gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *val_atr (struct type *, LONGEST);
200
201 static struct value *value_val_atr (struct type *, struct value *);
202
203 static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
205
206 static struct value *ada_search_struct_field (const char *, struct value *, int,
207 struct type *);
208
209 static int find_struct_field (const char *, struct type *, int,
210 struct type **, int *, int *, int *, int *);
211
212 static int ada_resolve_function (struct block_symbol *, int,
213 struct value **, int, const char *,
214 struct type *, int);
215
216 static int ada_is_direct_array_type (struct type *);
217
218 static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221 static struct value *assign_aggregate (struct value *, struct value *,
222 struct expression *,
223 int *, enum noside);
224
225 static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230 static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236 static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247 static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
249
250 static struct type *ada_find_any_type (const char *name);
251
252 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
255 \f
256
257 /* The result of a symbol lookup to be stored in our symbol cache. */
258
259 struct cache_entry
260 {
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
264 domain_enum domain;
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273 };
274
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284 #define HASH_SIZE 1009
285
286 struct ada_symbol_cache
287 {
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293 };
294
295 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
296
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit;
299
300 static const char ada_completer_word_break_characters[] =
301 #ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303 #else
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
305 #endif
306
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
309 = "__gnat_ada_main_program_name";
310
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit = 2;
313
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued = 0;
317
318 static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320 };
321
322 static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324 };
325
326 /* Maintenance-related settings for this module. */
327
328 static struct cmd_list_element *maint_set_ada_cmdlist;
329 static struct cmd_list_element *maint_show_ada_cmdlist;
330
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
332
333 static bool ada_ignore_descriptive_types_p = false;
334
335 /* Inferior-specific data. */
336
337 /* Per-inferior data for this module. */
338
339 struct ada_inferior_data
340 {
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type *tsd_type = nullptr;
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
350 const struct exception_support_info *exception_info = nullptr;
351 };
352
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
355
356 /* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364 static struct ada_inferior_data *
365 get_ada_inferior_data (struct inferior *inf)
366 {
367 struct ada_inferior_data *data;
368
369 data = ada_inferior_data.get (inf);
370 if (data == NULL)
371 data = ada_inferior_data.emplace (inf);
372
373 return data;
374 }
375
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379 static void
380 ada_inferior_exit (struct inferior *inf)
381 {
382 ada_inferior_data.clear (inf);
383 }
384
385
386 /* program-space-specific data. */
387
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
390 {
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache *sym_cache = nullptr;
399 };
400
401 /* Key to our per-program-space data. */
402 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
403
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409 static struct ada_pspace_data *
410 get_ada_pspace_data (struct program_space *pspace)
411 {
412 struct ada_pspace_data *data;
413
414 data = ada_pspace_data_handle.get (pspace);
415 if (data == NULL)
416 data = ada_pspace_data_handle.emplace (pspace);
417
418 return data;
419 }
420
421 /* Utilities */
422
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450 static struct type *
451 ada_typedef_target_type (struct type *type)
452 {
453 while (type->code () == TYPE_CODE_TYPEDEF)
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456 }
457
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462 static const char *
463 ada_unqualified_name (const char *decoded_name)
464 {
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481 }
482
483 /* Return a string starting with '<', followed by STR, and '>'. */
484
485 static std::string
486 add_angle_brackets (const char *str)
487 {
488 return string_printf ("<%s>", str);
489 }
490
491 static const char *
492 ada_get_gdb_completer_word_break_characters (void)
493 {
494 return ada_completer_word_break_characters;
495 }
496
497 /* la_watch_location_expression for Ada. */
498
499 static gdb::unique_xmalloc_ptr<char>
500 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
501 {
502 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
503 std::string name = type_to_string (type);
504 return gdb::unique_xmalloc_ptr<char>
505 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
506 }
507
508 /* Assuming V points to an array of S objects, make sure that it contains at
509 least M objects, updating V and S as necessary. */
510
511 #define GROW_VECT(v, s, m) \
512 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
513
514 /* Assuming VECT points to an array of *SIZE objects of size
515 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
516 updating *SIZE as necessary and returning the (new) array. */
517
518 static void *
519 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
520 {
521 if (*size < min_size)
522 {
523 *size *= 2;
524 if (*size < min_size)
525 *size = min_size;
526 vect = xrealloc (vect, *size * element_size);
527 }
528 return vect;
529 }
530
531 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
532 suffix of FIELD_NAME beginning "___". */
533
534 static int
535 field_name_match (const char *field_name, const char *target)
536 {
537 int len = strlen (target);
538
539 return
540 (strncmp (field_name, target, len) == 0
541 && (field_name[len] == '\0'
542 || (startswith (field_name + len, "___")
543 && strcmp (field_name + strlen (field_name) - 6,
544 "___XVN") != 0)));
545 }
546
547
548 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
549 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
550 and return its index. This function also handles fields whose name
551 have ___ suffixes because the compiler sometimes alters their name
552 by adding such a suffix to represent fields with certain constraints.
553 If the field could not be found, return a negative number if
554 MAYBE_MISSING is set. Otherwise raise an error. */
555
556 int
557 ada_get_field_index (const struct type *type, const char *field_name,
558 int maybe_missing)
559 {
560 int fieldno;
561 struct type *struct_type = check_typedef ((struct type *) type);
562
563 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
564 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
565 return fieldno;
566
567 if (!maybe_missing)
568 error (_("Unable to find field %s in struct %s. Aborting"),
569 field_name, struct_type->name ());
570
571 return -1;
572 }
573
574 /* The length of the prefix of NAME prior to any "___" suffix. */
575
576 int
577 ada_name_prefix_len (const char *name)
578 {
579 if (name == NULL)
580 return 0;
581 else
582 {
583 const char *p = strstr (name, "___");
584
585 if (p == NULL)
586 return strlen (name);
587 else
588 return p - name;
589 }
590 }
591
592 /* Return non-zero if SUFFIX is a suffix of STR.
593 Return zero if STR is null. */
594
595 static int
596 is_suffix (const char *str, const char *suffix)
597 {
598 int len1, len2;
599
600 if (str == NULL)
601 return 0;
602 len1 = strlen (str);
603 len2 = strlen (suffix);
604 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
605 }
606
607 /* The contents of value VAL, treated as a value of type TYPE. The
608 result is an lval in memory if VAL is. */
609
610 static struct value *
611 coerce_unspec_val_to_type (struct value *val, struct type *type)
612 {
613 type = ada_check_typedef (type);
614 if (value_type (val) == type)
615 return val;
616 else
617 {
618 struct value *result;
619
620 /* Make sure that the object size is not unreasonable before
621 trying to allocate some memory for it. */
622 ada_ensure_varsize_limit (type);
623
624 if (value_lazy (val)
625 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
626 result = allocate_value_lazy (type);
627 else
628 {
629 result = allocate_value (type);
630 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
631 }
632 set_value_component_location (result, val);
633 set_value_bitsize (result, value_bitsize (val));
634 set_value_bitpos (result, value_bitpos (val));
635 if (VALUE_LVAL (result) == lval_memory)
636 set_value_address (result, value_address (val));
637 return result;
638 }
639 }
640
641 static const gdb_byte *
642 cond_offset_host (const gdb_byte *valaddr, long offset)
643 {
644 if (valaddr == NULL)
645 return NULL;
646 else
647 return valaddr + offset;
648 }
649
650 static CORE_ADDR
651 cond_offset_target (CORE_ADDR address, long offset)
652 {
653 if (address == 0)
654 return 0;
655 else
656 return address + offset;
657 }
658
659 /* Issue a warning (as for the definition of warning in utils.c, but
660 with exactly one argument rather than ...), unless the limit on the
661 number of warnings has passed during the evaluation of the current
662 expression. */
663
664 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
665 provided by "complaint". */
666 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
667
668 static void
669 lim_warning (const char *format, ...)
670 {
671 va_list args;
672
673 va_start (args, format);
674 warnings_issued += 1;
675 if (warnings_issued <= warning_limit)
676 vwarning (format, args);
677
678 va_end (args);
679 }
680
681 /* Issue an error if the size of an object of type T is unreasonable,
682 i.e. if it would be a bad idea to allocate a value of this type in
683 GDB. */
684
685 void
686 ada_ensure_varsize_limit (const struct type *type)
687 {
688 if (TYPE_LENGTH (type) > varsize_limit)
689 error (_("object size is larger than varsize-limit"));
690 }
691
692 /* Maximum value of a SIZE-byte signed integer type. */
693 static LONGEST
694 max_of_size (int size)
695 {
696 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
697
698 return top_bit | (top_bit - 1);
699 }
700
701 /* Minimum value of a SIZE-byte signed integer type. */
702 static LONGEST
703 min_of_size (int size)
704 {
705 return -max_of_size (size) - 1;
706 }
707
708 /* Maximum value of a SIZE-byte unsigned integer type. */
709 static ULONGEST
710 umax_of_size (int size)
711 {
712 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
713
714 return top_bit | (top_bit - 1);
715 }
716
717 /* Maximum value of integral type T, as a signed quantity. */
718 static LONGEST
719 max_of_type (struct type *t)
720 {
721 if (TYPE_UNSIGNED (t))
722 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
723 else
724 return max_of_size (TYPE_LENGTH (t));
725 }
726
727 /* Minimum value of integral type T, as a signed quantity. */
728 static LONGEST
729 min_of_type (struct type *t)
730 {
731 if (TYPE_UNSIGNED (t))
732 return 0;
733 else
734 return min_of_size (TYPE_LENGTH (t));
735 }
736
737 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
738 LONGEST
739 ada_discrete_type_high_bound (struct type *type)
740 {
741 type = resolve_dynamic_type (type, {}, 0);
742 switch (type->code ())
743 {
744 case TYPE_CODE_RANGE:
745 return TYPE_HIGH_BOUND (type);
746 case TYPE_CODE_ENUM:
747 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
748 case TYPE_CODE_BOOL:
749 return 1;
750 case TYPE_CODE_CHAR:
751 case TYPE_CODE_INT:
752 return max_of_type (type);
753 default:
754 error (_("Unexpected type in ada_discrete_type_high_bound."));
755 }
756 }
757
758 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
759 LONGEST
760 ada_discrete_type_low_bound (struct type *type)
761 {
762 type = resolve_dynamic_type (type, {}, 0);
763 switch (type->code ())
764 {
765 case TYPE_CODE_RANGE:
766 return TYPE_LOW_BOUND (type);
767 case TYPE_CODE_ENUM:
768 return TYPE_FIELD_ENUMVAL (type, 0);
769 case TYPE_CODE_BOOL:
770 return 0;
771 case TYPE_CODE_CHAR:
772 case TYPE_CODE_INT:
773 return min_of_type (type);
774 default:
775 error (_("Unexpected type in ada_discrete_type_low_bound."));
776 }
777 }
778
779 /* The identity on non-range types. For range types, the underlying
780 non-range scalar type. */
781
782 static struct type *
783 get_base_type (struct type *type)
784 {
785 while (type != NULL && type->code () == TYPE_CODE_RANGE)
786 {
787 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
788 return type;
789 type = TYPE_TARGET_TYPE (type);
790 }
791 return type;
792 }
793
794 /* Return a decoded version of the given VALUE. This means returning
795 a value whose type is obtained by applying all the GNAT-specific
796 encodings, making the resulting type a static but standard description
797 of the initial type. */
798
799 struct value *
800 ada_get_decoded_value (struct value *value)
801 {
802 struct type *type = ada_check_typedef (value_type (value));
803
804 if (ada_is_array_descriptor_type (type)
805 || (ada_is_constrained_packed_array_type (type)
806 && type->code () != TYPE_CODE_PTR))
807 {
808 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
809 value = ada_coerce_to_simple_array_ptr (value);
810 else
811 value = ada_coerce_to_simple_array (value);
812 }
813 else
814 value = ada_to_fixed_value (value);
815
816 return value;
817 }
818
819 /* Same as ada_get_decoded_value, but with the given TYPE.
820 Because there is no associated actual value for this type,
821 the resulting type might be a best-effort approximation in
822 the case of dynamic types. */
823
824 struct type *
825 ada_get_decoded_type (struct type *type)
826 {
827 type = to_static_fixed_type (type);
828 if (ada_is_constrained_packed_array_type (type))
829 type = ada_coerce_to_simple_array_type (type);
830 return type;
831 }
832
833 \f
834
835 /* Language Selection */
836
837 /* If the main program is in Ada, return language_ada, otherwise return LANG
838 (the main program is in Ada iif the adainit symbol is found). */
839
840 static enum language
841 ada_update_initial_language (enum language lang)
842 {
843 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
844 return language_ada;
845
846 return lang;
847 }
848
849 /* If the main procedure is written in Ada, then return its name.
850 The result is good until the next call. Return NULL if the main
851 procedure doesn't appear to be in Ada. */
852
853 char *
854 ada_main_name (void)
855 {
856 struct bound_minimal_symbol msym;
857 static gdb::unique_xmalloc_ptr<char> main_program_name;
858
859 /* For Ada, the name of the main procedure is stored in a specific
860 string constant, generated by the binder. Look for that symbol,
861 extract its address, and then read that string. If we didn't find
862 that string, then most probably the main procedure is not written
863 in Ada. */
864 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
865
866 if (msym.minsym != NULL)
867 {
868 CORE_ADDR main_program_name_addr;
869 int err_code;
870
871 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
872 if (main_program_name_addr == 0)
873 error (_("Invalid address for Ada main program name."));
874
875 target_read_string (main_program_name_addr, &main_program_name,
876 1024, &err_code);
877
878 if (err_code != 0)
879 return NULL;
880 return main_program_name.get ();
881 }
882
883 /* The main procedure doesn't seem to be in Ada. */
884 return NULL;
885 }
886 \f
887 /* Symbols */
888
889 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
890 of NULLs. */
891
892 const struct ada_opname_map ada_opname_table[] = {
893 {"Oadd", "\"+\"", BINOP_ADD},
894 {"Osubtract", "\"-\"", BINOP_SUB},
895 {"Omultiply", "\"*\"", BINOP_MUL},
896 {"Odivide", "\"/\"", BINOP_DIV},
897 {"Omod", "\"mod\"", BINOP_MOD},
898 {"Orem", "\"rem\"", BINOP_REM},
899 {"Oexpon", "\"**\"", BINOP_EXP},
900 {"Olt", "\"<\"", BINOP_LESS},
901 {"Ole", "\"<=\"", BINOP_LEQ},
902 {"Ogt", "\">\"", BINOP_GTR},
903 {"Oge", "\">=\"", BINOP_GEQ},
904 {"Oeq", "\"=\"", BINOP_EQUAL},
905 {"One", "\"/=\"", BINOP_NOTEQUAL},
906 {"Oand", "\"and\"", BINOP_BITWISE_AND},
907 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
908 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
909 {"Oconcat", "\"&\"", BINOP_CONCAT},
910 {"Oabs", "\"abs\"", UNOP_ABS},
911 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
912 {"Oadd", "\"+\"", UNOP_PLUS},
913 {"Osubtract", "\"-\"", UNOP_NEG},
914 {NULL, NULL}
915 };
916
917 /* The "encoded" form of DECODED, according to GNAT conventions. The
918 result is valid until the next call to ada_encode. If
919 THROW_ERRORS, throw an error if invalid operator name is found.
920 Otherwise, return NULL in that case. */
921
922 static char *
923 ada_encode_1 (const char *decoded, bool throw_errors)
924 {
925 static char *encoding_buffer = NULL;
926 static size_t encoding_buffer_size = 0;
927 const char *p;
928 int k;
929
930 if (decoded == NULL)
931 return NULL;
932
933 GROW_VECT (encoding_buffer, encoding_buffer_size,
934 2 * strlen (decoded) + 10);
935
936 k = 0;
937 for (p = decoded; *p != '\0'; p += 1)
938 {
939 if (*p == '.')
940 {
941 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
942 k += 2;
943 }
944 else if (*p == '"')
945 {
946 const struct ada_opname_map *mapping;
947
948 for (mapping = ada_opname_table;
949 mapping->encoded != NULL
950 && !startswith (p, mapping->decoded); mapping += 1)
951 ;
952 if (mapping->encoded == NULL)
953 {
954 if (throw_errors)
955 error (_("invalid Ada operator name: %s"), p);
956 else
957 return NULL;
958 }
959 strcpy (encoding_buffer + k, mapping->encoded);
960 k += strlen (mapping->encoded);
961 break;
962 }
963 else
964 {
965 encoding_buffer[k] = *p;
966 k += 1;
967 }
968 }
969
970 encoding_buffer[k] = '\0';
971 return encoding_buffer;
972 }
973
974 /* The "encoded" form of DECODED, according to GNAT conventions.
975 The result is valid until the next call to ada_encode. */
976
977 char *
978 ada_encode (const char *decoded)
979 {
980 return ada_encode_1 (decoded, true);
981 }
982
983 /* Return NAME folded to lower case, or, if surrounded by single
984 quotes, unfolded, but with the quotes stripped away. Result good
985 to next call. */
986
987 static char *
988 ada_fold_name (gdb::string_view name)
989 {
990 static char *fold_buffer = NULL;
991 static size_t fold_buffer_size = 0;
992
993 int len = name.size ();
994 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
995
996 if (name[0] == '\'')
997 {
998 strncpy (fold_buffer, name.data () + 1, len - 2);
999 fold_buffer[len - 2] = '\000';
1000 }
1001 else
1002 {
1003 int i;
1004
1005 for (i = 0; i <= len; i += 1)
1006 fold_buffer[i] = tolower (name[i]);
1007 }
1008
1009 return fold_buffer;
1010 }
1011
1012 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1013
1014 static int
1015 is_lower_alphanum (const char c)
1016 {
1017 return (isdigit (c) || (isalpha (c) && islower (c)));
1018 }
1019
1020 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1021 This function saves in LEN the length of that same symbol name but
1022 without either of these suffixes:
1023 . .{DIGIT}+
1024 . ${DIGIT}+
1025 . ___{DIGIT}+
1026 . __{DIGIT}+.
1027
1028 These are suffixes introduced by the compiler for entities such as
1029 nested subprogram for instance, in order to avoid name clashes.
1030 They do not serve any purpose for the debugger. */
1031
1032 static void
1033 ada_remove_trailing_digits (const char *encoded, int *len)
1034 {
1035 if (*len > 1 && isdigit (encoded[*len - 1]))
1036 {
1037 int i = *len - 2;
1038
1039 while (i > 0 && isdigit (encoded[i]))
1040 i--;
1041 if (i >= 0 && encoded[i] == '.')
1042 *len = i;
1043 else if (i >= 0 && encoded[i] == '$')
1044 *len = i;
1045 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1046 *len = i - 2;
1047 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1048 *len = i - 1;
1049 }
1050 }
1051
1052 /* Remove the suffix introduced by the compiler for protected object
1053 subprograms. */
1054
1055 static void
1056 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1057 {
1058 /* Remove trailing N. */
1059
1060 /* Protected entry subprograms are broken into two
1061 separate subprograms: The first one is unprotected, and has
1062 a 'N' suffix; the second is the protected version, and has
1063 the 'P' suffix. The second calls the first one after handling
1064 the protection. Since the P subprograms are internally generated,
1065 we leave these names undecoded, giving the user a clue that this
1066 entity is internal. */
1067
1068 if (*len > 1
1069 && encoded[*len - 1] == 'N'
1070 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1071 *len = *len - 1;
1072 }
1073
1074 /* If ENCODED follows the GNAT entity encoding conventions, then return
1075 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1076 replaced by ENCODED. */
1077
1078 std::string
1079 ada_decode (const char *encoded)
1080 {
1081 int i, j;
1082 int len0;
1083 const char *p;
1084 int at_start_name;
1085 std::string decoded;
1086
1087 /* With function descriptors on PPC64, the value of a symbol named
1088 ".FN", if it exists, is the entry point of the function "FN". */
1089 if (encoded[0] == '.')
1090 encoded += 1;
1091
1092 /* The name of the Ada main procedure starts with "_ada_".
1093 This prefix is not part of the decoded name, so skip this part
1094 if we see this prefix. */
1095 if (startswith (encoded, "_ada_"))
1096 encoded += 5;
1097
1098 /* If the name starts with '_', then it is not a properly encoded
1099 name, so do not attempt to decode it. Similarly, if the name
1100 starts with '<', the name should not be decoded. */
1101 if (encoded[0] == '_' || encoded[0] == '<')
1102 goto Suppress;
1103
1104 len0 = strlen (encoded);
1105
1106 ada_remove_trailing_digits (encoded, &len0);
1107 ada_remove_po_subprogram_suffix (encoded, &len0);
1108
1109 /* Remove the ___X.* suffix if present. Do not forget to verify that
1110 the suffix is located before the current "end" of ENCODED. We want
1111 to avoid re-matching parts of ENCODED that have previously been
1112 marked as discarded (by decrementing LEN0). */
1113 p = strstr (encoded, "___");
1114 if (p != NULL && p - encoded < len0 - 3)
1115 {
1116 if (p[3] == 'X')
1117 len0 = p - encoded;
1118 else
1119 goto Suppress;
1120 }
1121
1122 /* Remove any trailing TKB suffix. It tells us that this symbol
1123 is for the body of a task, but that information does not actually
1124 appear in the decoded name. */
1125
1126 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1127 len0 -= 3;
1128
1129 /* Remove any trailing TB suffix. The TB suffix is slightly different
1130 from the TKB suffix because it is used for non-anonymous task
1131 bodies. */
1132
1133 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1134 len0 -= 2;
1135
1136 /* Remove trailing "B" suffixes. */
1137 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1138
1139 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1140 len0 -= 1;
1141
1142 /* Make decoded big enough for possible expansion by operator name. */
1143
1144 decoded.resize (2 * len0 + 1, 'X');
1145
1146 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1147
1148 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1149 {
1150 i = len0 - 2;
1151 while ((i >= 0 && isdigit (encoded[i]))
1152 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1153 i -= 1;
1154 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1155 len0 = i - 1;
1156 else if (encoded[i] == '$')
1157 len0 = i;
1158 }
1159
1160 /* The first few characters that are not alphabetic are not part
1161 of any encoding we use, so we can copy them over verbatim. */
1162
1163 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1164 decoded[j] = encoded[i];
1165
1166 at_start_name = 1;
1167 while (i < len0)
1168 {
1169 /* Is this a symbol function? */
1170 if (at_start_name && encoded[i] == 'O')
1171 {
1172 int k;
1173
1174 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1175 {
1176 int op_len = strlen (ada_opname_table[k].encoded);
1177 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1178 op_len - 1) == 0)
1179 && !isalnum (encoded[i + op_len]))
1180 {
1181 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1182 at_start_name = 0;
1183 i += op_len;
1184 j += strlen (ada_opname_table[k].decoded);
1185 break;
1186 }
1187 }
1188 if (ada_opname_table[k].encoded != NULL)
1189 continue;
1190 }
1191 at_start_name = 0;
1192
1193 /* Replace "TK__" with "__", which will eventually be translated
1194 into "." (just below). */
1195
1196 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1197 i += 2;
1198
1199 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1200 be translated into "." (just below). These are internal names
1201 generated for anonymous blocks inside which our symbol is nested. */
1202
1203 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1204 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1205 && isdigit (encoded [i+4]))
1206 {
1207 int k = i + 5;
1208
1209 while (k < len0 && isdigit (encoded[k]))
1210 k++; /* Skip any extra digit. */
1211
1212 /* Double-check that the "__B_{DIGITS}+" sequence we found
1213 is indeed followed by "__". */
1214 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1215 i = k;
1216 }
1217
1218 /* Remove _E{DIGITS}+[sb] */
1219
1220 /* Just as for protected object subprograms, there are 2 categories
1221 of subprograms created by the compiler for each entry. The first
1222 one implements the actual entry code, and has a suffix following
1223 the convention above; the second one implements the barrier and
1224 uses the same convention as above, except that the 'E' is replaced
1225 by a 'B'.
1226
1227 Just as above, we do not decode the name of barrier functions
1228 to give the user a clue that the code he is debugging has been
1229 internally generated. */
1230
1231 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1232 && isdigit (encoded[i+2]))
1233 {
1234 int k = i + 3;
1235
1236 while (k < len0 && isdigit (encoded[k]))
1237 k++;
1238
1239 if (k < len0
1240 && (encoded[k] == 'b' || encoded[k] == 's'))
1241 {
1242 k++;
1243 /* Just as an extra precaution, make sure that if this
1244 suffix is followed by anything else, it is a '_'.
1245 Otherwise, we matched this sequence by accident. */
1246 if (k == len0
1247 || (k < len0 && encoded[k] == '_'))
1248 i = k;
1249 }
1250 }
1251
1252 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1253 the GNAT front-end in protected object subprograms. */
1254
1255 if (i < len0 + 3
1256 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1257 {
1258 /* Backtrack a bit up until we reach either the begining of
1259 the encoded name, or "__". Make sure that we only find
1260 digits or lowercase characters. */
1261 const char *ptr = encoded + i - 1;
1262
1263 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1264 ptr--;
1265 if (ptr < encoded
1266 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1267 i++;
1268 }
1269
1270 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1271 {
1272 /* This is a X[bn]* sequence not separated from the previous
1273 part of the name with a non-alpha-numeric character (in other
1274 words, immediately following an alpha-numeric character), then
1275 verify that it is placed at the end of the encoded name. If
1276 not, then the encoding is not valid and we should abort the
1277 decoding. Otherwise, just skip it, it is used in body-nested
1278 package names. */
1279 do
1280 i += 1;
1281 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1282 if (i < len0)
1283 goto Suppress;
1284 }
1285 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1286 {
1287 /* Replace '__' by '.'. */
1288 decoded[j] = '.';
1289 at_start_name = 1;
1290 i += 2;
1291 j += 1;
1292 }
1293 else
1294 {
1295 /* It's a character part of the decoded name, so just copy it
1296 over. */
1297 decoded[j] = encoded[i];
1298 i += 1;
1299 j += 1;
1300 }
1301 }
1302 decoded.resize (j);
1303
1304 /* Decoded names should never contain any uppercase character.
1305 Double-check this, and abort the decoding if we find one. */
1306
1307 for (i = 0; i < decoded.length(); ++i)
1308 if (isupper (decoded[i]) || decoded[i] == ' ')
1309 goto Suppress;
1310
1311 return decoded;
1312
1313 Suppress:
1314 if (encoded[0] == '<')
1315 decoded = encoded;
1316 else
1317 decoded = '<' + std::string(encoded) + '>';
1318 return decoded;
1319
1320 }
1321
1322 /* Table for keeping permanent unique copies of decoded names. Once
1323 allocated, names in this table are never released. While this is a
1324 storage leak, it should not be significant unless there are massive
1325 changes in the set of decoded names in successive versions of a
1326 symbol table loaded during a single session. */
1327 static struct htab *decoded_names_store;
1328
1329 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1330 in the language-specific part of GSYMBOL, if it has not been
1331 previously computed. Tries to save the decoded name in the same
1332 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1333 in any case, the decoded symbol has a lifetime at least that of
1334 GSYMBOL).
1335 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1336 const, but nevertheless modified to a semantically equivalent form
1337 when a decoded name is cached in it. */
1338
1339 const char *
1340 ada_decode_symbol (const struct general_symbol_info *arg)
1341 {
1342 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1343 const char **resultp =
1344 &gsymbol->language_specific.demangled_name;
1345
1346 if (!gsymbol->ada_mangled)
1347 {
1348 std::string decoded = ada_decode (gsymbol->linkage_name ());
1349 struct obstack *obstack = gsymbol->language_specific.obstack;
1350
1351 gsymbol->ada_mangled = 1;
1352
1353 if (obstack != NULL)
1354 *resultp = obstack_strdup (obstack, decoded.c_str ());
1355 else
1356 {
1357 /* Sometimes, we can't find a corresponding objfile, in
1358 which case, we put the result on the heap. Since we only
1359 decode when needed, we hope this usually does not cause a
1360 significant memory leak (FIXME). */
1361
1362 char **slot = (char **) htab_find_slot (decoded_names_store,
1363 decoded.c_str (), INSERT);
1364
1365 if (*slot == NULL)
1366 *slot = xstrdup (decoded.c_str ());
1367 *resultp = *slot;
1368 }
1369 }
1370
1371 return *resultp;
1372 }
1373
1374 static char *
1375 ada_la_decode (const char *encoded, int options)
1376 {
1377 return xstrdup (ada_decode (encoded).c_str ());
1378 }
1379
1380 \f
1381
1382 /* Arrays */
1383
1384 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1385 generated by the GNAT compiler to describe the index type used
1386 for each dimension of an array, check whether it follows the latest
1387 known encoding. If not, fix it up to conform to the latest encoding.
1388 Otherwise, do nothing. This function also does nothing if
1389 INDEX_DESC_TYPE is NULL.
1390
1391 The GNAT encoding used to describe the array index type evolved a bit.
1392 Initially, the information would be provided through the name of each
1393 field of the structure type only, while the type of these fields was
1394 described as unspecified and irrelevant. The debugger was then expected
1395 to perform a global type lookup using the name of that field in order
1396 to get access to the full index type description. Because these global
1397 lookups can be very expensive, the encoding was later enhanced to make
1398 the global lookup unnecessary by defining the field type as being
1399 the full index type description.
1400
1401 The purpose of this routine is to allow us to support older versions
1402 of the compiler by detecting the use of the older encoding, and by
1403 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1404 we essentially replace each field's meaningless type by the associated
1405 index subtype). */
1406
1407 void
1408 ada_fixup_array_indexes_type (struct type *index_desc_type)
1409 {
1410 int i;
1411
1412 if (index_desc_type == NULL)
1413 return;
1414 gdb_assert (index_desc_type->num_fields () > 0);
1415
1416 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1417 to check one field only, no need to check them all). If not, return
1418 now.
1419
1420 If our INDEX_DESC_TYPE was generated using the older encoding,
1421 the field type should be a meaningless integer type whose name
1422 is not equal to the field name. */
1423 if (TYPE_FIELD_TYPE (index_desc_type, 0)->name () != NULL
1424 && strcmp (TYPE_FIELD_TYPE (index_desc_type, 0)->name (),
1425 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1426 return;
1427
1428 /* Fixup each field of INDEX_DESC_TYPE. */
1429 for (i = 0; i < index_desc_type->num_fields (); i++)
1430 {
1431 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1432 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1433
1434 if (raw_type)
1435 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1436 }
1437 }
1438
1439 /* The desc_* routines return primitive portions of array descriptors
1440 (fat pointers). */
1441
1442 /* The descriptor or array type, if any, indicated by TYPE; removes
1443 level of indirection, if needed. */
1444
1445 static struct type *
1446 desc_base_type (struct type *type)
1447 {
1448 if (type == NULL)
1449 return NULL;
1450 type = ada_check_typedef (type);
1451 if (type->code () == TYPE_CODE_TYPEDEF)
1452 type = ada_typedef_target_type (type);
1453
1454 if (type != NULL
1455 && (type->code () == TYPE_CODE_PTR
1456 || type->code () == TYPE_CODE_REF))
1457 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1458 else
1459 return type;
1460 }
1461
1462 /* True iff TYPE indicates a "thin" array pointer type. */
1463
1464 static int
1465 is_thin_pntr (struct type *type)
1466 {
1467 return
1468 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1469 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1470 }
1471
1472 /* The descriptor type for thin pointer type TYPE. */
1473
1474 static struct type *
1475 thin_descriptor_type (struct type *type)
1476 {
1477 struct type *base_type = desc_base_type (type);
1478
1479 if (base_type == NULL)
1480 return NULL;
1481 if (is_suffix (ada_type_name (base_type), "___XVE"))
1482 return base_type;
1483 else
1484 {
1485 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1486
1487 if (alt_type == NULL)
1488 return base_type;
1489 else
1490 return alt_type;
1491 }
1492 }
1493
1494 /* A pointer to the array data for thin-pointer value VAL. */
1495
1496 static struct value *
1497 thin_data_pntr (struct value *val)
1498 {
1499 struct type *type = ada_check_typedef (value_type (val));
1500 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1501
1502 data_type = lookup_pointer_type (data_type);
1503
1504 if (type->code () == TYPE_CODE_PTR)
1505 return value_cast (data_type, value_copy (val));
1506 else
1507 return value_from_longest (data_type, value_address (val));
1508 }
1509
1510 /* True iff TYPE indicates a "thick" array pointer type. */
1511
1512 static int
1513 is_thick_pntr (struct type *type)
1514 {
1515 type = desc_base_type (type);
1516 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1517 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1518 }
1519
1520 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1521 pointer to one, the type of its bounds data; otherwise, NULL. */
1522
1523 static struct type *
1524 desc_bounds_type (struct type *type)
1525 {
1526 struct type *r;
1527
1528 type = desc_base_type (type);
1529
1530 if (type == NULL)
1531 return NULL;
1532 else if (is_thin_pntr (type))
1533 {
1534 type = thin_descriptor_type (type);
1535 if (type == NULL)
1536 return NULL;
1537 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1538 if (r != NULL)
1539 return ada_check_typedef (r);
1540 }
1541 else if (type->code () == TYPE_CODE_STRUCT)
1542 {
1543 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1544 if (r != NULL)
1545 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1546 }
1547 return NULL;
1548 }
1549
1550 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1551 one, a pointer to its bounds data. Otherwise NULL. */
1552
1553 static struct value *
1554 desc_bounds (struct value *arr)
1555 {
1556 struct type *type = ada_check_typedef (value_type (arr));
1557
1558 if (is_thin_pntr (type))
1559 {
1560 struct type *bounds_type =
1561 desc_bounds_type (thin_descriptor_type (type));
1562 LONGEST addr;
1563
1564 if (bounds_type == NULL)
1565 error (_("Bad GNAT array descriptor"));
1566
1567 /* NOTE: The following calculation is not really kosher, but
1568 since desc_type is an XVE-encoded type (and shouldn't be),
1569 the correct calculation is a real pain. FIXME (and fix GCC). */
1570 if (type->code () == TYPE_CODE_PTR)
1571 addr = value_as_long (arr);
1572 else
1573 addr = value_address (arr);
1574
1575 return
1576 value_from_longest (lookup_pointer_type (bounds_type),
1577 addr - TYPE_LENGTH (bounds_type));
1578 }
1579
1580 else if (is_thick_pntr (type))
1581 {
1582 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1583 _("Bad GNAT array descriptor"));
1584 struct type *p_bounds_type = value_type (p_bounds);
1585
1586 if (p_bounds_type
1587 && p_bounds_type->code () == TYPE_CODE_PTR)
1588 {
1589 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1590
1591 if (TYPE_STUB (target_type))
1592 p_bounds = value_cast (lookup_pointer_type
1593 (ada_check_typedef (target_type)),
1594 p_bounds);
1595 }
1596 else
1597 error (_("Bad GNAT array descriptor"));
1598
1599 return p_bounds;
1600 }
1601 else
1602 return NULL;
1603 }
1604
1605 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1606 position of the field containing the address of the bounds data. */
1607
1608 static int
1609 fat_pntr_bounds_bitpos (struct type *type)
1610 {
1611 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1612 }
1613
1614 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1615 size of the field containing the address of the bounds data. */
1616
1617 static int
1618 fat_pntr_bounds_bitsize (struct type *type)
1619 {
1620 type = desc_base_type (type);
1621
1622 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1623 return TYPE_FIELD_BITSIZE (type, 1);
1624 else
1625 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1626 }
1627
1628 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1629 pointer to one, the type of its array data (a array-with-no-bounds type);
1630 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1631 data. */
1632
1633 static struct type *
1634 desc_data_target_type (struct type *type)
1635 {
1636 type = desc_base_type (type);
1637
1638 /* NOTE: The following is bogus; see comment in desc_bounds. */
1639 if (is_thin_pntr (type))
1640 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1641 else if (is_thick_pntr (type))
1642 {
1643 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1644
1645 if (data_type
1646 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1647 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1648 }
1649
1650 return NULL;
1651 }
1652
1653 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1654 its array data. */
1655
1656 static struct value *
1657 desc_data (struct value *arr)
1658 {
1659 struct type *type = value_type (arr);
1660
1661 if (is_thin_pntr (type))
1662 return thin_data_pntr (arr);
1663 else if (is_thick_pntr (type))
1664 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1665 _("Bad GNAT array descriptor"));
1666 else
1667 return NULL;
1668 }
1669
1670
1671 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1672 position of the field containing the address of the data. */
1673
1674 static int
1675 fat_pntr_data_bitpos (struct type *type)
1676 {
1677 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1678 }
1679
1680 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1681 size of the field containing the address of the data. */
1682
1683 static int
1684 fat_pntr_data_bitsize (struct type *type)
1685 {
1686 type = desc_base_type (type);
1687
1688 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1689 return TYPE_FIELD_BITSIZE (type, 0);
1690 else
1691 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1692 }
1693
1694 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1695 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
1698 static struct value *
1699 desc_one_bound (struct value *bounds, int i, int which)
1700 {
1701 char bound_name[20];
1702 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1703 which ? 'U' : 'L', i - 1);
1704 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1705 _("Bad GNAT array descriptor bounds"));
1706 }
1707
1708 /* If BOUNDS is an array-bounds structure type, return the bit position
1709 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1710 bound, if WHICH is 1. The first bound is I=1. */
1711
1712 static int
1713 desc_bound_bitpos (struct type *type, int i, int which)
1714 {
1715 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1716 }
1717
1718 /* If BOUNDS is an array-bounds structure type, return the bit field size
1719 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1720 bound, if WHICH is 1. The first bound is I=1. */
1721
1722 static int
1723 desc_bound_bitsize (struct type *type, int i, int which)
1724 {
1725 type = desc_base_type (type);
1726
1727 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1728 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1729 else
1730 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1731 }
1732
1733 /* If TYPE is the type of an array-bounds structure, the type of its
1734 Ith bound (numbering from 1). Otherwise, NULL. */
1735
1736 static struct type *
1737 desc_index_type (struct type *type, int i)
1738 {
1739 type = desc_base_type (type);
1740
1741 if (type->code () == TYPE_CODE_STRUCT)
1742 {
1743 char bound_name[20];
1744 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1745 return lookup_struct_elt_type (type, bound_name, 1);
1746 }
1747 else
1748 return NULL;
1749 }
1750
1751 /* The number of index positions in the array-bounds type TYPE.
1752 Return 0 if TYPE is NULL. */
1753
1754 static int
1755 desc_arity (struct type *type)
1756 {
1757 type = desc_base_type (type);
1758
1759 if (type != NULL)
1760 return type->num_fields () / 2;
1761 return 0;
1762 }
1763
1764 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1765 an array descriptor type (representing an unconstrained array
1766 type). */
1767
1768 static int
1769 ada_is_direct_array_type (struct type *type)
1770 {
1771 if (type == NULL)
1772 return 0;
1773 type = ada_check_typedef (type);
1774 return (type->code () == TYPE_CODE_ARRAY
1775 || ada_is_array_descriptor_type (type));
1776 }
1777
1778 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1779 * to one. */
1780
1781 static int
1782 ada_is_array_type (struct type *type)
1783 {
1784 while (type != NULL
1785 && (type->code () == TYPE_CODE_PTR
1786 || type->code () == TYPE_CODE_REF))
1787 type = TYPE_TARGET_TYPE (type);
1788 return ada_is_direct_array_type (type);
1789 }
1790
1791 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1792
1793 int
1794 ada_is_simple_array_type (struct type *type)
1795 {
1796 if (type == NULL)
1797 return 0;
1798 type = ada_check_typedef (type);
1799 return (type->code () == TYPE_CODE_ARRAY
1800 || (type->code () == TYPE_CODE_PTR
1801 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1802 == TYPE_CODE_ARRAY)));
1803 }
1804
1805 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1806
1807 int
1808 ada_is_array_descriptor_type (struct type *type)
1809 {
1810 struct type *data_type = desc_data_target_type (type);
1811
1812 if (type == NULL)
1813 return 0;
1814 type = ada_check_typedef (type);
1815 return (data_type != NULL
1816 && data_type->code () == TYPE_CODE_ARRAY
1817 && desc_arity (desc_bounds_type (type)) > 0);
1818 }
1819
1820 /* Non-zero iff type is a partially mal-formed GNAT array
1821 descriptor. FIXME: This is to compensate for some problems with
1822 debugging output from GNAT. Re-examine periodically to see if it
1823 is still needed. */
1824
1825 int
1826 ada_is_bogus_array_descriptor (struct type *type)
1827 {
1828 return
1829 type != NULL
1830 && type->code () == TYPE_CODE_STRUCT
1831 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1832 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1833 && !ada_is_array_descriptor_type (type);
1834 }
1835
1836
1837 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1838 (fat pointer) returns the type of the array data described---specifically,
1839 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1840 in from the descriptor; otherwise, they are left unspecified. If
1841 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1842 returns NULL. The result is simply the type of ARR if ARR is not
1843 a descriptor. */
1844
1845 static struct type *
1846 ada_type_of_array (struct value *arr, int bounds)
1847 {
1848 if (ada_is_constrained_packed_array_type (value_type (arr)))
1849 return decode_constrained_packed_array_type (value_type (arr));
1850
1851 if (!ada_is_array_descriptor_type (value_type (arr)))
1852 return value_type (arr);
1853
1854 if (!bounds)
1855 {
1856 struct type *array_type =
1857 ada_check_typedef (desc_data_target_type (value_type (arr)));
1858
1859 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1860 TYPE_FIELD_BITSIZE (array_type, 0) =
1861 decode_packed_array_bitsize (value_type (arr));
1862
1863 return array_type;
1864 }
1865 else
1866 {
1867 struct type *elt_type;
1868 int arity;
1869 struct value *descriptor;
1870
1871 elt_type = ada_array_element_type (value_type (arr), -1);
1872 arity = ada_array_arity (value_type (arr));
1873
1874 if (elt_type == NULL || arity == 0)
1875 return ada_check_typedef (value_type (arr));
1876
1877 descriptor = desc_bounds (arr);
1878 if (value_as_long (descriptor) == 0)
1879 return NULL;
1880 while (arity > 0)
1881 {
1882 struct type *range_type = alloc_type_copy (value_type (arr));
1883 struct type *array_type = alloc_type_copy (value_type (arr));
1884 struct value *low = desc_one_bound (descriptor, arity, 0);
1885 struct value *high = desc_one_bound (descriptor, arity, 1);
1886
1887 arity -= 1;
1888 create_static_range_type (range_type, value_type (low),
1889 longest_to_int (value_as_long (low)),
1890 longest_to_int (value_as_long (high)));
1891 elt_type = create_array_type (array_type, elt_type, range_type);
1892
1893 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1894 {
1895 /* We need to store the element packed bitsize, as well as
1896 recompute the array size, because it was previously
1897 computed based on the unpacked element size. */
1898 LONGEST lo = value_as_long (low);
1899 LONGEST hi = value_as_long (high);
1900
1901 TYPE_FIELD_BITSIZE (elt_type, 0) =
1902 decode_packed_array_bitsize (value_type (arr));
1903 /* If the array has no element, then the size is already
1904 zero, and does not need to be recomputed. */
1905 if (lo < hi)
1906 {
1907 int array_bitsize =
1908 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1909
1910 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1911 }
1912 }
1913 }
1914
1915 return lookup_pointer_type (elt_type);
1916 }
1917 }
1918
1919 /* If ARR does not represent an array, returns ARR unchanged.
1920 Otherwise, returns either a standard GDB array with bounds set
1921 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1922 GDB array. Returns NULL if ARR is a null fat pointer. */
1923
1924 struct value *
1925 ada_coerce_to_simple_array_ptr (struct value *arr)
1926 {
1927 if (ada_is_array_descriptor_type (value_type (arr)))
1928 {
1929 struct type *arrType = ada_type_of_array (arr, 1);
1930
1931 if (arrType == NULL)
1932 return NULL;
1933 return value_cast (arrType, value_copy (desc_data (arr)));
1934 }
1935 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array (arr);
1937 else
1938 return arr;
1939 }
1940
1941 /* If ARR does not represent an array, returns ARR unchanged.
1942 Otherwise, returns a standard GDB array describing ARR (which may
1943 be ARR itself if it already is in the proper form). */
1944
1945 struct value *
1946 ada_coerce_to_simple_array (struct value *arr)
1947 {
1948 if (ada_is_array_descriptor_type (value_type (arr)))
1949 {
1950 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1951
1952 if (arrVal == NULL)
1953 error (_("Bounds unavailable for null array pointer."));
1954 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1955 return value_ind (arrVal);
1956 }
1957 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1958 return decode_constrained_packed_array (arr);
1959 else
1960 return arr;
1961 }
1962
1963 /* If TYPE represents a GNAT array type, return it translated to an
1964 ordinary GDB array type (possibly with BITSIZE fields indicating
1965 packing). For other types, is the identity. */
1966
1967 struct type *
1968 ada_coerce_to_simple_array_type (struct type *type)
1969 {
1970 if (ada_is_constrained_packed_array_type (type))
1971 return decode_constrained_packed_array_type (type);
1972
1973 if (ada_is_array_descriptor_type (type))
1974 return ada_check_typedef (desc_data_target_type (type));
1975
1976 return type;
1977 }
1978
1979 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1980
1981 static int
1982 ada_is_packed_array_type (struct type *type)
1983 {
1984 if (type == NULL)
1985 return 0;
1986 type = desc_base_type (type);
1987 type = ada_check_typedef (type);
1988 return
1989 ada_type_name (type) != NULL
1990 && strstr (ada_type_name (type), "___XP") != NULL;
1991 }
1992
1993 /* Non-zero iff TYPE represents a standard GNAT constrained
1994 packed-array type. */
1995
1996 int
1997 ada_is_constrained_packed_array_type (struct type *type)
1998 {
1999 return ada_is_packed_array_type (type)
2000 && !ada_is_array_descriptor_type (type);
2001 }
2002
2003 /* Non-zero iff TYPE represents an array descriptor for a
2004 unconstrained packed-array type. */
2005
2006 static int
2007 ada_is_unconstrained_packed_array_type (struct type *type)
2008 {
2009 return ada_is_packed_array_type (type)
2010 && ada_is_array_descriptor_type (type);
2011 }
2012
2013 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2014 return the size of its elements in bits. */
2015
2016 static long
2017 decode_packed_array_bitsize (struct type *type)
2018 {
2019 const char *raw_name;
2020 const char *tail;
2021 long bits;
2022
2023 /* Access to arrays implemented as fat pointers are encoded as a typedef
2024 of the fat pointer type. We need the name of the fat pointer type
2025 to do the decoding, so strip the typedef layer. */
2026 if (type->code () == TYPE_CODE_TYPEDEF)
2027 type = ada_typedef_target_type (type);
2028
2029 raw_name = ada_type_name (ada_check_typedef (type));
2030 if (!raw_name)
2031 raw_name = ada_type_name (desc_base_type (type));
2032
2033 if (!raw_name)
2034 return 0;
2035
2036 tail = strstr (raw_name, "___XP");
2037 gdb_assert (tail != NULL);
2038
2039 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2040 {
2041 lim_warning
2042 (_("could not understand bit size information on packed array"));
2043 return 0;
2044 }
2045
2046 return bits;
2047 }
2048
2049 /* Given that TYPE is a standard GDB array type with all bounds filled
2050 in, and that the element size of its ultimate scalar constituents
2051 (that is, either its elements, or, if it is an array of arrays, its
2052 elements' elements, etc.) is *ELT_BITS, return an identical type,
2053 but with the bit sizes of its elements (and those of any
2054 constituent arrays) recorded in the BITSIZE components of its
2055 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2056 in bits.
2057
2058 Note that, for arrays whose index type has an XA encoding where
2059 a bound references a record discriminant, getting that discriminant,
2060 and therefore the actual value of that bound, is not possible
2061 because none of the given parameters gives us access to the record.
2062 This function assumes that it is OK in the context where it is being
2063 used to return an array whose bounds are still dynamic and where
2064 the length is arbitrary. */
2065
2066 static struct type *
2067 constrained_packed_array_type (struct type *type, long *elt_bits)
2068 {
2069 struct type *new_elt_type;
2070 struct type *new_type;
2071 struct type *index_type_desc;
2072 struct type *index_type;
2073 LONGEST low_bound, high_bound;
2074
2075 type = ada_check_typedef (type);
2076 if (type->code () != TYPE_CODE_ARRAY)
2077 return type;
2078
2079 index_type_desc = ada_find_parallel_type (type, "___XA");
2080 if (index_type_desc)
2081 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2082 NULL);
2083 else
2084 index_type = TYPE_INDEX_TYPE (type);
2085
2086 new_type = alloc_type_copy (type);
2087 new_elt_type =
2088 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2089 elt_bits);
2090 create_array_type (new_type, new_elt_type, index_type);
2091 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2092 new_type->set_name (ada_type_name (type));
2093
2094 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2095 && is_dynamic_type (check_typedef (index_type)))
2096 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2097 low_bound = high_bound = 0;
2098 if (high_bound < low_bound)
2099 *elt_bits = TYPE_LENGTH (new_type) = 0;
2100 else
2101 {
2102 *elt_bits *= (high_bound - low_bound + 1);
2103 TYPE_LENGTH (new_type) =
2104 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2105 }
2106
2107 TYPE_FIXED_INSTANCE (new_type) = 1;
2108 return new_type;
2109 }
2110
2111 /* The array type encoded by TYPE, where
2112 ada_is_constrained_packed_array_type (TYPE). */
2113
2114 static struct type *
2115 decode_constrained_packed_array_type (struct type *type)
2116 {
2117 const char *raw_name = ada_type_name (ada_check_typedef (type));
2118 char *name;
2119 const char *tail;
2120 struct type *shadow_type;
2121 long bits;
2122
2123 if (!raw_name)
2124 raw_name = ada_type_name (desc_base_type (type));
2125
2126 if (!raw_name)
2127 return NULL;
2128
2129 name = (char *) alloca (strlen (raw_name) + 1);
2130 tail = strstr (raw_name, "___XP");
2131 type = desc_base_type (type);
2132
2133 memcpy (name, raw_name, tail - raw_name);
2134 name[tail - raw_name] = '\000';
2135
2136 shadow_type = ada_find_parallel_type_with_name (type, name);
2137
2138 if (shadow_type == NULL)
2139 {
2140 lim_warning (_("could not find bounds information on packed array"));
2141 return NULL;
2142 }
2143 shadow_type = check_typedef (shadow_type);
2144
2145 if (shadow_type->code () != TYPE_CODE_ARRAY)
2146 {
2147 lim_warning (_("could not understand bounds "
2148 "information on packed array"));
2149 return NULL;
2150 }
2151
2152 bits = decode_packed_array_bitsize (type);
2153 return constrained_packed_array_type (shadow_type, &bits);
2154 }
2155
2156 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2157 array, returns a simple array that denotes that array. Its type is a
2158 standard GDB array type except that the BITSIZEs of the array
2159 target types are set to the number of bits in each element, and the
2160 type length is set appropriately. */
2161
2162 static struct value *
2163 decode_constrained_packed_array (struct value *arr)
2164 {
2165 struct type *type;
2166
2167 /* If our value is a pointer, then dereference it. Likewise if
2168 the value is a reference. Make sure that this operation does not
2169 cause the target type to be fixed, as this would indirectly cause
2170 this array to be decoded. The rest of the routine assumes that
2171 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2172 and "value_ind" routines to perform the dereferencing, as opposed
2173 to using "ada_coerce_ref" or "ada_value_ind". */
2174 arr = coerce_ref (arr);
2175 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2176 arr = value_ind (arr);
2177
2178 type = decode_constrained_packed_array_type (value_type (arr));
2179 if (type == NULL)
2180 {
2181 error (_("can't unpack array"));
2182 return NULL;
2183 }
2184
2185 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2186 && ada_is_modular_type (value_type (arr)))
2187 {
2188 /* This is a (right-justified) modular type representing a packed
2189 array with no wrapper. In order to interpret the value through
2190 the (left-justified) packed array type we just built, we must
2191 first left-justify it. */
2192 int bit_size, bit_pos;
2193 ULONGEST mod;
2194
2195 mod = ada_modulus (value_type (arr)) - 1;
2196 bit_size = 0;
2197 while (mod > 0)
2198 {
2199 bit_size += 1;
2200 mod >>= 1;
2201 }
2202 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2203 arr = ada_value_primitive_packed_val (arr, NULL,
2204 bit_pos / HOST_CHAR_BIT,
2205 bit_pos % HOST_CHAR_BIT,
2206 bit_size,
2207 type);
2208 }
2209
2210 return coerce_unspec_val_to_type (arr, type);
2211 }
2212
2213
2214 /* The value of the element of packed array ARR at the ARITY indices
2215 given in IND. ARR must be a simple array. */
2216
2217 static struct value *
2218 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2219 {
2220 int i;
2221 int bits, elt_off, bit_off;
2222 long elt_total_bit_offset;
2223 struct type *elt_type;
2224 struct value *v;
2225
2226 bits = 0;
2227 elt_total_bit_offset = 0;
2228 elt_type = ada_check_typedef (value_type (arr));
2229 for (i = 0; i < arity; i += 1)
2230 {
2231 if (elt_type->code () != TYPE_CODE_ARRAY
2232 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2233 error
2234 (_("attempt to do packed indexing of "
2235 "something other than a packed array"));
2236 else
2237 {
2238 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2239 LONGEST lowerbound, upperbound;
2240 LONGEST idx;
2241
2242 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2243 {
2244 lim_warning (_("don't know bounds of array"));
2245 lowerbound = upperbound = 0;
2246 }
2247
2248 idx = pos_atr (ind[i]);
2249 if (idx < lowerbound || idx > upperbound)
2250 lim_warning (_("packed array index %ld out of bounds"),
2251 (long) idx);
2252 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2253 elt_total_bit_offset += (idx - lowerbound) * bits;
2254 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2255 }
2256 }
2257 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2258 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2259
2260 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2261 bits, elt_type);
2262 return v;
2263 }
2264
2265 /* Non-zero iff TYPE includes negative integer values. */
2266
2267 static int
2268 has_negatives (struct type *type)
2269 {
2270 switch (type->code ())
2271 {
2272 default:
2273 return 0;
2274 case TYPE_CODE_INT:
2275 return !TYPE_UNSIGNED (type);
2276 case TYPE_CODE_RANGE:
2277 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2278 }
2279 }
2280
2281 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2282 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2283 the unpacked buffer.
2284
2285 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2286 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2287
2288 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2289 zero otherwise.
2290
2291 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2292
2293 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2294
2295 static void
2296 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2297 gdb_byte *unpacked, int unpacked_len,
2298 int is_big_endian, int is_signed_type,
2299 int is_scalar)
2300 {
2301 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2302 int src_idx; /* Index into the source area */
2303 int src_bytes_left; /* Number of source bytes left to process. */
2304 int srcBitsLeft; /* Number of source bits left to move */
2305 int unusedLS; /* Number of bits in next significant
2306 byte of source that are unused */
2307
2308 int unpacked_idx; /* Index into the unpacked buffer */
2309 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2310
2311 unsigned long accum; /* Staging area for bits being transferred */
2312 int accumSize; /* Number of meaningful bits in accum */
2313 unsigned char sign;
2314
2315 /* Transmit bytes from least to most significant; delta is the direction
2316 the indices move. */
2317 int delta = is_big_endian ? -1 : 1;
2318
2319 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2320 bits from SRC. .*/
2321 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2322 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2323 bit_size, unpacked_len);
2324
2325 srcBitsLeft = bit_size;
2326 src_bytes_left = src_len;
2327 unpacked_bytes_left = unpacked_len;
2328 sign = 0;
2329
2330 if (is_big_endian)
2331 {
2332 src_idx = src_len - 1;
2333 if (is_signed_type
2334 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2335 sign = ~0;
2336
2337 unusedLS =
2338 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2339 % HOST_CHAR_BIT;
2340
2341 if (is_scalar)
2342 {
2343 accumSize = 0;
2344 unpacked_idx = unpacked_len - 1;
2345 }
2346 else
2347 {
2348 /* Non-scalar values must be aligned at a byte boundary... */
2349 accumSize =
2350 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2351 /* ... And are placed at the beginning (most-significant) bytes
2352 of the target. */
2353 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2354 unpacked_bytes_left = unpacked_idx + 1;
2355 }
2356 }
2357 else
2358 {
2359 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2360
2361 src_idx = unpacked_idx = 0;
2362 unusedLS = bit_offset;
2363 accumSize = 0;
2364
2365 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2366 sign = ~0;
2367 }
2368
2369 accum = 0;
2370 while (src_bytes_left > 0)
2371 {
2372 /* Mask for removing bits of the next source byte that are not
2373 part of the value. */
2374 unsigned int unusedMSMask =
2375 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2376 1;
2377 /* Sign-extend bits for this byte. */
2378 unsigned int signMask = sign & ~unusedMSMask;
2379
2380 accum |=
2381 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2382 accumSize += HOST_CHAR_BIT - unusedLS;
2383 if (accumSize >= HOST_CHAR_BIT)
2384 {
2385 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2386 accumSize -= HOST_CHAR_BIT;
2387 accum >>= HOST_CHAR_BIT;
2388 unpacked_bytes_left -= 1;
2389 unpacked_idx += delta;
2390 }
2391 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2392 unusedLS = 0;
2393 src_bytes_left -= 1;
2394 src_idx += delta;
2395 }
2396 while (unpacked_bytes_left > 0)
2397 {
2398 accum |= sign << accumSize;
2399 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2400 accumSize -= HOST_CHAR_BIT;
2401 if (accumSize < 0)
2402 accumSize = 0;
2403 accum >>= HOST_CHAR_BIT;
2404 unpacked_bytes_left -= 1;
2405 unpacked_idx += delta;
2406 }
2407 }
2408
2409 /* Create a new value of type TYPE from the contents of OBJ starting
2410 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2411 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2412 assigning through the result will set the field fetched from.
2413 VALADDR is ignored unless OBJ is NULL, in which case,
2414 VALADDR+OFFSET must address the start of storage containing the
2415 packed value. The value returned in this case is never an lval.
2416 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2417
2418 struct value *
2419 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2420 long offset, int bit_offset, int bit_size,
2421 struct type *type)
2422 {
2423 struct value *v;
2424 const gdb_byte *src; /* First byte containing data to unpack */
2425 gdb_byte *unpacked;
2426 const int is_scalar = is_scalar_type (type);
2427 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2428 gdb::byte_vector staging;
2429
2430 type = ada_check_typedef (type);
2431
2432 if (obj == NULL)
2433 src = valaddr + offset;
2434 else
2435 src = value_contents (obj) + offset;
2436
2437 if (is_dynamic_type (type))
2438 {
2439 /* The length of TYPE might by dynamic, so we need to resolve
2440 TYPE in order to know its actual size, which we then use
2441 to create the contents buffer of the value we return.
2442 The difficulty is that the data containing our object is
2443 packed, and therefore maybe not at a byte boundary. So, what
2444 we do, is unpack the data into a byte-aligned buffer, and then
2445 use that buffer as our object's value for resolving the type. */
2446 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2447 staging.resize (staging_len);
2448
2449 ada_unpack_from_contents (src, bit_offset, bit_size,
2450 staging.data (), staging.size (),
2451 is_big_endian, has_negatives (type),
2452 is_scalar);
2453 type = resolve_dynamic_type (type, staging, 0);
2454 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2455 {
2456 /* This happens when the length of the object is dynamic,
2457 and is actually smaller than the space reserved for it.
2458 For instance, in an array of variant records, the bit_size
2459 we're given is the array stride, which is constant and
2460 normally equal to the maximum size of its element.
2461 But, in reality, each element only actually spans a portion
2462 of that stride. */
2463 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2464 }
2465 }
2466
2467 if (obj == NULL)
2468 {
2469 v = allocate_value (type);
2470 src = valaddr + offset;
2471 }
2472 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2473 {
2474 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2475 gdb_byte *buf;
2476
2477 v = value_at (type, value_address (obj) + offset);
2478 buf = (gdb_byte *) alloca (src_len);
2479 read_memory (value_address (v), buf, src_len);
2480 src = buf;
2481 }
2482 else
2483 {
2484 v = allocate_value (type);
2485 src = value_contents (obj) + offset;
2486 }
2487
2488 if (obj != NULL)
2489 {
2490 long new_offset = offset;
2491
2492 set_value_component_location (v, obj);
2493 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2494 set_value_bitsize (v, bit_size);
2495 if (value_bitpos (v) >= HOST_CHAR_BIT)
2496 {
2497 ++new_offset;
2498 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2499 }
2500 set_value_offset (v, new_offset);
2501
2502 /* Also set the parent value. This is needed when trying to
2503 assign a new value (in inferior memory). */
2504 set_value_parent (v, obj);
2505 }
2506 else
2507 set_value_bitsize (v, bit_size);
2508 unpacked = value_contents_writeable (v);
2509
2510 if (bit_size == 0)
2511 {
2512 memset (unpacked, 0, TYPE_LENGTH (type));
2513 return v;
2514 }
2515
2516 if (staging.size () == TYPE_LENGTH (type))
2517 {
2518 /* Small short-cut: If we've unpacked the data into a buffer
2519 of the same size as TYPE's length, then we can reuse that,
2520 instead of doing the unpacking again. */
2521 memcpy (unpacked, staging.data (), staging.size ());
2522 }
2523 else
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
2525 unpacked, TYPE_LENGTH (type),
2526 is_big_endian, has_negatives (type), is_scalar);
2527
2528 return v;
2529 }
2530
2531 /* Store the contents of FROMVAL into the location of TOVAL.
2532 Return a new value with the location of TOVAL and contents of
2533 FROMVAL. Handles assignment into packed fields that have
2534 floating-point or non-scalar types. */
2535
2536 static struct value *
2537 ada_value_assign (struct value *toval, struct value *fromval)
2538 {
2539 struct type *type = value_type (toval);
2540 int bits = value_bitsize (toval);
2541
2542 toval = ada_coerce_ref (toval);
2543 fromval = ada_coerce_ref (fromval);
2544
2545 if (ada_is_direct_array_type (value_type (toval)))
2546 toval = ada_coerce_to_simple_array (toval);
2547 if (ada_is_direct_array_type (value_type (fromval)))
2548 fromval = ada_coerce_to_simple_array (fromval);
2549
2550 if (!deprecated_value_modifiable (toval))
2551 error (_("Left operand of assignment is not a modifiable lvalue."));
2552
2553 if (VALUE_LVAL (toval) == lval_memory
2554 && bits > 0
2555 && (type->code () == TYPE_CODE_FLT
2556 || type->code () == TYPE_CODE_STRUCT))
2557 {
2558 int len = (value_bitpos (toval)
2559 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2560 int from_size;
2561 gdb_byte *buffer = (gdb_byte *) alloca (len);
2562 struct value *val;
2563 CORE_ADDR to_addr = value_address (toval);
2564
2565 if (type->code () == TYPE_CODE_FLT)
2566 fromval = value_cast (type, fromval);
2567
2568 read_memory (to_addr, buffer, len);
2569 from_size = value_bitsize (fromval);
2570 if (from_size == 0)
2571 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2572
2573 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2574 ULONGEST from_offset = 0;
2575 if (is_big_endian && is_scalar_type (value_type (fromval)))
2576 from_offset = from_size - bits;
2577 copy_bitwise (buffer, value_bitpos (toval),
2578 value_contents (fromval), from_offset,
2579 bits, is_big_endian);
2580 write_memory_with_notification (to_addr, buffer, len);
2581
2582 val = value_copy (toval);
2583 memcpy (value_contents_raw (val), value_contents (fromval),
2584 TYPE_LENGTH (type));
2585 deprecated_set_value_type (val, type);
2586
2587 return val;
2588 }
2589
2590 return value_assign (toval, fromval);
2591 }
2592
2593
2594 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2595 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2596 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2597 COMPONENT, and not the inferior's memory. The current contents
2598 of COMPONENT are ignored.
2599
2600 Although not part of the initial design, this function also works
2601 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2602 had a null address, and COMPONENT had an address which is equal to
2603 its offset inside CONTAINER. */
2604
2605 static void
2606 value_assign_to_component (struct value *container, struct value *component,
2607 struct value *val)
2608 {
2609 LONGEST offset_in_container =
2610 (LONGEST) (value_address (component) - value_address (container));
2611 int bit_offset_in_container =
2612 value_bitpos (component) - value_bitpos (container);
2613 int bits;
2614
2615 val = value_cast (value_type (component), val);
2616
2617 if (value_bitsize (component) == 0)
2618 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2619 else
2620 bits = value_bitsize (component);
2621
2622 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2623 {
2624 int src_offset;
2625
2626 if (is_scalar_type (check_typedef (value_type (component))))
2627 src_offset
2628 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2629 else
2630 src_offset = 0;
2631 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2632 value_bitpos (container) + bit_offset_in_container,
2633 value_contents (val), src_offset, bits, 1);
2634 }
2635 else
2636 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2637 value_bitpos (container) + bit_offset_in_container,
2638 value_contents (val), 0, bits, 0);
2639 }
2640
2641 /* Determine if TYPE is an access to an unconstrained array. */
2642
2643 bool
2644 ada_is_access_to_unconstrained_array (struct type *type)
2645 {
2646 return (type->code () == TYPE_CODE_TYPEDEF
2647 && is_thick_pntr (ada_typedef_target_type (type)));
2648 }
2649
2650 /* The value of the element of array ARR at the ARITY indices given in IND.
2651 ARR may be either a simple array, GNAT array descriptor, or pointer
2652 thereto. */
2653
2654 struct value *
2655 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2656 {
2657 int k;
2658 struct value *elt;
2659 struct type *elt_type;
2660
2661 elt = ada_coerce_to_simple_array (arr);
2662
2663 elt_type = ada_check_typedef (value_type (elt));
2664 if (elt_type->code () == TYPE_CODE_ARRAY
2665 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2666 return value_subscript_packed (elt, arity, ind);
2667
2668 for (k = 0; k < arity; k += 1)
2669 {
2670 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2671
2672 if (elt_type->code () != TYPE_CODE_ARRAY)
2673 error (_("too many subscripts (%d expected)"), k);
2674
2675 elt = value_subscript (elt, pos_atr (ind[k]));
2676
2677 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2678 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2679 {
2680 /* The element is a typedef to an unconstrained array,
2681 except that the value_subscript call stripped the
2682 typedef layer. The typedef layer is GNAT's way to
2683 specify that the element is, at the source level, an
2684 access to the unconstrained array, rather than the
2685 unconstrained array. So, we need to restore that
2686 typedef layer, which we can do by forcing the element's
2687 type back to its original type. Otherwise, the returned
2688 value is going to be printed as the array, rather
2689 than as an access. Another symptom of the same issue
2690 would be that an expression trying to dereference the
2691 element would also be improperly rejected. */
2692 deprecated_set_value_type (elt, saved_elt_type);
2693 }
2694
2695 elt_type = ada_check_typedef (value_type (elt));
2696 }
2697
2698 return elt;
2699 }
2700
2701 /* Assuming ARR is a pointer to a GDB array, the value of the element
2702 of *ARR at the ARITY indices given in IND.
2703 Does not read the entire array into memory.
2704
2705 Note: Unlike what one would expect, this function is used instead of
2706 ada_value_subscript for basically all non-packed array types. The reason
2707 for this is that a side effect of doing our own pointer arithmetics instead
2708 of relying on value_subscript is that there is no implicit typedef peeling.
2709 This is important for arrays of array accesses, where it allows us to
2710 preserve the fact that the array's element is an array access, where the
2711 access part os encoded in a typedef layer. */
2712
2713 static struct value *
2714 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2715 {
2716 int k;
2717 struct value *array_ind = ada_value_ind (arr);
2718 struct type *type
2719 = check_typedef (value_enclosing_type (array_ind));
2720
2721 if (type->code () == TYPE_CODE_ARRAY
2722 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2723 return value_subscript_packed (array_ind, arity, ind);
2724
2725 for (k = 0; k < arity; k += 1)
2726 {
2727 LONGEST lwb, upb;
2728
2729 if (type->code () != TYPE_CODE_ARRAY)
2730 error (_("too many subscripts (%d expected)"), k);
2731 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2732 value_copy (arr));
2733 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2734 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2735 type = TYPE_TARGET_TYPE (type);
2736 }
2737
2738 return value_ind (arr);
2739 }
2740
2741 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2742 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2743 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2744 this array is LOW, as per Ada rules. */
2745 static struct value *
2746 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2747 int low, int high)
2748 {
2749 struct type *type0 = ada_check_typedef (type);
2750 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2751 struct type *index_type
2752 = create_static_range_type (NULL, base_index_type, low, high);
2753 struct type *slice_type = create_array_type_with_stride
2754 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2755 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2756 TYPE_FIELD_BITSIZE (type0, 0));
2757 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2758 LONGEST base_low_pos, low_pos;
2759 CORE_ADDR base;
2760
2761 if (!discrete_position (base_index_type, low, &low_pos)
2762 || !discrete_position (base_index_type, base_low, &base_low_pos))
2763 {
2764 warning (_("unable to get positions in slice, use bounds instead"));
2765 low_pos = low;
2766 base_low_pos = base_low;
2767 }
2768
2769 base = value_as_address (array_ptr)
2770 + ((low_pos - base_low_pos)
2771 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2772 return value_at_lazy (slice_type, base);
2773 }
2774
2775
2776 static struct value *
2777 ada_value_slice (struct value *array, int low, int high)
2778 {
2779 struct type *type = ada_check_typedef (value_type (array));
2780 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2781 struct type *index_type
2782 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2783 struct type *slice_type = create_array_type_with_stride
2784 (NULL, TYPE_TARGET_TYPE (type), index_type,
2785 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2786 TYPE_FIELD_BITSIZE (type, 0));
2787 LONGEST low_pos, high_pos;
2788
2789 if (!discrete_position (base_index_type, low, &low_pos)
2790 || !discrete_position (base_index_type, high, &high_pos))
2791 {
2792 warning (_("unable to get positions in slice, use bounds instead"));
2793 low_pos = low;
2794 high_pos = high;
2795 }
2796
2797 return value_cast (slice_type,
2798 value_slice (array, low, high_pos - low_pos + 1));
2799 }
2800
2801 /* If type is a record type in the form of a standard GNAT array
2802 descriptor, returns the number of dimensions for type. If arr is a
2803 simple array, returns the number of "array of"s that prefix its
2804 type designation. Otherwise, returns 0. */
2805
2806 int
2807 ada_array_arity (struct type *type)
2808 {
2809 int arity;
2810
2811 if (type == NULL)
2812 return 0;
2813
2814 type = desc_base_type (type);
2815
2816 arity = 0;
2817 if (type->code () == TYPE_CODE_STRUCT)
2818 return desc_arity (desc_bounds_type (type));
2819 else
2820 while (type->code () == TYPE_CODE_ARRAY)
2821 {
2822 arity += 1;
2823 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2824 }
2825
2826 return arity;
2827 }
2828
2829 /* If TYPE is a record type in the form of a standard GNAT array
2830 descriptor or a simple array type, returns the element type for
2831 TYPE after indexing by NINDICES indices, or by all indices if
2832 NINDICES is -1. Otherwise, returns NULL. */
2833
2834 struct type *
2835 ada_array_element_type (struct type *type, int nindices)
2836 {
2837 type = desc_base_type (type);
2838
2839 if (type->code () == TYPE_CODE_STRUCT)
2840 {
2841 int k;
2842 struct type *p_array_type;
2843
2844 p_array_type = desc_data_target_type (type);
2845
2846 k = ada_array_arity (type);
2847 if (k == 0)
2848 return NULL;
2849
2850 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2851 if (nindices >= 0 && k > nindices)
2852 k = nindices;
2853 while (k > 0 && p_array_type != NULL)
2854 {
2855 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2856 k -= 1;
2857 }
2858 return p_array_type;
2859 }
2860 else if (type->code () == TYPE_CODE_ARRAY)
2861 {
2862 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2863 {
2864 type = TYPE_TARGET_TYPE (type);
2865 nindices -= 1;
2866 }
2867 return type;
2868 }
2869
2870 return NULL;
2871 }
2872
2873 /* The type of nth index in arrays of given type (n numbering from 1).
2874 Does not examine memory. Throws an error if N is invalid or TYPE
2875 is not an array type. NAME is the name of the Ada attribute being
2876 evaluated ('range, 'first, 'last, or 'length); it is used in building
2877 the error message. */
2878
2879 static struct type *
2880 ada_index_type (struct type *type, int n, const char *name)
2881 {
2882 struct type *result_type;
2883
2884 type = desc_base_type (type);
2885
2886 if (n < 0 || n > ada_array_arity (type))
2887 error (_("invalid dimension number to '%s"), name);
2888
2889 if (ada_is_simple_array_type (type))
2890 {
2891 int i;
2892
2893 for (i = 1; i < n; i += 1)
2894 type = TYPE_TARGET_TYPE (type);
2895 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2896 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2897 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2898 perhaps stabsread.c would make more sense. */
2899 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2900 result_type = NULL;
2901 }
2902 else
2903 {
2904 result_type = desc_index_type (desc_bounds_type (type), n);
2905 if (result_type == NULL)
2906 error (_("attempt to take bound of something that is not an array"));
2907 }
2908
2909 return result_type;
2910 }
2911
2912 /* Given that arr is an array type, returns the lower bound of the
2913 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2914 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2915 array-descriptor type. It works for other arrays with bounds supplied
2916 by run-time quantities other than discriminants. */
2917
2918 static LONGEST
2919 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2920 {
2921 struct type *type, *index_type_desc, *index_type;
2922 int i;
2923
2924 gdb_assert (which == 0 || which == 1);
2925
2926 if (ada_is_constrained_packed_array_type (arr_type))
2927 arr_type = decode_constrained_packed_array_type (arr_type);
2928
2929 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2930 return (LONGEST) - which;
2931
2932 if (arr_type->code () == TYPE_CODE_PTR)
2933 type = TYPE_TARGET_TYPE (arr_type);
2934 else
2935 type = arr_type;
2936
2937 if (TYPE_FIXED_INSTANCE (type))
2938 {
2939 /* The array has already been fixed, so we do not need to
2940 check the parallel ___XA type again. That encoding has
2941 already been applied, so ignore it now. */
2942 index_type_desc = NULL;
2943 }
2944 else
2945 {
2946 index_type_desc = ada_find_parallel_type (type, "___XA");
2947 ada_fixup_array_indexes_type (index_type_desc);
2948 }
2949
2950 if (index_type_desc != NULL)
2951 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2952 NULL);
2953 else
2954 {
2955 struct type *elt_type = check_typedef (type);
2956
2957 for (i = 1; i < n; i++)
2958 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2959
2960 index_type = TYPE_INDEX_TYPE (elt_type);
2961 }
2962
2963 return
2964 (LONGEST) (which == 0
2965 ? ada_discrete_type_low_bound (index_type)
2966 : ada_discrete_type_high_bound (index_type));
2967 }
2968
2969 /* Given that arr is an array value, returns the lower bound of the
2970 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2971 WHICH is 1. This routine will also work for arrays with bounds
2972 supplied by run-time quantities other than discriminants. */
2973
2974 static LONGEST
2975 ada_array_bound (struct value *arr, int n, int which)
2976 {
2977 struct type *arr_type;
2978
2979 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2980 arr = value_ind (arr);
2981 arr_type = value_enclosing_type (arr);
2982
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2985 else if (ada_is_simple_array_type (arr_type))
2986 return ada_array_bound_from_type (arr_type, n, which);
2987 else
2988 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2989 }
2990
2991 /* Given that arr is an array value, returns the length of the
2992 nth index. This routine will also work for arrays with bounds
2993 supplied by run-time quantities other than discriminants.
2994 Does not work for arrays indexed by enumeration types with representation
2995 clauses at the moment. */
2996
2997 static LONGEST
2998 ada_array_length (struct value *arr, int n)
2999 {
3000 struct type *arr_type, *index_type;
3001 int low, high;
3002
3003 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3004 arr = value_ind (arr);
3005 arr_type = value_enclosing_type (arr);
3006
3007 if (ada_is_constrained_packed_array_type (arr_type))
3008 return ada_array_length (decode_constrained_packed_array (arr), n);
3009
3010 if (ada_is_simple_array_type (arr_type))
3011 {
3012 low = ada_array_bound_from_type (arr_type, n, 0);
3013 high = ada_array_bound_from_type (arr_type, n, 1);
3014 }
3015 else
3016 {
3017 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3018 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3019 }
3020
3021 arr_type = check_typedef (arr_type);
3022 index_type = ada_index_type (arr_type, n, "length");
3023 if (index_type != NULL)
3024 {
3025 struct type *base_type;
3026 if (index_type->code () == TYPE_CODE_RANGE)
3027 base_type = TYPE_TARGET_TYPE (index_type);
3028 else
3029 base_type = index_type;
3030
3031 low = pos_atr (value_from_longest (base_type, low));
3032 high = pos_atr (value_from_longest (base_type, high));
3033 }
3034 return high - low + 1;
3035 }
3036
3037 /* An array whose type is that of ARR_TYPE (an array type), with
3038 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3039 less than LOW, then LOW-1 is used. */
3040
3041 static struct value *
3042 empty_array (struct type *arr_type, int low, int high)
3043 {
3044 struct type *arr_type0 = ada_check_typedef (arr_type);
3045 struct type *index_type
3046 = create_static_range_type
3047 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3048 high < low ? low - 1 : high);
3049 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3050
3051 return allocate_value (create_array_type (NULL, elt_type, index_type));
3052 }
3053 \f
3054
3055 /* Name resolution */
3056
3057 /* The "decoded" name for the user-definable Ada operator corresponding
3058 to OP. */
3059
3060 static const char *
3061 ada_decoded_op_name (enum exp_opcode op)
3062 {
3063 int i;
3064
3065 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3066 {
3067 if (ada_opname_table[i].op == op)
3068 return ada_opname_table[i].decoded;
3069 }
3070 error (_("Could not find operator name for opcode"));
3071 }
3072
3073 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3074 in a listing of choices during disambiguation (see sort_choices, below).
3075 The idea is that overloadings of a subprogram name from the
3076 same package should sort in their source order. We settle for ordering
3077 such symbols by their trailing number (__N or $N). */
3078
3079 static int
3080 encoded_ordered_before (const char *N0, const char *N1)
3081 {
3082 if (N1 == NULL)
3083 return 0;
3084 else if (N0 == NULL)
3085 return 1;
3086 else
3087 {
3088 int k0, k1;
3089
3090 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3091 ;
3092 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3093 ;
3094 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3095 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3096 {
3097 int n0, n1;
3098
3099 n0 = k0;
3100 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3101 n0 -= 1;
3102 n1 = k1;
3103 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3104 n1 -= 1;
3105 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3106 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3107 }
3108 return (strcmp (N0, N1) < 0);
3109 }
3110 }
3111
3112 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3113 encoded names. */
3114
3115 static void
3116 sort_choices (struct block_symbol syms[], int nsyms)
3117 {
3118 int i;
3119
3120 for (i = 1; i < nsyms; i += 1)
3121 {
3122 struct block_symbol sym = syms[i];
3123 int j;
3124
3125 for (j = i - 1; j >= 0; j -= 1)
3126 {
3127 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3128 sym.symbol->linkage_name ()))
3129 break;
3130 syms[j + 1] = syms[j];
3131 }
3132 syms[j + 1] = sym;
3133 }
3134 }
3135
3136 /* Whether GDB should display formals and return types for functions in the
3137 overloads selection menu. */
3138 static bool print_signatures = true;
3139
3140 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3141 all but functions, the signature is just the name of the symbol. For
3142 functions, this is the name of the function, the list of types for formals
3143 and the return type (if any). */
3144
3145 static void
3146 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3147 const struct type_print_options *flags)
3148 {
3149 struct type *type = SYMBOL_TYPE (sym);
3150
3151 fprintf_filtered (stream, "%s", sym->print_name ());
3152 if (!print_signatures
3153 || type == NULL
3154 || type->code () != TYPE_CODE_FUNC)
3155 return;
3156
3157 if (type->num_fields () > 0)
3158 {
3159 int i;
3160
3161 fprintf_filtered (stream, " (");
3162 for (i = 0; i < type->num_fields (); ++i)
3163 {
3164 if (i > 0)
3165 fprintf_filtered (stream, "; ");
3166 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3167 flags);
3168 }
3169 fprintf_filtered (stream, ")");
3170 }
3171 if (TYPE_TARGET_TYPE (type) != NULL
3172 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3173 {
3174 fprintf_filtered (stream, " return ");
3175 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3176 }
3177 }
3178
3179 /* Read and validate a set of numeric choices from the user in the
3180 range 0 .. N_CHOICES-1. Place the results in increasing
3181 order in CHOICES[0 .. N-1], and return N.
3182
3183 The user types choices as a sequence of numbers on one line
3184 separated by blanks, encoding them as follows:
3185
3186 + A choice of 0 means to cancel the selection, throwing an error.
3187 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3188 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3189
3190 The user is not allowed to choose more than MAX_RESULTS values.
3191
3192 ANNOTATION_SUFFIX, if present, is used to annotate the input
3193 prompts (for use with the -f switch). */
3194
3195 static int
3196 get_selections (int *choices, int n_choices, int max_results,
3197 int is_all_choice, const char *annotation_suffix)
3198 {
3199 const char *args;
3200 const char *prompt;
3201 int n_chosen;
3202 int first_choice = is_all_choice ? 2 : 1;
3203
3204 prompt = getenv ("PS2");
3205 if (prompt == NULL)
3206 prompt = "> ";
3207
3208 args = command_line_input (prompt, annotation_suffix);
3209
3210 if (args == NULL)
3211 error_no_arg (_("one or more choice numbers"));
3212
3213 n_chosen = 0;
3214
3215 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3216 order, as given in args. Choices are validated. */
3217 while (1)
3218 {
3219 char *args2;
3220 int choice, j;
3221
3222 args = skip_spaces (args);
3223 if (*args == '\0' && n_chosen == 0)
3224 error_no_arg (_("one or more choice numbers"));
3225 else if (*args == '\0')
3226 break;
3227
3228 choice = strtol (args, &args2, 10);
3229 if (args == args2 || choice < 0
3230 || choice > n_choices + first_choice - 1)
3231 error (_("Argument must be choice number"));
3232 args = args2;
3233
3234 if (choice == 0)
3235 error (_("cancelled"));
3236
3237 if (choice < first_choice)
3238 {
3239 n_chosen = n_choices;
3240 for (j = 0; j < n_choices; j += 1)
3241 choices[j] = j;
3242 break;
3243 }
3244 choice -= first_choice;
3245
3246 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3247 {
3248 }
3249
3250 if (j < 0 || choice != choices[j])
3251 {
3252 int k;
3253
3254 for (k = n_chosen - 1; k > j; k -= 1)
3255 choices[k + 1] = choices[k];
3256 choices[j + 1] = choice;
3257 n_chosen += 1;
3258 }
3259 }
3260
3261 if (n_chosen > max_results)
3262 error (_("Select no more than %d of the above"), max_results);
3263
3264 return n_chosen;
3265 }
3266
3267 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3268 by asking the user (if necessary), returning the number selected,
3269 and setting the first elements of SYMS items. Error if no symbols
3270 selected. */
3271
3272 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3273 to be re-integrated one of these days. */
3274
3275 static int
3276 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3277 {
3278 int i;
3279 int *chosen = XALLOCAVEC (int , nsyms);
3280 int n_chosen;
3281 int first_choice = (max_results == 1) ? 1 : 2;
3282 const char *select_mode = multiple_symbols_select_mode ();
3283
3284 if (max_results < 1)
3285 error (_("Request to select 0 symbols!"));
3286 if (nsyms <= 1)
3287 return nsyms;
3288
3289 if (select_mode == multiple_symbols_cancel)
3290 error (_("\
3291 canceled because the command is ambiguous\n\
3292 See set/show multiple-symbol."));
3293
3294 /* If select_mode is "all", then return all possible symbols.
3295 Only do that if more than one symbol can be selected, of course.
3296 Otherwise, display the menu as usual. */
3297 if (select_mode == multiple_symbols_all && max_results > 1)
3298 return nsyms;
3299
3300 printf_filtered (_("[0] cancel\n"));
3301 if (max_results > 1)
3302 printf_filtered (_("[1] all\n"));
3303
3304 sort_choices (syms, nsyms);
3305
3306 for (i = 0; i < nsyms; i += 1)
3307 {
3308 if (syms[i].symbol == NULL)
3309 continue;
3310
3311 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3312 {
3313 struct symtab_and_line sal =
3314 find_function_start_sal (syms[i].symbol, 1);
3315
3316 printf_filtered ("[%d] ", i + first_choice);
3317 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3318 &type_print_raw_options);
3319 if (sal.symtab == NULL)
3320 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3321 metadata_style.style ().ptr (), nullptr, sal.line);
3322 else
3323 printf_filtered
3324 (_(" at %ps:%d\n"),
3325 styled_string (file_name_style.style (),
3326 symtab_to_filename_for_display (sal.symtab)),
3327 sal.line);
3328 continue;
3329 }
3330 else
3331 {
3332 int is_enumeral =
3333 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3334 && SYMBOL_TYPE (syms[i].symbol) != NULL
3335 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3336 struct symtab *symtab = NULL;
3337
3338 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3339 symtab = symbol_symtab (syms[i].symbol);
3340
3341 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3342 {
3343 printf_filtered ("[%d] ", i + first_choice);
3344 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3345 &type_print_raw_options);
3346 printf_filtered (_(" at %s:%d\n"),
3347 symtab_to_filename_for_display (symtab),
3348 SYMBOL_LINE (syms[i].symbol));
3349 }
3350 else if (is_enumeral
3351 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3352 {
3353 printf_filtered (("[%d] "), i + first_choice);
3354 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3355 gdb_stdout, -1, 0, &type_print_raw_options);
3356 printf_filtered (_("'(%s) (enumeral)\n"),
3357 syms[i].symbol->print_name ());
3358 }
3359 else
3360 {
3361 printf_filtered ("[%d] ", i + first_choice);
3362 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3363 &type_print_raw_options);
3364
3365 if (symtab != NULL)
3366 printf_filtered (is_enumeral
3367 ? _(" in %s (enumeral)\n")
3368 : _(" at %s:?\n"),
3369 symtab_to_filename_for_display (symtab));
3370 else
3371 printf_filtered (is_enumeral
3372 ? _(" (enumeral)\n")
3373 : _(" at ?\n"));
3374 }
3375 }
3376 }
3377
3378 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3379 "overload-choice");
3380
3381 for (i = 0; i < n_chosen; i += 1)
3382 syms[i] = syms[chosen[i]];
3383
3384 return n_chosen;
3385 }
3386
3387 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3388 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3389 undefined namespace) and converts operators that are
3390 user-defined into appropriate function calls. If CONTEXT_TYPE is
3391 non-null, it provides a preferred result type [at the moment, only
3392 type void has any effect---causing procedures to be preferred over
3393 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3394 return type is preferred. May change (expand) *EXP. */
3395
3396 static void
3397 resolve (expression_up *expp, int void_context_p, int parse_completion,
3398 innermost_block_tracker *tracker)
3399 {
3400 struct type *context_type = NULL;
3401 int pc = 0;
3402
3403 if (void_context_p)
3404 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3405
3406 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3407 }
3408
3409 /* Resolve the operator of the subexpression beginning at
3410 position *POS of *EXPP. "Resolving" consists of replacing
3411 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3412 with their resolutions, replacing built-in operators with
3413 function calls to user-defined operators, where appropriate, and,
3414 when DEPROCEDURE_P is non-zero, converting function-valued variables
3415 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3416 are as in ada_resolve, above. */
3417
3418 static struct value *
3419 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3420 struct type *context_type, int parse_completion,
3421 innermost_block_tracker *tracker)
3422 {
3423 int pc = *pos;
3424 int i;
3425 struct expression *exp; /* Convenience: == *expp. */
3426 enum exp_opcode op = (*expp)->elts[pc].opcode;
3427 struct value **argvec; /* Vector of operand types (alloca'ed). */
3428 int nargs; /* Number of operands. */
3429 int oplen;
3430
3431 argvec = NULL;
3432 nargs = 0;
3433 exp = expp->get ();
3434
3435 /* Pass one: resolve operands, saving their types and updating *pos,
3436 if needed. */
3437 switch (op)
3438 {
3439 case OP_FUNCALL:
3440 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3441 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3442 *pos += 7;
3443 else
3444 {
3445 *pos += 3;
3446 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3447 }
3448 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3449 break;
3450
3451 case UNOP_ADDR:
3452 *pos += 1;
3453 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3454 break;
3455
3456 case UNOP_QUAL:
3457 *pos += 3;
3458 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3459 parse_completion, tracker);
3460 break;
3461
3462 case OP_ATR_MODULUS:
3463 case OP_ATR_SIZE:
3464 case OP_ATR_TAG:
3465 case OP_ATR_FIRST:
3466 case OP_ATR_LAST:
3467 case OP_ATR_LENGTH:
3468 case OP_ATR_POS:
3469 case OP_ATR_VAL:
3470 case OP_ATR_MIN:
3471 case OP_ATR_MAX:
3472 case TERNOP_IN_RANGE:
3473 case BINOP_IN_BOUNDS:
3474 case UNOP_IN_RANGE:
3475 case OP_AGGREGATE:
3476 case OP_OTHERS:
3477 case OP_CHOICES:
3478 case OP_POSITIONAL:
3479 case OP_DISCRETE_RANGE:
3480 case OP_NAME:
3481 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3482 *pos += oplen;
3483 break;
3484
3485 case BINOP_ASSIGN:
3486 {
3487 struct value *arg1;
3488
3489 *pos += 1;
3490 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3491 if (arg1 == NULL)
3492 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3493 else
3494 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3495 tracker);
3496 break;
3497 }
3498
3499 case UNOP_CAST:
3500 *pos += 3;
3501 nargs = 1;
3502 break;
3503
3504 case BINOP_ADD:
3505 case BINOP_SUB:
3506 case BINOP_MUL:
3507 case BINOP_DIV:
3508 case BINOP_REM:
3509 case BINOP_MOD:
3510 case BINOP_EXP:
3511 case BINOP_CONCAT:
3512 case BINOP_LOGICAL_AND:
3513 case BINOP_LOGICAL_OR:
3514 case BINOP_BITWISE_AND:
3515 case BINOP_BITWISE_IOR:
3516 case BINOP_BITWISE_XOR:
3517
3518 case BINOP_EQUAL:
3519 case BINOP_NOTEQUAL:
3520 case BINOP_LESS:
3521 case BINOP_GTR:
3522 case BINOP_LEQ:
3523 case BINOP_GEQ:
3524
3525 case BINOP_REPEAT:
3526 case BINOP_SUBSCRIPT:
3527 case BINOP_COMMA:
3528 *pos += 1;
3529 nargs = 2;
3530 break;
3531
3532 case UNOP_NEG:
3533 case UNOP_PLUS:
3534 case UNOP_LOGICAL_NOT:
3535 case UNOP_ABS:
3536 case UNOP_IND:
3537 *pos += 1;
3538 nargs = 1;
3539 break;
3540
3541 case OP_LONG:
3542 case OP_FLOAT:
3543 case OP_VAR_VALUE:
3544 case OP_VAR_MSYM_VALUE:
3545 *pos += 4;
3546 break;
3547
3548 case OP_TYPE:
3549 case OP_BOOL:
3550 case OP_LAST:
3551 case OP_INTERNALVAR:
3552 *pos += 3;
3553 break;
3554
3555 case UNOP_MEMVAL:
3556 *pos += 3;
3557 nargs = 1;
3558 break;
3559
3560 case OP_REGISTER:
3561 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3562 break;
3563
3564 case STRUCTOP_STRUCT:
3565 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3566 nargs = 1;
3567 break;
3568
3569 case TERNOP_SLICE:
3570 *pos += 1;
3571 nargs = 3;
3572 break;
3573
3574 case OP_STRING:
3575 break;
3576
3577 default:
3578 error (_("Unexpected operator during name resolution"));
3579 }
3580
3581 argvec = XALLOCAVEC (struct value *, nargs + 1);
3582 for (i = 0; i < nargs; i += 1)
3583 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3584 tracker);
3585 argvec[i] = NULL;
3586 exp = expp->get ();
3587
3588 /* Pass two: perform any resolution on principal operator. */
3589 switch (op)
3590 {
3591 default:
3592 break;
3593
3594 case OP_VAR_VALUE:
3595 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3596 {
3597 std::vector<struct block_symbol> candidates;
3598 int n_candidates;
3599
3600 n_candidates =
3601 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3602 exp->elts[pc + 1].block, VAR_DOMAIN,
3603 &candidates);
3604
3605 if (n_candidates > 1)
3606 {
3607 /* Types tend to get re-introduced locally, so if there
3608 are any local symbols that are not types, first filter
3609 out all types. */
3610 int j;
3611 for (j = 0; j < n_candidates; j += 1)
3612 switch (SYMBOL_CLASS (candidates[j].symbol))
3613 {
3614 case LOC_REGISTER:
3615 case LOC_ARG:
3616 case LOC_REF_ARG:
3617 case LOC_REGPARM_ADDR:
3618 case LOC_LOCAL:
3619 case LOC_COMPUTED:
3620 goto FoundNonType;
3621 default:
3622 break;
3623 }
3624 FoundNonType:
3625 if (j < n_candidates)
3626 {
3627 j = 0;
3628 while (j < n_candidates)
3629 {
3630 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3631 {
3632 candidates[j] = candidates[n_candidates - 1];
3633 n_candidates -= 1;
3634 }
3635 else
3636 j += 1;
3637 }
3638 }
3639 }
3640
3641 if (n_candidates == 0)
3642 error (_("No definition found for %s"),
3643 exp->elts[pc + 2].symbol->print_name ());
3644 else if (n_candidates == 1)
3645 i = 0;
3646 else if (deprocedure_p
3647 && !is_nonfunction (candidates.data (), n_candidates))
3648 {
3649 i = ada_resolve_function
3650 (candidates.data (), n_candidates, NULL, 0,
3651 exp->elts[pc + 2].symbol->linkage_name (),
3652 context_type, parse_completion);
3653 if (i < 0)
3654 error (_("Could not find a match for %s"),
3655 exp->elts[pc + 2].symbol->print_name ());
3656 }
3657 else
3658 {
3659 printf_filtered (_("Multiple matches for %s\n"),
3660 exp->elts[pc + 2].symbol->print_name ());
3661 user_select_syms (candidates.data (), n_candidates, 1);
3662 i = 0;
3663 }
3664
3665 exp->elts[pc + 1].block = candidates[i].block;
3666 exp->elts[pc + 2].symbol = candidates[i].symbol;
3667 tracker->update (candidates[i]);
3668 }
3669
3670 if (deprocedure_p
3671 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3672 == TYPE_CODE_FUNC))
3673 {
3674 replace_operator_with_call (expp, pc, 0, 4,
3675 exp->elts[pc + 2].symbol,
3676 exp->elts[pc + 1].block);
3677 exp = expp->get ();
3678 }
3679 break;
3680
3681 case OP_FUNCALL:
3682 {
3683 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3684 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3685 {
3686 std::vector<struct block_symbol> candidates;
3687 int n_candidates;
3688
3689 n_candidates =
3690 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3691 exp->elts[pc + 4].block, VAR_DOMAIN,
3692 &candidates);
3693
3694 if (n_candidates == 1)
3695 i = 0;
3696 else
3697 {
3698 i = ada_resolve_function
3699 (candidates.data (), n_candidates,
3700 argvec, nargs,
3701 exp->elts[pc + 5].symbol->linkage_name (),
3702 context_type, parse_completion);
3703 if (i < 0)
3704 error (_("Could not find a match for %s"),
3705 exp->elts[pc + 5].symbol->print_name ());
3706 }
3707
3708 exp->elts[pc + 4].block = candidates[i].block;
3709 exp->elts[pc + 5].symbol = candidates[i].symbol;
3710 tracker->update (candidates[i]);
3711 }
3712 }
3713 break;
3714 case BINOP_ADD:
3715 case BINOP_SUB:
3716 case BINOP_MUL:
3717 case BINOP_DIV:
3718 case BINOP_REM:
3719 case BINOP_MOD:
3720 case BINOP_CONCAT:
3721 case BINOP_BITWISE_AND:
3722 case BINOP_BITWISE_IOR:
3723 case BINOP_BITWISE_XOR:
3724 case BINOP_EQUAL:
3725 case BINOP_NOTEQUAL:
3726 case BINOP_LESS:
3727 case BINOP_GTR:
3728 case BINOP_LEQ:
3729 case BINOP_GEQ:
3730 case BINOP_EXP:
3731 case UNOP_NEG:
3732 case UNOP_PLUS:
3733 case UNOP_LOGICAL_NOT:
3734 case UNOP_ABS:
3735 if (possible_user_operator_p (op, argvec))
3736 {
3737 std::vector<struct block_symbol> candidates;
3738 int n_candidates;
3739
3740 n_candidates =
3741 ada_lookup_symbol_list (ada_decoded_op_name (op),
3742 NULL, VAR_DOMAIN,
3743 &candidates);
3744
3745 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3746 nargs, ada_decoded_op_name (op), NULL,
3747 parse_completion);
3748 if (i < 0)
3749 break;
3750
3751 replace_operator_with_call (expp, pc, nargs, 1,
3752 candidates[i].symbol,
3753 candidates[i].block);
3754 exp = expp->get ();
3755 }
3756 break;
3757
3758 case OP_TYPE:
3759 case OP_REGISTER:
3760 return NULL;
3761 }
3762
3763 *pos = pc;
3764 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3765 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3766 exp->elts[pc + 1].objfile,
3767 exp->elts[pc + 2].msymbol);
3768 else
3769 return evaluate_subexp_type (exp, pos);
3770 }
3771
3772 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3773 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3774 a non-pointer. */
3775 /* The term "match" here is rather loose. The match is heuristic and
3776 liberal. */
3777
3778 static int
3779 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3780 {
3781 ftype = ada_check_typedef (ftype);
3782 atype = ada_check_typedef (atype);
3783
3784 if (ftype->code () == TYPE_CODE_REF)
3785 ftype = TYPE_TARGET_TYPE (ftype);
3786 if (atype->code () == TYPE_CODE_REF)
3787 atype = TYPE_TARGET_TYPE (atype);
3788
3789 switch (ftype->code ())
3790 {
3791 default:
3792 return ftype->code () == atype->code ();
3793 case TYPE_CODE_PTR:
3794 if (atype->code () == TYPE_CODE_PTR)
3795 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3796 TYPE_TARGET_TYPE (atype), 0);
3797 else
3798 return (may_deref
3799 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3800 case TYPE_CODE_INT:
3801 case TYPE_CODE_ENUM:
3802 case TYPE_CODE_RANGE:
3803 switch (atype->code ())
3804 {
3805 case TYPE_CODE_INT:
3806 case TYPE_CODE_ENUM:
3807 case TYPE_CODE_RANGE:
3808 return 1;
3809 default:
3810 return 0;
3811 }
3812
3813 case TYPE_CODE_ARRAY:
3814 return (atype->code () == TYPE_CODE_ARRAY
3815 || ada_is_array_descriptor_type (atype));
3816
3817 case TYPE_CODE_STRUCT:
3818 if (ada_is_array_descriptor_type (ftype))
3819 return (atype->code () == TYPE_CODE_ARRAY
3820 || ada_is_array_descriptor_type (atype));
3821 else
3822 return (atype->code () == TYPE_CODE_STRUCT
3823 && !ada_is_array_descriptor_type (atype));
3824
3825 case TYPE_CODE_UNION:
3826 case TYPE_CODE_FLT:
3827 return (atype->code () == ftype->code ());
3828 }
3829 }
3830
3831 /* Return non-zero if the formals of FUNC "sufficiently match" the
3832 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3833 may also be an enumeral, in which case it is treated as a 0-
3834 argument function. */
3835
3836 static int
3837 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3838 {
3839 int i;
3840 struct type *func_type = SYMBOL_TYPE (func);
3841
3842 if (SYMBOL_CLASS (func) == LOC_CONST
3843 && func_type->code () == TYPE_CODE_ENUM)
3844 return (n_actuals == 0);
3845 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3846 return 0;
3847
3848 if (func_type->num_fields () != n_actuals)
3849 return 0;
3850
3851 for (i = 0; i < n_actuals; i += 1)
3852 {
3853 if (actuals[i] == NULL)
3854 return 0;
3855 else
3856 {
3857 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3858 i));
3859 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3860
3861 if (!ada_type_match (ftype, atype, 1))
3862 return 0;
3863 }
3864 }
3865 return 1;
3866 }
3867
3868 /* False iff function type FUNC_TYPE definitely does not produce a value
3869 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3870 FUNC_TYPE is not a valid function type with a non-null return type
3871 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3872
3873 static int
3874 return_match (struct type *func_type, struct type *context_type)
3875 {
3876 struct type *return_type;
3877
3878 if (func_type == NULL)
3879 return 1;
3880
3881 if (func_type->code () == TYPE_CODE_FUNC)
3882 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3883 else
3884 return_type = get_base_type (func_type);
3885 if (return_type == NULL)
3886 return 1;
3887
3888 context_type = get_base_type (context_type);
3889
3890 if (return_type->code () == TYPE_CODE_ENUM)
3891 return context_type == NULL || return_type == context_type;
3892 else if (context_type == NULL)
3893 return return_type->code () != TYPE_CODE_VOID;
3894 else
3895 return return_type->code () == context_type->code ();
3896 }
3897
3898
3899 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3900 function (if any) that matches the types of the NARGS arguments in
3901 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3902 that returns that type, then eliminate matches that don't. If
3903 CONTEXT_TYPE is void and there is at least one match that does not
3904 return void, eliminate all matches that do.
3905
3906 Asks the user if there is more than one match remaining. Returns -1
3907 if there is no such symbol or none is selected. NAME is used
3908 solely for messages. May re-arrange and modify SYMS in
3909 the process; the index returned is for the modified vector. */
3910
3911 static int
3912 ada_resolve_function (struct block_symbol syms[],
3913 int nsyms, struct value **args, int nargs,
3914 const char *name, struct type *context_type,
3915 int parse_completion)
3916 {
3917 int fallback;
3918 int k;
3919 int m; /* Number of hits */
3920
3921 m = 0;
3922 /* In the first pass of the loop, we only accept functions matching
3923 context_type. If none are found, we add a second pass of the loop
3924 where every function is accepted. */
3925 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3926 {
3927 for (k = 0; k < nsyms; k += 1)
3928 {
3929 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3930
3931 if (ada_args_match (syms[k].symbol, args, nargs)
3932 && (fallback || return_match (type, context_type)))
3933 {
3934 syms[m] = syms[k];
3935 m += 1;
3936 }
3937 }
3938 }
3939
3940 /* If we got multiple matches, ask the user which one to use. Don't do this
3941 interactive thing during completion, though, as the purpose of the
3942 completion is providing a list of all possible matches. Prompting the
3943 user to filter it down would be completely unexpected in this case. */
3944 if (m == 0)
3945 return -1;
3946 else if (m > 1 && !parse_completion)
3947 {
3948 printf_filtered (_("Multiple matches for %s\n"), name);
3949 user_select_syms (syms, m, 1);
3950 return 0;
3951 }
3952 return 0;
3953 }
3954
3955 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3956 on the function identified by SYM and BLOCK, and taking NARGS
3957 arguments. Update *EXPP as needed to hold more space. */
3958
3959 static void
3960 replace_operator_with_call (expression_up *expp, int pc, int nargs,
3961 int oplen, struct symbol *sym,
3962 const struct block *block)
3963 {
3964 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3965 symbol, -oplen for operator being replaced). */
3966 struct expression *newexp = (struct expression *)
3967 xzalloc (sizeof (struct expression)
3968 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3969 struct expression *exp = expp->get ();
3970
3971 newexp->nelts = exp->nelts + 7 - oplen;
3972 newexp->language_defn = exp->language_defn;
3973 newexp->gdbarch = exp->gdbarch;
3974 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3975 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3976 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3977
3978 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3979 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3980
3981 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3982 newexp->elts[pc + 4].block = block;
3983 newexp->elts[pc + 5].symbol = sym;
3984
3985 expp->reset (newexp);
3986 }
3987
3988 /* Type-class predicates */
3989
3990 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3991 or FLOAT). */
3992
3993 static int
3994 numeric_type_p (struct type *type)
3995 {
3996 if (type == NULL)
3997 return 0;
3998 else
3999 {
4000 switch (type->code ())
4001 {
4002 case TYPE_CODE_INT:
4003 case TYPE_CODE_FLT:
4004 return 1;
4005 case TYPE_CODE_RANGE:
4006 return (type == TYPE_TARGET_TYPE (type)
4007 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4008 default:
4009 return 0;
4010 }
4011 }
4012 }
4013
4014 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4015
4016 static int
4017 integer_type_p (struct type *type)
4018 {
4019 if (type == NULL)
4020 return 0;
4021 else
4022 {
4023 switch (type->code ())
4024 {
4025 case TYPE_CODE_INT:
4026 return 1;
4027 case TYPE_CODE_RANGE:
4028 return (type == TYPE_TARGET_TYPE (type)
4029 || integer_type_p (TYPE_TARGET_TYPE (type)));
4030 default:
4031 return 0;
4032 }
4033 }
4034 }
4035
4036 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4037
4038 static int
4039 scalar_type_p (struct type *type)
4040 {
4041 if (type == NULL)
4042 return 0;
4043 else
4044 {
4045 switch (type->code ())
4046 {
4047 case TYPE_CODE_INT:
4048 case TYPE_CODE_RANGE:
4049 case TYPE_CODE_ENUM:
4050 case TYPE_CODE_FLT:
4051 return 1;
4052 default:
4053 return 0;
4054 }
4055 }
4056 }
4057
4058 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4059
4060 static int
4061 discrete_type_p (struct type *type)
4062 {
4063 if (type == NULL)
4064 return 0;
4065 else
4066 {
4067 switch (type->code ())
4068 {
4069 case TYPE_CODE_INT:
4070 case TYPE_CODE_RANGE:
4071 case TYPE_CODE_ENUM:
4072 case TYPE_CODE_BOOL:
4073 return 1;
4074 default:
4075 return 0;
4076 }
4077 }
4078 }
4079
4080 /* Returns non-zero if OP with operands in the vector ARGS could be
4081 a user-defined function. Errs on the side of pre-defined operators
4082 (i.e., result 0). */
4083
4084 static int
4085 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4086 {
4087 struct type *type0 =
4088 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4089 struct type *type1 =
4090 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4091
4092 if (type0 == NULL)
4093 return 0;
4094
4095 switch (op)
4096 {
4097 default:
4098 return 0;
4099
4100 case BINOP_ADD:
4101 case BINOP_SUB:
4102 case BINOP_MUL:
4103 case BINOP_DIV:
4104 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4105
4106 case BINOP_REM:
4107 case BINOP_MOD:
4108 case BINOP_BITWISE_AND:
4109 case BINOP_BITWISE_IOR:
4110 case BINOP_BITWISE_XOR:
4111 return (!(integer_type_p (type0) && integer_type_p (type1)));
4112
4113 case BINOP_EQUAL:
4114 case BINOP_NOTEQUAL:
4115 case BINOP_LESS:
4116 case BINOP_GTR:
4117 case BINOP_LEQ:
4118 case BINOP_GEQ:
4119 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4120
4121 case BINOP_CONCAT:
4122 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4123
4124 case BINOP_EXP:
4125 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4126
4127 case UNOP_NEG:
4128 case UNOP_PLUS:
4129 case UNOP_LOGICAL_NOT:
4130 case UNOP_ABS:
4131 return (!numeric_type_p (type0));
4132
4133 }
4134 }
4135 \f
4136 /* Renaming */
4137
4138 /* NOTES:
4139
4140 1. In the following, we assume that a renaming type's name may
4141 have an ___XD suffix. It would be nice if this went away at some
4142 point.
4143 2. We handle both the (old) purely type-based representation of
4144 renamings and the (new) variable-based encoding. At some point,
4145 it is devoutly to be hoped that the former goes away
4146 (FIXME: hilfinger-2007-07-09).
4147 3. Subprogram renamings are not implemented, although the XRS
4148 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4149
4150 /* If SYM encodes a renaming,
4151
4152 <renaming> renames <renamed entity>,
4153
4154 sets *LEN to the length of the renamed entity's name,
4155 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4156 the string describing the subcomponent selected from the renamed
4157 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4158 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4159 are undefined). Otherwise, returns a value indicating the category
4160 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4161 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4162 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4163 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4164 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4165 may be NULL, in which case they are not assigned.
4166
4167 [Currently, however, GCC does not generate subprogram renamings.] */
4168
4169 enum ada_renaming_category
4170 ada_parse_renaming (struct symbol *sym,
4171 const char **renamed_entity, int *len,
4172 const char **renaming_expr)
4173 {
4174 enum ada_renaming_category kind;
4175 const char *info;
4176 const char *suffix;
4177
4178 if (sym == NULL)
4179 return ADA_NOT_RENAMING;
4180 switch (SYMBOL_CLASS (sym))
4181 {
4182 default:
4183 return ADA_NOT_RENAMING;
4184 case LOC_LOCAL:
4185 case LOC_STATIC:
4186 case LOC_COMPUTED:
4187 case LOC_OPTIMIZED_OUT:
4188 info = strstr (sym->linkage_name (), "___XR");
4189 if (info == NULL)
4190 return ADA_NOT_RENAMING;
4191 switch (info[5])
4192 {
4193 case '_':
4194 kind = ADA_OBJECT_RENAMING;
4195 info += 6;
4196 break;
4197 case 'E':
4198 kind = ADA_EXCEPTION_RENAMING;
4199 info += 7;
4200 break;
4201 case 'P':
4202 kind = ADA_PACKAGE_RENAMING;
4203 info += 7;
4204 break;
4205 case 'S':
4206 kind = ADA_SUBPROGRAM_RENAMING;
4207 info += 7;
4208 break;
4209 default:
4210 return ADA_NOT_RENAMING;
4211 }
4212 }
4213
4214 if (renamed_entity != NULL)
4215 *renamed_entity = info;
4216 suffix = strstr (info, "___XE");
4217 if (suffix == NULL || suffix == info)
4218 return ADA_NOT_RENAMING;
4219 if (len != NULL)
4220 *len = strlen (info) - strlen (suffix);
4221 suffix += 5;
4222 if (renaming_expr != NULL)
4223 *renaming_expr = suffix;
4224 return kind;
4225 }
4226
4227 /* Compute the value of the given RENAMING_SYM, which is expected to
4228 be a symbol encoding a renaming expression. BLOCK is the block
4229 used to evaluate the renaming. */
4230
4231 static struct value *
4232 ada_read_renaming_var_value (struct symbol *renaming_sym,
4233 const struct block *block)
4234 {
4235 const char *sym_name;
4236
4237 sym_name = renaming_sym->linkage_name ();
4238 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4239 return evaluate_expression (expr.get ());
4240 }
4241 \f
4242
4243 /* Evaluation: Function Calls */
4244
4245 /* Return an lvalue containing the value VAL. This is the identity on
4246 lvalues, and otherwise has the side-effect of allocating memory
4247 in the inferior where a copy of the value contents is copied. */
4248
4249 static struct value *
4250 ensure_lval (struct value *val)
4251 {
4252 if (VALUE_LVAL (val) == not_lval
4253 || VALUE_LVAL (val) == lval_internalvar)
4254 {
4255 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4256 const CORE_ADDR addr =
4257 value_as_long (value_allocate_space_in_inferior (len));
4258
4259 VALUE_LVAL (val) = lval_memory;
4260 set_value_address (val, addr);
4261 write_memory (addr, value_contents (val), len);
4262 }
4263
4264 return val;
4265 }
4266
4267 /* Given ARG, a value of type (pointer or reference to a)*
4268 structure/union, extract the component named NAME from the ultimate
4269 target structure/union and return it as a value with its
4270 appropriate type.
4271
4272 The routine searches for NAME among all members of the structure itself
4273 and (recursively) among all members of any wrapper members
4274 (e.g., '_parent').
4275
4276 If NO_ERR, then simply return NULL in case of error, rather than
4277 calling error. */
4278
4279 static struct value *
4280 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4281 {
4282 struct type *t, *t1;
4283 struct value *v;
4284 int check_tag;
4285
4286 v = NULL;
4287 t1 = t = ada_check_typedef (value_type (arg));
4288 if (t->code () == TYPE_CODE_REF)
4289 {
4290 t1 = TYPE_TARGET_TYPE (t);
4291 if (t1 == NULL)
4292 goto BadValue;
4293 t1 = ada_check_typedef (t1);
4294 if (t1->code () == TYPE_CODE_PTR)
4295 {
4296 arg = coerce_ref (arg);
4297 t = t1;
4298 }
4299 }
4300
4301 while (t->code () == TYPE_CODE_PTR)
4302 {
4303 t1 = TYPE_TARGET_TYPE (t);
4304 if (t1 == NULL)
4305 goto BadValue;
4306 t1 = ada_check_typedef (t1);
4307 if (t1->code () == TYPE_CODE_PTR)
4308 {
4309 arg = value_ind (arg);
4310 t = t1;
4311 }
4312 else
4313 break;
4314 }
4315
4316 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4317 goto BadValue;
4318
4319 if (t1 == t)
4320 v = ada_search_struct_field (name, arg, 0, t);
4321 else
4322 {
4323 int bit_offset, bit_size, byte_offset;
4324 struct type *field_type;
4325 CORE_ADDR address;
4326
4327 if (t->code () == TYPE_CODE_PTR)
4328 address = value_address (ada_value_ind (arg));
4329 else
4330 address = value_address (ada_coerce_ref (arg));
4331
4332 /* Check to see if this is a tagged type. We also need to handle
4333 the case where the type is a reference to a tagged type, but
4334 we have to be careful to exclude pointers to tagged types.
4335 The latter should be shown as usual (as a pointer), whereas
4336 a reference should mostly be transparent to the user. */
4337
4338 if (ada_is_tagged_type (t1, 0)
4339 || (t1->code () == TYPE_CODE_REF
4340 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4341 {
4342 /* We first try to find the searched field in the current type.
4343 If not found then let's look in the fixed type. */
4344
4345 if (!find_struct_field (name, t1, 0,
4346 &field_type, &byte_offset, &bit_offset,
4347 &bit_size, NULL))
4348 check_tag = 1;
4349 else
4350 check_tag = 0;
4351 }
4352 else
4353 check_tag = 0;
4354
4355 /* Convert to fixed type in all cases, so that we have proper
4356 offsets to each field in unconstrained record types. */
4357 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4358 address, NULL, check_tag);
4359
4360 if (find_struct_field (name, t1, 0,
4361 &field_type, &byte_offset, &bit_offset,
4362 &bit_size, NULL))
4363 {
4364 if (bit_size != 0)
4365 {
4366 if (t->code () == TYPE_CODE_REF)
4367 arg = ada_coerce_ref (arg);
4368 else
4369 arg = ada_value_ind (arg);
4370 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4371 bit_offset, bit_size,
4372 field_type);
4373 }
4374 else
4375 v = value_at_lazy (field_type, address + byte_offset);
4376 }
4377 }
4378
4379 if (v != NULL || no_err)
4380 return v;
4381 else
4382 error (_("There is no member named %s."), name);
4383
4384 BadValue:
4385 if (no_err)
4386 return NULL;
4387 else
4388 error (_("Attempt to extract a component of "
4389 "a value that is not a record."));
4390 }
4391
4392 /* Return the value ACTUAL, converted to be an appropriate value for a
4393 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4394 allocating any necessary descriptors (fat pointers), or copies of
4395 values not residing in memory, updating it as needed. */
4396
4397 struct value *
4398 ada_convert_actual (struct value *actual, struct type *formal_type0)
4399 {
4400 struct type *actual_type = ada_check_typedef (value_type (actual));
4401 struct type *formal_type = ada_check_typedef (formal_type0);
4402 struct type *formal_target =
4403 formal_type->code () == TYPE_CODE_PTR
4404 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4405 struct type *actual_target =
4406 actual_type->code () == TYPE_CODE_PTR
4407 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4408
4409 if (ada_is_array_descriptor_type (formal_target)
4410 && actual_target->code () == TYPE_CODE_ARRAY)
4411 return make_array_descriptor (formal_type, actual);
4412 else if (formal_type->code () == TYPE_CODE_PTR
4413 || formal_type->code () == TYPE_CODE_REF)
4414 {
4415 struct value *result;
4416
4417 if (formal_target->code () == TYPE_CODE_ARRAY
4418 && ada_is_array_descriptor_type (actual_target))
4419 result = desc_data (actual);
4420 else if (formal_type->code () != TYPE_CODE_PTR)
4421 {
4422 if (VALUE_LVAL (actual) != lval_memory)
4423 {
4424 struct value *val;
4425
4426 actual_type = ada_check_typedef (value_type (actual));
4427 val = allocate_value (actual_type);
4428 memcpy ((char *) value_contents_raw (val),
4429 (char *) value_contents (actual),
4430 TYPE_LENGTH (actual_type));
4431 actual = ensure_lval (val);
4432 }
4433 result = value_addr (actual);
4434 }
4435 else
4436 return actual;
4437 return value_cast_pointers (formal_type, result, 0);
4438 }
4439 else if (actual_type->code () == TYPE_CODE_PTR)
4440 return ada_value_ind (actual);
4441 else if (ada_is_aligner_type (formal_type))
4442 {
4443 /* We need to turn this parameter into an aligner type
4444 as well. */
4445 struct value *aligner = allocate_value (formal_type);
4446 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4447
4448 value_assign_to_component (aligner, component, actual);
4449 return aligner;
4450 }
4451
4452 return actual;
4453 }
4454
4455 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4456 type TYPE. This is usually an inefficient no-op except on some targets
4457 (such as AVR) where the representation of a pointer and an address
4458 differs. */
4459
4460 static CORE_ADDR
4461 value_pointer (struct value *value, struct type *type)
4462 {
4463 struct gdbarch *gdbarch = get_type_arch (type);
4464 unsigned len = TYPE_LENGTH (type);
4465 gdb_byte *buf = (gdb_byte *) alloca (len);
4466 CORE_ADDR addr;
4467
4468 addr = value_address (value);
4469 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4470 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4471 return addr;
4472 }
4473
4474
4475 /* Push a descriptor of type TYPE for array value ARR on the stack at
4476 *SP, updating *SP to reflect the new descriptor. Return either
4477 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4478 to-descriptor type rather than a descriptor type), a struct value *
4479 representing a pointer to this descriptor. */
4480
4481 static struct value *
4482 make_array_descriptor (struct type *type, struct value *arr)
4483 {
4484 struct type *bounds_type = desc_bounds_type (type);
4485 struct type *desc_type = desc_base_type (type);
4486 struct value *descriptor = allocate_value (desc_type);
4487 struct value *bounds = allocate_value (bounds_type);
4488 int i;
4489
4490 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4491 i > 0; i -= 1)
4492 {
4493 modify_field (value_type (bounds), value_contents_writeable (bounds),
4494 ada_array_bound (arr, i, 0),
4495 desc_bound_bitpos (bounds_type, i, 0),
4496 desc_bound_bitsize (bounds_type, i, 0));
4497 modify_field (value_type (bounds), value_contents_writeable (bounds),
4498 ada_array_bound (arr, i, 1),
4499 desc_bound_bitpos (bounds_type, i, 1),
4500 desc_bound_bitsize (bounds_type, i, 1));
4501 }
4502
4503 bounds = ensure_lval (bounds);
4504
4505 modify_field (value_type (descriptor),
4506 value_contents_writeable (descriptor),
4507 value_pointer (ensure_lval (arr),
4508 TYPE_FIELD_TYPE (desc_type, 0)),
4509 fat_pntr_data_bitpos (desc_type),
4510 fat_pntr_data_bitsize (desc_type));
4511
4512 modify_field (value_type (descriptor),
4513 value_contents_writeable (descriptor),
4514 value_pointer (bounds,
4515 TYPE_FIELD_TYPE (desc_type, 1)),
4516 fat_pntr_bounds_bitpos (desc_type),
4517 fat_pntr_bounds_bitsize (desc_type));
4518
4519 descriptor = ensure_lval (descriptor);
4520
4521 if (type->code () == TYPE_CODE_PTR)
4522 return value_addr (descriptor);
4523 else
4524 return descriptor;
4525 }
4526 \f
4527 /* Symbol Cache Module */
4528
4529 /* Performance measurements made as of 2010-01-15 indicate that
4530 this cache does bring some noticeable improvements. Depending
4531 on the type of entity being printed, the cache can make it as much
4532 as an order of magnitude faster than without it.
4533
4534 The descriptive type DWARF extension has significantly reduced
4535 the need for this cache, at least when DWARF is being used. However,
4536 even in this case, some expensive name-based symbol searches are still
4537 sometimes necessary - to find an XVZ variable, mostly. */
4538
4539 /* Initialize the contents of SYM_CACHE. */
4540
4541 static void
4542 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4543 {
4544 obstack_init (&sym_cache->cache_space);
4545 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4546 }
4547
4548 /* Free the memory used by SYM_CACHE. */
4549
4550 static void
4551 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4552 {
4553 obstack_free (&sym_cache->cache_space, NULL);
4554 xfree (sym_cache);
4555 }
4556
4557 /* Return the symbol cache associated to the given program space PSPACE.
4558 If not allocated for this PSPACE yet, allocate and initialize one. */
4559
4560 static struct ada_symbol_cache *
4561 ada_get_symbol_cache (struct program_space *pspace)
4562 {
4563 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4564
4565 if (pspace_data->sym_cache == NULL)
4566 {
4567 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4568 ada_init_symbol_cache (pspace_data->sym_cache);
4569 }
4570
4571 return pspace_data->sym_cache;
4572 }
4573
4574 /* Clear all entries from the symbol cache. */
4575
4576 static void
4577 ada_clear_symbol_cache (void)
4578 {
4579 struct ada_symbol_cache *sym_cache
4580 = ada_get_symbol_cache (current_program_space);
4581
4582 obstack_free (&sym_cache->cache_space, NULL);
4583 ada_init_symbol_cache (sym_cache);
4584 }
4585
4586 /* Search our cache for an entry matching NAME and DOMAIN.
4587 Return it if found, or NULL otherwise. */
4588
4589 static struct cache_entry **
4590 find_entry (const char *name, domain_enum domain)
4591 {
4592 struct ada_symbol_cache *sym_cache
4593 = ada_get_symbol_cache (current_program_space);
4594 int h = msymbol_hash (name) % HASH_SIZE;
4595 struct cache_entry **e;
4596
4597 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4598 {
4599 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4600 return e;
4601 }
4602 return NULL;
4603 }
4604
4605 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4606 Return 1 if found, 0 otherwise.
4607
4608 If an entry was found and SYM is not NULL, set *SYM to the entry's
4609 SYM. Same principle for BLOCK if not NULL. */
4610
4611 static int
4612 lookup_cached_symbol (const char *name, domain_enum domain,
4613 struct symbol **sym, const struct block **block)
4614 {
4615 struct cache_entry **e = find_entry (name, domain);
4616
4617 if (e == NULL)
4618 return 0;
4619 if (sym != NULL)
4620 *sym = (*e)->sym;
4621 if (block != NULL)
4622 *block = (*e)->block;
4623 return 1;
4624 }
4625
4626 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4627 in domain DOMAIN, save this result in our symbol cache. */
4628
4629 static void
4630 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4631 const struct block *block)
4632 {
4633 struct ada_symbol_cache *sym_cache
4634 = ada_get_symbol_cache (current_program_space);
4635 int h;
4636 struct cache_entry *e;
4637
4638 /* Symbols for builtin types don't have a block.
4639 For now don't cache such symbols. */
4640 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4641 return;
4642
4643 /* If the symbol is a local symbol, then do not cache it, as a search
4644 for that symbol depends on the context. To determine whether
4645 the symbol is local or not, we check the block where we found it
4646 against the global and static blocks of its associated symtab. */
4647 if (sym
4648 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4649 GLOBAL_BLOCK) != block
4650 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4651 STATIC_BLOCK) != block)
4652 return;
4653
4654 h = msymbol_hash (name) % HASH_SIZE;
4655 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4656 e->next = sym_cache->root[h];
4657 sym_cache->root[h] = e;
4658 e->name = obstack_strdup (&sym_cache->cache_space, name);
4659 e->sym = sym;
4660 e->domain = domain;
4661 e->block = block;
4662 }
4663 \f
4664 /* Symbol Lookup */
4665
4666 /* Return the symbol name match type that should be used used when
4667 searching for all symbols matching LOOKUP_NAME.
4668
4669 LOOKUP_NAME is expected to be a symbol name after transformation
4670 for Ada lookups. */
4671
4672 static symbol_name_match_type
4673 name_match_type_from_name (const char *lookup_name)
4674 {
4675 return (strstr (lookup_name, "__") == NULL
4676 ? symbol_name_match_type::WILD
4677 : symbol_name_match_type::FULL);
4678 }
4679
4680 /* Return the result of a standard (literal, C-like) lookup of NAME in
4681 given DOMAIN, visible from lexical block BLOCK. */
4682
4683 static struct symbol *
4684 standard_lookup (const char *name, const struct block *block,
4685 domain_enum domain)
4686 {
4687 /* Initialize it just to avoid a GCC false warning. */
4688 struct block_symbol sym = {};
4689
4690 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4691 return sym.symbol;
4692 ada_lookup_encoded_symbol (name, block, domain, &sym);
4693 cache_symbol (name, domain, sym.symbol, sym.block);
4694 return sym.symbol;
4695 }
4696
4697
4698 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4699 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4700 since they contend in overloading in the same way. */
4701 static int
4702 is_nonfunction (struct block_symbol syms[], int n)
4703 {
4704 int i;
4705
4706 for (i = 0; i < n; i += 1)
4707 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4708 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4709 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4710 return 1;
4711
4712 return 0;
4713 }
4714
4715 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4716 struct types. Otherwise, they may not. */
4717
4718 static int
4719 equiv_types (struct type *type0, struct type *type1)
4720 {
4721 if (type0 == type1)
4722 return 1;
4723 if (type0 == NULL || type1 == NULL
4724 || type0->code () != type1->code ())
4725 return 0;
4726 if ((type0->code () == TYPE_CODE_STRUCT
4727 || type0->code () == TYPE_CODE_ENUM)
4728 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4729 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4730 return 1;
4731
4732 return 0;
4733 }
4734
4735 /* True iff SYM0 represents the same entity as SYM1, or one that is
4736 no more defined than that of SYM1. */
4737
4738 static int
4739 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4740 {
4741 if (sym0 == sym1)
4742 return 1;
4743 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4744 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4745 return 0;
4746
4747 switch (SYMBOL_CLASS (sym0))
4748 {
4749 case LOC_UNDEF:
4750 return 1;
4751 case LOC_TYPEDEF:
4752 {
4753 struct type *type0 = SYMBOL_TYPE (sym0);
4754 struct type *type1 = SYMBOL_TYPE (sym1);
4755 const char *name0 = sym0->linkage_name ();
4756 const char *name1 = sym1->linkage_name ();
4757 int len0 = strlen (name0);
4758
4759 return
4760 type0->code () == type1->code ()
4761 && (equiv_types (type0, type1)
4762 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4763 && startswith (name1 + len0, "___XV")));
4764 }
4765 case LOC_CONST:
4766 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4767 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4768
4769 case LOC_STATIC:
4770 {
4771 const char *name0 = sym0->linkage_name ();
4772 const char *name1 = sym1->linkage_name ();
4773 return (strcmp (name0, name1) == 0
4774 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4775 }
4776
4777 default:
4778 return 0;
4779 }
4780 }
4781
4782 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4783 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4784
4785 static void
4786 add_defn_to_vec (struct obstack *obstackp,
4787 struct symbol *sym,
4788 const struct block *block)
4789 {
4790 int i;
4791 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4792
4793 /* Do not try to complete stub types, as the debugger is probably
4794 already scanning all symbols matching a certain name at the
4795 time when this function is called. Trying to replace the stub
4796 type by its associated full type will cause us to restart a scan
4797 which may lead to an infinite recursion. Instead, the client
4798 collecting the matching symbols will end up collecting several
4799 matches, with at least one of them complete. It can then filter
4800 out the stub ones if needed. */
4801
4802 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4803 {
4804 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4805 return;
4806 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4807 {
4808 prevDefns[i].symbol = sym;
4809 prevDefns[i].block = block;
4810 return;
4811 }
4812 }
4813
4814 {
4815 struct block_symbol info;
4816
4817 info.symbol = sym;
4818 info.block = block;
4819 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4820 }
4821 }
4822
4823 /* Number of block_symbol structures currently collected in current vector in
4824 OBSTACKP. */
4825
4826 static int
4827 num_defns_collected (struct obstack *obstackp)
4828 {
4829 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4830 }
4831
4832 /* Vector of block_symbol structures currently collected in current vector in
4833 OBSTACKP. If FINISH, close off the vector and return its final address. */
4834
4835 static struct block_symbol *
4836 defns_collected (struct obstack *obstackp, int finish)
4837 {
4838 if (finish)
4839 return (struct block_symbol *) obstack_finish (obstackp);
4840 else
4841 return (struct block_symbol *) obstack_base (obstackp);
4842 }
4843
4844 /* Return a bound minimal symbol matching NAME according to Ada
4845 decoding rules. Returns an invalid symbol if there is no such
4846 minimal symbol. Names prefixed with "standard__" are handled
4847 specially: "standard__" is first stripped off, and only static and
4848 global symbols are searched. */
4849
4850 struct bound_minimal_symbol
4851 ada_lookup_simple_minsym (const char *name)
4852 {
4853 struct bound_minimal_symbol result;
4854
4855 memset (&result, 0, sizeof (result));
4856
4857 symbol_name_match_type match_type = name_match_type_from_name (name);
4858 lookup_name_info lookup_name (name, match_type);
4859
4860 symbol_name_matcher_ftype *match_name
4861 = ada_get_symbol_name_matcher (lookup_name);
4862
4863 for (objfile *objfile : current_program_space->objfiles ())
4864 {
4865 for (minimal_symbol *msymbol : objfile->msymbols ())
4866 {
4867 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4868 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4869 {
4870 result.minsym = msymbol;
4871 result.objfile = objfile;
4872 break;
4873 }
4874 }
4875 }
4876
4877 return result;
4878 }
4879
4880 /* For all subprograms that statically enclose the subprogram of the
4881 selected frame, add symbols matching identifier NAME in DOMAIN
4882 and their blocks to the list of data in OBSTACKP, as for
4883 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4884 with a wildcard prefix. */
4885
4886 static void
4887 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4888 const lookup_name_info &lookup_name,
4889 domain_enum domain)
4890 {
4891 }
4892
4893 /* True if TYPE is definitely an artificial type supplied to a symbol
4894 for which no debugging information was given in the symbol file. */
4895
4896 static int
4897 is_nondebugging_type (struct type *type)
4898 {
4899 const char *name = ada_type_name (type);
4900
4901 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4902 }
4903
4904 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4905 that are deemed "identical" for practical purposes.
4906
4907 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4908 types and that their number of enumerals is identical (in other
4909 words, type1->num_fields () == type2->num_fields ()). */
4910
4911 static int
4912 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4913 {
4914 int i;
4915
4916 /* The heuristic we use here is fairly conservative. We consider
4917 that 2 enumerate types are identical if they have the same
4918 number of enumerals and that all enumerals have the same
4919 underlying value and name. */
4920
4921 /* All enums in the type should have an identical underlying value. */
4922 for (i = 0; i < type1->num_fields (); i++)
4923 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4924 return 0;
4925
4926 /* All enumerals should also have the same name (modulo any numerical
4927 suffix). */
4928 for (i = 0; i < type1->num_fields (); i++)
4929 {
4930 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4931 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4932 int len_1 = strlen (name_1);
4933 int len_2 = strlen (name_2);
4934
4935 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4936 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4937 if (len_1 != len_2
4938 || strncmp (TYPE_FIELD_NAME (type1, i),
4939 TYPE_FIELD_NAME (type2, i),
4940 len_1) != 0)
4941 return 0;
4942 }
4943
4944 return 1;
4945 }
4946
4947 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4948 that are deemed "identical" for practical purposes. Sometimes,
4949 enumerals are not strictly identical, but their types are so similar
4950 that they can be considered identical.
4951
4952 For instance, consider the following code:
4953
4954 type Color is (Black, Red, Green, Blue, White);
4955 type RGB_Color is new Color range Red .. Blue;
4956
4957 Type RGB_Color is a subrange of an implicit type which is a copy
4958 of type Color. If we call that implicit type RGB_ColorB ("B" is
4959 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4960 As a result, when an expression references any of the enumeral
4961 by name (Eg. "print green"), the expression is technically
4962 ambiguous and the user should be asked to disambiguate. But
4963 doing so would only hinder the user, since it wouldn't matter
4964 what choice he makes, the outcome would always be the same.
4965 So, for practical purposes, we consider them as the same. */
4966
4967 static int
4968 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4969 {
4970 int i;
4971
4972 /* Before performing a thorough comparison check of each type,
4973 we perform a series of inexpensive checks. We expect that these
4974 checks will quickly fail in the vast majority of cases, and thus
4975 help prevent the unnecessary use of a more expensive comparison.
4976 Said comparison also expects us to make some of these checks
4977 (see ada_identical_enum_types_p). */
4978
4979 /* Quick check: All symbols should have an enum type. */
4980 for (i = 0; i < syms.size (); i++)
4981 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4982 return 0;
4983
4984 /* Quick check: They should all have the same value. */
4985 for (i = 1; i < syms.size (); i++)
4986 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4987 return 0;
4988
4989 /* Quick check: They should all have the same number of enumerals. */
4990 for (i = 1; i < syms.size (); i++)
4991 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4992 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4993 return 0;
4994
4995 /* All the sanity checks passed, so we might have a set of
4996 identical enumeration types. Perform a more complete
4997 comparison of the type of each symbol. */
4998 for (i = 1; i < syms.size (); i++)
4999 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5000 SYMBOL_TYPE (syms[0].symbol)))
5001 return 0;
5002
5003 return 1;
5004 }
5005
5006 /* Remove any non-debugging symbols in SYMS that definitely
5007 duplicate other symbols in the list (The only case I know of where
5008 this happens is when object files containing stabs-in-ecoff are
5009 linked with files containing ordinary ecoff debugging symbols (or no
5010 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5011 Returns the number of items in the modified list. */
5012
5013 static int
5014 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5015 {
5016 int i, j;
5017
5018 /* We should never be called with less than 2 symbols, as there
5019 cannot be any extra symbol in that case. But it's easy to
5020 handle, since we have nothing to do in that case. */
5021 if (syms->size () < 2)
5022 return syms->size ();
5023
5024 i = 0;
5025 while (i < syms->size ())
5026 {
5027 int remove_p = 0;
5028
5029 /* If two symbols have the same name and one of them is a stub type,
5030 the get rid of the stub. */
5031
5032 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5033 && (*syms)[i].symbol->linkage_name () != NULL)
5034 {
5035 for (j = 0; j < syms->size (); j++)
5036 {
5037 if (j != i
5038 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5039 && (*syms)[j].symbol->linkage_name () != NULL
5040 && strcmp ((*syms)[i].symbol->linkage_name (),
5041 (*syms)[j].symbol->linkage_name ()) == 0)
5042 remove_p = 1;
5043 }
5044 }
5045
5046 /* Two symbols with the same name, same class and same address
5047 should be identical. */
5048
5049 else if ((*syms)[i].symbol->linkage_name () != NULL
5050 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5051 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5052 {
5053 for (j = 0; j < syms->size (); j += 1)
5054 {
5055 if (i != j
5056 && (*syms)[j].symbol->linkage_name () != NULL
5057 && strcmp ((*syms)[i].symbol->linkage_name (),
5058 (*syms)[j].symbol->linkage_name ()) == 0
5059 && SYMBOL_CLASS ((*syms)[i].symbol)
5060 == SYMBOL_CLASS ((*syms)[j].symbol)
5061 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5062 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5063 remove_p = 1;
5064 }
5065 }
5066
5067 if (remove_p)
5068 syms->erase (syms->begin () + i);
5069
5070 i += 1;
5071 }
5072
5073 /* If all the remaining symbols are identical enumerals, then
5074 just keep the first one and discard the rest.
5075
5076 Unlike what we did previously, we do not discard any entry
5077 unless they are ALL identical. This is because the symbol
5078 comparison is not a strict comparison, but rather a practical
5079 comparison. If all symbols are considered identical, then
5080 we can just go ahead and use the first one and discard the rest.
5081 But if we cannot reduce the list to a single element, we have
5082 to ask the user to disambiguate anyways. And if we have to
5083 present a multiple-choice menu, it's less confusing if the list
5084 isn't missing some choices that were identical and yet distinct. */
5085 if (symbols_are_identical_enums (*syms))
5086 syms->resize (1);
5087
5088 return syms->size ();
5089 }
5090
5091 /* Given a type that corresponds to a renaming entity, use the type name
5092 to extract the scope (package name or function name, fully qualified,
5093 and following the GNAT encoding convention) where this renaming has been
5094 defined. */
5095
5096 static std::string
5097 xget_renaming_scope (struct type *renaming_type)
5098 {
5099 /* The renaming types adhere to the following convention:
5100 <scope>__<rename>___<XR extension>.
5101 So, to extract the scope, we search for the "___XR" extension,
5102 and then backtrack until we find the first "__". */
5103
5104 const char *name = renaming_type->name ();
5105 const char *suffix = strstr (name, "___XR");
5106 const char *last;
5107
5108 /* Now, backtrack a bit until we find the first "__". Start looking
5109 at suffix - 3, as the <rename> part is at least one character long. */
5110
5111 for (last = suffix - 3; last > name; last--)
5112 if (last[0] == '_' && last[1] == '_')
5113 break;
5114
5115 /* Make a copy of scope and return it. */
5116 return std::string (name, last);
5117 }
5118
5119 /* Return nonzero if NAME corresponds to a package name. */
5120
5121 static int
5122 is_package_name (const char *name)
5123 {
5124 /* Here, We take advantage of the fact that no symbols are generated
5125 for packages, while symbols are generated for each function.
5126 So the condition for NAME represent a package becomes equivalent
5127 to NAME not existing in our list of symbols. There is only one
5128 small complication with library-level functions (see below). */
5129
5130 /* If it is a function that has not been defined at library level,
5131 then we should be able to look it up in the symbols. */
5132 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5133 return 0;
5134
5135 /* Library-level function names start with "_ada_". See if function
5136 "_ada_" followed by NAME can be found. */
5137
5138 /* Do a quick check that NAME does not contain "__", since library-level
5139 functions names cannot contain "__" in them. */
5140 if (strstr (name, "__") != NULL)
5141 return 0;
5142
5143 std::string fun_name = string_printf ("_ada_%s", name);
5144
5145 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5146 }
5147
5148 /* Return nonzero if SYM corresponds to a renaming entity that is
5149 not visible from FUNCTION_NAME. */
5150
5151 static int
5152 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5153 {
5154 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5155 return 0;
5156
5157 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5158
5159 /* If the rename has been defined in a package, then it is visible. */
5160 if (is_package_name (scope.c_str ()))
5161 return 0;
5162
5163 /* Check that the rename is in the current function scope by checking
5164 that its name starts with SCOPE. */
5165
5166 /* If the function name starts with "_ada_", it means that it is
5167 a library-level function. Strip this prefix before doing the
5168 comparison, as the encoding for the renaming does not contain
5169 this prefix. */
5170 if (startswith (function_name, "_ada_"))
5171 function_name += 5;
5172
5173 return !startswith (function_name, scope.c_str ());
5174 }
5175
5176 /* Remove entries from SYMS that corresponds to a renaming entity that
5177 is not visible from the function associated with CURRENT_BLOCK or
5178 that is superfluous due to the presence of more specific renaming
5179 information. Places surviving symbols in the initial entries of
5180 SYMS and returns the number of surviving symbols.
5181
5182 Rationale:
5183 First, in cases where an object renaming is implemented as a
5184 reference variable, GNAT may produce both the actual reference
5185 variable and the renaming encoding. In this case, we discard the
5186 latter.
5187
5188 Second, GNAT emits a type following a specified encoding for each renaming
5189 entity. Unfortunately, STABS currently does not support the definition
5190 of types that are local to a given lexical block, so all renamings types
5191 are emitted at library level. As a consequence, if an application
5192 contains two renaming entities using the same name, and a user tries to
5193 print the value of one of these entities, the result of the ada symbol
5194 lookup will also contain the wrong renaming type.
5195
5196 This function partially covers for this limitation by attempting to
5197 remove from the SYMS list renaming symbols that should be visible
5198 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5199 method with the current information available. The implementation
5200 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5201
5202 - When the user tries to print a rename in a function while there
5203 is another rename entity defined in a package: Normally, the
5204 rename in the function has precedence over the rename in the
5205 package, so the latter should be removed from the list. This is
5206 currently not the case.
5207
5208 - This function will incorrectly remove valid renames if
5209 the CURRENT_BLOCK corresponds to a function which symbol name
5210 has been changed by an "Export" pragma. As a consequence,
5211 the user will be unable to print such rename entities. */
5212
5213 static int
5214 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5215 const struct block *current_block)
5216 {
5217 struct symbol *current_function;
5218 const char *current_function_name;
5219 int i;
5220 int is_new_style_renaming;
5221
5222 /* If there is both a renaming foo___XR... encoded as a variable and
5223 a simple variable foo in the same block, discard the latter.
5224 First, zero out such symbols, then compress. */
5225 is_new_style_renaming = 0;
5226 for (i = 0; i < syms->size (); i += 1)
5227 {
5228 struct symbol *sym = (*syms)[i].symbol;
5229 const struct block *block = (*syms)[i].block;
5230 const char *name;
5231 const char *suffix;
5232
5233 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5234 continue;
5235 name = sym->linkage_name ();
5236 suffix = strstr (name, "___XR");
5237
5238 if (suffix != NULL)
5239 {
5240 int name_len = suffix - name;
5241 int j;
5242
5243 is_new_style_renaming = 1;
5244 for (j = 0; j < syms->size (); j += 1)
5245 if (i != j && (*syms)[j].symbol != NULL
5246 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5247 name_len) == 0
5248 && block == (*syms)[j].block)
5249 (*syms)[j].symbol = NULL;
5250 }
5251 }
5252 if (is_new_style_renaming)
5253 {
5254 int j, k;
5255
5256 for (j = k = 0; j < syms->size (); j += 1)
5257 if ((*syms)[j].symbol != NULL)
5258 {
5259 (*syms)[k] = (*syms)[j];
5260 k += 1;
5261 }
5262 return k;
5263 }
5264
5265 /* Extract the function name associated to CURRENT_BLOCK.
5266 Abort if unable to do so. */
5267
5268 if (current_block == NULL)
5269 return syms->size ();
5270
5271 current_function = block_linkage_function (current_block);
5272 if (current_function == NULL)
5273 return syms->size ();
5274
5275 current_function_name = current_function->linkage_name ();
5276 if (current_function_name == NULL)
5277 return syms->size ();
5278
5279 /* Check each of the symbols, and remove it from the list if it is
5280 a type corresponding to a renaming that is out of the scope of
5281 the current block. */
5282
5283 i = 0;
5284 while (i < syms->size ())
5285 {
5286 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5287 == ADA_OBJECT_RENAMING
5288 && old_renaming_is_invisible ((*syms)[i].symbol,
5289 current_function_name))
5290 syms->erase (syms->begin () + i);
5291 else
5292 i += 1;
5293 }
5294
5295 return syms->size ();
5296 }
5297
5298 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5299 whose name and domain match NAME and DOMAIN respectively.
5300 If no match was found, then extend the search to "enclosing"
5301 routines (in other words, if we're inside a nested function,
5302 search the symbols defined inside the enclosing functions).
5303 If WILD_MATCH_P is nonzero, perform the naming matching in
5304 "wild" mode (see function "wild_match" for more info).
5305
5306 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5307
5308 static void
5309 ada_add_local_symbols (struct obstack *obstackp,
5310 const lookup_name_info &lookup_name,
5311 const struct block *block, domain_enum domain)
5312 {
5313 int block_depth = 0;
5314
5315 while (block != NULL)
5316 {
5317 block_depth += 1;
5318 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5319
5320 /* If we found a non-function match, assume that's the one. */
5321 if (is_nonfunction (defns_collected (obstackp, 0),
5322 num_defns_collected (obstackp)))
5323 return;
5324
5325 block = BLOCK_SUPERBLOCK (block);
5326 }
5327
5328 /* If no luck so far, try to find NAME as a local symbol in some lexically
5329 enclosing subprogram. */
5330 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5331 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5332 }
5333
5334 /* An object of this type is used as the user_data argument when
5335 calling the map_matching_symbols method. */
5336
5337 struct match_data
5338 {
5339 struct objfile *objfile;
5340 struct obstack *obstackp;
5341 struct symbol *arg_sym;
5342 int found_sym;
5343 };
5344
5345 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5346 to a list of symbols. DATA is a pointer to a struct match_data *
5347 containing the obstack that collects the symbol list, the file that SYM
5348 must come from, a flag indicating whether a non-argument symbol has
5349 been found in the current block, and the last argument symbol
5350 passed in SYM within the current block (if any). When SYM is null,
5351 marking the end of a block, the argument symbol is added if no
5352 other has been found. */
5353
5354 static bool
5355 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5356 struct match_data *data)
5357 {
5358 const struct block *block = bsym->block;
5359 struct symbol *sym = bsym->symbol;
5360
5361 if (sym == NULL)
5362 {
5363 if (!data->found_sym && data->arg_sym != NULL)
5364 add_defn_to_vec (data->obstackp,
5365 fixup_symbol_section (data->arg_sym, data->objfile),
5366 block);
5367 data->found_sym = 0;
5368 data->arg_sym = NULL;
5369 }
5370 else
5371 {
5372 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5373 return true;
5374 else if (SYMBOL_IS_ARGUMENT (sym))
5375 data->arg_sym = sym;
5376 else
5377 {
5378 data->found_sym = 1;
5379 add_defn_to_vec (data->obstackp,
5380 fixup_symbol_section (sym, data->objfile),
5381 block);
5382 }
5383 }
5384 return true;
5385 }
5386
5387 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5388 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5389 symbols to OBSTACKP. Return whether we found such symbols. */
5390
5391 static int
5392 ada_add_block_renamings (struct obstack *obstackp,
5393 const struct block *block,
5394 const lookup_name_info &lookup_name,
5395 domain_enum domain)
5396 {
5397 struct using_direct *renaming;
5398 int defns_mark = num_defns_collected (obstackp);
5399
5400 symbol_name_matcher_ftype *name_match
5401 = ada_get_symbol_name_matcher (lookup_name);
5402
5403 for (renaming = block_using (block);
5404 renaming != NULL;
5405 renaming = renaming->next)
5406 {
5407 const char *r_name;
5408
5409 /* Avoid infinite recursions: skip this renaming if we are actually
5410 already traversing it.
5411
5412 Currently, symbol lookup in Ada don't use the namespace machinery from
5413 C++/Fortran support: skip namespace imports that use them. */
5414 if (renaming->searched
5415 || (renaming->import_src != NULL
5416 && renaming->import_src[0] != '\0')
5417 || (renaming->import_dest != NULL
5418 && renaming->import_dest[0] != '\0'))
5419 continue;
5420 renaming->searched = 1;
5421
5422 /* TODO: here, we perform another name-based symbol lookup, which can
5423 pull its own multiple overloads. In theory, we should be able to do
5424 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5425 not a simple name. But in order to do this, we would need to enhance
5426 the DWARF reader to associate a symbol to this renaming, instead of a
5427 name. So, for now, we do something simpler: re-use the C++/Fortran
5428 namespace machinery. */
5429 r_name = (renaming->alias != NULL
5430 ? renaming->alias
5431 : renaming->declaration);
5432 if (name_match (r_name, lookup_name, NULL))
5433 {
5434 lookup_name_info decl_lookup_name (renaming->declaration,
5435 lookup_name.match_type ());
5436 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5437 1, NULL);
5438 }
5439 renaming->searched = 0;
5440 }
5441 return num_defns_collected (obstackp) != defns_mark;
5442 }
5443
5444 /* Implements compare_names, but only applying the comparision using
5445 the given CASING. */
5446
5447 static int
5448 compare_names_with_case (const char *string1, const char *string2,
5449 enum case_sensitivity casing)
5450 {
5451 while (*string1 != '\0' && *string2 != '\0')
5452 {
5453 char c1, c2;
5454
5455 if (isspace (*string1) || isspace (*string2))
5456 return strcmp_iw_ordered (string1, string2);
5457
5458 if (casing == case_sensitive_off)
5459 {
5460 c1 = tolower (*string1);
5461 c2 = tolower (*string2);
5462 }
5463 else
5464 {
5465 c1 = *string1;
5466 c2 = *string2;
5467 }
5468 if (c1 != c2)
5469 break;
5470
5471 string1 += 1;
5472 string2 += 1;
5473 }
5474
5475 switch (*string1)
5476 {
5477 case '(':
5478 return strcmp_iw_ordered (string1, string2);
5479 case '_':
5480 if (*string2 == '\0')
5481 {
5482 if (is_name_suffix (string1))
5483 return 0;
5484 else
5485 return 1;
5486 }
5487 /* FALLTHROUGH */
5488 default:
5489 if (*string2 == '(')
5490 return strcmp_iw_ordered (string1, string2);
5491 else
5492 {
5493 if (casing == case_sensitive_off)
5494 return tolower (*string1) - tolower (*string2);
5495 else
5496 return *string1 - *string2;
5497 }
5498 }
5499 }
5500
5501 /* Compare STRING1 to STRING2, with results as for strcmp.
5502 Compatible with strcmp_iw_ordered in that...
5503
5504 strcmp_iw_ordered (STRING1, STRING2) <= 0
5505
5506 ... implies...
5507
5508 compare_names (STRING1, STRING2) <= 0
5509
5510 (they may differ as to what symbols compare equal). */
5511
5512 static int
5513 compare_names (const char *string1, const char *string2)
5514 {
5515 int result;
5516
5517 /* Similar to what strcmp_iw_ordered does, we need to perform
5518 a case-insensitive comparison first, and only resort to
5519 a second, case-sensitive, comparison if the first one was
5520 not sufficient to differentiate the two strings. */
5521
5522 result = compare_names_with_case (string1, string2, case_sensitive_off);
5523 if (result == 0)
5524 result = compare_names_with_case (string1, string2, case_sensitive_on);
5525
5526 return result;
5527 }
5528
5529 /* Convenience function to get at the Ada encoded lookup name for
5530 LOOKUP_NAME, as a C string. */
5531
5532 static const char *
5533 ada_lookup_name (const lookup_name_info &lookup_name)
5534 {
5535 return lookup_name.ada ().lookup_name ().c_str ();
5536 }
5537
5538 /* Add to OBSTACKP all non-local symbols whose name and domain match
5539 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5540 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5541 symbols otherwise. */
5542
5543 static void
5544 add_nonlocal_symbols (struct obstack *obstackp,
5545 const lookup_name_info &lookup_name,
5546 domain_enum domain, int global)
5547 {
5548 struct match_data data;
5549
5550 memset (&data, 0, sizeof data);
5551 data.obstackp = obstackp;
5552
5553 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5554
5555 auto callback = [&] (struct block_symbol *bsym)
5556 {
5557 return aux_add_nonlocal_symbols (bsym, &data);
5558 };
5559
5560 for (objfile *objfile : current_program_space->objfiles ())
5561 {
5562 data.objfile = objfile;
5563
5564 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5565 domain, global, callback,
5566 (is_wild_match
5567 ? NULL : compare_names));
5568
5569 for (compunit_symtab *cu : objfile->compunits ())
5570 {
5571 const struct block *global_block
5572 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5573
5574 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5575 domain))
5576 data.found_sym = 1;
5577 }
5578 }
5579
5580 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5581 {
5582 const char *name = ada_lookup_name (lookup_name);
5583 std::string bracket_name = std::string ("<_ada_") + name + '>';
5584 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5585
5586 for (objfile *objfile : current_program_space->objfiles ())
5587 {
5588 data.objfile = objfile;
5589 objfile->sf->qf->map_matching_symbols (objfile, name1,
5590 domain, global, callback,
5591 compare_names);
5592 }
5593 }
5594 }
5595
5596 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5597 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5598 returning the number of matches. Add these to OBSTACKP.
5599
5600 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5601 symbol match within the nest of blocks whose innermost member is BLOCK,
5602 is the one match returned (no other matches in that or
5603 enclosing blocks is returned). If there are any matches in or
5604 surrounding BLOCK, then these alone are returned.
5605
5606 Names prefixed with "standard__" are handled specially:
5607 "standard__" is first stripped off (by the lookup_name
5608 constructor), and only static and global symbols are searched.
5609
5610 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5611 to lookup global symbols. */
5612
5613 static void
5614 ada_add_all_symbols (struct obstack *obstackp,
5615 const struct block *block,
5616 const lookup_name_info &lookup_name,
5617 domain_enum domain,
5618 int full_search,
5619 int *made_global_lookup_p)
5620 {
5621 struct symbol *sym;
5622
5623 if (made_global_lookup_p)
5624 *made_global_lookup_p = 0;
5625
5626 /* Special case: If the user specifies a symbol name inside package
5627 Standard, do a non-wild matching of the symbol name without
5628 the "standard__" prefix. This was primarily introduced in order
5629 to allow the user to specifically access the standard exceptions
5630 using, for instance, Standard.Constraint_Error when Constraint_Error
5631 is ambiguous (due to the user defining its own Constraint_Error
5632 entity inside its program). */
5633 if (lookup_name.ada ().standard_p ())
5634 block = NULL;
5635
5636 /* Check the non-global symbols. If we have ANY match, then we're done. */
5637
5638 if (block != NULL)
5639 {
5640 if (full_search)
5641 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5642 else
5643 {
5644 /* In the !full_search case we're are being called by
5645 iterate_over_symbols, and we don't want to search
5646 superblocks. */
5647 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5648 }
5649 if (num_defns_collected (obstackp) > 0 || !full_search)
5650 return;
5651 }
5652
5653 /* No non-global symbols found. Check our cache to see if we have
5654 already performed this search before. If we have, then return
5655 the same result. */
5656
5657 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5658 domain, &sym, &block))
5659 {
5660 if (sym != NULL)
5661 add_defn_to_vec (obstackp, sym, block);
5662 return;
5663 }
5664
5665 if (made_global_lookup_p)
5666 *made_global_lookup_p = 1;
5667
5668 /* Search symbols from all global blocks. */
5669
5670 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5671
5672 /* Now add symbols from all per-file blocks if we've gotten no hits
5673 (not strictly correct, but perhaps better than an error). */
5674
5675 if (num_defns_collected (obstackp) == 0)
5676 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5677 }
5678
5679 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5680 is non-zero, enclosing scope and in global scopes, returning the number of
5681 matches.
5682 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5683 found and the blocks and symbol tables (if any) in which they were
5684 found.
5685
5686 When full_search is non-zero, any non-function/non-enumeral
5687 symbol match within the nest of blocks whose innermost member is BLOCK,
5688 is the one match returned (no other matches in that or
5689 enclosing blocks is returned). If there are any matches in or
5690 surrounding BLOCK, then these alone are returned.
5691
5692 Names prefixed with "standard__" are handled specially: "standard__"
5693 is first stripped off, and only static and global symbols are searched. */
5694
5695 static int
5696 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5697 const struct block *block,
5698 domain_enum domain,
5699 std::vector<struct block_symbol> *results,
5700 int full_search)
5701 {
5702 int syms_from_global_search;
5703 int ndefns;
5704 auto_obstack obstack;
5705
5706 ada_add_all_symbols (&obstack, block, lookup_name,
5707 domain, full_search, &syms_from_global_search);
5708
5709 ndefns = num_defns_collected (&obstack);
5710
5711 struct block_symbol *base = defns_collected (&obstack, 1);
5712 for (int i = 0; i < ndefns; ++i)
5713 results->push_back (base[i]);
5714
5715 ndefns = remove_extra_symbols (results);
5716
5717 if (ndefns == 0 && full_search && syms_from_global_search)
5718 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5719
5720 if (ndefns == 1 && full_search && syms_from_global_search)
5721 cache_symbol (ada_lookup_name (lookup_name), domain,
5722 (*results)[0].symbol, (*results)[0].block);
5723
5724 ndefns = remove_irrelevant_renamings (results, block);
5725
5726 return ndefns;
5727 }
5728
5729 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5730 in global scopes, returning the number of matches, and filling *RESULTS
5731 with (SYM,BLOCK) tuples.
5732
5733 See ada_lookup_symbol_list_worker for further details. */
5734
5735 int
5736 ada_lookup_symbol_list (const char *name, const struct block *block,
5737 domain_enum domain,
5738 std::vector<struct block_symbol> *results)
5739 {
5740 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5741 lookup_name_info lookup_name (name, name_match_type);
5742
5743 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5744 }
5745
5746 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5747 to 1, but choosing the first symbol found if there are multiple
5748 choices.
5749
5750 The result is stored in *INFO, which must be non-NULL.
5751 If no match is found, INFO->SYM is set to NULL. */
5752
5753 void
5754 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5755 domain_enum domain,
5756 struct block_symbol *info)
5757 {
5758 /* Since we already have an encoded name, wrap it in '<>' to force a
5759 verbatim match. Otherwise, if the name happens to not look like
5760 an encoded name (because it doesn't include a "__"),
5761 ada_lookup_name_info would re-encode/fold it again, and that
5762 would e.g., incorrectly lowercase object renaming names like
5763 "R28b" -> "r28b". */
5764 std::string verbatim = std::string ("<") + name + '>';
5765
5766 gdb_assert (info != NULL);
5767 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5768 }
5769
5770 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5771 scope and in global scopes, or NULL if none. NAME is folded and
5772 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5773 choosing the first symbol if there are multiple choices. */
5774
5775 struct block_symbol
5776 ada_lookup_symbol (const char *name, const struct block *block0,
5777 domain_enum domain)
5778 {
5779 std::vector<struct block_symbol> candidates;
5780 int n_candidates;
5781
5782 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5783
5784 if (n_candidates == 0)
5785 return {};
5786
5787 block_symbol info = candidates[0];
5788 info.symbol = fixup_symbol_section (info.symbol, NULL);
5789 return info;
5790 }
5791
5792 static struct block_symbol
5793 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5794 const char *name,
5795 const struct block *block,
5796 const domain_enum domain)
5797 {
5798 struct block_symbol sym;
5799
5800 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5801 if (sym.symbol != NULL)
5802 return sym;
5803
5804 /* If we haven't found a match at this point, try the primitive
5805 types. In other languages, this search is performed before
5806 searching for global symbols in order to short-circuit that
5807 global-symbol search if it happens that the name corresponds
5808 to a primitive type. But we cannot do the same in Ada, because
5809 it is perfectly legitimate for a program to declare a type which
5810 has the same name as a standard type. If looking up a type in
5811 that situation, we have traditionally ignored the primitive type
5812 in favor of user-defined types. This is why, unlike most other
5813 languages, we search the primitive types this late and only after
5814 having searched the global symbols without success. */
5815
5816 if (domain == VAR_DOMAIN)
5817 {
5818 struct gdbarch *gdbarch;
5819
5820 if (block == NULL)
5821 gdbarch = target_gdbarch ();
5822 else
5823 gdbarch = block_gdbarch (block);
5824 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5825 if (sym.symbol != NULL)
5826 return sym;
5827 }
5828
5829 return {};
5830 }
5831
5832
5833 /* True iff STR is a possible encoded suffix of a normal Ada name
5834 that is to be ignored for matching purposes. Suffixes of parallel
5835 names (e.g., XVE) are not included here. Currently, the possible suffixes
5836 are given by any of the regular expressions:
5837
5838 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5839 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5840 TKB [subprogram suffix for task bodies]
5841 _E[0-9]+[bs]$ [protected object entry suffixes]
5842 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5843
5844 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5845 match is performed. This sequence is used to differentiate homonyms,
5846 is an optional part of a valid name suffix. */
5847
5848 static int
5849 is_name_suffix (const char *str)
5850 {
5851 int k;
5852 const char *matching;
5853 const int len = strlen (str);
5854
5855 /* Skip optional leading __[0-9]+. */
5856
5857 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5858 {
5859 str += 3;
5860 while (isdigit (str[0]))
5861 str += 1;
5862 }
5863
5864 /* [.$][0-9]+ */
5865
5866 if (str[0] == '.' || str[0] == '$')
5867 {
5868 matching = str + 1;
5869 while (isdigit (matching[0]))
5870 matching += 1;
5871 if (matching[0] == '\0')
5872 return 1;
5873 }
5874
5875 /* ___[0-9]+ */
5876
5877 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5878 {
5879 matching = str + 3;
5880 while (isdigit (matching[0]))
5881 matching += 1;
5882 if (matching[0] == '\0')
5883 return 1;
5884 }
5885
5886 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5887
5888 if (strcmp (str, "TKB") == 0)
5889 return 1;
5890
5891 #if 0
5892 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5893 with a N at the end. Unfortunately, the compiler uses the same
5894 convention for other internal types it creates. So treating
5895 all entity names that end with an "N" as a name suffix causes
5896 some regressions. For instance, consider the case of an enumerated
5897 type. To support the 'Image attribute, it creates an array whose
5898 name ends with N.
5899 Having a single character like this as a suffix carrying some
5900 information is a bit risky. Perhaps we should change the encoding
5901 to be something like "_N" instead. In the meantime, do not do
5902 the following check. */
5903 /* Protected Object Subprograms */
5904 if (len == 1 && str [0] == 'N')
5905 return 1;
5906 #endif
5907
5908 /* _E[0-9]+[bs]$ */
5909 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5910 {
5911 matching = str + 3;
5912 while (isdigit (matching[0]))
5913 matching += 1;
5914 if ((matching[0] == 'b' || matching[0] == 's')
5915 && matching [1] == '\0')
5916 return 1;
5917 }
5918
5919 /* ??? We should not modify STR directly, as we are doing below. This
5920 is fine in this case, but may become problematic later if we find
5921 that this alternative did not work, and want to try matching
5922 another one from the begining of STR. Since we modified it, we
5923 won't be able to find the begining of the string anymore! */
5924 if (str[0] == 'X')
5925 {
5926 str += 1;
5927 while (str[0] != '_' && str[0] != '\0')
5928 {
5929 if (str[0] != 'n' && str[0] != 'b')
5930 return 0;
5931 str += 1;
5932 }
5933 }
5934
5935 if (str[0] == '\000')
5936 return 1;
5937
5938 if (str[0] == '_')
5939 {
5940 if (str[1] != '_' || str[2] == '\000')
5941 return 0;
5942 if (str[2] == '_')
5943 {
5944 if (strcmp (str + 3, "JM") == 0)
5945 return 1;
5946 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5947 the LJM suffix in favor of the JM one. But we will
5948 still accept LJM as a valid suffix for a reasonable
5949 amount of time, just to allow ourselves to debug programs
5950 compiled using an older version of GNAT. */
5951 if (strcmp (str + 3, "LJM") == 0)
5952 return 1;
5953 if (str[3] != 'X')
5954 return 0;
5955 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5956 || str[4] == 'U' || str[4] == 'P')
5957 return 1;
5958 if (str[4] == 'R' && str[5] != 'T')
5959 return 1;
5960 return 0;
5961 }
5962 if (!isdigit (str[2]))
5963 return 0;
5964 for (k = 3; str[k] != '\0'; k += 1)
5965 if (!isdigit (str[k]) && str[k] != '_')
5966 return 0;
5967 return 1;
5968 }
5969 if (str[0] == '$' && isdigit (str[1]))
5970 {
5971 for (k = 2; str[k] != '\0'; k += 1)
5972 if (!isdigit (str[k]) && str[k] != '_')
5973 return 0;
5974 return 1;
5975 }
5976 return 0;
5977 }
5978
5979 /* Return non-zero if the string starting at NAME and ending before
5980 NAME_END contains no capital letters. */
5981
5982 static int
5983 is_valid_name_for_wild_match (const char *name0)
5984 {
5985 std::string decoded_name = ada_decode (name0);
5986 int i;
5987
5988 /* If the decoded name starts with an angle bracket, it means that
5989 NAME0 does not follow the GNAT encoding format. It should then
5990 not be allowed as a possible wild match. */
5991 if (decoded_name[0] == '<')
5992 return 0;
5993
5994 for (i=0; decoded_name[i] != '\0'; i++)
5995 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5996 return 0;
5997
5998 return 1;
5999 }
6000
6001 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6002 that could start a simple name. Assumes that *NAMEP points into
6003 the string beginning at NAME0. */
6004
6005 static int
6006 advance_wild_match (const char **namep, const char *name0, int target0)
6007 {
6008 const char *name = *namep;
6009
6010 while (1)
6011 {
6012 int t0, t1;
6013
6014 t0 = *name;
6015 if (t0 == '_')
6016 {
6017 t1 = name[1];
6018 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6019 {
6020 name += 1;
6021 if (name == name0 + 5 && startswith (name0, "_ada"))
6022 break;
6023 else
6024 name += 1;
6025 }
6026 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6027 || name[2] == target0))
6028 {
6029 name += 2;
6030 break;
6031 }
6032 else
6033 return 0;
6034 }
6035 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6036 name += 1;
6037 else
6038 return 0;
6039 }
6040
6041 *namep = name;
6042 return 1;
6043 }
6044
6045 /* Return true iff NAME encodes a name of the form prefix.PATN.
6046 Ignores any informational suffixes of NAME (i.e., for which
6047 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6048 simple name. */
6049
6050 static bool
6051 wild_match (const char *name, const char *patn)
6052 {
6053 const char *p;
6054 const char *name0 = name;
6055
6056 while (1)
6057 {
6058 const char *match = name;
6059
6060 if (*name == *patn)
6061 {
6062 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6063 if (*p != *name)
6064 break;
6065 if (*p == '\0' && is_name_suffix (name))
6066 return match == name0 || is_valid_name_for_wild_match (name0);
6067
6068 if (name[-1] == '_')
6069 name -= 1;
6070 }
6071 if (!advance_wild_match (&name, name0, *patn))
6072 return false;
6073 }
6074 }
6075
6076 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6077 any trailing suffixes that encode debugging information or leading
6078 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6079 information that is ignored). */
6080
6081 static bool
6082 full_match (const char *sym_name, const char *search_name)
6083 {
6084 size_t search_name_len = strlen (search_name);
6085
6086 if (strncmp (sym_name, search_name, search_name_len) == 0
6087 && is_name_suffix (sym_name + search_name_len))
6088 return true;
6089
6090 if (startswith (sym_name, "_ada_")
6091 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6092 && is_name_suffix (sym_name + search_name_len + 5))
6093 return true;
6094
6095 return false;
6096 }
6097
6098 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6099 *defn_symbols, updating the list of symbols in OBSTACKP (if
6100 necessary). OBJFILE is the section containing BLOCK. */
6101
6102 static void
6103 ada_add_block_symbols (struct obstack *obstackp,
6104 const struct block *block,
6105 const lookup_name_info &lookup_name,
6106 domain_enum domain, struct objfile *objfile)
6107 {
6108 struct block_iterator iter;
6109 /* A matching argument symbol, if any. */
6110 struct symbol *arg_sym;
6111 /* Set true when we find a matching non-argument symbol. */
6112 int found_sym;
6113 struct symbol *sym;
6114
6115 arg_sym = NULL;
6116 found_sym = 0;
6117 for (sym = block_iter_match_first (block, lookup_name, &iter);
6118 sym != NULL;
6119 sym = block_iter_match_next (lookup_name, &iter))
6120 {
6121 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6122 {
6123 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6124 {
6125 if (SYMBOL_IS_ARGUMENT (sym))
6126 arg_sym = sym;
6127 else
6128 {
6129 found_sym = 1;
6130 add_defn_to_vec (obstackp,
6131 fixup_symbol_section (sym, objfile),
6132 block);
6133 }
6134 }
6135 }
6136 }
6137
6138 /* Handle renamings. */
6139
6140 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6141 found_sym = 1;
6142
6143 if (!found_sym && arg_sym != NULL)
6144 {
6145 add_defn_to_vec (obstackp,
6146 fixup_symbol_section (arg_sym, objfile),
6147 block);
6148 }
6149
6150 if (!lookup_name.ada ().wild_match_p ())
6151 {
6152 arg_sym = NULL;
6153 found_sym = 0;
6154 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6155 const char *name = ada_lookup_name.c_str ();
6156 size_t name_len = ada_lookup_name.size ();
6157
6158 ALL_BLOCK_SYMBOLS (block, iter, sym)
6159 {
6160 if (symbol_matches_domain (sym->language (),
6161 SYMBOL_DOMAIN (sym), domain))
6162 {
6163 int cmp;
6164
6165 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6166 if (cmp == 0)
6167 {
6168 cmp = !startswith (sym->linkage_name (), "_ada_");
6169 if (cmp == 0)
6170 cmp = strncmp (name, sym->linkage_name () + 5,
6171 name_len);
6172 }
6173
6174 if (cmp == 0
6175 && is_name_suffix (sym->linkage_name () + name_len + 5))
6176 {
6177 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6178 {
6179 if (SYMBOL_IS_ARGUMENT (sym))
6180 arg_sym = sym;
6181 else
6182 {
6183 found_sym = 1;
6184 add_defn_to_vec (obstackp,
6185 fixup_symbol_section (sym, objfile),
6186 block);
6187 }
6188 }
6189 }
6190 }
6191 }
6192
6193 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6194 They aren't parameters, right? */
6195 if (!found_sym && arg_sym != NULL)
6196 {
6197 add_defn_to_vec (obstackp,
6198 fixup_symbol_section (arg_sym, objfile),
6199 block);
6200 }
6201 }
6202 }
6203 \f
6204
6205 /* Symbol Completion */
6206
6207 /* See symtab.h. */
6208
6209 bool
6210 ada_lookup_name_info::matches
6211 (const char *sym_name,
6212 symbol_name_match_type match_type,
6213 completion_match_result *comp_match_res) const
6214 {
6215 bool match = false;
6216 const char *text = m_encoded_name.c_str ();
6217 size_t text_len = m_encoded_name.size ();
6218
6219 /* First, test against the fully qualified name of the symbol. */
6220
6221 if (strncmp (sym_name, text, text_len) == 0)
6222 match = true;
6223
6224 std::string decoded_name = ada_decode (sym_name);
6225 if (match && !m_encoded_p)
6226 {
6227 /* One needed check before declaring a positive match is to verify
6228 that iff we are doing a verbatim match, the decoded version
6229 of the symbol name starts with '<'. Otherwise, this symbol name
6230 is not a suitable completion. */
6231
6232 bool has_angle_bracket = (decoded_name[0] == '<');
6233 match = (has_angle_bracket == m_verbatim_p);
6234 }
6235
6236 if (match && !m_verbatim_p)
6237 {
6238 /* When doing non-verbatim match, another check that needs to
6239 be done is to verify that the potentially matching symbol name
6240 does not include capital letters, because the ada-mode would
6241 not be able to understand these symbol names without the
6242 angle bracket notation. */
6243 const char *tmp;
6244
6245 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6246 if (*tmp != '\0')
6247 match = false;
6248 }
6249
6250 /* Second: Try wild matching... */
6251
6252 if (!match && m_wild_match_p)
6253 {
6254 /* Since we are doing wild matching, this means that TEXT
6255 may represent an unqualified symbol name. We therefore must
6256 also compare TEXT against the unqualified name of the symbol. */
6257 sym_name = ada_unqualified_name (decoded_name.c_str ());
6258
6259 if (strncmp (sym_name, text, text_len) == 0)
6260 match = true;
6261 }
6262
6263 /* Finally: If we found a match, prepare the result to return. */
6264
6265 if (!match)
6266 return false;
6267
6268 if (comp_match_res != NULL)
6269 {
6270 std::string &match_str = comp_match_res->match.storage ();
6271
6272 if (!m_encoded_p)
6273 match_str = ada_decode (sym_name);
6274 else
6275 {
6276 if (m_verbatim_p)
6277 match_str = add_angle_brackets (sym_name);
6278 else
6279 match_str = sym_name;
6280
6281 }
6282
6283 comp_match_res->set_match (match_str.c_str ());
6284 }
6285
6286 return true;
6287 }
6288
6289 /* Add the list of possible symbol names completing TEXT to TRACKER.
6290 WORD is the entire command on which completion is made. */
6291
6292 static void
6293 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6294 complete_symbol_mode mode,
6295 symbol_name_match_type name_match_type,
6296 const char *text, const char *word,
6297 enum type_code code)
6298 {
6299 struct symbol *sym;
6300 const struct block *b, *surrounding_static_block = 0;
6301 struct block_iterator iter;
6302
6303 gdb_assert (code == TYPE_CODE_UNDEF);
6304
6305 lookup_name_info lookup_name (text, name_match_type, true);
6306
6307 /* First, look at the partial symtab symbols. */
6308 expand_symtabs_matching (NULL,
6309 lookup_name,
6310 NULL,
6311 NULL,
6312 ALL_DOMAIN);
6313
6314 /* At this point scan through the misc symbol vectors and add each
6315 symbol you find to the list. Eventually we want to ignore
6316 anything that isn't a text symbol (everything else will be
6317 handled by the psymtab code above). */
6318
6319 for (objfile *objfile : current_program_space->objfiles ())
6320 {
6321 for (minimal_symbol *msymbol : objfile->msymbols ())
6322 {
6323 QUIT;
6324
6325 if (completion_skip_symbol (mode, msymbol))
6326 continue;
6327
6328 language symbol_language = msymbol->language ();
6329
6330 /* Ada minimal symbols won't have their language set to Ada. If
6331 we let completion_list_add_name compare using the
6332 default/C-like matcher, then when completing e.g., symbols in a
6333 package named "pck", we'd match internal Ada symbols like
6334 "pckS", which are invalid in an Ada expression, unless you wrap
6335 them in '<' '>' to request a verbatim match.
6336
6337 Unfortunately, some Ada encoded names successfully demangle as
6338 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6339 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6340 with the wrong language set. Paper over that issue here. */
6341 if (symbol_language == language_auto
6342 || symbol_language == language_cplus)
6343 symbol_language = language_ada;
6344
6345 completion_list_add_name (tracker,
6346 symbol_language,
6347 msymbol->linkage_name (),
6348 lookup_name, text, word);
6349 }
6350 }
6351
6352 /* Search upwards from currently selected frame (so that we can
6353 complete on local vars. */
6354
6355 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6356 {
6357 if (!BLOCK_SUPERBLOCK (b))
6358 surrounding_static_block = b; /* For elmin of dups */
6359
6360 ALL_BLOCK_SYMBOLS (b, iter, sym)
6361 {
6362 if (completion_skip_symbol (mode, sym))
6363 continue;
6364
6365 completion_list_add_name (tracker,
6366 sym->language (),
6367 sym->linkage_name (),
6368 lookup_name, text, word);
6369 }
6370 }
6371
6372 /* Go through the symtabs and check the externs and statics for
6373 symbols which match. */
6374
6375 for (objfile *objfile : current_program_space->objfiles ())
6376 {
6377 for (compunit_symtab *s : objfile->compunits ())
6378 {
6379 QUIT;
6380 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6381 ALL_BLOCK_SYMBOLS (b, iter, sym)
6382 {
6383 if (completion_skip_symbol (mode, sym))
6384 continue;
6385
6386 completion_list_add_name (tracker,
6387 sym->language (),
6388 sym->linkage_name (),
6389 lookup_name, text, word);
6390 }
6391 }
6392 }
6393
6394 for (objfile *objfile : current_program_space->objfiles ())
6395 {
6396 for (compunit_symtab *s : objfile->compunits ())
6397 {
6398 QUIT;
6399 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6400 /* Don't do this block twice. */
6401 if (b == surrounding_static_block)
6402 continue;
6403 ALL_BLOCK_SYMBOLS (b, iter, sym)
6404 {
6405 if (completion_skip_symbol (mode, sym))
6406 continue;
6407
6408 completion_list_add_name (tracker,
6409 sym->language (),
6410 sym->linkage_name (),
6411 lookup_name, text, word);
6412 }
6413 }
6414 }
6415 }
6416
6417 /* Field Access */
6418
6419 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6420 for tagged types. */
6421
6422 static int
6423 ada_is_dispatch_table_ptr_type (struct type *type)
6424 {
6425 const char *name;
6426
6427 if (type->code () != TYPE_CODE_PTR)
6428 return 0;
6429
6430 name = TYPE_TARGET_TYPE (type)->name ();
6431 if (name == NULL)
6432 return 0;
6433
6434 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6435 }
6436
6437 /* Return non-zero if TYPE is an interface tag. */
6438
6439 static int
6440 ada_is_interface_tag (struct type *type)
6441 {
6442 const char *name = type->name ();
6443
6444 if (name == NULL)
6445 return 0;
6446
6447 return (strcmp (name, "ada__tags__interface_tag") == 0);
6448 }
6449
6450 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6451 to be invisible to users. */
6452
6453 int
6454 ada_is_ignored_field (struct type *type, int field_num)
6455 {
6456 if (field_num < 0 || field_num > type->num_fields ())
6457 return 1;
6458
6459 /* Check the name of that field. */
6460 {
6461 const char *name = TYPE_FIELD_NAME (type, field_num);
6462
6463 /* Anonymous field names should not be printed.
6464 brobecker/2007-02-20: I don't think this can actually happen
6465 but we don't want to print the value of anonymous fields anyway. */
6466 if (name == NULL)
6467 return 1;
6468
6469 /* Normally, fields whose name start with an underscore ("_")
6470 are fields that have been internally generated by the compiler,
6471 and thus should not be printed. The "_parent" field is special,
6472 however: This is a field internally generated by the compiler
6473 for tagged types, and it contains the components inherited from
6474 the parent type. This field should not be printed as is, but
6475 should not be ignored either. */
6476 if (name[0] == '_' && !startswith (name, "_parent"))
6477 return 1;
6478 }
6479
6480 /* If this is the dispatch table of a tagged type or an interface tag,
6481 then ignore. */
6482 if (ada_is_tagged_type (type, 1)
6483 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6484 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6485 return 1;
6486
6487 /* Not a special field, so it should not be ignored. */
6488 return 0;
6489 }
6490
6491 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6492 pointer or reference type whose ultimate target has a tag field. */
6493
6494 int
6495 ada_is_tagged_type (struct type *type, int refok)
6496 {
6497 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6498 }
6499
6500 /* True iff TYPE represents the type of X'Tag */
6501
6502 int
6503 ada_is_tag_type (struct type *type)
6504 {
6505 type = ada_check_typedef (type);
6506
6507 if (type == NULL || type->code () != TYPE_CODE_PTR)
6508 return 0;
6509 else
6510 {
6511 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6512
6513 return (name != NULL
6514 && strcmp (name, "ada__tags__dispatch_table") == 0);
6515 }
6516 }
6517
6518 /* The type of the tag on VAL. */
6519
6520 static struct type *
6521 ada_tag_type (struct value *val)
6522 {
6523 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6524 }
6525
6526 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6527 retired at Ada 05). */
6528
6529 static int
6530 is_ada95_tag (struct value *tag)
6531 {
6532 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6533 }
6534
6535 /* The value of the tag on VAL. */
6536
6537 static struct value *
6538 ada_value_tag (struct value *val)
6539 {
6540 return ada_value_struct_elt (val, "_tag", 0);
6541 }
6542
6543 /* The value of the tag on the object of type TYPE whose contents are
6544 saved at VALADDR, if it is non-null, or is at memory address
6545 ADDRESS. */
6546
6547 static struct value *
6548 value_tag_from_contents_and_address (struct type *type,
6549 const gdb_byte *valaddr,
6550 CORE_ADDR address)
6551 {
6552 int tag_byte_offset;
6553 struct type *tag_type;
6554
6555 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6556 NULL, NULL, NULL))
6557 {
6558 const gdb_byte *valaddr1 = ((valaddr == NULL)
6559 ? NULL
6560 : valaddr + tag_byte_offset);
6561 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6562
6563 return value_from_contents_and_address (tag_type, valaddr1, address1);
6564 }
6565 return NULL;
6566 }
6567
6568 static struct type *
6569 type_from_tag (struct value *tag)
6570 {
6571 const char *type_name = ada_tag_name (tag);
6572
6573 if (type_name != NULL)
6574 return ada_find_any_type (ada_encode (type_name));
6575 return NULL;
6576 }
6577
6578 /* Given a value OBJ of a tagged type, return a value of this
6579 type at the base address of the object. The base address, as
6580 defined in Ada.Tags, it is the address of the primary tag of
6581 the object, and therefore where the field values of its full
6582 view can be fetched. */
6583
6584 struct value *
6585 ada_tag_value_at_base_address (struct value *obj)
6586 {
6587 struct value *val;
6588 LONGEST offset_to_top = 0;
6589 struct type *ptr_type, *obj_type;
6590 struct value *tag;
6591 CORE_ADDR base_address;
6592
6593 obj_type = value_type (obj);
6594
6595 /* It is the responsability of the caller to deref pointers. */
6596
6597 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6598 return obj;
6599
6600 tag = ada_value_tag (obj);
6601 if (!tag)
6602 return obj;
6603
6604 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6605
6606 if (is_ada95_tag (tag))
6607 return obj;
6608
6609 ptr_type = language_lookup_primitive_type
6610 (language_def (language_ada), target_gdbarch(), "storage_offset");
6611 ptr_type = lookup_pointer_type (ptr_type);
6612 val = value_cast (ptr_type, tag);
6613 if (!val)
6614 return obj;
6615
6616 /* It is perfectly possible that an exception be raised while
6617 trying to determine the base address, just like for the tag;
6618 see ada_tag_name for more details. We do not print the error
6619 message for the same reason. */
6620
6621 try
6622 {
6623 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6624 }
6625
6626 catch (const gdb_exception_error &e)
6627 {
6628 return obj;
6629 }
6630
6631 /* If offset is null, nothing to do. */
6632
6633 if (offset_to_top == 0)
6634 return obj;
6635
6636 /* -1 is a special case in Ada.Tags; however, what should be done
6637 is not quite clear from the documentation. So do nothing for
6638 now. */
6639
6640 if (offset_to_top == -1)
6641 return obj;
6642
6643 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6644 from the base address. This was however incompatible with
6645 C++ dispatch table: C++ uses a *negative* value to *add*
6646 to the base address. Ada's convention has therefore been
6647 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6648 use the same convention. Here, we support both cases by
6649 checking the sign of OFFSET_TO_TOP. */
6650
6651 if (offset_to_top > 0)
6652 offset_to_top = -offset_to_top;
6653
6654 base_address = value_address (obj) + offset_to_top;
6655 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6656
6657 /* Make sure that we have a proper tag at the new address.
6658 Otherwise, offset_to_top is bogus (which can happen when
6659 the object is not initialized yet). */
6660
6661 if (!tag)
6662 return obj;
6663
6664 obj_type = type_from_tag (tag);
6665
6666 if (!obj_type)
6667 return obj;
6668
6669 return value_from_contents_and_address (obj_type, NULL, base_address);
6670 }
6671
6672 /* Return the "ada__tags__type_specific_data" type. */
6673
6674 static struct type *
6675 ada_get_tsd_type (struct inferior *inf)
6676 {
6677 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6678
6679 if (data->tsd_type == 0)
6680 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6681 return data->tsd_type;
6682 }
6683
6684 /* Return the TSD (type-specific data) associated to the given TAG.
6685 TAG is assumed to be the tag of a tagged-type entity.
6686
6687 May return NULL if we are unable to get the TSD. */
6688
6689 static struct value *
6690 ada_get_tsd_from_tag (struct value *tag)
6691 {
6692 struct value *val;
6693 struct type *type;
6694
6695 /* First option: The TSD is simply stored as a field of our TAG.
6696 Only older versions of GNAT would use this format, but we have
6697 to test it first, because there are no visible markers for
6698 the current approach except the absence of that field. */
6699
6700 val = ada_value_struct_elt (tag, "tsd", 1);
6701 if (val)
6702 return val;
6703
6704 /* Try the second representation for the dispatch table (in which
6705 there is no explicit 'tsd' field in the referent of the tag pointer,
6706 and instead the tsd pointer is stored just before the dispatch
6707 table. */
6708
6709 type = ada_get_tsd_type (current_inferior());
6710 if (type == NULL)
6711 return NULL;
6712 type = lookup_pointer_type (lookup_pointer_type (type));
6713 val = value_cast (type, tag);
6714 if (val == NULL)
6715 return NULL;
6716 return value_ind (value_ptradd (val, -1));
6717 }
6718
6719 /* Given the TSD of a tag (type-specific data), return a string
6720 containing the name of the associated type.
6721
6722 The returned value is good until the next call. May return NULL
6723 if we are unable to determine the tag name. */
6724
6725 static char *
6726 ada_tag_name_from_tsd (struct value *tsd)
6727 {
6728 static char name[1024];
6729 char *p;
6730 struct value *val;
6731
6732 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6733 if (val == NULL)
6734 return NULL;
6735 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6736 for (p = name; *p != '\0'; p += 1)
6737 if (isalpha (*p))
6738 *p = tolower (*p);
6739 return name;
6740 }
6741
6742 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6743 a C string.
6744
6745 Return NULL if the TAG is not an Ada tag, or if we were unable to
6746 determine the name of that tag. The result is good until the next
6747 call. */
6748
6749 const char *
6750 ada_tag_name (struct value *tag)
6751 {
6752 char *name = NULL;
6753
6754 if (!ada_is_tag_type (value_type (tag)))
6755 return NULL;
6756
6757 /* It is perfectly possible that an exception be raised while trying
6758 to determine the TAG's name, even under normal circumstances:
6759 The associated variable may be uninitialized or corrupted, for
6760 instance. We do not let any exception propagate past this point.
6761 instead we return NULL.
6762
6763 We also do not print the error message either (which often is very
6764 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6765 the caller print a more meaningful message if necessary. */
6766 try
6767 {
6768 struct value *tsd = ada_get_tsd_from_tag (tag);
6769
6770 if (tsd != NULL)
6771 name = ada_tag_name_from_tsd (tsd);
6772 }
6773 catch (const gdb_exception_error &e)
6774 {
6775 }
6776
6777 return name;
6778 }
6779
6780 /* The parent type of TYPE, or NULL if none. */
6781
6782 struct type *
6783 ada_parent_type (struct type *type)
6784 {
6785 int i;
6786
6787 type = ada_check_typedef (type);
6788
6789 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6790 return NULL;
6791
6792 for (i = 0; i < type->num_fields (); i += 1)
6793 if (ada_is_parent_field (type, i))
6794 {
6795 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6796
6797 /* If the _parent field is a pointer, then dereference it. */
6798 if (parent_type->code () == TYPE_CODE_PTR)
6799 parent_type = TYPE_TARGET_TYPE (parent_type);
6800 /* If there is a parallel XVS type, get the actual base type. */
6801 parent_type = ada_get_base_type (parent_type);
6802
6803 return ada_check_typedef (parent_type);
6804 }
6805
6806 return NULL;
6807 }
6808
6809 /* True iff field number FIELD_NUM of structure type TYPE contains the
6810 parent-type (inherited) fields of a derived type. Assumes TYPE is
6811 a structure type with at least FIELD_NUM+1 fields. */
6812
6813 int
6814 ada_is_parent_field (struct type *type, int field_num)
6815 {
6816 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6817
6818 return (name != NULL
6819 && (startswith (name, "PARENT")
6820 || startswith (name, "_parent")));
6821 }
6822
6823 /* True iff field number FIELD_NUM of structure type TYPE is a
6824 transparent wrapper field (which should be silently traversed when doing
6825 field selection and flattened when printing). Assumes TYPE is a
6826 structure type with at least FIELD_NUM+1 fields. Such fields are always
6827 structures. */
6828
6829 int
6830 ada_is_wrapper_field (struct type *type, int field_num)
6831 {
6832 const char *name = TYPE_FIELD_NAME (type, field_num);
6833
6834 if (name != NULL && strcmp (name, "RETVAL") == 0)
6835 {
6836 /* This happens in functions with "out" or "in out" parameters
6837 which are passed by copy. For such functions, GNAT describes
6838 the function's return type as being a struct where the return
6839 value is in a field called RETVAL, and where the other "out"
6840 or "in out" parameters are fields of that struct. This is not
6841 a wrapper. */
6842 return 0;
6843 }
6844
6845 return (name != NULL
6846 && (startswith (name, "PARENT")
6847 || strcmp (name, "REP") == 0
6848 || startswith (name, "_parent")
6849 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6850 }
6851
6852 /* True iff field number FIELD_NUM of structure or union type TYPE
6853 is a variant wrapper. Assumes TYPE is a structure type with at least
6854 FIELD_NUM+1 fields. */
6855
6856 int
6857 ada_is_variant_part (struct type *type, int field_num)
6858 {
6859 /* Only Ada types are eligible. */
6860 if (!ADA_TYPE_P (type))
6861 return 0;
6862
6863 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6864
6865 return (field_type->code () == TYPE_CODE_UNION
6866 || (is_dynamic_field (type, field_num)
6867 && (TYPE_TARGET_TYPE (field_type)->code ()
6868 == TYPE_CODE_UNION)));
6869 }
6870
6871 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6872 whose discriminants are contained in the record type OUTER_TYPE,
6873 returns the type of the controlling discriminant for the variant.
6874 May return NULL if the type could not be found. */
6875
6876 struct type *
6877 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6878 {
6879 const char *name = ada_variant_discrim_name (var_type);
6880
6881 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6882 }
6883
6884 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6885 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6886 represents a 'when others' clause; otherwise 0. */
6887
6888 static int
6889 ada_is_others_clause (struct type *type, int field_num)
6890 {
6891 const char *name = TYPE_FIELD_NAME (type, field_num);
6892
6893 return (name != NULL && name[0] == 'O');
6894 }
6895
6896 /* Assuming that TYPE0 is the type of the variant part of a record,
6897 returns the name of the discriminant controlling the variant.
6898 The value is valid until the next call to ada_variant_discrim_name. */
6899
6900 const char *
6901 ada_variant_discrim_name (struct type *type0)
6902 {
6903 static char *result = NULL;
6904 static size_t result_len = 0;
6905 struct type *type;
6906 const char *name;
6907 const char *discrim_end;
6908 const char *discrim_start;
6909
6910 if (type0->code () == TYPE_CODE_PTR)
6911 type = TYPE_TARGET_TYPE (type0);
6912 else
6913 type = type0;
6914
6915 name = ada_type_name (type);
6916
6917 if (name == NULL || name[0] == '\000')
6918 return "";
6919
6920 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6921 discrim_end -= 1)
6922 {
6923 if (startswith (discrim_end, "___XVN"))
6924 break;
6925 }
6926 if (discrim_end == name)
6927 return "";
6928
6929 for (discrim_start = discrim_end; discrim_start != name + 3;
6930 discrim_start -= 1)
6931 {
6932 if (discrim_start == name + 1)
6933 return "";
6934 if ((discrim_start > name + 3
6935 && startswith (discrim_start - 3, "___"))
6936 || discrim_start[-1] == '.')
6937 break;
6938 }
6939
6940 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6941 strncpy (result, discrim_start, discrim_end - discrim_start);
6942 result[discrim_end - discrim_start] = '\0';
6943 return result;
6944 }
6945
6946 /* Scan STR for a subtype-encoded number, beginning at position K.
6947 Put the position of the character just past the number scanned in
6948 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6949 Return 1 if there was a valid number at the given position, and 0
6950 otherwise. A "subtype-encoded" number consists of the absolute value
6951 in decimal, followed by the letter 'm' to indicate a negative number.
6952 Assumes 0m does not occur. */
6953
6954 int
6955 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6956 {
6957 ULONGEST RU;
6958
6959 if (!isdigit (str[k]))
6960 return 0;
6961
6962 /* Do it the hard way so as not to make any assumption about
6963 the relationship of unsigned long (%lu scan format code) and
6964 LONGEST. */
6965 RU = 0;
6966 while (isdigit (str[k]))
6967 {
6968 RU = RU * 10 + (str[k] - '0');
6969 k += 1;
6970 }
6971
6972 if (str[k] == 'm')
6973 {
6974 if (R != NULL)
6975 *R = (-(LONGEST) (RU - 1)) - 1;
6976 k += 1;
6977 }
6978 else if (R != NULL)
6979 *R = (LONGEST) RU;
6980
6981 /* NOTE on the above: Technically, C does not say what the results of
6982 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6983 number representable as a LONGEST (although either would probably work
6984 in most implementations). When RU>0, the locution in the then branch
6985 above is always equivalent to the negative of RU. */
6986
6987 if (new_k != NULL)
6988 *new_k = k;
6989 return 1;
6990 }
6991
6992 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6993 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6994 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6995
6996 static int
6997 ada_in_variant (LONGEST val, struct type *type, int field_num)
6998 {
6999 const char *name = TYPE_FIELD_NAME (type, field_num);
7000 int p;
7001
7002 p = 0;
7003 while (1)
7004 {
7005 switch (name[p])
7006 {
7007 case '\0':
7008 return 0;
7009 case 'S':
7010 {
7011 LONGEST W;
7012
7013 if (!ada_scan_number (name, p + 1, &W, &p))
7014 return 0;
7015 if (val == W)
7016 return 1;
7017 break;
7018 }
7019 case 'R':
7020 {
7021 LONGEST L, U;
7022
7023 if (!ada_scan_number (name, p + 1, &L, &p)
7024 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7025 return 0;
7026 if (val >= L && val <= U)
7027 return 1;
7028 break;
7029 }
7030 case 'O':
7031 return 1;
7032 default:
7033 return 0;
7034 }
7035 }
7036 }
7037
7038 /* FIXME: Lots of redundancy below. Try to consolidate. */
7039
7040 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7041 ARG_TYPE, extract and return the value of one of its (non-static)
7042 fields. FIELDNO says which field. Differs from value_primitive_field
7043 only in that it can handle packed values of arbitrary type. */
7044
7045 struct value *
7046 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7047 struct type *arg_type)
7048 {
7049 struct type *type;
7050
7051 arg_type = ada_check_typedef (arg_type);
7052 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7053
7054 /* Handle packed fields. It might be that the field is not packed
7055 relative to its containing structure, but the structure itself is
7056 packed; in this case we must take the bit-field path. */
7057 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7058 {
7059 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7060 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7061
7062 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7063 offset + bit_pos / 8,
7064 bit_pos % 8, bit_size, type);
7065 }
7066 else
7067 return value_primitive_field (arg1, offset, fieldno, arg_type);
7068 }
7069
7070 /* Find field with name NAME in object of type TYPE. If found,
7071 set the following for each argument that is non-null:
7072 - *FIELD_TYPE_P to the field's type;
7073 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7074 an object of that type;
7075 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7076 - *BIT_SIZE_P to its size in bits if the field is packed, and
7077 0 otherwise;
7078 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7079 fields up to but not including the desired field, or by the total
7080 number of fields if not found. A NULL value of NAME never
7081 matches; the function just counts visible fields in this case.
7082
7083 Notice that we need to handle when a tagged record hierarchy
7084 has some components with the same name, like in this scenario:
7085
7086 type Top_T is tagged record
7087 N : Integer := 1;
7088 U : Integer := 974;
7089 A : Integer := 48;
7090 end record;
7091
7092 type Middle_T is new Top.Top_T with record
7093 N : Character := 'a';
7094 C : Integer := 3;
7095 end record;
7096
7097 type Bottom_T is new Middle.Middle_T with record
7098 N : Float := 4.0;
7099 C : Character := '5';
7100 X : Integer := 6;
7101 A : Character := 'J';
7102 end record;
7103
7104 Let's say we now have a variable declared and initialized as follow:
7105
7106 TC : Top_A := new Bottom_T;
7107
7108 And then we use this variable to call this function
7109
7110 procedure Assign (Obj: in out Top_T; TV : Integer);
7111
7112 as follow:
7113
7114 Assign (Top_T (B), 12);
7115
7116 Now, we're in the debugger, and we're inside that procedure
7117 then and we want to print the value of obj.c:
7118
7119 Usually, the tagged record or one of the parent type owns the
7120 component to print and there's no issue but in this particular
7121 case, what does it mean to ask for Obj.C? Since the actual
7122 type for object is type Bottom_T, it could mean two things: type
7123 component C from the Middle_T view, but also component C from
7124 Bottom_T. So in that "undefined" case, when the component is
7125 not found in the non-resolved type (which includes all the
7126 components of the parent type), then resolve it and see if we
7127 get better luck once expanded.
7128
7129 In the case of homonyms in the derived tagged type, we don't
7130 guaranty anything, and pick the one that's easiest for us
7131 to program.
7132
7133 Returns 1 if found, 0 otherwise. */
7134
7135 static int
7136 find_struct_field (const char *name, struct type *type, int offset,
7137 struct type **field_type_p,
7138 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7139 int *index_p)
7140 {
7141 int i;
7142 int parent_offset = -1;
7143
7144 type = ada_check_typedef (type);
7145
7146 if (field_type_p != NULL)
7147 *field_type_p = NULL;
7148 if (byte_offset_p != NULL)
7149 *byte_offset_p = 0;
7150 if (bit_offset_p != NULL)
7151 *bit_offset_p = 0;
7152 if (bit_size_p != NULL)
7153 *bit_size_p = 0;
7154
7155 for (i = 0; i < type->num_fields (); i += 1)
7156 {
7157 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7158 int fld_offset = offset + bit_pos / 8;
7159 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7160
7161 if (t_field_name == NULL)
7162 continue;
7163
7164 else if (ada_is_parent_field (type, i))
7165 {
7166 /* This is a field pointing us to the parent type of a tagged
7167 type. As hinted in this function's documentation, we give
7168 preference to fields in the current record first, so what
7169 we do here is just record the index of this field before
7170 we skip it. If it turns out we couldn't find our field
7171 in the current record, then we'll get back to it and search
7172 inside it whether the field might exist in the parent. */
7173
7174 parent_offset = i;
7175 continue;
7176 }
7177
7178 else if (name != NULL && field_name_match (t_field_name, name))
7179 {
7180 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7181
7182 if (field_type_p != NULL)
7183 *field_type_p = TYPE_FIELD_TYPE (type, i);
7184 if (byte_offset_p != NULL)
7185 *byte_offset_p = fld_offset;
7186 if (bit_offset_p != NULL)
7187 *bit_offset_p = bit_pos % 8;
7188 if (bit_size_p != NULL)
7189 *bit_size_p = bit_size;
7190 return 1;
7191 }
7192 else if (ada_is_wrapper_field (type, i))
7193 {
7194 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7195 field_type_p, byte_offset_p, bit_offset_p,
7196 bit_size_p, index_p))
7197 return 1;
7198 }
7199 else if (ada_is_variant_part (type, i))
7200 {
7201 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7202 fixed type?? */
7203 int j;
7204 struct type *field_type
7205 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7206
7207 for (j = 0; j < field_type->num_fields (); j += 1)
7208 {
7209 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7210 fld_offset
7211 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7212 field_type_p, byte_offset_p,
7213 bit_offset_p, bit_size_p, index_p))
7214 return 1;
7215 }
7216 }
7217 else if (index_p != NULL)
7218 *index_p += 1;
7219 }
7220
7221 /* Field not found so far. If this is a tagged type which
7222 has a parent, try finding that field in the parent now. */
7223
7224 if (parent_offset != -1)
7225 {
7226 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7227 int fld_offset = offset + bit_pos / 8;
7228
7229 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7230 fld_offset, field_type_p, byte_offset_p,
7231 bit_offset_p, bit_size_p, index_p))
7232 return 1;
7233 }
7234
7235 return 0;
7236 }
7237
7238 /* Number of user-visible fields in record type TYPE. */
7239
7240 static int
7241 num_visible_fields (struct type *type)
7242 {
7243 int n;
7244
7245 n = 0;
7246 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7247 return n;
7248 }
7249
7250 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7251 and search in it assuming it has (class) type TYPE.
7252 If found, return value, else return NULL.
7253
7254 Searches recursively through wrapper fields (e.g., '_parent').
7255
7256 In the case of homonyms in the tagged types, please refer to the
7257 long explanation in find_struct_field's function documentation. */
7258
7259 static struct value *
7260 ada_search_struct_field (const char *name, struct value *arg, int offset,
7261 struct type *type)
7262 {
7263 int i;
7264 int parent_offset = -1;
7265
7266 type = ada_check_typedef (type);
7267 for (i = 0; i < type->num_fields (); i += 1)
7268 {
7269 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7270
7271 if (t_field_name == NULL)
7272 continue;
7273
7274 else if (ada_is_parent_field (type, i))
7275 {
7276 /* This is a field pointing us to the parent type of a tagged
7277 type. As hinted in this function's documentation, we give
7278 preference to fields in the current record first, so what
7279 we do here is just record the index of this field before
7280 we skip it. If it turns out we couldn't find our field
7281 in the current record, then we'll get back to it and search
7282 inside it whether the field might exist in the parent. */
7283
7284 parent_offset = i;
7285 continue;
7286 }
7287
7288 else if (field_name_match (t_field_name, name))
7289 return ada_value_primitive_field (arg, offset, i, type);
7290
7291 else if (ada_is_wrapper_field (type, i))
7292 {
7293 struct value *v = /* Do not let indent join lines here. */
7294 ada_search_struct_field (name, arg,
7295 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7296 TYPE_FIELD_TYPE (type, i));
7297
7298 if (v != NULL)
7299 return v;
7300 }
7301
7302 else if (ada_is_variant_part (type, i))
7303 {
7304 /* PNH: Do we ever get here? See find_struct_field. */
7305 int j;
7306 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7307 i));
7308 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7309
7310 for (j = 0; j < field_type->num_fields (); j += 1)
7311 {
7312 struct value *v = ada_search_struct_field /* Force line
7313 break. */
7314 (name, arg,
7315 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7316 TYPE_FIELD_TYPE (field_type, j));
7317
7318 if (v != NULL)
7319 return v;
7320 }
7321 }
7322 }
7323
7324 /* Field not found so far. If this is a tagged type which
7325 has a parent, try finding that field in the parent now. */
7326
7327 if (parent_offset != -1)
7328 {
7329 struct value *v = ada_search_struct_field (
7330 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7331 TYPE_FIELD_TYPE (type, parent_offset));
7332
7333 if (v != NULL)
7334 return v;
7335 }
7336
7337 return NULL;
7338 }
7339
7340 static struct value *ada_index_struct_field_1 (int *, struct value *,
7341 int, struct type *);
7342
7343
7344 /* Return field #INDEX in ARG, where the index is that returned by
7345 * find_struct_field through its INDEX_P argument. Adjust the address
7346 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7347 * If found, return value, else return NULL. */
7348
7349 static struct value *
7350 ada_index_struct_field (int index, struct value *arg, int offset,
7351 struct type *type)
7352 {
7353 return ada_index_struct_field_1 (&index, arg, offset, type);
7354 }
7355
7356
7357 /* Auxiliary function for ada_index_struct_field. Like
7358 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7359 * *INDEX_P. */
7360
7361 static struct value *
7362 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7363 struct type *type)
7364 {
7365 int i;
7366 type = ada_check_typedef (type);
7367
7368 for (i = 0; i < type->num_fields (); i += 1)
7369 {
7370 if (TYPE_FIELD_NAME (type, i) == NULL)
7371 continue;
7372 else if (ada_is_wrapper_field (type, i))
7373 {
7374 struct value *v = /* Do not let indent join lines here. */
7375 ada_index_struct_field_1 (index_p, arg,
7376 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7377 TYPE_FIELD_TYPE (type, i));
7378
7379 if (v != NULL)
7380 return v;
7381 }
7382
7383 else if (ada_is_variant_part (type, i))
7384 {
7385 /* PNH: Do we ever get here? See ada_search_struct_field,
7386 find_struct_field. */
7387 error (_("Cannot assign this kind of variant record"));
7388 }
7389 else if (*index_p == 0)
7390 return ada_value_primitive_field (arg, offset, i, type);
7391 else
7392 *index_p -= 1;
7393 }
7394 return NULL;
7395 }
7396
7397 /* Return a string representation of type TYPE. */
7398
7399 static std::string
7400 type_as_string (struct type *type)
7401 {
7402 string_file tmp_stream;
7403
7404 type_print (type, "", &tmp_stream, -1);
7405
7406 return std::move (tmp_stream.string ());
7407 }
7408
7409 /* Given a type TYPE, look up the type of the component of type named NAME.
7410 If DISPP is non-null, add its byte displacement from the beginning of a
7411 structure (pointed to by a value) of type TYPE to *DISPP (does not
7412 work for packed fields).
7413
7414 Matches any field whose name has NAME as a prefix, possibly
7415 followed by "___".
7416
7417 TYPE can be either a struct or union. If REFOK, TYPE may also
7418 be a (pointer or reference)+ to a struct or union, and the
7419 ultimate target type will be searched.
7420
7421 Looks recursively into variant clauses and parent types.
7422
7423 In the case of homonyms in the tagged types, please refer to the
7424 long explanation in find_struct_field's function documentation.
7425
7426 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7427 TYPE is not a type of the right kind. */
7428
7429 static struct type *
7430 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7431 int noerr)
7432 {
7433 int i;
7434 int parent_offset = -1;
7435
7436 if (name == NULL)
7437 goto BadName;
7438
7439 if (refok && type != NULL)
7440 while (1)
7441 {
7442 type = ada_check_typedef (type);
7443 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7444 break;
7445 type = TYPE_TARGET_TYPE (type);
7446 }
7447
7448 if (type == NULL
7449 || (type->code () != TYPE_CODE_STRUCT
7450 && type->code () != TYPE_CODE_UNION))
7451 {
7452 if (noerr)
7453 return NULL;
7454
7455 error (_("Type %s is not a structure or union type"),
7456 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7457 }
7458
7459 type = to_static_fixed_type (type);
7460
7461 for (i = 0; i < type->num_fields (); i += 1)
7462 {
7463 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7464 struct type *t;
7465
7466 if (t_field_name == NULL)
7467 continue;
7468
7469 else if (ada_is_parent_field (type, i))
7470 {
7471 /* This is a field pointing us to the parent type of a tagged
7472 type. As hinted in this function's documentation, we give
7473 preference to fields in the current record first, so what
7474 we do here is just record the index of this field before
7475 we skip it. If it turns out we couldn't find our field
7476 in the current record, then we'll get back to it and search
7477 inside it whether the field might exist in the parent. */
7478
7479 parent_offset = i;
7480 continue;
7481 }
7482
7483 else if (field_name_match (t_field_name, name))
7484 return TYPE_FIELD_TYPE (type, i);
7485
7486 else if (ada_is_wrapper_field (type, i))
7487 {
7488 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7489 0, 1);
7490 if (t != NULL)
7491 return t;
7492 }
7493
7494 else if (ada_is_variant_part (type, i))
7495 {
7496 int j;
7497 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7498 i));
7499
7500 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7501 {
7502 /* FIXME pnh 2008/01/26: We check for a field that is
7503 NOT wrapped in a struct, since the compiler sometimes
7504 generates these for unchecked variant types. Revisit
7505 if the compiler changes this practice. */
7506 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7507
7508 if (v_field_name != NULL
7509 && field_name_match (v_field_name, name))
7510 t = TYPE_FIELD_TYPE (field_type, j);
7511 else
7512 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7513 j),
7514 name, 0, 1);
7515
7516 if (t != NULL)
7517 return t;
7518 }
7519 }
7520
7521 }
7522
7523 /* Field not found so far. If this is a tagged type which
7524 has a parent, try finding that field in the parent now. */
7525
7526 if (parent_offset != -1)
7527 {
7528 struct type *t;
7529
7530 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7531 name, 0, 1);
7532 if (t != NULL)
7533 return t;
7534 }
7535
7536 BadName:
7537 if (!noerr)
7538 {
7539 const char *name_str = name != NULL ? name : _("<null>");
7540
7541 error (_("Type %s has no component named %s"),
7542 type_as_string (type).c_str (), name_str);
7543 }
7544
7545 return NULL;
7546 }
7547
7548 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7549 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7550 represents an unchecked union (that is, the variant part of a
7551 record that is named in an Unchecked_Union pragma). */
7552
7553 static int
7554 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7555 {
7556 const char *discrim_name = ada_variant_discrim_name (var_type);
7557
7558 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7559 }
7560
7561
7562 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7563 within OUTER, determine which variant clause (field number in VAR_TYPE,
7564 numbering from 0) is applicable. Returns -1 if none are. */
7565
7566 int
7567 ada_which_variant_applies (struct type *var_type, struct value *outer)
7568 {
7569 int others_clause;
7570 int i;
7571 const char *discrim_name = ada_variant_discrim_name (var_type);
7572 struct value *discrim;
7573 LONGEST discrim_val;
7574
7575 /* Using plain value_from_contents_and_address here causes problems
7576 because we will end up trying to resolve a type that is currently
7577 being constructed. */
7578 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7579 if (discrim == NULL)
7580 return -1;
7581 discrim_val = value_as_long (discrim);
7582
7583 others_clause = -1;
7584 for (i = 0; i < var_type->num_fields (); i += 1)
7585 {
7586 if (ada_is_others_clause (var_type, i))
7587 others_clause = i;
7588 else if (ada_in_variant (discrim_val, var_type, i))
7589 return i;
7590 }
7591
7592 return others_clause;
7593 }
7594 \f
7595
7596
7597 /* Dynamic-Sized Records */
7598
7599 /* Strategy: The type ostensibly attached to a value with dynamic size
7600 (i.e., a size that is not statically recorded in the debugging
7601 data) does not accurately reflect the size or layout of the value.
7602 Our strategy is to convert these values to values with accurate,
7603 conventional types that are constructed on the fly. */
7604
7605 /* There is a subtle and tricky problem here. In general, we cannot
7606 determine the size of dynamic records without its data. However,
7607 the 'struct value' data structure, which GDB uses to represent
7608 quantities in the inferior process (the target), requires the size
7609 of the type at the time of its allocation in order to reserve space
7610 for GDB's internal copy of the data. That's why the
7611 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7612 rather than struct value*s.
7613
7614 However, GDB's internal history variables ($1, $2, etc.) are
7615 struct value*s containing internal copies of the data that are not, in
7616 general, the same as the data at their corresponding addresses in
7617 the target. Fortunately, the types we give to these values are all
7618 conventional, fixed-size types (as per the strategy described
7619 above), so that we don't usually have to perform the
7620 'to_fixed_xxx_type' conversions to look at their values.
7621 Unfortunately, there is one exception: if one of the internal
7622 history variables is an array whose elements are unconstrained
7623 records, then we will need to create distinct fixed types for each
7624 element selected. */
7625
7626 /* The upshot of all of this is that many routines take a (type, host
7627 address, target address) triple as arguments to represent a value.
7628 The host address, if non-null, is supposed to contain an internal
7629 copy of the relevant data; otherwise, the program is to consult the
7630 target at the target address. */
7631
7632 /* Assuming that VAL0 represents a pointer value, the result of
7633 dereferencing it. Differs from value_ind in its treatment of
7634 dynamic-sized types. */
7635
7636 struct value *
7637 ada_value_ind (struct value *val0)
7638 {
7639 struct value *val = value_ind (val0);
7640
7641 if (ada_is_tagged_type (value_type (val), 0))
7642 val = ada_tag_value_at_base_address (val);
7643
7644 return ada_to_fixed_value (val);
7645 }
7646
7647 /* The value resulting from dereferencing any "reference to"
7648 qualifiers on VAL0. */
7649
7650 static struct value *
7651 ada_coerce_ref (struct value *val0)
7652 {
7653 if (value_type (val0)->code () == TYPE_CODE_REF)
7654 {
7655 struct value *val = val0;
7656
7657 val = coerce_ref (val);
7658
7659 if (ada_is_tagged_type (value_type (val), 0))
7660 val = ada_tag_value_at_base_address (val);
7661
7662 return ada_to_fixed_value (val);
7663 }
7664 else
7665 return val0;
7666 }
7667
7668 /* Return the bit alignment required for field #F of template type TYPE. */
7669
7670 static unsigned int
7671 field_alignment (struct type *type, int f)
7672 {
7673 const char *name = TYPE_FIELD_NAME (type, f);
7674 int len;
7675 int align_offset;
7676
7677 /* The field name should never be null, unless the debugging information
7678 is somehow malformed. In this case, we assume the field does not
7679 require any alignment. */
7680 if (name == NULL)
7681 return 1;
7682
7683 len = strlen (name);
7684
7685 if (!isdigit (name[len - 1]))
7686 return 1;
7687
7688 if (isdigit (name[len - 2]))
7689 align_offset = len - 2;
7690 else
7691 align_offset = len - 1;
7692
7693 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7694 return TARGET_CHAR_BIT;
7695
7696 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7697 }
7698
7699 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7700
7701 static struct symbol *
7702 ada_find_any_type_symbol (const char *name)
7703 {
7704 struct symbol *sym;
7705
7706 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7707 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7708 return sym;
7709
7710 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7711 return sym;
7712 }
7713
7714 /* Find a type named NAME. Ignores ambiguity. This routine will look
7715 solely for types defined by debug info, it will not search the GDB
7716 primitive types. */
7717
7718 static struct type *
7719 ada_find_any_type (const char *name)
7720 {
7721 struct symbol *sym = ada_find_any_type_symbol (name);
7722
7723 if (sym != NULL)
7724 return SYMBOL_TYPE (sym);
7725
7726 return NULL;
7727 }
7728
7729 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7730 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7731 symbol, in which case it is returned. Otherwise, this looks for
7732 symbols whose name is that of NAME_SYM suffixed with "___XR".
7733 Return symbol if found, and NULL otherwise. */
7734
7735 static bool
7736 ada_is_renaming_symbol (struct symbol *name_sym)
7737 {
7738 const char *name = name_sym->linkage_name ();
7739 return strstr (name, "___XR") != NULL;
7740 }
7741
7742 /* Because of GNAT encoding conventions, several GDB symbols may match a
7743 given type name. If the type denoted by TYPE0 is to be preferred to
7744 that of TYPE1 for purposes of type printing, return non-zero;
7745 otherwise return 0. */
7746
7747 int
7748 ada_prefer_type (struct type *type0, struct type *type1)
7749 {
7750 if (type1 == NULL)
7751 return 1;
7752 else if (type0 == NULL)
7753 return 0;
7754 else if (type1->code () == TYPE_CODE_VOID)
7755 return 1;
7756 else if (type0->code () == TYPE_CODE_VOID)
7757 return 0;
7758 else if (type1->name () == NULL && type0->name () != NULL)
7759 return 1;
7760 else if (ada_is_constrained_packed_array_type (type0))
7761 return 1;
7762 else if (ada_is_array_descriptor_type (type0)
7763 && !ada_is_array_descriptor_type (type1))
7764 return 1;
7765 else
7766 {
7767 const char *type0_name = type0->name ();
7768 const char *type1_name = type1->name ();
7769
7770 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7771 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7772 return 1;
7773 }
7774 return 0;
7775 }
7776
7777 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7778 null. */
7779
7780 const char *
7781 ada_type_name (struct type *type)
7782 {
7783 if (type == NULL)
7784 return NULL;
7785 return type->name ();
7786 }
7787
7788 /* Search the list of "descriptive" types associated to TYPE for a type
7789 whose name is NAME. */
7790
7791 static struct type *
7792 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7793 {
7794 struct type *result, *tmp;
7795
7796 if (ada_ignore_descriptive_types_p)
7797 return NULL;
7798
7799 /* If there no descriptive-type info, then there is no parallel type
7800 to be found. */
7801 if (!HAVE_GNAT_AUX_INFO (type))
7802 return NULL;
7803
7804 result = TYPE_DESCRIPTIVE_TYPE (type);
7805 while (result != NULL)
7806 {
7807 const char *result_name = ada_type_name (result);
7808
7809 if (result_name == NULL)
7810 {
7811 warning (_("unexpected null name on descriptive type"));
7812 return NULL;
7813 }
7814
7815 /* If the names match, stop. */
7816 if (strcmp (result_name, name) == 0)
7817 break;
7818
7819 /* Otherwise, look at the next item on the list, if any. */
7820 if (HAVE_GNAT_AUX_INFO (result))
7821 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7822 else
7823 tmp = NULL;
7824
7825 /* If not found either, try after having resolved the typedef. */
7826 if (tmp != NULL)
7827 result = tmp;
7828 else
7829 {
7830 result = check_typedef (result);
7831 if (HAVE_GNAT_AUX_INFO (result))
7832 result = TYPE_DESCRIPTIVE_TYPE (result);
7833 else
7834 result = NULL;
7835 }
7836 }
7837
7838 /* If we didn't find a match, see whether this is a packed array. With
7839 older compilers, the descriptive type information is either absent or
7840 irrelevant when it comes to packed arrays so the above lookup fails.
7841 Fall back to using a parallel lookup by name in this case. */
7842 if (result == NULL && ada_is_constrained_packed_array_type (type))
7843 return ada_find_any_type (name);
7844
7845 return result;
7846 }
7847
7848 /* Find a parallel type to TYPE with the specified NAME, using the
7849 descriptive type taken from the debugging information, if available,
7850 and otherwise using the (slower) name-based method. */
7851
7852 static struct type *
7853 ada_find_parallel_type_with_name (struct type *type, const char *name)
7854 {
7855 struct type *result = NULL;
7856
7857 if (HAVE_GNAT_AUX_INFO (type))
7858 result = find_parallel_type_by_descriptive_type (type, name);
7859 else
7860 result = ada_find_any_type (name);
7861
7862 return result;
7863 }
7864
7865 /* Same as above, but specify the name of the parallel type by appending
7866 SUFFIX to the name of TYPE. */
7867
7868 struct type *
7869 ada_find_parallel_type (struct type *type, const char *suffix)
7870 {
7871 char *name;
7872 const char *type_name = ada_type_name (type);
7873 int len;
7874
7875 if (type_name == NULL)
7876 return NULL;
7877
7878 len = strlen (type_name);
7879
7880 name = (char *) alloca (len + strlen (suffix) + 1);
7881
7882 strcpy (name, type_name);
7883 strcpy (name + len, suffix);
7884
7885 return ada_find_parallel_type_with_name (type, name);
7886 }
7887
7888 /* If TYPE is a variable-size record type, return the corresponding template
7889 type describing its fields. Otherwise, return NULL. */
7890
7891 static struct type *
7892 dynamic_template_type (struct type *type)
7893 {
7894 type = ada_check_typedef (type);
7895
7896 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7897 || ada_type_name (type) == NULL)
7898 return NULL;
7899 else
7900 {
7901 int len = strlen (ada_type_name (type));
7902
7903 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7904 return type;
7905 else
7906 return ada_find_parallel_type (type, "___XVE");
7907 }
7908 }
7909
7910 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7911 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7912
7913 static int
7914 is_dynamic_field (struct type *templ_type, int field_num)
7915 {
7916 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7917
7918 return name != NULL
7919 && TYPE_FIELD_TYPE (templ_type, field_num)->code () == TYPE_CODE_PTR
7920 && strstr (name, "___XVL") != NULL;
7921 }
7922
7923 /* The index of the variant field of TYPE, or -1 if TYPE does not
7924 represent a variant record type. */
7925
7926 static int
7927 variant_field_index (struct type *type)
7928 {
7929 int f;
7930
7931 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7932 return -1;
7933
7934 for (f = 0; f < type->num_fields (); f += 1)
7935 {
7936 if (ada_is_variant_part (type, f))
7937 return f;
7938 }
7939 return -1;
7940 }
7941
7942 /* A record type with no fields. */
7943
7944 static struct type *
7945 empty_record (struct type *templ)
7946 {
7947 struct type *type = alloc_type_copy (templ);
7948
7949 type->set_code (TYPE_CODE_STRUCT);
7950 INIT_NONE_SPECIFIC (type);
7951 type->set_name ("<empty>");
7952 TYPE_LENGTH (type) = 0;
7953 return type;
7954 }
7955
7956 /* An ordinary record type (with fixed-length fields) that describes
7957 the value of type TYPE at VALADDR or ADDRESS (see comments at
7958 the beginning of this section) VAL according to GNAT conventions.
7959 DVAL0 should describe the (portion of a) record that contains any
7960 necessary discriminants. It should be NULL if value_type (VAL) is
7961 an outer-level type (i.e., as opposed to a branch of a variant.) A
7962 variant field (unless unchecked) is replaced by a particular branch
7963 of the variant.
7964
7965 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7966 length are not statically known are discarded. As a consequence,
7967 VALADDR, ADDRESS and DVAL0 are ignored.
7968
7969 NOTE: Limitations: For now, we assume that dynamic fields and
7970 variants occupy whole numbers of bytes. However, they need not be
7971 byte-aligned. */
7972
7973 struct type *
7974 ada_template_to_fixed_record_type_1 (struct type *type,
7975 const gdb_byte *valaddr,
7976 CORE_ADDR address, struct value *dval0,
7977 int keep_dynamic_fields)
7978 {
7979 struct value *mark = value_mark ();
7980 struct value *dval;
7981 struct type *rtype;
7982 int nfields, bit_len;
7983 int variant_field;
7984 long off;
7985 int fld_bit_len;
7986 int f;
7987
7988 /* Compute the number of fields in this record type that are going
7989 to be processed: unless keep_dynamic_fields, this includes only
7990 fields whose position and length are static will be processed. */
7991 if (keep_dynamic_fields)
7992 nfields = type->num_fields ();
7993 else
7994 {
7995 nfields = 0;
7996 while (nfields < type->num_fields ()
7997 && !ada_is_variant_part (type, nfields)
7998 && !is_dynamic_field (type, nfields))
7999 nfields++;
8000 }
8001
8002 rtype = alloc_type_copy (type);
8003 rtype->set_code (TYPE_CODE_STRUCT);
8004 INIT_NONE_SPECIFIC (rtype);
8005 rtype->set_num_fields (nfields);
8006 rtype->set_fields
8007 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
8008 rtype->set_name (ada_type_name (type));
8009 TYPE_FIXED_INSTANCE (rtype) = 1;
8010
8011 off = 0;
8012 bit_len = 0;
8013 variant_field = -1;
8014
8015 for (f = 0; f < nfields; f += 1)
8016 {
8017 off = align_up (off, field_alignment (type, f))
8018 + TYPE_FIELD_BITPOS (type, f);
8019 SET_FIELD_BITPOS (rtype->field (f), off);
8020 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8021
8022 if (ada_is_variant_part (type, f))
8023 {
8024 variant_field = f;
8025 fld_bit_len = 0;
8026 }
8027 else if (is_dynamic_field (type, f))
8028 {
8029 const gdb_byte *field_valaddr = valaddr;
8030 CORE_ADDR field_address = address;
8031 struct type *field_type =
8032 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8033
8034 if (dval0 == NULL)
8035 {
8036 /* rtype's length is computed based on the run-time
8037 value of discriminants. If the discriminants are not
8038 initialized, the type size may be completely bogus and
8039 GDB may fail to allocate a value for it. So check the
8040 size first before creating the value. */
8041 ada_ensure_varsize_limit (rtype);
8042 /* Using plain value_from_contents_and_address here
8043 causes problems because we will end up trying to
8044 resolve a type that is currently being
8045 constructed. */
8046 dval = value_from_contents_and_address_unresolved (rtype,
8047 valaddr,
8048 address);
8049 rtype = value_type (dval);
8050 }
8051 else
8052 dval = dval0;
8053
8054 /* If the type referenced by this field is an aligner type, we need
8055 to unwrap that aligner type, because its size might not be set.
8056 Keeping the aligner type would cause us to compute the wrong
8057 size for this field, impacting the offset of the all the fields
8058 that follow this one. */
8059 if (ada_is_aligner_type (field_type))
8060 {
8061 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8062
8063 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8064 field_address = cond_offset_target (field_address, field_offset);
8065 field_type = ada_aligned_type (field_type);
8066 }
8067
8068 field_valaddr = cond_offset_host (field_valaddr,
8069 off / TARGET_CHAR_BIT);
8070 field_address = cond_offset_target (field_address,
8071 off / TARGET_CHAR_BIT);
8072
8073 /* Get the fixed type of the field. Note that, in this case,
8074 we do not want to get the real type out of the tag: if
8075 the current field is the parent part of a tagged record,
8076 we will get the tag of the object. Clearly wrong: the real
8077 type of the parent is not the real type of the child. We
8078 would end up in an infinite loop. */
8079 field_type = ada_get_base_type (field_type);
8080 field_type = ada_to_fixed_type (field_type, field_valaddr,
8081 field_address, dval, 0);
8082 /* If the field size is already larger than the maximum
8083 object size, then the record itself will necessarily
8084 be larger than the maximum object size. We need to make
8085 this check now, because the size might be so ridiculously
8086 large (due to an uninitialized variable in the inferior)
8087 that it would cause an overflow when adding it to the
8088 record size. */
8089 ada_ensure_varsize_limit (field_type);
8090
8091 TYPE_FIELD_TYPE (rtype, f) = field_type;
8092 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8093 /* The multiplication can potentially overflow. But because
8094 the field length has been size-checked just above, and
8095 assuming that the maximum size is a reasonable value,
8096 an overflow should not happen in practice. So rather than
8097 adding overflow recovery code to this already complex code,
8098 we just assume that it's not going to happen. */
8099 fld_bit_len =
8100 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8101 }
8102 else
8103 {
8104 /* Note: If this field's type is a typedef, it is important
8105 to preserve the typedef layer.
8106
8107 Otherwise, we might be transforming a typedef to a fat
8108 pointer (encoding a pointer to an unconstrained array),
8109 into a basic fat pointer (encoding an unconstrained
8110 array). As both types are implemented using the same
8111 structure, the typedef is the only clue which allows us
8112 to distinguish between the two options. Stripping it
8113 would prevent us from printing this field appropriately. */
8114 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8115 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8116 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8117 fld_bit_len =
8118 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8119 else
8120 {
8121 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8122
8123 /* We need to be careful of typedefs when computing
8124 the length of our field. If this is a typedef,
8125 get the length of the target type, not the length
8126 of the typedef. */
8127 if (field_type->code () == TYPE_CODE_TYPEDEF)
8128 field_type = ada_typedef_target_type (field_type);
8129
8130 fld_bit_len =
8131 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8132 }
8133 }
8134 if (off + fld_bit_len > bit_len)
8135 bit_len = off + fld_bit_len;
8136 off += fld_bit_len;
8137 TYPE_LENGTH (rtype) =
8138 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8139 }
8140
8141 /* We handle the variant part, if any, at the end because of certain
8142 odd cases in which it is re-ordered so as NOT to be the last field of
8143 the record. This can happen in the presence of representation
8144 clauses. */
8145 if (variant_field >= 0)
8146 {
8147 struct type *branch_type;
8148
8149 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8150
8151 if (dval0 == NULL)
8152 {
8153 /* Using plain value_from_contents_and_address here causes
8154 problems because we will end up trying to resolve a type
8155 that is currently being constructed. */
8156 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8157 address);
8158 rtype = value_type (dval);
8159 }
8160 else
8161 dval = dval0;
8162
8163 branch_type =
8164 to_fixed_variant_branch_type
8165 (TYPE_FIELD_TYPE (type, variant_field),
8166 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8167 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8168 if (branch_type == NULL)
8169 {
8170 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8171 rtype->field (f - 1) = rtype->field (f);
8172 rtype->set_num_fields (rtype->num_fields () - 1);
8173 }
8174 else
8175 {
8176 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8177 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8178 fld_bit_len =
8179 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8180 TARGET_CHAR_BIT;
8181 if (off + fld_bit_len > bit_len)
8182 bit_len = off + fld_bit_len;
8183 TYPE_LENGTH (rtype) =
8184 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8185 }
8186 }
8187
8188 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8189 should contain the alignment of that record, which should be a strictly
8190 positive value. If null or negative, then something is wrong, most
8191 probably in the debug info. In that case, we don't round up the size
8192 of the resulting type. If this record is not part of another structure,
8193 the current RTYPE length might be good enough for our purposes. */
8194 if (TYPE_LENGTH (type) <= 0)
8195 {
8196 if (rtype->name ())
8197 warning (_("Invalid type size for `%s' detected: %s."),
8198 rtype->name (), pulongest (TYPE_LENGTH (type)));
8199 else
8200 warning (_("Invalid type size for <unnamed> detected: %s."),
8201 pulongest (TYPE_LENGTH (type)));
8202 }
8203 else
8204 {
8205 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8206 TYPE_LENGTH (type));
8207 }
8208
8209 value_free_to_mark (mark);
8210 if (TYPE_LENGTH (rtype) > varsize_limit)
8211 error (_("record type with dynamic size is larger than varsize-limit"));
8212 return rtype;
8213 }
8214
8215 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8216 of 1. */
8217
8218 static struct type *
8219 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8220 CORE_ADDR address, struct value *dval0)
8221 {
8222 return ada_template_to_fixed_record_type_1 (type, valaddr,
8223 address, dval0, 1);
8224 }
8225
8226 /* An ordinary record type in which ___XVL-convention fields and
8227 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8228 static approximations, containing all possible fields. Uses
8229 no runtime values. Useless for use in values, but that's OK,
8230 since the results are used only for type determinations. Works on both
8231 structs and unions. Representation note: to save space, we memorize
8232 the result of this function in the TYPE_TARGET_TYPE of the
8233 template type. */
8234
8235 static struct type *
8236 template_to_static_fixed_type (struct type *type0)
8237 {
8238 struct type *type;
8239 int nfields;
8240 int f;
8241
8242 /* No need no do anything if the input type is already fixed. */
8243 if (TYPE_FIXED_INSTANCE (type0))
8244 return type0;
8245
8246 /* Likewise if we already have computed the static approximation. */
8247 if (TYPE_TARGET_TYPE (type0) != NULL)
8248 return TYPE_TARGET_TYPE (type0);
8249
8250 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8251 type = type0;
8252 nfields = type0->num_fields ();
8253
8254 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8255 recompute all over next time. */
8256 TYPE_TARGET_TYPE (type0) = type;
8257
8258 for (f = 0; f < nfields; f += 1)
8259 {
8260 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8261 struct type *new_type;
8262
8263 if (is_dynamic_field (type0, f))
8264 {
8265 field_type = ada_check_typedef (field_type);
8266 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8267 }
8268 else
8269 new_type = static_unwrap_type (field_type);
8270
8271 if (new_type != field_type)
8272 {
8273 /* Clone TYPE0 only the first time we get a new field type. */
8274 if (type == type0)
8275 {
8276 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8277 type->set_code (type0->code ());
8278 INIT_NONE_SPECIFIC (type);
8279 type->set_num_fields (nfields);
8280
8281 field *fields =
8282 ((struct field *)
8283 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8284 memcpy (fields, type0->fields (),
8285 sizeof (struct field) * nfields);
8286 type->set_fields (fields);
8287
8288 type->set_name (ada_type_name (type0));
8289 TYPE_FIXED_INSTANCE (type) = 1;
8290 TYPE_LENGTH (type) = 0;
8291 }
8292 TYPE_FIELD_TYPE (type, f) = new_type;
8293 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8294 }
8295 }
8296
8297 return type;
8298 }
8299
8300 /* Given an object of type TYPE whose contents are at VALADDR and
8301 whose address in memory is ADDRESS, returns a revision of TYPE,
8302 which should be a non-dynamic-sized record, in which the variant
8303 part, if any, is replaced with the appropriate branch. Looks
8304 for discriminant values in DVAL0, which can be NULL if the record
8305 contains the necessary discriminant values. */
8306
8307 static struct type *
8308 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8309 CORE_ADDR address, struct value *dval0)
8310 {
8311 struct value *mark = value_mark ();
8312 struct value *dval;
8313 struct type *rtype;
8314 struct type *branch_type;
8315 int nfields = type->num_fields ();
8316 int variant_field = variant_field_index (type);
8317
8318 if (variant_field == -1)
8319 return type;
8320
8321 if (dval0 == NULL)
8322 {
8323 dval = value_from_contents_and_address (type, valaddr, address);
8324 type = value_type (dval);
8325 }
8326 else
8327 dval = dval0;
8328
8329 rtype = alloc_type_copy (type);
8330 rtype->set_code (TYPE_CODE_STRUCT);
8331 INIT_NONE_SPECIFIC (rtype);
8332 rtype->set_num_fields (nfields);
8333
8334 field *fields =
8335 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8336 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8337 rtype->set_fields (fields);
8338
8339 rtype->set_name (ada_type_name (type));
8340 TYPE_FIXED_INSTANCE (rtype) = 1;
8341 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8342
8343 branch_type = to_fixed_variant_branch_type
8344 (TYPE_FIELD_TYPE (type, variant_field),
8345 cond_offset_host (valaddr,
8346 TYPE_FIELD_BITPOS (type, variant_field)
8347 / TARGET_CHAR_BIT),
8348 cond_offset_target (address,
8349 TYPE_FIELD_BITPOS (type, variant_field)
8350 / TARGET_CHAR_BIT), dval);
8351 if (branch_type == NULL)
8352 {
8353 int f;
8354
8355 for (f = variant_field + 1; f < nfields; f += 1)
8356 rtype->field (f - 1) = rtype->field (f);
8357 rtype->set_num_fields (rtype->num_fields () - 1);
8358 }
8359 else
8360 {
8361 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8362 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8363 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8364 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8365 }
8366 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8367
8368 value_free_to_mark (mark);
8369 return rtype;
8370 }
8371
8372 /* An ordinary record type (with fixed-length fields) that describes
8373 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8374 beginning of this section]. Any necessary discriminants' values
8375 should be in DVAL, a record value; it may be NULL if the object
8376 at ADDR itself contains any necessary discriminant values.
8377 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8378 values from the record are needed. Except in the case that DVAL,
8379 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8380 unchecked) is replaced by a particular branch of the variant.
8381
8382 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8383 is questionable and may be removed. It can arise during the
8384 processing of an unconstrained-array-of-record type where all the
8385 variant branches have exactly the same size. This is because in
8386 such cases, the compiler does not bother to use the XVS convention
8387 when encoding the record. I am currently dubious of this
8388 shortcut and suspect the compiler should be altered. FIXME. */
8389
8390 static struct type *
8391 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8392 CORE_ADDR address, struct value *dval)
8393 {
8394 struct type *templ_type;
8395
8396 if (TYPE_FIXED_INSTANCE (type0))
8397 return type0;
8398
8399 templ_type = dynamic_template_type (type0);
8400
8401 if (templ_type != NULL)
8402 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8403 else if (variant_field_index (type0) >= 0)
8404 {
8405 if (dval == NULL && valaddr == NULL && address == 0)
8406 return type0;
8407 return to_record_with_fixed_variant_part (type0, valaddr, address,
8408 dval);
8409 }
8410 else
8411 {
8412 TYPE_FIXED_INSTANCE (type0) = 1;
8413 return type0;
8414 }
8415
8416 }
8417
8418 /* An ordinary record type (with fixed-length fields) that describes
8419 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8420 union type. Any necessary discriminants' values should be in DVAL,
8421 a record value. That is, this routine selects the appropriate
8422 branch of the union at ADDR according to the discriminant value
8423 indicated in the union's type name. Returns VAR_TYPE0 itself if
8424 it represents a variant subject to a pragma Unchecked_Union. */
8425
8426 static struct type *
8427 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8428 CORE_ADDR address, struct value *dval)
8429 {
8430 int which;
8431 struct type *templ_type;
8432 struct type *var_type;
8433
8434 if (var_type0->code () == TYPE_CODE_PTR)
8435 var_type = TYPE_TARGET_TYPE (var_type0);
8436 else
8437 var_type = var_type0;
8438
8439 templ_type = ada_find_parallel_type (var_type, "___XVU");
8440
8441 if (templ_type != NULL)
8442 var_type = templ_type;
8443
8444 if (is_unchecked_variant (var_type, value_type (dval)))
8445 return var_type0;
8446 which = ada_which_variant_applies (var_type, dval);
8447
8448 if (which < 0)
8449 return empty_record (var_type);
8450 else if (is_dynamic_field (var_type, which))
8451 return to_fixed_record_type
8452 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8453 valaddr, address, dval);
8454 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8455 return
8456 to_fixed_record_type
8457 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8458 else
8459 return TYPE_FIELD_TYPE (var_type, which);
8460 }
8461
8462 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8463 ENCODING_TYPE, a type following the GNAT conventions for discrete
8464 type encodings, only carries redundant information. */
8465
8466 static int
8467 ada_is_redundant_range_encoding (struct type *range_type,
8468 struct type *encoding_type)
8469 {
8470 const char *bounds_str;
8471 int n;
8472 LONGEST lo, hi;
8473
8474 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8475
8476 if (get_base_type (range_type)->code ()
8477 != get_base_type (encoding_type)->code ())
8478 {
8479 /* The compiler probably used a simple base type to describe
8480 the range type instead of the range's actual base type,
8481 expecting us to get the real base type from the encoding
8482 anyway. In this situation, the encoding cannot be ignored
8483 as redundant. */
8484 return 0;
8485 }
8486
8487 if (is_dynamic_type (range_type))
8488 return 0;
8489
8490 if (encoding_type->name () == NULL)
8491 return 0;
8492
8493 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8494 if (bounds_str == NULL)
8495 return 0;
8496
8497 n = 8; /* Skip "___XDLU_". */
8498 if (!ada_scan_number (bounds_str, n, &lo, &n))
8499 return 0;
8500 if (TYPE_LOW_BOUND (range_type) != lo)
8501 return 0;
8502
8503 n += 2; /* Skip the "__" separator between the two bounds. */
8504 if (!ada_scan_number (bounds_str, n, &hi, &n))
8505 return 0;
8506 if (TYPE_HIGH_BOUND (range_type) != hi)
8507 return 0;
8508
8509 return 1;
8510 }
8511
8512 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8513 a type following the GNAT encoding for describing array type
8514 indices, only carries redundant information. */
8515
8516 static int
8517 ada_is_redundant_index_type_desc (struct type *array_type,
8518 struct type *desc_type)
8519 {
8520 struct type *this_layer = check_typedef (array_type);
8521 int i;
8522
8523 for (i = 0; i < desc_type->num_fields (); i++)
8524 {
8525 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8526 TYPE_FIELD_TYPE (desc_type, i)))
8527 return 0;
8528 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8529 }
8530
8531 return 1;
8532 }
8533
8534 /* Assuming that TYPE0 is an array type describing the type of a value
8535 at ADDR, and that DVAL describes a record containing any
8536 discriminants used in TYPE0, returns a type for the value that
8537 contains no dynamic components (that is, no components whose sizes
8538 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8539 true, gives an error message if the resulting type's size is over
8540 varsize_limit. */
8541
8542 static struct type *
8543 to_fixed_array_type (struct type *type0, struct value *dval,
8544 int ignore_too_big)
8545 {
8546 struct type *index_type_desc;
8547 struct type *result;
8548 int constrained_packed_array_p;
8549 static const char *xa_suffix = "___XA";
8550
8551 type0 = ada_check_typedef (type0);
8552 if (TYPE_FIXED_INSTANCE (type0))
8553 return type0;
8554
8555 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8556 if (constrained_packed_array_p)
8557 type0 = decode_constrained_packed_array_type (type0);
8558
8559 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8560
8561 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8562 encoding suffixed with 'P' may still be generated. If so,
8563 it should be used to find the XA type. */
8564
8565 if (index_type_desc == NULL)
8566 {
8567 const char *type_name = ada_type_name (type0);
8568
8569 if (type_name != NULL)
8570 {
8571 const int len = strlen (type_name);
8572 char *name = (char *) alloca (len + strlen (xa_suffix));
8573
8574 if (type_name[len - 1] == 'P')
8575 {
8576 strcpy (name, type_name);
8577 strcpy (name + len - 1, xa_suffix);
8578 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8579 }
8580 }
8581 }
8582
8583 ada_fixup_array_indexes_type (index_type_desc);
8584 if (index_type_desc != NULL
8585 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8586 {
8587 /* Ignore this ___XA parallel type, as it does not bring any
8588 useful information. This allows us to avoid creating fixed
8589 versions of the array's index types, which would be identical
8590 to the original ones. This, in turn, can also help avoid
8591 the creation of fixed versions of the array itself. */
8592 index_type_desc = NULL;
8593 }
8594
8595 if (index_type_desc == NULL)
8596 {
8597 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8598
8599 /* NOTE: elt_type---the fixed version of elt_type0---should never
8600 depend on the contents of the array in properly constructed
8601 debugging data. */
8602 /* Create a fixed version of the array element type.
8603 We're not providing the address of an element here,
8604 and thus the actual object value cannot be inspected to do
8605 the conversion. This should not be a problem, since arrays of
8606 unconstrained objects are not allowed. In particular, all
8607 the elements of an array of a tagged type should all be of
8608 the same type specified in the debugging info. No need to
8609 consult the object tag. */
8610 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8611
8612 /* Make sure we always create a new array type when dealing with
8613 packed array types, since we're going to fix-up the array
8614 type length and element bitsize a little further down. */
8615 if (elt_type0 == elt_type && !constrained_packed_array_p)
8616 result = type0;
8617 else
8618 result = create_array_type (alloc_type_copy (type0),
8619 elt_type, TYPE_INDEX_TYPE (type0));
8620 }
8621 else
8622 {
8623 int i;
8624 struct type *elt_type0;
8625
8626 elt_type0 = type0;
8627 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8628 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8629
8630 /* NOTE: result---the fixed version of elt_type0---should never
8631 depend on the contents of the array in properly constructed
8632 debugging data. */
8633 /* Create a fixed version of the array element type.
8634 We're not providing the address of an element here,
8635 and thus the actual object value cannot be inspected to do
8636 the conversion. This should not be a problem, since arrays of
8637 unconstrained objects are not allowed. In particular, all
8638 the elements of an array of a tagged type should all be of
8639 the same type specified in the debugging info. No need to
8640 consult the object tag. */
8641 result =
8642 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8643
8644 elt_type0 = type0;
8645 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8646 {
8647 struct type *range_type =
8648 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8649
8650 result = create_array_type (alloc_type_copy (elt_type0),
8651 result, range_type);
8652 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8653 }
8654 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8655 error (_("array type with dynamic size is larger than varsize-limit"));
8656 }
8657
8658 /* We want to preserve the type name. This can be useful when
8659 trying to get the type name of a value that has already been
8660 printed (for instance, if the user did "print VAR; whatis $". */
8661 result->set_name (type0->name ());
8662
8663 if (constrained_packed_array_p)
8664 {
8665 /* So far, the resulting type has been created as if the original
8666 type was a regular (non-packed) array type. As a result, the
8667 bitsize of the array elements needs to be set again, and the array
8668 length needs to be recomputed based on that bitsize. */
8669 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8670 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8671
8672 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8673 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8674 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8675 TYPE_LENGTH (result)++;
8676 }
8677
8678 TYPE_FIXED_INSTANCE (result) = 1;
8679 return result;
8680 }
8681
8682
8683 /* A standard type (containing no dynamically sized components)
8684 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8685 DVAL describes a record containing any discriminants used in TYPE0,
8686 and may be NULL if there are none, or if the object of type TYPE at
8687 ADDRESS or in VALADDR contains these discriminants.
8688
8689 If CHECK_TAG is not null, in the case of tagged types, this function
8690 attempts to locate the object's tag and use it to compute the actual
8691 type. However, when ADDRESS is null, we cannot use it to determine the
8692 location of the tag, and therefore compute the tagged type's actual type.
8693 So we return the tagged type without consulting the tag. */
8694
8695 static struct type *
8696 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8697 CORE_ADDR address, struct value *dval, int check_tag)
8698 {
8699 type = ada_check_typedef (type);
8700
8701 /* Only un-fixed types need to be handled here. */
8702 if (!HAVE_GNAT_AUX_INFO (type))
8703 return type;
8704
8705 switch (type->code ())
8706 {
8707 default:
8708 return type;
8709 case TYPE_CODE_STRUCT:
8710 {
8711 struct type *static_type = to_static_fixed_type (type);
8712 struct type *fixed_record_type =
8713 to_fixed_record_type (type, valaddr, address, NULL);
8714
8715 /* If STATIC_TYPE is a tagged type and we know the object's address,
8716 then we can determine its tag, and compute the object's actual
8717 type from there. Note that we have to use the fixed record
8718 type (the parent part of the record may have dynamic fields
8719 and the way the location of _tag is expressed may depend on
8720 them). */
8721
8722 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8723 {
8724 struct value *tag =
8725 value_tag_from_contents_and_address
8726 (fixed_record_type,
8727 valaddr,
8728 address);
8729 struct type *real_type = type_from_tag (tag);
8730 struct value *obj =
8731 value_from_contents_and_address (fixed_record_type,
8732 valaddr,
8733 address);
8734 fixed_record_type = value_type (obj);
8735 if (real_type != NULL)
8736 return to_fixed_record_type
8737 (real_type, NULL,
8738 value_address (ada_tag_value_at_base_address (obj)), NULL);
8739 }
8740
8741 /* Check to see if there is a parallel ___XVZ variable.
8742 If there is, then it provides the actual size of our type. */
8743 else if (ada_type_name (fixed_record_type) != NULL)
8744 {
8745 const char *name = ada_type_name (fixed_record_type);
8746 char *xvz_name
8747 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8748 bool xvz_found = false;
8749 LONGEST size;
8750
8751 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8752 try
8753 {
8754 xvz_found = get_int_var_value (xvz_name, size);
8755 }
8756 catch (const gdb_exception_error &except)
8757 {
8758 /* We found the variable, but somehow failed to read
8759 its value. Rethrow the same error, but with a little
8760 bit more information, to help the user understand
8761 what went wrong (Eg: the variable might have been
8762 optimized out). */
8763 throw_error (except.error,
8764 _("unable to read value of %s (%s)"),
8765 xvz_name, except.what ());
8766 }
8767
8768 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8769 {
8770 fixed_record_type = copy_type (fixed_record_type);
8771 TYPE_LENGTH (fixed_record_type) = size;
8772
8773 /* The FIXED_RECORD_TYPE may have be a stub. We have
8774 observed this when the debugging info is STABS, and
8775 apparently it is something that is hard to fix.
8776
8777 In practice, we don't need the actual type definition
8778 at all, because the presence of the XVZ variable allows us
8779 to assume that there must be a XVS type as well, which we
8780 should be able to use later, when we need the actual type
8781 definition.
8782
8783 In the meantime, pretend that the "fixed" type we are
8784 returning is NOT a stub, because this can cause trouble
8785 when using this type to create new types targeting it.
8786 Indeed, the associated creation routines often check
8787 whether the target type is a stub and will try to replace
8788 it, thus using a type with the wrong size. This, in turn,
8789 might cause the new type to have the wrong size too.
8790 Consider the case of an array, for instance, where the size
8791 of the array is computed from the number of elements in
8792 our array multiplied by the size of its element. */
8793 TYPE_STUB (fixed_record_type) = 0;
8794 }
8795 }
8796 return fixed_record_type;
8797 }
8798 case TYPE_CODE_ARRAY:
8799 return to_fixed_array_type (type, dval, 1);
8800 case TYPE_CODE_UNION:
8801 if (dval == NULL)
8802 return type;
8803 else
8804 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8805 }
8806 }
8807
8808 /* The same as ada_to_fixed_type_1, except that it preserves the type
8809 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8810
8811 The typedef layer needs be preserved in order to differentiate between
8812 arrays and array pointers when both types are implemented using the same
8813 fat pointer. In the array pointer case, the pointer is encoded as
8814 a typedef of the pointer type. For instance, considering:
8815
8816 type String_Access is access String;
8817 S1 : String_Access := null;
8818
8819 To the debugger, S1 is defined as a typedef of type String. But
8820 to the user, it is a pointer. So if the user tries to print S1,
8821 we should not dereference the array, but print the array address
8822 instead.
8823
8824 If we didn't preserve the typedef layer, we would lose the fact that
8825 the type is to be presented as a pointer (needs de-reference before
8826 being printed). And we would also use the source-level type name. */
8827
8828 struct type *
8829 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8830 CORE_ADDR address, struct value *dval, int check_tag)
8831
8832 {
8833 struct type *fixed_type =
8834 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8835
8836 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8837 then preserve the typedef layer.
8838
8839 Implementation note: We can only check the main-type portion of
8840 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8841 from TYPE now returns a type that has the same instance flags
8842 as TYPE. For instance, if TYPE is a "typedef const", and its
8843 target type is a "struct", then the typedef elimination will return
8844 a "const" version of the target type. See check_typedef for more
8845 details about how the typedef layer elimination is done.
8846
8847 brobecker/2010-11-19: It seems to me that the only case where it is
8848 useful to preserve the typedef layer is when dealing with fat pointers.
8849 Perhaps, we could add a check for that and preserve the typedef layer
8850 only in that situation. But this seems unnecessary so far, probably
8851 because we call check_typedef/ada_check_typedef pretty much everywhere.
8852 */
8853 if (type->code () == TYPE_CODE_TYPEDEF
8854 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8855 == TYPE_MAIN_TYPE (fixed_type)))
8856 return type;
8857
8858 return fixed_type;
8859 }
8860
8861 /* A standard (static-sized) type corresponding as well as possible to
8862 TYPE0, but based on no runtime data. */
8863
8864 static struct type *
8865 to_static_fixed_type (struct type *type0)
8866 {
8867 struct type *type;
8868
8869 if (type0 == NULL)
8870 return NULL;
8871
8872 if (TYPE_FIXED_INSTANCE (type0))
8873 return type0;
8874
8875 type0 = ada_check_typedef (type0);
8876
8877 switch (type0->code ())
8878 {
8879 default:
8880 return type0;
8881 case TYPE_CODE_STRUCT:
8882 type = dynamic_template_type (type0);
8883 if (type != NULL)
8884 return template_to_static_fixed_type (type);
8885 else
8886 return template_to_static_fixed_type (type0);
8887 case TYPE_CODE_UNION:
8888 type = ada_find_parallel_type (type0, "___XVU");
8889 if (type != NULL)
8890 return template_to_static_fixed_type (type);
8891 else
8892 return template_to_static_fixed_type (type0);
8893 }
8894 }
8895
8896 /* A static approximation of TYPE with all type wrappers removed. */
8897
8898 static struct type *
8899 static_unwrap_type (struct type *type)
8900 {
8901 if (ada_is_aligner_type (type))
8902 {
8903 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8904 if (ada_type_name (type1) == NULL)
8905 type1->set_name (ada_type_name (type));
8906
8907 return static_unwrap_type (type1);
8908 }
8909 else
8910 {
8911 struct type *raw_real_type = ada_get_base_type (type);
8912
8913 if (raw_real_type == type)
8914 return type;
8915 else
8916 return to_static_fixed_type (raw_real_type);
8917 }
8918 }
8919
8920 /* In some cases, incomplete and private types require
8921 cross-references that are not resolved as records (for example,
8922 type Foo;
8923 type FooP is access Foo;
8924 V: FooP;
8925 type Foo is array ...;
8926 ). In these cases, since there is no mechanism for producing
8927 cross-references to such types, we instead substitute for FooP a
8928 stub enumeration type that is nowhere resolved, and whose tag is
8929 the name of the actual type. Call these types "non-record stubs". */
8930
8931 /* A type equivalent to TYPE that is not a non-record stub, if one
8932 exists, otherwise TYPE. */
8933
8934 struct type *
8935 ada_check_typedef (struct type *type)
8936 {
8937 if (type == NULL)
8938 return NULL;
8939
8940 /* If our type is an access to an unconstrained array, which is encoded
8941 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8942 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8943 what allows us to distinguish between fat pointers that represent
8944 array types, and fat pointers that represent array access types
8945 (in both cases, the compiler implements them as fat pointers). */
8946 if (ada_is_access_to_unconstrained_array (type))
8947 return type;
8948
8949 type = check_typedef (type);
8950 if (type == NULL || type->code () != TYPE_CODE_ENUM
8951 || !TYPE_STUB (type)
8952 || type->name () == NULL)
8953 return type;
8954 else
8955 {
8956 const char *name = type->name ();
8957 struct type *type1 = ada_find_any_type (name);
8958
8959 if (type1 == NULL)
8960 return type;
8961
8962 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8963 stubs pointing to arrays, as we don't create symbols for array
8964 types, only for the typedef-to-array types). If that's the case,
8965 strip the typedef layer. */
8966 if (type1->code () == TYPE_CODE_TYPEDEF)
8967 type1 = ada_check_typedef (type1);
8968
8969 return type1;
8970 }
8971 }
8972
8973 /* A value representing the data at VALADDR/ADDRESS as described by
8974 type TYPE0, but with a standard (static-sized) type that correctly
8975 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8976 type, then return VAL0 [this feature is simply to avoid redundant
8977 creation of struct values]. */
8978
8979 static struct value *
8980 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8981 struct value *val0)
8982 {
8983 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8984
8985 if (type == type0 && val0 != NULL)
8986 return val0;
8987
8988 if (VALUE_LVAL (val0) != lval_memory)
8989 {
8990 /* Our value does not live in memory; it could be a convenience
8991 variable, for instance. Create a not_lval value using val0's
8992 contents. */
8993 return value_from_contents (type, value_contents (val0));
8994 }
8995
8996 return value_from_contents_and_address (type, 0, address);
8997 }
8998
8999 /* A value representing VAL, but with a standard (static-sized) type
9000 that correctly describes it. Does not necessarily create a new
9001 value. */
9002
9003 struct value *
9004 ada_to_fixed_value (struct value *val)
9005 {
9006 val = unwrap_value (val);
9007 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9008 return val;
9009 }
9010 \f
9011
9012 /* Attributes */
9013
9014 /* Table mapping attribute numbers to names.
9015 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9016
9017 static const char *attribute_names[] = {
9018 "<?>",
9019
9020 "first",
9021 "last",
9022 "length",
9023 "image",
9024 "max",
9025 "min",
9026 "modulus",
9027 "pos",
9028 "size",
9029 "tag",
9030 "val",
9031 0
9032 };
9033
9034 static const char *
9035 ada_attribute_name (enum exp_opcode n)
9036 {
9037 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9038 return attribute_names[n - OP_ATR_FIRST + 1];
9039 else
9040 return attribute_names[0];
9041 }
9042
9043 /* Evaluate the 'POS attribute applied to ARG. */
9044
9045 static LONGEST
9046 pos_atr (struct value *arg)
9047 {
9048 struct value *val = coerce_ref (arg);
9049 struct type *type = value_type (val);
9050 LONGEST result;
9051
9052 if (!discrete_type_p (type))
9053 error (_("'POS only defined on discrete types"));
9054
9055 if (!discrete_position (type, value_as_long (val), &result))
9056 error (_("enumeration value is invalid: can't find 'POS"));
9057
9058 return result;
9059 }
9060
9061 static struct value *
9062 value_pos_atr (struct type *type, struct value *arg)
9063 {
9064 return value_from_longest (type, pos_atr (arg));
9065 }
9066
9067 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9068
9069 static struct value *
9070 val_atr (struct type *type, LONGEST val)
9071 {
9072 gdb_assert (discrete_type_p (type));
9073 if (type->code () == TYPE_CODE_RANGE)
9074 type = TYPE_TARGET_TYPE (type);
9075 if (type->code () == TYPE_CODE_ENUM)
9076 {
9077 if (val < 0 || val >= type->num_fields ())
9078 error (_("argument to 'VAL out of range"));
9079 val = TYPE_FIELD_ENUMVAL (type, val);
9080 }
9081 return value_from_longest (type, val);
9082 }
9083
9084 static struct value *
9085 value_val_atr (struct type *type, struct value *arg)
9086 {
9087 if (!discrete_type_p (type))
9088 error (_("'VAL only defined on discrete types"));
9089 if (!integer_type_p (value_type (arg)))
9090 error (_("'VAL requires integral argument"));
9091
9092 return val_atr (type, value_as_long (arg));
9093 }
9094 \f
9095
9096 /* Evaluation */
9097
9098 /* True if TYPE appears to be an Ada character type.
9099 [At the moment, this is true only for Character and Wide_Character;
9100 It is a heuristic test that could stand improvement]. */
9101
9102 bool
9103 ada_is_character_type (struct type *type)
9104 {
9105 const char *name;
9106
9107 /* If the type code says it's a character, then assume it really is,
9108 and don't check any further. */
9109 if (type->code () == TYPE_CODE_CHAR)
9110 return true;
9111
9112 /* Otherwise, assume it's a character type iff it is a discrete type
9113 with a known character type name. */
9114 name = ada_type_name (type);
9115 return (name != NULL
9116 && (type->code () == TYPE_CODE_INT
9117 || type->code () == TYPE_CODE_RANGE)
9118 && (strcmp (name, "character") == 0
9119 || strcmp (name, "wide_character") == 0
9120 || strcmp (name, "wide_wide_character") == 0
9121 || strcmp (name, "unsigned char") == 0));
9122 }
9123
9124 /* True if TYPE appears to be an Ada string type. */
9125
9126 bool
9127 ada_is_string_type (struct type *type)
9128 {
9129 type = ada_check_typedef (type);
9130 if (type != NULL
9131 && type->code () != TYPE_CODE_PTR
9132 && (ada_is_simple_array_type (type)
9133 || ada_is_array_descriptor_type (type))
9134 && ada_array_arity (type) == 1)
9135 {
9136 struct type *elttype = ada_array_element_type (type, 1);
9137
9138 return ada_is_character_type (elttype);
9139 }
9140 else
9141 return false;
9142 }
9143
9144 /* The compiler sometimes provides a parallel XVS type for a given
9145 PAD type. Normally, it is safe to follow the PAD type directly,
9146 but older versions of the compiler have a bug that causes the offset
9147 of its "F" field to be wrong. Following that field in that case
9148 would lead to incorrect results, but this can be worked around
9149 by ignoring the PAD type and using the associated XVS type instead.
9150
9151 Set to True if the debugger should trust the contents of PAD types.
9152 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9153 static bool trust_pad_over_xvs = true;
9154
9155 /* True if TYPE is a struct type introduced by the compiler to force the
9156 alignment of a value. Such types have a single field with a
9157 distinctive name. */
9158
9159 int
9160 ada_is_aligner_type (struct type *type)
9161 {
9162 type = ada_check_typedef (type);
9163
9164 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9165 return 0;
9166
9167 return (type->code () == TYPE_CODE_STRUCT
9168 && type->num_fields () == 1
9169 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9170 }
9171
9172 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9173 the parallel type. */
9174
9175 struct type *
9176 ada_get_base_type (struct type *raw_type)
9177 {
9178 struct type *real_type_namer;
9179 struct type *raw_real_type;
9180
9181 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9182 return raw_type;
9183
9184 if (ada_is_aligner_type (raw_type))
9185 /* The encoding specifies that we should always use the aligner type.
9186 So, even if this aligner type has an associated XVS type, we should
9187 simply ignore it.
9188
9189 According to the compiler gurus, an XVS type parallel to an aligner
9190 type may exist because of a stabs limitation. In stabs, aligner
9191 types are empty because the field has a variable-sized type, and
9192 thus cannot actually be used as an aligner type. As a result,
9193 we need the associated parallel XVS type to decode the type.
9194 Since the policy in the compiler is to not change the internal
9195 representation based on the debugging info format, we sometimes
9196 end up having a redundant XVS type parallel to the aligner type. */
9197 return raw_type;
9198
9199 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9200 if (real_type_namer == NULL
9201 || real_type_namer->code () != TYPE_CODE_STRUCT
9202 || real_type_namer->num_fields () != 1)
9203 return raw_type;
9204
9205 if (TYPE_FIELD_TYPE (real_type_namer, 0)->code () != TYPE_CODE_REF)
9206 {
9207 /* This is an older encoding form where the base type needs to be
9208 looked up by name. We prefer the newer encoding because it is
9209 more efficient. */
9210 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9211 if (raw_real_type == NULL)
9212 return raw_type;
9213 else
9214 return raw_real_type;
9215 }
9216
9217 /* The field in our XVS type is a reference to the base type. */
9218 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9219 }
9220
9221 /* The type of value designated by TYPE, with all aligners removed. */
9222
9223 struct type *
9224 ada_aligned_type (struct type *type)
9225 {
9226 if (ada_is_aligner_type (type))
9227 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9228 else
9229 return ada_get_base_type (type);
9230 }
9231
9232
9233 /* The address of the aligned value in an object at address VALADDR
9234 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9235
9236 const gdb_byte *
9237 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9238 {
9239 if (ada_is_aligner_type (type))
9240 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9241 valaddr +
9242 TYPE_FIELD_BITPOS (type,
9243 0) / TARGET_CHAR_BIT);
9244 else
9245 return valaddr;
9246 }
9247
9248
9249
9250 /* The printed representation of an enumeration literal with encoded
9251 name NAME. The value is good to the next call of ada_enum_name. */
9252 const char *
9253 ada_enum_name (const char *name)
9254 {
9255 static char *result;
9256 static size_t result_len = 0;
9257 const char *tmp;
9258
9259 /* First, unqualify the enumeration name:
9260 1. Search for the last '.' character. If we find one, then skip
9261 all the preceding characters, the unqualified name starts
9262 right after that dot.
9263 2. Otherwise, we may be debugging on a target where the compiler
9264 translates dots into "__". Search forward for double underscores,
9265 but stop searching when we hit an overloading suffix, which is
9266 of the form "__" followed by digits. */
9267
9268 tmp = strrchr (name, '.');
9269 if (tmp != NULL)
9270 name = tmp + 1;
9271 else
9272 {
9273 while ((tmp = strstr (name, "__")) != NULL)
9274 {
9275 if (isdigit (tmp[2]))
9276 break;
9277 else
9278 name = tmp + 2;
9279 }
9280 }
9281
9282 if (name[0] == 'Q')
9283 {
9284 int v;
9285
9286 if (name[1] == 'U' || name[1] == 'W')
9287 {
9288 if (sscanf (name + 2, "%x", &v) != 1)
9289 return name;
9290 }
9291 else if (((name[1] >= '0' && name[1] <= '9')
9292 || (name[1] >= 'a' && name[1] <= 'z'))
9293 && name[2] == '\0')
9294 {
9295 GROW_VECT (result, result_len, 4);
9296 xsnprintf (result, result_len, "'%c'", name[1]);
9297 return result;
9298 }
9299 else
9300 return name;
9301
9302 GROW_VECT (result, result_len, 16);
9303 if (isascii (v) && isprint (v))
9304 xsnprintf (result, result_len, "'%c'", v);
9305 else if (name[1] == 'U')
9306 xsnprintf (result, result_len, "[\"%02x\"]", v);
9307 else
9308 xsnprintf (result, result_len, "[\"%04x\"]", v);
9309
9310 return result;
9311 }
9312 else
9313 {
9314 tmp = strstr (name, "__");
9315 if (tmp == NULL)
9316 tmp = strstr (name, "$");
9317 if (tmp != NULL)
9318 {
9319 GROW_VECT (result, result_len, tmp - name + 1);
9320 strncpy (result, name, tmp - name);
9321 result[tmp - name] = '\0';
9322 return result;
9323 }
9324
9325 return name;
9326 }
9327 }
9328
9329 /* Evaluate the subexpression of EXP starting at *POS as for
9330 evaluate_type, updating *POS to point just past the evaluated
9331 expression. */
9332
9333 static struct value *
9334 evaluate_subexp_type (struct expression *exp, int *pos)
9335 {
9336 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9337 }
9338
9339 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9340 value it wraps. */
9341
9342 static struct value *
9343 unwrap_value (struct value *val)
9344 {
9345 struct type *type = ada_check_typedef (value_type (val));
9346
9347 if (ada_is_aligner_type (type))
9348 {
9349 struct value *v = ada_value_struct_elt (val, "F", 0);
9350 struct type *val_type = ada_check_typedef (value_type (v));
9351
9352 if (ada_type_name (val_type) == NULL)
9353 val_type->set_name (ada_type_name (type));
9354
9355 return unwrap_value (v);
9356 }
9357 else
9358 {
9359 struct type *raw_real_type =
9360 ada_check_typedef (ada_get_base_type (type));
9361
9362 /* If there is no parallel XVS or XVE type, then the value is
9363 already unwrapped. Return it without further modification. */
9364 if ((type == raw_real_type)
9365 && ada_find_parallel_type (type, "___XVE") == NULL)
9366 return val;
9367
9368 return
9369 coerce_unspec_val_to_type
9370 (val, ada_to_fixed_type (raw_real_type, 0,
9371 value_address (val),
9372 NULL, 1));
9373 }
9374 }
9375
9376 static struct value *
9377 cast_from_fixed (struct type *type, struct value *arg)
9378 {
9379 struct value *scale = ada_scaling_factor (value_type (arg));
9380 arg = value_cast (value_type (scale), arg);
9381
9382 arg = value_binop (arg, scale, BINOP_MUL);
9383 return value_cast (type, arg);
9384 }
9385
9386 static struct value *
9387 cast_to_fixed (struct type *type, struct value *arg)
9388 {
9389 if (type == value_type (arg))
9390 return arg;
9391
9392 struct value *scale = ada_scaling_factor (type);
9393 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9394 arg = cast_from_fixed (value_type (scale), arg);
9395 else
9396 arg = value_cast (value_type (scale), arg);
9397
9398 arg = value_binop (arg, scale, BINOP_DIV);
9399 return value_cast (type, arg);
9400 }
9401
9402 /* Given two array types T1 and T2, return nonzero iff both arrays
9403 contain the same number of elements. */
9404
9405 static int
9406 ada_same_array_size_p (struct type *t1, struct type *t2)
9407 {
9408 LONGEST lo1, hi1, lo2, hi2;
9409
9410 /* Get the array bounds in order to verify that the size of
9411 the two arrays match. */
9412 if (!get_array_bounds (t1, &lo1, &hi1)
9413 || !get_array_bounds (t2, &lo2, &hi2))
9414 error (_("unable to determine array bounds"));
9415
9416 /* To make things easier for size comparison, normalize a bit
9417 the case of empty arrays by making sure that the difference
9418 between upper bound and lower bound is always -1. */
9419 if (lo1 > hi1)
9420 hi1 = lo1 - 1;
9421 if (lo2 > hi2)
9422 hi2 = lo2 - 1;
9423
9424 return (hi1 - lo1 == hi2 - lo2);
9425 }
9426
9427 /* Assuming that VAL is an array of integrals, and TYPE represents
9428 an array with the same number of elements, but with wider integral
9429 elements, return an array "casted" to TYPE. In practice, this
9430 means that the returned array is built by casting each element
9431 of the original array into TYPE's (wider) element type. */
9432
9433 static struct value *
9434 ada_promote_array_of_integrals (struct type *type, struct value *val)
9435 {
9436 struct type *elt_type = TYPE_TARGET_TYPE (type);
9437 LONGEST lo, hi;
9438 struct value *res;
9439 LONGEST i;
9440
9441 /* Verify that both val and type are arrays of scalars, and
9442 that the size of val's elements is smaller than the size
9443 of type's element. */
9444 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9445 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9446 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9447 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9448 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9449 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9450
9451 if (!get_array_bounds (type, &lo, &hi))
9452 error (_("unable to determine array bounds"));
9453
9454 res = allocate_value (type);
9455
9456 /* Promote each array element. */
9457 for (i = 0; i < hi - lo + 1; i++)
9458 {
9459 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9460
9461 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9462 value_contents_all (elt), TYPE_LENGTH (elt_type));
9463 }
9464
9465 return res;
9466 }
9467
9468 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9469 return the converted value. */
9470
9471 static struct value *
9472 coerce_for_assign (struct type *type, struct value *val)
9473 {
9474 struct type *type2 = value_type (val);
9475
9476 if (type == type2)
9477 return val;
9478
9479 type2 = ada_check_typedef (type2);
9480 type = ada_check_typedef (type);
9481
9482 if (type2->code () == TYPE_CODE_PTR
9483 && type->code () == TYPE_CODE_ARRAY)
9484 {
9485 val = ada_value_ind (val);
9486 type2 = value_type (val);
9487 }
9488
9489 if (type2->code () == TYPE_CODE_ARRAY
9490 && type->code () == TYPE_CODE_ARRAY)
9491 {
9492 if (!ada_same_array_size_p (type, type2))
9493 error (_("cannot assign arrays of different length"));
9494
9495 if (is_integral_type (TYPE_TARGET_TYPE (type))
9496 && is_integral_type (TYPE_TARGET_TYPE (type2))
9497 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9498 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9499 {
9500 /* Allow implicit promotion of the array elements to
9501 a wider type. */
9502 return ada_promote_array_of_integrals (type, val);
9503 }
9504
9505 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9506 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9507 error (_("Incompatible types in assignment"));
9508 deprecated_set_value_type (val, type);
9509 }
9510 return val;
9511 }
9512
9513 static struct value *
9514 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9515 {
9516 struct value *val;
9517 struct type *type1, *type2;
9518 LONGEST v, v1, v2;
9519
9520 arg1 = coerce_ref (arg1);
9521 arg2 = coerce_ref (arg2);
9522 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9523 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9524
9525 if (type1->code () != TYPE_CODE_INT
9526 || type2->code () != TYPE_CODE_INT)
9527 return value_binop (arg1, arg2, op);
9528
9529 switch (op)
9530 {
9531 case BINOP_MOD:
9532 case BINOP_DIV:
9533 case BINOP_REM:
9534 break;
9535 default:
9536 return value_binop (arg1, arg2, op);
9537 }
9538
9539 v2 = value_as_long (arg2);
9540 if (v2 == 0)
9541 error (_("second operand of %s must not be zero."), op_string (op));
9542
9543 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9544 return value_binop (arg1, arg2, op);
9545
9546 v1 = value_as_long (arg1);
9547 switch (op)
9548 {
9549 case BINOP_DIV:
9550 v = v1 / v2;
9551 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9552 v += v > 0 ? -1 : 1;
9553 break;
9554 case BINOP_REM:
9555 v = v1 % v2;
9556 if (v * v1 < 0)
9557 v -= v2;
9558 break;
9559 default:
9560 /* Should not reach this point. */
9561 v = 0;
9562 }
9563
9564 val = allocate_value (type1);
9565 store_unsigned_integer (value_contents_raw (val),
9566 TYPE_LENGTH (value_type (val)),
9567 type_byte_order (type1), v);
9568 return val;
9569 }
9570
9571 static int
9572 ada_value_equal (struct value *arg1, struct value *arg2)
9573 {
9574 if (ada_is_direct_array_type (value_type (arg1))
9575 || ada_is_direct_array_type (value_type (arg2)))
9576 {
9577 struct type *arg1_type, *arg2_type;
9578
9579 /* Automatically dereference any array reference before
9580 we attempt to perform the comparison. */
9581 arg1 = ada_coerce_ref (arg1);
9582 arg2 = ada_coerce_ref (arg2);
9583
9584 arg1 = ada_coerce_to_simple_array (arg1);
9585 arg2 = ada_coerce_to_simple_array (arg2);
9586
9587 arg1_type = ada_check_typedef (value_type (arg1));
9588 arg2_type = ada_check_typedef (value_type (arg2));
9589
9590 if (arg1_type->code () != TYPE_CODE_ARRAY
9591 || arg2_type->code () != TYPE_CODE_ARRAY)
9592 error (_("Attempt to compare array with non-array"));
9593 /* FIXME: The following works only for types whose
9594 representations use all bits (no padding or undefined bits)
9595 and do not have user-defined equality. */
9596 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9597 && memcmp (value_contents (arg1), value_contents (arg2),
9598 TYPE_LENGTH (arg1_type)) == 0);
9599 }
9600 return value_equal (arg1, arg2);
9601 }
9602
9603 /* Total number of component associations in the aggregate starting at
9604 index PC in EXP. Assumes that index PC is the start of an
9605 OP_AGGREGATE. */
9606
9607 static int
9608 num_component_specs (struct expression *exp, int pc)
9609 {
9610 int n, m, i;
9611
9612 m = exp->elts[pc + 1].longconst;
9613 pc += 3;
9614 n = 0;
9615 for (i = 0; i < m; i += 1)
9616 {
9617 switch (exp->elts[pc].opcode)
9618 {
9619 default:
9620 n += 1;
9621 break;
9622 case OP_CHOICES:
9623 n += exp->elts[pc + 1].longconst;
9624 break;
9625 }
9626 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9627 }
9628 return n;
9629 }
9630
9631 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9632 component of LHS (a simple array or a record), updating *POS past
9633 the expression, assuming that LHS is contained in CONTAINER. Does
9634 not modify the inferior's memory, nor does it modify LHS (unless
9635 LHS == CONTAINER). */
9636
9637 static void
9638 assign_component (struct value *container, struct value *lhs, LONGEST index,
9639 struct expression *exp, int *pos)
9640 {
9641 struct value *mark = value_mark ();
9642 struct value *elt;
9643 struct type *lhs_type = check_typedef (value_type (lhs));
9644
9645 if (lhs_type->code () == TYPE_CODE_ARRAY)
9646 {
9647 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9648 struct value *index_val = value_from_longest (index_type, index);
9649
9650 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9651 }
9652 else
9653 {
9654 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9655 elt = ada_to_fixed_value (elt);
9656 }
9657
9658 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9659 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9660 else
9661 value_assign_to_component (container, elt,
9662 ada_evaluate_subexp (NULL, exp, pos,
9663 EVAL_NORMAL));
9664
9665 value_free_to_mark (mark);
9666 }
9667
9668 /* Assuming that LHS represents an lvalue having a record or array
9669 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9670 of that aggregate's value to LHS, advancing *POS past the
9671 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9672 lvalue containing LHS (possibly LHS itself). Does not modify
9673 the inferior's memory, nor does it modify the contents of
9674 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9675
9676 static struct value *
9677 assign_aggregate (struct value *container,
9678 struct value *lhs, struct expression *exp,
9679 int *pos, enum noside noside)
9680 {
9681 struct type *lhs_type;
9682 int n = exp->elts[*pos+1].longconst;
9683 LONGEST low_index, high_index;
9684 int num_specs;
9685 LONGEST *indices;
9686 int max_indices, num_indices;
9687 int i;
9688
9689 *pos += 3;
9690 if (noside != EVAL_NORMAL)
9691 {
9692 for (i = 0; i < n; i += 1)
9693 ada_evaluate_subexp (NULL, exp, pos, noside);
9694 return container;
9695 }
9696
9697 container = ada_coerce_ref (container);
9698 if (ada_is_direct_array_type (value_type (container)))
9699 container = ada_coerce_to_simple_array (container);
9700 lhs = ada_coerce_ref (lhs);
9701 if (!deprecated_value_modifiable (lhs))
9702 error (_("Left operand of assignment is not a modifiable lvalue."));
9703
9704 lhs_type = check_typedef (value_type (lhs));
9705 if (ada_is_direct_array_type (lhs_type))
9706 {
9707 lhs = ada_coerce_to_simple_array (lhs);
9708 lhs_type = check_typedef (value_type (lhs));
9709 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9710 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9711 }
9712 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9713 {
9714 low_index = 0;
9715 high_index = num_visible_fields (lhs_type) - 1;
9716 }
9717 else
9718 error (_("Left-hand side must be array or record."));
9719
9720 num_specs = num_component_specs (exp, *pos - 3);
9721 max_indices = 4 * num_specs + 4;
9722 indices = XALLOCAVEC (LONGEST, max_indices);
9723 indices[0] = indices[1] = low_index - 1;
9724 indices[2] = indices[3] = high_index + 1;
9725 num_indices = 4;
9726
9727 for (i = 0; i < n; i += 1)
9728 {
9729 switch (exp->elts[*pos].opcode)
9730 {
9731 case OP_CHOICES:
9732 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9733 &num_indices, max_indices,
9734 low_index, high_index);
9735 break;
9736 case OP_POSITIONAL:
9737 aggregate_assign_positional (container, lhs, exp, pos, indices,
9738 &num_indices, max_indices,
9739 low_index, high_index);
9740 break;
9741 case OP_OTHERS:
9742 if (i != n-1)
9743 error (_("Misplaced 'others' clause"));
9744 aggregate_assign_others (container, lhs, exp, pos, indices,
9745 num_indices, low_index, high_index);
9746 break;
9747 default:
9748 error (_("Internal error: bad aggregate clause"));
9749 }
9750 }
9751
9752 return container;
9753 }
9754
9755 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9756 construct at *POS, updating *POS past the construct, given that
9757 the positions are relative to lower bound LOW, where HIGH is the
9758 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9759 updating *NUM_INDICES as needed. CONTAINER is as for
9760 assign_aggregate. */
9761 static void
9762 aggregate_assign_positional (struct value *container,
9763 struct value *lhs, struct expression *exp,
9764 int *pos, LONGEST *indices, int *num_indices,
9765 int max_indices, LONGEST low, LONGEST high)
9766 {
9767 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9768
9769 if (ind - 1 == high)
9770 warning (_("Extra components in aggregate ignored."));
9771 if (ind <= high)
9772 {
9773 add_component_interval (ind, ind, indices, num_indices, max_indices);
9774 *pos += 3;
9775 assign_component (container, lhs, ind, exp, pos);
9776 }
9777 else
9778 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9779 }
9780
9781 /* Assign into the components of LHS indexed by the OP_CHOICES
9782 construct at *POS, updating *POS past the construct, given that
9783 the allowable indices are LOW..HIGH. Record the indices assigned
9784 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9785 needed. CONTAINER is as for assign_aggregate. */
9786 static void
9787 aggregate_assign_from_choices (struct value *container,
9788 struct value *lhs, struct expression *exp,
9789 int *pos, LONGEST *indices, int *num_indices,
9790 int max_indices, LONGEST low, LONGEST high)
9791 {
9792 int j;
9793 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9794 int choice_pos, expr_pc;
9795 int is_array = ada_is_direct_array_type (value_type (lhs));
9796
9797 choice_pos = *pos += 3;
9798
9799 for (j = 0; j < n_choices; j += 1)
9800 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9801 expr_pc = *pos;
9802 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9803
9804 for (j = 0; j < n_choices; j += 1)
9805 {
9806 LONGEST lower, upper;
9807 enum exp_opcode op = exp->elts[choice_pos].opcode;
9808
9809 if (op == OP_DISCRETE_RANGE)
9810 {
9811 choice_pos += 1;
9812 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9813 EVAL_NORMAL));
9814 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9815 EVAL_NORMAL));
9816 }
9817 else if (is_array)
9818 {
9819 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9820 EVAL_NORMAL));
9821 upper = lower;
9822 }
9823 else
9824 {
9825 int ind;
9826 const char *name;
9827
9828 switch (op)
9829 {
9830 case OP_NAME:
9831 name = &exp->elts[choice_pos + 2].string;
9832 break;
9833 case OP_VAR_VALUE:
9834 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9835 break;
9836 default:
9837 error (_("Invalid record component association."));
9838 }
9839 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9840 ind = 0;
9841 if (! find_struct_field (name, value_type (lhs), 0,
9842 NULL, NULL, NULL, NULL, &ind))
9843 error (_("Unknown component name: %s."), name);
9844 lower = upper = ind;
9845 }
9846
9847 if (lower <= upper && (lower < low || upper > high))
9848 error (_("Index in component association out of bounds."));
9849
9850 add_component_interval (lower, upper, indices, num_indices,
9851 max_indices);
9852 while (lower <= upper)
9853 {
9854 int pos1;
9855
9856 pos1 = expr_pc;
9857 assign_component (container, lhs, lower, exp, &pos1);
9858 lower += 1;
9859 }
9860 }
9861 }
9862
9863 /* Assign the value of the expression in the OP_OTHERS construct in
9864 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9865 have not been previously assigned. The index intervals already assigned
9866 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9867 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9868 static void
9869 aggregate_assign_others (struct value *container,
9870 struct value *lhs, struct expression *exp,
9871 int *pos, LONGEST *indices, int num_indices,
9872 LONGEST low, LONGEST high)
9873 {
9874 int i;
9875 int expr_pc = *pos + 1;
9876
9877 for (i = 0; i < num_indices - 2; i += 2)
9878 {
9879 LONGEST ind;
9880
9881 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9882 {
9883 int localpos;
9884
9885 localpos = expr_pc;
9886 assign_component (container, lhs, ind, exp, &localpos);
9887 }
9888 }
9889 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9890 }
9891
9892 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9893 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9894 modifying *SIZE as needed. It is an error if *SIZE exceeds
9895 MAX_SIZE. The resulting intervals do not overlap. */
9896 static void
9897 add_component_interval (LONGEST low, LONGEST high,
9898 LONGEST* indices, int *size, int max_size)
9899 {
9900 int i, j;
9901
9902 for (i = 0; i < *size; i += 2) {
9903 if (high >= indices[i] && low <= indices[i + 1])
9904 {
9905 int kh;
9906
9907 for (kh = i + 2; kh < *size; kh += 2)
9908 if (high < indices[kh])
9909 break;
9910 if (low < indices[i])
9911 indices[i] = low;
9912 indices[i + 1] = indices[kh - 1];
9913 if (high > indices[i + 1])
9914 indices[i + 1] = high;
9915 memcpy (indices + i + 2, indices + kh, *size - kh);
9916 *size -= kh - i - 2;
9917 return;
9918 }
9919 else if (high < indices[i])
9920 break;
9921 }
9922
9923 if (*size == max_size)
9924 error (_("Internal error: miscounted aggregate components."));
9925 *size += 2;
9926 for (j = *size-1; j >= i+2; j -= 1)
9927 indices[j] = indices[j - 2];
9928 indices[i] = low;
9929 indices[i + 1] = high;
9930 }
9931
9932 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9933 is different. */
9934
9935 static struct value *
9936 ada_value_cast (struct type *type, struct value *arg2)
9937 {
9938 if (type == ada_check_typedef (value_type (arg2)))
9939 return arg2;
9940
9941 if (ada_is_gnat_encoded_fixed_point_type (type))
9942 return cast_to_fixed (type, arg2);
9943
9944 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9945 return cast_from_fixed (type, arg2);
9946
9947 return value_cast (type, arg2);
9948 }
9949
9950 /* Evaluating Ada expressions, and printing their result.
9951 ------------------------------------------------------
9952
9953 1. Introduction:
9954 ----------------
9955
9956 We usually evaluate an Ada expression in order to print its value.
9957 We also evaluate an expression in order to print its type, which
9958 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9959 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9960 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9961 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9962 similar.
9963
9964 Evaluating expressions is a little more complicated for Ada entities
9965 than it is for entities in languages such as C. The main reason for
9966 this is that Ada provides types whose definition might be dynamic.
9967 One example of such types is variant records. Or another example
9968 would be an array whose bounds can only be known at run time.
9969
9970 The following description is a general guide as to what should be
9971 done (and what should NOT be done) in order to evaluate an expression
9972 involving such types, and when. This does not cover how the semantic
9973 information is encoded by GNAT as this is covered separatly. For the
9974 document used as the reference for the GNAT encoding, see exp_dbug.ads
9975 in the GNAT sources.
9976
9977 Ideally, we should embed each part of this description next to its
9978 associated code. Unfortunately, the amount of code is so vast right
9979 now that it's hard to see whether the code handling a particular
9980 situation might be duplicated or not. One day, when the code is
9981 cleaned up, this guide might become redundant with the comments
9982 inserted in the code, and we might want to remove it.
9983
9984 2. ``Fixing'' an Entity, the Simple Case:
9985 -----------------------------------------
9986
9987 When evaluating Ada expressions, the tricky issue is that they may
9988 reference entities whose type contents and size are not statically
9989 known. Consider for instance a variant record:
9990
9991 type Rec (Empty : Boolean := True) is record
9992 case Empty is
9993 when True => null;
9994 when False => Value : Integer;
9995 end case;
9996 end record;
9997 Yes : Rec := (Empty => False, Value => 1);
9998 No : Rec := (empty => True);
9999
10000 The size and contents of that record depends on the value of the
10001 descriminant (Rec.Empty). At this point, neither the debugging
10002 information nor the associated type structure in GDB are able to
10003 express such dynamic types. So what the debugger does is to create
10004 "fixed" versions of the type that applies to the specific object.
10005 We also informally refer to this operation as "fixing" an object,
10006 which means creating its associated fixed type.
10007
10008 Example: when printing the value of variable "Yes" above, its fixed
10009 type would look like this:
10010
10011 type Rec is record
10012 Empty : Boolean;
10013 Value : Integer;
10014 end record;
10015
10016 On the other hand, if we printed the value of "No", its fixed type
10017 would become:
10018
10019 type Rec is record
10020 Empty : Boolean;
10021 end record;
10022
10023 Things become a little more complicated when trying to fix an entity
10024 with a dynamic type that directly contains another dynamic type,
10025 such as an array of variant records, for instance. There are
10026 two possible cases: Arrays, and records.
10027
10028 3. ``Fixing'' Arrays:
10029 ---------------------
10030
10031 The type structure in GDB describes an array in terms of its bounds,
10032 and the type of its elements. By design, all elements in the array
10033 have the same type and we cannot represent an array of variant elements
10034 using the current type structure in GDB. When fixing an array,
10035 we cannot fix the array element, as we would potentially need one
10036 fixed type per element of the array. As a result, the best we can do
10037 when fixing an array is to produce an array whose bounds and size
10038 are correct (allowing us to read it from memory), but without having
10039 touched its element type. Fixing each element will be done later,
10040 when (if) necessary.
10041
10042 Arrays are a little simpler to handle than records, because the same
10043 amount of memory is allocated for each element of the array, even if
10044 the amount of space actually used by each element differs from element
10045 to element. Consider for instance the following array of type Rec:
10046
10047 type Rec_Array is array (1 .. 2) of Rec;
10048
10049 The actual amount of memory occupied by each element might be different
10050 from element to element, depending on the value of their discriminant.
10051 But the amount of space reserved for each element in the array remains
10052 fixed regardless. So we simply need to compute that size using
10053 the debugging information available, from which we can then determine
10054 the array size (we multiply the number of elements of the array by
10055 the size of each element).
10056
10057 The simplest case is when we have an array of a constrained element
10058 type. For instance, consider the following type declarations:
10059
10060 type Bounded_String (Max_Size : Integer) is
10061 Length : Integer;
10062 Buffer : String (1 .. Max_Size);
10063 end record;
10064 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10065
10066 In this case, the compiler describes the array as an array of
10067 variable-size elements (identified by its XVS suffix) for which
10068 the size can be read in the parallel XVZ variable.
10069
10070 In the case of an array of an unconstrained element type, the compiler
10071 wraps the array element inside a private PAD type. This type should not
10072 be shown to the user, and must be "unwrap"'ed before printing. Note
10073 that we also use the adjective "aligner" in our code to designate
10074 these wrapper types.
10075
10076 In some cases, the size allocated for each element is statically
10077 known. In that case, the PAD type already has the correct size,
10078 and the array element should remain unfixed.
10079
10080 But there are cases when this size is not statically known.
10081 For instance, assuming that "Five" is an integer variable:
10082
10083 type Dynamic is array (1 .. Five) of Integer;
10084 type Wrapper (Has_Length : Boolean := False) is record
10085 Data : Dynamic;
10086 case Has_Length is
10087 when True => Length : Integer;
10088 when False => null;
10089 end case;
10090 end record;
10091 type Wrapper_Array is array (1 .. 2) of Wrapper;
10092
10093 Hello : Wrapper_Array := (others => (Has_Length => True,
10094 Data => (others => 17),
10095 Length => 1));
10096
10097
10098 The debugging info would describe variable Hello as being an
10099 array of a PAD type. The size of that PAD type is not statically
10100 known, but can be determined using a parallel XVZ variable.
10101 In that case, a copy of the PAD type with the correct size should
10102 be used for the fixed array.
10103
10104 3. ``Fixing'' record type objects:
10105 ----------------------------------
10106
10107 Things are slightly different from arrays in the case of dynamic
10108 record types. In this case, in order to compute the associated
10109 fixed type, we need to determine the size and offset of each of
10110 its components. This, in turn, requires us to compute the fixed
10111 type of each of these components.
10112
10113 Consider for instance the example:
10114
10115 type Bounded_String (Max_Size : Natural) is record
10116 Str : String (1 .. Max_Size);
10117 Length : Natural;
10118 end record;
10119 My_String : Bounded_String (Max_Size => 10);
10120
10121 In that case, the position of field "Length" depends on the size
10122 of field Str, which itself depends on the value of the Max_Size
10123 discriminant. In order to fix the type of variable My_String,
10124 we need to fix the type of field Str. Therefore, fixing a variant
10125 record requires us to fix each of its components.
10126
10127 However, if a component does not have a dynamic size, the component
10128 should not be fixed. In particular, fields that use a PAD type
10129 should not fixed. Here is an example where this might happen
10130 (assuming type Rec above):
10131
10132 type Container (Big : Boolean) is record
10133 First : Rec;
10134 After : Integer;
10135 case Big is
10136 when True => Another : Integer;
10137 when False => null;
10138 end case;
10139 end record;
10140 My_Container : Container := (Big => False,
10141 First => (Empty => True),
10142 After => 42);
10143
10144 In that example, the compiler creates a PAD type for component First,
10145 whose size is constant, and then positions the component After just
10146 right after it. The offset of component After is therefore constant
10147 in this case.
10148
10149 The debugger computes the position of each field based on an algorithm
10150 that uses, among other things, the actual position and size of the field
10151 preceding it. Let's now imagine that the user is trying to print
10152 the value of My_Container. If the type fixing was recursive, we would
10153 end up computing the offset of field After based on the size of the
10154 fixed version of field First. And since in our example First has
10155 only one actual field, the size of the fixed type is actually smaller
10156 than the amount of space allocated to that field, and thus we would
10157 compute the wrong offset of field After.
10158
10159 To make things more complicated, we need to watch out for dynamic
10160 components of variant records (identified by the ___XVL suffix in
10161 the component name). Even if the target type is a PAD type, the size
10162 of that type might not be statically known. So the PAD type needs
10163 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10164 we might end up with the wrong size for our component. This can be
10165 observed with the following type declarations:
10166
10167 type Octal is new Integer range 0 .. 7;
10168 type Octal_Array is array (Positive range <>) of Octal;
10169 pragma Pack (Octal_Array);
10170
10171 type Octal_Buffer (Size : Positive) is record
10172 Buffer : Octal_Array (1 .. Size);
10173 Length : Integer;
10174 end record;
10175
10176 In that case, Buffer is a PAD type whose size is unset and needs
10177 to be computed by fixing the unwrapped type.
10178
10179 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10180 ----------------------------------------------------------
10181
10182 Lastly, when should the sub-elements of an entity that remained unfixed
10183 thus far, be actually fixed?
10184
10185 The answer is: Only when referencing that element. For instance
10186 when selecting one component of a record, this specific component
10187 should be fixed at that point in time. Or when printing the value
10188 of a record, each component should be fixed before its value gets
10189 printed. Similarly for arrays, the element of the array should be
10190 fixed when printing each element of the array, or when extracting
10191 one element out of that array. On the other hand, fixing should
10192 not be performed on the elements when taking a slice of an array!
10193
10194 Note that one of the side effects of miscomputing the offset and
10195 size of each field is that we end up also miscomputing the size
10196 of the containing type. This can have adverse results when computing
10197 the value of an entity. GDB fetches the value of an entity based
10198 on the size of its type, and thus a wrong size causes GDB to fetch
10199 the wrong amount of memory. In the case where the computed size is
10200 too small, GDB fetches too little data to print the value of our
10201 entity. Results in this case are unpredictable, as we usually read
10202 past the buffer containing the data =:-o. */
10203
10204 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10205 for that subexpression cast to TO_TYPE. Advance *POS over the
10206 subexpression. */
10207
10208 static value *
10209 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10210 enum noside noside, struct type *to_type)
10211 {
10212 int pc = *pos;
10213
10214 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10215 || exp->elts[pc].opcode == OP_VAR_VALUE)
10216 {
10217 (*pos) += 4;
10218
10219 value *val;
10220 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10221 {
10222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10223 return value_zero (to_type, not_lval);
10224
10225 val = evaluate_var_msym_value (noside,
10226 exp->elts[pc + 1].objfile,
10227 exp->elts[pc + 2].msymbol);
10228 }
10229 else
10230 val = evaluate_var_value (noside,
10231 exp->elts[pc + 1].block,
10232 exp->elts[pc + 2].symbol);
10233
10234 if (noside == EVAL_SKIP)
10235 return eval_skip_value (exp);
10236
10237 val = ada_value_cast (to_type, val);
10238
10239 /* Follow the Ada language semantics that do not allow taking
10240 an address of the result of a cast (view conversion in Ada). */
10241 if (VALUE_LVAL (val) == lval_memory)
10242 {
10243 if (value_lazy (val))
10244 value_fetch_lazy (val);
10245 VALUE_LVAL (val) = not_lval;
10246 }
10247 return val;
10248 }
10249
10250 value *val = evaluate_subexp (to_type, exp, pos, noside);
10251 if (noside == EVAL_SKIP)
10252 return eval_skip_value (exp);
10253 return ada_value_cast (to_type, val);
10254 }
10255
10256 /* Implement the evaluate_exp routine in the exp_descriptor structure
10257 for the Ada language. */
10258
10259 static struct value *
10260 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10261 int *pos, enum noside noside)
10262 {
10263 enum exp_opcode op;
10264 int tem;
10265 int pc;
10266 int preeval_pos;
10267 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10268 struct type *type;
10269 int nargs, oplen;
10270 struct value **argvec;
10271
10272 pc = *pos;
10273 *pos += 1;
10274 op = exp->elts[pc].opcode;
10275
10276 switch (op)
10277 {
10278 default:
10279 *pos -= 1;
10280 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10281
10282 if (noside == EVAL_NORMAL)
10283 arg1 = unwrap_value (arg1);
10284
10285 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10286 then we need to perform the conversion manually, because
10287 evaluate_subexp_standard doesn't do it. This conversion is
10288 necessary in Ada because the different kinds of float/fixed
10289 types in Ada have different representations.
10290
10291 Similarly, we need to perform the conversion from OP_LONG
10292 ourselves. */
10293 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10294 arg1 = ada_value_cast (expect_type, arg1);
10295
10296 return arg1;
10297
10298 case OP_STRING:
10299 {
10300 struct value *result;
10301
10302 *pos -= 1;
10303 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10304 /* The result type will have code OP_STRING, bashed there from
10305 OP_ARRAY. Bash it back. */
10306 if (value_type (result)->code () == TYPE_CODE_STRING)
10307 value_type (result)->set_code (TYPE_CODE_ARRAY);
10308 return result;
10309 }
10310
10311 case UNOP_CAST:
10312 (*pos) += 2;
10313 type = exp->elts[pc + 1].type;
10314 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10315
10316 case UNOP_QUAL:
10317 (*pos) += 2;
10318 type = exp->elts[pc + 1].type;
10319 return ada_evaluate_subexp (type, exp, pos, noside);
10320
10321 case BINOP_ASSIGN:
10322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10323 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10324 {
10325 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10326 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10327 return arg1;
10328 return ada_value_assign (arg1, arg1);
10329 }
10330 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10331 except if the lhs of our assignment is a convenience variable.
10332 In the case of assigning to a convenience variable, the lhs
10333 should be exactly the result of the evaluation of the rhs. */
10334 type = value_type (arg1);
10335 if (VALUE_LVAL (arg1) == lval_internalvar)
10336 type = NULL;
10337 arg2 = evaluate_subexp (type, exp, pos, noside);
10338 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10339 return arg1;
10340 if (VALUE_LVAL (arg1) == lval_internalvar)
10341 {
10342 /* Nothing. */
10343 }
10344 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10345 arg2 = cast_to_fixed (value_type (arg1), arg2);
10346 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10347 error
10348 (_("Fixed-point values must be assigned to fixed-point variables"));
10349 else
10350 arg2 = coerce_for_assign (value_type (arg1), arg2);
10351 return ada_value_assign (arg1, arg2);
10352
10353 case BINOP_ADD:
10354 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10355 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10356 if (noside == EVAL_SKIP)
10357 goto nosideret;
10358 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10359 return (value_from_longest
10360 (value_type (arg1),
10361 value_as_long (arg1) + value_as_long (arg2)));
10362 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10363 return (value_from_longest
10364 (value_type (arg2),
10365 value_as_long (arg1) + value_as_long (arg2)));
10366 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10367 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10368 && value_type (arg1) != value_type (arg2))
10369 error (_("Operands of fixed-point addition must have the same type"));
10370 /* Do the addition, and cast the result to the type of the first
10371 argument. We cannot cast the result to a reference type, so if
10372 ARG1 is a reference type, find its underlying type. */
10373 type = value_type (arg1);
10374 while (type->code () == TYPE_CODE_REF)
10375 type = TYPE_TARGET_TYPE (type);
10376 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10377 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10378
10379 case BINOP_SUB:
10380 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10381 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10382 if (noside == EVAL_SKIP)
10383 goto nosideret;
10384 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10385 return (value_from_longest
10386 (value_type (arg1),
10387 value_as_long (arg1) - value_as_long (arg2)));
10388 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10389 return (value_from_longest
10390 (value_type (arg2),
10391 value_as_long (arg1) - value_as_long (arg2)));
10392 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10393 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10394 && value_type (arg1) != value_type (arg2))
10395 error (_("Operands of fixed-point subtraction "
10396 "must have the same type"));
10397 /* Do the substraction, and cast the result to the type of the first
10398 argument. We cannot cast the result to a reference type, so if
10399 ARG1 is a reference type, find its underlying type. */
10400 type = value_type (arg1);
10401 while (type->code () == TYPE_CODE_REF)
10402 type = TYPE_TARGET_TYPE (type);
10403 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10404 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10405
10406 case BINOP_MUL:
10407 case BINOP_DIV:
10408 case BINOP_REM:
10409 case BINOP_MOD:
10410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10411 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10412 if (noside == EVAL_SKIP)
10413 goto nosideret;
10414 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10415 {
10416 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10417 return value_zero (value_type (arg1), not_lval);
10418 }
10419 else
10420 {
10421 type = builtin_type (exp->gdbarch)->builtin_double;
10422 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10423 arg1 = cast_from_fixed (type, arg1);
10424 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10425 arg2 = cast_from_fixed (type, arg2);
10426 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10427 return ada_value_binop (arg1, arg2, op);
10428 }
10429
10430 case BINOP_EQUAL:
10431 case BINOP_NOTEQUAL:
10432 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10433 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10434 if (noside == EVAL_SKIP)
10435 goto nosideret;
10436 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10437 tem = 0;
10438 else
10439 {
10440 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10441 tem = ada_value_equal (arg1, arg2);
10442 }
10443 if (op == BINOP_NOTEQUAL)
10444 tem = !tem;
10445 type = language_bool_type (exp->language_defn, exp->gdbarch);
10446 return value_from_longest (type, (LONGEST) tem);
10447
10448 case UNOP_NEG:
10449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10450 if (noside == EVAL_SKIP)
10451 goto nosideret;
10452 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10453 return value_cast (value_type (arg1), value_neg (arg1));
10454 else
10455 {
10456 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10457 return value_neg (arg1);
10458 }
10459
10460 case BINOP_LOGICAL_AND:
10461 case BINOP_LOGICAL_OR:
10462 case UNOP_LOGICAL_NOT:
10463 {
10464 struct value *val;
10465
10466 *pos -= 1;
10467 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10468 type = language_bool_type (exp->language_defn, exp->gdbarch);
10469 return value_cast (type, val);
10470 }
10471
10472 case BINOP_BITWISE_AND:
10473 case BINOP_BITWISE_IOR:
10474 case BINOP_BITWISE_XOR:
10475 {
10476 struct value *val;
10477
10478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10479 *pos = pc;
10480 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10481
10482 return value_cast (value_type (arg1), val);
10483 }
10484
10485 case OP_VAR_VALUE:
10486 *pos -= 1;
10487
10488 if (noside == EVAL_SKIP)
10489 {
10490 *pos += 4;
10491 goto nosideret;
10492 }
10493
10494 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10495 /* Only encountered when an unresolved symbol occurs in a
10496 context other than a function call, in which case, it is
10497 invalid. */
10498 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10499 exp->elts[pc + 2].symbol->print_name ());
10500
10501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10502 {
10503 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10504 /* Check to see if this is a tagged type. We also need to handle
10505 the case where the type is a reference to a tagged type, but
10506 we have to be careful to exclude pointers to tagged types.
10507 The latter should be shown as usual (as a pointer), whereas
10508 a reference should mostly be transparent to the user. */
10509 if (ada_is_tagged_type (type, 0)
10510 || (type->code () == TYPE_CODE_REF
10511 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10512 {
10513 /* Tagged types are a little special in the fact that the real
10514 type is dynamic and can only be determined by inspecting the
10515 object's tag. This means that we need to get the object's
10516 value first (EVAL_NORMAL) and then extract the actual object
10517 type from its tag.
10518
10519 Note that we cannot skip the final step where we extract
10520 the object type from its tag, because the EVAL_NORMAL phase
10521 results in dynamic components being resolved into fixed ones.
10522 This can cause problems when trying to print the type
10523 description of tagged types whose parent has a dynamic size:
10524 We use the type name of the "_parent" component in order
10525 to print the name of the ancestor type in the type description.
10526 If that component had a dynamic size, the resolution into
10527 a fixed type would result in the loss of that type name,
10528 thus preventing us from printing the name of the ancestor
10529 type in the type description. */
10530 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10531
10532 if (type->code () != TYPE_CODE_REF)
10533 {
10534 struct type *actual_type;
10535
10536 actual_type = type_from_tag (ada_value_tag (arg1));
10537 if (actual_type == NULL)
10538 /* If, for some reason, we were unable to determine
10539 the actual type from the tag, then use the static
10540 approximation that we just computed as a fallback.
10541 This can happen if the debugging information is
10542 incomplete, for instance. */
10543 actual_type = type;
10544 return value_zero (actual_type, not_lval);
10545 }
10546 else
10547 {
10548 /* In the case of a ref, ada_coerce_ref takes care
10549 of determining the actual type. But the evaluation
10550 should return a ref as it should be valid to ask
10551 for its address; so rebuild a ref after coerce. */
10552 arg1 = ada_coerce_ref (arg1);
10553 return value_ref (arg1, TYPE_CODE_REF);
10554 }
10555 }
10556
10557 /* Records and unions for which GNAT encodings have been
10558 generated need to be statically fixed as well.
10559 Otherwise, non-static fixing produces a type where
10560 all dynamic properties are removed, which prevents "ptype"
10561 from being able to completely describe the type.
10562 For instance, a case statement in a variant record would be
10563 replaced by the relevant components based on the actual
10564 value of the discriminants. */
10565 if ((type->code () == TYPE_CODE_STRUCT
10566 && dynamic_template_type (type) != NULL)
10567 || (type->code () == TYPE_CODE_UNION
10568 && ada_find_parallel_type (type, "___XVU") != NULL))
10569 {
10570 *pos += 4;
10571 return value_zero (to_static_fixed_type (type), not_lval);
10572 }
10573 }
10574
10575 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10576 return ada_to_fixed_value (arg1);
10577
10578 case OP_FUNCALL:
10579 (*pos) += 2;
10580
10581 /* Allocate arg vector, including space for the function to be
10582 called in argvec[0] and a terminating NULL. */
10583 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10584 argvec = XALLOCAVEC (struct value *, nargs + 2);
10585
10586 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10587 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10588 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10589 exp->elts[pc + 5].symbol->print_name ());
10590 else
10591 {
10592 for (tem = 0; tem <= nargs; tem += 1)
10593 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10594 argvec[tem] = 0;
10595
10596 if (noside == EVAL_SKIP)
10597 goto nosideret;
10598 }
10599
10600 if (ada_is_constrained_packed_array_type
10601 (desc_base_type (value_type (argvec[0]))))
10602 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10603 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10604 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10605 /* This is a packed array that has already been fixed, and
10606 therefore already coerced to a simple array. Nothing further
10607 to do. */
10608 ;
10609 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10610 {
10611 /* Make sure we dereference references so that all the code below
10612 feels like it's really handling the referenced value. Wrapping
10613 types (for alignment) may be there, so make sure we strip them as
10614 well. */
10615 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10616 }
10617 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10618 && VALUE_LVAL (argvec[0]) == lval_memory)
10619 argvec[0] = value_addr (argvec[0]);
10620
10621 type = ada_check_typedef (value_type (argvec[0]));
10622
10623 /* Ada allows us to implicitly dereference arrays when subscripting
10624 them. So, if this is an array typedef (encoding use for array
10625 access types encoded as fat pointers), strip it now. */
10626 if (type->code () == TYPE_CODE_TYPEDEF)
10627 type = ada_typedef_target_type (type);
10628
10629 if (type->code () == TYPE_CODE_PTR)
10630 {
10631 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10632 {
10633 case TYPE_CODE_FUNC:
10634 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10635 break;
10636 case TYPE_CODE_ARRAY:
10637 break;
10638 case TYPE_CODE_STRUCT:
10639 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10640 argvec[0] = ada_value_ind (argvec[0]);
10641 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10642 break;
10643 default:
10644 error (_("cannot subscript or call something of type `%s'"),
10645 ada_type_name (value_type (argvec[0])));
10646 break;
10647 }
10648 }
10649
10650 switch (type->code ())
10651 {
10652 case TYPE_CODE_FUNC:
10653 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10654 {
10655 if (TYPE_TARGET_TYPE (type) == NULL)
10656 error_call_unknown_return_type (NULL);
10657 return allocate_value (TYPE_TARGET_TYPE (type));
10658 }
10659 return call_function_by_hand (argvec[0], NULL,
10660 gdb::make_array_view (argvec + 1,
10661 nargs));
10662 case TYPE_CODE_INTERNAL_FUNCTION:
10663 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10664 /* We don't know anything about what the internal
10665 function might return, but we have to return
10666 something. */
10667 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10668 not_lval);
10669 else
10670 return call_internal_function (exp->gdbarch, exp->language_defn,
10671 argvec[0], nargs, argvec + 1);
10672
10673 case TYPE_CODE_STRUCT:
10674 {
10675 int arity;
10676
10677 arity = ada_array_arity (type);
10678 type = ada_array_element_type (type, nargs);
10679 if (type == NULL)
10680 error (_("cannot subscript or call a record"));
10681 if (arity != nargs)
10682 error (_("wrong number of subscripts; expecting %d"), arity);
10683 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10684 return value_zero (ada_aligned_type (type), lval_memory);
10685 return
10686 unwrap_value (ada_value_subscript
10687 (argvec[0], nargs, argvec + 1));
10688 }
10689 case TYPE_CODE_ARRAY:
10690 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10691 {
10692 type = ada_array_element_type (type, nargs);
10693 if (type == NULL)
10694 error (_("element type of array unknown"));
10695 else
10696 return value_zero (ada_aligned_type (type), lval_memory);
10697 }
10698 return
10699 unwrap_value (ada_value_subscript
10700 (ada_coerce_to_simple_array (argvec[0]),
10701 nargs, argvec + 1));
10702 case TYPE_CODE_PTR: /* Pointer to array */
10703 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10704 {
10705 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10706 type = ada_array_element_type (type, nargs);
10707 if (type == NULL)
10708 error (_("element type of array unknown"));
10709 else
10710 return value_zero (ada_aligned_type (type), lval_memory);
10711 }
10712 return
10713 unwrap_value (ada_value_ptr_subscript (argvec[0],
10714 nargs, argvec + 1));
10715
10716 default:
10717 error (_("Attempt to index or call something other than an "
10718 "array or function"));
10719 }
10720
10721 case TERNOP_SLICE:
10722 {
10723 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10724 struct value *low_bound_val =
10725 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10726 struct value *high_bound_val =
10727 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10728 LONGEST low_bound;
10729 LONGEST high_bound;
10730
10731 low_bound_val = coerce_ref (low_bound_val);
10732 high_bound_val = coerce_ref (high_bound_val);
10733 low_bound = value_as_long (low_bound_val);
10734 high_bound = value_as_long (high_bound_val);
10735
10736 if (noside == EVAL_SKIP)
10737 goto nosideret;
10738
10739 /* If this is a reference to an aligner type, then remove all
10740 the aligners. */
10741 if (value_type (array)->code () == TYPE_CODE_REF
10742 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10743 TYPE_TARGET_TYPE (value_type (array)) =
10744 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10745
10746 if (ada_is_constrained_packed_array_type (value_type (array)))
10747 error (_("cannot slice a packed array"));
10748
10749 /* If this is a reference to an array or an array lvalue,
10750 convert to a pointer. */
10751 if (value_type (array)->code () == TYPE_CODE_REF
10752 || (value_type (array)->code () == TYPE_CODE_ARRAY
10753 && VALUE_LVAL (array) == lval_memory))
10754 array = value_addr (array);
10755
10756 if (noside == EVAL_AVOID_SIDE_EFFECTS
10757 && ada_is_array_descriptor_type (ada_check_typedef
10758 (value_type (array))))
10759 return empty_array (ada_type_of_array (array, 0), low_bound,
10760 high_bound);
10761
10762 array = ada_coerce_to_simple_array_ptr (array);
10763
10764 /* If we have more than one level of pointer indirection,
10765 dereference the value until we get only one level. */
10766 while (value_type (array)->code () == TYPE_CODE_PTR
10767 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10768 == TYPE_CODE_PTR))
10769 array = value_ind (array);
10770
10771 /* Make sure we really do have an array type before going further,
10772 to avoid a SEGV when trying to get the index type or the target
10773 type later down the road if the debug info generated by
10774 the compiler is incorrect or incomplete. */
10775 if (!ada_is_simple_array_type (value_type (array)))
10776 error (_("cannot take slice of non-array"));
10777
10778 if (ada_check_typedef (value_type (array))->code ()
10779 == TYPE_CODE_PTR)
10780 {
10781 struct type *type0 = ada_check_typedef (value_type (array));
10782
10783 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10784 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10785 else
10786 {
10787 struct type *arr_type0 =
10788 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10789
10790 return ada_value_slice_from_ptr (array, arr_type0,
10791 longest_to_int (low_bound),
10792 longest_to_int (high_bound));
10793 }
10794 }
10795 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10796 return array;
10797 else if (high_bound < low_bound)
10798 return empty_array (value_type (array), low_bound, high_bound);
10799 else
10800 return ada_value_slice (array, longest_to_int (low_bound),
10801 longest_to_int (high_bound));
10802 }
10803
10804 case UNOP_IN_RANGE:
10805 (*pos) += 2;
10806 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10807 type = check_typedef (exp->elts[pc + 1].type);
10808
10809 if (noside == EVAL_SKIP)
10810 goto nosideret;
10811
10812 switch (type->code ())
10813 {
10814 default:
10815 lim_warning (_("Membership test incompletely implemented; "
10816 "always returns true"));
10817 type = language_bool_type (exp->language_defn, exp->gdbarch);
10818 return value_from_longest (type, (LONGEST) 1);
10819
10820 case TYPE_CODE_RANGE:
10821 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10822 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10823 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10824 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10825 type = language_bool_type (exp->language_defn, exp->gdbarch);
10826 return
10827 value_from_longest (type,
10828 (value_less (arg1, arg3)
10829 || value_equal (arg1, arg3))
10830 && (value_less (arg2, arg1)
10831 || value_equal (arg2, arg1)));
10832 }
10833
10834 case BINOP_IN_BOUNDS:
10835 (*pos) += 2;
10836 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10837 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10838
10839 if (noside == EVAL_SKIP)
10840 goto nosideret;
10841
10842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10843 {
10844 type = language_bool_type (exp->language_defn, exp->gdbarch);
10845 return value_zero (type, not_lval);
10846 }
10847
10848 tem = longest_to_int (exp->elts[pc + 1].longconst);
10849
10850 type = ada_index_type (value_type (arg2), tem, "range");
10851 if (!type)
10852 type = value_type (arg1);
10853
10854 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10855 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10856
10857 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10858 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10859 type = language_bool_type (exp->language_defn, exp->gdbarch);
10860 return
10861 value_from_longest (type,
10862 (value_less (arg1, arg3)
10863 || value_equal (arg1, arg3))
10864 && (value_less (arg2, arg1)
10865 || value_equal (arg2, arg1)));
10866
10867 case TERNOP_IN_RANGE:
10868 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10869 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10870 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10871
10872 if (noside == EVAL_SKIP)
10873 goto nosideret;
10874
10875 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10876 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10877 type = language_bool_type (exp->language_defn, exp->gdbarch);
10878 return
10879 value_from_longest (type,
10880 (value_less (arg1, arg3)
10881 || value_equal (arg1, arg3))
10882 && (value_less (arg2, arg1)
10883 || value_equal (arg2, arg1)));
10884
10885 case OP_ATR_FIRST:
10886 case OP_ATR_LAST:
10887 case OP_ATR_LENGTH:
10888 {
10889 struct type *type_arg;
10890
10891 if (exp->elts[*pos].opcode == OP_TYPE)
10892 {
10893 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10894 arg1 = NULL;
10895 type_arg = check_typedef (exp->elts[pc + 2].type);
10896 }
10897 else
10898 {
10899 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10900 type_arg = NULL;
10901 }
10902
10903 if (exp->elts[*pos].opcode != OP_LONG)
10904 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10905 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10906 *pos += 4;
10907
10908 if (noside == EVAL_SKIP)
10909 goto nosideret;
10910 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10911 {
10912 if (type_arg == NULL)
10913 type_arg = value_type (arg1);
10914
10915 if (ada_is_constrained_packed_array_type (type_arg))
10916 type_arg = decode_constrained_packed_array_type (type_arg);
10917
10918 if (!discrete_type_p (type_arg))
10919 {
10920 switch (op)
10921 {
10922 default: /* Should never happen. */
10923 error (_("unexpected attribute encountered"));
10924 case OP_ATR_FIRST:
10925 case OP_ATR_LAST:
10926 type_arg = ada_index_type (type_arg, tem,
10927 ada_attribute_name (op));
10928 break;
10929 case OP_ATR_LENGTH:
10930 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10931 break;
10932 }
10933 }
10934
10935 return value_zero (type_arg, not_lval);
10936 }
10937 else if (type_arg == NULL)
10938 {
10939 arg1 = ada_coerce_ref (arg1);
10940
10941 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10942 arg1 = ada_coerce_to_simple_array (arg1);
10943
10944 if (op == OP_ATR_LENGTH)
10945 type = builtin_type (exp->gdbarch)->builtin_int;
10946 else
10947 {
10948 type = ada_index_type (value_type (arg1), tem,
10949 ada_attribute_name (op));
10950 if (type == NULL)
10951 type = builtin_type (exp->gdbarch)->builtin_int;
10952 }
10953
10954 switch (op)
10955 {
10956 default: /* Should never happen. */
10957 error (_("unexpected attribute encountered"));
10958 case OP_ATR_FIRST:
10959 return value_from_longest
10960 (type, ada_array_bound (arg1, tem, 0));
10961 case OP_ATR_LAST:
10962 return value_from_longest
10963 (type, ada_array_bound (arg1, tem, 1));
10964 case OP_ATR_LENGTH:
10965 return value_from_longest
10966 (type, ada_array_length (arg1, tem));
10967 }
10968 }
10969 else if (discrete_type_p (type_arg))
10970 {
10971 struct type *range_type;
10972 const char *name = ada_type_name (type_arg);
10973
10974 range_type = NULL;
10975 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10976 range_type = to_fixed_range_type (type_arg, NULL);
10977 if (range_type == NULL)
10978 range_type = type_arg;
10979 switch (op)
10980 {
10981 default:
10982 error (_("unexpected attribute encountered"));
10983 case OP_ATR_FIRST:
10984 return value_from_longest
10985 (range_type, ada_discrete_type_low_bound (range_type));
10986 case OP_ATR_LAST:
10987 return value_from_longest
10988 (range_type, ada_discrete_type_high_bound (range_type));
10989 case OP_ATR_LENGTH:
10990 error (_("the 'length attribute applies only to array types"));
10991 }
10992 }
10993 else if (type_arg->code () == TYPE_CODE_FLT)
10994 error (_("unimplemented type attribute"));
10995 else
10996 {
10997 LONGEST low, high;
10998
10999 if (ada_is_constrained_packed_array_type (type_arg))
11000 type_arg = decode_constrained_packed_array_type (type_arg);
11001
11002 if (op == OP_ATR_LENGTH)
11003 type = builtin_type (exp->gdbarch)->builtin_int;
11004 else
11005 {
11006 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11007 if (type == NULL)
11008 type = builtin_type (exp->gdbarch)->builtin_int;
11009 }
11010
11011 switch (op)
11012 {
11013 default:
11014 error (_("unexpected attribute encountered"));
11015 case OP_ATR_FIRST:
11016 low = ada_array_bound_from_type (type_arg, tem, 0);
11017 return value_from_longest (type, low);
11018 case OP_ATR_LAST:
11019 high = ada_array_bound_from_type (type_arg, tem, 1);
11020 return value_from_longest (type, high);
11021 case OP_ATR_LENGTH:
11022 low = ada_array_bound_from_type (type_arg, tem, 0);
11023 high = ada_array_bound_from_type (type_arg, tem, 1);
11024 return value_from_longest (type, high - low + 1);
11025 }
11026 }
11027 }
11028
11029 case OP_ATR_TAG:
11030 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11031 if (noside == EVAL_SKIP)
11032 goto nosideret;
11033
11034 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11035 return value_zero (ada_tag_type (arg1), not_lval);
11036
11037 return ada_value_tag (arg1);
11038
11039 case OP_ATR_MIN:
11040 case OP_ATR_MAX:
11041 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11042 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11043 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11044 if (noside == EVAL_SKIP)
11045 goto nosideret;
11046 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11047 return value_zero (value_type (arg1), not_lval);
11048 else
11049 {
11050 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11051 return value_binop (arg1, arg2,
11052 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11053 }
11054
11055 case OP_ATR_MODULUS:
11056 {
11057 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11058
11059 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11060 if (noside == EVAL_SKIP)
11061 goto nosideret;
11062
11063 if (!ada_is_modular_type (type_arg))
11064 error (_("'modulus must be applied to modular type"));
11065
11066 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11067 ada_modulus (type_arg));
11068 }
11069
11070
11071 case OP_ATR_POS:
11072 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11073 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11074 if (noside == EVAL_SKIP)
11075 goto nosideret;
11076 type = builtin_type (exp->gdbarch)->builtin_int;
11077 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11078 return value_zero (type, not_lval);
11079 else
11080 return value_pos_atr (type, arg1);
11081
11082 case OP_ATR_SIZE:
11083 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11084 type = value_type (arg1);
11085
11086 /* If the argument is a reference, then dereference its type, since
11087 the user is really asking for the size of the actual object,
11088 not the size of the pointer. */
11089 if (type->code () == TYPE_CODE_REF)
11090 type = TYPE_TARGET_TYPE (type);
11091
11092 if (noside == EVAL_SKIP)
11093 goto nosideret;
11094 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11095 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11096 else
11097 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11098 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11099
11100 case OP_ATR_VAL:
11101 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11102 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11103 type = exp->elts[pc + 2].type;
11104 if (noside == EVAL_SKIP)
11105 goto nosideret;
11106 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11107 return value_zero (type, not_lval);
11108 else
11109 return value_val_atr (type, arg1);
11110
11111 case BINOP_EXP:
11112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11113 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11114 if (noside == EVAL_SKIP)
11115 goto nosideret;
11116 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11117 return value_zero (value_type (arg1), not_lval);
11118 else
11119 {
11120 /* For integer exponentiation operations,
11121 only promote the first argument. */
11122 if (is_integral_type (value_type (arg2)))
11123 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11124 else
11125 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11126
11127 return value_binop (arg1, arg2, op);
11128 }
11129
11130 case UNOP_PLUS:
11131 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11132 if (noside == EVAL_SKIP)
11133 goto nosideret;
11134 else
11135 return arg1;
11136
11137 case UNOP_ABS:
11138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11139 if (noside == EVAL_SKIP)
11140 goto nosideret;
11141 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11142 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11143 return value_neg (arg1);
11144 else
11145 return arg1;
11146
11147 case UNOP_IND:
11148 preeval_pos = *pos;
11149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150 if (noside == EVAL_SKIP)
11151 goto nosideret;
11152 type = ada_check_typedef (value_type (arg1));
11153 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11154 {
11155 if (ada_is_array_descriptor_type (type))
11156 /* GDB allows dereferencing GNAT array descriptors. */
11157 {
11158 struct type *arrType = ada_type_of_array (arg1, 0);
11159
11160 if (arrType == NULL)
11161 error (_("Attempt to dereference null array pointer."));
11162 return value_at_lazy (arrType, 0);
11163 }
11164 else if (type->code () == TYPE_CODE_PTR
11165 || type->code () == TYPE_CODE_REF
11166 /* In C you can dereference an array to get the 1st elt. */
11167 || type->code () == TYPE_CODE_ARRAY)
11168 {
11169 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11170 only be determined by inspecting the object's tag.
11171 This means that we need to evaluate completely the
11172 expression in order to get its type. */
11173
11174 if ((type->code () == TYPE_CODE_REF
11175 || type->code () == TYPE_CODE_PTR)
11176 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11177 {
11178 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11179 EVAL_NORMAL);
11180 type = value_type (ada_value_ind (arg1));
11181 }
11182 else
11183 {
11184 type = to_static_fixed_type
11185 (ada_aligned_type
11186 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11187 }
11188 ada_ensure_varsize_limit (type);
11189 return value_zero (type, lval_memory);
11190 }
11191 else if (type->code () == TYPE_CODE_INT)
11192 {
11193 /* GDB allows dereferencing an int. */
11194 if (expect_type == NULL)
11195 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11196 lval_memory);
11197 else
11198 {
11199 expect_type =
11200 to_static_fixed_type (ada_aligned_type (expect_type));
11201 return value_zero (expect_type, lval_memory);
11202 }
11203 }
11204 else
11205 error (_("Attempt to take contents of a non-pointer value."));
11206 }
11207 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11208 type = ada_check_typedef (value_type (arg1));
11209
11210 if (type->code () == TYPE_CODE_INT)
11211 /* GDB allows dereferencing an int. If we were given
11212 the expect_type, then use that as the target type.
11213 Otherwise, assume that the target type is an int. */
11214 {
11215 if (expect_type != NULL)
11216 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11217 arg1));
11218 else
11219 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11220 (CORE_ADDR) value_as_address (arg1));
11221 }
11222
11223 if (ada_is_array_descriptor_type (type))
11224 /* GDB allows dereferencing GNAT array descriptors. */
11225 return ada_coerce_to_simple_array (arg1);
11226 else
11227 return ada_value_ind (arg1);
11228
11229 case STRUCTOP_STRUCT:
11230 tem = longest_to_int (exp->elts[pc + 1].longconst);
11231 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11232 preeval_pos = *pos;
11233 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11234 if (noside == EVAL_SKIP)
11235 goto nosideret;
11236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11237 {
11238 struct type *type1 = value_type (arg1);
11239
11240 if (ada_is_tagged_type (type1, 1))
11241 {
11242 type = ada_lookup_struct_elt_type (type1,
11243 &exp->elts[pc + 2].string,
11244 1, 1);
11245
11246 /* If the field is not found, check if it exists in the
11247 extension of this object's type. This means that we
11248 need to evaluate completely the expression. */
11249
11250 if (type == NULL)
11251 {
11252 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11253 EVAL_NORMAL);
11254 arg1 = ada_value_struct_elt (arg1,
11255 &exp->elts[pc + 2].string,
11256 0);
11257 arg1 = unwrap_value (arg1);
11258 type = value_type (ada_to_fixed_value (arg1));
11259 }
11260 }
11261 else
11262 type =
11263 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11264 0);
11265
11266 return value_zero (ada_aligned_type (type), lval_memory);
11267 }
11268 else
11269 {
11270 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11271 arg1 = unwrap_value (arg1);
11272 return ada_to_fixed_value (arg1);
11273 }
11274
11275 case OP_TYPE:
11276 /* The value is not supposed to be used. This is here to make it
11277 easier to accommodate expressions that contain types. */
11278 (*pos) += 2;
11279 if (noside == EVAL_SKIP)
11280 goto nosideret;
11281 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11282 return allocate_value (exp->elts[pc + 1].type);
11283 else
11284 error (_("Attempt to use a type name as an expression"));
11285
11286 case OP_AGGREGATE:
11287 case OP_CHOICES:
11288 case OP_OTHERS:
11289 case OP_DISCRETE_RANGE:
11290 case OP_POSITIONAL:
11291 case OP_NAME:
11292 if (noside == EVAL_NORMAL)
11293 switch (op)
11294 {
11295 case OP_NAME:
11296 error (_("Undefined name, ambiguous name, or renaming used in "
11297 "component association: %s."), &exp->elts[pc+2].string);
11298 case OP_AGGREGATE:
11299 error (_("Aggregates only allowed on the right of an assignment"));
11300 default:
11301 internal_error (__FILE__, __LINE__,
11302 _("aggregate apparently mangled"));
11303 }
11304
11305 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11306 *pos += oplen - 1;
11307 for (tem = 0; tem < nargs; tem += 1)
11308 ada_evaluate_subexp (NULL, exp, pos, noside);
11309 goto nosideret;
11310 }
11311
11312 nosideret:
11313 return eval_skip_value (exp);
11314 }
11315 \f
11316
11317 /* Fixed point */
11318
11319 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11320 type name that encodes the 'small and 'delta information.
11321 Otherwise, return NULL. */
11322
11323 static const char *
11324 gnat_encoded_fixed_type_info (struct type *type)
11325 {
11326 const char *name = ada_type_name (type);
11327 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11328
11329 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11330 {
11331 const char *tail = strstr (name, "___XF_");
11332
11333 if (tail == NULL)
11334 return NULL;
11335 else
11336 return tail + 5;
11337 }
11338 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11339 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11340 else
11341 return NULL;
11342 }
11343
11344 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11345
11346 int
11347 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11348 {
11349 return gnat_encoded_fixed_type_info (type) != NULL;
11350 }
11351
11352 /* Return non-zero iff TYPE represents a System.Address type. */
11353
11354 int
11355 ada_is_system_address_type (struct type *type)
11356 {
11357 return (type->name () && strcmp (type->name (), "system__address") == 0);
11358 }
11359
11360 /* Assuming that TYPE is the representation of an Ada fixed-point
11361 type, return the target floating-point type to be used to represent
11362 of this type during internal computation. */
11363
11364 static struct type *
11365 ada_scaling_type (struct type *type)
11366 {
11367 return builtin_type (get_type_arch (type))->builtin_long_double;
11368 }
11369
11370 /* Assuming that TYPE is the representation of an Ada fixed-point
11371 type, return its delta, or NULL if the type is malformed and the
11372 delta cannot be determined. */
11373
11374 struct value *
11375 gnat_encoded_fixed_point_delta (struct type *type)
11376 {
11377 const char *encoding = gnat_encoded_fixed_type_info (type);
11378 struct type *scale_type = ada_scaling_type (type);
11379
11380 long long num, den;
11381
11382 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11383 return nullptr;
11384 else
11385 return value_binop (value_from_longest (scale_type, num),
11386 value_from_longest (scale_type, den), BINOP_DIV);
11387 }
11388
11389 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11390 the scaling factor ('SMALL value) associated with the type. */
11391
11392 struct value *
11393 ada_scaling_factor (struct type *type)
11394 {
11395 const char *encoding = gnat_encoded_fixed_type_info (type);
11396 struct type *scale_type = ada_scaling_type (type);
11397
11398 long long num0, den0, num1, den1;
11399 int n;
11400
11401 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11402 &num0, &den0, &num1, &den1);
11403
11404 if (n < 2)
11405 return value_from_longest (scale_type, 1);
11406 else if (n == 4)
11407 return value_binop (value_from_longest (scale_type, num1),
11408 value_from_longest (scale_type, den1), BINOP_DIV);
11409 else
11410 return value_binop (value_from_longest (scale_type, num0),
11411 value_from_longest (scale_type, den0), BINOP_DIV);
11412 }
11413
11414 \f
11415
11416 /* Range types */
11417
11418 /* Scan STR beginning at position K for a discriminant name, and
11419 return the value of that discriminant field of DVAL in *PX. If
11420 PNEW_K is not null, put the position of the character beyond the
11421 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11422 not alter *PX and *PNEW_K if unsuccessful. */
11423
11424 static int
11425 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11426 int *pnew_k)
11427 {
11428 static char *bound_buffer = NULL;
11429 static size_t bound_buffer_len = 0;
11430 const char *pstart, *pend, *bound;
11431 struct value *bound_val;
11432
11433 if (dval == NULL || str == NULL || str[k] == '\0')
11434 return 0;
11435
11436 pstart = str + k;
11437 pend = strstr (pstart, "__");
11438 if (pend == NULL)
11439 {
11440 bound = pstart;
11441 k += strlen (bound);
11442 }
11443 else
11444 {
11445 int len = pend - pstart;
11446
11447 /* Strip __ and beyond. */
11448 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11449 strncpy (bound_buffer, pstart, len);
11450 bound_buffer[len] = '\0';
11451
11452 bound = bound_buffer;
11453 k = pend - str;
11454 }
11455
11456 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11457 if (bound_val == NULL)
11458 return 0;
11459
11460 *px = value_as_long (bound_val);
11461 if (pnew_k != NULL)
11462 *pnew_k = k;
11463 return 1;
11464 }
11465
11466 /* Value of variable named NAME in the current environment. If
11467 no such variable found, then if ERR_MSG is null, returns 0, and
11468 otherwise causes an error with message ERR_MSG. */
11469
11470 static struct value *
11471 get_var_value (const char *name, const char *err_msg)
11472 {
11473 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11474
11475 std::vector<struct block_symbol> syms;
11476 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11477 get_selected_block (0),
11478 VAR_DOMAIN, &syms, 1);
11479
11480 if (nsyms != 1)
11481 {
11482 if (err_msg == NULL)
11483 return 0;
11484 else
11485 error (("%s"), err_msg);
11486 }
11487
11488 return value_of_variable (syms[0].symbol, syms[0].block);
11489 }
11490
11491 /* Value of integer variable named NAME in the current environment.
11492 If no such variable is found, returns false. Otherwise, sets VALUE
11493 to the variable's value and returns true. */
11494
11495 bool
11496 get_int_var_value (const char *name, LONGEST &value)
11497 {
11498 struct value *var_val = get_var_value (name, 0);
11499
11500 if (var_val == 0)
11501 return false;
11502
11503 value = value_as_long (var_val);
11504 return true;
11505 }
11506
11507
11508 /* Return a range type whose base type is that of the range type named
11509 NAME in the current environment, and whose bounds are calculated
11510 from NAME according to the GNAT range encoding conventions.
11511 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11512 corresponding range type from debug information; fall back to using it
11513 if symbol lookup fails. If a new type must be created, allocate it
11514 like ORIG_TYPE was. The bounds information, in general, is encoded
11515 in NAME, the base type given in the named range type. */
11516
11517 static struct type *
11518 to_fixed_range_type (struct type *raw_type, struct value *dval)
11519 {
11520 const char *name;
11521 struct type *base_type;
11522 const char *subtype_info;
11523
11524 gdb_assert (raw_type != NULL);
11525 gdb_assert (raw_type->name () != NULL);
11526
11527 if (raw_type->code () == TYPE_CODE_RANGE)
11528 base_type = TYPE_TARGET_TYPE (raw_type);
11529 else
11530 base_type = raw_type;
11531
11532 name = raw_type->name ();
11533 subtype_info = strstr (name, "___XD");
11534 if (subtype_info == NULL)
11535 {
11536 LONGEST L = ada_discrete_type_low_bound (raw_type);
11537 LONGEST U = ada_discrete_type_high_bound (raw_type);
11538
11539 if (L < INT_MIN || U > INT_MAX)
11540 return raw_type;
11541 else
11542 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11543 L, U);
11544 }
11545 else
11546 {
11547 static char *name_buf = NULL;
11548 static size_t name_len = 0;
11549 int prefix_len = subtype_info - name;
11550 LONGEST L, U;
11551 struct type *type;
11552 const char *bounds_str;
11553 int n;
11554
11555 GROW_VECT (name_buf, name_len, prefix_len + 5);
11556 strncpy (name_buf, name, prefix_len);
11557 name_buf[prefix_len] = '\0';
11558
11559 subtype_info += 5;
11560 bounds_str = strchr (subtype_info, '_');
11561 n = 1;
11562
11563 if (*subtype_info == 'L')
11564 {
11565 if (!ada_scan_number (bounds_str, n, &L, &n)
11566 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11567 return raw_type;
11568 if (bounds_str[n] == '_')
11569 n += 2;
11570 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11571 n += 1;
11572 subtype_info += 1;
11573 }
11574 else
11575 {
11576 strcpy (name_buf + prefix_len, "___L");
11577 if (!get_int_var_value (name_buf, L))
11578 {
11579 lim_warning (_("Unknown lower bound, using 1."));
11580 L = 1;
11581 }
11582 }
11583
11584 if (*subtype_info == 'U')
11585 {
11586 if (!ada_scan_number (bounds_str, n, &U, &n)
11587 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11588 return raw_type;
11589 }
11590 else
11591 {
11592 strcpy (name_buf + prefix_len, "___U");
11593 if (!get_int_var_value (name_buf, U))
11594 {
11595 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11596 U = L;
11597 }
11598 }
11599
11600 type = create_static_range_type (alloc_type_copy (raw_type),
11601 base_type, L, U);
11602 /* create_static_range_type alters the resulting type's length
11603 to match the size of the base_type, which is not what we want.
11604 Set it back to the original range type's length. */
11605 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11606 type->set_name (name);
11607 return type;
11608 }
11609 }
11610
11611 /* True iff NAME is the name of a range type. */
11612
11613 int
11614 ada_is_range_type_name (const char *name)
11615 {
11616 return (name != NULL && strstr (name, "___XD"));
11617 }
11618 \f
11619
11620 /* Modular types */
11621
11622 /* True iff TYPE is an Ada modular type. */
11623
11624 int
11625 ada_is_modular_type (struct type *type)
11626 {
11627 struct type *subranged_type = get_base_type (type);
11628
11629 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11630 && subranged_type->code () == TYPE_CODE_INT
11631 && TYPE_UNSIGNED (subranged_type));
11632 }
11633
11634 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11635
11636 ULONGEST
11637 ada_modulus (struct type *type)
11638 {
11639 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11640 }
11641 \f
11642
11643 /* Ada exception catchpoint support:
11644 ---------------------------------
11645
11646 We support 3 kinds of exception catchpoints:
11647 . catchpoints on Ada exceptions
11648 . catchpoints on unhandled Ada exceptions
11649 . catchpoints on failed assertions
11650
11651 Exceptions raised during failed assertions, or unhandled exceptions
11652 could perfectly be caught with the general catchpoint on Ada exceptions.
11653 However, we can easily differentiate these two special cases, and having
11654 the option to distinguish these two cases from the rest can be useful
11655 to zero-in on certain situations.
11656
11657 Exception catchpoints are a specialized form of breakpoint,
11658 since they rely on inserting breakpoints inside known routines
11659 of the GNAT runtime. The implementation therefore uses a standard
11660 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11661 of breakpoint_ops.
11662
11663 Support in the runtime for exception catchpoints have been changed
11664 a few times already, and these changes affect the implementation
11665 of these catchpoints. In order to be able to support several
11666 variants of the runtime, we use a sniffer that will determine
11667 the runtime variant used by the program being debugged. */
11668
11669 /* Ada's standard exceptions.
11670
11671 The Ada 83 standard also defined Numeric_Error. But there so many
11672 situations where it was unclear from the Ada 83 Reference Manual
11673 (RM) whether Constraint_Error or Numeric_Error should be raised,
11674 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11675 Interpretation saying that anytime the RM says that Numeric_Error
11676 should be raised, the implementation may raise Constraint_Error.
11677 Ada 95 went one step further and pretty much removed Numeric_Error
11678 from the list of standard exceptions (it made it a renaming of
11679 Constraint_Error, to help preserve compatibility when compiling
11680 an Ada83 compiler). As such, we do not include Numeric_Error from
11681 this list of standard exceptions. */
11682
11683 static const char *standard_exc[] = {
11684 "constraint_error",
11685 "program_error",
11686 "storage_error",
11687 "tasking_error"
11688 };
11689
11690 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11691
11692 /* A structure that describes how to support exception catchpoints
11693 for a given executable. */
11694
11695 struct exception_support_info
11696 {
11697 /* The name of the symbol to break on in order to insert
11698 a catchpoint on exceptions. */
11699 const char *catch_exception_sym;
11700
11701 /* The name of the symbol to break on in order to insert
11702 a catchpoint on unhandled exceptions. */
11703 const char *catch_exception_unhandled_sym;
11704
11705 /* The name of the symbol to break on in order to insert
11706 a catchpoint on failed assertions. */
11707 const char *catch_assert_sym;
11708
11709 /* The name of the symbol to break on in order to insert
11710 a catchpoint on exception handling. */
11711 const char *catch_handlers_sym;
11712
11713 /* Assuming that the inferior just triggered an unhandled exception
11714 catchpoint, this function is responsible for returning the address
11715 in inferior memory where the name of that exception is stored.
11716 Return zero if the address could not be computed. */
11717 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11718 };
11719
11720 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11721 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11722
11723 /* The following exception support info structure describes how to
11724 implement exception catchpoints with the latest version of the
11725 Ada runtime (as of 2019-08-??). */
11726
11727 static const struct exception_support_info default_exception_support_info =
11728 {
11729 "__gnat_debug_raise_exception", /* catch_exception_sym */
11730 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11731 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11732 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11733 ada_unhandled_exception_name_addr
11734 };
11735
11736 /* The following exception support info structure describes how to
11737 implement exception catchpoints with an earlier version of the
11738 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11739
11740 static const struct exception_support_info exception_support_info_v0 =
11741 {
11742 "__gnat_debug_raise_exception", /* catch_exception_sym */
11743 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11744 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11745 "__gnat_begin_handler", /* catch_handlers_sym */
11746 ada_unhandled_exception_name_addr
11747 };
11748
11749 /* The following exception support info structure describes how to
11750 implement exception catchpoints with a slightly older version
11751 of the Ada runtime. */
11752
11753 static const struct exception_support_info exception_support_info_fallback =
11754 {
11755 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11756 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11757 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11758 "__gnat_begin_handler", /* catch_handlers_sym */
11759 ada_unhandled_exception_name_addr_from_raise
11760 };
11761
11762 /* Return nonzero if we can detect the exception support routines
11763 described in EINFO.
11764
11765 This function errors out if an abnormal situation is detected
11766 (for instance, if we find the exception support routines, but
11767 that support is found to be incomplete). */
11768
11769 static int
11770 ada_has_this_exception_support (const struct exception_support_info *einfo)
11771 {
11772 struct symbol *sym;
11773
11774 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11775 that should be compiled with debugging information. As a result, we
11776 expect to find that symbol in the symtabs. */
11777
11778 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11779 if (sym == NULL)
11780 {
11781 /* Perhaps we did not find our symbol because the Ada runtime was
11782 compiled without debugging info, or simply stripped of it.
11783 It happens on some GNU/Linux distributions for instance, where
11784 users have to install a separate debug package in order to get
11785 the runtime's debugging info. In that situation, let the user
11786 know why we cannot insert an Ada exception catchpoint.
11787
11788 Note: Just for the purpose of inserting our Ada exception
11789 catchpoint, we could rely purely on the associated minimal symbol.
11790 But we would be operating in degraded mode anyway, since we are
11791 still lacking the debugging info needed later on to extract
11792 the name of the exception being raised (this name is printed in
11793 the catchpoint message, and is also used when trying to catch
11794 a specific exception). We do not handle this case for now. */
11795 struct bound_minimal_symbol msym
11796 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11797
11798 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11799 error (_("Your Ada runtime appears to be missing some debugging "
11800 "information.\nCannot insert Ada exception catchpoint "
11801 "in this configuration."));
11802
11803 return 0;
11804 }
11805
11806 /* Make sure that the symbol we found corresponds to a function. */
11807
11808 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11809 {
11810 error (_("Symbol \"%s\" is not a function (class = %d)"),
11811 sym->linkage_name (), SYMBOL_CLASS (sym));
11812 return 0;
11813 }
11814
11815 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11816 if (sym == NULL)
11817 {
11818 struct bound_minimal_symbol msym
11819 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11820
11821 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11822 error (_("Your Ada runtime appears to be missing some debugging "
11823 "information.\nCannot insert Ada exception catchpoint "
11824 "in this configuration."));
11825
11826 return 0;
11827 }
11828
11829 /* Make sure that the symbol we found corresponds to a function. */
11830
11831 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11832 {
11833 error (_("Symbol \"%s\" is not a function (class = %d)"),
11834 sym->linkage_name (), SYMBOL_CLASS (sym));
11835 return 0;
11836 }
11837
11838 return 1;
11839 }
11840
11841 /* Inspect the Ada runtime and determine which exception info structure
11842 should be used to provide support for exception catchpoints.
11843
11844 This function will always set the per-inferior exception_info,
11845 or raise an error. */
11846
11847 static void
11848 ada_exception_support_info_sniffer (void)
11849 {
11850 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11851
11852 /* If the exception info is already known, then no need to recompute it. */
11853 if (data->exception_info != NULL)
11854 return;
11855
11856 /* Check the latest (default) exception support info. */
11857 if (ada_has_this_exception_support (&default_exception_support_info))
11858 {
11859 data->exception_info = &default_exception_support_info;
11860 return;
11861 }
11862
11863 /* Try the v0 exception suport info. */
11864 if (ada_has_this_exception_support (&exception_support_info_v0))
11865 {
11866 data->exception_info = &exception_support_info_v0;
11867 return;
11868 }
11869
11870 /* Try our fallback exception suport info. */
11871 if (ada_has_this_exception_support (&exception_support_info_fallback))
11872 {
11873 data->exception_info = &exception_support_info_fallback;
11874 return;
11875 }
11876
11877 /* Sometimes, it is normal for us to not be able to find the routine
11878 we are looking for. This happens when the program is linked with
11879 the shared version of the GNAT runtime, and the program has not been
11880 started yet. Inform the user of these two possible causes if
11881 applicable. */
11882
11883 if (ada_update_initial_language (language_unknown) != language_ada)
11884 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11885
11886 /* If the symbol does not exist, then check that the program is
11887 already started, to make sure that shared libraries have been
11888 loaded. If it is not started, this may mean that the symbol is
11889 in a shared library. */
11890
11891 if (inferior_ptid.pid () == 0)
11892 error (_("Unable to insert catchpoint. Try to start the program first."));
11893
11894 /* At this point, we know that we are debugging an Ada program and
11895 that the inferior has been started, but we still are not able to
11896 find the run-time symbols. That can mean that we are in
11897 configurable run time mode, or that a-except as been optimized
11898 out by the linker... In any case, at this point it is not worth
11899 supporting this feature. */
11900
11901 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11902 }
11903
11904 /* True iff FRAME is very likely to be that of a function that is
11905 part of the runtime system. This is all very heuristic, but is
11906 intended to be used as advice as to what frames are uninteresting
11907 to most users. */
11908
11909 static int
11910 is_known_support_routine (struct frame_info *frame)
11911 {
11912 enum language func_lang;
11913 int i;
11914 const char *fullname;
11915
11916 /* If this code does not have any debugging information (no symtab),
11917 This cannot be any user code. */
11918
11919 symtab_and_line sal = find_frame_sal (frame);
11920 if (sal.symtab == NULL)
11921 return 1;
11922
11923 /* If there is a symtab, but the associated source file cannot be
11924 located, then assume this is not user code: Selecting a frame
11925 for which we cannot display the code would not be very helpful
11926 for the user. This should also take care of case such as VxWorks
11927 where the kernel has some debugging info provided for a few units. */
11928
11929 fullname = symtab_to_fullname (sal.symtab);
11930 if (access (fullname, R_OK) != 0)
11931 return 1;
11932
11933 /* Check the unit filename against the Ada runtime file naming.
11934 We also check the name of the objfile against the name of some
11935 known system libraries that sometimes come with debugging info
11936 too. */
11937
11938 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11939 {
11940 re_comp (known_runtime_file_name_patterns[i]);
11941 if (re_exec (lbasename (sal.symtab->filename)))
11942 return 1;
11943 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11944 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11945 return 1;
11946 }
11947
11948 /* Check whether the function is a GNAT-generated entity. */
11949
11950 gdb::unique_xmalloc_ptr<char> func_name
11951 = find_frame_funname (frame, &func_lang, NULL);
11952 if (func_name == NULL)
11953 return 1;
11954
11955 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11956 {
11957 re_comp (known_auxiliary_function_name_patterns[i]);
11958 if (re_exec (func_name.get ()))
11959 return 1;
11960 }
11961
11962 return 0;
11963 }
11964
11965 /* Find the first frame that contains debugging information and that is not
11966 part of the Ada run-time, starting from FI and moving upward. */
11967
11968 void
11969 ada_find_printable_frame (struct frame_info *fi)
11970 {
11971 for (; fi != NULL; fi = get_prev_frame (fi))
11972 {
11973 if (!is_known_support_routine (fi))
11974 {
11975 select_frame (fi);
11976 break;
11977 }
11978 }
11979
11980 }
11981
11982 /* Assuming that the inferior just triggered an unhandled exception
11983 catchpoint, return the address in inferior memory where the name
11984 of the exception is stored.
11985
11986 Return zero if the address could not be computed. */
11987
11988 static CORE_ADDR
11989 ada_unhandled_exception_name_addr (void)
11990 {
11991 return parse_and_eval_address ("e.full_name");
11992 }
11993
11994 /* Same as ada_unhandled_exception_name_addr, except that this function
11995 should be used when the inferior uses an older version of the runtime,
11996 where the exception name needs to be extracted from a specific frame
11997 several frames up in the callstack. */
11998
11999 static CORE_ADDR
12000 ada_unhandled_exception_name_addr_from_raise (void)
12001 {
12002 int frame_level;
12003 struct frame_info *fi;
12004 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12005
12006 /* To determine the name of this exception, we need to select
12007 the frame corresponding to RAISE_SYM_NAME. This frame is
12008 at least 3 levels up, so we simply skip the first 3 frames
12009 without checking the name of their associated function. */
12010 fi = get_current_frame ();
12011 for (frame_level = 0; frame_level < 3; frame_level += 1)
12012 if (fi != NULL)
12013 fi = get_prev_frame (fi);
12014
12015 while (fi != NULL)
12016 {
12017 enum language func_lang;
12018
12019 gdb::unique_xmalloc_ptr<char> func_name
12020 = find_frame_funname (fi, &func_lang, NULL);
12021 if (func_name != NULL)
12022 {
12023 if (strcmp (func_name.get (),
12024 data->exception_info->catch_exception_sym) == 0)
12025 break; /* We found the frame we were looking for... */
12026 }
12027 fi = get_prev_frame (fi);
12028 }
12029
12030 if (fi == NULL)
12031 return 0;
12032
12033 select_frame (fi);
12034 return parse_and_eval_address ("id.full_name");
12035 }
12036
12037 /* Assuming the inferior just triggered an Ada exception catchpoint
12038 (of any type), return the address in inferior memory where the name
12039 of the exception is stored, if applicable.
12040
12041 Assumes the selected frame is the current frame.
12042
12043 Return zero if the address could not be computed, or if not relevant. */
12044
12045 static CORE_ADDR
12046 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12047 struct breakpoint *b)
12048 {
12049 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12050
12051 switch (ex)
12052 {
12053 case ada_catch_exception:
12054 return (parse_and_eval_address ("e.full_name"));
12055 break;
12056
12057 case ada_catch_exception_unhandled:
12058 return data->exception_info->unhandled_exception_name_addr ();
12059 break;
12060
12061 case ada_catch_handlers:
12062 return 0; /* The runtimes does not provide access to the exception
12063 name. */
12064 break;
12065
12066 case ada_catch_assert:
12067 return 0; /* Exception name is not relevant in this case. */
12068 break;
12069
12070 default:
12071 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12072 break;
12073 }
12074
12075 return 0; /* Should never be reached. */
12076 }
12077
12078 /* Assuming the inferior is stopped at an exception catchpoint,
12079 return the message which was associated to the exception, if
12080 available. Return NULL if the message could not be retrieved.
12081
12082 Note: The exception message can be associated to an exception
12083 either through the use of the Raise_Exception function, or
12084 more simply (Ada 2005 and later), via:
12085
12086 raise Exception_Name with "exception message";
12087
12088 */
12089
12090 static gdb::unique_xmalloc_ptr<char>
12091 ada_exception_message_1 (void)
12092 {
12093 struct value *e_msg_val;
12094 int e_msg_len;
12095
12096 /* For runtimes that support this feature, the exception message
12097 is passed as an unbounded string argument called "message". */
12098 e_msg_val = parse_and_eval ("message");
12099 if (e_msg_val == NULL)
12100 return NULL; /* Exception message not supported. */
12101
12102 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12103 gdb_assert (e_msg_val != NULL);
12104 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12105
12106 /* If the message string is empty, then treat it as if there was
12107 no exception message. */
12108 if (e_msg_len <= 0)
12109 return NULL;
12110
12111 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12112 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12113 e_msg.get ()[e_msg_len] = '\0';
12114
12115 return e_msg;
12116 }
12117
12118 /* Same as ada_exception_message_1, except that all exceptions are
12119 contained here (returning NULL instead). */
12120
12121 static gdb::unique_xmalloc_ptr<char>
12122 ada_exception_message (void)
12123 {
12124 gdb::unique_xmalloc_ptr<char> e_msg;
12125
12126 try
12127 {
12128 e_msg = ada_exception_message_1 ();
12129 }
12130 catch (const gdb_exception_error &e)
12131 {
12132 e_msg.reset (nullptr);
12133 }
12134
12135 return e_msg;
12136 }
12137
12138 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12139 any error that ada_exception_name_addr_1 might cause to be thrown.
12140 When an error is intercepted, a warning with the error message is printed,
12141 and zero is returned. */
12142
12143 static CORE_ADDR
12144 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12145 struct breakpoint *b)
12146 {
12147 CORE_ADDR result = 0;
12148
12149 try
12150 {
12151 result = ada_exception_name_addr_1 (ex, b);
12152 }
12153
12154 catch (const gdb_exception_error &e)
12155 {
12156 warning (_("failed to get exception name: %s"), e.what ());
12157 return 0;
12158 }
12159
12160 return result;
12161 }
12162
12163 static std::string ada_exception_catchpoint_cond_string
12164 (const char *excep_string,
12165 enum ada_exception_catchpoint_kind ex);
12166
12167 /* Ada catchpoints.
12168
12169 In the case of catchpoints on Ada exceptions, the catchpoint will
12170 stop the target on every exception the program throws. When a user
12171 specifies the name of a specific exception, we translate this
12172 request into a condition expression (in text form), and then parse
12173 it into an expression stored in each of the catchpoint's locations.
12174 We then use this condition to check whether the exception that was
12175 raised is the one the user is interested in. If not, then the
12176 target is resumed again. We store the name of the requested
12177 exception, in order to be able to re-set the condition expression
12178 when symbols change. */
12179
12180 /* An instance of this type is used to represent an Ada catchpoint
12181 breakpoint location. */
12182
12183 class ada_catchpoint_location : public bp_location
12184 {
12185 public:
12186 ada_catchpoint_location (breakpoint *owner)
12187 : bp_location (owner, bp_loc_software_breakpoint)
12188 {}
12189
12190 /* The condition that checks whether the exception that was raised
12191 is the specific exception the user specified on catchpoint
12192 creation. */
12193 expression_up excep_cond_expr;
12194 };
12195
12196 /* An instance of this type is used to represent an Ada catchpoint. */
12197
12198 struct ada_catchpoint : public breakpoint
12199 {
12200 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12201 : m_kind (kind)
12202 {
12203 }
12204
12205 /* The name of the specific exception the user specified. */
12206 std::string excep_string;
12207
12208 /* What kind of catchpoint this is. */
12209 enum ada_exception_catchpoint_kind m_kind;
12210 };
12211
12212 /* Parse the exception condition string in the context of each of the
12213 catchpoint's locations, and store them for later evaluation. */
12214
12215 static void
12216 create_excep_cond_exprs (struct ada_catchpoint *c,
12217 enum ada_exception_catchpoint_kind ex)
12218 {
12219 struct bp_location *bl;
12220
12221 /* Nothing to do if there's no specific exception to catch. */
12222 if (c->excep_string.empty ())
12223 return;
12224
12225 /* Same if there are no locations... */
12226 if (c->loc == NULL)
12227 return;
12228
12229 /* Compute the condition expression in text form, from the specific
12230 expection we want to catch. */
12231 std::string cond_string
12232 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12233
12234 /* Iterate over all the catchpoint's locations, and parse an
12235 expression for each. */
12236 for (bl = c->loc; bl != NULL; bl = bl->next)
12237 {
12238 struct ada_catchpoint_location *ada_loc
12239 = (struct ada_catchpoint_location *) bl;
12240 expression_up exp;
12241
12242 if (!bl->shlib_disabled)
12243 {
12244 const char *s;
12245
12246 s = cond_string.c_str ();
12247 try
12248 {
12249 exp = parse_exp_1 (&s, bl->address,
12250 block_for_pc (bl->address),
12251 0);
12252 }
12253 catch (const gdb_exception_error &e)
12254 {
12255 warning (_("failed to reevaluate internal exception condition "
12256 "for catchpoint %d: %s"),
12257 c->number, e.what ());
12258 }
12259 }
12260
12261 ada_loc->excep_cond_expr = std::move (exp);
12262 }
12263 }
12264
12265 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12266 structure for all exception catchpoint kinds. */
12267
12268 static struct bp_location *
12269 allocate_location_exception (struct breakpoint *self)
12270 {
12271 return new ada_catchpoint_location (self);
12272 }
12273
12274 /* Implement the RE_SET method in the breakpoint_ops structure for all
12275 exception catchpoint kinds. */
12276
12277 static void
12278 re_set_exception (struct breakpoint *b)
12279 {
12280 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12281
12282 /* Call the base class's method. This updates the catchpoint's
12283 locations. */
12284 bkpt_breakpoint_ops.re_set (b);
12285
12286 /* Reparse the exception conditional expressions. One for each
12287 location. */
12288 create_excep_cond_exprs (c, c->m_kind);
12289 }
12290
12291 /* Returns true if we should stop for this breakpoint hit. If the
12292 user specified a specific exception, we only want to cause a stop
12293 if the program thrown that exception. */
12294
12295 static int
12296 should_stop_exception (const struct bp_location *bl)
12297 {
12298 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12299 const struct ada_catchpoint_location *ada_loc
12300 = (const struct ada_catchpoint_location *) bl;
12301 int stop;
12302
12303 struct internalvar *var = lookup_internalvar ("_ada_exception");
12304 if (c->m_kind == ada_catch_assert)
12305 clear_internalvar (var);
12306 else
12307 {
12308 try
12309 {
12310 const char *expr;
12311
12312 if (c->m_kind == ada_catch_handlers)
12313 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12314 ".all.occurrence.id");
12315 else
12316 expr = "e";
12317
12318 struct value *exc = parse_and_eval (expr);
12319 set_internalvar (var, exc);
12320 }
12321 catch (const gdb_exception_error &ex)
12322 {
12323 clear_internalvar (var);
12324 }
12325 }
12326
12327 /* With no specific exception, should always stop. */
12328 if (c->excep_string.empty ())
12329 return 1;
12330
12331 if (ada_loc->excep_cond_expr == NULL)
12332 {
12333 /* We will have a NULL expression if back when we were creating
12334 the expressions, this location's had failed to parse. */
12335 return 1;
12336 }
12337
12338 stop = 1;
12339 try
12340 {
12341 struct value *mark;
12342
12343 mark = value_mark ();
12344 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12345 value_free_to_mark (mark);
12346 }
12347 catch (const gdb_exception &ex)
12348 {
12349 exception_fprintf (gdb_stderr, ex,
12350 _("Error in testing exception condition:\n"));
12351 }
12352
12353 return stop;
12354 }
12355
12356 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12357 for all exception catchpoint kinds. */
12358
12359 static void
12360 check_status_exception (bpstat bs)
12361 {
12362 bs->stop = should_stop_exception (bs->bp_location_at);
12363 }
12364
12365 /* Implement the PRINT_IT method in the breakpoint_ops structure
12366 for all exception catchpoint kinds. */
12367
12368 static enum print_stop_action
12369 print_it_exception (bpstat bs)
12370 {
12371 struct ui_out *uiout = current_uiout;
12372 struct breakpoint *b = bs->breakpoint_at;
12373
12374 annotate_catchpoint (b->number);
12375
12376 if (uiout->is_mi_like_p ())
12377 {
12378 uiout->field_string ("reason",
12379 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12380 uiout->field_string ("disp", bpdisp_text (b->disposition));
12381 }
12382
12383 uiout->text (b->disposition == disp_del
12384 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12385 uiout->field_signed ("bkptno", b->number);
12386 uiout->text (", ");
12387
12388 /* ada_exception_name_addr relies on the selected frame being the
12389 current frame. Need to do this here because this function may be
12390 called more than once when printing a stop, and below, we'll
12391 select the first frame past the Ada run-time (see
12392 ada_find_printable_frame). */
12393 select_frame (get_current_frame ());
12394
12395 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12396 switch (c->m_kind)
12397 {
12398 case ada_catch_exception:
12399 case ada_catch_exception_unhandled:
12400 case ada_catch_handlers:
12401 {
12402 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12403 char exception_name[256];
12404
12405 if (addr != 0)
12406 {
12407 read_memory (addr, (gdb_byte *) exception_name,
12408 sizeof (exception_name) - 1);
12409 exception_name [sizeof (exception_name) - 1] = '\0';
12410 }
12411 else
12412 {
12413 /* For some reason, we were unable to read the exception
12414 name. This could happen if the Runtime was compiled
12415 without debugging info, for instance. In that case,
12416 just replace the exception name by the generic string
12417 "exception" - it will read as "an exception" in the
12418 notification we are about to print. */
12419 memcpy (exception_name, "exception", sizeof ("exception"));
12420 }
12421 /* In the case of unhandled exception breakpoints, we print
12422 the exception name as "unhandled EXCEPTION_NAME", to make
12423 it clearer to the user which kind of catchpoint just got
12424 hit. We used ui_out_text to make sure that this extra
12425 info does not pollute the exception name in the MI case. */
12426 if (c->m_kind == ada_catch_exception_unhandled)
12427 uiout->text ("unhandled ");
12428 uiout->field_string ("exception-name", exception_name);
12429 }
12430 break;
12431 case ada_catch_assert:
12432 /* In this case, the name of the exception is not really
12433 important. Just print "failed assertion" to make it clearer
12434 that his program just hit an assertion-failure catchpoint.
12435 We used ui_out_text because this info does not belong in
12436 the MI output. */
12437 uiout->text ("failed assertion");
12438 break;
12439 }
12440
12441 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12442 if (exception_message != NULL)
12443 {
12444 uiout->text (" (");
12445 uiout->field_string ("exception-message", exception_message.get ());
12446 uiout->text (")");
12447 }
12448
12449 uiout->text (" at ");
12450 ada_find_printable_frame (get_current_frame ());
12451
12452 return PRINT_SRC_AND_LOC;
12453 }
12454
12455 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12456 for all exception catchpoint kinds. */
12457
12458 static void
12459 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12460 {
12461 struct ui_out *uiout = current_uiout;
12462 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12463 struct value_print_options opts;
12464
12465 get_user_print_options (&opts);
12466
12467 if (opts.addressprint)
12468 uiout->field_skip ("addr");
12469
12470 annotate_field (5);
12471 switch (c->m_kind)
12472 {
12473 case ada_catch_exception:
12474 if (!c->excep_string.empty ())
12475 {
12476 std::string msg = string_printf (_("`%s' Ada exception"),
12477 c->excep_string.c_str ());
12478
12479 uiout->field_string ("what", msg);
12480 }
12481 else
12482 uiout->field_string ("what", "all Ada exceptions");
12483
12484 break;
12485
12486 case ada_catch_exception_unhandled:
12487 uiout->field_string ("what", "unhandled Ada exceptions");
12488 break;
12489
12490 case ada_catch_handlers:
12491 if (!c->excep_string.empty ())
12492 {
12493 uiout->field_fmt ("what",
12494 _("`%s' Ada exception handlers"),
12495 c->excep_string.c_str ());
12496 }
12497 else
12498 uiout->field_string ("what", "all Ada exceptions handlers");
12499 break;
12500
12501 case ada_catch_assert:
12502 uiout->field_string ("what", "failed Ada assertions");
12503 break;
12504
12505 default:
12506 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12507 break;
12508 }
12509 }
12510
12511 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12512 for all exception catchpoint kinds. */
12513
12514 static void
12515 print_mention_exception (struct breakpoint *b)
12516 {
12517 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12518 struct ui_out *uiout = current_uiout;
12519
12520 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12521 : _("Catchpoint "));
12522 uiout->field_signed ("bkptno", b->number);
12523 uiout->text (": ");
12524
12525 switch (c->m_kind)
12526 {
12527 case ada_catch_exception:
12528 if (!c->excep_string.empty ())
12529 {
12530 std::string info = string_printf (_("`%s' Ada exception"),
12531 c->excep_string.c_str ());
12532 uiout->text (info.c_str ());
12533 }
12534 else
12535 uiout->text (_("all Ada exceptions"));
12536 break;
12537
12538 case ada_catch_exception_unhandled:
12539 uiout->text (_("unhandled Ada exceptions"));
12540 break;
12541
12542 case ada_catch_handlers:
12543 if (!c->excep_string.empty ())
12544 {
12545 std::string info
12546 = string_printf (_("`%s' Ada exception handlers"),
12547 c->excep_string.c_str ());
12548 uiout->text (info.c_str ());
12549 }
12550 else
12551 uiout->text (_("all Ada exceptions handlers"));
12552 break;
12553
12554 case ada_catch_assert:
12555 uiout->text (_("failed Ada assertions"));
12556 break;
12557
12558 default:
12559 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12560 break;
12561 }
12562 }
12563
12564 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12566
12567 static void
12568 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12569 {
12570 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12571
12572 switch (c->m_kind)
12573 {
12574 case ada_catch_exception:
12575 fprintf_filtered (fp, "catch exception");
12576 if (!c->excep_string.empty ())
12577 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12578 break;
12579
12580 case ada_catch_exception_unhandled:
12581 fprintf_filtered (fp, "catch exception unhandled");
12582 break;
12583
12584 case ada_catch_handlers:
12585 fprintf_filtered (fp, "catch handlers");
12586 break;
12587
12588 case ada_catch_assert:
12589 fprintf_filtered (fp, "catch assert");
12590 break;
12591
12592 default:
12593 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12594 }
12595 print_recreate_thread (b, fp);
12596 }
12597
12598 /* Virtual tables for various breakpoint types. */
12599 static struct breakpoint_ops catch_exception_breakpoint_ops;
12600 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12601 static struct breakpoint_ops catch_assert_breakpoint_ops;
12602 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12603
12604 /* See ada-lang.h. */
12605
12606 bool
12607 is_ada_exception_catchpoint (breakpoint *bp)
12608 {
12609 return (bp->ops == &catch_exception_breakpoint_ops
12610 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12611 || bp->ops == &catch_assert_breakpoint_ops
12612 || bp->ops == &catch_handlers_breakpoint_ops);
12613 }
12614
12615 /* Split the arguments specified in a "catch exception" command.
12616 Set EX to the appropriate catchpoint type.
12617 Set EXCEP_STRING to the name of the specific exception if
12618 specified by the user.
12619 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12620 "catch handlers" command. False otherwise.
12621 If a condition is found at the end of the arguments, the condition
12622 expression is stored in COND_STRING (memory must be deallocated
12623 after use). Otherwise COND_STRING is set to NULL. */
12624
12625 static void
12626 catch_ada_exception_command_split (const char *args,
12627 bool is_catch_handlers_cmd,
12628 enum ada_exception_catchpoint_kind *ex,
12629 std::string *excep_string,
12630 std::string *cond_string)
12631 {
12632 std::string exception_name;
12633
12634 exception_name = extract_arg (&args);
12635 if (exception_name == "if")
12636 {
12637 /* This is not an exception name; this is the start of a condition
12638 expression for a catchpoint on all exceptions. So, "un-get"
12639 this token, and set exception_name to NULL. */
12640 exception_name.clear ();
12641 args -= 2;
12642 }
12643
12644 /* Check to see if we have a condition. */
12645
12646 args = skip_spaces (args);
12647 if (startswith (args, "if")
12648 && (isspace (args[2]) || args[2] == '\0'))
12649 {
12650 args += 2;
12651 args = skip_spaces (args);
12652
12653 if (args[0] == '\0')
12654 error (_("Condition missing after `if' keyword"));
12655 *cond_string = args;
12656
12657 args += strlen (args);
12658 }
12659
12660 /* Check that we do not have any more arguments. Anything else
12661 is unexpected. */
12662
12663 if (args[0] != '\0')
12664 error (_("Junk at end of expression"));
12665
12666 if (is_catch_handlers_cmd)
12667 {
12668 /* Catch handling of exceptions. */
12669 *ex = ada_catch_handlers;
12670 *excep_string = exception_name;
12671 }
12672 else if (exception_name.empty ())
12673 {
12674 /* Catch all exceptions. */
12675 *ex = ada_catch_exception;
12676 excep_string->clear ();
12677 }
12678 else if (exception_name == "unhandled")
12679 {
12680 /* Catch unhandled exceptions. */
12681 *ex = ada_catch_exception_unhandled;
12682 excep_string->clear ();
12683 }
12684 else
12685 {
12686 /* Catch a specific exception. */
12687 *ex = ada_catch_exception;
12688 *excep_string = exception_name;
12689 }
12690 }
12691
12692 /* Return the name of the symbol on which we should break in order to
12693 implement a catchpoint of the EX kind. */
12694
12695 static const char *
12696 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12697 {
12698 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12699
12700 gdb_assert (data->exception_info != NULL);
12701
12702 switch (ex)
12703 {
12704 case ada_catch_exception:
12705 return (data->exception_info->catch_exception_sym);
12706 break;
12707 case ada_catch_exception_unhandled:
12708 return (data->exception_info->catch_exception_unhandled_sym);
12709 break;
12710 case ada_catch_assert:
12711 return (data->exception_info->catch_assert_sym);
12712 break;
12713 case ada_catch_handlers:
12714 return (data->exception_info->catch_handlers_sym);
12715 break;
12716 default:
12717 internal_error (__FILE__, __LINE__,
12718 _("unexpected catchpoint kind (%d)"), ex);
12719 }
12720 }
12721
12722 /* Return the breakpoint ops "virtual table" used for catchpoints
12723 of the EX kind. */
12724
12725 static const struct breakpoint_ops *
12726 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12727 {
12728 switch (ex)
12729 {
12730 case ada_catch_exception:
12731 return (&catch_exception_breakpoint_ops);
12732 break;
12733 case ada_catch_exception_unhandled:
12734 return (&catch_exception_unhandled_breakpoint_ops);
12735 break;
12736 case ada_catch_assert:
12737 return (&catch_assert_breakpoint_ops);
12738 break;
12739 case ada_catch_handlers:
12740 return (&catch_handlers_breakpoint_ops);
12741 break;
12742 default:
12743 internal_error (__FILE__, __LINE__,
12744 _("unexpected catchpoint kind (%d)"), ex);
12745 }
12746 }
12747
12748 /* Return the condition that will be used to match the current exception
12749 being raised with the exception that the user wants to catch. This
12750 assumes that this condition is used when the inferior just triggered
12751 an exception catchpoint.
12752 EX: the type of catchpoints used for catching Ada exceptions. */
12753
12754 static std::string
12755 ada_exception_catchpoint_cond_string (const char *excep_string,
12756 enum ada_exception_catchpoint_kind ex)
12757 {
12758 int i;
12759 bool is_standard_exc = false;
12760 std::string result;
12761
12762 if (ex == ada_catch_handlers)
12763 {
12764 /* For exception handlers catchpoints, the condition string does
12765 not use the same parameter as for the other exceptions. */
12766 result = ("long_integer (GNAT_GCC_exception_Access"
12767 "(gcc_exception).all.occurrence.id)");
12768 }
12769 else
12770 result = "long_integer (e)";
12771
12772 /* The standard exceptions are a special case. They are defined in
12773 runtime units that have been compiled without debugging info; if
12774 EXCEP_STRING is the not-fully-qualified name of a standard
12775 exception (e.g. "constraint_error") then, during the evaluation
12776 of the condition expression, the symbol lookup on this name would
12777 *not* return this standard exception. The catchpoint condition
12778 may then be set only on user-defined exceptions which have the
12779 same not-fully-qualified name (e.g. my_package.constraint_error).
12780
12781 To avoid this unexcepted behavior, these standard exceptions are
12782 systematically prefixed by "standard". This means that "catch
12783 exception constraint_error" is rewritten into "catch exception
12784 standard.constraint_error".
12785
12786 If an exception named constraint_error is defined in another package of
12787 the inferior program, then the only way to specify this exception as a
12788 breakpoint condition is to use its fully-qualified named:
12789 e.g. my_package.constraint_error. */
12790
12791 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12792 {
12793 if (strcmp (standard_exc [i], excep_string) == 0)
12794 {
12795 is_standard_exc = true;
12796 break;
12797 }
12798 }
12799
12800 result += " = ";
12801
12802 if (is_standard_exc)
12803 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12804 else
12805 string_appendf (result, "long_integer (&%s)", excep_string);
12806
12807 return result;
12808 }
12809
12810 /* Return the symtab_and_line that should be used to insert an exception
12811 catchpoint of the TYPE kind.
12812
12813 ADDR_STRING returns the name of the function where the real
12814 breakpoint that implements the catchpoints is set, depending on the
12815 type of catchpoint we need to create. */
12816
12817 static struct symtab_and_line
12818 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12819 std::string *addr_string, const struct breakpoint_ops **ops)
12820 {
12821 const char *sym_name;
12822 struct symbol *sym;
12823
12824 /* First, find out which exception support info to use. */
12825 ada_exception_support_info_sniffer ();
12826
12827 /* Then lookup the function on which we will break in order to catch
12828 the Ada exceptions requested by the user. */
12829 sym_name = ada_exception_sym_name (ex);
12830 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12831
12832 if (sym == NULL)
12833 error (_("Catchpoint symbol not found: %s"), sym_name);
12834
12835 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12836 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12837
12838 /* Set ADDR_STRING. */
12839 *addr_string = sym_name;
12840
12841 /* Set OPS. */
12842 *ops = ada_exception_breakpoint_ops (ex);
12843
12844 return find_function_start_sal (sym, 1);
12845 }
12846
12847 /* Create an Ada exception catchpoint.
12848
12849 EX_KIND is the kind of exception catchpoint to be created.
12850
12851 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12852 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12853 of the exception to which this catchpoint applies.
12854
12855 COND_STRING, if not empty, is the catchpoint condition.
12856
12857 TEMPFLAG, if nonzero, means that the underlying breakpoint
12858 should be temporary.
12859
12860 FROM_TTY is the usual argument passed to all commands implementations. */
12861
12862 void
12863 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12864 enum ada_exception_catchpoint_kind ex_kind,
12865 const std::string &excep_string,
12866 const std::string &cond_string,
12867 int tempflag,
12868 int disabled,
12869 int from_tty)
12870 {
12871 std::string addr_string;
12872 const struct breakpoint_ops *ops = NULL;
12873 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12874
12875 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12876 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12877 ops, tempflag, disabled, from_tty);
12878 c->excep_string = excep_string;
12879 create_excep_cond_exprs (c.get (), ex_kind);
12880 if (!cond_string.empty ())
12881 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12882 install_breakpoint (0, std::move (c), 1);
12883 }
12884
12885 /* Implement the "catch exception" command. */
12886
12887 static void
12888 catch_ada_exception_command (const char *arg_entry, int from_tty,
12889 struct cmd_list_element *command)
12890 {
12891 const char *arg = arg_entry;
12892 struct gdbarch *gdbarch = get_current_arch ();
12893 int tempflag;
12894 enum ada_exception_catchpoint_kind ex_kind;
12895 std::string excep_string;
12896 std::string cond_string;
12897
12898 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12899
12900 if (!arg)
12901 arg = "";
12902 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12903 &cond_string);
12904 create_ada_exception_catchpoint (gdbarch, ex_kind,
12905 excep_string, cond_string,
12906 tempflag, 1 /* enabled */,
12907 from_tty);
12908 }
12909
12910 /* Implement the "catch handlers" command. */
12911
12912 static void
12913 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12914 struct cmd_list_element *command)
12915 {
12916 const char *arg = arg_entry;
12917 struct gdbarch *gdbarch = get_current_arch ();
12918 int tempflag;
12919 enum ada_exception_catchpoint_kind ex_kind;
12920 std::string excep_string;
12921 std::string cond_string;
12922
12923 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12924
12925 if (!arg)
12926 arg = "";
12927 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12928 &cond_string);
12929 create_ada_exception_catchpoint (gdbarch, ex_kind,
12930 excep_string, cond_string,
12931 tempflag, 1 /* enabled */,
12932 from_tty);
12933 }
12934
12935 /* Completion function for the Ada "catch" commands. */
12936
12937 static void
12938 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12939 const char *text, const char *word)
12940 {
12941 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12942
12943 for (const ada_exc_info &info : exceptions)
12944 {
12945 if (startswith (info.name, word))
12946 tracker.add_completion (make_unique_xstrdup (info.name));
12947 }
12948 }
12949
12950 /* Split the arguments specified in a "catch assert" command.
12951
12952 ARGS contains the command's arguments (or the empty string if
12953 no arguments were passed).
12954
12955 If ARGS contains a condition, set COND_STRING to that condition
12956 (the memory needs to be deallocated after use). */
12957
12958 static void
12959 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12960 {
12961 args = skip_spaces (args);
12962
12963 /* Check whether a condition was provided. */
12964 if (startswith (args, "if")
12965 && (isspace (args[2]) || args[2] == '\0'))
12966 {
12967 args += 2;
12968 args = skip_spaces (args);
12969 if (args[0] == '\0')
12970 error (_("condition missing after `if' keyword"));
12971 cond_string.assign (args);
12972 }
12973
12974 /* Otherwise, there should be no other argument at the end of
12975 the command. */
12976 else if (args[0] != '\0')
12977 error (_("Junk at end of arguments."));
12978 }
12979
12980 /* Implement the "catch assert" command. */
12981
12982 static void
12983 catch_assert_command (const char *arg_entry, int from_tty,
12984 struct cmd_list_element *command)
12985 {
12986 const char *arg = arg_entry;
12987 struct gdbarch *gdbarch = get_current_arch ();
12988 int tempflag;
12989 std::string cond_string;
12990
12991 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12992
12993 if (!arg)
12994 arg = "";
12995 catch_ada_assert_command_split (arg, cond_string);
12996 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12997 "", cond_string,
12998 tempflag, 1 /* enabled */,
12999 from_tty);
13000 }
13001
13002 /* Return non-zero if the symbol SYM is an Ada exception object. */
13003
13004 static int
13005 ada_is_exception_sym (struct symbol *sym)
13006 {
13007 const char *type_name = SYMBOL_TYPE (sym)->name ();
13008
13009 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13010 && SYMBOL_CLASS (sym) != LOC_BLOCK
13011 && SYMBOL_CLASS (sym) != LOC_CONST
13012 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13013 && type_name != NULL && strcmp (type_name, "exception") == 0);
13014 }
13015
13016 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13017 Ada exception object. This matches all exceptions except the ones
13018 defined by the Ada language. */
13019
13020 static int
13021 ada_is_non_standard_exception_sym (struct symbol *sym)
13022 {
13023 int i;
13024
13025 if (!ada_is_exception_sym (sym))
13026 return 0;
13027
13028 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13029 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
13030 return 0; /* A standard exception. */
13031
13032 /* Numeric_Error is also a standard exception, so exclude it.
13033 See the STANDARD_EXC description for more details as to why
13034 this exception is not listed in that array. */
13035 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
13036 return 0;
13037
13038 return 1;
13039 }
13040
13041 /* A helper function for std::sort, comparing two struct ada_exc_info
13042 objects.
13043
13044 The comparison is determined first by exception name, and then
13045 by exception address. */
13046
13047 bool
13048 ada_exc_info::operator< (const ada_exc_info &other) const
13049 {
13050 int result;
13051
13052 result = strcmp (name, other.name);
13053 if (result < 0)
13054 return true;
13055 if (result == 0 && addr < other.addr)
13056 return true;
13057 return false;
13058 }
13059
13060 bool
13061 ada_exc_info::operator== (const ada_exc_info &other) const
13062 {
13063 return addr == other.addr && strcmp (name, other.name) == 0;
13064 }
13065
13066 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13067 routine, but keeping the first SKIP elements untouched.
13068
13069 All duplicates are also removed. */
13070
13071 static void
13072 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13073 int skip)
13074 {
13075 std::sort (exceptions->begin () + skip, exceptions->end ());
13076 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13077 exceptions->end ());
13078 }
13079
13080 /* Add all exceptions defined by the Ada standard whose name match
13081 a regular expression.
13082
13083 If PREG is not NULL, then this regexp_t object is used to
13084 perform the symbol name matching. Otherwise, no name-based
13085 filtering is performed.
13086
13087 EXCEPTIONS is a vector of exceptions to which matching exceptions
13088 gets pushed. */
13089
13090 static void
13091 ada_add_standard_exceptions (compiled_regex *preg,
13092 std::vector<ada_exc_info> *exceptions)
13093 {
13094 int i;
13095
13096 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13097 {
13098 if (preg == NULL
13099 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13100 {
13101 struct bound_minimal_symbol msymbol
13102 = ada_lookup_simple_minsym (standard_exc[i]);
13103
13104 if (msymbol.minsym != NULL)
13105 {
13106 struct ada_exc_info info
13107 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13108
13109 exceptions->push_back (info);
13110 }
13111 }
13112 }
13113 }
13114
13115 /* Add all Ada exceptions defined locally and accessible from the given
13116 FRAME.
13117
13118 If PREG is not NULL, then this regexp_t object is used to
13119 perform the symbol name matching. Otherwise, no name-based
13120 filtering is performed.
13121
13122 EXCEPTIONS is a vector of exceptions to which matching exceptions
13123 gets pushed. */
13124
13125 static void
13126 ada_add_exceptions_from_frame (compiled_regex *preg,
13127 struct frame_info *frame,
13128 std::vector<ada_exc_info> *exceptions)
13129 {
13130 const struct block *block = get_frame_block (frame, 0);
13131
13132 while (block != 0)
13133 {
13134 struct block_iterator iter;
13135 struct symbol *sym;
13136
13137 ALL_BLOCK_SYMBOLS (block, iter, sym)
13138 {
13139 switch (SYMBOL_CLASS (sym))
13140 {
13141 case LOC_TYPEDEF:
13142 case LOC_BLOCK:
13143 case LOC_CONST:
13144 break;
13145 default:
13146 if (ada_is_exception_sym (sym))
13147 {
13148 struct ada_exc_info info = {sym->print_name (),
13149 SYMBOL_VALUE_ADDRESS (sym)};
13150
13151 exceptions->push_back (info);
13152 }
13153 }
13154 }
13155 if (BLOCK_FUNCTION (block) != NULL)
13156 break;
13157 block = BLOCK_SUPERBLOCK (block);
13158 }
13159 }
13160
13161 /* Return true if NAME matches PREG or if PREG is NULL. */
13162
13163 static bool
13164 name_matches_regex (const char *name, compiled_regex *preg)
13165 {
13166 return (preg == NULL
13167 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13168 }
13169
13170 /* Add all exceptions defined globally whose name name match
13171 a regular expression, excluding standard exceptions.
13172
13173 The reason we exclude standard exceptions is that they need
13174 to be handled separately: Standard exceptions are defined inside
13175 a runtime unit which is normally not compiled with debugging info,
13176 and thus usually do not show up in our symbol search. However,
13177 if the unit was in fact built with debugging info, we need to
13178 exclude them because they would duplicate the entry we found
13179 during the special loop that specifically searches for those
13180 standard exceptions.
13181
13182 If PREG is not NULL, then this regexp_t object is used to
13183 perform the symbol name matching. Otherwise, no name-based
13184 filtering is performed.
13185
13186 EXCEPTIONS is a vector of exceptions to which matching exceptions
13187 gets pushed. */
13188
13189 static void
13190 ada_add_global_exceptions (compiled_regex *preg,
13191 std::vector<ada_exc_info> *exceptions)
13192 {
13193 /* In Ada, the symbol "search name" is a linkage name, whereas the
13194 regular expression used to do the matching refers to the natural
13195 name. So match against the decoded name. */
13196 expand_symtabs_matching (NULL,
13197 lookup_name_info::match_any (),
13198 [&] (const char *search_name)
13199 {
13200 std::string decoded = ada_decode (search_name);
13201 return name_matches_regex (decoded.c_str (), preg);
13202 },
13203 NULL,
13204 VARIABLES_DOMAIN);
13205
13206 for (objfile *objfile : current_program_space->objfiles ())
13207 {
13208 for (compunit_symtab *s : objfile->compunits ())
13209 {
13210 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13211 int i;
13212
13213 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13214 {
13215 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13216 struct block_iterator iter;
13217 struct symbol *sym;
13218
13219 ALL_BLOCK_SYMBOLS (b, iter, sym)
13220 if (ada_is_non_standard_exception_sym (sym)
13221 && name_matches_regex (sym->natural_name (), preg))
13222 {
13223 struct ada_exc_info info
13224 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13225
13226 exceptions->push_back (info);
13227 }
13228 }
13229 }
13230 }
13231 }
13232
13233 /* Implements ada_exceptions_list with the regular expression passed
13234 as a regex_t, rather than a string.
13235
13236 If not NULL, PREG is used to filter out exceptions whose names
13237 do not match. Otherwise, all exceptions are listed. */
13238
13239 static std::vector<ada_exc_info>
13240 ada_exceptions_list_1 (compiled_regex *preg)
13241 {
13242 std::vector<ada_exc_info> result;
13243 int prev_len;
13244
13245 /* First, list the known standard exceptions. These exceptions
13246 need to be handled separately, as they are usually defined in
13247 runtime units that have been compiled without debugging info. */
13248
13249 ada_add_standard_exceptions (preg, &result);
13250
13251 /* Next, find all exceptions whose scope is local and accessible
13252 from the currently selected frame. */
13253
13254 if (has_stack_frames ())
13255 {
13256 prev_len = result.size ();
13257 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13258 &result);
13259 if (result.size () > prev_len)
13260 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13261 }
13262
13263 /* Add all exceptions whose scope is global. */
13264
13265 prev_len = result.size ();
13266 ada_add_global_exceptions (preg, &result);
13267 if (result.size () > prev_len)
13268 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13269
13270 return result;
13271 }
13272
13273 /* Return a vector of ada_exc_info.
13274
13275 If REGEXP is NULL, all exceptions are included in the result.
13276 Otherwise, it should contain a valid regular expression,
13277 and only the exceptions whose names match that regular expression
13278 are included in the result.
13279
13280 The exceptions are sorted in the following order:
13281 - Standard exceptions (defined by the Ada language), in
13282 alphabetical order;
13283 - Exceptions only visible from the current frame, in
13284 alphabetical order;
13285 - Exceptions whose scope is global, in alphabetical order. */
13286
13287 std::vector<ada_exc_info>
13288 ada_exceptions_list (const char *regexp)
13289 {
13290 if (regexp == NULL)
13291 return ada_exceptions_list_1 (NULL);
13292
13293 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13294 return ada_exceptions_list_1 (&reg);
13295 }
13296
13297 /* Implement the "info exceptions" command. */
13298
13299 static void
13300 info_exceptions_command (const char *regexp, int from_tty)
13301 {
13302 struct gdbarch *gdbarch = get_current_arch ();
13303
13304 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13305
13306 if (regexp != NULL)
13307 printf_filtered
13308 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13309 else
13310 printf_filtered (_("All defined Ada exceptions:\n"));
13311
13312 for (const ada_exc_info &info : exceptions)
13313 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13314 }
13315
13316 /* Operators */
13317 /* Information about operators given special treatment in functions
13318 below. */
13319 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13320
13321 #define ADA_OPERATORS \
13322 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13323 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13324 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13325 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13326 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13327 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13328 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13329 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13330 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13331 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13332 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13333 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13334 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13335 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13336 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13337 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13338 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13339 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13340 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13341
13342 static void
13343 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13344 int *argsp)
13345 {
13346 switch (exp->elts[pc - 1].opcode)
13347 {
13348 default:
13349 operator_length_standard (exp, pc, oplenp, argsp);
13350 break;
13351
13352 #define OP_DEFN(op, len, args, binop) \
13353 case op: *oplenp = len; *argsp = args; break;
13354 ADA_OPERATORS;
13355 #undef OP_DEFN
13356
13357 case OP_AGGREGATE:
13358 *oplenp = 3;
13359 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13360 break;
13361
13362 case OP_CHOICES:
13363 *oplenp = 3;
13364 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13365 break;
13366 }
13367 }
13368
13369 /* Implementation of the exp_descriptor method operator_check. */
13370
13371 static int
13372 ada_operator_check (struct expression *exp, int pos,
13373 int (*objfile_func) (struct objfile *objfile, void *data),
13374 void *data)
13375 {
13376 const union exp_element *const elts = exp->elts;
13377 struct type *type = NULL;
13378
13379 switch (elts[pos].opcode)
13380 {
13381 case UNOP_IN_RANGE:
13382 case UNOP_QUAL:
13383 type = elts[pos + 1].type;
13384 break;
13385
13386 default:
13387 return operator_check_standard (exp, pos, objfile_func, data);
13388 }
13389
13390 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13391
13392 if (type && TYPE_OBJFILE (type)
13393 && (*objfile_func) (TYPE_OBJFILE (type), data))
13394 return 1;
13395
13396 return 0;
13397 }
13398
13399 static const char *
13400 ada_op_name (enum exp_opcode opcode)
13401 {
13402 switch (opcode)
13403 {
13404 default:
13405 return op_name_standard (opcode);
13406
13407 #define OP_DEFN(op, len, args, binop) case op: return #op;
13408 ADA_OPERATORS;
13409 #undef OP_DEFN
13410
13411 case OP_AGGREGATE:
13412 return "OP_AGGREGATE";
13413 case OP_CHOICES:
13414 return "OP_CHOICES";
13415 case OP_NAME:
13416 return "OP_NAME";
13417 }
13418 }
13419
13420 /* As for operator_length, but assumes PC is pointing at the first
13421 element of the operator, and gives meaningful results only for the
13422 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13423
13424 static void
13425 ada_forward_operator_length (struct expression *exp, int pc,
13426 int *oplenp, int *argsp)
13427 {
13428 switch (exp->elts[pc].opcode)
13429 {
13430 default:
13431 *oplenp = *argsp = 0;
13432 break;
13433
13434 #define OP_DEFN(op, len, args, binop) \
13435 case op: *oplenp = len; *argsp = args; break;
13436 ADA_OPERATORS;
13437 #undef OP_DEFN
13438
13439 case OP_AGGREGATE:
13440 *oplenp = 3;
13441 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13442 break;
13443
13444 case OP_CHOICES:
13445 *oplenp = 3;
13446 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13447 break;
13448
13449 case OP_STRING:
13450 case OP_NAME:
13451 {
13452 int len = longest_to_int (exp->elts[pc + 1].longconst);
13453
13454 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13455 *argsp = 0;
13456 break;
13457 }
13458 }
13459 }
13460
13461 static int
13462 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13463 {
13464 enum exp_opcode op = exp->elts[elt].opcode;
13465 int oplen, nargs;
13466 int pc = elt;
13467 int i;
13468
13469 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13470
13471 switch (op)
13472 {
13473 /* Ada attributes ('Foo). */
13474 case OP_ATR_FIRST:
13475 case OP_ATR_LAST:
13476 case OP_ATR_LENGTH:
13477 case OP_ATR_IMAGE:
13478 case OP_ATR_MAX:
13479 case OP_ATR_MIN:
13480 case OP_ATR_MODULUS:
13481 case OP_ATR_POS:
13482 case OP_ATR_SIZE:
13483 case OP_ATR_TAG:
13484 case OP_ATR_VAL:
13485 break;
13486
13487 case UNOP_IN_RANGE:
13488 case UNOP_QUAL:
13489 /* XXX: gdb_sprint_host_address, type_sprint */
13490 fprintf_filtered (stream, _("Type @"));
13491 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13492 fprintf_filtered (stream, " (");
13493 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13494 fprintf_filtered (stream, ")");
13495 break;
13496 case BINOP_IN_BOUNDS:
13497 fprintf_filtered (stream, " (%d)",
13498 longest_to_int (exp->elts[pc + 2].longconst));
13499 break;
13500 case TERNOP_IN_RANGE:
13501 break;
13502
13503 case OP_AGGREGATE:
13504 case OP_OTHERS:
13505 case OP_DISCRETE_RANGE:
13506 case OP_POSITIONAL:
13507 case OP_CHOICES:
13508 break;
13509
13510 case OP_NAME:
13511 case OP_STRING:
13512 {
13513 char *name = &exp->elts[elt + 2].string;
13514 int len = longest_to_int (exp->elts[elt + 1].longconst);
13515
13516 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13517 break;
13518 }
13519
13520 default:
13521 return dump_subexp_body_standard (exp, stream, elt);
13522 }
13523
13524 elt += oplen;
13525 for (i = 0; i < nargs; i += 1)
13526 elt = dump_subexp (exp, stream, elt);
13527
13528 return elt;
13529 }
13530
13531 /* The Ada extension of print_subexp (q.v.). */
13532
13533 static void
13534 ada_print_subexp (struct expression *exp, int *pos,
13535 struct ui_file *stream, enum precedence prec)
13536 {
13537 int oplen, nargs, i;
13538 int pc = *pos;
13539 enum exp_opcode op = exp->elts[pc].opcode;
13540
13541 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13542
13543 *pos += oplen;
13544 switch (op)
13545 {
13546 default:
13547 *pos -= oplen;
13548 print_subexp_standard (exp, pos, stream, prec);
13549 return;
13550
13551 case OP_VAR_VALUE:
13552 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13553 return;
13554
13555 case BINOP_IN_BOUNDS:
13556 /* XXX: sprint_subexp */
13557 print_subexp (exp, pos, stream, PREC_SUFFIX);
13558 fputs_filtered (" in ", stream);
13559 print_subexp (exp, pos, stream, PREC_SUFFIX);
13560 fputs_filtered ("'range", stream);
13561 if (exp->elts[pc + 1].longconst > 1)
13562 fprintf_filtered (stream, "(%ld)",
13563 (long) exp->elts[pc + 1].longconst);
13564 return;
13565
13566 case TERNOP_IN_RANGE:
13567 if (prec >= PREC_EQUAL)
13568 fputs_filtered ("(", stream);
13569 /* XXX: sprint_subexp */
13570 print_subexp (exp, pos, stream, PREC_SUFFIX);
13571 fputs_filtered (" in ", stream);
13572 print_subexp (exp, pos, stream, PREC_EQUAL);
13573 fputs_filtered (" .. ", stream);
13574 print_subexp (exp, pos, stream, PREC_EQUAL);
13575 if (prec >= PREC_EQUAL)
13576 fputs_filtered (")", stream);
13577 return;
13578
13579 case OP_ATR_FIRST:
13580 case OP_ATR_LAST:
13581 case OP_ATR_LENGTH:
13582 case OP_ATR_IMAGE:
13583 case OP_ATR_MAX:
13584 case OP_ATR_MIN:
13585 case OP_ATR_MODULUS:
13586 case OP_ATR_POS:
13587 case OP_ATR_SIZE:
13588 case OP_ATR_TAG:
13589 case OP_ATR_VAL:
13590 if (exp->elts[*pos].opcode == OP_TYPE)
13591 {
13592 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13593 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13594 &type_print_raw_options);
13595 *pos += 3;
13596 }
13597 else
13598 print_subexp (exp, pos, stream, PREC_SUFFIX);
13599 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13600 if (nargs > 1)
13601 {
13602 int tem;
13603
13604 for (tem = 1; tem < nargs; tem += 1)
13605 {
13606 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13607 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13608 }
13609 fputs_filtered (")", stream);
13610 }
13611 return;
13612
13613 case UNOP_QUAL:
13614 type_print (exp->elts[pc + 1].type, "", stream, 0);
13615 fputs_filtered ("'(", stream);
13616 print_subexp (exp, pos, stream, PREC_PREFIX);
13617 fputs_filtered (")", stream);
13618 return;
13619
13620 case UNOP_IN_RANGE:
13621 /* XXX: sprint_subexp */
13622 print_subexp (exp, pos, stream, PREC_SUFFIX);
13623 fputs_filtered (" in ", stream);
13624 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13625 &type_print_raw_options);
13626 return;
13627
13628 case OP_DISCRETE_RANGE:
13629 print_subexp (exp, pos, stream, PREC_SUFFIX);
13630 fputs_filtered ("..", stream);
13631 print_subexp (exp, pos, stream, PREC_SUFFIX);
13632 return;
13633
13634 case OP_OTHERS:
13635 fputs_filtered ("others => ", stream);
13636 print_subexp (exp, pos, stream, PREC_SUFFIX);
13637 return;
13638
13639 case OP_CHOICES:
13640 for (i = 0; i < nargs-1; i += 1)
13641 {
13642 if (i > 0)
13643 fputs_filtered ("|", stream);
13644 print_subexp (exp, pos, stream, PREC_SUFFIX);
13645 }
13646 fputs_filtered (" => ", stream);
13647 print_subexp (exp, pos, stream, PREC_SUFFIX);
13648 return;
13649
13650 case OP_POSITIONAL:
13651 print_subexp (exp, pos, stream, PREC_SUFFIX);
13652 return;
13653
13654 case OP_AGGREGATE:
13655 fputs_filtered ("(", stream);
13656 for (i = 0; i < nargs; i += 1)
13657 {
13658 if (i > 0)
13659 fputs_filtered (", ", stream);
13660 print_subexp (exp, pos, stream, PREC_SUFFIX);
13661 }
13662 fputs_filtered (")", stream);
13663 return;
13664 }
13665 }
13666
13667 /* Table mapping opcodes into strings for printing operators
13668 and precedences of the operators. */
13669
13670 static const struct op_print ada_op_print_tab[] = {
13671 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13672 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13673 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13674 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13675 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13676 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13677 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13678 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13679 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13680 {">=", BINOP_GEQ, PREC_ORDER, 0},
13681 {">", BINOP_GTR, PREC_ORDER, 0},
13682 {"<", BINOP_LESS, PREC_ORDER, 0},
13683 {">>", BINOP_RSH, PREC_SHIFT, 0},
13684 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13685 {"+", BINOP_ADD, PREC_ADD, 0},
13686 {"-", BINOP_SUB, PREC_ADD, 0},
13687 {"&", BINOP_CONCAT, PREC_ADD, 0},
13688 {"*", BINOP_MUL, PREC_MUL, 0},
13689 {"/", BINOP_DIV, PREC_MUL, 0},
13690 {"rem", BINOP_REM, PREC_MUL, 0},
13691 {"mod", BINOP_MOD, PREC_MUL, 0},
13692 {"**", BINOP_EXP, PREC_REPEAT, 0},
13693 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13694 {"-", UNOP_NEG, PREC_PREFIX, 0},
13695 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13696 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13697 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13698 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13699 {".all", UNOP_IND, PREC_SUFFIX, 1},
13700 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13701 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13702 {NULL, OP_NULL, PREC_SUFFIX, 0}
13703 };
13704 \f
13705 enum ada_primitive_types {
13706 ada_primitive_type_int,
13707 ada_primitive_type_long,
13708 ada_primitive_type_short,
13709 ada_primitive_type_char,
13710 ada_primitive_type_float,
13711 ada_primitive_type_double,
13712 ada_primitive_type_void,
13713 ada_primitive_type_long_long,
13714 ada_primitive_type_long_double,
13715 ada_primitive_type_natural,
13716 ada_primitive_type_positive,
13717 ada_primitive_type_system_address,
13718 ada_primitive_type_storage_offset,
13719 nr_ada_primitive_types
13720 };
13721
13722 \f
13723 /* Language vector */
13724
13725 /* Not really used, but needed in the ada_language_defn. */
13726
13727 static void
13728 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13729 {
13730 ada_emit_char (c, type, stream, quoter, 1);
13731 }
13732
13733 static int
13734 parse (struct parser_state *ps)
13735 {
13736 warnings_issued = 0;
13737 return ada_parse (ps);
13738 }
13739
13740 static const struct exp_descriptor ada_exp_descriptor = {
13741 ada_print_subexp,
13742 ada_operator_length,
13743 ada_operator_check,
13744 ada_op_name,
13745 ada_dump_subexp_body,
13746 ada_evaluate_subexp
13747 };
13748
13749 /* symbol_name_matcher_ftype adapter for wild_match. */
13750
13751 static bool
13752 do_wild_match (const char *symbol_search_name,
13753 const lookup_name_info &lookup_name,
13754 completion_match_result *comp_match_res)
13755 {
13756 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13757 }
13758
13759 /* symbol_name_matcher_ftype adapter for full_match. */
13760
13761 static bool
13762 do_full_match (const char *symbol_search_name,
13763 const lookup_name_info &lookup_name,
13764 completion_match_result *comp_match_res)
13765 {
13766 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13767 }
13768
13769 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13770
13771 static bool
13772 do_exact_match (const char *symbol_search_name,
13773 const lookup_name_info &lookup_name,
13774 completion_match_result *comp_match_res)
13775 {
13776 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13777 }
13778
13779 /* Build the Ada lookup name for LOOKUP_NAME. */
13780
13781 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13782 {
13783 gdb::string_view user_name = lookup_name.name ();
13784
13785 if (user_name[0] == '<')
13786 {
13787 if (user_name.back () == '>')
13788 m_encoded_name
13789 = user_name.substr (1, user_name.size () - 2).to_string ();
13790 else
13791 m_encoded_name
13792 = user_name.substr (1, user_name.size () - 1).to_string ();
13793 m_encoded_p = true;
13794 m_verbatim_p = true;
13795 m_wild_match_p = false;
13796 m_standard_p = false;
13797 }
13798 else
13799 {
13800 m_verbatim_p = false;
13801
13802 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13803
13804 if (!m_encoded_p)
13805 {
13806 const char *folded = ada_fold_name (user_name);
13807 const char *encoded = ada_encode_1 (folded, false);
13808 if (encoded != NULL)
13809 m_encoded_name = encoded;
13810 else
13811 m_encoded_name = user_name.to_string ();
13812 }
13813 else
13814 m_encoded_name = user_name.to_string ();
13815
13816 /* Handle the 'package Standard' special case. See description
13817 of m_standard_p. */
13818 if (startswith (m_encoded_name.c_str (), "standard__"))
13819 {
13820 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13821 m_standard_p = true;
13822 }
13823 else
13824 m_standard_p = false;
13825
13826 /* If the name contains a ".", then the user is entering a fully
13827 qualified entity name, and the match must not be done in wild
13828 mode. Similarly, if the user wants to complete what looks
13829 like an encoded name, the match must not be done in wild
13830 mode. Also, in the standard__ special case always do
13831 non-wild matching. */
13832 m_wild_match_p
13833 = (lookup_name.match_type () != symbol_name_match_type::FULL
13834 && !m_encoded_p
13835 && !m_standard_p
13836 && user_name.find ('.') == std::string::npos);
13837 }
13838 }
13839
13840 /* symbol_name_matcher_ftype method for Ada. This only handles
13841 completion mode. */
13842
13843 static bool
13844 ada_symbol_name_matches (const char *symbol_search_name,
13845 const lookup_name_info &lookup_name,
13846 completion_match_result *comp_match_res)
13847 {
13848 return lookup_name.ada ().matches (symbol_search_name,
13849 lookup_name.match_type (),
13850 comp_match_res);
13851 }
13852
13853 /* A name matcher that matches the symbol name exactly, with
13854 strcmp. */
13855
13856 static bool
13857 literal_symbol_name_matcher (const char *symbol_search_name,
13858 const lookup_name_info &lookup_name,
13859 completion_match_result *comp_match_res)
13860 {
13861 gdb::string_view name_view = lookup_name.name ();
13862
13863 if (lookup_name.completion_mode ()
13864 ? (strncmp (symbol_search_name, name_view.data (),
13865 name_view.size ()) == 0)
13866 : symbol_search_name == name_view)
13867 {
13868 if (comp_match_res != NULL)
13869 comp_match_res->set_match (symbol_search_name);
13870 return true;
13871 }
13872 else
13873 return false;
13874 }
13875
13876 /* Implement the "la_get_symbol_name_matcher" language_defn method for
13877 Ada. */
13878
13879 static symbol_name_matcher_ftype *
13880 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13881 {
13882 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13883 return literal_symbol_name_matcher;
13884
13885 if (lookup_name.completion_mode ())
13886 return ada_symbol_name_matches;
13887 else
13888 {
13889 if (lookup_name.ada ().wild_match_p ())
13890 return do_wild_match;
13891 else if (lookup_name.ada ().verbatim_p ())
13892 return do_exact_match;
13893 else
13894 return do_full_match;
13895 }
13896 }
13897
13898 static const char *ada_extensions[] =
13899 {
13900 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13901 };
13902
13903 /* Constant data that describes the Ada language. */
13904
13905 extern const struct language_data ada_language_data =
13906 {
13907 "ada", /* Language name */
13908 "Ada",
13909 language_ada,
13910 range_check_off,
13911 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13912 that's not quite what this means. */
13913 array_row_major,
13914 macro_expansion_no,
13915 ada_extensions,
13916 &ada_exp_descriptor,
13917 parse,
13918 resolve,
13919 ada_printchar, /* Print a character constant */
13920 ada_printstr, /* Function to print string constant */
13921 emit_char, /* Function to print single char (not used) */
13922 ada_print_typedef, /* Print a typedef using appropriate syntax */
13923 ada_value_print_inner, /* la_value_print_inner */
13924 ada_value_print, /* Print a top-level value */
13925 NULL, /* name_of_this */
13926 true, /* la_store_sym_names_in_linkage_form_p */
13927 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13928 NULL, /* Language specific
13929 class_name_from_physname */
13930 ada_op_print_tab, /* expression operators for printing */
13931 0, /* c-style arrays */
13932 1, /* String lower bound */
13933 ada_get_gdb_completer_word_break_characters,
13934 ada_collect_symbol_completion_matches,
13935 ada_watch_location_expression,
13936 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
13937 &ada_varobj_ops,
13938 NULL,
13939 ada_is_string_type,
13940 "(...)" /* la_struct_too_deep_ellipsis */
13941 };
13942
13943 /* Class representing the Ada language. */
13944
13945 class ada_language : public language_defn
13946 {
13947 public:
13948 ada_language ()
13949 : language_defn (language_ada, ada_language_data)
13950 { /* Nothing. */ }
13951
13952 /* Print an array element index using the Ada syntax. */
13953
13954 void print_array_index (struct type *index_type,
13955 LONGEST index,
13956 struct ui_file *stream,
13957 const value_print_options *options) const override
13958 {
13959 struct value *index_value = val_atr (index_type, index);
13960
13961 LA_VALUE_PRINT (index_value, stream, options);
13962 fprintf_filtered (stream, " => ");
13963 }
13964
13965 /* Implement the "read_var_value" language_defn method for Ada. */
13966
13967 struct value *read_var_value (struct symbol *var,
13968 const struct block *var_block,
13969 struct frame_info *frame) const override
13970 {
13971 /* The only case where default_read_var_value is not sufficient
13972 is when VAR is a renaming... */
13973 if (frame != nullptr)
13974 {
13975 const struct block *frame_block = get_frame_block (frame, NULL);
13976 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13977 return ada_read_renaming_var_value (var, frame_block);
13978 }
13979
13980 /* This is a typical case where we expect the default_read_var_value
13981 function to work. */
13982 return language_defn::read_var_value (var, var_block, frame);
13983 }
13984
13985 /* See language.h. */
13986 void language_arch_info (struct gdbarch *gdbarch,
13987 struct language_arch_info *lai) const override
13988 {
13989 const struct builtin_type *builtin = builtin_type (gdbarch);
13990
13991 lai->primitive_type_vector
13992 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13993 struct type *);
13994
13995 lai->primitive_type_vector [ada_primitive_type_int]
13996 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13997 0, "integer");
13998 lai->primitive_type_vector [ada_primitive_type_long]
13999 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14000 0, "long_integer");
14001 lai->primitive_type_vector [ada_primitive_type_short]
14002 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14003 0, "short_integer");
14004 lai->string_char_type
14005 = lai->primitive_type_vector [ada_primitive_type_char]
14006 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14007 lai->primitive_type_vector [ada_primitive_type_float]
14008 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14009 "float", gdbarch_float_format (gdbarch));
14010 lai->primitive_type_vector [ada_primitive_type_double]
14011 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14012 "long_float", gdbarch_double_format (gdbarch));
14013 lai->primitive_type_vector [ada_primitive_type_long_long]
14014 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14015 0, "long_long_integer");
14016 lai->primitive_type_vector [ada_primitive_type_long_double]
14017 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14018 "long_long_float", gdbarch_long_double_format (gdbarch));
14019 lai->primitive_type_vector [ada_primitive_type_natural]
14020 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14021 0, "natural");
14022 lai->primitive_type_vector [ada_primitive_type_positive]
14023 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14024 0, "positive");
14025 lai->primitive_type_vector [ada_primitive_type_void]
14026 = builtin->builtin_void;
14027
14028 lai->primitive_type_vector [ada_primitive_type_system_address]
14029 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14030 "void"));
14031 lai->primitive_type_vector [ada_primitive_type_system_address]
14032 ->set_name ("system__address");
14033
14034 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14035 type. This is a signed integral type whose size is the same as
14036 the size of addresses. */
14037 {
14038 unsigned int addr_length = TYPE_LENGTH
14039 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14040
14041 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14042 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14043 "storage_offset");
14044 }
14045
14046 lai->bool_type_symbol = NULL;
14047 lai->bool_type_default = builtin->builtin_bool;
14048 }
14049
14050 /* See language.h. */
14051
14052 bool iterate_over_symbols
14053 (const struct block *block, const lookup_name_info &name,
14054 domain_enum domain,
14055 gdb::function_view<symbol_found_callback_ftype> callback) const override
14056 {
14057 std::vector<struct block_symbol> results;
14058
14059 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
14060 for (block_symbol &sym : results)
14061 {
14062 if (!callback (&sym))
14063 return false;
14064 }
14065
14066 return true;
14067 }
14068
14069 /* See language.h. */
14070 bool sniff_from_mangled_name (const char *mangled,
14071 char **out) const override
14072 {
14073 std::string demangled = ada_decode (mangled);
14074
14075 *out = NULL;
14076
14077 if (demangled != mangled && demangled[0] != '<')
14078 {
14079 /* Set the gsymbol language to Ada, but still return 0.
14080 Two reasons for that:
14081
14082 1. For Ada, we prefer computing the symbol's decoded name
14083 on the fly rather than pre-compute it, in order to save
14084 memory (Ada projects are typically very large).
14085
14086 2. There are some areas in the definition of the GNAT
14087 encoding where, with a bit of bad luck, we might be able
14088 to decode a non-Ada symbol, generating an incorrect
14089 demangled name (Eg: names ending with "TB" for instance
14090 are identified as task bodies and so stripped from
14091 the decoded name returned).
14092
14093 Returning true, here, but not setting *DEMANGLED, helps us get
14094 a little bit of the best of both worlds. Because we're last,
14095 we should not affect any of the other languages that were
14096 able to demangle the symbol before us; we get to correctly
14097 tag Ada symbols as such; and even if we incorrectly tagged a
14098 non-Ada symbol, which should be rare, any routing through the
14099 Ada language should be transparent (Ada tries to behave much
14100 like C/C++ with non-Ada symbols). */
14101 return true;
14102 }
14103
14104 return false;
14105 }
14106
14107 /* See language.h. */
14108
14109 char *demangle (const char *mangled, int options) const override
14110 {
14111 return ada_la_decode (mangled, options);
14112 }
14113
14114 /* See language.h. */
14115
14116 void print_type (struct type *type, const char *varstring,
14117 struct ui_file *stream, int show, int level,
14118 const struct type_print_options *flags) const override
14119 {
14120 ada_print_type (type, varstring, stream, show, level, flags);
14121 }
14122 };
14123
14124 /* Single instance of the Ada language class. */
14125
14126 static ada_language ada_language_defn;
14127
14128 /* Command-list for the "set/show ada" prefix command. */
14129 static struct cmd_list_element *set_ada_list;
14130 static struct cmd_list_element *show_ada_list;
14131
14132 static void
14133 initialize_ada_catchpoint_ops (void)
14134 {
14135 struct breakpoint_ops *ops;
14136
14137 initialize_breakpoint_ops ();
14138
14139 ops = &catch_exception_breakpoint_ops;
14140 *ops = bkpt_breakpoint_ops;
14141 ops->allocate_location = allocate_location_exception;
14142 ops->re_set = re_set_exception;
14143 ops->check_status = check_status_exception;
14144 ops->print_it = print_it_exception;
14145 ops->print_one = print_one_exception;
14146 ops->print_mention = print_mention_exception;
14147 ops->print_recreate = print_recreate_exception;
14148
14149 ops = &catch_exception_unhandled_breakpoint_ops;
14150 *ops = bkpt_breakpoint_ops;
14151 ops->allocate_location = allocate_location_exception;
14152 ops->re_set = re_set_exception;
14153 ops->check_status = check_status_exception;
14154 ops->print_it = print_it_exception;
14155 ops->print_one = print_one_exception;
14156 ops->print_mention = print_mention_exception;
14157 ops->print_recreate = print_recreate_exception;
14158
14159 ops = &catch_assert_breakpoint_ops;
14160 *ops = bkpt_breakpoint_ops;
14161 ops->allocate_location = allocate_location_exception;
14162 ops->re_set = re_set_exception;
14163 ops->check_status = check_status_exception;
14164 ops->print_it = print_it_exception;
14165 ops->print_one = print_one_exception;
14166 ops->print_mention = print_mention_exception;
14167 ops->print_recreate = print_recreate_exception;
14168
14169 ops = &catch_handlers_breakpoint_ops;
14170 *ops = bkpt_breakpoint_ops;
14171 ops->allocate_location = allocate_location_exception;
14172 ops->re_set = re_set_exception;
14173 ops->check_status = check_status_exception;
14174 ops->print_it = print_it_exception;
14175 ops->print_one = print_one_exception;
14176 ops->print_mention = print_mention_exception;
14177 ops->print_recreate = print_recreate_exception;
14178 }
14179
14180 /* This module's 'new_objfile' observer. */
14181
14182 static void
14183 ada_new_objfile_observer (struct objfile *objfile)
14184 {
14185 ada_clear_symbol_cache ();
14186 }
14187
14188 /* This module's 'free_objfile' observer. */
14189
14190 static void
14191 ada_free_objfile_observer (struct objfile *objfile)
14192 {
14193 ada_clear_symbol_cache ();
14194 }
14195
14196 void _initialize_ada_language ();
14197 void
14198 _initialize_ada_language ()
14199 {
14200 initialize_ada_catchpoint_ops ();
14201
14202 add_basic_prefix_cmd ("ada", no_class,
14203 _("Prefix command for changing Ada-specific settings."),
14204 &set_ada_list, "set ada ", 0, &setlist);
14205
14206 add_show_prefix_cmd ("ada", no_class,
14207 _("Generic command for showing Ada-specific settings."),
14208 &show_ada_list, "show ada ", 0, &showlist);
14209
14210 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14211 &trust_pad_over_xvs, _("\
14212 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14213 Show whether an optimization trusting PAD types over XVS types is activated."),
14214 _("\
14215 This is related to the encoding used by the GNAT compiler. The debugger\n\
14216 should normally trust the contents of PAD types, but certain older versions\n\
14217 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14218 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14219 work around this bug. It is always safe to turn this option \"off\", but\n\
14220 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14221 this option to \"off\" unless necessary."),
14222 NULL, NULL, &set_ada_list, &show_ada_list);
14223
14224 add_setshow_boolean_cmd ("print-signatures", class_vars,
14225 &print_signatures, _("\
14226 Enable or disable the output of formal and return types for functions in the \
14227 overloads selection menu."), _("\
14228 Show whether the output of formal and return types for functions in the \
14229 overloads selection menu is activated."),
14230 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14231
14232 add_catch_command ("exception", _("\
14233 Catch Ada exceptions, when raised.\n\
14234 Usage: catch exception [ARG] [if CONDITION]\n\
14235 Without any argument, stop when any Ada exception is raised.\n\
14236 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14237 being raised does not have a handler (and will therefore lead to the task's\n\
14238 termination).\n\
14239 Otherwise, the catchpoint only stops when the name of the exception being\n\
14240 raised is the same as ARG.\n\
14241 CONDITION is a boolean expression that is evaluated to see whether the\n\
14242 exception should cause a stop."),
14243 catch_ada_exception_command,
14244 catch_ada_completer,
14245 CATCH_PERMANENT,
14246 CATCH_TEMPORARY);
14247
14248 add_catch_command ("handlers", _("\
14249 Catch Ada exceptions, when handled.\n\
14250 Usage: catch handlers [ARG] [if CONDITION]\n\
14251 Without any argument, stop when any Ada exception is handled.\n\
14252 With an argument, catch only exceptions with the given name.\n\
14253 CONDITION is a boolean expression that is evaluated to see whether the\n\
14254 exception should cause a stop."),
14255 catch_ada_handlers_command,
14256 catch_ada_completer,
14257 CATCH_PERMANENT,
14258 CATCH_TEMPORARY);
14259 add_catch_command ("assert", _("\
14260 Catch failed Ada assertions, when raised.\n\
14261 Usage: catch assert [if CONDITION]\n\
14262 CONDITION is a boolean expression that is evaluated to see whether the\n\
14263 exception should cause a stop."),
14264 catch_assert_command,
14265 NULL,
14266 CATCH_PERMANENT,
14267 CATCH_TEMPORARY);
14268
14269 varsize_limit = 65536;
14270 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14271 &varsize_limit, _("\
14272 Set the maximum number of bytes allowed in a variable-size object."), _("\
14273 Show the maximum number of bytes allowed in a variable-size object."), _("\
14274 Attempts to access an object whose size is not a compile-time constant\n\
14275 and exceeds this limit will cause an error."),
14276 NULL, NULL, &setlist, &showlist);
14277
14278 add_info ("exceptions", info_exceptions_command,
14279 _("\
14280 List all Ada exception names.\n\
14281 Usage: info exceptions [REGEXP]\n\
14282 If a regular expression is passed as an argument, only those matching\n\
14283 the regular expression are listed."));
14284
14285 add_basic_prefix_cmd ("ada", class_maintenance,
14286 _("Set Ada maintenance-related variables."),
14287 &maint_set_ada_cmdlist, "maintenance set ada ",
14288 0/*allow-unknown*/, &maintenance_set_cmdlist);
14289
14290 add_show_prefix_cmd ("ada", class_maintenance,
14291 _("Show Ada maintenance-related variables."),
14292 &maint_show_ada_cmdlist, "maintenance show ada ",
14293 0/*allow-unknown*/, &maintenance_show_cmdlist);
14294
14295 add_setshow_boolean_cmd
14296 ("ignore-descriptive-types", class_maintenance,
14297 &ada_ignore_descriptive_types_p,
14298 _("Set whether descriptive types generated by GNAT should be ignored."),
14299 _("Show whether descriptive types generated by GNAT should be ignored."),
14300 _("\
14301 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14302 DWARF attribute."),
14303 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14304
14305 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14306 NULL, xcalloc, xfree);
14307
14308 /* The ada-lang observers. */
14309 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14310 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14311 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14312 }
This page took 0.35753 seconds and 4 git commands to generate.