i386: Align branches within a fixed boundary
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{enqcmd},
187 @code{avx512f},
188 @code{avx512cd},
189 @code{avx512er},
190 @code{avx512pf},
191 @code{avx512vl},
192 @code{avx512bw},
193 @code{avx512dq},
194 @code{avx512ifma},
195 @code{avx512vbmi},
196 @code{avx512_4fmaps},
197 @code{avx512_4vnniw},
198 @code{avx512_vpopcntdq},
199 @code{avx512_vbmi2},
200 @code{avx512_vnni},
201 @code{avx512_bitalg},
202 @code{avx512_bf16},
203 @code{noavx512f},
204 @code{noavx512cd},
205 @code{noavx512er},
206 @code{noavx512pf},
207 @code{noavx512vl},
208 @code{noavx512bw},
209 @code{noavx512dq},
210 @code{noavx512ifma},
211 @code{noavx512vbmi},
212 @code{noavx512_4fmaps},
213 @code{noavx512_4vnniw},
214 @code{noavx512_vpopcntdq},
215 @code{noavx512_vbmi2},
216 @code{noavx512_vnni},
217 @code{noavx512_bitalg},
218 @code{noavx512_vp2intersect},
219 @code{noavx512_bf16},
220 @code{noenqcmd},
221 @code{vmx},
222 @code{vmfunc},
223 @code{smx},
224 @code{xsave},
225 @code{xsaveopt},
226 @code{xsavec},
227 @code{xsaves},
228 @code{aes},
229 @code{pclmul},
230 @code{fsgsbase},
231 @code{rdrnd},
232 @code{f16c},
233 @code{bmi2},
234 @code{fma},
235 @code{movbe},
236 @code{ept},
237 @code{lzcnt},
238 @code{hle},
239 @code{rtm},
240 @code{invpcid},
241 @code{clflush},
242 @code{mwaitx},
243 @code{clzero},
244 @code{wbnoinvd},
245 @code{pconfig},
246 @code{waitpkg},
247 @code{cldemote},
248 @code{rdpru},
249 @code{mcommit},
250 @code{lwp},
251 @code{fma4},
252 @code{xop},
253 @code{cx16},
254 @code{syscall},
255 @code{rdtscp},
256 @code{3dnow},
257 @code{3dnowa},
258 @code{sse4a},
259 @code{sse5},
260 @code{svme},
261 @code{abm} and
262 @code{padlock}.
263 Note that rather than extending a basic instruction set, the extension
264 mnemonics starting with @code{no} revoke the respective functionality.
265
266 When the @code{.arch} directive is used with @option{-march}, the
267 @code{.arch} directive will take precedent.
268
269 @cindex @samp{-mtune=} option, i386
270 @cindex @samp{-mtune=} option, x86-64
271 @item -mtune=@var{CPU}
272 This option specifies a processor to optimize for. When used in
273 conjunction with the @option{-march} option, only instructions
274 of the processor specified by the @option{-march} option will be
275 generated.
276
277 Valid @var{CPU} values are identical to the processor list of
278 @option{-march=@var{CPU}}.
279
280 @cindex @samp{-msse2avx} option, i386
281 @cindex @samp{-msse2avx} option, x86-64
282 @item -msse2avx
283 This option specifies that the assembler should encode SSE instructions
284 with VEX prefix.
285
286 @cindex @samp{-msse-check=} option, i386
287 @cindex @samp{-msse-check=} option, x86-64
288 @item -msse-check=@var{none}
289 @itemx -msse-check=@var{warning}
290 @itemx -msse-check=@var{error}
291 These options control if the assembler should check SSE instructions.
292 @option{-msse-check=@var{none}} will make the assembler not to check SSE
293 instructions, which is the default. @option{-msse-check=@var{warning}}
294 will make the assembler issue a warning for any SSE instruction.
295 @option{-msse-check=@var{error}} will make the assembler issue an error
296 for any SSE instruction.
297
298 @cindex @samp{-mavxscalar=} option, i386
299 @cindex @samp{-mavxscalar=} option, x86-64
300 @item -mavxscalar=@var{128}
301 @itemx -mavxscalar=@var{256}
302 These options control how the assembler should encode scalar AVX
303 instructions. @option{-mavxscalar=@var{128}} will encode scalar
304 AVX instructions with 128bit vector length, which is the default.
305 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
306 with 256bit vector length.
307
308 WARNING: Don't use this for production code - due to CPU errata the
309 resulting code may not work on certain models.
310
311 @cindex @samp{-mvexwig=} option, i386
312 @cindex @samp{-mvexwig=} option, x86-64
313 @item -mvexwig=@var{0}
314 @itemx -mvexwig=@var{1}
315 These options control how the assembler should encode VEX.W-ignored (WIG)
316 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
317 instructions with vex.w = 0, which is the default.
318 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
319 vex.w = 1.
320
321 WARNING: Don't use this for production code - due to CPU errata the
322 resulting code may not work on certain models.
323
324 @cindex @samp{-mevexlig=} option, i386
325 @cindex @samp{-mevexlig=} option, x86-64
326 @item -mevexlig=@var{128}
327 @itemx -mevexlig=@var{256}
328 @itemx -mevexlig=@var{512}
329 These options control how the assembler should encode length-ignored
330 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
331 EVEX instructions with 128bit vector length, which is the default.
332 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
333 encode LIG EVEX instructions with 256bit and 512bit vector length,
334 respectively.
335
336 @cindex @samp{-mevexwig=} option, i386
337 @cindex @samp{-mevexwig=} option, x86-64
338 @item -mevexwig=@var{0}
339 @itemx -mevexwig=@var{1}
340 These options control how the assembler should encode w-ignored (WIG)
341 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
342 EVEX instructions with evex.w = 0, which is the default.
343 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
344 evex.w = 1.
345
346 @cindex @samp{-mmnemonic=} option, i386
347 @cindex @samp{-mmnemonic=} option, x86-64
348 @item -mmnemonic=@var{att}
349 @itemx -mmnemonic=@var{intel}
350 This option specifies instruction mnemonic for matching instructions.
351 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
352 take precedent.
353
354 @cindex @samp{-msyntax=} option, i386
355 @cindex @samp{-msyntax=} option, x86-64
356 @item -msyntax=@var{att}
357 @itemx -msyntax=@var{intel}
358 This option specifies instruction syntax when processing instructions.
359 The @code{.att_syntax} and @code{.intel_syntax} directives will
360 take precedent.
361
362 @cindex @samp{-mnaked-reg} option, i386
363 @cindex @samp{-mnaked-reg} option, x86-64
364 @item -mnaked-reg
365 This option specifies that registers don't require a @samp{%} prefix.
366 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
367
368 @cindex @samp{-madd-bnd-prefix} option, i386
369 @cindex @samp{-madd-bnd-prefix} option, x86-64
370 @item -madd-bnd-prefix
371 This option forces the assembler to add BND prefix to all branches, even
372 if such prefix was not explicitly specified in the source code.
373
374 @cindex @samp{-mshared} option, i386
375 @cindex @samp{-mshared} option, x86-64
376 @item -mno-shared
377 On ELF target, the assembler normally optimizes out non-PLT relocations
378 against defined non-weak global branch targets with default visibility.
379 The @samp{-mshared} option tells the assembler to generate code which
380 may go into a shared library where all non-weak global branch targets
381 with default visibility can be preempted. The resulting code is
382 slightly bigger. This option only affects the handling of branch
383 instructions.
384
385 @cindex @samp{-mbig-obj} option, x86-64
386 @item -mbig-obj
387 On x86-64 PE/COFF target this option forces the use of big object file
388 format, which allows more than 32768 sections.
389
390 @cindex @samp{-momit-lock-prefix=} option, i386
391 @cindex @samp{-momit-lock-prefix=} option, x86-64
392 @item -momit-lock-prefix=@var{no}
393 @itemx -momit-lock-prefix=@var{yes}
394 These options control how the assembler should encode lock prefix.
395 This option is intended as a workaround for processors, that fail on
396 lock prefix. This option can only be safely used with single-core,
397 single-thread computers
398 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
399 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
400 which is the default.
401
402 @cindex @samp{-mfence-as-lock-add=} option, i386
403 @cindex @samp{-mfence-as-lock-add=} option, x86-64
404 @item -mfence-as-lock-add=@var{no}
405 @itemx -mfence-as-lock-add=@var{yes}
406 These options control how the assembler should encode lfence, mfence and
407 sfence.
408 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
409 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
410 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
411 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
412 sfence as usual, which is the default.
413
414 @cindex @samp{-mrelax-relocations=} option, i386
415 @cindex @samp{-mrelax-relocations=} option, x86-64
416 @item -mrelax-relocations=@var{no}
417 @itemx -mrelax-relocations=@var{yes}
418 These options control whether the assembler should generate relax
419 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
420 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
421 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
422 @option{-mrelax-relocations=@var{no}} will not generate relax
423 relocations. The default can be controlled by a configure option
424 @option{--enable-x86-relax-relocations}.
425
426 @cindex @samp{-malign-branch-boundary=} option, i386
427 @cindex @samp{-malign-branch-boundary=} option, x86-64
428 @item -malign-branch-boundary=@var{NUM}
429 This option controls how the assembler should align branches with segment
430 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
431 no less than 16. Branches will be aligned within @var{NUM} byte
432 boundary. @option{-malign-branch-boundary=0}, which is the default,
433 doesn't align branches.
434
435 @cindex @samp{-malign-branch=} option, i386
436 @cindex @samp{-malign-branch=} option, x86-64
437 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
438 This option specifies types of branches to align. @var{TYPE} is
439 combination of @samp{jcc}, which aligns conditional jumps,
440 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
441 which aligns unconditional jumps, @samp{call} which aligns calls,
442 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
443 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
444
445 @cindex @samp{-malign-branch-prefix-size=} option, i386
446 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
447 @item -malign-branch-prefix-size=@var{NUM}
448 This option specifies the maximum number of prefixes on an instruction
449 to align branches. @var{NUM} should be between 0 and 5. The default
450 @var{NUM} is 5.
451
452 @cindex @samp{-mx86-used-note=} option, i386
453 @cindex @samp{-mx86-used-note=} option, x86-64
454 @item -mx86-used-note=@var{no}
455 @itemx -mx86-used-note=@var{yes}
456 These options control whether the assembler should generate
457 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
458 GNU property notes. The default can be controlled by the
459 @option{--enable-x86-used-note} configure option.
460
461 @cindex @samp{-mevexrcig=} option, i386
462 @cindex @samp{-mevexrcig=} option, x86-64
463 @item -mevexrcig=@var{rne}
464 @itemx -mevexrcig=@var{rd}
465 @itemx -mevexrcig=@var{ru}
466 @itemx -mevexrcig=@var{rz}
467 These options control how the assembler should encode SAE-only
468 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
469 of EVEX instruction with 00, which is the default.
470 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
471 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
472 with 01, 10 and 11 RC bits, respectively.
473
474 @cindex @samp{-mamd64} option, x86-64
475 @cindex @samp{-mintel64} option, x86-64
476 @item -mamd64
477 @itemx -mintel64
478 This option specifies that the assembler should accept only AMD64 or
479 Intel64 ISA in 64-bit mode. The default is to accept both.
480
481 @cindex @samp{-O0} option, i386
482 @cindex @samp{-O0} option, x86-64
483 @cindex @samp{-O} option, i386
484 @cindex @samp{-O} option, x86-64
485 @cindex @samp{-O1} option, i386
486 @cindex @samp{-O1} option, x86-64
487 @cindex @samp{-O2} option, i386
488 @cindex @samp{-O2} option, x86-64
489 @cindex @samp{-Os} option, i386
490 @cindex @samp{-Os} option, x86-64
491 @item -O0 | -O | -O1 | -O2 | -Os
492 Optimize instruction encoding with smaller instruction size. @samp{-O}
493 and @samp{-O1} encode 64-bit register load instructions with 64-bit
494 immediate as 32-bit register load instructions with 31-bit or 32-bits
495 immediates, encode 64-bit register clearing instructions with 32-bit
496 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
497 register clearing instructions with 128-bit VEX vector register
498 clearing instructions, encode 128-bit/256-bit EVEX vector
499 register load/store instructions with VEX vector register load/store
500 instructions, and encode 128-bit/256-bit EVEX packed integer logical
501 instructions with 128-bit/256-bit VEX packed integer logical.
502
503 @samp{-O2} includes @samp{-O1} optimization plus encodes
504 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
505 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
506 instructions with commutative source operands will also have their
507 source operands swapped if this allows using the 2-byte VEX prefix form
508 instead of the 3-byte one. Certain forms of AND as well as OR with the
509 same (register) operand specified twice will also be changed to TEST.
510
511 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
512 and 64-bit register tests with immediate as 8-bit register test with
513 immediate. @samp{-O0} turns off this optimization.
514
515 @end table
516 @c man end
517
518 @node i386-Directives
519 @section x86 specific Directives
520
521 @cindex machine directives, x86
522 @cindex x86 machine directives
523 @table @code
524
525 @cindex @code{lcomm} directive, COFF
526 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
527 Reserve @var{length} (an absolute expression) bytes for a local common
528 denoted by @var{symbol}. The section and value of @var{symbol} are
529 those of the new local common. The addresses are allocated in the bss
530 section, so that at run-time the bytes start off zeroed. Since
531 @var{symbol} is not declared global, it is normally not visible to
532 @code{@value{LD}}. The optional third parameter, @var{alignment},
533 specifies the desired alignment of the symbol in the bss section.
534
535 This directive is only available for COFF based x86 targets.
536
537 @cindex @code{largecomm} directive, ELF
538 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
539 This directive behaves in the same way as the @code{comm} directive
540 except that the data is placed into the @var{.lbss} section instead of
541 the @var{.bss} section @ref{Comm}.
542
543 The directive is intended to be used for data which requires a large
544 amount of space, and it is only available for ELF based x86_64
545 targets.
546
547 @cindex @code{value} directive
548 @item .value @var{expression} [, @var{expression}]
549 This directive behaves in the same way as the @code{.short} directive,
550 taking a series of comma separated expressions and storing them as
551 two-byte wide values into the current section.
552
553 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
554
555 @end table
556
557 @node i386-Syntax
558 @section i386 Syntactical Considerations
559 @menu
560 * i386-Variations:: AT&T Syntax versus Intel Syntax
561 * i386-Chars:: Special Characters
562 @end menu
563
564 @node i386-Variations
565 @subsection AT&T Syntax versus Intel Syntax
566
567 @cindex i386 intel_syntax pseudo op
568 @cindex intel_syntax pseudo op, i386
569 @cindex i386 att_syntax pseudo op
570 @cindex att_syntax pseudo op, i386
571 @cindex i386 syntax compatibility
572 @cindex syntax compatibility, i386
573 @cindex x86-64 intel_syntax pseudo op
574 @cindex intel_syntax pseudo op, x86-64
575 @cindex x86-64 att_syntax pseudo op
576 @cindex att_syntax pseudo op, x86-64
577 @cindex x86-64 syntax compatibility
578 @cindex syntax compatibility, x86-64
579
580 @code{@value{AS}} now supports assembly using Intel assembler syntax.
581 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
582 back to the usual AT&T mode for compatibility with the output of
583 @code{@value{GCC}}. Either of these directives may have an optional
584 argument, @code{prefix}, or @code{noprefix} specifying whether registers
585 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
586 different from Intel syntax. We mention these differences because
587 almost all 80386 documents use Intel syntax. Notable differences
588 between the two syntaxes are:
589
590 @cindex immediate operands, i386
591 @cindex i386 immediate operands
592 @cindex register operands, i386
593 @cindex i386 register operands
594 @cindex jump/call operands, i386
595 @cindex i386 jump/call operands
596 @cindex operand delimiters, i386
597
598 @cindex immediate operands, x86-64
599 @cindex x86-64 immediate operands
600 @cindex register operands, x86-64
601 @cindex x86-64 register operands
602 @cindex jump/call operands, x86-64
603 @cindex x86-64 jump/call operands
604 @cindex operand delimiters, x86-64
605 @itemize @bullet
606 @item
607 AT&T immediate operands are preceded by @samp{$}; Intel immediate
608 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
609 AT&T register operands are preceded by @samp{%}; Intel register operands
610 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
611 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
612
613 @cindex i386 source, destination operands
614 @cindex source, destination operands; i386
615 @cindex x86-64 source, destination operands
616 @cindex source, destination operands; x86-64
617 @item
618 AT&T and Intel syntax use the opposite order for source and destination
619 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
620 @samp{source, dest} convention is maintained for compatibility with
621 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
622 instructions with 2 immediate operands, such as the @samp{enter}
623 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
624
625 @cindex mnemonic suffixes, i386
626 @cindex sizes operands, i386
627 @cindex i386 size suffixes
628 @cindex mnemonic suffixes, x86-64
629 @cindex sizes operands, x86-64
630 @cindex x86-64 size suffixes
631 @item
632 In AT&T syntax the size of memory operands is determined from the last
633 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
634 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
635 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
636 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
637 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
638 no other way to disambiguate an instruction. Intel syntax accomplishes this by
639 prefixing memory operands (@emph{not} the instruction mnemonics) with
640 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
641 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
642 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
643 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
644 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
645
646 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
647 instruction with the 64-bit displacement or immediate operand.
648
649 @cindex return instructions, i386
650 @cindex i386 jump, call, return
651 @cindex return instructions, x86-64
652 @cindex x86-64 jump, call, return
653 @item
654 Immediate form long jumps and calls are
655 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
656 Intel syntax is
657 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
658 instruction
659 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
660 @samp{ret far @var{stack-adjust}}.
661
662 @cindex sections, i386
663 @cindex i386 sections
664 @cindex sections, x86-64
665 @cindex x86-64 sections
666 @item
667 The AT&T assembler does not provide support for multiple section
668 programs. Unix style systems expect all programs to be single sections.
669 @end itemize
670
671 @node i386-Chars
672 @subsection Special Characters
673
674 @cindex line comment character, i386
675 @cindex i386 line comment character
676 The presence of a @samp{#} appearing anywhere on a line indicates the
677 start of a comment that extends to the end of that line.
678
679 If a @samp{#} appears as the first character of a line then the whole
680 line is treated as a comment, but in this case the line can also be a
681 logical line number directive (@pxref{Comments}) or a preprocessor
682 control command (@pxref{Preprocessing}).
683
684 If the @option{--divide} command-line option has not been specified
685 then the @samp{/} character appearing anywhere on a line also
686 introduces a line comment.
687
688 @cindex line separator, i386
689 @cindex statement separator, i386
690 @cindex i386 line separator
691 The @samp{;} character can be used to separate statements on the same
692 line.
693
694 @node i386-Mnemonics
695 @section i386-Mnemonics
696 @subsection Instruction Naming
697
698 @cindex i386 instruction naming
699 @cindex instruction naming, i386
700 @cindex x86-64 instruction naming
701 @cindex instruction naming, x86-64
702
703 Instruction mnemonics are suffixed with one character modifiers which
704 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
705 and @samp{q} specify byte, word, long and quadruple word operands. If
706 no suffix is specified by an instruction then @code{@value{AS}} tries to
707 fill in the missing suffix based on the destination register operand
708 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
709 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
710 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
711 assembler which assumes that a missing mnemonic suffix implies long
712 operand size. (This incompatibility does not affect compiler output
713 since compilers always explicitly specify the mnemonic suffix.)
714
715 Almost all instructions have the same names in AT&T and Intel format.
716 There are a few exceptions. The sign extend and zero extend
717 instructions need two sizes to specify them. They need a size to
718 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
719 is accomplished by using two instruction mnemonic suffixes in AT&T
720 syntax. Base names for sign extend and zero extend are
721 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
722 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
723 are tacked on to this base name, the @emph{from} suffix before the
724 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
725 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
726 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
727 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
728 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
729 quadruple word).
730
731 @cindex encoding options, i386
732 @cindex encoding options, x86-64
733
734 Different encoding options can be specified via pseudo prefixes:
735
736 @itemize @bullet
737 @item
738 @samp{@{disp8@}} -- prefer 8-bit displacement.
739
740 @item
741 @samp{@{disp32@}} -- prefer 32-bit displacement.
742
743 @item
744 @samp{@{load@}} -- prefer load-form instruction.
745
746 @item
747 @samp{@{store@}} -- prefer store-form instruction.
748
749 @item
750 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
751
752 @item
753 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
754
755 @item
756 @samp{@{evex@}} -- encode with EVEX prefix.
757
758 @item
759 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
760 instructions (x86-64 only). Note that this differs from the @samp{rex}
761 prefix which generates REX prefix unconditionally.
762
763 @item
764 @samp{@{nooptimize@}} -- disable instruction size optimization.
765 @end itemize
766
767 @cindex conversion instructions, i386
768 @cindex i386 conversion instructions
769 @cindex conversion instructions, x86-64
770 @cindex x86-64 conversion instructions
771 The Intel-syntax conversion instructions
772
773 @itemize @bullet
774 @item
775 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
776
777 @item
778 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
779
780 @item
781 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
782
783 @item
784 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
785
786 @item
787 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
788 (x86-64 only),
789
790 @item
791 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
792 @samp{%rdx:%rax} (x86-64 only),
793 @end itemize
794
795 @noindent
796 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
797 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
798 instructions.
799
800 @cindex jump instructions, i386
801 @cindex call instructions, i386
802 @cindex jump instructions, x86-64
803 @cindex call instructions, x86-64
804 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
805 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
806 convention.
807
808 @subsection AT&T Mnemonic versus Intel Mnemonic
809
810 @cindex i386 mnemonic compatibility
811 @cindex mnemonic compatibility, i386
812
813 @code{@value{AS}} supports assembly using Intel mnemonic.
814 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
815 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
816 syntax for compatibility with the output of @code{@value{GCC}}.
817 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
818 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
819 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
820 assembler with different mnemonics from those in Intel IA32 specification.
821 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
822
823 @node i386-Regs
824 @section Register Naming
825
826 @cindex i386 registers
827 @cindex registers, i386
828 @cindex x86-64 registers
829 @cindex registers, x86-64
830 Register operands are always prefixed with @samp{%}. The 80386 registers
831 consist of
832
833 @itemize @bullet
834 @item
835 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
836 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
837 frame pointer), and @samp{%esp} (the stack pointer).
838
839 @item
840 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
841 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
842
843 @item
844 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
845 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
846 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
847 @samp{%cx}, and @samp{%dx})
848
849 @item
850 the 6 section registers @samp{%cs} (code section), @samp{%ds}
851 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
852 and @samp{%gs}.
853
854 @item
855 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
856 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
857
858 @item
859 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
860 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
861
862 @item
863 the 2 test registers @samp{%tr6} and @samp{%tr7}.
864
865 @item
866 the 8 floating point register stack @samp{%st} or equivalently
867 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
868 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
869 These registers are overloaded by 8 MMX registers @samp{%mm0},
870 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
871 @samp{%mm6} and @samp{%mm7}.
872
873 @item
874 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
875 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
876 @end itemize
877
878 The AMD x86-64 architecture extends the register set by:
879
880 @itemize @bullet
881 @item
882 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
883 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
884 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
885 pointer)
886
887 @item
888 the 8 extended registers @samp{%r8}--@samp{%r15}.
889
890 @item
891 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
892
893 @item
894 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
895
896 @item
897 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
898
899 @item
900 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
901
902 @item
903 the 8 debug registers: @samp{%db8}--@samp{%db15}.
904
905 @item
906 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
907 @end itemize
908
909 With the AVX extensions more registers were made available:
910
911 @itemize @bullet
912
913 @item
914 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
915 available in 32-bit mode). The bottom 128 bits are overlaid with the
916 @samp{xmm0}--@samp{xmm15} registers.
917
918 @end itemize
919
920 The AVX2 extensions made in 64-bit mode more registers available:
921
922 @itemize @bullet
923
924 @item
925 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
926 registers @samp{%ymm16}--@samp{%ymm31}.
927
928 @end itemize
929
930 The AVX512 extensions added the following registers:
931
932 @itemize @bullet
933
934 @item
935 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
936 available in 32-bit mode). The bottom 128 bits are overlaid with the
937 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
938 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
939
940 @item
941 the 8 mask registers @samp{%k0}--@samp{%k7}.
942
943 @end itemize
944
945 @node i386-Prefixes
946 @section Instruction Prefixes
947
948 @cindex i386 instruction prefixes
949 @cindex instruction prefixes, i386
950 @cindex prefixes, i386
951 Instruction prefixes are used to modify the following instruction. They
952 are used to repeat string instructions, to provide section overrides, to
953 perform bus lock operations, and to change operand and address sizes.
954 (Most instructions that normally operate on 32-bit operands will use
955 16-bit operands if the instruction has an ``operand size'' prefix.)
956 Instruction prefixes are best written on the same line as the instruction
957 they act upon. For example, the @samp{scas} (scan string) instruction is
958 repeated with:
959
960 @smallexample
961 repne scas %es:(%edi),%al
962 @end smallexample
963
964 You may also place prefixes on the lines immediately preceding the
965 instruction, but this circumvents checks that @code{@value{AS}} does
966 with prefixes, and will not work with all prefixes.
967
968 Here is a list of instruction prefixes:
969
970 @cindex section override prefixes, i386
971 @itemize @bullet
972 @item
973 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
974 @samp{fs}, @samp{gs}. These are automatically added by specifying
975 using the @var{section}:@var{memory-operand} form for memory references.
976
977 @cindex size prefixes, i386
978 @item
979 Operand/Address size prefixes @samp{data16} and @samp{addr16}
980 change 32-bit operands/addresses into 16-bit operands/addresses,
981 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
982 @code{.code16} section) into 32-bit operands/addresses. These prefixes
983 @emph{must} appear on the same line of code as the instruction they
984 modify. For example, in a 16-bit @code{.code16} section, you might
985 write:
986
987 @smallexample
988 addr32 jmpl *(%ebx)
989 @end smallexample
990
991 @cindex bus lock prefixes, i386
992 @cindex inhibiting interrupts, i386
993 @item
994 The bus lock prefix @samp{lock} inhibits interrupts during execution of
995 the instruction it precedes. (This is only valid with certain
996 instructions; see a 80386 manual for details).
997
998 @cindex coprocessor wait, i386
999 @item
1000 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1001 complete the current instruction. This should never be needed for the
1002 80386/80387 combination.
1003
1004 @cindex repeat prefixes, i386
1005 @item
1006 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1007 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1008 times if the current address size is 16-bits).
1009 @cindex REX prefixes, i386
1010 @item
1011 The @samp{rex} family of prefixes is used by x86-64 to encode
1012 extensions to i386 instruction set. The @samp{rex} prefix has four
1013 bits --- an operand size overwrite (@code{64}) used to change operand size
1014 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1015 register set.
1016
1017 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1018 instruction emits @samp{rex} prefix with all the bits set. By omitting
1019 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1020 prefixes as well. Normally, there is no need to write the prefixes
1021 explicitly, since gas will automatically generate them based on the
1022 instruction operands.
1023 @end itemize
1024
1025 @node i386-Memory
1026 @section Memory References
1027
1028 @cindex i386 memory references
1029 @cindex memory references, i386
1030 @cindex x86-64 memory references
1031 @cindex memory references, x86-64
1032 An Intel syntax indirect memory reference of the form
1033
1034 @smallexample
1035 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1036 @end smallexample
1037
1038 @noindent
1039 is translated into the AT&T syntax
1040
1041 @smallexample
1042 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1043 @end smallexample
1044
1045 @noindent
1046 where @var{base} and @var{index} are the optional 32-bit base and
1047 index registers, @var{disp} is the optional displacement, and
1048 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1049 to calculate the address of the operand. If no @var{scale} is
1050 specified, @var{scale} is taken to be 1. @var{section} specifies the
1051 optional section register for the memory operand, and may override the
1052 default section register (see a 80386 manual for section register
1053 defaults). Note that section overrides in AT&T syntax @emph{must}
1054 be preceded by a @samp{%}. If you specify a section override which
1055 coincides with the default section register, @code{@value{AS}} does @emph{not}
1056 output any section register override prefixes to assemble the given
1057 instruction. Thus, section overrides can be specified to emphasize which
1058 section register is used for a given memory operand.
1059
1060 Here are some examples of Intel and AT&T style memory references:
1061
1062 @table @asis
1063 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1064 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1065 missing, and the default section is used (@samp{%ss} for addressing with
1066 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1067
1068 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1069 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1070 @samp{foo}. All other fields are missing. The section register here
1071 defaults to @samp{%ds}.
1072
1073 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1074 This uses the value pointed to by @samp{foo} as a memory operand.
1075 Note that @var{base} and @var{index} are both missing, but there is only
1076 @emph{one} @samp{,}. This is a syntactic exception.
1077
1078 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1079 This selects the contents of the variable @samp{foo} with section
1080 register @var{section} being @samp{%gs}.
1081 @end table
1082
1083 Absolute (as opposed to PC relative) call and jump operands must be
1084 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1085 always chooses PC relative addressing for jump/call labels.
1086
1087 Any instruction that has a memory operand, but no register operand,
1088 @emph{must} specify its size (byte, word, long, or quadruple) with an
1089 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1090 respectively).
1091
1092 The x86-64 architecture adds an RIP (instruction pointer relative)
1093 addressing. This addressing mode is specified by using @samp{rip} as a
1094 base register. Only constant offsets are valid. For example:
1095
1096 @table @asis
1097 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1098 Points to the address 1234 bytes past the end of the current
1099 instruction.
1100
1101 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1102 Points to the @code{symbol} in RIP relative way, this is shorter than
1103 the default absolute addressing.
1104 @end table
1105
1106 Other addressing modes remain unchanged in x86-64 architecture, except
1107 registers used are 64-bit instead of 32-bit.
1108
1109 @node i386-Jumps
1110 @section Handling of Jump Instructions
1111
1112 @cindex jump optimization, i386
1113 @cindex i386 jump optimization
1114 @cindex jump optimization, x86-64
1115 @cindex x86-64 jump optimization
1116 Jump instructions are always optimized to use the smallest possible
1117 displacements. This is accomplished by using byte (8-bit) displacement
1118 jumps whenever the target is sufficiently close. If a byte displacement
1119 is insufficient a long displacement is used. We do not support
1120 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1121 instruction with the @samp{data16} instruction prefix), since the 80386
1122 insists upon masking @samp{%eip} to 16 bits after the word displacement
1123 is added. (See also @pxref{i386-Arch})
1124
1125 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1126 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1127 displacements, so that if you use these instructions (@code{@value{GCC}} does
1128 not use them) you may get an error message (and incorrect code). The AT&T
1129 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1130 to
1131
1132 @smallexample
1133 jcxz cx_zero
1134 jmp cx_nonzero
1135 cx_zero: jmp foo
1136 cx_nonzero:
1137 @end smallexample
1138
1139 @node i386-Float
1140 @section Floating Point
1141
1142 @cindex i386 floating point
1143 @cindex floating point, i386
1144 @cindex x86-64 floating point
1145 @cindex floating point, x86-64
1146 All 80387 floating point types except packed BCD are supported.
1147 (BCD support may be added without much difficulty). These data
1148 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1149 double (64-bit), and extended (80-bit) precision floating point.
1150 Each supported type has an instruction mnemonic suffix and a constructor
1151 associated with it. Instruction mnemonic suffixes specify the operand's
1152 data type. Constructors build these data types into memory.
1153
1154 @cindex @code{float} directive, i386
1155 @cindex @code{single} directive, i386
1156 @cindex @code{double} directive, i386
1157 @cindex @code{tfloat} directive, i386
1158 @cindex @code{float} directive, x86-64
1159 @cindex @code{single} directive, x86-64
1160 @cindex @code{double} directive, x86-64
1161 @cindex @code{tfloat} directive, x86-64
1162 @itemize @bullet
1163 @item
1164 Floating point constructors are @samp{.float} or @samp{.single},
1165 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1166 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1167 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1168 only supports this format via the @samp{fldt} (load 80-bit real to stack
1169 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1170
1171 @cindex @code{word} directive, i386
1172 @cindex @code{long} directive, i386
1173 @cindex @code{int} directive, i386
1174 @cindex @code{quad} directive, i386
1175 @cindex @code{word} directive, x86-64
1176 @cindex @code{long} directive, x86-64
1177 @cindex @code{int} directive, x86-64
1178 @cindex @code{quad} directive, x86-64
1179 @item
1180 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1181 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1182 corresponding instruction mnemonic suffixes are @samp{s} (single),
1183 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1184 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1185 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1186 stack) instructions.
1187 @end itemize
1188
1189 Register to register operations should not use instruction mnemonic suffixes.
1190 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1191 wrote @samp{fst %st, %st(1)}, since all register to register operations
1192 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1193 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1194 then stores the result in the 4 byte location @samp{mem})
1195
1196 @node i386-SIMD
1197 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1198
1199 @cindex MMX, i386
1200 @cindex 3DNow!, i386
1201 @cindex SIMD, i386
1202 @cindex MMX, x86-64
1203 @cindex 3DNow!, x86-64
1204 @cindex SIMD, x86-64
1205
1206 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1207 instructions for integer data), available on Intel's Pentium MMX
1208 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1209 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1210 instruction set (SIMD instructions for 32-bit floating point data)
1211 available on AMD's K6-2 processor and possibly others in the future.
1212
1213 Currently, @code{@value{AS}} does not support Intel's floating point
1214 SIMD, Katmai (KNI).
1215
1216 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1217 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1218 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1219 floating point values. The MMX registers cannot be used at the same time
1220 as the floating point stack.
1221
1222 See Intel and AMD documentation, keeping in mind that the operand order in
1223 instructions is reversed from the Intel syntax.
1224
1225 @node i386-LWP
1226 @section AMD's Lightweight Profiling Instructions
1227
1228 @cindex LWP, i386
1229 @cindex LWP, x86-64
1230
1231 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1232 instruction set, available on AMD's Family 15h (Orochi) processors.
1233
1234 LWP enables applications to collect and manage performance data, and
1235 react to performance events. The collection of performance data
1236 requires no context switches. LWP runs in the context of a thread and
1237 so several counters can be used independently across multiple threads.
1238 LWP can be used in both 64-bit and legacy 32-bit modes.
1239
1240 For detailed information on the LWP instruction set, see the
1241 @cite{AMD Lightweight Profiling Specification} available at
1242 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1243
1244 @node i386-BMI
1245 @section Bit Manipulation Instructions
1246
1247 @cindex BMI, i386
1248 @cindex BMI, x86-64
1249
1250 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1251
1252 BMI instructions provide several instructions implementing individual
1253 bit manipulation operations such as isolation, masking, setting, or
1254 resetting.
1255
1256 @c Need to add a specification citation here when available.
1257
1258 @node i386-TBM
1259 @section AMD's Trailing Bit Manipulation Instructions
1260
1261 @cindex TBM, i386
1262 @cindex TBM, x86-64
1263
1264 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1265 instruction set, available on AMD's BDVER2 processors (Trinity and
1266 Viperfish).
1267
1268 TBM instructions provide instructions implementing individual bit
1269 manipulation operations such as isolating, masking, setting, resetting,
1270 complementing, and operations on trailing zeros and ones.
1271
1272 @c Need to add a specification citation here when available.
1273
1274 @node i386-16bit
1275 @section Writing 16-bit Code
1276
1277 @cindex i386 16-bit code
1278 @cindex 16-bit code, i386
1279 @cindex real-mode code, i386
1280 @cindex @code{code16gcc} directive, i386
1281 @cindex @code{code16} directive, i386
1282 @cindex @code{code32} directive, i386
1283 @cindex @code{code64} directive, i386
1284 @cindex @code{code64} directive, x86-64
1285 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1286 or 64-bit x86-64 code depending on the default configuration,
1287 it also supports writing code to run in real mode or in 16-bit protected
1288 mode code segments. To do this, put a @samp{.code16} or
1289 @samp{.code16gcc} directive before the assembly language instructions to
1290 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1291 32-bit code with the @samp{.code32} directive or 64-bit code with the
1292 @samp{.code64} directive.
1293
1294 @samp{.code16gcc} provides experimental support for generating 16-bit
1295 code from gcc, and differs from @samp{.code16} in that @samp{call},
1296 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1297 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1298 default to 32-bit size. This is so that the stack pointer is
1299 manipulated in the same way over function calls, allowing access to
1300 function parameters at the same stack offsets as in 32-bit mode.
1301 @samp{.code16gcc} also automatically adds address size prefixes where
1302 necessary to use the 32-bit addressing modes that gcc generates.
1303
1304 The code which @code{@value{AS}} generates in 16-bit mode will not
1305 necessarily run on a 16-bit pre-80386 processor. To write code that
1306 runs on such a processor, you must refrain from using @emph{any} 32-bit
1307 constructs which require @code{@value{AS}} to output address or operand
1308 size prefixes.
1309
1310 Note that writing 16-bit code instructions by explicitly specifying a
1311 prefix or an instruction mnemonic suffix within a 32-bit code section
1312 generates different machine instructions than those generated for a
1313 16-bit code segment. In a 32-bit code section, the following code
1314 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1315 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1316
1317 @smallexample
1318 pushw $4
1319 @end smallexample
1320
1321 The same code in a 16-bit code section would generate the machine
1322 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1323 is correct since the processor default operand size is assumed to be 16
1324 bits in a 16-bit code section.
1325
1326 @node i386-Arch
1327 @section Specifying CPU Architecture
1328
1329 @cindex arch directive, i386
1330 @cindex i386 arch directive
1331 @cindex arch directive, x86-64
1332 @cindex x86-64 arch directive
1333
1334 @code{@value{AS}} may be told to assemble for a particular CPU
1335 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1336 directive enables a warning when gas detects an instruction that is not
1337 supported on the CPU specified. The choices for @var{cpu_type} are:
1338
1339 @multitable @columnfractions .20 .20 .20 .20
1340 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1341 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1342 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1343 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1344 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1345 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1346 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1347 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1348 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1349 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1350 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1351 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1352 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1353 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1354 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1355 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1356 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1357 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1358 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1359 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1360 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1361 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1362 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1363 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1364 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1365 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1366 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1367 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1368 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1369 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1370 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1371 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1372 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1373 @item @samp{.mcommit}
1374 @end multitable
1375
1376 Apart from the warning, there are only two other effects on
1377 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1378 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1379 will automatically use a two byte opcode sequence. The larger three
1380 byte opcode sequence is used on the 486 (and when no architecture is
1381 specified) because it executes faster on the 486. Note that you can
1382 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1383 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1384 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1385 conditional jumps will be promoted when necessary to a two instruction
1386 sequence consisting of a conditional jump of the opposite sense around
1387 an unconditional jump to the target.
1388
1389 Following the CPU architecture (but not a sub-architecture, which are those
1390 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1391 control automatic promotion of conditional jumps. @samp{jumps} is the
1392 default, and enables jump promotion; All external jumps will be of the long
1393 variety, and file-local jumps will be promoted as necessary.
1394 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1395 byte offset jumps, and warns about file-local conditional jumps that
1396 @code{@value{AS}} promotes.
1397 Unconditional jumps are treated as for @samp{jumps}.
1398
1399 For example
1400
1401 @smallexample
1402 .arch i8086,nojumps
1403 @end smallexample
1404
1405 @node i386-Bugs
1406 @section AT&T Syntax bugs
1407
1408 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1409 assemblers, generate floating point instructions with reversed source
1410 and destination registers in certain cases. Unfortunately, gcc and
1411 possibly many other programs use this reversed syntax, so we're stuck
1412 with it.
1413
1414 For example
1415
1416 @smallexample
1417 fsub %st,%st(3)
1418 @end smallexample
1419 @noindent
1420 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1421 than the expected @samp{%st(3) - %st}. This happens with all the
1422 non-commutative arithmetic floating point operations with two register
1423 operands where the source register is @samp{%st} and the destination
1424 register is @samp{%st(i)}.
1425
1426 @node i386-Notes
1427 @section Notes
1428
1429 @cindex i386 @code{mul}, @code{imul} instructions
1430 @cindex @code{mul} instruction, i386
1431 @cindex @code{imul} instruction, i386
1432 @cindex @code{mul} instruction, x86-64
1433 @cindex @code{imul} instruction, x86-64
1434 There is some trickery concerning the @samp{mul} and @samp{imul}
1435 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1436 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1437 for @samp{imul}) can be output only in the one operand form. Thus,
1438 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1439 the expanding multiply would clobber the @samp{%edx} register, and this
1440 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1441 64-bit product in @samp{%edx:%eax}.
1442
1443 We have added a two operand form of @samp{imul} when the first operand
1444 is an immediate mode expression and the second operand is a register.
1445 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1446 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1447 $69, %eax, %eax}.
1448
This page took 0.059958 seconds and 4 git commands to generate.