gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gas / ehopt.c
1 /* ehopt.c--optimize gcc exception frame information.
2 Copyright (C) 1998-2020 Free Software Foundation, Inc.
3 Written by Ian Lance Taylor <ian@cygnus.com>.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "as.h"
23 #include "subsegs.h"
24
25 /* We include this ELF file, even though we may not be assembling for
26 ELF, since the exception frame information is always in a format
27 derived from DWARF. */
28
29 #include "dwarf2.h"
30
31 /* Try to optimize gcc 2.8 exception frame information.
32
33 Exception frame information is emitted for every function in the
34 .eh_frame or .debug_frame sections. Simple information for a function
35 with no exceptions looks like this:
36
37 __FRAME_BEGIN__:
38 .4byte .LLCIE1 / Length of Common Information Entry
39 .LSCIE1:
40 #if .eh_frame
41 .4byte 0x0 / CIE Identifier Tag
42 #elif .debug_frame
43 .4byte 0xffffffff / CIE Identifier Tag
44 #endif
45 .byte 0x1 / CIE Version
46 .byte 0x0 / CIE Augmentation (none)
47 .byte 0x1 / ULEB128 0x1 (CIE Code Alignment Factor)
48 .byte 0x7c / SLEB128 -4 (CIE Data Alignment Factor)
49 .byte 0x8 / CIE RA Column
50 .byte 0xc / DW_CFA_def_cfa
51 .byte 0x4 / ULEB128 0x4
52 .byte 0x4 / ULEB128 0x4
53 .byte 0x88 / DW_CFA_offset, column 0x8
54 .byte 0x1 / ULEB128 0x1
55 .align 4
56 .LECIE1:
57 .set .LLCIE1,.LECIE1-.LSCIE1 / CIE Length Symbol
58 .4byte .LLFDE1 / FDE Length
59 .LSFDE1:
60 .4byte .LSFDE1-__FRAME_BEGIN__ / FDE CIE offset
61 .4byte .LFB1 / FDE initial location
62 .4byte .LFE1-.LFB1 / FDE address range
63 .byte 0x4 / DW_CFA_advance_loc4
64 .4byte .LCFI0-.LFB1
65 .byte 0xe / DW_CFA_def_cfa_offset
66 .byte 0x8 / ULEB128 0x8
67 .byte 0x85 / DW_CFA_offset, column 0x5
68 .byte 0x2 / ULEB128 0x2
69 .byte 0x4 / DW_CFA_advance_loc4
70 .4byte .LCFI1-.LCFI0
71 .byte 0xd / DW_CFA_def_cfa_register
72 .byte 0x5 / ULEB128 0x5
73 .byte 0x4 / DW_CFA_advance_loc4
74 .4byte .LCFI2-.LCFI1
75 .byte 0x2e / DW_CFA_GNU_args_size
76 .byte 0x4 / ULEB128 0x4
77 .byte 0x4 / DW_CFA_advance_loc4
78 .4byte .LCFI3-.LCFI2
79 .byte 0x2e / DW_CFA_GNU_args_size
80 .byte 0x0 / ULEB128 0x0
81 .align 4
82 .LEFDE1:
83 .set .LLFDE1,.LEFDE1-.LSFDE1 / FDE Length Symbol
84
85 The immediate issue we can address in the assembler is the
86 DW_CFA_advance_loc4 followed by a four byte value. The value is
87 the difference of two addresses in the function. Since gcc does
88 not know this value, it always uses four bytes. We will know the
89 value at the end of assembly, so we can do better. */
90
91 struct cie_info
92 {
93 unsigned code_alignment;
94 int z_augmentation;
95 };
96
97 static int get_cie_info (struct cie_info *);
98
99 /* Extract information from the CIE. */
100
101 static int
102 get_cie_info (struct cie_info *info)
103 {
104 fragS *f;
105 fixS *fix;
106 unsigned int offset;
107 char CIE_id;
108 char augmentation[10];
109 int iaug;
110 int code_alignment = 0;
111
112 /* We should find the CIE at the start of the section. */
113
114 f = seg_info (now_seg)->frchainP->frch_root;
115 fix = seg_info (now_seg)->frchainP->fix_root;
116
117 /* Look through the frags of the section to find the code alignment. */
118
119 /* First make sure that the CIE Identifier Tag is 0/-1. */
120
121 if (strncmp (segment_name (now_seg), ".debug_frame", 12) == 0)
122 CIE_id = (char)0xff;
123 else
124 CIE_id = 0;
125
126 offset = 4;
127 while (f != NULL && offset >= f->fr_fix)
128 {
129 offset -= f->fr_fix;
130 f = f->fr_next;
131 }
132 if (f == NULL
133 || f->fr_fix - offset < 4
134 || f->fr_literal[offset] != CIE_id
135 || f->fr_literal[offset + 1] != CIE_id
136 || f->fr_literal[offset + 2] != CIE_id
137 || f->fr_literal[offset + 3] != CIE_id)
138 return 0;
139
140 /* Next make sure the CIE version number is 1. */
141
142 offset += 4;
143 while (f != NULL && offset >= f->fr_fix)
144 {
145 offset -= f->fr_fix;
146 f = f->fr_next;
147 }
148 if (f == NULL
149 || f->fr_fix - offset < 1
150 || f->fr_literal[offset] != 1)
151 return 0;
152
153 /* Skip the augmentation (a null terminated string). */
154
155 iaug = 0;
156 ++offset;
157 while (1)
158 {
159 while (f != NULL && offset >= f->fr_fix)
160 {
161 offset -= f->fr_fix;
162 f = f->fr_next;
163 }
164 if (f == NULL)
165 return 0;
166
167 while (offset < f->fr_fix && f->fr_literal[offset] != '\0')
168 {
169 if ((size_t) iaug < (sizeof augmentation) - 1)
170 {
171 augmentation[iaug] = f->fr_literal[offset];
172 ++iaug;
173 }
174 ++offset;
175 }
176 if (offset < f->fr_fix)
177 break;
178 }
179 ++offset;
180 while (f != NULL && offset >= f->fr_fix)
181 {
182 offset -= f->fr_fix;
183 f = f->fr_next;
184 }
185 if (f == NULL)
186 return 0;
187
188 augmentation[iaug] = '\0';
189 if (augmentation[0] == '\0')
190 {
191 /* No augmentation. */
192 }
193 else if (strcmp (augmentation, "eh") == 0)
194 {
195 /* We have to skip a pointer. Unfortunately, we don't know how
196 large it is. We find out by looking for a matching fixup. */
197 while (fix != NULL
198 && (fix->fx_frag != f || fix->fx_where != offset))
199 fix = fix->fx_next;
200 if (fix == NULL)
201 offset += 4;
202 else
203 offset += fix->fx_size;
204 while (f != NULL && offset >= f->fr_fix)
205 {
206 offset -= f->fr_fix;
207 f = f->fr_next;
208 }
209 if (f == NULL)
210 return 0;
211 }
212 else if (augmentation[0] != 'z')
213 return 0;
214
215 /* We're now at the code alignment factor, which is a ULEB128. If
216 it isn't a single byte, forget it. */
217
218 code_alignment = f->fr_literal[offset] & 0xff;
219 if ((code_alignment & 0x80) != 0)
220 code_alignment = 0;
221
222 info->code_alignment = code_alignment;
223 info->z_augmentation = (augmentation[0] == 'z');
224
225 return 1;
226 }
227
228 enum frame_state
229 {
230 state_idle,
231 state_saw_size,
232 state_saw_cie_offset,
233 state_saw_pc_begin,
234 state_seeing_aug_size,
235 state_skipping_aug,
236 state_wait_loc4,
237 state_saw_loc4,
238 state_error,
239 };
240
241 /* This function is called from emit_expr. It looks for cases which
242 we can optimize.
243
244 Rather than try to parse all this information as we read it, we
245 look for a single byte DW_CFA_advance_loc4 followed by a 4 byte
246 difference. We turn that into a rs_cfa_advance frag, and handle
247 those frags at the end of the assembly. If the gcc output changes
248 somewhat, this optimization may stop working.
249
250 This function returns non-zero if it handled the expression and
251 emit_expr should not do anything, or zero otherwise. It can also
252 change *EXP and *PNBYTES. */
253
254 int
255 check_eh_frame (expressionS *exp, unsigned int *pnbytes)
256 {
257 struct frame_data
258 {
259 enum frame_state state;
260
261 int cie_info_ok;
262 struct cie_info cie_info;
263
264 symbolS *size_end_sym;
265 fragS *loc4_frag;
266 int loc4_fix;
267
268 int aug_size;
269 int aug_shift;
270 };
271
272 static struct frame_data eh_frame_data;
273 static struct frame_data debug_frame_data;
274 struct frame_data *d;
275
276 /* Don't optimize. */
277 if (flag_traditional_format)
278 return 0;
279
280 #ifdef md_allow_eh_opt
281 if (! md_allow_eh_opt)
282 return 0;
283 #endif
284
285 /* Select the proper section data. */
286 if (strncmp (segment_name (now_seg), ".eh_frame", 9) == 0
287 && segment_name (now_seg)[9] != '_')
288 d = &eh_frame_data;
289 else if (strncmp (segment_name (now_seg), ".debug_frame", 12) == 0)
290 d = &debug_frame_data;
291 else
292 return 0;
293
294 if (d->state >= state_saw_size && S_IS_DEFINED (d->size_end_sym))
295 {
296 /* We have come to the end of the CIE or FDE. See below where
297 we set saw_size. We must check this first because we may now
298 be looking at the next size. */
299 d->state = state_idle;
300 }
301
302 switch (d->state)
303 {
304 case state_idle:
305 if (*pnbytes == 4)
306 {
307 /* This might be the size of the CIE or FDE. We want to know
308 the size so that we don't accidentally optimize across an FDE
309 boundary. We recognize the size in one of two forms: a
310 symbol which will later be defined as a difference, or a
311 subtraction of two symbols. Either way, we can tell when we
312 are at the end of the FDE because the symbol becomes defined
313 (in the case of a subtraction, the end symbol, from which the
314 start symbol is being subtracted). Other ways of describing
315 the size will not be optimized. */
316 if ((exp->X_op == O_symbol || exp->X_op == O_subtract)
317 && ! S_IS_DEFINED (exp->X_add_symbol))
318 {
319 d->state = state_saw_size;
320 d->size_end_sym = exp->X_add_symbol;
321 }
322 }
323 break;
324
325 case state_saw_size:
326 case state_saw_cie_offset:
327 /* Assume whatever form it appears in, it appears atomically. */
328 d->state = (enum frame_state) (d->state + 1);
329 break;
330
331 case state_saw_pc_begin:
332 /* Decide whether we should see an augmentation. */
333 if (! d->cie_info_ok
334 && ! (d->cie_info_ok = get_cie_info (&d->cie_info)))
335 d->state = state_error;
336 else if (d->cie_info.z_augmentation)
337 {
338 d->state = state_seeing_aug_size;
339 d->aug_size = 0;
340 d->aug_shift = 0;
341 }
342 else
343 d->state = state_wait_loc4;
344 break;
345
346 case state_seeing_aug_size:
347 /* Bytes == -1 means this comes from an leb128 directive. */
348 if ((int)*pnbytes == -1 && exp->X_op == O_constant)
349 {
350 d->aug_size = exp->X_add_number;
351 d->state = state_skipping_aug;
352 }
353 else if (*pnbytes == 1 && exp->X_op == O_constant)
354 {
355 unsigned char byte = exp->X_add_number;
356 d->aug_size |= (byte & 0x7f) << d->aug_shift;
357 d->aug_shift += 7;
358 if ((byte & 0x80) == 0)
359 d->state = state_skipping_aug;
360 }
361 else
362 d->state = state_error;
363 if (d->state == state_skipping_aug && d->aug_size == 0)
364 d->state = state_wait_loc4;
365 break;
366
367 case state_skipping_aug:
368 if ((int)*pnbytes < 0)
369 d->state = state_error;
370 else
371 {
372 int left = (d->aug_size -= *pnbytes);
373 if (left == 0)
374 d->state = state_wait_loc4;
375 else if (left < 0)
376 d->state = state_error;
377 }
378 break;
379
380 case state_wait_loc4:
381 if (*pnbytes == 1
382 && exp->X_op == O_constant
383 && exp->X_add_number == DW_CFA_advance_loc4)
384 {
385 /* This might be a DW_CFA_advance_loc4. Record the frag and the
386 position within the frag, so that we can change it later. */
387 frag_grow (1);
388 d->state = state_saw_loc4;
389 d->loc4_frag = frag_now;
390 d->loc4_fix = frag_now_fix ();
391 }
392 break;
393
394 case state_saw_loc4:
395 d->state = state_wait_loc4;
396 if (*pnbytes != 4)
397 break;
398 if (exp->X_op == O_constant)
399 {
400 /* This is a case which we can optimize. The two symbols being
401 subtracted were in the same frag and the expression was
402 reduced to a constant. We can do the optimization entirely
403 in this function. */
404 if (exp->X_add_number < 0x40)
405 {
406 d->loc4_frag->fr_literal[d->loc4_fix]
407 = DW_CFA_advance_loc | exp->X_add_number;
408 /* No more bytes needed. */
409 return 1;
410 }
411 else if (exp->X_add_number < 0x100)
412 {
413 d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc1;
414 *pnbytes = 1;
415 }
416 else if (exp->X_add_number < 0x10000)
417 {
418 d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc2;
419 *pnbytes = 2;
420 }
421 }
422 else if (exp->X_op == O_subtract && d->cie_info.code_alignment == 1)
423 {
424 /* This is a case we can optimize. The expression was not
425 reduced, so we can not finish the optimization until the end
426 of the assembly. We set up a variant frag which we handle
427 later. */
428 frag_var (rs_cfa, 4, 0, 1 << 3, make_expr_symbol (exp),
429 d->loc4_fix, (char *) d->loc4_frag);
430 return 1;
431 }
432 else if ((exp->X_op == O_divide
433 || exp->X_op == O_right_shift)
434 && d->cie_info.code_alignment > 1)
435 {
436 if (symbol_symbolS (exp->X_add_symbol)
437 && symbol_constant_p (exp->X_op_symbol)
438 && S_GET_SEGMENT (exp->X_op_symbol) == absolute_section
439 && ((exp->X_op == O_divide
440 ? *symbol_X_add_number (exp->X_op_symbol)
441 : (offsetT) 1 << *symbol_X_add_number (exp->X_op_symbol))
442 == (offsetT) d->cie_info.code_alignment))
443 {
444 expressionS *symval;
445
446 symval = symbol_get_value_expression (exp->X_add_symbol);
447 if (symval->X_op == O_subtract)
448 {
449 /* This is a case we can optimize as well. The
450 expression was not reduced, so we can not finish
451 the optimization until the end of the assembly.
452 We set up a variant frag which we handle later. */
453 frag_var (rs_cfa, 4, 0, d->cie_info.code_alignment << 3,
454 make_expr_symbol (symval),
455 d->loc4_fix, (char *) d->loc4_frag);
456 return 1;
457 }
458 }
459 }
460 break;
461
462 case state_error:
463 /* Just skipping everything. */
464 break;
465 }
466
467 return 0;
468 }
469
470 /* The function estimates the size of a rs_cfa variant frag based on
471 the current values of the symbols. It is called before the
472 relaxation loop. We set fr_subtype{0:2} to the expected length. */
473
474 int
475 eh_frame_estimate_size_before_relax (fragS *frag)
476 {
477 offsetT diff;
478 int ca = frag->fr_subtype >> 3;
479 int ret;
480
481 diff = resolve_symbol_value (frag->fr_symbol);
482
483 gas_assert (ca > 0);
484 diff /= ca;
485 if (diff == 0)
486 ret = -1;
487 else if (diff < 0x40)
488 ret = 0;
489 else if (diff < 0x100)
490 ret = 1;
491 else if (diff < 0x10000)
492 ret = 2;
493 else
494 ret = 4;
495
496 frag->fr_subtype = (frag->fr_subtype & ~7) | (ret & 7);
497
498 return ret;
499 }
500
501 /* This function relaxes a rs_cfa variant frag based on the current
502 values of the symbols. fr_subtype{0:2} is the current length of
503 the frag. This returns the change in frag length. */
504
505 int
506 eh_frame_relax_frag (fragS *frag)
507 {
508 int oldsize, newsize;
509
510 oldsize = frag->fr_subtype & 7;
511 if (oldsize == 7)
512 oldsize = -1;
513 newsize = eh_frame_estimate_size_before_relax (frag);
514 return newsize - oldsize;
515 }
516
517 /* This function converts a rs_cfa variant frag into a normal fill
518 frag. This is called after all relaxation has been done.
519 fr_subtype{0:2} will be the desired length of the frag. */
520
521 void
522 eh_frame_convert_frag (fragS *frag)
523 {
524 offsetT diff;
525 fragS *loc4_frag;
526 int loc4_fix, ca;
527
528 loc4_frag = (fragS *) frag->fr_opcode;
529 loc4_fix = (int) frag->fr_offset;
530
531 diff = resolve_symbol_value (frag->fr_symbol);
532
533 ca = frag->fr_subtype >> 3;
534 gas_assert (ca > 0);
535 diff /= ca;
536 switch (frag->fr_subtype & 7)
537 {
538 case 0:
539 gas_assert (diff < 0x40);
540 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc | diff;
541 break;
542
543 case 1:
544 gas_assert (diff < 0x100);
545 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc1;
546 frag->fr_literal[frag->fr_fix] = diff;
547 break;
548
549 case 2:
550 gas_assert (diff < 0x10000);
551 loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc2;
552 md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 2);
553 break;
554
555 case 4:
556 md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 4);
557 break;
558
559 case 7:
560 gas_assert (diff == 0);
561 frag->fr_fix -= 8;
562 break;
563
564 default:
565 abort ();
566 }
567
568 frag->fr_fix += frag->fr_subtype & 7;
569 frag->fr_type = rs_fill;
570 frag->fr_subtype = 0;
571 frag->fr_offset = 0;
572 }
This page took 0.044694 seconds and 4 git commands to generate.