syntax for @code{equ} on the Z80 is
5250 @samp{@var{symbol} equ @var{expression}}.
5251 On the Z80 it is an error if @var{symbol} is already defined,
5252 but the symbol is not protected from later redefinition.
5253 Compare @ref{Equiv}.
5254 @end ifset
5255
5256 @node Equiv
5257 @section @code{.equiv @var{symbol}, @var{expression}}
5258 @cindex @code{equiv} directive
5259 The @code{.equiv} directive is like @code{.equ} and @code{.set}, except that
5260 the assembler will signal an error if @var{symbol} is already defined. Note a
5261 symbol which has been referenced but not actually defined is considered to be
5262 undefined.
5263
5264 Except for the contents of the error message, this is roughly equivalent to
5265 @smallexample
5266 .ifdef SYM
5267 .err
5268 .endif
5269 .equ SYM,VAL
5270 @end smallexample
5271 plus it protects the symbol from later redefinition.
5272
5273 @node Eqv
5274 @section @code{.eqv @var{symbol}, @var{expression}}
5275 @cindex @code{eqv} directive
5276 The @code{.eqv} directive is like @code{.equiv}, but no attempt is made to
5277 evaluate the expression or any part of it immediately. Instead each time
5278 the resulting symbol is used in an expression, a snapshot of its current
5279 value is taken.
5280
5281 @node Err
5282 @section @code{.err}
5283 @cindex @code{err} directive
5284 If @command{@value{AS}} assembles a @code{.err} directive, it will print an error
5285 message and, unless the @option{-Z} option was used, it will not generate an
5286 object file. This can be used to signal an error in conditionally compiled code.
5287
5288 @node Error
5289 @section @code{.error "@var{string}"}
5290 @cindex error directive
5291
5292 Similarly to @code{.err}, this directive emits an error, but you can specify a
5293 string that will be emitted as the error message. If you don't specify the
5294 message, it defaults to @code{".error directive invoked in source file"}.
5295 @xref{Errors, ,Error and Warning Messages}.
5296
5297 @smallexample
5298 .error "This code has not been assembled and tested."
5299 @end smallexample
5300
5301 @node Exitm
5302 @section @code{.exitm}
5303 Exit early from the current macro definition. @xref{Macro}.
5304
5305 @node Extern
5306 @section @code{.extern}
5307
5308 @cindex @code{extern} directive
5309 @code{.extern} is accepted in the source program---for compatibility
5310 with other assemblers---but it is ignored. @command{@value{AS}} treats
5311 all undefined symbols as external.
5312
5313 @node Fail
5314 @section @code{.fail @var{expression}}
5315
5316 @cindex @code{fail} directive
5317 Generates an error or a warning. If the value of the @var{expression} is 500
5318 or more, @command{@value{AS}} will print a warning message. If the value is less
5319 than 500, @command{@value{AS}} will print an error message. The message will
5320 include the value of @var{expression}. This can occasionally be useful inside
5321 complex nested macros or conditional assembly.
5322
5323 @node File
5324 @section @code{.file}
5325 @cindex @code{file} directive
5326
5327 @ifclear no-file-dir
5328 There are two different versions of the @code{.file} directive. Targets
5329 that support DWARF2 line number information use the DWARF2 version of
5330 @code{.file}. Other targets use the default version.
5331
5332 @subheading Default Version
5333
5334 @cindex logical file name
5335 @cindex file name, logical
5336 This version of the @code{.file} directive tells @command{@value{AS}} that we
5337 are about to start a new logical file. The syntax is:
5338
5339 @smallexample
5340 .file @var{string}
5341 @end smallexample
5342
5343 @var{string} is the new file name. In general, the filename is
5344 recognized whether or not it is surrounded by quotes @samp{"}; but if you wish
5345 to specify an empty file name, you must give the quotes--@code{""}. This
5346 statement may go away in future: it is only recognized to be compatible with
5347 old @command{@value{AS}} programs.
5348
5349 @subheading DWARF2 Version
5350 @end ifclear
5351
5352 When emitting DWARF2 line number information, @code{.file} assigns filenames
5353 to the @code{.debug_line} file name table. The syntax is:
5354
5355 @smallexample
5356 .file @var{fileno} @var{filename}
5357 @end smallexample
5358
5359 The @var{fileno} operand should be a unique positive integer to use as the
5360 index of the entry in the table. The @var{filename} operand is a C string
5361 literal.
5362
5363 The detail of filename indices is exposed to the user because the filename
5364 table is shared with the @code{.debug_info} section of the DWARF2 debugging
5365 information, and thus the user must know the exact indices that table
5366 entries will have.
5367
5368 @node Fill
5369 @section @code{.fill @var{repeat} , @var{size} , @var{value}}
5370
5371 @cindex @code{fill} directive
5372 @cindex writing patterns in memory
5373 @cindex patterns, writing in memory
5374 @var{repeat}, @var{size} and @var{value} are absolute expressions.
5375 This emits @var{repeat} copies of @var{size} bytes. @var{Repeat}
5376 may be zero or more. @var{Size} may be zero or more, but if it is
5377 more than 8, then it is deemed to have the value 8, compatible with
5378 other people's assemblers. The contents of each @var{repeat} bytes
5379 is taken from an 8-byte number. The highest order 4 bytes are
5380 zero. The lowest order 4 bytes are @var{value} rendered in the
5381 byte-order of an integer on the computer @command{@value{AS}} is assembling for.
5382 Each @var{size} bytes in a repetition is taken from the lowest order
5383 @var{size} bytes of this number. Again, this bizarre behavior is
5384 compatible with other people's assemblers.
5385
5386 @var{size} and @var{value} are optional.
5387 If the second comma and @var{value} are absent, @var{value} is
5388 assumed zero. If the first comma and following tokens are absent,
5389 @var{size} is assumed to be 1.
5390
5391 @node Float
5392 @section @code{.float @var{flonums}}
5393
5394 @cindex floating point numbers (single)
5395 @cindex @code{float} directive
5396 This directive assembles zero or more flonums, separated by commas. It
5397 has the same effect as @code{.single}.
5398 @ifset GENERIC
5399 The exact kind of floating point numbers emitted depends on how
5400 @command{@value{AS}} is configured.
5401 @xref{Machine Dependencies}.
5402 @end ifset
5403 @ifclear GENERIC
5404 @ifset IEEEFLOAT
5405 On the @value{TARGET} family, @code{.float} emits 32-bit floating point numbers
5406 in @sc{ieee} format.
5407 @end ifset
5408 @end ifclear
5409
5410 @node Func
5411 @section @code{.func @var{name}[,@var{label}]}
5412 @cindex @code{func} directive
5413 @code{.func} emits debugging information to denote function @var{name}, and
5414 is ignored unless the file is assembled with debugging enabled.
5415 Only @samp{--gstabs[+]} is currently supported.
5416 @var{label} is the entry point of the function and if omitted @var{name}
5417 prepended with the @samp{leading char} is used.
5418 @samp{leading char} is usually @code{_} or nothing, depending on the target.
5419 All functions are currently defined to have @code{void} return type.
5420 The function must be terminated with @code{.endfunc}.
5421
5422 @node Global
5423 @section @code{.global @var{symbol}}, @code{.globl @var{symbol}}
5424
5425 @cindex @code{global} directive
5426 @cindex symbol, making visible to linker
5427 @code{.global} makes the symbol visible to @code{@value{LD}}. If you define
5428 @var{symbol} in your partial program, its value is made available to
5429 other partial programs that are linked with it. Otherwise,
5430 @var{symbol} takes its attributes from a symbol of the same name
5431 from another file linked into the same program.
5432
5433 Both spellings (@samp{.globl} and @samp{.global}) are accepted, for
5434 compatibility with other assemblers.
5435
5436 @ifset HPPA
5437 On the HPPA, @code{.global} is not always enough to make it accessible to other
5438 partial programs. You may need the HPPA-only @code{.EXPORT} directive as well.
5439 @xref{HPPA Directives, ,HPPA Assembler Directives}.
5440 @end ifset
5441
5442 @ifset ELF
5443 @node Gnu_attribute
5444 @section @code{.gnu_attribute @var{tag},@var{value}}
5445 Record a @sc{gnu} object attribute for this file. @xref{Object Attributes}.
5446
5447 @node Hidden
5448 @section @code{.hidden @var{names}}
5449
5450 @cindex @code{hidden} directive
5451 @cindex visibility
5452 This is one of the ELF visibility directives. The other two are
5453 @code{.internal} (@pxref{Internal,,@code{.internal}}) and
5454 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5455
5456 This directive overrides the named symbols default visibility (which is set by
5457 their binding: local, global or weak). The directive sets the visibility to
5458 @code{hidden} which means that the symbols are not visible to other components.
5459 Such symbols are always considered to be @code{protected} as well.
5460 @end ifset
5461
5462 @node hword
5463 @section @code{.hword @var{expressions}}
5464
5465 @cindex @code{hword} directive
5466 @cindex integers, 16-bit
5467 @cindex numbers, 16-bit
5468 @cindex sixteen bit integers
5469 This expects zero or more @var{expressions}, and emits
5470 a 16 bit number for each.
5471
5472 @ifset GENERIC
5473 This directive is a synonym for @samp{.short}; depending on the target
5474 architecture, it may also be a synonym for @samp{.word}.
5475 @end ifset
5476 @ifclear GENERIC
5477 @ifset W32
5478 This directive is a synonym for @samp{.short}.
5479 @end ifset
5480 @ifset W16
5481 This directive is a synonym for both @samp{.short} and @samp{.word}.
5482 @end ifset
5483 @end ifclear
5484
5485 @node Ident
5486 @section @code{.ident}
5487
5488 @cindex @code{ident} directive
5489
5490 This directive is used by some assemblers to place tags in object files. The
5491 behavior of this directive varies depending on the target. When using the
5492 a.out object file format, @command{@value{AS}} simply accepts the directive for
5493 source-file compatibility with existing assemblers, but does not emit anything
5494 for it. When using COFF, comments are emitted to the @code{.comment} or
5495 @code{.rdata} section, depending on the target. When using ELF, comments are
5496 emitted to the @code{.comment} section.
5497
5498 @node If
5499 @section @code{.if @var{absolute expression}}
5500
5501 @cindex conditional assembly
5502 @cindex @code{if} directive
5503 @code{.if} marks the beginning of a section of code which is only
5504 considered part of the source program being assembled if the argument
5505 (which must be an @var{absolute expression}) is non-zero. The end of
5506 the conditional section of code must be marked by @code{.endif}
5507 (@pxref{Endif,,@code{.endif}}); optionally, you may include code for the
5508 alternative condition, flagged by @code{.else} (@pxref{Else,,@code{.else}}).
5509 If you have several conditions to check, @code{.elseif} may be used to avoid
5510 nesting blocks if/else within each subsequent @code{.else} block.
5511
5512 The following variants of @code{.if} are also supported:
5513 @table @code
5514 @cindex @code{ifdef} directive
5515 @item .ifdef @var{symbol}
5516 Assembles the following section of code if the specified @var{symbol}
5517 has been defined. Note a symbol which has been referenced but not yet defined
5518 is considered to be undefined.
5519
5520 @cindex @code{ifb} directive
5521 @item .ifb @var{text}
5522 Assembles the following section of code if the operand is blank (empty).
5523
5524 @cindex @code{ifc} directive
5525 @item .ifc @var{string1},@var{string2}
5526 Assembles the following section of code if the two strings are the same. The
5527 strings may be optionally quoted with single quotes. If they are not quoted,
5528 the first string stops at the first comma, and the second string stops at the
5529 end of the line. Strings which contain whitespace should be quoted. The
5530 string comparison is case sensitive.
5531
5532 @cindex @code{ifeq} directive
5533 @item .ifeq @var{absolute expression}
5534 Assembles the following section of code if the argument is zero.
5535
5536 @cindex @code{ifeqs} directive
5537 @item .ifeqs @var{string1},@var{string2}
5538 Another form of @code{.ifc}. The strings must be quoted using double quotes.
5539
5540 @cindex @code{ifge} directive
5541 @item .ifge @var{absolute expression}
5542 Assembles the following section of code if the argument is greater than or
5543 equal to zero.
5544
5545 @cindex @code{ifgt} directive
5546 @item .ifgt @var{absolute expression}
5547 Assembles the following section of code if the argument is greater than zero.
5548
5549 @cindex @code{ifle} directive
5550 @item .ifle @var{absolute expression}
5551 Assembles the following section of code if the argument is less than or equal
5552 to zero.
5553
5554 @cindex @code{iflt} directive
5555 @item .iflt @var{absolute expression}
5556 Assembles the following section of code if the argument is less than zero.
5557
5558 @cindex @code{ifnb} directive
5559 @item .ifnb @var{text}
5560 Like @code{.ifb}, but the sense of the test is reversed: this assembles the
5561 following section of code if the operand is non-blank (non-empty).
5562
5563 @cindex @code{ifnc} directive
5564 @item .ifnc @var{string1},@var{string2}.
5565 Like @code{.ifc}, but the sense of the test is reversed: this assembles the
5566 following section of code if the two strings are not the same.
5567
5568 @cindex @code{ifndef} directive
5569 @cindex @code{ifnotdef} directive
5570 @item .ifndef @var{symbol}
5571 @itemx .ifnotdef @var{symbol}
5572 Assembles the following section of code if the specified @var{symbol}
5573 has not been defined. Both spelling variants are equivalent. Note a symbol
5574 which has been referenced but not yet defined is considered to be undefined.
5575
5576 @cindex @code{ifne} directive
5577 @item .ifne @var{absolute expression}
5578 Assembles the following section of code if the argument is not equal to zero
5579 (in other words, this is equivalent to @code{.if}).
5580
5581 @cindex @code{ifnes} directive
5582 @item .ifnes @var{string1},@var{string2}
5583 Like @code{.ifeqs}, but the sense of the test is reversed: this assembles the
5584 following section of code if the two strings are not the same.
5585 @end table
5586
5587 @node Incbin
5588 @section @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
5589
5590 @cindex @code{incbin} directive
5591 @cindex binary files, including
5592 The @code{incbin} directive includes @var{file} verbatim at the current
5593 location. You can control the search paths used with the @samp{-I} command-line
5594 option (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5595 around @var{file}.
5596
5597 The @var{skip} argument skips a number of bytes from the start of the
5598 @var{file}. The @var{count} argument indicates the maximum number of bytes to
5599 read. Note that the data is not aligned in any way, so it is the user's
5600 responsibility to make sure that proper alignment is provided both before and
5601 after the @code{incbin} directive.
5602
5603 @node Include
5604 @section @code{.include "@var{file}"}
5605
5606 @cindex @code{include} directive
5607 @cindex supporting files, including
5608 @cindex files, including
5609 This directive provides a way to include supporting files at specified
5610 points in your source program. The code from @var{file} is assembled as
5611 if it followed the point of the @code{.include}; when the end of the
5612 included file is reached, assembly of the original file continues. You
5613 can control the search paths used with the @samp{-I} command-line option
5614 (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5615 around @var{file}.
5616
5617 @node Int
5618 @section @code{.int @var{expressions}}
5619
5620 @cindex @code{int} directive
5621 @cindex integers, 32-bit
5622 Expect zero or more @var{expressions}, of any section, separated by commas.
5623 For each expression, emit a number that, at run time, is the value of that
5624 expression. The byte order and bit size of the number depends on what kind
5625 of target the assembly is for.
5626
5627 @ifclear GENERIC
5628 @ifset H8
5629 On most forms of the H8/300, @code{.int} emits 16-bit
5630 integers. On the H8/300H and the Renesas SH, however, @code{.int} emits
5631 32-bit integers.
5632 @end ifset
5633 @end ifclear
5634
5635 @ifset ELF
5636 @node Internal
5637 @section @code{.internal @var{names}}
5638
5639 @cindex @code{internal} directive
5640 @cindex visibility
5641 This is one of the ELF visibility directives. The other two are
5642 @code{.hidden} (@pxref{Hidden,,@code{.hidden}}) and
5643 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5644
5645 This directive overrides the named symbols default visibility (which is set by
5646 their binding: local, global or weak). The directive sets the visibility to
5647 @code{internal} which means that the symbols are considered to be @code{hidden}
5648 (i.e., not visible to other components), and that some extra, processor specific
5649 processing must also be performed upon the symbols as well.
5650 @end ifset
5651
5652 @node Irp
5653 @section @code{.irp @var{symbol},@var{values}}@dots{}
5654
5655 @cindex @code{irp} directive
5656 Evaluate a sequence of statements assigning different values to @var{symbol}.
5657 The sequence of statements starts at the @code{.irp} directive, and is
5658 terminated by an @code{.endr} directive. For each @var{value}, @var{symbol} is
5659 set to @var{value}, and the sequence of statements is assembled. If no
5660 @var{value} is listed, the sequence of statements is assembled once, with
5661 @var{symbol} set to the null string. To refer to @var{symbol} within the
5662 sequence of statements, use @var{\symbol}.
5663
5664 For example, assembling
5665
5666 @example
5667 .irp param,1,2,3
5668 move d\param,sp@@-
5669 .endr
5670 @end example
5671
5672 is equivalent to assembling
5673
5674 @example
5675 move d1,sp@@-
5676 move d2,sp@@-
5677 move d3,sp@@-
5678 @end example
5679
5680 For some caveats with the spelling of @var{symbol}, see also @ref{Macro}.
5681
5682 @node Irpc
5683 @section @code{.irpc @var{symbol},@var{values}}@dots{}
5684
5685 @cindex @code{irpc} directive
5686 Evaluate a sequence of statements assigning different values to @var{symbol}.
5687 The sequence of statements starts at the @code{.irpc} directive, and is
5688 terminated by an @code{.endr} directive. For each character in @var{value},
5689 @var{symbol} is set to the character, and the sequence of statements is
5690 assembled. If no @var{value} is listed, the sequence of statements is
5691 assembled once, with @var{symbol} set to the null string. To refer to
5692 @var{symbol} within the sequence of statements, use @var{\symbol}.
5693
5694 For example, assembling
5695
5696 @example
5697 .irpc param,123
5698 move d\param,sp@@-
5699 .endr
5700 @end example
5701
5702 is equivalent to assembling
5703
5704 @example
5705 move d1,sp@@-
5706 move d2,sp@@-
5707 move d3,sp@@-
5708 @end example
5709
5710 For some caveats with the spelling of @var{symbol}, see also the discussion
5711 at @xref{Macro}.
5712
5713 @node Lcomm
5714 @section @code{.lcomm @var{symbol} , @var{length}}
5715
5716 @cindex @code{lcomm} directive
5717 @cindex local common symbols
5718 @cindex symbols, local common
5719 Reserve @var{length} (an absolute expression) bytes for a local common
5720 denoted by @var{symbol}. The section and value of @var{symbol} are
5721 those of the new local common. The addresses are allocated in the bss
5722 section, so that at run-time the bytes start off zeroed. @var{Symbol}
5723 is not declared global (@pxref{Global,,@code{.global}}), so is normally
5724 not visible to @code{@value{LD}}.
5725
5726 @ifset GENERIC
5727 Some targets permit a third argument to be used with @code{.lcomm}. This
5728 argument specifies the desired alignment of the symbol in the bss section.
5729 @end ifset
5730
5731 @ifset HPPA
5732 The syntax for @code{.lcomm} differs slightly on the HPPA. The syntax is
5733 @samp{@var{symbol} .lcomm, @var{length}}; @var{symbol} is optional.
5734 @end ifset
5735
5736 @node Lflags
5737 @section @code{.lflags}
5738
5739 @cindex @code{lflags} directive (ignored)
5740 @command{@value{AS}} accepts this directive, for compatibility with other
5741 assemblers, but ignores it.
5742
5743 @ifclear no-line-dir
5744 @node Line
5745 @section @code{.line @var{line-number}}
5746
5747 @cindex @code{line} directive
5748 @cindex logical line number
5749 @ifset aout
5750 Change the logical line number. @var{line-number} must be an absolute
5751 expression. The next line has that logical line number. Therefore any other
5752 statements on the current line (after a statement separator character) are
5753 reported as on logical line number @var{line-number} @minus{} 1. One day
5754 @command{@value{AS}} will no longer support this directive: it is recognized only
5755 for compatibility with existing assembler programs.
5756 @end ifset
5757
5758 Even though this is a directive associated with the @code{a.out} or
5759 @code{b.out} object-code formats, @command{@value{AS}} still recognizes it
5760 when producing COFF output, and treats @samp{.line} as though it
5761 were the COFF @samp{.ln} @emph{if} it is found outside a
5762 @code{.def}/@code{.endef} pair.
5763
5764 Inside a @code{.def}, @samp{.line} is, instead, one of the directives
5765 used by compilers to generate auxiliary symbol information for
5766 debugging.
5767 @end ifclear
5768
5769 @node Linkonce
5770 @section @code{.linkonce [@var{type}]}
5771 @cindex COMDAT
5772 @cindex @code{linkonce} directive
5773 @cindex common sections
5774 Mark the current section so that the linker only includes a single copy of it.
5775 This may be used to include the same section in several different object files,
5776 but ensure that the linker will only include it once in the final output file.
5777 The @code{.linkonce} pseudo-op must be used for each instance of the section.
5778 Duplicate sections are detected based on the section name, so it should be
5779 unique.
5780
5781 This directive is only supported by a few object file formats; as of this
5782 writing, the only object file format which supports it is the Portable
5783 Executable format used on Windows NT.
5784
5785 The @var{type} argument is optional. If specified, it must be one of the
5786 following strings. For example:
5787 @smallexample
5788 .linkonce same_size
5789 @end smallexample
5790 Not all types may be supported on all object file formats.
5791
5792 @table @code
5793 @item discard
5794 Silently discard duplicate sections. This is the default.
5795
5796 @item one_only
5797 Warn if there are duplicate sections, but still keep only one copy.
5798
5799 @item same_size
5800 Warn if any of the duplicates have different sizes.
5801
5802 @item same_contents
5803 Warn if any of the duplicates do not have exactly the same contents.
5804 @end table
5805
5806 @node List
5807 @section @code{.list}
5808
5809 @cindex @code{list} directive
5810 @cindex listing control, turning on
5811 Control (in conjunction with the @code{.nolist} directive) whether or
5812 not assembly listings are generated. These two directives maintain an
5813 internal counter (which is zero initially). @code{.list} increments the
5814 counter, and @code{.nolist} decrements it. Assembly listings are
5815 generated whenever the counter is greater than zero.
5816
5817 By default, listings are disabled. When you enable them (with the
5818 @samp{-a} command-line option; @pxref{Invoking,,Command-Line Options}),
5819 the initial value of the listing counter is one.
5820
5821 @node Ln
5822 @section @code{.ln @var{line-number}}
5823
5824 @cindex @code{ln} directive
5825 @ifclear no-line-dir
5826 @samp{.ln} is a synonym for @samp{.line}.
5827 @end ifclear
5828 @ifset no-line-dir
5829 Tell @command{@value{AS}} to change the logical line number. @var{line-number}
5830 must be an absolute expression. The next line has that logical
5831 line number, so any other statements on the current line (after a
5832 statement separator character @code{;}) are reported as on logical
5833 line number @var{line-number} @minus{} 1.
5834 @end ifset
5835
5836 @node Loc
5837 @section @code{.loc @var{fileno} @var{lineno} [@var{column}] [@var{options}]}
5838 @cindex @code{loc} directive
5839 When emitting DWARF2 line number information,
5840 the @code{.loc} directive will add a row to the @code{.debug_line} line
5841 number matrix corresponding to the immediately following assembly
5842 instruction. The @var{fileno}, @var{lineno}, and optional @var{column}
5843 arguments will be applied to the @code{.debug_line} state machine before
5844 the row is added.
5845
5846 The @var{options} are a sequence of the following tokens in any order:
5847
5848 @table @code
5849 @item basic_block
5850 This option will set the @code{basic_block} register in the
5851 @code{.debug_line} state machine to @code{true}.
5852
5853 @item prologue_end
5854 This option will set the @code{prologue_end} register in the
5855 @code{.debug_line} state machine to @code{true}.
5856
5857 @item epilogue_begin
5858 This option will set the @code{epilogue_begin} register in the
5859 @code{.debug_line} state machine to @code{true}.
5860
5861 @item is_stmt @var{value}
5862 This option will set the @code{is_stmt} register in the
5863 @code{.debug_line} state machine to @code{value}, which must be
5864 either 0 or 1.
5865
5866 @item isa @var{value}
5867 This directive will set the @code{isa} register in the @code{.debug_line}
5868 state machine to @var{value}, which must be an unsigned integer.
5869
5870 @item discriminator @var{value}
5871 This directive will set the @code{discriminator} register in the @code{.debug_line}
5872 state machine to @var{value}, which must be an unsigned integer.
5873
5874 @item view @var{value}
5875 This option causes a row to be added to @code{.debug_line} in reference to the
5876 current address (which might not be the same as that of the following assembly
5877 instruction), and to associate @var{value} with the @code{view} register in the
5878 @code{.debug_line} state machine. If @var{value} is a label, both the
5879 @code{view} register and the label are set to the number of prior @code{.loc}
5880 directives at the same program location. If @var{value} is the literal
5881 @code{0}, the @code{view} register is set to zero, and the assembler asserts
5882 that there aren't any prior @code{.loc} directives at the same program
5883 location. If @var{value} is the literal @code{-0}, the assembler arrange for
5884 the @code{view} register to be reset in this row, even if there are prior
5885 @code{.loc} directives at the same program location.
5886
5887 @end table
5888
5889 @node Loc_mark_labels
5890 @section @code{.loc_mark_labels @var{enable}}
5891 @cindex @code{loc_mark_labels} directive
5892 When emitting DWARF2 line number information,
5893 the @code{.loc_mark_labels} directive makes the assembler emit an entry
5894 to the @code{.debug_line} line number matrix with the @code{basic_block}
5895 register in the state machine set whenever a code label is seen.
5896 The @var{enable} argument should be either 1 or 0, to enable or disable
5897 this function respectively.
5898
5899 @ifset ELF
5900 @node Local
5901 @section @code{.local @var{names}}
5902
5903 @cindex @code{local} directive
5904 This directive, which is available for ELF targets, marks each symbol in
5905 the comma-separated list of @code{names} as a local symbol so that it
5906 will not be externally visible. If the symbols do not already exist,
5907 they will be created.
5908
5909 For targets where the @code{.lcomm} directive (@pxref{Lcomm}) does not
5910 accept an alignment argument, which is the case for most ELF targets,
5911 the @code{.local} directive can be used in combination with @code{.comm}
5912 (@pxref{Comm}) to define aligned local common data.
5913 @end ifset
5914
5915 @node Long
5916 @section @code{.long @var{expressions}}
5917
5918 @cindex @code{long} directive
5919 @code{.long} is the same as @samp{.int}. @xref{Int,,@code{.int}}.
5920
5921 @ignore
5922 @c no one seems to know what this is for or whether this description is
5923 @c what it really ought to do
5924 @node Lsym
5925 @section @code{.lsym @var{symbol}, @var{expression}}
5926
5927 @cindex @code{lsym} directive
5928 @cindex symbol, not referenced in assembly
5929 @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in
5930 the hash table, ensuring it cannot be referenced by name during the
5931 rest of the assembly. This sets the attributes of the symbol to be
5932 the same as the expression value:
5933 @smallexample
5934 @var{other} = @var{descriptor} = 0
5935 @var{type} = @r{(section of @var{expression})}
5936 @var{value} = @var{expression}
5937 @end smallexample
5938 @noindent
5939 The new symbol is not flagged as external.
5940 @end ignore
5941
5942 @node Macro
5943 @section @code{.macro}
5944
5945 @cindex macros
5946 The commands @code{.macro} and @code{.endm} allow you to define macros that
5947 generate assembly output. For example, this definition specifies a macro
5948 @code{sum} that puts a sequence of numbers into memory:
5949
5950 @example
5951 .macro sum from=0, to=5
5952 .long \from
5953 .if \to-\from
5954 sum "(\from+1)",\to
5955 .endif
5956 .endm
5957 @end example
5958
5959 @noindent
5960 With that definition, @samp{SUM 0,5} is equivalent to this assembly input:
5961
5962 @example
5963 .long 0
5964 .long 1
5965 .long 2
5966 .long 3
5967 .long 4
5968 .long 5
5969 @end example
5970
5971 @ftable @code
5972 @item .macro @var{macname}
5973 @itemx .macro @var{macname} @var{macargs} @dots{}
5974 @cindex @code{macro} directive
5975 Begin the definition of a macro called @var{macname}. If your macro
5976 definition requires arguments, specify their names after the macro name,
5977 separated by commas or spaces. You can qualify the macro argument to
5978 indicate whether all invocations must specify a non-blank value (through
5979 @samp{:@code{req}}), or whether it takes all of the remaining arguments
5980 (through @samp{:@code{vararg}}). You can supply a default value for any
5981 macro argument by following the name with @samp{=@var{deflt}}. You
5982 cannot define two macros with the same @var{macname} unless it has been
5983 subject to the @code{.purgem} directive (@pxref{Purgem}) between the two
5984 definitions. For example, these are all valid @code{.macro} statements:
5985
5986 @table @code
5987 @item .macro comm
5988 Begin the definition of a macro called @code{comm}, which takes no
5989 arguments.
5990
5991 @item .macro plus1 p, p1
5992 @itemx .macro plus1 p p1
5993 Either statement begins the definition of a macro called @code{plus1},
5994 which takes two arguments; within the macro definition, write
5995 @samp{\p} or @samp{\p1} to evaluate the arguments.
5996
5997 @item .macro reserve_str p1=0 p2
5998 Begin the definition of a macro called @code{reserve_str}, with two
5999 arguments. The first argument has a default value, but not the second.
6000 After the definition is complete, you can call the macro either as
6001 @samp{reserve_str @var{a},@var{b}} (with @samp{\p1} evaluating to
6002 @var{a} and @samp{\p2} evaluating to @var{b}), or as @samp{reserve_str
6003 ,@var{b}} (with @samp{\p1} evaluating as the default, in this case
6004 @samp{0}, and @samp{\p2} evaluating to @var{b}).
6005
6006 @item .macro m p1:req, p2=0, p3:vararg
6007 Begin the definition of a macro called @code{m}, with at least three
6008 arguments. The first argument must always have a value specified, but
6009 not the second, which instead has a default value. The third formal
6010 will get assigned all remaining arguments specified at invocation time.
6011
6012 When you call a macro, you can specify the argument values either by
6013 position, or by keyword. For example, @samp{sum 9,17} is equivalent to
6014 @samp{sum to=17, from=9}.
6015
6016 @end table
6017
6018 Note that since each of the @var{macargs} can be an identifier exactly
6019 as any other one permitted by the target architecture, there may be
6020 occasional problems if the target hand-crafts special meanings to certain
6021 characters when they occur in a special position. For example, if the colon
6022 (@code{:}) is generally permitted to be part of a symbol name, but the
6023 architecture specific code special-cases it when occurring as the final
6024 character of a symbol (to denote a label), then the macro parameter
6025 replacement code will have no way of knowing that and consider the whole
6026 construct (including the colon) an identifier, and check only this
6027 identifier for being the subject to parameter substitution. So for example
6028 this macro definition:
6029
6030 @example
6031 .macro label l
6032 \l:
6033 .endm
6034 @end example
6035
6036 might not work as expected. Invoking @samp{label foo} might not create a label
6037 called @samp{foo} but instead just insert the text @samp{\l:} into the
6038 assembler source, probably generating an error about an unrecognised
6039 identifier.
6040
6041 Similarly problems might occur with the period character (@samp{.})
6042 which is often allowed inside opcode names (and hence identifier names). So
6043 for example constructing a macro to build an opcode from a base name and a
6044 length specifier like this:
6045
6046 @example
6047 .macro opcode base length
6048 \base.\length
6049 .endm
6050 @end example
6051
6052 and invoking it as @samp{opcode store l} will not create a @samp{store.l}
6053 instruction but instead generate some kind of error as the assembler tries to
6054 interpret the text @samp{\base.\length}.
6055
6056 There are several possible ways around this problem:
6057
6058 @table @code
6059 @item Insert white space
6060 If it is possible to use white space characters then this is the simplest
6061 solution. eg:
6062
6063 @example
6064 .macro label l
6065 \l :
6066 .endm
6067 @end example
6068
6069 @item Use @samp{\()}
6070 The string @samp{\()} can be used to separate the end of a macro argument from
6071 the following text. eg:
6072
6073 @example
6074 .macro opcode base length
6075 \base\().\length
6076 .endm
6077 @end example
6078
6079 @item Use the alternate macro syntax mode
6080 In the alternative macro syntax mode the ampersand character (@samp{&}) can be
6081 used as a separator. eg:
6082
6083 @example
6084 .altmacro
6085 .macro label l
6086 l&:
6087 .endm
6088 @end example
6089 @end table
6090
6091 Note: this problem of correctly identifying string parameters to pseudo ops
6092 also applies to the identifiers used in @code{.irp} (@pxref{Irp})
6093 and @code{.irpc} (@pxref{Irpc}) as well.
6094
6095 @item .endm
6096 @cindex @code{endm} directive
6097 Mark the end of a macro definition.
6098
6099 @item .exitm
6100 @cindex @code{exitm} directive
6101 Exit early from the current macro definition.
6102
6103 @cindex number of macros executed
6104 @cindex macros, count executed
6105 @item \@@
6106 @command{@value{AS}} maintains a counter of how many macros it has
6107 executed in this pseudo-variable; you can copy that number to your
6108 output with @samp{\@@}, but @emph{only within a macro definition}.
6109
6110 @item LOCAL @var{name} [ , @dots{} ]
6111 @emph{Warning: @code{LOCAL} is only available if you select ``alternate
6112 macro syntax'' with @samp{--alternate} or @code{.altmacro}.}
6113 @xref{Altmacro,,@code{.altmacro}}.
6114 @end ftable
6115
6116 @node MRI
6117 @section @code{.mri @var{val}}
6118
6119 @cindex @code{mri} directive
6120 @cindex MRI mode, temporarily
6121 If @var{val} is non-zero, this tells @command{@value{AS}} to enter MRI mode. If
6122 @var{val} is zero, this tells @command{@value{AS}} to exit MRI mode. This change
6123 affects code assembled until the next @code{.mri} directive, or until the end
6124 of the file. @xref{M, MRI mode, MRI mode}.
6125
6126 @node Noaltmacro
6127 @section @code{.noaltmacro}
6128 Disable alternate macro mode. @xref{Altmacro}.
6129
6130 @node Nolist
6131 @section @code{.nolist}
6132
6133 @cindex @code{nolist} directive
6134 @cindex listing control, turning off
6135 Control (in conjunction with the @code{.list} directive) whether or
6136 not assembly listings are generated. These two directives maintain an
6137 internal counter (which is zero initially). @code{.list} increments the
6138 counter, and @code{.nolist} decrements it. Assembly listings are
6139 generated whenever the counter is greater than zero.
6140
6141 @node Nops
6142 @section @code{.nops @var{size}[, @var{control}]}
6143
6144 @cindex @code{nops} directive
6145 @cindex filling memory with no-op instructions
6146 This directive emits @var{size} bytes filled with no-op instructions.
6147 @var{size} is absolute expression, which must be a positve value.
6148 @var{control} controls how no-op instructions should be generated. If
6149 the comma and @var{control} are omitted, @var{control} is assumed to be
6150 zero.
6151
6152 Note: For Intel 80386 and AMD x86-64 targets, @var{control} specifies
6153 the size limit of a no-op instruction. The valid values of @var{control}
6154 are between 0 and 4 in 16-bit mode, between 0 and 7 when tuning for
6155 older processors in 32-bit mode, between 0 and 11 in 64-bit mode or when
6156 tuning for newer processors in 32-bit mode. When 0 is used, the no-op
6157 instruction size limit is set to the maximum supported size.
6158
6159 @node Octa
6160 @section @code{.octa @var{bignums}}
6161
6162 @c FIXME: double size emitted for "octa" on some? Or warn?
6163 @cindex @code{octa} directive
6164 @cindex integer, 16-byte
6165 @cindex sixteen byte integer
6166 This directive expects zero or more bignums, separated by commas. For each
6167 bignum, it emits a 16-byte integer.
6168
6169 The term ``octa'' comes from contexts in which a ``word'' is two bytes;
6170 hence @emph{octa}-word for 16 bytes.
6171
6172 @node Offset
6173 @section @code{.offset @var{loc}}
6174
6175 @cindex @code{offset} directive
6176 Set the location counter to @var{loc} in the absolute section. @var{loc} must
6177 be an absolute expression. This directive may be useful for defining
6178 symbols with absolute values. Do not confuse it with the @code{.org}
6179 directive.
6180
6181 @node Org
6182 @section @code{.org @var{new-lc} , @var{fill}}
6183
6184 @cindex @code{org} directive
6185 @cindex location counter, advancing
6186 @cindex advancing location counter
6187 @cindex current address, advancing
6188 Advance the location counter of the current section to
6189 @var{new-lc}. @var{new-lc} is either an absolute expression or an
6190 expression with the same section as the current subsection. That is,
6191 you can't use @code{.org} to cross sections: if @var{new-lc} has the
6192 wrong section, the @code{.org} directive is ignored. To be compatible
6193 with former assemblers, if the section of @var{new-lc} is absolute,
6194 @command{@value{AS}} issues a warning, then pretends the section of @var{new-lc}
6195 is the same as the current subsection.
6196
6197 @code{.org} may only increase the location counter, or leave it
6198 unchanged; you cannot use @code{.org} to move the location counter
6199 backwards.
6200
6201 @c double negative used below "not undefined" because this is a specific
6202 @c reference to "undefined" (as SEG_UNKNOWN is called in this manual)
6203 @c section. doc@cygnus.com 18feb91
6204 Because @command{@value{AS}} tries to assemble programs in one pass, @var{new-lc}
6205 may not be undefined. If you really detest this restriction we eagerly await
6206 a chance to share your improved assembler.
6207
6208 Beware that the origin is relative to the start of the section, not
6209 to the start of the subsection. This is compatible with other
6210 people's assemblers.
6211
6212 When the location counter (of the current subsection) is advanced, the
6213 intervening bytes are filled with @var{fill} which should be an
6214 absolute expression. If the comma and @var{fill} are omitted,
6215 @var{fill} defaults to zero.
6216
6217 @node P2align
6218 @section @code{.p2align[wl] @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
6219
6220 @cindex padding the location counter given a power of two
6221 @cindex @code{p2align} directive
6222 Pad the location counter (in the current subsection) to a particular
6223 storage boundary. The first expression (which must be absolute) is the
6224 number of low-order zero bits the location counter must have after
6225 advancement. For example @samp{.p2align 3} advances the location
6226 counter until it is a multiple of 8. If the location counter is already a
6227 multiple of 8, no change is needed.
6228
6229 The second expression (also absolute) gives the fill value to be stored in the
6230 padding bytes. It (and the comma) may be omitted. If it is omitted, the
6231 padding bytes are normally zero. However, on most systems, if the section is
6232 marked as containing code and the fill value is omitted, the space is filled
6233 with no-op instructions.
6234
6235 The third expression is also absolute, and is also optional. If it is present,
6236 it is the maximum number of bytes that should be skipped by this alignment
6237 directive. If doing the alignment would require skipping more bytes than the
6238 specified maximum, then the alignment is not done at all. You can omit the
6239 fill value (the second argument) entirely by simply using two commas after the
6240 required alignment; this can be useful if you want the alignment to be filled
6241 with no-op instructions when appropriate.
6242
6243 @cindex @code{p2alignw} directive
6244 @cindex @code{p2alignl} directive
6245 The @code{.p2alignw} and @code{.p2alignl} directives are variants of the
6246 @code{.p2align} directive. The @code{.p2alignw} directive treats the fill
6247 pattern as a two byte word value. The @code{.p2alignl} directives treats the
6248 fill pattern as a four byte longword value. For example, @code{.p2alignw
6249 2,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
6250 filled in with the value 0x368d (the exact placement of the bytes depends upon
6251 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
6252 undefined.
6253
6254 @ifset ELF
6255 @node PopSection
6256 @section @code{.popsection}
6257
6258 @cindex @code{popsection} directive
6259 @cindex Section Stack
6260 This is one of the ELF section stack manipulation directives. The others are
6261 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6262 @code{.pushsection} (@pxref{PushSection}), and @code{.previous}
6263 (@pxref{Previous}).
6264
6265 This directive replaces the current section (and subsection) with the top
6266 section (and subsection) on the section stack. This section is popped off the
6267 stack.
6268 @end ifset
6269
6270 @ifset ELF
6271 @node Previous
6272 @section @code{.previous}
6273
6274 @cindex @code{previous} directive
6275 @cindex Section Stack
6276 This is one of the ELF section stack manipulation directives. The others are
6277 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6278 @code{.pushsection} (@pxref{PushSection}), and @code{.popsection}
6279 (@pxref{PopSection}).
6280
6281 This directive swaps the current section (and subsection) with most recently
6282 referenced section/subsection pair prior to this one. Multiple
6283 @code{.previous} directives in a row will flip between two sections (and their
6284 subsections). For example:
6285
6286 @smallexample
6287 .section A
6288 .subsection 1
6289 .word 0x1234
6290 .subsection 2
6291 .word 0x5678
6292 .previous
6293 .word 0x9abc
6294 @end smallexample
6295
6296 Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of
6297 section A. Whilst:
6298
6299 @smallexample
6300 .section A
6301 .subsection 1
6302 # Now in section A subsection 1
6303 .word 0x1234
6304 .section B
6305 .subsection 0
6306 # Now in section B subsection 0
6307 .word 0x5678
6308 .subsection 1
6309 # Now in section B subsection 1
6310 .word 0x9abc
6311 .previous
6312 # Now in section B subsection 0
6313 .word 0xdef0
6314 @end smallexample
6315
6316 Will place 0x1234 into section A, 0x5678 and 0xdef0 into subsection 0 of
6317 section B and 0x9abc into subsection 1 of section B.
6318
6319 In terms of the section stack, this directive swaps the current section with
6320 the top section on the section stack.
6321 @end ifset
6322
6323 @node Print
6324 @section @code{.print @var{string}}
6325
6326 @cindex @code{print} directive
6327 @command{@value{AS}} will print @var{string} on the standard output during
6328 assembly. You must put @var{string} in double quotes.
6329
6330 @ifset ELF
6331 @node Protected
6332 @section @code{.protected @var{names}}
6333
6334 @cindex @code{protected} directive
6335 @cindex visibility
6336 This is one of the ELF visibility directives. The other two are
6337 @code{.hidden} (@pxref{Hidden}) and @code{.internal} (@pxref{Internal}).
6338
6339 This directive overrides the named symbols default visibility (which is set by
6340 their binding: local, global or weak). The directive sets the visibility to
6341 @code{protected} which means that any references to the symbols from within the
6342 components that defines them must be resolved to the definition in that
6343 component, even if a definition in another component would normally preempt
6344 this.
6345 @end ifset
6346
6347 @node Psize
6348 @section @code{.psize @var{lines} , @var{columns}}
6349
6350 @cindex @code{psize} directive
6351 @cindex listing control: paper size
6352 @cindex paper size, for listings
6353 Use this directive to declare the number of lines---and, optionally, the
6354 number of columns---to use for each page, when generating listings.
6355
6356 If you do not use @code{.psize}, listings use a default line-count
6357 of 60. You may omit the comma and @var{columns} specification; the
6358 default width is 200 columns.
6359
6360 @command{@value{AS}} generates formfeeds whenever the specified number of
6361 lines is exceeded (or whenever you explicitly request one, using
6362 @code{.eject}).
6363
6364 If you specify @var{lines} as @code{0}, no formfeeds are generated save
6365 those explicitly specified with @code{.eject}.
6366
6367 @node Purgem
6368 @section @code{.purgem @var{name}}
6369
6370 @cindex @code{purgem} directive
6371 Undefine the macro @var{name}, so that later uses of the string will not be
6372 expanded. @xref{Macro}.
6373
6374 @ifset ELF
6375 @node PushSection
6376 @section @code{.pushsection @var{name} [, @var{subsection}] [, "@var{flags}"[, @@@var{type}[,@var{arguments}]]]}
6377
6378 @cindex @code{pushsection} directive
6379 @cindex Section Stack
6380 This is one of the ELF section stack manipulation directives. The others are
6381 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6382 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6383 (@pxref{Previous}).
6384
6385 This directive pushes the current section (and subsection) onto the
6386 top of the section stack, and then replaces the current section and
6387 subsection with @code{name} and @code{subsection}. The optional
6388 @code{flags}, @code{type} and @code{arguments} are treated the same
6389 as in the @code{.section} (@pxref{Section}) directive.
6390 @end ifset
6391
6392 @node Quad
6393 @section @code{.quad @var{bignums}}
6394
6395 @cindex @code{quad} directive
6396 @code{.quad} expects zero or more bignums, separated by commas. For
6397 each bignum, it emits
6398 @ifclear bignum-16
6399 an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
6400 warning message; and just takes the lowest order 8 bytes of the bignum.
6401 @cindex eight-byte integer
6402 @cindex integer, 8-byte
6403
6404 The term ``quad'' comes from contexts in which a ``word'' is two bytes;
6405 hence @emph{quad}-word for 8 bytes.
6406 @end ifclear
6407 @ifset bignum-16
6408 a 16-byte integer. If the bignum won't fit in 16 bytes, it prints a
6409 warning message; and just takes the lowest order 16 bytes of the bignum.
6410 @cindex sixteen-byte integer
6411 @cindex integer, 16-byte
6412 @end ifset
6413
6414 @node Reloc
6415 @section @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
6416
6417 @cindex @code{reloc} directive
6418 Generate a relocation at @var{offset} of type @var{reloc_name} with value
6419 @var{expression}. If @var{offset} is a number, the relocation is generated in
6420 the current section. If @var{offset} is an expression that resolves to a
6421 symbol plus offset, the relocation is generated in the given symbol's section.
6422 @var{expression}, if present, must resolve to a symbol plus addend or to an
6423 absolute value, but note that not all targets support an addend. e.g. ELF REL
6424 targets such as i386 store an addend in the section contents rather than in the
6425 relocation. This low level interface does not support addends stored in the
6426 section.
6427
6428 @node Rept
6429 @section @code{.rept @var{count}}
6430
6431 @cindex @code{rept} directive
6432 Repeat the sequence of lines between the @code{.rept} directive and the next
6433 @code{.endr} directive @var{count} times.
6434
6435 For example, assembling
6436
6437 @example
6438 .rept 3
6439 .long 0
6440 .endr
6441 @end example
6442
6443 is equivalent to assembling
6444
6445 @example
6446 .long 0
6447 .long 0
6448 .long 0
6449 @end example
6450
6451 A count of zero is allowed, but nothing is generated. Negative counts are not
6452 allowed and if encountered will be treated as if they were zero.
6453
6454 @node Sbttl
6455 @section @code{.sbttl "@var{subheading}"}
6456
6457 @cindex @code{sbttl} directive
6458 @cindex subtitles for listings
6459 @cindex listing control: subtitle
6460 Use @var{subheading} as the title (third line, immediately after the
6461 title line) when generating assembly listings.
6462
6463 This directive affects subsequent pages, as well as the current page if
6464 it appears within ten lines of the top of a page.
6465
6466 @ifset COFF
6467 @node Scl
6468 @section @code{.scl @var{class}}
6469
6470 @cindex @code{scl} directive
6471 @cindex symbol storage class (COFF)
6472 @cindex COFF symbol storage class
6473 Set the storage-class value for a symbol. This directive may only be
6474 used inside a @code{.def}/@code{.endef} pair. Storage class may flag
6475 whether a symbol is static or external, or it may record further
6476 symbolic debugging information.
6477 @end ifset
6478
6479 @ifset COFF-ELF
6480 @node Section
6481 @section @code{.section @var{name}}
6482
6483 @cindex named section
6484 Use the @code{.section} directive to assemble the following code into a section
6485 named @var{name}.
6486
6487 This directive is only supported for targets that actually support arbitrarily
6488 named sections; on @code{a.out} targets, for example, it is not accepted, even
6489 with a standard @code{a.out} section name.
6490
6491 @ifset COFF
6492 @ifset ELF
6493 @c only print the extra heading if both COFF and ELF are set
6494 @subheading COFF Version
6495 @end ifset
6496
6497 @cindex @code{section} directive (COFF version)
6498 For COFF targets, the @code{.section} directive is used in one of the following
6499 ways:
6500
6501 @smallexample
6502 .section @var{name}[, "@var{flags}"]
6503 .section @var{name}[, @var{subsection}]
6504 @end smallexample
6505
6506 If the optional argument is quoted, it is taken as flags to use for the
6507 section. Each flag is a single character. The following flags are recognized:
6508
6509 @table @code
6510 @item b
6511 bss section (uninitialized data)
6512 @item n
6513 section is not loaded
6514 @item w
6515 writable section
6516 @item d
6517 data section
6518 @item e
6519 exclude section from linking
6520 @item r
6521 read-only section
6522 @item x
6523 executable section
6524 @item s
6525 shared section (meaningful for PE targets)
6526 @item a
6527 ignored. (For compatibility with the ELF version)
6528 @item y
6529 section is not readable (meaningful for PE targets)
6530 @item 0-9
6531 single-digit power-of-two section alignment (GNU extension)
6532 @end table
6533
6534 If no flags are specified, the default flags depend upon the section name. If
6535 the section name is not recognized, the default will be for the section to be
6536 loaded and writable. Note the @code{n} and @code{w} flags remove attributes
6537 from the section, rather than adding them, so if they are used on their own it
6538 will be as if no flags had been specified at all.
6539
6540 If the optional argument to the @code{.section} directive is not quoted, it is
6541 taken as a subsection number (@pxref{Sub-Sections}).
6542 @end ifset
6543
6544 @ifset ELF
6545 @ifset COFF
6546 @c only print the extra heading if both COFF and ELF are set
6547 @subheading ELF Version
6548 @end ifset
6549
6550 @cindex Section Stack
6551 This is one of the ELF section stack manipulation directives. The others are
6552 @code{.subsection} (@pxref{SubSection}), @code{.pushsection}
6553 (@pxref{PushSection}), @code{.popsection} (@pxref{PopSection}), and
6554 @code{.previous} (@pxref{Previous}).
6555
6556 @cindex @code{section} directive (ELF version)
6557 For ELF targets, the @code{.section} directive is used like this:
6558
6559 @smallexample
6560 .section @var{name} [, "@var{flags}"[, @@@var{type}[,@var{flag_specific_arguments}]]]
6561 @end smallexample
6562
6563 @anchor{Section Name Substitutions}
6564 @kindex --sectname-subst
6565 @cindex section name substitution
6566 If the @samp{--sectname-subst} command-line option is provided, the @var{name}
6567 argument may contain a substitution sequence. Only @code{%S} is supported
6568 at the moment, and substitutes the current section name. For example:
6569
6570 @smallexample
6571 .macro exception_code
6572 .section %S.exception
6573 [exception code here]
6574 .previous
6575 .endm
6576
6577 .text
6578 [code]
6579 exception_code
6580 [...]
6581
6582 .section .init
6583 [init code]
6584 exception_code
6585 [...]
6586 @end smallexample
6587
6588 The two @code{exception_code} invocations above would create the
6589 @code{.text.exception} and @code{.init.exception} sections respectively.
6590 This is useful e.g. to discriminate between ancillary sections that are
6591 tied to setup code to be discarded after use from ancillary sections that
6592 need to stay resident without having to define multiple @code{exception_code}
6593 macros just for that purpose.
6594
6595 The optional @var{flags} argument is a quoted string which may contain any
6596 combination of the following characters:
6597
6598 @table @code
6599 @item a
6600 section is allocatable
6601 @item d
6602 section is a GNU_MBIND section
6603 @item e
6604 section is excluded from executable and shared library.
6605 @item w
6606 section is writable
6607 @item x
6608 section is executable
6609 @item M
6610 section is mergeable
6611 @item S
6612 section contains zero terminated strings
6613 @item G
6614 section is a member of a section group
6615 @item T
6616 section is used for thread-local-storage
6617 @item ?
6618 section is a member of the previously-current section's group, if any
6619 @item @code{<number>}
6620 a numeric value indicating the bits to be set in the ELF section header's flags
6621 field. Note - if one or more of the alphabetic characters described above is
6622 also included in the flags field, their bit values will be ORed into the
6623 resulting value.
6624 @item @code{<target specific>}
6625 some targets extend this list with their own flag characters
6626 @end table
6627
6628 Note - once a section's flags have been set they cannot be changed. There are
6629 a few exceptions to this rule however. Processor and application specific
6630 flags can be added to an already defined section. The @code{.interp},
6631 @code{.strtab} and @code{.symtab} sections can have the allocate flag
6632 (@code{a}) set after they are initially defined, and the @code{.note-GNU-stack}
6633 section may have the executable (@code{x}) flag added.
6634
6635 The optional @var{type} argument may contain one of the following constants:
6636
6637 @table @code
6638 @item @@progbits
6639 section contains data
6640 @item @@nobits
6641 section does not contain data (i.e., section only occupies space)
6642 @item @@note
6643 section contains data which is used by things other than the program
6644 @item @@init_array
6645 section contains an array of pointers to init functions
6646 @item @@fini_array
6647 section contains an array of pointers to finish functions
6648 @item @@preinit_array
6649 section contains an array of pointers to pre-init functions
6650 @item @@@code{<number>}
6651 a numeric value to be set as the ELF section header's type field.
6652 @item @@@code{<target specific>}
6653 some targets extend this list with their own types
6654 @end table
6655
6656 Many targets only support the first three section types. The type may be
6657 enclosed in double quotes if necessary.
6658
6659 Note on targets where the @code{@@} character is the start of a comment (eg
6660 ARM) then another character is used instead. For example the ARM port uses the
6661 @code{%} character.
6662
6663 Note - some sections, eg @code{.text} and @code{.data} are considered to be
6664 special and have fixed types. Any attempt to declare them with a different
6665 type will generate an error from the assembler.
6666
6667 If @var{flags} contains the @code{M} symbol then the @var{type} argument must
6668 be specified as well as an extra argument---@var{entsize}---like this:
6669
6670 @smallexample
6671 .section @var{name} , "@var{flags}"M, @@@var{type}, @var{entsize}
6672 @end smallexample
6673
6674 Sections with the @code{M} flag but not @code{S} flag must contain fixed size
6675 constants, each @var{entsize} octets long. Sections with both @code{M} and
6676 @code{S} must contain zero terminated strings where each character is
6677 @var{entsize} bytes long. The linker may remove duplicates within sections with
6678 the same name, same entity size and same flags. @var{entsize} must be an
6679 absolute expression. For sections with both @code{M} and @code{S}, a string
6680 which is a suffix of a larger string is considered a duplicate. Thus
6681 @code{"def"} will be merged with @code{"abcdef"}; A reference to the first
6682 @code{"def"} will be changed to a reference to @code{"abcdef"+3}.
6683
6684 If @var{flags} contains the @code{G} symbol then the @var{type} argument must
6685 be present along with an additional field like this:
6686
6687 @smallexample
6688 .section @var{name} , "@var{flags}"G, @@@var{type}, @var{GroupName}[, @var{linkage}]
6689 @end smallexample
6690
6691 The @var{GroupName} field specifies the name of the section group to which this
6692 particular section belongs. The optional linkage field can contain:
6693
6694 @table @code
6695 @item comdat
6696 indicates that only one copy of this section should be retained
6697 @item .gnu.linkonce
6698 an alias for comdat
6699 @end table
6700
6701 Note: if both the @var{M} and @var{G} flags are present then the fields for
6702 the Merge flag should come first, like this:
6703
6704 @smallexample
6705 .section @var{name} , "@var{flags}"MG, @@@var{type}, @var{entsize}, @var{GroupName}[, @var{linkage}]
6706 @end smallexample
6707
6708 If @var{flags} contains the @code{?} symbol then it may not also contain the
6709 @code{G} symbol and the @var{GroupName} or @var{linkage} fields should not be
6710 present. Instead, @code{?} says to consider the section that's current before
6711 this directive. If that section used @code{G}, then the new section will use
6712 @code{G} with those same @var{GroupName} and @var{linkage} fields implicitly.
6713 If not, then the @code{?} symbol has no effect.
6714
6715 If no flags are specified, the default flags depend upon the section name. If
6716 the section name is not recognized, the default will be for the section to have
6717 none of the above flags: it will not be allocated in memory, nor writable, nor
6718 executable. The section will contain data.
6719
6720 For ELF targets, the assembler supports another type of @code{.section}
6721 directive for compatibility with the Solaris assembler:
6722
6723 @smallexample
6724 .section "@var{name}"[, @var{flags}...]
6725 @end smallexample
6726
6727 Note that the section name is quoted. There may be a sequence of comma
6728 separated flags:
6729
6730 @table @code
6731 @item #alloc
6732 section is allocatable
6733 @item #write
6734 section is writable
6735 @item #execinstr
6736 section is executable
6737 @item #exclude
6738 section is excluded from executable and shared library.
6739 @item #tls
6740 section is used for thread local storage
6741 @end table
6742
6743 This directive replaces the current section and subsection. See the
6744 contents of the gas testsuite directory @code{gas/testsuite/gas/elf} for
6745 some examples of how this directive and the other section stack directives
6746 work.
6747 @end ifset
6748 @end ifset
6749
6750 @node Set
6751 @section @code{.set @var{symbol}, @var{expression}}
6752
6753 @cindex @code{set} directive
6754 @cindex symbol value, setting
6755 Set the value of @var{symbol} to @var{expression}. This
6756 changes @var{symbol}'s value and type to conform to
6757 @var{expression}. If @var{symbol} was flagged as external, it remains
6758 flagged (@pxref{Symbol Attributes}).
6759
6760 You may @code{.set} a symbol many times in the same assembly provided that the
6761 values given to the symbol are constants. Values that are based on expressions
6762 involving other symbols are allowed, but some targets may restrict this to only
6763 being done once per assembly. This is because those targets do not set the
6764 addresses of symbols at assembly time, but rather delay the assignment until a
6765 final link is performed. This allows the linker a chance to change the code in
6766 the files, changing the location of, and the relative distance between, various
6767 different symbols.
6768
6769 If you @code{.set} a global symbol, the value stored in the object
6770 file is the last value stored into it.
6771
6772 @ifset Z80
6773 On Z80 @code{set} is a real instruction, use
6774 @samp{@var{symbol} defl @var{expression}} instead.
6775 @end ifset
6776
6777 @node Short
6778 @section @code{.short @var{expressions}}
6779
6780 @cindex @code{short} directive
6781 @ifset GENERIC
6782 @code{.short} is normally the same as @samp{.word}.
6783 @xref{Word,,@code{.word}}.
6784
6785 In some configurations, however, @code{.short} and @code{.word} generate
6786 numbers of different lengths. @xref{Machine Dependencies}.
6787 @end ifset
6788 @ifclear GENERIC
6789 @ifset W16
6790 @code{.short} is the same as @samp{.word}. @xref{Word,,@code{.word}}.
6791 @end ifset
6792 @ifset W32
6793 This expects zero or more @var{expressions}, and emits
6794 a 16 bit number for each.
6795 @end ifset
6796 @end ifclear
6797
6798 @node Single
6799 @section @code{.single @var{flonums}}
6800
6801 @cindex @code{single} directive
6802 @cindex floating point numbers (single)
6803 This directive assembles zero or more flonums, separated by commas. It
6804 has the same effect as @code{.float}.
6805 @ifset GENERIC
6806 The exact kind of floating point numbers emitted depends on how
6807 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
6808 @end ifset
6809 @ifclear GENERIC
6810 @ifset IEEEFLOAT
6811 On the @value{TARGET} family, @code{.single} emits 32-bit floating point
6812 numbers in @sc{ieee} format.
6813 @end ifset
6814 @end ifclear
6815
6816 @ifset COFF-ELF
6817 @node Size
6818 @section @code{.size}
6819
6820 This directive is used to set the size associated with a symbol.
6821
6822 @ifset COFF
6823 @ifset ELF
6824 @c only print the extra heading if both COFF and ELF are set
6825 @subheading COFF Version
6826 @end ifset
6827
6828 @cindex @code{size} directive (COFF version)
6829 For COFF targets, the @code{.size} directive is only permitted inside
6830 @code{.def}/@code{.endef} pairs. It is used like this:
6831
6832 @smallexample
6833 .size @var{expression}
6834 @end smallexample
6835
6836 @end ifset
6837
6838 @ifset ELF
6839 @ifset COFF
6840 @c only print the extra heading if both COFF and ELF are set
6841 @subheading ELF Version
6842 @end ifset
6843
6844 @cindex @code{size} directive (ELF version)
6845 For ELF targets, the @code{.size} directive is used like this:
6846
6847 @smallexample
6848 .size @var{name} , @var{expression}
6849 @end smallexample
6850
6851 This directive sets the size associated with a symbol @var{name}.
6852 The size in bytes is computed from @var{expression} which can make use of label
6853 arithmetic. This directive is typically used to set the size of function
6854 symbols.
6855 @end ifset
6856 @end ifset
6857
6858 @ifclear no-space-dir
6859 @node Skip
6860 @section @code{.skip @var{size} [,@var{fill}]}
6861
6862 @cindex @code{skip} directive
6863 @cindex filling memory
6864 This directive emits @var{size} bytes, each of value @var{fill}. Both
6865 @var{size} and @var{fill} are absolute expressions. If the comma and
6866 @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same as
6867 @samp{.space}.
6868 @end ifclear
6869
6870 @node Sleb128
6871 @section @code{.sleb128 @var{expressions}}
6872
6873 @cindex @code{sleb128} directive
6874 @var{sleb128} stands for ``signed little endian base 128.'' This is a
6875 compact, variable length representation of numbers used by the DWARF
6876 symbolic debugging format. @xref{Uleb128, ,@code{.uleb128}}.
6877
6878 @ifclear no-space-dir
6879 @node Space
6880 @section @code{.space @var{size} [,@var{fill}]}
6881
6882 @cindex @code{space} directive
6883 @cindex filling memory
6884 This directive emits @var{size} bytes, each of value @var{fill}. Both
6885 @var{size} and @var{fill} are absolute expressions. If the comma
6886 and @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same
6887 as @samp{.skip}.
6888
6889 @ifset HPPA
6890 @quotation
6891 @emph{Warning:} @code{.space} has a completely different meaning for HPPA
6892 targets; use @code{.block} as a substitute. See @cite{HP9000 Series 800
6893 Assembly Language Reference Manual} (HP 92432-90001) for the meaning of the
6894 @code{.space} directive. @xref{HPPA Directives,,HPPA Assembler Directives},
6895 for a summary.
6896 @end quotation
6897 @end ifset
6898 @end ifclear
6899
6900 @ifset have-stabs
6901 @node Stab
6902 @section @code{.stabd, .stabn, .stabs}
6903
6904 @cindex symbolic debuggers, information for
6905 @cindex @code{stab@var{x}} directives
6906 There are three directives that begin @samp{.stab}.
6907 All emit symbols (@pxref{Symbols}), for use by symbolic debuggers.
6908 The symbols are not entered in the @command{@value{AS}} hash table: they
6909 cannot be referenced elsewhere in the source file.
6910 Up to five fields are required:
6911
6912 @table @var
6913 @item string
6914 This is the symbol's name. It may contain any character except
6915 @samp{\000}, so is more general than ordinary symbol names. Some
6916 debuggers used to code arbitrarily complex structures into symbol names
6917 using this field.
6918
6919 @item type
6920 An absolute expression. The symbol's type is set to the low 8 bits of
6921 this expression. Any bit pattern is permitted, but @code{@value{LD}}
6922 and debuggers choke on silly bit patterns.
6923
6924 @item other
6925 An absolute expression. The symbol's ``other'' attribute is set to the
6926 low 8 bits of this expression.
6927
6928 @item desc
6929 An absolute expression. The symbol's descriptor is set to the low 16
6930 bits of this expression.
6931
6932 @item value
6933 An absolute expression which becomes the symbol's value.
6934 @end table
6935
6936 If a warning is detected while reading a @code{.stabd}, @code{.stabn},
6937 or @code{.stabs} statement, the symbol has probably already been created;
6938 you get a half-formed symbol in your object file. This is
6939 compatible with earlier assemblers!
6940
6941 @table @code
6942 @cindex @code{stabd} directive
6943 @item .stabd @var{type} , @var{other} , @var{desc}
6944
6945 The ``name'' of the symbol generated is not even an empty string.
6946 It is a null pointer, for compatibility. Older assemblers used a
6947 null pointer so they didn't waste space in object files with empty
6948 strings.
6949
6950 The symbol's value is set to the location counter,
6951 relocatably. When your program is linked, the value of this symbol
6952 is the address of the location counter when the @code{.stabd} was
6953 assembled.
6954
6955 @cindex @code{stabn} directive
6956 @item .stabn @var{type} , @var{other} , @var{desc} , @var{value}
6957 The name of the symbol is set to the empty string @code{""}.
6958
6959 @cindex @code{stabs} directive
6960 @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value}
6961 All five fields are specified.
6962 @end table
6963 @end ifset
6964 @c end have-stabs
6965
6966 @node String
6967 @section @code{.string} "@var{str}", @code{.string8} "@var{str}", @code{.string16}
6968 "@var{str}", @code{.string32} "@var{str}", @code{.string64} "@var{str}"
6969
6970 @cindex string, copying to object file
6971 @cindex string8, copying to object file
6972 @cindex string16, copying to object file
6973 @cindex string32, copying to object file
6974 @cindex string64, copying to object file
6975 @cindex @code{string} directive
6976 @cindex @code{string8} directive
6977 @cindex @code{string16} directive
6978 @cindex @code{string32} directive
6979 @cindex @code{string64} directive
6980
6981 Copy the characters in @var{str} to the object file. You may specify more than
6982 one string to copy, separated by commas. Unless otherwise specified for a
6983 particular machine, the assembler marks the end of each string with a 0 byte.
6984 You can use any of the escape sequences described in @ref{Strings,,Strings}.
6985
6986 The variants @code{string16}, @code{string32} and @code{string64} differ from
6987 the @code{string} pseudo opcode in that each 8-bit character from @var{str} is
6988 copied and expanded to 16, 32 or 64 bits respectively. The expanded characters
6989 are stored in target endianness byte order.
6990
6991 Example:
6992 @smallexample
6993 .string32 "BYE"
6994 expands to:
6995 .string "B\0\0\0Y\0\0\0E\0\0\0" /* On little endian targets. */
6996 .string "\0\0\0B\0\0\0Y\0\0\0E" /* On big endian targets. */
6997 @end smallexample
6998
6999
7000 @node Struct
7001 @section @code{.struct @var{expression}}
7002
7003 @cindex @code{struct} directive
7004 Switch to the absolute section, and set the section offset to @var{expression},
7005 which must be an absolute expression. You might use this as follows:
7006 @smallexample
7007 .struct 0
7008 field1:
7009 .struct field1 + 4
7010 field2:
7011 .struct field2 + 4
7012 field3:
7013 @end smallexample
7014 This would define the symbol @code{field1} to have the value 0, the symbol
7015 @code{field2} to have the value 4, and the symbol @code{field3} to have the
7016 value 8. Assembly would be left in the absolute section, and you would need to
7017 use a @code{.section} directive of some sort to change to some other section
7018 before further assembly.
7019
7020 @ifset ELF
7021 @node SubSection
7022 @section @code{.subsection @var{name}}
7023
7024 @cindex @code{subsection} directive
7025 @cindex Section Stack
7026 This is one of the ELF section stack manipulation directives. The others are
7027 @code{.section} (@pxref{Section}), @code{.pushsection} (@pxref{PushSection}),
7028 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
7029 (@pxref{Previous}).
7030
7031 This directive replaces the current subsection with @code{name}. The current
7032 section is not changed. The replaced subsection is put onto the section stack
7033 in place of the then current top of stack subsection.
7034 @end ifset
7035
7036 @ifset ELF
7037 @node Symver
7038 @section @code{.symver}
7039 @cindex @code{symver} directive
7040 @cindex symbol versioning
7041 @cindex versions of symbols
7042 Use the @code{.symver} directive to bind symbols to specific version nodes
7043 within a source file. This is only supported on ELF platforms, and is
7044 typically used when assembling files to be linked into a shared library.
7045 There are cases where it may make sense to use this in objects to be bound
7046 into an application itself so as to override a versioned symbol from a
7047 shared library.
7048
7049 For ELF targets, the @code{.symver} directive can be used like this:
7050 @smallexample
7051 .symver @var{name}, @var{name2@@nodename}
7052 @end smallexample
7053 If the symbol @var{name} is defined within the file
7054 being assembled, the @code{.symver} directive effectively creates a symbol
7055 alias with the name @var{name2@@nodename}, and in fact the main reason that we
7056 just don't try and create a regular alias is that the @var{@@} character isn't
7057 permitted in symbol names. The @var{name2} part of the name is the actual name
7058 of the symbol by which it will be externally referenced. The name @var{name}
7059 itself is merely a name of convenience that is used so that it is possible to
7060 have definitions for multiple versions of a function within a single source
7061 file, and so that the compiler can unambiguously know which version of a
7062 function is being mentioned. The @var{nodename} portion of the alias should be
7063 the name of a node specified in the version script supplied to the linker when
7064 building a shared library. If you are attempting to override a versioned
7065 symbol from a shared library, then @var{nodename} should correspond to the
7066 nodename of the symbol you are trying to override.
7067
7068 If the symbol @var{name} is not defined within the file being assembled, all
7069 references to @var{name} will be changed to @var{name2@@nodename}. If no
7070 reference to @var{name} is made, @var{name2@@nodename} will be removed from the
7071 symbol table.
7072
7073 Another usage of the @code{.symver} directive is:
7074 @smallexample
7075 .symver @var{name}, @var{name2@@@@nodename}
7076 @end smallexample
7077 In this case, the symbol @var{name} must exist and be defined within
7078 the file being assembled. It is similar to @var{name2@@nodename}. The
7079 difference is @var{name2@@@@nodename} will also be used to resolve
7080 references to @var{name2} by the linker.
7081
7082 The third usage of the @code{.symver} directive is:
7083 @smallexample
7084 .symver @var{name}, @var{name2@@@@@@nodename}
7085 @end smallexample
7086 When @var{name} is not defined within the
7087 file being assembled, it is treated as @var{name2@@nodename}. When
7088 @var{name} is defined within the file being assembled, the symbol
7089 name, @var{name}, will be changed to @var{name2@@@@nodename}.
7090 @end ifset
7091
7092 @ifset COFF
7093 @node Tag
7094 @section @code{.tag @var{structname}}
7095
7096 @cindex COFF structure debugging
7097 @cindex structure debugging, COFF
7098 @cindex @code{tag} directive
7099 This directive is generated by compilers to include auxiliary debugging
7100 information in the symbol table. It is only permitted inside
7101 @code{.def}/@code{.endef} pairs. Tags are used to link structure
7102 definitions in the symbol table with instances of those structures.
7103 @end ifset
7104
7105 @node Text
7106 @section @code{.text @var{subsection}}
7107
7108 @cindex @code{text} directive
7109 Tells @command{@value{AS}} to assemble the following statements onto the end of
7110 the text subsection numbered @var{subsection}, which is an absolute
7111 expression. If @var{subsection} is omitted, subsection number zero
7112 is used.
7113
7114 @node Title
7115 @section @code{.title "@var{heading}"}
7116
7117 @cindex @code{title} directive
7118 @cindex listing control: title line
7119 Use @var{heading} as the title (second line, immediately after the
7120 source file name and pagenumber) when generating assembly listings.
7121
7122 This directive affects subsequent pages, as well as the current page if
7123 it appears within ten lines of the top of a page.
7124
7125 @ifset COFF-ELF
7126 @node Type
7127 @section @code{.type}
7128
7129 This directive is used to set the type of a symbol.
7130
7131 @ifset COFF
7132 @ifset ELF
7133 @c only print the extra heading if both COFF and ELF are set
7134 @subheading COFF Version
7135 @end ifset
7136
7137 @cindex COFF symbol type
7138 @cindex symbol type, COFF
7139 @cindex @code{type} directive (COFF version)
7140 For COFF targets, this directive is permitted only within
7141 @code{.def}/@code{.endef} pairs. It is used like this:
7142
7143 @smallexample
7144 .type @var{int}
7145 @end smallexample
7146
7147 This records the integer @var{int} as the type attribute of a symbol table
7148 entry.
7149
7150 @end ifset
7151
7152 @ifset ELF
7153 @ifset COFF
7154 @c only print the extra heading if both COFF and ELF are set
7155 @subheading ELF Version
7156 @end ifset
7157
7158 @cindex ELF symbol type
7159 @cindex symbol type, ELF
7160 @cindex @code{type} directive (ELF version)
7161 For ELF targets, the @code{.type} directive is used like this:
7162
7163 @smallexample
7164 .type @var{name} , @var{type description}
7165 @end smallexample
7166
7167 This sets the type of symbol @var{name} to be either a
7168 function symbol or an object symbol. There are five different syntaxes
7169 supported for the @var{type description} field, in order to provide
7170 compatibility with various other assemblers.
7171
7172 Because some of the characters used in these syntaxes (such as @samp{@@} and
7173 @samp{#}) are comment characters for some architectures, some of the syntaxes
7174 below do not work on all architectures. The first variant will be accepted by
7175 the GNU assembler on all architectures so that variant should be used for
7176 maximum portability, if you do not need to assemble your code with other
7177 assemblers.
7178
7179 The syntaxes supported are:
7180
7181 @smallexample
7182 .type <name> STT_<TYPE_IN_UPPER_CASE>
7183 .type <name>,#<type>
7184 .type <name>,@@<type>
7185 .type <name>,%<type>
7186 .type <name>,"<type>"
7187 @end smallexample
7188
7189 The types supported are:
7190
7191 @table @gcctabopt
7192 @item STT_FUNC
7193 @itemx function
7194 Mark the symbol as being a function name.
7195
7196 @item STT_GNU_IFUNC
7197 @itemx gnu_indirect_function
7198 Mark the symbol as an indirect function when evaluated during reloc
7199 processing. (This is only supported on assemblers targeting GNU systems).
7200
7201 @item STT_OBJECT
7202 @itemx object
7203 Mark the symbol as being a data object.
7204
7205 @item STT_TLS
7206 @itemx tls_object
7207 Mark the symbol as being a thread-local data object.
7208
7209 @item STT_COMMON
7210 @itemx common
7211 Mark the symbol as being a common data object.
7212
7213 @item STT_NOTYPE
7214 @itemx notype
7215 Does not mark the symbol in any way. It is supported just for completeness.
7216
7217 @item gnu_unique_object
7218 Marks the symbol as being a globally unique data object. The dynamic linker
7219 will make sure that in the entire process there is just one symbol with this
7220 name and type in use. (This is only supported on assemblers targeting GNU
7221 systems).
7222
7223 @end table
7224
7225 Changing between incompatible types other than from/to STT_NOTYPE will
7226 result in a diagnostic. An intermediate change to STT_NOTYPE will silence
7227 this.
7228
7229 Note: Some targets support extra types in addition to those listed above.
7230
7231 @end ifset
7232 @end ifset
7233
7234 @node Uleb128
7235 @section @code{.uleb128 @var{expressions}}
7236
7237 @cindex @code{uleb128} directive
7238 @var{uleb128} stands for ``unsigned little endian base 128.'' This is a
7239 compact, variable length representation of numbers used by the DWARF
7240 symbolic debugging format. @xref{Sleb128, ,@code{.sleb128}}.
7241
7242 @ifset COFF
7243 @node Val
7244 @section @code{.val @var{addr}}
7245
7246 @cindex @code{val} directive
7247 @cindex COFF value attribute
7248 @cindex value attribute, COFF
7249 This directive, permitted only within @code{.def}/@code{.endef} pairs,
7250 records the address @var{addr} as the value attribute of a symbol table
7251 entry.
7252 @end ifset
7253
7254 @ifset ELF
7255 @node Version
7256 @section @code{.version "@var{string}"}
7257
7258 @cindex @code{version} directive
7259 This directive creates a @code{.note} section and places into it an ELF
7260 formatted note of type NT_VERSION. The note's name is set to @code{string}.
7261 @end ifset
7262
7263 @ifset ELF
7264 @node VTableEntry
7265 @section @code{.vtable_entry @var{table}, @var{offset}}
7266
7267 @cindex @code{vtable_entry} directive
7268 This directive finds or creates a symbol @code{table} and creates a
7269 @code{VTABLE_ENTRY} relocation for it with an addend of @code{offset}.
7270
7271 @node VTableInherit
7272 @section @code{.vtable_inherit @var{child}, @var{parent}}
7273
7274 @cindex @code{vtable_inherit} directive
7275 This directive finds the symbol @code{child} and finds or creates the symbol
7276 @code{parent} and then creates a @code{VTABLE_INHERIT} relocation for the
7277 parent whose addend is the value of the child symbol. As a special case the
7278 parent name of @code{0} is treated as referring to the @code{*ABS*} section.
7279 @end ifset
7280
7281 @node Warning
7282 @section @code{.warning "@var{string}"}
7283 @cindex warning directive
7284 Similar to the directive @code{.error}
7285 (@pxref{Error,,@code{.error "@var{string}"}}), but just emits a warning.
7286
7287 @node Weak
7288 @section @code{.weak @var{names}}
7289
7290 @cindex @code{weak} directive
7291 This directive sets the weak attribute on the comma separated list of symbol
7292 @code{names}. If the symbols do not already exist, they will be created.
7293
7294 On COFF targets other than PE, weak symbols are a GNU extension. This
7295 directive sets the weak attribute on the comma separated list of symbol
7296 @code{names}. If the symbols do not already exist, they will be created.
7297
7298 On the PE target, weak symbols are supported natively as weak aliases.
7299 When a weak symbol is created that is not an alias, GAS creates an
7300 alternate symbol to hold the default value.
7301
7302 @node Weakref
7303 @section @code{.weakref @var{alias}, @var{target}}
7304
7305 @cindex @code{weakref} directive
7306 This directive creates an alias to the target symbol that enables the symbol to
7307 be referenced with weak-symbol semantics, but without actually making it weak.
7308 If direct references or definitions of the symbol are present, then the symbol
7309 will not be weak, but if all references to it are through weak references, the
7310 symbol will be marked as weak in the symbol table.
7311
7312 The effect is equivalent to moving all references to the alias to a separate
7313 assembly source file, renaming the alias to the symbol in it, declaring the
7314 symbol as weak there, and running a reloadable link to merge the object files
7315 resulting from the assembly of the new source file and the old source file that
7316 had the references to the alias removed.
7317
7318 The alias itself never makes to the symbol table, and is entirely handled
7319 within the assembler.
7320
7321 @node Word
7322 @section @code{.word @var{expressions}}
7323
7324 @cindex @code{word} directive
7325 This directive expects zero or more @var{expressions}, of any section,
7326 separated by commas.
7327 @ifclear GENERIC
7328 @ifset W32
7329 For each expression, @command{@value{AS}} emits a 32-bit number.
7330 @end ifset
7331 @ifset W16
7332 For each expression, @command{@value{AS}} emits a 16-bit number.
7333 @end ifset
7334 @end ifclear
7335 @ifset GENERIC
7336
7337 The size of the number emitted, and its byte order,
7338 depend on what target computer the assembly is for.
7339 @end ifset
7340
7341 @c on sparc the "special treatment to support compilers" doesn't
7342 @c happen---32-bit addressability, period; no long/short jumps.
7343 @ifset DIFF-TBL-KLUGE
7344 @cindex difference tables altered
7345 @cindex altered difference tables
7346 @quotation
7347 @emph{Warning: Special Treatment to support Compilers}
7348 @end quotation
7349
7350 @ifset GENERIC
7351 Machines with a 32-bit address space, but that do less than 32-bit
7352 addressing, require the following special treatment. If the machine of
7353 interest to you does 32-bit addressing (or doesn't require it;
7354 @pxref{Machine Dependencies}), you can ignore this issue.
7355
7356 @end ifset
7357 In order to assemble compiler output into something that works,
7358 @command{@value{AS}} occasionally does strange things to @samp{.word} directives.
7359 Directives of the form @samp{.word sym1-sym2} are often emitted by
7360 compilers as part of jump tables. Therefore, when @command{@value{AS}} assembles a
7361 directive of the form @samp{.word sym1-sym2}, and the difference between
7362 @code{sym1} and @code{sym2} does not fit in 16 bits, @command{@value{AS}}
7363 creates a @dfn{secondary jump table}, immediately before the next label.
7364 This secondary jump table is preceded by a short-jump to the
7365 first byte after the secondary table. This short-jump prevents the flow
7366 of control from accidentally falling into the new table. Inside the
7367 table is a long-jump to @code{sym2}. The original @samp{.word}
7368 contains @code{sym1} minus the address of the long-jump to
7369 @code{sym2}.
7370
7371 If there were several occurrences of @samp{.word sym1-sym2} before the
7372 secondary jump table, all of them are adjusted. If there was a
7373 @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a
7374 long-jump to @code{sym4} is included in the secondary jump table,
7375 and the @code{.word} directives are adjusted to contain @code{sym3}
7376 minus the address of the long-jump to @code{sym4}; and so on, for as many
7377 entries in the original jump table as necessary.
7378
7379 @ifset INTERNALS
7380 @emph{This feature may be disabled by compiling @command{@value{AS}} with the
7381 @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse
7382 assembly language programmers.
7383 @end ifset
7384 @end ifset
7385 @c end DIFF-TBL-KLUGE
7386
7387 @ifclear no-space-dir
7388 @node Zero
7389 @section @code{.zero @var{size}}
7390
7391 @cindex @code{zero} directive
7392 @cindex filling memory with zero bytes
7393 This directive emits @var{size} 0-valued bytes. @var{size} must be an absolute
7394 expression. This directive is actually an alias for the @samp{.skip} directive
7395 so it can take an optional second argument of the value to store in the bytes
7396 instead of zero. Using @samp{.zero} in this way would be confusing however.
7397 @end ifclear
7398
7399 @ifset ELF
7400 @node 2byte
7401 @section @code{.2byte @var{expression} [, @var{expression}]*}
7402 @cindex @code{2byte} directive
7403 @cindex two-byte integer
7404 @cindex integer, 2-byte
7405
7406 This directive expects zero or more expressions, separated by commas. If there
7407 are no expressions then the directive does nothing. Otherwise each expression
7408 is evaluated in turn and placed in the next two bytes of the current output
7409 section, using the endian model of the target. If an expression will not fit
7410 in two bytes, a warning message is displayed and the least significant two
7411 bytes of the expression's value are used. If an expression cannot be evaluated
7412 at assembly time then relocations will be generated in order to compute the
7413 value at link time.
7414
7415 This directive does not apply any alignment before or after inserting the
7416 values. As a result of this, if relocations are generated, they may be
7417 different from those used for inserting values with a guaranteed alignment.
7418
7419 This directive is only available for ELF targets,
7420
7421 @node 4byte
7422 @section @code{.4byte @var{expression} [, @var{expression}]*}
7423 @cindex @code{4byte} directive
7424 @cindex four-byte integer
7425 @cindex integer, 4-byte
7426
7427 Like the @option{.2byte} directive, except that it inserts unaligned, four byte
7428 long values into the output.
7429
7430 @node 8byte
7431 @section @code{.8byte @var{expression} [, @var{expression}]*}
7432 @cindex @code{8byte} directive
7433 @cindex eight-byte integer
7434 @cindex integer, 8-byte
7435
7436 Like the @option{.2byte} directive, except that it inserts unaligned, eight
7437 byte long bignum values into the output.
7438
7439 @end ifset
7440
7441 @node Deprecated
7442 @section Deprecated Directives
7443
7444 @cindex deprecated directives
7445 @cindex obsolescent directives
7446 One day these directives won't work.
7447 They are included for compatibility with older assemblers.
7448 @table @t
7449 @item .abort
7450 @item .line
7451 @end table
7452
7453 @ifset ELF
7454 @node Object Attributes
7455 @chapter Object Attributes
7456 @cindex object attributes
7457
7458 @command{@value{AS}} assembles source files written for a specific architecture
7459 into object files for that architecture. But not all object files are alike.
7460 Many architectures support incompatible variations. For instance, floating
7461 point arguments might be passed in floating point registers if the object file
7462 requires hardware floating point support---or floating point arguments might be
7463 passed in integer registers if the object file supports processors with no
7464 hardware floating point unit. Or, if two objects are built for different
7465 generations of the same architecture, the combination may require the
7466 newer generation at run-time.
7467
7468 This information is useful during and after linking. At link time,
7469 @command{@value{LD}} can warn about incompatible object files. After link
7470 time, tools like @command{gdb} can use it to process the linked file
7471 correctly.
7472
7473 Compatibility information is recorded as a series of object attributes. Each
7474 attribute has a @dfn{vendor}, @dfn{tag}, and @dfn{value}. The vendor is a
7475 string, and indicates who sets the meaning of the tag. The tag is an integer,
7476 and indicates what property the attribute describes. The value may be a string
7477 or an integer, and indicates how the property affects this object. Missing
7478 attributes are the same as attributes with a zero value or empty string value.
7479
7480 Object attributes were developed as part of the ABI for the ARM Architecture.
7481 The file format is documented in @cite{ELF for the ARM Architecture}.
7482
7483 @menu
7484 * GNU Object Attributes:: @sc{gnu} Object Attributes
7485 * Defining New Object Attributes:: Defining New Object Attributes
7486 @end menu
7487
7488 @node GNU Object Attributes
7489 @section @sc{gnu} Object Attributes
7490
7491 The @code{.gnu_attribute} directive records an object attribute
7492 with vendor @samp{gnu}.
7493
7494 Except for @samp{Tag_compatibility}, which has both an integer and a string for
7495 its value, @sc{gnu} attributes have a string value if the tag number is odd and
7496 an integer value if the tag number is even. The second bit (@code{@var{tag} &
7497 2} is set for architecture-independent attributes and clear for
7498 architecture-dependent ones.
7499
7500 @subsection Common @sc{gnu} attributes
7501
7502 These attributes are valid on all architectures.
7503
7504 @table @r
7505 @item Tag_compatibility (32)
7506 The compatibility attribute takes an integer flag value and a vendor name. If
7507 the flag value is 0, the file is compatible with other toolchains. If it is 1,
7508 then the file is only compatible with the named toolchain. If it is greater
7509 than 1, the file can only be processed by other toolchains under some private
7510 arrangement indicated by the flag value and the vendor name.
7511 @end table
7512
7513 @subsection MIPS Attributes
7514
7515 @table @r
7516 @item Tag_GNU_MIPS_ABI_FP (4)
7517 The floating-point ABI used by this object file. The value will be:
7518
7519 @itemize @bullet
7520 @item
7521 0 for files not affected by the floating-point ABI.
7522 @item
7523 1 for files using the hardware floating-point ABI with a standard
7524 double-precision FPU.
7525 @item
7526 2 for files using the hardware floating-point ABI with a single-precision FPU.
7527 @item
7528 3 for files using the software floating-point ABI.
7529 @item
7530 4 for files using the deprecated hardware floating-point ABI which used 64-bit
7531 floating-point registers, 32-bit general-purpose registers and increased the
7532 number of callee-saved floating-point registers.
7533 @item
7534 5 for files using the hardware floating-point ABI with a double-precision FPU
7535 with either 32-bit or 64-bit floating-point registers and 32-bit
7536 general-purpose registers.
7537 @item
7538 6 for files using the hardware floating-point ABI with 64-bit floating-point
7539 registers and 32-bit general-purpose registers.
7540 @item
7541 7 for files using the hardware floating-point ABI with 64-bit floating-point
7542 registers, 32-bit general-purpose registers and a rule that forbids the
7543 direct use of odd-numbered single-precision floating-point registers.
7544 @end itemize
7545 @end table
7546
7547 @subsection PowerPC Attributes
7548
7549 @table @r
7550 @item Tag_GNU_Power_ABI_FP (4)
7551 The floating-point ABI used by this object file. The value will be:
7552
7553 @itemize @bullet
7554 @item
7555 0 for files not affected by the floating-point ABI.
7556 @item
7557 1 for files using double-precision hardware floating-point ABI.
7558 @item
7559 2 for files using the software floating-point ABI.
7560 @item
7561 3 for files using single-precision hardware floating-point ABI.
7562 @end itemize
7563
7564 @item Tag_GNU_Power_ABI_Vector (8)
7565 The vector ABI used by this object file. The value will be:
7566
7567 @itemize @bullet
7568 @item
7569 0 for files not affected by the vector ABI.
7570 @item
7571 1 for files using general purpose registers to pass vectors.
7572 @item
7573 2 for files using AltiVec registers to pass vectors.
7574 @item
7575 3 for files using SPE registers to pass vectors.
7576 @end itemize
7577 @end table
7578
7579 @subsection IBM z Systems Attributes
7580
7581 @table @r
7582 @item Tag_GNU_S390_ABI_Vector (8)
7583 The vector ABI used by this object file. The value will be:
7584
7585 @itemize @bullet
7586 @item
7587 0 for files not affected by the vector ABI.
7588 @item
7589 1 for files using software vector ABI.
7590 @item
7591 2 for files using hardware vector ABI.
7592 @end itemize
7593 @end table
7594
7595 @subsection MSP430 Attributes
7596
7597 @table @r
7598 @item Tag_GNU_MSP430_Data_Region (4)
7599 The data region used by this object file. The value will be:
7600
7601 @itemize @bullet
7602 @item
7603 0 for files not using the large memory model.
7604 @item
7605 1 for files which have been compiled with the condition that all
7606 data is in the lower memory region, i.e. below address 0x10000.
7607 @item
7608 2 for files which allow data to be placed in the full 20-bit memory range.
7609 @end itemize
7610 @end table
7611
7612 @node Defining New Object Attributes
7613 @section Defining New Object Attributes
7614
7615 If you want to define a new @sc{gnu} object attribute, here are the places you
7616 will need to modify. New attributes should be discussed on the @samp{binutils}
7617 mailing list.
7618
7619 @itemize @bullet
7620 @item
7621 This manual, which is the official register of attributes.
7622 @item
7623 The header for your architecture @file{include/elf}, to define the tag.
7624 @item
7625 The @file{bfd} support file for your architecture, to merge the attribute
7626 and issue any appropriate link warnings.
7627 @item
7628 Test cases in @file{ld/testsuite} for merging and link warnings.
7629 @item
7630 @file{binutils/readelf.c} to display your attribute.
7631 @item
7632 GCC, if you want the compiler to mark the attribute automatically.
7633 @end itemize
7634
7635 @end ifset
7636
7637 @ifset GENERIC
7638 @node Machine Dependencies
7639 @chapter Machine Dependent Features
7640
7641 @cindex machine dependencies
7642 The machine instruction sets are (almost by definition) different on
7643 each machine where @command{@value{AS}} runs. Floating point representations
7644 vary as well, and @command{@value{AS}} often supports a few additional
7645 directives or command-line options for compatibility with other
7646 assemblers on a particular platform. Finally, some versions of
7647 @command{@value{AS}} support special pseudo-instructions for branch
7648 optimization.
7649
7650 This chapter discusses most of these differences, though it does not
7651 include details on any machine's instruction set. For details on that
7652 subject, see the hardware manufacturer's manual.
7653
7654 @menu
7655 @ifset AARCH64
7656 * AArch64-Dependent:: AArch64 Dependent Features
7657 @end ifset
7658 @ifset ALPHA
7659 * Alpha-Dependent:: Alpha Dependent Features
7660 @end ifset
7661 @ifset ARC
7662 * ARC-Dependent:: ARC Dependent Features
7663 @end ifset
7664 @ifset ARM
7665 * ARM-Dependent:: ARM Dependent Features
7666 @end ifset
7667 @ifset AVR
7668 * AVR-Dependent:: AVR Dependent Features
7669 @end ifset
7670 @ifset Blackfin
7671 * Blackfin-Dependent:: Blackfin Dependent Features
7672 @end ifset
7673 @ifset BPF
7674 * BPF-Dependent:: BPF Dependent Features
7675 @end ifset
7676 @ifset CR16
7677 * CR16-Dependent:: CR16 Dependent Features
7678 @end ifset
7679 @ifset CRIS
7680 * CRIS-Dependent:: CRIS Dependent Features
7681 @end ifset
7682 @ifset CSKY
7683 * C-SKY-Dependent:: C-SKY Dependent Features
7684 @end ifset
7685 @ifset D10V
7686 * D10V-Dependent:: D10V Dependent Features
7687 @end ifset
7688 @ifset D30V
7689 * D30V-Dependent:: D30V Dependent Features
7690 @end ifset
7691 @ifset EPIPHANY
7692 * Epiphany-Dependent:: EPIPHANY Dependent Features
7693 @end ifset
7694 @ifset H8/300
7695 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7696 @end ifset
7697 @ifset HPPA
7698 * HPPA-Dependent:: HPPA Dependent Features
7699 @end ifset
7700 @ifset I80386
7701 * i386-Dependent:: Intel 80386 and AMD x86-64 Dependent Features
7702 @end ifset
7703 @ifset IA64
7704 * IA-64-Dependent:: Intel IA-64 Dependent Features
7705 @end ifset
7706 @ifset IP2K
7707 * IP2K-Dependent:: IP2K Dependent Features
7708 @end ifset
7709 @ifset LM32
7710 * LM32-Dependent:: LM32 Dependent Features
7711 @end ifset
7712 @ifset M32C
7713 * M32C-Dependent:: M32C Dependent Features
7714 @end ifset
7715 @ifset M32R
7716 * M32R-Dependent:: M32R Dependent Features
7717 @end ifset
7718 @ifset M680X0
7719 * M68K-Dependent:: M680x0 Dependent Features
7720 @end ifset
7721 @ifset M68HC11
7722 * M68HC11-Dependent:: M68HC11 and 68HC12 Dependent Features
7723 @end ifset
7724 @ifset S12Z
7725 * S12Z-Dependent:: S12Z Dependent Features
7726 @end ifset
7727 @ifset METAG
7728 * Meta-Dependent :: Meta Dependent Features
7729 @end ifset
7730 @ifset MICROBLAZE
7731 * MicroBlaze-Dependent:: MICROBLAZE Dependent Features
7732 @end ifset
7733 @ifset MIPS
7734 * MIPS-Dependent:: MIPS Dependent Features
7735 @end ifset
7736 @ifset MMIX
7737 * MMIX-Dependent:: MMIX Dependent Features
7738 @end ifset
7739 @ifset MSP430
7740 * MSP430-Dependent:: MSP430 Dependent Features
7741 @end ifset
7742 @ifset NDS32
7743 * NDS32-Dependent:: Andes NDS32 Dependent Features
7744 @end ifset
7745 @ifset NIOSII
7746 * NiosII-Dependent:: Altera Nios II Dependent Features
7747 @end ifset
7748 @ifset NS32K
7749 * NS32K-Dependent:: NS32K Dependent Features
7750 @end ifset
7751 @ifset OPENRISC
7752 * OpenRISC-Dependent:: OpenRISC 1000 Features
7753 @end ifset
7754 @ifset PDP11
7755 * PDP-11-Dependent:: PDP-11 Dependent Features
7756 @end ifset
7757 @ifset PJ
7758 * PJ-Dependent:: picoJava Dependent Features
7759 @end ifset
7760 @ifset PPC
7761 * PPC-Dependent:: PowerPC Dependent Features
7762 @end ifset
7763 @ifset PRU
7764 * PRU-Dependent:: PRU Dependent Features
7765 @end ifset
7766 @ifset RISCV
7767 * RISC-V-Dependent:: RISC-V Dependent Features
7768 @end ifset
7769 @ifset RL78
7770 * RL78-Dependent:: RL78 Dependent Features
7771 @end ifset
7772 @ifset RX
7773 * RX-Dependent:: RX Dependent Features
7774 @end ifset
7775 @ifset S390
7776 * S/390-Dependent:: IBM S/390 Dependent Features
7777 @end ifset
7778 @ifset SCORE
7779 * SCORE-Dependent:: SCORE Dependent Features
7780 @end ifset
7781 @ifset SH
7782 * SH-Dependent:: Renesas / SuperH SH Dependent Features
7783 @end ifset
7784 @ifset SPARC
7785 * Sparc-Dependent:: SPARC Dependent Features
7786 @end ifset
7787 @ifset TIC54X
7788 * TIC54X-Dependent:: TI TMS320C54x Dependent Features
7789 @end ifset
7790 @ifset TIC6X
7791 * TIC6X-Dependent :: TI TMS320C6x Dependent Features
7792 @end ifset
7793 @ifset TILEGX
7794 * TILE-Gx-Dependent :: Tilera TILE-Gx Dependent Features
7795 @end ifset
7796 @ifset TILEPRO
7797 * TILEPro-Dependent :: Tilera TILEPro Dependent Features
7798 @end ifset
7799 @ifset V850
7800 * V850-Dependent:: V850 Dependent Features
7801 @end ifset
7802 @ifset VAX
7803 * Vax-Dependent:: VAX Dependent Features
7804 @end ifset
7805 @ifset VISIUM
7806 * Visium-Dependent:: Visium Dependent Features
7807 @end ifset
7808 @ifset WASM32
7809 * WebAssembly-Dependent:: WebAssembly Dependent Features
7810 @end ifset
7811 @ifset XGATE
7812 * XGATE-Dependent:: XGATE Dependent Features
7813 @end ifset
7814 @ifset XSTORMY16
7815 * XSTORMY16-Dependent:: XStormy16 Dependent Features
7816 @end ifset
7817 @ifset XTENSA
7818 * Xtensa-Dependent:: Xtensa Dependent Features
7819 @end ifset
7820 @ifset Z80
7821 * Z80-Dependent:: Z80 Dependent Features
7822 @end ifset
7823 @ifset Z8000
7824 * Z8000-Dependent:: Z8000 Dependent Features
7825 @end ifset
7826 @end menu
7827
7828 @lowersections
7829 @end ifset
7830
7831 @c The following major nodes are *sections* in the GENERIC version, *chapters*
7832 @c in single-cpu versions. This is mainly achieved by @lowersections. There is a
7833 @c peculiarity: to preserve cross-references, there must be a node called
7834 @c "Machine Dependencies". Hence the conditional nodenames in each
7835 @c major node below. Node defaulting in makeinfo requires adjacency of
7836 @c node and sectioning commands; hence the repetition of @chapter BLAH
7837 @c in both conditional blocks.
7838
7839 @ifset AARCH64
7840 @include c-aarch64.texi
7841 @end ifset
7842
7843 @ifset ALPHA
7844 @include c-alpha.texi
7845 @end ifset
7846
7847 @ifset ARC
7848 @include c-arc.texi
7849 @end ifset
7850
7851 @ifset ARM
7852 @include c-arm.texi
7853 @end ifset
7854
7855 @ifset AVR
7856 @include c-avr.texi
7857 @end ifset
7858
7859 @ifset Blackfin
7860 @include c-bfin.texi
7861 @end ifset
7862
7863 @ifset BPF
7864 @include c-bpf.texi
7865 @end ifset
7866
7867 @ifset CR16
7868 @include c-cr16.texi
7869 @end ifset
7870
7871 @ifset CRIS
7872 @include c-cris.texi
7873 @end ifset
7874
7875 @ifset CSKY
7876 @include c-csky.texi
7877 @end ifset
7878
7879 @ifset Renesas-all
7880 @ifclear GENERIC
7881 @node Machine Dependencies
7882 @chapter Machine Dependent Features
7883
7884 The machine instruction sets are different on each Renesas chip family,
7885 and there are also some syntax differences among the families. This
7886 chapter describes the specific @command{@value{AS}} features for each
7887 family.
7888
7889 @menu
7890 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7891 * SH-Dependent:: Renesas SH Dependent Features
7892 @end menu
7893 @lowersections
7894 @end ifclear
7895 @end ifset
7896
7897 @ifset D10V
7898 @include c-d10v.texi
7899 @end ifset
7900
7901 @ifset D30V
7902 @include c-d30v.texi
7903 @end ifset
7904
7905 @ifset EPIPHANY
7906 @include c-epiphany.texi
7907 @end ifset
7908
7909 @ifset H8/300
7910 @include c-h8300.texi
7911 @end ifset
7912
7913 @ifset HPPA
7914 @include c-hppa.texi
7915 @end ifset
7916
7917 @ifset I80386
7918 @include c-i386.texi
7919 @end ifset
7920
7921 @ifset IA64
7922 @include c-ia64.texi
7923 @end ifset
7924
7925 @ifset IP2K
7926 @include c-ip2k.texi
7927 @end ifset
7928
7929 @ifset LM32
7930 @include c-lm32.texi
7931 @end ifset
7932
7933 @ifset M32C
7934 @include c-m32c.texi
7935 @end ifset
7936
7937 @ifset M32R
7938 @include c-m32r.texi
7939 @end ifset
7940
7941 @ifset M680X0
7942 @include c-m68k.texi
7943 @end ifset
7944
7945 @ifset M68HC11
7946 @include c-m68hc11.texi
7947 @end ifset
7948
7949 @ifset S12Z
7950 @include c-s12z.texi
7951 @end ifset
7952
7953 @ifset METAG
7954 @include c-metag.texi
7955 @end ifset
7956
7957 @ifset MICROBLAZE
7958 @include c-microblaze.texi
7959 @end ifset
7960
7961 @ifset MIPS
7962 @include c-mips.texi
7963 @end ifset
7964
7965 @ifset MMIX
7966 @include c-mmix.texi
7967 @end ifset
7968
7969 @ifset MSP430
7970 @include c-msp430.texi
7971 @end ifset
7972
7973 @ifset NDS32
7974 @include c-nds32.texi
7975 @end ifset
7976
7977 @ifset NIOSII
7978 @include c-nios2.texi
7979 @end ifset
7980
7981 @ifset NS32K
7982 @include c-ns32k.texi
7983 @end ifset
7984
7985 @ifset OPENRISC
7986 @include c-or1k.texi
7987 @end ifset
7988
7989 @ifset PDP11
7990 @include c-pdp11.texi
7991 @end ifset
7992
7993 @ifset PJ
7994 @include c-pj.texi
7995 @end ifset
7996
7997 @ifset PPC
7998 @include c-ppc.texi
7999 @end ifset
8000
8001 @ifset PRU
8002 @include c-pru.texi
8003 @end ifset
8004
8005 @ifset RISCV
8006 @include c-riscv.texi
8007 @end ifset
8008
8009 @ifset RL78
8010 @include c-rl78.texi
8011 @end ifset
8012
8013 @ifset RX
8014 @include c-rx.texi
8015 @end ifset
8016
8017 @ifset S390
8018 @include c-s390.texi
8019 @end ifset
8020
8021 @ifset SCORE
8022 @include c-score.texi
8023 @end ifset
8024
8025 @ifset SH
8026 @include c-sh.texi
8027 @end ifset
8028
8029 @ifset SPARC
8030 @include c-sparc.texi
8031 @end ifset
8032
8033 @ifset TIC54X
8034 @include c-tic54x.texi
8035 @end ifset
8036
8037 @ifset TIC6X
8038 @include c-tic6x.texi
8039 @end ifset
8040
8041 @ifset TILEGX
8042 @include c-tilegx.texi
8043 @end ifset
8044
8045 @ifset TILEPRO
8046 @include c-tilepro.texi
8047 @end ifset
8048
8049 @ifset V850
8050 @include c-v850.texi
8051 @end ifset
8052
8053 @ifset VAX
8054 @include c-vax.texi
8055 @end ifset
8056
8057 @ifset VISIUM
8058 @include c-visium.texi
8059 @end ifset
8060
8061 @ifset WASM32
8062 @include c-wasm32.texi
8063 @end ifset
8064
8065 @ifset XGATE
8066 @include c-xgate.texi
8067 @end ifset
8068
8069 @ifset XSTORMY16
8070 @include c-xstormy16.texi
8071 @end ifset
8072
8073 @ifset XTENSA
8074 @include c-xtensa.texi
8075 @end ifset
8076
8077 @ifset Z80
8078 @include c-z80.texi
8079 @end ifset
8080
8081 @ifset Z8000
8082 @include c-z8k.texi
8083 @end ifset
8084
8085 @ifset GENERIC
8086 @c reverse effect of @down at top of generic Machine-Dep chapter
8087 @raisesections
8088 @end ifset
8089
8090 @node Reporting Bugs
8091 @chapter Reporting Bugs
8092 @cindex bugs in assembler
8093 @cindex reporting bugs in assembler
8094
8095 Your bug reports play an essential role in making @command{@value{AS}} reliable.
8096
8097 Reporting a bug may help you by bringing a solution to your problem, or it may
8098 not. But in any case the principal function of a bug report is to help the
8099 entire community by making the next version of @command{@value{AS}} work better.
8100 Bug reports are your contribution to the maintenance of @command{@value{AS}}.
8101
8102 In order for a bug report to serve its purpose, you must include the
8103 information that enables us to fix the bug.
8104
8105 @menu
8106 * Bug Criteria:: Have you found a bug?
8107 * Bug Reporting:: How to report bugs
8108 @end menu
8109
8110 @node Bug Criteria
8111 @section Have You Found a Bug?
8112 @cindex bug criteria
8113
8114 If you are not sure whether you have found a bug, here are some guidelines:
8115
8116 @itemize @bullet
8117 @cindex fatal signal
8118 @cindex assembler crash
8119 @cindex crash of assembler
8120 @item
8121 If the assembler gets a fatal signal, for any input whatever, that is a
8122 @command{@value{AS}} bug. Reliable assemblers never crash.
8123
8124 @cindex error on valid input
8125 @item
8126 If @command{@value{AS}} produces an error message for valid input, that is a bug.
8127
8128 @cindex invalid input
8129 @item
8130 If @command{@value{AS}} does not produce an error message for invalid input, that
8131 is a bug. However, you should note that your idea of ``invalid input'' might
8132 be our idea of ``an extension'' or ``support for traditional practice''.
8133
8134 @item
8135 If you are an experienced user of assemblers, your suggestions for improvement
8136 of @command{@value{AS}} are welcome in any case.
8137 @end itemize
8138
8139 @node Bug Reporting
8140 @section How to Report Bugs
8141 @cindex bug reports
8142 @cindex assembler bugs, reporting
8143
8144 A number of companies and individuals offer support for @sc{gnu} products. If
8145 you obtained @command{@value{AS}} from a support organization, we recommend you
8146 contact that organization first.
8147
8148 You can find contact information for many support companies and
8149 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
8150 distribution.
8151
8152 @ifset BUGURL
8153 In any event, we also recommend that you send bug reports for @command{@value{AS}}
8154 to @value{BUGURL}.
8155 @end ifset
8156
8157 The fundamental principle of reporting bugs usefully is this:
8158 @strong{report all the facts}. If you are not sure whether to state a
8159 fact or leave it out, state it!
8160
8161 Often people omit facts because they think they know what causes the problem
8162 and assume that some details do not matter. Thus, you might assume that the
8163 name of a symbol you use in an example does not matter. Well, probably it does
8164 not, but one cannot be sure. Perhaps the bug is a stray memory reference which
8165 happens to fetch from the location where that name is stored in memory;
8166 perhaps, if the name were different, the contents of that location would fool
8167 the assembler into doing the right thing despite the bug. Play it safe and
8168 give a specific, complete example. That is the easiest thing for you to do,
8169 and the most helpful.
8170
8171 Keep in mind that the purpose of a bug report is to enable us to fix the bug if
8172 it is new to us. Therefore, always write your bug reports on the assumption
8173 that the bug has not been reported previously.
8174
8175 Sometimes people give a few sketchy facts and ask, ``Does this ring a
8176 bell?'' This cannot help us fix a bug, so it is basically useless. We
8177 respond by asking for enough details to enable us to investigate.
8178 You might as well expedite matters by sending them to begin with.
8179
8180 To enable us to fix the bug, you should include all these things:
8181
8182 @itemize @bullet
8183 @item
8184 The version of @command{@value{AS}}. @command{@value{AS}} announces it if you start
8185 it with the @samp{--version} argument.
8186
8187 Without this, we will not know whether there is any point in looking for
8188 the bug in the current version of @command{@value{AS}}.
8189
8190 @item
8191 Any patches you may have applied to the @command{@value{AS}} source.
8192
8193 @item
8194 The type of machine you are using, and the operating system name and
8195 version number.
8196
8197 @item
8198 What compiler (and its version) was used to compile @command{@value{AS}}---e.g.
8199 ``@code{gcc-2.7}''.
8200
8201 @item
8202 The command arguments you gave the assembler to assemble your example and
8203 observe the bug. To guarantee you will not omit something important, list them
8204 all. A copy of the Makefile (or the output from make) is sufficient.
8205
8206 If we were to try to guess the arguments, we would probably guess wrong
8207 and then we might not encounter the bug.
8208
8209 @item
8210 A complete input file that will reproduce the bug. If the bug is observed when
8211 the assembler is invoked via a compiler, send the assembler source, not the
8212 high level language source. Most compilers will produce the assembler source
8213 when run with the @samp{-S} option. If you are using @code{@value{GCC}}, use
8214 the options @samp{-v --save-temps}; this will save the assembler source in a
8215 file with an extension of @file{.s}, and also show you exactly how
8216 @command{@value{AS}} is being run.
8217
8218 @item
8219 A description of what behavior you observe that you believe is
8220 incorrect. For example, ``It gets a fatal signal.''
8221
8222 Of course, if the bug is that @command{@value{AS}} gets a fatal signal, then we
8223 will certainly notice it. But if the bug is incorrect output, we might not
8224 notice unless it is glaringly wrong. You might as well not give us a chance to
8225 make a mistake.
8226
8227 Even if the problem you experience is a fatal signal, you should still say so
8228 explicitly. Suppose something strange is going on, such as, your copy of
8229 @command{@value{AS}} is out of sync, or you have encountered a bug in the C
8230 library on your system. (This has happened!) Your copy might crash and ours
8231 would not. If you told us to expect a crash, then when ours fails to crash, we
8232 would know that the bug was not happening for us. If you had not told us to
8233 expect a crash, then we would not be able to draw any conclusion from our
8234 observations.
8235
8236 @item
8237 If you wish to suggest changes to the @command{@value{AS}} source, send us context
8238 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or @samp{-p}
8239 option. Always send diffs from the old file to the new file. If you even
8240 discuss something in the @command{@value{AS}} source, refer to it by context, not
8241 by line number.
8242
8243 The line numbers in our development sources will not match those in your
8244 sources. Your line numbers would convey no useful information to us.
8245 @end itemize
8246
8247 Here are some things that are not necessary:
8248
8249 @itemize @bullet
8250 @item
8251 A description of the envelope of the bug.
8252
8253 Often people who encounter a bug spend a lot of time investigating
8254 which changes to the input file will make the bug go away and which
8255 changes will not affect it.
8256
8257 This is often time consuming and not very useful, because the way we
8258 will find the bug is by running a single example under the debugger
8259 with breakpoints, not by pure deduction from a series of examples.
8260 We recommend that you save your time for something else.
8261
8262 Of course, if you can find a simpler example to report @emph{instead}
8263 of the original one, that is a convenience for us. Errors in the
8264 output will be easier to spot, running under the debugger will take
8265 less time, and so on.
8266
8267 However, simplification is not vital; if you do not want to do this,
8268 report the bug anyway and send us the entire test case you used.
8269
8270 @item
8271 A patch for the bug.
8272
8273 A patch for the bug does help us if it is a good one. But do not omit
8274 the necessary information, such as the test case, on the assumption that
8275 a patch is all we need. We might see problems with your patch and decide
8276 to fix the problem another way, or we might not understand it at all.
8277
8278 Sometimes with a program as complicated as @command{@value{AS}} it is very hard to
8279 construct an example that will make the program follow a certain path through
8280 the code. If you do not send us the example, we will not be able to construct
8281 one, so we will not be able to verify that the bug is fixed.
8282
8283 And if we cannot understand what bug you are trying to fix, or why your
8284 patch should be an improvement, we will not install it. A test case will
8285 help us to understand.
8286
8287 @item
8288 A guess about what the bug is or what it depends on.
8289
8290 Such guesses are usually wrong. Even we cannot guess right about such
8291 things without first using the debugger to find the facts.
8292 @end itemize
8293
8294 @node Acknowledgements
8295 @chapter Acknowledgements
8296
8297 If you have contributed to GAS and your name isn't listed here,
8298 it is not meant as a slight. We just don't know about it. Send mail to the
8299 maintainer, and we'll correct the situation. Currently
8300 @c (October 2012),
8301 the maintainer is Nick Clifton (email address @code{nickc@@redhat.com}).
8302
8303 Dean Elsner wrote the original @sc{gnu} assembler for the VAX.@footnote{Any
8304 more details?}
8305
8306 Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug
8307 information and the 68k series machines, most of the preprocessing pass, and
8308 extensive changes in @file{messages.c}, @file{input-file.c}, @file{write.c}.
8309
8310 K. Richard Pixley maintained GAS for a while, adding various enhancements and
8311 many bug fixes, including merging support for several processors, breaking GAS
8312 up to handle multiple object file format back ends (including heavy rewrite,
8313 testing, an integration of the coff and b.out back ends), adding configuration
8314 including heavy testing and verification of cross assemblers and file splits
8315 and renaming, converted GAS to strictly ANSI C including full prototypes, added
8316 support for m680[34]0 and cpu32, did considerable work on i960 including a COFF
8317 port (including considerable amounts of reverse engineering), a SPARC opcode
8318 file rewrite, DECstation, rs6000, and hp300hpux host ports, updated ``know''
8319 assertions and made them work, much other reorganization, cleanup, and lint.
8320
8321 Ken Raeburn wrote the high-level BFD interface code to replace most of the code
8322 in format-specific I/O modules.
8323
8324 The original VMS support was contributed by David L. Kashtan. Eric Youngdale
8325 has done much work with it since.
8326
8327 The Intel 80386 machine description was written by Eliot Dresselhaus.
8328
8329 Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
8330
8331 The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
8332 University and Torbjorn Granlund of the Swedish Institute of Computer Science.
8333
8334 Keith Knowles at the Open Software Foundation wrote the original MIPS back end
8335 (@file{tc-mips.c}, @file{tc-mips.h}), and contributed Rose format support
8336 (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
8337 support a.out format.
8338
8339 Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k,
8340 tc-h8300), and IEEE 695 object file format (obj-ieee), was written by
8341 Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to
8342 use BFD for some low-level operations, for use with the H8/300 and AMD 29k
8343 targets.
8344
8345 John Gilmore built the AMD 29000 support, added @code{.include} support, and
8346 simplified the configuration of which versions accept which directives. He
8347 updated the 68k machine description so that Motorola's opcodes always produced
8348 fixed-size instructions (e.g., @code{jsr}), while synthetic instructions
8349 remained shrinkable (@code{jbsr}). John fixed many bugs, including true tested
8350 cross-compilation support, and one bug in relaxation that took a week and
8351 required the proverbial one-bit fix.
8352
8353 Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
8354 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix),
8355 added support for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and
8356 PowerPC assembler, and made a few other minor patches.
8357
8358 Steve Chamberlain made GAS able to generate listings.
8359
8360 Hewlett-Packard contributed support for the HP9000/300.
8361
8362 Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM)
8363 along with a fairly extensive HPPA testsuite (for both SOM and ELF object
8364 formats). This work was supported by both the Center for Software Science at
8365 the University of Utah and Cygnus Support.
8366
8367 Support for ELF format files has been worked on by Mark Eichin of Cygnus
8368 Support (original, incomplete implementation for SPARC), Pete Hoogenboom and
8369 Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open
8370 Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc,
8371 and some initial 64-bit support).
8372
8373 Linas Vepstas added GAS support for the ESA/390 ``IBM 370'' architecture.
8374
8375 Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
8376 support for openVMS/Alpha.
8377
8378 Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
8379 flavors.
8380
8381 David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica,
8382 Inc.@: added support for Xtensa processors.
8383
8384 Several engineers at Cygnus Support have also provided many small bug fixes and
8385 configuration enhancements.
8386
8387 Jon Beniston added support for the Lattice Mico32 architecture.
8388
8389 Many others have contributed large or small bugfixes and enhancements. If
8390 you have contributed significant work and are not mentioned on this list, and
8391 want to be, let us know. Some of the history has been lost; we are not
8392 intentionally leaving anyone out.
8393
8394 @node GNU Free Documentation License
8395 @appendix GNU Free Documentation License
8396 @include fdl.texi
8397
8398 @node AS Index
8399 @unnumbered AS Index
8400
8401 @printindex cp
8402
8403 @bye
8404 @c Local Variables:
8405 @c fill-column: 79
8406 @c End:
This page took 0.19421 seconds and 3 git commands to generate.