3289a8e5c8eef918370afe44298808210f9b864e
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *value_val_atr (struct type *, struct value *);
200
201 static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
203
204 static struct value *ada_search_struct_field (const char *, struct value *, int,
205 struct type *);
206
207 static struct value *ada_value_primitive_field (struct value *, int, int,
208 struct type *);
209
210 static int find_struct_field (const char *, struct type *, int,
211 struct type **, int *, int *, int *, int *);
212
213 static int ada_resolve_function (struct block_symbol *, int,
214 struct value **, int, const char *,
215 struct type *, int);
216
217 static int ada_is_direct_array_type (struct type *);
218
219 static void ada_language_arch_info (struct gdbarch *,
220 struct language_arch_info *);
221
222 static struct value *ada_index_struct_field (int, struct value *, int,
223 struct type *);
224
225 static struct value *assign_aggregate (struct value *, struct value *,
226 struct expression *,
227 int *, enum noside);
228
229 static void aggregate_assign_from_choices (struct value *, struct value *,
230 struct expression *,
231 int *, LONGEST *, int *,
232 int, LONGEST, LONGEST);
233
234 static void aggregate_assign_positional (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int *, int,
237 LONGEST, LONGEST);
238
239
240 static void aggregate_assign_others (struct value *, struct value *,
241 struct expression *,
242 int *, LONGEST *, int, LONGEST, LONGEST);
243
244
245 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
246
247
248 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
249 int *, enum noside);
250
251 static void ada_forward_operator_length (struct expression *, int, int *,
252 int *);
253
254 static struct type *ada_find_any_type (const char *name);
255
256 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
257 (const lookup_name_info &lookup_name);
258
259 \f
260
261 /* The result of a symbol lookup to be stored in our symbol cache. */
262
263 struct cache_entry
264 {
265 /* The name used to perform the lookup. */
266 const char *name;
267 /* The namespace used during the lookup. */
268 domain_enum domain;
269 /* The symbol returned by the lookup, or NULL if no matching symbol
270 was found. */
271 struct symbol *sym;
272 /* The block where the symbol was found, or NULL if no matching
273 symbol was found. */
274 const struct block *block;
275 /* A pointer to the next entry with the same hash. */
276 struct cache_entry *next;
277 };
278
279 /* The Ada symbol cache, used to store the result of Ada-mode symbol
280 lookups in the course of executing the user's commands.
281
282 The cache is implemented using a simple, fixed-sized hash.
283 The size is fixed on the grounds that there are not likely to be
284 all that many symbols looked up during any given session, regardless
285 of the size of the symbol table. If we decide to go to a resizable
286 table, let's just use the stuff from libiberty instead. */
287
288 #define HASH_SIZE 1009
289
290 struct ada_symbol_cache
291 {
292 /* An obstack used to store the entries in our cache. */
293 struct obstack cache_space;
294
295 /* The root of the hash table used to implement our symbol cache. */
296 struct cache_entry *root[HASH_SIZE];
297 };
298
299 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
300
301 /* Maximum-sized dynamic type. */
302 static unsigned int varsize_limit;
303
304 static const char ada_completer_word_break_characters[] =
305 #ifdef VMS
306 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
307 #else
308 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
309 #endif
310
311 /* The name of the symbol to use to get the name of the main subprogram. */
312 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
313 = "__gnat_ada_main_program_name";
314
315 /* Limit on the number of warnings to raise per expression evaluation. */
316 static int warning_limit = 2;
317
318 /* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320 static int warnings_issued = 0;
321
322 static const char *known_runtime_file_name_patterns[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
324 };
325
326 static const char *known_auxiliary_function_name_patterns[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
328 };
329
330 /* Maintenance-related settings for this module. */
331
332 static struct cmd_list_element *maint_set_ada_cmdlist;
333 static struct cmd_list_element *maint_show_ada_cmdlist;
334
335 /* Implement the "maintenance set ada" (prefix) command. */
336
337 static void
338 maint_set_ada_cmd (const char *args, int from_tty)
339 {
340 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
341 gdb_stdout);
342 }
343
344 /* Implement the "maintenance show ada" (prefix) command. */
345
346 static void
347 maint_show_ada_cmd (const char *args, int from_tty)
348 {
349 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
350 }
351
352 /* The "maintenance ada set/show ignore-descriptive-type" value. */
353
354 static bool ada_ignore_descriptive_types_p = false;
355
356 /* Inferior-specific data. */
357
358 /* Per-inferior data for this module. */
359
360 struct ada_inferior_data
361 {
362 /* The ada__tags__type_specific_data type, which is used when decoding
363 tagged types. With older versions of GNAT, this type was directly
364 accessible through a component ("tsd") in the object tag. But this
365 is no longer the case, so we cache it for each inferior. */
366 struct type *tsd_type = nullptr;
367
368 /* The exception_support_info data. This data is used to determine
369 how to implement support for Ada exception catchpoints in a given
370 inferior. */
371 const struct exception_support_info *exception_info = nullptr;
372 };
373
374 /* Our key to this module's inferior data. */
375 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
376
377 /* Return our inferior data for the given inferior (INF).
378
379 This function always returns a valid pointer to an allocated
380 ada_inferior_data structure. If INF's inferior data has not
381 been previously set, this functions creates a new one with all
382 fields set to zero, sets INF's inferior to it, and then returns
383 a pointer to that newly allocated ada_inferior_data. */
384
385 static struct ada_inferior_data *
386 get_ada_inferior_data (struct inferior *inf)
387 {
388 struct ada_inferior_data *data;
389
390 data = ada_inferior_data.get (inf);
391 if (data == NULL)
392 data = ada_inferior_data.emplace (inf);
393
394 return data;
395 }
396
397 /* Perform all necessary cleanups regarding our module's inferior data
398 that is required after the inferior INF just exited. */
399
400 static void
401 ada_inferior_exit (struct inferior *inf)
402 {
403 ada_inferior_data.clear (inf);
404 }
405
406
407 /* program-space-specific data. */
408
409 /* This module's per-program-space data. */
410 struct ada_pspace_data
411 {
412 ~ada_pspace_data ()
413 {
414 if (sym_cache != NULL)
415 ada_free_symbol_cache (sym_cache);
416 }
417
418 /* The Ada symbol cache. */
419 struct ada_symbol_cache *sym_cache = nullptr;
420 };
421
422 /* Key to our per-program-space data. */
423 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
424
425 /* Return this module's data for the given program space (PSPACE).
426 If not is found, add a zero'ed one now.
427
428 This function always returns a valid object. */
429
430 static struct ada_pspace_data *
431 get_ada_pspace_data (struct program_space *pspace)
432 {
433 struct ada_pspace_data *data;
434
435 data = ada_pspace_data_handle.get (pspace);
436 if (data == NULL)
437 data = ada_pspace_data_handle.emplace (pspace);
438
439 return data;
440 }
441
442 /* Utilities */
443
444 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
445 all typedef layers have been peeled. Otherwise, return TYPE.
446
447 Normally, we really expect a typedef type to only have 1 typedef layer.
448 In other words, we really expect the target type of a typedef type to be
449 a non-typedef type. This is particularly true for Ada units, because
450 the language does not have a typedef vs not-typedef distinction.
451 In that respect, the Ada compiler has been trying to eliminate as many
452 typedef definitions in the debugging information, since they generally
453 do not bring any extra information (we still use typedef under certain
454 circumstances related mostly to the GNAT encoding).
455
456 Unfortunately, we have seen situations where the debugging information
457 generated by the compiler leads to such multiple typedef layers. For
458 instance, consider the following example with stabs:
459
460 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
461 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
462
463 This is an error in the debugging information which causes type
464 pck__float_array___XUP to be defined twice, and the second time,
465 it is defined as a typedef of a typedef.
466
467 This is on the fringe of legality as far as debugging information is
468 concerned, and certainly unexpected. But it is easy to handle these
469 situations correctly, so we can afford to be lenient in this case. */
470
471 static struct type *
472 ada_typedef_target_type (struct type *type)
473 {
474 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
475 type = TYPE_TARGET_TYPE (type);
476 return type;
477 }
478
479 /* Given DECODED_NAME a string holding a symbol name in its
480 decoded form (ie using the Ada dotted notation), returns
481 its unqualified name. */
482
483 static const char *
484 ada_unqualified_name (const char *decoded_name)
485 {
486 const char *result;
487
488 /* If the decoded name starts with '<', it means that the encoded
489 name does not follow standard naming conventions, and thus that
490 it is not your typical Ada symbol name. Trying to unqualify it
491 is therefore pointless and possibly erroneous. */
492 if (decoded_name[0] == '<')
493 return decoded_name;
494
495 result = strrchr (decoded_name, '.');
496 if (result != NULL)
497 result++; /* Skip the dot... */
498 else
499 result = decoded_name;
500
501 return result;
502 }
503
504 /* Return a string starting with '<', followed by STR, and '>'. */
505
506 static std::string
507 add_angle_brackets (const char *str)
508 {
509 return string_printf ("<%s>", str);
510 }
511
512 static const char *
513 ada_get_gdb_completer_word_break_characters (void)
514 {
515 return ada_completer_word_break_characters;
516 }
517
518 /* Print an array element index using the Ada syntax. */
519
520 static void
521 ada_print_array_index (struct value *index_value, struct ui_file *stream,
522 const struct value_print_options *options)
523 {
524 LA_VALUE_PRINT (index_value, stream, options);
525 fprintf_filtered (stream, " => ");
526 }
527
528 /* la_watch_location_expression for Ada. */
529
530 static gdb::unique_xmalloc_ptr<char>
531 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
532 {
533 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
534 std::string name = type_to_string (type);
535 return gdb::unique_xmalloc_ptr<char>
536 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
537 }
538
539 /* Assuming V points to an array of S objects, make sure that it contains at
540 least M objects, updating V and S as necessary. */
541
542 #define GROW_VECT(v, s, m) \
543 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
544
545 /* Assuming VECT points to an array of *SIZE objects of size
546 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
547 updating *SIZE as necessary and returning the (new) array. */
548
549 static void *
550 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
551 {
552 if (*size < min_size)
553 {
554 *size *= 2;
555 if (*size < min_size)
556 *size = min_size;
557 vect = xrealloc (vect, *size * element_size);
558 }
559 return vect;
560 }
561
562 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
563 suffix of FIELD_NAME beginning "___". */
564
565 static int
566 field_name_match (const char *field_name, const char *target)
567 {
568 int len = strlen (target);
569
570 return
571 (strncmp (field_name, target, len) == 0
572 && (field_name[len] == '\0'
573 || (startswith (field_name + len, "___")
574 && strcmp (field_name + strlen (field_name) - 6,
575 "___XVN") != 0)));
576 }
577
578
579 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
580 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
581 and return its index. This function also handles fields whose name
582 have ___ suffixes because the compiler sometimes alters their name
583 by adding such a suffix to represent fields with certain constraints.
584 If the field could not be found, return a negative number if
585 MAYBE_MISSING is set. Otherwise raise an error. */
586
587 int
588 ada_get_field_index (const struct type *type, const char *field_name,
589 int maybe_missing)
590 {
591 int fieldno;
592 struct type *struct_type = check_typedef ((struct type *) type);
593
594 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
595 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
596 return fieldno;
597
598 if (!maybe_missing)
599 error (_("Unable to find field %s in struct %s. Aborting"),
600 field_name, TYPE_NAME (struct_type));
601
602 return -1;
603 }
604
605 /* The length of the prefix of NAME prior to any "___" suffix. */
606
607 int
608 ada_name_prefix_len (const char *name)
609 {
610 if (name == NULL)
611 return 0;
612 else
613 {
614 const char *p = strstr (name, "___");
615
616 if (p == NULL)
617 return strlen (name);
618 else
619 return p - name;
620 }
621 }
622
623 /* Return non-zero if SUFFIX is a suffix of STR.
624 Return zero if STR is null. */
625
626 static int
627 is_suffix (const char *str, const char *suffix)
628 {
629 int len1, len2;
630
631 if (str == NULL)
632 return 0;
633 len1 = strlen (str);
634 len2 = strlen (suffix);
635 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
636 }
637
638 /* The contents of value VAL, treated as a value of type TYPE. The
639 result is an lval in memory if VAL is. */
640
641 static struct value *
642 coerce_unspec_val_to_type (struct value *val, struct type *type)
643 {
644 type = ada_check_typedef (type);
645 if (value_type (val) == type)
646 return val;
647 else
648 {
649 struct value *result;
650
651 /* Make sure that the object size is not unreasonable before
652 trying to allocate some memory for it. */
653 ada_ensure_varsize_limit (type);
654
655 if (value_lazy (val)
656 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
657 result = allocate_value_lazy (type);
658 else
659 {
660 result = allocate_value (type);
661 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
662 }
663 set_value_component_location (result, val);
664 set_value_bitsize (result, value_bitsize (val));
665 set_value_bitpos (result, value_bitpos (val));
666 if (VALUE_LVAL (result) == lval_memory)
667 set_value_address (result, value_address (val));
668 return result;
669 }
670 }
671
672 static const gdb_byte *
673 cond_offset_host (const gdb_byte *valaddr, long offset)
674 {
675 if (valaddr == NULL)
676 return NULL;
677 else
678 return valaddr + offset;
679 }
680
681 static CORE_ADDR
682 cond_offset_target (CORE_ADDR address, long offset)
683 {
684 if (address == 0)
685 return 0;
686 else
687 return address + offset;
688 }
689
690 /* Issue a warning (as for the definition of warning in utils.c, but
691 with exactly one argument rather than ...), unless the limit on the
692 number of warnings has passed during the evaluation of the current
693 expression. */
694
695 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
696 provided by "complaint". */
697 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
698
699 static void
700 lim_warning (const char *format, ...)
701 {
702 va_list args;
703
704 va_start (args, format);
705 warnings_issued += 1;
706 if (warnings_issued <= warning_limit)
707 vwarning (format, args);
708
709 va_end (args);
710 }
711
712 /* Issue an error if the size of an object of type T is unreasonable,
713 i.e. if it would be a bad idea to allocate a value of this type in
714 GDB. */
715
716 void
717 ada_ensure_varsize_limit (const struct type *type)
718 {
719 if (TYPE_LENGTH (type) > varsize_limit)
720 error (_("object size is larger than varsize-limit"));
721 }
722
723 /* Maximum value of a SIZE-byte signed integer type. */
724 static LONGEST
725 max_of_size (int size)
726 {
727 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
728
729 return top_bit | (top_bit - 1);
730 }
731
732 /* Minimum value of a SIZE-byte signed integer type. */
733 static LONGEST
734 min_of_size (int size)
735 {
736 return -max_of_size (size) - 1;
737 }
738
739 /* Maximum value of a SIZE-byte unsigned integer type. */
740 static ULONGEST
741 umax_of_size (int size)
742 {
743 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
744
745 return top_bit | (top_bit - 1);
746 }
747
748 /* Maximum value of integral type T, as a signed quantity. */
749 static LONGEST
750 max_of_type (struct type *t)
751 {
752 if (TYPE_UNSIGNED (t))
753 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
754 else
755 return max_of_size (TYPE_LENGTH (t));
756 }
757
758 /* Minimum value of integral type T, as a signed quantity. */
759 static LONGEST
760 min_of_type (struct type *t)
761 {
762 if (TYPE_UNSIGNED (t))
763 return 0;
764 else
765 return min_of_size (TYPE_LENGTH (t));
766 }
767
768 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
769 LONGEST
770 ada_discrete_type_high_bound (struct type *type)
771 {
772 type = resolve_dynamic_type (type, NULL, 0);
773 switch (TYPE_CODE (type))
774 {
775 case TYPE_CODE_RANGE:
776 return TYPE_HIGH_BOUND (type);
777 case TYPE_CODE_ENUM:
778 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
779 case TYPE_CODE_BOOL:
780 return 1;
781 case TYPE_CODE_CHAR:
782 case TYPE_CODE_INT:
783 return max_of_type (type);
784 default:
785 error (_("Unexpected type in ada_discrete_type_high_bound."));
786 }
787 }
788
789 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
790 LONGEST
791 ada_discrete_type_low_bound (struct type *type)
792 {
793 type = resolve_dynamic_type (type, NULL, 0);
794 switch (TYPE_CODE (type))
795 {
796 case TYPE_CODE_RANGE:
797 return TYPE_LOW_BOUND (type);
798 case TYPE_CODE_ENUM:
799 return TYPE_FIELD_ENUMVAL (type, 0);
800 case TYPE_CODE_BOOL:
801 return 0;
802 case TYPE_CODE_CHAR:
803 case TYPE_CODE_INT:
804 return min_of_type (type);
805 default:
806 error (_("Unexpected type in ada_discrete_type_low_bound."));
807 }
808 }
809
810 /* The identity on non-range types. For range types, the underlying
811 non-range scalar type. */
812
813 static struct type *
814 get_base_type (struct type *type)
815 {
816 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
817 {
818 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
819 return type;
820 type = TYPE_TARGET_TYPE (type);
821 }
822 return type;
823 }
824
825 /* Return a decoded version of the given VALUE. This means returning
826 a value whose type is obtained by applying all the GNAT-specific
827 encodings, making the resulting type a static but standard description
828 of the initial type. */
829
830 struct value *
831 ada_get_decoded_value (struct value *value)
832 {
833 struct type *type = ada_check_typedef (value_type (value));
834
835 if (ada_is_array_descriptor_type (type)
836 || (ada_is_constrained_packed_array_type (type)
837 && TYPE_CODE (type) != TYPE_CODE_PTR))
838 {
839 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
840 value = ada_coerce_to_simple_array_ptr (value);
841 else
842 value = ada_coerce_to_simple_array (value);
843 }
844 else
845 value = ada_to_fixed_value (value);
846
847 return value;
848 }
849
850 /* Same as ada_get_decoded_value, but with the given TYPE.
851 Because there is no associated actual value for this type,
852 the resulting type might be a best-effort approximation in
853 the case of dynamic types. */
854
855 struct type *
856 ada_get_decoded_type (struct type *type)
857 {
858 type = to_static_fixed_type (type);
859 if (ada_is_constrained_packed_array_type (type))
860 type = ada_coerce_to_simple_array_type (type);
861 return type;
862 }
863
864 \f
865
866 /* Language Selection */
867
868 /* If the main program is in Ada, return language_ada, otherwise return LANG
869 (the main program is in Ada iif the adainit symbol is found). */
870
871 static enum language
872 ada_update_initial_language (enum language lang)
873 {
874 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
875 return language_ada;
876
877 return lang;
878 }
879
880 /* If the main procedure is written in Ada, then return its name.
881 The result is good until the next call. Return NULL if the main
882 procedure doesn't appear to be in Ada. */
883
884 char *
885 ada_main_name (void)
886 {
887 struct bound_minimal_symbol msym;
888 static gdb::unique_xmalloc_ptr<char> main_program_name;
889
890 /* For Ada, the name of the main procedure is stored in a specific
891 string constant, generated by the binder. Look for that symbol,
892 extract its address, and then read that string. If we didn't find
893 that string, then most probably the main procedure is not written
894 in Ada. */
895 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
896
897 if (msym.minsym != NULL)
898 {
899 CORE_ADDR main_program_name_addr;
900 int err_code;
901
902 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
903 if (main_program_name_addr == 0)
904 error (_("Invalid address for Ada main program name."));
905
906 target_read_string (main_program_name_addr, &main_program_name,
907 1024, &err_code);
908
909 if (err_code != 0)
910 return NULL;
911 return main_program_name.get ();
912 }
913
914 /* The main procedure doesn't seem to be in Ada. */
915 return NULL;
916 }
917 \f
918 /* Symbols */
919
920 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
921 of NULLs. */
922
923 const struct ada_opname_map ada_opname_table[] = {
924 {"Oadd", "\"+\"", BINOP_ADD},
925 {"Osubtract", "\"-\"", BINOP_SUB},
926 {"Omultiply", "\"*\"", BINOP_MUL},
927 {"Odivide", "\"/\"", BINOP_DIV},
928 {"Omod", "\"mod\"", BINOP_MOD},
929 {"Orem", "\"rem\"", BINOP_REM},
930 {"Oexpon", "\"**\"", BINOP_EXP},
931 {"Olt", "\"<\"", BINOP_LESS},
932 {"Ole", "\"<=\"", BINOP_LEQ},
933 {"Ogt", "\">\"", BINOP_GTR},
934 {"Oge", "\">=\"", BINOP_GEQ},
935 {"Oeq", "\"=\"", BINOP_EQUAL},
936 {"One", "\"/=\"", BINOP_NOTEQUAL},
937 {"Oand", "\"and\"", BINOP_BITWISE_AND},
938 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
939 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
940 {"Oconcat", "\"&\"", BINOP_CONCAT},
941 {"Oabs", "\"abs\"", UNOP_ABS},
942 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
943 {"Oadd", "\"+\"", UNOP_PLUS},
944 {"Osubtract", "\"-\"", UNOP_NEG},
945 {NULL, NULL}
946 };
947
948 /* The "encoded" form of DECODED, according to GNAT conventions. The
949 result is valid until the next call to ada_encode. If
950 THROW_ERRORS, throw an error if invalid operator name is found.
951 Otherwise, return NULL in that case. */
952
953 static char *
954 ada_encode_1 (const char *decoded, bool throw_errors)
955 {
956 static char *encoding_buffer = NULL;
957 static size_t encoding_buffer_size = 0;
958 const char *p;
959 int k;
960
961 if (decoded == NULL)
962 return NULL;
963
964 GROW_VECT (encoding_buffer, encoding_buffer_size,
965 2 * strlen (decoded) + 10);
966
967 k = 0;
968 for (p = decoded; *p != '\0'; p += 1)
969 {
970 if (*p == '.')
971 {
972 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
973 k += 2;
974 }
975 else if (*p == '"')
976 {
977 const struct ada_opname_map *mapping;
978
979 for (mapping = ada_opname_table;
980 mapping->encoded != NULL
981 && !startswith (p, mapping->decoded); mapping += 1)
982 ;
983 if (mapping->encoded == NULL)
984 {
985 if (throw_errors)
986 error (_("invalid Ada operator name: %s"), p);
987 else
988 return NULL;
989 }
990 strcpy (encoding_buffer + k, mapping->encoded);
991 k += strlen (mapping->encoded);
992 break;
993 }
994 else
995 {
996 encoding_buffer[k] = *p;
997 k += 1;
998 }
999 }
1000
1001 encoding_buffer[k] = '\0';
1002 return encoding_buffer;
1003 }
1004
1005 /* The "encoded" form of DECODED, according to GNAT conventions.
1006 The result is valid until the next call to ada_encode. */
1007
1008 char *
1009 ada_encode (const char *decoded)
1010 {
1011 return ada_encode_1 (decoded, true);
1012 }
1013
1014 /* Return NAME folded to lower case, or, if surrounded by single
1015 quotes, unfolded, but with the quotes stripped away. Result good
1016 to next call. */
1017
1018 static char *
1019 ada_fold_name (const char *name)
1020 {
1021 static char *fold_buffer = NULL;
1022 static size_t fold_buffer_size = 0;
1023
1024 int len = strlen (name);
1025 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1026
1027 if (name[0] == '\'')
1028 {
1029 strncpy (fold_buffer, name + 1, len - 2);
1030 fold_buffer[len - 2] = '\000';
1031 }
1032 else
1033 {
1034 int i;
1035
1036 for (i = 0; i <= len; i += 1)
1037 fold_buffer[i] = tolower (name[i]);
1038 }
1039
1040 return fold_buffer;
1041 }
1042
1043 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1044
1045 static int
1046 is_lower_alphanum (const char c)
1047 {
1048 return (isdigit (c) || (isalpha (c) && islower (c)));
1049 }
1050
1051 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1052 This function saves in LEN the length of that same symbol name but
1053 without either of these suffixes:
1054 . .{DIGIT}+
1055 . ${DIGIT}+
1056 . ___{DIGIT}+
1057 . __{DIGIT}+.
1058
1059 These are suffixes introduced by the compiler for entities such as
1060 nested subprogram for instance, in order to avoid name clashes.
1061 They do not serve any purpose for the debugger. */
1062
1063 static void
1064 ada_remove_trailing_digits (const char *encoded, int *len)
1065 {
1066 if (*len > 1 && isdigit (encoded[*len - 1]))
1067 {
1068 int i = *len - 2;
1069
1070 while (i > 0 && isdigit (encoded[i]))
1071 i--;
1072 if (i >= 0 && encoded[i] == '.')
1073 *len = i;
1074 else if (i >= 0 && encoded[i] == '$')
1075 *len = i;
1076 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1077 *len = i - 2;
1078 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1079 *len = i - 1;
1080 }
1081 }
1082
1083 /* Remove the suffix introduced by the compiler for protected object
1084 subprograms. */
1085
1086 static void
1087 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1088 {
1089 /* Remove trailing N. */
1090
1091 /* Protected entry subprograms are broken into two
1092 separate subprograms: The first one is unprotected, and has
1093 a 'N' suffix; the second is the protected version, and has
1094 the 'P' suffix. The second calls the first one after handling
1095 the protection. Since the P subprograms are internally generated,
1096 we leave these names undecoded, giving the user a clue that this
1097 entity is internal. */
1098
1099 if (*len > 1
1100 && encoded[*len - 1] == 'N'
1101 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1102 *len = *len - 1;
1103 }
1104
1105 /* If ENCODED follows the GNAT entity encoding conventions, then return
1106 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1107 replaced by ENCODED. */
1108
1109 std::string
1110 ada_decode (const char *encoded)
1111 {
1112 int i, j;
1113 int len0;
1114 const char *p;
1115 int at_start_name;
1116 std::string decoded;
1117
1118 /* With function descriptors on PPC64, the value of a symbol named
1119 ".FN", if it exists, is the entry point of the function "FN". */
1120 if (encoded[0] == '.')
1121 encoded += 1;
1122
1123 /* The name of the Ada main procedure starts with "_ada_".
1124 This prefix is not part of the decoded name, so skip this part
1125 if we see this prefix. */
1126 if (startswith (encoded, "_ada_"))
1127 encoded += 5;
1128
1129 /* If the name starts with '_', then it is not a properly encoded
1130 name, so do not attempt to decode it. Similarly, if the name
1131 starts with '<', the name should not be decoded. */
1132 if (encoded[0] == '_' || encoded[0] == '<')
1133 goto Suppress;
1134
1135 len0 = strlen (encoded);
1136
1137 ada_remove_trailing_digits (encoded, &len0);
1138 ada_remove_po_subprogram_suffix (encoded, &len0);
1139
1140 /* Remove the ___X.* suffix if present. Do not forget to verify that
1141 the suffix is located before the current "end" of ENCODED. We want
1142 to avoid re-matching parts of ENCODED that have previously been
1143 marked as discarded (by decrementing LEN0). */
1144 p = strstr (encoded, "___");
1145 if (p != NULL && p - encoded < len0 - 3)
1146 {
1147 if (p[3] == 'X')
1148 len0 = p - encoded;
1149 else
1150 goto Suppress;
1151 }
1152
1153 /* Remove any trailing TKB suffix. It tells us that this symbol
1154 is for the body of a task, but that information does not actually
1155 appear in the decoded name. */
1156
1157 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1158 len0 -= 3;
1159
1160 /* Remove any trailing TB suffix. The TB suffix is slightly different
1161 from the TKB suffix because it is used for non-anonymous task
1162 bodies. */
1163
1164 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1165 len0 -= 2;
1166
1167 /* Remove trailing "B" suffixes. */
1168 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1169
1170 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1171 len0 -= 1;
1172
1173 /* Make decoded big enough for possible expansion by operator name. */
1174
1175 decoded.resize (2 * len0 + 1, 'X');
1176
1177 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1178
1179 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1180 {
1181 i = len0 - 2;
1182 while ((i >= 0 && isdigit (encoded[i]))
1183 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1184 i -= 1;
1185 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1186 len0 = i - 1;
1187 else if (encoded[i] == '$')
1188 len0 = i;
1189 }
1190
1191 /* The first few characters that are not alphabetic are not part
1192 of any encoding we use, so we can copy them over verbatim. */
1193
1194 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1195 decoded[j] = encoded[i];
1196
1197 at_start_name = 1;
1198 while (i < len0)
1199 {
1200 /* Is this a symbol function? */
1201 if (at_start_name && encoded[i] == 'O')
1202 {
1203 int k;
1204
1205 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1206 {
1207 int op_len = strlen (ada_opname_table[k].encoded);
1208 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1209 op_len - 1) == 0)
1210 && !isalnum (encoded[i + op_len]))
1211 {
1212 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1213 at_start_name = 0;
1214 i += op_len;
1215 j += strlen (ada_opname_table[k].decoded);
1216 break;
1217 }
1218 }
1219 if (ada_opname_table[k].encoded != NULL)
1220 continue;
1221 }
1222 at_start_name = 0;
1223
1224 /* Replace "TK__" with "__", which will eventually be translated
1225 into "." (just below). */
1226
1227 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1228 i += 2;
1229
1230 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1231 be translated into "." (just below). These are internal names
1232 generated for anonymous blocks inside which our symbol is nested. */
1233
1234 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1235 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1236 && isdigit (encoded [i+4]))
1237 {
1238 int k = i + 5;
1239
1240 while (k < len0 && isdigit (encoded[k]))
1241 k++; /* Skip any extra digit. */
1242
1243 /* Double-check that the "__B_{DIGITS}+" sequence we found
1244 is indeed followed by "__". */
1245 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1246 i = k;
1247 }
1248
1249 /* Remove _E{DIGITS}+[sb] */
1250
1251 /* Just as for protected object subprograms, there are 2 categories
1252 of subprograms created by the compiler for each entry. The first
1253 one implements the actual entry code, and has a suffix following
1254 the convention above; the second one implements the barrier and
1255 uses the same convention as above, except that the 'E' is replaced
1256 by a 'B'.
1257
1258 Just as above, we do not decode the name of barrier functions
1259 to give the user a clue that the code he is debugging has been
1260 internally generated. */
1261
1262 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1263 && isdigit (encoded[i+2]))
1264 {
1265 int k = i + 3;
1266
1267 while (k < len0 && isdigit (encoded[k]))
1268 k++;
1269
1270 if (k < len0
1271 && (encoded[k] == 'b' || encoded[k] == 's'))
1272 {
1273 k++;
1274 /* Just as an extra precaution, make sure that if this
1275 suffix is followed by anything else, it is a '_'.
1276 Otherwise, we matched this sequence by accident. */
1277 if (k == len0
1278 || (k < len0 && encoded[k] == '_'))
1279 i = k;
1280 }
1281 }
1282
1283 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1284 the GNAT front-end in protected object subprograms. */
1285
1286 if (i < len0 + 3
1287 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1288 {
1289 /* Backtrack a bit up until we reach either the begining of
1290 the encoded name, or "__". Make sure that we only find
1291 digits or lowercase characters. */
1292 const char *ptr = encoded + i - 1;
1293
1294 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1295 ptr--;
1296 if (ptr < encoded
1297 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1298 i++;
1299 }
1300
1301 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1302 {
1303 /* This is a X[bn]* sequence not separated from the previous
1304 part of the name with a non-alpha-numeric character (in other
1305 words, immediately following an alpha-numeric character), then
1306 verify that it is placed at the end of the encoded name. If
1307 not, then the encoding is not valid and we should abort the
1308 decoding. Otherwise, just skip it, it is used in body-nested
1309 package names. */
1310 do
1311 i += 1;
1312 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1313 if (i < len0)
1314 goto Suppress;
1315 }
1316 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1317 {
1318 /* Replace '__' by '.'. */
1319 decoded[j] = '.';
1320 at_start_name = 1;
1321 i += 2;
1322 j += 1;
1323 }
1324 else
1325 {
1326 /* It's a character part of the decoded name, so just copy it
1327 over. */
1328 decoded[j] = encoded[i];
1329 i += 1;
1330 j += 1;
1331 }
1332 }
1333 decoded.resize (j);
1334
1335 /* Decoded names should never contain any uppercase character.
1336 Double-check this, and abort the decoding if we find one. */
1337
1338 for (i = 0; i < decoded.length(); ++i)
1339 if (isupper (decoded[i]) || decoded[i] == ' ')
1340 goto Suppress;
1341
1342 return decoded;
1343
1344 Suppress:
1345 if (encoded[0] == '<')
1346 decoded = encoded;
1347 else
1348 decoded = '<' + std::string(encoded) + '>';
1349 return decoded;
1350
1351 }
1352
1353 /* Table for keeping permanent unique copies of decoded names. Once
1354 allocated, names in this table are never released. While this is a
1355 storage leak, it should not be significant unless there are massive
1356 changes in the set of decoded names in successive versions of a
1357 symbol table loaded during a single session. */
1358 static struct htab *decoded_names_store;
1359
1360 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1361 in the language-specific part of GSYMBOL, if it has not been
1362 previously computed. Tries to save the decoded name in the same
1363 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1364 in any case, the decoded symbol has a lifetime at least that of
1365 GSYMBOL).
1366 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1367 const, but nevertheless modified to a semantically equivalent form
1368 when a decoded name is cached in it. */
1369
1370 const char *
1371 ada_decode_symbol (const struct general_symbol_info *arg)
1372 {
1373 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1374 const char **resultp =
1375 &gsymbol->language_specific.demangled_name;
1376
1377 if (!gsymbol->ada_mangled)
1378 {
1379 std::string decoded = ada_decode (gsymbol->name);
1380 struct obstack *obstack = gsymbol->language_specific.obstack;
1381
1382 gsymbol->ada_mangled = 1;
1383
1384 if (obstack != NULL)
1385 *resultp = obstack_strdup (obstack, decoded.c_str ());
1386 else
1387 {
1388 /* Sometimes, we can't find a corresponding objfile, in
1389 which case, we put the result on the heap. Since we only
1390 decode when needed, we hope this usually does not cause a
1391 significant memory leak (FIXME). */
1392
1393 char **slot = (char **) htab_find_slot (decoded_names_store,
1394 decoded.c_str (), INSERT);
1395
1396 if (*slot == NULL)
1397 *slot = xstrdup (decoded.c_str ());
1398 *resultp = *slot;
1399 }
1400 }
1401
1402 return *resultp;
1403 }
1404
1405 static char *
1406 ada_la_decode (const char *encoded, int options)
1407 {
1408 return xstrdup (ada_decode (encoded).c_str ());
1409 }
1410
1411 /* Implement la_sniff_from_mangled_name for Ada. */
1412
1413 static int
1414 ada_sniff_from_mangled_name (const char *mangled, char **out)
1415 {
1416 std::string demangled = ada_decode (mangled);
1417
1418 *out = NULL;
1419
1420 if (demangled != mangled && demangled[0] != '<')
1421 {
1422 /* Set the gsymbol language to Ada, but still return 0.
1423 Two reasons for that:
1424
1425 1. For Ada, we prefer computing the symbol's decoded name
1426 on the fly rather than pre-compute it, in order to save
1427 memory (Ada projects are typically very large).
1428
1429 2. There are some areas in the definition of the GNAT
1430 encoding where, with a bit of bad luck, we might be able
1431 to decode a non-Ada symbol, generating an incorrect
1432 demangled name (Eg: names ending with "TB" for instance
1433 are identified as task bodies and so stripped from
1434 the decoded name returned).
1435
1436 Returning 1, here, but not setting *DEMANGLED, helps us get a
1437 little bit of the best of both worlds. Because we're last,
1438 we should not affect any of the other languages that were
1439 able to demangle the symbol before us; we get to correctly
1440 tag Ada symbols as such; and even if we incorrectly tagged a
1441 non-Ada symbol, which should be rare, any routing through the
1442 Ada language should be transparent (Ada tries to behave much
1443 like C/C++ with non-Ada symbols). */
1444 return 1;
1445 }
1446
1447 return 0;
1448 }
1449
1450 \f
1451
1452 /* Arrays */
1453
1454 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1455 generated by the GNAT compiler to describe the index type used
1456 for each dimension of an array, check whether it follows the latest
1457 known encoding. If not, fix it up to conform to the latest encoding.
1458 Otherwise, do nothing. This function also does nothing if
1459 INDEX_DESC_TYPE is NULL.
1460
1461 The GNAT encoding used to describe the array index type evolved a bit.
1462 Initially, the information would be provided through the name of each
1463 field of the structure type only, while the type of these fields was
1464 described as unspecified and irrelevant. The debugger was then expected
1465 to perform a global type lookup using the name of that field in order
1466 to get access to the full index type description. Because these global
1467 lookups can be very expensive, the encoding was later enhanced to make
1468 the global lookup unnecessary by defining the field type as being
1469 the full index type description.
1470
1471 The purpose of this routine is to allow us to support older versions
1472 of the compiler by detecting the use of the older encoding, and by
1473 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1474 we essentially replace each field's meaningless type by the associated
1475 index subtype). */
1476
1477 void
1478 ada_fixup_array_indexes_type (struct type *index_desc_type)
1479 {
1480 int i;
1481
1482 if (index_desc_type == NULL)
1483 return;
1484 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1485
1486 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1487 to check one field only, no need to check them all). If not, return
1488 now.
1489
1490 If our INDEX_DESC_TYPE was generated using the older encoding,
1491 the field type should be a meaningless integer type whose name
1492 is not equal to the field name. */
1493 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1494 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1495 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1496 return;
1497
1498 /* Fixup each field of INDEX_DESC_TYPE. */
1499 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1500 {
1501 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1502 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1503
1504 if (raw_type)
1505 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1506 }
1507 }
1508
1509 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1510
1511 static const char *bound_name[] = {
1512 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1513 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1514 };
1515
1516 /* Maximum number of array dimensions we are prepared to handle. */
1517
1518 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1519
1520
1521 /* The desc_* routines return primitive portions of array descriptors
1522 (fat pointers). */
1523
1524 /* The descriptor or array type, if any, indicated by TYPE; removes
1525 level of indirection, if needed. */
1526
1527 static struct type *
1528 desc_base_type (struct type *type)
1529 {
1530 if (type == NULL)
1531 return NULL;
1532 type = ada_check_typedef (type);
1533 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1534 type = ada_typedef_target_type (type);
1535
1536 if (type != NULL
1537 && (TYPE_CODE (type) == TYPE_CODE_PTR
1538 || TYPE_CODE (type) == TYPE_CODE_REF))
1539 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1540 else
1541 return type;
1542 }
1543
1544 /* True iff TYPE indicates a "thin" array pointer type. */
1545
1546 static int
1547 is_thin_pntr (struct type *type)
1548 {
1549 return
1550 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1551 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1552 }
1553
1554 /* The descriptor type for thin pointer type TYPE. */
1555
1556 static struct type *
1557 thin_descriptor_type (struct type *type)
1558 {
1559 struct type *base_type = desc_base_type (type);
1560
1561 if (base_type == NULL)
1562 return NULL;
1563 if (is_suffix (ada_type_name (base_type), "___XVE"))
1564 return base_type;
1565 else
1566 {
1567 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1568
1569 if (alt_type == NULL)
1570 return base_type;
1571 else
1572 return alt_type;
1573 }
1574 }
1575
1576 /* A pointer to the array data for thin-pointer value VAL. */
1577
1578 static struct value *
1579 thin_data_pntr (struct value *val)
1580 {
1581 struct type *type = ada_check_typedef (value_type (val));
1582 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1583
1584 data_type = lookup_pointer_type (data_type);
1585
1586 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1587 return value_cast (data_type, value_copy (val));
1588 else
1589 return value_from_longest (data_type, value_address (val));
1590 }
1591
1592 /* True iff TYPE indicates a "thick" array pointer type. */
1593
1594 static int
1595 is_thick_pntr (struct type *type)
1596 {
1597 type = desc_base_type (type);
1598 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1599 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1600 }
1601
1602 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1603 pointer to one, the type of its bounds data; otherwise, NULL. */
1604
1605 static struct type *
1606 desc_bounds_type (struct type *type)
1607 {
1608 struct type *r;
1609
1610 type = desc_base_type (type);
1611
1612 if (type == NULL)
1613 return NULL;
1614 else if (is_thin_pntr (type))
1615 {
1616 type = thin_descriptor_type (type);
1617 if (type == NULL)
1618 return NULL;
1619 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1620 if (r != NULL)
1621 return ada_check_typedef (r);
1622 }
1623 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1624 {
1625 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1626 if (r != NULL)
1627 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1628 }
1629 return NULL;
1630 }
1631
1632 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1633 one, a pointer to its bounds data. Otherwise NULL. */
1634
1635 static struct value *
1636 desc_bounds (struct value *arr)
1637 {
1638 struct type *type = ada_check_typedef (value_type (arr));
1639
1640 if (is_thin_pntr (type))
1641 {
1642 struct type *bounds_type =
1643 desc_bounds_type (thin_descriptor_type (type));
1644 LONGEST addr;
1645
1646 if (bounds_type == NULL)
1647 error (_("Bad GNAT array descriptor"));
1648
1649 /* NOTE: The following calculation is not really kosher, but
1650 since desc_type is an XVE-encoded type (and shouldn't be),
1651 the correct calculation is a real pain. FIXME (and fix GCC). */
1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1653 addr = value_as_long (arr);
1654 else
1655 addr = value_address (arr);
1656
1657 return
1658 value_from_longest (lookup_pointer_type (bounds_type),
1659 addr - TYPE_LENGTH (bounds_type));
1660 }
1661
1662 else if (is_thick_pntr (type))
1663 {
1664 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1665 _("Bad GNAT array descriptor"));
1666 struct type *p_bounds_type = value_type (p_bounds);
1667
1668 if (p_bounds_type
1669 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1670 {
1671 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1672
1673 if (TYPE_STUB (target_type))
1674 p_bounds = value_cast (lookup_pointer_type
1675 (ada_check_typedef (target_type)),
1676 p_bounds);
1677 }
1678 else
1679 error (_("Bad GNAT array descriptor"));
1680
1681 return p_bounds;
1682 }
1683 else
1684 return NULL;
1685 }
1686
1687 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1688 position of the field containing the address of the bounds data. */
1689
1690 static int
1691 fat_pntr_bounds_bitpos (struct type *type)
1692 {
1693 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1694 }
1695
1696 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1697 size of the field containing the address of the bounds data. */
1698
1699 static int
1700 fat_pntr_bounds_bitsize (struct type *type)
1701 {
1702 type = desc_base_type (type);
1703
1704 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1705 return TYPE_FIELD_BITSIZE (type, 1);
1706 else
1707 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1708 }
1709
1710 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1711 pointer to one, the type of its array data (a array-with-no-bounds type);
1712 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1713 data. */
1714
1715 static struct type *
1716 desc_data_target_type (struct type *type)
1717 {
1718 type = desc_base_type (type);
1719
1720 /* NOTE: The following is bogus; see comment in desc_bounds. */
1721 if (is_thin_pntr (type))
1722 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1723 else if (is_thick_pntr (type))
1724 {
1725 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1726
1727 if (data_type
1728 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1729 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1730 }
1731
1732 return NULL;
1733 }
1734
1735 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1736 its array data. */
1737
1738 static struct value *
1739 desc_data (struct value *arr)
1740 {
1741 struct type *type = value_type (arr);
1742
1743 if (is_thin_pntr (type))
1744 return thin_data_pntr (arr);
1745 else if (is_thick_pntr (type))
1746 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1747 _("Bad GNAT array descriptor"));
1748 else
1749 return NULL;
1750 }
1751
1752
1753 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the data. */
1755
1756 static int
1757 fat_pntr_data_bitpos (struct type *type)
1758 {
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1760 }
1761
1762 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1763 size of the field containing the address of the data. */
1764
1765 static int
1766 fat_pntr_data_bitsize (struct type *type)
1767 {
1768 type = desc_base_type (type);
1769
1770 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1771 return TYPE_FIELD_BITSIZE (type, 0);
1772 else
1773 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1774 }
1775
1776 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1777 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1778 bound, if WHICH is 1. The first bound is I=1. */
1779
1780 static struct value *
1781 desc_one_bound (struct value *bounds, int i, int which)
1782 {
1783 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1784 _("Bad GNAT array descriptor bounds"));
1785 }
1786
1787 /* If BOUNDS is an array-bounds structure type, return the bit position
1788 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1789 bound, if WHICH is 1. The first bound is I=1. */
1790
1791 static int
1792 desc_bound_bitpos (struct type *type, int i, int which)
1793 {
1794 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1795 }
1796
1797 /* If BOUNDS is an array-bounds structure type, return the bit field size
1798 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1799 bound, if WHICH is 1. The first bound is I=1. */
1800
1801 static int
1802 desc_bound_bitsize (struct type *type, int i, int which)
1803 {
1804 type = desc_base_type (type);
1805
1806 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1807 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1808 else
1809 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1810 }
1811
1812 /* If TYPE is the type of an array-bounds structure, the type of its
1813 Ith bound (numbering from 1). Otherwise, NULL. */
1814
1815 static struct type *
1816 desc_index_type (struct type *type, int i)
1817 {
1818 type = desc_base_type (type);
1819
1820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1821 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1822 else
1823 return NULL;
1824 }
1825
1826 /* The number of index positions in the array-bounds type TYPE.
1827 Return 0 if TYPE is NULL. */
1828
1829 static int
1830 desc_arity (struct type *type)
1831 {
1832 type = desc_base_type (type);
1833
1834 if (type != NULL)
1835 return TYPE_NFIELDS (type) / 2;
1836 return 0;
1837 }
1838
1839 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1840 an array descriptor type (representing an unconstrained array
1841 type). */
1842
1843 static int
1844 ada_is_direct_array_type (struct type *type)
1845 {
1846 if (type == NULL)
1847 return 0;
1848 type = ada_check_typedef (type);
1849 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1850 || ada_is_array_descriptor_type (type));
1851 }
1852
1853 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1854 * to one. */
1855
1856 static int
1857 ada_is_array_type (struct type *type)
1858 {
1859 while (type != NULL
1860 && (TYPE_CODE (type) == TYPE_CODE_PTR
1861 || TYPE_CODE (type) == TYPE_CODE_REF))
1862 type = TYPE_TARGET_TYPE (type);
1863 return ada_is_direct_array_type (type);
1864 }
1865
1866 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1867
1868 int
1869 ada_is_simple_array_type (struct type *type)
1870 {
1871 if (type == NULL)
1872 return 0;
1873 type = ada_check_typedef (type);
1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1875 || (TYPE_CODE (type) == TYPE_CODE_PTR
1876 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1877 == TYPE_CODE_ARRAY));
1878 }
1879
1880 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1881
1882 int
1883 ada_is_array_descriptor_type (struct type *type)
1884 {
1885 struct type *data_type = desc_data_target_type (type);
1886
1887 if (type == NULL)
1888 return 0;
1889 type = ada_check_typedef (type);
1890 return (data_type != NULL
1891 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1892 && desc_arity (desc_bounds_type (type)) > 0);
1893 }
1894
1895 /* Non-zero iff type is a partially mal-formed GNAT array
1896 descriptor. FIXME: This is to compensate for some problems with
1897 debugging output from GNAT. Re-examine periodically to see if it
1898 is still needed. */
1899
1900 int
1901 ada_is_bogus_array_descriptor (struct type *type)
1902 {
1903 return
1904 type != NULL
1905 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1906 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1907 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1908 && !ada_is_array_descriptor_type (type);
1909 }
1910
1911
1912 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1913 (fat pointer) returns the type of the array data described---specifically,
1914 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1915 in from the descriptor; otherwise, they are left unspecified. If
1916 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1917 returns NULL. The result is simply the type of ARR if ARR is not
1918 a descriptor. */
1919
1920 static struct type *
1921 ada_type_of_array (struct value *arr, int bounds)
1922 {
1923 if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array_type (value_type (arr));
1925
1926 if (!ada_is_array_descriptor_type (value_type (arr)))
1927 return value_type (arr);
1928
1929 if (!bounds)
1930 {
1931 struct type *array_type =
1932 ada_check_typedef (desc_data_target_type (value_type (arr)));
1933
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1935 TYPE_FIELD_BITSIZE (array_type, 0) =
1936 decode_packed_array_bitsize (value_type (arr));
1937
1938 return array_type;
1939 }
1940 else
1941 {
1942 struct type *elt_type;
1943 int arity;
1944 struct value *descriptor;
1945
1946 elt_type = ada_array_element_type (value_type (arr), -1);
1947 arity = ada_array_arity (value_type (arr));
1948
1949 if (elt_type == NULL || arity == 0)
1950 return ada_check_typedef (value_type (arr));
1951
1952 descriptor = desc_bounds (arr);
1953 if (value_as_long (descriptor) == 0)
1954 return NULL;
1955 while (arity > 0)
1956 {
1957 struct type *range_type = alloc_type_copy (value_type (arr));
1958 struct type *array_type = alloc_type_copy (value_type (arr));
1959 struct value *low = desc_one_bound (descriptor, arity, 0);
1960 struct value *high = desc_one_bound (descriptor, arity, 1);
1961
1962 arity -= 1;
1963 create_static_range_type (range_type, value_type (low),
1964 longest_to_int (value_as_long (low)),
1965 longest_to_int (value_as_long (high)));
1966 elt_type = create_array_type (array_type, elt_type, range_type);
1967
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1969 {
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo = value_as_long (low);
1974 LONGEST hi = value_as_long (high);
1975
1976 TYPE_FIELD_BITSIZE (elt_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1980 if (lo < hi)
1981 {
1982 int array_bitsize =
1983 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1984
1985 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1986 }
1987 }
1988 }
1989
1990 return lookup_pointer_type (elt_type);
1991 }
1992 }
1993
1994 /* If ARR does not represent an array, returns ARR unchanged.
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
1998
1999 struct value *
2000 ada_coerce_to_simple_array_ptr (struct value *arr)
2001 {
2002 if (ada_is_array_descriptor_type (value_type (arr)))
2003 {
2004 struct type *arrType = ada_type_of_array (arr, 1);
2005
2006 if (arrType == NULL)
2007 return NULL;
2008 return value_cast (arrType, value_copy (desc_data (arr)));
2009 }
2010 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2011 return decode_constrained_packed_array (arr);
2012 else
2013 return arr;
2014 }
2015
2016 /* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
2018 be ARR itself if it already is in the proper form). */
2019
2020 struct value *
2021 ada_coerce_to_simple_array (struct value *arr)
2022 {
2023 if (ada_is_array_descriptor_type (value_type (arr)))
2024 {
2025 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2026
2027 if (arrVal == NULL)
2028 error (_("Bounds unavailable for null array pointer."));
2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2030 return value_ind (arrVal);
2031 }
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
2034 else
2035 return arr;
2036 }
2037
2038 /* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
2040 packing). For other types, is the identity. */
2041
2042 struct type *
2043 ada_coerce_to_simple_array_type (struct type *type)
2044 {
2045 if (ada_is_constrained_packed_array_type (type))
2046 return decode_constrained_packed_array_type (type);
2047
2048 if (ada_is_array_descriptor_type (type))
2049 return ada_check_typedef (desc_data_target_type (type));
2050
2051 return type;
2052 }
2053
2054 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2055
2056 static int
2057 ada_is_packed_array_type (struct type *type)
2058 {
2059 if (type == NULL)
2060 return 0;
2061 type = desc_base_type (type);
2062 type = ada_check_typedef (type);
2063 return
2064 ada_type_name (type) != NULL
2065 && strstr (ada_type_name (type), "___XP") != NULL;
2066 }
2067
2068 /* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2070
2071 int
2072 ada_is_constrained_packed_array_type (struct type *type)
2073 {
2074 return ada_is_packed_array_type (type)
2075 && !ada_is_array_descriptor_type (type);
2076 }
2077
2078 /* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2080
2081 static int
2082 ada_is_unconstrained_packed_array_type (struct type *type)
2083 {
2084 return ada_is_packed_array_type (type)
2085 && ada_is_array_descriptor_type (type);
2086 }
2087
2088 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2090
2091 static long
2092 decode_packed_array_bitsize (struct type *type)
2093 {
2094 const char *raw_name;
2095 const char *tail;
2096 long bits;
2097
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2102 type = ada_typedef_target_type (type);
2103
2104 raw_name = ada_type_name (ada_check_typedef (type));
2105 if (!raw_name)
2106 raw_name = ada_type_name (desc_base_type (type));
2107
2108 if (!raw_name)
2109 return 0;
2110
2111 tail = strstr (raw_name, "___XP");
2112 gdb_assert (tail != NULL);
2113
2114 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2115 {
2116 lim_warning
2117 (_("could not understand bit size information on packed array"));
2118 return 0;
2119 }
2120
2121 return bits;
2122 }
2123
2124 /* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2131 in bits.
2132
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
2140
2141 static struct type *
2142 constrained_packed_array_type (struct type *type, long *elt_bits)
2143 {
2144 struct type *new_elt_type;
2145 struct type *new_type;
2146 struct type *index_type_desc;
2147 struct type *index_type;
2148 LONGEST low_bound, high_bound;
2149
2150 type = ada_check_typedef (type);
2151 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2152 return type;
2153
2154 index_type_desc = ada_find_parallel_type (type, "___XA");
2155 if (index_type_desc)
2156 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2157 NULL);
2158 else
2159 index_type = TYPE_INDEX_TYPE (type);
2160
2161 new_type = alloc_type_copy (type);
2162 new_elt_type =
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2164 elt_bits);
2165 create_array_type (new_type, new_elt_type, index_type);
2166 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2167 TYPE_NAME (new_type) = ada_type_name (type);
2168
2169 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type)))
2171 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2172 low_bound = high_bound = 0;
2173 if (high_bound < low_bound)
2174 *elt_bits = TYPE_LENGTH (new_type) = 0;
2175 else
2176 {
2177 *elt_bits *= (high_bound - low_bound + 1);
2178 TYPE_LENGTH (new_type) =
2179 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2180 }
2181
2182 TYPE_FIXED_INSTANCE (new_type) = 1;
2183 return new_type;
2184 }
2185
2186 /* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
2188
2189 static struct type *
2190 decode_constrained_packed_array_type (struct type *type)
2191 {
2192 const char *raw_name = ada_type_name (ada_check_typedef (type));
2193 char *name;
2194 const char *tail;
2195 struct type *shadow_type;
2196 long bits;
2197
2198 if (!raw_name)
2199 raw_name = ada_type_name (desc_base_type (type));
2200
2201 if (!raw_name)
2202 return NULL;
2203
2204 name = (char *) alloca (strlen (raw_name) + 1);
2205 tail = strstr (raw_name, "___XP");
2206 type = desc_base_type (type);
2207
2208 memcpy (name, raw_name, tail - raw_name);
2209 name[tail - raw_name] = '\000';
2210
2211 shadow_type = ada_find_parallel_type_with_name (type, name);
2212
2213 if (shadow_type == NULL)
2214 {
2215 lim_warning (_("could not find bounds information on packed array"));
2216 return NULL;
2217 }
2218 shadow_type = check_typedef (shadow_type);
2219
2220 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2221 {
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
2224 return NULL;
2225 }
2226
2227 bits = decode_packed_array_bitsize (type);
2228 return constrained_packed_array_type (shadow_type, &bits);
2229 }
2230
2231 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
2235 type length is set appropriately. */
2236
2237 static struct value *
2238 decode_constrained_packed_array (struct value *arr)
2239 {
2240 struct type *type;
2241
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr = coerce_ref (arr);
2250 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2251 arr = value_ind (arr);
2252
2253 type = decode_constrained_packed_array_type (value_type (arr));
2254 if (type == NULL)
2255 {
2256 error (_("can't unpack array"));
2257 return NULL;
2258 }
2259
2260 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2261 && ada_is_modular_type (value_type (arr)))
2262 {
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size, bit_pos;
2268 ULONGEST mod;
2269
2270 mod = ada_modulus (value_type (arr)) - 1;
2271 bit_size = 0;
2272 while (mod > 0)
2273 {
2274 bit_size += 1;
2275 mod >>= 1;
2276 }
2277 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2278 arr = ada_value_primitive_packed_val (arr, NULL,
2279 bit_pos / HOST_CHAR_BIT,
2280 bit_pos % HOST_CHAR_BIT,
2281 bit_size,
2282 type);
2283 }
2284
2285 return coerce_unspec_val_to_type (arr, type);
2286 }
2287
2288
2289 /* The value of the element of packed array ARR at the ARITY indices
2290 given in IND. ARR must be a simple array. */
2291
2292 static struct value *
2293 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2294 {
2295 int i;
2296 int bits, elt_off, bit_off;
2297 long elt_total_bit_offset;
2298 struct type *elt_type;
2299 struct value *v;
2300
2301 bits = 0;
2302 elt_total_bit_offset = 0;
2303 elt_type = ada_check_typedef (value_type (arr));
2304 for (i = 0; i < arity; i += 1)
2305 {
2306 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2307 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2308 error
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
2311 else
2312 {
2313 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2314 LONGEST lowerbound, upperbound;
2315 LONGEST idx;
2316
2317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2318 {
2319 lim_warning (_("don't know bounds of array"));
2320 lowerbound = upperbound = 0;
2321 }
2322
2323 idx = pos_atr (ind[i]);
2324 if (idx < lowerbound || idx > upperbound)
2325 lim_warning (_("packed array index %ld out of bounds"),
2326 (long) idx);
2327 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2328 elt_total_bit_offset += (idx - lowerbound) * bits;
2329 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2330 }
2331 }
2332 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2333 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2334
2335 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2336 bits, elt_type);
2337 return v;
2338 }
2339
2340 /* Non-zero iff TYPE includes negative integer values. */
2341
2342 static int
2343 has_negatives (struct type *type)
2344 {
2345 switch (TYPE_CODE (type))
2346 {
2347 default:
2348 return 0;
2349 case TYPE_CODE_INT:
2350 return !TYPE_UNSIGNED (type);
2351 case TYPE_CODE_RANGE:
2352 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2353 }
2354 }
2355
2356 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2358 the unpacked buffer.
2359
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2362
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2364 zero otherwise.
2365
2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2367
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2369
2370 static void
2371 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2372 gdb_byte *unpacked, int unpacked_len,
2373 int is_big_endian, int is_signed_type,
2374 int is_scalar)
2375 {
2376 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2377 int src_idx; /* Index into the source area */
2378 int src_bytes_left; /* Number of source bytes left to process. */
2379 int srcBitsLeft; /* Number of source bits left to move */
2380 int unusedLS; /* Number of bits in next significant
2381 byte of source that are unused */
2382
2383 int unpacked_idx; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2385
2386 unsigned long accum; /* Staging area for bits being transferred */
2387 int accumSize; /* Number of meaningful bits in accum */
2388 unsigned char sign;
2389
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
2392 int delta = is_big_endian ? -1 : 1;
2393
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2395 bits from SRC. .*/
2396 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size, unpacked_len);
2399
2400 srcBitsLeft = bit_size;
2401 src_bytes_left = src_len;
2402 unpacked_bytes_left = unpacked_len;
2403 sign = 0;
2404
2405 if (is_big_endian)
2406 {
2407 src_idx = src_len - 1;
2408 if (is_signed_type
2409 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2410 sign = ~0;
2411
2412 unusedLS =
2413 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2414 % HOST_CHAR_BIT;
2415
2416 if (is_scalar)
2417 {
2418 accumSize = 0;
2419 unpacked_idx = unpacked_len - 1;
2420 }
2421 else
2422 {
2423 /* Non-scalar values must be aligned at a byte boundary... */
2424 accumSize =
2425 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2426 /* ... And are placed at the beginning (most-significant) bytes
2427 of the target. */
2428 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2429 unpacked_bytes_left = unpacked_idx + 1;
2430 }
2431 }
2432 else
2433 {
2434 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2435
2436 src_idx = unpacked_idx = 0;
2437 unusedLS = bit_offset;
2438 accumSize = 0;
2439
2440 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2441 sign = ~0;
2442 }
2443
2444 accum = 0;
2445 while (src_bytes_left > 0)
2446 {
2447 /* Mask for removing bits of the next source byte that are not
2448 part of the value. */
2449 unsigned int unusedMSMask =
2450 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2451 1;
2452 /* Sign-extend bits for this byte. */
2453 unsigned int signMask = sign & ~unusedMSMask;
2454
2455 accum |=
2456 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2457 accumSize += HOST_CHAR_BIT - unusedLS;
2458 if (accumSize >= HOST_CHAR_BIT)
2459 {
2460 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2461 accumSize -= HOST_CHAR_BIT;
2462 accum >>= HOST_CHAR_BIT;
2463 unpacked_bytes_left -= 1;
2464 unpacked_idx += delta;
2465 }
2466 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2467 unusedLS = 0;
2468 src_bytes_left -= 1;
2469 src_idx += delta;
2470 }
2471 while (unpacked_bytes_left > 0)
2472 {
2473 accum |= sign << accumSize;
2474 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2475 accumSize -= HOST_CHAR_BIT;
2476 if (accumSize < 0)
2477 accumSize = 0;
2478 accum >>= HOST_CHAR_BIT;
2479 unpacked_bytes_left -= 1;
2480 unpacked_idx += delta;
2481 }
2482 }
2483
2484 /* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2492
2493 struct value *
2494 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2495 long offset, int bit_offset, int bit_size,
2496 struct type *type)
2497 {
2498 struct value *v;
2499 const gdb_byte *src; /* First byte containing data to unpack */
2500 gdb_byte *unpacked;
2501 const int is_scalar = is_scalar_type (type);
2502 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2503 gdb::byte_vector staging;
2504
2505 type = ada_check_typedef (type);
2506
2507 if (obj == NULL)
2508 src = valaddr + offset;
2509 else
2510 src = value_contents (obj) + offset;
2511
2512 if (is_dynamic_type (type))
2513 {
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
2521 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2522 staging.resize (staging_len);
2523
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
2525 staging.data (), staging.size (),
2526 is_big_endian, has_negatives (type),
2527 is_scalar);
2528 type = resolve_dynamic_type (type, staging.data (), 0);
2529 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2530 {
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2537 of that stride. */
2538 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2539 }
2540 }
2541
2542 if (obj == NULL)
2543 {
2544 v = allocate_value (type);
2545 src = valaddr + offset;
2546 }
2547 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2548 {
2549 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2550 gdb_byte *buf;
2551
2552 v = value_at (type, value_address (obj) + offset);
2553 buf = (gdb_byte *) alloca (src_len);
2554 read_memory (value_address (v), buf, src_len);
2555 src = buf;
2556 }
2557 else
2558 {
2559 v = allocate_value (type);
2560 src = value_contents (obj) + offset;
2561 }
2562
2563 if (obj != NULL)
2564 {
2565 long new_offset = offset;
2566
2567 set_value_component_location (v, obj);
2568 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2569 set_value_bitsize (v, bit_size);
2570 if (value_bitpos (v) >= HOST_CHAR_BIT)
2571 {
2572 ++new_offset;
2573 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2574 }
2575 set_value_offset (v, new_offset);
2576
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v, obj);
2580 }
2581 else
2582 set_value_bitsize (v, bit_size);
2583 unpacked = value_contents_writeable (v);
2584
2585 if (bit_size == 0)
2586 {
2587 memset (unpacked, 0, TYPE_LENGTH (type));
2588 return v;
2589 }
2590
2591 if (staging.size () == TYPE_LENGTH (type))
2592 {
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
2596 memcpy (unpacked, staging.data (), staging.size ());
2597 }
2598 else
2599 ada_unpack_from_contents (src, bit_offset, bit_size,
2600 unpacked, TYPE_LENGTH (type),
2601 is_big_endian, has_negatives (type), is_scalar);
2602
2603 return v;
2604 }
2605
2606 /* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
2609 floating-point or non-scalar types. */
2610
2611 static struct value *
2612 ada_value_assign (struct value *toval, struct value *fromval)
2613 {
2614 struct type *type = value_type (toval);
2615 int bits = value_bitsize (toval);
2616
2617 toval = ada_coerce_ref (toval);
2618 fromval = ada_coerce_ref (fromval);
2619
2620 if (ada_is_direct_array_type (value_type (toval)))
2621 toval = ada_coerce_to_simple_array (toval);
2622 if (ada_is_direct_array_type (value_type (fromval)))
2623 fromval = ada_coerce_to_simple_array (fromval);
2624
2625 if (!deprecated_value_modifiable (toval))
2626 error (_("Left operand of assignment is not a modifiable lvalue."));
2627
2628 if (VALUE_LVAL (toval) == lval_memory
2629 && bits > 0
2630 && (TYPE_CODE (type) == TYPE_CODE_FLT
2631 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2632 {
2633 int len = (value_bitpos (toval)
2634 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2635 int from_size;
2636 gdb_byte *buffer = (gdb_byte *) alloca (len);
2637 struct value *val;
2638 CORE_ADDR to_addr = value_address (toval);
2639
2640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2641 fromval = value_cast (type, fromval);
2642
2643 read_memory (to_addr, buffer, len);
2644 from_size = value_bitsize (fromval);
2645 if (from_size == 0)
2646 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2647
2648 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2649 ULONGEST from_offset = 0;
2650 if (is_big_endian && is_scalar_type (value_type (fromval)))
2651 from_offset = from_size - bits;
2652 copy_bitwise (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_offset,
2654 bits, is_big_endian);
2655 write_memory_with_notification (to_addr, buffer, len);
2656
2657 val = value_copy (toval);
2658 memcpy (value_contents_raw (val), value_contents (fromval),
2659 TYPE_LENGTH (type));
2660 deprecated_set_value_type (val, type);
2661
2662 return val;
2663 }
2664
2665 return value_assign (toval, fromval);
2666 }
2667
2668
2669 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2674
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2679
2680 static void
2681 value_assign_to_component (struct value *container, struct value *component,
2682 struct value *val)
2683 {
2684 LONGEST offset_in_container =
2685 (LONGEST) (value_address (component) - value_address (container));
2686 int bit_offset_in_container =
2687 value_bitpos (component) - value_bitpos (container);
2688 int bits;
2689
2690 val = value_cast (value_type (component), val);
2691
2692 if (value_bitsize (component) == 0)
2693 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2694 else
2695 bits = value_bitsize (component);
2696
2697 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2698 {
2699 int src_offset;
2700
2701 if (is_scalar_type (check_typedef (value_type (component))))
2702 src_offset
2703 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2704 else
2705 src_offset = 0;
2706 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2707 value_bitpos (container) + bit_offset_in_container,
2708 value_contents (val), src_offset, bits, 1);
2709 }
2710 else
2711 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
2714 }
2715
2716 /* Determine if TYPE is an access to an unconstrained array. */
2717
2718 bool
2719 ada_is_access_to_unconstrained_array (struct type *type)
2720 {
2721 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type)));
2723 }
2724
2725 /* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
2727 thereto. */
2728
2729 struct value *
2730 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2731 {
2732 int k;
2733 struct value *elt;
2734 struct type *elt_type;
2735
2736 elt = ada_coerce_to_simple_array (arr);
2737
2738 elt_type = ada_check_typedef (value_type (elt));
2739 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2740 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2741 return value_subscript_packed (elt, arity, ind);
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
2745 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2746
2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2748 error (_("too many subscripts (%d expected)"), k);
2749
2750 elt = value_subscript (elt, pos_atr (ind[k]));
2751
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2753 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2754 {
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt, saved_elt_type);
2768 }
2769
2770 elt_type = ada_check_typedef (value_type (elt));
2771 }
2772
2773 return elt;
2774 }
2775
2776 /* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
2778 Does not read the entire array into memory.
2779
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
2787
2788 static struct value *
2789 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2790 {
2791 int k;
2792 struct value *array_ind = ada_value_ind (arr);
2793 struct type *type
2794 = check_typedef (value_enclosing_type (array_ind));
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2798 return value_subscript_packed (array_ind, arity, ind);
2799
2800 for (k = 0; k < arity; k += 1)
2801 {
2802 LONGEST lwb, upb;
2803 struct value *lwb_value;
2804
2805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2806 error (_("too many subscripts (%d expected)"), k);
2807 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2808 value_copy (arr));
2809 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2810 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2811 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2812 type = TYPE_TARGET_TYPE (type);
2813 }
2814
2815 return value_ind (arr);
2816 }
2817
2818 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
2822 static struct value *
2823 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2824 int low, int high)
2825 {
2826 struct type *type0 = ada_check_typedef (type);
2827 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2828 struct type *index_type
2829 = create_static_range_type (NULL, base_index_type, low, high);
2830 struct type *slice_type = create_array_type_with_stride
2831 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2833 TYPE_FIELD_BITSIZE (type0, 0));
2834 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2835 LONGEST base_low_pos, low_pos;
2836 CORE_ADDR base;
2837
2838 if (!discrete_position (base_index_type, low, &low_pos)
2839 || !discrete_position (base_index_type, base_low, &base_low_pos))
2840 {
2841 warning (_("unable to get positions in slice, use bounds instead"));
2842 low_pos = low;
2843 base_low_pos = base_low;
2844 }
2845
2846 base = value_as_address (array_ptr)
2847 + ((low_pos - base_low_pos)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2849 return value_at_lazy (slice_type, base);
2850 }
2851
2852
2853 static struct value *
2854 ada_value_slice (struct value *array, int low, int high)
2855 {
2856 struct type *type = ada_check_typedef (value_type (array));
2857 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2858 struct type *index_type
2859 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2860 struct type *slice_type = create_array_type_with_stride
2861 (NULL, TYPE_TARGET_TYPE (type), index_type,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2863 TYPE_FIELD_BITSIZE (type, 0));
2864 LONGEST low_pos, high_pos;
2865
2866 if (!discrete_position (base_index_type, low, &low_pos)
2867 || !discrete_position (base_index_type, high, &high_pos))
2868 {
2869 warning (_("unable to get positions in slice, use bounds instead"));
2870 low_pos = low;
2871 high_pos = high;
2872 }
2873
2874 return value_cast (slice_type,
2875 value_slice (array, low, high_pos - low_pos + 1));
2876 }
2877
2878 /* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
2881 type designation. Otherwise, returns 0. */
2882
2883 int
2884 ada_array_arity (struct type *type)
2885 {
2886 int arity;
2887
2888 if (type == NULL)
2889 return 0;
2890
2891 type = desc_base_type (type);
2892
2893 arity = 0;
2894 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2895 return desc_arity (desc_bounds_type (type));
2896 else
2897 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2898 {
2899 arity += 1;
2900 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2901 }
2902
2903 return arity;
2904 }
2905
2906 /* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
2909 NINDICES is -1. Otherwise, returns NULL. */
2910
2911 struct type *
2912 ada_array_element_type (struct type *type, int nindices)
2913 {
2914 type = desc_base_type (type);
2915
2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2917 {
2918 int k;
2919 struct type *p_array_type;
2920
2921 p_array_type = desc_data_target_type (type);
2922
2923 k = ada_array_arity (type);
2924 if (k == 0)
2925 return NULL;
2926
2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2928 if (nindices >= 0 && k > nindices)
2929 k = nindices;
2930 while (k > 0 && p_array_type != NULL)
2931 {
2932 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2933 k -= 1;
2934 }
2935 return p_array_type;
2936 }
2937 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2938 {
2939 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2940 {
2941 type = TYPE_TARGET_TYPE (type);
2942 nindices -= 1;
2943 }
2944 return type;
2945 }
2946
2947 return NULL;
2948 }
2949
2950 /* The type of nth index in arrays of given type (n numbering from 1).
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
2955
2956 static struct type *
2957 ada_index_type (struct type *type, int n, const char *name)
2958 {
2959 struct type *result_type;
2960
2961 type = desc_base_type (type);
2962
2963 if (n < 0 || n > ada_array_arity (type))
2964 error (_("invalid dimension number to '%s"), name);
2965
2966 if (ada_is_simple_array_type (type))
2967 {
2968 int i;
2969
2970 for (i = 1; i < n; i += 1)
2971 type = TYPE_TARGET_TYPE (type);
2972 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2975 perhaps stabsread.c would make more sense. */
2976 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2977 result_type = NULL;
2978 }
2979 else
2980 {
2981 result_type = desc_index_type (desc_bounds_type (type), n);
2982 if (result_type == NULL)
2983 error (_("attempt to take bound of something that is not an array"));
2984 }
2985
2986 return result_type;
2987 }
2988
2989 /* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
2994
2995 static LONGEST
2996 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2997 {
2998 struct type *type, *index_type_desc, *index_type;
2999 int i;
3000
3001 gdb_assert (which == 0 || which == 1);
3002
3003 if (ada_is_constrained_packed_array_type (arr_type))
3004 arr_type = decode_constrained_packed_array_type (arr_type);
3005
3006 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3007 return (LONGEST) - which;
3008
3009 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3010 type = TYPE_TARGET_TYPE (arr_type);
3011 else
3012 type = arr_type;
3013
3014 if (TYPE_FIXED_INSTANCE (type))
3015 {
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc = NULL;
3020 }
3021 else
3022 {
3023 index_type_desc = ada_find_parallel_type (type, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc);
3025 }
3026
3027 if (index_type_desc != NULL)
3028 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3029 NULL);
3030 else
3031 {
3032 struct type *elt_type = check_typedef (type);
3033
3034 for (i = 1; i < n; i++)
3035 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3036
3037 index_type = TYPE_INDEX_TYPE (elt_type);
3038 }
3039
3040 return
3041 (LONGEST) (which == 0
3042 ? ada_discrete_type_low_bound (index_type)
3043 : ada_discrete_type_high_bound (index_type));
3044 }
3045
3046 /* Given that arr is an array value, returns the lower bound of the
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
3049 supplied by run-time quantities other than discriminants. */
3050
3051 static LONGEST
3052 ada_array_bound (struct value *arr, int n, int which)
3053 {
3054 struct type *arr_type;
3055
3056 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3057 arr = value_ind (arr);
3058 arr_type = value_enclosing_type (arr);
3059
3060 if (ada_is_constrained_packed_array_type (arr_type))
3061 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3062 else if (ada_is_simple_array_type (arr_type))
3063 return ada_array_bound_from_type (arr_type, n, which);
3064 else
3065 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3066 }
3067
3068 /* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
3073
3074 static LONGEST
3075 ada_array_length (struct value *arr, int n)
3076 {
3077 struct type *arr_type, *index_type;
3078 int low, high;
3079
3080 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3081 arr = value_ind (arr);
3082 arr_type = value_enclosing_type (arr);
3083
3084 if (ada_is_constrained_packed_array_type (arr_type))
3085 return ada_array_length (decode_constrained_packed_array (arr), n);
3086
3087 if (ada_is_simple_array_type (arr_type))
3088 {
3089 low = ada_array_bound_from_type (arr_type, n, 0);
3090 high = ada_array_bound_from_type (arr_type, n, 1);
3091 }
3092 else
3093 {
3094 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3095 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3096 }
3097
3098 arr_type = check_typedef (arr_type);
3099 index_type = ada_index_type (arr_type, n, "length");
3100 if (index_type != NULL)
3101 {
3102 struct type *base_type;
3103 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3104 base_type = TYPE_TARGET_TYPE (index_type);
3105 else
3106 base_type = index_type;
3107
3108 low = pos_atr (value_from_longest (base_type, low));
3109 high = pos_atr (value_from_longest (base_type, high));
3110 }
3111 return high - low + 1;
3112 }
3113
3114 /* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
3117
3118 static struct value *
3119 empty_array (struct type *arr_type, int low, int high)
3120 {
3121 struct type *arr_type0 = ada_check_typedef (arr_type);
3122 struct type *index_type
3123 = create_static_range_type
3124 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3125 high < low ? low - 1 : high);
3126 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3127
3128 return allocate_value (create_array_type (NULL, elt_type, index_type));
3129 }
3130 \f
3131
3132 /* Name resolution */
3133
3134 /* The "decoded" name for the user-definable Ada operator corresponding
3135 to OP. */
3136
3137 static const char *
3138 ada_decoded_op_name (enum exp_opcode op)
3139 {
3140 int i;
3141
3142 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3143 {
3144 if (ada_opname_table[i].op == op)
3145 return ada_opname_table[i].decoded;
3146 }
3147 error (_("Could not find operator name for opcode"));
3148 }
3149
3150 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3151 in a listing of choices during disambiguation (see sort_choices, below).
3152 The idea is that overloadings of a subprogram name from the
3153 same package should sort in their source order. We settle for ordering
3154 such symbols by their trailing number (__N or $N). */
3155
3156 static int
3157 encoded_ordered_before (const char *N0, const char *N1)
3158 {
3159 if (N1 == NULL)
3160 return 0;
3161 else if (N0 == NULL)
3162 return 1;
3163 else
3164 {
3165 int k0, k1;
3166
3167 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3168 ;
3169 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3170 ;
3171 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3172 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3173 {
3174 int n0, n1;
3175
3176 n0 = k0;
3177 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3178 n0 -= 1;
3179 n1 = k1;
3180 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3181 n1 -= 1;
3182 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3183 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3184 }
3185 return (strcmp (N0, N1) < 0);
3186 }
3187 }
3188
3189 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3190 encoded names. */
3191
3192 static void
3193 sort_choices (struct block_symbol syms[], int nsyms)
3194 {
3195 int i;
3196
3197 for (i = 1; i < nsyms; i += 1)
3198 {
3199 struct block_symbol sym = syms[i];
3200 int j;
3201
3202 for (j = i - 1; j >= 0; j -= 1)
3203 {
3204 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3205 sym.symbol->linkage_name ()))
3206 break;
3207 syms[j + 1] = syms[j];
3208 }
3209 syms[j + 1] = sym;
3210 }
3211 }
3212
3213 /* Whether GDB should display formals and return types for functions in the
3214 overloads selection menu. */
3215 static bool print_signatures = true;
3216
3217 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3218 all but functions, the signature is just the name of the symbol. For
3219 functions, this is the name of the function, the list of types for formals
3220 and the return type (if any). */
3221
3222 static void
3223 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3224 const struct type_print_options *flags)
3225 {
3226 struct type *type = SYMBOL_TYPE (sym);
3227
3228 fprintf_filtered (stream, "%s", sym->print_name ());
3229 if (!print_signatures
3230 || type == NULL
3231 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3232 return;
3233
3234 if (TYPE_NFIELDS (type) > 0)
3235 {
3236 int i;
3237
3238 fprintf_filtered (stream, " (");
3239 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3240 {
3241 if (i > 0)
3242 fprintf_filtered (stream, "; ");
3243 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3244 flags);
3245 }
3246 fprintf_filtered (stream, ")");
3247 }
3248 if (TYPE_TARGET_TYPE (type) != NULL
3249 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3250 {
3251 fprintf_filtered (stream, " return ");
3252 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3253 }
3254 }
3255
3256 /* Read and validate a set of numeric choices from the user in the
3257 range 0 .. N_CHOICES-1. Place the results in increasing
3258 order in CHOICES[0 .. N-1], and return N.
3259
3260 The user types choices as a sequence of numbers on one line
3261 separated by blanks, encoding them as follows:
3262
3263 + A choice of 0 means to cancel the selection, throwing an error.
3264 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3265 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3266
3267 The user is not allowed to choose more than MAX_RESULTS values.
3268
3269 ANNOTATION_SUFFIX, if present, is used to annotate the input
3270 prompts (for use with the -f switch). */
3271
3272 static int
3273 get_selections (int *choices, int n_choices, int max_results,
3274 int is_all_choice, const char *annotation_suffix)
3275 {
3276 const char *args;
3277 const char *prompt;
3278 int n_chosen;
3279 int first_choice = is_all_choice ? 2 : 1;
3280
3281 prompt = getenv ("PS2");
3282 if (prompt == NULL)
3283 prompt = "> ";
3284
3285 args = command_line_input (prompt, annotation_suffix);
3286
3287 if (args == NULL)
3288 error_no_arg (_("one or more choice numbers"));
3289
3290 n_chosen = 0;
3291
3292 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3293 order, as given in args. Choices are validated. */
3294 while (1)
3295 {
3296 char *args2;
3297 int choice, j;
3298
3299 args = skip_spaces (args);
3300 if (*args == '\0' && n_chosen == 0)
3301 error_no_arg (_("one or more choice numbers"));
3302 else if (*args == '\0')
3303 break;
3304
3305 choice = strtol (args, &args2, 10);
3306 if (args == args2 || choice < 0
3307 || choice > n_choices + first_choice - 1)
3308 error (_("Argument must be choice number"));
3309 args = args2;
3310
3311 if (choice == 0)
3312 error (_("cancelled"));
3313
3314 if (choice < first_choice)
3315 {
3316 n_chosen = n_choices;
3317 for (j = 0; j < n_choices; j += 1)
3318 choices[j] = j;
3319 break;
3320 }
3321 choice -= first_choice;
3322
3323 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3324 {
3325 }
3326
3327 if (j < 0 || choice != choices[j])
3328 {
3329 int k;
3330
3331 for (k = n_chosen - 1; k > j; k -= 1)
3332 choices[k + 1] = choices[k];
3333 choices[j + 1] = choice;
3334 n_chosen += 1;
3335 }
3336 }
3337
3338 if (n_chosen > max_results)
3339 error (_("Select no more than %d of the above"), max_results);
3340
3341 return n_chosen;
3342 }
3343
3344 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3345 by asking the user (if necessary), returning the number selected,
3346 and setting the first elements of SYMS items. Error if no symbols
3347 selected. */
3348
3349 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3350 to be re-integrated one of these days. */
3351
3352 static int
3353 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3354 {
3355 int i;
3356 int *chosen = XALLOCAVEC (int , nsyms);
3357 int n_chosen;
3358 int first_choice = (max_results == 1) ? 1 : 2;
3359 const char *select_mode = multiple_symbols_select_mode ();
3360
3361 if (max_results < 1)
3362 error (_("Request to select 0 symbols!"));
3363 if (nsyms <= 1)
3364 return nsyms;
3365
3366 if (select_mode == multiple_symbols_cancel)
3367 error (_("\
3368 canceled because the command is ambiguous\n\
3369 See set/show multiple-symbol."));
3370
3371 /* If select_mode is "all", then return all possible symbols.
3372 Only do that if more than one symbol can be selected, of course.
3373 Otherwise, display the menu as usual. */
3374 if (select_mode == multiple_symbols_all && max_results > 1)
3375 return nsyms;
3376
3377 printf_filtered (_("[0] cancel\n"));
3378 if (max_results > 1)
3379 printf_filtered (_("[1] all\n"));
3380
3381 sort_choices (syms, nsyms);
3382
3383 for (i = 0; i < nsyms; i += 1)
3384 {
3385 if (syms[i].symbol == NULL)
3386 continue;
3387
3388 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3389 {
3390 struct symtab_and_line sal =
3391 find_function_start_sal (syms[i].symbol, 1);
3392
3393 printf_filtered ("[%d] ", i + first_choice);
3394 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3395 &type_print_raw_options);
3396 if (sal.symtab == NULL)
3397 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3398 metadata_style.style ().ptr (), nullptr, sal.line);
3399 else
3400 printf_filtered
3401 (_(" at %ps:%d\n"),
3402 styled_string (file_name_style.style (),
3403 symtab_to_filename_for_display (sal.symtab)),
3404 sal.line);
3405 continue;
3406 }
3407 else
3408 {
3409 int is_enumeral =
3410 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3411 && SYMBOL_TYPE (syms[i].symbol) != NULL
3412 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3413 struct symtab *symtab = NULL;
3414
3415 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3416 symtab = symbol_symtab (syms[i].symbol);
3417
3418 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3419 {
3420 printf_filtered ("[%d] ", i + first_choice);
3421 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3422 &type_print_raw_options);
3423 printf_filtered (_(" at %s:%d\n"),
3424 symtab_to_filename_for_display (symtab),
3425 SYMBOL_LINE (syms[i].symbol));
3426 }
3427 else if (is_enumeral
3428 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3429 {
3430 printf_filtered (("[%d] "), i + first_choice);
3431 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3432 gdb_stdout, -1, 0, &type_print_raw_options);
3433 printf_filtered (_("'(%s) (enumeral)\n"),
3434 syms[i].symbol->print_name ());
3435 }
3436 else
3437 {
3438 printf_filtered ("[%d] ", i + first_choice);
3439 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3440 &type_print_raw_options);
3441
3442 if (symtab != NULL)
3443 printf_filtered (is_enumeral
3444 ? _(" in %s (enumeral)\n")
3445 : _(" at %s:?\n"),
3446 symtab_to_filename_for_display (symtab));
3447 else
3448 printf_filtered (is_enumeral
3449 ? _(" (enumeral)\n")
3450 : _(" at ?\n"));
3451 }
3452 }
3453 }
3454
3455 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3456 "overload-choice");
3457
3458 for (i = 0; i < n_chosen; i += 1)
3459 syms[i] = syms[chosen[i]];
3460
3461 return n_chosen;
3462 }
3463
3464 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3465 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3466 undefined namespace) and converts operators that are
3467 user-defined into appropriate function calls. If CONTEXT_TYPE is
3468 non-null, it provides a preferred result type [at the moment, only
3469 type void has any effect---causing procedures to be preferred over
3470 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3471 return type is preferred. May change (expand) *EXP. */
3472
3473 static void
3474 resolve (expression_up *expp, int void_context_p, int parse_completion,
3475 innermost_block_tracker *tracker)
3476 {
3477 struct type *context_type = NULL;
3478 int pc = 0;
3479
3480 if (void_context_p)
3481 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3482
3483 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3484 }
3485
3486 /* Resolve the operator of the subexpression beginning at
3487 position *POS of *EXPP. "Resolving" consists of replacing
3488 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3489 with their resolutions, replacing built-in operators with
3490 function calls to user-defined operators, where appropriate, and,
3491 when DEPROCEDURE_P is non-zero, converting function-valued variables
3492 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3493 are as in ada_resolve, above. */
3494
3495 static struct value *
3496 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3497 struct type *context_type, int parse_completion,
3498 innermost_block_tracker *tracker)
3499 {
3500 int pc = *pos;
3501 int i;
3502 struct expression *exp; /* Convenience: == *expp. */
3503 enum exp_opcode op = (*expp)->elts[pc].opcode;
3504 struct value **argvec; /* Vector of operand types (alloca'ed). */
3505 int nargs; /* Number of operands. */
3506 int oplen;
3507
3508 argvec = NULL;
3509 nargs = 0;
3510 exp = expp->get ();
3511
3512 /* Pass one: resolve operands, saving their types and updating *pos,
3513 if needed. */
3514 switch (op)
3515 {
3516 case OP_FUNCALL:
3517 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3518 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3519 *pos += 7;
3520 else
3521 {
3522 *pos += 3;
3523 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3524 }
3525 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3526 break;
3527
3528 case UNOP_ADDR:
3529 *pos += 1;
3530 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3531 break;
3532
3533 case UNOP_QUAL:
3534 *pos += 3;
3535 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3536 parse_completion, tracker);
3537 break;
3538
3539 case OP_ATR_MODULUS:
3540 case OP_ATR_SIZE:
3541 case OP_ATR_TAG:
3542 case OP_ATR_FIRST:
3543 case OP_ATR_LAST:
3544 case OP_ATR_LENGTH:
3545 case OP_ATR_POS:
3546 case OP_ATR_VAL:
3547 case OP_ATR_MIN:
3548 case OP_ATR_MAX:
3549 case TERNOP_IN_RANGE:
3550 case BINOP_IN_BOUNDS:
3551 case UNOP_IN_RANGE:
3552 case OP_AGGREGATE:
3553 case OP_OTHERS:
3554 case OP_CHOICES:
3555 case OP_POSITIONAL:
3556 case OP_DISCRETE_RANGE:
3557 case OP_NAME:
3558 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3559 *pos += oplen;
3560 break;
3561
3562 case BINOP_ASSIGN:
3563 {
3564 struct value *arg1;
3565
3566 *pos += 1;
3567 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3568 if (arg1 == NULL)
3569 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3570 else
3571 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3572 tracker);
3573 break;
3574 }
3575
3576 case UNOP_CAST:
3577 *pos += 3;
3578 nargs = 1;
3579 break;
3580
3581 case BINOP_ADD:
3582 case BINOP_SUB:
3583 case BINOP_MUL:
3584 case BINOP_DIV:
3585 case BINOP_REM:
3586 case BINOP_MOD:
3587 case BINOP_EXP:
3588 case BINOP_CONCAT:
3589 case BINOP_LOGICAL_AND:
3590 case BINOP_LOGICAL_OR:
3591 case BINOP_BITWISE_AND:
3592 case BINOP_BITWISE_IOR:
3593 case BINOP_BITWISE_XOR:
3594
3595 case BINOP_EQUAL:
3596 case BINOP_NOTEQUAL:
3597 case BINOP_LESS:
3598 case BINOP_GTR:
3599 case BINOP_LEQ:
3600 case BINOP_GEQ:
3601
3602 case BINOP_REPEAT:
3603 case BINOP_SUBSCRIPT:
3604 case BINOP_COMMA:
3605 *pos += 1;
3606 nargs = 2;
3607 break;
3608
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 case UNOP_IND:
3614 *pos += 1;
3615 nargs = 1;
3616 break;
3617
3618 case OP_LONG:
3619 case OP_FLOAT:
3620 case OP_VAR_VALUE:
3621 case OP_VAR_MSYM_VALUE:
3622 *pos += 4;
3623 break;
3624
3625 case OP_TYPE:
3626 case OP_BOOL:
3627 case OP_LAST:
3628 case OP_INTERNALVAR:
3629 *pos += 3;
3630 break;
3631
3632 case UNOP_MEMVAL:
3633 *pos += 3;
3634 nargs = 1;
3635 break;
3636
3637 case OP_REGISTER:
3638 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3639 break;
3640
3641 case STRUCTOP_STRUCT:
3642 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3643 nargs = 1;
3644 break;
3645
3646 case TERNOP_SLICE:
3647 *pos += 1;
3648 nargs = 3;
3649 break;
3650
3651 case OP_STRING:
3652 break;
3653
3654 default:
3655 error (_("Unexpected operator during name resolution"));
3656 }
3657
3658 argvec = XALLOCAVEC (struct value *, nargs + 1);
3659 for (i = 0; i < nargs; i += 1)
3660 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3661 tracker);
3662 argvec[i] = NULL;
3663 exp = expp->get ();
3664
3665 /* Pass two: perform any resolution on principal operator. */
3666 switch (op)
3667 {
3668 default:
3669 break;
3670
3671 case OP_VAR_VALUE:
3672 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3673 {
3674 std::vector<struct block_symbol> candidates;
3675 int n_candidates;
3676
3677 n_candidates =
3678 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3679 exp->elts[pc + 1].block, VAR_DOMAIN,
3680 &candidates);
3681
3682 if (n_candidates > 1)
3683 {
3684 /* Types tend to get re-introduced locally, so if there
3685 are any local symbols that are not types, first filter
3686 out all types. */
3687 int j;
3688 for (j = 0; j < n_candidates; j += 1)
3689 switch (SYMBOL_CLASS (candidates[j].symbol))
3690 {
3691 case LOC_REGISTER:
3692 case LOC_ARG:
3693 case LOC_REF_ARG:
3694 case LOC_REGPARM_ADDR:
3695 case LOC_LOCAL:
3696 case LOC_COMPUTED:
3697 goto FoundNonType;
3698 default:
3699 break;
3700 }
3701 FoundNonType:
3702 if (j < n_candidates)
3703 {
3704 j = 0;
3705 while (j < n_candidates)
3706 {
3707 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3708 {
3709 candidates[j] = candidates[n_candidates - 1];
3710 n_candidates -= 1;
3711 }
3712 else
3713 j += 1;
3714 }
3715 }
3716 }
3717
3718 if (n_candidates == 0)
3719 error (_("No definition found for %s"),
3720 exp->elts[pc + 2].symbol->print_name ());
3721 else if (n_candidates == 1)
3722 i = 0;
3723 else if (deprocedure_p
3724 && !is_nonfunction (candidates.data (), n_candidates))
3725 {
3726 i = ada_resolve_function
3727 (candidates.data (), n_candidates, NULL, 0,
3728 exp->elts[pc + 2].symbol->linkage_name (),
3729 context_type, parse_completion);
3730 if (i < 0)
3731 error (_("Could not find a match for %s"),
3732 exp->elts[pc + 2].symbol->print_name ());
3733 }
3734 else
3735 {
3736 printf_filtered (_("Multiple matches for %s\n"),
3737 exp->elts[pc + 2].symbol->print_name ());
3738 user_select_syms (candidates.data (), n_candidates, 1);
3739 i = 0;
3740 }
3741
3742 exp->elts[pc + 1].block = candidates[i].block;
3743 exp->elts[pc + 2].symbol = candidates[i].symbol;
3744 tracker->update (candidates[i]);
3745 }
3746
3747 if (deprocedure_p
3748 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3749 == TYPE_CODE_FUNC))
3750 {
3751 replace_operator_with_call (expp, pc, 0, 4,
3752 exp->elts[pc + 2].symbol,
3753 exp->elts[pc + 1].block);
3754 exp = expp->get ();
3755 }
3756 break;
3757
3758 case OP_FUNCALL:
3759 {
3760 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3761 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3762 {
3763 std::vector<struct block_symbol> candidates;
3764 int n_candidates;
3765
3766 n_candidates =
3767 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3768 exp->elts[pc + 4].block, VAR_DOMAIN,
3769 &candidates);
3770
3771 if (n_candidates == 1)
3772 i = 0;
3773 else
3774 {
3775 i = ada_resolve_function
3776 (candidates.data (), n_candidates,
3777 argvec, nargs,
3778 exp->elts[pc + 5].symbol->linkage_name (),
3779 context_type, parse_completion);
3780 if (i < 0)
3781 error (_("Could not find a match for %s"),
3782 exp->elts[pc + 5].symbol->print_name ());
3783 }
3784
3785 exp->elts[pc + 4].block = candidates[i].block;
3786 exp->elts[pc + 5].symbol = candidates[i].symbol;
3787 tracker->update (candidates[i]);
3788 }
3789 }
3790 break;
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 case BINOP_REM:
3796 case BINOP_MOD:
3797 case BINOP_CONCAT:
3798 case BINOP_BITWISE_AND:
3799 case BINOP_BITWISE_IOR:
3800 case BINOP_BITWISE_XOR:
3801 case BINOP_EQUAL:
3802 case BINOP_NOTEQUAL:
3803 case BINOP_LESS:
3804 case BINOP_GTR:
3805 case BINOP_LEQ:
3806 case BINOP_GEQ:
3807 case BINOP_EXP:
3808 case UNOP_NEG:
3809 case UNOP_PLUS:
3810 case UNOP_LOGICAL_NOT:
3811 case UNOP_ABS:
3812 if (possible_user_operator_p (op, argvec))
3813 {
3814 std::vector<struct block_symbol> candidates;
3815 int n_candidates;
3816
3817 n_candidates =
3818 ada_lookup_symbol_list (ada_decoded_op_name (op),
3819 NULL, VAR_DOMAIN,
3820 &candidates);
3821
3822 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3823 nargs, ada_decoded_op_name (op), NULL,
3824 parse_completion);
3825 if (i < 0)
3826 break;
3827
3828 replace_operator_with_call (expp, pc, nargs, 1,
3829 candidates[i].symbol,
3830 candidates[i].block);
3831 exp = expp->get ();
3832 }
3833 break;
3834
3835 case OP_TYPE:
3836 case OP_REGISTER:
3837 return NULL;
3838 }
3839
3840 *pos = pc;
3841 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3842 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3843 exp->elts[pc + 1].objfile,
3844 exp->elts[pc + 2].msymbol);
3845 else
3846 return evaluate_subexp_type (exp, pos);
3847 }
3848
3849 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3850 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3851 a non-pointer. */
3852 /* The term "match" here is rather loose. The match is heuristic and
3853 liberal. */
3854
3855 static int
3856 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3857 {
3858 ftype = ada_check_typedef (ftype);
3859 atype = ada_check_typedef (atype);
3860
3861 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3862 ftype = TYPE_TARGET_TYPE (ftype);
3863 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3864 atype = TYPE_TARGET_TYPE (atype);
3865
3866 switch (TYPE_CODE (ftype))
3867 {
3868 default:
3869 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3870 case TYPE_CODE_PTR:
3871 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3872 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3873 TYPE_TARGET_TYPE (atype), 0);
3874 else
3875 return (may_deref
3876 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3877 case TYPE_CODE_INT:
3878 case TYPE_CODE_ENUM:
3879 case TYPE_CODE_RANGE:
3880 switch (TYPE_CODE (atype))
3881 {
3882 case TYPE_CODE_INT:
3883 case TYPE_CODE_ENUM:
3884 case TYPE_CODE_RANGE:
3885 return 1;
3886 default:
3887 return 0;
3888 }
3889
3890 case TYPE_CODE_ARRAY:
3891 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3892 || ada_is_array_descriptor_type (atype));
3893
3894 case TYPE_CODE_STRUCT:
3895 if (ada_is_array_descriptor_type (ftype))
3896 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3897 || ada_is_array_descriptor_type (atype));
3898 else
3899 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3900 && !ada_is_array_descriptor_type (atype));
3901
3902 case TYPE_CODE_UNION:
3903 case TYPE_CODE_FLT:
3904 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3905 }
3906 }
3907
3908 /* Return non-zero if the formals of FUNC "sufficiently match" the
3909 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3910 may also be an enumeral, in which case it is treated as a 0-
3911 argument function. */
3912
3913 static int
3914 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3915 {
3916 int i;
3917 struct type *func_type = SYMBOL_TYPE (func);
3918
3919 if (SYMBOL_CLASS (func) == LOC_CONST
3920 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3921 return (n_actuals == 0);
3922 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3923 return 0;
3924
3925 if (TYPE_NFIELDS (func_type) != n_actuals)
3926 return 0;
3927
3928 for (i = 0; i < n_actuals; i += 1)
3929 {
3930 if (actuals[i] == NULL)
3931 return 0;
3932 else
3933 {
3934 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3935 i));
3936 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3937
3938 if (!ada_type_match (ftype, atype, 1))
3939 return 0;
3940 }
3941 }
3942 return 1;
3943 }
3944
3945 /* False iff function type FUNC_TYPE definitely does not produce a value
3946 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3947 FUNC_TYPE is not a valid function type with a non-null return type
3948 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3949
3950 static int
3951 return_match (struct type *func_type, struct type *context_type)
3952 {
3953 struct type *return_type;
3954
3955 if (func_type == NULL)
3956 return 1;
3957
3958 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3959 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3960 else
3961 return_type = get_base_type (func_type);
3962 if (return_type == NULL)
3963 return 1;
3964
3965 context_type = get_base_type (context_type);
3966
3967 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3968 return context_type == NULL || return_type == context_type;
3969 else if (context_type == NULL)
3970 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3971 else
3972 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3973 }
3974
3975
3976 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3977 function (if any) that matches the types of the NARGS arguments in
3978 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3979 that returns that type, then eliminate matches that don't. If
3980 CONTEXT_TYPE is void and there is at least one match that does not
3981 return void, eliminate all matches that do.
3982
3983 Asks the user if there is more than one match remaining. Returns -1
3984 if there is no such symbol or none is selected. NAME is used
3985 solely for messages. May re-arrange and modify SYMS in
3986 the process; the index returned is for the modified vector. */
3987
3988 static int
3989 ada_resolve_function (struct block_symbol syms[],
3990 int nsyms, struct value **args, int nargs,
3991 const char *name, struct type *context_type,
3992 int parse_completion)
3993 {
3994 int fallback;
3995 int k;
3996 int m; /* Number of hits */
3997
3998 m = 0;
3999 /* In the first pass of the loop, we only accept functions matching
4000 context_type. If none are found, we add a second pass of the loop
4001 where every function is accepted. */
4002 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4003 {
4004 for (k = 0; k < nsyms; k += 1)
4005 {
4006 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4007
4008 if (ada_args_match (syms[k].symbol, args, nargs)
4009 && (fallback || return_match (type, context_type)))
4010 {
4011 syms[m] = syms[k];
4012 m += 1;
4013 }
4014 }
4015 }
4016
4017 /* If we got multiple matches, ask the user which one to use. Don't do this
4018 interactive thing during completion, though, as the purpose of the
4019 completion is providing a list of all possible matches. Prompting the
4020 user to filter it down would be completely unexpected in this case. */
4021 if (m == 0)
4022 return -1;
4023 else if (m > 1 && !parse_completion)
4024 {
4025 printf_filtered (_("Multiple matches for %s\n"), name);
4026 user_select_syms (syms, m, 1);
4027 return 0;
4028 }
4029 return 0;
4030 }
4031
4032 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4033 on the function identified by SYM and BLOCK, and taking NARGS
4034 arguments. Update *EXPP as needed to hold more space. */
4035
4036 static void
4037 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4038 int oplen, struct symbol *sym,
4039 const struct block *block)
4040 {
4041 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4042 symbol, -oplen for operator being replaced). */
4043 struct expression *newexp = (struct expression *)
4044 xzalloc (sizeof (struct expression)
4045 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4046 struct expression *exp = expp->get ();
4047
4048 newexp->nelts = exp->nelts + 7 - oplen;
4049 newexp->language_defn = exp->language_defn;
4050 newexp->gdbarch = exp->gdbarch;
4051 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4052 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4053 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4054
4055 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4056 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4057
4058 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4059 newexp->elts[pc + 4].block = block;
4060 newexp->elts[pc + 5].symbol = sym;
4061
4062 expp->reset (newexp);
4063 }
4064
4065 /* Type-class predicates */
4066
4067 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4068 or FLOAT). */
4069
4070 static int
4071 numeric_type_p (struct type *type)
4072 {
4073 if (type == NULL)
4074 return 0;
4075 else
4076 {
4077 switch (TYPE_CODE (type))
4078 {
4079 case TYPE_CODE_INT:
4080 case TYPE_CODE_FLT:
4081 return 1;
4082 case TYPE_CODE_RANGE:
4083 return (type == TYPE_TARGET_TYPE (type)
4084 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4085 default:
4086 return 0;
4087 }
4088 }
4089 }
4090
4091 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4092
4093 static int
4094 integer_type_p (struct type *type)
4095 {
4096 if (type == NULL)
4097 return 0;
4098 else
4099 {
4100 switch (TYPE_CODE (type))
4101 {
4102 case TYPE_CODE_INT:
4103 return 1;
4104 case TYPE_CODE_RANGE:
4105 return (type == TYPE_TARGET_TYPE (type)
4106 || integer_type_p (TYPE_TARGET_TYPE (type)));
4107 default:
4108 return 0;
4109 }
4110 }
4111 }
4112
4113 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4114
4115 static int
4116 scalar_type_p (struct type *type)
4117 {
4118 if (type == NULL)
4119 return 0;
4120 else
4121 {
4122 switch (TYPE_CODE (type))
4123 {
4124 case TYPE_CODE_INT:
4125 case TYPE_CODE_RANGE:
4126 case TYPE_CODE_ENUM:
4127 case TYPE_CODE_FLT:
4128 return 1;
4129 default:
4130 return 0;
4131 }
4132 }
4133 }
4134
4135 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4136
4137 static int
4138 discrete_type_p (struct type *type)
4139 {
4140 if (type == NULL)
4141 return 0;
4142 else
4143 {
4144 switch (TYPE_CODE (type))
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_RANGE:
4148 case TYPE_CODE_ENUM:
4149 case TYPE_CODE_BOOL:
4150 return 1;
4151 default:
4152 return 0;
4153 }
4154 }
4155 }
4156
4157 /* Returns non-zero if OP with operands in the vector ARGS could be
4158 a user-defined function. Errs on the side of pre-defined operators
4159 (i.e., result 0). */
4160
4161 static int
4162 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4163 {
4164 struct type *type0 =
4165 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4166 struct type *type1 =
4167 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4168
4169 if (type0 == NULL)
4170 return 0;
4171
4172 switch (op)
4173 {
4174 default:
4175 return 0;
4176
4177 case BINOP_ADD:
4178 case BINOP_SUB:
4179 case BINOP_MUL:
4180 case BINOP_DIV:
4181 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4182
4183 case BINOP_REM:
4184 case BINOP_MOD:
4185 case BINOP_BITWISE_AND:
4186 case BINOP_BITWISE_IOR:
4187 case BINOP_BITWISE_XOR:
4188 return (!(integer_type_p (type0) && integer_type_p (type1)));
4189
4190 case BINOP_EQUAL:
4191 case BINOP_NOTEQUAL:
4192 case BINOP_LESS:
4193 case BINOP_GTR:
4194 case BINOP_LEQ:
4195 case BINOP_GEQ:
4196 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4197
4198 case BINOP_CONCAT:
4199 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4200
4201 case BINOP_EXP:
4202 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4203
4204 case UNOP_NEG:
4205 case UNOP_PLUS:
4206 case UNOP_LOGICAL_NOT:
4207 case UNOP_ABS:
4208 return (!numeric_type_p (type0));
4209
4210 }
4211 }
4212 \f
4213 /* Renaming */
4214
4215 /* NOTES:
4216
4217 1. In the following, we assume that a renaming type's name may
4218 have an ___XD suffix. It would be nice if this went away at some
4219 point.
4220 2. We handle both the (old) purely type-based representation of
4221 renamings and the (new) variable-based encoding. At some point,
4222 it is devoutly to be hoped that the former goes away
4223 (FIXME: hilfinger-2007-07-09).
4224 3. Subprogram renamings are not implemented, although the XRS
4225 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4226
4227 /* If SYM encodes a renaming,
4228
4229 <renaming> renames <renamed entity>,
4230
4231 sets *LEN to the length of the renamed entity's name,
4232 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4233 the string describing the subcomponent selected from the renamed
4234 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4235 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4236 are undefined). Otherwise, returns a value indicating the category
4237 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4238 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4239 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4240 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4241 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4242 may be NULL, in which case they are not assigned.
4243
4244 [Currently, however, GCC does not generate subprogram renamings.] */
4245
4246 enum ada_renaming_category
4247 ada_parse_renaming (struct symbol *sym,
4248 const char **renamed_entity, int *len,
4249 const char **renaming_expr)
4250 {
4251 enum ada_renaming_category kind;
4252 const char *info;
4253 const char *suffix;
4254
4255 if (sym == NULL)
4256 return ADA_NOT_RENAMING;
4257 switch (SYMBOL_CLASS (sym))
4258 {
4259 default:
4260 return ADA_NOT_RENAMING;
4261 case LOC_LOCAL:
4262 case LOC_STATIC:
4263 case LOC_COMPUTED:
4264 case LOC_OPTIMIZED_OUT:
4265 info = strstr (sym->linkage_name (), "___XR");
4266 if (info == NULL)
4267 return ADA_NOT_RENAMING;
4268 switch (info[5])
4269 {
4270 case '_':
4271 kind = ADA_OBJECT_RENAMING;
4272 info += 6;
4273 break;
4274 case 'E':
4275 kind = ADA_EXCEPTION_RENAMING;
4276 info += 7;
4277 break;
4278 case 'P':
4279 kind = ADA_PACKAGE_RENAMING;
4280 info += 7;
4281 break;
4282 case 'S':
4283 kind = ADA_SUBPROGRAM_RENAMING;
4284 info += 7;
4285 break;
4286 default:
4287 return ADA_NOT_RENAMING;
4288 }
4289 }
4290
4291 if (renamed_entity != NULL)
4292 *renamed_entity = info;
4293 suffix = strstr (info, "___XE");
4294 if (suffix == NULL || suffix == info)
4295 return ADA_NOT_RENAMING;
4296 if (len != NULL)
4297 *len = strlen (info) - strlen (suffix);
4298 suffix += 5;
4299 if (renaming_expr != NULL)
4300 *renaming_expr = suffix;
4301 return kind;
4302 }
4303
4304 /* Compute the value of the given RENAMING_SYM, which is expected to
4305 be a symbol encoding a renaming expression. BLOCK is the block
4306 used to evaluate the renaming. */
4307
4308 static struct value *
4309 ada_read_renaming_var_value (struct symbol *renaming_sym,
4310 const struct block *block)
4311 {
4312 const char *sym_name;
4313
4314 sym_name = renaming_sym->linkage_name ();
4315 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4316 return evaluate_expression (expr.get ());
4317 }
4318 \f
4319
4320 /* Evaluation: Function Calls */
4321
4322 /* Return an lvalue containing the value VAL. This is the identity on
4323 lvalues, and otherwise has the side-effect of allocating memory
4324 in the inferior where a copy of the value contents is copied. */
4325
4326 static struct value *
4327 ensure_lval (struct value *val)
4328 {
4329 if (VALUE_LVAL (val) == not_lval
4330 || VALUE_LVAL (val) == lval_internalvar)
4331 {
4332 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4333 const CORE_ADDR addr =
4334 value_as_long (value_allocate_space_in_inferior (len));
4335
4336 VALUE_LVAL (val) = lval_memory;
4337 set_value_address (val, addr);
4338 write_memory (addr, value_contents (val), len);
4339 }
4340
4341 return val;
4342 }
4343
4344 /* Given ARG, a value of type (pointer or reference to a)*
4345 structure/union, extract the component named NAME from the ultimate
4346 target structure/union and return it as a value with its
4347 appropriate type.
4348
4349 The routine searches for NAME among all members of the structure itself
4350 and (recursively) among all members of any wrapper members
4351 (e.g., '_parent').
4352
4353 If NO_ERR, then simply return NULL in case of error, rather than
4354 calling error. */
4355
4356 static struct value *
4357 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4358 {
4359 struct type *t, *t1;
4360 struct value *v;
4361 int check_tag;
4362
4363 v = NULL;
4364 t1 = t = ada_check_typedef (value_type (arg));
4365 if (TYPE_CODE (t) == TYPE_CODE_REF)
4366 {
4367 t1 = TYPE_TARGET_TYPE (t);
4368 if (t1 == NULL)
4369 goto BadValue;
4370 t1 = ada_check_typedef (t1);
4371 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4372 {
4373 arg = coerce_ref (arg);
4374 t = t1;
4375 }
4376 }
4377
4378 while (TYPE_CODE (t) == TYPE_CODE_PTR)
4379 {
4380 t1 = TYPE_TARGET_TYPE (t);
4381 if (t1 == NULL)
4382 goto BadValue;
4383 t1 = ada_check_typedef (t1);
4384 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4385 {
4386 arg = value_ind (arg);
4387 t = t1;
4388 }
4389 else
4390 break;
4391 }
4392
4393 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
4394 goto BadValue;
4395
4396 if (t1 == t)
4397 v = ada_search_struct_field (name, arg, 0, t);
4398 else
4399 {
4400 int bit_offset, bit_size, byte_offset;
4401 struct type *field_type;
4402 CORE_ADDR address;
4403
4404 if (TYPE_CODE (t) == TYPE_CODE_PTR)
4405 address = value_address (ada_value_ind (arg));
4406 else
4407 address = value_address (ada_coerce_ref (arg));
4408
4409 /* Check to see if this is a tagged type. We also need to handle
4410 the case where the type is a reference to a tagged type, but
4411 we have to be careful to exclude pointers to tagged types.
4412 The latter should be shown as usual (as a pointer), whereas
4413 a reference should mostly be transparent to the user. */
4414
4415 if (ada_is_tagged_type (t1, 0)
4416 || (TYPE_CODE (t1) == TYPE_CODE_REF
4417 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4418 {
4419 /* We first try to find the searched field in the current type.
4420 If not found then let's look in the fixed type. */
4421
4422 if (!find_struct_field (name, t1, 0,
4423 &field_type, &byte_offset, &bit_offset,
4424 &bit_size, NULL))
4425 check_tag = 1;
4426 else
4427 check_tag = 0;
4428 }
4429 else
4430 check_tag = 0;
4431
4432 /* Convert to fixed type in all cases, so that we have proper
4433 offsets to each field in unconstrained record types. */
4434 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4435 address, NULL, check_tag);
4436
4437 if (find_struct_field (name, t1, 0,
4438 &field_type, &byte_offset, &bit_offset,
4439 &bit_size, NULL))
4440 {
4441 if (bit_size != 0)
4442 {
4443 if (TYPE_CODE (t) == TYPE_CODE_REF)
4444 arg = ada_coerce_ref (arg);
4445 else
4446 arg = ada_value_ind (arg);
4447 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4448 bit_offset, bit_size,
4449 field_type);
4450 }
4451 else
4452 v = value_at_lazy (field_type, address + byte_offset);
4453 }
4454 }
4455
4456 if (v != NULL || no_err)
4457 return v;
4458 else
4459 error (_("There is no member named %s."), name);
4460
4461 BadValue:
4462 if (no_err)
4463 return NULL;
4464 else
4465 error (_("Attempt to extract a component of "
4466 "a value that is not a record."));
4467 }
4468
4469 /* Return the value ACTUAL, converted to be an appropriate value for a
4470 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4471 allocating any necessary descriptors (fat pointers), or copies of
4472 values not residing in memory, updating it as needed. */
4473
4474 struct value *
4475 ada_convert_actual (struct value *actual, struct type *formal_type0)
4476 {
4477 struct type *actual_type = ada_check_typedef (value_type (actual));
4478 struct type *formal_type = ada_check_typedef (formal_type0);
4479 struct type *formal_target =
4480 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4481 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4482 struct type *actual_target =
4483 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4484 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4485
4486 if (ada_is_array_descriptor_type (formal_target)
4487 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4488 return make_array_descriptor (formal_type, actual);
4489 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4490 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4491 {
4492 struct value *result;
4493
4494 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4495 && ada_is_array_descriptor_type (actual_target))
4496 result = desc_data (actual);
4497 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4498 {
4499 if (VALUE_LVAL (actual) != lval_memory)
4500 {
4501 struct value *val;
4502
4503 actual_type = ada_check_typedef (value_type (actual));
4504 val = allocate_value (actual_type);
4505 memcpy ((char *) value_contents_raw (val),
4506 (char *) value_contents (actual),
4507 TYPE_LENGTH (actual_type));
4508 actual = ensure_lval (val);
4509 }
4510 result = value_addr (actual);
4511 }
4512 else
4513 return actual;
4514 return value_cast_pointers (formal_type, result, 0);
4515 }
4516 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4517 return ada_value_ind (actual);
4518 else if (ada_is_aligner_type (formal_type))
4519 {
4520 /* We need to turn this parameter into an aligner type
4521 as well. */
4522 struct value *aligner = allocate_value (formal_type);
4523 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4524
4525 value_assign_to_component (aligner, component, actual);
4526 return aligner;
4527 }
4528
4529 return actual;
4530 }
4531
4532 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4533 type TYPE. This is usually an inefficient no-op except on some targets
4534 (such as AVR) where the representation of a pointer and an address
4535 differs. */
4536
4537 static CORE_ADDR
4538 value_pointer (struct value *value, struct type *type)
4539 {
4540 struct gdbarch *gdbarch = get_type_arch (type);
4541 unsigned len = TYPE_LENGTH (type);
4542 gdb_byte *buf = (gdb_byte *) alloca (len);
4543 CORE_ADDR addr;
4544
4545 addr = value_address (value);
4546 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4547 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4548 return addr;
4549 }
4550
4551
4552 /* Push a descriptor of type TYPE for array value ARR on the stack at
4553 *SP, updating *SP to reflect the new descriptor. Return either
4554 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4555 to-descriptor type rather than a descriptor type), a struct value *
4556 representing a pointer to this descriptor. */
4557
4558 static struct value *
4559 make_array_descriptor (struct type *type, struct value *arr)
4560 {
4561 struct type *bounds_type = desc_bounds_type (type);
4562 struct type *desc_type = desc_base_type (type);
4563 struct value *descriptor = allocate_value (desc_type);
4564 struct value *bounds = allocate_value (bounds_type);
4565 int i;
4566
4567 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4568 i > 0; i -= 1)
4569 {
4570 modify_field (value_type (bounds), value_contents_writeable (bounds),
4571 ada_array_bound (arr, i, 0),
4572 desc_bound_bitpos (bounds_type, i, 0),
4573 desc_bound_bitsize (bounds_type, i, 0));
4574 modify_field (value_type (bounds), value_contents_writeable (bounds),
4575 ada_array_bound (arr, i, 1),
4576 desc_bound_bitpos (bounds_type, i, 1),
4577 desc_bound_bitsize (bounds_type, i, 1));
4578 }
4579
4580 bounds = ensure_lval (bounds);
4581
4582 modify_field (value_type (descriptor),
4583 value_contents_writeable (descriptor),
4584 value_pointer (ensure_lval (arr),
4585 TYPE_FIELD_TYPE (desc_type, 0)),
4586 fat_pntr_data_bitpos (desc_type),
4587 fat_pntr_data_bitsize (desc_type));
4588
4589 modify_field (value_type (descriptor),
4590 value_contents_writeable (descriptor),
4591 value_pointer (bounds,
4592 TYPE_FIELD_TYPE (desc_type, 1)),
4593 fat_pntr_bounds_bitpos (desc_type),
4594 fat_pntr_bounds_bitsize (desc_type));
4595
4596 descriptor = ensure_lval (descriptor);
4597
4598 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4599 return value_addr (descriptor);
4600 else
4601 return descriptor;
4602 }
4603 \f
4604 /* Symbol Cache Module */
4605
4606 /* Performance measurements made as of 2010-01-15 indicate that
4607 this cache does bring some noticeable improvements. Depending
4608 on the type of entity being printed, the cache can make it as much
4609 as an order of magnitude faster than without it.
4610
4611 The descriptive type DWARF extension has significantly reduced
4612 the need for this cache, at least when DWARF is being used. However,
4613 even in this case, some expensive name-based symbol searches are still
4614 sometimes necessary - to find an XVZ variable, mostly. */
4615
4616 /* Initialize the contents of SYM_CACHE. */
4617
4618 static void
4619 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4620 {
4621 obstack_init (&sym_cache->cache_space);
4622 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4623 }
4624
4625 /* Free the memory used by SYM_CACHE. */
4626
4627 static void
4628 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4629 {
4630 obstack_free (&sym_cache->cache_space, NULL);
4631 xfree (sym_cache);
4632 }
4633
4634 /* Return the symbol cache associated to the given program space PSPACE.
4635 If not allocated for this PSPACE yet, allocate and initialize one. */
4636
4637 static struct ada_symbol_cache *
4638 ada_get_symbol_cache (struct program_space *pspace)
4639 {
4640 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4641
4642 if (pspace_data->sym_cache == NULL)
4643 {
4644 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4645 ada_init_symbol_cache (pspace_data->sym_cache);
4646 }
4647
4648 return pspace_data->sym_cache;
4649 }
4650
4651 /* Clear all entries from the symbol cache. */
4652
4653 static void
4654 ada_clear_symbol_cache (void)
4655 {
4656 struct ada_symbol_cache *sym_cache
4657 = ada_get_symbol_cache (current_program_space);
4658
4659 obstack_free (&sym_cache->cache_space, NULL);
4660 ada_init_symbol_cache (sym_cache);
4661 }
4662
4663 /* Search our cache for an entry matching NAME and DOMAIN.
4664 Return it if found, or NULL otherwise. */
4665
4666 static struct cache_entry **
4667 find_entry (const char *name, domain_enum domain)
4668 {
4669 struct ada_symbol_cache *sym_cache
4670 = ada_get_symbol_cache (current_program_space);
4671 int h = msymbol_hash (name) % HASH_SIZE;
4672 struct cache_entry **e;
4673
4674 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4675 {
4676 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4677 return e;
4678 }
4679 return NULL;
4680 }
4681
4682 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4683 Return 1 if found, 0 otherwise.
4684
4685 If an entry was found and SYM is not NULL, set *SYM to the entry's
4686 SYM. Same principle for BLOCK if not NULL. */
4687
4688 static int
4689 lookup_cached_symbol (const char *name, domain_enum domain,
4690 struct symbol **sym, const struct block **block)
4691 {
4692 struct cache_entry **e = find_entry (name, domain);
4693
4694 if (e == NULL)
4695 return 0;
4696 if (sym != NULL)
4697 *sym = (*e)->sym;
4698 if (block != NULL)
4699 *block = (*e)->block;
4700 return 1;
4701 }
4702
4703 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4704 in domain DOMAIN, save this result in our symbol cache. */
4705
4706 static void
4707 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4708 const struct block *block)
4709 {
4710 struct ada_symbol_cache *sym_cache
4711 = ada_get_symbol_cache (current_program_space);
4712 int h;
4713 char *copy;
4714 struct cache_entry *e;
4715
4716 /* Symbols for builtin types don't have a block.
4717 For now don't cache such symbols. */
4718 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4719 return;
4720
4721 /* If the symbol is a local symbol, then do not cache it, as a search
4722 for that symbol depends on the context. To determine whether
4723 the symbol is local or not, we check the block where we found it
4724 against the global and static blocks of its associated symtab. */
4725 if (sym
4726 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4727 GLOBAL_BLOCK) != block
4728 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4729 STATIC_BLOCK) != block)
4730 return;
4731
4732 h = msymbol_hash (name) % HASH_SIZE;
4733 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4734 e->next = sym_cache->root[h];
4735 sym_cache->root[h] = e;
4736 e->name = copy
4737 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4738 strcpy (copy, name);
4739 e->sym = sym;
4740 e->domain = domain;
4741 e->block = block;
4742 }
4743 \f
4744 /* Symbol Lookup */
4745
4746 /* Return the symbol name match type that should be used used when
4747 searching for all symbols matching LOOKUP_NAME.
4748
4749 LOOKUP_NAME is expected to be a symbol name after transformation
4750 for Ada lookups. */
4751
4752 static symbol_name_match_type
4753 name_match_type_from_name (const char *lookup_name)
4754 {
4755 return (strstr (lookup_name, "__") == NULL
4756 ? symbol_name_match_type::WILD
4757 : symbol_name_match_type::FULL);
4758 }
4759
4760 /* Return the result of a standard (literal, C-like) lookup of NAME in
4761 given DOMAIN, visible from lexical block BLOCK. */
4762
4763 static struct symbol *
4764 standard_lookup (const char *name, const struct block *block,
4765 domain_enum domain)
4766 {
4767 /* Initialize it just to avoid a GCC false warning. */
4768 struct block_symbol sym = {};
4769
4770 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4771 return sym.symbol;
4772 ada_lookup_encoded_symbol (name, block, domain, &sym);
4773 cache_symbol (name, domain, sym.symbol, sym.block);
4774 return sym.symbol;
4775 }
4776
4777
4778 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4779 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4780 since they contend in overloading in the same way. */
4781 static int
4782 is_nonfunction (struct block_symbol syms[], int n)
4783 {
4784 int i;
4785
4786 for (i = 0; i < n; i += 1)
4787 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4788 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4789 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4790 return 1;
4791
4792 return 0;
4793 }
4794
4795 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4796 struct types. Otherwise, they may not. */
4797
4798 static int
4799 equiv_types (struct type *type0, struct type *type1)
4800 {
4801 if (type0 == type1)
4802 return 1;
4803 if (type0 == NULL || type1 == NULL
4804 || TYPE_CODE (type0) != TYPE_CODE (type1))
4805 return 0;
4806 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4807 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4808 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4809 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4810 return 1;
4811
4812 return 0;
4813 }
4814
4815 /* True iff SYM0 represents the same entity as SYM1, or one that is
4816 no more defined than that of SYM1. */
4817
4818 static int
4819 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4820 {
4821 if (sym0 == sym1)
4822 return 1;
4823 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4824 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4825 return 0;
4826
4827 switch (SYMBOL_CLASS (sym0))
4828 {
4829 case LOC_UNDEF:
4830 return 1;
4831 case LOC_TYPEDEF:
4832 {
4833 struct type *type0 = SYMBOL_TYPE (sym0);
4834 struct type *type1 = SYMBOL_TYPE (sym1);
4835 const char *name0 = sym0->linkage_name ();
4836 const char *name1 = sym1->linkage_name ();
4837 int len0 = strlen (name0);
4838
4839 return
4840 TYPE_CODE (type0) == TYPE_CODE (type1)
4841 && (equiv_types (type0, type1)
4842 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4843 && startswith (name1 + len0, "___XV")));
4844 }
4845 case LOC_CONST:
4846 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4847 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4848
4849 case LOC_STATIC:
4850 {
4851 const char *name0 = sym0->linkage_name ();
4852 const char *name1 = sym1->linkage_name ();
4853 return (strcmp (name0, name1) == 0
4854 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4855 }
4856
4857 default:
4858 return 0;
4859 }
4860 }
4861
4862 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4863 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4864
4865 static void
4866 add_defn_to_vec (struct obstack *obstackp,
4867 struct symbol *sym,
4868 const struct block *block)
4869 {
4870 int i;
4871 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4872
4873 /* Do not try to complete stub types, as the debugger is probably
4874 already scanning all symbols matching a certain name at the
4875 time when this function is called. Trying to replace the stub
4876 type by its associated full type will cause us to restart a scan
4877 which may lead to an infinite recursion. Instead, the client
4878 collecting the matching symbols will end up collecting several
4879 matches, with at least one of them complete. It can then filter
4880 out the stub ones if needed. */
4881
4882 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4883 {
4884 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4885 return;
4886 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4887 {
4888 prevDefns[i].symbol = sym;
4889 prevDefns[i].block = block;
4890 return;
4891 }
4892 }
4893
4894 {
4895 struct block_symbol info;
4896
4897 info.symbol = sym;
4898 info.block = block;
4899 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4900 }
4901 }
4902
4903 /* Number of block_symbol structures currently collected in current vector in
4904 OBSTACKP. */
4905
4906 static int
4907 num_defns_collected (struct obstack *obstackp)
4908 {
4909 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4910 }
4911
4912 /* Vector of block_symbol structures currently collected in current vector in
4913 OBSTACKP. If FINISH, close off the vector and return its final address. */
4914
4915 static struct block_symbol *
4916 defns_collected (struct obstack *obstackp, int finish)
4917 {
4918 if (finish)
4919 return (struct block_symbol *) obstack_finish (obstackp);
4920 else
4921 return (struct block_symbol *) obstack_base (obstackp);
4922 }
4923
4924 /* Return a bound minimal symbol matching NAME according to Ada
4925 decoding rules. Returns an invalid symbol if there is no such
4926 minimal symbol. Names prefixed with "standard__" are handled
4927 specially: "standard__" is first stripped off, and only static and
4928 global symbols are searched. */
4929
4930 struct bound_minimal_symbol
4931 ada_lookup_simple_minsym (const char *name)
4932 {
4933 struct bound_minimal_symbol result;
4934
4935 memset (&result, 0, sizeof (result));
4936
4937 symbol_name_match_type match_type = name_match_type_from_name (name);
4938 lookup_name_info lookup_name (name, match_type);
4939
4940 symbol_name_matcher_ftype *match_name
4941 = ada_get_symbol_name_matcher (lookup_name);
4942
4943 for (objfile *objfile : current_program_space->objfiles ())
4944 {
4945 for (minimal_symbol *msymbol : objfile->msymbols ())
4946 {
4947 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4948 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4949 {
4950 result.minsym = msymbol;
4951 result.objfile = objfile;
4952 break;
4953 }
4954 }
4955 }
4956
4957 return result;
4958 }
4959
4960 /* For all subprograms that statically enclose the subprogram of the
4961 selected frame, add symbols matching identifier NAME in DOMAIN
4962 and their blocks to the list of data in OBSTACKP, as for
4963 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4964 with a wildcard prefix. */
4965
4966 static void
4967 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4968 const lookup_name_info &lookup_name,
4969 domain_enum domain)
4970 {
4971 }
4972
4973 /* True if TYPE is definitely an artificial type supplied to a symbol
4974 for which no debugging information was given in the symbol file. */
4975
4976 static int
4977 is_nondebugging_type (struct type *type)
4978 {
4979 const char *name = ada_type_name (type);
4980
4981 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4982 }
4983
4984 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4985 that are deemed "identical" for practical purposes.
4986
4987 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4988 types and that their number of enumerals is identical (in other
4989 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4990
4991 static int
4992 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4993 {
4994 int i;
4995
4996 /* The heuristic we use here is fairly conservative. We consider
4997 that 2 enumerate types are identical if they have the same
4998 number of enumerals and that all enumerals have the same
4999 underlying value and name. */
5000
5001 /* All enums in the type should have an identical underlying value. */
5002 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5003 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5004 return 0;
5005
5006 /* All enumerals should also have the same name (modulo any numerical
5007 suffix). */
5008 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5009 {
5010 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5011 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5012 int len_1 = strlen (name_1);
5013 int len_2 = strlen (name_2);
5014
5015 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5017 if (len_1 != len_2
5018 || strncmp (TYPE_FIELD_NAME (type1, i),
5019 TYPE_FIELD_NAME (type2, i),
5020 len_1) != 0)
5021 return 0;
5022 }
5023
5024 return 1;
5025 }
5026
5027 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5028 that are deemed "identical" for practical purposes. Sometimes,
5029 enumerals are not strictly identical, but their types are so similar
5030 that they can be considered identical.
5031
5032 For instance, consider the following code:
5033
5034 type Color is (Black, Red, Green, Blue, White);
5035 type RGB_Color is new Color range Red .. Blue;
5036
5037 Type RGB_Color is a subrange of an implicit type which is a copy
5038 of type Color. If we call that implicit type RGB_ColorB ("B" is
5039 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5040 As a result, when an expression references any of the enumeral
5041 by name (Eg. "print green"), the expression is technically
5042 ambiguous and the user should be asked to disambiguate. But
5043 doing so would only hinder the user, since it wouldn't matter
5044 what choice he makes, the outcome would always be the same.
5045 So, for practical purposes, we consider them as the same. */
5046
5047 static int
5048 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5049 {
5050 int i;
5051
5052 /* Before performing a thorough comparison check of each type,
5053 we perform a series of inexpensive checks. We expect that these
5054 checks will quickly fail in the vast majority of cases, and thus
5055 help prevent the unnecessary use of a more expensive comparison.
5056 Said comparison also expects us to make some of these checks
5057 (see ada_identical_enum_types_p). */
5058
5059 /* Quick check: All symbols should have an enum type. */
5060 for (i = 0; i < syms.size (); i++)
5061 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5062 return 0;
5063
5064 /* Quick check: They should all have the same value. */
5065 for (i = 1; i < syms.size (); i++)
5066 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5067 return 0;
5068
5069 /* Quick check: They should all have the same number of enumerals. */
5070 for (i = 1; i < syms.size (); i++)
5071 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5072 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5073 return 0;
5074
5075 /* All the sanity checks passed, so we might have a set of
5076 identical enumeration types. Perform a more complete
5077 comparison of the type of each symbol. */
5078 for (i = 1; i < syms.size (); i++)
5079 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5080 SYMBOL_TYPE (syms[0].symbol)))
5081 return 0;
5082
5083 return 1;
5084 }
5085
5086 /* Remove any non-debugging symbols in SYMS that definitely
5087 duplicate other symbols in the list (The only case I know of where
5088 this happens is when object files containing stabs-in-ecoff are
5089 linked with files containing ordinary ecoff debugging symbols (or no
5090 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5091 Returns the number of items in the modified list. */
5092
5093 static int
5094 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5095 {
5096 int i, j;
5097
5098 /* We should never be called with less than 2 symbols, as there
5099 cannot be any extra symbol in that case. But it's easy to
5100 handle, since we have nothing to do in that case. */
5101 if (syms->size () < 2)
5102 return syms->size ();
5103
5104 i = 0;
5105 while (i < syms->size ())
5106 {
5107 int remove_p = 0;
5108
5109 /* If two symbols have the same name and one of them is a stub type,
5110 the get rid of the stub. */
5111
5112 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5113 && (*syms)[i].symbol->linkage_name () != NULL)
5114 {
5115 for (j = 0; j < syms->size (); j++)
5116 {
5117 if (j != i
5118 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5119 && (*syms)[j].symbol->linkage_name () != NULL
5120 && strcmp ((*syms)[i].symbol->linkage_name (),
5121 (*syms)[j].symbol->linkage_name ()) == 0)
5122 remove_p = 1;
5123 }
5124 }
5125
5126 /* Two symbols with the same name, same class and same address
5127 should be identical. */
5128
5129 else if ((*syms)[i].symbol->linkage_name () != NULL
5130 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5131 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5132 {
5133 for (j = 0; j < syms->size (); j += 1)
5134 {
5135 if (i != j
5136 && (*syms)[j].symbol->linkage_name () != NULL
5137 && strcmp ((*syms)[i].symbol->linkage_name (),
5138 (*syms)[j].symbol->linkage_name ()) == 0
5139 && SYMBOL_CLASS ((*syms)[i].symbol)
5140 == SYMBOL_CLASS ((*syms)[j].symbol)
5141 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5142 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5143 remove_p = 1;
5144 }
5145 }
5146
5147 if (remove_p)
5148 syms->erase (syms->begin () + i);
5149
5150 i += 1;
5151 }
5152
5153 /* If all the remaining symbols are identical enumerals, then
5154 just keep the first one and discard the rest.
5155
5156 Unlike what we did previously, we do not discard any entry
5157 unless they are ALL identical. This is because the symbol
5158 comparison is not a strict comparison, but rather a practical
5159 comparison. If all symbols are considered identical, then
5160 we can just go ahead and use the first one and discard the rest.
5161 But if we cannot reduce the list to a single element, we have
5162 to ask the user to disambiguate anyways. And if we have to
5163 present a multiple-choice menu, it's less confusing if the list
5164 isn't missing some choices that were identical and yet distinct. */
5165 if (symbols_are_identical_enums (*syms))
5166 syms->resize (1);
5167
5168 return syms->size ();
5169 }
5170
5171 /* Given a type that corresponds to a renaming entity, use the type name
5172 to extract the scope (package name or function name, fully qualified,
5173 and following the GNAT encoding convention) where this renaming has been
5174 defined. */
5175
5176 static std::string
5177 xget_renaming_scope (struct type *renaming_type)
5178 {
5179 /* The renaming types adhere to the following convention:
5180 <scope>__<rename>___<XR extension>.
5181 So, to extract the scope, we search for the "___XR" extension,
5182 and then backtrack until we find the first "__". */
5183
5184 const char *name = TYPE_NAME (renaming_type);
5185 const char *suffix = strstr (name, "___XR");
5186 const char *last;
5187
5188 /* Now, backtrack a bit until we find the first "__". Start looking
5189 at suffix - 3, as the <rename> part is at least one character long. */
5190
5191 for (last = suffix - 3; last > name; last--)
5192 if (last[0] == '_' && last[1] == '_')
5193 break;
5194
5195 /* Make a copy of scope and return it. */
5196 return std::string (name, last);
5197 }
5198
5199 /* Return nonzero if NAME corresponds to a package name. */
5200
5201 static int
5202 is_package_name (const char *name)
5203 {
5204 /* Here, We take advantage of the fact that no symbols are generated
5205 for packages, while symbols are generated for each function.
5206 So the condition for NAME represent a package becomes equivalent
5207 to NAME not existing in our list of symbols. There is only one
5208 small complication with library-level functions (see below). */
5209
5210 /* If it is a function that has not been defined at library level,
5211 then we should be able to look it up in the symbols. */
5212 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5213 return 0;
5214
5215 /* Library-level function names start with "_ada_". See if function
5216 "_ada_" followed by NAME can be found. */
5217
5218 /* Do a quick check that NAME does not contain "__", since library-level
5219 functions names cannot contain "__" in them. */
5220 if (strstr (name, "__") != NULL)
5221 return 0;
5222
5223 std::string fun_name = string_printf ("_ada_%s", name);
5224
5225 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5226 }
5227
5228 /* Return nonzero if SYM corresponds to a renaming entity that is
5229 not visible from FUNCTION_NAME. */
5230
5231 static int
5232 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5233 {
5234 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5235 return 0;
5236
5237 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5238
5239 /* If the rename has been defined in a package, then it is visible. */
5240 if (is_package_name (scope.c_str ()))
5241 return 0;
5242
5243 /* Check that the rename is in the current function scope by checking
5244 that its name starts with SCOPE. */
5245
5246 /* If the function name starts with "_ada_", it means that it is
5247 a library-level function. Strip this prefix before doing the
5248 comparison, as the encoding for the renaming does not contain
5249 this prefix. */
5250 if (startswith (function_name, "_ada_"))
5251 function_name += 5;
5252
5253 return !startswith (function_name, scope.c_str ());
5254 }
5255
5256 /* Remove entries from SYMS that corresponds to a renaming entity that
5257 is not visible from the function associated with CURRENT_BLOCK or
5258 that is superfluous due to the presence of more specific renaming
5259 information. Places surviving symbols in the initial entries of
5260 SYMS and returns the number of surviving symbols.
5261
5262 Rationale:
5263 First, in cases where an object renaming is implemented as a
5264 reference variable, GNAT may produce both the actual reference
5265 variable and the renaming encoding. In this case, we discard the
5266 latter.
5267
5268 Second, GNAT emits a type following a specified encoding for each renaming
5269 entity. Unfortunately, STABS currently does not support the definition
5270 of types that are local to a given lexical block, so all renamings types
5271 are emitted at library level. As a consequence, if an application
5272 contains two renaming entities using the same name, and a user tries to
5273 print the value of one of these entities, the result of the ada symbol
5274 lookup will also contain the wrong renaming type.
5275
5276 This function partially covers for this limitation by attempting to
5277 remove from the SYMS list renaming symbols that should be visible
5278 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5279 method with the current information available. The implementation
5280 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5281
5282 - When the user tries to print a rename in a function while there
5283 is another rename entity defined in a package: Normally, the
5284 rename in the function has precedence over the rename in the
5285 package, so the latter should be removed from the list. This is
5286 currently not the case.
5287
5288 - This function will incorrectly remove valid renames if
5289 the CURRENT_BLOCK corresponds to a function which symbol name
5290 has been changed by an "Export" pragma. As a consequence,
5291 the user will be unable to print such rename entities. */
5292
5293 static int
5294 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5295 const struct block *current_block)
5296 {
5297 struct symbol *current_function;
5298 const char *current_function_name;
5299 int i;
5300 int is_new_style_renaming;
5301
5302 /* If there is both a renaming foo___XR... encoded as a variable and
5303 a simple variable foo in the same block, discard the latter.
5304 First, zero out such symbols, then compress. */
5305 is_new_style_renaming = 0;
5306 for (i = 0; i < syms->size (); i += 1)
5307 {
5308 struct symbol *sym = (*syms)[i].symbol;
5309 const struct block *block = (*syms)[i].block;
5310 const char *name;
5311 const char *suffix;
5312
5313 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5314 continue;
5315 name = sym->linkage_name ();
5316 suffix = strstr (name, "___XR");
5317
5318 if (suffix != NULL)
5319 {
5320 int name_len = suffix - name;
5321 int j;
5322
5323 is_new_style_renaming = 1;
5324 for (j = 0; j < syms->size (); j += 1)
5325 if (i != j && (*syms)[j].symbol != NULL
5326 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5327 name_len) == 0
5328 && block == (*syms)[j].block)
5329 (*syms)[j].symbol = NULL;
5330 }
5331 }
5332 if (is_new_style_renaming)
5333 {
5334 int j, k;
5335
5336 for (j = k = 0; j < syms->size (); j += 1)
5337 if ((*syms)[j].symbol != NULL)
5338 {
5339 (*syms)[k] = (*syms)[j];
5340 k += 1;
5341 }
5342 return k;
5343 }
5344
5345 /* Extract the function name associated to CURRENT_BLOCK.
5346 Abort if unable to do so. */
5347
5348 if (current_block == NULL)
5349 return syms->size ();
5350
5351 current_function = block_linkage_function (current_block);
5352 if (current_function == NULL)
5353 return syms->size ();
5354
5355 current_function_name = current_function->linkage_name ();
5356 if (current_function_name == NULL)
5357 return syms->size ();
5358
5359 /* Check each of the symbols, and remove it from the list if it is
5360 a type corresponding to a renaming that is out of the scope of
5361 the current block. */
5362
5363 i = 0;
5364 while (i < syms->size ())
5365 {
5366 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5367 == ADA_OBJECT_RENAMING
5368 && old_renaming_is_invisible ((*syms)[i].symbol,
5369 current_function_name))
5370 syms->erase (syms->begin () + i);
5371 else
5372 i += 1;
5373 }
5374
5375 return syms->size ();
5376 }
5377
5378 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5379 whose name and domain match NAME and DOMAIN respectively.
5380 If no match was found, then extend the search to "enclosing"
5381 routines (in other words, if we're inside a nested function,
5382 search the symbols defined inside the enclosing functions).
5383 If WILD_MATCH_P is nonzero, perform the naming matching in
5384 "wild" mode (see function "wild_match" for more info).
5385
5386 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5387
5388 static void
5389 ada_add_local_symbols (struct obstack *obstackp,
5390 const lookup_name_info &lookup_name,
5391 const struct block *block, domain_enum domain)
5392 {
5393 int block_depth = 0;
5394
5395 while (block != NULL)
5396 {
5397 block_depth += 1;
5398 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5399
5400 /* If we found a non-function match, assume that's the one. */
5401 if (is_nonfunction (defns_collected (obstackp, 0),
5402 num_defns_collected (obstackp)))
5403 return;
5404
5405 block = BLOCK_SUPERBLOCK (block);
5406 }
5407
5408 /* If no luck so far, try to find NAME as a local symbol in some lexically
5409 enclosing subprogram. */
5410 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5411 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5412 }
5413
5414 /* An object of this type is used as the user_data argument when
5415 calling the map_matching_symbols method. */
5416
5417 struct match_data
5418 {
5419 struct objfile *objfile;
5420 struct obstack *obstackp;
5421 struct symbol *arg_sym;
5422 int found_sym;
5423 };
5424
5425 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5426 to a list of symbols. DATA is a pointer to a struct match_data *
5427 containing the obstack that collects the symbol list, the file that SYM
5428 must come from, a flag indicating whether a non-argument symbol has
5429 been found in the current block, and the last argument symbol
5430 passed in SYM within the current block (if any). When SYM is null,
5431 marking the end of a block, the argument symbol is added if no
5432 other has been found. */
5433
5434 static bool
5435 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5436 struct match_data *data)
5437 {
5438 const struct block *block = bsym->block;
5439 struct symbol *sym = bsym->symbol;
5440
5441 if (sym == NULL)
5442 {
5443 if (!data->found_sym && data->arg_sym != NULL)
5444 add_defn_to_vec (data->obstackp,
5445 fixup_symbol_section (data->arg_sym, data->objfile),
5446 block);
5447 data->found_sym = 0;
5448 data->arg_sym = NULL;
5449 }
5450 else
5451 {
5452 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5453 return true;
5454 else if (SYMBOL_IS_ARGUMENT (sym))
5455 data->arg_sym = sym;
5456 else
5457 {
5458 data->found_sym = 1;
5459 add_defn_to_vec (data->obstackp,
5460 fixup_symbol_section (sym, data->objfile),
5461 block);
5462 }
5463 }
5464 return true;
5465 }
5466
5467 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5468 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5469 symbols to OBSTACKP. Return whether we found such symbols. */
5470
5471 static int
5472 ada_add_block_renamings (struct obstack *obstackp,
5473 const struct block *block,
5474 const lookup_name_info &lookup_name,
5475 domain_enum domain)
5476 {
5477 struct using_direct *renaming;
5478 int defns_mark = num_defns_collected (obstackp);
5479
5480 symbol_name_matcher_ftype *name_match
5481 = ada_get_symbol_name_matcher (lookup_name);
5482
5483 for (renaming = block_using (block);
5484 renaming != NULL;
5485 renaming = renaming->next)
5486 {
5487 const char *r_name;
5488
5489 /* Avoid infinite recursions: skip this renaming if we are actually
5490 already traversing it.
5491
5492 Currently, symbol lookup in Ada don't use the namespace machinery from
5493 C++/Fortran support: skip namespace imports that use them. */
5494 if (renaming->searched
5495 || (renaming->import_src != NULL
5496 && renaming->import_src[0] != '\0')
5497 || (renaming->import_dest != NULL
5498 && renaming->import_dest[0] != '\0'))
5499 continue;
5500 renaming->searched = 1;
5501
5502 /* TODO: here, we perform another name-based symbol lookup, which can
5503 pull its own multiple overloads. In theory, we should be able to do
5504 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5505 not a simple name. But in order to do this, we would need to enhance
5506 the DWARF reader to associate a symbol to this renaming, instead of a
5507 name. So, for now, we do something simpler: re-use the C++/Fortran
5508 namespace machinery. */
5509 r_name = (renaming->alias != NULL
5510 ? renaming->alias
5511 : renaming->declaration);
5512 if (name_match (r_name, lookup_name, NULL))
5513 {
5514 lookup_name_info decl_lookup_name (renaming->declaration,
5515 lookup_name.match_type ());
5516 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5517 1, NULL);
5518 }
5519 renaming->searched = 0;
5520 }
5521 return num_defns_collected (obstackp) != defns_mark;
5522 }
5523
5524 /* Implements compare_names, but only applying the comparision using
5525 the given CASING. */
5526
5527 static int
5528 compare_names_with_case (const char *string1, const char *string2,
5529 enum case_sensitivity casing)
5530 {
5531 while (*string1 != '\0' && *string2 != '\0')
5532 {
5533 char c1, c2;
5534
5535 if (isspace (*string1) || isspace (*string2))
5536 return strcmp_iw_ordered (string1, string2);
5537
5538 if (casing == case_sensitive_off)
5539 {
5540 c1 = tolower (*string1);
5541 c2 = tolower (*string2);
5542 }
5543 else
5544 {
5545 c1 = *string1;
5546 c2 = *string2;
5547 }
5548 if (c1 != c2)
5549 break;
5550
5551 string1 += 1;
5552 string2 += 1;
5553 }
5554
5555 switch (*string1)
5556 {
5557 case '(':
5558 return strcmp_iw_ordered (string1, string2);
5559 case '_':
5560 if (*string2 == '\0')
5561 {
5562 if (is_name_suffix (string1))
5563 return 0;
5564 else
5565 return 1;
5566 }
5567 /* FALLTHROUGH */
5568 default:
5569 if (*string2 == '(')
5570 return strcmp_iw_ordered (string1, string2);
5571 else
5572 {
5573 if (casing == case_sensitive_off)
5574 return tolower (*string1) - tolower (*string2);
5575 else
5576 return *string1 - *string2;
5577 }
5578 }
5579 }
5580
5581 /* Compare STRING1 to STRING2, with results as for strcmp.
5582 Compatible with strcmp_iw_ordered in that...
5583
5584 strcmp_iw_ordered (STRING1, STRING2) <= 0
5585
5586 ... implies...
5587
5588 compare_names (STRING1, STRING2) <= 0
5589
5590 (they may differ as to what symbols compare equal). */
5591
5592 static int
5593 compare_names (const char *string1, const char *string2)
5594 {
5595 int result;
5596
5597 /* Similar to what strcmp_iw_ordered does, we need to perform
5598 a case-insensitive comparison first, and only resort to
5599 a second, case-sensitive, comparison if the first one was
5600 not sufficient to differentiate the two strings. */
5601
5602 result = compare_names_with_case (string1, string2, case_sensitive_off);
5603 if (result == 0)
5604 result = compare_names_with_case (string1, string2, case_sensitive_on);
5605
5606 return result;
5607 }
5608
5609 /* Convenience function to get at the Ada encoded lookup name for
5610 LOOKUP_NAME, as a C string. */
5611
5612 static const char *
5613 ada_lookup_name (const lookup_name_info &lookup_name)
5614 {
5615 return lookup_name.ada ().lookup_name ().c_str ();
5616 }
5617
5618 /* Add to OBSTACKP all non-local symbols whose name and domain match
5619 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5620 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5621 symbols otherwise. */
5622
5623 static void
5624 add_nonlocal_symbols (struct obstack *obstackp,
5625 const lookup_name_info &lookup_name,
5626 domain_enum domain, int global)
5627 {
5628 struct match_data data;
5629
5630 memset (&data, 0, sizeof data);
5631 data.obstackp = obstackp;
5632
5633 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5634
5635 auto callback = [&] (struct block_symbol *bsym)
5636 {
5637 return aux_add_nonlocal_symbols (bsym, &data);
5638 };
5639
5640 for (objfile *objfile : current_program_space->objfiles ())
5641 {
5642 data.objfile = objfile;
5643
5644 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5645 domain, global, callback,
5646 (is_wild_match
5647 ? NULL : compare_names));
5648
5649 for (compunit_symtab *cu : objfile->compunits ())
5650 {
5651 const struct block *global_block
5652 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5653
5654 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5655 domain))
5656 data.found_sym = 1;
5657 }
5658 }
5659
5660 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5661 {
5662 const char *name = ada_lookup_name (lookup_name);
5663 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5664 symbol_name_match_type::FULL);
5665
5666 for (objfile *objfile : current_program_space->objfiles ())
5667 {
5668 data.objfile = objfile;
5669 objfile->sf->qf->map_matching_symbols (objfile, name1,
5670 domain, global, callback,
5671 compare_names);
5672 }
5673 }
5674 }
5675
5676 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5677 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5678 returning the number of matches. Add these to OBSTACKP.
5679
5680 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5681 symbol match within the nest of blocks whose innermost member is BLOCK,
5682 is the one match returned (no other matches in that or
5683 enclosing blocks is returned). If there are any matches in or
5684 surrounding BLOCK, then these alone are returned.
5685
5686 Names prefixed with "standard__" are handled specially:
5687 "standard__" is first stripped off (by the lookup_name
5688 constructor), and only static and global symbols are searched.
5689
5690 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5691 to lookup global symbols. */
5692
5693 static void
5694 ada_add_all_symbols (struct obstack *obstackp,
5695 const struct block *block,
5696 const lookup_name_info &lookup_name,
5697 domain_enum domain,
5698 int full_search,
5699 int *made_global_lookup_p)
5700 {
5701 struct symbol *sym;
5702
5703 if (made_global_lookup_p)
5704 *made_global_lookup_p = 0;
5705
5706 /* Special case: If the user specifies a symbol name inside package
5707 Standard, do a non-wild matching of the symbol name without
5708 the "standard__" prefix. This was primarily introduced in order
5709 to allow the user to specifically access the standard exceptions
5710 using, for instance, Standard.Constraint_Error when Constraint_Error
5711 is ambiguous (due to the user defining its own Constraint_Error
5712 entity inside its program). */
5713 if (lookup_name.ada ().standard_p ())
5714 block = NULL;
5715
5716 /* Check the non-global symbols. If we have ANY match, then we're done. */
5717
5718 if (block != NULL)
5719 {
5720 if (full_search)
5721 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5722 else
5723 {
5724 /* In the !full_search case we're are being called by
5725 ada_iterate_over_symbols, and we don't want to search
5726 superblocks. */
5727 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5728 }
5729 if (num_defns_collected (obstackp) > 0 || !full_search)
5730 return;
5731 }
5732
5733 /* No non-global symbols found. Check our cache to see if we have
5734 already performed this search before. If we have, then return
5735 the same result. */
5736
5737 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5738 domain, &sym, &block))
5739 {
5740 if (sym != NULL)
5741 add_defn_to_vec (obstackp, sym, block);
5742 return;
5743 }
5744
5745 if (made_global_lookup_p)
5746 *made_global_lookup_p = 1;
5747
5748 /* Search symbols from all global blocks. */
5749
5750 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5751
5752 /* Now add symbols from all per-file blocks if we've gotten no hits
5753 (not strictly correct, but perhaps better than an error). */
5754
5755 if (num_defns_collected (obstackp) == 0)
5756 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5757 }
5758
5759 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5760 is non-zero, enclosing scope and in global scopes, returning the number of
5761 matches.
5762 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5763 found and the blocks and symbol tables (if any) in which they were
5764 found.
5765
5766 When full_search is non-zero, any non-function/non-enumeral
5767 symbol match within the nest of blocks whose innermost member is BLOCK,
5768 is the one match returned (no other matches in that or
5769 enclosing blocks is returned). If there are any matches in or
5770 surrounding BLOCK, then these alone are returned.
5771
5772 Names prefixed with "standard__" are handled specially: "standard__"
5773 is first stripped off, and only static and global symbols are searched. */
5774
5775 static int
5776 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5777 const struct block *block,
5778 domain_enum domain,
5779 std::vector<struct block_symbol> *results,
5780 int full_search)
5781 {
5782 int syms_from_global_search;
5783 int ndefns;
5784 auto_obstack obstack;
5785
5786 ada_add_all_symbols (&obstack, block, lookup_name,
5787 domain, full_search, &syms_from_global_search);
5788
5789 ndefns = num_defns_collected (&obstack);
5790
5791 struct block_symbol *base = defns_collected (&obstack, 1);
5792 for (int i = 0; i < ndefns; ++i)
5793 results->push_back (base[i]);
5794
5795 ndefns = remove_extra_symbols (results);
5796
5797 if (ndefns == 0 && full_search && syms_from_global_search)
5798 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5799
5800 if (ndefns == 1 && full_search && syms_from_global_search)
5801 cache_symbol (ada_lookup_name (lookup_name), domain,
5802 (*results)[0].symbol, (*results)[0].block);
5803
5804 ndefns = remove_irrelevant_renamings (results, block);
5805
5806 return ndefns;
5807 }
5808
5809 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5810 in global scopes, returning the number of matches, and filling *RESULTS
5811 with (SYM,BLOCK) tuples.
5812
5813 See ada_lookup_symbol_list_worker for further details. */
5814
5815 int
5816 ada_lookup_symbol_list (const char *name, const struct block *block,
5817 domain_enum domain,
5818 std::vector<struct block_symbol> *results)
5819 {
5820 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5821 lookup_name_info lookup_name (name, name_match_type);
5822
5823 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5824 }
5825
5826 /* Implementation of the la_iterate_over_symbols method. */
5827
5828 static bool
5829 ada_iterate_over_symbols
5830 (const struct block *block, const lookup_name_info &name,
5831 domain_enum domain,
5832 gdb::function_view<symbol_found_callback_ftype> callback)
5833 {
5834 int ndefs, i;
5835 std::vector<struct block_symbol> results;
5836
5837 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5838
5839 for (i = 0; i < ndefs; ++i)
5840 {
5841 if (!callback (&results[i]))
5842 return false;
5843 }
5844
5845 return true;
5846 }
5847
5848 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5849 to 1, but choosing the first symbol found if there are multiple
5850 choices.
5851
5852 The result is stored in *INFO, which must be non-NULL.
5853 If no match is found, INFO->SYM is set to NULL. */
5854
5855 void
5856 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5857 domain_enum domain,
5858 struct block_symbol *info)
5859 {
5860 /* Since we already have an encoded name, wrap it in '<>' to force a
5861 verbatim match. Otherwise, if the name happens to not look like
5862 an encoded name (because it doesn't include a "__"),
5863 ada_lookup_name_info would re-encode/fold it again, and that
5864 would e.g., incorrectly lowercase object renaming names like
5865 "R28b" -> "r28b". */
5866 std::string verbatim = std::string ("<") + name + '>';
5867
5868 gdb_assert (info != NULL);
5869 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5870 }
5871
5872 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5873 scope and in global scopes, or NULL if none. NAME is folded and
5874 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5875 choosing the first symbol if there are multiple choices. */
5876
5877 struct block_symbol
5878 ada_lookup_symbol (const char *name, const struct block *block0,
5879 domain_enum domain)
5880 {
5881 std::vector<struct block_symbol> candidates;
5882 int n_candidates;
5883
5884 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5885
5886 if (n_candidates == 0)
5887 return {};
5888
5889 block_symbol info = candidates[0];
5890 info.symbol = fixup_symbol_section (info.symbol, NULL);
5891 return info;
5892 }
5893
5894 static struct block_symbol
5895 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5896 const char *name,
5897 const struct block *block,
5898 const domain_enum domain)
5899 {
5900 struct block_symbol sym;
5901
5902 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5903 if (sym.symbol != NULL)
5904 return sym;
5905
5906 /* If we haven't found a match at this point, try the primitive
5907 types. In other languages, this search is performed before
5908 searching for global symbols in order to short-circuit that
5909 global-symbol search if it happens that the name corresponds
5910 to a primitive type. But we cannot do the same in Ada, because
5911 it is perfectly legitimate for a program to declare a type which
5912 has the same name as a standard type. If looking up a type in
5913 that situation, we have traditionally ignored the primitive type
5914 in favor of user-defined types. This is why, unlike most other
5915 languages, we search the primitive types this late and only after
5916 having searched the global symbols without success. */
5917
5918 if (domain == VAR_DOMAIN)
5919 {
5920 struct gdbarch *gdbarch;
5921
5922 if (block == NULL)
5923 gdbarch = target_gdbarch ();
5924 else
5925 gdbarch = block_gdbarch (block);
5926 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5927 if (sym.symbol != NULL)
5928 return sym;
5929 }
5930
5931 return {};
5932 }
5933
5934
5935 /* True iff STR is a possible encoded suffix of a normal Ada name
5936 that is to be ignored for matching purposes. Suffixes of parallel
5937 names (e.g., XVE) are not included here. Currently, the possible suffixes
5938 are given by any of the regular expressions:
5939
5940 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5941 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5942 TKB [subprogram suffix for task bodies]
5943 _E[0-9]+[bs]$ [protected object entry suffixes]
5944 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5945
5946 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5947 match is performed. This sequence is used to differentiate homonyms,
5948 is an optional part of a valid name suffix. */
5949
5950 static int
5951 is_name_suffix (const char *str)
5952 {
5953 int k;
5954 const char *matching;
5955 const int len = strlen (str);
5956
5957 /* Skip optional leading __[0-9]+. */
5958
5959 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5960 {
5961 str += 3;
5962 while (isdigit (str[0]))
5963 str += 1;
5964 }
5965
5966 /* [.$][0-9]+ */
5967
5968 if (str[0] == '.' || str[0] == '$')
5969 {
5970 matching = str + 1;
5971 while (isdigit (matching[0]))
5972 matching += 1;
5973 if (matching[0] == '\0')
5974 return 1;
5975 }
5976
5977 /* ___[0-9]+ */
5978
5979 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5980 {
5981 matching = str + 3;
5982 while (isdigit (matching[0]))
5983 matching += 1;
5984 if (matching[0] == '\0')
5985 return 1;
5986 }
5987
5988 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5989
5990 if (strcmp (str, "TKB") == 0)
5991 return 1;
5992
5993 #if 0
5994 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5995 with a N at the end. Unfortunately, the compiler uses the same
5996 convention for other internal types it creates. So treating
5997 all entity names that end with an "N" as a name suffix causes
5998 some regressions. For instance, consider the case of an enumerated
5999 type. To support the 'Image attribute, it creates an array whose
6000 name ends with N.
6001 Having a single character like this as a suffix carrying some
6002 information is a bit risky. Perhaps we should change the encoding
6003 to be something like "_N" instead. In the meantime, do not do
6004 the following check. */
6005 /* Protected Object Subprograms */
6006 if (len == 1 && str [0] == 'N')
6007 return 1;
6008 #endif
6009
6010 /* _E[0-9]+[bs]$ */
6011 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6012 {
6013 matching = str + 3;
6014 while (isdigit (matching[0]))
6015 matching += 1;
6016 if ((matching[0] == 'b' || matching[0] == 's')
6017 && matching [1] == '\0')
6018 return 1;
6019 }
6020
6021 /* ??? We should not modify STR directly, as we are doing below. This
6022 is fine in this case, but may become problematic later if we find
6023 that this alternative did not work, and want to try matching
6024 another one from the begining of STR. Since we modified it, we
6025 won't be able to find the begining of the string anymore! */
6026 if (str[0] == 'X')
6027 {
6028 str += 1;
6029 while (str[0] != '_' && str[0] != '\0')
6030 {
6031 if (str[0] != 'n' && str[0] != 'b')
6032 return 0;
6033 str += 1;
6034 }
6035 }
6036
6037 if (str[0] == '\000')
6038 return 1;
6039
6040 if (str[0] == '_')
6041 {
6042 if (str[1] != '_' || str[2] == '\000')
6043 return 0;
6044 if (str[2] == '_')
6045 {
6046 if (strcmp (str + 3, "JM") == 0)
6047 return 1;
6048 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6049 the LJM suffix in favor of the JM one. But we will
6050 still accept LJM as a valid suffix for a reasonable
6051 amount of time, just to allow ourselves to debug programs
6052 compiled using an older version of GNAT. */
6053 if (strcmp (str + 3, "LJM") == 0)
6054 return 1;
6055 if (str[3] != 'X')
6056 return 0;
6057 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6058 || str[4] == 'U' || str[4] == 'P')
6059 return 1;
6060 if (str[4] == 'R' && str[5] != 'T')
6061 return 1;
6062 return 0;
6063 }
6064 if (!isdigit (str[2]))
6065 return 0;
6066 for (k = 3; str[k] != '\0'; k += 1)
6067 if (!isdigit (str[k]) && str[k] != '_')
6068 return 0;
6069 return 1;
6070 }
6071 if (str[0] == '$' && isdigit (str[1]))
6072 {
6073 for (k = 2; str[k] != '\0'; k += 1)
6074 if (!isdigit (str[k]) && str[k] != '_')
6075 return 0;
6076 return 1;
6077 }
6078 return 0;
6079 }
6080
6081 /* Return non-zero if the string starting at NAME and ending before
6082 NAME_END contains no capital letters. */
6083
6084 static int
6085 is_valid_name_for_wild_match (const char *name0)
6086 {
6087 std::string decoded_name = ada_decode (name0);
6088 int i;
6089
6090 /* If the decoded name starts with an angle bracket, it means that
6091 NAME0 does not follow the GNAT encoding format. It should then
6092 not be allowed as a possible wild match. */
6093 if (decoded_name[0] == '<')
6094 return 0;
6095
6096 for (i=0; decoded_name[i] != '\0'; i++)
6097 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6098 return 0;
6099
6100 return 1;
6101 }
6102
6103 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6104 that could start a simple name. Assumes that *NAMEP points into
6105 the string beginning at NAME0. */
6106
6107 static int
6108 advance_wild_match (const char **namep, const char *name0, int target0)
6109 {
6110 const char *name = *namep;
6111
6112 while (1)
6113 {
6114 int t0, t1;
6115
6116 t0 = *name;
6117 if (t0 == '_')
6118 {
6119 t1 = name[1];
6120 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6121 {
6122 name += 1;
6123 if (name == name0 + 5 && startswith (name0, "_ada"))
6124 break;
6125 else
6126 name += 1;
6127 }
6128 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6129 || name[2] == target0))
6130 {
6131 name += 2;
6132 break;
6133 }
6134 else
6135 return 0;
6136 }
6137 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6138 name += 1;
6139 else
6140 return 0;
6141 }
6142
6143 *namep = name;
6144 return 1;
6145 }
6146
6147 /* Return true iff NAME encodes a name of the form prefix.PATN.
6148 Ignores any informational suffixes of NAME (i.e., for which
6149 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6150 simple name. */
6151
6152 static bool
6153 wild_match (const char *name, const char *patn)
6154 {
6155 const char *p;
6156 const char *name0 = name;
6157
6158 while (1)
6159 {
6160 const char *match = name;
6161
6162 if (*name == *patn)
6163 {
6164 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6165 if (*p != *name)
6166 break;
6167 if (*p == '\0' && is_name_suffix (name))
6168 return match == name0 || is_valid_name_for_wild_match (name0);
6169
6170 if (name[-1] == '_')
6171 name -= 1;
6172 }
6173 if (!advance_wild_match (&name, name0, *patn))
6174 return false;
6175 }
6176 }
6177
6178 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6179 any trailing suffixes that encode debugging information or leading
6180 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6181 information that is ignored). */
6182
6183 static bool
6184 full_match (const char *sym_name, const char *search_name)
6185 {
6186 size_t search_name_len = strlen (search_name);
6187
6188 if (strncmp (sym_name, search_name, search_name_len) == 0
6189 && is_name_suffix (sym_name + search_name_len))
6190 return true;
6191
6192 if (startswith (sym_name, "_ada_")
6193 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6194 && is_name_suffix (sym_name + search_name_len + 5))
6195 return true;
6196
6197 return false;
6198 }
6199
6200 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6201 *defn_symbols, updating the list of symbols in OBSTACKP (if
6202 necessary). OBJFILE is the section containing BLOCK. */
6203
6204 static void
6205 ada_add_block_symbols (struct obstack *obstackp,
6206 const struct block *block,
6207 const lookup_name_info &lookup_name,
6208 domain_enum domain, struct objfile *objfile)
6209 {
6210 struct block_iterator iter;
6211 /* A matching argument symbol, if any. */
6212 struct symbol *arg_sym;
6213 /* Set true when we find a matching non-argument symbol. */
6214 int found_sym;
6215 struct symbol *sym;
6216
6217 arg_sym = NULL;
6218 found_sym = 0;
6219 for (sym = block_iter_match_first (block, lookup_name, &iter);
6220 sym != NULL;
6221 sym = block_iter_match_next (lookup_name, &iter))
6222 {
6223 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6224 SYMBOL_DOMAIN (sym), domain))
6225 {
6226 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6227 {
6228 if (SYMBOL_IS_ARGUMENT (sym))
6229 arg_sym = sym;
6230 else
6231 {
6232 found_sym = 1;
6233 add_defn_to_vec (obstackp,
6234 fixup_symbol_section (sym, objfile),
6235 block);
6236 }
6237 }
6238 }
6239 }
6240
6241 /* Handle renamings. */
6242
6243 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6244 found_sym = 1;
6245
6246 if (!found_sym && arg_sym != NULL)
6247 {
6248 add_defn_to_vec (obstackp,
6249 fixup_symbol_section (arg_sym, objfile),
6250 block);
6251 }
6252
6253 if (!lookup_name.ada ().wild_match_p ())
6254 {
6255 arg_sym = NULL;
6256 found_sym = 0;
6257 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6258 const char *name = ada_lookup_name.c_str ();
6259 size_t name_len = ada_lookup_name.size ();
6260
6261 ALL_BLOCK_SYMBOLS (block, iter, sym)
6262 {
6263 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6264 SYMBOL_DOMAIN (sym), domain))
6265 {
6266 int cmp;
6267
6268 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6269 if (cmp == 0)
6270 {
6271 cmp = !startswith (sym->linkage_name (), "_ada_");
6272 if (cmp == 0)
6273 cmp = strncmp (name, sym->linkage_name () + 5,
6274 name_len);
6275 }
6276
6277 if (cmp == 0
6278 && is_name_suffix (sym->linkage_name () + name_len + 5))
6279 {
6280 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6281 {
6282 if (SYMBOL_IS_ARGUMENT (sym))
6283 arg_sym = sym;
6284 else
6285 {
6286 found_sym = 1;
6287 add_defn_to_vec (obstackp,
6288 fixup_symbol_section (sym, objfile),
6289 block);
6290 }
6291 }
6292 }
6293 }
6294 }
6295
6296 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6297 They aren't parameters, right? */
6298 if (!found_sym && arg_sym != NULL)
6299 {
6300 add_defn_to_vec (obstackp,
6301 fixup_symbol_section (arg_sym, objfile),
6302 block);
6303 }
6304 }
6305 }
6306 \f
6307
6308 /* Symbol Completion */
6309
6310 /* See symtab.h. */
6311
6312 bool
6313 ada_lookup_name_info::matches
6314 (const char *sym_name,
6315 symbol_name_match_type match_type,
6316 completion_match_result *comp_match_res) const
6317 {
6318 bool match = false;
6319 const char *text = m_encoded_name.c_str ();
6320 size_t text_len = m_encoded_name.size ();
6321
6322 /* First, test against the fully qualified name of the symbol. */
6323
6324 if (strncmp (sym_name, text, text_len) == 0)
6325 match = true;
6326
6327 std::string decoded_name = ada_decode (sym_name);
6328 if (match && !m_encoded_p)
6329 {
6330 /* One needed check before declaring a positive match is to verify
6331 that iff we are doing a verbatim match, the decoded version
6332 of the symbol name starts with '<'. Otherwise, this symbol name
6333 is not a suitable completion. */
6334
6335 bool has_angle_bracket = (decoded_name[0] == '<');
6336 match = (has_angle_bracket == m_verbatim_p);
6337 }
6338
6339 if (match && !m_verbatim_p)
6340 {
6341 /* When doing non-verbatim match, another check that needs to
6342 be done is to verify that the potentially matching symbol name
6343 does not include capital letters, because the ada-mode would
6344 not be able to understand these symbol names without the
6345 angle bracket notation. */
6346 const char *tmp;
6347
6348 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6349 if (*tmp != '\0')
6350 match = false;
6351 }
6352
6353 /* Second: Try wild matching... */
6354
6355 if (!match && m_wild_match_p)
6356 {
6357 /* Since we are doing wild matching, this means that TEXT
6358 may represent an unqualified symbol name. We therefore must
6359 also compare TEXT against the unqualified name of the symbol. */
6360 sym_name = ada_unqualified_name (decoded_name.c_str ());
6361
6362 if (strncmp (sym_name, text, text_len) == 0)
6363 match = true;
6364 }
6365
6366 /* Finally: If we found a match, prepare the result to return. */
6367
6368 if (!match)
6369 return false;
6370
6371 if (comp_match_res != NULL)
6372 {
6373 std::string &match_str = comp_match_res->match.storage ();
6374
6375 if (!m_encoded_p)
6376 match_str = ada_decode (sym_name);
6377 else
6378 {
6379 if (m_verbatim_p)
6380 match_str = add_angle_brackets (sym_name);
6381 else
6382 match_str = sym_name;
6383
6384 }
6385
6386 comp_match_res->set_match (match_str.c_str ());
6387 }
6388
6389 return true;
6390 }
6391
6392 /* Add the list of possible symbol names completing TEXT to TRACKER.
6393 WORD is the entire command on which completion is made. */
6394
6395 static void
6396 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6397 complete_symbol_mode mode,
6398 symbol_name_match_type name_match_type,
6399 const char *text, const char *word,
6400 enum type_code code)
6401 {
6402 struct symbol *sym;
6403 const struct block *b, *surrounding_static_block = 0;
6404 struct block_iterator iter;
6405
6406 gdb_assert (code == TYPE_CODE_UNDEF);
6407
6408 lookup_name_info lookup_name (text, name_match_type, true);
6409
6410 /* First, look at the partial symtab symbols. */
6411 expand_symtabs_matching (NULL,
6412 lookup_name,
6413 NULL,
6414 NULL,
6415 ALL_DOMAIN);
6416
6417 /* At this point scan through the misc symbol vectors and add each
6418 symbol you find to the list. Eventually we want to ignore
6419 anything that isn't a text symbol (everything else will be
6420 handled by the psymtab code above). */
6421
6422 for (objfile *objfile : current_program_space->objfiles ())
6423 {
6424 for (minimal_symbol *msymbol : objfile->msymbols ())
6425 {
6426 QUIT;
6427
6428 if (completion_skip_symbol (mode, msymbol))
6429 continue;
6430
6431 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6432
6433 /* Ada minimal symbols won't have their language set to Ada. If
6434 we let completion_list_add_name compare using the
6435 default/C-like matcher, then when completing e.g., symbols in a
6436 package named "pck", we'd match internal Ada symbols like
6437 "pckS", which are invalid in an Ada expression, unless you wrap
6438 them in '<' '>' to request a verbatim match.
6439
6440 Unfortunately, some Ada encoded names successfully demangle as
6441 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6442 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6443 with the wrong language set. Paper over that issue here. */
6444 if (symbol_language == language_auto
6445 || symbol_language == language_cplus)
6446 symbol_language = language_ada;
6447
6448 completion_list_add_name (tracker,
6449 symbol_language,
6450 msymbol->linkage_name (),
6451 lookup_name, text, word);
6452 }
6453 }
6454
6455 /* Search upwards from currently selected frame (so that we can
6456 complete on local vars. */
6457
6458 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6459 {
6460 if (!BLOCK_SUPERBLOCK (b))
6461 surrounding_static_block = b; /* For elmin of dups */
6462
6463 ALL_BLOCK_SYMBOLS (b, iter, sym)
6464 {
6465 if (completion_skip_symbol (mode, sym))
6466 continue;
6467
6468 completion_list_add_name (tracker,
6469 SYMBOL_LANGUAGE (sym),
6470 sym->linkage_name (),
6471 lookup_name, text, word);
6472 }
6473 }
6474
6475 /* Go through the symtabs and check the externs and statics for
6476 symbols which match. */
6477
6478 for (objfile *objfile : current_program_space->objfiles ())
6479 {
6480 for (compunit_symtab *s : objfile->compunits ())
6481 {
6482 QUIT;
6483 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6484 ALL_BLOCK_SYMBOLS (b, iter, sym)
6485 {
6486 if (completion_skip_symbol (mode, sym))
6487 continue;
6488
6489 completion_list_add_name (tracker,
6490 SYMBOL_LANGUAGE (sym),
6491 sym->linkage_name (),
6492 lookup_name, text, word);
6493 }
6494 }
6495 }
6496
6497 for (objfile *objfile : current_program_space->objfiles ())
6498 {
6499 for (compunit_symtab *s : objfile->compunits ())
6500 {
6501 QUIT;
6502 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6503 /* Don't do this block twice. */
6504 if (b == surrounding_static_block)
6505 continue;
6506 ALL_BLOCK_SYMBOLS (b, iter, sym)
6507 {
6508 if (completion_skip_symbol (mode, sym))
6509 continue;
6510
6511 completion_list_add_name (tracker,
6512 SYMBOL_LANGUAGE (sym),
6513 sym->linkage_name (),
6514 lookup_name, text, word);
6515 }
6516 }
6517 }
6518 }
6519
6520 /* Field Access */
6521
6522 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6523 for tagged types. */
6524
6525 static int
6526 ada_is_dispatch_table_ptr_type (struct type *type)
6527 {
6528 const char *name;
6529
6530 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6531 return 0;
6532
6533 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6534 if (name == NULL)
6535 return 0;
6536
6537 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6538 }
6539
6540 /* Return non-zero if TYPE is an interface tag. */
6541
6542 static int
6543 ada_is_interface_tag (struct type *type)
6544 {
6545 const char *name = TYPE_NAME (type);
6546
6547 if (name == NULL)
6548 return 0;
6549
6550 return (strcmp (name, "ada__tags__interface_tag") == 0);
6551 }
6552
6553 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6554 to be invisible to users. */
6555
6556 int
6557 ada_is_ignored_field (struct type *type, int field_num)
6558 {
6559 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6560 return 1;
6561
6562 /* Check the name of that field. */
6563 {
6564 const char *name = TYPE_FIELD_NAME (type, field_num);
6565
6566 /* Anonymous field names should not be printed.
6567 brobecker/2007-02-20: I don't think this can actually happen
6568 but we don't want to print the value of anonymous fields anyway. */
6569 if (name == NULL)
6570 return 1;
6571
6572 /* Normally, fields whose name start with an underscore ("_")
6573 are fields that have been internally generated by the compiler,
6574 and thus should not be printed. The "_parent" field is special,
6575 however: This is a field internally generated by the compiler
6576 for tagged types, and it contains the components inherited from
6577 the parent type. This field should not be printed as is, but
6578 should not be ignored either. */
6579 if (name[0] == '_' && !startswith (name, "_parent"))
6580 return 1;
6581 }
6582
6583 /* If this is the dispatch table of a tagged type or an interface tag,
6584 then ignore. */
6585 if (ada_is_tagged_type (type, 1)
6586 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6587 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6588 return 1;
6589
6590 /* Not a special field, so it should not be ignored. */
6591 return 0;
6592 }
6593
6594 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6595 pointer or reference type whose ultimate target has a tag field. */
6596
6597 int
6598 ada_is_tagged_type (struct type *type, int refok)
6599 {
6600 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6601 }
6602
6603 /* True iff TYPE represents the type of X'Tag */
6604
6605 int
6606 ada_is_tag_type (struct type *type)
6607 {
6608 type = ada_check_typedef (type);
6609
6610 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6611 return 0;
6612 else
6613 {
6614 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6615
6616 return (name != NULL
6617 && strcmp (name, "ada__tags__dispatch_table") == 0);
6618 }
6619 }
6620
6621 /* The type of the tag on VAL. */
6622
6623 static struct type *
6624 ada_tag_type (struct value *val)
6625 {
6626 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6627 }
6628
6629 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6630 retired at Ada 05). */
6631
6632 static int
6633 is_ada95_tag (struct value *tag)
6634 {
6635 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6636 }
6637
6638 /* The value of the tag on VAL. */
6639
6640 static struct value *
6641 ada_value_tag (struct value *val)
6642 {
6643 return ada_value_struct_elt (val, "_tag", 0);
6644 }
6645
6646 /* The value of the tag on the object of type TYPE whose contents are
6647 saved at VALADDR, if it is non-null, or is at memory address
6648 ADDRESS. */
6649
6650 static struct value *
6651 value_tag_from_contents_and_address (struct type *type,
6652 const gdb_byte *valaddr,
6653 CORE_ADDR address)
6654 {
6655 int tag_byte_offset;
6656 struct type *tag_type;
6657
6658 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6659 NULL, NULL, NULL))
6660 {
6661 const gdb_byte *valaddr1 = ((valaddr == NULL)
6662 ? NULL
6663 : valaddr + tag_byte_offset);
6664 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6665
6666 return value_from_contents_and_address (tag_type, valaddr1, address1);
6667 }
6668 return NULL;
6669 }
6670
6671 static struct type *
6672 type_from_tag (struct value *tag)
6673 {
6674 const char *type_name = ada_tag_name (tag);
6675
6676 if (type_name != NULL)
6677 return ada_find_any_type (ada_encode (type_name));
6678 return NULL;
6679 }
6680
6681 /* Given a value OBJ of a tagged type, return a value of this
6682 type at the base address of the object. The base address, as
6683 defined in Ada.Tags, it is the address of the primary tag of
6684 the object, and therefore where the field values of its full
6685 view can be fetched. */
6686
6687 struct value *
6688 ada_tag_value_at_base_address (struct value *obj)
6689 {
6690 struct value *val;
6691 LONGEST offset_to_top = 0;
6692 struct type *ptr_type, *obj_type;
6693 struct value *tag;
6694 CORE_ADDR base_address;
6695
6696 obj_type = value_type (obj);
6697
6698 /* It is the responsability of the caller to deref pointers. */
6699
6700 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6701 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6702 return obj;
6703
6704 tag = ada_value_tag (obj);
6705 if (!tag)
6706 return obj;
6707
6708 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6709
6710 if (is_ada95_tag (tag))
6711 return obj;
6712
6713 ptr_type = language_lookup_primitive_type
6714 (language_def (language_ada), target_gdbarch(), "storage_offset");
6715 ptr_type = lookup_pointer_type (ptr_type);
6716 val = value_cast (ptr_type, tag);
6717 if (!val)
6718 return obj;
6719
6720 /* It is perfectly possible that an exception be raised while
6721 trying to determine the base address, just like for the tag;
6722 see ada_tag_name for more details. We do not print the error
6723 message for the same reason. */
6724
6725 try
6726 {
6727 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6728 }
6729
6730 catch (const gdb_exception_error &e)
6731 {
6732 return obj;
6733 }
6734
6735 /* If offset is null, nothing to do. */
6736
6737 if (offset_to_top == 0)
6738 return obj;
6739
6740 /* -1 is a special case in Ada.Tags; however, what should be done
6741 is not quite clear from the documentation. So do nothing for
6742 now. */
6743
6744 if (offset_to_top == -1)
6745 return obj;
6746
6747 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6748 from the base address. This was however incompatible with
6749 C++ dispatch table: C++ uses a *negative* value to *add*
6750 to the base address. Ada's convention has therefore been
6751 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6752 use the same convention. Here, we support both cases by
6753 checking the sign of OFFSET_TO_TOP. */
6754
6755 if (offset_to_top > 0)
6756 offset_to_top = -offset_to_top;
6757
6758 base_address = value_address (obj) + offset_to_top;
6759 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6760
6761 /* Make sure that we have a proper tag at the new address.
6762 Otherwise, offset_to_top is bogus (which can happen when
6763 the object is not initialized yet). */
6764
6765 if (!tag)
6766 return obj;
6767
6768 obj_type = type_from_tag (tag);
6769
6770 if (!obj_type)
6771 return obj;
6772
6773 return value_from_contents_and_address (obj_type, NULL, base_address);
6774 }
6775
6776 /* Return the "ada__tags__type_specific_data" type. */
6777
6778 static struct type *
6779 ada_get_tsd_type (struct inferior *inf)
6780 {
6781 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6782
6783 if (data->tsd_type == 0)
6784 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6785 return data->tsd_type;
6786 }
6787
6788 /* Return the TSD (type-specific data) associated to the given TAG.
6789 TAG is assumed to be the tag of a tagged-type entity.
6790
6791 May return NULL if we are unable to get the TSD. */
6792
6793 static struct value *
6794 ada_get_tsd_from_tag (struct value *tag)
6795 {
6796 struct value *val;
6797 struct type *type;
6798
6799 /* First option: The TSD is simply stored as a field of our TAG.
6800 Only older versions of GNAT would use this format, but we have
6801 to test it first, because there are no visible markers for
6802 the current approach except the absence of that field. */
6803
6804 val = ada_value_struct_elt (tag, "tsd", 1);
6805 if (val)
6806 return val;
6807
6808 /* Try the second representation for the dispatch table (in which
6809 there is no explicit 'tsd' field in the referent of the tag pointer,
6810 and instead the tsd pointer is stored just before the dispatch
6811 table. */
6812
6813 type = ada_get_tsd_type (current_inferior());
6814 if (type == NULL)
6815 return NULL;
6816 type = lookup_pointer_type (lookup_pointer_type (type));
6817 val = value_cast (type, tag);
6818 if (val == NULL)
6819 return NULL;
6820 return value_ind (value_ptradd (val, -1));
6821 }
6822
6823 /* Given the TSD of a tag (type-specific data), return a string
6824 containing the name of the associated type.
6825
6826 The returned value is good until the next call. May return NULL
6827 if we are unable to determine the tag name. */
6828
6829 static char *
6830 ada_tag_name_from_tsd (struct value *tsd)
6831 {
6832 static char name[1024];
6833 char *p;
6834 struct value *val;
6835
6836 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6837 if (val == NULL)
6838 return NULL;
6839 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6840 for (p = name; *p != '\0'; p += 1)
6841 if (isalpha (*p))
6842 *p = tolower (*p);
6843 return name;
6844 }
6845
6846 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6847 a C string.
6848
6849 Return NULL if the TAG is not an Ada tag, or if we were unable to
6850 determine the name of that tag. The result is good until the next
6851 call. */
6852
6853 const char *
6854 ada_tag_name (struct value *tag)
6855 {
6856 char *name = NULL;
6857
6858 if (!ada_is_tag_type (value_type (tag)))
6859 return NULL;
6860
6861 /* It is perfectly possible that an exception be raised while trying
6862 to determine the TAG's name, even under normal circumstances:
6863 The associated variable may be uninitialized or corrupted, for
6864 instance. We do not let any exception propagate past this point.
6865 instead we return NULL.
6866
6867 We also do not print the error message either (which often is very
6868 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6869 the caller print a more meaningful message if necessary. */
6870 try
6871 {
6872 struct value *tsd = ada_get_tsd_from_tag (tag);
6873
6874 if (tsd != NULL)
6875 name = ada_tag_name_from_tsd (tsd);
6876 }
6877 catch (const gdb_exception_error &e)
6878 {
6879 }
6880
6881 return name;
6882 }
6883
6884 /* The parent type of TYPE, or NULL if none. */
6885
6886 struct type *
6887 ada_parent_type (struct type *type)
6888 {
6889 int i;
6890
6891 type = ada_check_typedef (type);
6892
6893 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6894 return NULL;
6895
6896 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6897 if (ada_is_parent_field (type, i))
6898 {
6899 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6900
6901 /* If the _parent field is a pointer, then dereference it. */
6902 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6903 parent_type = TYPE_TARGET_TYPE (parent_type);
6904 /* If there is a parallel XVS type, get the actual base type. */
6905 parent_type = ada_get_base_type (parent_type);
6906
6907 return ada_check_typedef (parent_type);
6908 }
6909
6910 return NULL;
6911 }
6912
6913 /* True iff field number FIELD_NUM of structure type TYPE contains the
6914 parent-type (inherited) fields of a derived type. Assumes TYPE is
6915 a structure type with at least FIELD_NUM+1 fields. */
6916
6917 int
6918 ada_is_parent_field (struct type *type, int field_num)
6919 {
6920 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6921
6922 return (name != NULL
6923 && (startswith (name, "PARENT")
6924 || startswith (name, "_parent")));
6925 }
6926
6927 /* True iff field number FIELD_NUM of structure type TYPE is a
6928 transparent wrapper field (which should be silently traversed when doing
6929 field selection and flattened when printing). Assumes TYPE is a
6930 structure type with at least FIELD_NUM+1 fields. Such fields are always
6931 structures. */
6932
6933 int
6934 ada_is_wrapper_field (struct type *type, int field_num)
6935 {
6936 const char *name = TYPE_FIELD_NAME (type, field_num);
6937
6938 if (name != NULL && strcmp (name, "RETVAL") == 0)
6939 {
6940 /* This happens in functions with "out" or "in out" parameters
6941 which are passed by copy. For such functions, GNAT describes
6942 the function's return type as being a struct where the return
6943 value is in a field called RETVAL, and where the other "out"
6944 or "in out" parameters are fields of that struct. This is not
6945 a wrapper. */
6946 return 0;
6947 }
6948
6949 return (name != NULL
6950 && (startswith (name, "PARENT")
6951 || strcmp (name, "REP") == 0
6952 || startswith (name, "_parent")
6953 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6954 }
6955
6956 /* True iff field number FIELD_NUM of structure or union type TYPE
6957 is a variant wrapper. Assumes TYPE is a structure type with at least
6958 FIELD_NUM+1 fields. */
6959
6960 int
6961 ada_is_variant_part (struct type *type, int field_num)
6962 {
6963 /* Only Ada types are eligible. */
6964 if (!ADA_TYPE_P (type))
6965 return 0;
6966
6967 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6968
6969 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6970 || (is_dynamic_field (type, field_num)
6971 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6972 == TYPE_CODE_UNION)));
6973 }
6974
6975 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6976 whose discriminants are contained in the record type OUTER_TYPE,
6977 returns the type of the controlling discriminant for the variant.
6978 May return NULL if the type could not be found. */
6979
6980 struct type *
6981 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6982 {
6983 const char *name = ada_variant_discrim_name (var_type);
6984
6985 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6986 }
6987
6988 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6989 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6990 represents a 'when others' clause; otherwise 0. */
6991
6992 static int
6993 ada_is_others_clause (struct type *type, int field_num)
6994 {
6995 const char *name = TYPE_FIELD_NAME (type, field_num);
6996
6997 return (name != NULL && name[0] == 'O');
6998 }
6999
7000 /* Assuming that TYPE0 is the type of the variant part of a record,
7001 returns the name of the discriminant controlling the variant.
7002 The value is valid until the next call to ada_variant_discrim_name. */
7003
7004 const char *
7005 ada_variant_discrim_name (struct type *type0)
7006 {
7007 static char *result = NULL;
7008 static size_t result_len = 0;
7009 struct type *type;
7010 const char *name;
7011 const char *discrim_end;
7012 const char *discrim_start;
7013
7014 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7015 type = TYPE_TARGET_TYPE (type0);
7016 else
7017 type = type0;
7018
7019 name = ada_type_name (type);
7020
7021 if (name == NULL || name[0] == '\000')
7022 return "";
7023
7024 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7025 discrim_end -= 1)
7026 {
7027 if (startswith (discrim_end, "___XVN"))
7028 break;
7029 }
7030 if (discrim_end == name)
7031 return "";
7032
7033 for (discrim_start = discrim_end; discrim_start != name + 3;
7034 discrim_start -= 1)
7035 {
7036 if (discrim_start == name + 1)
7037 return "";
7038 if ((discrim_start > name + 3
7039 && startswith (discrim_start - 3, "___"))
7040 || discrim_start[-1] == '.')
7041 break;
7042 }
7043
7044 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7045 strncpy (result, discrim_start, discrim_end - discrim_start);
7046 result[discrim_end - discrim_start] = '\0';
7047 return result;
7048 }
7049
7050 /* Scan STR for a subtype-encoded number, beginning at position K.
7051 Put the position of the character just past the number scanned in
7052 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7053 Return 1 if there was a valid number at the given position, and 0
7054 otherwise. A "subtype-encoded" number consists of the absolute value
7055 in decimal, followed by the letter 'm' to indicate a negative number.
7056 Assumes 0m does not occur. */
7057
7058 int
7059 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7060 {
7061 ULONGEST RU;
7062
7063 if (!isdigit (str[k]))
7064 return 0;
7065
7066 /* Do it the hard way so as not to make any assumption about
7067 the relationship of unsigned long (%lu scan format code) and
7068 LONGEST. */
7069 RU = 0;
7070 while (isdigit (str[k]))
7071 {
7072 RU = RU * 10 + (str[k] - '0');
7073 k += 1;
7074 }
7075
7076 if (str[k] == 'm')
7077 {
7078 if (R != NULL)
7079 *R = (-(LONGEST) (RU - 1)) - 1;
7080 k += 1;
7081 }
7082 else if (R != NULL)
7083 *R = (LONGEST) RU;
7084
7085 /* NOTE on the above: Technically, C does not say what the results of
7086 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7087 number representable as a LONGEST (although either would probably work
7088 in most implementations). When RU>0, the locution in the then branch
7089 above is always equivalent to the negative of RU. */
7090
7091 if (new_k != NULL)
7092 *new_k = k;
7093 return 1;
7094 }
7095
7096 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7097 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7098 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7099
7100 static int
7101 ada_in_variant (LONGEST val, struct type *type, int field_num)
7102 {
7103 const char *name = TYPE_FIELD_NAME (type, field_num);
7104 int p;
7105
7106 p = 0;
7107 while (1)
7108 {
7109 switch (name[p])
7110 {
7111 case '\0':
7112 return 0;
7113 case 'S':
7114 {
7115 LONGEST W;
7116
7117 if (!ada_scan_number (name, p + 1, &W, &p))
7118 return 0;
7119 if (val == W)
7120 return 1;
7121 break;
7122 }
7123 case 'R':
7124 {
7125 LONGEST L, U;
7126
7127 if (!ada_scan_number (name, p + 1, &L, &p)
7128 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7129 return 0;
7130 if (val >= L && val <= U)
7131 return 1;
7132 break;
7133 }
7134 case 'O':
7135 return 1;
7136 default:
7137 return 0;
7138 }
7139 }
7140 }
7141
7142 /* FIXME: Lots of redundancy below. Try to consolidate. */
7143
7144 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7145 ARG_TYPE, extract and return the value of one of its (non-static)
7146 fields. FIELDNO says which field. Differs from value_primitive_field
7147 only in that it can handle packed values of arbitrary type. */
7148
7149 static struct value *
7150 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7151 struct type *arg_type)
7152 {
7153 struct type *type;
7154
7155 arg_type = ada_check_typedef (arg_type);
7156 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7157
7158 /* Handle packed fields. It might be that the field is not packed
7159 relative to its containing structure, but the structure itself is
7160 packed; in this case we must take the bit-field path. */
7161 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7162 {
7163 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7164 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7165
7166 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7167 offset + bit_pos / 8,
7168 bit_pos % 8, bit_size, type);
7169 }
7170 else
7171 return value_primitive_field (arg1, offset, fieldno, arg_type);
7172 }
7173
7174 /* Find field with name NAME in object of type TYPE. If found,
7175 set the following for each argument that is non-null:
7176 - *FIELD_TYPE_P to the field's type;
7177 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7178 an object of that type;
7179 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7180 - *BIT_SIZE_P to its size in bits if the field is packed, and
7181 0 otherwise;
7182 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7183 fields up to but not including the desired field, or by the total
7184 number of fields if not found. A NULL value of NAME never
7185 matches; the function just counts visible fields in this case.
7186
7187 Notice that we need to handle when a tagged record hierarchy
7188 has some components with the same name, like in this scenario:
7189
7190 type Top_T is tagged record
7191 N : Integer := 1;
7192 U : Integer := 974;
7193 A : Integer := 48;
7194 end record;
7195
7196 type Middle_T is new Top.Top_T with record
7197 N : Character := 'a';
7198 C : Integer := 3;
7199 end record;
7200
7201 type Bottom_T is new Middle.Middle_T with record
7202 N : Float := 4.0;
7203 C : Character := '5';
7204 X : Integer := 6;
7205 A : Character := 'J';
7206 end record;
7207
7208 Let's say we now have a variable declared and initialized as follow:
7209
7210 TC : Top_A := new Bottom_T;
7211
7212 And then we use this variable to call this function
7213
7214 procedure Assign (Obj: in out Top_T; TV : Integer);
7215
7216 as follow:
7217
7218 Assign (Top_T (B), 12);
7219
7220 Now, we're in the debugger, and we're inside that procedure
7221 then and we want to print the value of obj.c:
7222
7223 Usually, the tagged record or one of the parent type owns the
7224 component to print and there's no issue but in this particular
7225 case, what does it mean to ask for Obj.C? Since the actual
7226 type for object is type Bottom_T, it could mean two things: type
7227 component C from the Middle_T view, but also component C from
7228 Bottom_T. So in that "undefined" case, when the component is
7229 not found in the non-resolved type (which includes all the
7230 components of the parent type), then resolve it and see if we
7231 get better luck once expanded.
7232
7233 In the case of homonyms in the derived tagged type, we don't
7234 guaranty anything, and pick the one that's easiest for us
7235 to program.
7236
7237 Returns 1 if found, 0 otherwise. */
7238
7239 static int
7240 find_struct_field (const char *name, struct type *type, int offset,
7241 struct type **field_type_p,
7242 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7243 int *index_p)
7244 {
7245 int i;
7246 int parent_offset = -1;
7247
7248 type = ada_check_typedef (type);
7249
7250 if (field_type_p != NULL)
7251 *field_type_p = NULL;
7252 if (byte_offset_p != NULL)
7253 *byte_offset_p = 0;
7254 if (bit_offset_p != NULL)
7255 *bit_offset_p = 0;
7256 if (bit_size_p != NULL)
7257 *bit_size_p = 0;
7258
7259 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7260 {
7261 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7262 int fld_offset = offset + bit_pos / 8;
7263 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7264
7265 if (t_field_name == NULL)
7266 continue;
7267
7268 else if (ada_is_parent_field (type, i))
7269 {
7270 /* This is a field pointing us to the parent type of a tagged
7271 type. As hinted in this function's documentation, we give
7272 preference to fields in the current record first, so what
7273 we do here is just record the index of this field before
7274 we skip it. If it turns out we couldn't find our field
7275 in the current record, then we'll get back to it and search
7276 inside it whether the field might exist in the parent. */
7277
7278 parent_offset = i;
7279 continue;
7280 }
7281
7282 else if (name != NULL && field_name_match (t_field_name, name))
7283 {
7284 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7285
7286 if (field_type_p != NULL)
7287 *field_type_p = TYPE_FIELD_TYPE (type, i);
7288 if (byte_offset_p != NULL)
7289 *byte_offset_p = fld_offset;
7290 if (bit_offset_p != NULL)
7291 *bit_offset_p = bit_pos % 8;
7292 if (bit_size_p != NULL)
7293 *bit_size_p = bit_size;
7294 return 1;
7295 }
7296 else if (ada_is_wrapper_field (type, i))
7297 {
7298 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7299 field_type_p, byte_offset_p, bit_offset_p,
7300 bit_size_p, index_p))
7301 return 1;
7302 }
7303 else if (ada_is_variant_part (type, i))
7304 {
7305 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7306 fixed type?? */
7307 int j;
7308 struct type *field_type
7309 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7310
7311 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7312 {
7313 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7314 fld_offset
7315 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7316 field_type_p, byte_offset_p,
7317 bit_offset_p, bit_size_p, index_p))
7318 return 1;
7319 }
7320 }
7321 else if (index_p != NULL)
7322 *index_p += 1;
7323 }
7324
7325 /* Field not found so far. If this is a tagged type which
7326 has a parent, try finding that field in the parent now. */
7327
7328 if (parent_offset != -1)
7329 {
7330 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7331 int fld_offset = offset + bit_pos / 8;
7332
7333 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7334 fld_offset, field_type_p, byte_offset_p,
7335 bit_offset_p, bit_size_p, index_p))
7336 return 1;
7337 }
7338
7339 return 0;
7340 }
7341
7342 /* Number of user-visible fields in record type TYPE. */
7343
7344 static int
7345 num_visible_fields (struct type *type)
7346 {
7347 int n;
7348
7349 n = 0;
7350 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7351 return n;
7352 }
7353
7354 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7355 and search in it assuming it has (class) type TYPE.
7356 If found, return value, else return NULL.
7357
7358 Searches recursively through wrapper fields (e.g., '_parent').
7359
7360 In the case of homonyms in the tagged types, please refer to the
7361 long explanation in find_struct_field's function documentation. */
7362
7363 static struct value *
7364 ada_search_struct_field (const char *name, struct value *arg, int offset,
7365 struct type *type)
7366 {
7367 int i;
7368 int parent_offset = -1;
7369
7370 type = ada_check_typedef (type);
7371 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7372 {
7373 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7374
7375 if (t_field_name == NULL)
7376 continue;
7377
7378 else if (ada_is_parent_field (type, i))
7379 {
7380 /* This is a field pointing us to the parent type of a tagged
7381 type. As hinted in this function's documentation, we give
7382 preference to fields in the current record first, so what
7383 we do here is just record the index of this field before
7384 we skip it. If it turns out we couldn't find our field
7385 in the current record, then we'll get back to it and search
7386 inside it whether the field might exist in the parent. */
7387
7388 parent_offset = i;
7389 continue;
7390 }
7391
7392 else if (field_name_match (t_field_name, name))
7393 return ada_value_primitive_field (arg, offset, i, type);
7394
7395 else if (ada_is_wrapper_field (type, i))
7396 {
7397 struct value *v = /* Do not let indent join lines here. */
7398 ada_search_struct_field (name, arg,
7399 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7400 TYPE_FIELD_TYPE (type, i));
7401
7402 if (v != NULL)
7403 return v;
7404 }
7405
7406 else if (ada_is_variant_part (type, i))
7407 {
7408 /* PNH: Do we ever get here? See find_struct_field. */
7409 int j;
7410 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7411 i));
7412 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7413
7414 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7415 {
7416 struct value *v = ada_search_struct_field /* Force line
7417 break. */
7418 (name, arg,
7419 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7420 TYPE_FIELD_TYPE (field_type, j));
7421
7422 if (v != NULL)
7423 return v;
7424 }
7425 }
7426 }
7427
7428 /* Field not found so far. If this is a tagged type which
7429 has a parent, try finding that field in the parent now. */
7430
7431 if (parent_offset != -1)
7432 {
7433 struct value *v = ada_search_struct_field (
7434 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7435 TYPE_FIELD_TYPE (type, parent_offset));
7436
7437 if (v != NULL)
7438 return v;
7439 }
7440
7441 return NULL;
7442 }
7443
7444 static struct value *ada_index_struct_field_1 (int *, struct value *,
7445 int, struct type *);
7446
7447
7448 /* Return field #INDEX in ARG, where the index is that returned by
7449 * find_struct_field through its INDEX_P argument. Adjust the address
7450 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7451 * If found, return value, else return NULL. */
7452
7453 static struct value *
7454 ada_index_struct_field (int index, struct value *arg, int offset,
7455 struct type *type)
7456 {
7457 return ada_index_struct_field_1 (&index, arg, offset, type);
7458 }
7459
7460
7461 /* Auxiliary function for ada_index_struct_field. Like
7462 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7463 * *INDEX_P. */
7464
7465 static struct value *
7466 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7467 struct type *type)
7468 {
7469 int i;
7470 type = ada_check_typedef (type);
7471
7472 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7473 {
7474 if (TYPE_FIELD_NAME (type, i) == NULL)
7475 continue;
7476 else if (ada_is_wrapper_field (type, i))
7477 {
7478 struct value *v = /* Do not let indent join lines here. */
7479 ada_index_struct_field_1 (index_p, arg,
7480 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7481 TYPE_FIELD_TYPE (type, i));
7482
7483 if (v != NULL)
7484 return v;
7485 }
7486
7487 else if (ada_is_variant_part (type, i))
7488 {
7489 /* PNH: Do we ever get here? See ada_search_struct_field,
7490 find_struct_field. */
7491 error (_("Cannot assign this kind of variant record"));
7492 }
7493 else if (*index_p == 0)
7494 return ada_value_primitive_field (arg, offset, i, type);
7495 else
7496 *index_p -= 1;
7497 }
7498 return NULL;
7499 }
7500
7501 /* Return a string representation of type TYPE. */
7502
7503 static std::string
7504 type_as_string (struct type *type)
7505 {
7506 string_file tmp_stream;
7507
7508 type_print (type, "", &tmp_stream, -1);
7509
7510 return std::move (tmp_stream.string ());
7511 }
7512
7513 /* Given a type TYPE, look up the type of the component of type named NAME.
7514 If DISPP is non-null, add its byte displacement from the beginning of a
7515 structure (pointed to by a value) of type TYPE to *DISPP (does not
7516 work for packed fields).
7517
7518 Matches any field whose name has NAME as a prefix, possibly
7519 followed by "___".
7520
7521 TYPE can be either a struct or union. If REFOK, TYPE may also
7522 be a (pointer or reference)+ to a struct or union, and the
7523 ultimate target type will be searched.
7524
7525 Looks recursively into variant clauses and parent types.
7526
7527 In the case of homonyms in the tagged types, please refer to the
7528 long explanation in find_struct_field's function documentation.
7529
7530 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7531 TYPE is not a type of the right kind. */
7532
7533 static struct type *
7534 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7535 int noerr)
7536 {
7537 int i;
7538 int parent_offset = -1;
7539
7540 if (name == NULL)
7541 goto BadName;
7542
7543 if (refok && type != NULL)
7544 while (1)
7545 {
7546 type = ada_check_typedef (type);
7547 if (TYPE_CODE (type) != TYPE_CODE_PTR
7548 && TYPE_CODE (type) != TYPE_CODE_REF)
7549 break;
7550 type = TYPE_TARGET_TYPE (type);
7551 }
7552
7553 if (type == NULL
7554 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7555 && TYPE_CODE (type) != TYPE_CODE_UNION))
7556 {
7557 if (noerr)
7558 return NULL;
7559
7560 error (_("Type %s is not a structure or union type"),
7561 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7562 }
7563
7564 type = to_static_fixed_type (type);
7565
7566 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7567 {
7568 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7569 struct type *t;
7570
7571 if (t_field_name == NULL)
7572 continue;
7573
7574 else if (ada_is_parent_field (type, i))
7575 {
7576 /* This is a field pointing us to the parent type of a tagged
7577 type. As hinted in this function's documentation, we give
7578 preference to fields in the current record first, so what
7579 we do here is just record the index of this field before
7580 we skip it. If it turns out we couldn't find our field
7581 in the current record, then we'll get back to it and search
7582 inside it whether the field might exist in the parent. */
7583
7584 parent_offset = i;
7585 continue;
7586 }
7587
7588 else if (field_name_match (t_field_name, name))
7589 return TYPE_FIELD_TYPE (type, i);
7590
7591 else if (ada_is_wrapper_field (type, i))
7592 {
7593 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7594 0, 1);
7595 if (t != NULL)
7596 return t;
7597 }
7598
7599 else if (ada_is_variant_part (type, i))
7600 {
7601 int j;
7602 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7603 i));
7604
7605 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7606 {
7607 /* FIXME pnh 2008/01/26: We check for a field that is
7608 NOT wrapped in a struct, since the compiler sometimes
7609 generates these for unchecked variant types. Revisit
7610 if the compiler changes this practice. */
7611 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7612
7613 if (v_field_name != NULL
7614 && field_name_match (v_field_name, name))
7615 t = TYPE_FIELD_TYPE (field_type, j);
7616 else
7617 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7618 j),
7619 name, 0, 1);
7620
7621 if (t != NULL)
7622 return t;
7623 }
7624 }
7625
7626 }
7627
7628 /* Field not found so far. If this is a tagged type which
7629 has a parent, try finding that field in the parent now. */
7630
7631 if (parent_offset != -1)
7632 {
7633 struct type *t;
7634
7635 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7636 name, 0, 1);
7637 if (t != NULL)
7638 return t;
7639 }
7640
7641 BadName:
7642 if (!noerr)
7643 {
7644 const char *name_str = name != NULL ? name : _("<null>");
7645
7646 error (_("Type %s has no component named %s"),
7647 type_as_string (type).c_str (), name_str);
7648 }
7649
7650 return NULL;
7651 }
7652
7653 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7654 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7655 represents an unchecked union (that is, the variant part of a
7656 record that is named in an Unchecked_Union pragma). */
7657
7658 static int
7659 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7660 {
7661 const char *discrim_name = ada_variant_discrim_name (var_type);
7662
7663 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7664 }
7665
7666
7667 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7668 within a value of type OUTER_TYPE that is stored in GDB at
7669 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7670 numbering from 0) is applicable. Returns -1 if none are. */
7671
7672 int
7673 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7674 const gdb_byte *outer_valaddr)
7675 {
7676 int others_clause;
7677 int i;
7678 const char *discrim_name = ada_variant_discrim_name (var_type);
7679 struct value *outer;
7680 struct value *discrim;
7681 LONGEST discrim_val;
7682
7683 /* Using plain value_from_contents_and_address here causes problems
7684 because we will end up trying to resolve a type that is currently
7685 being constructed. */
7686 outer = value_from_contents_and_address_unresolved (outer_type,
7687 outer_valaddr, 0);
7688 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7689 if (discrim == NULL)
7690 return -1;
7691 discrim_val = value_as_long (discrim);
7692
7693 others_clause = -1;
7694 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7695 {
7696 if (ada_is_others_clause (var_type, i))
7697 others_clause = i;
7698 else if (ada_in_variant (discrim_val, var_type, i))
7699 return i;
7700 }
7701
7702 return others_clause;
7703 }
7704 \f
7705
7706
7707 /* Dynamic-Sized Records */
7708
7709 /* Strategy: The type ostensibly attached to a value with dynamic size
7710 (i.e., a size that is not statically recorded in the debugging
7711 data) does not accurately reflect the size or layout of the value.
7712 Our strategy is to convert these values to values with accurate,
7713 conventional types that are constructed on the fly. */
7714
7715 /* There is a subtle and tricky problem here. In general, we cannot
7716 determine the size of dynamic records without its data. However,
7717 the 'struct value' data structure, which GDB uses to represent
7718 quantities in the inferior process (the target), requires the size
7719 of the type at the time of its allocation in order to reserve space
7720 for GDB's internal copy of the data. That's why the
7721 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7722 rather than struct value*s.
7723
7724 However, GDB's internal history variables ($1, $2, etc.) are
7725 struct value*s containing internal copies of the data that are not, in
7726 general, the same as the data at their corresponding addresses in
7727 the target. Fortunately, the types we give to these values are all
7728 conventional, fixed-size types (as per the strategy described
7729 above), so that we don't usually have to perform the
7730 'to_fixed_xxx_type' conversions to look at their values.
7731 Unfortunately, there is one exception: if one of the internal
7732 history variables is an array whose elements are unconstrained
7733 records, then we will need to create distinct fixed types for each
7734 element selected. */
7735
7736 /* The upshot of all of this is that many routines take a (type, host
7737 address, target address) triple as arguments to represent a value.
7738 The host address, if non-null, is supposed to contain an internal
7739 copy of the relevant data; otherwise, the program is to consult the
7740 target at the target address. */
7741
7742 /* Assuming that VAL0 represents a pointer value, the result of
7743 dereferencing it. Differs from value_ind in its treatment of
7744 dynamic-sized types. */
7745
7746 struct value *
7747 ada_value_ind (struct value *val0)
7748 {
7749 struct value *val = value_ind (val0);
7750
7751 if (ada_is_tagged_type (value_type (val), 0))
7752 val = ada_tag_value_at_base_address (val);
7753
7754 return ada_to_fixed_value (val);
7755 }
7756
7757 /* The value resulting from dereferencing any "reference to"
7758 qualifiers on VAL0. */
7759
7760 static struct value *
7761 ada_coerce_ref (struct value *val0)
7762 {
7763 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7764 {
7765 struct value *val = val0;
7766
7767 val = coerce_ref (val);
7768
7769 if (ada_is_tagged_type (value_type (val), 0))
7770 val = ada_tag_value_at_base_address (val);
7771
7772 return ada_to_fixed_value (val);
7773 }
7774 else
7775 return val0;
7776 }
7777
7778 /* Return OFF rounded upward if necessary to a multiple of
7779 ALIGNMENT (a power of 2). */
7780
7781 static unsigned int
7782 align_value (unsigned int off, unsigned int alignment)
7783 {
7784 return (off + alignment - 1) & ~(alignment - 1);
7785 }
7786
7787 /* Return the bit alignment required for field #F of template type TYPE. */
7788
7789 static unsigned int
7790 field_alignment (struct type *type, int f)
7791 {
7792 const char *name = TYPE_FIELD_NAME (type, f);
7793 int len;
7794 int align_offset;
7795
7796 /* The field name should never be null, unless the debugging information
7797 is somehow malformed. In this case, we assume the field does not
7798 require any alignment. */
7799 if (name == NULL)
7800 return 1;
7801
7802 len = strlen (name);
7803
7804 if (!isdigit (name[len - 1]))
7805 return 1;
7806
7807 if (isdigit (name[len - 2]))
7808 align_offset = len - 2;
7809 else
7810 align_offset = len - 1;
7811
7812 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7813 return TARGET_CHAR_BIT;
7814
7815 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7816 }
7817
7818 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7819
7820 static struct symbol *
7821 ada_find_any_type_symbol (const char *name)
7822 {
7823 struct symbol *sym;
7824
7825 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7826 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7827 return sym;
7828
7829 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7830 return sym;
7831 }
7832
7833 /* Find a type named NAME. Ignores ambiguity. This routine will look
7834 solely for types defined by debug info, it will not search the GDB
7835 primitive types. */
7836
7837 static struct type *
7838 ada_find_any_type (const char *name)
7839 {
7840 struct symbol *sym = ada_find_any_type_symbol (name);
7841
7842 if (sym != NULL)
7843 return SYMBOL_TYPE (sym);
7844
7845 return NULL;
7846 }
7847
7848 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7849 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7850 symbol, in which case it is returned. Otherwise, this looks for
7851 symbols whose name is that of NAME_SYM suffixed with "___XR".
7852 Return symbol if found, and NULL otherwise. */
7853
7854 static bool
7855 ada_is_renaming_symbol (struct symbol *name_sym)
7856 {
7857 const char *name = name_sym->linkage_name ();
7858 return strstr (name, "___XR") != NULL;
7859 }
7860
7861 /* Because of GNAT encoding conventions, several GDB symbols may match a
7862 given type name. If the type denoted by TYPE0 is to be preferred to
7863 that of TYPE1 for purposes of type printing, return non-zero;
7864 otherwise return 0. */
7865
7866 int
7867 ada_prefer_type (struct type *type0, struct type *type1)
7868 {
7869 if (type1 == NULL)
7870 return 1;
7871 else if (type0 == NULL)
7872 return 0;
7873 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7874 return 1;
7875 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7876 return 0;
7877 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7878 return 1;
7879 else if (ada_is_constrained_packed_array_type (type0))
7880 return 1;
7881 else if (ada_is_array_descriptor_type (type0)
7882 && !ada_is_array_descriptor_type (type1))
7883 return 1;
7884 else
7885 {
7886 const char *type0_name = TYPE_NAME (type0);
7887 const char *type1_name = TYPE_NAME (type1);
7888
7889 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7890 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7891 return 1;
7892 }
7893 return 0;
7894 }
7895
7896 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7897 null. */
7898
7899 const char *
7900 ada_type_name (struct type *type)
7901 {
7902 if (type == NULL)
7903 return NULL;
7904 return TYPE_NAME (type);
7905 }
7906
7907 /* Search the list of "descriptive" types associated to TYPE for a type
7908 whose name is NAME. */
7909
7910 static struct type *
7911 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7912 {
7913 struct type *result, *tmp;
7914
7915 if (ada_ignore_descriptive_types_p)
7916 return NULL;
7917
7918 /* If there no descriptive-type info, then there is no parallel type
7919 to be found. */
7920 if (!HAVE_GNAT_AUX_INFO (type))
7921 return NULL;
7922
7923 result = TYPE_DESCRIPTIVE_TYPE (type);
7924 while (result != NULL)
7925 {
7926 const char *result_name = ada_type_name (result);
7927
7928 if (result_name == NULL)
7929 {
7930 warning (_("unexpected null name on descriptive type"));
7931 return NULL;
7932 }
7933
7934 /* If the names match, stop. */
7935 if (strcmp (result_name, name) == 0)
7936 break;
7937
7938 /* Otherwise, look at the next item on the list, if any. */
7939 if (HAVE_GNAT_AUX_INFO (result))
7940 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7941 else
7942 tmp = NULL;
7943
7944 /* If not found either, try after having resolved the typedef. */
7945 if (tmp != NULL)
7946 result = tmp;
7947 else
7948 {
7949 result = check_typedef (result);
7950 if (HAVE_GNAT_AUX_INFO (result))
7951 result = TYPE_DESCRIPTIVE_TYPE (result);
7952 else
7953 result = NULL;
7954 }
7955 }
7956
7957 /* If we didn't find a match, see whether this is a packed array. With
7958 older compilers, the descriptive type information is either absent or
7959 irrelevant when it comes to packed arrays so the above lookup fails.
7960 Fall back to using a parallel lookup by name in this case. */
7961 if (result == NULL && ada_is_constrained_packed_array_type (type))
7962 return ada_find_any_type (name);
7963
7964 return result;
7965 }
7966
7967 /* Find a parallel type to TYPE with the specified NAME, using the
7968 descriptive type taken from the debugging information, if available,
7969 and otherwise using the (slower) name-based method. */
7970
7971 static struct type *
7972 ada_find_parallel_type_with_name (struct type *type, const char *name)
7973 {
7974 struct type *result = NULL;
7975
7976 if (HAVE_GNAT_AUX_INFO (type))
7977 result = find_parallel_type_by_descriptive_type (type, name);
7978 else
7979 result = ada_find_any_type (name);
7980
7981 return result;
7982 }
7983
7984 /* Same as above, but specify the name of the parallel type by appending
7985 SUFFIX to the name of TYPE. */
7986
7987 struct type *
7988 ada_find_parallel_type (struct type *type, const char *suffix)
7989 {
7990 char *name;
7991 const char *type_name = ada_type_name (type);
7992 int len;
7993
7994 if (type_name == NULL)
7995 return NULL;
7996
7997 len = strlen (type_name);
7998
7999 name = (char *) alloca (len + strlen (suffix) + 1);
8000
8001 strcpy (name, type_name);
8002 strcpy (name + len, suffix);
8003
8004 return ada_find_parallel_type_with_name (type, name);
8005 }
8006
8007 /* If TYPE is a variable-size record type, return the corresponding template
8008 type describing its fields. Otherwise, return NULL. */
8009
8010 static struct type *
8011 dynamic_template_type (struct type *type)
8012 {
8013 type = ada_check_typedef (type);
8014
8015 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8016 || ada_type_name (type) == NULL)
8017 return NULL;
8018 else
8019 {
8020 int len = strlen (ada_type_name (type));
8021
8022 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8023 return type;
8024 else
8025 return ada_find_parallel_type (type, "___XVE");
8026 }
8027 }
8028
8029 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8030 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8031
8032 static int
8033 is_dynamic_field (struct type *templ_type, int field_num)
8034 {
8035 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8036
8037 return name != NULL
8038 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8039 && strstr (name, "___XVL") != NULL;
8040 }
8041
8042 /* The index of the variant field of TYPE, or -1 if TYPE does not
8043 represent a variant record type. */
8044
8045 static int
8046 variant_field_index (struct type *type)
8047 {
8048 int f;
8049
8050 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8051 return -1;
8052
8053 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8054 {
8055 if (ada_is_variant_part (type, f))
8056 return f;
8057 }
8058 return -1;
8059 }
8060
8061 /* A record type with no fields. */
8062
8063 static struct type *
8064 empty_record (struct type *templ)
8065 {
8066 struct type *type = alloc_type_copy (templ);
8067
8068 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8069 TYPE_NFIELDS (type) = 0;
8070 TYPE_FIELDS (type) = NULL;
8071 INIT_NONE_SPECIFIC (type);
8072 TYPE_NAME (type) = "<empty>";
8073 TYPE_LENGTH (type) = 0;
8074 return type;
8075 }
8076
8077 /* An ordinary record type (with fixed-length fields) that describes
8078 the value of type TYPE at VALADDR or ADDRESS (see comments at
8079 the beginning of this section) VAL according to GNAT conventions.
8080 DVAL0 should describe the (portion of a) record that contains any
8081 necessary discriminants. It should be NULL if value_type (VAL) is
8082 an outer-level type (i.e., as opposed to a branch of a variant.) A
8083 variant field (unless unchecked) is replaced by a particular branch
8084 of the variant.
8085
8086 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8087 length are not statically known are discarded. As a consequence,
8088 VALADDR, ADDRESS and DVAL0 are ignored.
8089
8090 NOTE: Limitations: For now, we assume that dynamic fields and
8091 variants occupy whole numbers of bytes. However, they need not be
8092 byte-aligned. */
8093
8094 struct type *
8095 ada_template_to_fixed_record_type_1 (struct type *type,
8096 const gdb_byte *valaddr,
8097 CORE_ADDR address, struct value *dval0,
8098 int keep_dynamic_fields)
8099 {
8100 struct value *mark = value_mark ();
8101 struct value *dval;
8102 struct type *rtype;
8103 int nfields, bit_len;
8104 int variant_field;
8105 long off;
8106 int fld_bit_len;
8107 int f;
8108
8109 /* Compute the number of fields in this record type that are going
8110 to be processed: unless keep_dynamic_fields, this includes only
8111 fields whose position and length are static will be processed. */
8112 if (keep_dynamic_fields)
8113 nfields = TYPE_NFIELDS (type);
8114 else
8115 {
8116 nfields = 0;
8117 while (nfields < TYPE_NFIELDS (type)
8118 && !ada_is_variant_part (type, nfields)
8119 && !is_dynamic_field (type, nfields))
8120 nfields++;
8121 }
8122
8123 rtype = alloc_type_copy (type);
8124 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8125 INIT_NONE_SPECIFIC (rtype);
8126 TYPE_NFIELDS (rtype) = nfields;
8127 TYPE_FIELDS (rtype) = (struct field *)
8128 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8129 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8130 TYPE_NAME (rtype) = ada_type_name (type);
8131 TYPE_FIXED_INSTANCE (rtype) = 1;
8132
8133 off = 0;
8134 bit_len = 0;
8135 variant_field = -1;
8136
8137 for (f = 0; f < nfields; f += 1)
8138 {
8139 off = align_value (off, field_alignment (type, f))
8140 + TYPE_FIELD_BITPOS (type, f);
8141 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8142 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8143
8144 if (ada_is_variant_part (type, f))
8145 {
8146 variant_field = f;
8147 fld_bit_len = 0;
8148 }
8149 else if (is_dynamic_field (type, f))
8150 {
8151 const gdb_byte *field_valaddr = valaddr;
8152 CORE_ADDR field_address = address;
8153 struct type *field_type =
8154 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8155
8156 if (dval0 == NULL)
8157 {
8158 /* rtype's length is computed based on the run-time
8159 value of discriminants. If the discriminants are not
8160 initialized, the type size may be completely bogus and
8161 GDB may fail to allocate a value for it. So check the
8162 size first before creating the value. */
8163 ada_ensure_varsize_limit (rtype);
8164 /* Using plain value_from_contents_and_address here
8165 causes problems because we will end up trying to
8166 resolve a type that is currently being
8167 constructed. */
8168 dval = value_from_contents_and_address_unresolved (rtype,
8169 valaddr,
8170 address);
8171 rtype = value_type (dval);
8172 }
8173 else
8174 dval = dval0;
8175
8176 /* If the type referenced by this field is an aligner type, we need
8177 to unwrap that aligner type, because its size might not be set.
8178 Keeping the aligner type would cause us to compute the wrong
8179 size for this field, impacting the offset of the all the fields
8180 that follow this one. */
8181 if (ada_is_aligner_type (field_type))
8182 {
8183 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8184
8185 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8186 field_address = cond_offset_target (field_address, field_offset);
8187 field_type = ada_aligned_type (field_type);
8188 }
8189
8190 field_valaddr = cond_offset_host (field_valaddr,
8191 off / TARGET_CHAR_BIT);
8192 field_address = cond_offset_target (field_address,
8193 off / TARGET_CHAR_BIT);
8194
8195 /* Get the fixed type of the field. Note that, in this case,
8196 we do not want to get the real type out of the tag: if
8197 the current field is the parent part of a tagged record,
8198 we will get the tag of the object. Clearly wrong: the real
8199 type of the parent is not the real type of the child. We
8200 would end up in an infinite loop. */
8201 field_type = ada_get_base_type (field_type);
8202 field_type = ada_to_fixed_type (field_type, field_valaddr,
8203 field_address, dval, 0);
8204 /* If the field size is already larger than the maximum
8205 object size, then the record itself will necessarily
8206 be larger than the maximum object size. We need to make
8207 this check now, because the size might be so ridiculously
8208 large (due to an uninitialized variable in the inferior)
8209 that it would cause an overflow when adding it to the
8210 record size. */
8211 ada_ensure_varsize_limit (field_type);
8212
8213 TYPE_FIELD_TYPE (rtype, f) = field_type;
8214 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8215 /* The multiplication can potentially overflow. But because
8216 the field length has been size-checked just above, and
8217 assuming that the maximum size is a reasonable value,
8218 an overflow should not happen in practice. So rather than
8219 adding overflow recovery code to this already complex code,
8220 we just assume that it's not going to happen. */
8221 fld_bit_len =
8222 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8223 }
8224 else
8225 {
8226 /* Note: If this field's type is a typedef, it is important
8227 to preserve the typedef layer.
8228
8229 Otherwise, we might be transforming a typedef to a fat
8230 pointer (encoding a pointer to an unconstrained array),
8231 into a basic fat pointer (encoding an unconstrained
8232 array). As both types are implemented using the same
8233 structure, the typedef is the only clue which allows us
8234 to distinguish between the two options. Stripping it
8235 would prevent us from printing this field appropriately. */
8236 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8237 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8238 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8239 fld_bit_len =
8240 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8241 else
8242 {
8243 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8244
8245 /* We need to be careful of typedefs when computing
8246 the length of our field. If this is a typedef,
8247 get the length of the target type, not the length
8248 of the typedef. */
8249 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8250 field_type = ada_typedef_target_type (field_type);
8251
8252 fld_bit_len =
8253 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8254 }
8255 }
8256 if (off + fld_bit_len > bit_len)
8257 bit_len = off + fld_bit_len;
8258 off += fld_bit_len;
8259 TYPE_LENGTH (rtype) =
8260 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8261 }
8262
8263 /* We handle the variant part, if any, at the end because of certain
8264 odd cases in which it is re-ordered so as NOT to be the last field of
8265 the record. This can happen in the presence of representation
8266 clauses. */
8267 if (variant_field >= 0)
8268 {
8269 struct type *branch_type;
8270
8271 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8272
8273 if (dval0 == NULL)
8274 {
8275 /* Using plain value_from_contents_and_address here causes
8276 problems because we will end up trying to resolve a type
8277 that is currently being constructed. */
8278 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8279 address);
8280 rtype = value_type (dval);
8281 }
8282 else
8283 dval = dval0;
8284
8285 branch_type =
8286 to_fixed_variant_branch_type
8287 (TYPE_FIELD_TYPE (type, variant_field),
8288 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8289 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8290 if (branch_type == NULL)
8291 {
8292 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8293 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8294 TYPE_NFIELDS (rtype) -= 1;
8295 }
8296 else
8297 {
8298 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8299 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8300 fld_bit_len =
8301 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8302 TARGET_CHAR_BIT;
8303 if (off + fld_bit_len > bit_len)
8304 bit_len = off + fld_bit_len;
8305 TYPE_LENGTH (rtype) =
8306 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8307 }
8308 }
8309
8310 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8311 should contain the alignment of that record, which should be a strictly
8312 positive value. If null or negative, then something is wrong, most
8313 probably in the debug info. In that case, we don't round up the size
8314 of the resulting type. If this record is not part of another structure,
8315 the current RTYPE length might be good enough for our purposes. */
8316 if (TYPE_LENGTH (type) <= 0)
8317 {
8318 if (TYPE_NAME (rtype))
8319 warning (_("Invalid type size for `%s' detected: %s."),
8320 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8321 else
8322 warning (_("Invalid type size for <unnamed> detected: %s."),
8323 pulongest (TYPE_LENGTH (type)));
8324 }
8325 else
8326 {
8327 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8328 TYPE_LENGTH (type));
8329 }
8330
8331 value_free_to_mark (mark);
8332 if (TYPE_LENGTH (rtype) > varsize_limit)
8333 error (_("record type with dynamic size is larger than varsize-limit"));
8334 return rtype;
8335 }
8336
8337 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8338 of 1. */
8339
8340 static struct type *
8341 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8342 CORE_ADDR address, struct value *dval0)
8343 {
8344 return ada_template_to_fixed_record_type_1 (type, valaddr,
8345 address, dval0, 1);
8346 }
8347
8348 /* An ordinary record type in which ___XVL-convention fields and
8349 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8350 static approximations, containing all possible fields. Uses
8351 no runtime values. Useless for use in values, but that's OK,
8352 since the results are used only for type determinations. Works on both
8353 structs and unions. Representation note: to save space, we memorize
8354 the result of this function in the TYPE_TARGET_TYPE of the
8355 template type. */
8356
8357 static struct type *
8358 template_to_static_fixed_type (struct type *type0)
8359 {
8360 struct type *type;
8361 int nfields;
8362 int f;
8363
8364 /* No need no do anything if the input type is already fixed. */
8365 if (TYPE_FIXED_INSTANCE (type0))
8366 return type0;
8367
8368 /* Likewise if we already have computed the static approximation. */
8369 if (TYPE_TARGET_TYPE (type0) != NULL)
8370 return TYPE_TARGET_TYPE (type0);
8371
8372 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8373 type = type0;
8374 nfields = TYPE_NFIELDS (type0);
8375
8376 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8377 recompute all over next time. */
8378 TYPE_TARGET_TYPE (type0) = type;
8379
8380 for (f = 0; f < nfields; f += 1)
8381 {
8382 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8383 struct type *new_type;
8384
8385 if (is_dynamic_field (type0, f))
8386 {
8387 field_type = ada_check_typedef (field_type);
8388 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8389 }
8390 else
8391 new_type = static_unwrap_type (field_type);
8392
8393 if (new_type != field_type)
8394 {
8395 /* Clone TYPE0 only the first time we get a new field type. */
8396 if (type == type0)
8397 {
8398 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8399 TYPE_CODE (type) = TYPE_CODE (type0);
8400 INIT_NONE_SPECIFIC (type);
8401 TYPE_NFIELDS (type) = nfields;
8402 TYPE_FIELDS (type) = (struct field *)
8403 TYPE_ALLOC (type, nfields * sizeof (struct field));
8404 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8405 sizeof (struct field) * nfields);
8406 TYPE_NAME (type) = ada_type_name (type0);
8407 TYPE_FIXED_INSTANCE (type) = 1;
8408 TYPE_LENGTH (type) = 0;
8409 }
8410 TYPE_FIELD_TYPE (type, f) = new_type;
8411 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8412 }
8413 }
8414
8415 return type;
8416 }
8417
8418 /* Given an object of type TYPE whose contents are at VALADDR and
8419 whose address in memory is ADDRESS, returns a revision of TYPE,
8420 which should be a non-dynamic-sized record, in which the variant
8421 part, if any, is replaced with the appropriate branch. Looks
8422 for discriminant values in DVAL0, which can be NULL if the record
8423 contains the necessary discriminant values. */
8424
8425 static struct type *
8426 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8427 CORE_ADDR address, struct value *dval0)
8428 {
8429 struct value *mark = value_mark ();
8430 struct value *dval;
8431 struct type *rtype;
8432 struct type *branch_type;
8433 int nfields = TYPE_NFIELDS (type);
8434 int variant_field = variant_field_index (type);
8435
8436 if (variant_field == -1)
8437 return type;
8438
8439 if (dval0 == NULL)
8440 {
8441 dval = value_from_contents_and_address (type, valaddr, address);
8442 type = value_type (dval);
8443 }
8444 else
8445 dval = dval0;
8446
8447 rtype = alloc_type_copy (type);
8448 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8449 INIT_NONE_SPECIFIC (rtype);
8450 TYPE_NFIELDS (rtype) = nfields;
8451 TYPE_FIELDS (rtype) =
8452 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8453 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8454 sizeof (struct field) * nfields);
8455 TYPE_NAME (rtype) = ada_type_name (type);
8456 TYPE_FIXED_INSTANCE (rtype) = 1;
8457 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8458
8459 branch_type = to_fixed_variant_branch_type
8460 (TYPE_FIELD_TYPE (type, variant_field),
8461 cond_offset_host (valaddr,
8462 TYPE_FIELD_BITPOS (type, variant_field)
8463 / TARGET_CHAR_BIT),
8464 cond_offset_target (address,
8465 TYPE_FIELD_BITPOS (type, variant_field)
8466 / TARGET_CHAR_BIT), dval);
8467 if (branch_type == NULL)
8468 {
8469 int f;
8470
8471 for (f = variant_field + 1; f < nfields; f += 1)
8472 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8473 TYPE_NFIELDS (rtype) -= 1;
8474 }
8475 else
8476 {
8477 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8478 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8479 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8480 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8481 }
8482 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8483
8484 value_free_to_mark (mark);
8485 return rtype;
8486 }
8487
8488 /* An ordinary record type (with fixed-length fields) that describes
8489 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8490 beginning of this section]. Any necessary discriminants' values
8491 should be in DVAL, a record value; it may be NULL if the object
8492 at ADDR itself contains any necessary discriminant values.
8493 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8494 values from the record are needed. Except in the case that DVAL,
8495 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8496 unchecked) is replaced by a particular branch of the variant.
8497
8498 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8499 is questionable and may be removed. It can arise during the
8500 processing of an unconstrained-array-of-record type where all the
8501 variant branches have exactly the same size. This is because in
8502 such cases, the compiler does not bother to use the XVS convention
8503 when encoding the record. I am currently dubious of this
8504 shortcut and suspect the compiler should be altered. FIXME. */
8505
8506 static struct type *
8507 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8508 CORE_ADDR address, struct value *dval)
8509 {
8510 struct type *templ_type;
8511
8512 if (TYPE_FIXED_INSTANCE (type0))
8513 return type0;
8514
8515 templ_type = dynamic_template_type (type0);
8516
8517 if (templ_type != NULL)
8518 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8519 else if (variant_field_index (type0) >= 0)
8520 {
8521 if (dval == NULL && valaddr == NULL && address == 0)
8522 return type0;
8523 return to_record_with_fixed_variant_part (type0, valaddr, address,
8524 dval);
8525 }
8526 else
8527 {
8528 TYPE_FIXED_INSTANCE (type0) = 1;
8529 return type0;
8530 }
8531
8532 }
8533
8534 /* An ordinary record type (with fixed-length fields) that describes
8535 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8536 union type. Any necessary discriminants' values should be in DVAL,
8537 a record value. That is, this routine selects the appropriate
8538 branch of the union at ADDR according to the discriminant value
8539 indicated in the union's type name. Returns VAR_TYPE0 itself if
8540 it represents a variant subject to a pragma Unchecked_Union. */
8541
8542 static struct type *
8543 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8544 CORE_ADDR address, struct value *dval)
8545 {
8546 int which;
8547 struct type *templ_type;
8548 struct type *var_type;
8549
8550 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8551 var_type = TYPE_TARGET_TYPE (var_type0);
8552 else
8553 var_type = var_type0;
8554
8555 templ_type = ada_find_parallel_type (var_type, "___XVU");
8556
8557 if (templ_type != NULL)
8558 var_type = templ_type;
8559
8560 if (is_unchecked_variant (var_type, value_type (dval)))
8561 return var_type0;
8562 which =
8563 ada_which_variant_applies (var_type,
8564 value_type (dval), value_contents (dval));
8565
8566 if (which < 0)
8567 return empty_record (var_type);
8568 else if (is_dynamic_field (var_type, which))
8569 return to_fixed_record_type
8570 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8571 valaddr, address, dval);
8572 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8573 return
8574 to_fixed_record_type
8575 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8576 else
8577 return TYPE_FIELD_TYPE (var_type, which);
8578 }
8579
8580 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8581 ENCODING_TYPE, a type following the GNAT conventions for discrete
8582 type encodings, only carries redundant information. */
8583
8584 static int
8585 ada_is_redundant_range_encoding (struct type *range_type,
8586 struct type *encoding_type)
8587 {
8588 const char *bounds_str;
8589 int n;
8590 LONGEST lo, hi;
8591
8592 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8593
8594 if (TYPE_CODE (get_base_type (range_type))
8595 != TYPE_CODE (get_base_type (encoding_type)))
8596 {
8597 /* The compiler probably used a simple base type to describe
8598 the range type instead of the range's actual base type,
8599 expecting us to get the real base type from the encoding
8600 anyway. In this situation, the encoding cannot be ignored
8601 as redundant. */
8602 return 0;
8603 }
8604
8605 if (is_dynamic_type (range_type))
8606 return 0;
8607
8608 if (TYPE_NAME (encoding_type) == NULL)
8609 return 0;
8610
8611 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8612 if (bounds_str == NULL)
8613 return 0;
8614
8615 n = 8; /* Skip "___XDLU_". */
8616 if (!ada_scan_number (bounds_str, n, &lo, &n))
8617 return 0;
8618 if (TYPE_LOW_BOUND (range_type) != lo)
8619 return 0;
8620
8621 n += 2; /* Skip the "__" separator between the two bounds. */
8622 if (!ada_scan_number (bounds_str, n, &hi, &n))
8623 return 0;
8624 if (TYPE_HIGH_BOUND (range_type) != hi)
8625 return 0;
8626
8627 return 1;
8628 }
8629
8630 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8631 a type following the GNAT encoding for describing array type
8632 indices, only carries redundant information. */
8633
8634 static int
8635 ada_is_redundant_index_type_desc (struct type *array_type,
8636 struct type *desc_type)
8637 {
8638 struct type *this_layer = check_typedef (array_type);
8639 int i;
8640
8641 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8642 {
8643 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8644 TYPE_FIELD_TYPE (desc_type, i)))
8645 return 0;
8646 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8647 }
8648
8649 return 1;
8650 }
8651
8652 /* Assuming that TYPE0 is an array type describing the type of a value
8653 at ADDR, and that DVAL describes a record containing any
8654 discriminants used in TYPE0, returns a type for the value that
8655 contains no dynamic components (that is, no components whose sizes
8656 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8657 true, gives an error message if the resulting type's size is over
8658 varsize_limit. */
8659
8660 static struct type *
8661 to_fixed_array_type (struct type *type0, struct value *dval,
8662 int ignore_too_big)
8663 {
8664 struct type *index_type_desc;
8665 struct type *result;
8666 int constrained_packed_array_p;
8667 static const char *xa_suffix = "___XA";
8668
8669 type0 = ada_check_typedef (type0);
8670 if (TYPE_FIXED_INSTANCE (type0))
8671 return type0;
8672
8673 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8674 if (constrained_packed_array_p)
8675 type0 = decode_constrained_packed_array_type (type0);
8676
8677 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8678
8679 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8680 encoding suffixed with 'P' may still be generated. If so,
8681 it should be used to find the XA type. */
8682
8683 if (index_type_desc == NULL)
8684 {
8685 const char *type_name = ada_type_name (type0);
8686
8687 if (type_name != NULL)
8688 {
8689 const int len = strlen (type_name);
8690 char *name = (char *) alloca (len + strlen (xa_suffix));
8691
8692 if (type_name[len - 1] == 'P')
8693 {
8694 strcpy (name, type_name);
8695 strcpy (name + len - 1, xa_suffix);
8696 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8697 }
8698 }
8699 }
8700
8701 ada_fixup_array_indexes_type (index_type_desc);
8702 if (index_type_desc != NULL
8703 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8704 {
8705 /* Ignore this ___XA parallel type, as it does not bring any
8706 useful information. This allows us to avoid creating fixed
8707 versions of the array's index types, which would be identical
8708 to the original ones. This, in turn, can also help avoid
8709 the creation of fixed versions of the array itself. */
8710 index_type_desc = NULL;
8711 }
8712
8713 if (index_type_desc == NULL)
8714 {
8715 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8716
8717 /* NOTE: elt_type---the fixed version of elt_type0---should never
8718 depend on the contents of the array in properly constructed
8719 debugging data. */
8720 /* Create a fixed version of the array element type.
8721 We're not providing the address of an element here,
8722 and thus the actual object value cannot be inspected to do
8723 the conversion. This should not be a problem, since arrays of
8724 unconstrained objects are not allowed. In particular, all
8725 the elements of an array of a tagged type should all be of
8726 the same type specified in the debugging info. No need to
8727 consult the object tag. */
8728 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8729
8730 /* Make sure we always create a new array type when dealing with
8731 packed array types, since we're going to fix-up the array
8732 type length and element bitsize a little further down. */
8733 if (elt_type0 == elt_type && !constrained_packed_array_p)
8734 result = type0;
8735 else
8736 result = create_array_type (alloc_type_copy (type0),
8737 elt_type, TYPE_INDEX_TYPE (type0));
8738 }
8739 else
8740 {
8741 int i;
8742 struct type *elt_type0;
8743
8744 elt_type0 = type0;
8745 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8746 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8747
8748 /* NOTE: result---the fixed version of elt_type0---should never
8749 depend on the contents of the array in properly constructed
8750 debugging data. */
8751 /* Create a fixed version of the array element type.
8752 We're not providing the address of an element here,
8753 and thus the actual object value cannot be inspected to do
8754 the conversion. This should not be a problem, since arrays of
8755 unconstrained objects are not allowed. In particular, all
8756 the elements of an array of a tagged type should all be of
8757 the same type specified in the debugging info. No need to
8758 consult the object tag. */
8759 result =
8760 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8761
8762 elt_type0 = type0;
8763 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8764 {
8765 struct type *range_type =
8766 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8767
8768 result = create_array_type (alloc_type_copy (elt_type0),
8769 result, range_type);
8770 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8771 }
8772 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8773 error (_("array type with dynamic size is larger than varsize-limit"));
8774 }
8775
8776 /* We want to preserve the type name. This can be useful when
8777 trying to get the type name of a value that has already been
8778 printed (for instance, if the user did "print VAR; whatis $". */
8779 TYPE_NAME (result) = TYPE_NAME (type0);
8780
8781 if (constrained_packed_array_p)
8782 {
8783 /* So far, the resulting type has been created as if the original
8784 type was a regular (non-packed) array type. As a result, the
8785 bitsize of the array elements needs to be set again, and the array
8786 length needs to be recomputed based on that bitsize. */
8787 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8788 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8789
8790 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8791 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8792 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8793 TYPE_LENGTH (result)++;
8794 }
8795
8796 TYPE_FIXED_INSTANCE (result) = 1;
8797 return result;
8798 }
8799
8800
8801 /* A standard type (containing no dynamically sized components)
8802 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8803 DVAL describes a record containing any discriminants used in TYPE0,
8804 and may be NULL if there are none, or if the object of type TYPE at
8805 ADDRESS or in VALADDR contains these discriminants.
8806
8807 If CHECK_TAG is not null, in the case of tagged types, this function
8808 attempts to locate the object's tag and use it to compute the actual
8809 type. However, when ADDRESS is null, we cannot use it to determine the
8810 location of the tag, and therefore compute the tagged type's actual type.
8811 So we return the tagged type without consulting the tag. */
8812
8813 static struct type *
8814 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8815 CORE_ADDR address, struct value *dval, int check_tag)
8816 {
8817 type = ada_check_typedef (type);
8818
8819 /* Only un-fixed types need to be handled here. */
8820 if (!HAVE_GNAT_AUX_INFO (type))
8821 return type;
8822
8823 switch (TYPE_CODE (type))
8824 {
8825 default:
8826 return type;
8827 case TYPE_CODE_STRUCT:
8828 {
8829 struct type *static_type = to_static_fixed_type (type);
8830 struct type *fixed_record_type =
8831 to_fixed_record_type (type, valaddr, address, NULL);
8832
8833 /* If STATIC_TYPE is a tagged type and we know the object's address,
8834 then we can determine its tag, and compute the object's actual
8835 type from there. Note that we have to use the fixed record
8836 type (the parent part of the record may have dynamic fields
8837 and the way the location of _tag is expressed may depend on
8838 them). */
8839
8840 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8841 {
8842 struct value *tag =
8843 value_tag_from_contents_and_address
8844 (fixed_record_type,
8845 valaddr,
8846 address);
8847 struct type *real_type = type_from_tag (tag);
8848 struct value *obj =
8849 value_from_contents_and_address (fixed_record_type,
8850 valaddr,
8851 address);
8852 fixed_record_type = value_type (obj);
8853 if (real_type != NULL)
8854 return to_fixed_record_type
8855 (real_type, NULL,
8856 value_address (ada_tag_value_at_base_address (obj)), NULL);
8857 }
8858
8859 /* Check to see if there is a parallel ___XVZ variable.
8860 If there is, then it provides the actual size of our type. */
8861 else if (ada_type_name (fixed_record_type) != NULL)
8862 {
8863 const char *name = ada_type_name (fixed_record_type);
8864 char *xvz_name
8865 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8866 bool xvz_found = false;
8867 LONGEST size;
8868
8869 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8870 try
8871 {
8872 xvz_found = get_int_var_value (xvz_name, size);
8873 }
8874 catch (const gdb_exception_error &except)
8875 {
8876 /* We found the variable, but somehow failed to read
8877 its value. Rethrow the same error, but with a little
8878 bit more information, to help the user understand
8879 what went wrong (Eg: the variable might have been
8880 optimized out). */
8881 throw_error (except.error,
8882 _("unable to read value of %s (%s)"),
8883 xvz_name, except.what ());
8884 }
8885
8886 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8887 {
8888 fixed_record_type = copy_type (fixed_record_type);
8889 TYPE_LENGTH (fixed_record_type) = size;
8890
8891 /* The FIXED_RECORD_TYPE may have be a stub. We have
8892 observed this when the debugging info is STABS, and
8893 apparently it is something that is hard to fix.
8894
8895 In practice, we don't need the actual type definition
8896 at all, because the presence of the XVZ variable allows us
8897 to assume that there must be a XVS type as well, which we
8898 should be able to use later, when we need the actual type
8899 definition.
8900
8901 In the meantime, pretend that the "fixed" type we are
8902 returning is NOT a stub, because this can cause trouble
8903 when using this type to create new types targeting it.
8904 Indeed, the associated creation routines often check
8905 whether the target type is a stub and will try to replace
8906 it, thus using a type with the wrong size. This, in turn,
8907 might cause the new type to have the wrong size too.
8908 Consider the case of an array, for instance, where the size
8909 of the array is computed from the number of elements in
8910 our array multiplied by the size of its element. */
8911 TYPE_STUB (fixed_record_type) = 0;
8912 }
8913 }
8914 return fixed_record_type;
8915 }
8916 case TYPE_CODE_ARRAY:
8917 return to_fixed_array_type (type, dval, 1);
8918 case TYPE_CODE_UNION:
8919 if (dval == NULL)
8920 return type;
8921 else
8922 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8923 }
8924 }
8925
8926 /* The same as ada_to_fixed_type_1, except that it preserves the type
8927 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8928
8929 The typedef layer needs be preserved in order to differentiate between
8930 arrays and array pointers when both types are implemented using the same
8931 fat pointer. In the array pointer case, the pointer is encoded as
8932 a typedef of the pointer type. For instance, considering:
8933
8934 type String_Access is access String;
8935 S1 : String_Access := null;
8936
8937 To the debugger, S1 is defined as a typedef of type String. But
8938 to the user, it is a pointer. So if the user tries to print S1,
8939 we should not dereference the array, but print the array address
8940 instead.
8941
8942 If we didn't preserve the typedef layer, we would lose the fact that
8943 the type is to be presented as a pointer (needs de-reference before
8944 being printed). And we would also use the source-level type name. */
8945
8946 struct type *
8947 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8948 CORE_ADDR address, struct value *dval, int check_tag)
8949
8950 {
8951 struct type *fixed_type =
8952 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8953
8954 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8955 then preserve the typedef layer.
8956
8957 Implementation note: We can only check the main-type portion of
8958 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8959 from TYPE now returns a type that has the same instance flags
8960 as TYPE. For instance, if TYPE is a "typedef const", and its
8961 target type is a "struct", then the typedef elimination will return
8962 a "const" version of the target type. See check_typedef for more
8963 details about how the typedef layer elimination is done.
8964
8965 brobecker/2010-11-19: It seems to me that the only case where it is
8966 useful to preserve the typedef layer is when dealing with fat pointers.
8967 Perhaps, we could add a check for that and preserve the typedef layer
8968 only in that situation. But this seems unnecessary so far, probably
8969 because we call check_typedef/ada_check_typedef pretty much everywhere.
8970 */
8971 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8972 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8973 == TYPE_MAIN_TYPE (fixed_type)))
8974 return type;
8975
8976 return fixed_type;
8977 }
8978
8979 /* A standard (static-sized) type corresponding as well as possible to
8980 TYPE0, but based on no runtime data. */
8981
8982 static struct type *
8983 to_static_fixed_type (struct type *type0)
8984 {
8985 struct type *type;
8986
8987 if (type0 == NULL)
8988 return NULL;
8989
8990 if (TYPE_FIXED_INSTANCE (type0))
8991 return type0;
8992
8993 type0 = ada_check_typedef (type0);
8994
8995 switch (TYPE_CODE (type0))
8996 {
8997 default:
8998 return type0;
8999 case TYPE_CODE_STRUCT:
9000 type = dynamic_template_type (type0);
9001 if (type != NULL)
9002 return template_to_static_fixed_type (type);
9003 else
9004 return template_to_static_fixed_type (type0);
9005 case TYPE_CODE_UNION:
9006 type = ada_find_parallel_type (type0, "___XVU");
9007 if (type != NULL)
9008 return template_to_static_fixed_type (type);
9009 else
9010 return template_to_static_fixed_type (type0);
9011 }
9012 }
9013
9014 /* A static approximation of TYPE with all type wrappers removed. */
9015
9016 static struct type *
9017 static_unwrap_type (struct type *type)
9018 {
9019 if (ada_is_aligner_type (type))
9020 {
9021 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9022 if (ada_type_name (type1) == NULL)
9023 TYPE_NAME (type1) = ada_type_name (type);
9024
9025 return static_unwrap_type (type1);
9026 }
9027 else
9028 {
9029 struct type *raw_real_type = ada_get_base_type (type);
9030
9031 if (raw_real_type == type)
9032 return type;
9033 else
9034 return to_static_fixed_type (raw_real_type);
9035 }
9036 }
9037
9038 /* In some cases, incomplete and private types require
9039 cross-references that are not resolved as records (for example,
9040 type Foo;
9041 type FooP is access Foo;
9042 V: FooP;
9043 type Foo is array ...;
9044 ). In these cases, since there is no mechanism for producing
9045 cross-references to such types, we instead substitute for FooP a
9046 stub enumeration type that is nowhere resolved, and whose tag is
9047 the name of the actual type. Call these types "non-record stubs". */
9048
9049 /* A type equivalent to TYPE that is not a non-record stub, if one
9050 exists, otherwise TYPE. */
9051
9052 struct type *
9053 ada_check_typedef (struct type *type)
9054 {
9055 if (type == NULL)
9056 return NULL;
9057
9058 /* If our type is an access to an unconstrained array, which is encoded
9059 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9060 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9061 what allows us to distinguish between fat pointers that represent
9062 array types, and fat pointers that represent array access types
9063 (in both cases, the compiler implements them as fat pointers). */
9064 if (ada_is_access_to_unconstrained_array (type))
9065 return type;
9066
9067 type = check_typedef (type);
9068 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9069 || !TYPE_STUB (type)
9070 || TYPE_NAME (type) == NULL)
9071 return type;
9072 else
9073 {
9074 const char *name = TYPE_NAME (type);
9075 struct type *type1 = ada_find_any_type (name);
9076
9077 if (type1 == NULL)
9078 return type;
9079
9080 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9081 stubs pointing to arrays, as we don't create symbols for array
9082 types, only for the typedef-to-array types). If that's the case,
9083 strip the typedef layer. */
9084 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9085 type1 = ada_check_typedef (type1);
9086
9087 return type1;
9088 }
9089 }
9090
9091 /* A value representing the data at VALADDR/ADDRESS as described by
9092 type TYPE0, but with a standard (static-sized) type that correctly
9093 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9094 type, then return VAL0 [this feature is simply to avoid redundant
9095 creation of struct values]. */
9096
9097 static struct value *
9098 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9099 struct value *val0)
9100 {
9101 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9102
9103 if (type == type0 && val0 != NULL)
9104 return val0;
9105
9106 if (VALUE_LVAL (val0) != lval_memory)
9107 {
9108 /* Our value does not live in memory; it could be a convenience
9109 variable, for instance. Create a not_lval value using val0's
9110 contents. */
9111 return value_from_contents (type, value_contents (val0));
9112 }
9113
9114 return value_from_contents_and_address (type, 0, address);
9115 }
9116
9117 /* A value representing VAL, but with a standard (static-sized) type
9118 that correctly describes it. Does not necessarily create a new
9119 value. */
9120
9121 struct value *
9122 ada_to_fixed_value (struct value *val)
9123 {
9124 val = unwrap_value (val);
9125 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9126 return val;
9127 }
9128 \f
9129
9130 /* Attributes */
9131
9132 /* Table mapping attribute numbers to names.
9133 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9134
9135 static const char *attribute_names[] = {
9136 "<?>",
9137
9138 "first",
9139 "last",
9140 "length",
9141 "image",
9142 "max",
9143 "min",
9144 "modulus",
9145 "pos",
9146 "size",
9147 "tag",
9148 "val",
9149 0
9150 };
9151
9152 static const char *
9153 ada_attribute_name (enum exp_opcode n)
9154 {
9155 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9156 return attribute_names[n - OP_ATR_FIRST + 1];
9157 else
9158 return attribute_names[0];
9159 }
9160
9161 /* Evaluate the 'POS attribute applied to ARG. */
9162
9163 static LONGEST
9164 pos_atr (struct value *arg)
9165 {
9166 struct value *val = coerce_ref (arg);
9167 struct type *type = value_type (val);
9168 LONGEST result;
9169
9170 if (!discrete_type_p (type))
9171 error (_("'POS only defined on discrete types"));
9172
9173 if (!discrete_position (type, value_as_long (val), &result))
9174 error (_("enumeration value is invalid: can't find 'POS"));
9175
9176 return result;
9177 }
9178
9179 static struct value *
9180 value_pos_atr (struct type *type, struct value *arg)
9181 {
9182 return value_from_longest (type, pos_atr (arg));
9183 }
9184
9185 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9186
9187 static struct value *
9188 value_val_atr (struct type *type, struct value *arg)
9189 {
9190 if (!discrete_type_p (type))
9191 error (_("'VAL only defined on discrete types"));
9192 if (!integer_type_p (value_type (arg)))
9193 error (_("'VAL requires integral argument"));
9194
9195 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9196 {
9197 long pos = value_as_long (arg);
9198
9199 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9200 error (_("argument to 'VAL out of range"));
9201 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9202 }
9203 else
9204 return value_from_longest (type, value_as_long (arg));
9205 }
9206 \f
9207
9208 /* Evaluation */
9209
9210 /* True if TYPE appears to be an Ada character type.
9211 [At the moment, this is true only for Character and Wide_Character;
9212 It is a heuristic test that could stand improvement]. */
9213
9214 bool
9215 ada_is_character_type (struct type *type)
9216 {
9217 const char *name;
9218
9219 /* If the type code says it's a character, then assume it really is,
9220 and don't check any further. */
9221 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9222 return true;
9223
9224 /* Otherwise, assume it's a character type iff it is a discrete type
9225 with a known character type name. */
9226 name = ada_type_name (type);
9227 return (name != NULL
9228 && (TYPE_CODE (type) == TYPE_CODE_INT
9229 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9230 && (strcmp (name, "character") == 0
9231 || strcmp (name, "wide_character") == 0
9232 || strcmp (name, "wide_wide_character") == 0
9233 || strcmp (name, "unsigned char") == 0));
9234 }
9235
9236 /* True if TYPE appears to be an Ada string type. */
9237
9238 bool
9239 ada_is_string_type (struct type *type)
9240 {
9241 type = ada_check_typedef (type);
9242 if (type != NULL
9243 && TYPE_CODE (type) != TYPE_CODE_PTR
9244 && (ada_is_simple_array_type (type)
9245 || ada_is_array_descriptor_type (type))
9246 && ada_array_arity (type) == 1)
9247 {
9248 struct type *elttype = ada_array_element_type (type, 1);
9249
9250 return ada_is_character_type (elttype);
9251 }
9252 else
9253 return false;
9254 }
9255
9256 /* The compiler sometimes provides a parallel XVS type for a given
9257 PAD type. Normally, it is safe to follow the PAD type directly,
9258 but older versions of the compiler have a bug that causes the offset
9259 of its "F" field to be wrong. Following that field in that case
9260 would lead to incorrect results, but this can be worked around
9261 by ignoring the PAD type and using the associated XVS type instead.
9262
9263 Set to True if the debugger should trust the contents of PAD types.
9264 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9265 static bool trust_pad_over_xvs = true;
9266
9267 /* True if TYPE is a struct type introduced by the compiler to force the
9268 alignment of a value. Such types have a single field with a
9269 distinctive name. */
9270
9271 int
9272 ada_is_aligner_type (struct type *type)
9273 {
9274 type = ada_check_typedef (type);
9275
9276 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9277 return 0;
9278
9279 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9280 && TYPE_NFIELDS (type) == 1
9281 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9282 }
9283
9284 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9285 the parallel type. */
9286
9287 struct type *
9288 ada_get_base_type (struct type *raw_type)
9289 {
9290 struct type *real_type_namer;
9291 struct type *raw_real_type;
9292
9293 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9294 return raw_type;
9295
9296 if (ada_is_aligner_type (raw_type))
9297 /* The encoding specifies that we should always use the aligner type.
9298 So, even if this aligner type has an associated XVS type, we should
9299 simply ignore it.
9300
9301 According to the compiler gurus, an XVS type parallel to an aligner
9302 type may exist because of a stabs limitation. In stabs, aligner
9303 types are empty because the field has a variable-sized type, and
9304 thus cannot actually be used as an aligner type. As a result,
9305 we need the associated parallel XVS type to decode the type.
9306 Since the policy in the compiler is to not change the internal
9307 representation based on the debugging info format, we sometimes
9308 end up having a redundant XVS type parallel to the aligner type. */
9309 return raw_type;
9310
9311 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9312 if (real_type_namer == NULL
9313 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9314 || TYPE_NFIELDS (real_type_namer) != 1)
9315 return raw_type;
9316
9317 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9318 {
9319 /* This is an older encoding form where the base type needs to be
9320 looked up by name. We prefer the newer encoding because it is
9321 more efficient. */
9322 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9323 if (raw_real_type == NULL)
9324 return raw_type;
9325 else
9326 return raw_real_type;
9327 }
9328
9329 /* The field in our XVS type is a reference to the base type. */
9330 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9331 }
9332
9333 /* The type of value designated by TYPE, with all aligners removed. */
9334
9335 struct type *
9336 ada_aligned_type (struct type *type)
9337 {
9338 if (ada_is_aligner_type (type))
9339 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9340 else
9341 return ada_get_base_type (type);
9342 }
9343
9344
9345 /* The address of the aligned value in an object at address VALADDR
9346 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9347
9348 const gdb_byte *
9349 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9350 {
9351 if (ada_is_aligner_type (type))
9352 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9353 valaddr +
9354 TYPE_FIELD_BITPOS (type,
9355 0) / TARGET_CHAR_BIT);
9356 else
9357 return valaddr;
9358 }
9359
9360
9361
9362 /* The printed representation of an enumeration literal with encoded
9363 name NAME. The value is good to the next call of ada_enum_name. */
9364 const char *
9365 ada_enum_name (const char *name)
9366 {
9367 static char *result;
9368 static size_t result_len = 0;
9369 const char *tmp;
9370
9371 /* First, unqualify the enumeration name:
9372 1. Search for the last '.' character. If we find one, then skip
9373 all the preceding characters, the unqualified name starts
9374 right after that dot.
9375 2. Otherwise, we may be debugging on a target where the compiler
9376 translates dots into "__". Search forward for double underscores,
9377 but stop searching when we hit an overloading suffix, which is
9378 of the form "__" followed by digits. */
9379
9380 tmp = strrchr (name, '.');
9381 if (tmp != NULL)
9382 name = tmp + 1;
9383 else
9384 {
9385 while ((tmp = strstr (name, "__")) != NULL)
9386 {
9387 if (isdigit (tmp[2]))
9388 break;
9389 else
9390 name = tmp + 2;
9391 }
9392 }
9393
9394 if (name[0] == 'Q')
9395 {
9396 int v;
9397
9398 if (name[1] == 'U' || name[1] == 'W')
9399 {
9400 if (sscanf (name + 2, "%x", &v) != 1)
9401 return name;
9402 }
9403 else if (((name[1] >= '0' && name[1] <= '9')
9404 || (name[1] >= 'a' && name[1] <= 'z'))
9405 && name[2] == '\0')
9406 {
9407 GROW_VECT (result, result_len, 4);
9408 xsnprintf (result, result_len, "'%c'", name[1]);
9409 return result;
9410 }
9411 else
9412 return name;
9413
9414 GROW_VECT (result, result_len, 16);
9415 if (isascii (v) && isprint (v))
9416 xsnprintf (result, result_len, "'%c'", v);
9417 else if (name[1] == 'U')
9418 xsnprintf (result, result_len, "[\"%02x\"]", v);
9419 else
9420 xsnprintf (result, result_len, "[\"%04x\"]", v);
9421
9422 return result;
9423 }
9424 else
9425 {
9426 tmp = strstr (name, "__");
9427 if (tmp == NULL)
9428 tmp = strstr (name, "$");
9429 if (tmp != NULL)
9430 {
9431 GROW_VECT (result, result_len, tmp - name + 1);
9432 strncpy (result, name, tmp - name);
9433 result[tmp - name] = '\0';
9434 return result;
9435 }
9436
9437 return name;
9438 }
9439 }
9440
9441 /* Evaluate the subexpression of EXP starting at *POS as for
9442 evaluate_type, updating *POS to point just past the evaluated
9443 expression. */
9444
9445 static struct value *
9446 evaluate_subexp_type (struct expression *exp, int *pos)
9447 {
9448 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9449 }
9450
9451 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9452 value it wraps. */
9453
9454 static struct value *
9455 unwrap_value (struct value *val)
9456 {
9457 struct type *type = ada_check_typedef (value_type (val));
9458
9459 if (ada_is_aligner_type (type))
9460 {
9461 struct value *v = ada_value_struct_elt (val, "F", 0);
9462 struct type *val_type = ada_check_typedef (value_type (v));
9463
9464 if (ada_type_name (val_type) == NULL)
9465 TYPE_NAME (val_type) = ada_type_name (type);
9466
9467 return unwrap_value (v);
9468 }
9469 else
9470 {
9471 struct type *raw_real_type =
9472 ada_check_typedef (ada_get_base_type (type));
9473
9474 /* If there is no parallel XVS or XVE type, then the value is
9475 already unwrapped. Return it without further modification. */
9476 if ((type == raw_real_type)
9477 && ada_find_parallel_type (type, "___XVE") == NULL)
9478 return val;
9479
9480 return
9481 coerce_unspec_val_to_type
9482 (val, ada_to_fixed_type (raw_real_type, 0,
9483 value_address (val),
9484 NULL, 1));
9485 }
9486 }
9487
9488 static struct value *
9489 cast_from_fixed (struct type *type, struct value *arg)
9490 {
9491 struct value *scale = ada_scaling_factor (value_type (arg));
9492 arg = value_cast (value_type (scale), arg);
9493
9494 arg = value_binop (arg, scale, BINOP_MUL);
9495 return value_cast (type, arg);
9496 }
9497
9498 static struct value *
9499 cast_to_fixed (struct type *type, struct value *arg)
9500 {
9501 if (type == value_type (arg))
9502 return arg;
9503
9504 struct value *scale = ada_scaling_factor (type);
9505 if (ada_is_fixed_point_type (value_type (arg)))
9506 arg = cast_from_fixed (value_type (scale), arg);
9507 else
9508 arg = value_cast (value_type (scale), arg);
9509
9510 arg = value_binop (arg, scale, BINOP_DIV);
9511 return value_cast (type, arg);
9512 }
9513
9514 /* Given two array types T1 and T2, return nonzero iff both arrays
9515 contain the same number of elements. */
9516
9517 static int
9518 ada_same_array_size_p (struct type *t1, struct type *t2)
9519 {
9520 LONGEST lo1, hi1, lo2, hi2;
9521
9522 /* Get the array bounds in order to verify that the size of
9523 the two arrays match. */
9524 if (!get_array_bounds (t1, &lo1, &hi1)
9525 || !get_array_bounds (t2, &lo2, &hi2))
9526 error (_("unable to determine array bounds"));
9527
9528 /* To make things easier for size comparison, normalize a bit
9529 the case of empty arrays by making sure that the difference
9530 between upper bound and lower bound is always -1. */
9531 if (lo1 > hi1)
9532 hi1 = lo1 - 1;
9533 if (lo2 > hi2)
9534 hi2 = lo2 - 1;
9535
9536 return (hi1 - lo1 == hi2 - lo2);
9537 }
9538
9539 /* Assuming that VAL is an array of integrals, and TYPE represents
9540 an array with the same number of elements, but with wider integral
9541 elements, return an array "casted" to TYPE. In practice, this
9542 means that the returned array is built by casting each element
9543 of the original array into TYPE's (wider) element type. */
9544
9545 static struct value *
9546 ada_promote_array_of_integrals (struct type *type, struct value *val)
9547 {
9548 struct type *elt_type = TYPE_TARGET_TYPE (type);
9549 LONGEST lo, hi;
9550 struct value *res;
9551 LONGEST i;
9552
9553 /* Verify that both val and type are arrays of scalars, and
9554 that the size of val's elements is smaller than the size
9555 of type's element. */
9556 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9557 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9558 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9559 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9560 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9561 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9562
9563 if (!get_array_bounds (type, &lo, &hi))
9564 error (_("unable to determine array bounds"));
9565
9566 res = allocate_value (type);
9567
9568 /* Promote each array element. */
9569 for (i = 0; i < hi - lo + 1; i++)
9570 {
9571 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9572
9573 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9574 value_contents_all (elt), TYPE_LENGTH (elt_type));
9575 }
9576
9577 return res;
9578 }
9579
9580 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9581 return the converted value. */
9582
9583 static struct value *
9584 coerce_for_assign (struct type *type, struct value *val)
9585 {
9586 struct type *type2 = value_type (val);
9587
9588 if (type == type2)
9589 return val;
9590
9591 type2 = ada_check_typedef (type2);
9592 type = ada_check_typedef (type);
9593
9594 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9595 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9596 {
9597 val = ada_value_ind (val);
9598 type2 = value_type (val);
9599 }
9600
9601 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9602 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9603 {
9604 if (!ada_same_array_size_p (type, type2))
9605 error (_("cannot assign arrays of different length"));
9606
9607 if (is_integral_type (TYPE_TARGET_TYPE (type))
9608 && is_integral_type (TYPE_TARGET_TYPE (type2))
9609 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9610 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9611 {
9612 /* Allow implicit promotion of the array elements to
9613 a wider type. */
9614 return ada_promote_array_of_integrals (type, val);
9615 }
9616
9617 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9618 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9619 error (_("Incompatible types in assignment"));
9620 deprecated_set_value_type (val, type);
9621 }
9622 return val;
9623 }
9624
9625 static struct value *
9626 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9627 {
9628 struct value *val;
9629 struct type *type1, *type2;
9630 LONGEST v, v1, v2;
9631
9632 arg1 = coerce_ref (arg1);
9633 arg2 = coerce_ref (arg2);
9634 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9635 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9636
9637 if (TYPE_CODE (type1) != TYPE_CODE_INT
9638 || TYPE_CODE (type2) != TYPE_CODE_INT)
9639 return value_binop (arg1, arg2, op);
9640
9641 switch (op)
9642 {
9643 case BINOP_MOD:
9644 case BINOP_DIV:
9645 case BINOP_REM:
9646 break;
9647 default:
9648 return value_binop (arg1, arg2, op);
9649 }
9650
9651 v2 = value_as_long (arg2);
9652 if (v2 == 0)
9653 error (_("second operand of %s must not be zero."), op_string (op));
9654
9655 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9656 return value_binop (arg1, arg2, op);
9657
9658 v1 = value_as_long (arg1);
9659 switch (op)
9660 {
9661 case BINOP_DIV:
9662 v = v1 / v2;
9663 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9664 v += v > 0 ? -1 : 1;
9665 break;
9666 case BINOP_REM:
9667 v = v1 % v2;
9668 if (v * v1 < 0)
9669 v -= v2;
9670 break;
9671 default:
9672 /* Should not reach this point. */
9673 v = 0;
9674 }
9675
9676 val = allocate_value (type1);
9677 store_unsigned_integer (value_contents_raw (val),
9678 TYPE_LENGTH (value_type (val)),
9679 type_byte_order (type1), v);
9680 return val;
9681 }
9682
9683 static int
9684 ada_value_equal (struct value *arg1, struct value *arg2)
9685 {
9686 if (ada_is_direct_array_type (value_type (arg1))
9687 || ada_is_direct_array_type (value_type (arg2)))
9688 {
9689 struct type *arg1_type, *arg2_type;
9690
9691 /* Automatically dereference any array reference before
9692 we attempt to perform the comparison. */
9693 arg1 = ada_coerce_ref (arg1);
9694 arg2 = ada_coerce_ref (arg2);
9695
9696 arg1 = ada_coerce_to_simple_array (arg1);
9697 arg2 = ada_coerce_to_simple_array (arg2);
9698
9699 arg1_type = ada_check_typedef (value_type (arg1));
9700 arg2_type = ada_check_typedef (value_type (arg2));
9701
9702 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9703 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9704 error (_("Attempt to compare array with non-array"));
9705 /* FIXME: The following works only for types whose
9706 representations use all bits (no padding or undefined bits)
9707 and do not have user-defined equality. */
9708 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9709 && memcmp (value_contents (arg1), value_contents (arg2),
9710 TYPE_LENGTH (arg1_type)) == 0);
9711 }
9712 return value_equal (arg1, arg2);
9713 }
9714
9715 /* Total number of component associations in the aggregate starting at
9716 index PC in EXP. Assumes that index PC is the start of an
9717 OP_AGGREGATE. */
9718
9719 static int
9720 num_component_specs (struct expression *exp, int pc)
9721 {
9722 int n, m, i;
9723
9724 m = exp->elts[pc + 1].longconst;
9725 pc += 3;
9726 n = 0;
9727 for (i = 0; i < m; i += 1)
9728 {
9729 switch (exp->elts[pc].opcode)
9730 {
9731 default:
9732 n += 1;
9733 break;
9734 case OP_CHOICES:
9735 n += exp->elts[pc + 1].longconst;
9736 break;
9737 }
9738 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9739 }
9740 return n;
9741 }
9742
9743 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9744 component of LHS (a simple array or a record), updating *POS past
9745 the expression, assuming that LHS is contained in CONTAINER. Does
9746 not modify the inferior's memory, nor does it modify LHS (unless
9747 LHS == CONTAINER). */
9748
9749 static void
9750 assign_component (struct value *container, struct value *lhs, LONGEST index,
9751 struct expression *exp, int *pos)
9752 {
9753 struct value *mark = value_mark ();
9754 struct value *elt;
9755 struct type *lhs_type = check_typedef (value_type (lhs));
9756
9757 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9758 {
9759 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9760 struct value *index_val = value_from_longest (index_type, index);
9761
9762 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9763 }
9764 else
9765 {
9766 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9767 elt = ada_to_fixed_value (elt);
9768 }
9769
9770 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9771 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9772 else
9773 value_assign_to_component (container, elt,
9774 ada_evaluate_subexp (NULL, exp, pos,
9775 EVAL_NORMAL));
9776
9777 value_free_to_mark (mark);
9778 }
9779
9780 /* Assuming that LHS represents an lvalue having a record or array
9781 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9782 of that aggregate's value to LHS, advancing *POS past the
9783 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9784 lvalue containing LHS (possibly LHS itself). Does not modify
9785 the inferior's memory, nor does it modify the contents of
9786 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9787
9788 static struct value *
9789 assign_aggregate (struct value *container,
9790 struct value *lhs, struct expression *exp,
9791 int *pos, enum noside noside)
9792 {
9793 struct type *lhs_type;
9794 int n = exp->elts[*pos+1].longconst;
9795 LONGEST low_index, high_index;
9796 int num_specs;
9797 LONGEST *indices;
9798 int max_indices, num_indices;
9799 int i;
9800
9801 *pos += 3;
9802 if (noside != EVAL_NORMAL)
9803 {
9804 for (i = 0; i < n; i += 1)
9805 ada_evaluate_subexp (NULL, exp, pos, noside);
9806 return container;
9807 }
9808
9809 container = ada_coerce_ref (container);
9810 if (ada_is_direct_array_type (value_type (container)))
9811 container = ada_coerce_to_simple_array (container);
9812 lhs = ada_coerce_ref (lhs);
9813 if (!deprecated_value_modifiable (lhs))
9814 error (_("Left operand of assignment is not a modifiable lvalue."));
9815
9816 lhs_type = check_typedef (value_type (lhs));
9817 if (ada_is_direct_array_type (lhs_type))
9818 {
9819 lhs = ada_coerce_to_simple_array (lhs);
9820 lhs_type = check_typedef (value_type (lhs));
9821 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9822 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9823 }
9824 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9825 {
9826 low_index = 0;
9827 high_index = num_visible_fields (lhs_type) - 1;
9828 }
9829 else
9830 error (_("Left-hand side must be array or record."));
9831
9832 num_specs = num_component_specs (exp, *pos - 3);
9833 max_indices = 4 * num_specs + 4;
9834 indices = XALLOCAVEC (LONGEST, max_indices);
9835 indices[0] = indices[1] = low_index - 1;
9836 indices[2] = indices[3] = high_index + 1;
9837 num_indices = 4;
9838
9839 for (i = 0; i < n; i += 1)
9840 {
9841 switch (exp->elts[*pos].opcode)
9842 {
9843 case OP_CHOICES:
9844 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9845 &num_indices, max_indices,
9846 low_index, high_index);
9847 break;
9848 case OP_POSITIONAL:
9849 aggregate_assign_positional (container, lhs, exp, pos, indices,
9850 &num_indices, max_indices,
9851 low_index, high_index);
9852 break;
9853 case OP_OTHERS:
9854 if (i != n-1)
9855 error (_("Misplaced 'others' clause"));
9856 aggregate_assign_others (container, lhs, exp, pos, indices,
9857 num_indices, low_index, high_index);
9858 break;
9859 default:
9860 error (_("Internal error: bad aggregate clause"));
9861 }
9862 }
9863
9864 return container;
9865 }
9866
9867 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9868 construct at *POS, updating *POS past the construct, given that
9869 the positions are relative to lower bound LOW, where HIGH is the
9870 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9871 updating *NUM_INDICES as needed. CONTAINER is as for
9872 assign_aggregate. */
9873 static void
9874 aggregate_assign_positional (struct value *container,
9875 struct value *lhs, struct expression *exp,
9876 int *pos, LONGEST *indices, int *num_indices,
9877 int max_indices, LONGEST low, LONGEST high)
9878 {
9879 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9880
9881 if (ind - 1 == high)
9882 warning (_("Extra components in aggregate ignored."));
9883 if (ind <= high)
9884 {
9885 add_component_interval (ind, ind, indices, num_indices, max_indices);
9886 *pos += 3;
9887 assign_component (container, lhs, ind, exp, pos);
9888 }
9889 else
9890 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9891 }
9892
9893 /* Assign into the components of LHS indexed by the OP_CHOICES
9894 construct at *POS, updating *POS past the construct, given that
9895 the allowable indices are LOW..HIGH. Record the indices assigned
9896 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9897 needed. CONTAINER is as for assign_aggregate. */
9898 static void
9899 aggregate_assign_from_choices (struct value *container,
9900 struct value *lhs, struct expression *exp,
9901 int *pos, LONGEST *indices, int *num_indices,
9902 int max_indices, LONGEST low, LONGEST high)
9903 {
9904 int j;
9905 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9906 int choice_pos, expr_pc;
9907 int is_array = ada_is_direct_array_type (value_type (lhs));
9908
9909 choice_pos = *pos += 3;
9910
9911 for (j = 0; j < n_choices; j += 1)
9912 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9913 expr_pc = *pos;
9914 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9915
9916 for (j = 0; j < n_choices; j += 1)
9917 {
9918 LONGEST lower, upper;
9919 enum exp_opcode op = exp->elts[choice_pos].opcode;
9920
9921 if (op == OP_DISCRETE_RANGE)
9922 {
9923 choice_pos += 1;
9924 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9925 EVAL_NORMAL));
9926 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9927 EVAL_NORMAL));
9928 }
9929 else if (is_array)
9930 {
9931 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9932 EVAL_NORMAL));
9933 upper = lower;
9934 }
9935 else
9936 {
9937 int ind;
9938 const char *name;
9939
9940 switch (op)
9941 {
9942 case OP_NAME:
9943 name = &exp->elts[choice_pos + 2].string;
9944 break;
9945 case OP_VAR_VALUE:
9946 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9947 break;
9948 default:
9949 error (_("Invalid record component association."));
9950 }
9951 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9952 ind = 0;
9953 if (! find_struct_field (name, value_type (lhs), 0,
9954 NULL, NULL, NULL, NULL, &ind))
9955 error (_("Unknown component name: %s."), name);
9956 lower = upper = ind;
9957 }
9958
9959 if (lower <= upper && (lower < low || upper > high))
9960 error (_("Index in component association out of bounds."));
9961
9962 add_component_interval (lower, upper, indices, num_indices,
9963 max_indices);
9964 while (lower <= upper)
9965 {
9966 int pos1;
9967
9968 pos1 = expr_pc;
9969 assign_component (container, lhs, lower, exp, &pos1);
9970 lower += 1;
9971 }
9972 }
9973 }
9974
9975 /* Assign the value of the expression in the OP_OTHERS construct in
9976 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9977 have not been previously assigned. The index intervals already assigned
9978 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9979 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9980 static void
9981 aggregate_assign_others (struct value *container,
9982 struct value *lhs, struct expression *exp,
9983 int *pos, LONGEST *indices, int num_indices,
9984 LONGEST low, LONGEST high)
9985 {
9986 int i;
9987 int expr_pc = *pos + 1;
9988
9989 for (i = 0; i < num_indices - 2; i += 2)
9990 {
9991 LONGEST ind;
9992
9993 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9994 {
9995 int localpos;
9996
9997 localpos = expr_pc;
9998 assign_component (container, lhs, ind, exp, &localpos);
9999 }
10000 }
10001 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10002 }
10003
10004 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10005 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10006 modifying *SIZE as needed. It is an error if *SIZE exceeds
10007 MAX_SIZE. The resulting intervals do not overlap. */
10008 static void
10009 add_component_interval (LONGEST low, LONGEST high,
10010 LONGEST* indices, int *size, int max_size)
10011 {
10012 int i, j;
10013
10014 for (i = 0; i < *size; i += 2) {
10015 if (high >= indices[i] && low <= indices[i + 1])
10016 {
10017 int kh;
10018
10019 for (kh = i + 2; kh < *size; kh += 2)
10020 if (high < indices[kh])
10021 break;
10022 if (low < indices[i])
10023 indices[i] = low;
10024 indices[i + 1] = indices[kh - 1];
10025 if (high > indices[i + 1])
10026 indices[i + 1] = high;
10027 memcpy (indices + i + 2, indices + kh, *size - kh);
10028 *size -= kh - i - 2;
10029 return;
10030 }
10031 else if (high < indices[i])
10032 break;
10033 }
10034
10035 if (*size == max_size)
10036 error (_("Internal error: miscounted aggregate components."));
10037 *size += 2;
10038 for (j = *size-1; j >= i+2; j -= 1)
10039 indices[j] = indices[j - 2];
10040 indices[i] = low;
10041 indices[i + 1] = high;
10042 }
10043
10044 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10045 is different. */
10046
10047 static struct value *
10048 ada_value_cast (struct type *type, struct value *arg2)
10049 {
10050 if (type == ada_check_typedef (value_type (arg2)))
10051 return arg2;
10052
10053 if (ada_is_fixed_point_type (type))
10054 return cast_to_fixed (type, arg2);
10055
10056 if (ada_is_fixed_point_type (value_type (arg2)))
10057 return cast_from_fixed (type, arg2);
10058
10059 return value_cast (type, arg2);
10060 }
10061
10062 /* Evaluating Ada expressions, and printing their result.
10063 ------------------------------------------------------
10064
10065 1. Introduction:
10066 ----------------
10067
10068 We usually evaluate an Ada expression in order to print its value.
10069 We also evaluate an expression in order to print its type, which
10070 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10071 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10072 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10073 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10074 similar.
10075
10076 Evaluating expressions is a little more complicated for Ada entities
10077 than it is for entities in languages such as C. The main reason for
10078 this is that Ada provides types whose definition might be dynamic.
10079 One example of such types is variant records. Or another example
10080 would be an array whose bounds can only be known at run time.
10081
10082 The following description is a general guide as to what should be
10083 done (and what should NOT be done) in order to evaluate an expression
10084 involving such types, and when. This does not cover how the semantic
10085 information is encoded by GNAT as this is covered separatly. For the
10086 document used as the reference for the GNAT encoding, see exp_dbug.ads
10087 in the GNAT sources.
10088
10089 Ideally, we should embed each part of this description next to its
10090 associated code. Unfortunately, the amount of code is so vast right
10091 now that it's hard to see whether the code handling a particular
10092 situation might be duplicated or not. One day, when the code is
10093 cleaned up, this guide might become redundant with the comments
10094 inserted in the code, and we might want to remove it.
10095
10096 2. ``Fixing'' an Entity, the Simple Case:
10097 -----------------------------------------
10098
10099 When evaluating Ada expressions, the tricky issue is that they may
10100 reference entities whose type contents and size are not statically
10101 known. Consider for instance a variant record:
10102
10103 type Rec (Empty : Boolean := True) is record
10104 case Empty is
10105 when True => null;
10106 when False => Value : Integer;
10107 end case;
10108 end record;
10109 Yes : Rec := (Empty => False, Value => 1);
10110 No : Rec := (empty => True);
10111
10112 The size and contents of that record depends on the value of the
10113 descriminant (Rec.Empty). At this point, neither the debugging
10114 information nor the associated type structure in GDB are able to
10115 express such dynamic types. So what the debugger does is to create
10116 "fixed" versions of the type that applies to the specific object.
10117 We also informally refer to this operation as "fixing" an object,
10118 which means creating its associated fixed type.
10119
10120 Example: when printing the value of variable "Yes" above, its fixed
10121 type would look like this:
10122
10123 type Rec is record
10124 Empty : Boolean;
10125 Value : Integer;
10126 end record;
10127
10128 On the other hand, if we printed the value of "No", its fixed type
10129 would become:
10130
10131 type Rec is record
10132 Empty : Boolean;
10133 end record;
10134
10135 Things become a little more complicated when trying to fix an entity
10136 with a dynamic type that directly contains another dynamic type,
10137 such as an array of variant records, for instance. There are
10138 two possible cases: Arrays, and records.
10139
10140 3. ``Fixing'' Arrays:
10141 ---------------------
10142
10143 The type structure in GDB describes an array in terms of its bounds,
10144 and the type of its elements. By design, all elements in the array
10145 have the same type and we cannot represent an array of variant elements
10146 using the current type structure in GDB. When fixing an array,
10147 we cannot fix the array element, as we would potentially need one
10148 fixed type per element of the array. As a result, the best we can do
10149 when fixing an array is to produce an array whose bounds and size
10150 are correct (allowing us to read it from memory), but without having
10151 touched its element type. Fixing each element will be done later,
10152 when (if) necessary.
10153
10154 Arrays are a little simpler to handle than records, because the same
10155 amount of memory is allocated for each element of the array, even if
10156 the amount of space actually used by each element differs from element
10157 to element. Consider for instance the following array of type Rec:
10158
10159 type Rec_Array is array (1 .. 2) of Rec;
10160
10161 The actual amount of memory occupied by each element might be different
10162 from element to element, depending on the value of their discriminant.
10163 But the amount of space reserved for each element in the array remains
10164 fixed regardless. So we simply need to compute that size using
10165 the debugging information available, from which we can then determine
10166 the array size (we multiply the number of elements of the array by
10167 the size of each element).
10168
10169 The simplest case is when we have an array of a constrained element
10170 type. For instance, consider the following type declarations:
10171
10172 type Bounded_String (Max_Size : Integer) is
10173 Length : Integer;
10174 Buffer : String (1 .. Max_Size);
10175 end record;
10176 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10177
10178 In this case, the compiler describes the array as an array of
10179 variable-size elements (identified by its XVS suffix) for which
10180 the size can be read in the parallel XVZ variable.
10181
10182 In the case of an array of an unconstrained element type, the compiler
10183 wraps the array element inside a private PAD type. This type should not
10184 be shown to the user, and must be "unwrap"'ed before printing. Note
10185 that we also use the adjective "aligner" in our code to designate
10186 these wrapper types.
10187
10188 In some cases, the size allocated for each element is statically
10189 known. In that case, the PAD type already has the correct size,
10190 and the array element should remain unfixed.
10191
10192 But there are cases when this size is not statically known.
10193 For instance, assuming that "Five" is an integer variable:
10194
10195 type Dynamic is array (1 .. Five) of Integer;
10196 type Wrapper (Has_Length : Boolean := False) is record
10197 Data : Dynamic;
10198 case Has_Length is
10199 when True => Length : Integer;
10200 when False => null;
10201 end case;
10202 end record;
10203 type Wrapper_Array is array (1 .. 2) of Wrapper;
10204
10205 Hello : Wrapper_Array := (others => (Has_Length => True,
10206 Data => (others => 17),
10207 Length => 1));
10208
10209
10210 The debugging info would describe variable Hello as being an
10211 array of a PAD type. The size of that PAD type is not statically
10212 known, but can be determined using a parallel XVZ variable.
10213 In that case, a copy of the PAD type with the correct size should
10214 be used for the fixed array.
10215
10216 3. ``Fixing'' record type objects:
10217 ----------------------------------
10218
10219 Things are slightly different from arrays in the case of dynamic
10220 record types. In this case, in order to compute the associated
10221 fixed type, we need to determine the size and offset of each of
10222 its components. This, in turn, requires us to compute the fixed
10223 type of each of these components.
10224
10225 Consider for instance the example:
10226
10227 type Bounded_String (Max_Size : Natural) is record
10228 Str : String (1 .. Max_Size);
10229 Length : Natural;
10230 end record;
10231 My_String : Bounded_String (Max_Size => 10);
10232
10233 In that case, the position of field "Length" depends on the size
10234 of field Str, which itself depends on the value of the Max_Size
10235 discriminant. In order to fix the type of variable My_String,
10236 we need to fix the type of field Str. Therefore, fixing a variant
10237 record requires us to fix each of its components.
10238
10239 However, if a component does not have a dynamic size, the component
10240 should not be fixed. In particular, fields that use a PAD type
10241 should not fixed. Here is an example where this might happen
10242 (assuming type Rec above):
10243
10244 type Container (Big : Boolean) is record
10245 First : Rec;
10246 After : Integer;
10247 case Big is
10248 when True => Another : Integer;
10249 when False => null;
10250 end case;
10251 end record;
10252 My_Container : Container := (Big => False,
10253 First => (Empty => True),
10254 After => 42);
10255
10256 In that example, the compiler creates a PAD type for component First,
10257 whose size is constant, and then positions the component After just
10258 right after it. The offset of component After is therefore constant
10259 in this case.
10260
10261 The debugger computes the position of each field based on an algorithm
10262 that uses, among other things, the actual position and size of the field
10263 preceding it. Let's now imagine that the user is trying to print
10264 the value of My_Container. If the type fixing was recursive, we would
10265 end up computing the offset of field After based on the size of the
10266 fixed version of field First. And since in our example First has
10267 only one actual field, the size of the fixed type is actually smaller
10268 than the amount of space allocated to that field, and thus we would
10269 compute the wrong offset of field After.
10270
10271 To make things more complicated, we need to watch out for dynamic
10272 components of variant records (identified by the ___XVL suffix in
10273 the component name). Even if the target type is a PAD type, the size
10274 of that type might not be statically known. So the PAD type needs
10275 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10276 we might end up with the wrong size for our component. This can be
10277 observed with the following type declarations:
10278
10279 type Octal is new Integer range 0 .. 7;
10280 type Octal_Array is array (Positive range <>) of Octal;
10281 pragma Pack (Octal_Array);
10282
10283 type Octal_Buffer (Size : Positive) is record
10284 Buffer : Octal_Array (1 .. Size);
10285 Length : Integer;
10286 end record;
10287
10288 In that case, Buffer is a PAD type whose size is unset and needs
10289 to be computed by fixing the unwrapped type.
10290
10291 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10292 ----------------------------------------------------------
10293
10294 Lastly, when should the sub-elements of an entity that remained unfixed
10295 thus far, be actually fixed?
10296
10297 The answer is: Only when referencing that element. For instance
10298 when selecting one component of a record, this specific component
10299 should be fixed at that point in time. Or when printing the value
10300 of a record, each component should be fixed before its value gets
10301 printed. Similarly for arrays, the element of the array should be
10302 fixed when printing each element of the array, or when extracting
10303 one element out of that array. On the other hand, fixing should
10304 not be performed on the elements when taking a slice of an array!
10305
10306 Note that one of the side effects of miscomputing the offset and
10307 size of each field is that we end up also miscomputing the size
10308 of the containing type. This can have adverse results when computing
10309 the value of an entity. GDB fetches the value of an entity based
10310 on the size of its type, and thus a wrong size causes GDB to fetch
10311 the wrong amount of memory. In the case where the computed size is
10312 too small, GDB fetches too little data to print the value of our
10313 entity. Results in this case are unpredictable, as we usually read
10314 past the buffer containing the data =:-o. */
10315
10316 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10317 for that subexpression cast to TO_TYPE. Advance *POS over the
10318 subexpression. */
10319
10320 static value *
10321 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10322 enum noside noside, struct type *to_type)
10323 {
10324 int pc = *pos;
10325
10326 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10327 || exp->elts[pc].opcode == OP_VAR_VALUE)
10328 {
10329 (*pos) += 4;
10330
10331 value *val;
10332 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10333 {
10334 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10335 return value_zero (to_type, not_lval);
10336
10337 val = evaluate_var_msym_value (noside,
10338 exp->elts[pc + 1].objfile,
10339 exp->elts[pc + 2].msymbol);
10340 }
10341 else
10342 val = evaluate_var_value (noside,
10343 exp->elts[pc + 1].block,
10344 exp->elts[pc + 2].symbol);
10345
10346 if (noside == EVAL_SKIP)
10347 return eval_skip_value (exp);
10348
10349 val = ada_value_cast (to_type, val);
10350
10351 /* Follow the Ada language semantics that do not allow taking
10352 an address of the result of a cast (view conversion in Ada). */
10353 if (VALUE_LVAL (val) == lval_memory)
10354 {
10355 if (value_lazy (val))
10356 value_fetch_lazy (val);
10357 VALUE_LVAL (val) = not_lval;
10358 }
10359 return val;
10360 }
10361
10362 value *val = evaluate_subexp (to_type, exp, pos, noside);
10363 if (noside == EVAL_SKIP)
10364 return eval_skip_value (exp);
10365 return ada_value_cast (to_type, val);
10366 }
10367
10368 /* Implement the evaluate_exp routine in the exp_descriptor structure
10369 for the Ada language. */
10370
10371 static struct value *
10372 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10373 int *pos, enum noside noside)
10374 {
10375 enum exp_opcode op;
10376 int tem;
10377 int pc;
10378 int preeval_pos;
10379 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10380 struct type *type;
10381 int nargs, oplen;
10382 struct value **argvec;
10383
10384 pc = *pos;
10385 *pos += 1;
10386 op = exp->elts[pc].opcode;
10387
10388 switch (op)
10389 {
10390 default:
10391 *pos -= 1;
10392 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10393
10394 if (noside == EVAL_NORMAL)
10395 arg1 = unwrap_value (arg1);
10396
10397 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10398 then we need to perform the conversion manually, because
10399 evaluate_subexp_standard doesn't do it. This conversion is
10400 necessary in Ada because the different kinds of float/fixed
10401 types in Ada have different representations.
10402
10403 Similarly, we need to perform the conversion from OP_LONG
10404 ourselves. */
10405 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10406 arg1 = ada_value_cast (expect_type, arg1);
10407
10408 return arg1;
10409
10410 case OP_STRING:
10411 {
10412 struct value *result;
10413
10414 *pos -= 1;
10415 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10416 /* The result type will have code OP_STRING, bashed there from
10417 OP_ARRAY. Bash it back. */
10418 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10419 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10420 return result;
10421 }
10422
10423 case UNOP_CAST:
10424 (*pos) += 2;
10425 type = exp->elts[pc + 1].type;
10426 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10427
10428 case UNOP_QUAL:
10429 (*pos) += 2;
10430 type = exp->elts[pc + 1].type;
10431 return ada_evaluate_subexp (type, exp, pos, noside);
10432
10433 case BINOP_ASSIGN:
10434 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10435 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10436 {
10437 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10438 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10439 return arg1;
10440 return ada_value_assign (arg1, arg1);
10441 }
10442 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10443 except if the lhs of our assignment is a convenience variable.
10444 In the case of assigning to a convenience variable, the lhs
10445 should be exactly the result of the evaluation of the rhs. */
10446 type = value_type (arg1);
10447 if (VALUE_LVAL (arg1) == lval_internalvar)
10448 type = NULL;
10449 arg2 = evaluate_subexp (type, exp, pos, noside);
10450 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10451 return arg1;
10452 if (VALUE_LVAL (arg1) == lval_internalvar)
10453 {
10454 /* Nothing. */
10455 }
10456 else if (ada_is_fixed_point_type (value_type (arg1)))
10457 arg2 = cast_to_fixed (value_type (arg1), arg2);
10458 else if (ada_is_fixed_point_type (value_type (arg2)))
10459 error
10460 (_("Fixed-point values must be assigned to fixed-point variables"));
10461 else
10462 arg2 = coerce_for_assign (value_type (arg1), arg2);
10463 return ada_value_assign (arg1, arg2);
10464
10465 case BINOP_ADD:
10466 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10467 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10468 if (noside == EVAL_SKIP)
10469 goto nosideret;
10470 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10471 return (value_from_longest
10472 (value_type (arg1),
10473 value_as_long (arg1) + value_as_long (arg2)));
10474 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10475 return (value_from_longest
10476 (value_type (arg2),
10477 value_as_long (arg1) + value_as_long (arg2)));
10478 if ((ada_is_fixed_point_type (value_type (arg1))
10479 || ada_is_fixed_point_type (value_type (arg2)))
10480 && value_type (arg1) != value_type (arg2))
10481 error (_("Operands of fixed-point addition must have the same type"));
10482 /* Do the addition, and cast the result to the type of the first
10483 argument. We cannot cast the result to a reference type, so if
10484 ARG1 is a reference type, find its underlying type. */
10485 type = value_type (arg1);
10486 while (TYPE_CODE (type) == TYPE_CODE_REF)
10487 type = TYPE_TARGET_TYPE (type);
10488 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10489 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10490
10491 case BINOP_SUB:
10492 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10493 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10494 if (noside == EVAL_SKIP)
10495 goto nosideret;
10496 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10497 return (value_from_longest
10498 (value_type (arg1),
10499 value_as_long (arg1) - value_as_long (arg2)));
10500 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10501 return (value_from_longest
10502 (value_type (arg2),
10503 value_as_long (arg1) - value_as_long (arg2)));
10504 if ((ada_is_fixed_point_type (value_type (arg1))
10505 || ada_is_fixed_point_type (value_type (arg2)))
10506 && value_type (arg1) != value_type (arg2))
10507 error (_("Operands of fixed-point subtraction "
10508 "must have the same type"));
10509 /* Do the substraction, and cast the result to the type of the first
10510 argument. We cannot cast the result to a reference type, so if
10511 ARG1 is a reference type, find its underlying type. */
10512 type = value_type (arg1);
10513 while (TYPE_CODE (type) == TYPE_CODE_REF)
10514 type = TYPE_TARGET_TYPE (type);
10515 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10516 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10517
10518 case BINOP_MUL:
10519 case BINOP_DIV:
10520 case BINOP_REM:
10521 case BINOP_MOD:
10522 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10523 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10524 if (noside == EVAL_SKIP)
10525 goto nosideret;
10526 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10527 {
10528 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10529 return value_zero (value_type (arg1), not_lval);
10530 }
10531 else
10532 {
10533 type = builtin_type (exp->gdbarch)->builtin_double;
10534 if (ada_is_fixed_point_type (value_type (arg1)))
10535 arg1 = cast_from_fixed (type, arg1);
10536 if (ada_is_fixed_point_type (value_type (arg2)))
10537 arg2 = cast_from_fixed (type, arg2);
10538 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10539 return ada_value_binop (arg1, arg2, op);
10540 }
10541
10542 case BINOP_EQUAL:
10543 case BINOP_NOTEQUAL:
10544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10545 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10546 if (noside == EVAL_SKIP)
10547 goto nosideret;
10548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10549 tem = 0;
10550 else
10551 {
10552 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10553 tem = ada_value_equal (arg1, arg2);
10554 }
10555 if (op == BINOP_NOTEQUAL)
10556 tem = !tem;
10557 type = language_bool_type (exp->language_defn, exp->gdbarch);
10558 return value_from_longest (type, (LONGEST) tem);
10559
10560 case UNOP_NEG:
10561 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10562 if (noside == EVAL_SKIP)
10563 goto nosideret;
10564 else if (ada_is_fixed_point_type (value_type (arg1)))
10565 return value_cast (value_type (arg1), value_neg (arg1));
10566 else
10567 {
10568 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10569 return value_neg (arg1);
10570 }
10571
10572 case BINOP_LOGICAL_AND:
10573 case BINOP_LOGICAL_OR:
10574 case UNOP_LOGICAL_NOT:
10575 {
10576 struct value *val;
10577
10578 *pos -= 1;
10579 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10580 type = language_bool_type (exp->language_defn, exp->gdbarch);
10581 return value_cast (type, val);
10582 }
10583
10584 case BINOP_BITWISE_AND:
10585 case BINOP_BITWISE_IOR:
10586 case BINOP_BITWISE_XOR:
10587 {
10588 struct value *val;
10589
10590 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10591 *pos = pc;
10592 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10593
10594 return value_cast (value_type (arg1), val);
10595 }
10596
10597 case OP_VAR_VALUE:
10598 *pos -= 1;
10599
10600 if (noside == EVAL_SKIP)
10601 {
10602 *pos += 4;
10603 goto nosideret;
10604 }
10605
10606 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10607 /* Only encountered when an unresolved symbol occurs in a
10608 context other than a function call, in which case, it is
10609 invalid. */
10610 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10611 exp->elts[pc + 2].symbol->print_name ());
10612
10613 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10614 {
10615 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10616 /* Check to see if this is a tagged type. We also need to handle
10617 the case where the type is a reference to a tagged type, but
10618 we have to be careful to exclude pointers to tagged types.
10619 The latter should be shown as usual (as a pointer), whereas
10620 a reference should mostly be transparent to the user. */
10621 if (ada_is_tagged_type (type, 0)
10622 || (TYPE_CODE (type) == TYPE_CODE_REF
10623 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10624 {
10625 /* Tagged types are a little special in the fact that the real
10626 type is dynamic and can only be determined by inspecting the
10627 object's tag. This means that we need to get the object's
10628 value first (EVAL_NORMAL) and then extract the actual object
10629 type from its tag.
10630
10631 Note that we cannot skip the final step where we extract
10632 the object type from its tag, because the EVAL_NORMAL phase
10633 results in dynamic components being resolved into fixed ones.
10634 This can cause problems when trying to print the type
10635 description of tagged types whose parent has a dynamic size:
10636 We use the type name of the "_parent" component in order
10637 to print the name of the ancestor type in the type description.
10638 If that component had a dynamic size, the resolution into
10639 a fixed type would result in the loss of that type name,
10640 thus preventing us from printing the name of the ancestor
10641 type in the type description. */
10642 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10643
10644 if (TYPE_CODE (type) != TYPE_CODE_REF)
10645 {
10646 struct type *actual_type;
10647
10648 actual_type = type_from_tag (ada_value_tag (arg1));
10649 if (actual_type == NULL)
10650 /* If, for some reason, we were unable to determine
10651 the actual type from the tag, then use the static
10652 approximation that we just computed as a fallback.
10653 This can happen if the debugging information is
10654 incomplete, for instance. */
10655 actual_type = type;
10656 return value_zero (actual_type, not_lval);
10657 }
10658 else
10659 {
10660 /* In the case of a ref, ada_coerce_ref takes care
10661 of determining the actual type. But the evaluation
10662 should return a ref as it should be valid to ask
10663 for its address; so rebuild a ref after coerce. */
10664 arg1 = ada_coerce_ref (arg1);
10665 return value_ref (arg1, TYPE_CODE_REF);
10666 }
10667 }
10668
10669 /* Records and unions for which GNAT encodings have been
10670 generated need to be statically fixed as well.
10671 Otherwise, non-static fixing produces a type where
10672 all dynamic properties are removed, which prevents "ptype"
10673 from being able to completely describe the type.
10674 For instance, a case statement in a variant record would be
10675 replaced by the relevant components based on the actual
10676 value of the discriminants. */
10677 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10678 && dynamic_template_type (type) != NULL)
10679 || (TYPE_CODE (type) == TYPE_CODE_UNION
10680 && ada_find_parallel_type (type, "___XVU") != NULL))
10681 {
10682 *pos += 4;
10683 return value_zero (to_static_fixed_type (type), not_lval);
10684 }
10685 }
10686
10687 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10688 return ada_to_fixed_value (arg1);
10689
10690 case OP_FUNCALL:
10691 (*pos) += 2;
10692
10693 /* Allocate arg vector, including space for the function to be
10694 called in argvec[0] and a terminating NULL. */
10695 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10696 argvec = XALLOCAVEC (struct value *, nargs + 2);
10697
10698 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10699 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10700 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10701 exp->elts[pc + 5].symbol->print_name ());
10702 else
10703 {
10704 for (tem = 0; tem <= nargs; tem += 1)
10705 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10706 argvec[tem] = 0;
10707
10708 if (noside == EVAL_SKIP)
10709 goto nosideret;
10710 }
10711
10712 if (ada_is_constrained_packed_array_type
10713 (desc_base_type (value_type (argvec[0]))))
10714 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10715 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10716 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10717 /* This is a packed array that has already been fixed, and
10718 therefore already coerced to a simple array. Nothing further
10719 to do. */
10720 ;
10721 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10722 {
10723 /* Make sure we dereference references so that all the code below
10724 feels like it's really handling the referenced value. Wrapping
10725 types (for alignment) may be there, so make sure we strip them as
10726 well. */
10727 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10728 }
10729 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10730 && VALUE_LVAL (argvec[0]) == lval_memory)
10731 argvec[0] = value_addr (argvec[0]);
10732
10733 type = ada_check_typedef (value_type (argvec[0]));
10734
10735 /* Ada allows us to implicitly dereference arrays when subscripting
10736 them. So, if this is an array typedef (encoding use for array
10737 access types encoded as fat pointers), strip it now. */
10738 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10739 type = ada_typedef_target_type (type);
10740
10741 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10742 {
10743 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10744 {
10745 case TYPE_CODE_FUNC:
10746 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10747 break;
10748 case TYPE_CODE_ARRAY:
10749 break;
10750 case TYPE_CODE_STRUCT:
10751 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10752 argvec[0] = ada_value_ind (argvec[0]);
10753 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10754 break;
10755 default:
10756 error (_("cannot subscript or call something of type `%s'"),
10757 ada_type_name (value_type (argvec[0])));
10758 break;
10759 }
10760 }
10761
10762 switch (TYPE_CODE (type))
10763 {
10764 case TYPE_CODE_FUNC:
10765 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10766 {
10767 if (TYPE_TARGET_TYPE (type) == NULL)
10768 error_call_unknown_return_type (NULL);
10769 return allocate_value (TYPE_TARGET_TYPE (type));
10770 }
10771 return call_function_by_hand (argvec[0], NULL,
10772 gdb::make_array_view (argvec + 1,
10773 nargs));
10774 case TYPE_CODE_INTERNAL_FUNCTION:
10775 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10776 /* We don't know anything about what the internal
10777 function might return, but we have to return
10778 something. */
10779 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10780 not_lval);
10781 else
10782 return call_internal_function (exp->gdbarch, exp->language_defn,
10783 argvec[0], nargs, argvec + 1);
10784
10785 case TYPE_CODE_STRUCT:
10786 {
10787 int arity;
10788
10789 arity = ada_array_arity (type);
10790 type = ada_array_element_type (type, nargs);
10791 if (type == NULL)
10792 error (_("cannot subscript or call a record"));
10793 if (arity != nargs)
10794 error (_("wrong number of subscripts; expecting %d"), arity);
10795 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10796 return value_zero (ada_aligned_type (type), lval_memory);
10797 return
10798 unwrap_value (ada_value_subscript
10799 (argvec[0], nargs, argvec + 1));
10800 }
10801 case TYPE_CODE_ARRAY:
10802 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10803 {
10804 type = ada_array_element_type (type, nargs);
10805 if (type == NULL)
10806 error (_("element type of array unknown"));
10807 else
10808 return value_zero (ada_aligned_type (type), lval_memory);
10809 }
10810 return
10811 unwrap_value (ada_value_subscript
10812 (ada_coerce_to_simple_array (argvec[0]),
10813 nargs, argvec + 1));
10814 case TYPE_CODE_PTR: /* Pointer to array */
10815 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10816 {
10817 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10818 type = ada_array_element_type (type, nargs);
10819 if (type == NULL)
10820 error (_("element type of array unknown"));
10821 else
10822 return value_zero (ada_aligned_type (type), lval_memory);
10823 }
10824 return
10825 unwrap_value (ada_value_ptr_subscript (argvec[0],
10826 nargs, argvec + 1));
10827
10828 default:
10829 error (_("Attempt to index or call something other than an "
10830 "array or function"));
10831 }
10832
10833 case TERNOP_SLICE:
10834 {
10835 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10836 struct value *low_bound_val =
10837 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10838 struct value *high_bound_val =
10839 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10840 LONGEST low_bound;
10841 LONGEST high_bound;
10842
10843 low_bound_val = coerce_ref (low_bound_val);
10844 high_bound_val = coerce_ref (high_bound_val);
10845 low_bound = value_as_long (low_bound_val);
10846 high_bound = value_as_long (high_bound_val);
10847
10848 if (noside == EVAL_SKIP)
10849 goto nosideret;
10850
10851 /* If this is a reference to an aligner type, then remove all
10852 the aligners. */
10853 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10854 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10855 TYPE_TARGET_TYPE (value_type (array)) =
10856 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10857
10858 if (ada_is_constrained_packed_array_type (value_type (array)))
10859 error (_("cannot slice a packed array"));
10860
10861 /* If this is a reference to an array or an array lvalue,
10862 convert to a pointer. */
10863 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10864 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10865 && VALUE_LVAL (array) == lval_memory))
10866 array = value_addr (array);
10867
10868 if (noside == EVAL_AVOID_SIDE_EFFECTS
10869 && ada_is_array_descriptor_type (ada_check_typedef
10870 (value_type (array))))
10871 return empty_array (ada_type_of_array (array, 0), low_bound,
10872 high_bound);
10873
10874 array = ada_coerce_to_simple_array_ptr (array);
10875
10876 /* If we have more than one level of pointer indirection,
10877 dereference the value until we get only one level. */
10878 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10879 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10880 == TYPE_CODE_PTR))
10881 array = value_ind (array);
10882
10883 /* Make sure we really do have an array type before going further,
10884 to avoid a SEGV when trying to get the index type or the target
10885 type later down the road if the debug info generated by
10886 the compiler is incorrect or incomplete. */
10887 if (!ada_is_simple_array_type (value_type (array)))
10888 error (_("cannot take slice of non-array"));
10889
10890 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10891 == TYPE_CODE_PTR)
10892 {
10893 struct type *type0 = ada_check_typedef (value_type (array));
10894
10895 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10896 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10897 else
10898 {
10899 struct type *arr_type0 =
10900 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10901
10902 return ada_value_slice_from_ptr (array, arr_type0,
10903 longest_to_int (low_bound),
10904 longest_to_int (high_bound));
10905 }
10906 }
10907 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10908 return array;
10909 else if (high_bound < low_bound)
10910 return empty_array (value_type (array), low_bound, high_bound);
10911 else
10912 return ada_value_slice (array, longest_to_int (low_bound),
10913 longest_to_int (high_bound));
10914 }
10915
10916 case UNOP_IN_RANGE:
10917 (*pos) += 2;
10918 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10919 type = check_typedef (exp->elts[pc + 1].type);
10920
10921 if (noside == EVAL_SKIP)
10922 goto nosideret;
10923
10924 switch (TYPE_CODE (type))
10925 {
10926 default:
10927 lim_warning (_("Membership test incompletely implemented; "
10928 "always returns true"));
10929 type = language_bool_type (exp->language_defn, exp->gdbarch);
10930 return value_from_longest (type, (LONGEST) 1);
10931
10932 case TYPE_CODE_RANGE:
10933 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10934 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10935 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10936 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10937 type = language_bool_type (exp->language_defn, exp->gdbarch);
10938 return
10939 value_from_longest (type,
10940 (value_less (arg1, arg3)
10941 || value_equal (arg1, arg3))
10942 && (value_less (arg2, arg1)
10943 || value_equal (arg2, arg1)));
10944 }
10945
10946 case BINOP_IN_BOUNDS:
10947 (*pos) += 2;
10948 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10949 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10950
10951 if (noside == EVAL_SKIP)
10952 goto nosideret;
10953
10954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10955 {
10956 type = language_bool_type (exp->language_defn, exp->gdbarch);
10957 return value_zero (type, not_lval);
10958 }
10959
10960 tem = longest_to_int (exp->elts[pc + 1].longconst);
10961
10962 type = ada_index_type (value_type (arg2), tem, "range");
10963 if (!type)
10964 type = value_type (arg1);
10965
10966 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10967 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10968
10969 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10970 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10971 type = language_bool_type (exp->language_defn, exp->gdbarch);
10972 return
10973 value_from_longest (type,
10974 (value_less (arg1, arg3)
10975 || value_equal (arg1, arg3))
10976 && (value_less (arg2, arg1)
10977 || value_equal (arg2, arg1)));
10978
10979 case TERNOP_IN_RANGE:
10980 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10981 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10982 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10983
10984 if (noside == EVAL_SKIP)
10985 goto nosideret;
10986
10987 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10988 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10989 type = language_bool_type (exp->language_defn, exp->gdbarch);
10990 return
10991 value_from_longest (type,
10992 (value_less (arg1, arg3)
10993 || value_equal (arg1, arg3))
10994 && (value_less (arg2, arg1)
10995 || value_equal (arg2, arg1)));
10996
10997 case OP_ATR_FIRST:
10998 case OP_ATR_LAST:
10999 case OP_ATR_LENGTH:
11000 {
11001 struct type *type_arg;
11002
11003 if (exp->elts[*pos].opcode == OP_TYPE)
11004 {
11005 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11006 arg1 = NULL;
11007 type_arg = check_typedef (exp->elts[pc + 2].type);
11008 }
11009 else
11010 {
11011 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11012 type_arg = NULL;
11013 }
11014
11015 if (exp->elts[*pos].opcode != OP_LONG)
11016 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11017 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11018 *pos += 4;
11019
11020 if (noside == EVAL_SKIP)
11021 goto nosideret;
11022 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11023 {
11024 if (type_arg == NULL)
11025 type_arg = value_type (arg1);
11026
11027 if (ada_is_constrained_packed_array_type (type_arg))
11028 type_arg = decode_constrained_packed_array_type (type_arg);
11029
11030 if (!discrete_type_p (type_arg))
11031 {
11032 switch (op)
11033 {
11034 default: /* Should never happen. */
11035 error (_("unexpected attribute encountered"));
11036 case OP_ATR_FIRST:
11037 case OP_ATR_LAST:
11038 type_arg = ada_index_type (type_arg, tem,
11039 ada_attribute_name (op));
11040 break;
11041 case OP_ATR_LENGTH:
11042 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11043 break;
11044 }
11045 }
11046
11047 return value_zero (type_arg, not_lval);
11048 }
11049 else if (type_arg == NULL)
11050 {
11051 arg1 = ada_coerce_ref (arg1);
11052
11053 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11054 arg1 = ada_coerce_to_simple_array (arg1);
11055
11056 if (op == OP_ATR_LENGTH)
11057 type = builtin_type (exp->gdbarch)->builtin_int;
11058 else
11059 {
11060 type = ada_index_type (value_type (arg1), tem,
11061 ada_attribute_name (op));
11062 if (type == NULL)
11063 type = builtin_type (exp->gdbarch)->builtin_int;
11064 }
11065
11066 switch (op)
11067 {
11068 default: /* Should never happen. */
11069 error (_("unexpected attribute encountered"));
11070 case OP_ATR_FIRST:
11071 return value_from_longest
11072 (type, ada_array_bound (arg1, tem, 0));
11073 case OP_ATR_LAST:
11074 return value_from_longest
11075 (type, ada_array_bound (arg1, tem, 1));
11076 case OP_ATR_LENGTH:
11077 return value_from_longest
11078 (type, ada_array_length (arg1, tem));
11079 }
11080 }
11081 else if (discrete_type_p (type_arg))
11082 {
11083 struct type *range_type;
11084 const char *name = ada_type_name (type_arg);
11085
11086 range_type = NULL;
11087 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11088 range_type = to_fixed_range_type (type_arg, NULL);
11089 if (range_type == NULL)
11090 range_type = type_arg;
11091 switch (op)
11092 {
11093 default:
11094 error (_("unexpected attribute encountered"));
11095 case OP_ATR_FIRST:
11096 return value_from_longest
11097 (range_type, ada_discrete_type_low_bound (range_type));
11098 case OP_ATR_LAST:
11099 return value_from_longest
11100 (range_type, ada_discrete_type_high_bound (range_type));
11101 case OP_ATR_LENGTH:
11102 error (_("the 'length attribute applies only to array types"));
11103 }
11104 }
11105 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11106 error (_("unimplemented type attribute"));
11107 else
11108 {
11109 LONGEST low, high;
11110
11111 if (ada_is_constrained_packed_array_type (type_arg))
11112 type_arg = decode_constrained_packed_array_type (type_arg);
11113
11114 if (op == OP_ATR_LENGTH)
11115 type = builtin_type (exp->gdbarch)->builtin_int;
11116 else
11117 {
11118 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11119 if (type == NULL)
11120 type = builtin_type (exp->gdbarch)->builtin_int;
11121 }
11122
11123 switch (op)
11124 {
11125 default:
11126 error (_("unexpected attribute encountered"));
11127 case OP_ATR_FIRST:
11128 low = ada_array_bound_from_type (type_arg, tem, 0);
11129 return value_from_longest (type, low);
11130 case OP_ATR_LAST:
11131 high = ada_array_bound_from_type (type_arg, tem, 1);
11132 return value_from_longest (type, high);
11133 case OP_ATR_LENGTH:
11134 low = ada_array_bound_from_type (type_arg, tem, 0);
11135 high = ada_array_bound_from_type (type_arg, tem, 1);
11136 return value_from_longest (type, high - low + 1);
11137 }
11138 }
11139 }
11140
11141 case OP_ATR_TAG:
11142 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11143 if (noside == EVAL_SKIP)
11144 goto nosideret;
11145
11146 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11147 return value_zero (ada_tag_type (arg1), not_lval);
11148
11149 return ada_value_tag (arg1);
11150
11151 case OP_ATR_MIN:
11152 case OP_ATR_MAX:
11153 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11154 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156 if (noside == EVAL_SKIP)
11157 goto nosideret;
11158 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11159 return value_zero (value_type (arg1), not_lval);
11160 else
11161 {
11162 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11163 return value_binop (arg1, arg2,
11164 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11165 }
11166
11167 case OP_ATR_MODULUS:
11168 {
11169 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11170
11171 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11172 if (noside == EVAL_SKIP)
11173 goto nosideret;
11174
11175 if (!ada_is_modular_type (type_arg))
11176 error (_("'modulus must be applied to modular type"));
11177
11178 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11179 ada_modulus (type_arg));
11180 }
11181
11182
11183 case OP_ATR_POS:
11184 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11186 if (noside == EVAL_SKIP)
11187 goto nosideret;
11188 type = builtin_type (exp->gdbarch)->builtin_int;
11189 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11190 return value_zero (type, not_lval);
11191 else
11192 return value_pos_atr (type, arg1);
11193
11194 case OP_ATR_SIZE:
11195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11196 type = value_type (arg1);
11197
11198 /* If the argument is a reference, then dereference its type, since
11199 the user is really asking for the size of the actual object,
11200 not the size of the pointer. */
11201 if (TYPE_CODE (type) == TYPE_CODE_REF)
11202 type = TYPE_TARGET_TYPE (type);
11203
11204 if (noside == EVAL_SKIP)
11205 goto nosideret;
11206 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11207 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11208 else
11209 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11210 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11211
11212 case OP_ATR_VAL:
11213 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11214 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11215 type = exp->elts[pc + 2].type;
11216 if (noside == EVAL_SKIP)
11217 goto nosideret;
11218 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11219 return value_zero (type, not_lval);
11220 else
11221 return value_val_atr (type, arg1);
11222
11223 case BINOP_EXP:
11224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11225 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11226 if (noside == EVAL_SKIP)
11227 goto nosideret;
11228 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11229 return value_zero (value_type (arg1), not_lval);
11230 else
11231 {
11232 /* For integer exponentiation operations,
11233 only promote the first argument. */
11234 if (is_integral_type (value_type (arg2)))
11235 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11236 else
11237 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11238
11239 return value_binop (arg1, arg2, op);
11240 }
11241
11242 case UNOP_PLUS:
11243 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11244 if (noside == EVAL_SKIP)
11245 goto nosideret;
11246 else
11247 return arg1;
11248
11249 case UNOP_ABS:
11250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11251 if (noside == EVAL_SKIP)
11252 goto nosideret;
11253 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11254 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11255 return value_neg (arg1);
11256 else
11257 return arg1;
11258
11259 case UNOP_IND:
11260 preeval_pos = *pos;
11261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11262 if (noside == EVAL_SKIP)
11263 goto nosideret;
11264 type = ada_check_typedef (value_type (arg1));
11265 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11266 {
11267 if (ada_is_array_descriptor_type (type))
11268 /* GDB allows dereferencing GNAT array descriptors. */
11269 {
11270 struct type *arrType = ada_type_of_array (arg1, 0);
11271
11272 if (arrType == NULL)
11273 error (_("Attempt to dereference null array pointer."));
11274 return value_at_lazy (arrType, 0);
11275 }
11276 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11277 || TYPE_CODE (type) == TYPE_CODE_REF
11278 /* In C you can dereference an array to get the 1st elt. */
11279 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11280 {
11281 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11282 only be determined by inspecting the object's tag.
11283 This means that we need to evaluate completely the
11284 expression in order to get its type. */
11285
11286 if ((TYPE_CODE (type) == TYPE_CODE_REF
11287 || TYPE_CODE (type) == TYPE_CODE_PTR)
11288 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11289 {
11290 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11291 EVAL_NORMAL);
11292 type = value_type (ada_value_ind (arg1));
11293 }
11294 else
11295 {
11296 type = to_static_fixed_type
11297 (ada_aligned_type
11298 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11299 }
11300 ada_ensure_varsize_limit (type);
11301 return value_zero (type, lval_memory);
11302 }
11303 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11304 {
11305 /* GDB allows dereferencing an int. */
11306 if (expect_type == NULL)
11307 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11308 lval_memory);
11309 else
11310 {
11311 expect_type =
11312 to_static_fixed_type (ada_aligned_type (expect_type));
11313 return value_zero (expect_type, lval_memory);
11314 }
11315 }
11316 else
11317 error (_("Attempt to take contents of a non-pointer value."));
11318 }
11319 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11320 type = ada_check_typedef (value_type (arg1));
11321
11322 if (TYPE_CODE (type) == TYPE_CODE_INT)
11323 /* GDB allows dereferencing an int. If we were given
11324 the expect_type, then use that as the target type.
11325 Otherwise, assume that the target type is an int. */
11326 {
11327 if (expect_type != NULL)
11328 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11329 arg1));
11330 else
11331 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11332 (CORE_ADDR) value_as_address (arg1));
11333 }
11334
11335 if (ada_is_array_descriptor_type (type))
11336 /* GDB allows dereferencing GNAT array descriptors. */
11337 return ada_coerce_to_simple_array (arg1);
11338 else
11339 return ada_value_ind (arg1);
11340
11341 case STRUCTOP_STRUCT:
11342 tem = longest_to_int (exp->elts[pc + 1].longconst);
11343 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11344 preeval_pos = *pos;
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11346 if (noside == EVAL_SKIP)
11347 goto nosideret;
11348 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11349 {
11350 struct type *type1 = value_type (arg1);
11351
11352 if (ada_is_tagged_type (type1, 1))
11353 {
11354 type = ada_lookup_struct_elt_type (type1,
11355 &exp->elts[pc + 2].string,
11356 1, 1);
11357
11358 /* If the field is not found, check if it exists in the
11359 extension of this object's type. This means that we
11360 need to evaluate completely the expression. */
11361
11362 if (type == NULL)
11363 {
11364 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11365 EVAL_NORMAL);
11366 arg1 = ada_value_struct_elt (arg1,
11367 &exp->elts[pc + 2].string,
11368 0);
11369 arg1 = unwrap_value (arg1);
11370 type = value_type (ada_to_fixed_value (arg1));
11371 }
11372 }
11373 else
11374 type =
11375 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11376 0);
11377
11378 return value_zero (ada_aligned_type (type), lval_memory);
11379 }
11380 else
11381 {
11382 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11383 arg1 = unwrap_value (arg1);
11384 return ada_to_fixed_value (arg1);
11385 }
11386
11387 case OP_TYPE:
11388 /* The value is not supposed to be used. This is here to make it
11389 easier to accommodate expressions that contain types. */
11390 (*pos) += 2;
11391 if (noside == EVAL_SKIP)
11392 goto nosideret;
11393 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11394 return allocate_value (exp->elts[pc + 1].type);
11395 else
11396 error (_("Attempt to use a type name as an expression"));
11397
11398 case OP_AGGREGATE:
11399 case OP_CHOICES:
11400 case OP_OTHERS:
11401 case OP_DISCRETE_RANGE:
11402 case OP_POSITIONAL:
11403 case OP_NAME:
11404 if (noside == EVAL_NORMAL)
11405 switch (op)
11406 {
11407 case OP_NAME:
11408 error (_("Undefined name, ambiguous name, or renaming used in "
11409 "component association: %s."), &exp->elts[pc+2].string);
11410 case OP_AGGREGATE:
11411 error (_("Aggregates only allowed on the right of an assignment"));
11412 default:
11413 internal_error (__FILE__, __LINE__,
11414 _("aggregate apparently mangled"));
11415 }
11416
11417 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11418 *pos += oplen - 1;
11419 for (tem = 0; tem < nargs; tem += 1)
11420 ada_evaluate_subexp (NULL, exp, pos, noside);
11421 goto nosideret;
11422 }
11423
11424 nosideret:
11425 return eval_skip_value (exp);
11426 }
11427 \f
11428
11429 /* Fixed point */
11430
11431 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11432 type name that encodes the 'small and 'delta information.
11433 Otherwise, return NULL. */
11434
11435 static const char *
11436 fixed_type_info (struct type *type)
11437 {
11438 const char *name = ada_type_name (type);
11439 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11440
11441 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11442 {
11443 const char *tail = strstr (name, "___XF_");
11444
11445 if (tail == NULL)
11446 return NULL;
11447 else
11448 return tail + 5;
11449 }
11450 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11451 return fixed_type_info (TYPE_TARGET_TYPE (type));
11452 else
11453 return NULL;
11454 }
11455
11456 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11457
11458 int
11459 ada_is_fixed_point_type (struct type *type)
11460 {
11461 return fixed_type_info (type) != NULL;
11462 }
11463
11464 /* Return non-zero iff TYPE represents a System.Address type. */
11465
11466 int
11467 ada_is_system_address_type (struct type *type)
11468 {
11469 return (TYPE_NAME (type)
11470 && strcmp (TYPE_NAME (type), "system__address") == 0);
11471 }
11472
11473 /* Assuming that TYPE is the representation of an Ada fixed-point
11474 type, return the target floating-point type to be used to represent
11475 of this type during internal computation. */
11476
11477 static struct type *
11478 ada_scaling_type (struct type *type)
11479 {
11480 return builtin_type (get_type_arch (type))->builtin_long_double;
11481 }
11482
11483 /* Assuming that TYPE is the representation of an Ada fixed-point
11484 type, return its delta, or NULL if the type is malformed and the
11485 delta cannot be determined. */
11486
11487 struct value *
11488 ada_delta (struct type *type)
11489 {
11490 const char *encoding = fixed_type_info (type);
11491 struct type *scale_type = ada_scaling_type (type);
11492
11493 long long num, den;
11494
11495 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11496 return nullptr;
11497 else
11498 return value_binop (value_from_longest (scale_type, num),
11499 value_from_longest (scale_type, den), BINOP_DIV);
11500 }
11501
11502 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11503 factor ('SMALL value) associated with the type. */
11504
11505 struct value *
11506 ada_scaling_factor (struct type *type)
11507 {
11508 const char *encoding = fixed_type_info (type);
11509 struct type *scale_type = ada_scaling_type (type);
11510
11511 long long num0, den0, num1, den1;
11512 int n;
11513
11514 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11515 &num0, &den0, &num1, &den1);
11516
11517 if (n < 2)
11518 return value_from_longest (scale_type, 1);
11519 else if (n == 4)
11520 return value_binop (value_from_longest (scale_type, num1),
11521 value_from_longest (scale_type, den1), BINOP_DIV);
11522 else
11523 return value_binop (value_from_longest (scale_type, num0),
11524 value_from_longest (scale_type, den0), BINOP_DIV);
11525 }
11526
11527 \f
11528
11529 /* Range types */
11530
11531 /* Scan STR beginning at position K for a discriminant name, and
11532 return the value of that discriminant field of DVAL in *PX. If
11533 PNEW_K is not null, put the position of the character beyond the
11534 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11535 not alter *PX and *PNEW_K if unsuccessful. */
11536
11537 static int
11538 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11539 int *pnew_k)
11540 {
11541 static char *bound_buffer = NULL;
11542 static size_t bound_buffer_len = 0;
11543 const char *pstart, *pend, *bound;
11544 struct value *bound_val;
11545
11546 if (dval == NULL || str == NULL || str[k] == '\0')
11547 return 0;
11548
11549 pstart = str + k;
11550 pend = strstr (pstart, "__");
11551 if (pend == NULL)
11552 {
11553 bound = pstart;
11554 k += strlen (bound);
11555 }
11556 else
11557 {
11558 int len = pend - pstart;
11559
11560 /* Strip __ and beyond. */
11561 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11562 strncpy (bound_buffer, pstart, len);
11563 bound_buffer[len] = '\0';
11564
11565 bound = bound_buffer;
11566 k = pend - str;
11567 }
11568
11569 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11570 if (bound_val == NULL)
11571 return 0;
11572
11573 *px = value_as_long (bound_val);
11574 if (pnew_k != NULL)
11575 *pnew_k = k;
11576 return 1;
11577 }
11578
11579 /* Value of variable named NAME in the current environment. If
11580 no such variable found, then if ERR_MSG is null, returns 0, and
11581 otherwise causes an error with message ERR_MSG. */
11582
11583 static struct value *
11584 get_var_value (const char *name, const char *err_msg)
11585 {
11586 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11587
11588 std::vector<struct block_symbol> syms;
11589 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11590 get_selected_block (0),
11591 VAR_DOMAIN, &syms, 1);
11592
11593 if (nsyms != 1)
11594 {
11595 if (err_msg == NULL)
11596 return 0;
11597 else
11598 error (("%s"), err_msg);
11599 }
11600
11601 return value_of_variable (syms[0].symbol, syms[0].block);
11602 }
11603
11604 /* Value of integer variable named NAME in the current environment.
11605 If no such variable is found, returns false. Otherwise, sets VALUE
11606 to the variable's value and returns true. */
11607
11608 bool
11609 get_int_var_value (const char *name, LONGEST &value)
11610 {
11611 struct value *var_val = get_var_value (name, 0);
11612
11613 if (var_val == 0)
11614 return false;
11615
11616 value = value_as_long (var_val);
11617 return true;
11618 }
11619
11620
11621 /* Return a range type whose base type is that of the range type named
11622 NAME in the current environment, and whose bounds are calculated
11623 from NAME according to the GNAT range encoding conventions.
11624 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11625 corresponding range type from debug information; fall back to using it
11626 if symbol lookup fails. If a new type must be created, allocate it
11627 like ORIG_TYPE was. The bounds information, in general, is encoded
11628 in NAME, the base type given in the named range type. */
11629
11630 static struct type *
11631 to_fixed_range_type (struct type *raw_type, struct value *dval)
11632 {
11633 const char *name;
11634 struct type *base_type;
11635 const char *subtype_info;
11636
11637 gdb_assert (raw_type != NULL);
11638 gdb_assert (TYPE_NAME (raw_type) != NULL);
11639
11640 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11641 base_type = TYPE_TARGET_TYPE (raw_type);
11642 else
11643 base_type = raw_type;
11644
11645 name = TYPE_NAME (raw_type);
11646 subtype_info = strstr (name, "___XD");
11647 if (subtype_info == NULL)
11648 {
11649 LONGEST L = ada_discrete_type_low_bound (raw_type);
11650 LONGEST U = ada_discrete_type_high_bound (raw_type);
11651
11652 if (L < INT_MIN || U > INT_MAX)
11653 return raw_type;
11654 else
11655 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11656 L, U);
11657 }
11658 else
11659 {
11660 static char *name_buf = NULL;
11661 static size_t name_len = 0;
11662 int prefix_len = subtype_info - name;
11663 LONGEST L, U;
11664 struct type *type;
11665 const char *bounds_str;
11666 int n;
11667
11668 GROW_VECT (name_buf, name_len, prefix_len + 5);
11669 strncpy (name_buf, name, prefix_len);
11670 name_buf[prefix_len] = '\0';
11671
11672 subtype_info += 5;
11673 bounds_str = strchr (subtype_info, '_');
11674 n = 1;
11675
11676 if (*subtype_info == 'L')
11677 {
11678 if (!ada_scan_number (bounds_str, n, &L, &n)
11679 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11680 return raw_type;
11681 if (bounds_str[n] == '_')
11682 n += 2;
11683 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11684 n += 1;
11685 subtype_info += 1;
11686 }
11687 else
11688 {
11689 strcpy (name_buf + prefix_len, "___L");
11690 if (!get_int_var_value (name_buf, L))
11691 {
11692 lim_warning (_("Unknown lower bound, using 1."));
11693 L = 1;
11694 }
11695 }
11696
11697 if (*subtype_info == 'U')
11698 {
11699 if (!ada_scan_number (bounds_str, n, &U, &n)
11700 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11701 return raw_type;
11702 }
11703 else
11704 {
11705 strcpy (name_buf + prefix_len, "___U");
11706 if (!get_int_var_value (name_buf, U))
11707 {
11708 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11709 U = L;
11710 }
11711 }
11712
11713 type = create_static_range_type (alloc_type_copy (raw_type),
11714 base_type, L, U);
11715 /* create_static_range_type alters the resulting type's length
11716 to match the size of the base_type, which is not what we want.
11717 Set it back to the original range type's length. */
11718 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11719 TYPE_NAME (type) = name;
11720 return type;
11721 }
11722 }
11723
11724 /* True iff NAME is the name of a range type. */
11725
11726 int
11727 ada_is_range_type_name (const char *name)
11728 {
11729 return (name != NULL && strstr (name, "___XD"));
11730 }
11731 \f
11732
11733 /* Modular types */
11734
11735 /* True iff TYPE is an Ada modular type. */
11736
11737 int
11738 ada_is_modular_type (struct type *type)
11739 {
11740 struct type *subranged_type = get_base_type (type);
11741
11742 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11743 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11744 && TYPE_UNSIGNED (subranged_type));
11745 }
11746
11747 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11748
11749 ULONGEST
11750 ada_modulus (struct type *type)
11751 {
11752 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11753 }
11754 \f
11755
11756 /* Ada exception catchpoint support:
11757 ---------------------------------
11758
11759 We support 3 kinds of exception catchpoints:
11760 . catchpoints on Ada exceptions
11761 . catchpoints on unhandled Ada exceptions
11762 . catchpoints on failed assertions
11763
11764 Exceptions raised during failed assertions, or unhandled exceptions
11765 could perfectly be caught with the general catchpoint on Ada exceptions.
11766 However, we can easily differentiate these two special cases, and having
11767 the option to distinguish these two cases from the rest can be useful
11768 to zero-in on certain situations.
11769
11770 Exception catchpoints are a specialized form of breakpoint,
11771 since they rely on inserting breakpoints inside known routines
11772 of the GNAT runtime. The implementation therefore uses a standard
11773 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11774 of breakpoint_ops.
11775
11776 Support in the runtime for exception catchpoints have been changed
11777 a few times already, and these changes affect the implementation
11778 of these catchpoints. In order to be able to support several
11779 variants of the runtime, we use a sniffer that will determine
11780 the runtime variant used by the program being debugged. */
11781
11782 /* Ada's standard exceptions.
11783
11784 The Ada 83 standard also defined Numeric_Error. But there so many
11785 situations where it was unclear from the Ada 83 Reference Manual
11786 (RM) whether Constraint_Error or Numeric_Error should be raised,
11787 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11788 Interpretation saying that anytime the RM says that Numeric_Error
11789 should be raised, the implementation may raise Constraint_Error.
11790 Ada 95 went one step further and pretty much removed Numeric_Error
11791 from the list of standard exceptions (it made it a renaming of
11792 Constraint_Error, to help preserve compatibility when compiling
11793 an Ada83 compiler). As such, we do not include Numeric_Error from
11794 this list of standard exceptions. */
11795
11796 static const char *standard_exc[] = {
11797 "constraint_error",
11798 "program_error",
11799 "storage_error",
11800 "tasking_error"
11801 };
11802
11803 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11804
11805 /* A structure that describes how to support exception catchpoints
11806 for a given executable. */
11807
11808 struct exception_support_info
11809 {
11810 /* The name of the symbol to break on in order to insert
11811 a catchpoint on exceptions. */
11812 const char *catch_exception_sym;
11813
11814 /* The name of the symbol to break on in order to insert
11815 a catchpoint on unhandled exceptions. */
11816 const char *catch_exception_unhandled_sym;
11817
11818 /* The name of the symbol to break on in order to insert
11819 a catchpoint on failed assertions. */
11820 const char *catch_assert_sym;
11821
11822 /* The name of the symbol to break on in order to insert
11823 a catchpoint on exception handling. */
11824 const char *catch_handlers_sym;
11825
11826 /* Assuming that the inferior just triggered an unhandled exception
11827 catchpoint, this function is responsible for returning the address
11828 in inferior memory where the name of that exception is stored.
11829 Return zero if the address could not be computed. */
11830 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11831 };
11832
11833 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11834 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11835
11836 /* The following exception support info structure describes how to
11837 implement exception catchpoints with the latest version of the
11838 Ada runtime (as of 2019-08-??). */
11839
11840 static const struct exception_support_info default_exception_support_info =
11841 {
11842 "__gnat_debug_raise_exception", /* catch_exception_sym */
11843 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11844 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11845 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11846 ada_unhandled_exception_name_addr
11847 };
11848
11849 /* The following exception support info structure describes how to
11850 implement exception catchpoints with an earlier version of the
11851 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11852
11853 static const struct exception_support_info exception_support_info_v0 =
11854 {
11855 "__gnat_debug_raise_exception", /* catch_exception_sym */
11856 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11857 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11858 "__gnat_begin_handler", /* catch_handlers_sym */
11859 ada_unhandled_exception_name_addr
11860 };
11861
11862 /* The following exception support info structure describes how to
11863 implement exception catchpoints with a slightly older version
11864 of the Ada runtime. */
11865
11866 static const struct exception_support_info exception_support_info_fallback =
11867 {
11868 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11869 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11870 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11871 "__gnat_begin_handler", /* catch_handlers_sym */
11872 ada_unhandled_exception_name_addr_from_raise
11873 };
11874
11875 /* Return nonzero if we can detect the exception support routines
11876 described in EINFO.
11877
11878 This function errors out if an abnormal situation is detected
11879 (for instance, if we find the exception support routines, but
11880 that support is found to be incomplete). */
11881
11882 static int
11883 ada_has_this_exception_support (const struct exception_support_info *einfo)
11884 {
11885 struct symbol *sym;
11886
11887 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11888 that should be compiled with debugging information. As a result, we
11889 expect to find that symbol in the symtabs. */
11890
11891 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11892 if (sym == NULL)
11893 {
11894 /* Perhaps we did not find our symbol because the Ada runtime was
11895 compiled without debugging info, or simply stripped of it.
11896 It happens on some GNU/Linux distributions for instance, where
11897 users have to install a separate debug package in order to get
11898 the runtime's debugging info. In that situation, let the user
11899 know why we cannot insert an Ada exception catchpoint.
11900
11901 Note: Just for the purpose of inserting our Ada exception
11902 catchpoint, we could rely purely on the associated minimal symbol.
11903 But we would be operating in degraded mode anyway, since we are
11904 still lacking the debugging info needed later on to extract
11905 the name of the exception being raised (this name is printed in
11906 the catchpoint message, and is also used when trying to catch
11907 a specific exception). We do not handle this case for now. */
11908 struct bound_minimal_symbol msym
11909 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11910
11911 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11912 error (_("Your Ada runtime appears to be missing some debugging "
11913 "information.\nCannot insert Ada exception catchpoint "
11914 "in this configuration."));
11915
11916 return 0;
11917 }
11918
11919 /* Make sure that the symbol we found corresponds to a function. */
11920
11921 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11922 {
11923 error (_("Symbol \"%s\" is not a function (class = %d)"),
11924 sym->linkage_name (), SYMBOL_CLASS (sym));
11925 return 0;
11926 }
11927
11928 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11929 if (sym == NULL)
11930 {
11931 struct bound_minimal_symbol msym
11932 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11933
11934 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11935 error (_("Your Ada runtime appears to be missing some debugging "
11936 "information.\nCannot insert Ada exception catchpoint "
11937 "in this configuration."));
11938
11939 return 0;
11940 }
11941
11942 /* Make sure that the symbol we found corresponds to a function. */
11943
11944 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11945 {
11946 error (_("Symbol \"%s\" is not a function (class = %d)"),
11947 sym->linkage_name (), SYMBOL_CLASS (sym));
11948 return 0;
11949 }
11950
11951 return 1;
11952 }
11953
11954 /* Inspect the Ada runtime and determine which exception info structure
11955 should be used to provide support for exception catchpoints.
11956
11957 This function will always set the per-inferior exception_info,
11958 or raise an error. */
11959
11960 static void
11961 ada_exception_support_info_sniffer (void)
11962 {
11963 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11964
11965 /* If the exception info is already known, then no need to recompute it. */
11966 if (data->exception_info != NULL)
11967 return;
11968
11969 /* Check the latest (default) exception support info. */
11970 if (ada_has_this_exception_support (&default_exception_support_info))
11971 {
11972 data->exception_info = &default_exception_support_info;
11973 return;
11974 }
11975
11976 /* Try the v0 exception suport info. */
11977 if (ada_has_this_exception_support (&exception_support_info_v0))
11978 {
11979 data->exception_info = &exception_support_info_v0;
11980 return;
11981 }
11982
11983 /* Try our fallback exception suport info. */
11984 if (ada_has_this_exception_support (&exception_support_info_fallback))
11985 {
11986 data->exception_info = &exception_support_info_fallback;
11987 return;
11988 }
11989
11990 /* Sometimes, it is normal for us to not be able to find the routine
11991 we are looking for. This happens when the program is linked with
11992 the shared version of the GNAT runtime, and the program has not been
11993 started yet. Inform the user of these two possible causes if
11994 applicable. */
11995
11996 if (ada_update_initial_language (language_unknown) != language_ada)
11997 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11998
11999 /* If the symbol does not exist, then check that the program is
12000 already started, to make sure that shared libraries have been
12001 loaded. If it is not started, this may mean that the symbol is
12002 in a shared library. */
12003
12004 if (inferior_ptid.pid () == 0)
12005 error (_("Unable to insert catchpoint. Try to start the program first."));
12006
12007 /* At this point, we know that we are debugging an Ada program and
12008 that the inferior has been started, but we still are not able to
12009 find the run-time symbols. That can mean that we are in
12010 configurable run time mode, or that a-except as been optimized
12011 out by the linker... In any case, at this point it is not worth
12012 supporting this feature. */
12013
12014 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12015 }
12016
12017 /* True iff FRAME is very likely to be that of a function that is
12018 part of the runtime system. This is all very heuristic, but is
12019 intended to be used as advice as to what frames are uninteresting
12020 to most users. */
12021
12022 static int
12023 is_known_support_routine (struct frame_info *frame)
12024 {
12025 enum language func_lang;
12026 int i;
12027 const char *fullname;
12028
12029 /* If this code does not have any debugging information (no symtab),
12030 This cannot be any user code. */
12031
12032 symtab_and_line sal = find_frame_sal (frame);
12033 if (sal.symtab == NULL)
12034 return 1;
12035
12036 /* If there is a symtab, but the associated source file cannot be
12037 located, then assume this is not user code: Selecting a frame
12038 for which we cannot display the code would not be very helpful
12039 for the user. This should also take care of case such as VxWorks
12040 where the kernel has some debugging info provided for a few units. */
12041
12042 fullname = symtab_to_fullname (sal.symtab);
12043 if (access (fullname, R_OK) != 0)
12044 return 1;
12045
12046 /* Check the unit filename against the Ada runtime file naming.
12047 We also check the name of the objfile against the name of some
12048 known system libraries that sometimes come with debugging info
12049 too. */
12050
12051 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12052 {
12053 re_comp (known_runtime_file_name_patterns[i]);
12054 if (re_exec (lbasename (sal.symtab->filename)))
12055 return 1;
12056 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12057 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12058 return 1;
12059 }
12060
12061 /* Check whether the function is a GNAT-generated entity. */
12062
12063 gdb::unique_xmalloc_ptr<char> func_name
12064 = find_frame_funname (frame, &func_lang, NULL);
12065 if (func_name == NULL)
12066 return 1;
12067
12068 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12069 {
12070 re_comp (known_auxiliary_function_name_patterns[i]);
12071 if (re_exec (func_name.get ()))
12072 return 1;
12073 }
12074
12075 return 0;
12076 }
12077
12078 /* Find the first frame that contains debugging information and that is not
12079 part of the Ada run-time, starting from FI and moving upward. */
12080
12081 void
12082 ada_find_printable_frame (struct frame_info *fi)
12083 {
12084 for (; fi != NULL; fi = get_prev_frame (fi))
12085 {
12086 if (!is_known_support_routine (fi))
12087 {
12088 select_frame (fi);
12089 break;
12090 }
12091 }
12092
12093 }
12094
12095 /* Assuming that the inferior just triggered an unhandled exception
12096 catchpoint, return the address in inferior memory where the name
12097 of the exception is stored.
12098
12099 Return zero if the address could not be computed. */
12100
12101 static CORE_ADDR
12102 ada_unhandled_exception_name_addr (void)
12103 {
12104 return parse_and_eval_address ("e.full_name");
12105 }
12106
12107 /* Same as ada_unhandled_exception_name_addr, except that this function
12108 should be used when the inferior uses an older version of the runtime,
12109 where the exception name needs to be extracted from a specific frame
12110 several frames up in the callstack. */
12111
12112 static CORE_ADDR
12113 ada_unhandled_exception_name_addr_from_raise (void)
12114 {
12115 int frame_level;
12116 struct frame_info *fi;
12117 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12118
12119 /* To determine the name of this exception, we need to select
12120 the frame corresponding to RAISE_SYM_NAME. This frame is
12121 at least 3 levels up, so we simply skip the first 3 frames
12122 without checking the name of their associated function. */
12123 fi = get_current_frame ();
12124 for (frame_level = 0; frame_level < 3; frame_level += 1)
12125 if (fi != NULL)
12126 fi = get_prev_frame (fi);
12127
12128 while (fi != NULL)
12129 {
12130 enum language func_lang;
12131
12132 gdb::unique_xmalloc_ptr<char> func_name
12133 = find_frame_funname (fi, &func_lang, NULL);
12134 if (func_name != NULL)
12135 {
12136 if (strcmp (func_name.get (),
12137 data->exception_info->catch_exception_sym) == 0)
12138 break; /* We found the frame we were looking for... */
12139 }
12140 fi = get_prev_frame (fi);
12141 }
12142
12143 if (fi == NULL)
12144 return 0;
12145
12146 select_frame (fi);
12147 return parse_and_eval_address ("id.full_name");
12148 }
12149
12150 /* Assuming the inferior just triggered an Ada exception catchpoint
12151 (of any type), return the address in inferior memory where the name
12152 of the exception is stored, if applicable.
12153
12154 Assumes the selected frame is the current frame.
12155
12156 Return zero if the address could not be computed, or if not relevant. */
12157
12158 static CORE_ADDR
12159 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12160 struct breakpoint *b)
12161 {
12162 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12163
12164 switch (ex)
12165 {
12166 case ada_catch_exception:
12167 return (parse_and_eval_address ("e.full_name"));
12168 break;
12169
12170 case ada_catch_exception_unhandled:
12171 return data->exception_info->unhandled_exception_name_addr ();
12172 break;
12173
12174 case ada_catch_handlers:
12175 return 0; /* The runtimes does not provide access to the exception
12176 name. */
12177 break;
12178
12179 case ada_catch_assert:
12180 return 0; /* Exception name is not relevant in this case. */
12181 break;
12182
12183 default:
12184 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12185 break;
12186 }
12187
12188 return 0; /* Should never be reached. */
12189 }
12190
12191 /* Assuming the inferior is stopped at an exception catchpoint,
12192 return the message which was associated to the exception, if
12193 available. Return NULL if the message could not be retrieved.
12194
12195 Note: The exception message can be associated to an exception
12196 either through the use of the Raise_Exception function, or
12197 more simply (Ada 2005 and later), via:
12198
12199 raise Exception_Name with "exception message";
12200
12201 */
12202
12203 static gdb::unique_xmalloc_ptr<char>
12204 ada_exception_message_1 (void)
12205 {
12206 struct value *e_msg_val;
12207 int e_msg_len;
12208
12209 /* For runtimes that support this feature, the exception message
12210 is passed as an unbounded string argument called "message". */
12211 e_msg_val = parse_and_eval ("message");
12212 if (e_msg_val == NULL)
12213 return NULL; /* Exception message not supported. */
12214
12215 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12216 gdb_assert (e_msg_val != NULL);
12217 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12218
12219 /* If the message string is empty, then treat it as if there was
12220 no exception message. */
12221 if (e_msg_len <= 0)
12222 return NULL;
12223
12224 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12225 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12226 e_msg.get ()[e_msg_len] = '\0';
12227
12228 return e_msg;
12229 }
12230
12231 /* Same as ada_exception_message_1, except that all exceptions are
12232 contained here (returning NULL instead). */
12233
12234 static gdb::unique_xmalloc_ptr<char>
12235 ada_exception_message (void)
12236 {
12237 gdb::unique_xmalloc_ptr<char> e_msg;
12238
12239 try
12240 {
12241 e_msg = ada_exception_message_1 ();
12242 }
12243 catch (const gdb_exception_error &e)
12244 {
12245 e_msg.reset (nullptr);
12246 }
12247
12248 return e_msg;
12249 }
12250
12251 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12252 any error that ada_exception_name_addr_1 might cause to be thrown.
12253 When an error is intercepted, a warning with the error message is printed,
12254 and zero is returned. */
12255
12256 static CORE_ADDR
12257 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12258 struct breakpoint *b)
12259 {
12260 CORE_ADDR result = 0;
12261
12262 try
12263 {
12264 result = ada_exception_name_addr_1 (ex, b);
12265 }
12266
12267 catch (const gdb_exception_error &e)
12268 {
12269 warning (_("failed to get exception name: %s"), e.what ());
12270 return 0;
12271 }
12272
12273 return result;
12274 }
12275
12276 static std::string ada_exception_catchpoint_cond_string
12277 (const char *excep_string,
12278 enum ada_exception_catchpoint_kind ex);
12279
12280 /* Ada catchpoints.
12281
12282 In the case of catchpoints on Ada exceptions, the catchpoint will
12283 stop the target on every exception the program throws. When a user
12284 specifies the name of a specific exception, we translate this
12285 request into a condition expression (in text form), and then parse
12286 it into an expression stored in each of the catchpoint's locations.
12287 We then use this condition to check whether the exception that was
12288 raised is the one the user is interested in. If not, then the
12289 target is resumed again. We store the name of the requested
12290 exception, in order to be able to re-set the condition expression
12291 when symbols change. */
12292
12293 /* An instance of this type is used to represent an Ada catchpoint
12294 breakpoint location. */
12295
12296 class ada_catchpoint_location : public bp_location
12297 {
12298 public:
12299 ada_catchpoint_location (breakpoint *owner)
12300 : bp_location (owner, bp_loc_software_breakpoint)
12301 {}
12302
12303 /* The condition that checks whether the exception that was raised
12304 is the specific exception the user specified on catchpoint
12305 creation. */
12306 expression_up excep_cond_expr;
12307 };
12308
12309 /* An instance of this type is used to represent an Ada catchpoint. */
12310
12311 struct ada_catchpoint : public breakpoint
12312 {
12313 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12314 : m_kind (kind)
12315 {
12316 }
12317
12318 /* The name of the specific exception the user specified. */
12319 std::string excep_string;
12320
12321 /* What kind of catchpoint this is. */
12322 enum ada_exception_catchpoint_kind m_kind;
12323 };
12324
12325 /* Parse the exception condition string in the context of each of the
12326 catchpoint's locations, and store them for later evaluation. */
12327
12328 static void
12329 create_excep_cond_exprs (struct ada_catchpoint *c,
12330 enum ada_exception_catchpoint_kind ex)
12331 {
12332 struct bp_location *bl;
12333
12334 /* Nothing to do if there's no specific exception to catch. */
12335 if (c->excep_string.empty ())
12336 return;
12337
12338 /* Same if there are no locations... */
12339 if (c->loc == NULL)
12340 return;
12341
12342 /* Compute the condition expression in text form, from the specific
12343 expection we want to catch. */
12344 std::string cond_string
12345 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12346
12347 /* Iterate over all the catchpoint's locations, and parse an
12348 expression for each. */
12349 for (bl = c->loc; bl != NULL; bl = bl->next)
12350 {
12351 struct ada_catchpoint_location *ada_loc
12352 = (struct ada_catchpoint_location *) bl;
12353 expression_up exp;
12354
12355 if (!bl->shlib_disabled)
12356 {
12357 const char *s;
12358
12359 s = cond_string.c_str ();
12360 try
12361 {
12362 exp = parse_exp_1 (&s, bl->address,
12363 block_for_pc (bl->address),
12364 0);
12365 }
12366 catch (const gdb_exception_error &e)
12367 {
12368 warning (_("failed to reevaluate internal exception condition "
12369 "for catchpoint %d: %s"),
12370 c->number, e.what ());
12371 }
12372 }
12373
12374 ada_loc->excep_cond_expr = std::move (exp);
12375 }
12376 }
12377
12378 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12379 structure for all exception catchpoint kinds. */
12380
12381 static struct bp_location *
12382 allocate_location_exception (struct breakpoint *self)
12383 {
12384 return new ada_catchpoint_location (self);
12385 }
12386
12387 /* Implement the RE_SET method in the breakpoint_ops structure for all
12388 exception catchpoint kinds. */
12389
12390 static void
12391 re_set_exception (struct breakpoint *b)
12392 {
12393 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12394
12395 /* Call the base class's method. This updates the catchpoint's
12396 locations. */
12397 bkpt_breakpoint_ops.re_set (b);
12398
12399 /* Reparse the exception conditional expressions. One for each
12400 location. */
12401 create_excep_cond_exprs (c, c->m_kind);
12402 }
12403
12404 /* Returns true if we should stop for this breakpoint hit. If the
12405 user specified a specific exception, we only want to cause a stop
12406 if the program thrown that exception. */
12407
12408 static int
12409 should_stop_exception (const struct bp_location *bl)
12410 {
12411 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12412 const struct ada_catchpoint_location *ada_loc
12413 = (const struct ada_catchpoint_location *) bl;
12414 int stop;
12415
12416 struct internalvar *var = lookup_internalvar ("_ada_exception");
12417 if (c->m_kind == ada_catch_assert)
12418 clear_internalvar (var);
12419 else
12420 {
12421 try
12422 {
12423 const char *expr;
12424
12425 if (c->m_kind == ada_catch_handlers)
12426 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12427 ".all.occurrence.id");
12428 else
12429 expr = "e";
12430
12431 struct value *exc = parse_and_eval (expr);
12432 set_internalvar (var, exc);
12433 }
12434 catch (const gdb_exception_error &ex)
12435 {
12436 clear_internalvar (var);
12437 }
12438 }
12439
12440 /* With no specific exception, should always stop. */
12441 if (c->excep_string.empty ())
12442 return 1;
12443
12444 if (ada_loc->excep_cond_expr == NULL)
12445 {
12446 /* We will have a NULL expression if back when we were creating
12447 the expressions, this location's had failed to parse. */
12448 return 1;
12449 }
12450
12451 stop = 1;
12452 try
12453 {
12454 struct value *mark;
12455
12456 mark = value_mark ();
12457 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12458 value_free_to_mark (mark);
12459 }
12460 catch (const gdb_exception &ex)
12461 {
12462 exception_fprintf (gdb_stderr, ex,
12463 _("Error in testing exception condition:\n"));
12464 }
12465
12466 return stop;
12467 }
12468
12469 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12470 for all exception catchpoint kinds. */
12471
12472 static void
12473 check_status_exception (bpstat bs)
12474 {
12475 bs->stop = should_stop_exception (bs->bp_location_at);
12476 }
12477
12478 /* Implement the PRINT_IT method in the breakpoint_ops structure
12479 for all exception catchpoint kinds. */
12480
12481 static enum print_stop_action
12482 print_it_exception (bpstat bs)
12483 {
12484 struct ui_out *uiout = current_uiout;
12485 struct breakpoint *b = bs->breakpoint_at;
12486
12487 annotate_catchpoint (b->number);
12488
12489 if (uiout->is_mi_like_p ())
12490 {
12491 uiout->field_string ("reason",
12492 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12493 uiout->field_string ("disp", bpdisp_text (b->disposition));
12494 }
12495
12496 uiout->text (b->disposition == disp_del
12497 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12498 uiout->field_signed ("bkptno", b->number);
12499 uiout->text (", ");
12500
12501 /* ada_exception_name_addr relies on the selected frame being the
12502 current frame. Need to do this here because this function may be
12503 called more than once when printing a stop, and below, we'll
12504 select the first frame past the Ada run-time (see
12505 ada_find_printable_frame). */
12506 select_frame (get_current_frame ());
12507
12508 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12509 switch (c->m_kind)
12510 {
12511 case ada_catch_exception:
12512 case ada_catch_exception_unhandled:
12513 case ada_catch_handlers:
12514 {
12515 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12516 char exception_name[256];
12517
12518 if (addr != 0)
12519 {
12520 read_memory (addr, (gdb_byte *) exception_name,
12521 sizeof (exception_name) - 1);
12522 exception_name [sizeof (exception_name) - 1] = '\0';
12523 }
12524 else
12525 {
12526 /* For some reason, we were unable to read the exception
12527 name. This could happen if the Runtime was compiled
12528 without debugging info, for instance. In that case,
12529 just replace the exception name by the generic string
12530 "exception" - it will read as "an exception" in the
12531 notification we are about to print. */
12532 memcpy (exception_name, "exception", sizeof ("exception"));
12533 }
12534 /* In the case of unhandled exception breakpoints, we print
12535 the exception name as "unhandled EXCEPTION_NAME", to make
12536 it clearer to the user which kind of catchpoint just got
12537 hit. We used ui_out_text to make sure that this extra
12538 info does not pollute the exception name in the MI case. */
12539 if (c->m_kind == ada_catch_exception_unhandled)
12540 uiout->text ("unhandled ");
12541 uiout->field_string ("exception-name", exception_name);
12542 }
12543 break;
12544 case ada_catch_assert:
12545 /* In this case, the name of the exception is not really
12546 important. Just print "failed assertion" to make it clearer
12547 that his program just hit an assertion-failure catchpoint.
12548 We used ui_out_text because this info does not belong in
12549 the MI output. */
12550 uiout->text ("failed assertion");
12551 break;
12552 }
12553
12554 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12555 if (exception_message != NULL)
12556 {
12557 uiout->text (" (");
12558 uiout->field_string ("exception-message", exception_message.get ());
12559 uiout->text (")");
12560 }
12561
12562 uiout->text (" at ");
12563 ada_find_printable_frame (get_current_frame ());
12564
12565 return PRINT_SRC_AND_LOC;
12566 }
12567
12568 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12569 for all exception catchpoint kinds. */
12570
12571 static void
12572 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12573 {
12574 struct ui_out *uiout = current_uiout;
12575 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12576 struct value_print_options opts;
12577
12578 get_user_print_options (&opts);
12579
12580 if (opts.addressprint)
12581 uiout->field_skip ("addr");
12582
12583 annotate_field (5);
12584 switch (c->m_kind)
12585 {
12586 case ada_catch_exception:
12587 if (!c->excep_string.empty ())
12588 {
12589 std::string msg = string_printf (_("`%s' Ada exception"),
12590 c->excep_string.c_str ());
12591
12592 uiout->field_string ("what", msg);
12593 }
12594 else
12595 uiout->field_string ("what", "all Ada exceptions");
12596
12597 break;
12598
12599 case ada_catch_exception_unhandled:
12600 uiout->field_string ("what", "unhandled Ada exceptions");
12601 break;
12602
12603 case ada_catch_handlers:
12604 if (!c->excep_string.empty ())
12605 {
12606 uiout->field_fmt ("what",
12607 _("`%s' Ada exception handlers"),
12608 c->excep_string.c_str ());
12609 }
12610 else
12611 uiout->field_string ("what", "all Ada exceptions handlers");
12612 break;
12613
12614 case ada_catch_assert:
12615 uiout->field_string ("what", "failed Ada assertions");
12616 break;
12617
12618 default:
12619 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12620 break;
12621 }
12622 }
12623
12624 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12625 for all exception catchpoint kinds. */
12626
12627 static void
12628 print_mention_exception (struct breakpoint *b)
12629 {
12630 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12631 struct ui_out *uiout = current_uiout;
12632
12633 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12634 : _("Catchpoint "));
12635 uiout->field_signed ("bkptno", b->number);
12636 uiout->text (": ");
12637
12638 switch (c->m_kind)
12639 {
12640 case ada_catch_exception:
12641 if (!c->excep_string.empty ())
12642 {
12643 std::string info = string_printf (_("`%s' Ada exception"),
12644 c->excep_string.c_str ());
12645 uiout->text (info.c_str ());
12646 }
12647 else
12648 uiout->text (_("all Ada exceptions"));
12649 break;
12650
12651 case ada_catch_exception_unhandled:
12652 uiout->text (_("unhandled Ada exceptions"));
12653 break;
12654
12655 case ada_catch_handlers:
12656 if (!c->excep_string.empty ())
12657 {
12658 std::string info
12659 = string_printf (_("`%s' Ada exception handlers"),
12660 c->excep_string.c_str ());
12661 uiout->text (info.c_str ());
12662 }
12663 else
12664 uiout->text (_("all Ada exceptions handlers"));
12665 break;
12666
12667 case ada_catch_assert:
12668 uiout->text (_("failed Ada assertions"));
12669 break;
12670
12671 default:
12672 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12673 break;
12674 }
12675 }
12676
12677 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12678 for all exception catchpoint kinds. */
12679
12680 static void
12681 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12682 {
12683 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12684
12685 switch (c->m_kind)
12686 {
12687 case ada_catch_exception:
12688 fprintf_filtered (fp, "catch exception");
12689 if (!c->excep_string.empty ())
12690 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12691 break;
12692
12693 case ada_catch_exception_unhandled:
12694 fprintf_filtered (fp, "catch exception unhandled");
12695 break;
12696
12697 case ada_catch_handlers:
12698 fprintf_filtered (fp, "catch handlers");
12699 break;
12700
12701 case ada_catch_assert:
12702 fprintf_filtered (fp, "catch assert");
12703 break;
12704
12705 default:
12706 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12707 }
12708 print_recreate_thread (b, fp);
12709 }
12710
12711 /* Virtual tables for various breakpoint types. */
12712 static struct breakpoint_ops catch_exception_breakpoint_ops;
12713 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12714 static struct breakpoint_ops catch_assert_breakpoint_ops;
12715 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12716
12717 /* See ada-lang.h. */
12718
12719 bool
12720 is_ada_exception_catchpoint (breakpoint *bp)
12721 {
12722 return (bp->ops == &catch_exception_breakpoint_ops
12723 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12724 || bp->ops == &catch_assert_breakpoint_ops
12725 || bp->ops == &catch_handlers_breakpoint_ops);
12726 }
12727
12728 /* Split the arguments specified in a "catch exception" command.
12729 Set EX to the appropriate catchpoint type.
12730 Set EXCEP_STRING to the name of the specific exception if
12731 specified by the user.
12732 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12733 "catch handlers" command. False otherwise.
12734 If a condition is found at the end of the arguments, the condition
12735 expression is stored in COND_STRING (memory must be deallocated
12736 after use). Otherwise COND_STRING is set to NULL. */
12737
12738 static void
12739 catch_ada_exception_command_split (const char *args,
12740 bool is_catch_handlers_cmd,
12741 enum ada_exception_catchpoint_kind *ex,
12742 std::string *excep_string,
12743 std::string *cond_string)
12744 {
12745 std::string exception_name;
12746
12747 exception_name = extract_arg (&args);
12748 if (exception_name == "if")
12749 {
12750 /* This is not an exception name; this is the start of a condition
12751 expression for a catchpoint on all exceptions. So, "un-get"
12752 this token, and set exception_name to NULL. */
12753 exception_name.clear ();
12754 args -= 2;
12755 }
12756
12757 /* Check to see if we have a condition. */
12758
12759 args = skip_spaces (args);
12760 if (startswith (args, "if")
12761 && (isspace (args[2]) || args[2] == '\0'))
12762 {
12763 args += 2;
12764 args = skip_spaces (args);
12765
12766 if (args[0] == '\0')
12767 error (_("Condition missing after `if' keyword"));
12768 *cond_string = args;
12769
12770 args += strlen (args);
12771 }
12772
12773 /* Check that we do not have any more arguments. Anything else
12774 is unexpected. */
12775
12776 if (args[0] != '\0')
12777 error (_("Junk at end of expression"));
12778
12779 if (is_catch_handlers_cmd)
12780 {
12781 /* Catch handling of exceptions. */
12782 *ex = ada_catch_handlers;
12783 *excep_string = exception_name;
12784 }
12785 else if (exception_name.empty ())
12786 {
12787 /* Catch all exceptions. */
12788 *ex = ada_catch_exception;
12789 excep_string->clear ();
12790 }
12791 else if (exception_name == "unhandled")
12792 {
12793 /* Catch unhandled exceptions. */
12794 *ex = ada_catch_exception_unhandled;
12795 excep_string->clear ();
12796 }
12797 else
12798 {
12799 /* Catch a specific exception. */
12800 *ex = ada_catch_exception;
12801 *excep_string = exception_name;
12802 }
12803 }
12804
12805 /* Return the name of the symbol on which we should break in order to
12806 implement a catchpoint of the EX kind. */
12807
12808 static const char *
12809 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12810 {
12811 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12812
12813 gdb_assert (data->exception_info != NULL);
12814
12815 switch (ex)
12816 {
12817 case ada_catch_exception:
12818 return (data->exception_info->catch_exception_sym);
12819 break;
12820 case ada_catch_exception_unhandled:
12821 return (data->exception_info->catch_exception_unhandled_sym);
12822 break;
12823 case ada_catch_assert:
12824 return (data->exception_info->catch_assert_sym);
12825 break;
12826 case ada_catch_handlers:
12827 return (data->exception_info->catch_handlers_sym);
12828 break;
12829 default:
12830 internal_error (__FILE__, __LINE__,
12831 _("unexpected catchpoint kind (%d)"), ex);
12832 }
12833 }
12834
12835 /* Return the breakpoint ops "virtual table" used for catchpoints
12836 of the EX kind. */
12837
12838 static const struct breakpoint_ops *
12839 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12840 {
12841 switch (ex)
12842 {
12843 case ada_catch_exception:
12844 return (&catch_exception_breakpoint_ops);
12845 break;
12846 case ada_catch_exception_unhandled:
12847 return (&catch_exception_unhandled_breakpoint_ops);
12848 break;
12849 case ada_catch_assert:
12850 return (&catch_assert_breakpoint_ops);
12851 break;
12852 case ada_catch_handlers:
12853 return (&catch_handlers_breakpoint_ops);
12854 break;
12855 default:
12856 internal_error (__FILE__, __LINE__,
12857 _("unexpected catchpoint kind (%d)"), ex);
12858 }
12859 }
12860
12861 /* Return the condition that will be used to match the current exception
12862 being raised with the exception that the user wants to catch. This
12863 assumes that this condition is used when the inferior just triggered
12864 an exception catchpoint.
12865 EX: the type of catchpoints used for catching Ada exceptions. */
12866
12867 static std::string
12868 ada_exception_catchpoint_cond_string (const char *excep_string,
12869 enum ada_exception_catchpoint_kind ex)
12870 {
12871 int i;
12872 bool is_standard_exc = false;
12873 std::string result;
12874
12875 if (ex == ada_catch_handlers)
12876 {
12877 /* For exception handlers catchpoints, the condition string does
12878 not use the same parameter as for the other exceptions. */
12879 result = ("long_integer (GNAT_GCC_exception_Access"
12880 "(gcc_exception).all.occurrence.id)");
12881 }
12882 else
12883 result = "long_integer (e)";
12884
12885 /* The standard exceptions are a special case. They are defined in
12886 runtime units that have been compiled without debugging info; if
12887 EXCEP_STRING is the not-fully-qualified name of a standard
12888 exception (e.g. "constraint_error") then, during the evaluation
12889 of the condition expression, the symbol lookup on this name would
12890 *not* return this standard exception. The catchpoint condition
12891 may then be set only on user-defined exceptions which have the
12892 same not-fully-qualified name (e.g. my_package.constraint_error).
12893
12894 To avoid this unexcepted behavior, these standard exceptions are
12895 systematically prefixed by "standard". This means that "catch
12896 exception constraint_error" is rewritten into "catch exception
12897 standard.constraint_error".
12898
12899 If an exception named constraint_error is defined in another package of
12900 the inferior program, then the only way to specify this exception as a
12901 breakpoint condition is to use its fully-qualified named:
12902 e.g. my_package.constraint_error. */
12903
12904 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12905 {
12906 if (strcmp (standard_exc [i], excep_string) == 0)
12907 {
12908 is_standard_exc = true;
12909 break;
12910 }
12911 }
12912
12913 result += " = ";
12914
12915 if (is_standard_exc)
12916 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12917 else
12918 string_appendf (result, "long_integer (&%s)", excep_string);
12919
12920 return result;
12921 }
12922
12923 /* Return the symtab_and_line that should be used to insert an exception
12924 catchpoint of the TYPE kind.
12925
12926 ADDR_STRING returns the name of the function where the real
12927 breakpoint that implements the catchpoints is set, depending on the
12928 type of catchpoint we need to create. */
12929
12930 static struct symtab_and_line
12931 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12932 std::string *addr_string, const struct breakpoint_ops **ops)
12933 {
12934 const char *sym_name;
12935 struct symbol *sym;
12936
12937 /* First, find out which exception support info to use. */
12938 ada_exception_support_info_sniffer ();
12939
12940 /* Then lookup the function on which we will break in order to catch
12941 the Ada exceptions requested by the user. */
12942 sym_name = ada_exception_sym_name (ex);
12943 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12944
12945 if (sym == NULL)
12946 error (_("Catchpoint symbol not found: %s"), sym_name);
12947
12948 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12949 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12950
12951 /* Set ADDR_STRING. */
12952 *addr_string = sym_name;
12953
12954 /* Set OPS. */
12955 *ops = ada_exception_breakpoint_ops (ex);
12956
12957 return find_function_start_sal (sym, 1);
12958 }
12959
12960 /* Create an Ada exception catchpoint.
12961
12962 EX_KIND is the kind of exception catchpoint to be created.
12963
12964 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12965 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12966 of the exception to which this catchpoint applies.
12967
12968 COND_STRING, if not empty, is the catchpoint condition.
12969
12970 TEMPFLAG, if nonzero, means that the underlying breakpoint
12971 should be temporary.
12972
12973 FROM_TTY is the usual argument passed to all commands implementations. */
12974
12975 void
12976 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12977 enum ada_exception_catchpoint_kind ex_kind,
12978 const std::string &excep_string,
12979 const std::string &cond_string,
12980 int tempflag,
12981 int disabled,
12982 int from_tty)
12983 {
12984 std::string addr_string;
12985 const struct breakpoint_ops *ops = NULL;
12986 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12987
12988 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12989 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12990 ops, tempflag, disabled, from_tty);
12991 c->excep_string = excep_string;
12992 create_excep_cond_exprs (c.get (), ex_kind);
12993 if (!cond_string.empty ())
12994 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12995 install_breakpoint (0, std::move (c), 1);
12996 }
12997
12998 /* Implement the "catch exception" command. */
12999
13000 static void
13001 catch_ada_exception_command (const char *arg_entry, int from_tty,
13002 struct cmd_list_element *command)
13003 {
13004 const char *arg = arg_entry;
13005 struct gdbarch *gdbarch = get_current_arch ();
13006 int tempflag;
13007 enum ada_exception_catchpoint_kind ex_kind;
13008 std::string excep_string;
13009 std::string cond_string;
13010
13011 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13012
13013 if (!arg)
13014 arg = "";
13015 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13016 &cond_string);
13017 create_ada_exception_catchpoint (gdbarch, ex_kind,
13018 excep_string, cond_string,
13019 tempflag, 1 /* enabled */,
13020 from_tty);
13021 }
13022
13023 /* Implement the "catch handlers" command. */
13024
13025 static void
13026 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13027 struct cmd_list_element *command)
13028 {
13029 const char *arg = arg_entry;
13030 struct gdbarch *gdbarch = get_current_arch ();
13031 int tempflag;
13032 enum ada_exception_catchpoint_kind ex_kind;
13033 std::string excep_string;
13034 std::string cond_string;
13035
13036 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13037
13038 if (!arg)
13039 arg = "";
13040 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13041 &cond_string);
13042 create_ada_exception_catchpoint (gdbarch, ex_kind,
13043 excep_string, cond_string,
13044 tempflag, 1 /* enabled */,
13045 from_tty);
13046 }
13047
13048 /* Completion function for the Ada "catch" commands. */
13049
13050 static void
13051 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13052 const char *text, const char *word)
13053 {
13054 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13055
13056 for (const ada_exc_info &info : exceptions)
13057 {
13058 if (startswith (info.name, word))
13059 tracker.add_completion (make_unique_xstrdup (info.name));
13060 }
13061 }
13062
13063 /* Split the arguments specified in a "catch assert" command.
13064
13065 ARGS contains the command's arguments (or the empty string if
13066 no arguments were passed).
13067
13068 If ARGS contains a condition, set COND_STRING to that condition
13069 (the memory needs to be deallocated after use). */
13070
13071 static void
13072 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13073 {
13074 args = skip_spaces (args);
13075
13076 /* Check whether a condition was provided. */
13077 if (startswith (args, "if")
13078 && (isspace (args[2]) || args[2] == '\0'))
13079 {
13080 args += 2;
13081 args = skip_spaces (args);
13082 if (args[0] == '\0')
13083 error (_("condition missing after `if' keyword"));
13084 cond_string.assign (args);
13085 }
13086
13087 /* Otherwise, there should be no other argument at the end of
13088 the command. */
13089 else if (args[0] != '\0')
13090 error (_("Junk at end of arguments."));
13091 }
13092
13093 /* Implement the "catch assert" command. */
13094
13095 static void
13096 catch_assert_command (const char *arg_entry, int from_tty,
13097 struct cmd_list_element *command)
13098 {
13099 const char *arg = arg_entry;
13100 struct gdbarch *gdbarch = get_current_arch ();
13101 int tempflag;
13102 std::string cond_string;
13103
13104 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13105
13106 if (!arg)
13107 arg = "";
13108 catch_ada_assert_command_split (arg, cond_string);
13109 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13110 "", cond_string,
13111 tempflag, 1 /* enabled */,
13112 from_tty);
13113 }
13114
13115 /* Return non-zero if the symbol SYM is an Ada exception object. */
13116
13117 static int
13118 ada_is_exception_sym (struct symbol *sym)
13119 {
13120 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13121
13122 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13123 && SYMBOL_CLASS (sym) != LOC_BLOCK
13124 && SYMBOL_CLASS (sym) != LOC_CONST
13125 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13126 && type_name != NULL && strcmp (type_name, "exception") == 0);
13127 }
13128
13129 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13130 Ada exception object. This matches all exceptions except the ones
13131 defined by the Ada language. */
13132
13133 static int
13134 ada_is_non_standard_exception_sym (struct symbol *sym)
13135 {
13136 int i;
13137
13138 if (!ada_is_exception_sym (sym))
13139 return 0;
13140
13141 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13142 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
13143 return 0; /* A standard exception. */
13144
13145 /* Numeric_Error is also a standard exception, so exclude it.
13146 See the STANDARD_EXC description for more details as to why
13147 this exception is not listed in that array. */
13148 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
13149 return 0;
13150
13151 return 1;
13152 }
13153
13154 /* A helper function for std::sort, comparing two struct ada_exc_info
13155 objects.
13156
13157 The comparison is determined first by exception name, and then
13158 by exception address. */
13159
13160 bool
13161 ada_exc_info::operator< (const ada_exc_info &other) const
13162 {
13163 int result;
13164
13165 result = strcmp (name, other.name);
13166 if (result < 0)
13167 return true;
13168 if (result == 0 && addr < other.addr)
13169 return true;
13170 return false;
13171 }
13172
13173 bool
13174 ada_exc_info::operator== (const ada_exc_info &other) const
13175 {
13176 return addr == other.addr && strcmp (name, other.name) == 0;
13177 }
13178
13179 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13180 routine, but keeping the first SKIP elements untouched.
13181
13182 All duplicates are also removed. */
13183
13184 static void
13185 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13186 int skip)
13187 {
13188 std::sort (exceptions->begin () + skip, exceptions->end ());
13189 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13190 exceptions->end ());
13191 }
13192
13193 /* Add all exceptions defined by the Ada standard whose name match
13194 a regular expression.
13195
13196 If PREG is not NULL, then this regexp_t object is used to
13197 perform the symbol name matching. Otherwise, no name-based
13198 filtering is performed.
13199
13200 EXCEPTIONS is a vector of exceptions to which matching exceptions
13201 gets pushed. */
13202
13203 static void
13204 ada_add_standard_exceptions (compiled_regex *preg,
13205 std::vector<ada_exc_info> *exceptions)
13206 {
13207 int i;
13208
13209 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13210 {
13211 if (preg == NULL
13212 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13213 {
13214 struct bound_minimal_symbol msymbol
13215 = ada_lookup_simple_minsym (standard_exc[i]);
13216
13217 if (msymbol.minsym != NULL)
13218 {
13219 struct ada_exc_info info
13220 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13221
13222 exceptions->push_back (info);
13223 }
13224 }
13225 }
13226 }
13227
13228 /* Add all Ada exceptions defined locally and accessible from the given
13229 FRAME.
13230
13231 If PREG is not NULL, then this regexp_t object is used to
13232 perform the symbol name matching. Otherwise, no name-based
13233 filtering is performed.
13234
13235 EXCEPTIONS is a vector of exceptions to which matching exceptions
13236 gets pushed. */
13237
13238 static void
13239 ada_add_exceptions_from_frame (compiled_regex *preg,
13240 struct frame_info *frame,
13241 std::vector<ada_exc_info> *exceptions)
13242 {
13243 const struct block *block = get_frame_block (frame, 0);
13244
13245 while (block != 0)
13246 {
13247 struct block_iterator iter;
13248 struct symbol *sym;
13249
13250 ALL_BLOCK_SYMBOLS (block, iter, sym)
13251 {
13252 switch (SYMBOL_CLASS (sym))
13253 {
13254 case LOC_TYPEDEF:
13255 case LOC_BLOCK:
13256 case LOC_CONST:
13257 break;
13258 default:
13259 if (ada_is_exception_sym (sym))
13260 {
13261 struct ada_exc_info info = {sym->print_name (),
13262 SYMBOL_VALUE_ADDRESS (sym)};
13263
13264 exceptions->push_back (info);
13265 }
13266 }
13267 }
13268 if (BLOCK_FUNCTION (block) != NULL)
13269 break;
13270 block = BLOCK_SUPERBLOCK (block);
13271 }
13272 }
13273
13274 /* Return true if NAME matches PREG or if PREG is NULL. */
13275
13276 static bool
13277 name_matches_regex (const char *name, compiled_regex *preg)
13278 {
13279 return (preg == NULL
13280 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13281 }
13282
13283 /* Add all exceptions defined globally whose name name match
13284 a regular expression, excluding standard exceptions.
13285
13286 The reason we exclude standard exceptions is that they need
13287 to be handled separately: Standard exceptions are defined inside
13288 a runtime unit which is normally not compiled with debugging info,
13289 and thus usually do not show up in our symbol search. However,
13290 if the unit was in fact built with debugging info, we need to
13291 exclude them because they would duplicate the entry we found
13292 during the special loop that specifically searches for those
13293 standard exceptions.
13294
13295 If PREG is not NULL, then this regexp_t object is used to
13296 perform the symbol name matching. Otherwise, no name-based
13297 filtering is performed.
13298
13299 EXCEPTIONS is a vector of exceptions to which matching exceptions
13300 gets pushed. */
13301
13302 static void
13303 ada_add_global_exceptions (compiled_regex *preg,
13304 std::vector<ada_exc_info> *exceptions)
13305 {
13306 /* In Ada, the symbol "search name" is a linkage name, whereas the
13307 regular expression used to do the matching refers to the natural
13308 name. So match against the decoded name. */
13309 expand_symtabs_matching (NULL,
13310 lookup_name_info::match_any (),
13311 [&] (const char *search_name)
13312 {
13313 std::string decoded = ada_decode (search_name);
13314 return name_matches_regex (decoded.c_str (), preg);
13315 },
13316 NULL,
13317 VARIABLES_DOMAIN);
13318
13319 for (objfile *objfile : current_program_space->objfiles ())
13320 {
13321 for (compunit_symtab *s : objfile->compunits ())
13322 {
13323 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13324 int i;
13325
13326 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13327 {
13328 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13329 struct block_iterator iter;
13330 struct symbol *sym;
13331
13332 ALL_BLOCK_SYMBOLS (b, iter, sym)
13333 if (ada_is_non_standard_exception_sym (sym)
13334 && name_matches_regex (sym->natural_name (), preg))
13335 {
13336 struct ada_exc_info info
13337 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13338
13339 exceptions->push_back (info);
13340 }
13341 }
13342 }
13343 }
13344 }
13345
13346 /* Implements ada_exceptions_list with the regular expression passed
13347 as a regex_t, rather than a string.
13348
13349 If not NULL, PREG is used to filter out exceptions whose names
13350 do not match. Otherwise, all exceptions are listed. */
13351
13352 static std::vector<ada_exc_info>
13353 ada_exceptions_list_1 (compiled_regex *preg)
13354 {
13355 std::vector<ada_exc_info> result;
13356 int prev_len;
13357
13358 /* First, list the known standard exceptions. These exceptions
13359 need to be handled separately, as they are usually defined in
13360 runtime units that have been compiled without debugging info. */
13361
13362 ada_add_standard_exceptions (preg, &result);
13363
13364 /* Next, find all exceptions whose scope is local and accessible
13365 from the currently selected frame. */
13366
13367 if (has_stack_frames ())
13368 {
13369 prev_len = result.size ();
13370 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13371 &result);
13372 if (result.size () > prev_len)
13373 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13374 }
13375
13376 /* Add all exceptions whose scope is global. */
13377
13378 prev_len = result.size ();
13379 ada_add_global_exceptions (preg, &result);
13380 if (result.size () > prev_len)
13381 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13382
13383 return result;
13384 }
13385
13386 /* Return a vector of ada_exc_info.
13387
13388 If REGEXP is NULL, all exceptions are included in the result.
13389 Otherwise, it should contain a valid regular expression,
13390 and only the exceptions whose names match that regular expression
13391 are included in the result.
13392
13393 The exceptions are sorted in the following order:
13394 - Standard exceptions (defined by the Ada language), in
13395 alphabetical order;
13396 - Exceptions only visible from the current frame, in
13397 alphabetical order;
13398 - Exceptions whose scope is global, in alphabetical order. */
13399
13400 std::vector<ada_exc_info>
13401 ada_exceptions_list (const char *regexp)
13402 {
13403 if (regexp == NULL)
13404 return ada_exceptions_list_1 (NULL);
13405
13406 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13407 return ada_exceptions_list_1 (&reg);
13408 }
13409
13410 /* Implement the "info exceptions" command. */
13411
13412 static void
13413 info_exceptions_command (const char *regexp, int from_tty)
13414 {
13415 struct gdbarch *gdbarch = get_current_arch ();
13416
13417 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13418
13419 if (regexp != NULL)
13420 printf_filtered
13421 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13422 else
13423 printf_filtered (_("All defined Ada exceptions:\n"));
13424
13425 for (const ada_exc_info &info : exceptions)
13426 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13427 }
13428
13429 /* Operators */
13430 /* Information about operators given special treatment in functions
13431 below. */
13432 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13433
13434 #define ADA_OPERATORS \
13435 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13436 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13437 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13438 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13439 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13440 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13441 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13442 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13443 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13444 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13445 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13446 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13447 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13448 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13449 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13450 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13451 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13452 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13453 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13454
13455 static void
13456 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13457 int *argsp)
13458 {
13459 switch (exp->elts[pc - 1].opcode)
13460 {
13461 default:
13462 operator_length_standard (exp, pc, oplenp, argsp);
13463 break;
13464
13465 #define OP_DEFN(op, len, args, binop) \
13466 case op: *oplenp = len; *argsp = args; break;
13467 ADA_OPERATORS;
13468 #undef OP_DEFN
13469
13470 case OP_AGGREGATE:
13471 *oplenp = 3;
13472 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13473 break;
13474
13475 case OP_CHOICES:
13476 *oplenp = 3;
13477 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13478 break;
13479 }
13480 }
13481
13482 /* Implementation of the exp_descriptor method operator_check. */
13483
13484 static int
13485 ada_operator_check (struct expression *exp, int pos,
13486 int (*objfile_func) (struct objfile *objfile, void *data),
13487 void *data)
13488 {
13489 const union exp_element *const elts = exp->elts;
13490 struct type *type = NULL;
13491
13492 switch (elts[pos].opcode)
13493 {
13494 case UNOP_IN_RANGE:
13495 case UNOP_QUAL:
13496 type = elts[pos + 1].type;
13497 break;
13498
13499 default:
13500 return operator_check_standard (exp, pos, objfile_func, data);
13501 }
13502
13503 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13504
13505 if (type && TYPE_OBJFILE (type)
13506 && (*objfile_func) (TYPE_OBJFILE (type), data))
13507 return 1;
13508
13509 return 0;
13510 }
13511
13512 static const char *
13513 ada_op_name (enum exp_opcode opcode)
13514 {
13515 switch (opcode)
13516 {
13517 default:
13518 return op_name_standard (opcode);
13519
13520 #define OP_DEFN(op, len, args, binop) case op: return #op;
13521 ADA_OPERATORS;
13522 #undef OP_DEFN
13523
13524 case OP_AGGREGATE:
13525 return "OP_AGGREGATE";
13526 case OP_CHOICES:
13527 return "OP_CHOICES";
13528 case OP_NAME:
13529 return "OP_NAME";
13530 }
13531 }
13532
13533 /* As for operator_length, but assumes PC is pointing at the first
13534 element of the operator, and gives meaningful results only for the
13535 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13536
13537 static void
13538 ada_forward_operator_length (struct expression *exp, int pc,
13539 int *oplenp, int *argsp)
13540 {
13541 switch (exp->elts[pc].opcode)
13542 {
13543 default:
13544 *oplenp = *argsp = 0;
13545 break;
13546
13547 #define OP_DEFN(op, len, args, binop) \
13548 case op: *oplenp = len; *argsp = args; break;
13549 ADA_OPERATORS;
13550 #undef OP_DEFN
13551
13552 case OP_AGGREGATE:
13553 *oplenp = 3;
13554 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13555 break;
13556
13557 case OP_CHOICES:
13558 *oplenp = 3;
13559 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13560 break;
13561
13562 case OP_STRING:
13563 case OP_NAME:
13564 {
13565 int len = longest_to_int (exp->elts[pc + 1].longconst);
13566
13567 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13568 *argsp = 0;
13569 break;
13570 }
13571 }
13572 }
13573
13574 static int
13575 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13576 {
13577 enum exp_opcode op = exp->elts[elt].opcode;
13578 int oplen, nargs;
13579 int pc = elt;
13580 int i;
13581
13582 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13583
13584 switch (op)
13585 {
13586 /* Ada attributes ('Foo). */
13587 case OP_ATR_FIRST:
13588 case OP_ATR_LAST:
13589 case OP_ATR_LENGTH:
13590 case OP_ATR_IMAGE:
13591 case OP_ATR_MAX:
13592 case OP_ATR_MIN:
13593 case OP_ATR_MODULUS:
13594 case OP_ATR_POS:
13595 case OP_ATR_SIZE:
13596 case OP_ATR_TAG:
13597 case OP_ATR_VAL:
13598 break;
13599
13600 case UNOP_IN_RANGE:
13601 case UNOP_QUAL:
13602 /* XXX: gdb_sprint_host_address, type_sprint */
13603 fprintf_filtered (stream, _("Type @"));
13604 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13605 fprintf_filtered (stream, " (");
13606 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13607 fprintf_filtered (stream, ")");
13608 break;
13609 case BINOP_IN_BOUNDS:
13610 fprintf_filtered (stream, " (%d)",
13611 longest_to_int (exp->elts[pc + 2].longconst));
13612 break;
13613 case TERNOP_IN_RANGE:
13614 break;
13615
13616 case OP_AGGREGATE:
13617 case OP_OTHERS:
13618 case OP_DISCRETE_RANGE:
13619 case OP_POSITIONAL:
13620 case OP_CHOICES:
13621 break;
13622
13623 case OP_NAME:
13624 case OP_STRING:
13625 {
13626 char *name = &exp->elts[elt + 2].string;
13627 int len = longest_to_int (exp->elts[elt + 1].longconst);
13628
13629 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13630 break;
13631 }
13632
13633 default:
13634 return dump_subexp_body_standard (exp, stream, elt);
13635 }
13636
13637 elt += oplen;
13638 for (i = 0; i < nargs; i += 1)
13639 elt = dump_subexp (exp, stream, elt);
13640
13641 return elt;
13642 }
13643
13644 /* The Ada extension of print_subexp (q.v.). */
13645
13646 static void
13647 ada_print_subexp (struct expression *exp, int *pos,
13648 struct ui_file *stream, enum precedence prec)
13649 {
13650 int oplen, nargs, i;
13651 int pc = *pos;
13652 enum exp_opcode op = exp->elts[pc].opcode;
13653
13654 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13655
13656 *pos += oplen;
13657 switch (op)
13658 {
13659 default:
13660 *pos -= oplen;
13661 print_subexp_standard (exp, pos, stream, prec);
13662 return;
13663
13664 case OP_VAR_VALUE:
13665 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13666 return;
13667
13668 case BINOP_IN_BOUNDS:
13669 /* XXX: sprint_subexp */
13670 print_subexp (exp, pos, stream, PREC_SUFFIX);
13671 fputs_filtered (" in ", stream);
13672 print_subexp (exp, pos, stream, PREC_SUFFIX);
13673 fputs_filtered ("'range", stream);
13674 if (exp->elts[pc + 1].longconst > 1)
13675 fprintf_filtered (stream, "(%ld)",
13676 (long) exp->elts[pc + 1].longconst);
13677 return;
13678
13679 case TERNOP_IN_RANGE:
13680 if (prec >= PREC_EQUAL)
13681 fputs_filtered ("(", stream);
13682 /* XXX: sprint_subexp */
13683 print_subexp (exp, pos, stream, PREC_SUFFIX);
13684 fputs_filtered (" in ", stream);
13685 print_subexp (exp, pos, stream, PREC_EQUAL);
13686 fputs_filtered (" .. ", stream);
13687 print_subexp (exp, pos, stream, PREC_EQUAL);
13688 if (prec >= PREC_EQUAL)
13689 fputs_filtered (")", stream);
13690 return;
13691
13692 case OP_ATR_FIRST:
13693 case OP_ATR_LAST:
13694 case OP_ATR_LENGTH:
13695 case OP_ATR_IMAGE:
13696 case OP_ATR_MAX:
13697 case OP_ATR_MIN:
13698 case OP_ATR_MODULUS:
13699 case OP_ATR_POS:
13700 case OP_ATR_SIZE:
13701 case OP_ATR_TAG:
13702 case OP_ATR_VAL:
13703 if (exp->elts[*pos].opcode == OP_TYPE)
13704 {
13705 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13706 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13707 &type_print_raw_options);
13708 *pos += 3;
13709 }
13710 else
13711 print_subexp (exp, pos, stream, PREC_SUFFIX);
13712 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13713 if (nargs > 1)
13714 {
13715 int tem;
13716
13717 for (tem = 1; tem < nargs; tem += 1)
13718 {
13719 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13720 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13721 }
13722 fputs_filtered (")", stream);
13723 }
13724 return;
13725
13726 case UNOP_QUAL:
13727 type_print (exp->elts[pc + 1].type, "", stream, 0);
13728 fputs_filtered ("'(", stream);
13729 print_subexp (exp, pos, stream, PREC_PREFIX);
13730 fputs_filtered (")", stream);
13731 return;
13732
13733 case UNOP_IN_RANGE:
13734 /* XXX: sprint_subexp */
13735 print_subexp (exp, pos, stream, PREC_SUFFIX);
13736 fputs_filtered (" in ", stream);
13737 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13738 &type_print_raw_options);
13739 return;
13740
13741 case OP_DISCRETE_RANGE:
13742 print_subexp (exp, pos, stream, PREC_SUFFIX);
13743 fputs_filtered ("..", stream);
13744 print_subexp (exp, pos, stream, PREC_SUFFIX);
13745 return;
13746
13747 case OP_OTHERS:
13748 fputs_filtered ("others => ", stream);
13749 print_subexp (exp, pos, stream, PREC_SUFFIX);
13750 return;
13751
13752 case OP_CHOICES:
13753 for (i = 0; i < nargs-1; i += 1)
13754 {
13755 if (i > 0)
13756 fputs_filtered ("|", stream);
13757 print_subexp (exp, pos, stream, PREC_SUFFIX);
13758 }
13759 fputs_filtered (" => ", stream);
13760 print_subexp (exp, pos, stream, PREC_SUFFIX);
13761 return;
13762
13763 case OP_POSITIONAL:
13764 print_subexp (exp, pos, stream, PREC_SUFFIX);
13765 return;
13766
13767 case OP_AGGREGATE:
13768 fputs_filtered ("(", stream);
13769 for (i = 0; i < nargs; i += 1)
13770 {
13771 if (i > 0)
13772 fputs_filtered (", ", stream);
13773 print_subexp (exp, pos, stream, PREC_SUFFIX);
13774 }
13775 fputs_filtered (")", stream);
13776 return;
13777 }
13778 }
13779
13780 /* Table mapping opcodes into strings for printing operators
13781 and precedences of the operators. */
13782
13783 static const struct op_print ada_op_print_tab[] = {
13784 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13785 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13786 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13787 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13788 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13789 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13790 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13791 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13792 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13793 {">=", BINOP_GEQ, PREC_ORDER, 0},
13794 {">", BINOP_GTR, PREC_ORDER, 0},
13795 {"<", BINOP_LESS, PREC_ORDER, 0},
13796 {">>", BINOP_RSH, PREC_SHIFT, 0},
13797 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13798 {"+", BINOP_ADD, PREC_ADD, 0},
13799 {"-", BINOP_SUB, PREC_ADD, 0},
13800 {"&", BINOP_CONCAT, PREC_ADD, 0},
13801 {"*", BINOP_MUL, PREC_MUL, 0},
13802 {"/", BINOP_DIV, PREC_MUL, 0},
13803 {"rem", BINOP_REM, PREC_MUL, 0},
13804 {"mod", BINOP_MOD, PREC_MUL, 0},
13805 {"**", BINOP_EXP, PREC_REPEAT, 0},
13806 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13807 {"-", UNOP_NEG, PREC_PREFIX, 0},
13808 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13809 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13810 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13811 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13812 {".all", UNOP_IND, PREC_SUFFIX, 1},
13813 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13814 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13815 {NULL, OP_NULL, PREC_SUFFIX, 0}
13816 };
13817 \f
13818 enum ada_primitive_types {
13819 ada_primitive_type_int,
13820 ada_primitive_type_long,
13821 ada_primitive_type_short,
13822 ada_primitive_type_char,
13823 ada_primitive_type_float,
13824 ada_primitive_type_double,
13825 ada_primitive_type_void,
13826 ada_primitive_type_long_long,
13827 ada_primitive_type_long_double,
13828 ada_primitive_type_natural,
13829 ada_primitive_type_positive,
13830 ada_primitive_type_system_address,
13831 ada_primitive_type_storage_offset,
13832 nr_ada_primitive_types
13833 };
13834
13835 static void
13836 ada_language_arch_info (struct gdbarch *gdbarch,
13837 struct language_arch_info *lai)
13838 {
13839 const struct builtin_type *builtin = builtin_type (gdbarch);
13840
13841 lai->primitive_type_vector
13842 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13843 struct type *);
13844
13845 lai->primitive_type_vector [ada_primitive_type_int]
13846 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13847 0, "integer");
13848 lai->primitive_type_vector [ada_primitive_type_long]
13849 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13850 0, "long_integer");
13851 lai->primitive_type_vector [ada_primitive_type_short]
13852 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13853 0, "short_integer");
13854 lai->string_char_type
13855 = lai->primitive_type_vector [ada_primitive_type_char]
13856 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13857 lai->primitive_type_vector [ada_primitive_type_float]
13858 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13859 "float", gdbarch_float_format (gdbarch));
13860 lai->primitive_type_vector [ada_primitive_type_double]
13861 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13862 "long_float", gdbarch_double_format (gdbarch));
13863 lai->primitive_type_vector [ada_primitive_type_long_long]
13864 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13865 0, "long_long_integer");
13866 lai->primitive_type_vector [ada_primitive_type_long_double]
13867 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13868 "long_long_float", gdbarch_long_double_format (gdbarch));
13869 lai->primitive_type_vector [ada_primitive_type_natural]
13870 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13871 0, "natural");
13872 lai->primitive_type_vector [ada_primitive_type_positive]
13873 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13874 0, "positive");
13875 lai->primitive_type_vector [ada_primitive_type_void]
13876 = builtin->builtin_void;
13877
13878 lai->primitive_type_vector [ada_primitive_type_system_address]
13879 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13880 "void"));
13881 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13882 = "system__address";
13883
13884 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13885 type. This is a signed integral type whose size is the same as
13886 the size of addresses. */
13887 {
13888 unsigned int addr_length = TYPE_LENGTH
13889 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13890
13891 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13892 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13893 "storage_offset");
13894 }
13895
13896 lai->bool_type_symbol = NULL;
13897 lai->bool_type_default = builtin->builtin_bool;
13898 }
13899 \f
13900 /* Language vector */
13901
13902 /* Not really used, but needed in the ada_language_defn. */
13903
13904 static void
13905 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13906 {
13907 ada_emit_char (c, type, stream, quoter, 1);
13908 }
13909
13910 static int
13911 parse (struct parser_state *ps)
13912 {
13913 warnings_issued = 0;
13914 return ada_parse (ps);
13915 }
13916
13917 static const struct exp_descriptor ada_exp_descriptor = {
13918 ada_print_subexp,
13919 ada_operator_length,
13920 ada_operator_check,
13921 ada_op_name,
13922 ada_dump_subexp_body,
13923 ada_evaluate_subexp
13924 };
13925
13926 /* symbol_name_matcher_ftype adapter for wild_match. */
13927
13928 static bool
13929 do_wild_match (const char *symbol_search_name,
13930 const lookup_name_info &lookup_name,
13931 completion_match_result *comp_match_res)
13932 {
13933 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13934 }
13935
13936 /* symbol_name_matcher_ftype adapter for full_match. */
13937
13938 static bool
13939 do_full_match (const char *symbol_search_name,
13940 const lookup_name_info &lookup_name,
13941 completion_match_result *comp_match_res)
13942 {
13943 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13944 }
13945
13946 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13947
13948 static bool
13949 do_exact_match (const char *symbol_search_name,
13950 const lookup_name_info &lookup_name,
13951 completion_match_result *comp_match_res)
13952 {
13953 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13954 }
13955
13956 /* Build the Ada lookup name for LOOKUP_NAME. */
13957
13958 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13959 {
13960 const std::string &user_name = lookup_name.name ();
13961
13962 if (user_name[0] == '<')
13963 {
13964 if (user_name.back () == '>')
13965 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13966 else
13967 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13968 m_encoded_p = true;
13969 m_verbatim_p = true;
13970 m_wild_match_p = false;
13971 m_standard_p = false;
13972 }
13973 else
13974 {
13975 m_verbatim_p = false;
13976
13977 m_encoded_p = user_name.find ("__") != std::string::npos;
13978
13979 if (!m_encoded_p)
13980 {
13981 const char *folded = ada_fold_name (user_name.c_str ());
13982 const char *encoded = ada_encode_1 (folded, false);
13983 if (encoded != NULL)
13984 m_encoded_name = encoded;
13985 else
13986 m_encoded_name = user_name;
13987 }
13988 else
13989 m_encoded_name = user_name;
13990
13991 /* Handle the 'package Standard' special case. See description
13992 of m_standard_p. */
13993 if (startswith (m_encoded_name.c_str (), "standard__"))
13994 {
13995 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13996 m_standard_p = true;
13997 }
13998 else
13999 m_standard_p = false;
14000
14001 /* If the name contains a ".", then the user is entering a fully
14002 qualified entity name, and the match must not be done in wild
14003 mode. Similarly, if the user wants to complete what looks
14004 like an encoded name, the match must not be done in wild
14005 mode. Also, in the standard__ special case always do
14006 non-wild matching. */
14007 m_wild_match_p
14008 = (lookup_name.match_type () != symbol_name_match_type::FULL
14009 && !m_encoded_p
14010 && !m_standard_p
14011 && user_name.find ('.') == std::string::npos);
14012 }
14013 }
14014
14015 /* symbol_name_matcher_ftype method for Ada. This only handles
14016 completion mode. */
14017
14018 static bool
14019 ada_symbol_name_matches (const char *symbol_search_name,
14020 const lookup_name_info &lookup_name,
14021 completion_match_result *comp_match_res)
14022 {
14023 return lookup_name.ada ().matches (symbol_search_name,
14024 lookup_name.match_type (),
14025 comp_match_res);
14026 }
14027
14028 /* A name matcher that matches the symbol name exactly, with
14029 strcmp. */
14030
14031 static bool
14032 literal_symbol_name_matcher (const char *symbol_search_name,
14033 const lookup_name_info &lookup_name,
14034 completion_match_result *comp_match_res)
14035 {
14036 const std::string &name = lookup_name.name ();
14037
14038 int cmp = (lookup_name.completion_mode ()
14039 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14040 : strcmp (symbol_search_name, name.c_str ()));
14041 if (cmp == 0)
14042 {
14043 if (comp_match_res != NULL)
14044 comp_match_res->set_match (symbol_search_name);
14045 return true;
14046 }
14047 else
14048 return false;
14049 }
14050
14051 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14052 Ada. */
14053
14054 static symbol_name_matcher_ftype *
14055 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14056 {
14057 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14058 return literal_symbol_name_matcher;
14059
14060 if (lookup_name.completion_mode ())
14061 return ada_symbol_name_matches;
14062 else
14063 {
14064 if (lookup_name.ada ().wild_match_p ())
14065 return do_wild_match;
14066 else if (lookup_name.ada ().verbatim_p ())
14067 return do_exact_match;
14068 else
14069 return do_full_match;
14070 }
14071 }
14072
14073 /* Implement the "la_read_var_value" language_defn method for Ada. */
14074
14075 static struct value *
14076 ada_read_var_value (struct symbol *var, const struct block *var_block,
14077 struct frame_info *frame)
14078 {
14079 /* The only case where default_read_var_value is not sufficient
14080 is when VAR is a renaming... */
14081 if (frame != nullptr)
14082 {
14083 const struct block *frame_block = get_frame_block (frame, NULL);
14084 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14085 return ada_read_renaming_var_value (var, frame_block);
14086 }
14087
14088 /* This is a typical case where we expect the default_read_var_value
14089 function to work. */
14090 return default_read_var_value (var, var_block, frame);
14091 }
14092
14093 static const char *ada_extensions[] =
14094 {
14095 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14096 };
14097
14098 extern const struct language_defn ada_language_defn = {
14099 "ada", /* Language name */
14100 "Ada",
14101 language_ada,
14102 range_check_off,
14103 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14104 that's not quite what this means. */
14105 array_row_major,
14106 macro_expansion_no,
14107 ada_extensions,
14108 &ada_exp_descriptor,
14109 parse,
14110 resolve,
14111 ada_printchar, /* Print a character constant */
14112 ada_printstr, /* Function to print string constant */
14113 emit_char, /* Function to print single char (not used) */
14114 ada_print_type, /* Print a type using appropriate syntax */
14115 ada_print_typedef, /* Print a typedef using appropriate syntax */
14116 ada_val_print, /* Print a value using appropriate syntax */
14117 ada_value_print, /* Print a top-level value */
14118 ada_read_var_value, /* la_read_var_value */
14119 NULL, /* Language specific skip_trampoline */
14120 NULL, /* name_of_this */
14121 true, /* la_store_sym_names_in_linkage_form_p */
14122 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14123 basic_lookup_transparent_type, /* lookup_transparent_type */
14124 ada_la_decode, /* Language specific symbol demangler */
14125 ada_sniff_from_mangled_name,
14126 NULL, /* Language specific
14127 class_name_from_physname */
14128 ada_op_print_tab, /* expression operators for printing */
14129 0, /* c-style arrays */
14130 1, /* String lower bound */
14131 ada_get_gdb_completer_word_break_characters,
14132 ada_collect_symbol_completion_matches,
14133 ada_language_arch_info,
14134 ada_print_array_index,
14135 default_pass_by_reference,
14136 ada_watch_location_expression,
14137 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14138 ada_iterate_over_symbols,
14139 default_search_name_hash,
14140 &ada_varobj_ops,
14141 NULL,
14142 NULL,
14143 ada_is_string_type,
14144 "(...)" /* la_struct_too_deep_ellipsis */
14145 };
14146
14147 /* Command-list for the "set/show ada" prefix command. */
14148 static struct cmd_list_element *set_ada_list;
14149 static struct cmd_list_element *show_ada_list;
14150
14151 /* Implement the "set ada" prefix command. */
14152
14153 static void
14154 set_ada_command (const char *arg, int from_tty)
14155 {
14156 printf_unfiltered (_(\
14157 "\"set ada\" must be followed by the name of a setting.\n"));
14158 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14159 }
14160
14161 /* Implement the "show ada" prefix command. */
14162
14163 static void
14164 show_ada_command (const char *args, int from_tty)
14165 {
14166 cmd_show_list (show_ada_list, from_tty, "");
14167 }
14168
14169 static void
14170 initialize_ada_catchpoint_ops (void)
14171 {
14172 struct breakpoint_ops *ops;
14173
14174 initialize_breakpoint_ops ();
14175
14176 ops = &catch_exception_breakpoint_ops;
14177 *ops = bkpt_breakpoint_ops;
14178 ops->allocate_location = allocate_location_exception;
14179 ops->re_set = re_set_exception;
14180 ops->check_status = check_status_exception;
14181 ops->print_it = print_it_exception;
14182 ops->print_one = print_one_exception;
14183 ops->print_mention = print_mention_exception;
14184 ops->print_recreate = print_recreate_exception;
14185
14186 ops = &catch_exception_unhandled_breakpoint_ops;
14187 *ops = bkpt_breakpoint_ops;
14188 ops->allocate_location = allocate_location_exception;
14189 ops->re_set = re_set_exception;
14190 ops->check_status = check_status_exception;
14191 ops->print_it = print_it_exception;
14192 ops->print_one = print_one_exception;
14193 ops->print_mention = print_mention_exception;
14194 ops->print_recreate = print_recreate_exception;
14195
14196 ops = &catch_assert_breakpoint_ops;
14197 *ops = bkpt_breakpoint_ops;
14198 ops->allocate_location = allocate_location_exception;
14199 ops->re_set = re_set_exception;
14200 ops->check_status = check_status_exception;
14201 ops->print_it = print_it_exception;
14202 ops->print_one = print_one_exception;
14203 ops->print_mention = print_mention_exception;
14204 ops->print_recreate = print_recreate_exception;
14205
14206 ops = &catch_handlers_breakpoint_ops;
14207 *ops = bkpt_breakpoint_ops;
14208 ops->allocate_location = allocate_location_exception;
14209 ops->re_set = re_set_exception;
14210 ops->check_status = check_status_exception;
14211 ops->print_it = print_it_exception;
14212 ops->print_one = print_one_exception;
14213 ops->print_mention = print_mention_exception;
14214 ops->print_recreate = print_recreate_exception;
14215 }
14216
14217 /* This module's 'new_objfile' observer. */
14218
14219 static void
14220 ada_new_objfile_observer (struct objfile *objfile)
14221 {
14222 ada_clear_symbol_cache ();
14223 }
14224
14225 /* This module's 'free_objfile' observer. */
14226
14227 static void
14228 ada_free_objfile_observer (struct objfile *objfile)
14229 {
14230 ada_clear_symbol_cache ();
14231 }
14232
14233 void
14234 _initialize_ada_language (void)
14235 {
14236 initialize_ada_catchpoint_ops ();
14237
14238 add_prefix_cmd ("ada", no_class, set_ada_command,
14239 _("Prefix command for changing Ada-specific settings."),
14240 &set_ada_list, "set ada ", 0, &setlist);
14241
14242 add_prefix_cmd ("ada", no_class, show_ada_command,
14243 _("Generic command for showing Ada-specific settings."),
14244 &show_ada_list, "show ada ", 0, &showlist);
14245
14246 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14247 &trust_pad_over_xvs, _("\
14248 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14249 Show whether an optimization trusting PAD types over XVS types is activated."),
14250 _("\
14251 This is related to the encoding used by the GNAT compiler. The debugger\n\
14252 should normally trust the contents of PAD types, but certain older versions\n\
14253 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14254 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14255 work around this bug. It is always safe to turn this option \"off\", but\n\
14256 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14257 this option to \"off\" unless necessary."),
14258 NULL, NULL, &set_ada_list, &show_ada_list);
14259
14260 add_setshow_boolean_cmd ("print-signatures", class_vars,
14261 &print_signatures, _("\
14262 Enable or disable the output of formal and return types for functions in the \
14263 overloads selection menu."), _("\
14264 Show whether the output of formal and return types for functions in the \
14265 overloads selection menu is activated."),
14266 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14267
14268 add_catch_command ("exception", _("\
14269 Catch Ada exceptions, when raised.\n\
14270 Usage: catch exception [ARG] [if CONDITION]\n\
14271 Without any argument, stop when any Ada exception is raised.\n\
14272 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14273 being raised does not have a handler (and will therefore lead to the task's\n\
14274 termination).\n\
14275 Otherwise, the catchpoint only stops when the name of the exception being\n\
14276 raised is the same as ARG.\n\
14277 CONDITION is a boolean expression that is evaluated to see whether the\n\
14278 exception should cause a stop."),
14279 catch_ada_exception_command,
14280 catch_ada_completer,
14281 CATCH_PERMANENT,
14282 CATCH_TEMPORARY);
14283
14284 add_catch_command ("handlers", _("\
14285 Catch Ada exceptions, when handled.\n\
14286 Usage: catch handlers [ARG] [if CONDITION]\n\
14287 Without any argument, stop when any Ada exception is handled.\n\
14288 With an argument, catch only exceptions with the given name.\n\
14289 CONDITION is a boolean expression that is evaluated to see whether the\n\
14290 exception should cause a stop."),
14291 catch_ada_handlers_command,
14292 catch_ada_completer,
14293 CATCH_PERMANENT,
14294 CATCH_TEMPORARY);
14295 add_catch_command ("assert", _("\
14296 Catch failed Ada assertions, when raised.\n\
14297 Usage: catch assert [if CONDITION]\n\
14298 CONDITION is a boolean expression that is evaluated to see whether the\n\
14299 exception should cause a stop."),
14300 catch_assert_command,
14301 NULL,
14302 CATCH_PERMANENT,
14303 CATCH_TEMPORARY);
14304
14305 varsize_limit = 65536;
14306 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14307 &varsize_limit, _("\
14308 Set the maximum number of bytes allowed in a variable-size object."), _("\
14309 Show the maximum number of bytes allowed in a variable-size object."), _("\
14310 Attempts to access an object whose size is not a compile-time constant\n\
14311 and exceeds this limit will cause an error."),
14312 NULL, NULL, &setlist, &showlist);
14313
14314 add_info ("exceptions", info_exceptions_command,
14315 _("\
14316 List all Ada exception names.\n\
14317 Usage: info exceptions [REGEXP]\n\
14318 If a regular expression is passed as an argument, only those matching\n\
14319 the regular expression are listed."));
14320
14321 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14322 _("Set Ada maintenance-related variables."),
14323 &maint_set_ada_cmdlist, "maintenance set ada ",
14324 0/*allow-unknown*/, &maintenance_set_cmdlist);
14325
14326 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14327 _("Show Ada maintenance-related variables."),
14328 &maint_show_ada_cmdlist, "maintenance show ada ",
14329 0/*allow-unknown*/, &maintenance_show_cmdlist);
14330
14331 add_setshow_boolean_cmd
14332 ("ignore-descriptive-types", class_maintenance,
14333 &ada_ignore_descriptive_types_p,
14334 _("Set whether descriptive types generated by GNAT should be ignored."),
14335 _("Show whether descriptive types generated by GNAT should be ignored."),
14336 _("\
14337 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14338 DWARF attribute."),
14339 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14340
14341 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14342 NULL, xcalloc, xfree);
14343
14344 /* The ada-lang observers. */
14345 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14346 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14347 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14348 }
This page took 0.337113 seconds and 3 git commands to generate.