Document the fact that the assembler's alignment pseudo-ops can be issued without...
[deliverable/binutils-gdb.git] / gas / doc / as.texi
1 \input texinfo @c -*-Texinfo-*-
2 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
3 @c UPDATE!! On future updates--
4 @c (1) check for new machine-dep cmdline options in
5 @c md_parse_option definitions in config/tc-*.c
6 @c (2) for platform-specific directives, examine md_pseudo_op
7 @c in config/tc-*.c
8 @c (3) for object-format specific directives, examine obj_pseudo_op
9 @c in config/obj-*.c
10 @c (4) portable directives in potable[] in read.c
11 @c %**start of header
12 @setfilename as.info
13 @c ---config---
14 @macro gcctabopt{body}
15 @code{\body\}
16 @end macro
17 @c defaults, config file may override:
18 @set have-stabs
19 @c ---
20 @c man begin NAME
21 @c ---
22 @include asconfig.texi
23 @include bfdver.texi
24 @c ---
25 @c man end
26 @c ---
27 @c common OR combinations of conditions
28 @ifset COFF
29 @set COFF-ELF
30 @end ifset
31 @ifset ELF
32 @set COFF-ELF
33 @end ifset
34 @ifset AOUT
35 @set aout
36 @end ifset
37 @ifset ARM/Thumb
38 @set ARM
39 @end ifset
40 @ifset Blackfin
41 @set Blackfin
42 @end ifset
43 @ifset BPF
44 @set BPF
45 @end ifset
46 @ifset H8/300
47 @set H8
48 @end ifset
49 @ifset SH
50 @set H8
51 @end ifset
52 @ifset HPPA
53 @set abnormal-separator
54 @end ifset
55 @c ------------
56 @ifset GENERIC
57 @settitle Using @value{AS}
58 @end ifset
59 @ifclear GENERIC
60 @settitle Using @value{AS} (@value{TARGET})
61 @end ifclear
62 @setchapternewpage odd
63 @c %**end of header
64
65 @c @smallbook
66 @c @set SMALL
67 @c WARE! Some of the machine-dependent sections contain tables of machine
68 @c instructions. Except in multi-column format, these tables look silly.
69 @c Unfortunately, Texinfo doesn't have a general-purpose multi-col format, so
70 @c the multi-col format is faked within @example sections.
71 @c
72 @c Again unfortunately, the natural size that fits on a page, for these tables,
73 @c is different depending on whether or not smallbook is turned on.
74 @c This matters, because of order: text flow switches columns at each page
75 @c break.
76 @c
77 @c The format faked in this source works reasonably well for smallbook,
78 @c not well for the default large-page format. This manual expects that if you
79 @c turn on @smallbook, you will also uncomment the "@set SMALL" to enable the
80 @c tables in question. You can turn on one without the other at your
81 @c discretion, of course.
82 @ifinfo
83 @set SMALL
84 @c the insn tables look just as silly in info files regardless of smallbook,
85 @c might as well show 'em anyways.
86 @end ifinfo
87
88 @ifnottex
89 @dircategory Software development
90 @direntry
91 * As: (as). The GNU assembler.
92 * Gas: (as). The GNU assembler.
93 @end direntry
94 @end ifnottex
95
96 @finalout
97 @syncodeindex ky cp
98
99 @copying
100 This file documents the GNU Assembler "@value{AS}".
101
102 @c man begin COPYRIGHT
103 Copyright @copyright{} 1991-2020 Free Software Foundation, Inc.
104
105 Permission is granted to copy, distribute and/or modify this document
106 under the terms of the GNU Free Documentation License, Version 1.3
107 or any later version published by the Free Software Foundation;
108 with no Invariant Sections, with no Front-Cover Texts, and with no
109 Back-Cover Texts. A copy of the license is included in the
110 section entitled ``GNU Free Documentation License''.
111
112 @c man end
113 @end copying
114
115 @titlepage
116 @title Using @value{AS}
117 @subtitle The @sc{gnu} Assembler
118 @ifclear GENERIC
119 @subtitle for the @value{TARGET} family
120 @end ifclear
121 @ifset VERSION_PACKAGE
122 @sp 1
123 @subtitle @value{VERSION_PACKAGE}
124 @end ifset
125 @sp 1
126 @subtitle Version @value{VERSION}
127 @sp 1
128 @sp 13
129 The Free Software Foundation Inc.@: thanks The Nice Computer
130 Company of Australia for loaning Dean Elsner to write the
131 first (Vax) version of @command{as} for Project @sc{gnu}.
132 The proprietors, management and staff of TNCCA thank FSF for
133 distracting the boss while they got some work
134 done.
135 @sp 3
136 @author Dean Elsner, Jay Fenlason & friends
137 @page
138 @tex
139 {\parskip=0pt
140 \hfill {\it Using {\tt @value{AS}}}\par
141 \hfill Edited by Cygnus Support\par
142 }
143 %"boxit" macro for figures:
144 %Modified from Knuth's ``boxit'' macro from TeXbook (answer to exercise 21.3)
145 \gdef\boxit#1#2{\vbox{\hrule\hbox{\vrule\kern3pt
146 \vbox{\parindent=0pt\parskip=0pt\hsize=#1\kern3pt\strut\hfil
147 #2\hfil\strut\kern3pt}\kern3pt\vrule}\hrule}}%box with visible outline
148 \gdef\ibox#1#2{\hbox to #1{#2\hfil}\kern8pt}% invisible box
149 @end tex
150
151 @vskip 0pt plus 1filll
152 Copyright @copyright{} 1991-2020 Free Software Foundation, Inc.
153
154 Permission is granted to copy, distribute and/or modify this document
155 under the terms of the GNU Free Documentation License, Version 1.3
156 or any later version published by the Free Software Foundation;
157 with no Invariant Sections, with no Front-Cover Texts, and with no
158 Back-Cover Texts. A copy of the license is included in the
159 section entitled ``GNU Free Documentation License''.
160
161 @end titlepage
162 @contents
163
164 @ifnottex
165 @node Top
166 @top Using @value{AS}
167
168 This file is a user guide to the @sc{gnu} assembler @command{@value{AS}}
169 @ifset VERSION_PACKAGE
170 @value{VERSION_PACKAGE}
171 @end ifset
172 version @value{VERSION}.
173 @ifclear GENERIC
174 This version of the file describes @command{@value{AS}} configured to generate
175 code for @value{TARGET} architectures.
176 @end ifclear
177
178 This document is distributed under the terms of the GNU Free
179 Documentation License. A copy of the license is included in the
180 section entitled ``GNU Free Documentation License''.
181
182 @menu
183 * Overview:: Overview
184 * Invoking:: Command-Line Options
185 * Syntax:: Syntax
186 * Sections:: Sections and Relocation
187 * Symbols:: Symbols
188 * Expressions:: Expressions
189 * Pseudo Ops:: Assembler Directives
190 @ifset ELF
191 * Object Attributes:: Object Attributes
192 @end ifset
193 * Machine Dependencies:: Machine Dependent Features
194 * Reporting Bugs:: Reporting Bugs
195 * Acknowledgements:: Who Did What
196 * GNU Free Documentation License:: GNU Free Documentation License
197 * AS Index:: AS Index
198 @end menu
199 @end ifnottex
200
201 @node Overview
202 @chapter Overview
203 @iftex
204 This manual is a user guide to the @sc{gnu} assembler @command{@value{AS}}.
205 @ifclear GENERIC
206 This version of the manual describes @command{@value{AS}} configured to generate
207 code for @value{TARGET} architectures.
208 @end ifclear
209 @end iftex
210
211 @cindex invocation summary
212 @cindex option summary
213 @cindex summary of options
214 Here is a brief summary of how to invoke @command{@value{AS}}. For details,
215 see @ref{Invoking,,Command-Line Options}.
216
217 @c man title AS the portable GNU assembler.
218
219 @ignore
220 @c man begin SEEALSO
221 gcc(1), ld(1), and the Info entries for @file{binutils} and @file{ld}.
222 @c man end
223 @end ignore
224
225 @c We don't use deffn and friends for the following because they seem
226 @c to be limited to one line for the header.
227 @smallexample
228 @c man begin SYNOPSIS
229 @value{AS} [@b{-a}[@b{cdghlns}][=@var{file}]] [@b{--alternate}] [@b{-D}]
230 [@b{--compress-debug-sections}] [@b{--nocompress-debug-sections}]
231 [@b{--debug-prefix-map} @var{old}=@var{new}]
232 [@b{--defsym} @var{sym}=@var{val}] [@b{-f}] [@b{-g}] [@b{--gstabs}]
233 [@b{--gstabs+}] [@b{--gdwarf-2}] [@b{--gdwarf-sections}]
234 [@b{--gdwarf-cie-version}=@var{VERSION}]
235 [@b{--help}] [@b{-I} @var{dir}] [@b{-J}]
236 [@b{-K}] [@b{-L}] [@b{--listing-lhs-width}=@var{NUM}]
237 [@b{--listing-lhs-width2}=@var{NUM}] [@b{--listing-rhs-width}=@var{NUM}]
238 [@b{--listing-cont-lines}=@var{NUM}] [@b{--keep-locals}]
239 [@b{--no-pad-sections}]
240 [@b{-o} @var{objfile}] [@b{-R}]
241 [@b{--hash-size}=@var{NUM}] [@b{--reduce-memory-overheads}]
242 [@b{--statistics}]
243 [@b{-v}] [@b{-version}] [@b{--version}]
244 [@b{-W}] [@b{--warn}] [@b{--fatal-warnings}] [@b{-w}] [@b{-x}]
245 [@b{-Z}] [@b{@@@var{FILE}}]
246 [@b{--sectname-subst}] [@b{--size-check=[error|warning]}]
247 [@b{--elf-stt-common=[no|yes]}]
248 [@b{--generate-missing-build-notes=[no|yes]}]
249 [@b{--target-help}] [@var{target-options}]
250 [@b{--}|@var{files} @dots{}]
251 @c
252 @c man end
253 @c Target dependent options are listed below. Keep the list sorted.
254 @c Add an empty line for separation.
255 @c man begin TARGET
256 @ifset AARCH64
257
258 @emph{Target AArch64 options:}
259 [@b{-EB}|@b{-EL}]
260 [@b{-mabi}=@var{ABI}]
261 @end ifset
262 @ifset ALPHA
263
264 @emph{Target Alpha options:}
265 [@b{-m@var{cpu}}]
266 [@b{-mdebug} | @b{-no-mdebug}]
267 [@b{-replace} | @b{-noreplace}]
268 [@b{-relax}] [@b{-g}] [@b{-G@var{size}}]
269 [@b{-F}] [@b{-32addr}]
270 @end ifset
271 @ifset ARC
272
273 @emph{Target ARC options:}
274 [@b{-mcpu=@var{cpu}}]
275 [@b{-mA6}|@b{-mARC600}|@b{-mARC601}|@b{-mA7}|@b{-mARC700}|@b{-mEM}|@b{-mHS}]
276 [@b{-mcode-density}]
277 [@b{-mrelax}]
278 [@b{-EB}|@b{-EL}]
279 @end ifset
280 @ifset ARM
281
282 @emph{Target ARM options:}
283 @c Don't document the deprecated options
284 [@b{-mcpu}=@var{processor}[+@var{extension}@dots{}]]
285 [@b{-march}=@var{architecture}[+@var{extension}@dots{}]]
286 [@b{-mfpu}=@var{floating-point-format}]
287 [@b{-mfloat-abi}=@var{abi}]
288 [@b{-meabi}=@var{ver}]
289 [@b{-mthumb}]
290 [@b{-EB}|@b{-EL}]
291 [@b{-mapcs-32}|@b{-mapcs-26}|@b{-mapcs-float}|
292 @b{-mapcs-reentrant}]
293 [@b{-mthumb-interwork}] [@b{-k}]
294 @end ifset
295 @ifset Blackfin
296
297 @emph{Target Blackfin options:}
298 [@b{-mcpu}=@var{processor}[-@var{sirevision}]]
299 [@b{-mfdpic}]
300 [@b{-mno-fdpic}]
301 [@b{-mnopic}]
302 @end ifset
303 @ifset BPF
304
305 @emph{Target BPF options:}
306 [@b{-EL}] [@b{-EB}]
307 @end ifset
308 @ifset CRIS
309
310 @emph{Target CRIS options:}
311 [@b{--underscore} | @b{--no-underscore}]
312 [@b{--pic}] [@b{-N}]
313 [@b{--emulation=criself} | @b{--emulation=crisaout}]
314 [@b{--march=v0_v10} | @b{--march=v10} | @b{--march=v32} | @b{--march=common_v10_v32}]
315 @c Deprecated -- deliberately not documented.
316 @c [@b{-h}] [@b{-H}]
317 @end ifset
318 @ifset CSKY
319
320 @emph{Target C-SKY options:}
321 [@b{-march=@var{arch}}] [@b{-mcpu=@var{cpu}}]
322 [@b{-EL}] [@b{-mlittle-endian}] [@b{-EB}] [@b{-mbig-endian}]
323 [@b{-fpic}] [@b{-pic}]
324 [@b{-mljump}] [@b{-mno-ljump}]
325 [@b{-force2bsr}] [@b{-mforce2bsr}] [@b{-no-force2bsr}] [@b{-mno-force2bsr}]
326 [@b{-jsri2bsr}] [@b{-mjsri2bsr}] [@b{-no-jsri2bsr }] [@b{-mno-jsri2bsr}]
327 [@b{-mnolrw }] [@b{-mno-lrw}]
328 [@b{-melrw}] [@b{-mno-elrw}]
329 [@b{-mlaf }] [@b{-mliterals-after-func}]
330 [@b{-mno-laf}] [@b{-mno-literals-after-func}]
331 [@b{-mlabr}] [@b{-mliterals-after-br}]
332 [@b{-mno-labr}] [@b{-mnoliterals-after-br}]
333 [@b{-mistack}] [@b{-mno-istack}]
334 [@b{-mhard-float}] [@b{-mmp}] [@b{-mcp}] [@b{-mcache}]
335 [@b{-msecurity}] [@b{-mtrust}]
336 [@b{-mdsp}] [@b{-medsp}] [@b{-mvdsp}]
337 @end ifset
338 @ifset D10V
339
340 @emph{Target D10V options:}
341 [@b{-O}]
342 @end ifset
343 @ifset D30V
344
345 @emph{Target D30V options:}
346 [@b{-O}|@b{-n}|@b{-N}]
347 @end ifset
348 @ifset EPIPHANY
349
350 @emph{Target EPIPHANY options:}
351 [@b{-mepiphany}|@b{-mepiphany16}]
352 @end ifset
353 @ifset H8
354
355 @emph{Target H8/300 options:}
356 [-h-tick-hex]
357 @end ifset
358 @ifset HPPA
359 @c HPPA has no machine-dependent assembler options (yet).
360 @end ifset
361 @ifset I80386
362
363 @emph{Target i386 options:}
364 [@b{--32}|@b{--x32}|@b{--64}] [@b{-n}]
365 [@b{-march}=@var{CPU}[+@var{EXTENSION}@dots{}]] [@b{-mtune}=@var{CPU}]
366 @end ifset
367 @ifset IA64
368
369 @emph{Target IA-64 options:}
370 [@b{-mconstant-gp}|@b{-mauto-pic}]
371 [@b{-milp32}|@b{-milp64}|@b{-mlp64}|@b{-mp64}]
372 [@b{-mle}|@b{mbe}]
373 [@b{-mtune=itanium1}|@b{-mtune=itanium2}]
374 [@b{-munwind-check=warning}|@b{-munwind-check=error}]
375 [@b{-mhint.b=ok}|@b{-mhint.b=warning}|@b{-mhint.b=error}]
376 [@b{-x}|@b{-xexplicit}] [@b{-xauto}] [@b{-xdebug}]
377 @end ifset
378 @ifset IP2K
379
380 @emph{Target IP2K options:}
381 [@b{-mip2022}|@b{-mip2022ext}]
382 @end ifset
383 @ifset M32C
384
385 @emph{Target M32C options:}
386 [@b{-m32c}|@b{-m16c}] [-relax] [-h-tick-hex]
387 @end ifset
388 @ifset M32R
389
390 @emph{Target M32R options:}
391 [@b{--m32rx}|@b{--[no-]warn-explicit-parallel-conflicts}|
392 @b{--W[n]p}]
393 @end ifset
394 @ifset M680X0
395
396 @emph{Target M680X0 options:}
397 [@b{-l}] [@b{-m68000}|@b{-m68010}|@b{-m68020}|@dots{}]
398 @end ifset
399 @ifset M68HC11
400
401 @emph{Target M68HC11 options:}
402 [@b{-m68hc11}|@b{-m68hc12}|@b{-m68hcs12}|@b{-mm9s12x}|@b{-mm9s12xg}]
403 [@b{-mshort}|@b{-mlong}]
404 [@b{-mshort-double}|@b{-mlong-double}]
405 [@b{--force-long-branches}] [@b{--short-branches}]
406 [@b{--strict-direct-mode}] [@b{--print-insn-syntax}]
407 [@b{--print-opcodes}] [@b{--generate-example}]
408 @end ifset
409 @ifset MCORE
410
411 @emph{Target MCORE options:}
412 [@b{-jsri2bsr}] [@b{-sifilter}] [@b{-relax}]
413 [@b{-mcpu=[210|340]}]
414 @end ifset
415 @ifset METAG
416
417 @emph{Target Meta options:}
418 [@b{-mcpu=@var{cpu}}] [@b{-mfpu=@var{cpu}}] [@b{-mdsp=@var{cpu}}]
419 @end ifset
420 @ifset MICROBLAZE
421 @emph{Target MICROBLAZE options:}
422 @c MicroBlaze has no machine-dependent assembler options.
423 @end ifset
424 @ifset MIPS
425
426 @emph{Target MIPS options:}
427 [@b{-nocpp}] [@b{-EL}] [@b{-EB}] [@b{-O}[@var{optimization level}]]
428 [@b{-g}[@var{debug level}]] [@b{-G} @var{num}] [@b{-KPIC}] [@b{-call_shared}]
429 [@b{-non_shared}] [@b{-xgot} [@b{-mvxworks-pic}]
430 [@b{-mabi}=@var{ABI}] [@b{-32}] [@b{-n32}] [@b{-64}] [@b{-mfp32}] [@b{-mgp32}]
431 [@b{-mfp64}] [@b{-mgp64}] [@b{-mfpxx}]
432 [@b{-modd-spreg}] [@b{-mno-odd-spreg}]
433 [@b{-march}=@var{CPU}] [@b{-mtune}=@var{CPU}] [@b{-mips1}] [@b{-mips2}]
434 [@b{-mips3}] [@b{-mips4}] [@b{-mips5}] [@b{-mips32}] [@b{-mips32r2}]
435 [@b{-mips32r3}] [@b{-mips32r5}] [@b{-mips32r6}] [@b{-mips64}] [@b{-mips64r2}]
436 [@b{-mips64r3}] [@b{-mips64r5}] [@b{-mips64r6}]
437 [@b{-construct-floats}] [@b{-no-construct-floats}]
438 [@b{-mignore-branch-isa}] [@b{-mno-ignore-branch-isa}]
439 [@b{-mnan=@var{encoding}}]
440 [@b{-trap}] [@b{-no-break}] [@b{-break}] [@b{-no-trap}]
441 [@b{-mips16}] [@b{-no-mips16}]
442 [@b{-mmips16e2}] [@b{-mno-mips16e2}]
443 [@b{-mmicromips}] [@b{-mno-micromips}]
444 [@b{-msmartmips}] [@b{-mno-smartmips}]
445 [@b{-mips3d}] [@b{-no-mips3d}]
446 [@b{-mdmx}] [@b{-no-mdmx}]
447 [@b{-mdsp}] [@b{-mno-dsp}]
448 [@b{-mdspr2}] [@b{-mno-dspr2}]
449 [@b{-mdspr3}] [@b{-mno-dspr3}]
450 [@b{-mmsa}] [@b{-mno-msa}]
451 [@b{-mxpa}] [@b{-mno-xpa}]
452 [@b{-mmt}] [@b{-mno-mt}]
453 [@b{-mmcu}] [@b{-mno-mcu}]
454 [@b{-mcrc}] [@b{-mno-crc}]
455 [@b{-mginv}] [@b{-mno-ginv}]
456 [@b{-mloongson-mmi}] [@b{-mno-loongson-mmi}]
457 [@b{-mloongson-cam}] [@b{-mno-loongson-cam}]
458 [@b{-mloongson-ext}] [@b{-mno-loongson-ext}]
459 [@b{-mloongson-ext2}] [@b{-mno-loongson-ext2}]
460 [@b{-minsn32}] [@b{-mno-insn32}]
461 [@b{-mfix7000}] [@b{-mno-fix7000}]
462 [@b{-mfix-rm7000}] [@b{-mno-fix-rm7000}]
463 [@b{-mfix-vr4120}] [@b{-mno-fix-vr4120}]
464 [@b{-mfix-vr4130}] [@b{-mno-fix-vr4130}]
465 [@b{-mfix-r5900}] [@b{-mno-fix-r5900}]
466 [@b{-mdebug}] [@b{-no-mdebug}]
467 [@b{-mpdr}] [@b{-mno-pdr}]
468 @end ifset
469 @ifset MMIX
470
471 @emph{Target MMIX options:}
472 [@b{--fixed-special-register-names}] [@b{--globalize-symbols}]
473 [@b{--gnu-syntax}] [@b{--relax}] [@b{--no-predefined-symbols}]
474 [@b{--no-expand}] [@b{--no-merge-gregs}] [@b{-x}]
475 [@b{--linker-allocated-gregs}]
476 @end ifset
477 @ifset NIOSII
478
479 @emph{Target Nios II options:}
480 [@b{-relax-all}] [@b{-relax-section}] [@b{-no-relax}]
481 [@b{-EB}] [@b{-EL}]
482 @end ifset
483 @ifset NDS32
484
485 @emph{Target NDS32 options:}
486 [@b{-EL}] [@b{-EB}] [@b{-O}] [@b{-Os}] [@b{-mcpu=@var{cpu}}]
487 [@b{-misa=@var{isa}}] [@b{-mabi=@var{abi}}] [@b{-mall-ext}]
488 [@b{-m[no-]16-bit}] [@b{-m[no-]perf-ext}] [@b{-m[no-]perf2-ext}]
489 [@b{-m[no-]string-ext}] [@b{-m[no-]dsp-ext}] [@b{-m[no-]mac}] [@b{-m[no-]div}]
490 [@b{-m[no-]audio-isa-ext}] [@b{-m[no-]fpu-sp-ext}] [@b{-m[no-]fpu-dp-ext}]
491 [@b{-m[no-]fpu-fma}] [@b{-mfpu-freg=@var{FREG}}] [@b{-mreduced-regs}]
492 [@b{-mfull-regs}] [@b{-m[no-]dx-regs}] [@b{-mpic}] [@b{-mno-relax}]
493 [@b{-mb2bb}]
494 @end ifset
495 @ifset OPENRISC
496 @c OpenRISC has no machine-dependent assembler options.
497 @end ifset
498 @ifset PDP11
499
500 @emph{Target PDP11 options:}
501 [@b{-mpic}|@b{-mno-pic}] [@b{-mall}] [@b{-mno-extensions}]
502 [@b{-m}@var{extension}|@b{-mno-}@var{extension}]
503 [@b{-m}@var{cpu}] [@b{-m}@var{machine}]
504 @end ifset
505 @ifset PJ
506
507 @emph{Target picoJava options:}
508 [@b{-mb}|@b{-me}]
509 @end ifset
510 @ifset PPC
511
512 @emph{Target PowerPC options:}
513 [@b{-a32}|@b{-a64}]
514 [@b{-mpwrx}|@b{-mpwr2}|@b{-mpwr}|@b{-m601}|@b{-mppc}|@b{-mppc32}|@b{-m603}|@b{-m604}|@b{-m403}|@b{-m405}|
515 @b{-m440}|@b{-m464}|@b{-m476}|@b{-m7400}|@b{-m7410}|@b{-m7450}|@b{-m7455}|@b{-m750cl}|@b{-mgekko}|
516 @b{-mbroadway}|@b{-mppc64}|@b{-m620}|@b{-me500}|@b{-e500x2}|@b{-me500mc}|@b{-me500mc64}|@b{-me5500}|
517 @b{-me6500}|@b{-mppc64bridge}|@b{-mbooke}|@b{-mpower4}|@b{-mpwr4}|@b{-mpower5}|@b{-mpwr5}|@b{-mpwr5x}|
518 @b{-mpower6}|@b{-mpwr6}|@b{-mpower7}|@b{-mpwr7}|@b{-mpower8}|@b{-mpwr8}|@b{-mpower9}|@b{-mpwr9}@b{-ma2}|
519 @b{-mcell}|@b{-mspe}|@b{-mspe2}|@b{-mtitan}|@b{-me300}|@b{-mcom}]
520 [@b{-many}] [@b{-maltivec}|@b{-mvsx}|@b{-mhtm}|@b{-mvle}]
521 [@b{-mregnames}|@b{-mno-regnames}]
522 [@b{-mrelocatable}|@b{-mrelocatable-lib}|@b{-K PIC}] [@b{-memb}]
523 [@b{-mlittle}|@b{-mlittle-endian}|@b{-le}|@b{-mbig}|@b{-mbig-endian}|@b{-be}]
524 [@b{-msolaris}|@b{-mno-solaris}]
525 [@b{-nops=@var{count}}]
526 @end ifset
527 @ifset PRU
528
529 @emph{Target PRU options:}
530 [@b{-link-relax}]
531 [@b{-mnolink-relax}]
532 [@b{-mno-warn-regname-label}]
533 @end ifset
534 @ifset RISCV
535
536 @emph{Target RISC-V options:}
537 [@b{-fpic}|@b{-fPIC}|@b{-fno-pic}]
538 [@b{-march}=@var{ISA}]
539 [@b{-mabi}=@var{ABI}]
540 @end ifset
541 @ifset RL78
542
543 @emph{Target RL78 options:}
544 [@b{-mg10}]
545 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
546 @end ifset
547 @ifset RX
548
549 @emph{Target RX options:}
550 [@b{-mlittle-endian}|@b{-mbig-endian}]
551 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
552 [@b{-muse-conventional-section-names}]
553 [@b{-msmall-data-limit}]
554 [@b{-mpid}]
555 [@b{-mrelax}]
556 [@b{-mint-register=@var{number}}]
557 [@b{-mgcc-abi}|@b{-mrx-abi}]
558 @end ifset
559 @ifset S390
560
561 @emph{Target s390 options:}
562 [@b{-m31}|@b{-m64}] [@b{-mesa}|@b{-mzarch}] [@b{-march}=@var{CPU}]
563 [@b{-mregnames}|@b{-mno-regnames}]
564 [@b{-mwarn-areg-zero}]
565 @end ifset
566 @ifset SCORE
567
568 @emph{Target SCORE options:}
569 [@b{-EB}][@b{-EL}][@b{-FIXDD}][@b{-NWARN}]
570 [@b{-SCORE5}][@b{-SCORE5U}][@b{-SCORE7}][@b{-SCORE3}]
571 [@b{-march=score7}][@b{-march=score3}]
572 [@b{-USE_R1}][@b{-KPIC}][@b{-O0}][@b{-G} @var{num}][@b{-V}]
573 @end ifset
574 @ifset SPARC
575
576 @emph{Target SPARC options:}
577 @c The order here is important. See c-sparc.texi.
578 [@b{-Av6}|@b{-Av7}|@b{-Av8}|@b{-Aleon}|@b{-Asparclet}|@b{-Asparclite}
579 @b{-Av8plus}|@b{-Av8plusa}|@b{-Av8plusb}|@b{-Av8plusc}|@b{-Av8plusd}
580 @b{-Av8plusv}|@b{-Av8plusm}|@b{-Av9}|@b{-Av9a}|@b{-Av9b}|@b{-Av9c}
581 @b{-Av9d}|@b{-Av9e}|@b{-Av9v}|@b{-Av9m}|@b{-Asparc}|@b{-Asparcvis}
582 @b{-Asparcvis2}|@b{-Asparcfmaf}|@b{-Asparcima}|@b{-Asparcvis3}
583 @b{-Asparcvisr}|@b{-Asparc5}]
584 [@b{-xarch=v8plus}|@b{-xarch=v8plusa}]|@b{-xarch=v8plusb}|@b{-xarch=v8plusc}
585 @b{-xarch=v8plusd}|@b{-xarch=v8plusv}|@b{-xarch=v8plusm}|@b{-xarch=v9}
586 @b{-xarch=v9a}|@b{-xarch=v9b}|@b{-xarch=v9c}|@b{-xarch=v9d}|@b{-xarch=v9e}
587 @b{-xarch=v9v}|@b{-xarch=v9m}|@b{-xarch=sparc}|@b{-xarch=sparcvis}
588 @b{-xarch=sparcvis2}|@b{-xarch=sparcfmaf}|@b{-xarch=sparcima}
589 @b{-xarch=sparcvis3}|@b{-xarch=sparcvisr}|@b{-xarch=sparc5}
590 @b{-bump}]
591 [@b{-32}|@b{-64}]
592 [@b{--enforce-aligned-data}][@b{--dcti-couples-detect}]
593 @end ifset
594 @ifset TIC54X
595
596 @emph{Target TIC54X options:}
597 [@b{-mcpu=54[123589]}|@b{-mcpu=54[56]lp}] [@b{-mfar-mode}|@b{-mf}]
598 [@b{-merrors-to-file} @var{<filename>}|@b{-me} @var{<filename>}]
599 @end ifset
600 @ifset TIC6X
601
602 @emph{Target TIC6X options:}
603 [@b{-march=@var{arch}}] [@b{-mbig-endian}|@b{-mlittle-endian}]
604 [@b{-mdsbt}|@b{-mno-dsbt}] [@b{-mpid=no}|@b{-mpid=near}|@b{-mpid=far}]
605 [@b{-mpic}|@b{-mno-pic}]
606 @end ifset
607 @ifset TILEGX
608
609 @emph{Target TILE-Gx options:}
610 [@b{-m32}|@b{-m64}][@b{-EB}][@b{-EL}]
611 @end ifset
612 @ifset TILEPRO
613 @c TILEPro has no machine-dependent assembler options
614 @end ifset
615 @ifset VISIUM
616
617 @emph{Target Visium options:}
618 [@b{-mtune=@var{arch}}]
619 @end ifset
620 @ifset XTENSA
621
622 @emph{Target Xtensa options:}
623 [@b{--[no-]text-section-literals}] [@b{--[no-]auto-litpools}]
624 [@b{--[no-]absolute-literals}]
625 [@b{--[no-]target-align}] [@b{--[no-]longcalls}]
626 [@b{--[no-]transform}]
627 [@b{--rename-section} @var{oldname}=@var{newname}]
628 [@b{--[no-]trampolines}]
629 @end ifset
630 @ifset Z80
631
632 @emph{Target Z80 options:}
633 [@b{-z80}]|[@b{-z180}]|[@b{-r800}]|[@b{-ez80}]|[@b{-ez80-adl}]
634 [@b{-strict}]|[@b{-full}]
635 [@b{-with-inst=@var{INST}[,...]}] [@b{-Wnins @var{INST}[,...]}]
636 [@b{-without-inst=@var{INST}[,...]}] [@b{-Fins @var{INST}[,...]}]
637 [@b{ -ignore-undocumented-instructions}] [@b{-Wnud}]
638 [@b{ -ignore-unportable-instructions}] [@b{-Wnup}]
639 [@b{ -warn-undocumented-instructions}] [@b{-Wud}]
640 [@b{ -warn-unportable-instructions}] [@b{-Wup}]
641 [@b{ -forbid-undocumented-instructions}] [@b{-Fud}]
642 [@b{ -forbid-unportable-instructions}] [@b{-Fup}]
643 @end ifset
644 @ifset Z8000
645
646 @c Z8000 has no machine-dependent assembler options
647 @end ifset
648
649 @c man end
650 @end smallexample
651
652 @c man begin OPTIONS
653
654 @table @gcctabopt
655 @include at-file.texi
656
657 @item -a[cdghlmns]
658 Turn on listings, in any of a variety of ways:
659
660 @table @gcctabopt
661 @item -ac
662 omit false conditionals
663
664 @item -ad
665 omit debugging directives
666
667 @item -ag
668 include general information, like @value{AS} version and options passed
669
670 @item -ah
671 include high-level source
672
673 @item -al
674 include assembly
675
676 @item -am
677 include macro expansions
678
679 @item -an
680 omit forms processing
681
682 @item -as
683 include symbols
684
685 @item =file
686 set the name of the listing file
687 @end table
688
689 You may combine these options; for example, use @samp{-aln} for assembly
690 listing without forms processing. The @samp{=file} option, if used, must be
691 the last one. By itself, @samp{-a} defaults to @samp{-ahls}.
692
693 @item --alternate
694 Begin in alternate macro mode.
695 @ifclear man
696 @xref{Altmacro,,@code{.altmacro}}.
697 @end ifclear
698
699 @item --compress-debug-sections
700 Compress DWARF debug sections using zlib with SHF_COMPRESSED from the
701 ELF ABI. The resulting object file may not be compatible with older
702 linkers and object file utilities. Note if compression would make a
703 given section @emph{larger} then it is not compressed.
704
705 @ifset ELF
706 @cindex @samp{--compress-debug-sections=} option
707 @item --compress-debug-sections=none
708 @itemx --compress-debug-sections=zlib
709 @itemx --compress-debug-sections=zlib-gnu
710 @itemx --compress-debug-sections=zlib-gabi
711 These options control how DWARF debug sections are compressed.
712 @option{--compress-debug-sections=none} is equivalent to
713 @option{--nocompress-debug-sections}.
714 @option{--compress-debug-sections=zlib} and
715 @option{--compress-debug-sections=zlib-gabi} are equivalent to
716 @option{--compress-debug-sections}.
717 @option{--compress-debug-sections=zlib-gnu} compresses DWARF debug
718 sections using zlib. The debug sections are renamed to begin with
719 @samp{.zdebug}. Note if compression would make a given section
720 @emph{larger} then it is not compressed nor renamed.
721
722 @end ifset
723
724 @item --nocompress-debug-sections
725 Do not compress DWARF debug sections. This is usually the default for all
726 targets except the x86/x86_64, but a configure time option can be used to
727 override this.
728
729 @item -D
730 Ignored. This option is accepted for script compatibility with calls to
731 other assemblers.
732
733 @item --debug-prefix-map @var{old}=@var{new}
734 When assembling files in directory @file{@var{old}}, record debugging
735 information describing them as in @file{@var{new}} instead.
736
737 @item --defsym @var{sym}=@var{value}
738 Define the symbol @var{sym} to be @var{value} before assembling the input file.
739 @var{value} must be an integer constant. As in C, a leading @samp{0x}
740 indicates a hexadecimal value, and a leading @samp{0} indicates an octal
741 value. The value of the symbol can be overridden inside a source file via the
742 use of a @code{.set} pseudo-op.
743
744 @item -f
745 ``fast''---skip whitespace and comment preprocessing (assume source is
746 compiler output).
747
748 @item -g
749 @itemx --gen-debug
750 Generate debugging information for each assembler source line using whichever
751 debug format is preferred by the target. This currently means either STABS,
752 ECOFF or DWARF2.
753
754 @item --gstabs
755 Generate stabs debugging information for each assembler line. This
756 may help debugging assembler code, if the debugger can handle it.
757
758 @item --gstabs+
759 Generate stabs debugging information for each assembler line, with GNU
760 extensions that probably only gdb can handle, and that could make other
761 debuggers crash or refuse to read your program. This
762 may help debugging assembler code. Currently the only GNU extension is
763 the location of the current working directory at assembling time.
764
765 @item --gdwarf-2
766 Generate DWARF2 debugging information for each assembler line. This
767 may help debugging assembler code, if the debugger can handle it. Note---this
768 option is only supported by some targets, not all of them.
769
770 @item --gdwarf-sections
771 Instead of creating a .debug_line section, create a series of
772 .debug_line.@var{foo} sections where @var{foo} is the name of the
773 corresponding code section. For example a code section called @var{.text.func}
774 will have its dwarf line number information placed into a section called
775 @var{.debug_line.text.func}. If the code section is just called @var{.text}
776 then debug line section will still be called just @var{.debug_line} without any
777 suffix.
778
779 @item --gdwarf-cie-version=@var{version}
780 Control which version of DWARF Common Information Entries (CIEs) are produced.
781 When this flag is not specificed the default is version 1, though some targets
782 can modify this default. Other possible values for @var{version} are 3 or 4.
783
784 @ifset ELF
785 @item --size-check=error
786 @itemx --size-check=warning
787 Issue an error or warning for invalid ELF .size directive.
788
789 @item --elf-stt-common=no
790 @itemx --elf-stt-common=yes
791 These options control whether the ELF assembler should generate common
792 symbols with the @code{STT_COMMON} type. The default can be controlled
793 by a configure option @option{--enable-elf-stt-common}.
794
795 @item --generate-missing-build-notes=yes
796 @itemx --generate-missing-build-notes=no
797 These options control whether the ELF assembler should generate GNU Build
798 attribute notes if none are present in the input sources.
799 The default can be controlled by the @option{--enable-generate-build-notes}
800 configure option.
801
802 @end ifset
803
804 @item --help
805 Print a summary of the command-line options and exit.
806
807 @item --target-help
808 Print a summary of all target specific options and exit.
809
810 @item -I @var{dir}
811 Add directory @var{dir} to the search list for @code{.include} directives.
812
813 @item -J
814 Don't warn about signed overflow.
815
816 @item -K
817 @ifclear DIFF-TBL-KLUGE
818 This option is accepted but has no effect on the @value{TARGET} family.
819 @end ifclear
820 @ifset DIFF-TBL-KLUGE
821 Issue warnings when difference tables altered for long displacements.
822 @end ifset
823
824 @item -L
825 @itemx --keep-locals
826 Keep (in the symbol table) local symbols. These symbols start with
827 system-specific local label prefixes, typically @samp{.L} for ELF systems
828 or @samp{L} for traditional a.out systems.
829 @ifclear man
830 @xref{Symbol Names}.
831 @end ifclear
832
833 @item --listing-lhs-width=@var{number}
834 Set the maximum width, in words, of the output data column for an assembler
835 listing to @var{number}.
836
837 @item --listing-lhs-width2=@var{number}
838 Set the maximum width, in words, of the output data column for continuation
839 lines in an assembler listing to @var{number}.
840
841 @item --listing-rhs-width=@var{number}
842 Set the maximum width of an input source line, as displayed in a listing, to
843 @var{number} bytes.
844
845 @item --listing-cont-lines=@var{number}
846 Set the maximum number of lines printed in a listing for a single line of input
847 to @var{number} + 1.
848
849 @item --no-pad-sections
850 Stop the assembler for padding the ends of output sections to the alignment
851 of that section. The default is to pad the sections, but this can waste space
852 which might be needed on targets which have tight memory constraints.
853
854 @item -o @var{objfile}
855 Name the object-file output from @command{@value{AS}} @var{objfile}.
856
857 @item -R
858 Fold the data section into the text section.
859
860 @item --hash-size=@var{number}
861 Set the default size of GAS's hash tables to a prime number close to
862 @var{number}. Increasing this value can reduce the length of time it takes the
863 assembler to perform its tasks, at the expense of increasing the assembler's
864 memory requirements. Similarly reducing this value can reduce the memory
865 requirements at the expense of speed.
866
867 @item --reduce-memory-overheads
868 This option reduces GAS's memory requirements, at the expense of making the
869 assembly processes slower. Currently this switch is a synonym for
870 @samp{--hash-size=4051}, but in the future it may have other effects as well.
871
872 @ifset ELF
873 @item --sectname-subst
874 Honor substitution sequences in section names.
875 @ifclear man
876 @xref{Section Name Substitutions,,@code{.section @var{name}}}.
877 @end ifclear
878 @end ifset
879
880 @item --statistics
881 Print the maximum space (in bytes) and total time (in seconds) used by
882 assembly.
883
884 @item --strip-local-absolute
885 Remove local absolute symbols from the outgoing symbol table.
886
887 @item -v
888 @itemx -version
889 Print the @command{as} version.
890
891 @item --version
892 Print the @command{as} version and exit.
893
894 @item -W
895 @itemx --no-warn
896 Suppress warning messages.
897
898 @item --fatal-warnings
899 Treat warnings as errors.
900
901 @item --warn
902 Don't suppress warning messages or treat them as errors.
903
904 @item -w
905 Ignored.
906
907 @item -x
908 Ignored.
909
910 @item -Z
911 Generate an object file even after errors.
912
913 @item -- | @var{files} @dots{}
914 Standard input, or source files to assemble.
915
916 @end table
917 @c man end
918
919 @ifset AARCH64
920
921 @ifclear man
922 @xref{AArch64 Options}, for the options available when @value{AS} is configured
923 for the 64-bit mode of the ARM Architecture (AArch64).
924 @end ifclear
925
926 @ifset man
927 @c man begin OPTIONS
928 The following options are available when @value{AS} is configured for the
929 64-bit mode of the ARM Architecture (AArch64).
930 @c man end
931 @c man begin INCLUDE
932 @include c-aarch64.texi
933 @c ended inside the included file
934 @end ifset
935
936 @end ifset
937
938 @ifset ALPHA
939
940 @ifclear man
941 @xref{Alpha Options}, for the options available when @value{AS} is configured
942 for an Alpha processor.
943 @end ifclear
944
945 @ifset man
946 @c man begin OPTIONS
947 The following options are available when @value{AS} is configured for an Alpha
948 processor.
949 @c man end
950 @c man begin INCLUDE
951 @include c-alpha.texi
952 @c ended inside the included file
953 @end ifset
954
955 @end ifset
956
957 @c man begin OPTIONS
958 @ifset ARC
959 The following options are available when @value{AS} is configured for an ARC
960 processor.
961
962 @table @gcctabopt
963 @item -mcpu=@var{cpu}
964 This option selects the core processor variant.
965 @item -EB | -EL
966 Select either big-endian (-EB) or little-endian (-EL) output.
967 @item -mcode-density
968 Enable Code Density extenssion instructions.
969 @end table
970 @end ifset
971
972 @ifset ARM
973 The following options are available when @value{AS} is configured for the ARM
974 processor family.
975
976 @table @gcctabopt
977 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
978 Specify which ARM processor variant is the target.
979 @item -march=@var{architecture}[+@var{extension}@dots{}]
980 Specify which ARM architecture variant is used by the target.
981 @item -mfpu=@var{floating-point-format}
982 Select which Floating Point architecture is the target.
983 @item -mfloat-abi=@var{abi}
984 Select which floating point ABI is in use.
985 @item -mthumb
986 Enable Thumb only instruction decoding.
987 @item -mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
988 Select which procedure calling convention is in use.
989 @item -EB | -EL
990 Select either big-endian (-EB) or little-endian (-EL) output.
991 @item -mthumb-interwork
992 Specify that the code has been generated with interworking between Thumb and
993 ARM code in mind.
994 @item -mccs
995 Turns on CodeComposer Studio assembly syntax compatibility mode.
996 @item -k
997 Specify that PIC code has been generated.
998 @end table
999 @end ifset
1000 @c man end
1001
1002 @ifset Blackfin
1003
1004 @ifclear man
1005 @xref{Blackfin Options}, for the options available when @value{AS} is
1006 configured for the Blackfin processor family.
1007 @end ifclear
1008
1009 @ifset man
1010 @c man begin OPTIONS
1011 The following options are available when @value{AS} is configured for
1012 the Blackfin processor family.
1013 @c man end
1014 @c man begin INCLUDE
1015 @include c-bfin.texi
1016 @c ended inside the included file
1017 @end ifset
1018
1019 @end ifset
1020
1021 @ifset BPF
1022
1023 @ifclear man
1024 @xref{BPF Options}, for the options available when @value{AS} is
1025 configured for the Linux kernel BPF processor family.
1026 @end ifclear
1027
1028 @ifset man
1029 @c man begin OPTIONS
1030 The following options are available when @value{AS} is configured for
1031 the Linux kernel BPF processor family.
1032 @c man end
1033 @c man begin INCLUDE
1034 @include c-bpf.texi
1035 @c ended inside the included file
1036 @end ifset
1037
1038 @end ifset
1039
1040 @c man begin OPTIONS
1041 @ifset CRIS
1042 See the info pages for documentation of the CRIS-specific options.
1043 @end ifset
1044
1045 @ifset CSKY
1046
1047 @ifclear man
1048 @xref{C-SKY Options}, for the options available when @value{AS} is
1049 configured for the C-SKY processor family.
1050 @end ifclear
1051
1052 @ifset man
1053 @c man begin OPTIONS
1054 The following options are available when @value{AS} is configured for
1055 the C-SKY processor family.
1056 @c man end
1057 @c man begin INCLUDE
1058 @include c-csky.texi
1059 @c ended inside the included file
1060 @end ifset
1061
1062 @end ifset
1063
1064 @ifset D10V
1065 The following options are available when @value{AS} is configured for
1066 a D10V processor.
1067 @table @gcctabopt
1068 @cindex D10V optimization
1069 @cindex optimization, D10V
1070 @item -O
1071 Optimize output by parallelizing instructions.
1072 @end table
1073 @end ifset
1074
1075 @ifset D30V
1076 The following options are available when @value{AS} is configured for a D30V
1077 processor.
1078 @table @gcctabopt
1079 @cindex D30V optimization
1080 @cindex optimization, D30V
1081 @item -O
1082 Optimize output by parallelizing instructions.
1083
1084 @cindex D30V nops
1085 @item -n
1086 Warn when nops are generated.
1087
1088 @cindex D30V nops after 32-bit multiply
1089 @item -N
1090 Warn when a nop after a 32-bit multiply instruction is generated.
1091 @end table
1092 @end ifset
1093 @c man end
1094
1095 @ifset EPIPHANY
1096 The following options are available when @value{AS} is configured for the
1097 Adapteva EPIPHANY series.
1098
1099 @ifclear man
1100 @xref{Epiphany Options}, for the options available when @value{AS} is
1101 configured for an Epiphany processor.
1102 @end ifclear
1103
1104 @ifset man
1105 @c man begin OPTIONS
1106 The following options are available when @value{AS} is configured for
1107 an Epiphany processor.
1108 @c man end
1109 @c man begin INCLUDE
1110 @include c-epiphany.texi
1111 @c ended inside the included file
1112 @end ifset
1113
1114 @end ifset
1115
1116 @ifset H8300
1117
1118 @ifclear man
1119 @xref{H8/300 Options}, for the options available when @value{AS} is configured
1120 for an H8/300 processor.
1121 @end ifclear
1122
1123 @ifset man
1124 @c man begin OPTIONS
1125 The following options are available when @value{AS} is configured for an H8/300
1126 processor.
1127 @c man end
1128 @c man begin INCLUDE
1129 @include c-h8300.texi
1130 @c ended inside the included file
1131 @end ifset
1132
1133 @end ifset
1134
1135 @ifset I80386
1136
1137 @ifclear man
1138 @xref{i386-Options}, for the options available when @value{AS} is
1139 configured for an i386 processor.
1140 @end ifclear
1141
1142 @ifset man
1143 @c man begin OPTIONS
1144 The following options are available when @value{AS} is configured for
1145 an i386 processor.
1146 @c man end
1147 @c man begin INCLUDE
1148 @include c-i386.texi
1149 @c ended inside the included file
1150 @end ifset
1151
1152 @end ifset
1153
1154 @c man begin OPTIONS
1155 @ifset IP2K
1156 The following options are available when @value{AS} is configured for the
1157 Ubicom IP2K series.
1158
1159 @table @gcctabopt
1160
1161 @item -mip2022ext
1162 Specifies that the extended IP2022 instructions are allowed.
1163
1164 @item -mip2022
1165 Restores the default behaviour, which restricts the permitted instructions to
1166 just the basic IP2022 ones.
1167
1168 @end table
1169 @end ifset
1170
1171 @ifset M32C
1172 The following options are available when @value{AS} is configured for the
1173 Renesas M32C and M16C processors.
1174
1175 @table @gcctabopt
1176
1177 @item -m32c
1178 Assemble M32C instructions.
1179
1180 @item -m16c
1181 Assemble M16C instructions (the default).
1182
1183 @item -relax
1184 Enable support for link-time relaxations.
1185
1186 @item -h-tick-hex
1187 Support H'00 style hex constants in addition to 0x00 style.
1188
1189 @end table
1190 @end ifset
1191
1192 @ifset M32R
1193 The following options are available when @value{AS} is configured for the
1194 Renesas M32R (formerly Mitsubishi M32R) series.
1195
1196 @table @gcctabopt
1197
1198 @item --m32rx
1199 Specify which processor in the M32R family is the target. The default
1200 is normally the M32R, but this option changes it to the M32RX.
1201
1202 @item --warn-explicit-parallel-conflicts or --Wp
1203 Produce warning messages when questionable parallel constructs are
1204 encountered.
1205
1206 @item --no-warn-explicit-parallel-conflicts or --Wnp
1207 Do not produce warning messages when questionable parallel constructs are
1208 encountered.
1209
1210 @end table
1211 @end ifset
1212
1213 @ifset M680X0
1214 The following options are available when @value{AS} is configured for the
1215 Motorola 68000 series.
1216
1217 @table @gcctabopt
1218
1219 @item -l
1220 Shorten references to undefined symbols, to one word instead of two.
1221
1222 @item -m68000 | -m68008 | -m68010 | -m68020 | -m68030
1223 @itemx | -m68040 | -m68060 | -m68302 | -m68331 | -m68332
1224 @itemx | -m68333 | -m68340 | -mcpu32 | -m5200
1225 Specify what processor in the 68000 family is the target. The default
1226 is normally the 68020, but this can be changed at configuration time.
1227
1228 @item -m68881 | -m68882 | -mno-68881 | -mno-68882
1229 The target machine does (or does not) have a floating-point coprocessor.
1230 The default is to assume a coprocessor for 68020, 68030, and cpu32. Although
1231 the basic 68000 is not compatible with the 68881, a combination of the
1232 two can be specified, since it's possible to do emulation of the
1233 coprocessor instructions with the main processor.
1234
1235 @item -m68851 | -mno-68851
1236 The target machine does (or does not) have a memory-management
1237 unit coprocessor. The default is to assume an MMU for 68020 and up.
1238
1239 @end table
1240 @end ifset
1241
1242 @ifset NIOSII
1243
1244 @ifclear man
1245 @xref{Nios II Options}, for the options available when @value{AS} is configured
1246 for an Altera Nios II processor.
1247 @end ifclear
1248
1249 @ifset man
1250 @c man begin OPTIONS
1251 The following options are available when @value{AS} is configured for an
1252 Altera Nios II processor.
1253 @c man end
1254 @c man begin INCLUDE
1255 @include c-nios2.texi
1256 @c ended inside the included file
1257 @end ifset
1258 @end ifset
1259
1260 @ifset PDP11
1261
1262 For details about the PDP-11 machine dependent features options,
1263 see @ref{PDP-11-Options}.
1264
1265 @table @gcctabopt
1266 @item -mpic | -mno-pic
1267 Generate position-independent (or position-dependent) code. The
1268 default is @option{-mpic}.
1269
1270 @item -mall
1271 @itemx -mall-extensions
1272 Enable all instruction set extensions. This is the default.
1273
1274 @item -mno-extensions
1275 Disable all instruction set extensions.
1276
1277 @item -m@var{extension} | -mno-@var{extension}
1278 Enable (or disable) a particular instruction set extension.
1279
1280 @item -m@var{cpu}
1281 Enable the instruction set extensions supported by a particular CPU, and
1282 disable all other extensions.
1283
1284 @item -m@var{machine}
1285 Enable the instruction set extensions supported by a particular machine
1286 model, and disable all other extensions.
1287 @end table
1288
1289 @end ifset
1290
1291 @ifset PJ
1292 The following options are available when @value{AS} is configured for
1293 a picoJava processor.
1294
1295 @table @gcctabopt
1296
1297 @cindex PJ endianness
1298 @cindex endianness, PJ
1299 @cindex big endian output, PJ
1300 @item -mb
1301 Generate ``big endian'' format output.
1302
1303 @cindex little endian output, PJ
1304 @item -ml
1305 Generate ``little endian'' format output.
1306
1307 @end table
1308 @end ifset
1309
1310 @ifset PRU
1311
1312 @ifclear man
1313 @xref{PRU Options}, for the options available when @value{AS} is configured
1314 for a PRU processor.
1315 @end ifclear
1316
1317 @ifset man
1318 @c man begin OPTIONS
1319 The following options are available when @value{AS} is configured for a
1320 PRU processor.
1321 @c man end
1322 @c man begin INCLUDE
1323 @include c-pru.texi
1324 @c ended inside the included file
1325 @end ifset
1326 @end ifset
1327
1328 @ifset M68HC11
1329 The following options are available when @value{AS} is configured for the
1330 Motorola 68HC11 or 68HC12 series.
1331
1332 @table @gcctabopt
1333
1334 @item -m68hc11 | -m68hc12 | -m68hcs12 | -mm9s12x | -mm9s12xg
1335 Specify what processor is the target. The default is
1336 defined by the configuration option when building the assembler.
1337
1338 @item --xgate-ramoffset
1339 Instruct the linker to offset RAM addresses from S12X address space into
1340 XGATE address space.
1341
1342 @item -mshort
1343 Specify to use the 16-bit integer ABI.
1344
1345 @item -mlong
1346 Specify to use the 32-bit integer ABI.
1347
1348 @item -mshort-double
1349 Specify to use the 32-bit double ABI.
1350
1351 @item -mlong-double
1352 Specify to use the 64-bit double ABI.
1353
1354 @item --force-long-branches
1355 Relative branches are turned into absolute ones. This concerns
1356 conditional branches, unconditional branches and branches to a
1357 sub routine.
1358
1359 @item -S | --short-branches
1360 Do not turn relative branches into absolute ones
1361 when the offset is out of range.
1362
1363 @item --strict-direct-mode
1364 Do not turn the direct addressing mode into extended addressing mode
1365 when the instruction does not support direct addressing mode.
1366
1367 @item --print-insn-syntax
1368 Print the syntax of instruction in case of error.
1369
1370 @item --print-opcodes
1371 Print the list of instructions with syntax and then exit.
1372
1373 @item --generate-example
1374 Print an example of instruction for each possible instruction and then exit.
1375 This option is only useful for testing @command{@value{AS}}.
1376
1377 @end table
1378 @end ifset
1379
1380 @ifset SPARC
1381 The following options are available when @command{@value{AS}} is configured
1382 for the SPARC architecture:
1383
1384 @table @gcctabopt
1385 @item -Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
1386 @itemx -Av8plus | -Av8plusa | -Av9 | -Av9a
1387 Explicitly select a variant of the SPARC architecture.
1388
1389 @samp{-Av8plus} and @samp{-Av8plusa} select a 32 bit environment.
1390 @samp{-Av9} and @samp{-Av9a} select a 64 bit environment.
1391
1392 @samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
1393 UltraSPARC extensions.
1394
1395 @item -xarch=v8plus | -xarch=v8plusa
1396 For compatibility with the Solaris v9 assembler. These options are
1397 equivalent to -Av8plus and -Av8plusa, respectively.
1398
1399 @item -bump
1400 Warn when the assembler switches to another architecture.
1401 @end table
1402 @end ifset
1403
1404 @ifset TIC54X
1405 The following options are available when @value{AS} is configured for the 'c54x
1406 architecture.
1407
1408 @table @gcctabopt
1409 @item -mfar-mode
1410 Enable extended addressing mode. All addresses and relocations will assume
1411 extended addressing (usually 23 bits).
1412 @item -mcpu=@var{CPU_VERSION}
1413 Sets the CPU version being compiled for.
1414 @item -merrors-to-file @var{FILENAME}
1415 Redirect error output to a file, for broken systems which don't support such
1416 behaviour in the shell.
1417 @end table
1418 @end ifset
1419
1420 @ifset MIPS
1421 @c man begin OPTIONS
1422 The following options are available when @value{AS} is configured for
1423 a MIPS processor.
1424
1425 @table @gcctabopt
1426 @item -G @var{num}
1427 This option sets the largest size of an object that can be referenced
1428 implicitly with the @code{gp} register. It is only accepted for targets that
1429 use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
1430
1431 @cindex MIPS endianness
1432 @cindex endianness, MIPS
1433 @cindex big endian output, MIPS
1434 @item -EB
1435 Generate ``big endian'' format output.
1436
1437 @cindex little endian output, MIPS
1438 @item -EL
1439 Generate ``little endian'' format output.
1440
1441 @cindex MIPS ISA
1442 @item -mips1
1443 @itemx -mips2
1444 @itemx -mips3
1445 @itemx -mips4
1446 @itemx -mips5
1447 @itemx -mips32
1448 @itemx -mips32r2
1449 @itemx -mips32r3
1450 @itemx -mips32r5
1451 @itemx -mips32r6
1452 @itemx -mips64
1453 @itemx -mips64r2
1454 @itemx -mips64r3
1455 @itemx -mips64r5
1456 @itemx -mips64r6
1457 Generate code for a particular MIPS Instruction Set Architecture level.
1458 @samp{-mips1} is an alias for @samp{-march=r3000}, @samp{-mips2} is an
1459 alias for @samp{-march=r6000}, @samp{-mips3} is an alias for
1460 @samp{-march=r4000} and @samp{-mips4} is an alias for @samp{-march=r8000}.
1461 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
1462 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
1463 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to generic
1464 MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32 Release 5, MIPS32
1465 Release 6, MIPS64, MIPS64 Release 2, MIPS64 Release 3, MIPS64 Release 5, and
1466 MIPS64 Release 6 ISA processors, respectively.
1467
1468 @item -march=@var{cpu}
1469 Generate code for a particular MIPS CPU.
1470
1471 @item -mtune=@var{cpu}
1472 Schedule and tune for a particular MIPS CPU.
1473
1474 @item -mfix7000
1475 @itemx -mno-fix7000
1476 Cause nops to be inserted if the read of the destination register
1477 of an mfhi or mflo instruction occurs in the following two instructions.
1478
1479 @item -mfix-rm7000
1480 @itemx -mno-fix-rm7000
1481 Cause nops to be inserted if a dmult or dmultu instruction is
1482 followed by a load instruction.
1483
1484 @item -mfix-r5900
1485 @itemx -mno-fix-r5900
1486 Do not attempt to schedule the preceding instruction into the delay slot
1487 of a branch instruction placed at the end of a short loop of six
1488 instructions or fewer and always schedule a @code{nop} instruction there
1489 instead. The short loop bug under certain conditions causes loops to
1490 execute only once or twice, due to a hardware bug in the R5900 chip.
1491
1492 @item -mdebug
1493 @itemx -no-mdebug
1494 Cause stabs-style debugging output to go into an ECOFF-style .mdebug
1495 section instead of the standard ELF .stabs sections.
1496
1497 @item -mpdr
1498 @itemx -mno-pdr
1499 Control generation of @code{.pdr} sections.
1500
1501 @item -mgp32
1502 @itemx -mfp32
1503 The register sizes are normally inferred from the ISA and ABI, but these
1504 flags force a certain group of registers to be treated as 32 bits wide at
1505 all times. @samp{-mgp32} controls the size of general-purpose registers
1506 and @samp{-mfp32} controls the size of floating-point registers.
1507
1508 @item -mgp64
1509 @itemx -mfp64
1510 The register sizes are normally inferred from the ISA and ABI, but these
1511 flags force a certain group of registers to be treated as 64 bits wide at
1512 all times. @samp{-mgp64} controls the size of general-purpose registers
1513 and @samp{-mfp64} controls the size of floating-point registers.
1514
1515 @item -mfpxx
1516 The register sizes are normally inferred from the ISA and ABI, but using
1517 this flag in combination with @samp{-mabi=32} enables an ABI variant
1518 which will operate correctly with floating-point registers which are
1519 32 or 64 bits wide.
1520
1521 @item -modd-spreg
1522 @itemx -mno-odd-spreg
1523 Enable use of floating-point operations on odd-numbered single-precision
1524 registers when supported by the ISA. @samp{-mfpxx} implies
1525 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}.
1526
1527 @item -mips16
1528 @itemx -no-mips16
1529 Generate code for the MIPS 16 processor. This is equivalent to putting
1530 @code{.module mips16} at the start of the assembly file. @samp{-no-mips16}
1531 turns off this option.
1532
1533 @item -mmips16e2
1534 @itemx -mno-mips16e2
1535 Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent
1536 to putting @code{.module mips16e2} at the start of the assembly file.
1537 @samp{-mno-mips16e2} turns off this option.
1538
1539 @item -mmicromips
1540 @itemx -mno-micromips
1541 Generate code for the microMIPS processor. This is equivalent to putting
1542 @code{.module micromips} at the start of the assembly file.
1543 @samp{-mno-micromips} turns off this option. This is equivalent to putting
1544 @code{.module nomicromips} at the start of the assembly file.
1545
1546 @item -msmartmips
1547 @itemx -mno-smartmips
1548 Enables the SmartMIPS extension to the MIPS32 instruction set. This is
1549 equivalent to putting @code{.module smartmips} at the start of the assembly
1550 file. @samp{-mno-smartmips} turns off this option.
1551
1552 @item -mips3d
1553 @itemx -no-mips3d
1554 Generate code for the MIPS-3D Application Specific Extension.
1555 This tells the assembler to accept MIPS-3D instructions.
1556 @samp{-no-mips3d} turns off this option.
1557
1558 @item -mdmx
1559 @itemx -no-mdmx
1560 Generate code for the MDMX Application Specific Extension.
1561 This tells the assembler to accept MDMX instructions.
1562 @samp{-no-mdmx} turns off this option.
1563
1564 @item -mdsp
1565 @itemx -mno-dsp
1566 Generate code for the DSP Release 1 Application Specific Extension.
1567 This tells the assembler to accept DSP Release 1 instructions.
1568 @samp{-mno-dsp} turns off this option.
1569
1570 @item -mdspr2
1571 @itemx -mno-dspr2
1572 Generate code for the DSP Release 2 Application Specific Extension.
1573 This option implies @samp{-mdsp}.
1574 This tells the assembler to accept DSP Release 2 instructions.
1575 @samp{-mno-dspr2} turns off this option.
1576
1577 @item -mdspr3
1578 @itemx -mno-dspr3
1579 Generate code for the DSP Release 3 Application Specific Extension.
1580 This option implies @samp{-mdsp} and @samp{-mdspr2}.
1581 This tells the assembler to accept DSP Release 3 instructions.
1582 @samp{-mno-dspr3} turns off this option.
1583
1584 @item -mmsa
1585 @itemx -mno-msa
1586 Generate code for the MIPS SIMD Architecture Extension.
1587 This tells the assembler to accept MSA instructions.
1588 @samp{-mno-msa} turns off this option.
1589
1590 @item -mxpa
1591 @itemx -mno-xpa
1592 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
1593 This tells the assembler to accept XPA instructions.
1594 @samp{-mno-xpa} turns off this option.
1595
1596 @item -mmt
1597 @itemx -mno-mt
1598 Generate code for the MT Application Specific Extension.
1599 This tells the assembler to accept MT instructions.
1600 @samp{-mno-mt} turns off this option.
1601
1602 @item -mmcu
1603 @itemx -mno-mcu
1604 Generate code for the MCU Application Specific Extension.
1605 This tells the assembler to accept MCU instructions.
1606 @samp{-mno-mcu} turns off this option.
1607
1608 @item -mcrc
1609 @itemx -mno-crc
1610 Generate code for the MIPS cyclic redundancy check (CRC) Application
1611 Specific Extension. This tells the assembler to accept CRC instructions.
1612 @samp{-mno-crc} turns off this option.
1613
1614 @item -mginv
1615 @itemx -mno-ginv
1616 Generate code for the Global INValidate (GINV) Application Specific
1617 Extension. This tells the assembler to accept GINV instructions.
1618 @samp{-mno-ginv} turns off this option.
1619
1620 @item -mloongson-mmi
1621 @itemx -mno-loongson-mmi
1622 Generate code for the Loongson MultiMedia extensions Instructions (MMI)
1623 Application Specific Extension. This tells the assembler to accept MMI
1624 instructions.
1625 @samp{-mno-loongson-mmi} turns off this option.
1626
1627 @item -mloongson-cam
1628 @itemx -mno-loongson-cam
1629 Generate code for the Loongson Content Address Memory (CAM) instructions.
1630 This tells the assembler to accept Loongson CAM instructions.
1631 @samp{-mno-loongson-cam} turns off this option.
1632
1633 @item -mloongson-ext
1634 @itemx -mno-loongson-ext
1635 Generate code for the Loongson EXTensions (EXT) instructions.
1636 This tells the assembler to accept Loongson EXT instructions.
1637 @samp{-mno-loongson-ext} turns off this option.
1638
1639 @item -mloongson-ext2
1640 @itemx -mno-loongson-ext2
1641 Generate code for the Loongson EXTensions R2 (EXT2) instructions.
1642 This option implies @samp{-mloongson-ext}.
1643 This tells the assembler to accept Loongson EXT2 instructions.
1644 @samp{-mno-loongson-ext2} turns off this option.
1645
1646 @item -minsn32
1647 @itemx -mno-insn32
1648 Only use 32-bit instruction encodings when generating code for the
1649 microMIPS processor. This option inhibits the use of any 16-bit
1650 instructions. This is equivalent to putting @code{.set insn32} at
1651 the start of the assembly file. @samp{-mno-insn32} turns off this
1652 option. This is equivalent to putting @code{.set noinsn32} at the
1653 start of the assembly file. By default @samp{-mno-insn32} is
1654 selected, allowing all instructions to be used.
1655
1656 @item --construct-floats
1657 @itemx --no-construct-floats
1658 The @samp{--no-construct-floats} option disables the construction of
1659 double width floating point constants by loading the two halves of the
1660 value into the two single width floating point registers that make up
1661 the double width register. By default @samp{--construct-floats} is
1662 selected, allowing construction of these floating point constants.
1663
1664 @item --relax-branch
1665 @itemx --no-relax-branch
1666 The @samp{--relax-branch} option enables the relaxation of out-of-range
1667 branches. By default @samp{--no-relax-branch} is selected, causing any
1668 out-of-range branches to produce an error.
1669
1670 @item -mignore-branch-isa
1671 @itemx -mno-ignore-branch-isa
1672 Ignore branch checks for invalid transitions between ISA modes. The
1673 semantics of branches does not provide for an ISA mode switch, so in
1674 most cases the ISA mode a branch has been encoded for has to be the
1675 same as the ISA mode of the branch's target label. Therefore GAS has
1676 checks implemented that verify in branch assembly that the two ISA
1677 modes match. @samp{-mignore-branch-isa} disables these checks. By
1678 default @samp{-mno-ignore-branch-isa} is selected, causing any invalid
1679 branch requiring a transition between ISA modes to produce an error.
1680
1681 @item -mnan=@var{encoding}
1682 Select between the IEEE 754-2008 (@option{-mnan=2008}) or the legacy
1683 (@option{-mnan=legacy}) NaN encoding format. The latter is the default.
1684
1685 @cindex emulation
1686 @item --emulation=@var{name}
1687 This option was formerly used to switch between ELF and ECOFF output
1688 on targets like IRIX 5 that supported both. MIPS ECOFF support was
1689 removed in GAS 2.24, so the option now serves little purpose.
1690 It is retained for backwards compatibility.
1691
1692 The available configuration names are: @samp{mipself}, @samp{mipslelf} and
1693 @samp{mipsbelf}. Choosing @samp{mipself} now has no effect, since the output
1694 is always ELF. @samp{mipslelf} and @samp{mipsbelf} select little- and
1695 big-endian output respectively, but @samp{-EL} and @samp{-EB} are now the
1696 preferred options instead.
1697
1698 @item -nocpp
1699 @command{@value{AS}} ignores this option. It is accepted for compatibility with
1700 the native tools.
1701
1702 @item --trap
1703 @itemx --no-trap
1704 @itemx --break
1705 @itemx --no-break
1706 Control how to deal with multiplication overflow and division by zero.
1707 @samp{--trap} or @samp{--no-break} (which are synonyms) take a trap exception
1708 (and only work for Instruction Set Architecture level 2 and higher);
1709 @samp{--break} or @samp{--no-trap} (also synonyms, and the default) take a
1710 break exception.
1711
1712 @item -n
1713 When this option is used, @command{@value{AS}} will issue a warning every
1714 time it generates a nop instruction from a macro.
1715 @end table
1716 @c man end
1717 @end ifset
1718
1719 @ifset MCORE
1720 The following options are available when @value{AS} is configured for
1721 an MCore processor.
1722
1723 @table @gcctabopt
1724 @item -jsri2bsr
1725 @itemx -nojsri2bsr
1726 Enable or disable the JSRI to BSR transformation. By default this is enabled.
1727 The command-line option @samp{-nojsri2bsr} can be used to disable it.
1728
1729 @item -sifilter
1730 @itemx -nosifilter
1731 Enable or disable the silicon filter behaviour. By default this is disabled.
1732 The default can be overridden by the @samp{-sifilter} command-line option.
1733
1734 @item -relax
1735 Alter jump instructions for long displacements.
1736
1737 @item -mcpu=[210|340]
1738 Select the cpu type on the target hardware. This controls which instructions
1739 can be assembled.
1740
1741 @item -EB
1742 Assemble for a big endian target.
1743
1744 @item -EL
1745 Assemble for a little endian target.
1746
1747 @end table
1748 @end ifset
1749 @c man end
1750
1751 @ifset METAG
1752
1753 @ifclear man
1754 @xref{Meta Options}, for the options available when @value{AS} is configured
1755 for a Meta processor.
1756 @end ifclear
1757
1758 @ifset man
1759 @c man begin OPTIONS
1760 The following options are available when @value{AS} is configured for a
1761 Meta processor.
1762 @c man end
1763 @c man begin INCLUDE
1764 @include c-metag.texi
1765 @c ended inside the included file
1766 @end ifset
1767
1768 @end ifset
1769
1770 @c man begin OPTIONS
1771 @ifset MMIX
1772 See the info pages for documentation of the MMIX-specific options.
1773 @end ifset
1774
1775 @ifset NDS32
1776
1777 @ifclear man
1778 @xref{NDS32 Options}, for the options available when @value{AS} is configured
1779 for a NDS32 processor.
1780 @end ifclear
1781 @c ended inside the included file
1782 @end ifset
1783
1784 @ifset man
1785 @c man begin OPTIONS
1786 The following options are available when @value{AS} is configured for a
1787 NDS32 processor.
1788 @c man end
1789 @c man begin INCLUDE
1790 @include c-nds32.texi
1791 @c ended inside the included file
1792 @end ifset
1793
1794 @c man end
1795 @ifset PPC
1796
1797 @ifclear man
1798 @xref{PowerPC-Opts}, for the options available when @value{AS} is configured
1799 for a PowerPC processor.
1800 @end ifclear
1801
1802 @ifset man
1803 @c man begin OPTIONS
1804 The following options are available when @value{AS} is configured for a
1805 PowerPC processor.
1806 @c man end
1807 @c man begin INCLUDE
1808 @include c-ppc.texi
1809 @c ended inside the included file
1810 @end ifset
1811
1812 @end ifset
1813
1814 @ifset RISCV
1815
1816 @ifclear man
1817 @xref{RISC-V-Options}, for the options available when @value{AS} is configured
1818 for a RISC-V processor.
1819 @end ifclear
1820
1821 @ifset man
1822 @c man begin OPTIONS
1823 The following options are available when @value{AS} is configured for a
1824 RISC-V processor.
1825 @c man end
1826 @c man begin INCLUDE
1827 @include c-riscv.texi
1828 @c ended inside the included file
1829 @end ifset
1830
1831 @end ifset
1832
1833 @c man begin OPTIONS
1834 @ifset RX
1835 See the info pages for documentation of the RX-specific options.
1836 @end ifset
1837
1838 @ifset S390
1839 The following options are available when @value{AS} is configured for the s390
1840 processor family.
1841
1842 @table @gcctabopt
1843 @item -m31
1844 @itemx -m64
1845 Select the word size, either 31/32 bits or 64 bits.
1846 @item -mesa
1847 @item -mzarch
1848 Select the architecture mode, either the Enterprise System
1849 Architecture (esa) or the z/Architecture mode (zarch).
1850 @item -march=@var{processor}
1851 Specify which s390 processor variant is the target, @samp{g5} (or
1852 @samp{arch3}), @samp{g6}, @samp{z900} (or @samp{arch5}), @samp{z990} (or
1853 @samp{arch6}), @samp{z9-109}, @samp{z9-ec} (or @samp{arch7}), @samp{z10} (or
1854 @samp{arch8}), @samp{z196} (or @samp{arch9}), @samp{zEC12} (or @samp{arch10}),
1855 @samp{z13} (or @samp{arch11}), @samp{z14} (or @samp{arch12}), or @samp{z15}
1856 (or @samp{arch13}).
1857 @item -mregnames
1858 @itemx -mno-regnames
1859 Allow or disallow symbolic names for registers.
1860 @item -mwarn-areg-zero
1861 Warn whenever the operand for a base or index register has been specified
1862 but evaluates to zero.
1863 @end table
1864 @end ifset
1865 @c man end
1866
1867 @ifset TIC6X
1868
1869 @ifclear man
1870 @xref{TIC6X Options}, for the options available when @value{AS} is configured
1871 for a TMS320C6000 processor.
1872 @end ifclear
1873
1874 @ifset man
1875 @c man begin OPTIONS
1876 The following options are available when @value{AS} is configured for a
1877 TMS320C6000 processor.
1878 @c man end
1879 @c man begin INCLUDE
1880 @include c-tic6x.texi
1881 @c ended inside the included file
1882 @end ifset
1883
1884 @end ifset
1885
1886 @ifset TILEGX
1887
1888 @ifclear man
1889 @xref{TILE-Gx Options}, for the options available when @value{AS} is configured
1890 for a TILE-Gx processor.
1891 @end ifclear
1892
1893 @ifset man
1894 @c man begin OPTIONS
1895 The following options are available when @value{AS} is configured for a TILE-Gx
1896 processor.
1897 @c man end
1898 @c man begin INCLUDE
1899 @include c-tilegx.texi
1900 @c ended inside the included file
1901 @end ifset
1902
1903 @end ifset
1904
1905 @ifset VISIUM
1906
1907 @ifclear man
1908 @xref{Visium Options}, for the options available when @value{AS} is configured
1909 for a Visium processor.
1910 @end ifclear
1911
1912 @ifset man
1913 @c man begin OPTIONS
1914 The following option is available when @value{AS} is configured for a Visium
1915 processor.
1916 @c man end
1917 @c man begin INCLUDE
1918 @include c-visium.texi
1919 @c ended inside the included file
1920 @end ifset
1921
1922 @end ifset
1923
1924 @ifset XTENSA
1925
1926 @ifclear man
1927 @xref{Xtensa Options}, for the options available when @value{AS} is configured
1928 for an Xtensa processor.
1929 @end ifclear
1930
1931 @ifset man
1932 @c man begin OPTIONS
1933 The following options are available when @value{AS} is configured for an
1934 Xtensa processor.
1935 @c man end
1936 @c man begin INCLUDE
1937 @include c-xtensa.texi
1938 @c ended inside the included file
1939 @end ifset
1940
1941 @end ifset
1942
1943 @c man begin OPTIONS
1944
1945 @ifset Z80
1946 The following options are available when @value{AS} is configured for
1947 a Z80 family processor.
1948 @table @gcctabopt
1949
1950 @item -z80
1951 Assemble for Z80 processor.
1952 @item -r800
1953 Assemble for R800 processor.
1954 @item -z180
1955 Assemble for Z180 processor.
1956 @item -ez80
1957 Assemble for eZ80 processor in Z80 memory mode by default.
1958 @item -ez80-adl
1959 Assemble for eZ80 processor in ADL memory mode by default.
1960
1961 @item @code{-colonless}
1962 Accept colonless labels. All names at line begin are treated as labels.
1963 @item @code{-sdcc}
1964 Accept assembler code produces by SDCC.
1965
1966 @item @code{-strict}
1967 Accept documented instructions only.
1968 @item @code{-full}
1969 Accept all known Z80 instructions.
1970 @item @code{-with-inst=INST[,...]}
1971 @itemx @code{-Wnins INST[,...]}
1972 Enable specified undocumented instruction(s).
1973 @item @code{-without-inst=INST[,...]}
1974 @itemx @code{-Fins INST[,...]}
1975 Disable specified undocumented instruction(s).
1976
1977 @item -ignore-undocumented-instructions
1978 @itemx -Wnud
1979 Assemble undocumented Z80 instructions that also work on R800 without warning.
1980 @item -ignore-unportable-instructions
1981 @itemx -Wnup
1982 Assemble all undocumented Z80 instructions without warning.
1983 @item -warn-undocumented-instructions
1984 @itemx -Wud
1985 Issue a warning for undocumented Z80 instructions that also work on R800.
1986 @item -warn-unportable-instructions
1987 @itemx -Wup
1988 Issue a warning for undocumented Z80 instructions that do not work on R800.
1989 @item -forbid-undocumented-instructions
1990 @itemx -Fud
1991 Treat all undocumented instructions as errors.
1992 @item -forbid-unportable-instructions
1993 @itemx -Fup
1994 Treat undocumented Z80 instructions that do not work on R800 as errors.
1995 @end table
1996
1997 Folowing undocumented instructions may be enabled/disabled by
1998 @code{-with-inst}/@code{-without-inst}:
1999 @table @gcctabopt
2000 @item @code{idx-reg-halves}
2001 All operations with halves of index registers (IXL, IXH, IYL, IYH).
2002 @item @code{sli}
2003 SLI or SLL instruction.
2004 @item @code{op-ii-ld}
2005 Istructions like @code{<op> (<ii>+<d>),<r>}, where @code{<op>}
2006 is shift or bit manipulation instruction (RLC, SLA, SET, RES...).
2007 @item @code{in-f-c}
2008 Instruction @code{IN F,(C)}.
2009 @item @code{out-c-0}
2010 Instruction @code{OUT (C),0}
2011 @end table
2012 @end ifset
2013
2014 @c man end
2015
2016 @menu
2017 * Manual:: Structure of this Manual
2018 * GNU Assembler:: The GNU Assembler
2019 * Object Formats:: Object File Formats
2020 * Command Line:: Command Line
2021 * Input Files:: Input Files
2022 * Object:: Output (Object) File
2023 * Errors:: Error and Warning Messages
2024 @end menu
2025
2026 @node Manual
2027 @section Structure of this Manual
2028
2029 @cindex manual, structure and purpose
2030 This manual is intended to describe what you need to know to use
2031 @sc{gnu} @command{@value{AS}}. We cover the syntax expected in source files, including
2032 notation for symbols, constants, and expressions; the directives that
2033 @command{@value{AS}} understands; and of course how to invoke @command{@value{AS}}.
2034
2035 @ifclear GENERIC
2036 We also cover special features in the @value{TARGET}
2037 configuration of @command{@value{AS}}, including assembler directives.
2038 @end ifclear
2039 @ifset GENERIC
2040 This manual also describes some of the machine-dependent features of
2041 various flavors of the assembler.
2042 @end ifset
2043
2044 @cindex machine instructions (not covered)
2045 On the other hand, this manual is @emph{not} intended as an introduction
2046 to programming in assembly language---let alone programming in general!
2047 In a similar vein, we make no attempt to introduce the machine
2048 architecture; we do @emph{not} describe the instruction set, standard
2049 mnemonics, registers or addressing modes that are standard to a
2050 particular architecture.
2051 @ifset GENERIC
2052 You may want to consult the manufacturer's
2053 machine architecture manual for this information.
2054 @end ifset
2055 @ifclear GENERIC
2056 @ifset H8/300
2057 For information on the H8/300 machine instruction set, see @cite{H8/300
2058 Series Programming Manual}. For the H8/300H, see @cite{H8/300H Series
2059 Programming Manual} (Renesas).
2060 @end ifset
2061 @ifset SH
2062 For information on the Renesas (formerly Hitachi) / SuperH SH machine instruction set,
2063 see @cite{SH-Microcomputer User's Manual} (Renesas) or
2064 @cite{SH-4 32-bit CPU Core Architecture} (SuperH) and
2065 @cite{SuperH (SH) 64-Bit RISC Series} (SuperH).
2066 @end ifset
2067 @ifset Z8000
2068 For information on the Z8000 machine instruction set, see @cite{Z8000 CPU Technical Manual}
2069 @end ifset
2070 @end ifclear
2071
2072 @c I think this is premature---doc@cygnus.com, 17jan1991
2073 @ignore
2074 Throughout this manual, we assume that you are running @dfn{GNU},
2075 the portable operating system from the @dfn{Free Software
2076 Foundation, Inc.}. This restricts our attention to certain kinds of
2077 computer (in particular, the kinds of computers that @sc{gnu} can run on);
2078 once this assumption is granted examples and definitions need less
2079 qualification.
2080
2081 @command{@value{AS}} is part of a team of programs that turn a high-level
2082 human-readable series of instructions into a low-level
2083 computer-readable series of instructions. Different versions of
2084 @command{@value{AS}} are used for different kinds of computer.
2085 @end ignore
2086
2087 @c There used to be a section "Terminology" here, which defined
2088 @c "contents", "byte", "word", and "long". Defining "word" to any
2089 @c particular size is confusing when the .word directive may generate 16
2090 @c bits on one machine and 32 bits on another; in general, for the user
2091 @c version of this manual, none of these terms seem essential to define.
2092 @c They were used very little even in the former draft of the manual;
2093 @c this draft makes an effort to avoid them (except in names of
2094 @c directives).
2095
2096 @node GNU Assembler
2097 @section The GNU Assembler
2098
2099 @c man begin DESCRIPTION
2100
2101 @sc{gnu} @command{as} is really a family of assemblers.
2102 @ifclear GENERIC
2103 This manual describes @command{@value{AS}}, a member of that family which is
2104 configured for the @value{TARGET} architectures.
2105 @end ifclear
2106 If you use (or have used) the @sc{gnu} assembler on one architecture, you
2107 should find a fairly similar environment when you use it on another
2108 architecture. Each version has much in common with the others,
2109 including object file formats, most assembler directives (often called
2110 @dfn{pseudo-ops}) and assembler syntax.@refill
2111
2112 @cindex purpose of @sc{gnu} assembler
2113 @command{@value{AS}} is primarily intended to assemble the output of the
2114 @sc{gnu} C compiler @code{@value{GCC}} for use by the linker
2115 @code{@value{LD}}. Nevertheless, we've tried to make @command{@value{AS}}
2116 assemble correctly everything that other assemblers for the same
2117 machine would assemble.
2118 @ifset VAX
2119 Any exceptions are documented explicitly (@pxref{Machine Dependencies}).
2120 @end ifset
2121 @ifset M680X0
2122 @c This remark should appear in generic version of manual; assumption
2123 @c here is that generic version sets M680x0.
2124 This doesn't mean @command{@value{AS}} always uses the same syntax as another
2125 assembler for the same architecture; for example, we know of several
2126 incompatible versions of 680x0 assembly language syntax.
2127 @end ifset
2128
2129 @c man end
2130
2131 Unlike older assemblers, @command{@value{AS}} is designed to assemble a source
2132 program in one pass of the source file. This has a subtle impact on the
2133 @kbd{.org} directive (@pxref{Org,,@code{.org}}).
2134
2135 @node Object Formats
2136 @section Object File Formats
2137
2138 @cindex object file format
2139 The @sc{gnu} assembler can be configured to produce several alternative
2140 object file formats. For the most part, this does not affect how you
2141 write assembly language programs; but directives for debugging symbols
2142 are typically different in different file formats. @xref{Symbol
2143 Attributes,,Symbol Attributes}.
2144 @ifclear GENERIC
2145 @ifclear MULTI-OBJ
2146 For the @value{TARGET} target, @command{@value{AS}} is configured to produce
2147 @value{OBJ-NAME} format object files.
2148 @end ifclear
2149 @c The following should exhaust all configs that set MULTI-OBJ, ideally
2150 @ifset HPPA
2151 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
2152 SOM or ELF format object files.
2153 @end ifset
2154 @end ifclear
2155
2156 @node Command Line
2157 @section Command Line
2158
2159 @cindex command line conventions
2160
2161 After the program name @command{@value{AS}}, the command line may contain
2162 options and file names. Options may appear in any order, and may be
2163 before, after, or between file names. The order of file names is
2164 significant.
2165
2166 @cindex standard input, as input file
2167 @kindex --
2168 @file{--} (two hyphens) by itself names the standard input file
2169 explicitly, as one of the files for @command{@value{AS}} to assemble.
2170
2171 @cindex options, command line
2172 Except for @samp{--} any command-line argument that begins with a
2173 hyphen (@samp{-}) is an option. Each option changes the behavior of
2174 @command{@value{AS}}. No option changes the way another option works. An
2175 option is a @samp{-} followed by one or more letters; the case of
2176 the letter is important. All options are optional.
2177
2178 Some options expect exactly one file name to follow them. The file
2179 name may either immediately follow the option's letter (compatible
2180 with older assemblers) or it may be the next command argument (@sc{gnu}
2181 standard). These two command lines are equivalent:
2182
2183 @smallexample
2184 @value{AS} -o my-object-file.o mumble.s
2185 @value{AS} -omy-object-file.o mumble.s
2186 @end smallexample
2187
2188 @node Input Files
2189 @section Input Files
2190
2191 @cindex input
2192 @cindex source program
2193 @cindex files, input
2194 We use the phrase @dfn{source program}, abbreviated @dfn{source}, to
2195 describe the program input to one run of @command{@value{AS}}. The program may
2196 be in one or more files; how the source is partitioned into files
2197 doesn't change the meaning of the source.
2198
2199 @c I added "con" prefix to "catenation" just to prove I can overcome my
2200 @c APL training... doc@cygnus.com
2201 The source program is a concatenation of the text in all the files, in the
2202 order specified.
2203
2204 @c man begin DESCRIPTION
2205 Each time you run @command{@value{AS}} it assembles exactly one source
2206 program. The source program is made up of one or more files.
2207 (The standard input is also a file.)
2208
2209 You give @command{@value{AS}} a command line that has zero or more input file
2210 names. The input files are read (from left file name to right). A
2211 command-line argument (in any position) that has no special meaning
2212 is taken to be an input file name.
2213
2214 If you give @command{@value{AS}} no file names it attempts to read one input file
2215 from the @command{@value{AS}} standard input, which is normally your terminal. You
2216 may have to type @key{ctl-D} to tell @command{@value{AS}} there is no more program
2217 to assemble.
2218
2219 Use @samp{--} if you need to explicitly name the standard input file
2220 in your command line.
2221
2222 If the source is empty, @command{@value{AS}} produces a small, empty object
2223 file.
2224
2225 @c man end
2226
2227 @subheading Filenames and Line-numbers
2228
2229 @cindex input file linenumbers
2230 @cindex line numbers, in input files
2231 There are two ways of locating a line in the input file (or files) and
2232 either may be used in reporting error messages. One way refers to a line
2233 number in a physical file; the other refers to a line number in a
2234 ``logical'' file. @xref{Errors, ,Error and Warning Messages}.
2235
2236 @dfn{Physical files} are those files named in the command line given
2237 to @command{@value{AS}}.
2238
2239 @dfn{Logical files} are simply names declared explicitly by assembler
2240 directives; they bear no relation to physical files. Logical file names help
2241 error messages reflect the original source file, when @command{@value{AS}} source
2242 is itself synthesized from other files. @command{@value{AS}} understands the
2243 @samp{#} directives emitted by the @code{@value{GCC}} preprocessor. See also
2244 @ref{File,,@code{.file}}.
2245
2246 @node Object
2247 @section Output (Object) File
2248
2249 @cindex object file
2250 @cindex output file
2251 @kindex a.out
2252 @kindex .o
2253 Every time you run @command{@value{AS}} it produces an output file, which is
2254 your assembly language program translated into numbers. This file
2255 is the object file. Its default name is @code{a.out}.
2256 You can give it another name by using the @option{-o} option. Conventionally,
2257 object file names end with @file{.o}. The default name is used for historical
2258 reasons: older assemblers were capable of assembling self-contained programs
2259 directly into a runnable program. (For some formats, this isn't currently
2260 possible, but it can be done for the @code{a.out} format.)
2261
2262 @cindex linker
2263 @kindex ld
2264 The object file is meant for input to the linker @code{@value{LD}}. It contains
2265 assembled program code, information to help @code{@value{LD}} integrate
2266 the assembled program into a runnable file, and (optionally) symbolic
2267 information for the debugger.
2268
2269 @c link above to some info file(s) like the description of a.out.
2270 @c don't forget to describe @sc{gnu} info as well as Unix lossage.
2271
2272 @node Errors
2273 @section Error and Warning Messages
2274
2275 @c man begin DESCRIPTION
2276
2277 @cindex error messages
2278 @cindex warning messages
2279 @cindex messages from assembler
2280 @command{@value{AS}} may write warnings and error messages to the standard error
2281 file (usually your terminal). This should not happen when a compiler
2282 runs @command{@value{AS}} automatically. Warnings report an assumption made so
2283 that @command{@value{AS}} could keep assembling a flawed program; errors report a
2284 grave problem that stops the assembly.
2285
2286 @c man end
2287
2288 @cindex format of warning messages
2289 Warning messages have the format
2290
2291 @smallexample
2292 file_name:@b{NNN}:Warning Message Text
2293 @end smallexample
2294
2295 @noindent
2296 @cindex file names and line numbers, in warnings/errors
2297 (where @b{NNN} is a line number). If both a logical file name
2298 (@pxref{File,,@code{.file}}) and a logical line number
2299 @ifset GENERIC
2300 (@pxref{Line,,@code{.line}})
2301 @end ifset
2302 have been given then they will be used, otherwise the file name and line number
2303 in the current assembler source file will be used. The message text is
2304 intended to be self explanatory (in the grand Unix tradition).
2305
2306 Note the file name must be set via the logical version of the @code{.file}
2307 directive, not the DWARF2 version of the @code{.file} directive. For example:
2308
2309 @smallexample
2310 .file 2 "bar.c"
2311 error_assembler_source
2312 .file "foo.c"
2313 .line 30
2314 error_c_source
2315 @end smallexample
2316
2317 produces this output:
2318
2319 @smallexample
2320 Assembler messages:
2321 asm.s:2: Error: no such instruction: `error_assembler_source'
2322 foo.c:31: Error: no such instruction: `error_c_source'
2323 @end smallexample
2324
2325 @cindex format of error messages
2326 Error messages have the format
2327
2328 @smallexample
2329 file_name:@b{NNN}:FATAL:Error Message Text
2330 @end smallexample
2331
2332 The file name and line number are derived as for warning
2333 messages. The actual message text may be rather less explanatory
2334 because many of them aren't supposed to happen.
2335
2336 @node Invoking
2337 @chapter Command-Line Options
2338
2339 @cindex options, all versions of assembler
2340 This chapter describes command-line options available in @emph{all}
2341 versions of the @sc{gnu} assembler; see @ref{Machine Dependencies},
2342 for options specific
2343 @ifclear GENERIC
2344 to the @value{TARGET} target.
2345 @end ifclear
2346 @ifset GENERIC
2347 to particular machine architectures.
2348 @end ifset
2349
2350 @c man begin DESCRIPTION
2351
2352 If you are invoking @command{@value{AS}} via the @sc{gnu} C compiler,
2353 you can use the @samp{-Wa} option to pass arguments through to the assembler.
2354 The assembler arguments must be separated from each other (and the @samp{-Wa})
2355 by commas. For example:
2356
2357 @smallexample
2358 gcc -c -g -O -Wa,-alh,-L file.c
2359 @end smallexample
2360
2361 @noindent
2362 This passes two options to the assembler: @samp{-alh} (emit a listing to
2363 standard output with high-level and assembly source) and @samp{-L} (retain
2364 local symbols in the symbol table).
2365
2366 Usually you do not need to use this @samp{-Wa} mechanism, since many compiler
2367 command-line options are automatically passed to the assembler by the compiler.
2368 (You can call the @sc{gnu} compiler driver with the @samp{-v} option to see
2369 precisely what options it passes to each compilation pass, including the
2370 assembler.)
2371
2372 @c man end
2373
2374 @menu
2375 * a:: -a[cdghlns] enable listings
2376 * alternate:: --alternate enable alternate macro syntax
2377 * D:: -D for compatibility
2378 * f:: -f to work faster
2379 * I:: -I for .include search path
2380 @ifclear DIFF-TBL-KLUGE
2381 * K:: -K for compatibility
2382 @end ifclear
2383 @ifset DIFF-TBL-KLUGE
2384 * K:: -K for difference tables
2385 @end ifset
2386
2387 * L:: -L to retain local symbols
2388 * listing:: --listing-XXX to configure listing output
2389 * M:: -M or --mri to assemble in MRI compatibility mode
2390 * MD:: --MD for dependency tracking
2391 * no-pad-sections:: --no-pad-sections to stop section padding
2392 * o:: -o to name the object file
2393 * R:: -R to join data and text sections
2394 * statistics:: --statistics to see statistics about assembly
2395 * traditional-format:: --traditional-format for compatible output
2396 * v:: -v to announce version
2397 * W:: -W, --no-warn, --warn, --fatal-warnings to control warnings
2398 * Z:: -Z to make object file even after errors
2399 @end menu
2400
2401 @node a
2402 @section Enable Listings: @option{-a[cdghlns]}
2403
2404 @kindex -a
2405 @kindex -ac
2406 @kindex -ad
2407 @kindex -ag
2408 @kindex -ah
2409 @kindex -al
2410 @kindex -an
2411 @kindex -as
2412 @cindex listings, enabling
2413 @cindex assembly listings, enabling
2414
2415 These options enable listing output from the assembler. By itself,
2416 @samp{-a} requests high-level, assembly, and symbols listing.
2417 You can use other letters to select specific options for the list:
2418 @samp{-ah} requests a high-level language listing,
2419 @samp{-al} requests an output-program assembly listing, and
2420 @samp{-as} requests a symbol table listing.
2421 High-level listings require that a compiler debugging option like
2422 @samp{-g} be used, and that assembly listings (@samp{-al}) be requested
2423 also.
2424
2425 Use the @samp{-ag} option to print a first section with general assembly
2426 information, like @value{AS} version, switches passed, or time stamp.
2427
2428 Use the @samp{-ac} option to omit false conditionals from a listing. Any lines
2429 which are not assembled because of a false @code{.if} (or @code{.ifdef}, or any
2430 other conditional), or a true @code{.if} followed by an @code{.else}, will be
2431 omitted from the listing.
2432
2433 Use the @samp{-ad} option to omit debugging directives from the
2434 listing.
2435
2436 Once you have specified one of these options, you can further control
2437 listing output and its appearance using the directives @code{.list},
2438 @code{.nolist}, @code{.psize}, @code{.eject}, @code{.title}, and
2439 @code{.sbttl}.
2440 The @samp{-an} option turns off all forms processing.
2441 If you do not request listing output with one of the @samp{-a} options, the
2442 listing-control directives have no effect.
2443
2444 The letters after @samp{-a} may be combined into one option,
2445 @emph{e.g.}, @samp{-aln}.
2446
2447 Note if the assembler source is coming from the standard input (e.g.,
2448 because it
2449 is being created by @code{@value{GCC}} and the @samp{-pipe} command-line switch
2450 is being used) then the listing will not contain any comments or preprocessor
2451 directives. This is because the listing code buffers input source lines from
2452 stdin only after they have been preprocessed by the assembler. This reduces
2453 memory usage and makes the code more efficient.
2454
2455 @node alternate
2456 @section @option{--alternate}
2457
2458 @kindex --alternate
2459 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
2460
2461 @node D
2462 @section @option{-D}
2463
2464 @kindex -D
2465 This option has no effect whatsoever, but it is accepted to make it more
2466 likely that scripts written for other assemblers also work with
2467 @command{@value{AS}}.
2468
2469 @node f
2470 @section Work Faster: @option{-f}
2471
2472 @kindex -f
2473 @cindex trusted compiler
2474 @cindex faster processing (@option{-f})
2475 @samp{-f} should only be used when assembling programs written by a
2476 (trusted) compiler. @samp{-f} stops the assembler from doing whitespace
2477 and comment preprocessing on
2478 the input file(s) before assembling them. @xref{Preprocessing,
2479 ,Preprocessing}.
2480
2481 @quotation
2482 @emph{Warning:} if you use @samp{-f} when the files actually need to be
2483 preprocessed (if they contain comments, for example), @command{@value{AS}} does
2484 not work correctly.
2485 @end quotation
2486
2487 @node I
2488 @section @code{.include} Search Path: @option{-I} @var{path}
2489
2490 @kindex -I @var{path}
2491 @cindex paths for @code{.include}
2492 @cindex search path for @code{.include}
2493 @cindex @code{include} directive search path
2494 Use this option to add a @var{path} to the list of directories
2495 @command{@value{AS}} searches for files specified in @code{.include}
2496 directives (@pxref{Include,,@code{.include}}). You may use @option{-I} as
2497 many times as necessary to include a variety of paths. The current
2498 working directory is always searched first; after that, @command{@value{AS}}
2499 searches any @samp{-I} directories in the same order as they were
2500 specified (left to right) on the command line.
2501
2502 @node K
2503 @section Difference Tables: @option{-K}
2504
2505 @kindex -K
2506 @ifclear DIFF-TBL-KLUGE
2507 On the @value{TARGET} family, this option is allowed, but has no effect. It is
2508 permitted for compatibility with the @sc{gnu} assembler on other platforms,
2509 where it can be used to warn when the assembler alters the machine code
2510 generated for @samp{.word} directives in difference tables. The @value{TARGET}
2511 family does not have the addressing limitations that sometimes lead to this
2512 alteration on other platforms.
2513 @end ifclear
2514
2515 @ifset DIFF-TBL-KLUGE
2516 @cindex difference tables, warning
2517 @cindex warning for altered difference tables
2518 @command{@value{AS}} sometimes alters the code emitted for directives of the
2519 form @samp{.word @var{sym1}-@var{sym2}}. @xref{Word,,@code{.word}}.
2520 You can use the @samp{-K} option if you want a warning issued when this
2521 is done.
2522 @end ifset
2523
2524 @node L
2525 @section Include Local Symbols: @option{-L}
2526
2527 @kindex -L
2528 @cindex local symbols, retaining in output
2529 Symbols beginning with system-specific local label prefixes, typically
2530 @samp{.L} for ELF systems or @samp{L} for traditional a.out systems, are
2531 called @dfn{local symbols}. @xref{Symbol Names}. Normally you do not see
2532 such symbols when debugging, because they are intended for the use of
2533 programs (like compilers) that compose assembler programs, not for your
2534 notice. Normally both @command{@value{AS}} and @code{@value{LD}} discard
2535 such symbols, so you do not normally debug with them.
2536
2537 This option tells @command{@value{AS}} to retain those local symbols
2538 in the object file. Usually if you do this you also tell the linker
2539 @code{@value{LD}} to preserve those symbols.
2540
2541 @node listing
2542 @section Configuring listing output: @option{--listing}
2543
2544 The listing feature of the assembler can be enabled via the command-line switch
2545 @samp{-a} (@pxref{a}). This feature combines the input source file(s) with a
2546 hex dump of the corresponding locations in the output object file, and displays
2547 them as a listing file. The format of this listing can be controlled by
2548 directives inside the assembler source (i.e., @code{.list} (@pxref{List}),
2549 @code{.title} (@pxref{Title}), @code{.sbttl} (@pxref{Sbttl}),
2550 @code{.psize} (@pxref{Psize}), and
2551 @code{.eject} (@pxref{Eject}) and also by the following switches:
2552
2553 @table @gcctabopt
2554 @item --listing-lhs-width=@samp{number}
2555 @kindex --listing-lhs-width
2556 @cindex Width of first line disassembly output
2557 Sets the maximum width, in words, of the first line of the hex byte dump. This
2558 dump appears on the left hand side of the listing output.
2559
2560 @item --listing-lhs-width2=@samp{number}
2561 @kindex --listing-lhs-width2
2562 @cindex Width of continuation lines of disassembly output
2563 Sets the maximum width, in words, of any further lines of the hex byte dump for
2564 a given input source line. If this value is not specified, it defaults to being
2565 the same as the value specified for @samp{--listing-lhs-width}. If neither
2566 switch is used the default is to one.
2567
2568 @item --listing-rhs-width=@samp{number}
2569 @kindex --listing-rhs-width
2570 @cindex Width of source line output
2571 Sets the maximum width, in characters, of the source line that is displayed
2572 alongside the hex dump. The default value for this parameter is 100. The
2573 source line is displayed on the right hand side of the listing output.
2574
2575 @item --listing-cont-lines=@samp{number}
2576 @kindex --listing-cont-lines
2577 @cindex Maximum number of continuation lines
2578 Sets the maximum number of continuation lines of hex dump that will be
2579 displayed for a given single line of source input. The default value is 4.
2580 @end table
2581
2582 @node M
2583 @section Assemble in MRI Compatibility Mode: @option{-M}
2584
2585 @kindex -M
2586 @cindex MRI compatibility mode
2587 The @option{-M} or @option{--mri} option selects MRI compatibility mode. This
2588 changes the syntax and pseudo-op handling of @command{@value{AS}} to make it
2589 compatible with the @code{ASM68K} assembler from Microtec Research.
2590 The exact nature of the
2591 MRI syntax will not be documented here; see the MRI manuals for more
2592 information. Note in particular that the handling of macros and macro
2593 arguments is somewhat different. The purpose of this option is to permit
2594 assembling existing MRI assembler code using @command{@value{AS}}.
2595
2596 The MRI compatibility is not complete. Certain operations of the MRI assembler
2597 depend upon its object file format, and can not be supported using other object
2598 file formats. Supporting these would require enhancing each object file format
2599 individually. These are:
2600
2601 @itemize @bullet
2602 @item global symbols in common section
2603
2604 The m68k MRI assembler supports common sections which are merged by the linker.
2605 Other object file formats do not support this. @command{@value{AS}} handles
2606 common sections by treating them as a single common symbol. It permits local
2607 symbols to be defined within a common section, but it can not support global
2608 symbols, since it has no way to describe them.
2609
2610 @item complex relocations
2611
2612 The MRI assemblers support relocations against a negated section address, and
2613 relocations which combine the start addresses of two or more sections. These
2614 are not support by other object file formats.
2615
2616 @item @code{END} pseudo-op specifying start address
2617
2618 The MRI @code{END} pseudo-op permits the specification of a start address.
2619 This is not supported by other object file formats. The start address may
2620 instead be specified using the @option{-e} option to the linker, or in a linker
2621 script.
2622
2623 @item @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops
2624
2625 The MRI @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops assign a module
2626 name to the output file. This is not supported by other object file formats.
2627
2628 @item @code{ORG} pseudo-op
2629
2630 The m68k MRI @code{ORG} pseudo-op begins an absolute section at a given
2631 address. This differs from the usual @command{@value{AS}} @code{.org} pseudo-op,
2632 which changes the location within the current section. Absolute sections are
2633 not supported by other object file formats. The address of a section may be
2634 assigned within a linker script.
2635 @end itemize
2636
2637 There are some other features of the MRI assembler which are not supported by
2638 @command{@value{AS}}, typically either because they are difficult or because they
2639 seem of little consequence. Some of these may be supported in future releases.
2640
2641 @itemize @bullet
2642
2643 @item EBCDIC strings
2644
2645 EBCDIC strings are not supported.
2646
2647 @item packed binary coded decimal
2648
2649 Packed binary coded decimal is not supported. This means that the @code{DC.P}
2650 and @code{DCB.P} pseudo-ops are not supported.
2651
2652 @item @code{FEQU} pseudo-op
2653
2654 The m68k @code{FEQU} pseudo-op is not supported.
2655
2656 @item @code{NOOBJ} pseudo-op
2657
2658 The m68k @code{NOOBJ} pseudo-op is not supported.
2659
2660 @item @code{OPT} branch control options
2661
2662 The m68k @code{OPT} branch control options---@code{B}, @code{BRS}, @code{BRB},
2663 @code{BRL}, and @code{BRW}---are ignored. @command{@value{AS}} automatically
2664 relaxes all branches, whether forward or backward, to an appropriate size, so
2665 these options serve no purpose.
2666
2667 @item @code{OPT} list control options
2668
2669 The following m68k @code{OPT} list control options are ignored: @code{C},
2670 @code{CEX}, @code{CL}, @code{CRE}, @code{E}, @code{G}, @code{I}, @code{M},
2671 @code{MEX}, @code{MC}, @code{MD}, @code{X}.
2672
2673 @item other @code{OPT} options
2674
2675 The following m68k @code{OPT} options are ignored: @code{NEST}, @code{O},
2676 @code{OLD}, @code{OP}, @code{P}, @code{PCO}, @code{PCR}, @code{PCS}, @code{R}.
2677
2678 @item @code{OPT} @code{D} option is default
2679
2680 The m68k @code{OPT} @code{D} option is the default, unlike the MRI assembler.
2681 @code{OPT NOD} may be used to turn it off.
2682
2683 @item @code{XREF} pseudo-op.
2684
2685 The m68k @code{XREF} pseudo-op is ignored.
2686
2687 @end itemize
2688
2689 @node MD
2690 @section Dependency Tracking: @option{--MD}
2691
2692 @kindex --MD
2693 @cindex dependency tracking
2694 @cindex make rules
2695
2696 @command{@value{AS}} can generate a dependency file for the file it creates. This
2697 file consists of a single rule suitable for @code{make} describing the
2698 dependencies of the main source file.
2699
2700 The rule is written to the file named in its argument.
2701
2702 This feature is used in the automatic updating of makefiles.
2703
2704 @node no-pad-sections
2705 @section Output Section Padding
2706 @kindex --no-pad-sections
2707 @cindex output section padding
2708 Normally the assembler will pad the end of each output section up to its
2709 alignment boundary. But this can waste space, which can be significant on
2710 memory constrained targets. So the @option{--no-pad-sections} option will
2711 disable this behaviour.
2712
2713 @node o
2714 @section Name the Object File: @option{-o}
2715
2716 @kindex -o
2717 @cindex naming object file
2718 @cindex object file name
2719 There is always one object file output when you run @command{@value{AS}}. By
2720 default it has the name @file{a.out}.
2721 You use this option (which takes exactly one filename) to give the
2722 object file a different name.
2723
2724 Whatever the object file is called, @command{@value{AS}} overwrites any
2725 existing file of the same name.
2726
2727 @node R
2728 @section Join Data and Text Sections: @option{-R}
2729
2730 @kindex -R
2731 @cindex data and text sections, joining
2732 @cindex text and data sections, joining
2733 @cindex joining text and data sections
2734 @cindex merging text and data sections
2735 @option{-R} tells @command{@value{AS}} to write the object file as if all
2736 data-section data lives in the text section. This is only done at
2737 the very last moment: your binary data are the same, but data
2738 section parts are relocated differently. The data section part of
2739 your object file is zero bytes long because all its bytes are
2740 appended to the text section. (@xref{Sections,,Sections and Relocation}.)
2741
2742 When you specify @option{-R} it would be possible to generate shorter
2743 address displacements (because we do not have to cross between text and
2744 data section). We refrain from doing this simply for compatibility with
2745 older versions of @command{@value{AS}}. In future, @option{-R} may work this way.
2746
2747 @ifset COFF-ELF
2748 When @command{@value{AS}} is configured for COFF or ELF output,
2749 this option is only useful if you use sections named @samp{.text} and
2750 @samp{.data}.
2751 @end ifset
2752
2753 @ifset HPPA
2754 @option{-R} is not supported for any of the HPPA targets. Using
2755 @option{-R} generates a warning from @command{@value{AS}}.
2756 @end ifset
2757
2758 @node statistics
2759 @section Display Assembly Statistics: @option{--statistics}
2760
2761 @kindex --statistics
2762 @cindex statistics, about assembly
2763 @cindex time, total for assembly
2764 @cindex space used, maximum for assembly
2765 Use @samp{--statistics} to display two statistics about the resources used by
2766 @command{@value{AS}}: the maximum amount of space allocated during the assembly
2767 (in bytes), and the total execution time taken for the assembly (in @sc{cpu}
2768 seconds).
2769
2770 @node traditional-format
2771 @section Compatible Output: @option{--traditional-format}
2772
2773 @kindex --traditional-format
2774 For some targets, the output of @command{@value{AS}} is different in some ways
2775 from the output of some existing assembler. This switch requests
2776 @command{@value{AS}} to use the traditional format instead.
2777
2778 For example, it disables the exception frame optimizations which
2779 @command{@value{AS}} normally does by default on @code{@value{GCC}} output.
2780
2781 @node v
2782 @section Announce Version: @option{-v}
2783
2784 @kindex -v
2785 @kindex -version
2786 @cindex assembler version
2787 @cindex version of assembler
2788 You can find out what version of as is running by including the
2789 option @samp{-v} (which you can also spell as @samp{-version}) on the
2790 command line.
2791
2792 @node W
2793 @section Control Warnings: @option{-W}, @option{--warn}, @option{--no-warn}, @option{--fatal-warnings}
2794
2795 @command{@value{AS}} should never give a warning or error message when
2796 assembling compiler output. But programs written by people often
2797 cause @command{@value{AS}} to give a warning that a particular assumption was
2798 made. All such warnings are directed to the standard error file.
2799
2800 @kindex -W
2801 @kindex --no-warn
2802 @cindex suppressing warnings
2803 @cindex warnings, suppressing
2804 If you use the @option{-W} and @option{--no-warn} options, no warnings are issued.
2805 This only affects the warning messages: it does not change any particular of
2806 how @command{@value{AS}} assembles your file. Errors, which stop the assembly,
2807 are still reported.
2808
2809 @kindex --fatal-warnings
2810 @cindex errors, caused by warnings
2811 @cindex warnings, causing error
2812 If you use the @option{--fatal-warnings} option, @command{@value{AS}} considers
2813 files that generate warnings to be in error.
2814
2815 @kindex --warn
2816 @cindex warnings, switching on
2817 You can switch these options off again by specifying @option{--warn}, which
2818 causes warnings to be output as usual.
2819
2820 @node Z
2821 @section Generate Object File in Spite of Errors: @option{-Z}
2822 @cindex object file, after errors
2823 @cindex errors, continuing after
2824 After an error message, @command{@value{AS}} normally produces no output. If for
2825 some reason you are interested in object file output even after
2826 @command{@value{AS}} gives an error message on your program, use the @samp{-Z}
2827 option. If there are any errors, @command{@value{AS}} continues anyways, and
2828 writes an object file after a final warning message of the form @samp{@var{n}
2829 errors, @var{m} warnings, generating bad object file.}
2830
2831 @node Syntax
2832 @chapter Syntax
2833
2834 @cindex machine-independent syntax
2835 @cindex syntax, machine-independent
2836 This chapter describes the machine-independent syntax allowed in a
2837 source file. @command{@value{AS}} syntax is similar to what many other
2838 assemblers use; it is inspired by the BSD 4.2
2839 @ifclear VAX
2840 assembler.
2841 @end ifclear
2842 @ifset VAX
2843 assembler, except that @command{@value{AS}} does not assemble Vax bit-fields.
2844 @end ifset
2845
2846 @menu
2847 * Preprocessing:: Preprocessing
2848 * Whitespace:: Whitespace
2849 * Comments:: Comments
2850 * Symbol Intro:: Symbols
2851 * Statements:: Statements
2852 * Constants:: Constants
2853 @end menu
2854
2855 @node Preprocessing
2856 @section Preprocessing
2857
2858 @cindex preprocessing
2859 The @command{@value{AS}} internal preprocessor:
2860 @itemize @bullet
2861 @cindex whitespace, removed by preprocessor
2862 @item
2863 adjusts and removes extra whitespace. It leaves one space or tab before
2864 the keywords on a line, and turns any other whitespace on the line into
2865 a single space.
2866
2867 @cindex comments, removed by preprocessor
2868 @item
2869 removes all comments, replacing them with a single space, or an
2870 appropriate number of newlines.
2871
2872 @cindex constants, converted by preprocessor
2873 @item
2874 converts character constants into the appropriate numeric values.
2875 @end itemize
2876
2877 It does not do macro processing, include file handling, or
2878 anything else you may get from your C compiler's preprocessor. You can
2879 do include file processing with the @code{.include} directive
2880 (@pxref{Include,,@code{.include}}). You can use the @sc{gnu} C compiler driver
2881 to get other ``CPP'' style preprocessing by giving the input file a
2882 @samp{.S} suffix. @xref{Overall Options, ,Options Controlling the Kind of
2883 Output, gcc info, Using GNU CC}.
2884
2885 Excess whitespace, comments, and character constants
2886 cannot be used in the portions of the input text that are not
2887 preprocessed.
2888
2889 @cindex turning preprocessing on and off
2890 @cindex preprocessing, turning on and off
2891 @kindex #NO_APP
2892 @kindex #APP
2893 If the first line of an input file is @code{#NO_APP} or if you use the
2894 @samp{-f} option, whitespace and comments are not removed from the input file.
2895 Within an input file, you can ask for whitespace and comment removal in
2896 specific portions of the by putting a line that says @code{#APP} before the
2897 text that may contain whitespace or comments, and putting a line that says
2898 @code{#NO_APP} after this text. This feature is mainly intend to support
2899 @code{asm} statements in compilers whose output is otherwise free of comments
2900 and whitespace.
2901
2902 @node Whitespace
2903 @section Whitespace
2904
2905 @cindex whitespace
2906 @dfn{Whitespace} is one or more blanks or tabs, in any order.
2907 Whitespace is used to separate symbols, and to make programs neater for
2908 people to read. Unless within character constants
2909 (@pxref{Characters,,Character Constants}), any whitespace means the same
2910 as exactly one space.
2911
2912 @node Comments
2913 @section Comments
2914
2915 @cindex comments
2916 There are two ways of rendering comments to @command{@value{AS}}. In both
2917 cases the comment is equivalent to one space.
2918
2919 Anything from @samp{/*} through the next @samp{*/} is a comment.
2920 This means you may not nest these comments.
2921
2922 @smallexample
2923 /*
2924 The only way to include a newline ('\n') in a comment
2925 is to use this sort of comment.
2926 */
2927
2928 /* This sort of comment does not nest. */
2929 @end smallexample
2930
2931 @cindex line comment character
2932 Anything from a @dfn{line comment} character up to the next newline is
2933 considered a comment and is ignored. The line comment character is target
2934 specific, and some targets multiple comment characters. Some targets also have
2935 line comment characters that only work if they are the first character on a
2936 line. Some targets use a sequence of two characters to introduce a line
2937 comment. Some targets can also change their line comment characters depending
2938 upon command-line options that have been used. For more details see the
2939 @emph{Syntax} section in the documentation for individual targets.
2940
2941 If the line comment character is the hash sign (@samp{#}) then it still has the
2942 special ability to enable and disable preprocessing (@pxref{Preprocessing}) and
2943 to specify logical line numbers:
2944
2945 @kindex #
2946 @cindex lines starting with @code{#}
2947 @cindex logical line numbers
2948 To be compatible with past assemblers, lines that begin with @samp{#} have a
2949 special interpretation. Following the @samp{#} should be an absolute
2950 expression (@pxref{Expressions}): the logical line number of the @emph{next}
2951 line. Then a string (@pxref{Strings, ,Strings}) is allowed: if present it is a
2952 new logical file name. The rest of the line, if any, should be whitespace.
2953
2954 If the first non-whitespace characters on the line are not numeric,
2955 the line is ignored. (Just like a comment.)
2956
2957 @smallexample
2958 # This is an ordinary comment.
2959 # 42-6 "new_file_name" # New logical file name
2960 # This is logical line # 36.
2961 @end smallexample
2962 This feature is deprecated, and may disappear from future versions
2963 of @command{@value{AS}}.
2964
2965 @node Symbol Intro
2966 @section Symbols
2967
2968 @cindex characters used in symbols
2969 @ifclear SPECIAL-SYMS
2970 A @dfn{symbol} is one or more characters chosen from the set of all
2971 letters (both upper and lower case), digits and the three characters
2972 @samp{_.$}.
2973 @end ifclear
2974 @ifset SPECIAL-SYMS
2975 @ifclear GENERIC
2976 @ifset H8
2977 A @dfn{symbol} is one or more characters chosen from the set of all
2978 letters (both upper and lower case), digits and the three characters
2979 @samp{._$}. (Save that, on the H8/300 only, you may not use @samp{$} in
2980 symbol names.)
2981 @end ifset
2982 @end ifclear
2983 @end ifset
2984 @ifset GENERIC
2985 On most machines, you can also use @code{$} in symbol names; exceptions
2986 are noted in @ref{Machine Dependencies}.
2987 @end ifset
2988 No symbol may begin with a digit. Case is significant.
2989 There is no length limit; all characters are significant. Multibyte characters
2990 are supported. Symbols are delimited by characters not in that set, or by the
2991 beginning of a file (since the source program must end with a newline, the end
2992 of a file is not a possible symbol delimiter). @xref{Symbols}.
2993
2994 Symbol names may also be enclosed in double quote @code{"} characters. In such
2995 cases any characters are allowed, except for the NUL character. If a double
2996 quote character is to be included in the symbol name it must be preceeded by a
2997 backslash @code{\} character.
2998 @cindex length of symbols
2999
3000 @node Statements
3001 @section Statements
3002
3003 @cindex statements, structure of
3004 @cindex line separator character
3005 @cindex statement separator character
3006
3007 A @dfn{statement} ends at a newline character (@samp{\n}) or a
3008 @dfn{line separator character}. The line separator character is target
3009 specific and described in the @emph{Syntax} section of each
3010 target's documentation. Not all targets support a line separator character.
3011 The newline or line separator character is considered to be part of the
3012 preceding statement. Newlines and separators within character constants are an
3013 exception: they do not end statements.
3014
3015 @cindex newline, required at file end
3016 @cindex EOF, newline must precede
3017 It is an error to end any statement with end-of-file: the last
3018 character of any input file should be a newline.@refill
3019
3020 An empty statement is allowed, and may include whitespace. It is ignored.
3021
3022 @cindex instructions and directives
3023 @cindex directives and instructions
3024 @c "key symbol" is not used elsewhere in the document; seems pedantic to
3025 @c @defn{} it in that case, as was done previously... doc@cygnus.com,
3026 @c 13feb91.
3027 A statement begins with zero or more labels, optionally followed by a
3028 key symbol which determines what kind of statement it is. The key
3029 symbol determines the syntax of the rest of the statement. If the
3030 symbol begins with a dot @samp{.} then the statement is an assembler
3031 directive: typically valid for any computer. If the symbol begins with
3032 a letter the statement is an assembly language @dfn{instruction}: it
3033 assembles into a machine language instruction.
3034 @ifset GENERIC
3035 Different versions of @command{@value{AS}} for different computers
3036 recognize different instructions. In fact, the same symbol may
3037 represent a different instruction in a different computer's assembly
3038 language.@refill
3039 @end ifset
3040
3041 @cindex @code{:} (label)
3042 @cindex label (@code{:})
3043 A label is a symbol immediately followed by a colon (@code{:}).
3044 Whitespace before a label or after a colon is permitted, but you may not
3045 have whitespace between a label's symbol and its colon. @xref{Labels}.
3046
3047 @ifset HPPA
3048 For HPPA targets, labels need not be immediately followed by a colon, but
3049 the definition of a label must begin in column zero. This also implies that
3050 only one label may be defined on each line.
3051 @end ifset
3052
3053 @smallexample
3054 label: .directive followed by something
3055 another_label: # This is an empty statement.
3056 instruction operand_1, operand_2, @dots{}
3057 @end smallexample
3058
3059 @node Constants
3060 @section Constants
3061
3062 @cindex constants
3063 A constant is a number, written so that its value is known by
3064 inspection, without knowing any context. Like this:
3065 @smallexample
3066 @group
3067 .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
3068 .ascii "Ring the bell\7" # A string constant.
3069 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
3070 .float 0f-314159265358979323846264338327\
3071 95028841971.693993751E-40 # - pi, a flonum.
3072 @end group
3073 @end smallexample
3074
3075 @menu
3076 * Characters:: Character Constants
3077 * Numbers:: Number Constants
3078 @end menu
3079
3080 @node Characters
3081 @subsection Character Constants
3082
3083 @cindex character constants
3084 @cindex constants, character
3085 There are two kinds of character constants. A @dfn{character} stands
3086 for one character in one byte and its value may be used in
3087 numeric expressions. String constants (properly called string
3088 @emph{literals}) are potentially many bytes and their values may not be
3089 used in arithmetic expressions.
3090
3091 @menu
3092 * Strings:: Strings
3093 * Chars:: Characters
3094 @end menu
3095
3096 @node Strings
3097 @subsubsection Strings
3098
3099 @cindex string constants
3100 @cindex constants, string
3101 A @dfn{string} is written between double-quotes. It may contain
3102 double-quotes or null characters. The way to get special characters
3103 into a string is to @dfn{escape} these characters: precede them with
3104 a backslash @samp{\} character. For example @samp{\\} represents
3105 one backslash: the first @code{\} is an escape which tells
3106 @command{@value{AS}} to interpret the second character literally as a backslash
3107 (which prevents @command{@value{AS}} from recognizing the second @code{\} as an
3108 escape character). The complete list of escapes follows.
3109
3110 @cindex escape codes, character
3111 @cindex character escape codes
3112 @c NOTE: Cindex entries must not start with a backlash character.
3113 @c NOTE: This confuses the pdf2texi script when it is creating the
3114 @c NOTE: index based upon the first character and so it generates:
3115 @c NOTE: \initial {\\}
3116 @c NOTE: which then results in the error message:
3117 @c NOTE: Argument of \\ has an extra }.
3118 @c NOTE: So in the index entries below a space character has been
3119 @c NOTE: prepended to avoid this problem.
3120 @table @kbd
3121 @c @item \a
3122 @c Mnemonic for ACKnowledge; for ASCII this is octal code 007.
3123 @c
3124 @cindex @code{ \b} (backspace character)
3125 @cindex backspace (@code{\b})
3126 @item \b
3127 Mnemonic for backspace; for ASCII this is octal code 010.
3128
3129 @c @item \e
3130 @c Mnemonic for EOText; for ASCII this is octal code 004.
3131 @c
3132 @cindex @code{ \f} (formfeed character)
3133 @cindex formfeed (@code{\f})
3134 @item backslash-f
3135 Mnemonic for FormFeed; for ASCII this is octal code 014.
3136
3137 @cindex @code{ \n} (newline character)
3138 @cindex newline (@code{\n})
3139 @item \n
3140 Mnemonic for newline; for ASCII this is octal code 012.
3141
3142 @c @item \p
3143 @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}.
3144 @c
3145 @cindex @code{ \r} (carriage return character)
3146 @cindex carriage return (@code{backslash-r})
3147 @item \r
3148 Mnemonic for carriage-Return; for ASCII this is octal code 015.
3149
3150 @c @item \s
3151 @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with
3152 @c other assemblers.
3153 @c
3154 @cindex @code{ \t} (tab)
3155 @cindex tab (@code{\t})
3156 @item \t
3157 Mnemonic for horizontal Tab; for ASCII this is octal code 011.
3158
3159 @c @item \v
3160 @c Mnemonic for Vertical tab; for ASCII this is octal code 013.
3161 @c @item \x @var{digit} @var{digit} @var{digit}
3162 @c A hexadecimal character code. The numeric code is 3 hexadecimal digits.
3163 @c
3164 @cindex @code{ \@var{ddd}} (octal character code)
3165 @cindex octal character code (@code{\@var{ddd}})
3166 @item \ @var{digit} @var{digit} @var{digit}
3167 An octal character code. The numeric code is 3 octal digits.
3168 For compatibility with other Unix systems, 8 and 9 are accepted as digits:
3169 for example, @code{\008} has the value 010, and @code{\009} the value 011.
3170
3171 @cindex @code{ \@var{xd...}} (hex character code)
3172 @cindex hex character code (@code{\@var{xd...}})
3173 @item \@code{x} @var{hex-digits...}
3174 A hex character code. All trailing hex digits are combined. Either upper or
3175 lower case @code{x} works.
3176
3177 @cindex @code{ \\} (@samp{\} character)
3178 @cindex backslash (@code{\\})
3179 @item \\
3180 Represents one @samp{\} character.
3181
3182 @c @item \'
3183 @c Represents one @samp{'} (accent acute) character.
3184 @c This is needed in single character literals
3185 @c (@xref{Characters,,Character Constants}.) to represent
3186 @c a @samp{'}.
3187 @c
3188 @cindex @code{ \"} (doublequote character)
3189 @cindex doublequote (@code{\"})
3190 @item \"
3191 Represents one @samp{"} character. Needed in strings to represent
3192 this character, because an unescaped @samp{"} would end the string.
3193
3194 @item \ @var{anything-else}
3195 Any other character when escaped by @kbd{\} gives a warning, but
3196 assembles as if the @samp{\} was not present. The idea is that if
3197 you used an escape sequence you clearly didn't want the literal
3198 interpretation of the following character. However @command{@value{AS}} has no
3199 other interpretation, so @command{@value{AS}} knows it is giving you the wrong
3200 code and warns you of the fact.
3201 @end table
3202
3203 Which characters are escapable, and what those escapes represent,
3204 varies widely among assemblers. The current set is what we think
3205 the BSD 4.2 assembler recognizes, and is a subset of what most C
3206 compilers recognize. If you are in doubt, do not use an escape
3207 sequence.
3208
3209 @node Chars
3210 @subsubsection Characters
3211
3212 @cindex single character constant
3213 @cindex character, single
3214 @cindex constant, single character
3215 A single character may be written as a single quote immediately followed by
3216 that character. Some backslash escapes apply to characters, @code{\b},
3217 @code{\f}, @code{\n}, @code{\r}, @code{\t}, and @code{\"} with the same meaning
3218 as for strings, plus @code{\'} for a single quote. So if you want to write the
3219 character backslash, you must write @kbd{'\\} where the first @code{\} escapes
3220 the second @code{\}. As you can see, the quote is an acute accent, not a grave
3221 accent. A newline
3222 @ifclear GENERIC
3223 @ifclear abnormal-separator
3224 (or semicolon @samp{;})
3225 @end ifclear
3226 @ifset abnormal-separator
3227 @ifset H8
3228 (or dollar sign @samp{$}, for the H8/300; or semicolon @samp{;} for the
3229 Renesas SH)
3230 @end ifset
3231 @end ifset
3232 @end ifclear
3233 immediately following an acute accent is taken as a literal character
3234 and does not count as the end of a statement. The value of a character
3235 constant in a numeric expression is the machine's byte-wide code for
3236 that character. @command{@value{AS}} assumes your character code is ASCII:
3237 @kbd{'A} means 65, @kbd{'B} means 66, and so on. @refill
3238
3239 @node Numbers
3240 @subsection Number Constants
3241
3242 @cindex constants, number
3243 @cindex number constants
3244 @command{@value{AS}} distinguishes three kinds of numbers according to how they
3245 are stored in the target machine. @emph{Integers} are numbers that
3246 would fit into an @code{int} in the C language. @emph{Bignums} are
3247 integers, but they are stored in more than 32 bits. @emph{Flonums}
3248 are floating point numbers, described below.
3249
3250 @menu
3251 * Integers:: Integers
3252 * Bignums:: Bignums
3253 * Flonums:: Flonums
3254 @ifclear GENERIC
3255 @end ifclear
3256 @end menu
3257
3258 @node Integers
3259 @subsubsection Integers
3260 @cindex integers
3261 @cindex constants, integer
3262
3263 @cindex binary integers
3264 @cindex integers, binary
3265 A binary integer is @samp{0b} or @samp{0B} followed by zero or more of
3266 the binary digits @samp{01}.
3267
3268 @cindex octal integers
3269 @cindex integers, octal
3270 An octal integer is @samp{0} followed by zero or more of the octal
3271 digits (@samp{01234567}).
3272
3273 @cindex decimal integers
3274 @cindex integers, decimal
3275 A decimal integer starts with a non-zero digit followed by zero or
3276 more digits (@samp{0123456789}).
3277
3278 @cindex hexadecimal integers
3279 @cindex integers, hexadecimal
3280 A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or
3281 more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}.
3282
3283 Integers have the usual values. To denote a negative integer, use
3284 the prefix operator @samp{-} discussed under expressions
3285 (@pxref{Prefix Ops,,Prefix Operators}).
3286
3287 @node Bignums
3288 @subsubsection Bignums
3289
3290 @cindex bignums
3291 @cindex constants, bignum
3292 A @dfn{bignum} has the same syntax and semantics as an integer
3293 except that the number (or its negative) takes more than 32 bits to
3294 represent in binary. The distinction is made because in some places
3295 integers are permitted while bignums are not.
3296
3297 @node Flonums
3298 @subsubsection Flonums
3299 @cindex flonums
3300 @cindex floating point numbers
3301 @cindex constants, floating point
3302
3303 @cindex precision, floating point
3304 A @dfn{flonum} represents a floating point number. The translation is
3305 indirect: a decimal floating point number from the text is converted by
3306 @command{@value{AS}} to a generic binary floating point number of more than
3307 sufficient precision. This generic floating point number is converted
3308 to a particular computer's floating point format (or formats) by a
3309 portion of @command{@value{AS}} specialized to that computer.
3310
3311 A flonum is written by writing (in order)
3312 @itemize @bullet
3313 @item
3314 The digit @samp{0}.
3315 @ifset HPPA
3316 (@samp{0} is optional on the HPPA.)
3317 @end ifset
3318
3319 @item
3320 A letter, to tell @command{@value{AS}} the rest of the number is a flonum.
3321 @ifset GENERIC
3322 @kbd{e} is recommended. Case is not important.
3323 @ignore
3324 @c FIXME: verify if flonum syntax really this vague for most cases
3325 (Any otherwise illegal letter works here, but that might be changed. Vax BSD
3326 4.2 assembler seems to allow any of @samp{defghDEFGH}.)
3327 @end ignore
3328
3329 On the H8/300 and Renesas / SuperH SH architectures, the letter must be
3330 one of the letters @samp{DFPRSX} (in upper or lower case).
3331
3332 On the ARC, the letter must be one of the letters @samp{DFRS}
3333 (in upper or lower case).
3334
3335 On the HPPA architecture, the letter must be @samp{E} (upper case only).
3336 @end ifset
3337 @ifclear GENERIC
3338 @ifset ARC
3339 One of the letters @samp{DFRS} (in upper or lower case).
3340 @end ifset
3341 @ifset H8
3342 One of the letters @samp{DFPRSX} (in upper or lower case).
3343 @end ifset
3344 @ifset HPPA
3345 The letter @samp{E} (upper case only).
3346 @end ifset
3347 @end ifclear
3348
3349 @item
3350 An optional sign: either @samp{+} or @samp{-}.
3351
3352 @item
3353 An optional @dfn{integer part}: zero or more decimal digits.
3354
3355 @item
3356 An optional @dfn{fractional part}: @samp{.} followed by zero
3357 or more decimal digits.
3358
3359 @item
3360 An optional exponent, consisting of:
3361
3362 @itemize @bullet
3363 @item
3364 An @samp{E} or @samp{e}.
3365 @c I can't find a config where "EXP_CHARS" is other than 'eE', but in
3366 @c principle this can perfectly well be different on different targets.
3367 @item
3368 Optional sign: either @samp{+} or @samp{-}.
3369 @item
3370 One or more decimal digits.
3371 @end itemize
3372
3373 @end itemize
3374
3375 At least one of the integer part or the fractional part must be
3376 present. The floating point number has the usual base-10 value.
3377
3378 @command{@value{AS}} does all processing using integers. Flonums are computed
3379 independently of any floating point hardware in the computer running
3380 @command{@value{AS}}.
3381
3382 @node Sections
3383 @chapter Sections and Relocation
3384 @cindex sections
3385 @cindex relocation
3386
3387 @menu
3388 * Secs Background:: Background
3389 * Ld Sections:: Linker Sections
3390 * As Sections:: Assembler Internal Sections
3391 * Sub-Sections:: Sub-Sections
3392 * bss:: bss Section
3393 @end menu
3394
3395 @node Secs Background
3396 @section Background
3397
3398 Roughly, a section is a range of addresses, with no gaps; all data
3399 ``in'' those addresses is treated the same for some particular purpose.
3400 For example there may be a ``read only'' section.
3401
3402 @cindex linker, and assembler
3403 @cindex assembler, and linker
3404 The linker @code{@value{LD}} reads many object files (partial programs) and
3405 combines their contents to form a runnable program. When @command{@value{AS}}
3406 emits an object file, the partial program is assumed to start at address 0.
3407 @code{@value{LD}} assigns the final addresses for the partial program, so that
3408 different partial programs do not overlap. This is actually an
3409 oversimplification, but it suffices to explain how @command{@value{AS}} uses
3410 sections.
3411
3412 @code{@value{LD}} moves blocks of bytes of your program to their run-time
3413 addresses. These blocks slide to their run-time addresses as rigid
3414 units; their length does not change and neither does the order of bytes
3415 within them. Such a rigid unit is called a @emph{section}. Assigning
3416 run-time addresses to sections is called @dfn{relocation}. It includes
3417 the task of adjusting mentions of object-file addresses so they refer to
3418 the proper run-time addresses.
3419 @ifset H8
3420 For the H8/300, and for the Renesas / SuperH SH,
3421 @command{@value{AS}} pads sections if needed to
3422 ensure they end on a word (sixteen bit) boundary.
3423 @end ifset
3424
3425 @cindex standard assembler sections
3426 An object file written by @command{@value{AS}} has at least three sections, any
3427 of which may be empty. These are named @dfn{text}, @dfn{data} and
3428 @dfn{bss} sections.
3429
3430 @ifset COFF-ELF
3431 @ifset GENERIC
3432 When it generates COFF or ELF output,
3433 @end ifset
3434 @command{@value{AS}} can also generate whatever other named sections you specify
3435 using the @samp{.section} directive (@pxref{Section,,@code{.section}}).
3436 If you do not use any directives that place output in the @samp{.text}
3437 or @samp{.data} sections, these sections still exist, but are empty.
3438 @end ifset
3439
3440 @ifset HPPA
3441 @ifset GENERIC
3442 When @command{@value{AS}} generates SOM or ELF output for the HPPA,
3443 @end ifset
3444 @command{@value{AS}} can also generate whatever other named sections you
3445 specify using the @samp{.space} and @samp{.subspace} directives. See
3446 @cite{HP9000 Series 800 Assembly Language Reference Manual}
3447 (HP 92432-90001) for details on the @samp{.space} and @samp{.subspace}
3448 assembler directives.
3449
3450 @ifset SOM
3451 Additionally, @command{@value{AS}} uses different names for the standard
3452 text, data, and bss sections when generating SOM output. Program text
3453 is placed into the @samp{$CODE$} section, data into @samp{$DATA$}, and
3454 BSS into @samp{$BSS$}.
3455 @end ifset
3456 @end ifset
3457
3458 Within the object file, the text section starts at address @code{0}, the
3459 data section follows, and the bss section follows the data section.
3460
3461 @ifset HPPA
3462 When generating either SOM or ELF output files on the HPPA, the text
3463 section starts at address @code{0}, the data section at address
3464 @code{0x4000000}, and the bss section follows the data section.
3465 @end ifset
3466
3467 To let @code{@value{LD}} know which data changes when the sections are
3468 relocated, and how to change that data, @command{@value{AS}} also writes to the
3469 object file details of the relocation needed. To perform relocation
3470 @code{@value{LD}} must know, each time an address in the object
3471 file is mentioned:
3472 @itemize @bullet
3473 @item
3474 Where in the object file is the beginning of this reference to
3475 an address?
3476 @item
3477 How long (in bytes) is this reference?
3478 @item
3479 Which section does the address refer to? What is the numeric value of
3480 @display
3481 (@var{address}) @minus{} (@var{start-address of section})?
3482 @end display
3483 @item
3484 Is the reference to an address ``Program-Counter relative''?
3485 @end itemize
3486
3487 @cindex addresses, format of
3488 @cindex section-relative addressing
3489 In fact, every address @command{@value{AS}} ever uses is expressed as
3490 @display
3491 (@var{section}) + (@var{offset into section})
3492 @end display
3493 @noindent
3494 Further, most expressions @command{@value{AS}} computes have this section-relative
3495 nature.
3496 @ifset SOM
3497 (For some object formats, such as SOM for the HPPA, some expressions are
3498 symbol-relative instead.)
3499 @end ifset
3500
3501 In this manual we use the notation @{@var{secname} @var{N}@} to mean ``offset
3502 @var{N} into section @var{secname}.''
3503
3504 Apart from text, data and bss sections you need to know about the
3505 @dfn{absolute} section. When @code{@value{LD}} mixes partial programs,
3506 addresses in the absolute section remain unchanged. For example, address
3507 @code{@{absolute 0@}} is ``relocated'' to run-time address 0 by
3508 @code{@value{LD}}. Although the linker never arranges two partial programs'
3509 data sections with overlapping addresses after linking, @emph{by definition}
3510 their absolute sections must overlap. Address @code{@{absolute@ 239@}} in one
3511 part of a program is always the same address when the program is running as
3512 address @code{@{absolute@ 239@}} in any other part of the program.
3513
3514 The idea of sections is extended to the @dfn{undefined} section. Any
3515 address whose section is unknown at assembly time is by definition
3516 rendered @{undefined @var{U}@}---where @var{U} is filled in later.
3517 Since numbers are always defined, the only way to generate an undefined
3518 address is to mention an undefined symbol. A reference to a named
3519 common block would be such a symbol: its value is unknown at assembly
3520 time so it has section @emph{undefined}.
3521
3522 By analogy the word @emph{section} is used to describe groups of sections in
3523 the linked program. @code{@value{LD}} puts all partial programs' text
3524 sections in contiguous addresses in the linked program. It is
3525 customary to refer to the @emph{text section} of a program, meaning all
3526 the addresses of all partial programs' text sections. Likewise for
3527 data and bss sections.
3528
3529 Some sections are manipulated by @code{@value{LD}}; others are invented for
3530 use of @command{@value{AS}} and have no meaning except during assembly.
3531
3532 @node Ld Sections
3533 @section Linker Sections
3534 @code{@value{LD}} deals with just four kinds of sections, summarized below.
3535
3536 @table @strong
3537
3538 @ifset COFF-ELF
3539 @cindex named sections
3540 @cindex sections, named
3541 @item named sections
3542 @end ifset
3543 @ifset aout
3544 @cindex text section
3545 @cindex data section
3546 @itemx text section
3547 @itemx data section
3548 @end ifset
3549 These sections hold your program. @command{@value{AS}} and @code{@value{LD}} treat them as
3550 separate but equal sections. Anything you can say of one section is
3551 true of another.
3552 @c @ifset aout
3553 When the program is running, however, it is
3554 customary for the text section to be unalterable. The
3555 text section is often shared among processes: it contains
3556 instructions, constants and the like. The data section of a running
3557 program is usually alterable: for example, C variables would be stored
3558 in the data section.
3559 @c @end ifset
3560
3561 @cindex bss section
3562 @item bss section
3563 This section contains zeroed bytes when your program begins running. It
3564 is used to hold uninitialized variables or common storage. The length of
3565 each partial program's bss section is important, but because it starts
3566 out containing zeroed bytes there is no need to store explicit zero
3567 bytes in the object file. The bss section was invented to eliminate
3568 those explicit zeros from object files.
3569
3570 @cindex absolute section
3571 @item absolute section
3572 Address 0 of this section is always ``relocated'' to runtime address 0.
3573 This is useful if you want to refer to an address that @code{@value{LD}} must
3574 not change when relocating. In this sense we speak of absolute
3575 addresses being ``unrelocatable'': they do not change during relocation.
3576
3577 @cindex undefined section
3578 @item undefined section
3579 This ``section'' is a catch-all for address references to objects not in
3580 the preceding sections.
3581 @c FIXME: ref to some other doc on obj-file formats could go here.
3582 @end table
3583
3584 @cindex relocation example
3585 An idealized example of three relocatable sections follows.
3586 @ifset COFF-ELF
3587 The example uses the traditional section names @samp{.text} and @samp{.data}.
3588 @end ifset
3589 Memory addresses are on the horizontal axis.
3590
3591 @c TEXI2ROFF-KILL
3592 @ifnottex
3593 @c END TEXI2ROFF-KILL
3594 @smallexample
3595 +-----+----+--+
3596 partial program # 1: |ttttt|dddd|00|
3597 +-----+----+--+
3598
3599 text data bss
3600 seg. seg. seg.
3601
3602 +---+---+---+
3603 partial program # 2: |TTT|DDD|000|
3604 +---+---+---+
3605
3606 +--+---+-----+--+----+---+-----+~~
3607 linked program: | |TTT|ttttt| |dddd|DDD|00000|
3608 +--+---+-----+--+----+---+-----+~~
3609
3610 addresses: 0 @dots{}
3611 @end smallexample
3612 @c TEXI2ROFF-KILL
3613 @end ifnottex
3614 @need 5000
3615 @tex
3616 \bigskip
3617 \line{\it Partial program \#1: \hfil}
3618 \line{\ibox{2.5cm}{\tt text}\ibox{2cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3619 \line{\boxit{2.5cm}{\tt ttttt}\boxit{2cm}{\tt dddd}\boxit{1cm}{\tt 00}\hfil}
3620
3621 \line{\it Partial program \#2: \hfil}
3622 \line{\ibox{1cm}{\tt text}\ibox{1.5cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3623 \line{\boxit{1cm}{\tt TTT}\boxit{1.5cm}{\tt DDDD}\boxit{1cm}{\tt 000}\hfil}
3624
3625 \line{\it linked program: \hfil}
3626 \line{\ibox{.5cm}{}\ibox{1cm}{\tt text}\ibox{2.5cm}{}\ibox{.75cm}{}\ibox{2cm}{\tt data}\ibox{1.5cm}{}\ibox{2cm}{\tt bss}\hfil}
3627 \line{\boxit{.5cm}{}\boxit{1cm}{\tt TTT}\boxit{2.5cm}{\tt
3628 ttttt}\boxit{.75cm}{}\boxit{2cm}{\tt dddd}\boxit{1.5cm}{\tt
3629 DDDD}\boxit{2cm}{\tt 00000}\ \dots\hfil}
3630
3631 \line{\it addresses: \hfil}
3632 \line{0\dots\hfil}
3633
3634 @end tex
3635 @c END TEXI2ROFF-KILL
3636
3637 @node As Sections
3638 @section Assembler Internal Sections
3639
3640 @cindex internal assembler sections
3641 @cindex sections in messages, internal
3642 These sections are meant only for the internal use of @command{@value{AS}}. They
3643 have no meaning at run-time. You do not really need to know about these
3644 sections for most purposes; but they can be mentioned in @command{@value{AS}}
3645 warning messages, so it might be helpful to have an idea of their
3646 meanings to @command{@value{AS}}. These sections are used to permit the
3647 value of every expression in your assembly language program to be a
3648 section-relative address.
3649
3650 @table @b
3651 @cindex assembler internal logic error
3652 @item ASSEMBLER-INTERNAL-LOGIC-ERROR!
3653 An internal assembler logic error has been found. This means there is a
3654 bug in the assembler.
3655
3656 @cindex expr (internal section)
3657 @item expr section
3658 The assembler stores complex expression internally as combinations of
3659 symbols. When it needs to represent an expression as a symbol, it puts
3660 it in the expr section.
3661 @c FIXME item debug
3662 @c FIXME item transfer[t] vector preload
3663 @c FIXME item transfer[t] vector postload
3664 @c FIXME item register
3665 @end table
3666
3667 @node Sub-Sections
3668 @section Sub-Sections
3669
3670 @cindex numbered subsections
3671 @cindex grouping data
3672 @ifset aout
3673 Assembled bytes
3674 @ifset COFF-ELF
3675 conventionally
3676 @end ifset
3677 fall into two sections: text and data.
3678 @end ifset
3679 You may have separate groups of
3680 @ifset GENERIC
3681 data in named sections
3682 @end ifset
3683 @ifclear GENERIC
3684 @ifclear aout
3685 data in named sections
3686 @end ifclear
3687 @ifset aout
3688 text or data
3689 @end ifset
3690 @end ifclear
3691 that you want to end up near to each other in the object file, even though they
3692 are not contiguous in the assembler source. @command{@value{AS}} allows you to
3693 use @dfn{subsections} for this purpose. Within each section, there can be
3694 numbered subsections with values from 0 to 8192. Objects assembled into the
3695 same subsection go into the object file together with other objects in the same
3696 subsection. For example, a compiler might want to store constants in the text
3697 section, but might not want to have them interspersed with the program being
3698 assembled. In this case, the compiler could issue a @samp{.text 0} before each
3699 section of code being output, and a @samp{.text 1} before each group of
3700 constants being output.
3701
3702 Subsections are optional. If you do not use subsections, everything
3703 goes in subsection number zero.
3704
3705 @ifset GENERIC
3706 Each subsection is zero-padded up to a multiple of four bytes.
3707 (Subsections may be padded a different amount on different flavors
3708 of @command{@value{AS}}.)
3709 @end ifset
3710 @ifclear GENERIC
3711 @ifset H8
3712 On the H8/300 platform, each subsection is zero-padded to a word
3713 boundary (two bytes).
3714 The same is true on the Renesas SH.
3715 @end ifset
3716 @end ifclear
3717
3718 Subsections appear in your object file in numeric order, lowest numbered
3719 to highest. (All this to be compatible with other people's assemblers.)
3720 The object file contains no representation of subsections; @code{@value{LD}} and
3721 other programs that manipulate object files see no trace of them.
3722 They just see all your text subsections as a text section, and all your
3723 data subsections as a data section.
3724
3725 To specify which subsection you want subsequent statements assembled
3726 into, use a numeric argument to specify it, in a @samp{.text
3727 @var{expression}} or a @samp{.data @var{expression}} statement.
3728 @ifset COFF
3729 @ifset GENERIC
3730 When generating COFF output, you
3731 @end ifset
3732 @ifclear GENERIC
3733 You
3734 @end ifclear
3735 can also use an extra subsection
3736 argument with arbitrary named sections: @samp{.section @var{name},
3737 @var{expression}}.
3738 @end ifset
3739 @ifset ELF
3740 @ifset GENERIC
3741 When generating ELF output, you
3742 @end ifset
3743 @ifclear GENERIC
3744 You
3745 @end ifclear
3746 can also use the @code{.subsection} directive (@pxref{SubSection})
3747 to specify a subsection: @samp{.subsection @var{expression}}.
3748 @end ifset
3749 @var{Expression} should be an absolute expression
3750 (@pxref{Expressions}). If you just say @samp{.text} then @samp{.text 0}
3751 is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly
3752 begins in @code{text 0}. For instance:
3753 @smallexample
3754 .text 0 # The default subsection is text 0 anyway.
3755 .ascii "This lives in the first text subsection. *"
3756 .text 1
3757 .ascii "But this lives in the second text subsection."
3758 .data 0
3759 .ascii "This lives in the data section,"
3760 .ascii "in the first data subsection."
3761 .text 0
3762 .ascii "This lives in the first text section,"
3763 .ascii "immediately following the asterisk (*)."
3764 @end smallexample
3765
3766 Each section has a @dfn{location counter} incremented by one for every byte
3767 assembled into that section. Because subsections are merely a convenience
3768 restricted to @command{@value{AS}} there is no concept of a subsection location
3769 counter. There is no way to directly manipulate a location counter---but the
3770 @code{.align} directive changes it, and any label definition captures its
3771 current value. The location counter of the section where statements are being
3772 assembled is said to be the @dfn{active} location counter.
3773
3774 @node bss
3775 @section bss Section
3776
3777 @cindex bss section
3778 @cindex common variable storage
3779 The bss section is used for local common variable storage.
3780 You may allocate address space in the bss section, but you may
3781 not dictate data to load into it before your program executes. When
3782 your program starts running, all the contents of the bss
3783 section are zeroed bytes.
3784
3785 The @code{.lcomm} pseudo-op defines a symbol in the bss section; see
3786 @ref{Lcomm,,@code{.lcomm}}.
3787
3788 The @code{.comm} pseudo-op may be used to declare a common symbol, which is
3789 another form of uninitialized symbol; see @ref{Comm,,@code{.comm}}.
3790
3791 @ifset GENERIC
3792 When assembling for a target which supports multiple sections, such as ELF or
3793 COFF, you may switch into the @code{.bss} section and define symbols as usual;
3794 see @ref{Section,,@code{.section}}. You may only assemble zero values into the
3795 section. Typically the section will only contain symbol definitions and
3796 @code{.skip} directives (@pxref{Skip,,@code{.skip}}).
3797 @end ifset
3798
3799 @node Symbols
3800 @chapter Symbols
3801
3802 @cindex symbols
3803 Symbols are a central concept: the programmer uses symbols to name
3804 things, the linker uses symbols to link, and the debugger uses symbols
3805 to debug.
3806
3807 @quotation
3808 @cindex debuggers, and symbol order
3809 @emph{Warning:} @command{@value{AS}} does not place symbols in the object file in
3810 the same order they were declared. This may break some debuggers.
3811 @end quotation
3812
3813 @menu
3814 * Labels:: Labels
3815 * Setting Symbols:: Giving Symbols Other Values
3816 * Symbol Names:: Symbol Names
3817 * Dot:: The Special Dot Symbol
3818 * Symbol Attributes:: Symbol Attributes
3819 @end menu
3820
3821 @node Labels
3822 @section Labels
3823
3824 @cindex labels
3825 A @dfn{label} is written as a symbol immediately followed by a colon
3826 @samp{:}. The symbol then represents the current value of the
3827 active location counter, and is, for example, a suitable instruction
3828 operand. You are warned if you use the same symbol to represent two
3829 different locations: the first definition overrides any other
3830 definitions.
3831
3832 @ifset HPPA
3833 On the HPPA, the usual form for a label need not be immediately followed by a
3834 colon, but instead must start in column zero. Only one label may be defined on
3835 a single line. To work around this, the HPPA version of @command{@value{AS}} also
3836 provides a special directive @code{.label} for defining labels more flexibly.
3837 @end ifset
3838
3839 @node Setting Symbols
3840 @section Giving Symbols Other Values
3841
3842 @cindex assigning values to symbols
3843 @cindex symbol values, assigning
3844 A symbol can be given an arbitrary value by writing a symbol, followed
3845 by an equals sign @samp{=}, followed by an expression
3846 (@pxref{Expressions}). This is equivalent to using the @code{.set}
3847 directive. @xref{Set,,@code{.set}}. In the same way, using a double
3848 equals sign @samp{=}@samp{=} here represents an equivalent of the
3849 @code{.eqv} directive. @xref{Eqv,,@code{.eqv}}.
3850
3851 @ifset Blackfin
3852 Blackfin does not support symbol assignment with @samp{=}.
3853 @end ifset
3854
3855 @node Symbol Names
3856 @section Symbol Names
3857
3858 @cindex symbol names
3859 @cindex names, symbol
3860 @ifclear SPECIAL-SYMS
3861 Symbol names begin with a letter or with one of @samp{._}. On most
3862 machines, you can also use @code{$} in symbol names; exceptions are
3863 noted in @ref{Machine Dependencies}. That character may be followed by any
3864 string of digits, letters, dollar signs (unless otherwise noted for a
3865 particular target machine), and underscores.
3866 @end ifclear
3867 @ifset SPECIAL-SYMS
3868 @ifset H8
3869 Symbol names begin with a letter or with one of @samp{._}. On the
3870 Renesas SH you can also use @code{$} in symbol names. That
3871 character may be followed by any string of digits, letters, dollar signs (save
3872 on the H8/300), and underscores.
3873 @end ifset
3874 @end ifset
3875
3876 Case of letters is significant: @code{foo} is a different symbol name
3877 than @code{Foo}.
3878
3879 Symbol names do not start with a digit. An exception to this rule is made for
3880 Local Labels. See below.
3881
3882 Multibyte characters are supported. To generate a symbol name containing
3883 multibyte characters enclose it within double quotes and use escape codes. cf
3884 @xref{Strings}. Generating a multibyte symbol name from a label is not
3885 currently supported.
3886
3887 Each symbol has exactly one name. Each name in an assembly language program
3888 refers to exactly one symbol. You may use that symbol name any number of times
3889 in a program.
3890
3891 @subheading Local Symbol Names
3892
3893 @cindex local symbol names
3894 @cindex symbol names, local
3895 A local symbol is any symbol beginning with certain local label prefixes.
3896 By default, the local label prefix is @samp{.L} for ELF systems or
3897 @samp{L} for traditional a.out systems, but each target may have its own
3898 set of local label prefixes.
3899 @ifset HPPA
3900 On the HPPA local symbols begin with @samp{L$}.
3901 @end ifset
3902
3903 Local symbols are defined and used within the assembler, but they are
3904 normally not saved in object files. Thus, they are not visible when debugging.
3905 You may use the @samp{-L} option (@pxref{L, ,Include Local Symbols})
3906 to retain the local symbols in the object files.
3907
3908 @subheading Local Labels
3909
3910 @cindex local labels
3911 @cindex temporary symbol names
3912 @cindex symbol names, temporary
3913 Local labels are different from local symbols. Local labels help compilers and
3914 programmers use names temporarily. They create symbols which are guaranteed to
3915 be unique over the entire scope of the input source code and which can be
3916 referred to by a simple notation. To define a local label, write a label of
3917 the form @samp{@b{N}:} (where @b{N} represents any non-negative integer).
3918 To refer to the most recent previous definition of that label write
3919 @samp{@b{N}b}, using the same number as when you defined the label. To refer
3920 to the next definition of a local label, write @samp{@b{N}f}. The @samp{b}
3921 stands for ``backwards'' and the @samp{f} stands for ``forwards''.
3922
3923 There is no restriction on how you can use these labels, and you can reuse them
3924 too. So that it is possible to repeatedly define the same local label (using
3925 the same number @samp{@b{N}}), although you can only refer to the most recently
3926 defined local label of that number (for a backwards reference) or the next
3927 definition of a specific local label for a forward reference. It is also worth
3928 noting that the first 10 local labels (@samp{@b{0:}}@dots{}@samp{@b{9:}}) are
3929 implemented in a slightly more efficient manner than the others.
3930
3931 Here is an example:
3932
3933 @smallexample
3934 1: branch 1f
3935 2: branch 1b
3936 1: branch 2f
3937 2: branch 1b
3938 @end smallexample
3939
3940 Which is the equivalent of:
3941
3942 @smallexample
3943 label_1: branch label_3
3944 label_2: branch label_1
3945 label_3: branch label_4
3946 label_4: branch label_3
3947 @end smallexample
3948
3949 Local label names are only a notational device. They are immediately
3950 transformed into more conventional symbol names before the assembler uses them.
3951 The symbol names are stored in the symbol table, appear in error messages, and
3952 are optionally emitted to the object file. The names are constructed using
3953 these parts:
3954
3955 @table @code
3956 @item @emph{local label prefix}
3957 All local symbols begin with the system-specific local label prefix.
3958 Normally both @command{@value{AS}} and @code{@value{LD}} forget symbols
3959 that start with the local label prefix. These labels are
3960 used for symbols you are never intended to see. If you use the
3961 @samp{-L} option then @command{@value{AS}} retains these symbols in the
3962 object file. If you also instruct @code{@value{LD}} to retain these symbols,
3963 you may use them in debugging.
3964
3965 @item @var{number}
3966 This is the number that was used in the local label definition. So if the
3967 label is written @samp{55:} then the number is @samp{55}.
3968
3969 @item @kbd{C-B}
3970 This unusual character is included so you do not accidentally invent a symbol
3971 of the same name. The character has ASCII value of @samp{\002} (control-B).
3972
3973 @item @emph{ordinal number}
3974 This is a serial number to keep the labels distinct. The first definition of
3975 @samp{0:} gets the number @samp{1}. The 15th definition of @samp{0:} gets the
3976 number @samp{15}, and so on. Likewise the first definition of @samp{1:} gets
3977 the number @samp{1} and its 15th definition gets @samp{15} as well.
3978 @end table
3979
3980 So for example, the first @code{1:} may be named @code{.L1@kbd{C-B}1}, and
3981 the 44th @code{3:} may be named @code{.L3@kbd{C-B}44}.
3982
3983 @subheading Dollar Local Labels
3984 @cindex dollar local symbols
3985
3986 On some targets @code{@value{AS}} also supports an even more local form of
3987 local labels called dollar labels. These labels go out of scope (i.e., they
3988 become undefined) as soon as a non-local label is defined. Thus they remain
3989 valid for only a small region of the input source code. Normal local labels,
3990 by contrast, remain in scope for the entire file, or until they are redefined
3991 by another occurrence of the same local label.
3992
3993 Dollar labels are defined in exactly the same way as ordinary local labels,
3994 except that they have a dollar sign suffix to their numeric value, e.g.,
3995 @samp{@b{55$:}}.
3996
3997 They can also be distinguished from ordinary local labels by their transformed
3998 names which use ASCII character @samp{\001} (control-A) as the magic character
3999 to distinguish them from ordinary labels. For example, the fifth definition of
4000 @samp{6$} may be named @samp{.L6@kbd{C-A}5}.
4001
4002 @node Dot
4003 @section The Special Dot Symbol
4004
4005 @cindex dot (symbol)
4006 @cindex @code{.} (symbol)
4007 @cindex current address
4008 @cindex location counter
4009 The special symbol @samp{.} refers to the current address that
4010 @command{@value{AS}} is assembling into. Thus, the expression @samp{melvin:
4011 .long .} defines @code{melvin} to contain its own address.
4012 Assigning a value to @code{.} is treated the same as a @code{.org}
4013 directive.
4014 @ifclear no-space-dir
4015 Thus, the expression @samp{.=.+4} is the same as saying
4016 @samp{.space 4}.
4017 @end ifclear
4018
4019 @node Symbol Attributes
4020 @section Symbol Attributes
4021
4022 @cindex symbol attributes
4023 @cindex attributes, symbol
4024 Every symbol has, as well as its name, the attributes ``Value'' and
4025 ``Type''. Depending on output format, symbols can also have auxiliary
4026 attributes.
4027 @ifset INTERNALS
4028 The detailed definitions are in @file{a.out.h}.
4029 @end ifset
4030
4031 If you use a symbol without defining it, @command{@value{AS}} assumes zero for
4032 all these attributes, and probably won't warn you. This makes the
4033 symbol an externally defined symbol, which is generally what you
4034 would want.
4035
4036 @menu
4037 * Symbol Value:: Value
4038 * Symbol Type:: Type
4039 @ifset aout
4040 * a.out Symbols:: Symbol Attributes: @code{a.out}
4041 @end ifset
4042 @ifset COFF
4043 * COFF Symbols:: Symbol Attributes for COFF
4044 @end ifset
4045 @ifset SOM
4046 * SOM Symbols:: Symbol Attributes for SOM
4047 @end ifset
4048 @end menu
4049
4050 @node Symbol Value
4051 @subsection Value
4052
4053 @cindex value of a symbol
4054 @cindex symbol value
4055 The value of a symbol is (usually) 32 bits. For a symbol which labels a
4056 location in the text, data, bss or absolute sections the value is the
4057 number of addresses from the start of that section to the label.
4058 Naturally for text, data and bss sections the value of a symbol changes
4059 as @code{@value{LD}} changes section base addresses during linking. Absolute
4060 symbols' values do not change during linking: that is why they are
4061 called absolute.
4062
4063 The value of an undefined symbol is treated in a special way. If it is
4064 0 then the symbol is not defined in this assembler source file, and
4065 @code{@value{LD}} tries to determine its value from other files linked into the
4066 same program. You make this kind of symbol simply by mentioning a symbol
4067 name without defining it. A non-zero value represents a @code{.comm}
4068 common declaration. The value is how much common storage to reserve, in
4069 bytes (addresses). The symbol refers to the first address of the
4070 allocated storage.
4071
4072 @node Symbol Type
4073 @subsection Type
4074
4075 @cindex type of a symbol
4076 @cindex symbol type
4077 The type attribute of a symbol contains relocation (section)
4078 information, any flag settings indicating that a symbol is external, and
4079 (optionally), other information for linkers and debuggers. The exact
4080 format depends on the object-code output format in use.
4081
4082 @ifset aout
4083 @node a.out Symbols
4084 @subsection Symbol Attributes: @code{a.out}
4085
4086 @cindex @code{a.out} symbol attributes
4087 @cindex symbol attributes, @code{a.out}
4088
4089 @menu
4090 * Symbol Desc:: Descriptor
4091 * Symbol Other:: Other
4092 @end menu
4093
4094 @node Symbol Desc
4095 @subsubsection Descriptor
4096
4097 @cindex descriptor, of @code{a.out} symbol
4098 This is an arbitrary 16-bit value. You may establish a symbol's
4099 descriptor value by using a @code{.desc} statement
4100 (@pxref{Desc,,@code{.desc}}). A descriptor value means nothing to
4101 @command{@value{AS}}.
4102
4103 @node Symbol Other
4104 @subsubsection Other
4105
4106 @cindex other attribute, of @code{a.out} symbol
4107 This is an arbitrary 8-bit value. It means nothing to @command{@value{AS}}.
4108 @end ifset
4109
4110 @ifset COFF
4111 @node COFF Symbols
4112 @subsection Symbol Attributes for COFF
4113
4114 @cindex COFF symbol attributes
4115 @cindex symbol attributes, COFF
4116
4117 The COFF format supports a multitude of auxiliary symbol attributes;
4118 like the primary symbol attributes, they are set between @code{.def} and
4119 @code{.endef} directives.
4120
4121 @subsubsection Primary Attributes
4122
4123 @cindex primary attributes, COFF symbols
4124 The symbol name is set with @code{.def}; the value and type,
4125 respectively, with @code{.val} and @code{.type}.
4126
4127 @subsubsection Auxiliary Attributes
4128
4129 @cindex auxiliary attributes, COFF symbols
4130 The @command{@value{AS}} directives @code{.dim}, @code{.line}, @code{.scl},
4131 @code{.size}, @code{.tag}, and @code{.weak} can generate auxiliary symbol
4132 table information for COFF.
4133 @end ifset
4134
4135 @ifset SOM
4136 @node SOM Symbols
4137 @subsection Symbol Attributes for SOM
4138
4139 @cindex SOM symbol attributes
4140 @cindex symbol attributes, SOM
4141
4142 The SOM format for the HPPA supports a multitude of symbol attributes set with
4143 the @code{.EXPORT} and @code{.IMPORT} directives.
4144
4145 The attributes are described in @cite{HP9000 Series 800 Assembly
4146 Language Reference Manual} (HP 92432-90001) under the @code{IMPORT} and
4147 @code{EXPORT} assembler directive documentation.
4148 @end ifset
4149
4150 @node Expressions
4151 @chapter Expressions
4152
4153 @cindex expressions
4154 @cindex addresses
4155 @cindex numeric values
4156 An @dfn{expression} specifies an address or numeric value.
4157 Whitespace may precede and/or follow an expression.
4158
4159 The result of an expression must be an absolute number, or else an offset into
4160 a particular section. If an expression is not absolute, and there is not
4161 enough information when @command{@value{AS}} sees the expression to know its
4162 section, a second pass over the source program might be necessary to interpret
4163 the expression---but the second pass is currently not implemented.
4164 @command{@value{AS}} aborts with an error message in this situation.
4165
4166 @menu
4167 * Empty Exprs:: Empty Expressions
4168 * Integer Exprs:: Integer Expressions
4169 @end menu
4170
4171 @node Empty Exprs
4172 @section Empty Expressions
4173
4174 @cindex empty expressions
4175 @cindex expressions, empty
4176 An empty expression has no value: it is just whitespace or null.
4177 Wherever an absolute expression is required, you may omit the
4178 expression, and @command{@value{AS}} assumes a value of (absolute) 0. This
4179 is compatible with other assemblers.
4180
4181 @node Integer Exprs
4182 @section Integer Expressions
4183
4184 @cindex integer expressions
4185 @cindex expressions, integer
4186 An @dfn{integer expression} is one or more @emph{arguments} delimited
4187 by @emph{operators}.
4188
4189 @menu
4190 * Arguments:: Arguments
4191 * Operators:: Operators
4192 * Prefix Ops:: Prefix Operators
4193 * Infix Ops:: Infix Operators
4194 @end menu
4195
4196 @node Arguments
4197 @subsection Arguments
4198
4199 @cindex expression arguments
4200 @cindex arguments in expressions
4201 @cindex operands in expressions
4202 @cindex arithmetic operands
4203 @dfn{Arguments} are symbols, numbers or subexpressions. In other
4204 contexts arguments are sometimes called ``arithmetic operands''. In
4205 this manual, to avoid confusing them with the ``instruction operands'' of
4206 the machine language, we use the term ``argument'' to refer to parts of
4207 expressions only, reserving the word ``operand'' to refer only to machine
4208 instruction operands.
4209
4210 Symbols are evaluated to yield @{@var{section} @var{NNN}@} where
4211 @var{section} is one of text, data, bss, absolute,
4212 or undefined. @var{NNN} is a signed, 2's complement 32 bit
4213 integer.
4214
4215 Numbers are usually integers.
4216
4217 A number can be a flonum or bignum. In this case, you are warned
4218 that only the low order 32 bits are used, and @command{@value{AS}} pretends
4219 these 32 bits are an integer. You may write integer-manipulating
4220 instructions that act on exotic constants, compatible with other
4221 assemblers.
4222
4223 @cindex subexpressions
4224 Subexpressions are a left parenthesis @samp{(} followed by an integer
4225 expression, followed by a right parenthesis @samp{)}; or a prefix
4226 operator followed by an argument.
4227
4228 @node Operators
4229 @subsection Operators
4230
4231 @cindex operators, in expressions
4232 @cindex arithmetic functions
4233 @cindex functions, in expressions
4234 @dfn{Operators} are arithmetic functions, like @code{+} or @code{%}. Prefix
4235 operators are followed by an argument. Infix operators appear
4236 between their arguments. Operators may be preceded and/or followed by
4237 whitespace.
4238
4239 @node Prefix Ops
4240 @subsection Prefix Operator
4241
4242 @cindex prefix operators
4243 @command{@value{AS}} has the following @dfn{prefix operators}. They each take
4244 one argument, which must be absolute.
4245
4246 @c the tex/end tex stuff surrounding this small table is meant to make
4247 @c it align, on the printed page, with the similar table in the next
4248 @c section (which is inside an enumerate).
4249 @tex
4250 \global\advance\leftskip by \itemindent
4251 @end tex
4252
4253 @table @code
4254 @item -
4255 @dfn{Negation}. Two's complement negation.
4256 @item ~
4257 @dfn{Complementation}. Bitwise not.
4258 @end table
4259
4260 @tex
4261 \global\advance\leftskip by -\itemindent
4262 @end tex
4263
4264 @node Infix Ops
4265 @subsection Infix Operators
4266
4267 @cindex infix operators
4268 @cindex operators, permitted arguments
4269 @dfn{Infix operators} take two arguments, one on either side. Operators
4270 have precedence, but operations with equal precedence are performed left
4271 to right. Apart from @code{+} or @option{-}, both arguments must be
4272 absolute, and the result is absolute.
4273
4274 @enumerate
4275 @cindex operator precedence
4276 @cindex precedence of operators
4277
4278 @item
4279 Highest Precedence
4280
4281 @table @code
4282 @item *
4283 @dfn{Multiplication}.
4284
4285 @item /
4286 @dfn{Division}. Truncation is the same as the C operator @samp{/}
4287
4288 @item %
4289 @dfn{Remainder}.
4290
4291 @item <<
4292 @dfn{Shift Left}. Same as the C operator @samp{<<}.
4293
4294 @item >>
4295 @dfn{Shift Right}. Same as the C operator @samp{>>}.
4296 @end table
4297
4298 @item
4299 Intermediate precedence
4300
4301 @table @code
4302 @item |
4303
4304 @dfn{Bitwise Inclusive Or}.
4305
4306 @item &
4307 @dfn{Bitwise And}.
4308
4309 @item ^
4310 @dfn{Bitwise Exclusive Or}.
4311
4312 @item !
4313 @dfn{Bitwise Or Not}.
4314 @end table
4315
4316 @item
4317 Low Precedence
4318
4319 @table @code
4320 @cindex addition, permitted arguments
4321 @cindex plus, permitted arguments
4322 @cindex arguments for addition
4323 @item +
4324 @dfn{Addition}. If either argument is absolute, the result has the section of
4325 the other argument. You may not add together arguments from different
4326 sections.
4327
4328 @cindex subtraction, permitted arguments
4329 @cindex minus, permitted arguments
4330 @cindex arguments for subtraction
4331 @item -
4332 @dfn{Subtraction}. If the right argument is absolute, the
4333 result has the section of the left argument.
4334 If both arguments are in the same section, the result is absolute.
4335 You may not subtract arguments from different sections.
4336 @c FIXME is there still something useful to say about undefined - undefined ?
4337
4338 @cindex comparison expressions
4339 @cindex expressions, comparison
4340 @item ==
4341 @dfn{Is Equal To}
4342 @item <>
4343 @itemx !=
4344 @dfn{Is Not Equal To}
4345 @item <
4346 @dfn{Is Less Than}
4347 @item >
4348 @dfn{Is Greater Than}
4349 @item >=
4350 @dfn{Is Greater Than Or Equal To}
4351 @item <=
4352 @dfn{Is Less Than Or Equal To}
4353
4354 The comparison operators can be used as infix operators. A true results has a
4355 value of -1 whereas a false result has a value of 0. Note, these operators
4356 perform signed comparisons.
4357 @end table
4358
4359 @item Lowest Precedence
4360
4361 @table @code
4362 @item &&
4363 @dfn{Logical And}.
4364
4365 @item ||
4366 @dfn{Logical Or}.
4367
4368 These two logical operations can be used to combine the results of sub
4369 expressions. Note, unlike the comparison operators a true result returns a
4370 value of 1 but a false results does still return 0. Also note that the logical
4371 or operator has a slightly lower precedence than logical and.
4372
4373 @end table
4374 @end enumerate
4375
4376 In short, it's only meaningful to add or subtract the @emph{offsets} in an
4377 address; you can only have a defined section in one of the two arguments.
4378
4379 @node Pseudo Ops
4380 @chapter Assembler Directives
4381
4382 @cindex directives, machine independent
4383 @cindex pseudo-ops, machine independent
4384 @cindex machine independent directives
4385 All assembler directives have names that begin with a period (@samp{.}).
4386 The names are case insensitive for most targets, and usually written
4387 in lower case.
4388
4389 This chapter discusses directives that are available regardless of the
4390 target machine configuration for the @sc{gnu} assembler.
4391 @ifset GENERIC
4392 Some machine configurations provide additional directives.
4393 @xref{Machine Dependencies}.
4394 @end ifset
4395 @ifclear GENERIC
4396 @ifset machine-directives
4397 @xref{Machine Dependencies}, for additional directives.
4398 @end ifset
4399 @end ifclear
4400
4401 @menu
4402 * Abort:: @code{.abort}
4403 @ifset COFF
4404 * ABORT (COFF):: @code{.ABORT}
4405 @end ifset
4406
4407 * Align:: @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4408 * Altmacro:: @code{.altmacro}
4409 * Ascii:: @code{.ascii "@var{string}"}@dots{}
4410 * Asciz:: @code{.asciz "@var{string}"}@dots{}
4411 * Balign:: @code{.balign [@var{abs-expr}[, @var{abs-expr}]]}
4412 * Bundle directives:: @code{.bundle_align_mode @var{abs-expr}}, etc
4413 * Byte:: @code{.byte @var{expressions}}
4414 * CFI directives:: @code{.cfi_startproc [simple]}, @code{.cfi_endproc}, etc.
4415 * Comm:: @code{.comm @var{symbol} , @var{length} }
4416 * Data:: @code{.data @var{subsection}}
4417 * Dc:: @code{.dc[@var{size}] @var{expressions}}
4418 * Dcb:: @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
4419 * Ds:: @code{.ds[@var{size}] @var{number} [,@var{fill}]}
4420 @ifset COFF
4421 * Def:: @code{.def @var{name}}
4422 @end ifset
4423 @ifset aout
4424 * Desc:: @code{.desc @var{symbol}, @var{abs-expression}}
4425 @end ifset
4426 @ifset COFF
4427 * Dim:: @code{.dim}
4428 @end ifset
4429
4430 * Double:: @code{.double @var{flonums}}
4431 * Eject:: @code{.eject}
4432 * Else:: @code{.else}
4433 * Elseif:: @code{.elseif}
4434 * End:: @code{.end}
4435 @ifset COFF
4436 * Endef:: @code{.endef}
4437 @end ifset
4438
4439 * Endfunc:: @code{.endfunc}
4440 * Endif:: @code{.endif}
4441 * Equ:: @code{.equ @var{symbol}, @var{expression}}
4442 * Equiv:: @code{.equiv @var{symbol}, @var{expression}}
4443 * Eqv:: @code{.eqv @var{symbol}, @var{expression}}
4444 * Err:: @code{.err}
4445 * Error:: @code{.error @var{string}}
4446 * Exitm:: @code{.exitm}
4447 * Extern:: @code{.extern}
4448 * Fail:: @code{.fail}
4449 * File:: @code{.file}
4450 * Fill:: @code{.fill @var{repeat} , @var{size} , @var{value}}
4451 * Float:: @code{.float @var{flonums}}
4452 * Func:: @code{.func}
4453 * Global:: @code{.global @var{symbol}}, @code{.globl @var{symbol}}
4454 @ifset ELF
4455 * Gnu_attribute:: @code{.gnu_attribute @var{tag},@var{value}}
4456 * Hidden:: @code{.hidden @var{names}}
4457 @end ifset
4458
4459 * hword:: @code{.hword @var{expressions}}
4460 * Ident:: @code{.ident}
4461 * If:: @code{.if @var{absolute expression}}
4462 * Incbin:: @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
4463 * Include:: @code{.include "@var{file}"}
4464 * Int:: @code{.int @var{expressions}}
4465 @ifset ELF
4466 * Internal:: @code{.internal @var{names}}
4467 @end ifset
4468
4469 * Irp:: @code{.irp @var{symbol},@var{values}}@dots{}
4470 * Irpc:: @code{.irpc @var{symbol},@var{values}}@dots{}
4471 * Lcomm:: @code{.lcomm @var{symbol} , @var{length}}
4472 * Lflags:: @code{.lflags}
4473 @ifclear no-line-dir
4474 * Line:: @code{.line @var{line-number}}
4475 @end ifclear
4476
4477 * Linkonce:: @code{.linkonce [@var{type}]}
4478 * List:: @code{.list}
4479 * Ln:: @code{.ln @var{line-number}}
4480 * Loc:: @code{.loc @var{fileno} @var{lineno}}
4481 * Loc_mark_labels:: @code{.loc_mark_labels @var{enable}}
4482 @ifset ELF
4483 * Local:: @code{.local @var{names}}
4484 @end ifset
4485
4486 * Long:: @code{.long @var{expressions}}
4487 @ignore
4488 * Lsym:: @code{.lsym @var{symbol}, @var{expression}}
4489 @end ignore
4490
4491 * Macro:: @code{.macro @var{name} @var{args}}@dots{}
4492 * MRI:: @code{.mri @var{val}}
4493 * Noaltmacro:: @code{.noaltmacro}
4494 * Nolist:: @code{.nolist}
4495 * Nops:: @code{.nops @var{size}[, @var{control}]}
4496 * Octa:: @code{.octa @var{bignums}}
4497 * Offset:: @code{.offset @var{loc}}
4498 * Org:: @code{.org @var{new-lc}, @var{fill}}
4499 * P2align:: @code{.p2align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4500 @ifset ELF
4501 * PopSection:: @code{.popsection}
4502 * Previous:: @code{.previous}
4503 @end ifset
4504
4505 * Print:: @code{.print @var{string}}
4506 @ifset ELF
4507 * Protected:: @code{.protected @var{names}}
4508 @end ifset
4509
4510 * Psize:: @code{.psize @var{lines}, @var{columns}}
4511 * Purgem:: @code{.purgem @var{name}}
4512 @ifset ELF
4513 * PushSection:: @code{.pushsection @var{name}}
4514 @end ifset
4515
4516 * Quad:: @code{.quad @var{bignums}}
4517 * Reloc:: @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
4518 * Rept:: @code{.rept @var{count}}
4519 * Sbttl:: @code{.sbttl "@var{subheading}"}
4520 @ifset COFF
4521 * Scl:: @code{.scl @var{class}}
4522 @end ifset
4523 @ifset COFF-ELF
4524 * Section:: @code{.section @var{name}[, @var{flags}]}
4525 @end ifset
4526
4527 * Set:: @code{.set @var{symbol}, @var{expression}}
4528 * Short:: @code{.short @var{expressions}}
4529 * Single:: @code{.single @var{flonums}}
4530 @ifset COFF-ELF
4531 * Size:: @code{.size [@var{name} , @var{expression}]}
4532 @end ifset
4533 @ifclear no-space-dir
4534 * Skip:: @code{.skip @var{size} [,@var{fill}]}
4535 @end ifclear
4536
4537 * Sleb128:: @code{.sleb128 @var{expressions}}
4538 @ifclear no-space-dir
4539 * Space:: @code{.space @var{size} [,@var{fill}]}
4540 @end ifclear
4541 @ifset have-stabs
4542 * Stab:: @code{.stabd, .stabn, .stabs}
4543 @end ifset
4544
4545 * String:: @code{.string "@var{str}"}, @code{.string8 "@var{str}"}, @code{.string16 "@var{str}"}, @code{.string32 "@var{str}"}, @code{.string64 "@var{str}"}
4546 * Struct:: @code{.struct @var{expression}}
4547 @ifset ELF
4548 * SubSection:: @code{.subsection}
4549 * Symver:: @code{.symver @var{name},@var{name2@@nodename}}
4550 @end ifset
4551
4552 @ifset COFF
4553 * Tag:: @code{.tag @var{structname}}
4554 @end ifset
4555
4556 * Text:: @code{.text @var{subsection}}
4557 * Title:: @code{.title "@var{heading}"}
4558 @ifset COFF-ELF
4559 * Type:: @code{.type <@var{int} | @var{name} , @var{type description}>}
4560 @end ifset
4561
4562 * Uleb128:: @code{.uleb128 @var{expressions}}
4563 @ifset COFF
4564 * Val:: @code{.val @var{addr}}
4565 @end ifset
4566
4567 @ifset ELF
4568 * Version:: @code{.version "@var{string}"}
4569 * VTableEntry:: @code{.vtable_entry @var{table}, @var{offset}}
4570 * VTableInherit:: @code{.vtable_inherit @var{child}, @var{parent}}
4571 @end ifset
4572
4573 * Warning:: @code{.warning @var{string}}
4574 * Weak:: @code{.weak @var{names}}
4575 * Weakref:: @code{.weakref @var{alias}, @var{symbol}}
4576 * Word:: @code{.word @var{expressions}}
4577 @ifclear no-space-dir
4578 * Zero:: @code{.zero @var{size}}
4579 @end ifclear
4580 @ifset ELF
4581 * 2byte:: @code{.2byte @var{expressions}}
4582 * 4byte:: @code{.4byte @var{expressions}}
4583 * 8byte:: @code{.8byte @var{bignums}}
4584 @end ifset
4585 * Deprecated:: Deprecated Directives
4586 @end menu
4587
4588 @node Abort
4589 @section @code{.abort}
4590
4591 @cindex @code{abort} directive
4592 @cindex stopping the assembly
4593 This directive stops the assembly immediately. It is for
4594 compatibility with other assemblers. The original idea was that the
4595 assembly language source would be piped into the assembler. If the sender
4596 of the source quit, it could use this directive tells @command{@value{AS}} to
4597 quit also. One day @code{.abort} will not be supported.
4598
4599 @ifset COFF
4600 @node ABORT (COFF)
4601 @section @code{.ABORT} (COFF)
4602
4603 @cindex @code{ABORT} directive
4604 When producing COFF output, @command{@value{AS}} accepts this directive as a
4605 synonym for @samp{.abort}.
4606
4607 @end ifset
4608
4609 @node Align
4610 @section @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4611
4612 @cindex padding the location counter
4613 @cindex @code{align} directive
4614 Pad the location counter (in the current subsection) to a particular storage
4615 boundary. The first expression (which must be absolute) is the alignment
4616 required, as described below. If this expression is omitted then a default
4617 value of 0 is used, effectively disabling alignment requirements.
4618
4619 The second expression (also absolute) gives the fill value to be stored in the
4620 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4621 padding bytes are normally zero. However, on most systems, if the section is
4622 marked as containing code and the fill value is omitted, the space is filled
4623 with no-op instructions.
4624
4625 The third expression is also absolute, and is also optional. If it is present,
4626 it is the maximum number of bytes that should be skipped by this alignment
4627 directive. If doing the alignment would require skipping more bytes than the
4628 specified maximum, then the alignment is not done at all. You can omit the
4629 fill value (the second argument) entirely by simply using two commas after the
4630 required alignment; this can be useful if you want the alignment to be filled
4631 with no-op instructions when appropriate.
4632
4633 The way the required alignment is specified varies from system to system.
4634 For the arc, hppa, i386 using ELF, iq2000, m68k, or1k,
4635 s390, sparc, tic4x and xtensa, the first expression is the
4636 alignment request in bytes. For example @samp{.align 8} advances
4637 the location counter until it is a multiple of 8. If the location counter
4638 is already a multiple of 8, no change is needed. For the tic54x, the
4639 first expression is the alignment request in words.
4640
4641 For other systems, including ppc, i386 using a.out format, arm and
4642 strongarm, it is the
4643 number of low-order zero bits the location counter must have after
4644 advancement. For example @samp{.align 3} advances the location
4645 counter until it is a multiple of 8. If the location counter is already a
4646 multiple of 8, no change is needed.
4647
4648 This inconsistency is due to the different behaviors of the various
4649 native assemblers for these systems which GAS must emulate.
4650 GAS also provides @code{.balign} and @code{.p2align} directives,
4651 described later, which have a consistent behavior across all
4652 architectures (but are specific to GAS).
4653
4654 @node Altmacro
4655 @section @code{.altmacro}
4656 Enable alternate macro mode, enabling:
4657
4658 @ftable @code
4659 @item LOCAL @var{name} [ , @dots{} ]
4660 One additional directive, @code{LOCAL}, is available. It is used to
4661 generate a string replacement for each of the @var{name} arguments, and
4662 replace any instances of @var{name} in each macro expansion. The
4663 replacement string is unique in the assembly, and different for each
4664 separate macro expansion. @code{LOCAL} allows you to write macros that
4665 define symbols, without fear of conflict between separate macro expansions.
4666
4667 @item String delimiters
4668 You can write strings delimited in these other ways besides
4669 @code{"@var{string}"}:
4670
4671 @table @code
4672 @item '@var{string}'
4673 You can delimit strings with single-quote characters.
4674
4675 @item <@var{string}>
4676 You can delimit strings with matching angle brackets.
4677 @end table
4678
4679 @item single-character string escape
4680 To include any single character literally in a string (even if the
4681 character would otherwise have some special meaning), you can prefix the
4682 character with @samp{!} (an exclamation mark). For example, you can
4683 write @samp{<4.3 !> 5.4!!>} to get the literal text @samp{4.3 > 5.4!}.
4684
4685 @item Expression results as strings
4686 You can write @samp{%@var{expr}} to evaluate the expression @var{expr}
4687 and use the result as a string.
4688 @end ftable
4689
4690 @node Ascii
4691 @section @code{.ascii "@var{string}"}@dots{}
4692
4693 @cindex @code{ascii} directive
4694 @cindex string literals
4695 @code{.ascii} expects zero or more string literals (@pxref{Strings})
4696 separated by commas. It assembles each string (with no automatic
4697 trailing zero byte) into consecutive addresses.
4698
4699 @node Asciz
4700 @section @code{.asciz "@var{string}"}@dots{}
4701
4702 @cindex @code{asciz} directive
4703 @cindex zero-terminated strings
4704 @cindex null-terminated strings
4705 @code{.asciz} is just like @code{.ascii}, but each string is followed by
4706 a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''.
4707
4708 @node Balign
4709 @section @code{.balign[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4710
4711 @cindex padding the location counter given number of bytes
4712 @cindex @code{balign} directive
4713 Pad the location counter (in the current subsection) to a particular
4714 storage boundary. The first expression (which must be absolute) is the
4715 alignment request in bytes. For example @samp{.balign 8} advances
4716 the location counter until it is a multiple of 8. If the location counter
4717 is already a multiple of 8, no change is needed. If the expression is omitted
4718 then a default value of 0 is used, effectively disabling alignment requirements.
4719
4720 The second expression (also absolute) gives the fill value to be stored in the
4721 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4722 padding bytes are normally zero. However, on most systems, if the section is
4723 marked as containing code and the fill value is omitted, the space is filled
4724 with no-op instructions.
4725
4726 The third expression is also absolute, and is also optional. If it is present,
4727 it is the maximum number of bytes that should be skipped by this alignment
4728 directive. If doing the alignment would require skipping more bytes than the
4729 specified maximum, then the alignment is not done at all. You can omit the
4730 fill value (the second argument) entirely by simply using two commas after the
4731 required alignment; this can be useful if you want the alignment to be filled
4732 with no-op instructions when appropriate.
4733
4734 @cindex @code{balignw} directive
4735 @cindex @code{balignl} directive
4736 The @code{.balignw} and @code{.balignl} directives are variants of the
4737 @code{.balign} directive. The @code{.balignw} directive treats the fill
4738 pattern as a two byte word value. The @code{.balignl} directives treats the
4739 fill pattern as a four byte longword value. For example, @code{.balignw
4740 4,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
4741 filled in with the value 0x368d (the exact placement of the bytes depends upon
4742 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
4743 undefined.
4744
4745 @node Bundle directives
4746 @section Bundle directives
4747 @subsection @code{.bundle_align_mode @var{abs-expr}}
4748 @cindex @code{bundle_align_mode} directive
4749 @cindex bundle
4750 @cindex instruction bundle
4751 @cindex aligned instruction bundle
4752 @code{.bundle_align_mode} enables or disables @dfn{aligned instruction
4753 bundle} mode. In this mode, sequences of adjacent instructions are grouped
4754 into fixed-sized @dfn{bundles}. If the argument is zero, this mode is
4755 disabled (which is the default state). If the argument it not zero, it
4756 gives the size of an instruction bundle as a power of two (as for the
4757 @code{.p2align} directive, @pxref{P2align}).
4758
4759 For some targets, it's an ABI requirement that no instruction may span a
4760 certain aligned boundary. A @dfn{bundle} is simply a sequence of
4761 instructions that starts on an aligned boundary. For example, if
4762 @var{abs-expr} is @code{5} then the bundle size is 32, so each aligned
4763 chunk of 32 bytes is a bundle. When aligned instruction bundle mode is in
4764 effect, no single instruction may span a boundary between bundles. If an
4765 instruction would start too close to the end of a bundle for the length of
4766 that particular instruction to fit within the bundle, then the space at the
4767 end of that bundle is filled with no-op instructions so the instruction
4768 starts in the next bundle. As a corollary, it's an error if any single
4769 instruction's encoding is longer than the bundle size.
4770
4771 @subsection @code{.bundle_lock} and @code{.bundle_unlock}
4772 @cindex @code{bundle_lock} directive
4773 @cindex @code{bundle_unlock} directive
4774 The @code{.bundle_lock} and directive @code{.bundle_unlock} directives
4775 allow explicit control over instruction bundle padding. These directives
4776 are only valid when @code{.bundle_align_mode} has been used to enable
4777 aligned instruction bundle mode. It's an error if they appear when
4778 @code{.bundle_align_mode} has not been used at all, or when the last
4779 directive was @w{@code{.bundle_align_mode 0}}.
4780
4781 @cindex bundle-locked
4782 For some targets, it's an ABI requirement that certain instructions may
4783 appear only as part of specified permissible sequences of multiple
4784 instructions, all within the same bundle. A pair of @code{.bundle_lock}
4785 and @code{.bundle_unlock} directives define a @dfn{bundle-locked}
4786 instruction sequence. For purposes of aligned instruction bundle mode, a
4787 sequence starting with @code{.bundle_lock} and ending with
4788 @code{.bundle_unlock} is treated as a single instruction. That is, the
4789 entire sequence must fit into a single bundle and may not span a bundle
4790 boundary. If necessary, no-op instructions will be inserted before the
4791 first instruction of the sequence so that the whole sequence starts on an
4792 aligned bundle boundary. It's an error if the sequence is longer than the
4793 bundle size.
4794
4795 For convenience when using @code{.bundle_lock} and @code{.bundle_unlock}
4796 inside assembler macros (@pxref{Macro}), bundle-locked sequences may be
4797 nested. That is, a second @code{.bundle_lock} directive before the next
4798 @code{.bundle_unlock} directive has no effect except that it must be
4799 matched by another closing @code{.bundle_unlock} so that there is the
4800 same number of @code{.bundle_lock} and @code{.bundle_unlock} directives.
4801
4802 @node Byte
4803 @section @code{.byte @var{expressions}}
4804
4805 @cindex @code{byte} directive
4806 @cindex integers, one byte
4807 @code{.byte} expects zero or more expressions, separated by commas.
4808 Each expression is assembled into the next byte.
4809
4810 @node CFI directives
4811 @section CFI directives
4812 @subsection @code{.cfi_sections @var{section_list}}
4813 @cindex @code{cfi_sections} directive
4814 @code{.cfi_sections} may be used to specify whether CFI directives
4815 should emit @code{.eh_frame} section and/or @code{.debug_frame} section.
4816 If @var{section_list} is @code{.eh_frame}, @code{.eh_frame} is emitted,
4817 if @var{section_list} is @code{.debug_frame}, @code{.debug_frame} is emitted.
4818 To emit both use @code{.eh_frame, .debug_frame}. The default if this
4819 directive is not used is @code{.cfi_sections .eh_frame}.
4820
4821 On targets that support compact unwinding tables these can be generated
4822 by specifying @code{.eh_frame_entry} instead of @code{.eh_frame}.
4823
4824 Some targets may support an additional name, such as @code{.c6xabi.exidx}
4825 which is used by the @value{TIC6X} target.
4826
4827 The @code{.cfi_sections} directive can be repeated, with the same or different
4828 arguments, provided that CFI generation has not yet started. Once CFI
4829 generation has started however the section list is fixed and any attempts to
4830 redefine it will result in an error.
4831
4832 @subsection @code{.cfi_startproc [simple]}
4833 @cindex @code{cfi_startproc} directive
4834 @code{.cfi_startproc} is used at the beginning of each function that
4835 should have an entry in @code{.eh_frame}. It initializes some internal
4836 data structures. Don't forget to close the function by
4837 @code{.cfi_endproc}.
4838
4839 Unless @code{.cfi_startproc} is used along with parameter @code{simple}
4840 it also emits some architecture dependent initial CFI instructions.
4841
4842 @subsection @code{.cfi_endproc}
4843 @cindex @code{cfi_endproc} directive
4844 @code{.cfi_endproc} is used at the end of a function where it closes its
4845 unwind entry previously opened by
4846 @code{.cfi_startproc}, and emits it to @code{.eh_frame}.
4847
4848 @subsection @code{.cfi_personality @var{encoding} [, @var{exp}]}
4849 @cindex @code{cfi_personality} directive
4850 @code{.cfi_personality} defines personality routine and its encoding.
4851 @var{encoding} must be a constant determining how the personality
4852 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), second
4853 argument is not present, otherwise second argument should be
4854 a constant or a symbol name. When using indirect encodings,
4855 the symbol provided should be the location where personality
4856 can be loaded from, not the personality routine itself.
4857 The default after @code{.cfi_startproc} is @code{.cfi_personality 0xff},
4858 no personality routine.
4859
4860 @subsection @code{.cfi_personality_id @var{id}}
4861 @cindex @code{cfi_personality_id} directive
4862 @code{cfi_personality_id} defines a personality routine by its index as
4863 defined in a compact unwinding format.
4864 Only valid when generating compact EH frames (i.e.
4865 with @code{.cfi_sections eh_frame_entry}.
4866
4867 @subsection @code{.cfi_fde_data [@var{opcode1} [, @dots{}]]}
4868 @cindex @code{cfi_fde_data} directive
4869 @code{cfi_fde_data} is used to describe the compact unwind opcodes to be
4870 used for the current function. These are emitted inline in the
4871 @code{.eh_frame_entry} section if small enough and there is no LSDA, or
4872 in the @code{.gnu.extab} section otherwise.
4873 Only valid when generating compact EH frames (i.e.
4874 with @code{.cfi_sections eh_frame_entry}.
4875
4876 @subsection @code{.cfi_lsda @var{encoding} [, @var{exp}]}
4877 @code{.cfi_lsda} defines LSDA and its encoding.
4878 @var{encoding} must be a constant determining how the LSDA
4879 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), the second
4880 argument is not present, otherwise the second argument should be a constant
4881 or a symbol name. The default after @code{.cfi_startproc} is @code{.cfi_lsda 0xff},
4882 meaning that no LSDA is present.
4883
4884 @subsection @code{.cfi_inline_lsda} [@var{align}]
4885 @code{.cfi_inline_lsda} marks the start of a LSDA data section and
4886 switches to the corresponding @code{.gnu.extab} section.
4887 Must be preceded by a CFI block containing a @code{.cfi_lsda} directive.
4888 Only valid when generating compact EH frames (i.e.
4889 with @code{.cfi_sections eh_frame_entry}.
4890
4891 The table header and unwinding opcodes will be generated at this point,
4892 so that they are immediately followed by the LSDA data. The symbol
4893 referenced by the @code{.cfi_lsda} directive should still be defined
4894 in case a fallback FDE based encoding is used. The LSDA data is terminated
4895 by a section directive.
4896
4897 The optional @var{align} argument specifies the alignment required.
4898 The alignment is specified as a power of two, as with the
4899 @code{.p2align} directive.
4900
4901 @subsection @code{.cfi_def_cfa @var{register}, @var{offset}}
4902 @code{.cfi_def_cfa} defines a rule for computing CFA as: @i{take
4903 address from @var{register} and add @var{offset} to it}.
4904
4905 @subsection @code{.cfi_def_cfa_register @var{register}}
4906 @code{.cfi_def_cfa_register} modifies a rule for computing CFA. From
4907 now on @var{register} will be used instead of the old one. Offset
4908 remains the same.
4909
4910 @subsection @code{.cfi_def_cfa_offset @var{offset}}
4911 @code{.cfi_def_cfa_offset} modifies a rule for computing CFA. Register
4912 remains the same, but @var{offset} is new. Note that it is the
4913 absolute offset that will be added to a defined register to compute
4914 CFA address.
4915
4916 @subsection @code{.cfi_adjust_cfa_offset @var{offset}}
4917 Same as @code{.cfi_def_cfa_offset} but @var{offset} is a relative
4918 value that is added/subtracted from the previous offset.
4919
4920 @subsection @code{.cfi_offset @var{register}, @var{offset}}
4921 Previous value of @var{register} is saved at offset @var{offset} from
4922 CFA.
4923
4924 @subsection @code{.cfi_val_offset @var{register}, @var{offset}}
4925 Previous value of @var{register} is CFA + @var{offset}.
4926
4927 @subsection @code{.cfi_rel_offset @var{register}, @var{offset}}
4928 Previous value of @var{register} is saved at offset @var{offset} from
4929 the current CFA register. This is transformed to @code{.cfi_offset}
4930 using the known displacement of the CFA register from the CFA.
4931 This is often easier to use, because the number will match the
4932 code it's annotating.
4933
4934 @subsection @code{.cfi_register @var{register1}, @var{register2}}
4935 Previous value of @var{register1} is saved in register @var{register2}.
4936
4937 @subsection @code{.cfi_restore @var{register}}
4938 @code{.cfi_restore} says that the rule for @var{register} is now the
4939 same as it was at the beginning of the function, after all initial
4940 instruction added by @code{.cfi_startproc} were executed.
4941
4942 @subsection @code{.cfi_undefined @var{register}}
4943 From now on the previous value of @var{register} can't be restored anymore.
4944
4945 @subsection @code{.cfi_same_value @var{register}}
4946 Current value of @var{register} is the same like in the previous frame,
4947 i.e. no restoration needed.
4948
4949 @subsection @code{.cfi_remember_state} and @code{.cfi_restore_state}
4950 @code{.cfi_remember_state} pushes the set of rules for every register onto an
4951 implicit stack, while @code{.cfi_restore_state} pops them off the stack and
4952 places them in the current row. This is useful for situations where you have
4953 multiple @code{.cfi_*} directives that need to be undone due to the control
4954 flow of the program. For example, we could have something like this (assuming
4955 the CFA is the value of @code{rbp}):
4956
4957 @smallexample
4958 je label
4959 popq %rbx
4960 .cfi_restore %rbx
4961 popq %r12
4962 .cfi_restore %r12
4963 popq %rbp
4964 .cfi_restore %rbp
4965 .cfi_def_cfa %rsp, 8
4966 ret
4967 label:
4968 /* Do something else */
4969 @end smallexample
4970
4971 Here, we want the @code{.cfi} directives to affect only the rows corresponding
4972 to the instructions before @code{label}. This means we'd have to add multiple
4973 @code{.cfi} directives after @code{label} to recreate the original save
4974 locations of the registers, as well as setting the CFA back to the value of
4975 @code{rbp}. This would be clumsy, and result in a larger binary size. Instead,
4976 we can write:
4977
4978 @smallexample
4979 je label
4980 popq %rbx
4981 .cfi_remember_state
4982 .cfi_restore %rbx
4983 popq %r12
4984 .cfi_restore %r12
4985 popq %rbp
4986 .cfi_restore %rbp
4987 .cfi_def_cfa %rsp, 8
4988 ret
4989 label:
4990 .cfi_restore_state
4991 /* Do something else */
4992 @end smallexample
4993
4994 That way, the rules for the instructions after @code{label} will be the same
4995 as before the first @code{.cfi_restore} without having to use multiple
4996 @code{.cfi} directives.
4997
4998 @subsection @code{.cfi_return_column @var{register}}
4999 Change return column @var{register}, i.e. the return address is either
5000 directly in @var{register} or can be accessed by rules for @var{register}.
5001
5002 @subsection @code{.cfi_signal_frame}
5003 Mark current function as signal trampoline.
5004
5005 @subsection @code{.cfi_window_save}
5006 SPARC register window has been saved.
5007
5008 @subsection @code{.cfi_escape} @var{expression}[, @dots{}]
5009 Allows the user to add arbitrary bytes to the unwind info. One
5010 might use this to add OS-specific CFI opcodes, or generic CFI
5011 opcodes that GAS does not yet support.
5012
5013 @subsection @code{.cfi_val_encoded_addr @var{register}, @var{encoding}, @var{label}}
5014 The current value of @var{register} is @var{label}. The value of @var{label}
5015 will be encoded in the output file according to @var{encoding}; see the
5016 description of @code{.cfi_personality} for details on this encoding.
5017
5018 The usefulness of equating a register to a fixed label is probably
5019 limited to the return address register. Here, it can be useful to
5020 mark a code segment that has only one return address which is reached
5021 by a direct branch and no copy of the return address exists in memory
5022 or another register.
5023
5024 @node Comm
5025 @section @code{.comm @var{symbol} , @var{length} }
5026
5027 @cindex @code{comm} directive
5028 @cindex symbol, common
5029 @code{.comm} declares a common symbol named @var{symbol}. When linking, a
5030 common symbol in one object file may be merged with a defined or common symbol
5031 of the same name in another object file. If @code{@value{LD}} does not see a
5032 definition for the symbol--just one or more common symbols--then it will
5033 allocate @var{length} bytes of uninitialized memory. @var{length} must be an
5034 absolute expression. If @code{@value{LD}} sees multiple common symbols with
5035 the same name, and they do not all have the same size, it will allocate space
5036 using the largest size.
5037
5038 @ifset COFF-ELF
5039 When using ELF or (as a GNU extension) PE, the @code{.comm} directive takes
5040 an optional third argument. This is the desired alignment of the symbol,
5041 specified for ELF as a byte boundary (for example, an alignment of 16 means
5042 that the least significant 4 bits of the address should be zero), and for PE
5043 as a power of two (for example, an alignment of 5 means aligned to a 32-byte
5044 boundary). The alignment must be an absolute expression, and it must be a
5045 power of two. If @code{@value{LD}} allocates uninitialized memory for the
5046 common symbol, it will use the alignment when placing the symbol. If no
5047 alignment is specified, @command{@value{AS}} will set the alignment to the
5048 largest power of two less than or equal to the size of the symbol, up to a
5049 maximum of 16 on ELF, or the default section alignment of 4 on PE@footnote{This
5050 is not the same as the executable image file alignment controlled by @code{@value{LD}}'s
5051 @samp{--section-alignment} option; image file sections in PE are aligned to
5052 multiples of 4096, which is far too large an alignment for ordinary variables.
5053 It is rather the default alignment for (non-debug) sections within object
5054 (@samp{*.o}) files, which are less strictly aligned.}.
5055 @end ifset
5056
5057 @ifset HPPA
5058 The syntax for @code{.comm} differs slightly on the HPPA. The syntax is
5059 @samp{@var{symbol} .comm, @var{length}}; @var{symbol} is optional.
5060 @end ifset
5061
5062 @node Data
5063 @section @code{.data @var{subsection}}
5064 @cindex @code{data} directive
5065
5066 @code{.data} tells @command{@value{AS}} to assemble the following statements onto the
5067 end of the data subsection numbered @var{subsection} (which is an
5068 absolute expression). If @var{subsection} is omitted, it defaults
5069 to zero.
5070
5071 @node Dc
5072 @section @code{.dc[@var{size}] @var{expressions}}
5073 @cindex @code{dc} directive
5074
5075 The @code{.dc} directive expects zero or more @var{expressions} separated by
5076 commas. These expressions are evaluated and their values inserted into the
5077 current section. The size of the emitted value depends upon the suffix to the
5078 @code{.dc} directive:
5079
5080 @table @code
5081 @item @samp{.a}
5082 Emits N-bit values, where N is the size of an address on the target system.
5083 @item @samp{.b}
5084 Emits 8-bit values.
5085 @item @samp{.d}
5086 Emits double precision floating-point values.
5087 @item @samp{.l}
5088 Emits 32-bit values.
5089 @item @samp{.s}
5090 Emits single precision floating-point values.
5091 @item @samp{.w}
5092 Emits 16-bit values.
5093 Note - this is true even on targets where the @code{.word} directive would emit
5094 32-bit values.
5095 @item @samp{.x}
5096 Emits long double precision floating-point values.
5097 @end table
5098
5099 If no suffix is used then @samp{.w} is assumed.
5100
5101 The byte ordering is target dependent, as is the size and format of floating
5102 point values.
5103
5104 @node Dcb
5105 @section @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
5106 @cindex @code{dcb} directive
5107 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5108 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5109 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5110 @var{size} suffix, if present, must be one of:
5111
5112 @table @code
5113 @item @samp{.b}
5114 Emits single byte values.
5115 @item @samp{.d}
5116 Emits double-precision floating point values.
5117 @item @samp{.l}
5118 Emits 4-byte values.
5119 @item @samp{.s}
5120 Emits single-precision floating point values.
5121 @item @samp{.w}
5122 Emits 2-byte values.
5123 @item @samp{.x}
5124 Emits long double-precision floating point values.
5125 @end table
5126
5127 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5128
5129 The byte ordering is target dependent, as is the size and format of floating
5130 point values.
5131
5132 @node Ds
5133 @section @code{.ds[@var{size}] @var{number} [,@var{fill}]}
5134 @cindex @code{ds} directive
5135 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5136 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5137 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5138 @var{size} suffix, if present, must be one of:
5139
5140 @table @code
5141 @item @samp{.b}
5142 Emits single byte values.
5143 @item @samp{.d}
5144 Emits 8-byte values.
5145 @item @samp{.l}
5146 Emits 4-byte values.
5147 @item @samp{.p}
5148 Emits 12-byte values.
5149 @item @samp{.s}
5150 Emits 4-byte values.
5151 @item @samp{.w}
5152 Emits 2-byte values.
5153 @item @samp{.x}
5154 Emits 12-byte values.
5155 @end table
5156
5157 Note - unlike the @code{.dcb} directive the @samp{.d}, @samp{.s} and @samp{.x}
5158 suffixes do not indicate that floating-point values are to be inserted.
5159
5160 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5161
5162 The byte ordering is target dependent.
5163
5164
5165 @ifset COFF
5166 @node Def
5167 @section @code{.def @var{name}}
5168
5169 @cindex @code{def} directive
5170 @cindex COFF symbols, debugging
5171 @cindex debugging COFF symbols
5172 Begin defining debugging information for a symbol @var{name}; the
5173 definition extends until the @code{.endef} directive is encountered.
5174 @end ifset
5175
5176 @ifset aout
5177 @node Desc
5178 @section @code{.desc @var{symbol}, @var{abs-expression}}
5179
5180 @cindex @code{desc} directive
5181 @cindex COFF symbol descriptor
5182 @cindex symbol descriptor, COFF
5183 This directive sets the descriptor of the symbol (@pxref{Symbol Attributes})
5184 to the low 16 bits of an absolute expression.
5185
5186 @ifset COFF
5187 The @samp{.desc} directive is not available when @command{@value{AS}} is
5188 configured for COFF output; it is only for @code{a.out} or @code{b.out}
5189 object format. For the sake of compatibility, @command{@value{AS}} accepts
5190 it, but produces no output, when configured for COFF.
5191 @end ifset
5192 @end ifset
5193
5194 @ifset COFF
5195 @node Dim
5196 @section @code{.dim}
5197
5198 @cindex @code{dim} directive
5199 @cindex COFF auxiliary symbol information
5200 @cindex auxiliary symbol information, COFF
5201 This directive is generated by compilers to include auxiliary debugging
5202 information in the symbol table. It is only permitted inside
5203 @code{.def}/@code{.endef} pairs.
5204 @end ifset
5205
5206 @node Double
5207 @section @code{.double @var{flonums}}
5208
5209 @cindex @code{double} directive
5210 @cindex floating point numbers (double)
5211 @code{.double} expects zero or more flonums, separated by commas. It
5212 assembles floating point numbers.
5213 @ifset GENERIC
5214 The exact kind of floating point numbers emitted depends on how
5215 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
5216 @end ifset
5217 @ifclear GENERIC
5218 @ifset IEEEFLOAT
5219 On the @value{TARGET} family @samp{.double} emits 64-bit floating-point numbers
5220 in @sc{ieee} format.
5221 @end ifset
5222 @end ifclear
5223
5224 @node Eject
5225 @section @code{.eject}
5226
5227 @cindex @code{eject} directive
5228 @cindex new page, in listings
5229 @cindex page, in listings
5230 @cindex listing control: new page
5231 Force a page break at this point, when generating assembly listings.
5232
5233 @node Else
5234 @section @code{.else}
5235
5236 @cindex @code{else} directive
5237 @code{.else} is part of the @command{@value{AS}} support for conditional
5238 assembly; see @ref{If,,@code{.if}}. It marks the beginning of a section
5239 of code to be assembled if the condition for the preceding @code{.if}
5240 was false.
5241
5242 @node Elseif
5243 @section @code{.elseif}
5244
5245 @cindex @code{elseif} directive
5246 @code{.elseif} is part of the @command{@value{AS}} support for conditional
5247 assembly; see @ref{If,,@code{.if}}. It is shorthand for beginning a new
5248 @code{.if} block that would otherwise fill the entire @code{.else} section.
5249
5250 @node End
5251 @section @code{.end}
5252
5253 @cindex @code{end} directive
5254 @code{.end} marks the end of the assembly file. @command{@value{AS}} does not
5255 process anything in the file past the @code{.end} directive.
5256
5257 @ifset COFF
5258 @node Endef
5259 @section @code{.endef}
5260
5261 @cindex @code{endef} directive
5262 This directive flags the end of a symbol definition begun with
5263 @code{.def}.
5264 @end ifset
5265
5266 @node Endfunc
5267 @section @code{.endfunc}
5268 @cindex @code{endfunc} directive
5269 @code{.endfunc} marks the end of a function specified with @code{.func}.
5270
5271 @node Endif
5272 @section @code{.endif}
5273
5274 @cindex @code{endif} directive
5275 @code{.endif} is part of the @command{@value{AS}} support for conditional assembly;
5276 it marks the end of a block of code that is only assembled
5277 conditionally. @xref{If,,@code{.if}}.
5278
5279 @node Equ
5280 @section @code{.equ @var{symbol}, @var{expression}}
5281
5282 @cindex @code{equ} directive
5283 @cindex assigning values to symbols
5284 @cindex symbols, assigning values to
5285 This directive sets the value of @var{symbol} to @var{expression}.
5286 It is synonymous with @samp{.set}; see @ref{Set,,@code{.set}}.
5287
5288 @ifset HPPA
5289 The syntax for @code{equ} on the HPPA is
5290 @samp{@var{symbol} .equ @var{expression}}.
5291 @end ifset
5292
5293 @ifset Z80
5294 The syntax for @code{equ} on the Z80 is
5295 @samp{@var{symbol} equ @var{expression}}.
5296 On the Z80 it is an error if @var{symbol} is already defined,
5297 but the symbol is not protected from later redefinition.
5298 Compare @ref{Equiv}.
5299 @end ifset
5300
5301 @node Equiv
5302 @section @code{.equiv @var{symbol}, @var{expression}}
5303 @cindex @code{equiv} directive
5304 The @code{.equiv} directive is like @code{.equ} and @code{.set}, except that
5305 the assembler will signal an error if @var{symbol} is already defined. Note a
5306 symbol which has been referenced but not actually defined is considered to be
5307 undefined.
5308
5309 Except for the contents of the error message, this is roughly equivalent to
5310 @smallexample
5311 .ifdef SYM
5312 .err
5313 .endif
5314 .equ SYM,VAL
5315 @end smallexample
5316 plus it protects the symbol from later redefinition.
5317
5318 @node Eqv
5319 @section @code{.eqv @var{symbol}, @var{expression}}
5320 @cindex @code{eqv} directive
5321 The @code{.eqv} directive is like @code{.equiv}, but no attempt is made to
5322 evaluate the expression or any part of it immediately. Instead each time
5323 the resulting symbol is used in an expression, a snapshot of its current
5324 value is taken.
5325
5326 @node Err
5327 @section @code{.err}
5328 @cindex @code{err} directive
5329 If @command{@value{AS}} assembles a @code{.err} directive, it will print an error
5330 message and, unless the @option{-Z} option was used, it will not generate an
5331 object file. This can be used to signal an error in conditionally compiled code.
5332
5333 @node Error
5334 @section @code{.error "@var{string}"}
5335 @cindex error directive
5336
5337 Similarly to @code{.err}, this directive emits an error, but you can specify a
5338 string that will be emitted as the error message. If you don't specify the
5339 message, it defaults to @code{".error directive invoked in source file"}.
5340 @xref{Errors, ,Error and Warning Messages}.
5341
5342 @smallexample
5343 .error "This code has not been assembled and tested."
5344 @end smallexample
5345
5346 @node Exitm
5347 @section @code{.exitm}
5348 Exit early from the current macro definition. @xref{Macro}.
5349
5350 @node Extern
5351 @section @code{.extern}
5352
5353 @cindex @code{extern} directive
5354 @code{.extern} is accepted in the source program---for compatibility
5355 with other assemblers---but it is ignored. @command{@value{AS}} treats
5356 all undefined symbols as external.
5357
5358 @node Fail
5359 @section @code{.fail @var{expression}}
5360
5361 @cindex @code{fail} directive
5362 Generates an error or a warning. If the value of the @var{expression} is 500
5363 or more, @command{@value{AS}} will print a warning message. If the value is less
5364 than 500, @command{@value{AS}} will print an error message. The message will
5365 include the value of @var{expression}. This can occasionally be useful inside
5366 complex nested macros or conditional assembly.
5367
5368 @node File
5369 @section @code{.file}
5370 @cindex @code{file} directive
5371
5372 @ifclear no-file-dir
5373 There are two different versions of the @code{.file} directive. Targets
5374 that support DWARF2 line number information use the DWARF2 version of
5375 @code{.file}. Other targets use the default version.
5376
5377 @subheading Default Version
5378
5379 @cindex logical file name
5380 @cindex file name, logical
5381 This version of the @code{.file} directive tells @command{@value{AS}} that we
5382 are about to start a new logical file. The syntax is:
5383
5384 @smallexample
5385 .file @var{string}
5386 @end smallexample
5387
5388 @var{string} is the new file name. In general, the filename is
5389 recognized whether or not it is surrounded by quotes @samp{"}; but if you wish
5390 to specify an empty file name, you must give the quotes--@code{""}. This
5391 statement may go away in future: it is only recognized to be compatible with
5392 old @command{@value{AS}} programs.
5393
5394 @subheading DWARF2 Version
5395 @end ifclear
5396
5397 When emitting DWARF2 line number information, @code{.file} assigns filenames
5398 to the @code{.debug_line} file name table. The syntax is:
5399
5400 @smallexample
5401 .file @var{fileno} @var{filename}
5402 @end smallexample
5403
5404 The @var{fileno} operand should be a unique positive integer to use as the
5405 index of the entry in the table. The @var{filename} operand is a C string
5406 literal.
5407
5408 The detail of filename indices is exposed to the user because the filename
5409 table is shared with the @code{.debug_info} section of the DWARF2 debugging
5410 information, and thus the user must know the exact indices that table
5411 entries will have.
5412
5413 @node Fill
5414 @section @code{.fill @var{repeat} , @var{size} , @var{value}}
5415
5416 @cindex @code{fill} directive
5417 @cindex writing patterns in memory
5418 @cindex patterns, writing in memory
5419 @var{repeat}, @var{size} and @var{value} are absolute expressions.
5420 This emits @var{repeat} copies of @var{size} bytes. @var{Repeat}
5421 may be zero or more. @var{Size} may be zero or more, but if it is
5422 more than 8, then it is deemed to have the value 8, compatible with
5423 other people's assemblers. The contents of each @var{repeat} bytes
5424 is taken from an 8-byte number. The highest order 4 bytes are
5425 zero. The lowest order 4 bytes are @var{value} rendered in the
5426 byte-order of an integer on the computer @command{@value{AS}} is assembling for.
5427 Each @var{size} bytes in a repetition is taken from the lowest order
5428 @var{size} bytes of this number. Again, this bizarre behavior is
5429 compatible with other people's assemblers.
5430
5431 @var{size} and @var{value} are optional.
5432 If the second comma and @var{value} are absent, @var{value} is
5433 assumed zero. If the first comma and following tokens are absent,
5434 @var{size} is assumed to be 1.
5435
5436 @node Float
5437 @section @code{.float @var{flonums}}
5438
5439 @cindex floating point numbers (single)
5440 @cindex @code{float} directive
5441 This directive assembles zero or more flonums, separated by commas. It
5442 has the same effect as @code{.single}.
5443 @ifset GENERIC
5444 The exact kind of floating point numbers emitted depends on how
5445 @command{@value{AS}} is configured.
5446 @xref{Machine Dependencies}.
5447 @end ifset
5448 @ifclear GENERIC
5449 @ifset IEEEFLOAT
5450 On the @value{TARGET} family, @code{.float} emits 32-bit floating point numbers
5451 in @sc{ieee} format.
5452 @end ifset
5453 @end ifclear
5454
5455 @node Func
5456 @section @code{.func @var{name}[,@var{label}]}
5457 @cindex @code{func} directive
5458 @code{.func} emits debugging information to denote function @var{name}, and
5459 is ignored unless the file is assembled with debugging enabled.
5460 Only @samp{--gstabs[+]} is currently supported.
5461 @var{label} is the entry point of the function and if omitted @var{name}
5462 prepended with the @samp{leading char} is used.
5463 @samp{leading char} is usually @code{_} or nothing, depending on the target.
5464 All functions are currently defined to have @code{void} return type.
5465 The function must be terminated with @code{.endfunc}.
5466
5467 @node Global
5468 @section @code{.global @var{symbol}}, @code{.globl @var{symbol}}
5469
5470 @cindex @code{global} directive
5471 @cindex symbol, making visible to linker
5472 @code{.global} makes the symbol visible to @code{@value{LD}}. If you define
5473 @var{symbol} in your partial program, its value is made available to
5474 other partial programs that are linked with it. Otherwise,
5475 @var{symbol} takes its attributes from a symbol of the same name
5476 from another file linked into the same program.
5477
5478 Both spellings (@samp{.globl} and @samp{.global}) are accepted, for
5479 compatibility with other assemblers.
5480
5481 @ifset HPPA
5482 On the HPPA, @code{.global} is not always enough to make it accessible to other
5483 partial programs. You may need the HPPA-only @code{.EXPORT} directive as well.
5484 @xref{HPPA Directives, ,HPPA Assembler Directives}.
5485 @end ifset
5486
5487 @ifset ELF
5488 @node Gnu_attribute
5489 @section @code{.gnu_attribute @var{tag},@var{value}}
5490 Record a @sc{gnu} object attribute for this file. @xref{Object Attributes}.
5491
5492 @node Hidden
5493 @section @code{.hidden @var{names}}
5494
5495 @cindex @code{hidden} directive
5496 @cindex visibility
5497 This is one of the ELF visibility directives. The other two are
5498 @code{.internal} (@pxref{Internal,,@code{.internal}}) and
5499 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5500
5501 This directive overrides the named symbols default visibility (which is set by
5502 their binding: local, global or weak). The directive sets the visibility to
5503 @code{hidden} which means that the symbols are not visible to other components.
5504 Such symbols are always considered to be @code{protected} as well.
5505 @end ifset
5506
5507 @node hword
5508 @section @code{.hword @var{expressions}}
5509
5510 @cindex @code{hword} directive
5511 @cindex integers, 16-bit
5512 @cindex numbers, 16-bit
5513 @cindex sixteen bit integers
5514 This expects zero or more @var{expressions}, and emits
5515 a 16 bit number for each.
5516
5517 @ifset GENERIC
5518 This directive is a synonym for @samp{.short}; depending on the target
5519 architecture, it may also be a synonym for @samp{.word}.
5520 @end ifset
5521 @ifclear GENERIC
5522 @ifset W32
5523 This directive is a synonym for @samp{.short}.
5524 @end ifset
5525 @ifset W16
5526 This directive is a synonym for both @samp{.short} and @samp{.word}.
5527 @end ifset
5528 @end ifclear
5529
5530 @node Ident
5531 @section @code{.ident}
5532
5533 @cindex @code{ident} directive
5534
5535 This directive is used by some assemblers to place tags in object files. The
5536 behavior of this directive varies depending on the target. When using the
5537 a.out object file format, @command{@value{AS}} simply accepts the directive for
5538 source-file compatibility with existing assemblers, but does not emit anything
5539 for it. When using COFF, comments are emitted to the @code{.comment} or
5540 @code{.rdata} section, depending on the target. When using ELF, comments are
5541 emitted to the @code{.comment} section.
5542
5543 @node If
5544 @section @code{.if @var{absolute expression}}
5545
5546 @cindex conditional assembly
5547 @cindex @code{if} directive
5548 @code{.if} marks the beginning of a section of code which is only
5549 considered part of the source program being assembled if the argument
5550 (which must be an @var{absolute expression}) is non-zero. The end of
5551 the conditional section of code must be marked by @code{.endif}
5552 (@pxref{Endif,,@code{.endif}}); optionally, you may include code for the
5553 alternative condition, flagged by @code{.else} (@pxref{Else,,@code{.else}}).
5554 If you have several conditions to check, @code{.elseif} may be used to avoid
5555 nesting blocks if/else within each subsequent @code{.else} block.
5556
5557 The following variants of @code{.if} are also supported:
5558 @table @code
5559 @cindex @code{ifdef} directive
5560 @item .ifdef @var{symbol}
5561 Assembles the following section of code if the specified @var{symbol}
5562 has been defined. Note a symbol which has been referenced but not yet defined
5563 is considered to be undefined.
5564
5565 @cindex @code{ifb} directive
5566 @item .ifb @var{text}
5567 Assembles the following section of code if the operand is blank (empty).
5568
5569 @cindex @code{ifc} directive
5570 @item .ifc @var{string1},@var{string2}
5571 Assembles the following section of code if the two strings are the same. The
5572 strings may be optionally quoted with single quotes. If they are not quoted,
5573 the first string stops at the first comma, and the second string stops at the
5574 end of the line. Strings which contain whitespace should be quoted. The
5575 string comparison is case sensitive.
5576
5577 @cindex @code{ifeq} directive
5578 @item .ifeq @var{absolute expression}
5579 Assembles the following section of code if the argument is zero.
5580
5581 @cindex @code{ifeqs} directive
5582 @item .ifeqs @var{string1},@var{string2}
5583 Another form of @code{.ifc}. The strings must be quoted using double quotes.
5584
5585 @cindex @code{ifge} directive
5586 @item .ifge @var{absolute expression}
5587 Assembles the following section of code if the argument is greater than or
5588 equal to zero.
5589
5590 @cindex @code{ifgt} directive
5591 @item .ifgt @var{absolute expression}
5592 Assembles the following section of code if the argument is greater than zero.
5593
5594 @cindex @code{ifle} directive
5595 @item .ifle @var{absolute expression}
5596 Assembles the following section of code if the argument is less than or equal
5597 to zero.
5598
5599 @cindex @code{iflt} directive
5600 @item .iflt @var{absolute expression}
5601 Assembles the following section of code if the argument is less than zero.
5602
5603 @cindex @code{ifnb} directive
5604 @item .ifnb @var{text}
5605 Like @code{.ifb}, but the sense of the test is reversed: this assembles the
5606 following section of code if the operand is non-blank (non-empty).
5607
5608 @cindex @code{ifnc} directive
5609 @item .ifnc @var{string1},@var{string2}.
5610 Like @code{.ifc}, but the sense of the test is reversed: this assembles the
5611 following section of code if the two strings are not the same.
5612
5613 @cindex @code{ifndef} directive
5614 @cindex @code{ifnotdef} directive
5615 @item .ifndef @var{symbol}
5616 @itemx .ifnotdef @var{symbol}
5617 Assembles the following section of code if the specified @var{symbol}
5618 has not been defined. Both spelling variants are equivalent. Note a symbol
5619 which has been referenced but not yet defined is considered to be undefined.
5620
5621 @cindex @code{ifne} directive
5622 @item .ifne @var{absolute expression}
5623 Assembles the following section of code if the argument is not equal to zero
5624 (in other words, this is equivalent to @code{.if}).
5625
5626 @cindex @code{ifnes} directive
5627 @item .ifnes @var{string1},@var{string2}
5628 Like @code{.ifeqs}, but the sense of the test is reversed: this assembles the
5629 following section of code if the two strings are not the same.
5630 @end table
5631
5632 @node Incbin
5633 @section @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
5634
5635 @cindex @code{incbin} directive
5636 @cindex binary files, including
5637 The @code{incbin} directive includes @var{file} verbatim at the current
5638 location. You can control the search paths used with the @samp{-I} command-line
5639 option (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5640 around @var{file}.
5641
5642 The @var{skip} argument skips a number of bytes from the start of the
5643 @var{file}. The @var{count} argument indicates the maximum number of bytes to
5644 read. Note that the data is not aligned in any way, so it is the user's
5645 responsibility to make sure that proper alignment is provided both before and
5646 after the @code{incbin} directive.
5647
5648 @node Include
5649 @section @code{.include "@var{file}"}
5650
5651 @cindex @code{include} directive
5652 @cindex supporting files, including
5653 @cindex files, including
5654 This directive provides a way to include supporting files at specified
5655 points in your source program. The code from @var{file} is assembled as
5656 if it followed the point of the @code{.include}; when the end of the
5657 included file is reached, assembly of the original file continues. You
5658 can control the search paths used with the @samp{-I} command-line option
5659 (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5660 around @var{file}.
5661
5662 @node Int
5663 @section @code{.int @var{expressions}}
5664
5665 @cindex @code{int} directive
5666 @cindex integers, 32-bit
5667 Expect zero or more @var{expressions}, of any section, separated by commas.
5668 For each expression, emit a number that, at run time, is the value of that
5669 expression. The byte order and bit size of the number depends on what kind
5670 of target the assembly is for.
5671
5672 @ifclear GENERIC
5673 @ifset H8
5674 On most forms of the H8/300, @code{.int} emits 16-bit
5675 integers. On the H8/300H and the Renesas SH, however, @code{.int} emits
5676 32-bit integers.
5677 @end ifset
5678 @end ifclear
5679
5680 @ifset ELF
5681 @node Internal
5682 @section @code{.internal @var{names}}
5683
5684 @cindex @code{internal} directive
5685 @cindex visibility
5686 This is one of the ELF visibility directives. The other two are
5687 @code{.hidden} (@pxref{Hidden,,@code{.hidden}}) and
5688 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5689
5690 This directive overrides the named symbols default visibility (which is set by
5691 their binding: local, global or weak). The directive sets the visibility to
5692 @code{internal} which means that the symbols are considered to be @code{hidden}
5693 (i.e., not visible to other components), and that some extra, processor specific
5694 processing must also be performed upon the symbols as well.
5695 @end ifset
5696
5697 @node Irp
5698 @section @code{.irp @var{symbol},@var{values}}@dots{}
5699
5700 @cindex @code{irp} directive
5701 Evaluate a sequence of statements assigning different values to @var{symbol}.
5702 The sequence of statements starts at the @code{.irp} directive, and is
5703 terminated by an @code{.endr} directive. For each @var{value}, @var{symbol} is
5704 set to @var{value}, and the sequence of statements is assembled. If no
5705 @var{value} is listed, the sequence of statements is assembled once, with
5706 @var{symbol} set to the null string. To refer to @var{symbol} within the
5707 sequence of statements, use @var{\symbol}.
5708
5709 For example, assembling
5710
5711 @example
5712 .irp param,1,2,3
5713 move d\param,sp@@-
5714 .endr
5715 @end example
5716
5717 is equivalent to assembling
5718
5719 @example
5720 move d1,sp@@-
5721 move d2,sp@@-
5722 move d3,sp@@-
5723 @end example
5724
5725 For some caveats with the spelling of @var{symbol}, see also @ref{Macro}.
5726
5727 @node Irpc
5728 @section @code{.irpc @var{symbol},@var{values}}@dots{}
5729
5730 @cindex @code{irpc} directive
5731 Evaluate a sequence of statements assigning different values to @var{symbol}.
5732 The sequence of statements starts at the @code{.irpc} directive, and is
5733 terminated by an @code{.endr} directive. For each character in @var{value},
5734 @var{symbol} is set to the character, and the sequence of statements is
5735 assembled. If no @var{value} is listed, the sequence of statements is
5736 assembled once, with @var{symbol} set to the null string. To refer to
5737 @var{symbol} within the sequence of statements, use @var{\symbol}.
5738
5739 For example, assembling
5740
5741 @example
5742 .irpc param,123
5743 move d\param,sp@@-
5744 .endr
5745 @end example
5746
5747 is equivalent to assembling
5748
5749 @example
5750 move d1,sp@@-
5751 move d2,sp@@-
5752 move d3,sp@@-
5753 @end example
5754
5755 For some caveats with the spelling of @var{symbol}, see also the discussion
5756 at @xref{Macro}.
5757
5758 @node Lcomm
5759 @section @code{.lcomm @var{symbol} , @var{length}}
5760
5761 @cindex @code{lcomm} directive
5762 @cindex local common symbols
5763 @cindex symbols, local common
5764 Reserve @var{length} (an absolute expression) bytes for a local common
5765 denoted by @var{symbol}. The section and value of @var{symbol} are
5766 those of the new local common. The addresses are allocated in the bss
5767 section, so that at run-time the bytes start off zeroed. @var{Symbol}
5768 is not declared global (@pxref{Global,,@code{.global}}), so is normally
5769 not visible to @code{@value{LD}}.
5770
5771 @ifset GENERIC
5772 Some targets permit a third argument to be used with @code{.lcomm}. This
5773 argument specifies the desired alignment of the symbol in the bss section.
5774 @end ifset
5775
5776 @ifset HPPA
5777 The syntax for @code{.lcomm} differs slightly on the HPPA. The syntax is
5778 @samp{@var{symbol} .lcomm, @var{length}}; @var{symbol} is optional.
5779 @end ifset
5780
5781 @node Lflags
5782 @section @code{.lflags}
5783
5784 @cindex @code{lflags} directive (ignored)
5785 @command{@value{AS}} accepts this directive, for compatibility with other
5786 assemblers, but ignores it.
5787
5788 @ifclear no-line-dir
5789 @node Line
5790 @section @code{.line @var{line-number}}
5791
5792 @cindex @code{line} directive
5793 @cindex logical line number
5794 @ifset aout
5795 Change the logical line number. @var{line-number} must be an absolute
5796 expression. The next line has that logical line number. Therefore any other
5797 statements on the current line (after a statement separator character) are
5798 reported as on logical line number @var{line-number} @minus{} 1. One day
5799 @command{@value{AS}} will no longer support this directive: it is recognized only
5800 for compatibility with existing assembler programs.
5801 @end ifset
5802
5803 Even though this is a directive associated with the @code{a.out} or
5804 @code{b.out} object-code formats, @command{@value{AS}} still recognizes it
5805 when producing COFF output, and treats @samp{.line} as though it
5806 were the COFF @samp{.ln} @emph{if} it is found outside a
5807 @code{.def}/@code{.endef} pair.
5808
5809 Inside a @code{.def}, @samp{.line} is, instead, one of the directives
5810 used by compilers to generate auxiliary symbol information for
5811 debugging.
5812 @end ifclear
5813
5814 @node Linkonce
5815 @section @code{.linkonce [@var{type}]}
5816 @cindex COMDAT
5817 @cindex @code{linkonce} directive
5818 @cindex common sections
5819 Mark the current section so that the linker only includes a single copy of it.
5820 This may be used to include the same section in several different object files,
5821 but ensure that the linker will only include it once in the final output file.
5822 The @code{.linkonce} pseudo-op must be used for each instance of the section.
5823 Duplicate sections are detected based on the section name, so it should be
5824 unique.
5825
5826 This directive is only supported by a few object file formats; as of this
5827 writing, the only object file format which supports it is the Portable
5828 Executable format used on Windows NT.
5829
5830 The @var{type} argument is optional. If specified, it must be one of the
5831 following strings. For example:
5832 @smallexample
5833 .linkonce same_size
5834 @end smallexample
5835 Not all types may be supported on all object file formats.
5836
5837 @table @code
5838 @item discard
5839 Silently discard duplicate sections. This is the default.
5840
5841 @item one_only
5842 Warn if there are duplicate sections, but still keep only one copy.
5843
5844 @item same_size
5845 Warn if any of the duplicates have different sizes.
5846
5847 @item same_contents
5848 Warn if any of the duplicates do not have exactly the same contents.
5849 @end table
5850
5851 @node List
5852 @section @code{.list}
5853
5854 @cindex @code{list} directive
5855 @cindex listing control, turning on
5856 Control (in conjunction with the @code{.nolist} directive) whether or
5857 not assembly listings are generated. These two directives maintain an
5858 internal counter (which is zero initially). @code{.list} increments the
5859 counter, and @code{.nolist} decrements it. Assembly listings are
5860 generated whenever the counter is greater than zero.
5861
5862 By default, listings are disabled. When you enable them (with the
5863 @samp{-a} command-line option; @pxref{Invoking,,Command-Line Options}),
5864 the initial value of the listing counter is one.
5865
5866 @node Ln
5867 @section @code{.ln @var{line-number}}
5868
5869 @cindex @code{ln} directive
5870 @ifclear no-line-dir
5871 @samp{.ln} is a synonym for @samp{.line}.
5872 @end ifclear
5873 @ifset no-line-dir
5874 Tell @command{@value{AS}} to change the logical line number. @var{line-number}
5875 must be an absolute expression. The next line has that logical
5876 line number, so any other statements on the current line (after a
5877 statement separator character @code{;}) are reported as on logical
5878 line number @var{line-number} @minus{} 1.
5879 @end ifset
5880
5881 @node Loc
5882 @section @code{.loc @var{fileno} @var{lineno} [@var{column}] [@var{options}]}
5883 @cindex @code{loc} directive
5884 When emitting DWARF2 line number information,
5885 the @code{.loc} directive will add a row to the @code{.debug_line} line
5886 number matrix corresponding to the immediately following assembly
5887 instruction. The @var{fileno}, @var{lineno}, and optional @var{column}
5888 arguments will be applied to the @code{.debug_line} state machine before
5889 the row is added.
5890
5891 The @var{options} are a sequence of the following tokens in any order:
5892
5893 @table @code
5894 @item basic_block
5895 This option will set the @code{basic_block} register in the
5896 @code{.debug_line} state machine to @code{true}.
5897
5898 @item prologue_end
5899 This option will set the @code{prologue_end} register in the
5900 @code{.debug_line} state machine to @code{true}.
5901
5902 @item epilogue_begin
5903 This option will set the @code{epilogue_begin} register in the
5904 @code{.debug_line} state machine to @code{true}.
5905
5906 @item is_stmt @var{value}
5907 This option will set the @code{is_stmt} register in the
5908 @code{.debug_line} state machine to @code{value}, which must be
5909 either 0 or 1.
5910
5911 @item isa @var{value}
5912 This directive will set the @code{isa} register in the @code{.debug_line}
5913 state machine to @var{value}, which must be an unsigned integer.
5914
5915 @item discriminator @var{value}
5916 This directive will set the @code{discriminator} register in the @code{.debug_line}
5917 state machine to @var{value}, which must be an unsigned integer.
5918
5919 @item view @var{value}
5920 This option causes a row to be added to @code{.debug_line} in reference to the
5921 current address (which might not be the same as that of the following assembly
5922 instruction), and to associate @var{value} with the @code{view} register in the
5923 @code{.debug_line} state machine. If @var{value} is a label, both the
5924 @code{view} register and the label are set to the number of prior @code{.loc}
5925 directives at the same program location. If @var{value} is the literal
5926 @code{0}, the @code{view} register is set to zero, and the assembler asserts
5927 that there aren't any prior @code{.loc} directives at the same program
5928 location. If @var{value} is the literal @code{-0}, the assembler arrange for
5929 the @code{view} register to be reset in this row, even if there are prior
5930 @code{.loc} directives at the same program location.
5931
5932 @end table
5933
5934 @node Loc_mark_labels
5935 @section @code{.loc_mark_labels @var{enable}}
5936 @cindex @code{loc_mark_labels} directive
5937 When emitting DWARF2 line number information,
5938 the @code{.loc_mark_labels} directive makes the assembler emit an entry
5939 to the @code{.debug_line} line number matrix with the @code{basic_block}
5940 register in the state machine set whenever a code label is seen.
5941 The @var{enable} argument should be either 1 or 0, to enable or disable
5942 this function respectively.
5943
5944 @ifset ELF
5945 @node Local
5946 @section @code{.local @var{names}}
5947
5948 @cindex @code{local} directive
5949 This directive, which is available for ELF targets, marks each symbol in
5950 the comma-separated list of @code{names} as a local symbol so that it
5951 will not be externally visible. If the symbols do not already exist,
5952 they will be created.
5953
5954 For targets where the @code{.lcomm} directive (@pxref{Lcomm}) does not
5955 accept an alignment argument, which is the case for most ELF targets,
5956 the @code{.local} directive can be used in combination with @code{.comm}
5957 (@pxref{Comm}) to define aligned local common data.
5958 @end ifset
5959
5960 @node Long
5961 @section @code{.long @var{expressions}}
5962
5963 @cindex @code{long} directive
5964 @code{.long} is the same as @samp{.int}. @xref{Int,,@code{.int}}.
5965
5966 @ignore
5967 @c no one seems to know what this is for or whether this description is
5968 @c what it really ought to do
5969 @node Lsym
5970 @section @code{.lsym @var{symbol}, @var{expression}}
5971
5972 @cindex @code{lsym} directive
5973 @cindex symbol, not referenced in assembly
5974 @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in
5975 the hash table, ensuring it cannot be referenced by name during the
5976 rest of the assembly. This sets the attributes of the symbol to be
5977 the same as the expression value:
5978 @smallexample
5979 @var{other} = @var{descriptor} = 0
5980 @var{type} = @r{(section of @var{expression})}
5981 @var{value} = @var{expression}
5982 @end smallexample
5983 @noindent
5984 The new symbol is not flagged as external.
5985 @end ignore
5986
5987 @node Macro
5988 @section @code{.macro}
5989
5990 @cindex macros
5991 The commands @code{.macro} and @code{.endm} allow you to define macros that
5992 generate assembly output. For example, this definition specifies a macro
5993 @code{sum} that puts a sequence of numbers into memory:
5994
5995 @example
5996 .macro sum from=0, to=5
5997 .long \from
5998 .if \to-\from
5999 sum "(\from+1)",\to
6000 .endif
6001 .endm
6002 @end example
6003
6004 @noindent
6005 With that definition, @samp{SUM 0,5} is equivalent to this assembly input:
6006
6007 @example
6008 .long 0
6009 .long 1
6010 .long 2
6011 .long 3
6012 .long 4
6013 .long 5
6014 @end example
6015
6016 @ftable @code
6017 @item .macro @var{macname}
6018 @itemx .macro @var{macname} @var{macargs} @dots{}
6019 @cindex @code{macro} directive
6020 Begin the definition of a macro called @var{macname}. If your macro
6021 definition requires arguments, specify their names after the macro name,
6022 separated by commas or spaces. You can qualify the macro argument to
6023 indicate whether all invocations must specify a non-blank value (through
6024 @samp{:@code{req}}), or whether it takes all of the remaining arguments
6025 (through @samp{:@code{vararg}}). You can supply a default value for any
6026 macro argument by following the name with @samp{=@var{deflt}}. You
6027 cannot define two macros with the same @var{macname} unless it has been
6028 subject to the @code{.purgem} directive (@pxref{Purgem}) between the two
6029 definitions. For example, these are all valid @code{.macro} statements:
6030
6031 @table @code
6032 @item .macro comm
6033 Begin the definition of a macro called @code{comm}, which takes no
6034 arguments.
6035
6036 @item .macro plus1 p, p1
6037 @itemx .macro plus1 p p1
6038 Either statement begins the definition of a macro called @code{plus1},
6039 which takes two arguments; within the macro definition, write
6040 @samp{\p} or @samp{\p1} to evaluate the arguments.
6041
6042 @item .macro reserve_str p1=0 p2
6043 Begin the definition of a macro called @code{reserve_str}, with two
6044 arguments. The first argument has a default value, but not the second.
6045 After the definition is complete, you can call the macro either as
6046 @samp{reserve_str @var{a},@var{b}} (with @samp{\p1} evaluating to
6047 @var{a} and @samp{\p2} evaluating to @var{b}), or as @samp{reserve_str
6048 ,@var{b}} (with @samp{\p1} evaluating as the default, in this case
6049 @samp{0}, and @samp{\p2} evaluating to @var{b}).
6050
6051 @item .macro m p1:req, p2=0, p3:vararg
6052 Begin the definition of a macro called @code{m}, with at least three
6053 arguments. The first argument must always have a value specified, but
6054 not the second, which instead has a default value. The third formal
6055 will get assigned all remaining arguments specified at invocation time.
6056
6057 When you call a macro, you can specify the argument values either by
6058 position, or by keyword. For example, @samp{sum 9,17} is equivalent to
6059 @samp{sum to=17, from=9}.
6060
6061 @end table
6062
6063 Note that since each of the @var{macargs} can be an identifier exactly
6064 as any other one permitted by the target architecture, there may be
6065 occasional problems if the target hand-crafts special meanings to certain
6066 characters when they occur in a special position. For example, if the colon
6067 (@code{:}) is generally permitted to be part of a symbol name, but the
6068 architecture specific code special-cases it when occurring as the final
6069 character of a symbol (to denote a label), then the macro parameter
6070 replacement code will have no way of knowing that and consider the whole
6071 construct (including the colon) an identifier, and check only this
6072 identifier for being the subject to parameter substitution. So for example
6073 this macro definition:
6074
6075 @example
6076 .macro label l
6077 \l:
6078 .endm
6079 @end example
6080
6081 might not work as expected. Invoking @samp{label foo} might not create a label
6082 called @samp{foo} but instead just insert the text @samp{\l:} into the
6083 assembler source, probably generating an error about an unrecognised
6084 identifier.
6085
6086 Similarly problems might occur with the period character (@samp{.})
6087 which is often allowed inside opcode names (and hence identifier names). So
6088 for example constructing a macro to build an opcode from a base name and a
6089 length specifier like this:
6090
6091 @example
6092 .macro opcode base length
6093 \base.\length
6094 .endm
6095 @end example
6096
6097 and invoking it as @samp{opcode store l} will not create a @samp{store.l}
6098 instruction but instead generate some kind of error as the assembler tries to
6099 interpret the text @samp{\base.\length}.
6100
6101 There are several possible ways around this problem:
6102
6103 @table @code
6104 @item Insert white space
6105 If it is possible to use white space characters then this is the simplest
6106 solution. eg:
6107
6108 @example
6109 .macro label l
6110 \l :
6111 .endm
6112 @end example
6113
6114 @item Use @samp{\()}
6115 The string @samp{\()} can be used to separate the end of a macro argument from
6116 the following text. eg:
6117
6118 @example
6119 .macro opcode base length
6120 \base\().\length
6121 .endm
6122 @end example
6123
6124 @item Use the alternate macro syntax mode
6125 In the alternative macro syntax mode the ampersand character (@samp{&}) can be
6126 used as a separator. eg:
6127
6128 @example
6129 .altmacro
6130 .macro label l
6131 l&:
6132 .endm
6133 @end example
6134 @end table
6135
6136 Note: this problem of correctly identifying string parameters to pseudo ops
6137 also applies to the identifiers used in @code{.irp} (@pxref{Irp})
6138 and @code{.irpc} (@pxref{Irpc}) as well.
6139
6140 @item .endm
6141 @cindex @code{endm} directive
6142 Mark the end of a macro definition.
6143
6144 @item .exitm
6145 @cindex @code{exitm} directive
6146 Exit early from the current macro definition.
6147
6148 @cindex number of macros executed
6149 @cindex macros, count executed
6150 @item \@@
6151 @command{@value{AS}} maintains a counter of how many macros it has
6152 executed in this pseudo-variable; you can copy that number to your
6153 output with @samp{\@@}, but @emph{only within a macro definition}.
6154
6155 @item LOCAL @var{name} [ , @dots{} ]
6156 @emph{Warning: @code{LOCAL} is only available if you select ``alternate
6157 macro syntax'' with @samp{--alternate} or @code{.altmacro}.}
6158 @xref{Altmacro,,@code{.altmacro}}.
6159 @end ftable
6160
6161 @node MRI
6162 @section @code{.mri @var{val}}
6163
6164 @cindex @code{mri} directive
6165 @cindex MRI mode, temporarily
6166 If @var{val} is non-zero, this tells @command{@value{AS}} to enter MRI mode. If
6167 @var{val} is zero, this tells @command{@value{AS}} to exit MRI mode. This change
6168 affects code assembled until the next @code{.mri} directive, or until the end
6169 of the file. @xref{M, MRI mode, MRI mode}.
6170
6171 @node Noaltmacro
6172 @section @code{.noaltmacro}
6173 Disable alternate macro mode. @xref{Altmacro}.
6174
6175 @node Nolist
6176 @section @code{.nolist}
6177
6178 @cindex @code{nolist} directive
6179 @cindex listing control, turning off
6180 Control (in conjunction with the @code{.list} directive) whether or
6181 not assembly listings are generated. These two directives maintain an
6182 internal counter (which is zero initially). @code{.list} increments the
6183 counter, and @code{.nolist} decrements it. Assembly listings are
6184 generated whenever the counter is greater than zero.
6185
6186 @node Nops
6187 @section @code{.nops @var{size}[, @var{control}]}
6188
6189 @cindex @code{nops} directive
6190 @cindex filling memory with no-op instructions
6191 This directive emits @var{size} bytes filled with no-op instructions.
6192 @var{size} is absolute expression, which must be a positve value.
6193 @var{control} controls how no-op instructions should be generated. If
6194 the comma and @var{control} are omitted, @var{control} is assumed to be
6195 zero.
6196
6197 Note: For Intel 80386 and AMD x86-64 targets, @var{control} specifies
6198 the size limit of a no-op instruction. The valid values of @var{control}
6199 are between 0 and 4 in 16-bit mode, between 0 and 7 when tuning for
6200 older processors in 32-bit mode, between 0 and 11 in 64-bit mode or when
6201 tuning for newer processors in 32-bit mode. When 0 is used, the no-op
6202 instruction size limit is set to the maximum supported size.
6203
6204 @node Octa
6205 @section @code{.octa @var{bignums}}
6206
6207 @c FIXME: double size emitted for "octa" on some? Or warn?
6208 @cindex @code{octa} directive
6209 @cindex integer, 16-byte
6210 @cindex sixteen byte integer
6211 This directive expects zero or more bignums, separated by commas. For each
6212 bignum, it emits a 16-byte integer.
6213
6214 The term ``octa'' comes from contexts in which a ``word'' is two bytes;
6215 hence @emph{octa}-word for 16 bytes.
6216
6217 @node Offset
6218 @section @code{.offset @var{loc}}
6219
6220 @cindex @code{offset} directive
6221 Set the location counter to @var{loc} in the absolute section. @var{loc} must
6222 be an absolute expression. This directive may be useful for defining
6223 symbols with absolute values. Do not confuse it with the @code{.org}
6224 directive.
6225
6226 @node Org
6227 @section @code{.org @var{new-lc} , @var{fill}}
6228
6229 @cindex @code{org} directive
6230 @cindex location counter, advancing
6231 @cindex advancing location counter
6232 @cindex current address, advancing
6233 Advance the location counter of the current section to
6234 @var{new-lc}. @var{new-lc} is either an absolute expression or an
6235 expression with the same section as the current subsection. That is,
6236 you can't use @code{.org} to cross sections: if @var{new-lc} has the
6237 wrong section, the @code{.org} directive is ignored. To be compatible
6238 with former assemblers, if the section of @var{new-lc} is absolute,
6239 @command{@value{AS}} issues a warning, then pretends the section of @var{new-lc}
6240 is the same as the current subsection.
6241
6242 @code{.org} may only increase the location counter, or leave it
6243 unchanged; you cannot use @code{.org} to move the location counter
6244 backwards.
6245
6246 @c double negative used below "not undefined" because this is a specific
6247 @c reference to "undefined" (as SEG_UNKNOWN is called in this manual)
6248 @c section. doc@cygnus.com 18feb91
6249 Because @command{@value{AS}} tries to assemble programs in one pass, @var{new-lc}
6250 may not be undefined. If you really detest this restriction we eagerly await
6251 a chance to share your improved assembler.
6252
6253 Beware that the origin is relative to the start of the section, not
6254 to the start of the subsection. This is compatible with other
6255 people's assemblers.
6256
6257 When the location counter (of the current subsection) is advanced, the
6258 intervening bytes are filled with @var{fill} which should be an
6259 absolute expression. If the comma and @var{fill} are omitted,
6260 @var{fill} defaults to zero.
6261
6262 @node P2align
6263 @section @code{.p2align[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
6264
6265 @cindex padding the location counter given a power of two
6266 @cindex @code{p2align} directive
6267 Pad the location counter (in the current subsection) to a particular
6268 storage boundary. The first expression (which must be absolute) is the
6269 number of low-order zero bits the location counter must have after
6270 advancement. For example @samp{.p2align 3} advances the location
6271 counter until it is a multiple of 8. If the location counter is already a
6272 multiple of 8, no change is needed. If the expression is omitted then a
6273 default value of 0 is used, effectively disabling alignment requirements.
6274
6275 The second expression (also absolute) gives the fill value to be stored in the
6276 padding bytes. It (and the comma) may be omitted. If it is omitted, the
6277 padding bytes are normally zero. However, on most systems, if the section is
6278 marked as containing code and the fill value is omitted, the space is filled
6279 with no-op instructions.
6280
6281 The third expression is also absolute, and is also optional. If it is present,
6282 it is the maximum number of bytes that should be skipped by this alignment
6283 directive. If doing the alignment would require skipping more bytes than the
6284 specified maximum, then the alignment is not done at all. You can omit the
6285 fill value (the second argument) entirely by simply using two commas after the
6286 required alignment; this can be useful if you want the alignment to be filled
6287 with no-op instructions when appropriate.
6288
6289 @cindex @code{p2alignw} directive
6290 @cindex @code{p2alignl} directive
6291 The @code{.p2alignw} and @code{.p2alignl} directives are variants of the
6292 @code{.p2align} directive. The @code{.p2alignw} directive treats the fill
6293 pattern as a two byte word value. The @code{.p2alignl} directives treats the
6294 fill pattern as a four byte longword value. For example, @code{.p2alignw
6295 2,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
6296 filled in with the value 0x368d (the exact placement of the bytes depends upon
6297 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
6298 undefined.
6299
6300 @ifset ELF
6301 @node PopSection
6302 @section @code{.popsection}
6303
6304 @cindex @code{popsection} directive
6305 @cindex Section Stack
6306 This is one of the ELF section stack manipulation directives. The others are
6307 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6308 @code{.pushsection} (@pxref{PushSection}), and @code{.previous}
6309 (@pxref{Previous}).
6310
6311 This directive replaces the current section (and subsection) with the top
6312 section (and subsection) on the section stack. This section is popped off the
6313 stack.
6314 @end ifset
6315
6316 @ifset ELF
6317 @node Previous
6318 @section @code{.previous}
6319
6320 @cindex @code{previous} directive
6321 @cindex Section Stack
6322 This is one of the ELF section stack manipulation directives. The others are
6323 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6324 @code{.pushsection} (@pxref{PushSection}), and @code{.popsection}
6325 (@pxref{PopSection}).
6326
6327 This directive swaps the current section (and subsection) with most recently
6328 referenced section/subsection pair prior to this one. Multiple
6329 @code{.previous} directives in a row will flip between two sections (and their
6330 subsections). For example:
6331
6332 @smallexample
6333 .section A
6334 .subsection 1
6335 .word 0x1234
6336 .subsection 2
6337 .word 0x5678
6338 .previous
6339 .word 0x9abc
6340 @end smallexample
6341
6342 Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of
6343 section A. Whilst:
6344
6345 @smallexample
6346 .section A
6347 .subsection 1
6348 # Now in section A subsection 1
6349 .word 0x1234
6350 .section B
6351 .subsection 0
6352 # Now in section B subsection 0
6353 .word 0x5678
6354 .subsection 1
6355 # Now in section B subsection 1
6356 .word 0x9abc
6357 .previous
6358 # Now in section B subsection 0
6359 .word 0xdef0
6360 @end smallexample
6361
6362 Will place 0x1234 into section A, 0x5678 and 0xdef0 into subsection 0 of
6363 section B and 0x9abc into subsection 1 of section B.
6364
6365 In terms of the section stack, this directive swaps the current section with
6366 the top section on the section stack.
6367 @end ifset
6368
6369 @node Print
6370 @section @code{.print @var{string}}
6371
6372 @cindex @code{print} directive
6373 @command{@value{AS}} will print @var{string} on the standard output during
6374 assembly. You must put @var{string} in double quotes.
6375
6376 @ifset ELF
6377 @node Protected
6378 @section @code{.protected @var{names}}
6379
6380 @cindex @code{protected} directive
6381 @cindex visibility
6382 This is one of the ELF visibility directives. The other two are
6383 @code{.hidden} (@pxref{Hidden}) and @code{.internal} (@pxref{Internal}).
6384
6385 This directive overrides the named symbols default visibility (which is set by
6386 their binding: local, global or weak). The directive sets the visibility to
6387 @code{protected} which means that any references to the symbols from within the
6388 components that defines them must be resolved to the definition in that
6389 component, even if a definition in another component would normally preempt
6390 this.
6391 @end ifset
6392
6393 @node Psize
6394 @section @code{.psize @var{lines} , @var{columns}}
6395
6396 @cindex @code{psize} directive
6397 @cindex listing control: paper size
6398 @cindex paper size, for listings
6399 Use this directive to declare the number of lines---and, optionally, the
6400 number of columns---to use for each page, when generating listings.
6401
6402 If you do not use @code{.psize}, listings use a default line-count
6403 of 60. You may omit the comma and @var{columns} specification; the
6404 default width is 200 columns.
6405
6406 @command{@value{AS}} generates formfeeds whenever the specified number of
6407 lines is exceeded (or whenever you explicitly request one, using
6408 @code{.eject}).
6409
6410 If you specify @var{lines} as @code{0}, no formfeeds are generated save
6411 those explicitly specified with @code{.eject}.
6412
6413 @node Purgem
6414 @section @code{.purgem @var{name}}
6415
6416 @cindex @code{purgem} directive
6417 Undefine the macro @var{name}, so that later uses of the string will not be
6418 expanded. @xref{Macro}.
6419
6420 @ifset ELF
6421 @node PushSection
6422 @section @code{.pushsection @var{name} [, @var{subsection}] [, "@var{flags}"[, @@@var{type}[,@var{arguments}]]]}
6423
6424 @cindex @code{pushsection} directive
6425 @cindex Section Stack
6426 This is one of the ELF section stack manipulation directives. The others are
6427 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6428 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6429 (@pxref{Previous}).
6430
6431 This directive pushes the current section (and subsection) onto the
6432 top of the section stack, and then replaces the current section and
6433 subsection with @code{name} and @code{subsection}. The optional
6434 @code{flags}, @code{type} and @code{arguments} are treated the same
6435 as in the @code{.section} (@pxref{Section}) directive.
6436 @end ifset
6437
6438 @node Quad
6439 @section @code{.quad @var{bignums}}
6440
6441 @cindex @code{quad} directive
6442 @code{.quad} expects zero or more bignums, separated by commas. For
6443 each bignum, it emits
6444 @ifclear bignum-16
6445 an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
6446 warning message; and just takes the lowest order 8 bytes of the bignum.
6447 @cindex eight-byte integer
6448 @cindex integer, 8-byte
6449
6450 The term ``quad'' comes from contexts in which a ``word'' is two bytes;
6451 hence @emph{quad}-word for 8 bytes.
6452 @end ifclear
6453 @ifset bignum-16
6454 a 16-byte integer. If the bignum won't fit in 16 bytes, it prints a
6455 warning message; and just takes the lowest order 16 bytes of the bignum.
6456 @cindex sixteen-byte integer
6457 @cindex integer, 16-byte
6458 @end ifset
6459
6460 @node Reloc
6461 @section @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
6462
6463 @cindex @code{reloc} directive
6464 Generate a relocation at @var{offset} of type @var{reloc_name} with value
6465 @var{expression}. If @var{offset} is a number, the relocation is generated in
6466 the current section. If @var{offset} is an expression that resolves to a
6467 symbol plus offset, the relocation is generated in the given symbol's section.
6468 @var{expression}, if present, must resolve to a symbol plus addend or to an
6469 absolute value, but note that not all targets support an addend. e.g. ELF REL
6470 targets such as i386 store an addend in the section contents rather than in the
6471 relocation. This low level interface does not support addends stored in the
6472 section.
6473
6474 @node Rept
6475 @section @code{.rept @var{count}}
6476
6477 @cindex @code{rept} directive
6478 Repeat the sequence of lines between the @code{.rept} directive and the next
6479 @code{.endr} directive @var{count} times.
6480
6481 For example, assembling
6482
6483 @example
6484 .rept 3
6485 .long 0
6486 .endr
6487 @end example
6488
6489 is equivalent to assembling
6490
6491 @example
6492 .long 0
6493 .long 0
6494 .long 0
6495 @end example
6496
6497 A count of zero is allowed, but nothing is generated. Negative counts are not
6498 allowed and if encountered will be treated as if they were zero.
6499
6500 @node Sbttl
6501 @section @code{.sbttl "@var{subheading}"}
6502
6503 @cindex @code{sbttl} directive
6504 @cindex subtitles for listings
6505 @cindex listing control: subtitle
6506 Use @var{subheading} as the title (third line, immediately after the
6507 title line) when generating assembly listings.
6508
6509 This directive affects subsequent pages, as well as the current page if
6510 it appears within ten lines of the top of a page.
6511
6512 @ifset COFF
6513 @node Scl
6514 @section @code{.scl @var{class}}
6515
6516 @cindex @code{scl} directive
6517 @cindex symbol storage class (COFF)
6518 @cindex COFF symbol storage class
6519 Set the storage-class value for a symbol. This directive may only be
6520 used inside a @code{.def}/@code{.endef} pair. Storage class may flag
6521 whether a symbol is static or external, or it may record further
6522 symbolic debugging information.
6523 @end ifset
6524
6525 @ifset COFF-ELF
6526 @node Section
6527 @section @code{.section @var{name}}
6528
6529 @cindex named section
6530 Use the @code{.section} directive to assemble the following code into a section
6531 named @var{name}.
6532
6533 This directive is only supported for targets that actually support arbitrarily
6534 named sections; on @code{a.out} targets, for example, it is not accepted, even
6535 with a standard @code{a.out} section name.
6536
6537 @ifset COFF
6538 @ifset ELF
6539 @c only print the extra heading if both COFF and ELF are set
6540 @subheading COFF Version
6541 @end ifset
6542
6543 @cindex @code{section} directive (COFF version)
6544 For COFF targets, the @code{.section} directive is used in one of the following
6545 ways:
6546
6547 @smallexample
6548 .section @var{name}[, "@var{flags}"]
6549 .section @var{name}[, @var{subsection}]
6550 @end smallexample
6551
6552 If the optional argument is quoted, it is taken as flags to use for the
6553 section. Each flag is a single character. The following flags are recognized:
6554
6555 @table @code
6556 @item b
6557 bss section (uninitialized data)
6558 @item n
6559 section is not loaded
6560 @item w
6561 writable section
6562 @item d
6563 data section
6564 @item e
6565 exclude section from linking
6566 @item r
6567 read-only section
6568 @item x
6569 executable section
6570 @item s
6571 shared section (meaningful for PE targets)
6572 @item a
6573 ignored. (For compatibility with the ELF version)
6574 @item y
6575 section is not readable (meaningful for PE targets)
6576 @item 0-9
6577 single-digit power-of-two section alignment (GNU extension)
6578 @end table
6579
6580 If no flags are specified, the default flags depend upon the section name. If
6581 the section name is not recognized, the default will be for the section to be
6582 loaded and writable. Note the @code{n} and @code{w} flags remove attributes
6583 from the section, rather than adding them, so if they are used on their own it
6584 will be as if no flags had been specified at all.
6585
6586 If the optional argument to the @code{.section} directive is not quoted, it is
6587 taken as a subsection number (@pxref{Sub-Sections}).
6588 @end ifset
6589
6590 @ifset ELF
6591 @ifset COFF
6592 @c only print the extra heading if both COFF and ELF are set
6593 @subheading ELF Version
6594 @end ifset
6595
6596 @cindex Section Stack
6597 This is one of the ELF section stack manipulation directives. The others are
6598 @code{.subsection} (@pxref{SubSection}), @code{.pushsection}
6599 (@pxref{PushSection}), @code{.popsection} (@pxref{PopSection}), and
6600 @code{.previous} (@pxref{Previous}).
6601
6602 @cindex @code{section} directive (ELF version)
6603 For ELF targets, the @code{.section} directive is used like this:
6604
6605 @smallexample
6606 .section @var{name} [, "@var{flags}"[, @@@var{type}[,@var{flag_specific_arguments}]]]
6607 @end smallexample
6608
6609 @anchor{Section Name Substitutions}
6610 @kindex --sectname-subst
6611 @cindex section name substitution
6612 If the @samp{--sectname-subst} command-line option is provided, the @var{name}
6613 argument may contain a substitution sequence. Only @code{%S} is supported
6614 at the moment, and substitutes the current section name. For example:
6615
6616 @smallexample
6617 .macro exception_code
6618 .section %S.exception
6619 [exception code here]
6620 .previous
6621 .endm
6622
6623 .text
6624 [code]
6625 exception_code
6626 [...]
6627
6628 .section .init
6629 [init code]
6630 exception_code
6631 [...]
6632 @end smallexample
6633
6634 The two @code{exception_code} invocations above would create the
6635 @code{.text.exception} and @code{.init.exception} sections respectively.
6636 This is useful e.g. to discriminate between ancillary sections that are
6637 tied to setup code to be discarded after use from ancillary sections that
6638 need to stay resident without having to define multiple @code{exception_code}
6639 macros just for that purpose.
6640
6641 The optional @var{flags} argument is a quoted string which may contain any
6642 combination of the following characters:
6643
6644 @table @code
6645 @item a
6646 section is allocatable
6647 @item d
6648 section is a GNU_MBIND section
6649 @item e
6650 section is excluded from executable and shared library.
6651 @item w
6652 section is writable
6653 @item x
6654 section is executable
6655 @item M
6656 section is mergeable
6657 @item S
6658 section contains zero terminated strings
6659 @item G
6660 section is a member of a section group
6661 @item T
6662 section is used for thread-local-storage
6663 @item ?
6664 section is a member of the previously-current section's group, if any
6665 @item @code{<number>}
6666 a numeric value indicating the bits to be set in the ELF section header's flags
6667 field. Note - if one or more of the alphabetic characters described above is
6668 also included in the flags field, their bit values will be ORed into the
6669 resulting value.
6670 @item @code{<target specific>}
6671 some targets extend this list with their own flag characters
6672 @end table
6673
6674 Note - once a section's flags have been set they cannot be changed. There are
6675 a few exceptions to this rule however. Processor and application specific
6676 flags can be added to an already defined section. The @code{.interp},
6677 @code{.strtab} and @code{.symtab} sections can have the allocate flag
6678 (@code{a}) set after they are initially defined, and the @code{.note-GNU-stack}
6679 section may have the executable (@code{x}) flag added.
6680
6681 The optional @var{type} argument may contain one of the following constants:
6682
6683 @table @code
6684 @item @@progbits
6685 section contains data
6686 @item @@nobits
6687 section does not contain data (i.e., section only occupies space)
6688 @item @@note
6689 section contains data which is used by things other than the program
6690 @item @@init_array
6691 section contains an array of pointers to init functions
6692 @item @@fini_array
6693 section contains an array of pointers to finish functions
6694 @item @@preinit_array
6695 section contains an array of pointers to pre-init functions
6696 @item @@@code{<number>}
6697 a numeric value to be set as the ELF section header's type field.
6698 @item @@@code{<target specific>}
6699 some targets extend this list with their own types
6700 @end table
6701
6702 Many targets only support the first three section types. The type may be
6703 enclosed in double quotes if necessary.
6704
6705 Note on targets where the @code{@@} character is the start of a comment (eg
6706 ARM) then another character is used instead. For example the ARM port uses the
6707 @code{%} character.
6708
6709 Note - some sections, eg @code{.text} and @code{.data} are considered to be
6710 special and have fixed types. Any attempt to declare them with a different
6711 type will generate an error from the assembler.
6712
6713 If @var{flags} contains the @code{M} symbol then the @var{type} argument must
6714 be specified as well as an extra argument---@var{entsize}---like this:
6715
6716 @smallexample
6717 .section @var{name} , "@var{flags}"M, @@@var{type}, @var{entsize}
6718 @end smallexample
6719
6720 Sections with the @code{M} flag but not @code{S} flag must contain fixed size
6721 constants, each @var{entsize} octets long. Sections with both @code{M} and
6722 @code{S} must contain zero terminated strings where each character is
6723 @var{entsize} bytes long. The linker may remove duplicates within sections with
6724 the same name, same entity size and same flags. @var{entsize} must be an
6725 absolute expression. For sections with both @code{M} and @code{S}, a string
6726 which is a suffix of a larger string is considered a duplicate. Thus
6727 @code{"def"} will be merged with @code{"abcdef"}; A reference to the first
6728 @code{"def"} will be changed to a reference to @code{"abcdef"+3}.
6729
6730 If @var{flags} contains the @code{G} symbol then the @var{type} argument must
6731 be present along with an additional field like this:
6732
6733 @smallexample
6734 .section @var{name} , "@var{flags}"G, @@@var{type}, @var{GroupName}[, @var{linkage}]
6735 @end smallexample
6736
6737 The @var{GroupName} field specifies the name of the section group to which this
6738 particular section belongs. The optional linkage field can contain:
6739
6740 @table @code
6741 @item comdat
6742 indicates that only one copy of this section should be retained
6743 @item .gnu.linkonce
6744 an alias for comdat
6745 @end table
6746
6747 Note: if both the @var{M} and @var{G} flags are present then the fields for
6748 the Merge flag should come first, like this:
6749
6750 @smallexample
6751 .section @var{name} , "@var{flags}"MG, @@@var{type}, @var{entsize}, @var{GroupName}[, @var{linkage}]
6752 @end smallexample
6753
6754 If @var{flags} contains the @code{?} symbol then it may not also contain the
6755 @code{G} symbol and the @var{GroupName} or @var{linkage} fields should not be
6756 present. Instead, @code{?} says to consider the section that's current before
6757 this directive. If that section used @code{G}, then the new section will use
6758 @code{G} with those same @var{GroupName} and @var{linkage} fields implicitly.
6759 If not, then the @code{?} symbol has no effect.
6760
6761 If no flags are specified, the default flags depend upon the section name. If
6762 the section name is not recognized, the default will be for the section to have
6763 none of the above flags: it will not be allocated in memory, nor writable, nor
6764 executable. The section will contain data.
6765
6766 For ELF targets, the assembler supports another type of @code{.section}
6767 directive for compatibility with the Solaris assembler:
6768
6769 @smallexample
6770 .section "@var{name}"[, @var{flags}...]
6771 @end smallexample
6772
6773 Note that the section name is quoted. There may be a sequence of comma
6774 separated flags:
6775
6776 @table @code
6777 @item #alloc
6778 section is allocatable
6779 @item #write
6780 section is writable
6781 @item #execinstr
6782 section is executable
6783 @item #exclude
6784 section is excluded from executable and shared library.
6785 @item #tls
6786 section is used for thread local storage
6787 @end table
6788
6789 This directive replaces the current section and subsection. See the
6790 contents of the gas testsuite directory @code{gas/testsuite/gas/elf} for
6791 some examples of how this directive and the other section stack directives
6792 work.
6793 @end ifset
6794 @end ifset
6795
6796 @node Set
6797 @section @code{.set @var{symbol}, @var{expression}}
6798
6799 @cindex @code{set} directive
6800 @cindex symbol value, setting
6801 Set the value of @var{symbol} to @var{expression}. This
6802 changes @var{symbol}'s value and type to conform to
6803 @var{expression}. If @var{symbol} was flagged as external, it remains
6804 flagged (@pxref{Symbol Attributes}).
6805
6806 You may @code{.set} a symbol many times in the same assembly provided that the
6807 values given to the symbol are constants. Values that are based on expressions
6808 involving other symbols are allowed, but some targets may restrict this to only
6809 being done once per assembly. This is because those targets do not set the
6810 addresses of symbols at assembly time, but rather delay the assignment until a
6811 final link is performed. This allows the linker a chance to change the code in
6812 the files, changing the location of, and the relative distance between, various
6813 different symbols.
6814
6815 If you @code{.set} a global symbol, the value stored in the object
6816 file is the last value stored into it.
6817
6818 @ifset Z80
6819 On Z80 @code{set} is a real instruction, use @code{.set} or
6820 @samp{@var{symbol} defl @var{expression}} instead.
6821 @end ifset
6822
6823 @node Short
6824 @section @code{.short @var{expressions}}
6825
6826 @cindex @code{short} directive
6827 @ifset GENERIC
6828 @code{.short} is normally the same as @samp{.word}.
6829 @xref{Word,,@code{.word}}.
6830
6831 In some configurations, however, @code{.short} and @code{.word} generate
6832 numbers of different lengths. @xref{Machine Dependencies}.
6833 @end ifset
6834 @ifclear GENERIC
6835 @ifset W16
6836 @code{.short} is the same as @samp{.word}. @xref{Word,,@code{.word}}.
6837 @end ifset
6838 @ifset W32
6839 This expects zero or more @var{expressions}, and emits
6840 a 16 bit number for each.
6841 @end ifset
6842 @end ifclear
6843
6844 @node Single
6845 @section @code{.single @var{flonums}}
6846
6847 @cindex @code{single} directive
6848 @cindex floating point numbers (single)
6849 This directive assembles zero or more flonums, separated by commas. It
6850 has the same effect as @code{.float}.
6851 @ifset GENERIC
6852 The exact kind of floating point numbers emitted depends on how
6853 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
6854 @end ifset
6855 @ifclear GENERIC
6856 @ifset IEEEFLOAT
6857 On the @value{TARGET} family, @code{.single} emits 32-bit floating point
6858 numbers in @sc{ieee} format.
6859 @end ifset
6860 @end ifclear
6861
6862 @ifset COFF-ELF
6863 @node Size
6864 @section @code{.size}
6865
6866 This directive is used to set the size associated with a symbol.
6867
6868 @ifset COFF
6869 @ifset ELF
6870 @c only print the extra heading if both COFF and ELF are set
6871 @subheading COFF Version
6872 @end ifset
6873
6874 @cindex @code{size} directive (COFF version)
6875 For COFF targets, the @code{.size} directive is only permitted inside
6876 @code{.def}/@code{.endef} pairs. It is used like this:
6877
6878 @smallexample
6879 .size @var{expression}
6880 @end smallexample
6881
6882 @end ifset
6883
6884 @ifset ELF
6885 @ifset COFF
6886 @c only print the extra heading if both COFF and ELF are set
6887 @subheading ELF Version
6888 @end ifset
6889
6890 @cindex @code{size} directive (ELF version)
6891 For ELF targets, the @code{.size} directive is used like this:
6892
6893 @smallexample
6894 .size @var{name} , @var{expression}
6895 @end smallexample
6896
6897 This directive sets the size associated with a symbol @var{name}.
6898 The size in bytes is computed from @var{expression} which can make use of label
6899 arithmetic. This directive is typically used to set the size of function
6900 symbols.
6901 @end ifset
6902 @end ifset
6903
6904 @ifclear no-space-dir
6905 @node Skip
6906 @section @code{.skip @var{size} [,@var{fill}]}
6907
6908 @cindex @code{skip} directive
6909 @cindex filling memory
6910 This directive emits @var{size} bytes, each of value @var{fill}. Both
6911 @var{size} and @var{fill} are absolute expressions. If the comma and
6912 @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same as
6913 @samp{.space}.
6914 @end ifclear
6915
6916 @node Sleb128
6917 @section @code{.sleb128 @var{expressions}}
6918
6919 @cindex @code{sleb128} directive
6920 @var{sleb128} stands for ``signed little endian base 128.'' This is a
6921 compact, variable length representation of numbers used by the DWARF
6922 symbolic debugging format. @xref{Uleb128, ,@code{.uleb128}}.
6923
6924 @ifclear no-space-dir
6925 @node Space
6926 @section @code{.space @var{size} [,@var{fill}]}
6927
6928 @cindex @code{space} directive
6929 @cindex filling memory
6930 This directive emits @var{size} bytes, each of value @var{fill}. Both
6931 @var{size} and @var{fill} are absolute expressions. If the comma
6932 and @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same
6933 as @samp{.skip}.
6934
6935 @ifset HPPA
6936 @quotation
6937 @emph{Warning:} @code{.space} has a completely different meaning for HPPA
6938 targets; use @code{.block} as a substitute. See @cite{HP9000 Series 800
6939 Assembly Language Reference Manual} (HP 92432-90001) for the meaning of the
6940 @code{.space} directive. @xref{HPPA Directives,,HPPA Assembler Directives},
6941 for a summary.
6942 @end quotation
6943 @end ifset
6944 @end ifclear
6945
6946 @ifset have-stabs
6947 @node Stab
6948 @section @code{.stabd, .stabn, .stabs}
6949
6950 @cindex symbolic debuggers, information for
6951 @cindex @code{stab@var{x}} directives
6952 There are three directives that begin @samp{.stab}.
6953 All emit symbols (@pxref{Symbols}), for use by symbolic debuggers.
6954 The symbols are not entered in the @command{@value{AS}} hash table: they
6955 cannot be referenced elsewhere in the source file.
6956 Up to five fields are required:
6957
6958 @table @var
6959 @item string
6960 This is the symbol's name. It may contain any character except
6961 @samp{\000}, so is more general than ordinary symbol names. Some
6962 debuggers used to code arbitrarily complex structures into symbol names
6963 using this field.
6964
6965 @item type
6966 An absolute expression. The symbol's type is set to the low 8 bits of
6967 this expression. Any bit pattern is permitted, but @code{@value{LD}}
6968 and debuggers choke on silly bit patterns.
6969
6970 @item other
6971 An absolute expression. The symbol's ``other'' attribute is set to the
6972 low 8 bits of this expression.
6973
6974 @item desc
6975 An absolute expression. The symbol's descriptor is set to the low 16
6976 bits of this expression.
6977
6978 @item value
6979 An absolute expression which becomes the symbol's value.
6980 @end table
6981
6982 If a warning is detected while reading a @code{.stabd}, @code{.stabn},
6983 or @code{.stabs} statement, the symbol has probably already been created;
6984 you get a half-formed symbol in your object file. This is
6985 compatible with earlier assemblers!
6986
6987 @table @code
6988 @cindex @code{stabd} directive
6989 @item .stabd @var{type} , @var{other} , @var{desc}
6990
6991 The ``name'' of the symbol generated is not even an empty string.
6992 It is a null pointer, for compatibility. Older assemblers used a
6993 null pointer so they didn't waste space in object files with empty
6994 strings.
6995
6996 The symbol's value is set to the location counter,
6997 relocatably. When your program is linked, the value of this symbol
6998 is the address of the location counter when the @code{.stabd} was
6999 assembled.
7000
7001 @cindex @code{stabn} directive
7002 @item .stabn @var{type} , @var{other} , @var{desc} , @var{value}
7003 The name of the symbol is set to the empty string @code{""}.
7004
7005 @cindex @code{stabs} directive
7006 @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value}
7007 All five fields are specified.
7008 @end table
7009 @end ifset
7010 @c end have-stabs
7011
7012 @node String
7013 @section @code{.string} "@var{str}", @code{.string8} "@var{str}", @code{.string16}
7014 "@var{str}", @code{.string32} "@var{str}", @code{.string64} "@var{str}"
7015
7016 @cindex string, copying to object file
7017 @cindex string8, copying to object file
7018 @cindex string16, copying to object file
7019 @cindex string32, copying to object file
7020 @cindex string64, copying to object file
7021 @cindex @code{string} directive
7022 @cindex @code{string8} directive
7023 @cindex @code{string16} directive
7024 @cindex @code{string32} directive
7025 @cindex @code{string64} directive
7026
7027 Copy the characters in @var{str} to the object file. You may specify more than
7028 one string to copy, separated by commas. Unless otherwise specified for a
7029 particular machine, the assembler marks the end of each string with a 0 byte.
7030 You can use any of the escape sequences described in @ref{Strings,,Strings}.
7031
7032 The variants @code{string16}, @code{string32} and @code{string64} differ from
7033 the @code{string} pseudo opcode in that each 8-bit character from @var{str} is
7034 copied and expanded to 16, 32 or 64 bits respectively. The expanded characters
7035 are stored in target endianness byte order.
7036
7037 Example:
7038 @smallexample
7039 .string32 "BYE"
7040 expands to:
7041 .string "B\0\0\0Y\0\0\0E\0\0\0" /* On little endian targets. */
7042 .string "\0\0\0B\0\0\0Y\0\0\0E" /* On big endian targets. */
7043 @end smallexample
7044
7045
7046 @node Struct
7047 @section @code{.struct @var{expression}}
7048
7049 @cindex @code{struct} directive
7050 Switch to the absolute section, and set the section offset to @var{expression},
7051 which must be an absolute expression. You might use this as follows:
7052 @smallexample
7053 .struct 0
7054 field1:
7055 .struct field1 + 4
7056 field2:
7057 .struct field2 + 4
7058 field3:
7059 @end smallexample
7060 This would define the symbol @code{field1} to have the value 0, the symbol
7061 @code{field2} to have the value 4, and the symbol @code{field3} to have the
7062 value 8. Assembly would be left in the absolute section, and you would need to
7063 use a @code{.section} directive of some sort to change to some other section
7064 before further assembly.
7065
7066 @ifset ELF
7067 @node SubSection
7068 @section @code{.subsection @var{name}}
7069
7070 @cindex @code{subsection} directive
7071 @cindex Section Stack
7072 This is one of the ELF section stack manipulation directives. The others are
7073 @code{.section} (@pxref{Section}), @code{.pushsection} (@pxref{PushSection}),
7074 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
7075 (@pxref{Previous}).
7076
7077 This directive replaces the current subsection with @code{name}. The current
7078 section is not changed. The replaced subsection is put onto the section stack
7079 in place of the then current top of stack subsection.
7080 @end ifset
7081
7082 @ifset ELF
7083 @node Symver
7084 @section @code{.symver}
7085 @cindex @code{symver} directive
7086 @cindex symbol versioning
7087 @cindex versions of symbols
7088 Use the @code{.symver} directive to bind symbols to specific version nodes
7089 within a source file. This is only supported on ELF platforms, and is
7090 typically used when assembling files to be linked into a shared library.
7091 There are cases where it may make sense to use this in objects to be bound
7092 into an application itself so as to override a versioned symbol from a
7093 shared library.
7094
7095 For ELF targets, the @code{.symver} directive can be used like this:
7096 @smallexample
7097 .symver @var{name}, @var{name2@@nodename}
7098 @end smallexample
7099 If the symbol @var{name} is defined within the file
7100 being assembled, the @code{.symver} directive effectively creates a symbol
7101 alias with the name @var{name2@@nodename}, and in fact the main reason that we
7102 just don't try and create a regular alias is that the @var{@@} character isn't
7103 permitted in symbol names. The @var{name2} part of the name is the actual name
7104 of the symbol by which it will be externally referenced. The name @var{name}
7105 itself is merely a name of convenience that is used so that it is possible to
7106 have definitions for multiple versions of a function within a single source
7107 file, and so that the compiler can unambiguously know which version of a
7108 function is being mentioned. The @var{nodename} portion of the alias should be
7109 the name of a node specified in the version script supplied to the linker when
7110 building a shared library. If you are attempting to override a versioned
7111 symbol from a shared library, then @var{nodename} should correspond to the
7112 nodename of the symbol you are trying to override.
7113
7114 If the symbol @var{name} is not defined within the file being assembled, all
7115 references to @var{name} will be changed to @var{name2@@nodename}. If no
7116 reference to @var{name} is made, @var{name2@@nodename} will be removed from the
7117 symbol table.
7118
7119 Another usage of the @code{.symver} directive is:
7120 @smallexample
7121 .symver @var{name}, @var{name2@@@@nodename}
7122 @end smallexample
7123 In this case, the symbol @var{name} must exist and be defined within
7124 the file being assembled. It is similar to @var{name2@@nodename}. The
7125 difference is @var{name2@@@@nodename} will also be used to resolve
7126 references to @var{name2} by the linker.
7127
7128 The third usage of the @code{.symver} directive is:
7129 @smallexample
7130 .symver @var{name}, @var{name2@@@@@@nodename}
7131 @end smallexample
7132 When @var{name} is not defined within the
7133 file being assembled, it is treated as @var{name2@@nodename}. When
7134 @var{name} is defined within the file being assembled, the symbol
7135 name, @var{name}, will be changed to @var{name2@@@@nodename}.
7136 @end ifset
7137
7138 @ifset COFF
7139 @node Tag
7140 @section @code{.tag @var{structname}}
7141
7142 @cindex COFF structure debugging
7143 @cindex structure debugging, COFF
7144 @cindex @code{tag} directive
7145 This directive is generated by compilers to include auxiliary debugging
7146 information in the symbol table. It is only permitted inside
7147 @code{.def}/@code{.endef} pairs. Tags are used to link structure
7148 definitions in the symbol table with instances of those structures.
7149 @end ifset
7150
7151 @node Text
7152 @section @code{.text @var{subsection}}
7153
7154 @cindex @code{text} directive
7155 Tells @command{@value{AS}} to assemble the following statements onto the end of
7156 the text subsection numbered @var{subsection}, which is an absolute
7157 expression. If @var{subsection} is omitted, subsection number zero
7158 is used.
7159
7160 @node Title
7161 @section @code{.title "@var{heading}"}
7162
7163 @cindex @code{title} directive
7164 @cindex listing control: title line
7165 Use @var{heading} as the title (second line, immediately after the
7166 source file name and pagenumber) when generating assembly listings.
7167
7168 This directive affects subsequent pages, as well as the current page if
7169 it appears within ten lines of the top of a page.
7170
7171 @ifset COFF-ELF
7172 @node Type
7173 @section @code{.type}
7174
7175 This directive is used to set the type of a symbol.
7176
7177 @ifset COFF
7178 @ifset ELF
7179 @c only print the extra heading if both COFF and ELF are set
7180 @subheading COFF Version
7181 @end ifset
7182
7183 @cindex COFF symbol type
7184 @cindex symbol type, COFF
7185 @cindex @code{type} directive (COFF version)
7186 For COFF targets, this directive is permitted only within
7187 @code{.def}/@code{.endef} pairs. It is used like this:
7188
7189 @smallexample
7190 .type @var{int}
7191 @end smallexample
7192
7193 This records the integer @var{int} as the type attribute of a symbol table
7194 entry.
7195
7196 @end ifset
7197
7198 @ifset ELF
7199 @ifset COFF
7200 @c only print the extra heading if both COFF and ELF are set
7201 @subheading ELF Version
7202 @end ifset
7203
7204 @cindex ELF symbol type
7205 @cindex symbol type, ELF
7206 @cindex @code{type} directive (ELF version)
7207 For ELF targets, the @code{.type} directive is used like this:
7208
7209 @smallexample
7210 .type @var{name} , @var{type description}
7211 @end smallexample
7212
7213 This sets the type of symbol @var{name} to be either a
7214 function symbol or an object symbol. There are five different syntaxes
7215 supported for the @var{type description} field, in order to provide
7216 compatibility with various other assemblers.
7217
7218 Because some of the characters used in these syntaxes (such as @samp{@@} and
7219 @samp{#}) are comment characters for some architectures, some of the syntaxes
7220 below do not work on all architectures. The first variant will be accepted by
7221 the GNU assembler on all architectures so that variant should be used for
7222 maximum portability, if you do not need to assemble your code with other
7223 assemblers.
7224
7225 The syntaxes supported are:
7226
7227 @smallexample
7228 .type <name> STT_<TYPE_IN_UPPER_CASE>
7229 .type <name>,#<type>
7230 .type <name>,@@<type>
7231 .type <name>,%<type>
7232 .type <name>,"<type>"
7233 @end smallexample
7234
7235 The types supported are:
7236
7237 @table @gcctabopt
7238 @item STT_FUNC
7239 @itemx function
7240 Mark the symbol as being a function name.
7241
7242 @item STT_GNU_IFUNC
7243 @itemx gnu_indirect_function
7244 Mark the symbol as an indirect function when evaluated during reloc
7245 processing. (This is only supported on assemblers targeting GNU systems).
7246
7247 @item STT_OBJECT
7248 @itemx object
7249 Mark the symbol as being a data object.
7250
7251 @item STT_TLS
7252 @itemx tls_object
7253 Mark the symbol as being a thread-local data object.
7254
7255 @item STT_COMMON
7256 @itemx common
7257 Mark the symbol as being a common data object.
7258
7259 @item STT_NOTYPE
7260 @itemx notype
7261 Does not mark the symbol in any way. It is supported just for completeness.
7262
7263 @item gnu_unique_object
7264 Marks the symbol as being a globally unique data object. The dynamic linker
7265 will make sure that in the entire process there is just one symbol with this
7266 name and type in use. (This is only supported on assemblers targeting GNU
7267 systems).
7268
7269 @end table
7270
7271 Changing between incompatible types other than from/to STT_NOTYPE will
7272 result in a diagnostic. An intermediate change to STT_NOTYPE will silence
7273 this.
7274
7275 Note: Some targets support extra types in addition to those listed above.
7276
7277 @end ifset
7278 @end ifset
7279
7280 @node Uleb128
7281 @section @code{.uleb128 @var{expressions}}
7282
7283 @cindex @code{uleb128} directive
7284 @var{uleb128} stands for ``unsigned little endian base 128.'' This is a
7285 compact, variable length representation of numbers used by the DWARF
7286 symbolic debugging format. @xref{Sleb128, ,@code{.sleb128}}.
7287
7288 @ifset COFF
7289 @node Val
7290 @section @code{.val @var{addr}}
7291
7292 @cindex @code{val} directive
7293 @cindex COFF value attribute
7294 @cindex value attribute, COFF
7295 This directive, permitted only within @code{.def}/@code{.endef} pairs,
7296 records the address @var{addr} as the value attribute of a symbol table
7297 entry.
7298 @end ifset
7299
7300 @ifset ELF
7301 @node Version
7302 @section @code{.version "@var{string}"}
7303
7304 @cindex @code{version} directive
7305 This directive creates a @code{.note} section and places into it an ELF
7306 formatted note of type NT_VERSION. The note's name is set to @code{string}.
7307 @end ifset
7308
7309 @ifset ELF
7310 @node VTableEntry
7311 @section @code{.vtable_entry @var{table}, @var{offset}}
7312
7313 @cindex @code{vtable_entry} directive
7314 This directive finds or creates a symbol @code{table} and creates a
7315 @code{VTABLE_ENTRY} relocation for it with an addend of @code{offset}.
7316
7317 @node VTableInherit
7318 @section @code{.vtable_inherit @var{child}, @var{parent}}
7319
7320 @cindex @code{vtable_inherit} directive
7321 This directive finds the symbol @code{child} and finds or creates the symbol
7322 @code{parent} and then creates a @code{VTABLE_INHERIT} relocation for the
7323 parent whose addend is the value of the child symbol. As a special case the
7324 parent name of @code{0} is treated as referring to the @code{*ABS*} section.
7325 @end ifset
7326
7327 @node Warning
7328 @section @code{.warning "@var{string}"}
7329 @cindex warning directive
7330 Similar to the directive @code{.error}
7331 (@pxref{Error,,@code{.error "@var{string}"}}), but just emits a warning.
7332
7333 @node Weak
7334 @section @code{.weak @var{names}}
7335
7336 @cindex @code{weak} directive
7337 This directive sets the weak attribute on the comma separated list of symbol
7338 @code{names}. If the symbols do not already exist, they will be created.
7339
7340 On COFF targets other than PE, weak symbols are a GNU extension. This
7341 directive sets the weak attribute on the comma separated list of symbol
7342 @code{names}. If the symbols do not already exist, they will be created.
7343
7344 On the PE target, weak symbols are supported natively as weak aliases.
7345 When a weak symbol is created that is not an alias, GAS creates an
7346 alternate symbol to hold the default value.
7347
7348 @node Weakref
7349 @section @code{.weakref @var{alias}, @var{target}}
7350
7351 @cindex @code{weakref} directive
7352 This directive creates an alias to the target symbol that enables the symbol to
7353 be referenced with weak-symbol semantics, but without actually making it weak.
7354 If direct references or definitions of the symbol are present, then the symbol
7355 will not be weak, but if all references to it are through weak references, the
7356 symbol will be marked as weak in the symbol table.
7357
7358 The effect is equivalent to moving all references to the alias to a separate
7359 assembly source file, renaming the alias to the symbol in it, declaring the
7360 symbol as weak there, and running a reloadable link to merge the object files
7361 resulting from the assembly of the new source file and the old source file that
7362 had the references to the alias removed.
7363
7364 The alias itself never makes to the symbol table, and is entirely handled
7365 within the assembler.
7366
7367 @node Word
7368 @section @code{.word @var{expressions}}
7369
7370 @cindex @code{word} directive
7371 This directive expects zero or more @var{expressions}, of any section,
7372 separated by commas.
7373 @ifclear GENERIC
7374 @ifset W32
7375 For each expression, @command{@value{AS}} emits a 32-bit number.
7376 @end ifset
7377 @ifset W16
7378 For each expression, @command{@value{AS}} emits a 16-bit number.
7379 @end ifset
7380 @end ifclear
7381 @ifset GENERIC
7382
7383 The size of the number emitted, and its byte order,
7384 depend on what target computer the assembly is for.
7385 @end ifset
7386
7387 @c on sparc the "special treatment to support compilers" doesn't
7388 @c happen---32-bit addressability, period; no long/short jumps.
7389 @ifset DIFF-TBL-KLUGE
7390 @cindex difference tables altered
7391 @cindex altered difference tables
7392 @quotation
7393 @emph{Warning: Special Treatment to support Compilers}
7394 @end quotation
7395
7396 @ifset GENERIC
7397 Machines with a 32-bit address space, but that do less than 32-bit
7398 addressing, require the following special treatment. If the machine of
7399 interest to you does 32-bit addressing (or doesn't require it;
7400 @pxref{Machine Dependencies}), you can ignore this issue.
7401
7402 @end ifset
7403 In order to assemble compiler output into something that works,
7404 @command{@value{AS}} occasionally does strange things to @samp{.word} directives.
7405 Directives of the form @samp{.word sym1-sym2} are often emitted by
7406 compilers as part of jump tables. Therefore, when @command{@value{AS}} assembles a
7407 directive of the form @samp{.word sym1-sym2}, and the difference between
7408 @code{sym1} and @code{sym2} does not fit in 16 bits, @command{@value{AS}}
7409 creates a @dfn{secondary jump table}, immediately before the next label.
7410 This secondary jump table is preceded by a short-jump to the
7411 first byte after the secondary table. This short-jump prevents the flow
7412 of control from accidentally falling into the new table. Inside the
7413 table is a long-jump to @code{sym2}. The original @samp{.word}
7414 contains @code{sym1} minus the address of the long-jump to
7415 @code{sym2}.
7416
7417 If there were several occurrences of @samp{.word sym1-sym2} before the
7418 secondary jump table, all of them are adjusted. If there was a
7419 @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a
7420 long-jump to @code{sym4} is included in the secondary jump table,
7421 and the @code{.word} directives are adjusted to contain @code{sym3}
7422 minus the address of the long-jump to @code{sym4}; and so on, for as many
7423 entries in the original jump table as necessary.
7424
7425 @ifset INTERNALS
7426 @emph{This feature may be disabled by compiling @command{@value{AS}} with the
7427 @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse
7428 assembly language programmers.
7429 @end ifset
7430 @end ifset
7431 @c end DIFF-TBL-KLUGE
7432
7433 @ifclear no-space-dir
7434 @node Zero
7435 @section @code{.zero @var{size}}
7436
7437 @cindex @code{zero} directive
7438 @cindex filling memory with zero bytes
7439 This directive emits @var{size} 0-valued bytes. @var{size} must be an absolute
7440 expression. This directive is actually an alias for the @samp{.skip} directive
7441 so it can take an optional second argument of the value to store in the bytes
7442 instead of zero. Using @samp{.zero} in this way would be confusing however.
7443 @end ifclear
7444
7445 @ifset ELF
7446 @node 2byte
7447 @section @code{.2byte @var{expression} [, @var{expression}]*}
7448 @cindex @code{2byte} directive
7449 @cindex two-byte integer
7450 @cindex integer, 2-byte
7451
7452 This directive expects zero or more expressions, separated by commas. If there
7453 are no expressions then the directive does nothing. Otherwise each expression
7454 is evaluated in turn and placed in the next two bytes of the current output
7455 section, using the endian model of the target. If an expression will not fit
7456 in two bytes, a warning message is displayed and the least significant two
7457 bytes of the expression's value are used. If an expression cannot be evaluated
7458 at assembly time then relocations will be generated in order to compute the
7459 value at link time.
7460
7461 This directive does not apply any alignment before or after inserting the
7462 values. As a result of this, if relocations are generated, they may be
7463 different from those used for inserting values with a guaranteed alignment.
7464
7465 This directive is only available for ELF targets,
7466
7467 @node 4byte
7468 @section @code{.4byte @var{expression} [, @var{expression}]*}
7469 @cindex @code{4byte} directive
7470 @cindex four-byte integer
7471 @cindex integer, 4-byte
7472
7473 Like the @option{.2byte} directive, except that it inserts unaligned, four byte
7474 long values into the output.
7475
7476 @node 8byte
7477 @section @code{.8byte @var{expression} [, @var{expression}]*}
7478 @cindex @code{8byte} directive
7479 @cindex eight-byte integer
7480 @cindex integer, 8-byte
7481
7482 Like the @option{.2byte} directive, except that it inserts unaligned, eight
7483 byte long bignum values into the output.
7484
7485 @end ifset
7486
7487 @node Deprecated
7488 @section Deprecated Directives
7489
7490 @cindex deprecated directives
7491 @cindex obsolescent directives
7492 One day these directives won't work.
7493 They are included for compatibility with older assemblers.
7494 @table @t
7495 @item .abort
7496 @item .line
7497 @end table
7498
7499 @ifset ELF
7500 @node Object Attributes
7501 @chapter Object Attributes
7502 @cindex object attributes
7503
7504 @command{@value{AS}} assembles source files written for a specific architecture
7505 into object files for that architecture. But not all object files are alike.
7506 Many architectures support incompatible variations. For instance, floating
7507 point arguments might be passed in floating point registers if the object file
7508 requires hardware floating point support---or floating point arguments might be
7509 passed in integer registers if the object file supports processors with no
7510 hardware floating point unit. Or, if two objects are built for different
7511 generations of the same architecture, the combination may require the
7512 newer generation at run-time.
7513
7514 This information is useful during and after linking. At link time,
7515 @command{@value{LD}} can warn about incompatible object files. After link
7516 time, tools like @command{gdb} can use it to process the linked file
7517 correctly.
7518
7519 Compatibility information is recorded as a series of object attributes. Each
7520 attribute has a @dfn{vendor}, @dfn{tag}, and @dfn{value}. The vendor is a
7521 string, and indicates who sets the meaning of the tag. The tag is an integer,
7522 and indicates what property the attribute describes. The value may be a string
7523 or an integer, and indicates how the property affects this object. Missing
7524 attributes are the same as attributes with a zero value or empty string value.
7525
7526 Object attributes were developed as part of the ABI for the ARM Architecture.
7527 The file format is documented in @cite{ELF for the ARM Architecture}.
7528
7529 @menu
7530 * GNU Object Attributes:: @sc{gnu} Object Attributes
7531 * Defining New Object Attributes:: Defining New Object Attributes
7532 @end menu
7533
7534 @node GNU Object Attributes
7535 @section @sc{gnu} Object Attributes
7536
7537 The @code{.gnu_attribute} directive records an object attribute
7538 with vendor @samp{gnu}.
7539
7540 Except for @samp{Tag_compatibility}, which has both an integer and a string for
7541 its value, @sc{gnu} attributes have a string value if the tag number is odd and
7542 an integer value if the tag number is even. The second bit (@code{@var{tag} &
7543 2} is set for architecture-independent attributes and clear for
7544 architecture-dependent ones.
7545
7546 @subsection Common @sc{gnu} attributes
7547
7548 These attributes are valid on all architectures.
7549
7550 @table @r
7551 @item Tag_compatibility (32)
7552 The compatibility attribute takes an integer flag value and a vendor name. If
7553 the flag value is 0, the file is compatible with other toolchains. If it is 1,
7554 then the file is only compatible with the named toolchain. If it is greater
7555 than 1, the file can only be processed by other toolchains under some private
7556 arrangement indicated by the flag value and the vendor name.
7557 @end table
7558
7559 @subsection MIPS Attributes
7560
7561 @table @r
7562 @item Tag_GNU_MIPS_ABI_FP (4)
7563 The floating-point ABI used by this object file. The value will be:
7564
7565 @itemize @bullet
7566 @item
7567 0 for files not affected by the floating-point ABI.
7568 @item
7569 1 for files using the hardware floating-point ABI with a standard
7570 double-precision FPU.
7571 @item
7572 2 for files using the hardware floating-point ABI with a single-precision FPU.
7573 @item
7574 3 for files using the software floating-point ABI.
7575 @item
7576 4 for files using the deprecated hardware floating-point ABI which used 64-bit
7577 floating-point registers, 32-bit general-purpose registers and increased the
7578 number of callee-saved floating-point registers.
7579 @item
7580 5 for files using the hardware floating-point ABI with a double-precision FPU
7581 with either 32-bit or 64-bit floating-point registers and 32-bit
7582 general-purpose registers.
7583 @item
7584 6 for files using the hardware floating-point ABI with 64-bit floating-point
7585 registers and 32-bit general-purpose registers.
7586 @item
7587 7 for files using the hardware floating-point ABI with 64-bit floating-point
7588 registers, 32-bit general-purpose registers and a rule that forbids the
7589 direct use of odd-numbered single-precision floating-point registers.
7590 @end itemize
7591 @end table
7592
7593 @subsection PowerPC Attributes
7594
7595 @table @r
7596 @item Tag_GNU_Power_ABI_FP (4)
7597 The floating-point ABI used by this object file. The value will be:
7598
7599 @itemize @bullet
7600 @item
7601 0 for files not affected by the floating-point ABI.
7602 @item
7603 1 for files using double-precision hardware floating-point ABI.
7604 @item
7605 2 for files using the software floating-point ABI.
7606 @item
7607 3 for files using single-precision hardware floating-point ABI.
7608 @end itemize
7609
7610 @item Tag_GNU_Power_ABI_Vector (8)
7611 The vector ABI used by this object file. The value will be:
7612
7613 @itemize @bullet
7614 @item
7615 0 for files not affected by the vector ABI.
7616 @item
7617 1 for files using general purpose registers to pass vectors.
7618 @item
7619 2 for files using AltiVec registers to pass vectors.
7620 @item
7621 3 for files using SPE registers to pass vectors.
7622 @end itemize
7623 @end table
7624
7625 @subsection IBM z Systems Attributes
7626
7627 @table @r
7628 @item Tag_GNU_S390_ABI_Vector (8)
7629 The vector ABI used by this object file. The value will be:
7630
7631 @itemize @bullet
7632 @item
7633 0 for files not affected by the vector ABI.
7634 @item
7635 1 for files using software vector ABI.
7636 @item
7637 2 for files using hardware vector ABI.
7638 @end itemize
7639 @end table
7640
7641 @subsection MSP430 Attributes
7642
7643 @table @r
7644 @item Tag_GNU_MSP430_Data_Region (4)
7645 The data region used by this object file. The value will be:
7646
7647 @itemize @bullet
7648 @item
7649 0 for files not using the large memory model.
7650 @item
7651 1 for files which have been compiled with the condition that all
7652 data is in the lower memory region, i.e. below address 0x10000.
7653 @item
7654 2 for files which allow data to be placed in the full 20-bit memory range.
7655 @end itemize
7656 @end table
7657
7658 @node Defining New Object Attributes
7659 @section Defining New Object Attributes
7660
7661 If you want to define a new @sc{gnu} object attribute, here are the places you
7662 will need to modify. New attributes should be discussed on the @samp{binutils}
7663 mailing list.
7664
7665 @itemize @bullet
7666 @item
7667 This manual, which is the official register of attributes.
7668 @item
7669 The header for your architecture @file{include/elf}, to define the tag.
7670 @item
7671 The @file{bfd} support file for your architecture, to merge the attribute
7672 and issue any appropriate link warnings.
7673 @item
7674 Test cases in @file{ld/testsuite} for merging and link warnings.
7675 @item
7676 @file{binutils/readelf.c} to display your attribute.
7677 @item
7678 GCC, if you want the compiler to mark the attribute automatically.
7679 @end itemize
7680
7681 @end ifset
7682
7683 @ifset GENERIC
7684 @node Machine Dependencies
7685 @chapter Machine Dependent Features
7686
7687 @cindex machine dependencies
7688 The machine instruction sets are (almost by definition) different on
7689 each machine where @command{@value{AS}} runs. Floating point representations
7690 vary as well, and @command{@value{AS}} often supports a few additional
7691 directives or command-line options for compatibility with other
7692 assemblers on a particular platform. Finally, some versions of
7693 @command{@value{AS}} support special pseudo-instructions for branch
7694 optimization.
7695
7696 This chapter discusses most of these differences, though it does not
7697 include details on any machine's instruction set. For details on that
7698 subject, see the hardware manufacturer's manual.
7699
7700 @menu
7701 @ifset AARCH64
7702 * AArch64-Dependent:: AArch64 Dependent Features
7703 @end ifset
7704 @ifset ALPHA
7705 * Alpha-Dependent:: Alpha Dependent Features
7706 @end ifset
7707 @ifset ARC
7708 * ARC-Dependent:: ARC Dependent Features
7709 @end ifset
7710 @ifset ARM
7711 * ARM-Dependent:: ARM Dependent Features
7712 @end ifset
7713 @ifset AVR
7714 * AVR-Dependent:: AVR Dependent Features
7715 @end ifset
7716 @ifset Blackfin
7717 * Blackfin-Dependent:: Blackfin Dependent Features
7718 @end ifset
7719 @ifset BPF
7720 * BPF-Dependent:: BPF Dependent Features
7721 @end ifset
7722 @ifset CR16
7723 * CR16-Dependent:: CR16 Dependent Features
7724 @end ifset
7725 @ifset CRIS
7726 * CRIS-Dependent:: CRIS Dependent Features
7727 @end ifset
7728 @ifset CSKY
7729 * C-SKY-Dependent:: C-SKY Dependent Features
7730 @end ifset
7731 @ifset D10V
7732 * D10V-Dependent:: D10V Dependent Features
7733 @end ifset
7734 @ifset D30V
7735 * D30V-Dependent:: D30V Dependent Features
7736 @end ifset
7737 @ifset EPIPHANY
7738 * Epiphany-Dependent:: EPIPHANY Dependent Features
7739 @end ifset
7740 @ifset H8/300
7741 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7742 @end ifset
7743 @ifset HPPA
7744 * HPPA-Dependent:: HPPA Dependent Features
7745 @end ifset
7746 @ifset I80386
7747 * i386-Dependent:: Intel 80386 and AMD x86-64 Dependent Features
7748 @end ifset
7749 @ifset IA64
7750 * IA-64-Dependent:: Intel IA-64 Dependent Features
7751 @end ifset
7752 @ifset IP2K
7753 * IP2K-Dependent:: IP2K Dependent Features
7754 @end ifset
7755 @ifset LM32
7756 * LM32-Dependent:: LM32 Dependent Features
7757 @end ifset
7758 @ifset M32C
7759 * M32C-Dependent:: M32C Dependent Features
7760 @end ifset
7761 @ifset M32R
7762 * M32R-Dependent:: M32R Dependent Features
7763 @end ifset
7764 @ifset M680X0
7765 * M68K-Dependent:: M680x0 Dependent Features
7766 @end ifset
7767 @ifset M68HC11
7768 * M68HC11-Dependent:: M68HC11 and 68HC12 Dependent Features
7769 @end ifset
7770 @ifset S12Z
7771 * S12Z-Dependent:: S12Z Dependent Features
7772 @end ifset
7773 @ifset METAG
7774 * Meta-Dependent :: Meta Dependent Features
7775 @end ifset
7776 @ifset MICROBLAZE
7777 * MicroBlaze-Dependent:: MICROBLAZE Dependent Features
7778 @end ifset
7779 @ifset MIPS
7780 * MIPS-Dependent:: MIPS Dependent Features
7781 @end ifset
7782 @ifset MMIX
7783 * MMIX-Dependent:: MMIX Dependent Features
7784 @end ifset
7785 @ifset MSP430
7786 * MSP430-Dependent:: MSP430 Dependent Features
7787 @end ifset
7788 @ifset NDS32
7789 * NDS32-Dependent:: Andes NDS32 Dependent Features
7790 @end ifset
7791 @ifset NIOSII
7792 * NiosII-Dependent:: Altera Nios II Dependent Features
7793 @end ifset
7794 @ifset NS32K
7795 * NS32K-Dependent:: NS32K Dependent Features
7796 @end ifset
7797 @ifset OPENRISC
7798 * OpenRISC-Dependent:: OpenRISC 1000 Features
7799 @end ifset
7800 @ifset PDP11
7801 * PDP-11-Dependent:: PDP-11 Dependent Features
7802 @end ifset
7803 @ifset PJ
7804 * PJ-Dependent:: picoJava Dependent Features
7805 @end ifset
7806 @ifset PPC
7807 * PPC-Dependent:: PowerPC Dependent Features
7808 @end ifset
7809 @ifset PRU
7810 * PRU-Dependent:: PRU Dependent Features
7811 @end ifset
7812 @ifset RISCV
7813 * RISC-V-Dependent:: RISC-V Dependent Features
7814 @end ifset
7815 @ifset RL78
7816 * RL78-Dependent:: RL78 Dependent Features
7817 @end ifset
7818 @ifset RX
7819 * RX-Dependent:: RX Dependent Features
7820 @end ifset
7821 @ifset S390
7822 * S/390-Dependent:: IBM S/390 Dependent Features
7823 @end ifset
7824 @ifset SCORE
7825 * SCORE-Dependent:: SCORE Dependent Features
7826 @end ifset
7827 @ifset SH
7828 * SH-Dependent:: Renesas / SuperH SH Dependent Features
7829 @end ifset
7830 @ifset SPARC
7831 * Sparc-Dependent:: SPARC Dependent Features
7832 @end ifset
7833 @ifset TIC54X
7834 * TIC54X-Dependent:: TI TMS320C54x Dependent Features
7835 @end ifset
7836 @ifset TIC6X
7837 * TIC6X-Dependent :: TI TMS320C6x Dependent Features
7838 @end ifset
7839 @ifset TILEGX
7840 * TILE-Gx-Dependent :: Tilera TILE-Gx Dependent Features
7841 @end ifset
7842 @ifset TILEPRO
7843 * TILEPro-Dependent :: Tilera TILEPro Dependent Features
7844 @end ifset
7845 @ifset V850
7846 * V850-Dependent:: V850 Dependent Features
7847 @end ifset
7848 @ifset VAX
7849 * Vax-Dependent:: VAX Dependent Features
7850 @end ifset
7851 @ifset VISIUM
7852 * Visium-Dependent:: Visium Dependent Features
7853 @end ifset
7854 @ifset WASM32
7855 * WebAssembly-Dependent:: WebAssembly Dependent Features
7856 @end ifset
7857 @ifset XGATE
7858 * XGATE-Dependent:: XGATE Dependent Features
7859 @end ifset
7860 @ifset XSTORMY16
7861 * XSTORMY16-Dependent:: XStormy16 Dependent Features
7862 @end ifset
7863 @ifset XTENSA
7864 * Xtensa-Dependent:: Xtensa Dependent Features
7865 @end ifset
7866 @ifset Z80
7867 * Z80-Dependent:: Z80 Dependent Features
7868 @end ifset
7869 @ifset Z8000
7870 * Z8000-Dependent:: Z8000 Dependent Features
7871 @end ifset
7872 @end menu
7873
7874 @lowersections
7875 @end ifset
7876
7877 @c The following major nodes are *sections* in the GENERIC version, *chapters*
7878 @c in single-cpu versions. This is mainly achieved by @lowersections. There is a
7879 @c peculiarity: to preserve cross-references, there must be a node called
7880 @c "Machine Dependencies". Hence the conditional nodenames in each
7881 @c major node below. Node defaulting in makeinfo requires adjacency of
7882 @c node and sectioning commands; hence the repetition of @chapter BLAH
7883 @c in both conditional blocks.
7884
7885 @ifset AARCH64
7886 @include c-aarch64.texi
7887 @end ifset
7888
7889 @ifset ALPHA
7890 @include c-alpha.texi
7891 @end ifset
7892
7893 @ifset ARC
7894 @include c-arc.texi
7895 @end ifset
7896
7897 @ifset ARM
7898 @include c-arm.texi
7899 @end ifset
7900
7901 @ifset AVR
7902 @include c-avr.texi
7903 @end ifset
7904
7905 @ifset Blackfin
7906 @include c-bfin.texi
7907 @end ifset
7908
7909 @ifset BPF
7910 @include c-bpf.texi
7911 @end ifset
7912
7913 @ifset CR16
7914 @include c-cr16.texi
7915 @end ifset
7916
7917 @ifset CRIS
7918 @include c-cris.texi
7919 @end ifset
7920
7921 @ifset CSKY
7922 @include c-csky.texi
7923 @end ifset
7924
7925 @ifset Renesas-all
7926 @ifclear GENERIC
7927 @node Machine Dependencies
7928 @chapter Machine Dependent Features
7929
7930 The machine instruction sets are different on each Renesas chip family,
7931 and there are also some syntax differences among the families. This
7932 chapter describes the specific @command{@value{AS}} features for each
7933 family.
7934
7935 @menu
7936 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7937 * SH-Dependent:: Renesas SH Dependent Features
7938 @end menu
7939 @lowersections
7940 @end ifclear
7941 @end ifset
7942
7943 @ifset D10V
7944 @include c-d10v.texi
7945 @end ifset
7946
7947 @ifset D30V
7948 @include c-d30v.texi
7949 @end ifset
7950
7951 @ifset EPIPHANY
7952 @include c-epiphany.texi
7953 @end ifset
7954
7955 @ifset H8/300
7956 @include c-h8300.texi
7957 @end ifset
7958
7959 @ifset HPPA
7960 @include c-hppa.texi
7961 @end ifset
7962
7963 @ifset I80386
7964 @include c-i386.texi
7965 @end ifset
7966
7967 @ifset IA64
7968 @include c-ia64.texi
7969 @end ifset
7970
7971 @ifset IP2K
7972 @include c-ip2k.texi
7973 @end ifset
7974
7975 @ifset LM32
7976 @include c-lm32.texi
7977 @end ifset
7978
7979 @ifset M32C
7980 @include c-m32c.texi
7981 @end ifset
7982
7983 @ifset M32R
7984 @include c-m32r.texi
7985 @end ifset
7986
7987 @ifset M680X0
7988 @include c-m68k.texi
7989 @end ifset
7990
7991 @ifset M68HC11
7992 @include c-m68hc11.texi
7993 @end ifset
7994
7995 @ifset S12Z
7996 @include c-s12z.texi
7997 @end ifset
7998
7999 @ifset METAG
8000 @include c-metag.texi
8001 @end ifset
8002
8003 @ifset MICROBLAZE
8004 @include c-microblaze.texi
8005 @end ifset
8006
8007 @ifset MIPS
8008 @include c-mips.texi
8009 @end ifset
8010
8011 @ifset MMIX
8012 @include c-mmix.texi
8013 @end ifset
8014
8015 @ifset MSP430
8016 @include c-msp430.texi
8017 @end ifset
8018
8019 @ifset NDS32
8020 @include c-nds32.texi
8021 @end ifset
8022
8023 @ifset NIOSII
8024 @include c-nios2.texi
8025 @end ifset
8026
8027 @ifset NS32K
8028 @include c-ns32k.texi
8029 @end ifset
8030
8031 @ifset OPENRISC
8032 @include c-or1k.texi
8033 @end ifset
8034
8035 @ifset PDP11
8036 @include c-pdp11.texi
8037 @end ifset
8038
8039 @ifset PJ
8040 @include c-pj.texi
8041 @end ifset
8042
8043 @ifset PPC
8044 @include c-ppc.texi
8045 @end ifset
8046
8047 @ifset PRU
8048 @include c-pru.texi
8049 @end ifset
8050
8051 @ifset RISCV
8052 @include c-riscv.texi
8053 @end ifset
8054
8055 @ifset RL78
8056 @include c-rl78.texi
8057 @end ifset
8058
8059 @ifset RX
8060 @include c-rx.texi
8061 @end ifset
8062
8063 @ifset S390
8064 @include c-s390.texi
8065 @end ifset
8066
8067 @ifset SCORE
8068 @include c-score.texi
8069 @end ifset
8070
8071 @ifset SH
8072 @include c-sh.texi
8073 @end ifset
8074
8075 @ifset SPARC
8076 @include c-sparc.texi
8077 @end ifset
8078
8079 @ifset TIC54X
8080 @include c-tic54x.texi
8081 @end ifset
8082
8083 @ifset TIC6X
8084 @include c-tic6x.texi
8085 @end ifset
8086
8087 @ifset TILEGX
8088 @include c-tilegx.texi
8089 @end ifset
8090
8091 @ifset TILEPRO
8092 @include c-tilepro.texi
8093 @end ifset
8094
8095 @ifset V850
8096 @include c-v850.texi
8097 @end ifset
8098
8099 @ifset VAX
8100 @include c-vax.texi
8101 @end ifset
8102
8103 @ifset VISIUM
8104 @include c-visium.texi
8105 @end ifset
8106
8107 @ifset WASM32
8108 @include c-wasm32.texi
8109 @end ifset
8110
8111 @ifset XGATE
8112 @include c-xgate.texi
8113 @end ifset
8114
8115 @ifset XSTORMY16
8116 @include c-xstormy16.texi
8117 @end ifset
8118
8119 @ifset XTENSA
8120 @include c-xtensa.texi
8121 @end ifset
8122
8123 @ifset Z80
8124 @include c-z80.texi
8125 @end ifset
8126
8127 @ifset Z8000
8128 @include c-z8k.texi
8129 @end ifset
8130
8131 @ifset GENERIC
8132 @c reverse effect of @down at top of generic Machine-Dep chapter
8133 @raisesections
8134 @end ifset
8135
8136 @node Reporting Bugs
8137 @chapter Reporting Bugs
8138 @cindex bugs in assembler
8139 @cindex reporting bugs in assembler
8140
8141 Your bug reports play an essential role in making @command{@value{AS}} reliable.
8142
8143 Reporting a bug may help you by bringing a solution to your problem, or it may
8144 not. But in any case the principal function of a bug report is to help the
8145 entire community by making the next version of @command{@value{AS}} work better.
8146 Bug reports are your contribution to the maintenance of @command{@value{AS}}.
8147
8148 In order for a bug report to serve its purpose, you must include the
8149 information that enables us to fix the bug.
8150
8151 @menu
8152 * Bug Criteria:: Have you found a bug?
8153 * Bug Reporting:: How to report bugs
8154 @end menu
8155
8156 @node Bug Criteria
8157 @section Have You Found a Bug?
8158 @cindex bug criteria
8159
8160 If you are not sure whether you have found a bug, here are some guidelines:
8161
8162 @itemize @bullet
8163 @cindex fatal signal
8164 @cindex assembler crash
8165 @cindex crash of assembler
8166 @item
8167 If the assembler gets a fatal signal, for any input whatever, that is a
8168 @command{@value{AS}} bug. Reliable assemblers never crash.
8169
8170 @cindex error on valid input
8171 @item
8172 If @command{@value{AS}} produces an error message for valid input, that is a bug.
8173
8174 @cindex invalid input
8175 @item
8176 If @command{@value{AS}} does not produce an error message for invalid input, that
8177 is a bug. However, you should note that your idea of ``invalid input'' might
8178 be our idea of ``an extension'' or ``support for traditional practice''.
8179
8180 @item
8181 If you are an experienced user of assemblers, your suggestions for improvement
8182 of @command{@value{AS}} are welcome in any case.
8183 @end itemize
8184
8185 @node Bug Reporting
8186 @section How to Report Bugs
8187 @cindex bug reports
8188 @cindex assembler bugs, reporting
8189
8190 A number of companies and individuals offer support for @sc{gnu} products. If
8191 you obtained @command{@value{AS}} from a support organization, we recommend you
8192 contact that organization first.
8193
8194 You can find contact information for many support companies and
8195 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
8196 distribution.
8197
8198 @ifset BUGURL
8199 In any event, we also recommend that you send bug reports for @command{@value{AS}}
8200 to @value{BUGURL}.
8201 @end ifset
8202
8203 The fundamental principle of reporting bugs usefully is this:
8204 @strong{report all the facts}. If you are not sure whether to state a
8205 fact or leave it out, state it!
8206
8207 Often people omit facts because they think they know what causes the problem
8208 and assume that some details do not matter. Thus, you might assume that the
8209 name of a symbol you use in an example does not matter. Well, probably it does
8210 not, but one cannot be sure. Perhaps the bug is a stray memory reference which
8211 happens to fetch from the location where that name is stored in memory;
8212 perhaps, if the name were different, the contents of that location would fool
8213 the assembler into doing the right thing despite the bug. Play it safe and
8214 give a specific, complete example. That is the easiest thing for you to do,
8215 and the most helpful.
8216
8217 Keep in mind that the purpose of a bug report is to enable us to fix the bug if
8218 it is new to us. Therefore, always write your bug reports on the assumption
8219 that the bug has not been reported previously.
8220
8221 Sometimes people give a few sketchy facts and ask, ``Does this ring a
8222 bell?'' This cannot help us fix a bug, so it is basically useless. We
8223 respond by asking for enough details to enable us to investigate.
8224 You might as well expedite matters by sending them to begin with.
8225
8226 To enable us to fix the bug, you should include all these things:
8227
8228 @itemize @bullet
8229 @item
8230 The version of @command{@value{AS}}. @command{@value{AS}} announces it if you start
8231 it with the @samp{--version} argument.
8232
8233 Without this, we will not know whether there is any point in looking for
8234 the bug in the current version of @command{@value{AS}}.
8235
8236 @item
8237 Any patches you may have applied to the @command{@value{AS}} source.
8238
8239 @item
8240 The type of machine you are using, and the operating system name and
8241 version number.
8242
8243 @item
8244 What compiler (and its version) was used to compile @command{@value{AS}}---e.g.
8245 ``@code{gcc-2.7}''.
8246
8247 @item
8248 The command arguments you gave the assembler to assemble your example and
8249 observe the bug. To guarantee you will not omit something important, list them
8250 all. A copy of the Makefile (or the output from make) is sufficient.
8251
8252 If we were to try to guess the arguments, we would probably guess wrong
8253 and then we might not encounter the bug.
8254
8255 @item
8256 A complete input file that will reproduce the bug. If the bug is observed when
8257 the assembler is invoked via a compiler, send the assembler source, not the
8258 high level language source. Most compilers will produce the assembler source
8259 when run with the @samp{-S} option. If you are using @code{@value{GCC}}, use
8260 the options @samp{-v --save-temps}; this will save the assembler source in a
8261 file with an extension of @file{.s}, and also show you exactly how
8262 @command{@value{AS}} is being run.
8263
8264 @item
8265 A description of what behavior you observe that you believe is
8266 incorrect. For example, ``It gets a fatal signal.''
8267
8268 Of course, if the bug is that @command{@value{AS}} gets a fatal signal, then we
8269 will certainly notice it. But if the bug is incorrect output, we might not
8270 notice unless it is glaringly wrong. You might as well not give us a chance to
8271 make a mistake.
8272
8273 Even if the problem you experience is a fatal signal, you should still say so
8274 explicitly. Suppose something strange is going on, such as, your copy of
8275 @command{@value{AS}} is out of sync, or you have encountered a bug in the C
8276 library on your system. (This has happened!) Your copy might crash and ours
8277 would not. If you told us to expect a crash, then when ours fails to crash, we
8278 would know that the bug was not happening for us. If you had not told us to
8279 expect a crash, then we would not be able to draw any conclusion from our
8280 observations.
8281
8282 @item
8283 If you wish to suggest changes to the @command{@value{AS}} source, send us context
8284 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or @samp{-p}
8285 option. Always send diffs from the old file to the new file. If you even
8286 discuss something in the @command{@value{AS}} source, refer to it by context, not
8287 by line number.
8288
8289 The line numbers in our development sources will not match those in your
8290 sources. Your line numbers would convey no useful information to us.
8291 @end itemize
8292
8293 Here are some things that are not necessary:
8294
8295 @itemize @bullet
8296 @item
8297 A description of the envelope of the bug.
8298
8299 Often people who encounter a bug spend a lot of time investigating
8300 which changes to the input file will make the bug go away and which
8301 changes will not affect it.
8302
8303 This is often time consuming and not very useful, because the way we
8304 will find the bug is by running a single example under the debugger
8305 with breakpoints, not by pure deduction from a series of examples.
8306 We recommend that you save your time for something else.
8307
8308 Of course, if you can find a simpler example to report @emph{instead}
8309 of the original one, that is a convenience for us. Errors in the
8310 output will be easier to spot, running under the debugger will take
8311 less time, and so on.
8312
8313 However, simplification is not vital; if you do not want to do this,
8314 report the bug anyway and send us the entire test case you used.
8315
8316 @item
8317 A patch for the bug.
8318
8319 A patch for the bug does help us if it is a good one. But do not omit
8320 the necessary information, such as the test case, on the assumption that
8321 a patch is all we need. We might see problems with your patch and decide
8322 to fix the problem another way, or we might not understand it at all.
8323
8324 Sometimes with a program as complicated as @command{@value{AS}} it is very hard to
8325 construct an example that will make the program follow a certain path through
8326 the code. If you do not send us the example, we will not be able to construct
8327 one, so we will not be able to verify that the bug is fixed.
8328
8329 And if we cannot understand what bug you are trying to fix, or why your
8330 patch should be an improvement, we will not install it. A test case will
8331 help us to understand.
8332
8333 @item
8334 A guess about what the bug is or what it depends on.
8335
8336 Such guesses are usually wrong. Even we cannot guess right about such
8337 things without first using the debugger to find the facts.
8338 @end itemize
8339
8340 @node Acknowledgements
8341 @chapter Acknowledgements
8342
8343 If you have contributed to GAS and your name isn't listed here,
8344 it is not meant as a slight. We just don't know about it. Send mail to the
8345 maintainer, and we'll correct the situation. Currently
8346 @c (October 2012),
8347 the maintainer is Nick Clifton (email address @code{nickc@@redhat.com}).
8348
8349 Dean Elsner wrote the original @sc{gnu} assembler for the VAX.@footnote{Any
8350 more details?}
8351
8352 Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug
8353 information and the 68k series machines, most of the preprocessing pass, and
8354 extensive changes in @file{messages.c}, @file{input-file.c}, @file{write.c}.
8355
8356 K. Richard Pixley maintained GAS for a while, adding various enhancements and
8357 many bug fixes, including merging support for several processors, breaking GAS
8358 up to handle multiple object file format back ends (including heavy rewrite,
8359 testing, an integration of the coff and b.out back ends), adding configuration
8360 including heavy testing and verification of cross assemblers and file splits
8361 and renaming, converted GAS to strictly ANSI C including full prototypes, added
8362 support for m680[34]0 and cpu32, did considerable work on i960 including a COFF
8363 port (including considerable amounts of reverse engineering), a SPARC opcode
8364 file rewrite, DECstation, rs6000, and hp300hpux host ports, updated ``know''
8365 assertions and made them work, much other reorganization, cleanup, and lint.
8366
8367 Ken Raeburn wrote the high-level BFD interface code to replace most of the code
8368 in format-specific I/O modules.
8369
8370 The original VMS support was contributed by David L. Kashtan. Eric Youngdale
8371 has done much work with it since.
8372
8373 The Intel 80386 machine description was written by Eliot Dresselhaus.
8374
8375 Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
8376
8377 The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
8378 University and Torbjorn Granlund of the Swedish Institute of Computer Science.
8379
8380 Keith Knowles at the Open Software Foundation wrote the original MIPS back end
8381 (@file{tc-mips.c}, @file{tc-mips.h}), and contributed Rose format support
8382 (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
8383 support a.out format.
8384
8385 Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k,
8386 tc-h8300), and IEEE 695 object file format (obj-ieee), was written by
8387 Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to
8388 use BFD for some low-level operations, for use with the H8/300 and AMD 29k
8389 targets.
8390
8391 John Gilmore built the AMD 29000 support, added @code{.include} support, and
8392 simplified the configuration of which versions accept which directives. He
8393 updated the 68k machine description so that Motorola's opcodes always produced
8394 fixed-size instructions (e.g., @code{jsr}), while synthetic instructions
8395 remained shrinkable (@code{jbsr}). John fixed many bugs, including true tested
8396 cross-compilation support, and one bug in relaxation that took a week and
8397 required the proverbial one-bit fix.
8398
8399 Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
8400 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix),
8401 added support for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and
8402 PowerPC assembler, and made a few other minor patches.
8403
8404 Steve Chamberlain made GAS able to generate listings.
8405
8406 Hewlett-Packard contributed support for the HP9000/300.
8407
8408 Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM)
8409 along with a fairly extensive HPPA testsuite (for both SOM and ELF object
8410 formats). This work was supported by both the Center for Software Science at
8411 the University of Utah and Cygnus Support.
8412
8413 Support for ELF format files has been worked on by Mark Eichin of Cygnus
8414 Support (original, incomplete implementation for SPARC), Pete Hoogenboom and
8415 Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open
8416 Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc,
8417 and some initial 64-bit support).
8418
8419 Linas Vepstas added GAS support for the ESA/390 ``IBM 370'' architecture.
8420
8421 Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
8422 support for openVMS/Alpha.
8423
8424 Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
8425 flavors.
8426
8427 David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica,
8428 Inc.@: added support for Xtensa processors.
8429
8430 Several engineers at Cygnus Support have also provided many small bug fixes and
8431 configuration enhancements.
8432
8433 Jon Beniston added support for the Lattice Mico32 architecture.
8434
8435 Many others have contributed large or small bugfixes and enhancements. If
8436 you have contributed significant work and are not mentioned on this list, and
8437 want to be, let us know. Some of the history has been lost; we are not
8438 intentionally leaving anyone out.
8439
8440 @node GNU Free Documentation License
8441 @appendix GNU Free Documentation License
8442 @include fdl.texi
8443
8444 @node AS Index
8445 @unnumbered AS Index
8446
8447 @printindex cp
8448
8449 @bye
8450 @c Local Variables:
8451 @c fill-column: 79
8452 @c End:
This page took 0.23235 seconds and 4 git commands to generate.