i386: Add -mbranches-within-32B-boundaries
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{enqcmd},
187 @code{avx512f},
188 @code{avx512cd},
189 @code{avx512er},
190 @code{avx512pf},
191 @code{avx512vl},
192 @code{avx512bw},
193 @code{avx512dq},
194 @code{avx512ifma},
195 @code{avx512vbmi},
196 @code{avx512_4fmaps},
197 @code{avx512_4vnniw},
198 @code{avx512_vpopcntdq},
199 @code{avx512_vbmi2},
200 @code{avx512_vnni},
201 @code{avx512_bitalg},
202 @code{avx512_bf16},
203 @code{noavx512f},
204 @code{noavx512cd},
205 @code{noavx512er},
206 @code{noavx512pf},
207 @code{noavx512vl},
208 @code{noavx512bw},
209 @code{noavx512dq},
210 @code{noavx512ifma},
211 @code{noavx512vbmi},
212 @code{noavx512_4fmaps},
213 @code{noavx512_4vnniw},
214 @code{noavx512_vpopcntdq},
215 @code{noavx512_vbmi2},
216 @code{noavx512_vnni},
217 @code{noavx512_bitalg},
218 @code{noavx512_vp2intersect},
219 @code{noavx512_bf16},
220 @code{noenqcmd},
221 @code{vmx},
222 @code{vmfunc},
223 @code{smx},
224 @code{xsave},
225 @code{xsaveopt},
226 @code{xsavec},
227 @code{xsaves},
228 @code{aes},
229 @code{pclmul},
230 @code{fsgsbase},
231 @code{rdrnd},
232 @code{f16c},
233 @code{bmi2},
234 @code{fma},
235 @code{movbe},
236 @code{ept},
237 @code{lzcnt},
238 @code{hle},
239 @code{rtm},
240 @code{invpcid},
241 @code{clflush},
242 @code{mwaitx},
243 @code{clzero},
244 @code{wbnoinvd},
245 @code{pconfig},
246 @code{waitpkg},
247 @code{cldemote},
248 @code{rdpru},
249 @code{mcommit},
250 @code{lwp},
251 @code{fma4},
252 @code{xop},
253 @code{cx16},
254 @code{syscall},
255 @code{rdtscp},
256 @code{3dnow},
257 @code{3dnowa},
258 @code{sse4a},
259 @code{sse5},
260 @code{svme},
261 @code{abm} and
262 @code{padlock}.
263 Note that rather than extending a basic instruction set, the extension
264 mnemonics starting with @code{no} revoke the respective functionality.
265
266 When the @code{.arch} directive is used with @option{-march}, the
267 @code{.arch} directive will take precedent.
268
269 @cindex @samp{-mtune=} option, i386
270 @cindex @samp{-mtune=} option, x86-64
271 @item -mtune=@var{CPU}
272 This option specifies a processor to optimize for. When used in
273 conjunction with the @option{-march} option, only instructions
274 of the processor specified by the @option{-march} option will be
275 generated.
276
277 Valid @var{CPU} values are identical to the processor list of
278 @option{-march=@var{CPU}}.
279
280 @cindex @samp{-msse2avx} option, i386
281 @cindex @samp{-msse2avx} option, x86-64
282 @item -msse2avx
283 This option specifies that the assembler should encode SSE instructions
284 with VEX prefix.
285
286 @cindex @samp{-msse-check=} option, i386
287 @cindex @samp{-msse-check=} option, x86-64
288 @item -msse-check=@var{none}
289 @itemx -msse-check=@var{warning}
290 @itemx -msse-check=@var{error}
291 These options control if the assembler should check SSE instructions.
292 @option{-msse-check=@var{none}} will make the assembler not to check SSE
293 instructions, which is the default. @option{-msse-check=@var{warning}}
294 will make the assembler issue a warning for any SSE instruction.
295 @option{-msse-check=@var{error}} will make the assembler issue an error
296 for any SSE instruction.
297
298 @cindex @samp{-mavxscalar=} option, i386
299 @cindex @samp{-mavxscalar=} option, x86-64
300 @item -mavxscalar=@var{128}
301 @itemx -mavxscalar=@var{256}
302 These options control how the assembler should encode scalar AVX
303 instructions. @option{-mavxscalar=@var{128}} will encode scalar
304 AVX instructions with 128bit vector length, which is the default.
305 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
306 with 256bit vector length.
307
308 WARNING: Don't use this for production code - due to CPU errata the
309 resulting code may not work on certain models.
310
311 @cindex @samp{-mvexwig=} option, i386
312 @cindex @samp{-mvexwig=} option, x86-64
313 @item -mvexwig=@var{0}
314 @itemx -mvexwig=@var{1}
315 These options control how the assembler should encode VEX.W-ignored (WIG)
316 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
317 instructions with vex.w = 0, which is the default.
318 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
319 vex.w = 1.
320
321 WARNING: Don't use this for production code - due to CPU errata the
322 resulting code may not work on certain models.
323
324 @cindex @samp{-mevexlig=} option, i386
325 @cindex @samp{-mevexlig=} option, x86-64
326 @item -mevexlig=@var{128}
327 @itemx -mevexlig=@var{256}
328 @itemx -mevexlig=@var{512}
329 These options control how the assembler should encode length-ignored
330 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
331 EVEX instructions with 128bit vector length, which is the default.
332 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
333 encode LIG EVEX instructions with 256bit and 512bit vector length,
334 respectively.
335
336 @cindex @samp{-mevexwig=} option, i386
337 @cindex @samp{-mevexwig=} option, x86-64
338 @item -mevexwig=@var{0}
339 @itemx -mevexwig=@var{1}
340 These options control how the assembler should encode w-ignored (WIG)
341 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
342 EVEX instructions with evex.w = 0, which is the default.
343 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
344 evex.w = 1.
345
346 @cindex @samp{-mmnemonic=} option, i386
347 @cindex @samp{-mmnemonic=} option, x86-64
348 @item -mmnemonic=@var{att}
349 @itemx -mmnemonic=@var{intel}
350 This option specifies instruction mnemonic for matching instructions.
351 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
352 take precedent.
353
354 @cindex @samp{-msyntax=} option, i386
355 @cindex @samp{-msyntax=} option, x86-64
356 @item -msyntax=@var{att}
357 @itemx -msyntax=@var{intel}
358 This option specifies instruction syntax when processing instructions.
359 The @code{.att_syntax} and @code{.intel_syntax} directives will
360 take precedent.
361
362 @cindex @samp{-mnaked-reg} option, i386
363 @cindex @samp{-mnaked-reg} option, x86-64
364 @item -mnaked-reg
365 This option specifies that registers don't require a @samp{%} prefix.
366 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
367
368 @cindex @samp{-madd-bnd-prefix} option, i386
369 @cindex @samp{-madd-bnd-prefix} option, x86-64
370 @item -madd-bnd-prefix
371 This option forces the assembler to add BND prefix to all branches, even
372 if such prefix was not explicitly specified in the source code.
373
374 @cindex @samp{-mshared} option, i386
375 @cindex @samp{-mshared} option, x86-64
376 @item -mno-shared
377 On ELF target, the assembler normally optimizes out non-PLT relocations
378 against defined non-weak global branch targets with default visibility.
379 The @samp{-mshared} option tells the assembler to generate code which
380 may go into a shared library where all non-weak global branch targets
381 with default visibility can be preempted. The resulting code is
382 slightly bigger. This option only affects the handling of branch
383 instructions.
384
385 @cindex @samp{-mbig-obj} option, x86-64
386 @item -mbig-obj
387 On x86-64 PE/COFF target this option forces the use of big object file
388 format, which allows more than 32768 sections.
389
390 @cindex @samp{-momit-lock-prefix=} option, i386
391 @cindex @samp{-momit-lock-prefix=} option, x86-64
392 @item -momit-lock-prefix=@var{no}
393 @itemx -momit-lock-prefix=@var{yes}
394 These options control how the assembler should encode lock prefix.
395 This option is intended as a workaround for processors, that fail on
396 lock prefix. This option can only be safely used with single-core,
397 single-thread computers
398 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
399 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
400 which is the default.
401
402 @cindex @samp{-mfence-as-lock-add=} option, i386
403 @cindex @samp{-mfence-as-lock-add=} option, x86-64
404 @item -mfence-as-lock-add=@var{no}
405 @itemx -mfence-as-lock-add=@var{yes}
406 These options control how the assembler should encode lfence, mfence and
407 sfence.
408 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
409 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
410 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
411 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
412 sfence as usual, which is the default.
413
414 @cindex @samp{-mrelax-relocations=} option, i386
415 @cindex @samp{-mrelax-relocations=} option, x86-64
416 @item -mrelax-relocations=@var{no}
417 @itemx -mrelax-relocations=@var{yes}
418 These options control whether the assembler should generate relax
419 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
420 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
421 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
422 @option{-mrelax-relocations=@var{no}} will not generate relax
423 relocations. The default can be controlled by a configure option
424 @option{--enable-x86-relax-relocations}.
425
426 @cindex @samp{-malign-branch-boundary=} option, i386
427 @cindex @samp{-malign-branch-boundary=} option, x86-64
428 @item -malign-branch-boundary=@var{NUM}
429 This option controls how the assembler should align branches with segment
430 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
431 no less than 16. Branches will be aligned within @var{NUM} byte
432 boundary. @option{-malign-branch-boundary=0}, which is the default,
433 doesn't align branches.
434
435 @cindex @samp{-malign-branch=} option, i386
436 @cindex @samp{-malign-branch=} option, x86-64
437 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
438 This option specifies types of branches to align. @var{TYPE} is
439 combination of @samp{jcc}, which aligns conditional jumps,
440 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
441 which aligns unconditional jumps, @samp{call} which aligns calls,
442 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
443 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
444
445 @cindex @samp{-malign-branch-prefix-size=} option, i386
446 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
447 @item -malign-branch-prefix-size=@var{NUM}
448 This option specifies the maximum number of prefixes on an instruction
449 to align branches. @var{NUM} should be between 0 and 5. The default
450 @var{NUM} is 5.
451
452 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
453 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
454 @item -mbranches-within-32B-boundaries
455 This option aligns conditional jumps, fused conditional jumps and
456 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
457 on an instruction. It is equivalent to
458 @option{-malign-branch-boundary=32}
459 @option{-malign-branch=jcc+fused+jmp}
460 @option{-malign-branch-prefix-size=5}.
461 The default doesn't align branches.
462
463 @cindex @samp{-mx86-used-note=} option, i386
464 @cindex @samp{-mx86-used-note=} option, x86-64
465 @item -mx86-used-note=@var{no}
466 @itemx -mx86-used-note=@var{yes}
467 These options control whether the assembler should generate
468 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
469 GNU property notes. The default can be controlled by the
470 @option{--enable-x86-used-note} configure option.
471
472 @cindex @samp{-mevexrcig=} option, i386
473 @cindex @samp{-mevexrcig=} option, x86-64
474 @item -mevexrcig=@var{rne}
475 @itemx -mevexrcig=@var{rd}
476 @itemx -mevexrcig=@var{ru}
477 @itemx -mevexrcig=@var{rz}
478 These options control how the assembler should encode SAE-only
479 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
480 of EVEX instruction with 00, which is the default.
481 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
482 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
483 with 01, 10 and 11 RC bits, respectively.
484
485 @cindex @samp{-mamd64} option, x86-64
486 @cindex @samp{-mintel64} option, x86-64
487 @item -mamd64
488 @itemx -mintel64
489 This option specifies that the assembler should accept only AMD64 or
490 Intel64 ISA in 64-bit mode. The default is to accept both.
491
492 @cindex @samp{-O0} option, i386
493 @cindex @samp{-O0} option, x86-64
494 @cindex @samp{-O} option, i386
495 @cindex @samp{-O} option, x86-64
496 @cindex @samp{-O1} option, i386
497 @cindex @samp{-O1} option, x86-64
498 @cindex @samp{-O2} option, i386
499 @cindex @samp{-O2} option, x86-64
500 @cindex @samp{-Os} option, i386
501 @cindex @samp{-Os} option, x86-64
502 @item -O0 | -O | -O1 | -O2 | -Os
503 Optimize instruction encoding with smaller instruction size. @samp{-O}
504 and @samp{-O1} encode 64-bit register load instructions with 64-bit
505 immediate as 32-bit register load instructions with 31-bit or 32-bits
506 immediates, encode 64-bit register clearing instructions with 32-bit
507 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
508 register clearing instructions with 128-bit VEX vector register
509 clearing instructions, encode 128-bit/256-bit EVEX vector
510 register load/store instructions with VEX vector register load/store
511 instructions, and encode 128-bit/256-bit EVEX packed integer logical
512 instructions with 128-bit/256-bit VEX packed integer logical.
513
514 @samp{-O2} includes @samp{-O1} optimization plus encodes
515 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
516 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
517 instructions with commutative source operands will also have their
518 source operands swapped if this allows using the 2-byte VEX prefix form
519 instead of the 3-byte one. Certain forms of AND as well as OR with the
520 same (register) operand specified twice will also be changed to TEST.
521
522 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
523 and 64-bit register tests with immediate as 8-bit register test with
524 immediate. @samp{-O0} turns off this optimization.
525
526 @end table
527 @c man end
528
529 @node i386-Directives
530 @section x86 specific Directives
531
532 @cindex machine directives, x86
533 @cindex x86 machine directives
534 @table @code
535
536 @cindex @code{lcomm} directive, COFF
537 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
538 Reserve @var{length} (an absolute expression) bytes for a local common
539 denoted by @var{symbol}. The section and value of @var{symbol} are
540 those of the new local common. The addresses are allocated in the bss
541 section, so that at run-time the bytes start off zeroed. Since
542 @var{symbol} is not declared global, it is normally not visible to
543 @code{@value{LD}}. The optional third parameter, @var{alignment},
544 specifies the desired alignment of the symbol in the bss section.
545
546 This directive is only available for COFF based x86 targets.
547
548 @cindex @code{largecomm} directive, ELF
549 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
550 This directive behaves in the same way as the @code{comm} directive
551 except that the data is placed into the @var{.lbss} section instead of
552 the @var{.bss} section @ref{Comm}.
553
554 The directive is intended to be used for data which requires a large
555 amount of space, and it is only available for ELF based x86_64
556 targets.
557
558 @cindex @code{value} directive
559 @item .value @var{expression} [, @var{expression}]
560 This directive behaves in the same way as the @code{.short} directive,
561 taking a series of comma separated expressions and storing them as
562 two-byte wide values into the current section.
563
564 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
565
566 @end table
567
568 @node i386-Syntax
569 @section i386 Syntactical Considerations
570 @menu
571 * i386-Variations:: AT&T Syntax versus Intel Syntax
572 * i386-Chars:: Special Characters
573 @end menu
574
575 @node i386-Variations
576 @subsection AT&T Syntax versus Intel Syntax
577
578 @cindex i386 intel_syntax pseudo op
579 @cindex intel_syntax pseudo op, i386
580 @cindex i386 att_syntax pseudo op
581 @cindex att_syntax pseudo op, i386
582 @cindex i386 syntax compatibility
583 @cindex syntax compatibility, i386
584 @cindex x86-64 intel_syntax pseudo op
585 @cindex intel_syntax pseudo op, x86-64
586 @cindex x86-64 att_syntax pseudo op
587 @cindex att_syntax pseudo op, x86-64
588 @cindex x86-64 syntax compatibility
589 @cindex syntax compatibility, x86-64
590
591 @code{@value{AS}} now supports assembly using Intel assembler syntax.
592 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
593 back to the usual AT&T mode for compatibility with the output of
594 @code{@value{GCC}}. Either of these directives may have an optional
595 argument, @code{prefix}, or @code{noprefix} specifying whether registers
596 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
597 different from Intel syntax. We mention these differences because
598 almost all 80386 documents use Intel syntax. Notable differences
599 between the two syntaxes are:
600
601 @cindex immediate operands, i386
602 @cindex i386 immediate operands
603 @cindex register operands, i386
604 @cindex i386 register operands
605 @cindex jump/call operands, i386
606 @cindex i386 jump/call operands
607 @cindex operand delimiters, i386
608
609 @cindex immediate operands, x86-64
610 @cindex x86-64 immediate operands
611 @cindex register operands, x86-64
612 @cindex x86-64 register operands
613 @cindex jump/call operands, x86-64
614 @cindex x86-64 jump/call operands
615 @cindex operand delimiters, x86-64
616 @itemize @bullet
617 @item
618 AT&T immediate operands are preceded by @samp{$}; Intel immediate
619 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
620 AT&T register operands are preceded by @samp{%}; Intel register operands
621 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
622 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
623
624 @cindex i386 source, destination operands
625 @cindex source, destination operands; i386
626 @cindex x86-64 source, destination operands
627 @cindex source, destination operands; x86-64
628 @item
629 AT&T and Intel syntax use the opposite order for source and destination
630 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
631 @samp{source, dest} convention is maintained for compatibility with
632 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
633 instructions with 2 immediate operands, such as the @samp{enter}
634 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
635
636 @cindex mnemonic suffixes, i386
637 @cindex sizes operands, i386
638 @cindex i386 size suffixes
639 @cindex mnemonic suffixes, x86-64
640 @cindex sizes operands, x86-64
641 @cindex x86-64 size suffixes
642 @item
643 In AT&T syntax the size of memory operands is determined from the last
644 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
645 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
646 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
647 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
648 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
649 no other way to disambiguate an instruction. Intel syntax accomplishes this by
650 prefixing memory operands (@emph{not} the instruction mnemonics) with
651 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
652 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
653 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
654 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
655 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
656
657 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
658 instruction with the 64-bit displacement or immediate operand.
659
660 @cindex return instructions, i386
661 @cindex i386 jump, call, return
662 @cindex return instructions, x86-64
663 @cindex x86-64 jump, call, return
664 @item
665 Immediate form long jumps and calls are
666 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
667 Intel syntax is
668 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
669 instruction
670 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
671 @samp{ret far @var{stack-adjust}}.
672
673 @cindex sections, i386
674 @cindex i386 sections
675 @cindex sections, x86-64
676 @cindex x86-64 sections
677 @item
678 The AT&T assembler does not provide support for multiple section
679 programs. Unix style systems expect all programs to be single sections.
680 @end itemize
681
682 @node i386-Chars
683 @subsection Special Characters
684
685 @cindex line comment character, i386
686 @cindex i386 line comment character
687 The presence of a @samp{#} appearing anywhere on a line indicates the
688 start of a comment that extends to the end of that line.
689
690 If a @samp{#} appears as the first character of a line then the whole
691 line is treated as a comment, but in this case the line can also be a
692 logical line number directive (@pxref{Comments}) or a preprocessor
693 control command (@pxref{Preprocessing}).
694
695 If the @option{--divide} command-line option has not been specified
696 then the @samp{/} character appearing anywhere on a line also
697 introduces a line comment.
698
699 @cindex line separator, i386
700 @cindex statement separator, i386
701 @cindex i386 line separator
702 The @samp{;} character can be used to separate statements on the same
703 line.
704
705 @node i386-Mnemonics
706 @section i386-Mnemonics
707 @subsection Instruction Naming
708
709 @cindex i386 instruction naming
710 @cindex instruction naming, i386
711 @cindex x86-64 instruction naming
712 @cindex instruction naming, x86-64
713
714 Instruction mnemonics are suffixed with one character modifiers which
715 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
716 and @samp{q} specify byte, word, long and quadruple word operands. If
717 no suffix is specified by an instruction then @code{@value{AS}} tries to
718 fill in the missing suffix based on the destination register operand
719 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
720 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
721 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
722 assembler which assumes that a missing mnemonic suffix implies long
723 operand size. (This incompatibility does not affect compiler output
724 since compilers always explicitly specify the mnemonic suffix.)
725
726 Almost all instructions have the same names in AT&T and Intel format.
727 There are a few exceptions. The sign extend and zero extend
728 instructions need two sizes to specify them. They need a size to
729 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
730 is accomplished by using two instruction mnemonic suffixes in AT&T
731 syntax. Base names for sign extend and zero extend are
732 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
733 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
734 are tacked on to this base name, the @emph{from} suffix before the
735 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
736 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
737 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
738 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
739 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
740 quadruple word).
741
742 @cindex encoding options, i386
743 @cindex encoding options, x86-64
744
745 Different encoding options can be specified via pseudo prefixes:
746
747 @itemize @bullet
748 @item
749 @samp{@{disp8@}} -- prefer 8-bit displacement.
750
751 @item
752 @samp{@{disp32@}} -- prefer 32-bit displacement.
753
754 @item
755 @samp{@{load@}} -- prefer load-form instruction.
756
757 @item
758 @samp{@{store@}} -- prefer store-form instruction.
759
760 @item
761 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
762
763 @item
764 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
765
766 @item
767 @samp{@{evex@}} -- encode with EVEX prefix.
768
769 @item
770 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
771 instructions (x86-64 only). Note that this differs from the @samp{rex}
772 prefix which generates REX prefix unconditionally.
773
774 @item
775 @samp{@{nooptimize@}} -- disable instruction size optimization.
776 @end itemize
777
778 @cindex conversion instructions, i386
779 @cindex i386 conversion instructions
780 @cindex conversion instructions, x86-64
781 @cindex x86-64 conversion instructions
782 The Intel-syntax conversion instructions
783
784 @itemize @bullet
785 @item
786 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
787
788 @item
789 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
790
791 @item
792 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
793
794 @item
795 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
796
797 @item
798 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
799 (x86-64 only),
800
801 @item
802 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
803 @samp{%rdx:%rax} (x86-64 only),
804 @end itemize
805
806 @noindent
807 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
808 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
809 instructions.
810
811 @cindex jump instructions, i386
812 @cindex call instructions, i386
813 @cindex jump instructions, x86-64
814 @cindex call instructions, x86-64
815 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
816 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
817 convention.
818
819 @subsection AT&T Mnemonic versus Intel Mnemonic
820
821 @cindex i386 mnemonic compatibility
822 @cindex mnemonic compatibility, i386
823
824 @code{@value{AS}} supports assembly using Intel mnemonic.
825 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
826 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
827 syntax for compatibility with the output of @code{@value{GCC}}.
828 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
829 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
830 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
831 assembler with different mnemonics from those in Intel IA32 specification.
832 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
833
834 @node i386-Regs
835 @section Register Naming
836
837 @cindex i386 registers
838 @cindex registers, i386
839 @cindex x86-64 registers
840 @cindex registers, x86-64
841 Register operands are always prefixed with @samp{%}. The 80386 registers
842 consist of
843
844 @itemize @bullet
845 @item
846 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
847 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
848 frame pointer), and @samp{%esp} (the stack pointer).
849
850 @item
851 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
852 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
853
854 @item
855 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
856 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
857 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
858 @samp{%cx}, and @samp{%dx})
859
860 @item
861 the 6 section registers @samp{%cs} (code section), @samp{%ds}
862 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
863 and @samp{%gs}.
864
865 @item
866 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
867 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
868
869 @item
870 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
871 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
872
873 @item
874 the 2 test registers @samp{%tr6} and @samp{%tr7}.
875
876 @item
877 the 8 floating point register stack @samp{%st} or equivalently
878 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
879 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
880 These registers are overloaded by 8 MMX registers @samp{%mm0},
881 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
882 @samp{%mm6} and @samp{%mm7}.
883
884 @item
885 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
886 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
887 @end itemize
888
889 The AMD x86-64 architecture extends the register set by:
890
891 @itemize @bullet
892 @item
893 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
894 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
895 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
896 pointer)
897
898 @item
899 the 8 extended registers @samp{%r8}--@samp{%r15}.
900
901 @item
902 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
903
904 @item
905 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
906
907 @item
908 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
909
910 @item
911 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
912
913 @item
914 the 8 debug registers: @samp{%db8}--@samp{%db15}.
915
916 @item
917 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
918 @end itemize
919
920 With the AVX extensions more registers were made available:
921
922 @itemize @bullet
923
924 @item
925 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
926 available in 32-bit mode). The bottom 128 bits are overlaid with the
927 @samp{xmm0}--@samp{xmm15} registers.
928
929 @end itemize
930
931 The AVX2 extensions made in 64-bit mode more registers available:
932
933 @itemize @bullet
934
935 @item
936 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
937 registers @samp{%ymm16}--@samp{%ymm31}.
938
939 @end itemize
940
941 The AVX512 extensions added the following registers:
942
943 @itemize @bullet
944
945 @item
946 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
947 available in 32-bit mode). The bottom 128 bits are overlaid with the
948 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
949 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
950
951 @item
952 the 8 mask registers @samp{%k0}--@samp{%k7}.
953
954 @end itemize
955
956 @node i386-Prefixes
957 @section Instruction Prefixes
958
959 @cindex i386 instruction prefixes
960 @cindex instruction prefixes, i386
961 @cindex prefixes, i386
962 Instruction prefixes are used to modify the following instruction. They
963 are used to repeat string instructions, to provide section overrides, to
964 perform bus lock operations, and to change operand and address sizes.
965 (Most instructions that normally operate on 32-bit operands will use
966 16-bit operands if the instruction has an ``operand size'' prefix.)
967 Instruction prefixes are best written on the same line as the instruction
968 they act upon. For example, the @samp{scas} (scan string) instruction is
969 repeated with:
970
971 @smallexample
972 repne scas %es:(%edi),%al
973 @end smallexample
974
975 You may also place prefixes on the lines immediately preceding the
976 instruction, but this circumvents checks that @code{@value{AS}} does
977 with prefixes, and will not work with all prefixes.
978
979 Here is a list of instruction prefixes:
980
981 @cindex section override prefixes, i386
982 @itemize @bullet
983 @item
984 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
985 @samp{fs}, @samp{gs}. These are automatically added by specifying
986 using the @var{section}:@var{memory-operand} form for memory references.
987
988 @cindex size prefixes, i386
989 @item
990 Operand/Address size prefixes @samp{data16} and @samp{addr16}
991 change 32-bit operands/addresses into 16-bit operands/addresses,
992 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
993 @code{.code16} section) into 32-bit operands/addresses. These prefixes
994 @emph{must} appear on the same line of code as the instruction they
995 modify. For example, in a 16-bit @code{.code16} section, you might
996 write:
997
998 @smallexample
999 addr32 jmpl *(%ebx)
1000 @end smallexample
1001
1002 @cindex bus lock prefixes, i386
1003 @cindex inhibiting interrupts, i386
1004 @item
1005 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1006 the instruction it precedes. (This is only valid with certain
1007 instructions; see a 80386 manual for details).
1008
1009 @cindex coprocessor wait, i386
1010 @item
1011 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1012 complete the current instruction. This should never be needed for the
1013 80386/80387 combination.
1014
1015 @cindex repeat prefixes, i386
1016 @item
1017 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1018 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1019 times if the current address size is 16-bits).
1020 @cindex REX prefixes, i386
1021 @item
1022 The @samp{rex} family of prefixes is used by x86-64 to encode
1023 extensions to i386 instruction set. The @samp{rex} prefix has four
1024 bits --- an operand size overwrite (@code{64}) used to change operand size
1025 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1026 register set.
1027
1028 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1029 instruction emits @samp{rex} prefix with all the bits set. By omitting
1030 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1031 prefixes as well. Normally, there is no need to write the prefixes
1032 explicitly, since gas will automatically generate them based on the
1033 instruction operands.
1034 @end itemize
1035
1036 @node i386-Memory
1037 @section Memory References
1038
1039 @cindex i386 memory references
1040 @cindex memory references, i386
1041 @cindex x86-64 memory references
1042 @cindex memory references, x86-64
1043 An Intel syntax indirect memory reference of the form
1044
1045 @smallexample
1046 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1047 @end smallexample
1048
1049 @noindent
1050 is translated into the AT&T syntax
1051
1052 @smallexample
1053 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1054 @end smallexample
1055
1056 @noindent
1057 where @var{base} and @var{index} are the optional 32-bit base and
1058 index registers, @var{disp} is the optional displacement, and
1059 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1060 to calculate the address of the operand. If no @var{scale} is
1061 specified, @var{scale} is taken to be 1. @var{section} specifies the
1062 optional section register for the memory operand, and may override the
1063 default section register (see a 80386 manual for section register
1064 defaults). Note that section overrides in AT&T syntax @emph{must}
1065 be preceded by a @samp{%}. If you specify a section override which
1066 coincides with the default section register, @code{@value{AS}} does @emph{not}
1067 output any section register override prefixes to assemble the given
1068 instruction. Thus, section overrides can be specified to emphasize which
1069 section register is used for a given memory operand.
1070
1071 Here are some examples of Intel and AT&T style memory references:
1072
1073 @table @asis
1074 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1075 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1076 missing, and the default section is used (@samp{%ss} for addressing with
1077 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1078
1079 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1080 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1081 @samp{foo}. All other fields are missing. The section register here
1082 defaults to @samp{%ds}.
1083
1084 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1085 This uses the value pointed to by @samp{foo} as a memory operand.
1086 Note that @var{base} and @var{index} are both missing, but there is only
1087 @emph{one} @samp{,}. This is a syntactic exception.
1088
1089 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1090 This selects the contents of the variable @samp{foo} with section
1091 register @var{section} being @samp{%gs}.
1092 @end table
1093
1094 Absolute (as opposed to PC relative) call and jump operands must be
1095 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1096 always chooses PC relative addressing for jump/call labels.
1097
1098 Any instruction that has a memory operand, but no register operand,
1099 @emph{must} specify its size (byte, word, long, or quadruple) with an
1100 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1101 respectively).
1102
1103 The x86-64 architecture adds an RIP (instruction pointer relative)
1104 addressing. This addressing mode is specified by using @samp{rip} as a
1105 base register. Only constant offsets are valid. For example:
1106
1107 @table @asis
1108 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1109 Points to the address 1234 bytes past the end of the current
1110 instruction.
1111
1112 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1113 Points to the @code{symbol} in RIP relative way, this is shorter than
1114 the default absolute addressing.
1115 @end table
1116
1117 Other addressing modes remain unchanged in x86-64 architecture, except
1118 registers used are 64-bit instead of 32-bit.
1119
1120 @node i386-Jumps
1121 @section Handling of Jump Instructions
1122
1123 @cindex jump optimization, i386
1124 @cindex i386 jump optimization
1125 @cindex jump optimization, x86-64
1126 @cindex x86-64 jump optimization
1127 Jump instructions are always optimized to use the smallest possible
1128 displacements. This is accomplished by using byte (8-bit) displacement
1129 jumps whenever the target is sufficiently close. If a byte displacement
1130 is insufficient a long displacement is used. We do not support
1131 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1132 instruction with the @samp{data16} instruction prefix), since the 80386
1133 insists upon masking @samp{%eip} to 16 bits after the word displacement
1134 is added. (See also @pxref{i386-Arch})
1135
1136 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1137 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1138 displacements, so that if you use these instructions (@code{@value{GCC}} does
1139 not use them) you may get an error message (and incorrect code). The AT&T
1140 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1141 to
1142
1143 @smallexample
1144 jcxz cx_zero
1145 jmp cx_nonzero
1146 cx_zero: jmp foo
1147 cx_nonzero:
1148 @end smallexample
1149
1150 @node i386-Float
1151 @section Floating Point
1152
1153 @cindex i386 floating point
1154 @cindex floating point, i386
1155 @cindex x86-64 floating point
1156 @cindex floating point, x86-64
1157 All 80387 floating point types except packed BCD are supported.
1158 (BCD support may be added without much difficulty). These data
1159 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1160 double (64-bit), and extended (80-bit) precision floating point.
1161 Each supported type has an instruction mnemonic suffix and a constructor
1162 associated with it. Instruction mnemonic suffixes specify the operand's
1163 data type. Constructors build these data types into memory.
1164
1165 @cindex @code{float} directive, i386
1166 @cindex @code{single} directive, i386
1167 @cindex @code{double} directive, i386
1168 @cindex @code{tfloat} directive, i386
1169 @cindex @code{float} directive, x86-64
1170 @cindex @code{single} directive, x86-64
1171 @cindex @code{double} directive, x86-64
1172 @cindex @code{tfloat} directive, x86-64
1173 @itemize @bullet
1174 @item
1175 Floating point constructors are @samp{.float} or @samp{.single},
1176 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1177 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1178 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1179 only supports this format via the @samp{fldt} (load 80-bit real to stack
1180 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1181
1182 @cindex @code{word} directive, i386
1183 @cindex @code{long} directive, i386
1184 @cindex @code{int} directive, i386
1185 @cindex @code{quad} directive, i386
1186 @cindex @code{word} directive, x86-64
1187 @cindex @code{long} directive, x86-64
1188 @cindex @code{int} directive, x86-64
1189 @cindex @code{quad} directive, x86-64
1190 @item
1191 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1192 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1193 corresponding instruction mnemonic suffixes are @samp{s} (single),
1194 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1195 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1196 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1197 stack) instructions.
1198 @end itemize
1199
1200 Register to register operations should not use instruction mnemonic suffixes.
1201 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1202 wrote @samp{fst %st, %st(1)}, since all register to register operations
1203 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1204 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1205 then stores the result in the 4 byte location @samp{mem})
1206
1207 @node i386-SIMD
1208 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1209
1210 @cindex MMX, i386
1211 @cindex 3DNow!, i386
1212 @cindex SIMD, i386
1213 @cindex MMX, x86-64
1214 @cindex 3DNow!, x86-64
1215 @cindex SIMD, x86-64
1216
1217 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1218 instructions for integer data), available on Intel's Pentium MMX
1219 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1220 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1221 instruction set (SIMD instructions for 32-bit floating point data)
1222 available on AMD's K6-2 processor and possibly others in the future.
1223
1224 Currently, @code{@value{AS}} does not support Intel's floating point
1225 SIMD, Katmai (KNI).
1226
1227 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1228 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1229 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1230 floating point values. The MMX registers cannot be used at the same time
1231 as the floating point stack.
1232
1233 See Intel and AMD documentation, keeping in mind that the operand order in
1234 instructions is reversed from the Intel syntax.
1235
1236 @node i386-LWP
1237 @section AMD's Lightweight Profiling Instructions
1238
1239 @cindex LWP, i386
1240 @cindex LWP, x86-64
1241
1242 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1243 instruction set, available on AMD's Family 15h (Orochi) processors.
1244
1245 LWP enables applications to collect and manage performance data, and
1246 react to performance events. The collection of performance data
1247 requires no context switches. LWP runs in the context of a thread and
1248 so several counters can be used independently across multiple threads.
1249 LWP can be used in both 64-bit and legacy 32-bit modes.
1250
1251 For detailed information on the LWP instruction set, see the
1252 @cite{AMD Lightweight Profiling Specification} available at
1253 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1254
1255 @node i386-BMI
1256 @section Bit Manipulation Instructions
1257
1258 @cindex BMI, i386
1259 @cindex BMI, x86-64
1260
1261 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1262
1263 BMI instructions provide several instructions implementing individual
1264 bit manipulation operations such as isolation, masking, setting, or
1265 resetting.
1266
1267 @c Need to add a specification citation here when available.
1268
1269 @node i386-TBM
1270 @section AMD's Trailing Bit Manipulation Instructions
1271
1272 @cindex TBM, i386
1273 @cindex TBM, x86-64
1274
1275 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1276 instruction set, available on AMD's BDVER2 processors (Trinity and
1277 Viperfish).
1278
1279 TBM instructions provide instructions implementing individual bit
1280 manipulation operations such as isolating, masking, setting, resetting,
1281 complementing, and operations on trailing zeros and ones.
1282
1283 @c Need to add a specification citation here when available.
1284
1285 @node i386-16bit
1286 @section Writing 16-bit Code
1287
1288 @cindex i386 16-bit code
1289 @cindex 16-bit code, i386
1290 @cindex real-mode code, i386
1291 @cindex @code{code16gcc} directive, i386
1292 @cindex @code{code16} directive, i386
1293 @cindex @code{code32} directive, i386
1294 @cindex @code{code64} directive, i386
1295 @cindex @code{code64} directive, x86-64
1296 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1297 or 64-bit x86-64 code depending on the default configuration,
1298 it also supports writing code to run in real mode or in 16-bit protected
1299 mode code segments. To do this, put a @samp{.code16} or
1300 @samp{.code16gcc} directive before the assembly language instructions to
1301 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1302 32-bit code with the @samp{.code32} directive or 64-bit code with the
1303 @samp{.code64} directive.
1304
1305 @samp{.code16gcc} provides experimental support for generating 16-bit
1306 code from gcc, and differs from @samp{.code16} in that @samp{call},
1307 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1308 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1309 default to 32-bit size. This is so that the stack pointer is
1310 manipulated in the same way over function calls, allowing access to
1311 function parameters at the same stack offsets as in 32-bit mode.
1312 @samp{.code16gcc} also automatically adds address size prefixes where
1313 necessary to use the 32-bit addressing modes that gcc generates.
1314
1315 The code which @code{@value{AS}} generates in 16-bit mode will not
1316 necessarily run on a 16-bit pre-80386 processor. To write code that
1317 runs on such a processor, you must refrain from using @emph{any} 32-bit
1318 constructs which require @code{@value{AS}} to output address or operand
1319 size prefixes.
1320
1321 Note that writing 16-bit code instructions by explicitly specifying a
1322 prefix or an instruction mnemonic suffix within a 32-bit code section
1323 generates different machine instructions than those generated for a
1324 16-bit code segment. In a 32-bit code section, the following code
1325 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1326 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1327
1328 @smallexample
1329 pushw $4
1330 @end smallexample
1331
1332 The same code in a 16-bit code section would generate the machine
1333 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1334 is correct since the processor default operand size is assumed to be 16
1335 bits in a 16-bit code section.
1336
1337 @node i386-Arch
1338 @section Specifying CPU Architecture
1339
1340 @cindex arch directive, i386
1341 @cindex i386 arch directive
1342 @cindex arch directive, x86-64
1343 @cindex x86-64 arch directive
1344
1345 @code{@value{AS}} may be told to assemble for a particular CPU
1346 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1347 directive enables a warning when gas detects an instruction that is not
1348 supported on the CPU specified. The choices for @var{cpu_type} are:
1349
1350 @multitable @columnfractions .20 .20 .20 .20
1351 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1352 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1353 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1354 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1355 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1356 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1357 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1358 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1359 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1360 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1361 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1362 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1363 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1364 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1365 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1366 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1367 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1368 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1369 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1370 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1371 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1372 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1373 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1374 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1375 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1376 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1377 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1378 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1379 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1380 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1381 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1382 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1383 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1384 @item @samp{.mcommit}
1385 @end multitable
1386
1387 Apart from the warning, there are only two other effects on
1388 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1389 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1390 will automatically use a two byte opcode sequence. The larger three
1391 byte opcode sequence is used on the 486 (and when no architecture is
1392 specified) because it executes faster on the 486. Note that you can
1393 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1394 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1395 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1396 conditional jumps will be promoted when necessary to a two instruction
1397 sequence consisting of a conditional jump of the opposite sense around
1398 an unconditional jump to the target.
1399
1400 Following the CPU architecture (but not a sub-architecture, which are those
1401 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1402 control automatic promotion of conditional jumps. @samp{jumps} is the
1403 default, and enables jump promotion; All external jumps will be of the long
1404 variety, and file-local jumps will be promoted as necessary.
1405 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1406 byte offset jumps, and warns about file-local conditional jumps that
1407 @code{@value{AS}} promotes.
1408 Unconditional jumps are treated as for @samp{jumps}.
1409
1410 For example
1411
1412 @smallexample
1413 .arch i8086,nojumps
1414 @end smallexample
1415
1416 @node i386-Bugs
1417 @section AT&T Syntax bugs
1418
1419 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1420 assemblers, generate floating point instructions with reversed source
1421 and destination registers in certain cases. Unfortunately, gcc and
1422 possibly many other programs use this reversed syntax, so we're stuck
1423 with it.
1424
1425 For example
1426
1427 @smallexample
1428 fsub %st,%st(3)
1429 @end smallexample
1430 @noindent
1431 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1432 than the expected @samp{%st(3) - %st}. This happens with all the
1433 non-commutative arithmetic floating point operations with two register
1434 operands where the source register is @samp{%st} and the destination
1435 register is @samp{%st(i)}.
1436
1437 @node i386-Notes
1438 @section Notes
1439
1440 @cindex i386 @code{mul}, @code{imul} instructions
1441 @cindex @code{mul} instruction, i386
1442 @cindex @code{imul} instruction, i386
1443 @cindex @code{mul} instruction, x86-64
1444 @cindex @code{imul} instruction, x86-64
1445 There is some trickery concerning the @samp{mul} and @samp{imul}
1446 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1447 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1448 for @samp{imul}) can be output only in the one operand form. Thus,
1449 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1450 the expanding multiply would clobber the @samp{%edx} register, and this
1451 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1452 64-bit product in @samp{%edx:%eax}.
1453
1454 We have added a two operand form of @samp{imul} when the first operand
1455 is an immediate mode expression and the second operand is a register.
1456 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1457 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1458 $69, %eax, %eax}.
1459
This page took 0.062631 seconds and 4 git commands to generate.