gdb: defer commit resume until all available events are consumed
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *val_atr (struct type *, LONGEST);
200
201 static struct value *value_val_atr (struct type *, struct value *);
202
203 static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
205
206 static struct value *ada_search_struct_field (const char *, struct value *, int,
207 struct type *);
208
209 static int find_struct_field (const char *, struct type *, int,
210 struct type **, int *, int *, int *, int *);
211
212 static int ada_resolve_function (struct block_symbol *, int,
213 struct value **, int, const char *,
214 struct type *, int);
215
216 static int ada_is_direct_array_type (struct type *);
217
218 static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221 static struct value *assign_aggregate (struct value *, struct value *,
222 struct expression *,
223 int *, enum noside);
224
225 static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230 static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236 static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247 static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
249
250 static struct type *ada_find_any_type (const char *name);
251
252 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
255 \f
256
257 /* The result of a symbol lookup to be stored in our symbol cache. */
258
259 struct cache_entry
260 {
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
264 domain_enum domain;
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273 };
274
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284 #define HASH_SIZE 1009
285
286 struct ada_symbol_cache
287 {
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293 };
294
295 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
296
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit;
299
300 static const char ada_completer_word_break_characters[] =
301 #ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303 #else
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
305 #endif
306
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
309 = "__gnat_ada_main_program_name";
310
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit = 2;
313
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued = 0;
317
318 static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320 };
321
322 static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324 };
325
326 /* Maintenance-related settings for this module. */
327
328 static struct cmd_list_element *maint_set_ada_cmdlist;
329 static struct cmd_list_element *maint_show_ada_cmdlist;
330
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
332
333 static bool ada_ignore_descriptive_types_p = false;
334
335 /* Inferior-specific data. */
336
337 /* Per-inferior data for this module. */
338
339 struct ada_inferior_data
340 {
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type *tsd_type = nullptr;
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
350 const struct exception_support_info *exception_info = nullptr;
351 };
352
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
355
356 /* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364 static struct ada_inferior_data *
365 get_ada_inferior_data (struct inferior *inf)
366 {
367 struct ada_inferior_data *data;
368
369 data = ada_inferior_data.get (inf);
370 if (data == NULL)
371 data = ada_inferior_data.emplace (inf);
372
373 return data;
374 }
375
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379 static void
380 ada_inferior_exit (struct inferior *inf)
381 {
382 ada_inferior_data.clear (inf);
383 }
384
385
386 /* program-space-specific data. */
387
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
390 {
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache *sym_cache = nullptr;
399 };
400
401 /* Key to our per-program-space data. */
402 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
403
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409 static struct ada_pspace_data *
410 get_ada_pspace_data (struct program_space *pspace)
411 {
412 struct ada_pspace_data *data;
413
414 data = ada_pspace_data_handle.get (pspace);
415 if (data == NULL)
416 data = ada_pspace_data_handle.emplace (pspace);
417
418 return data;
419 }
420
421 /* Utilities */
422
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450 static struct type *
451 ada_typedef_target_type (struct type *type)
452 {
453 while (type->code () == TYPE_CODE_TYPEDEF)
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456 }
457
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462 static const char *
463 ada_unqualified_name (const char *decoded_name)
464 {
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481 }
482
483 /* Return a string starting with '<', followed by STR, and '>'. */
484
485 static std::string
486 add_angle_brackets (const char *str)
487 {
488 return string_printf ("<%s>", str);
489 }
490
491 /* Assuming V points to an array of S objects, make sure that it contains at
492 least M objects, updating V and S as necessary. */
493
494 #define GROW_VECT(v, s, m) \
495 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
496
497 /* Assuming VECT points to an array of *SIZE objects of size
498 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
499 updating *SIZE as necessary and returning the (new) array. */
500
501 static void *
502 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
503 {
504 if (*size < min_size)
505 {
506 *size *= 2;
507 if (*size < min_size)
508 *size = min_size;
509 vect = xrealloc (vect, *size * element_size);
510 }
511 return vect;
512 }
513
514 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
515 suffix of FIELD_NAME beginning "___". */
516
517 static int
518 field_name_match (const char *field_name, const char *target)
519 {
520 int len = strlen (target);
521
522 return
523 (strncmp (field_name, target, len) == 0
524 && (field_name[len] == '\0'
525 || (startswith (field_name + len, "___")
526 && strcmp (field_name + strlen (field_name) - 6,
527 "___XVN") != 0)));
528 }
529
530
531 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
532 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
533 and return its index. This function also handles fields whose name
534 have ___ suffixes because the compiler sometimes alters their name
535 by adding such a suffix to represent fields with certain constraints.
536 If the field could not be found, return a negative number if
537 MAYBE_MISSING is set. Otherwise raise an error. */
538
539 int
540 ada_get_field_index (const struct type *type, const char *field_name,
541 int maybe_missing)
542 {
543 int fieldno;
544 struct type *struct_type = check_typedef ((struct type *) type);
545
546 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
547 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
548 return fieldno;
549
550 if (!maybe_missing)
551 error (_("Unable to find field %s in struct %s. Aborting"),
552 field_name, struct_type->name ());
553
554 return -1;
555 }
556
557 /* The length of the prefix of NAME prior to any "___" suffix. */
558
559 int
560 ada_name_prefix_len (const char *name)
561 {
562 if (name == NULL)
563 return 0;
564 else
565 {
566 const char *p = strstr (name, "___");
567
568 if (p == NULL)
569 return strlen (name);
570 else
571 return p - name;
572 }
573 }
574
575 /* Return non-zero if SUFFIX is a suffix of STR.
576 Return zero if STR is null. */
577
578 static int
579 is_suffix (const char *str, const char *suffix)
580 {
581 int len1, len2;
582
583 if (str == NULL)
584 return 0;
585 len1 = strlen (str);
586 len2 = strlen (suffix);
587 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
588 }
589
590 /* The contents of value VAL, treated as a value of type TYPE. The
591 result is an lval in memory if VAL is. */
592
593 static struct value *
594 coerce_unspec_val_to_type (struct value *val, struct type *type)
595 {
596 type = ada_check_typedef (type);
597 if (value_type (val) == type)
598 return val;
599 else
600 {
601 struct value *result;
602
603 /* Make sure that the object size is not unreasonable before
604 trying to allocate some memory for it. */
605 ada_ensure_varsize_limit (type);
606
607 if (value_lazy (val)
608 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
609 result = allocate_value_lazy (type);
610 else
611 {
612 result = allocate_value (type);
613 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
614 }
615 set_value_component_location (result, val);
616 set_value_bitsize (result, value_bitsize (val));
617 set_value_bitpos (result, value_bitpos (val));
618 if (VALUE_LVAL (result) == lval_memory)
619 set_value_address (result, value_address (val));
620 return result;
621 }
622 }
623
624 static const gdb_byte *
625 cond_offset_host (const gdb_byte *valaddr, long offset)
626 {
627 if (valaddr == NULL)
628 return NULL;
629 else
630 return valaddr + offset;
631 }
632
633 static CORE_ADDR
634 cond_offset_target (CORE_ADDR address, long offset)
635 {
636 if (address == 0)
637 return 0;
638 else
639 return address + offset;
640 }
641
642 /* Issue a warning (as for the definition of warning in utils.c, but
643 with exactly one argument rather than ...), unless the limit on the
644 number of warnings has passed during the evaluation of the current
645 expression. */
646
647 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
648 provided by "complaint". */
649 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
650
651 static void
652 lim_warning (const char *format, ...)
653 {
654 va_list args;
655
656 va_start (args, format);
657 warnings_issued += 1;
658 if (warnings_issued <= warning_limit)
659 vwarning (format, args);
660
661 va_end (args);
662 }
663
664 /* Issue an error if the size of an object of type T is unreasonable,
665 i.e. if it would be a bad idea to allocate a value of this type in
666 GDB. */
667
668 void
669 ada_ensure_varsize_limit (const struct type *type)
670 {
671 if (TYPE_LENGTH (type) > varsize_limit)
672 error (_("object size is larger than varsize-limit"));
673 }
674
675 /* Maximum value of a SIZE-byte signed integer type. */
676 static LONGEST
677 max_of_size (int size)
678 {
679 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
680
681 return top_bit | (top_bit - 1);
682 }
683
684 /* Minimum value of a SIZE-byte signed integer type. */
685 static LONGEST
686 min_of_size (int size)
687 {
688 return -max_of_size (size) - 1;
689 }
690
691 /* Maximum value of a SIZE-byte unsigned integer type. */
692 static ULONGEST
693 umax_of_size (int size)
694 {
695 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
696
697 return top_bit | (top_bit - 1);
698 }
699
700 /* Maximum value of integral type T, as a signed quantity. */
701 static LONGEST
702 max_of_type (struct type *t)
703 {
704 if (TYPE_UNSIGNED (t))
705 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
706 else
707 return max_of_size (TYPE_LENGTH (t));
708 }
709
710 /* Minimum value of integral type T, as a signed quantity. */
711 static LONGEST
712 min_of_type (struct type *t)
713 {
714 if (TYPE_UNSIGNED (t))
715 return 0;
716 else
717 return min_of_size (TYPE_LENGTH (t));
718 }
719
720 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
721 LONGEST
722 ada_discrete_type_high_bound (struct type *type)
723 {
724 type = resolve_dynamic_type (type, {}, 0);
725 switch (type->code ())
726 {
727 case TYPE_CODE_RANGE:
728 return TYPE_HIGH_BOUND (type);
729 case TYPE_CODE_ENUM:
730 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
731 case TYPE_CODE_BOOL:
732 return 1;
733 case TYPE_CODE_CHAR:
734 case TYPE_CODE_INT:
735 return max_of_type (type);
736 default:
737 error (_("Unexpected type in ada_discrete_type_high_bound."));
738 }
739 }
740
741 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
742 LONGEST
743 ada_discrete_type_low_bound (struct type *type)
744 {
745 type = resolve_dynamic_type (type, {}, 0);
746 switch (type->code ())
747 {
748 case TYPE_CODE_RANGE:
749 return TYPE_LOW_BOUND (type);
750 case TYPE_CODE_ENUM:
751 return TYPE_FIELD_ENUMVAL (type, 0);
752 case TYPE_CODE_BOOL:
753 return 0;
754 case TYPE_CODE_CHAR:
755 case TYPE_CODE_INT:
756 return min_of_type (type);
757 default:
758 error (_("Unexpected type in ada_discrete_type_low_bound."));
759 }
760 }
761
762 /* The identity on non-range types. For range types, the underlying
763 non-range scalar type. */
764
765 static struct type *
766 get_base_type (struct type *type)
767 {
768 while (type != NULL && type->code () == TYPE_CODE_RANGE)
769 {
770 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
771 return type;
772 type = TYPE_TARGET_TYPE (type);
773 }
774 return type;
775 }
776
777 /* Return a decoded version of the given VALUE. This means returning
778 a value whose type is obtained by applying all the GNAT-specific
779 encodings, making the resulting type a static but standard description
780 of the initial type. */
781
782 struct value *
783 ada_get_decoded_value (struct value *value)
784 {
785 struct type *type = ada_check_typedef (value_type (value));
786
787 if (ada_is_array_descriptor_type (type)
788 || (ada_is_constrained_packed_array_type (type)
789 && type->code () != TYPE_CODE_PTR))
790 {
791 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
792 value = ada_coerce_to_simple_array_ptr (value);
793 else
794 value = ada_coerce_to_simple_array (value);
795 }
796 else
797 value = ada_to_fixed_value (value);
798
799 return value;
800 }
801
802 /* Same as ada_get_decoded_value, but with the given TYPE.
803 Because there is no associated actual value for this type,
804 the resulting type might be a best-effort approximation in
805 the case of dynamic types. */
806
807 struct type *
808 ada_get_decoded_type (struct type *type)
809 {
810 type = to_static_fixed_type (type);
811 if (ada_is_constrained_packed_array_type (type))
812 type = ada_coerce_to_simple_array_type (type);
813 return type;
814 }
815
816 \f
817
818 /* Language Selection */
819
820 /* If the main program is in Ada, return language_ada, otherwise return LANG
821 (the main program is in Ada iif the adainit symbol is found). */
822
823 static enum language
824 ada_update_initial_language (enum language lang)
825 {
826 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
827 return language_ada;
828
829 return lang;
830 }
831
832 /* If the main procedure is written in Ada, then return its name.
833 The result is good until the next call. Return NULL if the main
834 procedure doesn't appear to be in Ada. */
835
836 char *
837 ada_main_name (void)
838 {
839 struct bound_minimal_symbol msym;
840 static gdb::unique_xmalloc_ptr<char> main_program_name;
841
842 /* For Ada, the name of the main procedure is stored in a specific
843 string constant, generated by the binder. Look for that symbol,
844 extract its address, and then read that string. If we didn't find
845 that string, then most probably the main procedure is not written
846 in Ada. */
847 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
848
849 if (msym.minsym != NULL)
850 {
851 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
852 if (main_program_name_addr == 0)
853 error (_("Invalid address for Ada main program name."));
854
855 main_program_name = target_read_string (main_program_name_addr, 1024);
856 return main_program_name.get ();
857 }
858
859 /* The main procedure doesn't seem to be in Ada. */
860 return NULL;
861 }
862 \f
863 /* Symbols */
864
865 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
866 of NULLs. */
867
868 const struct ada_opname_map ada_opname_table[] = {
869 {"Oadd", "\"+\"", BINOP_ADD},
870 {"Osubtract", "\"-\"", BINOP_SUB},
871 {"Omultiply", "\"*\"", BINOP_MUL},
872 {"Odivide", "\"/\"", BINOP_DIV},
873 {"Omod", "\"mod\"", BINOP_MOD},
874 {"Orem", "\"rem\"", BINOP_REM},
875 {"Oexpon", "\"**\"", BINOP_EXP},
876 {"Olt", "\"<\"", BINOP_LESS},
877 {"Ole", "\"<=\"", BINOP_LEQ},
878 {"Ogt", "\">\"", BINOP_GTR},
879 {"Oge", "\">=\"", BINOP_GEQ},
880 {"Oeq", "\"=\"", BINOP_EQUAL},
881 {"One", "\"/=\"", BINOP_NOTEQUAL},
882 {"Oand", "\"and\"", BINOP_BITWISE_AND},
883 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
884 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
885 {"Oconcat", "\"&\"", BINOP_CONCAT},
886 {"Oabs", "\"abs\"", UNOP_ABS},
887 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
888 {"Oadd", "\"+\"", UNOP_PLUS},
889 {"Osubtract", "\"-\"", UNOP_NEG},
890 {NULL, NULL}
891 };
892
893 /* The "encoded" form of DECODED, according to GNAT conventions. The
894 result is valid until the next call to ada_encode. If
895 THROW_ERRORS, throw an error if invalid operator name is found.
896 Otherwise, return NULL in that case. */
897
898 static char *
899 ada_encode_1 (const char *decoded, bool throw_errors)
900 {
901 static char *encoding_buffer = NULL;
902 static size_t encoding_buffer_size = 0;
903 const char *p;
904 int k;
905
906 if (decoded == NULL)
907 return NULL;
908
909 GROW_VECT (encoding_buffer, encoding_buffer_size,
910 2 * strlen (decoded) + 10);
911
912 k = 0;
913 for (p = decoded; *p != '\0'; p += 1)
914 {
915 if (*p == '.')
916 {
917 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
918 k += 2;
919 }
920 else if (*p == '"')
921 {
922 const struct ada_opname_map *mapping;
923
924 for (mapping = ada_opname_table;
925 mapping->encoded != NULL
926 && !startswith (p, mapping->decoded); mapping += 1)
927 ;
928 if (mapping->encoded == NULL)
929 {
930 if (throw_errors)
931 error (_("invalid Ada operator name: %s"), p);
932 else
933 return NULL;
934 }
935 strcpy (encoding_buffer + k, mapping->encoded);
936 k += strlen (mapping->encoded);
937 break;
938 }
939 else
940 {
941 encoding_buffer[k] = *p;
942 k += 1;
943 }
944 }
945
946 encoding_buffer[k] = '\0';
947 return encoding_buffer;
948 }
949
950 /* The "encoded" form of DECODED, according to GNAT conventions.
951 The result is valid until the next call to ada_encode. */
952
953 char *
954 ada_encode (const char *decoded)
955 {
956 return ada_encode_1 (decoded, true);
957 }
958
959 /* Return NAME folded to lower case, or, if surrounded by single
960 quotes, unfolded, but with the quotes stripped away. Result good
961 to next call. */
962
963 static char *
964 ada_fold_name (gdb::string_view name)
965 {
966 static char *fold_buffer = NULL;
967 static size_t fold_buffer_size = 0;
968
969 int len = name.size ();
970 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
971
972 if (name[0] == '\'')
973 {
974 strncpy (fold_buffer, name.data () + 1, len - 2);
975 fold_buffer[len - 2] = '\000';
976 }
977 else
978 {
979 int i;
980
981 for (i = 0; i <= len; i += 1)
982 fold_buffer[i] = tolower (name[i]);
983 }
984
985 return fold_buffer;
986 }
987
988 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
989
990 static int
991 is_lower_alphanum (const char c)
992 {
993 return (isdigit (c) || (isalpha (c) && islower (c)));
994 }
995
996 /* ENCODED is the linkage name of a symbol and LEN contains its length.
997 This function saves in LEN the length of that same symbol name but
998 without either of these suffixes:
999 . .{DIGIT}+
1000 . ${DIGIT}+
1001 . ___{DIGIT}+
1002 . __{DIGIT}+.
1003
1004 These are suffixes introduced by the compiler for entities such as
1005 nested subprogram for instance, in order to avoid name clashes.
1006 They do not serve any purpose for the debugger. */
1007
1008 static void
1009 ada_remove_trailing_digits (const char *encoded, int *len)
1010 {
1011 if (*len > 1 && isdigit (encoded[*len - 1]))
1012 {
1013 int i = *len - 2;
1014
1015 while (i > 0 && isdigit (encoded[i]))
1016 i--;
1017 if (i >= 0 && encoded[i] == '.')
1018 *len = i;
1019 else if (i >= 0 && encoded[i] == '$')
1020 *len = i;
1021 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1022 *len = i - 2;
1023 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1024 *len = i - 1;
1025 }
1026 }
1027
1028 /* Remove the suffix introduced by the compiler for protected object
1029 subprograms. */
1030
1031 static void
1032 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1033 {
1034 /* Remove trailing N. */
1035
1036 /* Protected entry subprograms are broken into two
1037 separate subprograms: The first one is unprotected, and has
1038 a 'N' suffix; the second is the protected version, and has
1039 the 'P' suffix. The second calls the first one after handling
1040 the protection. Since the P subprograms are internally generated,
1041 we leave these names undecoded, giving the user a clue that this
1042 entity is internal. */
1043
1044 if (*len > 1
1045 && encoded[*len - 1] == 'N'
1046 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1047 *len = *len - 1;
1048 }
1049
1050 /* If ENCODED follows the GNAT entity encoding conventions, then return
1051 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1052 replaced by ENCODED. */
1053
1054 std::string
1055 ada_decode (const char *encoded)
1056 {
1057 int i, j;
1058 int len0;
1059 const char *p;
1060 int at_start_name;
1061 std::string decoded;
1062
1063 /* With function descriptors on PPC64, the value of a symbol named
1064 ".FN", if it exists, is the entry point of the function "FN". */
1065 if (encoded[0] == '.')
1066 encoded += 1;
1067
1068 /* The name of the Ada main procedure starts with "_ada_".
1069 This prefix is not part of the decoded name, so skip this part
1070 if we see this prefix. */
1071 if (startswith (encoded, "_ada_"))
1072 encoded += 5;
1073
1074 /* If the name starts with '_', then it is not a properly encoded
1075 name, so do not attempt to decode it. Similarly, if the name
1076 starts with '<', the name should not be decoded. */
1077 if (encoded[0] == '_' || encoded[0] == '<')
1078 goto Suppress;
1079
1080 len0 = strlen (encoded);
1081
1082 ada_remove_trailing_digits (encoded, &len0);
1083 ada_remove_po_subprogram_suffix (encoded, &len0);
1084
1085 /* Remove the ___X.* suffix if present. Do not forget to verify that
1086 the suffix is located before the current "end" of ENCODED. We want
1087 to avoid re-matching parts of ENCODED that have previously been
1088 marked as discarded (by decrementing LEN0). */
1089 p = strstr (encoded, "___");
1090 if (p != NULL && p - encoded < len0 - 3)
1091 {
1092 if (p[3] == 'X')
1093 len0 = p - encoded;
1094 else
1095 goto Suppress;
1096 }
1097
1098 /* Remove any trailing TKB suffix. It tells us that this symbol
1099 is for the body of a task, but that information does not actually
1100 appear in the decoded name. */
1101
1102 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1103 len0 -= 3;
1104
1105 /* Remove any trailing TB suffix. The TB suffix is slightly different
1106 from the TKB suffix because it is used for non-anonymous task
1107 bodies. */
1108
1109 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1110 len0 -= 2;
1111
1112 /* Remove trailing "B" suffixes. */
1113 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1114
1115 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1116 len0 -= 1;
1117
1118 /* Make decoded big enough for possible expansion by operator name. */
1119
1120 decoded.resize (2 * len0 + 1, 'X');
1121
1122 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1123
1124 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1125 {
1126 i = len0 - 2;
1127 while ((i >= 0 && isdigit (encoded[i]))
1128 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1129 i -= 1;
1130 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1131 len0 = i - 1;
1132 else if (encoded[i] == '$')
1133 len0 = i;
1134 }
1135
1136 /* The first few characters that are not alphabetic are not part
1137 of any encoding we use, so we can copy them over verbatim. */
1138
1139 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1140 decoded[j] = encoded[i];
1141
1142 at_start_name = 1;
1143 while (i < len0)
1144 {
1145 /* Is this a symbol function? */
1146 if (at_start_name && encoded[i] == 'O')
1147 {
1148 int k;
1149
1150 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1151 {
1152 int op_len = strlen (ada_opname_table[k].encoded);
1153 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1154 op_len - 1) == 0)
1155 && !isalnum (encoded[i + op_len]))
1156 {
1157 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1158 at_start_name = 0;
1159 i += op_len;
1160 j += strlen (ada_opname_table[k].decoded);
1161 break;
1162 }
1163 }
1164 if (ada_opname_table[k].encoded != NULL)
1165 continue;
1166 }
1167 at_start_name = 0;
1168
1169 /* Replace "TK__" with "__", which will eventually be translated
1170 into "." (just below). */
1171
1172 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1173 i += 2;
1174
1175 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1176 be translated into "." (just below). These are internal names
1177 generated for anonymous blocks inside which our symbol is nested. */
1178
1179 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1180 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1181 && isdigit (encoded [i+4]))
1182 {
1183 int k = i + 5;
1184
1185 while (k < len0 && isdigit (encoded[k]))
1186 k++; /* Skip any extra digit. */
1187
1188 /* Double-check that the "__B_{DIGITS}+" sequence we found
1189 is indeed followed by "__". */
1190 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1191 i = k;
1192 }
1193
1194 /* Remove _E{DIGITS}+[sb] */
1195
1196 /* Just as for protected object subprograms, there are 2 categories
1197 of subprograms created by the compiler for each entry. The first
1198 one implements the actual entry code, and has a suffix following
1199 the convention above; the second one implements the barrier and
1200 uses the same convention as above, except that the 'E' is replaced
1201 by a 'B'.
1202
1203 Just as above, we do not decode the name of barrier functions
1204 to give the user a clue that the code he is debugging has been
1205 internally generated. */
1206
1207 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1208 && isdigit (encoded[i+2]))
1209 {
1210 int k = i + 3;
1211
1212 while (k < len0 && isdigit (encoded[k]))
1213 k++;
1214
1215 if (k < len0
1216 && (encoded[k] == 'b' || encoded[k] == 's'))
1217 {
1218 k++;
1219 /* Just as an extra precaution, make sure that if this
1220 suffix is followed by anything else, it is a '_'.
1221 Otherwise, we matched this sequence by accident. */
1222 if (k == len0
1223 || (k < len0 && encoded[k] == '_'))
1224 i = k;
1225 }
1226 }
1227
1228 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1229 the GNAT front-end in protected object subprograms. */
1230
1231 if (i < len0 + 3
1232 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1233 {
1234 /* Backtrack a bit up until we reach either the begining of
1235 the encoded name, or "__". Make sure that we only find
1236 digits or lowercase characters. */
1237 const char *ptr = encoded + i - 1;
1238
1239 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1240 ptr--;
1241 if (ptr < encoded
1242 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1243 i++;
1244 }
1245
1246 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1247 {
1248 /* This is a X[bn]* sequence not separated from the previous
1249 part of the name with a non-alpha-numeric character (in other
1250 words, immediately following an alpha-numeric character), then
1251 verify that it is placed at the end of the encoded name. If
1252 not, then the encoding is not valid and we should abort the
1253 decoding. Otherwise, just skip it, it is used in body-nested
1254 package names. */
1255 do
1256 i += 1;
1257 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1258 if (i < len0)
1259 goto Suppress;
1260 }
1261 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1262 {
1263 /* Replace '__' by '.'. */
1264 decoded[j] = '.';
1265 at_start_name = 1;
1266 i += 2;
1267 j += 1;
1268 }
1269 else
1270 {
1271 /* It's a character part of the decoded name, so just copy it
1272 over. */
1273 decoded[j] = encoded[i];
1274 i += 1;
1275 j += 1;
1276 }
1277 }
1278 decoded.resize (j);
1279
1280 /* Decoded names should never contain any uppercase character.
1281 Double-check this, and abort the decoding if we find one. */
1282
1283 for (i = 0; i < decoded.length(); ++i)
1284 if (isupper (decoded[i]) || decoded[i] == ' ')
1285 goto Suppress;
1286
1287 return decoded;
1288
1289 Suppress:
1290 if (encoded[0] == '<')
1291 decoded = encoded;
1292 else
1293 decoded = '<' + std::string(encoded) + '>';
1294 return decoded;
1295
1296 }
1297
1298 /* Table for keeping permanent unique copies of decoded names. Once
1299 allocated, names in this table are never released. While this is a
1300 storage leak, it should not be significant unless there are massive
1301 changes in the set of decoded names in successive versions of a
1302 symbol table loaded during a single session. */
1303 static struct htab *decoded_names_store;
1304
1305 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1306 in the language-specific part of GSYMBOL, if it has not been
1307 previously computed. Tries to save the decoded name in the same
1308 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1309 in any case, the decoded symbol has a lifetime at least that of
1310 GSYMBOL).
1311 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1312 const, but nevertheless modified to a semantically equivalent form
1313 when a decoded name is cached in it. */
1314
1315 const char *
1316 ada_decode_symbol (const struct general_symbol_info *arg)
1317 {
1318 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1319 const char **resultp =
1320 &gsymbol->language_specific.demangled_name;
1321
1322 if (!gsymbol->ada_mangled)
1323 {
1324 std::string decoded = ada_decode (gsymbol->linkage_name ());
1325 struct obstack *obstack = gsymbol->language_specific.obstack;
1326
1327 gsymbol->ada_mangled = 1;
1328
1329 if (obstack != NULL)
1330 *resultp = obstack_strdup (obstack, decoded.c_str ());
1331 else
1332 {
1333 /* Sometimes, we can't find a corresponding objfile, in
1334 which case, we put the result on the heap. Since we only
1335 decode when needed, we hope this usually does not cause a
1336 significant memory leak (FIXME). */
1337
1338 char **slot = (char **) htab_find_slot (decoded_names_store,
1339 decoded.c_str (), INSERT);
1340
1341 if (*slot == NULL)
1342 *slot = xstrdup (decoded.c_str ());
1343 *resultp = *slot;
1344 }
1345 }
1346
1347 return *resultp;
1348 }
1349
1350 static char *
1351 ada_la_decode (const char *encoded, int options)
1352 {
1353 return xstrdup (ada_decode (encoded).c_str ());
1354 }
1355
1356 \f
1357
1358 /* Arrays */
1359
1360 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1361 generated by the GNAT compiler to describe the index type used
1362 for each dimension of an array, check whether it follows the latest
1363 known encoding. If not, fix it up to conform to the latest encoding.
1364 Otherwise, do nothing. This function also does nothing if
1365 INDEX_DESC_TYPE is NULL.
1366
1367 The GNAT encoding used to describe the array index type evolved a bit.
1368 Initially, the information would be provided through the name of each
1369 field of the structure type only, while the type of these fields was
1370 described as unspecified and irrelevant. The debugger was then expected
1371 to perform a global type lookup using the name of that field in order
1372 to get access to the full index type description. Because these global
1373 lookups can be very expensive, the encoding was later enhanced to make
1374 the global lookup unnecessary by defining the field type as being
1375 the full index type description.
1376
1377 The purpose of this routine is to allow us to support older versions
1378 of the compiler by detecting the use of the older encoding, and by
1379 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1380 we essentially replace each field's meaningless type by the associated
1381 index subtype). */
1382
1383 void
1384 ada_fixup_array_indexes_type (struct type *index_desc_type)
1385 {
1386 int i;
1387
1388 if (index_desc_type == NULL)
1389 return;
1390 gdb_assert (index_desc_type->num_fields () > 0);
1391
1392 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1393 to check one field only, no need to check them all). If not, return
1394 now.
1395
1396 If our INDEX_DESC_TYPE was generated using the older encoding,
1397 the field type should be a meaningless integer type whose name
1398 is not equal to the field name. */
1399 if (index_desc_type->field (0).type ()->name () != NULL
1400 && strcmp (index_desc_type->field (0).type ()->name (),
1401 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1402 return;
1403
1404 /* Fixup each field of INDEX_DESC_TYPE. */
1405 for (i = 0; i < index_desc_type->num_fields (); i++)
1406 {
1407 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1408 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1409
1410 if (raw_type)
1411 index_desc_type->field (i).set_type (raw_type);
1412 }
1413 }
1414
1415 /* The desc_* routines return primitive portions of array descriptors
1416 (fat pointers). */
1417
1418 /* The descriptor or array type, if any, indicated by TYPE; removes
1419 level of indirection, if needed. */
1420
1421 static struct type *
1422 desc_base_type (struct type *type)
1423 {
1424 if (type == NULL)
1425 return NULL;
1426 type = ada_check_typedef (type);
1427 if (type->code () == TYPE_CODE_TYPEDEF)
1428 type = ada_typedef_target_type (type);
1429
1430 if (type != NULL
1431 && (type->code () == TYPE_CODE_PTR
1432 || type->code () == TYPE_CODE_REF))
1433 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1434 else
1435 return type;
1436 }
1437
1438 /* True iff TYPE indicates a "thin" array pointer type. */
1439
1440 static int
1441 is_thin_pntr (struct type *type)
1442 {
1443 return
1444 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1445 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1446 }
1447
1448 /* The descriptor type for thin pointer type TYPE. */
1449
1450 static struct type *
1451 thin_descriptor_type (struct type *type)
1452 {
1453 struct type *base_type = desc_base_type (type);
1454
1455 if (base_type == NULL)
1456 return NULL;
1457 if (is_suffix (ada_type_name (base_type), "___XVE"))
1458 return base_type;
1459 else
1460 {
1461 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1462
1463 if (alt_type == NULL)
1464 return base_type;
1465 else
1466 return alt_type;
1467 }
1468 }
1469
1470 /* A pointer to the array data for thin-pointer value VAL. */
1471
1472 static struct value *
1473 thin_data_pntr (struct value *val)
1474 {
1475 struct type *type = ada_check_typedef (value_type (val));
1476 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1477
1478 data_type = lookup_pointer_type (data_type);
1479
1480 if (type->code () == TYPE_CODE_PTR)
1481 return value_cast (data_type, value_copy (val));
1482 else
1483 return value_from_longest (data_type, value_address (val));
1484 }
1485
1486 /* True iff TYPE indicates a "thick" array pointer type. */
1487
1488 static int
1489 is_thick_pntr (struct type *type)
1490 {
1491 type = desc_base_type (type);
1492 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1493 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1494 }
1495
1496 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1497 pointer to one, the type of its bounds data; otherwise, NULL. */
1498
1499 static struct type *
1500 desc_bounds_type (struct type *type)
1501 {
1502 struct type *r;
1503
1504 type = desc_base_type (type);
1505
1506 if (type == NULL)
1507 return NULL;
1508 else if (is_thin_pntr (type))
1509 {
1510 type = thin_descriptor_type (type);
1511 if (type == NULL)
1512 return NULL;
1513 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1514 if (r != NULL)
1515 return ada_check_typedef (r);
1516 }
1517 else if (type->code () == TYPE_CODE_STRUCT)
1518 {
1519 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1520 if (r != NULL)
1521 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1522 }
1523 return NULL;
1524 }
1525
1526 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1527 one, a pointer to its bounds data. Otherwise NULL. */
1528
1529 static struct value *
1530 desc_bounds (struct value *arr)
1531 {
1532 struct type *type = ada_check_typedef (value_type (arr));
1533
1534 if (is_thin_pntr (type))
1535 {
1536 struct type *bounds_type =
1537 desc_bounds_type (thin_descriptor_type (type));
1538 LONGEST addr;
1539
1540 if (bounds_type == NULL)
1541 error (_("Bad GNAT array descriptor"));
1542
1543 /* NOTE: The following calculation is not really kosher, but
1544 since desc_type is an XVE-encoded type (and shouldn't be),
1545 the correct calculation is a real pain. FIXME (and fix GCC). */
1546 if (type->code () == TYPE_CODE_PTR)
1547 addr = value_as_long (arr);
1548 else
1549 addr = value_address (arr);
1550
1551 return
1552 value_from_longest (lookup_pointer_type (bounds_type),
1553 addr - TYPE_LENGTH (bounds_type));
1554 }
1555
1556 else if (is_thick_pntr (type))
1557 {
1558 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1559 _("Bad GNAT array descriptor"));
1560 struct type *p_bounds_type = value_type (p_bounds);
1561
1562 if (p_bounds_type
1563 && p_bounds_type->code () == TYPE_CODE_PTR)
1564 {
1565 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1566
1567 if (TYPE_STUB (target_type))
1568 p_bounds = value_cast (lookup_pointer_type
1569 (ada_check_typedef (target_type)),
1570 p_bounds);
1571 }
1572 else
1573 error (_("Bad GNAT array descriptor"));
1574
1575 return p_bounds;
1576 }
1577 else
1578 return NULL;
1579 }
1580
1581 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1582 position of the field containing the address of the bounds data. */
1583
1584 static int
1585 fat_pntr_bounds_bitpos (struct type *type)
1586 {
1587 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1588 }
1589
1590 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1591 size of the field containing the address of the bounds data. */
1592
1593 static int
1594 fat_pntr_bounds_bitsize (struct type *type)
1595 {
1596 type = desc_base_type (type);
1597
1598 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1599 return TYPE_FIELD_BITSIZE (type, 1);
1600 else
1601 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1602 }
1603
1604 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1605 pointer to one, the type of its array data (a array-with-no-bounds type);
1606 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1607 data. */
1608
1609 static struct type *
1610 desc_data_target_type (struct type *type)
1611 {
1612 type = desc_base_type (type);
1613
1614 /* NOTE: The following is bogus; see comment in desc_bounds. */
1615 if (is_thin_pntr (type))
1616 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1617 else if (is_thick_pntr (type))
1618 {
1619 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1620
1621 if (data_type
1622 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1623 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1624 }
1625
1626 return NULL;
1627 }
1628
1629 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1630 its array data. */
1631
1632 static struct value *
1633 desc_data (struct value *arr)
1634 {
1635 struct type *type = value_type (arr);
1636
1637 if (is_thin_pntr (type))
1638 return thin_data_pntr (arr);
1639 else if (is_thick_pntr (type))
1640 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1641 _("Bad GNAT array descriptor"));
1642 else
1643 return NULL;
1644 }
1645
1646
1647 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1648 position of the field containing the address of the data. */
1649
1650 static int
1651 fat_pntr_data_bitpos (struct type *type)
1652 {
1653 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1654 }
1655
1656 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1657 size of the field containing the address of the data. */
1658
1659 static int
1660 fat_pntr_data_bitsize (struct type *type)
1661 {
1662 type = desc_base_type (type);
1663
1664 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1665 return TYPE_FIELD_BITSIZE (type, 0);
1666 else
1667 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1668 }
1669
1670 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1671 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1672 bound, if WHICH is 1. The first bound is I=1. */
1673
1674 static struct value *
1675 desc_one_bound (struct value *bounds, int i, int which)
1676 {
1677 char bound_name[20];
1678 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1679 which ? 'U' : 'L', i - 1);
1680 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1681 _("Bad GNAT array descriptor bounds"));
1682 }
1683
1684 /* If BOUNDS is an array-bounds structure type, return the bit position
1685 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1686 bound, if WHICH is 1. The first bound is I=1. */
1687
1688 static int
1689 desc_bound_bitpos (struct type *type, int i, int which)
1690 {
1691 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1692 }
1693
1694 /* If BOUNDS is an array-bounds structure type, return the bit field size
1695 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
1698 static int
1699 desc_bound_bitsize (struct type *type, int i, int which)
1700 {
1701 type = desc_base_type (type);
1702
1703 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1704 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1705 else
1706 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1707 }
1708
1709 /* If TYPE is the type of an array-bounds structure, the type of its
1710 Ith bound (numbering from 1). Otherwise, NULL. */
1711
1712 static struct type *
1713 desc_index_type (struct type *type, int i)
1714 {
1715 type = desc_base_type (type);
1716
1717 if (type->code () == TYPE_CODE_STRUCT)
1718 {
1719 char bound_name[20];
1720 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1721 return lookup_struct_elt_type (type, bound_name, 1);
1722 }
1723 else
1724 return NULL;
1725 }
1726
1727 /* The number of index positions in the array-bounds type TYPE.
1728 Return 0 if TYPE is NULL. */
1729
1730 static int
1731 desc_arity (struct type *type)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (type != NULL)
1736 return type->num_fields () / 2;
1737 return 0;
1738 }
1739
1740 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1741 an array descriptor type (representing an unconstrained array
1742 type). */
1743
1744 static int
1745 ada_is_direct_array_type (struct type *type)
1746 {
1747 if (type == NULL)
1748 return 0;
1749 type = ada_check_typedef (type);
1750 return (type->code () == TYPE_CODE_ARRAY
1751 || ada_is_array_descriptor_type (type));
1752 }
1753
1754 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1755 * to one. */
1756
1757 static int
1758 ada_is_array_type (struct type *type)
1759 {
1760 while (type != NULL
1761 && (type->code () == TYPE_CODE_PTR
1762 || type->code () == TYPE_CODE_REF))
1763 type = TYPE_TARGET_TYPE (type);
1764 return ada_is_direct_array_type (type);
1765 }
1766
1767 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1768
1769 int
1770 ada_is_simple_array_type (struct type *type)
1771 {
1772 if (type == NULL)
1773 return 0;
1774 type = ada_check_typedef (type);
1775 return (type->code () == TYPE_CODE_ARRAY
1776 || (type->code () == TYPE_CODE_PTR
1777 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1778 == TYPE_CODE_ARRAY)));
1779 }
1780
1781 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1782
1783 int
1784 ada_is_array_descriptor_type (struct type *type)
1785 {
1786 struct type *data_type = desc_data_target_type (type);
1787
1788 if (type == NULL)
1789 return 0;
1790 type = ada_check_typedef (type);
1791 return (data_type != NULL
1792 && data_type->code () == TYPE_CODE_ARRAY
1793 && desc_arity (desc_bounds_type (type)) > 0);
1794 }
1795
1796 /* Non-zero iff type is a partially mal-formed GNAT array
1797 descriptor. FIXME: This is to compensate for some problems with
1798 debugging output from GNAT. Re-examine periodically to see if it
1799 is still needed. */
1800
1801 int
1802 ada_is_bogus_array_descriptor (struct type *type)
1803 {
1804 return
1805 type != NULL
1806 && type->code () == TYPE_CODE_STRUCT
1807 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1808 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1809 && !ada_is_array_descriptor_type (type);
1810 }
1811
1812
1813 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1814 (fat pointer) returns the type of the array data described---specifically,
1815 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1816 in from the descriptor; otherwise, they are left unspecified. If
1817 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1818 returns NULL. The result is simply the type of ARR if ARR is not
1819 a descriptor. */
1820
1821 static struct type *
1822 ada_type_of_array (struct value *arr, int bounds)
1823 {
1824 if (ada_is_constrained_packed_array_type (value_type (arr)))
1825 return decode_constrained_packed_array_type (value_type (arr));
1826
1827 if (!ada_is_array_descriptor_type (value_type (arr)))
1828 return value_type (arr);
1829
1830 if (!bounds)
1831 {
1832 struct type *array_type =
1833 ada_check_typedef (desc_data_target_type (value_type (arr)));
1834
1835 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1836 TYPE_FIELD_BITSIZE (array_type, 0) =
1837 decode_packed_array_bitsize (value_type (arr));
1838
1839 return array_type;
1840 }
1841 else
1842 {
1843 struct type *elt_type;
1844 int arity;
1845 struct value *descriptor;
1846
1847 elt_type = ada_array_element_type (value_type (arr), -1);
1848 arity = ada_array_arity (value_type (arr));
1849
1850 if (elt_type == NULL || arity == 0)
1851 return ada_check_typedef (value_type (arr));
1852
1853 descriptor = desc_bounds (arr);
1854 if (value_as_long (descriptor) == 0)
1855 return NULL;
1856 while (arity > 0)
1857 {
1858 struct type *range_type = alloc_type_copy (value_type (arr));
1859 struct type *array_type = alloc_type_copy (value_type (arr));
1860 struct value *low = desc_one_bound (descriptor, arity, 0);
1861 struct value *high = desc_one_bound (descriptor, arity, 1);
1862
1863 arity -= 1;
1864 create_static_range_type (range_type, value_type (low),
1865 longest_to_int (value_as_long (low)),
1866 longest_to_int (value_as_long (high)));
1867 elt_type = create_array_type (array_type, elt_type, range_type);
1868
1869 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1870 {
1871 /* We need to store the element packed bitsize, as well as
1872 recompute the array size, because it was previously
1873 computed based on the unpacked element size. */
1874 LONGEST lo = value_as_long (low);
1875 LONGEST hi = value_as_long (high);
1876
1877 TYPE_FIELD_BITSIZE (elt_type, 0) =
1878 decode_packed_array_bitsize (value_type (arr));
1879 /* If the array has no element, then the size is already
1880 zero, and does not need to be recomputed. */
1881 if (lo < hi)
1882 {
1883 int array_bitsize =
1884 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1885
1886 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1887 }
1888 }
1889 }
1890
1891 return lookup_pointer_type (elt_type);
1892 }
1893 }
1894
1895 /* If ARR does not represent an array, returns ARR unchanged.
1896 Otherwise, returns either a standard GDB array with bounds set
1897 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1898 GDB array. Returns NULL if ARR is a null fat pointer. */
1899
1900 struct value *
1901 ada_coerce_to_simple_array_ptr (struct value *arr)
1902 {
1903 if (ada_is_array_descriptor_type (value_type (arr)))
1904 {
1905 struct type *arrType = ada_type_of_array (arr, 1);
1906
1907 if (arrType == NULL)
1908 return NULL;
1909 return value_cast (arrType, value_copy (desc_data (arr)));
1910 }
1911 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1912 return decode_constrained_packed_array (arr);
1913 else
1914 return arr;
1915 }
1916
1917 /* If ARR does not represent an array, returns ARR unchanged.
1918 Otherwise, returns a standard GDB array describing ARR (which may
1919 be ARR itself if it already is in the proper form). */
1920
1921 struct value *
1922 ada_coerce_to_simple_array (struct value *arr)
1923 {
1924 if (ada_is_array_descriptor_type (value_type (arr)))
1925 {
1926 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1927
1928 if (arrVal == NULL)
1929 error (_("Bounds unavailable for null array pointer."));
1930 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1931 return value_ind (arrVal);
1932 }
1933 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1934 return decode_constrained_packed_array (arr);
1935 else
1936 return arr;
1937 }
1938
1939 /* If TYPE represents a GNAT array type, return it translated to an
1940 ordinary GDB array type (possibly with BITSIZE fields indicating
1941 packing). For other types, is the identity. */
1942
1943 struct type *
1944 ada_coerce_to_simple_array_type (struct type *type)
1945 {
1946 if (ada_is_constrained_packed_array_type (type))
1947 return decode_constrained_packed_array_type (type);
1948
1949 if (ada_is_array_descriptor_type (type))
1950 return ada_check_typedef (desc_data_target_type (type));
1951
1952 return type;
1953 }
1954
1955 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1956
1957 static int
1958 ada_is_packed_array_type (struct type *type)
1959 {
1960 if (type == NULL)
1961 return 0;
1962 type = desc_base_type (type);
1963 type = ada_check_typedef (type);
1964 return
1965 ada_type_name (type) != NULL
1966 && strstr (ada_type_name (type), "___XP") != NULL;
1967 }
1968
1969 /* Non-zero iff TYPE represents a standard GNAT constrained
1970 packed-array type. */
1971
1972 int
1973 ada_is_constrained_packed_array_type (struct type *type)
1974 {
1975 return ada_is_packed_array_type (type)
1976 && !ada_is_array_descriptor_type (type);
1977 }
1978
1979 /* Non-zero iff TYPE represents an array descriptor for a
1980 unconstrained packed-array type. */
1981
1982 static int
1983 ada_is_unconstrained_packed_array_type (struct type *type)
1984 {
1985 return ada_is_packed_array_type (type)
1986 && ada_is_array_descriptor_type (type);
1987 }
1988
1989 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1990 return the size of its elements in bits. */
1991
1992 static long
1993 decode_packed_array_bitsize (struct type *type)
1994 {
1995 const char *raw_name;
1996 const char *tail;
1997 long bits;
1998
1999 /* Access to arrays implemented as fat pointers are encoded as a typedef
2000 of the fat pointer type. We need the name of the fat pointer type
2001 to do the decoding, so strip the typedef layer. */
2002 if (type->code () == TYPE_CODE_TYPEDEF)
2003 type = ada_typedef_target_type (type);
2004
2005 raw_name = ada_type_name (ada_check_typedef (type));
2006 if (!raw_name)
2007 raw_name = ada_type_name (desc_base_type (type));
2008
2009 if (!raw_name)
2010 return 0;
2011
2012 tail = strstr (raw_name, "___XP");
2013 gdb_assert (tail != NULL);
2014
2015 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2016 {
2017 lim_warning
2018 (_("could not understand bit size information on packed array"));
2019 return 0;
2020 }
2021
2022 return bits;
2023 }
2024
2025 /* Given that TYPE is a standard GDB array type with all bounds filled
2026 in, and that the element size of its ultimate scalar constituents
2027 (that is, either its elements, or, if it is an array of arrays, its
2028 elements' elements, etc.) is *ELT_BITS, return an identical type,
2029 but with the bit sizes of its elements (and those of any
2030 constituent arrays) recorded in the BITSIZE components of its
2031 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2032 in bits.
2033
2034 Note that, for arrays whose index type has an XA encoding where
2035 a bound references a record discriminant, getting that discriminant,
2036 and therefore the actual value of that bound, is not possible
2037 because none of the given parameters gives us access to the record.
2038 This function assumes that it is OK in the context where it is being
2039 used to return an array whose bounds are still dynamic and where
2040 the length is arbitrary. */
2041
2042 static struct type *
2043 constrained_packed_array_type (struct type *type, long *elt_bits)
2044 {
2045 struct type *new_elt_type;
2046 struct type *new_type;
2047 struct type *index_type_desc;
2048 struct type *index_type;
2049 LONGEST low_bound, high_bound;
2050
2051 type = ada_check_typedef (type);
2052 if (type->code () != TYPE_CODE_ARRAY)
2053 return type;
2054
2055 index_type_desc = ada_find_parallel_type (type, "___XA");
2056 if (index_type_desc)
2057 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2058 NULL);
2059 else
2060 index_type = type->index_type ();
2061
2062 new_type = alloc_type_copy (type);
2063 new_elt_type =
2064 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2065 elt_bits);
2066 create_array_type (new_type, new_elt_type, index_type);
2067 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2068 new_type->set_name (ada_type_name (type));
2069
2070 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2071 && is_dynamic_type (check_typedef (index_type)))
2072 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2073 low_bound = high_bound = 0;
2074 if (high_bound < low_bound)
2075 *elt_bits = TYPE_LENGTH (new_type) = 0;
2076 else
2077 {
2078 *elt_bits *= (high_bound - low_bound + 1);
2079 TYPE_LENGTH (new_type) =
2080 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2081 }
2082
2083 TYPE_FIXED_INSTANCE (new_type) = 1;
2084 return new_type;
2085 }
2086
2087 /* The array type encoded by TYPE, where
2088 ada_is_constrained_packed_array_type (TYPE). */
2089
2090 static struct type *
2091 decode_constrained_packed_array_type (struct type *type)
2092 {
2093 const char *raw_name = ada_type_name (ada_check_typedef (type));
2094 char *name;
2095 const char *tail;
2096 struct type *shadow_type;
2097 long bits;
2098
2099 if (!raw_name)
2100 raw_name = ada_type_name (desc_base_type (type));
2101
2102 if (!raw_name)
2103 return NULL;
2104
2105 name = (char *) alloca (strlen (raw_name) + 1);
2106 tail = strstr (raw_name, "___XP");
2107 type = desc_base_type (type);
2108
2109 memcpy (name, raw_name, tail - raw_name);
2110 name[tail - raw_name] = '\000';
2111
2112 shadow_type = ada_find_parallel_type_with_name (type, name);
2113
2114 if (shadow_type == NULL)
2115 {
2116 lim_warning (_("could not find bounds information on packed array"));
2117 return NULL;
2118 }
2119 shadow_type = check_typedef (shadow_type);
2120
2121 if (shadow_type->code () != TYPE_CODE_ARRAY)
2122 {
2123 lim_warning (_("could not understand bounds "
2124 "information on packed array"));
2125 return NULL;
2126 }
2127
2128 bits = decode_packed_array_bitsize (type);
2129 return constrained_packed_array_type (shadow_type, &bits);
2130 }
2131
2132 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2133 array, returns a simple array that denotes that array. Its type is a
2134 standard GDB array type except that the BITSIZEs of the array
2135 target types are set to the number of bits in each element, and the
2136 type length is set appropriately. */
2137
2138 static struct value *
2139 decode_constrained_packed_array (struct value *arr)
2140 {
2141 struct type *type;
2142
2143 /* If our value is a pointer, then dereference it. Likewise if
2144 the value is a reference. Make sure that this operation does not
2145 cause the target type to be fixed, as this would indirectly cause
2146 this array to be decoded. The rest of the routine assumes that
2147 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2148 and "value_ind" routines to perform the dereferencing, as opposed
2149 to using "ada_coerce_ref" or "ada_value_ind". */
2150 arr = coerce_ref (arr);
2151 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2152 arr = value_ind (arr);
2153
2154 type = decode_constrained_packed_array_type (value_type (arr));
2155 if (type == NULL)
2156 {
2157 error (_("can't unpack array"));
2158 return NULL;
2159 }
2160
2161 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2162 && ada_is_modular_type (value_type (arr)))
2163 {
2164 /* This is a (right-justified) modular type representing a packed
2165 array with no wrapper. In order to interpret the value through
2166 the (left-justified) packed array type we just built, we must
2167 first left-justify it. */
2168 int bit_size, bit_pos;
2169 ULONGEST mod;
2170
2171 mod = ada_modulus (value_type (arr)) - 1;
2172 bit_size = 0;
2173 while (mod > 0)
2174 {
2175 bit_size += 1;
2176 mod >>= 1;
2177 }
2178 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2179 arr = ada_value_primitive_packed_val (arr, NULL,
2180 bit_pos / HOST_CHAR_BIT,
2181 bit_pos % HOST_CHAR_BIT,
2182 bit_size,
2183 type);
2184 }
2185
2186 return coerce_unspec_val_to_type (arr, type);
2187 }
2188
2189
2190 /* The value of the element of packed array ARR at the ARITY indices
2191 given in IND. ARR must be a simple array. */
2192
2193 static struct value *
2194 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2195 {
2196 int i;
2197 int bits, elt_off, bit_off;
2198 long elt_total_bit_offset;
2199 struct type *elt_type;
2200 struct value *v;
2201
2202 bits = 0;
2203 elt_total_bit_offset = 0;
2204 elt_type = ada_check_typedef (value_type (arr));
2205 for (i = 0; i < arity; i += 1)
2206 {
2207 if (elt_type->code () != TYPE_CODE_ARRAY
2208 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2209 error
2210 (_("attempt to do packed indexing of "
2211 "something other than a packed array"));
2212 else
2213 {
2214 struct type *range_type = elt_type->index_type ();
2215 LONGEST lowerbound, upperbound;
2216 LONGEST idx;
2217
2218 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2219 {
2220 lim_warning (_("don't know bounds of array"));
2221 lowerbound = upperbound = 0;
2222 }
2223
2224 idx = pos_atr (ind[i]);
2225 if (idx < lowerbound || idx > upperbound)
2226 lim_warning (_("packed array index %ld out of bounds"),
2227 (long) idx);
2228 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2229 elt_total_bit_offset += (idx - lowerbound) * bits;
2230 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2231 }
2232 }
2233 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2234 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2235
2236 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2237 bits, elt_type);
2238 return v;
2239 }
2240
2241 /* Non-zero iff TYPE includes negative integer values. */
2242
2243 static int
2244 has_negatives (struct type *type)
2245 {
2246 switch (type->code ())
2247 {
2248 default:
2249 return 0;
2250 case TYPE_CODE_INT:
2251 return !TYPE_UNSIGNED (type);
2252 case TYPE_CODE_RANGE:
2253 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2254 }
2255 }
2256
2257 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2258 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2259 the unpacked buffer.
2260
2261 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2262 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2263
2264 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2265 zero otherwise.
2266
2267 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2268
2269 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2270
2271 static void
2272 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2273 gdb_byte *unpacked, int unpacked_len,
2274 int is_big_endian, int is_signed_type,
2275 int is_scalar)
2276 {
2277 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2278 int src_idx; /* Index into the source area */
2279 int src_bytes_left; /* Number of source bytes left to process. */
2280 int srcBitsLeft; /* Number of source bits left to move */
2281 int unusedLS; /* Number of bits in next significant
2282 byte of source that are unused */
2283
2284 int unpacked_idx; /* Index into the unpacked buffer */
2285 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2286
2287 unsigned long accum; /* Staging area for bits being transferred */
2288 int accumSize; /* Number of meaningful bits in accum */
2289 unsigned char sign;
2290
2291 /* Transmit bytes from least to most significant; delta is the direction
2292 the indices move. */
2293 int delta = is_big_endian ? -1 : 1;
2294
2295 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2296 bits from SRC. .*/
2297 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2298 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2299 bit_size, unpacked_len);
2300
2301 srcBitsLeft = bit_size;
2302 src_bytes_left = src_len;
2303 unpacked_bytes_left = unpacked_len;
2304 sign = 0;
2305
2306 if (is_big_endian)
2307 {
2308 src_idx = src_len - 1;
2309 if (is_signed_type
2310 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2311 sign = ~0;
2312
2313 unusedLS =
2314 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2315 % HOST_CHAR_BIT;
2316
2317 if (is_scalar)
2318 {
2319 accumSize = 0;
2320 unpacked_idx = unpacked_len - 1;
2321 }
2322 else
2323 {
2324 /* Non-scalar values must be aligned at a byte boundary... */
2325 accumSize =
2326 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2327 /* ... And are placed at the beginning (most-significant) bytes
2328 of the target. */
2329 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2330 unpacked_bytes_left = unpacked_idx + 1;
2331 }
2332 }
2333 else
2334 {
2335 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2336
2337 src_idx = unpacked_idx = 0;
2338 unusedLS = bit_offset;
2339 accumSize = 0;
2340
2341 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2342 sign = ~0;
2343 }
2344
2345 accum = 0;
2346 while (src_bytes_left > 0)
2347 {
2348 /* Mask for removing bits of the next source byte that are not
2349 part of the value. */
2350 unsigned int unusedMSMask =
2351 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2352 1;
2353 /* Sign-extend bits for this byte. */
2354 unsigned int signMask = sign & ~unusedMSMask;
2355
2356 accum |=
2357 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2358 accumSize += HOST_CHAR_BIT - unusedLS;
2359 if (accumSize >= HOST_CHAR_BIT)
2360 {
2361 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2362 accumSize -= HOST_CHAR_BIT;
2363 accum >>= HOST_CHAR_BIT;
2364 unpacked_bytes_left -= 1;
2365 unpacked_idx += delta;
2366 }
2367 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2368 unusedLS = 0;
2369 src_bytes_left -= 1;
2370 src_idx += delta;
2371 }
2372 while (unpacked_bytes_left > 0)
2373 {
2374 accum |= sign << accumSize;
2375 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2376 accumSize -= HOST_CHAR_BIT;
2377 if (accumSize < 0)
2378 accumSize = 0;
2379 accum >>= HOST_CHAR_BIT;
2380 unpacked_bytes_left -= 1;
2381 unpacked_idx += delta;
2382 }
2383 }
2384
2385 /* Create a new value of type TYPE from the contents of OBJ starting
2386 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2387 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2388 assigning through the result will set the field fetched from.
2389 VALADDR is ignored unless OBJ is NULL, in which case,
2390 VALADDR+OFFSET must address the start of storage containing the
2391 packed value. The value returned in this case is never an lval.
2392 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2393
2394 struct value *
2395 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2396 long offset, int bit_offset, int bit_size,
2397 struct type *type)
2398 {
2399 struct value *v;
2400 const gdb_byte *src; /* First byte containing data to unpack */
2401 gdb_byte *unpacked;
2402 const int is_scalar = is_scalar_type (type);
2403 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2404 gdb::byte_vector staging;
2405
2406 type = ada_check_typedef (type);
2407
2408 if (obj == NULL)
2409 src = valaddr + offset;
2410 else
2411 src = value_contents (obj) + offset;
2412
2413 if (is_dynamic_type (type))
2414 {
2415 /* The length of TYPE might by dynamic, so we need to resolve
2416 TYPE in order to know its actual size, which we then use
2417 to create the contents buffer of the value we return.
2418 The difficulty is that the data containing our object is
2419 packed, and therefore maybe not at a byte boundary. So, what
2420 we do, is unpack the data into a byte-aligned buffer, and then
2421 use that buffer as our object's value for resolving the type. */
2422 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2423 staging.resize (staging_len);
2424
2425 ada_unpack_from_contents (src, bit_offset, bit_size,
2426 staging.data (), staging.size (),
2427 is_big_endian, has_negatives (type),
2428 is_scalar);
2429 type = resolve_dynamic_type (type, staging, 0);
2430 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2431 {
2432 /* This happens when the length of the object is dynamic,
2433 and is actually smaller than the space reserved for it.
2434 For instance, in an array of variant records, the bit_size
2435 we're given is the array stride, which is constant and
2436 normally equal to the maximum size of its element.
2437 But, in reality, each element only actually spans a portion
2438 of that stride. */
2439 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2440 }
2441 }
2442
2443 if (obj == NULL)
2444 {
2445 v = allocate_value (type);
2446 src = valaddr + offset;
2447 }
2448 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2449 {
2450 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2451 gdb_byte *buf;
2452
2453 v = value_at (type, value_address (obj) + offset);
2454 buf = (gdb_byte *) alloca (src_len);
2455 read_memory (value_address (v), buf, src_len);
2456 src = buf;
2457 }
2458 else
2459 {
2460 v = allocate_value (type);
2461 src = value_contents (obj) + offset;
2462 }
2463
2464 if (obj != NULL)
2465 {
2466 long new_offset = offset;
2467
2468 set_value_component_location (v, obj);
2469 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2470 set_value_bitsize (v, bit_size);
2471 if (value_bitpos (v) >= HOST_CHAR_BIT)
2472 {
2473 ++new_offset;
2474 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2475 }
2476 set_value_offset (v, new_offset);
2477
2478 /* Also set the parent value. This is needed when trying to
2479 assign a new value (in inferior memory). */
2480 set_value_parent (v, obj);
2481 }
2482 else
2483 set_value_bitsize (v, bit_size);
2484 unpacked = value_contents_writeable (v);
2485
2486 if (bit_size == 0)
2487 {
2488 memset (unpacked, 0, TYPE_LENGTH (type));
2489 return v;
2490 }
2491
2492 if (staging.size () == TYPE_LENGTH (type))
2493 {
2494 /* Small short-cut: If we've unpacked the data into a buffer
2495 of the same size as TYPE's length, then we can reuse that,
2496 instead of doing the unpacking again. */
2497 memcpy (unpacked, staging.data (), staging.size ());
2498 }
2499 else
2500 ada_unpack_from_contents (src, bit_offset, bit_size,
2501 unpacked, TYPE_LENGTH (type),
2502 is_big_endian, has_negatives (type), is_scalar);
2503
2504 return v;
2505 }
2506
2507 /* Store the contents of FROMVAL into the location of TOVAL.
2508 Return a new value with the location of TOVAL and contents of
2509 FROMVAL. Handles assignment into packed fields that have
2510 floating-point or non-scalar types. */
2511
2512 static struct value *
2513 ada_value_assign (struct value *toval, struct value *fromval)
2514 {
2515 struct type *type = value_type (toval);
2516 int bits = value_bitsize (toval);
2517
2518 toval = ada_coerce_ref (toval);
2519 fromval = ada_coerce_ref (fromval);
2520
2521 if (ada_is_direct_array_type (value_type (toval)))
2522 toval = ada_coerce_to_simple_array (toval);
2523 if (ada_is_direct_array_type (value_type (fromval)))
2524 fromval = ada_coerce_to_simple_array (fromval);
2525
2526 if (!deprecated_value_modifiable (toval))
2527 error (_("Left operand of assignment is not a modifiable lvalue."));
2528
2529 if (VALUE_LVAL (toval) == lval_memory
2530 && bits > 0
2531 && (type->code () == TYPE_CODE_FLT
2532 || type->code () == TYPE_CODE_STRUCT))
2533 {
2534 int len = (value_bitpos (toval)
2535 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2536 int from_size;
2537 gdb_byte *buffer = (gdb_byte *) alloca (len);
2538 struct value *val;
2539 CORE_ADDR to_addr = value_address (toval);
2540
2541 if (type->code () == TYPE_CODE_FLT)
2542 fromval = value_cast (type, fromval);
2543
2544 read_memory (to_addr, buffer, len);
2545 from_size = value_bitsize (fromval);
2546 if (from_size == 0)
2547 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2548
2549 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2550 ULONGEST from_offset = 0;
2551 if (is_big_endian && is_scalar_type (value_type (fromval)))
2552 from_offset = from_size - bits;
2553 copy_bitwise (buffer, value_bitpos (toval),
2554 value_contents (fromval), from_offset,
2555 bits, is_big_endian);
2556 write_memory_with_notification (to_addr, buffer, len);
2557
2558 val = value_copy (toval);
2559 memcpy (value_contents_raw (val), value_contents (fromval),
2560 TYPE_LENGTH (type));
2561 deprecated_set_value_type (val, type);
2562
2563 return val;
2564 }
2565
2566 return value_assign (toval, fromval);
2567 }
2568
2569
2570 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2571 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2572 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2573 COMPONENT, and not the inferior's memory. The current contents
2574 of COMPONENT are ignored.
2575
2576 Although not part of the initial design, this function also works
2577 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2578 had a null address, and COMPONENT had an address which is equal to
2579 its offset inside CONTAINER. */
2580
2581 static void
2582 value_assign_to_component (struct value *container, struct value *component,
2583 struct value *val)
2584 {
2585 LONGEST offset_in_container =
2586 (LONGEST) (value_address (component) - value_address (container));
2587 int bit_offset_in_container =
2588 value_bitpos (component) - value_bitpos (container);
2589 int bits;
2590
2591 val = value_cast (value_type (component), val);
2592
2593 if (value_bitsize (component) == 0)
2594 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2595 else
2596 bits = value_bitsize (component);
2597
2598 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2599 {
2600 int src_offset;
2601
2602 if (is_scalar_type (check_typedef (value_type (component))))
2603 src_offset
2604 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2605 else
2606 src_offset = 0;
2607 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2608 value_bitpos (container) + bit_offset_in_container,
2609 value_contents (val), src_offset, bits, 1);
2610 }
2611 else
2612 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2613 value_bitpos (container) + bit_offset_in_container,
2614 value_contents (val), 0, bits, 0);
2615 }
2616
2617 /* Determine if TYPE is an access to an unconstrained array. */
2618
2619 bool
2620 ada_is_access_to_unconstrained_array (struct type *type)
2621 {
2622 return (type->code () == TYPE_CODE_TYPEDEF
2623 && is_thick_pntr (ada_typedef_target_type (type)));
2624 }
2625
2626 /* The value of the element of array ARR at the ARITY indices given in IND.
2627 ARR may be either a simple array, GNAT array descriptor, or pointer
2628 thereto. */
2629
2630 struct value *
2631 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2632 {
2633 int k;
2634 struct value *elt;
2635 struct type *elt_type;
2636
2637 elt = ada_coerce_to_simple_array (arr);
2638
2639 elt_type = ada_check_typedef (value_type (elt));
2640 if (elt_type->code () == TYPE_CODE_ARRAY
2641 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2642 return value_subscript_packed (elt, arity, ind);
2643
2644 for (k = 0; k < arity; k += 1)
2645 {
2646 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2647
2648 if (elt_type->code () != TYPE_CODE_ARRAY)
2649 error (_("too many subscripts (%d expected)"), k);
2650
2651 elt = value_subscript (elt, pos_atr (ind[k]));
2652
2653 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2654 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2655 {
2656 /* The element is a typedef to an unconstrained array,
2657 except that the value_subscript call stripped the
2658 typedef layer. The typedef layer is GNAT's way to
2659 specify that the element is, at the source level, an
2660 access to the unconstrained array, rather than the
2661 unconstrained array. So, we need to restore that
2662 typedef layer, which we can do by forcing the element's
2663 type back to its original type. Otherwise, the returned
2664 value is going to be printed as the array, rather
2665 than as an access. Another symptom of the same issue
2666 would be that an expression trying to dereference the
2667 element would also be improperly rejected. */
2668 deprecated_set_value_type (elt, saved_elt_type);
2669 }
2670
2671 elt_type = ada_check_typedef (value_type (elt));
2672 }
2673
2674 return elt;
2675 }
2676
2677 /* Assuming ARR is a pointer to a GDB array, the value of the element
2678 of *ARR at the ARITY indices given in IND.
2679 Does not read the entire array into memory.
2680
2681 Note: Unlike what one would expect, this function is used instead of
2682 ada_value_subscript for basically all non-packed array types. The reason
2683 for this is that a side effect of doing our own pointer arithmetics instead
2684 of relying on value_subscript is that there is no implicit typedef peeling.
2685 This is important for arrays of array accesses, where it allows us to
2686 preserve the fact that the array's element is an array access, where the
2687 access part os encoded in a typedef layer. */
2688
2689 static struct value *
2690 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2691 {
2692 int k;
2693 struct value *array_ind = ada_value_ind (arr);
2694 struct type *type
2695 = check_typedef (value_enclosing_type (array_ind));
2696
2697 if (type->code () == TYPE_CODE_ARRAY
2698 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2699 return value_subscript_packed (array_ind, arity, ind);
2700
2701 for (k = 0; k < arity; k += 1)
2702 {
2703 LONGEST lwb, upb;
2704
2705 if (type->code () != TYPE_CODE_ARRAY)
2706 error (_("too many subscripts (%d expected)"), k);
2707 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2708 value_copy (arr));
2709 get_discrete_bounds (type->index_type (), &lwb, &upb);
2710 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2711 type = TYPE_TARGET_TYPE (type);
2712 }
2713
2714 return value_ind (arr);
2715 }
2716
2717 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2718 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2719 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2720 this array is LOW, as per Ada rules. */
2721 static struct value *
2722 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2723 int low, int high)
2724 {
2725 struct type *type0 = ada_check_typedef (type);
2726 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2727 struct type *index_type
2728 = create_static_range_type (NULL, base_index_type, low, high);
2729 struct type *slice_type = create_array_type_with_stride
2730 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2731 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2732 TYPE_FIELD_BITSIZE (type0, 0));
2733 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2734 LONGEST base_low_pos, low_pos;
2735 CORE_ADDR base;
2736
2737 if (!discrete_position (base_index_type, low, &low_pos)
2738 || !discrete_position (base_index_type, base_low, &base_low_pos))
2739 {
2740 warning (_("unable to get positions in slice, use bounds instead"));
2741 low_pos = low;
2742 base_low_pos = base_low;
2743 }
2744
2745 base = value_as_address (array_ptr)
2746 + ((low_pos - base_low_pos)
2747 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2748 return value_at_lazy (slice_type, base);
2749 }
2750
2751
2752 static struct value *
2753 ada_value_slice (struct value *array, int low, int high)
2754 {
2755 struct type *type = ada_check_typedef (value_type (array));
2756 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2757 struct type *index_type
2758 = create_static_range_type (NULL, type->index_type (), low, high);
2759 struct type *slice_type = create_array_type_with_stride
2760 (NULL, TYPE_TARGET_TYPE (type), index_type,
2761 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2762 TYPE_FIELD_BITSIZE (type, 0));
2763 LONGEST low_pos, high_pos;
2764
2765 if (!discrete_position (base_index_type, low, &low_pos)
2766 || !discrete_position (base_index_type, high, &high_pos))
2767 {
2768 warning (_("unable to get positions in slice, use bounds instead"));
2769 low_pos = low;
2770 high_pos = high;
2771 }
2772
2773 return value_cast (slice_type,
2774 value_slice (array, low, high_pos - low_pos + 1));
2775 }
2776
2777 /* If type is a record type in the form of a standard GNAT array
2778 descriptor, returns the number of dimensions for type. If arr is a
2779 simple array, returns the number of "array of"s that prefix its
2780 type designation. Otherwise, returns 0. */
2781
2782 int
2783 ada_array_arity (struct type *type)
2784 {
2785 int arity;
2786
2787 if (type == NULL)
2788 return 0;
2789
2790 type = desc_base_type (type);
2791
2792 arity = 0;
2793 if (type->code () == TYPE_CODE_STRUCT)
2794 return desc_arity (desc_bounds_type (type));
2795 else
2796 while (type->code () == TYPE_CODE_ARRAY)
2797 {
2798 arity += 1;
2799 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2800 }
2801
2802 return arity;
2803 }
2804
2805 /* If TYPE is a record type in the form of a standard GNAT array
2806 descriptor or a simple array type, returns the element type for
2807 TYPE after indexing by NINDICES indices, or by all indices if
2808 NINDICES is -1. Otherwise, returns NULL. */
2809
2810 struct type *
2811 ada_array_element_type (struct type *type, int nindices)
2812 {
2813 type = desc_base_type (type);
2814
2815 if (type->code () == TYPE_CODE_STRUCT)
2816 {
2817 int k;
2818 struct type *p_array_type;
2819
2820 p_array_type = desc_data_target_type (type);
2821
2822 k = ada_array_arity (type);
2823 if (k == 0)
2824 return NULL;
2825
2826 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2827 if (nindices >= 0 && k > nindices)
2828 k = nindices;
2829 while (k > 0 && p_array_type != NULL)
2830 {
2831 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2832 k -= 1;
2833 }
2834 return p_array_type;
2835 }
2836 else if (type->code () == TYPE_CODE_ARRAY)
2837 {
2838 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2839 {
2840 type = TYPE_TARGET_TYPE (type);
2841 nindices -= 1;
2842 }
2843 return type;
2844 }
2845
2846 return NULL;
2847 }
2848
2849 /* The type of nth index in arrays of given type (n numbering from 1).
2850 Does not examine memory. Throws an error if N is invalid or TYPE
2851 is not an array type. NAME is the name of the Ada attribute being
2852 evaluated ('range, 'first, 'last, or 'length); it is used in building
2853 the error message. */
2854
2855 static struct type *
2856 ada_index_type (struct type *type, int n, const char *name)
2857 {
2858 struct type *result_type;
2859
2860 type = desc_base_type (type);
2861
2862 if (n < 0 || n > ada_array_arity (type))
2863 error (_("invalid dimension number to '%s"), name);
2864
2865 if (ada_is_simple_array_type (type))
2866 {
2867 int i;
2868
2869 for (i = 1; i < n; i += 1)
2870 type = TYPE_TARGET_TYPE (type);
2871 result_type = TYPE_TARGET_TYPE (type->index_type ());
2872 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2873 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2874 perhaps stabsread.c would make more sense. */
2875 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2876 result_type = NULL;
2877 }
2878 else
2879 {
2880 result_type = desc_index_type (desc_bounds_type (type), n);
2881 if (result_type == NULL)
2882 error (_("attempt to take bound of something that is not an array"));
2883 }
2884
2885 return result_type;
2886 }
2887
2888 /* Given that arr is an array type, returns the lower bound of the
2889 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2890 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2891 array-descriptor type. It works for other arrays with bounds supplied
2892 by run-time quantities other than discriminants. */
2893
2894 static LONGEST
2895 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2896 {
2897 struct type *type, *index_type_desc, *index_type;
2898 int i;
2899
2900 gdb_assert (which == 0 || which == 1);
2901
2902 if (ada_is_constrained_packed_array_type (arr_type))
2903 arr_type = decode_constrained_packed_array_type (arr_type);
2904
2905 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2906 return (LONGEST) - which;
2907
2908 if (arr_type->code () == TYPE_CODE_PTR)
2909 type = TYPE_TARGET_TYPE (arr_type);
2910 else
2911 type = arr_type;
2912
2913 if (TYPE_FIXED_INSTANCE (type))
2914 {
2915 /* The array has already been fixed, so we do not need to
2916 check the parallel ___XA type again. That encoding has
2917 already been applied, so ignore it now. */
2918 index_type_desc = NULL;
2919 }
2920 else
2921 {
2922 index_type_desc = ada_find_parallel_type (type, "___XA");
2923 ada_fixup_array_indexes_type (index_type_desc);
2924 }
2925
2926 if (index_type_desc != NULL)
2927 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2928 NULL);
2929 else
2930 {
2931 struct type *elt_type = check_typedef (type);
2932
2933 for (i = 1; i < n; i++)
2934 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2935
2936 index_type = elt_type->index_type ();
2937 }
2938
2939 return
2940 (LONGEST) (which == 0
2941 ? ada_discrete_type_low_bound (index_type)
2942 : ada_discrete_type_high_bound (index_type));
2943 }
2944
2945 /* Given that arr is an array value, returns the lower bound of the
2946 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2947 WHICH is 1. This routine will also work for arrays with bounds
2948 supplied by run-time quantities other than discriminants. */
2949
2950 static LONGEST
2951 ada_array_bound (struct value *arr, int n, int which)
2952 {
2953 struct type *arr_type;
2954
2955 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2956 arr = value_ind (arr);
2957 arr_type = value_enclosing_type (arr);
2958
2959 if (ada_is_constrained_packed_array_type (arr_type))
2960 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2961 else if (ada_is_simple_array_type (arr_type))
2962 return ada_array_bound_from_type (arr_type, n, which);
2963 else
2964 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2965 }
2966
2967 /* Given that arr is an array value, returns the length of the
2968 nth index. This routine will also work for arrays with bounds
2969 supplied by run-time quantities other than discriminants.
2970 Does not work for arrays indexed by enumeration types with representation
2971 clauses at the moment. */
2972
2973 static LONGEST
2974 ada_array_length (struct value *arr, int n)
2975 {
2976 struct type *arr_type, *index_type;
2977 int low, high;
2978
2979 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2980 arr = value_ind (arr);
2981 arr_type = value_enclosing_type (arr);
2982
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 return ada_array_length (decode_constrained_packed_array (arr), n);
2985
2986 if (ada_is_simple_array_type (arr_type))
2987 {
2988 low = ada_array_bound_from_type (arr_type, n, 0);
2989 high = ada_array_bound_from_type (arr_type, n, 1);
2990 }
2991 else
2992 {
2993 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
2994 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
2995 }
2996
2997 arr_type = check_typedef (arr_type);
2998 index_type = ada_index_type (arr_type, n, "length");
2999 if (index_type != NULL)
3000 {
3001 struct type *base_type;
3002 if (index_type->code () == TYPE_CODE_RANGE)
3003 base_type = TYPE_TARGET_TYPE (index_type);
3004 else
3005 base_type = index_type;
3006
3007 low = pos_atr (value_from_longest (base_type, low));
3008 high = pos_atr (value_from_longest (base_type, high));
3009 }
3010 return high - low + 1;
3011 }
3012
3013 /* An array whose type is that of ARR_TYPE (an array type), with
3014 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3015 less than LOW, then LOW-1 is used. */
3016
3017 static struct value *
3018 empty_array (struct type *arr_type, int low, int high)
3019 {
3020 struct type *arr_type0 = ada_check_typedef (arr_type);
3021 struct type *index_type
3022 = create_static_range_type
3023 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3024 high < low ? low - 1 : high);
3025 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3026
3027 return allocate_value (create_array_type (NULL, elt_type, index_type));
3028 }
3029 \f
3030
3031 /* Name resolution */
3032
3033 /* The "decoded" name for the user-definable Ada operator corresponding
3034 to OP. */
3035
3036 static const char *
3037 ada_decoded_op_name (enum exp_opcode op)
3038 {
3039 int i;
3040
3041 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3042 {
3043 if (ada_opname_table[i].op == op)
3044 return ada_opname_table[i].decoded;
3045 }
3046 error (_("Could not find operator name for opcode"));
3047 }
3048
3049 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3050 in a listing of choices during disambiguation (see sort_choices, below).
3051 The idea is that overloadings of a subprogram name from the
3052 same package should sort in their source order. We settle for ordering
3053 such symbols by their trailing number (__N or $N). */
3054
3055 static int
3056 encoded_ordered_before (const char *N0, const char *N1)
3057 {
3058 if (N1 == NULL)
3059 return 0;
3060 else if (N0 == NULL)
3061 return 1;
3062 else
3063 {
3064 int k0, k1;
3065
3066 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3067 ;
3068 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3069 ;
3070 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3071 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3072 {
3073 int n0, n1;
3074
3075 n0 = k0;
3076 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3077 n0 -= 1;
3078 n1 = k1;
3079 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3080 n1 -= 1;
3081 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3082 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3083 }
3084 return (strcmp (N0, N1) < 0);
3085 }
3086 }
3087
3088 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3089 encoded names. */
3090
3091 static void
3092 sort_choices (struct block_symbol syms[], int nsyms)
3093 {
3094 int i;
3095
3096 for (i = 1; i < nsyms; i += 1)
3097 {
3098 struct block_symbol sym = syms[i];
3099 int j;
3100
3101 for (j = i - 1; j >= 0; j -= 1)
3102 {
3103 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3104 sym.symbol->linkage_name ()))
3105 break;
3106 syms[j + 1] = syms[j];
3107 }
3108 syms[j + 1] = sym;
3109 }
3110 }
3111
3112 /* Whether GDB should display formals and return types for functions in the
3113 overloads selection menu. */
3114 static bool print_signatures = true;
3115
3116 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3117 all but functions, the signature is just the name of the symbol. For
3118 functions, this is the name of the function, the list of types for formals
3119 and the return type (if any). */
3120
3121 static void
3122 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3123 const struct type_print_options *flags)
3124 {
3125 struct type *type = SYMBOL_TYPE (sym);
3126
3127 fprintf_filtered (stream, "%s", sym->print_name ());
3128 if (!print_signatures
3129 || type == NULL
3130 || type->code () != TYPE_CODE_FUNC)
3131 return;
3132
3133 if (type->num_fields () > 0)
3134 {
3135 int i;
3136
3137 fprintf_filtered (stream, " (");
3138 for (i = 0; i < type->num_fields (); ++i)
3139 {
3140 if (i > 0)
3141 fprintf_filtered (stream, "; ");
3142 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3143 flags);
3144 }
3145 fprintf_filtered (stream, ")");
3146 }
3147 if (TYPE_TARGET_TYPE (type) != NULL
3148 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3149 {
3150 fprintf_filtered (stream, " return ");
3151 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3152 }
3153 }
3154
3155 /* Read and validate a set of numeric choices from the user in the
3156 range 0 .. N_CHOICES-1. Place the results in increasing
3157 order in CHOICES[0 .. N-1], and return N.
3158
3159 The user types choices as a sequence of numbers on one line
3160 separated by blanks, encoding them as follows:
3161
3162 + A choice of 0 means to cancel the selection, throwing an error.
3163 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3164 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3165
3166 The user is not allowed to choose more than MAX_RESULTS values.
3167
3168 ANNOTATION_SUFFIX, if present, is used to annotate the input
3169 prompts (for use with the -f switch). */
3170
3171 static int
3172 get_selections (int *choices, int n_choices, int max_results,
3173 int is_all_choice, const char *annotation_suffix)
3174 {
3175 const char *args;
3176 const char *prompt;
3177 int n_chosen;
3178 int first_choice = is_all_choice ? 2 : 1;
3179
3180 prompt = getenv ("PS2");
3181 if (prompt == NULL)
3182 prompt = "> ";
3183
3184 args = command_line_input (prompt, annotation_suffix);
3185
3186 if (args == NULL)
3187 error_no_arg (_("one or more choice numbers"));
3188
3189 n_chosen = 0;
3190
3191 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3192 order, as given in args. Choices are validated. */
3193 while (1)
3194 {
3195 char *args2;
3196 int choice, j;
3197
3198 args = skip_spaces (args);
3199 if (*args == '\0' && n_chosen == 0)
3200 error_no_arg (_("one or more choice numbers"));
3201 else if (*args == '\0')
3202 break;
3203
3204 choice = strtol (args, &args2, 10);
3205 if (args == args2 || choice < 0
3206 || choice > n_choices + first_choice - 1)
3207 error (_("Argument must be choice number"));
3208 args = args2;
3209
3210 if (choice == 0)
3211 error (_("cancelled"));
3212
3213 if (choice < first_choice)
3214 {
3215 n_chosen = n_choices;
3216 for (j = 0; j < n_choices; j += 1)
3217 choices[j] = j;
3218 break;
3219 }
3220 choice -= first_choice;
3221
3222 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3223 {
3224 }
3225
3226 if (j < 0 || choice != choices[j])
3227 {
3228 int k;
3229
3230 for (k = n_chosen - 1; k > j; k -= 1)
3231 choices[k + 1] = choices[k];
3232 choices[j + 1] = choice;
3233 n_chosen += 1;
3234 }
3235 }
3236
3237 if (n_chosen > max_results)
3238 error (_("Select no more than %d of the above"), max_results);
3239
3240 return n_chosen;
3241 }
3242
3243 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3244 by asking the user (if necessary), returning the number selected,
3245 and setting the first elements of SYMS items. Error if no symbols
3246 selected. */
3247
3248 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3249 to be re-integrated one of these days. */
3250
3251 static int
3252 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3253 {
3254 int i;
3255 int *chosen = XALLOCAVEC (int , nsyms);
3256 int n_chosen;
3257 int first_choice = (max_results == 1) ? 1 : 2;
3258 const char *select_mode = multiple_symbols_select_mode ();
3259
3260 if (max_results < 1)
3261 error (_("Request to select 0 symbols!"));
3262 if (nsyms <= 1)
3263 return nsyms;
3264
3265 if (select_mode == multiple_symbols_cancel)
3266 error (_("\
3267 canceled because the command is ambiguous\n\
3268 See set/show multiple-symbol."));
3269
3270 /* If select_mode is "all", then return all possible symbols.
3271 Only do that if more than one symbol can be selected, of course.
3272 Otherwise, display the menu as usual. */
3273 if (select_mode == multiple_symbols_all && max_results > 1)
3274 return nsyms;
3275
3276 printf_filtered (_("[0] cancel\n"));
3277 if (max_results > 1)
3278 printf_filtered (_("[1] all\n"));
3279
3280 sort_choices (syms, nsyms);
3281
3282 for (i = 0; i < nsyms; i += 1)
3283 {
3284 if (syms[i].symbol == NULL)
3285 continue;
3286
3287 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3288 {
3289 struct symtab_and_line sal =
3290 find_function_start_sal (syms[i].symbol, 1);
3291
3292 printf_filtered ("[%d] ", i + first_choice);
3293 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3294 &type_print_raw_options);
3295 if (sal.symtab == NULL)
3296 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3297 metadata_style.style ().ptr (), nullptr, sal.line);
3298 else
3299 printf_filtered
3300 (_(" at %ps:%d\n"),
3301 styled_string (file_name_style.style (),
3302 symtab_to_filename_for_display (sal.symtab)),
3303 sal.line);
3304 continue;
3305 }
3306 else
3307 {
3308 int is_enumeral =
3309 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3310 && SYMBOL_TYPE (syms[i].symbol) != NULL
3311 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3312 struct symtab *symtab = NULL;
3313
3314 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3315 symtab = symbol_symtab (syms[i].symbol);
3316
3317 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3318 {
3319 printf_filtered ("[%d] ", i + first_choice);
3320 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3321 &type_print_raw_options);
3322 printf_filtered (_(" at %s:%d\n"),
3323 symtab_to_filename_for_display (symtab),
3324 SYMBOL_LINE (syms[i].symbol));
3325 }
3326 else if (is_enumeral
3327 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3328 {
3329 printf_filtered (("[%d] "), i + first_choice);
3330 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3331 gdb_stdout, -1, 0, &type_print_raw_options);
3332 printf_filtered (_("'(%s) (enumeral)\n"),
3333 syms[i].symbol->print_name ());
3334 }
3335 else
3336 {
3337 printf_filtered ("[%d] ", i + first_choice);
3338 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3339 &type_print_raw_options);
3340
3341 if (symtab != NULL)
3342 printf_filtered (is_enumeral
3343 ? _(" in %s (enumeral)\n")
3344 : _(" at %s:?\n"),
3345 symtab_to_filename_for_display (symtab));
3346 else
3347 printf_filtered (is_enumeral
3348 ? _(" (enumeral)\n")
3349 : _(" at ?\n"));
3350 }
3351 }
3352 }
3353
3354 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3355 "overload-choice");
3356
3357 for (i = 0; i < n_chosen; i += 1)
3358 syms[i] = syms[chosen[i]];
3359
3360 return n_chosen;
3361 }
3362
3363 /* Resolve the operator of the subexpression beginning at
3364 position *POS of *EXPP. "Resolving" consists of replacing
3365 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3366 with their resolutions, replacing built-in operators with
3367 function calls to user-defined operators, where appropriate, and,
3368 when DEPROCEDURE_P is non-zero, converting function-valued variables
3369 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3370 are as in ada_resolve, above. */
3371
3372 static struct value *
3373 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3374 struct type *context_type, int parse_completion,
3375 innermost_block_tracker *tracker)
3376 {
3377 int pc = *pos;
3378 int i;
3379 struct expression *exp; /* Convenience: == *expp. */
3380 enum exp_opcode op = (*expp)->elts[pc].opcode;
3381 struct value **argvec; /* Vector of operand types (alloca'ed). */
3382 int nargs; /* Number of operands. */
3383 int oplen;
3384
3385 argvec = NULL;
3386 nargs = 0;
3387 exp = expp->get ();
3388
3389 /* Pass one: resolve operands, saving their types and updating *pos,
3390 if needed. */
3391 switch (op)
3392 {
3393 case OP_FUNCALL:
3394 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3395 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3396 *pos += 7;
3397 else
3398 {
3399 *pos += 3;
3400 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3401 }
3402 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3403 break;
3404
3405 case UNOP_ADDR:
3406 *pos += 1;
3407 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3408 break;
3409
3410 case UNOP_QUAL:
3411 *pos += 3;
3412 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3413 parse_completion, tracker);
3414 break;
3415
3416 case OP_ATR_MODULUS:
3417 case OP_ATR_SIZE:
3418 case OP_ATR_TAG:
3419 case OP_ATR_FIRST:
3420 case OP_ATR_LAST:
3421 case OP_ATR_LENGTH:
3422 case OP_ATR_POS:
3423 case OP_ATR_VAL:
3424 case OP_ATR_MIN:
3425 case OP_ATR_MAX:
3426 case TERNOP_IN_RANGE:
3427 case BINOP_IN_BOUNDS:
3428 case UNOP_IN_RANGE:
3429 case OP_AGGREGATE:
3430 case OP_OTHERS:
3431 case OP_CHOICES:
3432 case OP_POSITIONAL:
3433 case OP_DISCRETE_RANGE:
3434 case OP_NAME:
3435 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3436 *pos += oplen;
3437 break;
3438
3439 case BINOP_ASSIGN:
3440 {
3441 struct value *arg1;
3442
3443 *pos += 1;
3444 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3445 if (arg1 == NULL)
3446 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3447 else
3448 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3449 tracker);
3450 break;
3451 }
3452
3453 case UNOP_CAST:
3454 *pos += 3;
3455 nargs = 1;
3456 break;
3457
3458 case BINOP_ADD:
3459 case BINOP_SUB:
3460 case BINOP_MUL:
3461 case BINOP_DIV:
3462 case BINOP_REM:
3463 case BINOP_MOD:
3464 case BINOP_EXP:
3465 case BINOP_CONCAT:
3466 case BINOP_LOGICAL_AND:
3467 case BINOP_LOGICAL_OR:
3468 case BINOP_BITWISE_AND:
3469 case BINOP_BITWISE_IOR:
3470 case BINOP_BITWISE_XOR:
3471
3472 case BINOP_EQUAL:
3473 case BINOP_NOTEQUAL:
3474 case BINOP_LESS:
3475 case BINOP_GTR:
3476 case BINOP_LEQ:
3477 case BINOP_GEQ:
3478
3479 case BINOP_REPEAT:
3480 case BINOP_SUBSCRIPT:
3481 case BINOP_COMMA:
3482 *pos += 1;
3483 nargs = 2;
3484 break;
3485
3486 case UNOP_NEG:
3487 case UNOP_PLUS:
3488 case UNOP_LOGICAL_NOT:
3489 case UNOP_ABS:
3490 case UNOP_IND:
3491 *pos += 1;
3492 nargs = 1;
3493 break;
3494
3495 case OP_LONG:
3496 case OP_FLOAT:
3497 case OP_VAR_VALUE:
3498 case OP_VAR_MSYM_VALUE:
3499 *pos += 4;
3500 break;
3501
3502 case OP_TYPE:
3503 case OP_BOOL:
3504 case OP_LAST:
3505 case OP_INTERNALVAR:
3506 *pos += 3;
3507 break;
3508
3509 case UNOP_MEMVAL:
3510 *pos += 3;
3511 nargs = 1;
3512 break;
3513
3514 case OP_REGISTER:
3515 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3516 break;
3517
3518 case STRUCTOP_STRUCT:
3519 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3520 nargs = 1;
3521 break;
3522
3523 case TERNOP_SLICE:
3524 *pos += 1;
3525 nargs = 3;
3526 break;
3527
3528 case OP_STRING:
3529 break;
3530
3531 default:
3532 error (_("Unexpected operator during name resolution"));
3533 }
3534
3535 argvec = XALLOCAVEC (struct value *, nargs + 1);
3536 for (i = 0; i < nargs; i += 1)
3537 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3538 tracker);
3539 argvec[i] = NULL;
3540 exp = expp->get ();
3541
3542 /* Pass two: perform any resolution on principal operator. */
3543 switch (op)
3544 {
3545 default:
3546 break;
3547
3548 case OP_VAR_VALUE:
3549 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3550 {
3551 std::vector<struct block_symbol> candidates;
3552 int n_candidates;
3553
3554 n_candidates =
3555 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3556 exp->elts[pc + 1].block, VAR_DOMAIN,
3557 &candidates);
3558
3559 if (n_candidates > 1)
3560 {
3561 /* Types tend to get re-introduced locally, so if there
3562 are any local symbols that are not types, first filter
3563 out all types. */
3564 int j;
3565 for (j = 0; j < n_candidates; j += 1)
3566 switch (SYMBOL_CLASS (candidates[j].symbol))
3567 {
3568 case LOC_REGISTER:
3569 case LOC_ARG:
3570 case LOC_REF_ARG:
3571 case LOC_REGPARM_ADDR:
3572 case LOC_LOCAL:
3573 case LOC_COMPUTED:
3574 goto FoundNonType;
3575 default:
3576 break;
3577 }
3578 FoundNonType:
3579 if (j < n_candidates)
3580 {
3581 j = 0;
3582 while (j < n_candidates)
3583 {
3584 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3585 {
3586 candidates[j] = candidates[n_candidates - 1];
3587 n_candidates -= 1;
3588 }
3589 else
3590 j += 1;
3591 }
3592 }
3593 }
3594
3595 if (n_candidates == 0)
3596 error (_("No definition found for %s"),
3597 exp->elts[pc + 2].symbol->print_name ());
3598 else if (n_candidates == 1)
3599 i = 0;
3600 else if (deprocedure_p
3601 && !is_nonfunction (candidates.data (), n_candidates))
3602 {
3603 i = ada_resolve_function
3604 (candidates.data (), n_candidates, NULL, 0,
3605 exp->elts[pc + 2].symbol->linkage_name (),
3606 context_type, parse_completion);
3607 if (i < 0)
3608 error (_("Could not find a match for %s"),
3609 exp->elts[pc + 2].symbol->print_name ());
3610 }
3611 else
3612 {
3613 printf_filtered (_("Multiple matches for %s\n"),
3614 exp->elts[pc + 2].symbol->print_name ());
3615 user_select_syms (candidates.data (), n_candidates, 1);
3616 i = 0;
3617 }
3618
3619 exp->elts[pc + 1].block = candidates[i].block;
3620 exp->elts[pc + 2].symbol = candidates[i].symbol;
3621 tracker->update (candidates[i]);
3622 }
3623
3624 if (deprocedure_p
3625 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3626 == TYPE_CODE_FUNC))
3627 {
3628 replace_operator_with_call (expp, pc, 0, 4,
3629 exp->elts[pc + 2].symbol,
3630 exp->elts[pc + 1].block);
3631 exp = expp->get ();
3632 }
3633 break;
3634
3635 case OP_FUNCALL:
3636 {
3637 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3638 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3639 {
3640 std::vector<struct block_symbol> candidates;
3641 int n_candidates;
3642
3643 n_candidates =
3644 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3645 exp->elts[pc + 4].block, VAR_DOMAIN,
3646 &candidates);
3647
3648 if (n_candidates == 1)
3649 i = 0;
3650 else
3651 {
3652 i = ada_resolve_function
3653 (candidates.data (), n_candidates,
3654 argvec, nargs,
3655 exp->elts[pc + 5].symbol->linkage_name (),
3656 context_type, parse_completion);
3657 if (i < 0)
3658 error (_("Could not find a match for %s"),
3659 exp->elts[pc + 5].symbol->print_name ());
3660 }
3661
3662 exp->elts[pc + 4].block = candidates[i].block;
3663 exp->elts[pc + 5].symbol = candidates[i].symbol;
3664 tracker->update (candidates[i]);
3665 }
3666 }
3667 break;
3668 case BINOP_ADD:
3669 case BINOP_SUB:
3670 case BINOP_MUL:
3671 case BINOP_DIV:
3672 case BINOP_REM:
3673 case BINOP_MOD:
3674 case BINOP_CONCAT:
3675 case BINOP_BITWISE_AND:
3676 case BINOP_BITWISE_IOR:
3677 case BINOP_BITWISE_XOR:
3678 case BINOP_EQUAL:
3679 case BINOP_NOTEQUAL:
3680 case BINOP_LESS:
3681 case BINOP_GTR:
3682 case BINOP_LEQ:
3683 case BINOP_GEQ:
3684 case BINOP_EXP:
3685 case UNOP_NEG:
3686 case UNOP_PLUS:
3687 case UNOP_LOGICAL_NOT:
3688 case UNOP_ABS:
3689 if (possible_user_operator_p (op, argvec))
3690 {
3691 std::vector<struct block_symbol> candidates;
3692 int n_candidates;
3693
3694 n_candidates =
3695 ada_lookup_symbol_list (ada_decoded_op_name (op),
3696 NULL, VAR_DOMAIN,
3697 &candidates);
3698
3699 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3700 nargs, ada_decoded_op_name (op), NULL,
3701 parse_completion);
3702 if (i < 0)
3703 break;
3704
3705 replace_operator_with_call (expp, pc, nargs, 1,
3706 candidates[i].symbol,
3707 candidates[i].block);
3708 exp = expp->get ();
3709 }
3710 break;
3711
3712 case OP_TYPE:
3713 case OP_REGISTER:
3714 return NULL;
3715 }
3716
3717 *pos = pc;
3718 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3719 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3720 exp->elts[pc + 1].objfile,
3721 exp->elts[pc + 2].msymbol);
3722 else
3723 return evaluate_subexp_type (exp, pos);
3724 }
3725
3726 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3727 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3728 a non-pointer. */
3729 /* The term "match" here is rather loose. The match is heuristic and
3730 liberal. */
3731
3732 static int
3733 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3734 {
3735 ftype = ada_check_typedef (ftype);
3736 atype = ada_check_typedef (atype);
3737
3738 if (ftype->code () == TYPE_CODE_REF)
3739 ftype = TYPE_TARGET_TYPE (ftype);
3740 if (atype->code () == TYPE_CODE_REF)
3741 atype = TYPE_TARGET_TYPE (atype);
3742
3743 switch (ftype->code ())
3744 {
3745 default:
3746 return ftype->code () == atype->code ();
3747 case TYPE_CODE_PTR:
3748 if (atype->code () == TYPE_CODE_PTR)
3749 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3750 TYPE_TARGET_TYPE (atype), 0);
3751 else
3752 return (may_deref
3753 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3754 case TYPE_CODE_INT:
3755 case TYPE_CODE_ENUM:
3756 case TYPE_CODE_RANGE:
3757 switch (atype->code ())
3758 {
3759 case TYPE_CODE_INT:
3760 case TYPE_CODE_ENUM:
3761 case TYPE_CODE_RANGE:
3762 return 1;
3763 default:
3764 return 0;
3765 }
3766
3767 case TYPE_CODE_ARRAY:
3768 return (atype->code () == TYPE_CODE_ARRAY
3769 || ada_is_array_descriptor_type (atype));
3770
3771 case TYPE_CODE_STRUCT:
3772 if (ada_is_array_descriptor_type (ftype))
3773 return (atype->code () == TYPE_CODE_ARRAY
3774 || ada_is_array_descriptor_type (atype));
3775 else
3776 return (atype->code () == TYPE_CODE_STRUCT
3777 && !ada_is_array_descriptor_type (atype));
3778
3779 case TYPE_CODE_UNION:
3780 case TYPE_CODE_FLT:
3781 return (atype->code () == ftype->code ());
3782 }
3783 }
3784
3785 /* Return non-zero if the formals of FUNC "sufficiently match" the
3786 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3787 may also be an enumeral, in which case it is treated as a 0-
3788 argument function. */
3789
3790 static int
3791 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3792 {
3793 int i;
3794 struct type *func_type = SYMBOL_TYPE (func);
3795
3796 if (SYMBOL_CLASS (func) == LOC_CONST
3797 && func_type->code () == TYPE_CODE_ENUM)
3798 return (n_actuals == 0);
3799 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3800 return 0;
3801
3802 if (func_type->num_fields () != n_actuals)
3803 return 0;
3804
3805 for (i = 0; i < n_actuals; i += 1)
3806 {
3807 if (actuals[i] == NULL)
3808 return 0;
3809 else
3810 {
3811 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3812 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3813
3814 if (!ada_type_match (ftype, atype, 1))
3815 return 0;
3816 }
3817 }
3818 return 1;
3819 }
3820
3821 /* False iff function type FUNC_TYPE definitely does not produce a value
3822 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3823 FUNC_TYPE is not a valid function type with a non-null return type
3824 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3825
3826 static int
3827 return_match (struct type *func_type, struct type *context_type)
3828 {
3829 struct type *return_type;
3830
3831 if (func_type == NULL)
3832 return 1;
3833
3834 if (func_type->code () == TYPE_CODE_FUNC)
3835 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3836 else
3837 return_type = get_base_type (func_type);
3838 if (return_type == NULL)
3839 return 1;
3840
3841 context_type = get_base_type (context_type);
3842
3843 if (return_type->code () == TYPE_CODE_ENUM)
3844 return context_type == NULL || return_type == context_type;
3845 else if (context_type == NULL)
3846 return return_type->code () != TYPE_CODE_VOID;
3847 else
3848 return return_type->code () == context_type->code ();
3849 }
3850
3851
3852 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3853 function (if any) that matches the types of the NARGS arguments in
3854 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3855 that returns that type, then eliminate matches that don't. If
3856 CONTEXT_TYPE is void and there is at least one match that does not
3857 return void, eliminate all matches that do.
3858
3859 Asks the user if there is more than one match remaining. Returns -1
3860 if there is no such symbol or none is selected. NAME is used
3861 solely for messages. May re-arrange and modify SYMS in
3862 the process; the index returned is for the modified vector. */
3863
3864 static int
3865 ada_resolve_function (struct block_symbol syms[],
3866 int nsyms, struct value **args, int nargs,
3867 const char *name, struct type *context_type,
3868 int parse_completion)
3869 {
3870 int fallback;
3871 int k;
3872 int m; /* Number of hits */
3873
3874 m = 0;
3875 /* In the first pass of the loop, we only accept functions matching
3876 context_type. If none are found, we add a second pass of the loop
3877 where every function is accepted. */
3878 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3879 {
3880 for (k = 0; k < nsyms; k += 1)
3881 {
3882 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3883
3884 if (ada_args_match (syms[k].symbol, args, nargs)
3885 && (fallback || return_match (type, context_type)))
3886 {
3887 syms[m] = syms[k];
3888 m += 1;
3889 }
3890 }
3891 }
3892
3893 /* If we got multiple matches, ask the user which one to use. Don't do this
3894 interactive thing during completion, though, as the purpose of the
3895 completion is providing a list of all possible matches. Prompting the
3896 user to filter it down would be completely unexpected in this case. */
3897 if (m == 0)
3898 return -1;
3899 else if (m > 1 && !parse_completion)
3900 {
3901 printf_filtered (_("Multiple matches for %s\n"), name);
3902 user_select_syms (syms, m, 1);
3903 return 0;
3904 }
3905 return 0;
3906 }
3907
3908 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3909 on the function identified by SYM and BLOCK, and taking NARGS
3910 arguments. Update *EXPP as needed to hold more space. */
3911
3912 static void
3913 replace_operator_with_call (expression_up *expp, int pc, int nargs,
3914 int oplen, struct symbol *sym,
3915 const struct block *block)
3916 {
3917 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3918 symbol, -oplen for operator being replaced). */
3919 struct expression *newexp = (struct expression *)
3920 xzalloc (sizeof (struct expression)
3921 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3922 struct expression *exp = expp->get ();
3923
3924 newexp->nelts = exp->nelts + 7 - oplen;
3925 newexp->language_defn = exp->language_defn;
3926 newexp->gdbarch = exp->gdbarch;
3927 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3928 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3929 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3930
3931 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3932 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3933
3934 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3935 newexp->elts[pc + 4].block = block;
3936 newexp->elts[pc + 5].symbol = sym;
3937
3938 expp->reset (newexp);
3939 }
3940
3941 /* Type-class predicates */
3942
3943 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3944 or FLOAT). */
3945
3946 static int
3947 numeric_type_p (struct type *type)
3948 {
3949 if (type == NULL)
3950 return 0;
3951 else
3952 {
3953 switch (type->code ())
3954 {
3955 case TYPE_CODE_INT:
3956 case TYPE_CODE_FLT:
3957 return 1;
3958 case TYPE_CODE_RANGE:
3959 return (type == TYPE_TARGET_TYPE (type)
3960 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3961 default:
3962 return 0;
3963 }
3964 }
3965 }
3966
3967 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3968
3969 static int
3970 integer_type_p (struct type *type)
3971 {
3972 if (type == NULL)
3973 return 0;
3974 else
3975 {
3976 switch (type->code ())
3977 {
3978 case TYPE_CODE_INT:
3979 return 1;
3980 case TYPE_CODE_RANGE:
3981 return (type == TYPE_TARGET_TYPE (type)
3982 || integer_type_p (TYPE_TARGET_TYPE (type)));
3983 default:
3984 return 0;
3985 }
3986 }
3987 }
3988
3989 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3990
3991 static int
3992 scalar_type_p (struct type *type)
3993 {
3994 if (type == NULL)
3995 return 0;
3996 else
3997 {
3998 switch (type->code ())
3999 {
4000 case TYPE_CODE_INT:
4001 case TYPE_CODE_RANGE:
4002 case TYPE_CODE_ENUM:
4003 case TYPE_CODE_FLT:
4004 return 1;
4005 default:
4006 return 0;
4007 }
4008 }
4009 }
4010
4011 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4012
4013 static int
4014 discrete_type_p (struct type *type)
4015 {
4016 if (type == NULL)
4017 return 0;
4018 else
4019 {
4020 switch (type->code ())
4021 {
4022 case TYPE_CODE_INT:
4023 case TYPE_CODE_RANGE:
4024 case TYPE_CODE_ENUM:
4025 case TYPE_CODE_BOOL:
4026 return 1;
4027 default:
4028 return 0;
4029 }
4030 }
4031 }
4032
4033 /* Returns non-zero if OP with operands in the vector ARGS could be
4034 a user-defined function. Errs on the side of pre-defined operators
4035 (i.e., result 0). */
4036
4037 static int
4038 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4039 {
4040 struct type *type0 =
4041 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4042 struct type *type1 =
4043 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4044
4045 if (type0 == NULL)
4046 return 0;
4047
4048 switch (op)
4049 {
4050 default:
4051 return 0;
4052
4053 case BINOP_ADD:
4054 case BINOP_SUB:
4055 case BINOP_MUL:
4056 case BINOP_DIV:
4057 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4058
4059 case BINOP_REM:
4060 case BINOP_MOD:
4061 case BINOP_BITWISE_AND:
4062 case BINOP_BITWISE_IOR:
4063 case BINOP_BITWISE_XOR:
4064 return (!(integer_type_p (type0) && integer_type_p (type1)));
4065
4066 case BINOP_EQUAL:
4067 case BINOP_NOTEQUAL:
4068 case BINOP_LESS:
4069 case BINOP_GTR:
4070 case BINOP_LEQ:
4071 case BINOP_GEQ:
4072 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4073
4074 case BINOP_CONCAT:
4075 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4076
4077 case BINOP_EXP:
4078 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4079
4080 case UNOP_NEG:
4081 case UNOP_PLUS:
4082 case UNOP_LOGICAL_NOT:
4083 case UNOP_ABS:
4084 return (!numeric_type_p (type0));
4085
4086 }
4087 }
4088 \f
4089 /* Renaming */
4090
4091 /* NOTES:
4092
4093 1. In the following, we assume that a renaming type's name may
4094 have an ___XD suffix. It would be nice if this went away at some
4095 point.
4096 2. We handle both the (old) purely type-based representation of
4097 renamings and the (new) variable-based encoding. At some point,
4098 it is devoutly to be hoped that the former goes away
4099 (FIXME: hilfinger-2007-07-09).
4100 3. Subprogram renamings are not implemented, although the XRS
4101 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4102
4103 /* If SYM encodes a renaming,
4104
4105 <renaming> renames <renamed entity>,
4106
4107 sets *LEN to the length of the renamed entity's name,
4108 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4109 the string describing the subcomponent selected from the renamed
4110 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4111 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4112 are undefined). Otherwise, returns a value indicating the category
4113 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4114 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4115 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4116 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4117 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4118 may be NULL, in which case they are not assigned.
4119
4120 [Currently, however, GCC does not generate subprogram renamings.] */
4121
4122 enum ada_renaming_category
4123 ada_parse_renaming (struct symbol *sym,
4124 const char **renamed_entity, int *len,
4125 const char **renaming_expr)
4126 {
4127 enum ada_renaming_category kind;
4128 const char *info;
4129 const char *suffix;
4130
4131 if (sym == NULL)
4132 return ADA_NOT_RENAMING;
4133 switch (SYMBOL_CLASS (sym))
4134 {
4135 default:
4136 return ADA_NOT_RENAMING;
4137 case LOC_LOCAL:
4138 case LOC_STATIC:
4139 case LOC_COMPUTED:
4140 case LOC_OPTIMIZED_OUT:
4141 info = strstr (sym->linkage_name (), "___XR");
4142 if (info == NULL)
4143 return ADA_NOT_RENAMING;
4144 switch (info[5])
4145 {
4146 case '_':
4147 kind = ADA_OBJECT_RENAMING;
4148 info += 6;
4149 break;
4150 case 'E':
4151 kind = ADA_EXCEPTION_RENAMING;
4152 info += 7;
4153 break;
4154 case 'P':
4155 kind = ADA_PACKAGE_RENAMING;
4156 info += 7;
4157 break;
4158 case 'S':
4159 kind = ADA_SUBPROGRAM_RENAMING;
4160 info += 7;
4161 break;
4162 default:
4163 return ADA_NOT_RENAMING;
4164 }
4165 }
4166
4167 if (renamed_entity != NULL)
4168 *renamed_entity = info;
4169 suffix = strstr (info, "___XE");
4170 if (suffix == NULL || suffix == info)
4171 return ADA_NOT_RENAMING;
4172 if (len != NULL)
4173 *len = strlen (info) - strlen (suffix);
4174 suffix += 5;
4175 if (renaming_expr != NULL)
4176 *renaming_expr = suffix;
4177 return kind;
4178 }
4179
4180 /* Compute the value of the given RENAMING_SYM, which is expected to
4181 be a symbol encoding a renaming expression. BLOCK is the block
4182 used to evaluate the renaming. */
4183
4184 static struct value *
4185 ada_read_renaming_var_value (struct symbol *renaming_sym,
4186 const struct block *block)
4187 {
4188 const char *sym_name;
4189
4190 sym_name = renaming_sym->linkage_name ();
4191 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4192 return evaluate_expression (expr.get ());
4193 }
4194 \f
4195
4196 /* Evaluation: Function Calls */
4197
4198 /* Return an lvalue containing the value VAL. This is the identity on
4199 lvalues, and otherwise has the side-effect of allocating memory
4200 in the inferior where a copy of the value contents is copied. */
4201
4202 static struct value *
4203 ensure_lval (struct value *val)
4204 {
4205 if (VALUE_LVAL (val) == not_lval
4206 || VALUE_LVAL (val) == lval_internalvar)
4207 {
4208 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4209 const CORE_ADDR addr =
4210 value_as_long (value_allocate_space_in_inferior (len));
4211
4212 VALUE_LVAL (val) = lval_memory;
4213 set_value_address (val, addr);
4214 write_memory (addr, value_contents (val), len);
4215 }
4216
4217 return val;
4218 }
4219
4220 /* Given ARG, a value of type (pointer or reference to a)*
4221 structure/union, extract the component named NAME from the ultimate
4222 target structure/union and return it as a value with its
4223 appropriate type.
4224
4225 The routine searches for NAME among all members of the structure itself
4226 and (recursively) among all members of any wrapper members
4227 (e.g., '_parent').
4228
4229 If NO_ERR, then simply return NULL in case of error, rather than
4230 calling error. */
4231
4232 static struct value *
4233 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4234 {
4235 struct type *t, *t1;
4236 struct value *v;
4237 int check_tag;
4238
4239 v = NULL;
4240 t1 = t = ada_check_typedef (value_type (arg));
4241 if (t->code () == TYPE_CODE_REF)
4242 {
4243 t1 = TYPE_TARGET_TYPE (t);
4244 if (t1 == NULL)
4245 goto BadValue;
4246 t1 = ada_check_typedef (t1);
4247 if (t1->code () == TYPE_CODE_PTR)
4248 {
4249 arg = coerce_ref (arg);
4250 t = t1;
4251 }
4252 }
4253
4254 while (t->code () == TYPE_CODE_PTR)
4255 {
4256 t1 = TYPE_TARGET_TYPE (t);
4257 if (t1 == NULL)
4258 goto BadValue;
4259 t1 = ada_check_typedef (t1);
4260 if (t1->code () == TYPE_CODE_PTR)
4261 {
4262 arg = value_ind (arg);
4263 t = t1;
4264 }
4265 else
4266 break;
4267 }
4268
4269 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4270 goto BadValue;
4271
4272 if (t1 == t)
4273 v = ada_search_struct_field (name, arg, 0, t);
4274 else
4275 {
4276 int bit_offset, bit_size, byte_offset;
4277 struct type *field_type;
4278 CORE_ADDR address;
4279
4280 if (t->code () == TYPE_CODE_PTR)
4281 address = value_address (ada_value_ind (arg));
4282 else
4283 address = value_address (ada_coerce_ref (arg));
4284
4285 /* Check to see if this is a tagged type. We also need to handle
4286 the case where the type is a reference to a tagged type, but
4287 we have to be careful to exclude pointers to tagged types.
4288 The latter should be shown as usual (as a pointer), whereas
4289 a reference should mostly be transparent to the user. */
4290
4291 if (ada_is_tagged_type (t1, 0)
4292 || (t1->code () == TYPE_CODE_REF
4293 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4294 {
4295 /* We first try to find the searched field in the current type.
4296 If not found then let's look in the fixed type. */
4297
4298 if (!find_struct_field (name, t1, 0,
4299 &field_type, &byte_offset, &bit_offset,
4300 &bit_size, NULL))
4301 check_tag = 1;
4302 else
4303 check_tag = 0;
4304 }
4305 else
4306 check_tag = 0;
4307
4308 /* Convert to fixed type in all cases, so that we have proper
4309 offsets to each field in unconstrained record types. */
4310 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4311 address, NULL, check_tag);
4312
4313 if (find_struct_field (name, t1, 0,
4314 &field_type, &byte_offset, &bit_offset,
4315 &bit_size, NULL))
4316 {
4317 if (bit_size != 0)
4318 {
4319 if (t->code () == TYPE_CODE_REF)
4320 arg = ada_coerce_ref (arg);
4321 else
4322 arg = ada_value_ind (arg);
4323 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4324 bit_offset, bit_size,
4325 field_type);
4326 }
4327 else
4328 v = value_at_lazy (field_type, address + byte_offset);
4329 }
4330 }
4331
4332 if (v != NULL || no_err)
4333 return v;
4334 else
4335 error (_("There is no member named %s."), name);
4336
4337 BadValue:
4338 if (no_err)
4339 return NULL;
4340 else
4341 error (_("Attempt to extract a component of "
4342 "a value that is not a record."));
4343 }
4344
4345 /* Return the value ACTUAL, converted to be an appropriate value for a
4346 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4347 allocating any necessary descriptors (fat pointers), or copies of
4348 values not residing in memory, updating it as needed. */
4349
4350 struct value *
4351 ada_convert_actual (struct value *actual, struct type *formal_type0)
4352 {
4353 struct type *actual_type = ada_check_typedef (value_type (actual));
4354 struct type *formal_type = ada_check_typedef (formal_type0);
4355 struct type *formal_target =
4356 formal_type->code () == TYPE_CODE_PTR
4357 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4358 struct type *actual_target =
4359 actual_type->code () == TYPE_CODE_PTR
4360 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4361
4362 if (ada_is_array_descriptor_type (formal_target)
4363 && actual_target->code () == TYPE_CODE_ARRAY)
4364 return make_array_descriptor (formal_type, actual);
4365 else if (formal_type->code () == TYPE_CODE_PTR
4366 || formal_type->code () == TYPE_CODE_REF)
4367 {
4368 struct value *result;
4369
4370 if (formal_target->code () == TYPE_CODE_ARRAY
4371 && ada_is_array_descriptor_type (actual_target))
4372 result = desc_data (actual);
4373 else if (formal_type->code () != TYPE_CODE_PTR)
4374 {
4375 if (VALUE_LVAL (actual) != lval_memory)
4376 {
4377 struct value *val;
4378
4379 actual_type = ada_check_typedef (value_type (actual));
4380 val = allocate_value (actual_type);
4381 memcpy ((char *) value_contents_raw (val),
4382 (char *) value_contents (actual),
4383 TYPE_LENGTH (actual_type));
4384 actual = ensure_lval (val);
4385 }
4386 result = value_addr (actual);
4387 }
4388 else
4389 return actual;
4390 return value_cast_pointers (formal_type, result, 0);
4391 }
4392 else if (actual_type->code () == TYPE_CODE_PTR)
4393 return ada_value_ind (actual);
4394 else if (ada_is_aligner_type (formal_type))
4395 {
4396 /* We need to turn this parameter into an aligner type
4397 as well. */
4398 struct value *aligner = allocate_value (formal_type);
4399 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4400
4401 value_assign_to_component (aligner, component, actual);
4402 return aligner;
4403 }
4404
4405 return actual;
4406 }
4407
4408 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4409 type TYPE. This is usually an inefficient no-op except on some targets
4410 (such as AVR) where the representation of a pointer and an address
4411 differs. */
4412
4413 static CORE_ADDR
4414 value_pointer (struct value *value, struct type *type)
4415 {
4416 struct gdbarch *gdbarch = get_type_arch (type);
4417 unsigned len = TYPE_LENGTH (type);
4418 gdb_byte *buf = (gdb_byte *) alloca (len);
4419 CORE_ADDR addr;
4420
4421 addr = value_address (value);
4422 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4423 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4424 return addr;
4425 }
4426
4427
4428 /* Push a descriptor of type TYPE for array value ARR on the stack at
4429 *SP, updating *SP to reflect the new descriptor. Return either
4430 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4431 to-descriptor type rather than a descriptor type), a struct value *
4432 representing a pointer to this descriptor. */
4433
4434 static struct value *
4435 make_array_descriptor (struct type *type, struct value *arr)
4436 {
4437 struct type *bounds_type = desc_bounds_type (type);
4438 struct type *desc_type = desc_base_type (type);
4439 struct value *descriptor = allocate_value (desc_type);
4440 struct value *bounds = allocate_value (bounds_type);
4441 int i;
4442
4443 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4444 i > 0; i -= 1)
4445 {
4446 modify_field (value_type (bounds), value_contents_writeable (bounds),
4447 ada_array_bound (arr, i, 0),
4448 desc_bound_bitpos (bounds_type, i, 0),
4449 desc_bound_bitsize (bounds_type, i, 0));
4450 modify_field (value_type (bounds), value_contents_writeable (bounds),
4451 ada_array_bound (arr, i, 1),
4452 desc_bound_bitpos (bounds_type, i, 1),
4453 desc_bound_bitsize (bounds_type, i, 1));
4454 }
4455
4456 bounds = ensure_lval (bounds);
4457
4458 modify_field (value_type (descriptor),
4459 value_contents_writeable (descriptor),
4460 value_pointer (ensure_lval (arr),
4461 desc_type->field (0).type ()),
4462 fat_pntr_data_bitpos (desc_type),
4463 fat_pntr_data_bitsize (desc_type));
4464
4465 modify_field (value_type (descriptor),
4466 value_contents_writeable (descriptor),
4467 value_pointer (bounds,
4468 desc_type->field (1).type ()),
4469 fat_pntr_bounds_bitpos (desc_type),
4470 fat_pntr_bounds_bitsize (desc_type));
4471
4472 descriptor = ensure_lval (descriptor);
4473
4474 if (type->code () == TYPE_CODE_PTR)
4475 return value_addr (descriptor);
4476 else
4477 return descriptor;
4478 }
4479 \f
4480 /* Symbol Cache Module */
4481
4482 /* Performance measurements made as of 2010-01-15 indicate that
4483 this cache does bring some noticeable improvements. Depending
4484 on the type of entity being printed, the cache can make it as much
4485 as an order of magnitude faster than without it.
4486
4487 The descriptive type DWARF extension has significantly reduced
4488 the need for this cache, at least when DWARF is being used. However,
4489 even in this case, some expensive name-based symbol searches are still
4490 sometimes necessary - to find an XVZ variable, mostly. */
4491
4492 /* Initialize the contents of SYM_CACHE. */
4493
4494 static void
4495 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4496 {
4497 obstack_init (&sym_cache->cache_space);
4498 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4499 }
4500
4501 /* Free the memory used by SYM_CACHE. */
4502
4503 static void
4504 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4505 {
4506 obstack_free (&sym_cache->cache_space, NULL);
4507 xfree (sym_cache);
4508 }
4509
4510 /* Return the symbol cache associated to the given program space PSPACE.
4511 If not allocated for this PSPACE yet, allocate and initialize one. */
4512
4513 static struct ada_symbol_cache *
4514 ada_get_symbol_cache (struct program_space *pspace)
4515 {
4516 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4517
4518 if (pspace_data->sym_cache == NULL)
4519 {
4520 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4521 ada_init_symbol_cache (pspace_data->sym_cache);
4522 }
4523
4524 return pspace_data->sym_cache;
4525 }
4526
4527 /* Clear all entries from the symbol cache. */
4528
4529 static void
4530 ada_clear_symbol_cache (void)
4531 {
4532 struct ada_symbol_cache *sym_cache
4533 = ada_get_symbol_cache (current_program_space);
4534
4535 obstack_free (&sym_cache->cache_space, NULL);
4536 ada_init_symbol_cache (sym_cache);
4537 }
4538
4539 /* Search our cache for an entry matching NAME and DOMAIN.
4540 Return it if found, or NULL otherwise. */
4541
4542 static struct cache_entry **
4543 find_entry (const char *name, domain_enum domain)
4544 {
4545 struct ada_symbol_cache *sym_cache
4546 = ada_get_symbol_cache (current_program_space);
4547 int h = msymbol_hash (name) % HASH_SIZE;
4548 struct cache_entry **e;
4549
4550 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4551 {
4552 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4553 return e;
4554 }
4555 return NULL;
4556 }
4557
4558 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4559 Return 1 if found, 0 otherwise.
4560
4561 If an entry was found and SYM is not NULL, set *SYM to the entry's
4562 SYM. Same principle for BLOCK if not NULL. */
4563
4564 static int
4565 lookup_cached_symbol (const char *name, domain_enum domain,
4566 struct symbol **sym, const struct block **block)
4567 {
4568 struct cache_entry **e = find_entry (name, domain);
4569
4570 if (e == NULL)
4571 return 0;
4572 if (sym != NULL)
4573 *sym = (*e)->sym;
4574 if (block != NULL)
4575 *block = (*e)->block;
4576 return 1;
4577 }
4578
4579 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4580 in domain DOMAIN, save this result in our symbol cache. */
4581
4582 static void
4583 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4584 const struct block *block)
4585 {
4586 struct ada_symbol_cache *sym_cache
4587 = ada_get_symbol_cache (current_program_space);
4588 int h;
4589 struct cache_entry *e;
4590
4591 /* Symbols for builtin types don't have a block.
4592 For now don't cache such symbols. */
4593 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4594 return;
4595
4596 /* If the symbol is a local symbol, then do not cache it, as a search
4597 for that symbol depends on the context. To determine whether
4598 the symbol is local or not, we check the block where we found it
4599 against the global and static blocks of its associated symtab. */
4600 if (sym
4601 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4602 GLOBAL_BLOCK) != block
4603 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4604 STATIC_BLOCK) != block)
4605 return;
4606
4607 h = msymbol_hash (name) % HASH_SIZE;
4608 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4609 e->next = sym_cache->root[h];
4610 sym_cache->root[h] = e;
4611 e->name = obstack_strdup (&sym_cache->cache_space, name);
4612 e->sym = sym;
4613 e->domain = domain;
4614 e->block = block;
4615 }
4616 \f
4617 /* Symbol Lookup */
4618
4619 /* Return the symbol name match type that should be used used when
4620 searching for all symbols matching LOOKUP_NAME.
4621
4622 LOOKUP_NAME is expected to be a symbol name after transformation
4623 for Ada lookups. */
4624
4625 static symbol_name_match_type
4626 name_match_type_from_name (const char *lookup_name)
4627 {
4628 return (strstr (lookup_name, "__") == NULL
4629 ? symbol_name_match_type::WILD
4630 : symbol_name_match_type::FULL);
4631 }
4632
4633 /* Return the result of a standard (literal, C-like) lookup of NAME in
4634 given DOMAIN, visible from lexical block BLOCK. */
4635
4636 static struct symbol *
4637 standard_lookup (const char *name, const struct block *block,
4638 domain_enum domain)
4639 {
4640 /* Initialize it just to avoid a GCC false warning. */
4641 struct block_symbol sym = {};
4642
4643 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4644 return sym.symbol;
4645 ada_lookup_encoded_symbol (name, block, domain, &sym);
4646 cache_symbol (name, domain, sym.symbol, sym.block);
4647 return sym.symbol;
4648 }
4649
4650
4651 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4652 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4653 since they contend in overloading in the same way. */
4654 static int
4655 is_nonfunction (struct block_symbol syms[], int n)
4656 {
4657 int i;
4658
4659 for (i = 0; i < n; i += 1)
4660 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4661 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4662 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4663 return 1;
4664
4665 return 0;
4666 }
4667
4668 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4669 struct types. Otherwise, they may not. */
4670
4671 static int
4672 equiv_types (struct type *type0, struct type *type1)
4673 {
4674 if (type0 == type1)
4675 return 1;
4676 if (type0 == NULL || type1 == NULL
4677 || type0->code () != type1->code ())
4678 return 0;
4679 if ((type0->code () == TYPE_CODE_STRUCT
4680 || type0->code () == TYPE_CODE_ENUM)
4681 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4682 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4683 return 1;
4684
4685 return 0;
4686 }
4687
4688 /* True iff SYM0 represents the same entity as SYM1, or one that is
4689 no more defined than that of SYM1. */
4690
4691 static int
4692 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4693 {
4694 if (sym0 == sym1)
4695 return 1;
4696 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4697 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4698 return 0;
4699
4700 switch (SYMBOL_CLASS (sym0))
4701 {
4702 case LOC_UNDEF:
4703 return 1;
4704 case LOC_TYPEDEF:
4705 {
4706 struct type *type0 = SYMBOL_TYPE (sym0);
4707 struct type *type1 = SYMBOL_TYPE (sym1);
4708 const char *name0 = sym0->linkage_name ();
4709 const char *name1 = sym1->linkage_name ();
4710 int len0 = strlen (name0);
4711
4712 return
4713 type0->code () == type1->code ()
4714 && (equiv_types (type0, type1)
4715 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4716 && startswith (name1 + len0, "___XV")));
4717 }
4718 case LOC_CONST:
4719 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4720 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4721
4722 case LOC_STATIC:
4723 {
4724 const char *name0 = sym0->linkage_name ();
4725 const char *name1 = sym1->linkage_name ();
4726 return (strcmp (name0, name1) == 0
4727 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4728 }
4729
4730 default:
4731 return 0;
4732 }
4733 }
4734
4735 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4736 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4737
4738 static void
4739 add_defn_to_vec (struct obstack *obstackp,
4740 struct symbol *sym,
4741 const struct block *block)
4742 {
4743 int i;
4744 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4745
4746 /* Do not try to complete stub types, as the debugger is probably
4747 already scanning all symbols matching a certain name at the
4748 time when this function is called. Trying to replace the stub
4749 type by its associated full type will cause us to restart a scan
4750 which may lead to an infinite recursion. Instead, the client
4751 collecting the matching symbols will end up collecting several
4752 matches, with at least one of them complete. It can then filter
4753 out the stub ones if needed. */
4754
4755 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4756 {
4757 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4758 return;
4759 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4760 {
4761 prevDefns[i].symbol = sym;
4762 prevDefns[i].block = block;
4763 return;
4764 }
4765 }
4766
4767 {
4768 struct block_symbol info;
4769
4770 info.symbol = sym;
4771 info.block = block;
4772 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4773 }
4774 }
4775
4776 /* Number of block_symbol structures currently collected in current vector in
4777 OBSTACKP. */
4778
4779 static int
4780 num_defns_collected (struct obstack *obstackp)
4781 {
4782 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4783 }
4784
4785 /* Vector of block_symbol structures currently collected in current vector in
4786 OBSTACKP. If FINISH, close off the vector and return its final address. */
4787
4788 static struct block_symbol *
4789 defns_collected (struct obstack *obstackp, int finish)
4790 {
4791 if (finish)
4792 return (struct block_symbol *) obstack_finish (obstackp);
4793 else
4794 return (struct block_symbol *) obstack_base (obstackp);
4795 }
4796
4797 /* Return a bound minimal symbol matching NAME according to Ada
4798 decoding rules. Returns an invalid symbol if there is no such
4799 minimal symbol. Names prefixed with "standard__" are handled
4800 specially: "standard__" is first stripped off, and only static and
4801 global symbols are searched. */
4802
4803 struct bound_minimal_symbol
4804 ada_lookup_simple_minsym (const char *name)
4805 {
4806 struct bound_minimal_symbol result;
4807
4808 memset (&result, 0, sizeof (result));
4809
4810 symbol_name_match_type match_type = name_match_type_from_name (name);
4811 lookup_name_info lookup_name (name, match_type);
4812
4813 symbol_name_matcher_ftype *match_name
4814 = ada_get_symbol_name_matcher (lookup_name);
4815
4816 for (objfile *objfile : current_program_space->objfiles ())
4817 {
4818 for (minimal_symbol *msymbol : objfile->msymbols ())
4819 {
4820 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4821 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4822 {
4823 result.minsym = msymbol;
4824 result.objfile = objfile;
4825 break;
4826 }
4827 }
4828 }
4829
4830 return result;
4831 }
4832
4833 /* For all subprograms that statically enclose the subprogram of the
4834 selected frame, add symbols matching identifier NAME in DOMAIN
4835 and their blocks to the list of data in OBSTACKP, as for
4836 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4837 with a wildcard prefix. */
4838
4839 static void
4840 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4841 const lookup_name_info &lookup_name,
4842 domain_enum domain)
4843 {
4844 }
4845
4846 /* True if TYPE is definitely an artificial type supplied to a symbol
4847 for which no debugging information was given in the symbol file. */
4848
4849 static int
4850 is_nondebugging_type (struct type *type)
4851 {
4852 const char *name = ada_type_name (type);
4853
4854 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4855 }
4856
4857 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4858 that are deemed "identical" for practical purposes.
4859
4860 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4861 types and that their number of enumerals is identical (in other
4862 words, type1->num_fields () == type2->num_fields ()). */
4863
4864 static int
4865 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4866 {
4867 int i;
4868
4869 /* The heuristic we use here is fairly conservative. We consider
4870 that 2 enumerate types are identical if they have the same
4871 number of enumerals and that all enumerals have the same
4872 underlying value and name. */
4873
4874 /* All enums in the type should have an identical underlying value. */
4875 for (i = 0; i < type1->num_fields (); i++)
4876 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4877 return 0;
4878
4879 /* All enumerals should also have the same name (modulo any numerical
4880 suffix). */
4881 for (i = 0; i < type1->num_fields (); i++)
4882 {
4883 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4884 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4885 int len_1 = strlen (name_1);
4886 int len_2 = strlen (name_2);
4887
4888 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4889 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4890 if (len_1 != len_2
4891 || strncmp (TYPE_FIELD_NAME (type1, i),
4892 TYPE_FIELD_NAME (type2, i),
4893 len_1) != 0)
4894 return 0;
4895 }
4896
4897 return 1;
4898 }
4899
4900 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4901 that are deemed "identical" for practical purposes. Sometimes,
4902 enumerals are not strictly identical, but their types are so similar
4903 that they can be considered identical.
4904
4905 For instance, consider the following code:
4906
4907 type Color is (Black, Red, Green, Blue, White);
4908 type RGB_Color is new Color range Red .. Blue;
4909
4910 Type RGB_Color is a subrange of an implicit type which is a copy
4911 of type Color. If we call that implicit type RGB_ColorB ("B" is
4912 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4913 As a result, when an expression references any of the enumeral
4914 by name (Eg. "print green"), the expression is technically
4915 ambiguous and the user should be asked to disambiguate. But
4916 doing so would only hinder the user, since it wouldn't matter
4917 what choice he makes, the outcome would always be the same.
4918 So, for practical purposes, we consider them as the same. */
4919
4920 static int
4921 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4922 {
4923 int i;
4924
4925 /* Before performing a thorough comparison check of each type,
4926 we perform a series of inexpensive checks. We expect that these
4927 checks will quickly fail in the vast majority of cases, and thus
4928 help prevent the unnecessary use of a more expensive comparison.
4929 Said comparison also expects us to make some of these checks
4930 (see ada_identical_enum_types_p). */
4931
4932 /* Quick check: All symbols should have an enum type. */
4933 for (i = 0; i < syms.size (); i++)
4934 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4935 return 0;
4936
4937 /* Quick check: They should all have the same value. */
4938 for (i = 1; i < syms.size (); i++)
4939 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4940 return 0;
4941
4942 /* Quick check: They should all have the same number of enumerals. */
4943 for (i = 1; i < syms.size (); i++)
4944 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4945 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4946 return 0;
4947
4948 /* All the sanity checks passed, so we might have a set of
4949 identical enumeration types. Perform a more complete
4950 comparison of the type of each symbol. */
4951 for (i = 1; i < syms.size (); i++)
4952 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4953 SYMBOL_TYPE (syms[0].symbol)))
4954 return 0;
4955
4956 return 1;
4957 }
4958
4959 /* Remove any non-debugging symbols in SYMS that definitely
4960 duplicate other symbols in the list (The only case I know of where
4961 this happens is when object files containing stabs-in-ecoff are
4962 linked with files containing ordinary ecoff debugging symbols (or no
4963 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4964 Returns the number of items in the modified list. */
4965
4966 static int
4967 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4968 {
4969 int i, j;
4970
4971 /* We should never be called with less than 2 symbols, as there
4972 cannot be any extra symbol in that case. But it's easy to
4973 handle, since we have nothing to do in that case. */
4974 if (syms->size () < 2)
4975 return syms->size ();
4976
4977 i = 0;
4978 while (i < syms->size ())
4979 {
4980 int remove_p = 0;
4981
4982 /* If two symbols have the same name and one of them is a stub type,
4983 the get rid of the stub. */
4984
4985 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
4986 && (*syms)[i].symbol->linkage_name () != NULL)
4987 {
4988 for (j = 0; j < syms->size (); j++)
4989 {
4990 if (j != i
4991 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
4992 && (*syms)[j].symbol->linkage_name () != NULL
4993 && strcmp ((*syms)[i].symbol->linkage_name (),
4994 (*syms)[j].symbol->linkage_name ()) == 0)
4995 remove_p = 1;
4996 }
4997 }
4998
4999 /* Two symbols with the same name, same class and same address
5000 should be identical. */
5001
5002 else if ((*syms)[i].symbol->linkage_name () != NULL
5003 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5004 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5005 {
5006 for (j = 0; j < syms->size (); j += 1)
5007 {
5008 if (i != j
5009 && (*syms)[j].symbol->linkage_name () != NULL
5010 && strcmp ((*syms)[i].symbol->linkage_name (),
5011 (*syms)[j].symbol->linkage_name ()) == 0
5012 && SYMBOL_CLASS ((*syms)[i].symbol)
5013 == SYMBOL_CLASS ((*syms)[j].symbol)
5014 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5015 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5016 remove_p = 1;
5017 }
5018 }
5019
5020 if (remove_p)
5021 syms->erase (syms->begin () + i);
5022
5023 i += 1;
5024 }
5025
5026 /* If all the remaining symbols are identical enumerals, then
5027 just keep the first one and discard the rest.
5028
5029 Unlike what we did previously, we do not discard any entry
5030 unless they are ALL identical. This is because the symbol
5031 comparison is not a strict comparison, but rather a practical
5032 comparison. If all symbols are considered identical, then
5033 we can just go ahead and use the first one and discard the rest.
5034 But if we cannot reduce the list to a single element, we have
5035 to ask the user to disambiguate anyways. And if we have to
5036 present a multiple-choice menu, it's less confusing if the list
5037 isn't missing some choices that were identical and yet distinct. */
5038 if (symbols_are_identical_enums (*syms))
5039 syms->resize (1);
5040
5041 return syms->size ();
5042 }
5043
5044 /* Given a type that corresponds to a renaming entity, use the type name
5045 to extract the scope (package name or function name, fully qualified,
5046 and following the GNAT encoding convention) where this renaming has been
5047 defined. */
5048
5049 static std::string
5050 xget_renaming_scope (struct type *renaming_type)
5051 {
5052 /* The renaming types adhere to the following convention:
5053 <scope>__<rename>___<XR extension>.
5054 So, to extract the scope, we search for the "___XR" extension,
5055 and then backtrack until we find the first "__". */
5056
5057 const char *name = renaming_type->name ();
5058 const char *suffix = strstr (name, "___XR");
5059 const char *last;
5060
5061 /* Now, backtrack a bit until we find the first "__". Start looking
5062 at suffix - 3, as the <rename> part is at least one character long. */
5063
5064 for (last = suffix - 3; last > name; last--)
5065 if (last[0] == '_' && last[1] == '_')
5066 break;
5067
5068 /* Make a copy of scope and return it. */
5069 return std::string (name, last);
5070 }
5071
5072 /* Return nonzero if NAME corresponds to a package name. */
5073
5074 static int
5075 is_package_name (const char *name)
5076 {
5077 /* Here, We take advantage of the fact that no symbols are generated
5078 for packages, while symbols are generated for each function.
5079 So the condition for NAME represent a package becomes equivalent
5080 to NAME not existing in our list of symbols. There is only one
5081 small complication with library-level functions (see below). */
5082
5083 /* If it is a function that has not been defined at library level,
5084 then we should be able to look it up in the symbols. */
5085 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5086 return 0;
5087
5088 /* Library-level function names start with "_ada_". See if function
5089 "_ada_" followed by NAME can be found. */
5090
5091 /* Do a quick check that NAME does not contain "__", since library-level
5092 functions names cannot contain "__" in them. */
5093 if (strstr (name, "__") != NULL)
5094 return 0;
5095
5096 std::string fun_name = string_printf ("_ada_%s", name);
5097
5098 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5099 }
5100
5101 /* Return nonzero if SYM corresponds to a renaming entity that is
5102 not visible from FUNCTION_NAME. */
5103
5104 static int
5105 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5106 {
5107 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5108 return 0;
5109
5110 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5111
5112 /* If the rename has been defined in a package, then it is visible. */
5113 if (is_package_name (scope.c_str ()))
5114 return 0;
5115
5116 /* Check that the rename is in the current function scope by checking
5117 that its name starts with SCOPE. */
5118
5119 /* If the function name starts with "_ada_", it means that it is
5120 a library-level function. Strip this prefix before doing the
5121 comparison, as the encoding for the renaming does not contain
5122 this prefix. */
5123 if (startswith (function_name, "_ada_"))
5124 function_name += 5;
5125
5126 return !startswith (function_name, scope.c_str ());
5127 }
5128
5129 /* Remove entries from SYMS that corresponds to a renaming entity that
5130 is not visible from the function associated with CURRENT_BLOCK or
5131 that is superfluous due to the presence of more specific renaming
5132 information. Places surviving symbols in the initial entries of
5133 SYMS and returns the number of surviving symbols.
5134
5135 Rationale:
5136 First, in cases where an object renaming is implemented as a
5137 reference variable, GNAT may produce both the actual reference
5138 variable and the renaming encoding. In this case, we discard the
5139 latter.
5140
5141 Second, GNAT emits a type following a specified encoding for each renaming
5142 entity. Unfortunately, STABS currently does not support the definition
5143 of types that are local to a given lexical block, so all renamings types
5144 are emitted at library level. As a consequence, if an application
5145 contains two renaming entities using the same name, and a user tries to
5146 print the value of one of these entities, the result of the ada symbol
5147 lookup will also contain the wrong renaming type.
5148
5149 This function partially covers for this limitation by attempting to
5150 remove from the SYMS list renaming symbols that should be visible
5151 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5152 method with the current information available. The implementation
5153 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5154
5155 - When the user tries to print a rename in a function while there
5156 is another rename entity defined in a package: Normally, the
5157 rename in the function has precedence over the rename in the
5158 package, so the latter should be removed from the list. This is
5159 currently not the case.
5160
5161 - This function will incorrectly remove valid renames if
5162 the CURRENT_BLOCK corresponds to a function which symbol name
5163 has been changed by an "Export" pragma. As a consequence,
5164 the user will be unable to print such rename entities. */
5165
5166 static int
5167 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5168 const struct block *current_block)
5169 {
5170 struct symbol *current_function;
5171 const char *current_function_name;
5172 int i;
5173 int is_new_style_renaming;
5174
5175 /* If there is both a renaming foo___XR... encoded as a variable and
5176 a simple variable foo in the same block, discard the latter.
5177 First, zero out such symbols, then compress. */
5178 is_new_style_renaming = 0;
5179 for (i = 0; i < syms->size (); i += 1)
5180 {
5181 struct symbol *sym = (*syms)[i].symbol;
5182 const struct block *block = (*syms)[i].block;
5183 const char *name;
5184 const char *suffix;
5185
5186 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5187 continue;
5188 name = sym->linkage_name ();
5189 suffix = strstr (name, "___XR");
5190
5191 if (suffix != NULL)
5192 {
5193 int name_len = suffix - name;
5194 int j;
5195
5196 is_new_style_renaming = 1;
5197 for (j = 0; j < syms->size (); j += 1)
5198 if (i != j && (*syms)[j].symbol != NULL
5199 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5200 name_len) == 0
5201 && block == (*syms)[j].block)
5202 (*syms)[j].symbol = NULL;
5203 }
5204 }
5205 if (is_new_style_renaming)
5206 {
5207 int j, k;
5208
5209 for (j = k = 0; j < syms->size (); j += 1)
5210 if ((*syms)[j].symbol != NULL)
5211 {
5212 (*syms)[k] = (*syms)[j];
5213 k += 1;
5214 }
5215 return k;
5216 }
5217
5218 /* Extract the function name associated to CURRENT_BLOCK.
5219 Abort if unable to do so. */
5220
5221 if (current_block == NULL)
5222 return syms->size ();
5223
5224 current_function = block_linkage_function (current_block);
5225 if (current_function == NULL)
5226 return syms->size ();
5227
5228 current_function_name = current_function->linkage_name ();
5229 if (current_function_name == NULL)
5230 return syms->size ();
5231
5232 /* Check each of the symbols, and remove it from the list if it is
5233 a type corresponding to a renaming that is out of the scope of
5234 the current block. */
5235
5236 i = 0;
5237 while (i < syms->size ())
5238 {
5239 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5240 == ADA_OBJECT_RENAMING
5241 && old_renaming_is_invisible ((*syms)[i].symbol,
5242 current_function_name))
5243 syms->erase (syms->begin () + i);
5244 else
5245 i += 1;
5246 }
5247
5248 return syms->size ();
5249 }
5250
5251 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5252 whose name and domain match NAME and DOMAIN respectively.
5253 If no match was found, then extend the search to "enclosing"
5254 routines (in other words, if we're inside a nested function,
5255 search the symbols defined inside the enclosing functions).
5256 If WILD_MATCH_P is nonzero, perform the naming matching in
5257 "wild" mode (see function "wild_match" for more info).
5258
5259 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5260
5261 static void
5262 ada_add_local_symbols (struct obstack *obstackp,
5263 const lookup_name_info &lookup_name,
5264 const struct block *block, domain_enum domain)
5265 {
5266 int block_depth = 0;
5267
5268 while (block != NULL)
5269 {
5270 block_depth += 1;
5271 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5272
5273 /* If we found a non-function match, assume that's the one. */
5274 if (is_nonfunction (defns_collected (obstackp, 0),
5275 num_defns_collected (obstackp)))
5276 return;
5277
5278 block = BLOCK_SUPERBLOCK (block);
5279 }
5280
5281 /* If no luck so far, try to find NAME as a local symbol in some lexically
5282 enclosing subprogram. */
5283 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5284 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5285 }
5286
5287 /* An object of this type is used as the user_data argument when
5288 calling the map_matching_symbols method. */
5289
5290 struct match_data
5291 {
5292 struct objfile *objfile;
5293 struct obstack *obstackp;
5294 struct symbol *arg_sym;
5295 int found_sym;
5296 };
5297
5298 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5299 to a list of symbols. DATA is a pointer to a struct match_data *
5300 containing the obstack that collects the symbol list, the file that SYM
5301 must come from, a flag indicating whether a non-argument symbol has
5302 been found in the current block, and the last argument symbol
5303 passed in SYM within the current block (if any). When SYM is null,
5304 marking the end of a block, the argument symbol is added if no
5305 other has been found. */
5306
5307 static bool
5308 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5309 struct match_data *data)
5310 {
5311 const struct block *block = bsym->block;
5312 struct symbol *sym = bsym->symbol;
5313
5314 if (sym == NULL)
5315 {
5316 if (!data->found_sym && data->arg_sym != NULL)
5317 add_defn_to_vec (data->obstackp,
5318 fixup_symbol_section (data->arg_sym, data->objfile),
5319 block);
5320 data->found_sym = 0;
5321 data->arg_sym = NULL;
5322 }
5323 else
5324 {
5325 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5326 return true;
5327 else if (SYMBOL_IS_ARGUMENT (sym))
5328 data->arg_sym = sym;
5329 else
5330 {
5331 data->found_sym = 1;
5332 add_defn_to_vec (data->obstackp,
5333 fixup_symbol_section (sym, data->objfile),
5334 block);
5335 }
5336 }
5337 return true;
5338 }
5339
5340 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5341 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5342 symbols to OBSTACKP. Return whether we found such symbols. */
5343
5344 static int
5345 ada_add_block_renamings (struct obstack *obstackp,
5346 const struct block *block,
5347 const lookup_name_info &lookup_name,
5348 domain_enum domain)
5349 {
5350 struct using_direct *renaming;
5351 int defns_mark = num_defns_collected (obstackp);
5352
5353 symbol_name_matcher_ftype *name_match
5354 = ada_get_symbol_name_matcher (lookup_name);
5355
5356 for (renaming = block_using (block);
5357 renaming != NULL;
5358 renaming = renaming->next)
5359 {
5360 const char *r_name;
5361
5362 /* Avoid infinite recursions: skip this renaming if we are actually
5363 already traversing it.
5364
5365 Currently, symbol lookup in Ada don't use the namespace machinery from
5366 C++/Fortran support: skip namespace imports that use them. */
5367 if (renaming->searched
5368 || (renaming->import_src != NULL
5369 && renaming->import_src[0] != '\0')
5370 || (renaming->import_dest != NULL
5371 && renaming->import_dest[0] != '\0'))
5372 continue;
5373 renaming->searched = 1;
5374
5375 /* TODO: here, we perform another name-based symbol lookup, which can
5376 pull its own multiple overloads. In theory, we should be able to do
5377 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5378 not a simple name. But in order to do this, we would need to enhance
5379 the DWARF reader to associate a symbol to this renaming, instead of a
5380 name. So, for now, we do something simpler: re-use the C++/Fortran
5381 namespace machinery. */
5382 r_name = (renaming->alias != NULL
5383 ? renaming->alias
5384 : renaming->declaration);
5385 if (name_match (r_name, lookup_name, NULL))
5386 {
5387 lookup_name_info decl_lookup_name (renaming->declaration,
5388 lookup_name.match_type ());
5389 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5390 1, NULL);
5391 }
5392 renaming->searched = 0;
5393 }
5394 return num_defns_collected (obstackp) != defns_mark;
5395 }
5396
5397 /* Implements compare_names, but only applying the comparision using
5398 the given CASING. */
5399
5400 static int
5401 compare_names_with_case (const char *string1, const char *string2,
5402 enum case_sensitivity casing)
5403 {
5404 while (*string1 != '\0' && *string2 != '\0')
5405 {
5406 char c1, c2;
5407
5408 if (isspace (*string1) || isspace (*string2))
5409 return strcmp_iw_ordered (string1, string2);
5410
5411 if (casing == case_sensitive_off)
5412 {
5413 c1 = tolower (*string1);
5414 c2 = tolower (*string2);
5415 }
5416 else
5417 {
5418 c1 = *string1;
5419 c2 = *string2;
5420 }
5421 if (c1 != c2)
5422 break;
5423
5424 string1 += 1;
5425 string2 += 1;
5426 }
5427
5428 switch (*string1)
5429 {
5430 case '(':
5431 return strcmp_iw_ordered (string1, string2);
5432 case '_':
5433 if (*string2 == '\0')
5434 {
5435 if (is_name_suffix (string1))
5436 return 0;
5437 else
5438 return 1;
5439 }
5440 /* FALLTHROUGH */
5441 default:
5442 if (*string2 == '(')
5443 return strcmp_iw_ordered (string1, string2);
5444 else
5445 {
5446 if (casing == case_sensitive_off)
5447 return tolower (*string1) - tolower (*string2);
5448 else
5449 return *string1 - *string2;
5450 }
5451 }
5452 }
5453
5454 /* Compare STRING1 to STRING2, with results as for strcmp.
5455 Compatible with strcmp_iw_ordered in that...
5456
5457 strcmp_iw_ordered (STRING1, STRING2) <= 0
5458
5459 ... implies...
5460
5461 compare_names (STRING1, STRING2) <= 0
5462
5463 (they may differ as to what symbols compare equal). */
5464
5465 static int
5466 compare_names (const char *string1, const char *string2)
5467 {
5468 int result;
5469
5470 /* Similar to what strcmp_iw_ordered does, we need to perform
5471 a case-insensitive comparison first, and only resort to
5472 a second, case-sensitive, comparison if the first one was
5473 not sufficient to differentiate the two strings. */
5474
5475 result = compare_names_with_case (string1, string2, case_sensitive_off);
5476 if (result == 0)
5477 result = compare_names_with_case (string1, string2, case_sensitive_on);
5478
5479 return result;
5480 }
5481
5482 /* Convenience function to get at the Ada encoded lookup name for
5483 LOOKUP_NAME, as a C string. */
5484
5485 static const char *
5486 ada_lookup_name (const lookup_name_info &lookup_name)
5487 {
5488 return lookup_name.ada ().lookup_name ().c_str ();
5489 }
5490
5491 /* Add to OBSTACKP all non-local symbols whose name and domain match
5492 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5493 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5494 symbols otherwise. */
5495
5496 static void
5497 add_nonlocal_symbols (struct obstack *obstackp,
5498 const lookup_name_info &lookup_name,
5499 domain_enum domain, int global)
5500 {
5501 struct match_data data;
5502
5503 memset (&data, 0, sizeof data);
5504 data.obstackp = obstackp;
5505
5506 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5507
5508 auto callback = [&] (struct block_symbol *bsym)
5509 {
5510 return aux_add_nonlocal_symbols (bsym, &data);
5511 };
5512
5513 for (objfile *objfile : current_program_space->objfiles ())
5514 {
5515 data.objfile = objfile;
5516
5517 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5518 domain, global, callback,
5519 (is_wild_match
5520 ? NULL : compare_names));
5521
5522 for (compunit_symtab *cu : objfile->compunits ())
5523 {
5524 const struct block *global_block
5525 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5526
5527 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5528 domain))
5529 data.found_sym = 1;
5530 }
5531 }
5532
5533 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5534 {
5535 const char *name = ada_lookup_name (lookup_name);
5536 std::string bracket_name = std::string ("<_ada_") + name + '>';
5537 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5538
5539 for (objfile *objfile : current_program_space->objfiles ())
5540 {
5541 data.objfile = objfile;
5542 objfile->sf->qf->map_matching_symbols (objfile, name1,
5543 domain, global, callback,
5544 compare_names);
5545 }
5546 }
5547 }
5548
5549 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5550 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5551 returning the number of matches. Add these to OBSTACKP.
5552
5553 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5554 symbol match within the nest of blocks whose innermost member is BLOCK,
5555 is the one match returned (no other matches in that or
5556 enclosing blocks is returned). If there are any matches in or
5557 surrounding BLOCK, then these alone are returned.
5558
5559 Names prefixed with "standard__" are handled specially:
5560 "standard__" is first stripped off (by the lookup_name
5561 constructor), and only static and global symbols are searched.
5562
5563 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5564 to lookup global symbols. */
5565
5566 static void
5567 ada_add_all_symbols (struct obstack *obstackp,
5568 const struct block *block,
5569 const lookup_name_info &lookup_name,
5570 domain_enum domain,
5571 int full_search,
5572 int *made_global_lookup_p)
5573 {
5574 struct symbol *sym;
5575
5576 if (made_global_lookup_p)
5577 *made_global_lookup_p = 0;
5578
5579 /* Special case: If the user specifies a symbol name inside package
5580 Standard, do a non-wild matching of the symbol name without
5581 the "standard__" prefix. This was primarily introduced in order
5582 to allow the user to specifically access the standard exceptions
5583 using, for instance, Standard.Constraint_Error when Constraint_Error
5584 is ambiguous (due to the user defining its own Constraint_Error
5585 entity inside its program). */
5586 if (lookup_name.ada ().standard_p ())
5587 block = NULL;
5588
5589 /* Check the non-global symbols. If we have ANY match, then we're done. */
5590
5591 if (block != NULL)
5592 {
5593 if (full_search)
5594 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5595 else
5596 {
5597 /* In the !full_search case we're are being called by
5598 iterate_over_symbols, and we don't want to search
5599 superblocks. */
5600 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5601 }
5602 if (num_defns_collected (obstackp) > 0 || !full_search)
5603 return;
5604 }
5605
5606 /* No non-global symbols found. Check our cache to see if we have
5607 already performed this search before. If we have, then return
5608 the same result. */
5609
5610 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5611 domain, &sym, &block))
5612 {
5613 if (sym != NULL)
5614 add_defn_to_vec (obstackp, sym, block);
5615 return;
5616 }
5617
5618 if (made_global_lookup_p)
5619 *made_global_lookup_p = 1;
5620
5621 /* Search symbols from all global blocks. */
5622
5623 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5624
5625 /* Now add symbols from all per-file blocks if we've gotten no hits
5626 (not strictly correct, but perhaps better than an error). */
5627
5628 if (num_defns_collected (obstackp) == 0)
5629 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5630 }
5631
5632 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5633 is non-zero, enclosing scope and in global scopes, returning the number of
5634 matches.
5635 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5636 found and the blocks and symbol tables (if any) in which they were
5637 found.
5638
5639 When full_search is non-zero, any non-function/non-enumeral
5640 symbol match within the nest of blocks whose innermost member is BLOCK,
5641 is the one match returned (no other matches in that or
5642 enclosing blocks is returned). If there are any matches in or
5643 surrounding BLOCK, then these alone are returned.
5644
5645 Names prefixed with "standard__" are handled specially: "standard__"
5646 is first stripped off, and only static and global symbols are searched. */
5647
5648 static int
5649 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5650 const struct block *block,
5651 domain_enum domain,
5652 std::vector<struct block_symbol> *results,
5653 int full_search)
5654 {
5655 int syms_from_global_search;
5656 int ndefns;
5657 auto_obstack obstack;
5658
5659 ada_add_all_symbols (&obstack, block, lookup_name,
5660 domain, full_search, &syms_from_global_search);
5661
5662 ndefns = num_defns_collected (&obstack);
5663
5664 struct block_symbol *base = defns_collected (&obstack, 1);
5665 for (int i = 0; i < ndefns; ++i)
5666 results->push_back (base[i]);
5667
5668 ndefns = remove_extra_symbols (results);
5669
5670 if (ndefns == 0 && full_search && syms_from_global_search)
5671 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5672
5673 if (ndefns == 1 && full_search && syms_from_global_search)
5674 cache_symbol (ada_lookup_name (lookup_name), domain,
5675 (*results)[0].symbol, (*results)[0].block);
5676
5677 ndefns = remove_irrelevant_renamings (results, block);
5678
5679 return ndefns;
5680 }
5681
5682 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5683 in global scopes, returning the number of matches, and filling *RESULTS
5684 with (SYM,BLOCK) tuples.
5685
5686 See ada_lookup_symbol_list_worker for further details. */
5687
5688 int
5689 ada_lookup_symbol_list (const char *name, const struct block *block,
5690 domain_enum domain,
5691 std::vector<struct block_symbol> *results)
5692 {
5693 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5694 lookup_name_info lookup_name (name, name_match_type);
5695
5696 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5697 }
5698
5699 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5700 to 1, but choosing the first symbol found if there are multiple
5701 choices.
5702
5703 The result is stored in *INFO, which must be non-NULL.
5704 If no match is found, INFO->SYM is set to NULL. */
5705
5706 void
5707 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5708 domain_enum domain,
5709 struct block_symbol *info)
5710 {
5711 /* Since we already have an encoded name, wrap it in '<>' to force a
5712 verbatim match. Otherwise, if the name happens to not look like
5713 an encoded name (because it doesn't include a "__"),
5714 ada_lookup_name_info would re-encode/fold it again, and that
5715 would e.g., incorrectly lowercase object renaming names like
5716 "R28b" -> "r28b". */
5717 std::string verbatim = std::string ("<") + name + '>';
5718
5719 gdb_assert (info != NULL);
5720 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5721 }
5722
5723 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5724 scope and in global scopes, or NULL if none. NAME is folded and
5725 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5726 choosing the first symbol if there are multiple choices. */
5727
5728 struct block_symbol
5729 ada_lookup_symbol (const char *name, const struct block *block0,
5730 domain_enum domain)
5731 {
5732 std::vector<struct block_symbol> candidates;
5733 int n_candidates;
5734
5735 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5736
5737 if (n_candidates == 0)
5738 return {};
5739
5740 block_symbol info = candidates[0];
5741 info.symbol = fixup_symbol_section (info.symbol, NULL);
5742 return info;
5743 }
5744
5745
5746 /* True iff STR is a possible encoded suffix of a normal Ada name
5747 that is to be ignored for matching purposes. Suffixes of parallel
5748 names (e.g., XVE) are not included here. Currently, the possible suffixes
5749 are given by any of the regular expressions:
5750
5751 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5752 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5753 TKB [subprogram suffix for task bodies]
5754 _E[0-9]+[bs]$ [protected object entry suffixes]
5755 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5756
5757 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5758 match is performed. This sequence is used to differentiate homonyms,
5759 is an optional part of a valid name suffix. */
5760
5761 static int
5762 is_name_suffix (const char *str)
5763 {
5764 int k;
5765 const char *matching;
5766 const int len = strlen (str);
5767
5768 /* Skip optional leading __[0-9]+. */
5769
5770 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5771 {
5772 str += 3;
5773 while (isdigit (str[0]))
5774 str += 1;
5775 }
5776
5777 /* [.$][0-9]+ */
5778
5779 if (str[0] == '.' || str[0] == '$')
5780 {
5781 matching = str + 1;
5782 while (isdigit (matching[0]))
5783 matching += 1;
5784 if (matching[0] == '\0')
5785 return 1;
5786 }
5787
5788 /* ___[0-9]+ */
5789
5790 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5791 {
5792 matching = str + 3;
5793 while (isdigit (matching[0]))
5794 matching += 1;
5795 if (matching[0] == '\0')
5796 return 1;
5797 }
5798
5799 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5800
5801 if (strcmp (str, "TKB") == 0)
5802 return 1;
5803
5804 #if 0
5805 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5806 with a N at the end. Unfortunately, the compiler uses the same
5807 convention for other internal types it creates. So treating
5808 all entity names that end with an "N" as a name suffix causes
5809 some regressions. For instance, consider the case of an enumerated
5810 type. To support the 'Image attribute, it creates an array whose
5811 name ends with N.
5812 Having a single character like this as a suffix carrying some
5813 information is a bit risky. Perhaps we should change the encoding
5814 to be something like "_N" instead. In the meantime, do not do
5815 the following check. */
5816 /* Protected Object Subprograms */
5817 if (len == 1 && str [0] == 'N')
5818 return 1;
5819 #endif
5820
5821 /* _E[0-9]+[bs]$ */
5822 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5823 {
5824 matching = str + 3;
5825 while (isdigit (matching[0]))
5826 matching += 1;
5827 if ((matching[0] == 'b' || matching[0] == 's')
5828 && matching [1] == '\0')
5829 return 1;
5830 }
5831
5832 /* ??? We should not modify STR directly, as we are doing below. This
5833 is fine in this case, but may become problematic later if we find
5834 that this alternative did not work, and want to try matching
5835 another one from the begining of STR. Since we modified it, we
5836 won't be able to find the begining of the string anymore! */
5837 if (str[0] == 'X')
5838 {
5839 str += 1;
5840 while (str[0] != '_' && str[0] != '\0')
5841 {
5842 if (str[0] != 'n' && str[0] != 'b')
5843 return 0;
5844 str += 1;
5845 }
5846 }
5847
5848 if (str[0] == '\000')
5849 return 1;
5850
5851 if (str[0] == '_')
5852 {
5853 if (str[1] != '_' || str[2] == '\000')
5854 return 0;
5855 if (str[2] == '_')
5856 {
5857 if (strcmp (str + 3, "JM") == 0)
5858 return 1;
5859 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5860 the LJM suffix in favor of the JM one. But we will
5861 still accept LJM as a valid suffix for a reasonable
5862 amount of time, just to allow ourselves to debug programs
5863 compiled using an older version of GNAT. */
5864 if (strcmp (str + 3, "LJM") == 0)
5865 return 1;
5866 if (str[3] != 'X')
5867 return 0;
5868 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5869 || str[4] == 'U' || str[4] == 'P')
5870 return 1;
5871 if (str[4] == 'R' && str[5] != 'T')
5872 return 1;
5873 return 0;
5874 }
5875 if (!isdigit (str[2]))
5876 return 0;
5877 for (k = 3; str[k] != '\0'; k += 1)
5878 if (!isdigit (str[k]) && str[k] != '_')
5879 return 0;
5880 return 1;
5881 }
5882 if (str[0] == '$' && isdigit (str[1]))
5883 {
5884 for (k = 2; str[k] != '\0'; k += 1)
5885 if (!isdigit (str[k]) && str[k] != '_')
5886 return 0;
5887 return 1;
5888 }
5889 return 0;
5890 }
5891
5892 /* Return non-zero if the string starting at NAME and ending before
5893 NAME_END contains no capital letters. */
5894
5895 static int
5896 is_valid_name_for_wild_match (const char *name0)
5897 {
5898 std::string decoded_name = ada_decode (name0);
5899 int i;
5900
5901 /* If the decoded name starts with an angle bracket, it means that
5902 NAME0 does not follow the GNAT encoding format. It should then
5903 not be allowed as a possible wild match. */
5904 if (decoded_name[0] == '<')
5905 return 0;
5906
5907 for (i=0; decoded_name[i] != '\0'; i++)
5908 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5909 return 0;
5910
5911 return 1;
5912 }
5913
5914 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5915 that could start a simple name. Assumes that *NAMEP points into
5916 the string beginning at NAME0. */
5917
5918 static int
5919 advance_wild_match (const char **namep, const char *name0, int target0)
5920 {
5921 const char *name = *namep;
5922
5923 while (1)
5924 {
5925 int t0, t1;
5926
5927 t0 = *name;
5928 if (t0 == '_')
5929 {
5930 t1 = name[1];
5931 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5932 {
5933 name += 1;
5934 if (name == name0 + 5 && startswith (name0, "_ada"))
5935 break;
5936 else
5937 name += 1;
5938 }
5939 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5940 || name[2] == target0))
5941 {
5942 name += 2;
5943 break;
5944 }
5945 else
5946 return 0;
5947 }
5948 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5949 name += 1;
5950 else
5951 return 0;
5952 }
5953
5954 *namep = name;
5955 return 1;
5956 }
5957
5958 /* Return true iff NAME encodes a name of the form prefix.PATN.
5959 Ignores any informational suffixes of NAME (i.e., for which
5960 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5961 simple name. */
5962
5963 static bool
5964 wild_match (const char *name, const char *patn)
5965 {
5966 const char *p;
5967 const char *name0 = name;
5968
5969 while (1)
5970 {
5971 const char *match = name;
5972
5973 if (*name == *patn)
5974 {
5975 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5976 if (*p != *name)
5977 break;
5978 if (*p == '\0' && is_name_suffix (name))
5979 return match == name0 || is_valid_name_for_wild_match (name0);
5980
5981 if (name[-1] == '_')
5982 name -= 1;
5983 }
5984 if (!advance_wild_match (&name, name0, *patn))
5985 return false;
5986 }
5987 }
5988
5989 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
5990 any trailing suffixes that encode debugging information or leading
5991 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
5992 information that is ignored). */
5993
5994 static bool
5995 full_match (const char *sym_name, const char *search_name)
5996 {
5997 size_t search_name_len = strlen (search_name);
5998
5999 if (strncmp (sym_name, search_name, search_name_len) == 0
6000 && is_name_suffix (sym_name + search_name_len))
6001 return true;
6002
6003 if (startswith (sym_name, "_ada_")
6004 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6005 && is_name_suffix (sym_name + search_name_len + 5))
6006 return true;
6007
6008 return false;
6009 }
6010
6011 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6012 *defn_symbols, updating the list of symbols in OBSTACKP (if
6013 necessary). OBJFILE is the section containing BLOCK. */
6014
6015 static void
6016 ada_add_block_symbols (struct obstack *obstackp,
6017 const struct block *block,
6018 const lookup_name_info &lookup_name,
6019 domain_enum domain, struct objfile *objfile)
6020 {
6021 struct block_iterator iter;
6022 /* A matching argument symbol, if any. */
6023 struct symbol *arg_sym;
6024 /* Set true when we find a matching non-argument symbol. */
6025 int found_sym;
6026 struct symbol *sym;
6027
6028 arg_sym = NULL;
6029 found_sym = 0;
6030 for (sym = block_iter_match_first (block, lookup_name, &iter);
6031 sym != NULL;
6032 sym = block_iter_match_next (lookup_name, &iter))
6033 {
6034 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6035 {
6036 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6037 {
6038 if (SYMBOL_IS_ARGUMENT (sym))
6039 arg_sym = sym;
6040 else
6041 {
6042 found_sym = 1;
6043 add_defn_to_vec (obstackp,
6044 fixup_symbol_section (sym, objfile),
6045 block);
6046 }
6047 }
6048 }
6049 }
6050
6051 /* Handle renamings. */
6052
6053 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6054 found_sym = 1;
6055
6056 if (!found_sym && arg_sym != NULL)
6057 {
6058 add_defn_to_vec (obstackp,
6059 fixup_symbol_section (arg_sym, objfile),
6060 block);
6061 }
6062
6063 if (!lookup_name.ada ().wild_match_p ())
6064 {
6065 arg_sym = NULL;
6066 found_sym = 0;
6067 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6068 const char *name = ada_lookup_name.c_str ();
6069 size_t name_len = ada_lookup_name.size ();
6070
6071 ALL_BLOCK_SYMBOLS (block, iter, sym)
6072 {
6073 if (symbol_matches_domain (sym->language (),
6074 SYMBOL_DOMAIN (sym), domain))
6075 {
6076 int cmp;
6077
6078 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6079 if (cmp == 0)
6080 {
6081 cmp = !startswith (sym->linkage_name (), "_ada_");
6082 if (cmp == 0)
6083 cmp = strncmp (name, sym->linkage_name () + 5,
6084 name_len);
6085 }
6086
6087 if (cmp == 0
6088 && is_name_suffix (sym->linkage_name () + name_len + 5))
6089 {
6090 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6091 {
6092 if (SYMBOL_IS_ARGUMENT (sym))
6093 arg_sym = sym;
6094 else
6095 {
6096 found_sym = 1;
6097 add_defn_to_vec (obstackp,
6098 fixup_symbol_section (sym, objfile),
6099 block);
6100 }
6101 }
6102 }
6103 }
6104 }
6105
6106 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6107 They aren't parameters, right? */
6108 if (!found_sym && arg_sym != NULL)
6109 {
6110 add_defn_to_vec (obstackp,
6111 fixup_symbol_section (arg_sym, objfile),
6112 block);
6113 }
6114 }
6115 }
6116 \f
6117
6118 /* Symbol Completion */
6119
6120 /* See symtab.h. */
6121
6122 bool
6123 ada_lookup_name_info::matches
6124 (const char *sym_name,
6125 symbol_name_match_type match_type,
6126 completion_match_result *comp_match_res) const
6127 {
6128 bool match = false;
6129 const char *text = m_encoded_name.c_str ();
6130 size_t text_len = m_encoded_name.size ();
6131
6132 /* First, test against the fully qualified name of the symbol. */
6133
6134 if (strncmp (sym_name, text, text_len) == 0)
6135 match = true;
6136
6137 std::string decoded_name = ada_decode (sym_name);
6138 if (match && !m_encoded_p)
6139 {
6140 /* One needed check before declaring a positive match is to verify
6141 that iff we are doing a verbatim match, the decoded version
6142 of the symbol name starts with '<'. Otherwise, this symbol name
6143 is not a suitable completion. */
6144
6145 bool has_angle_bracket = (decoded_name[0] == '<');
6146 match = (has_angle_bracket == m_verbatim_p);
6147 }
6148
6149 if (match && !m_verbatim_p)
6150 {
6151 /* When doing non-verbatim match, another check that needs to
6152 be done is to verify that the potentially matching symbol name
6153 does not include capital letters, because the ada-mode would
6154 not be able to understand these symbol names without the
6155 angle bracket notation. */
6156 const char *tmp;
6157
6158 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6159 if (*tmp != '\0')
6160 match = false;
6161 }
6162
6163 /* Second: Try wild matching... */
6164
6165 if (!match && m_wild_match_p)
6166 {
6167 /* Since we are doing wild matching, this means that TEXT
6168 may represent an unqualified symbol name. We therefore must
6169 also compare TEXT against the unqualified name of the symbol. */
6170 sym_name = ada_unqualified_name (decoded_name.c_str ());
6171
6172 if (strncmp (sym_name, text, text_len) == 0)
6173 match = true;
6174 }
6175
6176 /* Finally: If we found a match, prepare the result to return. */
6177
6178 if (!match)
6179 return false;
6180
6181 if (comp_match_res != NULL)
6182 {
6183 std::string &match_str = comp_match_res->match.storage ();
6184
6185 if (!m_encoded_p)
6186 match_str = ada_decode (sym_name);
6187 else
6188 {
6189 if (m_verbatim_p)
6190 match_str = add_angle_brackets (sym_name);
6191 else
6192 match_str = sym_name;
6193
6194 }
6195
6196 comp_match_res->set_match (match_str.c_str ());
6197 }
6198
6199 return true;
6200 }
6201
6202 /* Field Access */
6203
6204 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6205 for tagged types. */
6206
6207 static int
6208 ada_is_dispatch_table_ptr_type (struct type *type)
6209 {
6210 const char *name;
6211
6212 if (type->code () != TYPE_CODE_PTR)
6213 return 0;
6214
6215 name = TYPE_TARGET_TYPE (type)->name ();
6216 if (name == NULL)
6217 return 0;
6218
6219 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6220 }
6221
6222 /* Return non-zero if TYPE is an interface tag. */
6223
6224 static int
6225 ada_is_interface_tag (struct type *type)
6226 {
6227 const char *name = type->name ();
6228
6229 if (name == NULL)
6230 return 0;
6231
6232 return (strcmp (name, "ada__tags__interface_tag") == 0);
6233 }
6234
6235 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6236 to be invisible to users. */
6237
6238 int
6239 ada_is_ignored_field (struct type *type, int field_num)
6240 {
6241 if (field_num < 0 || field_num > type->num_fields ())
6242 return 1;
6243
6244 /* Check the name of that field. */
6245 {
6246 const char *name = TYPE_FIELD_NAME (type, field_num);
6247
6248 /* Anonymous field names should not be printed.
6249 brobecker/2007-02-20: I don't think this can actually happen
6250 but we don't want to print the value of anonymous fields anyway. */
6251 if (name == NULL)
6252 return 1;
6253
6254 /* Normally, fields whose name start with an underscore ("_")
6255 are fields that have been internally generated by the compiler,
6256 and thus should not be printed. The "_parent" field is special,
6257 however: This is a field internally generated by the compiler
6258 for tagged types, and it contains the components inherited from
6259 the parent type. This field should not be printed as is, but
6260 should not be ignored either. */
6261 if (name[0] == '_' && !startswith (name, "_parent"))
6262 return 1;
6263 }
6264
6265 /* If this is the dispatch table of a tagged type or an interface tag,
6266 then ignore. */
6267 if (ada_is_tagged_type (type, 1)
6268 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6269 || ada_is_interface_tag (type->field (field_num).type ())))
6270 return 1;
6271
6272 /* Not a special field, so it should not be ignored. */
6273 return 0;
6274 }
6275
6276 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6277 pointer or reference type whose ultimate target has a tag field. */
6278
6279 int
6280 ada_is_tagged_type (struct type *type, int refok)
6281 {
6282 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6283 }
6284
6285 /* True iff TYPE represents the type of X'Tag */
6286
6287 int
6288 ada_is_tag_type (struct type *type)
6289 {
6290 type = ada_check_typedef (type);
6291
6292 if (type == NULL || type->code () != TYPE_CODE_PTR)
6293 return 0;
6294 else
6295 {
6296 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6297
6298 return (name != NULL
6299 && strcmp (name, "ada__tags__dispatch_table") == 0);
6300 }
6301 }
6302
6303 /* The type of the tag on VAL. */
6304
6305 static struct type *
6306 ada_tag_type (struct value *val)
6307 {
6308 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6309 }
6310
6311 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6312 retired at Ada 05). */
6313
6314 static int
6315 is_ada95_tag (struct value *tag)
6316 {
6317 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6318 }
6319
6320 /* The value of the tag on VAL. */
6321
6322 static struct value *
6323 ada_value_tag (struct value *val)
6324 {
6325 return ada_value_struct_elt (val, "_tag", 0);
6326 }
6327
6328 /* The value of the tag on the object of type TYPE whose contents are
6329 saved at VALADDR, if it is non-null, or is at memory address
6330 ADDRESS. */
6331
6332 static struct value *
6333 value_tag_from_contents_and_address (struct type *type,
6334 const gdb_byte *valaddr,
6335 CORE_ADDR address)
6336 {
6337 int tag_byte_offset;
6338 struct type *tag_type;
6339
6340 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6341 NULL, NULL, NULL))
6342 {
6343 const gdb_byte *valaddr1 = ((valaddr == NULL)
6344 ? NULL
6345 : valaddr + tag_byte_offset);
6346 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6347
6348 return value_from_contents_and_address (tag_type, valaddr1, address1);
6349 }
6350 return NULL;
6351 }
6352
6353 static struct type *
6354 type_from_tag (struct value *tag)
6355 {
6356 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6357
6358 if (type_name != NULL)
6359 return ada_find_any_type (ada_encode (type_name.get ()));
6360 return NULL;
6361 }
6362
6363 /* Given a value OBJ of a tagged type, return a value of this
6364 type at the base address of the object. The base address, as
6365 defined in Ada.Tags, it is the address of the primary tag of
6366 the object, and therefore where the field values of its full
6367 view can be fetched. */
6368
6369 struct value *
6370 ada_tag_value_at_base_address (struct value *obj)
6371 {
6372 struct value *val;
6373 LONGEST offset_to_top = 0;
6374 struct type *ptr_type, *obj_type;
6375 struct value *tag;
6376 CORE_ADDR base_address;
6377
6378 obj_type = value_type (obj);
6379
6380 /* It is the responsability of the caller to deref pointers. */
6381
6382 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6383 return obj;
6384
6385 tag = ada_value_tag (obj);
6386 if (!tag)
6387 return obj;
6388
6389 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6390
6391 if (is_ada95_tag (tag))
6392 return obj;
6393
6394 ptr_type = language_lookup_primitive_type
6395 (language_def (language_ada), target_gdbarch(), "storage_offset");
6396 ptr_type = lookup_pointer_type (ptr_type);
6397 val = value_cast (ptr_type, tag);
6398 if (!val)
6399 return obj;
6400
6401 /* It is perfectly possible that an exception be raised while
6402 trying to determine the base address, just like for the tag;
6403 see ada_tag_name for more details. We do not print the error
6404 message for the same reason. */
6405
6406 try
6407 {
6408 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6409 }
6410
6411 catch (const gdb_exception_error &e)
6412 {
6413 return obj;
6414 }
6415
6416 /* If offset is null, nothing to do. */
6417
6418 if (offset_to_top == 0)
6419 return obj;
6420
6421 /* -1 is a special case in Ada.Tags; however, what should be done
6422 is not quite clear from the documentation. So do nothing for
6423 now. */
6424
6425 if (offset_to_top == -1)
6426 return obj;
6427
6428 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6429 from the base address. This was however incompatible with
6430 C++ dispatch table: C++ uses a *negative* value to *add*
6431 to the base address. Ada's convention has therefore been
6432 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6433 use the same convention. Here, we support both cases by
6434 checking the sign of OFFSET_TO_TOP. */
6435
6436 if (offset_to_top > 0)
6437 offset_to_top = -offset_to_top;
6438
6439 base_address = value_address (obj) + offset_to_top;
6440 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6441
6442 /* Make sure that we have a proper tag at the new address.
6443 Otherwise, offset_to_top is bogus (which can happen when
6444 the object is not initialized yet). */
6445
6446 if (!tag)
6447 return obj;
6448
6449 obj_type = type_from_tag (tag);
6450
6451 if (!obj_type)
6452 return obj;
6453
6454 return value_from_contents_and_address (obj_type, NULL, base_address);
6455 }
6456
6457 /* Return the "ada__tags__type_specific_data" type. */
6458
6459 static struct type *
6460 ada_get_tsd_type (struct inferior *inf)
6461 {
6462 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6463
6464 if (data->tsd_type == 0)
6465 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6466 return data->tsd_type;
6467 }
6468
6469 /* Return the TSD (type-specific data) associated to the given TAG.
6470 TAG is assumed to be the tag of a tagged-type entity.
6471
6472 May return NULL if we are unable to get the TSD. */
6473
6474 static struct value *
6475 ada_get_tsd_from_tag (struct value *tag)
6476 {
6477 struct value *val;
6478 struct type *type;
6479
6480 /* First option: The TSD is simply stored as a field of our TAG.
6481 Only older versions of GNAT would use this format, but we have
6482 to test it first, because there are no visible markers for
6483 the current approach except the absence of that field. */
6484
6485 val = ada_value_struct_elt (tag, "tsd", 1);
6486 if (val)
6487 return val;
6488
6489 /* Try the second representation for the dispatch table (in which
6490 there is no explicit 'tsd' field in the referent of the tag pointer,
6491 and instead the tsd pointer is stored just before the dispatch
6492 table. */
6493
6494 type = ada_get_tsd_type (current_inferior());
6495 if (type == NULL)
6496 return NULL;
6497 type = lookup_pointer_type (lookup_pointer_type (type));
6498 val = value_cast (type, tag);
6499 if (val == NULL)
6500 return NULL;
6501 return value_ind (value_ptradd (val, -1));
6502 }
6503
6504 /* Given the TSD of a tag (type-specific data), return a string
6505 containing the name of the associated type.
6506
6507 May return NULL if we are unable to determine the tag name. */
6508
6509 static gdb::unique_xmalloc_ptr<char>
6510 ada_tag_name_from_tsd (struct value *tsd)
6511 {
6512 char *p;
6513 struct value *val;
6514
6515 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6516 if (val == NULL)
6517 return NULL;
6518 gdb::unique_xmalloc_ptr<char> buffer
6519 = target_read_string (value_as_address (val), INT_MAX);
6520 if (buffer == nullptr)
6521 return nullptr;
6522
6523 for (p = buffer.get (); *p != '\0'; ++p)
6524 {
6525 if (isalpha (*p))
6526 *p = tolower (*p);
6527 }
6528
6529 return buffer;
6530 }
6531
6532 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6533 a C string.
6534
6535 Return NULL if the TAG is not an Ada tag, or if we were unable to
6536 determine the name of that tag. */
6537
6538 gdb::unique_xmalloc_ptr<char>
6539 ada_tag_name (struct value *tag)
6540 {
6541 gdb::unique_xmalloc_ptr<char> name;
6542
6543 if (!ada_is_tag_type (value_type (tag)))
6544 return NULL;
6545
6546 /* It is perfectly possible that an exception be raised while trying
6547 to determine the TAG's name, even under normal circumstances:
6548 The associated variable may be uninitialized or corrupted, for
6549 instance. We do not let any exception propagate past this point.
6550 instead we return NULL.
6551
6552 We also do not print the error message either (which often is very
6553 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6554 the caller print a more meaningful message if necessary. */
6555 try
6556 {
6557 struct value *tsd = ada_get_tsd_from_tag (tag);
6558
6559 if (tsd != NULL)
6560 name = ada_tag_name_from_tsd (tsd);
6561 }
6562 catch (const gdb_exception_error &e)
6563 {
6564 }
6565
6566 return name;
6567 }
6568
6569 /* The parent type of TYPE, or NULL if none. */
6570
6571 struct type *
6572 ada_parent_type (struct type *type)
6573 {
6574 int i;
6575
6576 type = ada_check_typedef (type);
6577
6578 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6579 return NULL;
6580
6581 for (i = 0; i < type->num_fields (); i += 1)
6582 if (ada_is_parent_field (type, i))
6583 {
6584 struct type *parent_type = type->field (i).type ();
6585
6586 /* If the _parent field is a pointer, then dereference it. */
6587 if (parent_type->code () == TYPE_CODE_PTR)
6588 parent_type = TYPE_TARGET_TYPE (parent_type);
6589 /* If there is a parallel XVS type, get the actual base type. */
6590 parent_type = ada_get_base_type (parent_type);
6591
6592 return ada_check_typedef (parent_type);
6593 }
6594
6595 return NULL;
6596 }
6597
6598 /* True iff field number FIELD_NUM of structure type TYPE contains the
6599 parent-type (inherited) fields of a derived type. Assumes TYPE is
6600 a structure type with at least FIELD_NUM+1 fields. */
6601
6602 int
6603 ada_is_parent_field (struct type *type, int field_num)
6604 {
6605 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6606
6607 return (name != NULL
6608 && (startswith (name, "PARENT")
6609 || startswith (name, "_parent")));
6610 }
6611
6612 /* True iff field number FIELD_NUM of structure type TYPE is a
6613 transparent wrapper field (which should be silently traversed when doing
6614 field selection and flattened when printing). Assumes TYPE is a
6615 structure type with at least FIELD_NUM+1 fields. Such fields are always
6616 structures. */
6617
6618 int
6619 ada_is_wrapper_field (struct type *type, int field_num)
6620 {
6621 const char *name = TYPE_FIELD_NAME (type, field_num);
6622
6623 if (name != NULL && strcmp (name, "RETVAL") == 0)
6624 {
6625 /* This happens in functions with "out" or "in out" parameters
6626 which are passed by copy. For such functions, GNAT describes
6627 the function's return type as being a struct where the return
6628 value is in a field called RETVAL, and where the other "out"
6629 or "in out" parameters are fields of that struct. This is not
6630 a wrapper. */
6631 return 0;
6632 }
6633
6634 return (name != NULL
6635 && (startswith (name, "PARENT")
6636 || strcmp (name, "REP") == 0
6637 || startswith (name, "_parent")
6638 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6639 }
6640
6641 /* True iff field number FIELD_NUM of structure or union type TYPE
6642 is a variant wrapper. Assumes TYPE is a structure type with at least
6643 FIELD_NUM+1 fields. */
6644
6645 int
6646 ada_is_variant_part (struct type *type, int field_num)
6647 {
6648 /* Only Ada types are eligible. */
6649 if (!ADA_TYPE_P (type))
6650 return 0;
6651
6652 struct type *field_type = type->field (field_num).type ();
6653
6654 return (field_type->code () == TYPE_CODE_UNION
6655 || (is_dynamic_field (type, field_num)
6656 && (TYPE_TARGET_TYPE (field_type)->code ()
6657 == TYPE_CODE_UNION)));
6658 }
6659
6660 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6661 whose discriminants are contained in the record type OUTER_TYPE,
6662 returns the type of the controlling discriminant for the variant.
6663 May return NULL if the type could not be found. */
6664
6665 struct type *
6666 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6667 {
6668 const char *name = ada_variant_discrim_name (var_type);
6669
6670 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6671 }
6672
6673 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6674 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6675 represents a 'when others' clause; otherwise 0. */
6676
6677 static int
6678 ada_is_others_clause (struct type *type, int field_num)
6679 {
6680 const char *name = TYPE_FIELD_NAME (type, field_num);
6681
6682 return (name != NULL && name[0] == 'O');
6683 }
6684
6685 /* Assuming that TYPE0 is the type of the variant part of a record,
6686 returns the name of the discriminant controlling the variant.
6687 The value is valid until the next call to ada_variant_discrim_name. */
6688
6689 const char *
6690 ada_variant_discrim_name (struct type *type0)
6691 {
6692 static char *result = NULL;
6693 static size_t result_len = 0;
6694 struct type *type;
6695 const char *name;
6696 const char *discrim_end;
6697 const char *discrim_start;
6698
6699 if (type0->code () == TYPE_CODE_PTR)
6700 type = TYPE_TARGET_TYPE (type0);
6701 else
6702 type = type0;
6703
6704 name = ada_type_name (type);
6705
6706 if (name == NULL || name[0] == '\000')
6707 return "";
6708
6709 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6710 discrim_end -= 1)
6711 {
6712 if (startswith (discrim_end, "___XVN"))
6713 break;
6714 }
6715 if (discrim_end == name)
6716 return "";
6717
6718 for (discrim_start = discrim_end; discrim_start != name + 3;
6719 discrim_start -= 1)
6720 {
6721 if (discrim_start == name + 1)
6722 return "";
6723 if ((discrim_start > name + 3
6724 && startswith (discrim_start - 3, "___"))
6725 || discrim_start[-1] == '.')
6726 break;
6727 }
6728
6729 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6730 strncpy (result, discrim_start, discrim_end - discrim_start);
6731 result[discrim_end - discrim_start] = '\0';
6732 return result;
6733 }
6734
6735 /* Scan STR for a subtype-encoded number, beginning at position K.
6736 Put the position of the character just past the number scanned in
6737 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6738 Return 1 if there was a valid number at the given position, and 0
6739 otherwise. A "subtype-encoded" number consists of the absolute value
6740 in decimal, followed by the letter 'm' to indicate a negative number.
6741 Assumes 0m does not occur. */
6742
6743 int
6744 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6745 {
6746 ULONGEST RU;
6747
6748 if (!isdigit (str[k]))
6749 return 0;
6750
6751 /* Do it the hard way so as not to make any assumption about
6752 the relationship of unsigned long (%lu scan format code) and
6753 LONGEST. */
6754 RU = 0;
6755 while (isdigit (str[k]))
6756 {
6757 RU = RU * 10 + (str[k] - '0');
6758 k += 1;
6759 }
6760
6761 if (str[k] == 'm')
6762 {
6763 if (R != NULL)
6764 *R = (-(LONGEST) (RU - 1)) - 1;
6765 k += 1;
6766 }
6767 else if (R != NULL)
6768 *R = (LONGEST) RU;
6769
6770 /* NOTE on the above: Technically, C does not say what the results of
6771 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6772 number representable as a LONGEST (although either would probably work
6773 in most implementations). When RU>0, the locution in the then branch
6774 above is always equivalent to the negative of RU. */
6775
6776 if (new_k != NULL)
6777 *new_k = k;
6778 return 1;
6779 }
6780
6781 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6782 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6783 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6784
6785 static int
6786 ada_in_variant (LONGEST val, struct type *type, int field_num)
6787 {
6788 const char *name = TYPE_FIELD_NAME (type, field_num);
6789 int p;
6790
6791 p = 0;
6792 while (1)
6793 {
6794 switch (name[p])
6795 {
6796 case '\0':
6797 return 0;
6798 case 'S':
6799 {
6800 LONGEST W;
6801
6802 if (!ada_scan_number (name, p + 1, &W, &p))
6803 return 0;
6804 if (val == W)
6805 return 1;
6806 break;
6807 }
6808 case 'R':
6809 {
6810 LONGEST L, U;
6811
6812 if (!ada_scan_number (name, p + 1, &L, &p)
6813 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6814 return 0;
6815 if (val >= L && val <= U)
6816 return 1;
6817 break;
6818 }
6819 case 'O':
6820 return 1;
6821 default:
6822 return 0;
6823 }
6824 }
6825 }
6826
6827 /* FIXME: Lots of redundancy below. Try to consolidate. */
6828
6829 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6830 ARG_TYPE, extract and return the value of one of its (non-static)
6831 fields. FIELDNO says which field. Differs from value_primitive_field
6832 only in that it can handle packed values of arbitrary type. */
6833
6834 struct value *
6835 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6836 struct type *arg_type)
6837 {
6838 struct type *type;
6839
6840 arg_type = ada_check_typedef (arg_type);
6841 type = arg_type->field (fieldno).type ();
6842
6843 /* Handle packed fields. It might be that the field is not packed
6844 relative to its containing structure, but the structure itself is
6845 packed; in this case we must take the bit-field path. */
6846 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6847 {
6848 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6849 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6850
6851 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6852 offset + bit_pos / 8,
6853 bit_pos % 8, bit_size, type);
6854 }
6855 else
6856 return value_primitive_field (arg1, offset, fieldno, arg_type);
6857 }
6858
6859 /* Find field with name NAME in object of type TYPE. If found,
6860 set the following for each argument that is non-null:
6861 - *FIELD_TYPE_P to the field's type;
6862 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6863 an object of that type;
6864 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6865 - *BIT_SIZE_P to its size in bits if the field is packed, and
6866 0 otherwise;
6867 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6868 fields up to but not including the desired field, or by the total
6869 number of fields if not found. A NULL value of NAME never
6870 matches; the function just counts visible fields in this case.
6871
6872 Notice that we need to handle when a tagged record hierarchy
6873 has some components with the same name, like in this scenario:
6874
6875 type Top_T is tagged record
6876 N : Integer := 1;
6877 U : Integer := 974;
6878 A : Integer := 48;
6879 end record;
6880
6881 type Middle_T is new Top.Top_T with record
6882 N : Character := 'a';
6883 C : Integer := 3;
6884 end record;
6885
6886 type Bottom_T is new Middle.Middle_T with record
6887 N : Float := 4.0;
6888 C : Character := '5';
6889 X : Integer := 6;
6890 A : Character := 'J';
6891 end record;
6892
6893 Let's say we now have a variable declared and initialized as follow:
6894
6895 TC : Top_A := new Bottom_T;
6896
6897 And then we use this variable to call this function
6898
6899 procedure Assign (Obj: in out Top_T; TV : Integer);
6900
6901 as follow:
6902
6903 Assign (Top_T (B), 12);
6904
6905 Now, we're in the debugger, and we're inside that procedure
6906 then and we want to print the value of obj.c:
6907
6908 Usually, the tagged record or one of the parent type owns the
6909 component to print and there's no issue but in this particular
6910 case, what does it mean to ask for Obj.C? Since the actual
6911 type for object is type Bottom_T, it could mean two things: type
6912 component C from the Middle_T view, but also component C from
6913 Bottom_T. So in that "undefined" case, when the component is
6914 not found in the non-resolved type (which includes all the
6915 components of the parent type), then resolve it and see if we
6916 get better luck once expanded.
6917
6918 In the case of homonyms in the derived tagged type, we don't
6919 guaranty anything, and pick the one that's easiest for us
6920 to program.
6921
6922 Returns 1 if found, 0 otherwise. */
6923
6924 static int
6925 find_struct_field (const char *name, struct type *type, int offset,
6926 struct type **field_type_p,
6927 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6928 int *index_p)
6929 {
6930 int i;
6931 int parent_offset = -1;
6932
6933 type = ada_check_typedef (type);
6934
6935 if (field_type_p != NULL)
6936 *field_type_p = NULL;
6937 if (byte_offset_p != NULL)
6938 *byte_offset_p = 0;
6939 if (bit_offset_p != NULL)
6940 *bit_offset_p = 0;
6941 if (bit_size_p != NULL)
6942 *bit_size_p = 0;
6943
6944 for (i = 0; i < type->num_fields (); i += 1)
6945 {
6946 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6947 int fld_offset = offset + bit_pos / 8;
6948 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6949
6950 if (t_field_name == NULL)
6951 continue;
6952
6953 else if (ada_is_parent_field (type, i))
6954 {
6955 /* This is a field pointing us to the parent type of a tagged
6956 type. As hinted in this function's documentation, we give
6957 preference to fields in the current record first, so what
6958 we do here is just record the index of this field before
6959 we skip it. If it turns out we couldn't find our field
6960 in the current record, then we'll get back to it and search
6961 inside it whether the field might exist in the parent. */
6962
6963 parent_offset = i;
6964 continue;
6965 }
6966
6967 else if (name != NULL && field_name_match (t_field_name, name))
6968 {
6969 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6970
6971 if (field_type_p != NULL)
6972 *field_type_p = type->field (i).type ();
6973 if (byte_offset_p != NULL)
6974 *byte_offset_p = fld_offset;
6975 if (bit_offset_p != NULL)
6976 *bit_offset_p = bit_pos % 8;
6977 if (bit_size_p != NULL)
6978 *bit_size_p = bit_size;
6979 return 1;
6980 }
6981 else if (ada_is_wrapper_field (type, i))
6982 {
6983 if (find_struct_field (name, type->field (i).type (), fld_offset,
6984 field_type_p, byte_offset_p, bit_offset_p,
6985 bit_size_p, index_p))
6986 return 1;
6987 }
6988 else if (ada_is_variant_part (type, i))
6989 {
6990 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6991 fixed type?? */
6992 int j;
6993 struct type *field_type
6994 = ada_check_typedef (type->field (i).type ());
6995
6996 for (j = 0; j < field_type->num_fields (); j += 1)
6997 {
6998 if (find_struct_field (name, field_type->field (j).type (),
6999 fld_offset
7000 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7001 field_type_p, byte_offset_p,
7002 bit_offset_p, bit_size_p, index_p))
7003 return 1;
7004 }
7005 }
7006 else if (index_p != NULL)
7007 *index_p += 1;
7008 }
7009
7010 /* Field not found so far. If this is a tagged type which
7011 has a parent, try finding that field in the parent now. */
7012
7013 if (parent_offset != -1)
7014 {
7015 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7016 int fld_offset = offset + bit_pos / 8;
7017
7018 if (find_struct_field (name, type->field (parent_offset).type (),
7019 fld_offset, field_type_p, byte_offset_p,
7020 bit_offset_p, bit_size_p, index_p))
7021 return 1;
7022 }
7023
7024 return 0;
7025 }
7026
7027 /* Number of user-visible fields in record type TYPE. */
7028
7029 static int
7030 num_visible_fields (struct type *type)
7031 {
7032 int n;
7033
7034 n = 0;
7035 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7036 return n;
7037 }
7038
7039 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7040 and search in it assuming it has (class) type TYPE.
7041 If found, return value, else return NULL.
7042
7043 Searches recursively through wrapper fields (e.g., '_parent').
7044
7045 In the case of homonyms in the tagged types, please refer to the
7046 long explanation in find_struct_field's function documentation. */
7047
7048 static struct value *
7049 ada_search_struct_field (const char *name, struct value *arg, int offset,
7050 struct type *type)
7051 {
7052 int i;
7053 int parent_offset = -1;
7054
7055 type = ada_check_typedef (type);
7056 for (i = 0; i < type->num_fields (); i += 1)
7057 {
7058 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7059
7060 if (t_field_name == NULL)
7061 continue;
7062
7063 else if (ada_is_parent_field (type, i))
7064 {
7065 /* This is a field pointing us to the parent type of a tagged
7066 type. As hinted in this function's documentation, we give
7067 preference to fields in the current record first, so what
7068 we do here is just record the index of this field before
7069 we skip it. If it turns out we couldn't find our field
7070 in the current record, then we'll get back to it and search
7071 inside it whether the field might exist in the parent. */
7072
7073 parent_offset = i;
7074 continue;
7075 }
7076
7077 else if (field_name_match (t_field_name, name))
7078 return ada_value_primitive_field (arg, offset, i, type);
7079
7080 else if (ada_is_wrapper_field (type, i))
7081 {
7082 struct value *v = /* Do not let indent join lines here. */
7083 ada_search_struct_field (name, arg,
7084 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7085 type->field (i).type ());
7086
7087 if (v != NULL)
7088 return v;
7089 }
7090
7091 else if (ada_is_variant_part (type, i))
7092 {
7093 /* PNH: Do we ever get here? See find_struct_field. */
7094 int j;
7095 struct type *field_type = ada_check_typedef (type->field (i).type ());
7096 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7097
7098 for (j = 0; j < field_type->num_fields (); j += 1)
7099 {
7100 struct value *v = ada_search_struct_field /* Force line
7101 break. */
7102 (name, arg,
7103 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7104 field_type->field (j).type ());
7105
7106 if (v != NULL)
7107 return v;
7108 }
7109 }
7110 }
7111
7112 /* Field not found so far. If this is a tagged type which
7113 has a parent, try finding that field in the parent now. */
7114
7115 if (parent_offset != -1)
7116 {
7117 struct value *v = ada_search_struct_field (
7118 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7119 type->field (parent_offset).type ());
7120
7121 if (v != NULL)
7122 return v;
7123 }
7124
7125 return NULL;
7126 }
7127
7128 static struct value *ada_index_struct_field_1 (int *, struct value *,
7129 int, struct type *);
7130
7131
7132 /* Return field #INDEX in ARG, where the index is that returned by
7133 * find_struct_field through its INDEX_P argument. Adjust the address
7134 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7135 * If found, return value, else return NULL. */
7136
7137 static struct value *
7138 ada_index_struct_field (int index, struct value *arg, int offset,
7139 struct type *type)
7140 {
7141 return ada_index_struct_field_1 (&index, arg, offset, type);
7142 }
7143
7144
7145 /* Auxiliary function for ada_index_struct_field. Like
7146 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7147 * *INDEX_P. */
7148
7149 static struct value *
7150 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7151 struct type *type)
7152 {
7153 int i;
7154 type = ada_check_typedef (type);
7155
7156 for (i = 0; i < type->num_fields (); i += 1)
7157 {
7158 if (TYPE_FIELD_NAME (type, i) == NULL)
7159 continue;
7160 else if (ada_is_wrapper_field (type, i))
7161 {
7162 struct value *v = /* Do not let indent join lines here. */
7163 ada_index_struct_field_1 (index_p, arg,
7164 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7165 type->field (i).type ());
7166
7167 if (v != NULL)
7168 return v;
7169 }
7170
7171 else if (ada_is_variant_part (type, i))
7172 {
7173 /* PNH: Do we ever get here? See ada_search_struct_field,
7174 find_struct_field. */
7175 error (_("Cannot assign this kind of variant record"));
7176 }
7177 else if (*index_p == 0)
7178 return ada_value_primitive_field (arg, offset, i, type);
7179 else
7180 *index_p -= 1;
7181 }
7182 return NULL;
7183 }
7184
7185 /* Return a string representation of type TYPE. */
7186
7187 static std::string
7188 type_as_string (struct type *type)
7189 {
7190 string_file tmp_stream;
7191
7192 type_print (type, "", &tmp_stream, -1);
7193
7194 return std::move (tmp_stream.string ());
7195 }
7196
7197 /* Given a type TYPE, look up the type of the component of type named NAME.
7198 If DISPP is non-null, add its byte displacement from the beginning of a
7199 structure (pointed to by a value) of type TYPE to *DISPP (does not
7200 work for packed fields).
7201
7202 Matches any field whose name has NAME as a prefix, possibly
7203 followed by "___".
7204
7205 TYPE can be either a struct or union. If REFOK, TYPE may also
7206 be a (pointer or reference)+ to a struct or union, and the
7207 ultimate target type will be searched.
7208
7209 Looks recursively into variant clauses and parent types.
7210
7211 In the case of homonyms in the tagged types, please refer to the
7212 long explanation in find_struct_field's function documentation.
7213
7214 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7215 TYPE is not a type of the right kind. */
7216
7217 static struct type *
7218 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7219 int noerr)
7220 {
7221 int i;
7222 int parent_offset = -1;
7223
7224 if (name == NULL)
7225 goto BadName;
7226
7227 if (refok && type != NULL)
7228 while (1)
7229 {
7230 type = ada_check_typedef (type);
7231 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7232 break;
7233 type = TYPE_TARGET_TYPE (type);
7234 }
7235
7236 if (type == NULL
7237 || (type->code () != TYPE_CODE_STRUCT
7238 && type->code () != TYPE_CODE_UNION))
7239 {
7240 if (noerr)
7241 return NULL;
7242
7243 error (_("Type %s is not a structure or union type"),
7244 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7245 }
7246
7247 type = to_static_fixed_type (type);
7248
7249 for (i = 0; i < type->num_fields (); i += 1)
7250 {
7251 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7252 struct type *t;
7253
7254 if (t_field_name == NULL)
7255 continue;
7256
7257 else if (ada_is_parent_field (type, i))
7258 {
7259 /* This is a field pointing us to the parent type of a tagged
7260 type. As hinted in this function's documentation, we give
7261 preference to fields in the current record first, so what
7262 we do here is just record the index of this field before
7263 we skip it. If it turns out we couldn't find our field
7264 in the current record, then we'll get back to it and search
7265 inside it whether the field might exist in the parent. */
7266
7267 parent_offset = i;
7268 continue;
7269 }
7270
7271 else if (field_name_match (t_field_name, name))
7272 return type->field (i).type ();
7273
7274 else if (ada_is_wrapper_field (type, i))
7275 {
7276 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7277 0, 1);
7278 if (t != NULL)
7279 return t;
7280 }
7281
7282 else if (ada_is_variant_part (type, i))
7283 {
7284 int j;
7285 struct type *field_type = ada_check_typedef (type->field (i).type ());
7286
7287 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7288 {
7289 /* FIXME pnh 2008/01/26: We check for a field that is
7290 NOT wrapped in a struct, since the compiler sometimes
7291 generates these for unchecked variant types. Revisit
7292 if the compiler changes this practice. */
7293 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7294
7295 if (v_field_name != NULL
7296 && field_name_match (v_field_name, name))
7297 t = field_type->field (j).type ();
7298 else
7299 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7300 name, 0, 1);
7301
7302 if (t != NULL)
7303 return t;
7304 }
7305 }
7306
7307 }
7308
7309 /* Field not found so far. If this is a tagged type which
7310 has a parent, try finding that field in the parent now. */
7311
7312 if (parent_offset != -1)
7313 {
7314 struct type *t;
7315
7316 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7317 name, 0, 1);
7318 if (t != NULL)
7319 return t;
7320 }
7321
7322 BadName:
7323 if (!noerr)
7324 {
7325 const char *name_str = name != NULL ? name : _("<null>");
7326
7327 error (_("Type %s has no component named %s"),
7328 type_as_string (type).c_str (), name_str);
7329 }
7330
7331 return NULL;
7332 }
7333
7334 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7335 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7336 represents an unchecked union (that is, the variant part of a
7337 record that is named in an Unchecked_Union pragma). */
7338
7339 static int
7340 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7341 {
7342 const char *discrim_name = ada_variant_discrim_name (var_type);
7343
7344 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7345 }
7346
7347
7348 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7349 within OUTER, determine which variant clause (field number in VAR_TYPE,
7350 numbering from 0) is applicable. Returns -1 if none are. */
7351
7352 int
7353 ada_which_variant_applies (struct type *var_type, struct value *outer)
7354 {
7355 int others_clause;
7356 int i;
7357 const char *discrim_name = ada_variant_discrim_name (var_type);
7358 struct value *discrim;
7359 LONGEST discrim_val;
7360
7361 /* Using plain value_from_contents_and_address here causes problems
7362 because we will end up trying to resolve a type that is currently
7363 being constructed. */
7364 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7365 if (discrim == NULL)
7366 return -1;
7367 discrim_val = value_as_long (discrim);
7368
7369 others_clause = -1;
7370 for (i = 0; i < var_type->num_fields (); i += 1)
7371 {
7372 if (ada_is_others_clause (var_type, i))
7373 others_clause = i;
7374 else if (ada_in_variant (discrim_val, var_type, i))
7375 return i;
7376 }
7377
7378 return others_clause;
7379 }
7380 \f
7381
7382
7383 /* Dynamic-Sized Records */
7384
7385 /* Strategy: The type ostensibly attached to a value with dynamic size
7386 (i.e., a size that is not statically recorded in the debugging
7387 data) does not accurately reflect the size or layout of the value.
7388 Our strategy is to convert these values to values with accurate,
7389 conventional types that are constructed on the fly. */
7390
7391 /* There is a subtle and tricky problem here. In general, we cannot
7392 determine the size of dynamic records without its data. However,
7393 the 'struct value' data structure, which GDB uses to represent
7394 quantities in the inferior process (the target), requires the size
7395 of the type at the time of its allocation in order to reserve space
7396 for GDB's internal copy of the data. That's why the
7397 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7398 rather than struct value*s.
7399
7400 However, GDB's internal history variables ($1, $2, etc.) are
7401 struct value*s containing internal copies of the data that are not, in
7402 general, the same as the data at their corresponding addresses in
7403 the target. Fortunately, the types we give to these values are all
7404 conventional, fixed-size types (as per the strategy described
7405 above), so that we don't usually have to perform the
7406 'to_fixed_xxx_type' conversions to look at their values.
7407 Unfortunately, there is one exception: if one of the internal
7408 history variables is an array whose elements are unconstrained
7409 records, then we will need to create distinct fixed types for each
7410 element selected. */
7411
7412 /* The upshot of all of this is that many routines take a (type, host
7413 address, target address) triple as arguments to represent a value.
7414 The host address, if non-null, is supposed to contain an internal
7415 copy of the relevant data; otherwise, the program is to consult the
7416 target at the target address. */
7417
7418 /* Assuming that VAL0 represents a pointer value, the result of
7419 dereferencing it. Differs from value_ind in its treatment of
7420 dynamic-sized types. */
7421
7422 struct value *
7423 ada_value_ind (struct value *val0)
7424 {
7425 struct value *val = value_ind (val0);
7426
7427 if (ada_is_tagged_type (value_type (val), 0))
7428 val = ada_tag_value_at_base_address (val);
7429
7430 return ada_to_fixed_value (val);
7431 }
7432
7433 /* The value resulting from dereferencing any "reference to"
7434 qualifiers on VAL0. */
7435
7436 static struct value *
7437 ada_coerce_ref (struct value *val0)
7438 {
7439 if (value_type (val0)->code () == TYPE_CODE_REF)
7440 {
7441 struct value *val = val0;
7442
7443 val = coerce_ref (val);
7444
7445 if (ada_is_tagged_type (value_type (val), 0))
7446 val = ada_tag_value_at_base_address (val);
7447
7448 return ada_to_fixed_value (val);
7449 }
7450 else
7451 return val0;
7452 }
7453
7454 /* Return the bit alignment required for field #F of template type TYPE. */
7455
7456 static unsigned int
7457 field_alignment (struct type *type, int f)
7458 {
7459 const char *name = TYPE_FIELD_NAME (type, f);
7460 int len;
7461 int align_offset;
7462
7463 /* The field name should never be null, unless the debugging information
7464 is somehow malformed. In this case, we assume the field does not
7465 require any alignment. */
7466 if (name == NULL)
7467 return 1;
7468
7469 len = strlen (name);
7470
7471 if (!isdigit (name[len - 1]))
7472 return 1;
7473
7474 if (isdigit (name[len - 2]))
7475 align_offset = len - 2;
7476 else
7477 align_offset = len - 1;
7478
7479 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7480 return TARGET_CHAR_BIT;
7481
7482 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7483 }
7484
7485 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7486
7487 static struct symbol *
7488 ada_find_any_type_symbol (const char *name)
7489 {
7490 struct symbol *sym;
7491
7492 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7493 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7494 return sym;
7495
7496 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7497 return sym;
7498 }
7499
7500 /* Find a type named NAME. Ignores ambiguity. This routine will look
7501 solely for types defined by debug info, it will not search the GDB
7502 primitive types. */
7503
7504 static struct type *
7505 ada_find_any_type (const char *name)
7506 {
7507 struct symbol *sym = ada_find_any_type_symbol (name);
7508
7509 if (sym != NULL)
7510 return SYMBOL_TYPE (sym);
7511
7512 return NULL;
7513 }
7514
7515 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7516 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7517 symbol, in which case it is returned. Otherwise, this looks for
7518 symbols whose name is that of NAME_SYM suffixed with "___XR".
7519 Return symbol if found, and NULL otherwise. */
7520
7521 static bool
7522 ada_is_renaming_symbol (struct symbol *name_sym)
7523 {
7524 const char *name = name_sym->linkage_name ();
7525 return strstr (name, "___XR") != NULL;
7526 }
7527
7528 /* Because of GNAT encoding conventions, several GDB symbols may match a
7529 given type name. If the type denoted by TYPE0 is to be preferred to
7530 that of TYPE1 for purposes of type printing, return non-zero;
7531 otherwise return 0. */
7532
7533 int
7534 ada_prefer_type (struct type *type0, struct type *type1)
7535 {
7536 if (type1 == NULL)
7537 return 1;
7538 else if (type0 == NULL)
7539 return 0;
7540 else if (type1->code () == TYPE_CODE_VOID)
7541 return 1;
7542 else if (type0->code () == TYPE_CODE_VOID)
7543 return 0;
7544 else if (type1->name () == NULL && type0->name () != NULL)
7545 return 1;
7546 else if (ada_is_constrained_packed_array_type (type0))
7547 return 1;
7548 else if (ada_is_array_descriptor_type (type0)
7549 && !ada_is_array_descriptor_type (type1))
7550 return 1;
7551 else
7552 {
7553 const char *type0_name = type0->name ();
7554 const char *type1_name = type1->name ();
7555
7556 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7557 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7558 return 1;
7559 }
7560 return 0;
7561 }
7562
7563 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7564 null. */
7565
7566 const char *
7567 ada_type_name (struct type *type)
7568 {
7569 if (type == NULL)
7570 return NULL;
7571 return type->name ();
7572 }
7573
7574 /* Search the list of "descriptive" types associated to TYPE for a type
7575 whose name is NAME. */
7576
7577 static struct type *
7578 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7579 {
7580 struct type *result, *tmp;
7581
7582 if (ada_ignore_descriptive_types_p)
7583 return NULL;
7584
7585 /* If there no descriptive-type info, then there is no parallel type
7586 to be found. */
7587 if (!HAVE_GNAT_AUX_INFO (type))
7588 return NULL;
7589
7590 result = TYPE_DESCRIPTIVE_TYPE (type);
7591 while (result != NULL)
7592 {
7593 const char *result_name = ada_type_name (result);
7594
7595 if (result_name == NULL)
7596 {
7597 warning (_("unexpected null name on descriptive type"));
7598 return NULL;
7599 }
7600
7601 /* If the names match, stop. */
7602 if (strcmp (result_name, name) == 0)
7603 break;
7604
7605 /* Otherwise, look at the next item on the list, if any. */
7606 if (HAVE_GNAT_AUX_INFO (result))
7607 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7608 else
7609 tmp = NULL;
7610
7611 /* If not found either, try after having resolved the typedef. */
7612 if (tmp != NULL)
7613 result = tmp;
7614 else
7615 {
7616 result = check_typedef (result);
7617 if (HAVE_GNAT_AUX_INFO (result))
7618 result = TYPE_DESCRIPTIVE_TYPE (result);
7619 else
7620 result = NULL;
7621 }
7622 }
7623
7624 /* If we didn't find a match, see whether this is a packed array. With
7625 older compilers, the descriptive type information is either absent or
7626 irrelevant when it comes to packed arrays so the above lookup fails.
7627 Fall back to using a parallel lookup by name in this case. */
7628 if (result == NULL && ada_is_constrained_packed_array_type (type))
7629 return ada_find_any_type (name);
7630
7631 return result;
7632 }
7633
7634 /* Find a parallel type to TYPE with the specified NAME, using the
7635 descriptive type taken from the debugging information, if available,
7636 and otherwise using the (slower) name-based method. */
7637
7638 static struct type *
7639 ada_find_parallel_type_with_name (struct type *type, const char *name)
7640 {
7641 struct type *result = NULL;
7642
7643 if (HAVE_GNAT_AUX_INFO (type))
7644 result = find_parallel_type_by_descriptive_type (type, name);
7645 else
7646 result = ada_find_any_type (name);
7647
7648 return result;
7649 }
7650
7651 /* Same as above, but specify the name of the parallel type by appending
7652 SUFFIX to the name of TYPE. */
7653
7654 struct type *
7655 ada_find_parallel_type (struct type *type, const char *suffix)
7656 {
7657 char *name;
7658 const char *type_name = ada_type_name (type);
7659 int len;
7660
7661 if (type_name == NULL)
7662 return NULL;
7663
7664 len = strlen (type_name);
7665
7666 name = (char *) alloca (len + strlen (suffix) + 1);
7667
7668 strcpy (name, type_name);
7669 strcpy (name + len, suffix);
7670
7671 return ada_find_parallel_type_with_name (type, name);
7672 }
7673
7674 /* If TYPE is a variable-size record type, return the corresponding template
7675 type describing its fields. Otherwise, return NULL. */
7676
7677 static struct type *
7678 dynamic_template_type (struct type *type)
7679 {
7680 type = ada_check_typedef (type);
7681
7682 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7683 || ada_type_name (type) == NULL)
7684 return NULL;
7685 else
7686 {
7687 int len = strlen (ada_type_name (type));
7688
7689 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7690 return type;
7691 else
7692 return ada_find_parallel_type (type, "___XVE");
7693 }
7694 }
7695
7696 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7697 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7698
7699 static int
7700 is_dynamic_field (struct type *templ_type, int field_num)
7701 {
7702 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7703
7704 return name != NULL
7705 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7706 && strstr (name, "___XVL") != NULL;
7707 }
7708
7709 /* The index of the variant field of TYPE, or -1 if TYPE does not
7710 represent a variant record type. */
7711
7712 static int
7713 variant_field_index (struct type *type)
7714 {
7715 int f;
7716
7717 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7718 return -1;
7719
7720 for (f = 0; f < type->num_fields (); f += 1)
7721 {
7722 if (ada_is_variant_part (type, f))
7723 return f;
7724 }
7725 return -1;
7726 }
7727
7728 /* A record type with no fields. */
7729
7730 static struct type *
7731 empty_record (struct type *templ)
7732 {
7733 struct type *type = alloc_type_copy (templ);
7734
7735 type->set_code (TYPE_CODE_STRUCT);
7736 INIT_NONE_SPECIFIC (type);
7737 type->set_name ("<empty>");
7738 TYPE_LENGTH (type) = 0;
7739 return type;
7740 }
7741
7742 /* An ordinary record type (with fixed-length fields) that describes
7743 the value of type TYPE at VALADDR or ADDRESS (see comments at
7744 the beginning of this section) VAL according to GNAT conventions.
7745 DVAL0 should describe the (portion of a) record that contains any
7746 necessary discriminants. It should be NULL if value_type (VAL) is
7747 an outer-level type (i.e., as opposed to a branch of a variant.) A
7748 variant field (unless unchecked) is replaced by a particular branch
7749 of the variant.
7750
7751 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7752 length are not statically known are discarded. As a consequence,
7753 VALADDR, ADDRESS and DVAL0 are ignored.
7754
7755 NOTE: Limitations: For now, we assume that dynamic fields and
7756 variants occupy whole numbers of bytes. However, they need not be
7757 byte-aligned. */
7758
7759 struct type *
7760 ada_template_to_fixed_record_type_1 (struct type *type,
7761 const gdb_byte *valaddr,
7762 CORE_ADDR address, struct value *dval0,
7763 int keep_dynamic_fields)
7764 {
7765 struct value *mark = value_mark ();
7766 struct value *dval;
7767 struct type *rtype;
7768 int nfields, bit_len;
7769 int variant_field;
7770 long off;
7771 int fld_bit_len;
7772 int f;
7773
7774 /* Compute the number of fields in this record type that are going
7775 to be processed: unless keep_dynamic_fields, this includes only
7776 fields whose position and length are static will be processed. */
7777 if (keep_dynamic_fields)
7778 nfields = type->num_fields ();
7779 else
7780 {
7781 nfields = 0;
7782 while (nfields < type->num_fields ()
7783 && !ada_is_variant_part (type, nfields)
7784 && !is_dynamic_field (type, nfields))
7785 nfields++;
7786 }
7787
7788 rtype = alloc_type_copy (type);
7789 rtype->set_code (TYPE_CODE_STRUCT);
7790 INIT_NONE_SPECIFIC (rtype);
7791 rtype->set_num_fields (nfields);
7792 rtype->set_fields
7793 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7794 rtype->set_name (ada_type_name (type));
7795 TYPE_FIXED_INSTANCE (rtype) = 1;
7796
7797 off = 0;
7798 bit_len = 0;
7799 variant_field = -1;
7800
7801 for (f = 0; f < nfields; f += 1)
7802 {
7803 off = align_up (off, field_alignment (type, f))
7804 + TYPE_FIELD_BITPOS (type, f);
7805 SET_FIELD_BITPOS (rtype->field (f), off);
7806 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7807
7808 if (ada_is_variant_part (type, f))
7809 {
7810 variant_field = f;
7811 fld_bit_len = 0;
7812 }
7813 else if (is_dynamic_field (type, f))
7814 {
7815 const gdb_byte *field_valaddr = valaddr;
7816 CORE_ADDR field_address = address;
7817 struct type *field_type =
7818 TYPE_TARGET_TYPE (type->field (f).type ());
7819
7820 if (dval0 == NULL)
7821 {
7822 /* rtype's length is computed based on the run-time
7823 value of discriminants. If the discriminants are not
7824 initialized, the type size may be completely bogus and
7825 GDB may fail to allocate a value for it. So check the
7826 size first before creating the value. */
7827 ada_ensure_varsize_limit (rtype);
7828 /* Using plain value_from_contents_and_address here
7829 causes problems because we will end up trying to
7830 resolve a type that is currently being
7831 constructed. */
7832 dval = value_from_contents_and_address_unresolved (rtype,
7833 valaddr,
7834 address);
7835 rtype = value_type (dval);
7836 }
7837 else
7838 dval = dval0;
7839
7840 /* If the type referenced by this field is an aligner type, we need
7841 to unwrap that aligner type, because its size might not be set.
7842 Keeping the aligner type would cause us to compute the wrong
7843 size for this field, impacting the offset of the all the fields
7844 that follow this one. */
7845 if (ada_is_aligner_type (field_type))
7846 {
7847 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7848
7849 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7850 field_address = cond_offset_target (field_address, field_offset);
7851 field_type = ada_aligned_type (field_type);
7852 }
7853
7854 field_valaddr = cond_offset_host (field_valaddr,
7855 off / TARGET_CHAR_BIT);
7856 field_address = cond_offset_target (field_address,
7857 off / TARGET_CHAR_BIT);
7858
7859 /* Get the fixed type of the field. Note that, in this case,
7860 we do not want to get the real type out of the tag: if
7861 the current field is the parent part of a tagged record,
7862 we will get the tag of the object. Clearly wrong: the real
7863 type of the parent is not the real type of the child. We
7864 would end up in an infinite loop. */
7865 field_type = ada_get_base_type (field_type);
7866 field_type = ada_to_fixed_type (field_type, field_valaddr,
7867 field_address, dval, 0);
7868 /* If the field size is already larger than the maximum
7869 object size, then the record itself will necessarily
7870 be larger than the maximum object size. We need to make
7871 this check now, because the size might be so ridiculously
7872 large (due to an uninitialized variable in the inferior)
7873 that it would cause an overflow when adding it to the
7874 record size. */
7875 ada_ensure_varsize_limit (field_type);
7876
7877 rtype->field (f).set_type (field_type);
7878 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7879 /* The multiplication can potentially overflow. But because
7880 the field length has been size-checked just above, and
7881 assuming that the maximum size is a reasonable value,
7882 an overflow should not happen in practice. So rather than
7883 adding overflow recovery code to this already complex code,
7884 we just assume that it's not going to happen. */
7885 fld_bit_len =
7886 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7887 }
7888 else
7889 {
7890 /* Note: If this field's type is a typedef, it is important
7891 to preserve the typedef layer.
7892
7893 Otherwise, we might be transforming a typedef to a fat
7894 pointer (encoding a pointer to an unconstrained array),
7895 into a basic fat pointer (encoding an unconstrained
7896 array). As both types are implemented using the same
7897 structure, the typedef is the only clue which allows us
7898 to distinguish between the two options. Stripping it
7899 would prevent us from printing this field appropriately. */
7900 rtype->field (f).set_type (type->field (f).type ());
7901 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7902 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7903 fld_bit_len =
7904 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7905 else
7906 {
7907 struct type *field_type = type->field (f).type ();
7908
7909 /* We need to be careful of typedefs when computing
7910 the length of our field. If this is a typedef,
7911 get the length of the target type, not the length
7912 of the typedef. */
7913 if (field_type->code () == TYPE_CODE_TYPEDEF)
7914 field_type = ada_typedef_target_type (field_type);
7915
7916 fld_bit_len =
7917 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7918 }
7919 }
7920 if (off + fld_bit_len > bit_len)
7921 bit_len = off + fld_bit_len;
7922 off += fld_bit_len;
7923 TYPE_LENGTH (rtype) =
7924 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7925 }
7926
7927 /* We handle the variant part, if any, at the end because of certain
7928 odd cases in which it is re-ordered so as NOT to be the last field of
7929 the record. This can happen in the presence of representation
7930 clauses. */
7931 if (variant_field >= 0)
7932 {
7933 struct type *branch_type;
7934
7935 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7936
7937 if (dval0 == NULL)
7938 {
7939 /* Using plain value_from_contents_and_address here causes
7940 problems because we will end up trying to resolve a type
7941 that is currently being constructed. */
7942 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7943 address);
7944 rtype = value_type (dval);
7945 }
7946 else
7947 dval = dval0;
7948
7949 branch_type =
7950 to_fixed_variant_branch_type
7951 (type->field (variant_field).type (),
7952 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7953 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7954 if (branch_type == NULL)
7955 {
7956 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7957 rtype->field (f - 1) = rtype->field (f);
7958 rtype->set_num_fields (rtype->num_fields () - 1);
7959 }
7960 else
7961 {
7962 rtype->field (variant_field).set_type (branch_type);
7963 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7964 fld_bit_len =
7965 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7966 TARGET_CHAR_BIT;
7967 if (off + fld_bit_len > bit_len)
7968 bit_len = off + fld_bit_len;
7969 TYPE_LENGTH (rtype) =
7970 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7971 }
7972 }
7973
7974 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7975 should contain the alignment of that record, which should be a strictly
7976 positive value. If null or negative, then something is wrong, most
7977 probably in the debug info. In that case, we don't round up the size
7978 of the resulting type. If this record is not part of another structure,
7979 the current RTYPE length might be good enough for our purposes. */
7980 if (TYPE_LENGTH (type) <= 0)
7981 {
7982 if (rtype->name ())
7983 warning (_("Invalid type size for `%s' detected: %s."),
7984 rtype->name (), pulongest (TYPE_LENGTH (type)));
7985 else
7986 warning (_("Invalid type size for <unnamed> detected: %s."),
7987 pulongest (TYPE_LENGTH (type)));
7988 }
7989 else
7990 {
7991 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7992 TYPE_LENGTH (type));
7993 }
7994
7995 value_free_to_mark (mark);
7996 if (TYPE_LENGTH (rtype) > varsize_limit)
7997 error (_("record type with dynamic size is larger than varsize-limit"));
7998 return rtype;
7999 }
8000
8001 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8002 of 1. */
8003
8004 static struct type *
8005 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8006 CORE_ADDR address, struct value *dval0)
8007 {
8008 return ada_template_to_fixed_record_type_1 (type, valaddr,
8009 address, dval0, 1);
8010 }
8011
8012 /* An ordinary record type in which ___XVL-convention fields and
8013 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8014 static approximations, containing all possible fields. Uses
8015 no runtime values. Useless for use in values, but that's OK,
8016 since the results are used only for type determinations. Works on both
8017 structs and unions. Representation note: to save space, we memorize
8018 the result of this function in the TYPE_TARGET_TYPE of the
8019 template type. */
8020
8021 static struct type *
8022 template_to_static_fixed_type (struct type *type0)
8023 {
8024 struct type *type;
8025 int nfields;
8026 int f;
8027
8028 /* No need no do anything if the input type is already fixed. */
8029 if (TYPE_FIXED_INSTANCE (type0))
8030 return type0;
8031
8032 /* Likewise if we already have computed the static approximation. */
8033 if (TYPE_TARGET_TYPE (type0) != NULL)
8034 return TYPE_TARGET_TYPE (type0);
8035
8036 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8037 type = type0;
8038 nfields = type0->num_fields ();
8039
8040 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8041 recompute all over next time. */
8042 TYPE_TARGET_TYPE (type0) = type;
8043
8044 for (f = 0; f < nfields; f += 1)
8045 {
8046 struct type *field_type = type0->field (f).type ();
8047 struct type *new_type;
8048
8049 if (is_dynamic_field (type0, f))
8050 {
8051 field_type = ada_check_typedef (field_type);
8052 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8053 }
8054 else
8055 new_type = static_unwrap_type (field_type);
8056
8057 if (new_type != field_type)
8058 {
8059 /* Clone TYPE0 only the first time we get a new field type. */
8060 if (type == type0)
8061 {
8062 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8063 type->set_code (type0->code ());
8064 INIT_NONE_SPECIFIC (type);
8065 type->set_num_fields (nfields);
8066
8067 field *fields =
8068 ((struct field *)
8069 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8070 memcpy (fields, type0->fields (),
8071 sizeof (struct field) * nfields);
8072 type->set_fields (fields);
8073
8074 type->set_name (ada_type_name (type0));
8075 TYPE_FIXED_INSTANCE (type) = 1;
8076 TYPE_LENGTH (type) = 0;
8077 }
8078 type->field (f).set_type (new_type);
8079 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8080 }
8081 }
8082
8083 return type;
8084 }
8085
8086 /* Given an object of type TYPE whose contents are at VALADDR and
8087 whose address in memory is ADDRESS, returns a revision of TYPE,
8088 which should be a non-dynamic-sized record, in which the variant
8089 part, if any, is replaced with the appropriate branch. Looks
8090 for discriminant values in DVAL0, which can be NULL if the record
8091 contains the necessary discriminant values. */
8092
8093 static struct type *
8094 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8095 CORE_ADDR address, struct value *dval0)
8096 {
8097 struct value *mark = value_mark ();
8098 struct value *dval;
8099 struct type *rtype;
8100 struct type *branch_type;
8101 int nfields = type->num_fields ();
8102 int variant_field = variant_field_index (type);
8103
8104 if (variant_field == -1)
8105 return type;
8106
8107 if (dval0 == NULL)
8108 {
8109 dval = value_from_contents_and_address (type, valaddr, address);
8110 type = value_type (dval);
8111 }
8112 else
8113 dval = dval0;
8114
8115 rtype = alloc_type_copy (type);
8116 rtype->set_code (TYPE_CODE_STRUCT);
8117 INIT_NONE_SPECIFIC (rtype);
8118 rtype->set_num_fields (nfields);
8119
8120 field *fields =
8121 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8122 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8123 rtype->set_fields (fields);
8124
8125 rtype->set_name (ada_type_name (type));
8126 TYPE_FIXED_INSTANCE (rtype) = 1;
8127 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8128
8129 branch_type = to_fixed_variant_branch_type
8130 (type->field (variant_field).type (),
8131 cond_offset_host (valaddr,
8132 TYPE_FIELD_BITPOS (type, variant_field)
8133 / TARGET_CHAR_BIT),
8134 cond_offset_target (address,
8135 TYPE_FIELD_BITPOS (type, variant_field)
8136 / TARGET_CHAR_BIT), dval);
8137 if (branch_type == NULL)
8138 {
8139 int f;
8140
8141 for (f = variant_field + 1; f < nfields; f += 1)
8142 rtype->field (f - 1) = rtype->field (f);
8143 rtype->set_num_fields (rtype->num_fields () - 1);
8144 }
8145 else
8146 {
8147 rtype->field (variant_field).set_type (branch_type);
8148 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8149 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8150 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8151 }
8152 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8153
8154 value_free_to_mark (mark);
8155 return rtype;
8156 }
8157
8158 /* An ordinary record type (with fixed-length fields) that describes
8159 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8160 beginning of this section]. Any necessary discriminants' values
8161 should be in DVAL, a record value; it may be NULL if the object
8162 at ADDR itself contains any necessary discriminant values.
8163 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8164 values from the record are needed. Except in the case that DVAL,
8165 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8166 unchecked) is replaced by a particular branch of the variant.
8167
8168 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8169 is questionable and may be removed. It can arise during the
8170 processing of an unconstrained-array-of-record type where all the
8171 variant branches have exactly the same size. This is because in
8172 such cases, the compiler does not bother to use the XVS convention
8173 when encoding the record. I am currently dubious of this
8174 shortcut and suspect the compiler should be altered. FIXME. */
8175
8176 static struct type *
8177 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8178 CORE_ADDR address, struct value *dval)
8179 {
8180 struct type *templ_type;
8181
8182 if (TYPE_FIXED_INSTANCE (type0))
8183 return type0;
8184
8185 templ_type = dynamic_template_type (type0);
8186
8187 if (templ_type != NULL)
8188 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8189 else if (variant_field_index (type0) >= 0)
8190 {
8191 if (dval == NULL && valaddr == NULL && address == 0)
8192 return type0;
8193 return to_record_with_fixed_variant_part (type0, valaddr, address,
8194 dval);
8195 }
8196 else
8197 {
8198 TYPE_FIXED_INSTANCE (type0) = 1;
8199 return type0;
8200 }
8201
8202 }
8203
8204 /* An ordinary record type (with fixed-length fields) that describes
8205 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8206 union type. Any necessary discriminants' values should be in DVAL,
8207 a record value. That is, this routine selects the appropriate
8208 branch of the union at ADDR according to the discriminant value
8209 indicated in the union's type name. Returns VAR_TYPE0 itself if
8210 it represents a variant subject to a pragma Unchecked_Union. */
8211
8212 static struct type *
8213 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8214 CORE_ADDR address, struct value *dval)
8215 {
8216 int which;
8217 struct type *templ_type;
8218 struct type *var_type;
8219
8220 if (var_type0->code () == TYPE_CODE_PTR)
8221 var_type = TYPE_TARGET_TYPE (var_type0);
8222 else
8223 var_type = var_type0;
8224
8225 templ_type = ada_find_parallel_type (var_type, "___XVU");
8226
8227 if (templ_type != NULL)
8228 var_type = templ_type;
8229
8230 if (is_unchecked_variant (var_type, value_type (dval)))
8231 return var_type0;
8232 which = ada_which_variant_applies (var_type, dval);
8233
8234 if (which < 0)
8235 return empty_record (var_type);
8236 else if (is_dynamic_field (var_type, which))
8237 return to_fixed_record_type
8238 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8239 valaddr, address, dval);
8240 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8241 return
8242 to_fixed_record_type
8243 (var_type->field (which).type (), valaddr, address, dval);
8244 else
8245 return var_type->field (which).type ();
8246 }
8247
8248 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8249 ENCODING_TYPE, a type following the GNAT conventions for discrete
8250 type encodings, only carries redundant information. */
8251
8252 static int
8253 ada_is_redundant_range_encoding (struct type *range_type,
8254 struct type *encoding_type)
8255 {
8256 const char *bounds_str;
8257 int n;
8258 LONGEST lo, hi;
8259
8260 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8261
8262 if (get_base_type (range_type)->code ()
8263 != get_base_type (encoding_type)->code ())
8264 {
8265 /* The compiler probably used a simple base type to describe
8266 the range type instead of the range's actual base type,
8267 expecting us to get the real base type from the encoding
8268 anyway. In this situation, the encoding cannot be ignored
8269 as redundant. */
8270 return 0;
8271 }
8272
8273 if (is_dynamic_type (range_type))
8274 return 0;
8275
8276 if (encoding_type->name () == NULL)
8277 return 0;
8278
8279 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8280 if (bounds_str == NULL)
8281 return 0;
8282
8283 n = 8; /* Skip "___XDLU_". */
8284 if (!ada_scan_number (bounds_str, n, &lo, &n))
8285 return 0;
8286 if (TYPE_LOW_BOUND (range_type) != lo)
8287 return 0;
8288
8289 n += 2; /* Skip the "__" separator between the two bounds. */
8290 if (!ada_scan_number (bounds_str, n, &hi, &n))
8291 return 0;
8292 if (TYPE_HIGH_BOUND (range_type) != hi)
8293 return 0;
8294
8295 return 1;
8296 }
8297
8298 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8299 a type following the GNAT encoding for describing array type
8300 indices, only carries redundant information. */
8301
8302 static int
8303 ada_is_redundant_index_type_desc (struct type *array_type,
8304 struct type *desc_type)
8305 {
8306 struct type *this_layer = check_typedef (array_type);
8307 int i;
8308
8309 for (i = 0; i < desc_type->num_fields (); i++)
8310 {
8311 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8312 desc_type->field (i).type ()))
8313 return 0;
8314 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8315 }
8316
8317 return 1;
8318 }
8319
8320 /* Assuming that TYPE0 is an array type describing the type of a value
8321 at ADDR, and that DVAL describes a record containing any
8322 discriminants used in TYPE0, returns a type for the value that
8323 contains no dynamic components (that is, no components whose sizes
8324 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8325 true, gives an error message if the resulting type's size is over
8326 varsize_limit. */
8327
8328 static struct type *
8329 to_fixed_array_type (struct type *type0, struct value *dval,
8330 int ignore_too_big)
8331 {
8332 struct type *index_type_desc;
8333 struct type *result;
8334 int constrained_packed_array_p;
8335 static const char *xa_suffix = "___XA";
8336
8337 type0 = ada_check_typedef (type0);
8338 if (TYPE_FIXED_INSTANCE (type0))
8339 return type0;
8340
8341 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8342 if (constrained_packed_array_p)
8343 type0 = decode_constrained_packed_array_type (type0);
8344
8345 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8346
8347 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8348 encoding suffixed with 'P' may still be generated. If so,
8349 it should be used to find the XA type. */
8350
8351 if (index_type_desc == NULL)
8352 {
8353 const char *type_name = ada_type_name (type0);
8354
8355 if (type_name != NULL)
8356 {
8357 const int len = strlen (type_name);
8358 char *name = (char *) alloca (len + strlen (xa_suffix));
8359
8360 if (type_name[len - 1] == 'P')
8361 {
8362 strcpy (name, type_name);
8363 strcpy (name + len - 1, xa_suffix);
8364 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8365 }
8366 }
8367 }
8368
8369 ada_fixup_array_indexes_type (index_type_desc);
8370 if (index_type_desc != NULL
8371 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8372 {
8373 /* Ignore this ___XA parallel type, as it does not bring any
8374 useful information. This allows us to avoid creating fixed
8375 versions of the array's index types, which would be identical
8376 to the original ones. This, in turn, can also help avoid
8377 the creation of fixed versions of the array itself. */
8378 index_type_desc = NULL;
8379 }
8380
8381 if (index_type_desc == NULL)
8382 {
8383 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8384
8385 /* NOTE: elt_type---the fixed version of elt_type0---should never
8386 depend on the contents of the array in properly constructed
8387 debugging data. */
8388 /* Create a fixed version of the array element type.
8389 We're not providing the address of an element here,
8390 and thus the actual object value cannot be inspected to do
8391 the conversion. This should not be a problem, since arrays of
8392 unconstrained objects are not allowed. In particular, all
8393 the elements of an array of a tagged type should all be of
8394 the same type specified in the debugging info. No need to
8395 consult the object tag. */
8396 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8397
8398 /* Make sure we always create a new array type when dealing with
8399 packed array types, since we're going to fix-up the array
8400 type length and element bitsize a little further down. */
8401 if (elt_type0 == elt_type && !constrained_packed_array_p)
8402 result = type0;
8403 else
8404 result = create_array_type (alloc_type_copy (type0),
8405 elt_type, type0->index_type ());
8406 }
8407 else
8408 {
8409 int i;
8410 struct type *elt_type0;
8411
8412 elt_type0 = type0;
8413 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8414 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8415
8416 /* NOTE: result---the fixed version of elt_type0---should never
8417 depend on the contents of the array in properly constructed
8418 debugging data. */
8419 /* Create a fixed version of the array element type.
8420 We're not providing the address of an element here,
8421 and thus the actual object value cannot be inspected to do
8422 the conversion. This should not be a problem, since arrays of
8423 unconstrained objects are not allowed. In particular, all
8424 the elements of an array of a tagged type should all be of
8425 the same type specified in the debugging info. No need to
8426 consult the object tag. */
8427 result =
8428 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8429
8430 elt_type0 = type0;
8431 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8432 {
8433 struct type *range_type =
8434 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8435
8436 result = create_array_type (alloc_type_copy (elt_type0),
8437 result, range_type);
8438 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8439 }
8440 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8441 error (_("array type with dynamic size is larger than varsize-limit"));
8442 }
8443
8444 /* We want to preserve the type name. This can be useful when
8445 trying to get the type name of a value that has already been
8446 printed (for instance, if the user did "print VAR; whatis $". */
8447 result->set_name (type0->name ());
8448
8449 if (constrained_packed_array_p)
8450 {
8451 /* So far, the resulting type has been created as if the original
8452 type was a regular (non-packed) array type. As a result, the
8453 bitsize of the array elements needs to be set again, and the array
8454 length needs to be recomputed based on that bitsize. */
8455 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8456 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8457
8458 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8459 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8460 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8461 TYPE_LENGTH (result)++;
8462 }
8463
8464 TYPE_FIXED_INSTANCE (result) = 1;
8465 return result;
8466 }
8467
8468
8469 /* A standard type (containing no dynamically sized components)
8470 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8471 DVAL describes a record containing any discriminants used in TYPE0,
8472 and may be NULL if there are none, or if the object of type TYPE at
8473 ADDRESS or in VALADDR contains these discriminants.
8474
8475 If CHECK_TAG is not null, in the case of tagged types, this function
8476 attempts to locate the object's tag and use it to compute the actual
8477 type. However, when ADDRESS is null, we cannot use it to determine the
8478 location of the tag, and therefore compute the tagged type's actual type.
8479 So we return the tagged type without consulting the tag. */
8480
8481 static struct type *
8482 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8483 CORE_ADDR address, struct value *dval, int check_tag)
8484 {
8485 type = ada_check_typedef (type);
8486
8487 /* Only un-fixed types need to be handled here. */
8488 if (!HAVE_GNAT_AUX_INFO (type))
8489 return type;
8490
8491 switch (type->code ())
8492 {
8493 default:
8494 return type;
8495 case TYPE_CODE_STRUCT:
8496 {
8497 struct type *static_type = to_static_fixed_type (type);
8498 struct type *fixed_record_type =
8499 to_fixed_record_type (type, valaddr, address, NULL);
8500
8501 /* If STATIC_TYPE is a tagged type and we know the object's address,
8502 then we can determine its tag, and compute the object's actual
8503 type from there. Note that we have to use the fixed record
8504 type (the parent part of the record may have dynamic fields
8505 and the way the location of _tag is expressed may depend on
8506 them). */
8507
8508 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8509 {
8510 struct value *tag =
8511 value_tag_from_contents_and_address
8512 (fixed_record_type,
8513 valaddr,
8514 address);
8515 struct type *real_type = type_from_tag (tag);
8516 struct value *obj =
8517 value_from_contents_and_address (fixed_record_type,
8518 valaddr,
8519 address);
8520 fixed_record_type = value_type (obj);
8521 if (real_type != NULL)
8522 return to_fixed_record_type
8523 (real_type, NULL,
8524 value_address (ada_tag_value_at_base_address (obj)), NULL);
8525 }
8526
8527 /* Check to see if there is a parallel ___XVZ variable.
8528 If there is, then it provides the actual size of our type. */
8529 else if (ada_type_name (fixed_record_type) != NULL)
8530 {
8531 const char *name = ada_type_name (fixed_record_type);
8532 char *xvz_name
8533 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8534 bool xvz_found = false;
8535 LONGEST size;
8536
8537 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8538 try
8539 {
8540 xvz_found = get_int_var_value (xvz_name, size);
8541 }
8542 catch (const gdb_exception_error &except)
8543 {
8544 /* We found the variable, but somehow failed to read
8545 its value. Rethrow the same error, but with a little
8546 bit more information, to help the user understand
8547 what went wrong (Eg: the variable might have been
8548 optimized out). */
8549 throw_error (except.error,
8550 _("unable to read value of %s (%s)"),
8551 xvz_name, except.what ());
8552 }
8553
8554 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8555 {
8556 fixed_record_type = copy_type (fixed_record_type);
8557 TYPE_LENGTH (fixed_record_type) = size;
8558
8559 /* The FIXED_RECORD_TYPE may have be a stub. We have
8560 observed this when the debugging info is STABS, and
8561 apparently it is something that is hard to fix.
8562
8563 In practice, we don't need the actual type definition
8564 at all, because the presence of the XVZ variable allows us
8565 to assume that there must be a XVS type as well, which we
8566 should be able to use later, when we need the actual type
8567 definition.
8568
8569 In the meantime, pretend that the "fixed" type we are
8570 returning is NOT a stub, because this can cause trouble
8571 when using this type to create new types targeting it.
8572 Indeed, the associated creation routines often check
8573 whether the target type is a stub and will try to replace
8574 it, thus using a type with the wrong size. This, in turn,
8575 might cause the new type to have the wrong size too.
8576 Consider the case of an array, for instance, where the size
8577 of the array is computed from the number of elements in
8578 our array multiplied by the size of its element. */
8579 TYPE_STUB (fixed_record_type) = 0;
8580 }
8581 }
8582 return fixed_record_type;
8583 }
8584 case TYPE_CODE_ARRAY:
8585 return to_fixed_array_type (type, dval, 1);
8586 case TYPE_CODE_UNION:
8587 if (dval == NULL)
8588 return type;
8589 else
8590 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8591 }
8592 }
8593
8594 /* The same as ada_to_fixed_type_1, except that it preserves the type
8595 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8596
8597 The typedef layer needs be preserved in order to differentiate between
8598 arrays and array pointers when both types are implemented using the same
8599 fat pointer. In the array pointer case, the pointer is encoded as
8600 a typedef of the pointer type. For instance, considering:
8601
8602 type String_Access is access String;
8603 S1 : String_Access := null;
8604
8605 To the debugger, S1 is defined as a typedef of type String. But
8606 to the user, it is a pointer. So if the user tries to print S1,
8607 we should not dereference the array, but print the array address
8608 instead.
8609
8610 If we didn't preserve the typedef layer, we would lose the fact that
8611 the type is to be presented as a pointer (needs de-reference before
8612 being printed). And we would also use the source-level type name. */
8613
8614 struct type *
8615 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8616 CORE_ADDR address, struct value *dval, int check_tag)
8617
8618 {
8619 struct type *fixed_type =
8620 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8621
8622 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8623 then preserve the typedef layer.
8624
8625 Implementation note: We can only check the main-type portion of
8626 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8627 from TYPE now returns a type that has the same instance flags
8628 as TYPE. For instance, if TYPE is a "typedef const", and its
8629 target type is a "struct", then the typedef elimination will return
8630 a "const" version of the target type. See check_typedef for more
8631 details about how the typedef layer elimination is done.
8632
8633 brobecker/2010-11-19: It seems to me that the only case where it is
8634 useful to preserve the typedef layer is when dealing with fat pointers.
8635 Perhaps, we could add a check for that and preserve the typedef layer
8636 only in that situation. But this seems unnecessary so far, probably
8637 because we call check_typedef/ada_check_typedef pretty much everywhere.
8638 */
8639 if (type->code () == TYPE_CODE_TYPEDEF
8640 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8641 == TYPE_MAIN_TYPE (fixed_type)))
8642 return type;
8643
8644 return fixed_type;
8645 }
8646
8647 /* A standard (static-sized) type corresponding as well as possible to
8648 TYPE0, but based on no runtime data. */
8649
8650 static struct type *
8651 to_static_fixed_type (struct type *type0)
8652 {
8653 struct type *type;
8654
8655 if (type0 == NULL)
8656 return NULL;
8657
8658 if (TYPE_FIXED_INSTANCE (type0))
8659 return type0;
8660
8661 type0 = ada_check_typedef (type0);
8662
8663 switch (type0->code ())
8664 {
8665 default:
8666 return type0;
8667 case TYPE_CODE_STRUCT:
8668 type = dynamic_template_type (type0);
8669 if (type != NULL)
8670 return template_to_static_fixed_type (type);
8671 else
8672 return template_to_static_fixed_type (type0);
8673 case TYPE_CODE_UNION:
8674 type = ada_find_parallel_type (type0, "___XVU");
8675 if (type != NULL)
8676 return template_to_static_fixed_type (type);
8677 else
8678 return template_to_static_fixed_type (type0);
8679 }
8680 }
8681
8682 /* A static approximation of TYPE with all type wrappers removed. */
8683
8684 static struct type *
8685 static_unwrap_type (struct type *type)
8686 {
8687 if (ada_is_aligner_type (type))
8688 {
8689 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8690 if (ada_type_name (type1) == NULL)
8691 type1->set_name (ada_type_name (type));
8692
8693 return static_unwrap_type (type1);
8694 }
8695 else
8696 {
8697 struct type *raw_real_type = ada_get_base_type (type);
8698
8699 if (raw_real_type == type)
8700 return type;
8701 else
8702 return to_static_fixed_type (raw_real_type);
8703 }
8704 }
8705
8706 /* In some cases, incomplete and private types require
8707 cross-references that are not resolved as records (for example,
8708 type Foo;
8709 type FooP is access Foo;
8710 V: FooP;
8711 type Foo is array ...;
8712 ). In these cases, since there is no mechanism for producing
8713 cross-references to such types, we instead substitute for FooP a
8714 stub enumeration type that is nowhere resolved, and whose tag is
8715 the name of the actual type. Call these types "non-record stubs". */
8716
8717 /* A type equivalent to TYPE that is not a non-record stub, if one
8718 exists, otherwise TYPE. */
8719
8720 struct type *
8721 ada_check_typedef (struct type *type)
8722 {
8723 if (type == NULL)
8724 return NULL;
8725
8726 /* If our type is an access to an unconstrained array, which is encoded
8727 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8728 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8729 what allows us to distinguish between fat pointers that represent
8730 array types, and fat pointers that represent array access types
8731 (in both cases, the compiler implements them as fat pointers). */
8732 if (ada_is_access_to_unconstrained_array (type))
8733 return type;
8734
8735 type = check_typedef (type);
8736 if (type == NULL || type->code () != TYPE_CODE_ENUM
8737 || !TYPE_STUB (type)
8738 || type->name () == NULL)
8739 return type;
8740 else
8741 {
8742 const char *name = type->name ();
8743 struct type *type1 = ada_find_any_type (name);
8744
8745 if (type1 == NULL)
8746 return type;
8747
8748 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8749 stubs pointing to arrays, as we don't create symbols for array
8750 types, only for the typedef-to-array types). If that's the case,
8751 strip the typedef layer. */
8752 if (type1->code () == TYPE_CODE_TYPEDEF)
8753 type1 = ada_check_typedef (type1);
8754
8755 return type1;
8756 }
8757 }
8758
8759 /* A value representing the data at VALADDR/ADDRESS as described by
8760 type TYPE0, but with a standard (static-sized) type that correctly
8761 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8762 type, then return VAL0 [this feature is simply to avoid redundant
8763 creation of struct values]. */
8764
8765 static struct value *
8766 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8767 struct value *val0)
8768 {
8769 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8770
8771 if (type == type0 && val0 != NULL)
8772 return val0;
8773
8774 if (VALUE_LVAL (val0) != lval_memory)
8775 {
8776 /* Our value does not live in memory; it could be a convenience
8777 variable, for instance. Create a not_lval value using val0's
8778 contents. */
8779 return value_from_contents (type, value_contents (val0));
8780 }
8781
8782 return value_from_contents_and_address (type, 0, address);
8783 }
8784
8785 /* A value representing VAL, but with a standard (static-sized) type
8786 that correctly describes it. Does not necessarily create a new
8787 value. */
8788
8789 struct value *
8790 ada_to_fixed_value (struct value *val)
8791 {
8792 val = unwrap_value (val);
8793 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8794 return val;
8795 }
8796 \f
8797
8798 /* Attributes */
8799
8800 /* Table mapping attribute numbers to names.
8801 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8802
8803 static const char *attribute_names[] = {
8804 "<?>",
8805
8806 "first",
8807 "last",
8808 "length",
8809 "image",
8810 "max",
8811 "min",
8812 "modulus",
8813 "pos",
8814 "size",
8815 "tag",
8816 "val",
8817 0
8818 };
8819
8820 static const char *
8821 ada_attribute_name (enum exp_opcode n)
8822 {
8823 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8824 return attribute_names[n - OP_ATR_FIRST + 1];
8825 else
8826 return attribute_names[0];
8827 }
8828
8829 /* Evaluate the 'POS attribute applied to ARG. */
8830
8831 static LONGEST
8832 pos_atr (struct value *arg)
8833 {
8834 struct value *val = coerce_ref (arg);
8835 struct type *type = value_type (val);
8836 LONGEST result;
8837
8838 if (!discrete_type_p (type))
8839 error (_("'POS only defined on discrete types"));
8840
8841 if (!discrete_position (type, value_as_long (val), &result))
8842 error (_("enumeration value is invalid: can't find 'POS"));
8843
8844 return result;
8845 }
8846
8847 static struct value *
8848 value_pos_atr (struct type *type, struct value *arg)
8849 {
8850 return value_from_longest (type, pos_atr (arg));
8851 }
8852
8853 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8854
8855 static struct value *
8856 val_atr (struct type *type, LONGEST val)
8857 {
8858 gdb_assert (discrete_type_p (type));
8859 if (type->code () == TYPE_CODE_RANGE)
8860 type = TYPE_TARGET_TYPE (type);
8861 if (type->code () == TYPE_CODE_ENUM)
8862 {
8863 if (val < 0 || val >= type->num_fields ())
8864 error (_("argument to 'VAL out of range"));
8865 val = TYPE_FIELD_ENUMVAL (type, val);
8866 }
8867 return value_from_longest (type, val);
8868 }
8869
8870 static struct value *
8871 value_val_atr (struct type *type, struct value *arg)
8872 {
8873 if (!discrete_type_p (type))
8874 error (_("'VAL only defined on discrete types"));
8875 if (!integer_type_p (value_type (arg)))
8876 error (_("'VAL requires integral argument"));
8877
8878 return val_atr (type, value_as_long (arg));
8879 }
8880 \f
8881
8882 /* Evaluation */
8883
8884 /* True if TYPE appears to be an Ada character type.
8885 [At the moment, this is true only for Character and Wide_Character;
8886 It is a heuristic test that could stand improvement]. */
8887
8888 bool
8889 ada_is_character_type (struct type *type)
8890 {
8891 const char *name;
8892
8893 /* If the type code says it's a character, then assume it really is,
8894 and don't check any further. */
8895 if (type->code () == TYPE_CODE_CHAR)
8896 return true;
8897
8898 /* Otherwise, assume it's a character type iff it is a discrete type
8899 with a known character type name. */
8900 name = ada_type_name (type);
8901 return (name != NULL
8902 && (type->code () == TYPE_CODE_INT
8903 || type->code () == TYPE_CODE_RANGE)
8904 && (strcmp (name, "character") == 0
8905 || strcmp (name, "wide_character") == 0
8906 || strcmp (name, "wide_wide_character") == 0
8907 || strcmp (name, "unsigned char") == 0));
8908 }
8909
8910 /* True if TYPE appears to be an Ada string type. */
8911
8912 bool
8913 ada_is_string_type (struct type *type)
8914 {
8915 type = ada_check_typedef (type);
8916 if (type != NULL
8917 && type->code () != TYPE_CODE_PTR
8918 && (ada_is_simple_array_type (type)
8919 || ada_is_array_descriptor_type (type))
8920 && ada_array_arity (type) == 1)
8921 {
8922 struct type *elttype = ada_array_element_type (type, 1);
8923
8924 return ada_is_character_type (elttype);
8925 }
8926 else
8927 return false;
8928 }
8929
8930 /* The compiler sometimes provides a parallel XVS type for a given
8931 PAD type. Normally, it is safe to follow the PAD type directly,
8932 but older versions of the compiler have a bug that causes the offset
8933 of its "F" field to be wrong. Following that field in that case
8934 would lead to incorrect results, but this can be worked around
8935 by ignoring the PAD type and using the associated XVS type instead.
8936
8937 Set to True if the debugger should trust the contents of PAD types.
8938 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8939 static bool trust_pad_over_xvs = true;
8940
8941 /* True if TYPE is a struct type introduced by the compiler to force the
8942 alignment of a value. Such types have a single field with a
8943 distinctive name. */
8944
8945 int
8946 ada_is_aligner_type (struct type *type)
8947 {
8948 type = ada_check_typedef (type);
8949
8950 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8951 return 0;
8952
8953 return (type->code () == TYPE_CODE_STRUCT
8954 && type->num_fields () == 1
8955 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8956 }
8957
8958 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8959 the parallel type. */
8960
8961 struct type *
8962 ada_get_base_type (struct type *raw_type)
8963 {
8964 struct type *real_type_namer;
8965 struct type *raw_real_type;
8966
8967 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8968 return raw_type;
8969
8970 if (ada_is_aligner_type (raw_type))
8971 /* The encoding specifies that we should always use the aligner type.
8972 So, even if this aligner type has an associated XVS type, we should
8973 simply ignore it.
8974
8975 According to the compiler gurus, an XVS type parallel to an aligner
8976 type may exist because of a stabs limitation. In stabs, aligner
8977 types are empty because the field has a variable-sized type, and
8978 thus cannot actually be used as an aligner type. As a result,
8979 we need the associated parallel XVS type to decode the type.
8980 Since the policy in the compiler is to not change the internal
8981 representation based on the debugging info format, we sometimes
8982 end up having a redundant XVS type parallel to the aligner type. */
8983 return raw_type;
8984
8985 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8986 if (real_type_namer == NULL
8987 || real_type_namer->code () != TYPE_CODE_STRUCT
8988 || real_type_namer->num_fields () != 1)
8989 return raw_type;
8990
8991 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8992 {
8993 /* This is an older encoding form where the base type needs to be
8994 looked up by name. We prefer the newer encoding because it is
8995 more efficient. */
8996 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8997 if (raw_real_type == NULL)
8998 return raw_type;
8999 else
9000 return raw_real_type;
9001 }
9002
9003 /* The field in our XVS type is a reference to the base type. */
9004 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9005 }
9006
9007 /* The type of value designated by TYPE, with all aligners removed. */
9008
9009 struct type *
9010 ada_aligned_type (struct type *type)
9011 {
9012 if (ada_is_aligner_type (type))
9013 return ada_aligned_type (type->field (0).type ());
9014 else
9015 return ada_get_base_type (type);
9016 }
9017
9018
9019 /* The address of the aligned value in an object at address VALADDR
9020 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9021
9022 const gdb_byte *
9023 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9024 {
9025 if (ada_is_aligner_type (type))
9026 return ada_aligned_value_addr (type->field (0).type (),
9027 valaddr +
9028 TYPE_FIELD_BITPOS (type,
9029 0) / TARGET_CHAR_BIT);
9030 else
9031 return valaddr;
9032 }
9033
9034
9035
9036 /* The printed representation of an enumeration literal with encoded
9037 name NAME. The value is good to the next call of ada_enum_name. */
9038 const char *
9039 ada_enum_name (const char *name)
9040 {
9041 static char *result;
9042 static size_t result_len = 0;
9043 const char *tmp;
9044
9045 /* First, unqualify the enumeration name:
9046 1. Search for the last '.' character. If we find one, then skip
9047 all the preceding characters, the unqualified name starts
9048 right after that dot.
9049 2. Otherwise, we may be debugging on a target where the compiler
9050 translates dots into "__". Search forward for double underscores,
9051 but stop searching when we hit an overloading suffix, which is
9052 of the form "__" followed by digits. */
9053
9054 tmp = strrchr (name, '.');
9055 if (tmp != NULL)
9056 name = tmp + 1;
9057 else
9058 {
9059 while ((tmp = strstr (name, "__")) != NULL)
9060 {
9061 if (isdigit (tmp[2]))
9062 break;
9063 else
9064 name = tmp + 2;
9065 }
9066 }
9067
9068 if (name[0] == 'Q')
9069 {
9070 int v;
9071
9072 if (name[1] == 'U' || name[1] == 'W')
9073 {
9074 if (sscanf (name + 2, "%x", &v) != 1)
9075 return name;
9076 }
9077 else if (((name[1] >= '0' && name[1] <= '9')
9078 || (name[1] >= 'a' && name[1] <= 'z'))
9079 && name[2] == '\0')
9080 {
9081 GROW_VECT (result, result_len, 4);
9082 xsnprintf (result, result_len, "'%c'", name[1]);
9083 return result;
9084 }
9085 else
9086 return name;
9087
9088 GROW_VECT (result, result_len, 16);
9089 if (isascii (v) && isprint (v))
9090 xsnprintf (result, result_len, "'%c'", v);
9091 else if (name[1] == 'U')
9092 xsnprintf (result, result_len, "[\"%02x\"]", v);
9093 else
9094 xsnprintf (result, result_len, "[\"%04x\"]", v);
9095
9096 return result;
9097 }
9098 else
9099 {
9100 tmp = strstr (name, "__");
9101 if (tmp == NULL)
9102 tmp = strstr (name, "$");
9103 if (tmp != NULL)
9104 {
9105 GROW_VECT (result, result_len, tmp - name + 1);
9106 strncpy (result, name, tmp - name);
9107 result[tmp - name] = '\0';
9108 return result;
9109 }
9110
9111 return name;
9112 }
9113 }
9114
9115 /* Evaluate the subexpression of EXP starting at *POS as for
9116 evaluate_type, updating *POS to point just past the evaluated
9117 expression. */
9118
9119 static struct value *
9120 evaluate_subexp_type (struct expression *exp, int *pos)
9121 {
9122 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9123 }
9124
9125 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9126 value it wraps. */
9127
9128 static struct value *
9129 unwrap_value (struct value *val)
9130 {
9131 struct type *type = ada_check_typedef (value_type (val));
9132
9133 if (ada_is_aligner_type (type))
9134 {
9135 struct value *v = ada_value_struct_elt (val, "F", 0);
9136 struct type *val_type = ada_check_typedef (value_type (v));
9137
9138 if (ada_type_name (val_type) == NULL)
9139 val_type->set_name (ada_type_name (type));
9140
9141 return unwrap_value (v);
9142 }
9143 else
9144 {
9145 struct type *raw_real_type =
9146 ada_check_typedef (ada_get_base_type (type));
9147
9148 /* If there is no parallel XVS or XVE type, then the value is
9149 already unwrapped. Return it without further modification. */
9150 if ((type == raw_real_type)
9151 && ada_find_parallel_type (type, "___XVE") == NULL)
9152 return val;
9153
9154 return
9155 coerce_unspec_val_to_type
9156 (val, ada_to_fixed_type (raw_real_type, 0,
9157 value_address (val),
9158 NULL, 1));
9159 }
9160 }
9161
9162 static struct value *
9163 cast_from_fixed (struct type *type, struct value *arg)
9164 {
9165 struct value *scale = ada_scaling_factor (value_type (arg));
9166 arg = value_cast (value_type (scale), arg);
9167
9168 arg = value_binop (arg, scale, BINOP_MUL);
9169 return value_cast (type, arg);
9170 }
9171
9172 static struct value *
9173 cast_to_fixed (struct type *type, struct value *arg)
9174 {
9175 if (type == value_type (arg))
9176 return arg;
9177
9178 struct value *scale = ada_scaling_factor (type);
9179 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9180 arg = cast_from_fixed (value_type (scale), arg);
9181 else
9182 arg = value_cast (value_type (scale), arg);
9183
9184 arg = value_binop (arg, scale, BINOP_DIV);
9185 return value_cast (type, arg);
9186 }
9187
9188 /* Given two array types T1 and T2, return nonzero iff both arrays
9189 contain the same number of elements. */
9190
9191 static int
9192 ada_same_array_size_p (struct type *t1, struct type *t2)
9193 {
9194 LONGEST lo1, hi1, lo2, hi2;
9195
9196 /* Get the array bounds in order to verify that the size of
9197 the two arrays match. */
9198 if (!get_array_bounds (t1, &lo1, &hi1)
9199 || !get_array_bounds (t2, &lo2, &hi2))
9200 error (_("unable to determine array bounds"));
9201
9202 /* To make things easier for size comparison, normalize a bit
9203 the case of empty arrays by making sure that the difference
9204 between upper bound and lower bound is always -1. */
9205 if (lo1 > hi1)
9206 hi1 = lo1 - 1;
9207 if (lo2 > hi2)
9208 hi2 = lo2 - 1;
9209
9210 return (hi1 - lo1 == hi2 - lo2);
9211 }
9212
9213 /* Assuming that VAL is an array of integrals, and TYPE represents
9214 an array with the same number of elements, but with wider integral
9215 elements, return an array "casted" to TYPE. In practice, this
9216 means that the returned array is built by casting each element
9217 of the original array into TYPE's (wider) element type. */
9218
9219 static struct value *
9220 ada_promote_array_of_integrals (struct type *type, struct value *val)
9221 {
9222 struct type *elt_type = TYPE_TARGET_TYPE (type);
9223 LONGEST lo, hi;
9224 struct value *res;
9225 LONGEST i;
9226
9227 /* Verify that both val and type are arrays of scalars, and
9228 that the size of val's elements is smaller than the size
9229 of type's element. */
9230 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9231 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9232 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9233 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9234 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9235 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9236
9237 if (!get_array_bounds (type, &lo, &hi))
9238 error (_("unable to determine array bounds"));
9239
9240 res = allocate_value (type);
9241
9242 /* Promote each array element. */
9243 for (i = 0; i < hi - lo + 1; i++)
9244 {
9245 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9246
9247 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9248 value_contents_all (elt), TYPE_LENGTH (elt_type));
9249 }
9250
9251 return res;
9252 }
9253
9254 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9255 return the converted value. */
9256
9257 static struct value *
9258 coerce_for_assign (struct type *type, struct value *val)
9259 {
9260 struct type *type2 = value_type (val);
9261
9262 if (type == type2)
9263 return val;
9264
9265 type2 = ada_check_typedef (type2);
9266 type = ada_check_typedef (type);
9267
9268 if (type2->code () == TYPE_CODE_PTR
9269 && type->code () == TYPE_CODE_ARRAY)
9270 {
9271 val = ada_value_ind (val);
9272 type2 = value_type (val);
9273 }
9274
9275 if (type2->code () == TYPE_CODE_ARRAY
9276 && type->code () == TYPE_CODE_ARRAY)
9277 {
9278 if (!ada_same_array_size_p (type, type2))
9279 error (_("cannot assign arrays of different length"));
9280
9281 if (is_integral_type (TYPE_TARGET_TYPE (type))
9282 && is_integral_type (TYPE_TARGET_TYPE (type2))
9283 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9284 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9285 {
9286 /* Allow implicit promotion of the array elements to
9287 a wider type. */
9288 return ada_promote_array_of_integrals (type, val);
9289 }
9290
9291 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9292 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9293 error (_("Incompatible types in assignment"));
9294 deprecated_set_value_type (val, type);
9295 }
9296 return val;
9297 }
9298
9299 static struct value *
9300 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9301 {
9302 struct value *val;
9303 struct type *type1, *type2;
9304 LONGEST v, v1, v2;
9305
9306 arg1 = coerce_ref (arg1);
9307 arg2 = coerce_ref (arg2);
9308 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9309 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9310
9311 if (type1->code () != TYPE_CODE_INT
9312 || type2->code () != TYPE_CODE_INT)
9313 return value_binop (arg1, arg2, op);
9314
9315 switch (op)
9316 {
9317 case BINOP_MOD:
9318 case BINOP_DIV:
9319 case BINOP_REM:
9320 break;
9321 default:
9322 return value_binop (arg1, arg2, op);
9323 }
9324
9325 v2 = value_as_long (arg2);
9326 if (v2 == 0)
9327 error (_("second operand of %s must not be zero."), op_string (op));
9328
9329 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9330 return value_binop (arg1, arg2, op);
9331
9332 v1 = value_as_long (arg1);
9333 switch (op)
9334 {
9335 case BINOP_DIV:
9336 v = v1 / v2;
9337 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9338 v += v > 0 ? -1 : 1;
9339 break;
9340 case BINOP_REM:
9341 v = v1 % v2;
9342 if (v * v1 < 0)
9343 v -= v2;
9344 break;
9345 default:
9346 /* Should not reach this point. */
9347 v = 0;
9348 }
9349
9350 val = allocate_value (type1);
9351 store_unsigned_integer (value_contents_raw (val),
9352 TYPE_LENGTH (value_type (val)),
9353 type_byte_order (type1), v);
9354 return val;
9355 }
9356
9357 static int
9358 ada_value_equal (struct value *arg1, struct value *arg2)
9359 {
9360 if (ada_is_direct_array_type (value_type (arg1))
9361 || ada_is_direct_array_type (value_type (arg2)))
9362 {
9363 struct type *arg1_type, *arg2_type;
9364
9365 /* Automatically dereference any array reference before
9366 we attempt to perform the comparison. */
9367 arg1 = ada_coerce_ref (arg1);
9368 arg2 = ada_coerce_ref (arg2);
9369
9370 arg1 = ada_coerce_to_simple_array (arg1);
9371 arg2 = ada_coerce_to_simple_array (arg2);
9372
9373 arg1_type = ada_check_typedef (value_type (arg1));
9374 arg2_type = ada_check_typedef (value_type (arg2));
9375
9376 if (arg1_type->code () != TYPE_CODE_ARRAY
9377 || arg2_type->code () != TYPE_CODE_ARRAY)
9378 error (_("Attempt to compare array with non-array"));
9379 /* FIXME: The following works only for types whose
9380 representations use all bits (no padding or undefined bits)
9381 and do not have user-defined equality. */
9382 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9383 && memcmp (value_contents (arg1), value_contents (arg2),
9384 TYPE_LENGTH (arg1_type)) == 0);
9385 }
9386 return value_equal (arg1, arg2);
9387 }
9388
9389 /* Total number of component associations in the aggregate starting at
9390 index PC in EXP. Assumes that index PC is the start of an
9391 OP_AGGREGATE. */
9392
9393 static int
9394 num_component_specs (struct expression *exp, int pc)
9395 {
9396 int n, m, i;
9397
9398 m = exp->elts[pc + 1].longconst;
9399 pc += 3;
9400 n = 0;
9401 for (i = 0; i < m; i += 1)
9402 {
9403 switch (exp->elts[pc].opcode)
9404 {
9405 default:
9406 n += 1;
9407 break;
9408 case OP_CHOICES:
9409 n += exp->elts[pc + 1].longconst;
9410 break;
9411 }
9412 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9413 }
9414 return n;
9415 }
9416
9417 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9418 component of LHS (a simple array or a record), updating *POS past
9419 the expression, assuming that LHS is contained in CONTAINER. Does
9420 not modify the inferior's memory, nor does it modify LHS (unless
9421 LHS == CONTAINER). */
9422
9423 static void
9424 assign_component (struct value *container, struct value *lhs, LONGEST index,
9425 struct expression *exp, int *pos)
9426 {
9427 struct value *mark = value_mark ();
9428 struct value *elt;
9429 struct type *lhs_type = check_typedef (value_type (lhs));
9430
9431 if (lhs_type->code () == TYPE_CODE_ARRAY)
9432 {
9433 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9434 struct value *index_val = value_from_longest (index_type, index);
9435
9436 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9437 }
9438 else
9439 {
9440 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9441 elt = ada_to_fixed_value (elt);
9442 }
9443
9444 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9445 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9446 else
9447 value_assign_to_component (container, elt,
9448 ada_evaluate_subexp (NULL, exp, pos,
9449 EVAL_NORMAL));
9450
9451 value_free_to_mark (mark);
9452 }
9453
9454 /* Assuming that LHS represents an lvalue having a record or array
9455 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9456 of that aggregate's value to LHS, advancing *POS past the
9457 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9458 lvalue containing LHS (possibly LHS itself). Does not modify
9459 the inferior's memory, nor does it modify the contents of
9460 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9461
9462 static struct value *
9463 assign_aggregate (struct value *container,
9464 struct value *lhs, struct expression *exp,
9465 int *pos, enum noside noside)
9466 {
9467 struct type *lhs_type;
9468 int n = exp->elts[*pos+1].longconst;
9469 LONGEST low_index, high_index;
9470 int num_specs;
9471 LONGEST *indices;
9472 int max_indices, num_indices;
9473 int i;
9474
9475 *pos += 3;
9476 if (noside != EVAL_NORMAL)
9477 {
9478 for (i = 0; i < n; i += 1)
9479 ada_evaluate_subexp (NULL, exp, pos, noside);
9480 return container;
9481 }
9482
9483 container = ada_coerce_ref (container);
9484 if (ada_is_direct_array_type (value_type (container)))
9485 container = ada_coerce_to_simple_array (container);
9486 lhs = ada_coerce_ref (lhs);
9487 if (!deprecated_value_modifiable (lhs))
9488 error (_("Left operand of assignment is not a modifiable lvalue."));
9489
9490 lhs_type = check_typedef (value_type (lhs));
9491 if (ada_is_direct_array_type (lhs_type))
9492 {
9493 lhs = ada_coerce_to_simple_array (lhs);
9494 lhs_type = check_typedef (value_type (lhs));
9495 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9496 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9497 }
9498 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9499 {
9500 low_index = 0;
9501 high_index = num_visible_fields (lhs_type) - 1;
9502 }
9503 else
9504 error (_("Left-hand side must be array or record."));
9505
9506 num_specs = num_component_specs (exp, *pos - 3);
9507 max_indices = 4 * num_specs + 4;
9508 indices = XALLOCAVEC (LONGEST, max_indices);
9509 indices[0] = indices[1] = low_index - 1;
9510 indices[2] = indices[3] = high_index + 1;
9511 num_indices = 4;
9512
9513 for (i = 0; i < n; i += 1)
9514 {
9515 switch (exp->elts[*pos].opcode)
9516 {
9517 case OP_CHOICES:
9518 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9519 &num_indices, max_indices,
9520 low_index, high_index);
9521 break;
9522 case OP_POSITIONAL:
9523 aggregate_assign_positional (container, lhs, exp, pos, indices,
9524 &num_indices, max_indices,
9525 low_index, high_index);
9526 break;
9527 case OP_OTHERS:
9528 if (i != n-1)
9529 error (_("Misplaced 'others' clause"));
9530 aggregate_assign_others (container, lhs, exp, pos, indices,
9531 num_indices, low_index, high_index);
9532 break;
9533 default:
9534 error (_("Internal error: bad aggregate clause"));
9535 }
9536 }
9537
9538 return container;
9539 }
9540
9541 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9542 construct at *POS, updating *POS past the construct, given that
9543 the positions are relative to lower bound LOW, where HIGH is the
9544 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9545 updating *NUM_INDICES as needed. CONTAINER is as for
9546 assign_aggregate. */
9547 static void
9548 aggregate_assign_positional (struct value *container,
9549 struct value *lhs, struct expression *exp,
9550 int *pos, LONGEST *indices, int *num_indices,
9551 int max_indices, LONGEST low, LONGEST high)
9552 {
9553 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9554
9555 if (ind - 1 == high)
9556 warning (_("Extra components in aggregate ignored."));
9557 if (ind <= high)
9558 {
9559 add_component_interval (ind, ind, indices, num_indices, max_indices);
9560 *pos += 3;
9561 assign_component (container, lhs, ind, exp, pos);
9562 }
9563 else
9564 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9565 }
9566
9567 /* Assign into the components of LHS indexed by the OP_CHOICES
9568 construct at *POS, updating *POS past the construct, given that
9569 the allowable indices are LOW..HIGH. Record the indices assigned
9570 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9571 needed. CONTAINER is as for assign_aggregate. */
9572 static void
9573 aggregate_assign_from_choices (struct value *container,
9574 struct value *lhs, struct expression *exp,
9575 int *pos, LONGEST *indices, int *num_indices,
9576 int max_indices, LONGEST low, LONGEST high)
9577 {
9578 int j;
9579 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9580 int choice_pos, expr_pc;
9581 int is_array = ada_is_direct_array_type (value_type (lhs));
9582
9583 choice_pos = *pos += 3;
9584
9585 for (j = 0; j < n_choices; j += 1)
9586 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9587 expr_pc = *pos;
9588 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9589
9590 for (j = 0; j < n_choices; j += 1)
9591 {
9592 LONGEST lower, upper;
9593 enum exp_opcode op = exp->elts[choice_pos].opcode;
9594
9595 if (op == OP_DISCRETE_RANGE)
9596 {
9597 choice_pos += 1;
9598 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9599 EVAL_NORMAL));
9600 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9601 EVAL_NORMAL));
9602 }
9603 else if (is_array)
9604 {
9605 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9606 EVAL_NORMAL));
9607 upper = lower;
9608 }
9609 else
9610 {
9611 int ind;
9612 const char *name;
9613
9614 switch (op)
9615 {
9616 case OP_NAME:
9617 name = &exp->elts[choice_pos + 2].string;
9618 break;
9619 case OP_VAR_VALUE:
9620 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9621 break;
9622 default:
9623 error (_("Invalid record component association."));
9624 }
9625 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9626 ind = 0;
9627 if (! find_struct_field (name, value_type (lhs), 0,
9628 NULL, NULL, NULL, NULL, &ind))
9629 error (_("Unknown component name: %s."), name);
9630 lower = upper = ind;
9631 }
9632
9633 if (lower <= upper && (lower < low || upper > high))
9634 error (_("Index in component association out of bounds."));
9635
9636 add_component_interval (lower, upper, indices, num_indices,
9637 max_indices);
9638 while (lower <= upper)
9639 {
9640 int pos1;
9641
9642 pos1 = expr_pc;
9643 assign_component (container, lhs, lower, exp, &pos1);
9644 lower += 1;
9645 }
9646 }
9647 }
9648
9649 /* Assign the value of the expression in the OP_OTHERS construct in
9650 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9651 have not been previously assigned. The index intervals already assigned
9652 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9653 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9654 static void
9655 aggregate_assign_others (struct value *container,
9656 struct value *lhs, struct expression *exp,
9657 int *pos, LONGEST *indices, int num_indices,
9658 LONGEST low, LONGEST high)
9659 {
9660 int i;
9661 int expr_pc = *pos + 1;
9662
9663 for (i = 0; i < num_indices - 2; i += 2)
9664 {
9665 LONGEST ind;
9666
9667 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9668 {
9669 int localpos;
9670
9671 localpos = expr_pc;
9672 assign_component (container, lhs, ind, exp, &localpos);
9673 }
9674 }
9675 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9676 }
9677
9678 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9679 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9680 modifying *SIZE as needed. It is an error if *SIZE exceeds
9681 MAX_SIZE. The resulting intervals do not overlap. */
9682 static void
9683 add_component_interval (LONGEST low, LONGEST high,
9684 LONGEST* indices, int *size, int max_size)
9685 {
9686 int i, j;
9687
9688 for (i = 0; i < *size; i += 2) {
9689 if (high >= indices[i] && low <= indices[i + 1])
9690 {
9691 int kh;
9692
9693 for (kh = i + 2; kh < *size; kh += 2)
9694 if (high < indices[kh])
9695 break;
9696 if (low < indices[i])
9697 indices[i] = low;
9698 indices[i + 1] = indices[kh - 1];
9699 if (high > indices[i + 1])
9700 indices[i + 1] = high;
9701 memcpy (indices + i + 2, indices + kh, *size - kh);
9702 *size -= kh - i - 2;
9703 return;
9704 }
9705 else if (high < indices[i])
9706 break;
9707 }
9708
9709 if (*size == max_size)
9710 error (_("Internal error: miscounted aggregate components."));
9711 *size += 2;
9712 for (j = *size-1; j >= i+2; j -= 1)
9713 indices[j] = indices[j - 2];
9714 indices[i] = low;
9715 indices[i + 1] = high;
9716 }
9717
9718 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9719 is different. */
9720
9721 static struct value *
9722 ada_value_cast (struct type *type, struct value *arg2)
9723 {
9724 if (type == ada_check_typedef (value_type (arg2)))
9725 return arg2;
9726
9727 if (ada_is_gnat_encoded_fixed_point_type (type))
9728 return cast_to_fixed (type, arg2);
9729
9730 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9731 return cast_from_fixed (type, arg2);
9732
9733 return value_cast (type, arg2);
9734 }
9735
9736 /* Evaluating Ada expressions, and printing their result.
9737 ------------------------------------------------------
9738
9739 1. Introduction:
9740 ----------------
9741
9742 We usually evaluate an Ada expression in order to print its value.
9743 We also evaluate an expression in order to print its type, which
9744 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9745 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9746 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9747 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9748 similar.
9749
9750 Evaluating expressions is a little more complicated for Ada entities
9751 than it is for entities in languages such as C. The main reason for
9752 this is that Ada provides types whose definition might be dynamic.
9753 One example of such types is variant records. Or another example
9754 would be an array whose bounds can only be known at run time.
9755
9756 The following description is a general guide as to what should be
9757 done (and what should NOT be done) in order to evaluate an expression
9758 involving such types, and when. This does not cover how the semantic
9759 information is encoded by GNAT as this is covered separatly. For the
9760 document used as the reference for the GNAT encoding, see exp_dbug.ads
9761 in the GNAT sources.
9762
9763 Ideally, we should embed each part of this description next to its
9764 associated code. Unfortunately, the amount of code is so vast right
9765 now that it's hard to see whether the code handling a particular
9766 situation might be duplicated or not. One day, when the code is
9767 cleaned up, this guide might become redundant with the comments
9768 inserted in the code, and we might want to remove it.
9769
9770 2. ``Fixing'' an Entity, the Simple Case:
9771 -----------------------------------------
9772
9773 When evaluating Ada expressions, the tricky issue is that they may
9774 reference entities whose type contents and size are not statically
9775 known. Consider for instance a variant record:
9776
9777 type Rec (Empty : Boolean := True) is record
9778 case Empty is
9779 when True => null;
9780 when False => Value : Integer;
9781 end case;
9782 end record;
9783 Yes : Rec := (Empty => False, Value => 1);
9784 No : Rec := (empty => True);
9785
9786 The size and contents of that record depends on the value of the
9787 descriminant (Rec.Empty). At this point, neither the debugging
9788 information nor the associated type structure in GDB are able to
9789 express such dynamic types. So what the debugger does is to create
9790 "fixed" versions of the type that applies to the specific object.
9791 We also informally refer to this operation as "fixing" an object,
9792 which means creating its associated fixed type.
9793
9794 Example: when printing the value of variable "Yes" above, its fixed
9795 type would look like this:
9796
9797 type Rec is record
9798 Empty : Boolean;
9799 Value : Integer;
9800 end record;
9801
9802 On the other hand, if we printed the value of "No", its fixed type
9803 would become:
9804
9805 type Rec is record
9806 Empty : Boolean;
9807 end record;
9808
9809 Things become a little more complicated when trying to fix an entity
9810 with a dynamic type that directly contains another dynamic type,
9811 such as an array of variant records, for instance. There are
9812 two possible cases: Arrays, and records.
9813
9814 3. ``Fixing'' Arrays:
9815 ---------------------
9816
9817 The type structure in GDB describes an array in terms of its bounds,
9818 and the type of its elements. By design, all elements in the array
9819 have the same type and we cannot represent an array of variant elements
9820 using the current type structure in GDB. When fixing an array,
9821 we cannot fix the array element, as we would potentially need one
9822 fixed type per element of the array. As a result, the best we can do
9823 when fixing an array is to produce an array whose bounds and size
9824 are correct (allowing us to read it from memory), but without having
9825 touched its element type. Fixing each element will be done later,
9826 when (if) necessary.
9827
9828 Arrays are a little simpler to handle than records, because the same
9829 amount of memory is allocated for each element of the array, even if
9830 the amount of space actually used by each element differs from element
9831 to element. Consider for instance the following array of type Rec:
9832
9833 type Rec_Array is array (1 .. 2) of Rec;
9834
9835 The actual amount of memory occupied by each element might be different
9836 from element to element, depending on the value of their discriminant.
9837 But the amount of space reserved for each element in the array remains
9838 fixed regardless. So we simply need to compute that size using
9839 the debugging information available, from which we can then determine
9840 the array size (we multiply the number of elements of the array by
9841 the size of each element).
9842
9843 The simplest case is when we have an array of a constrained element
9844 type. For instance, consider the following type declarations:
9845
9846 type Bounded_String (Max_Size : Integer) is
9847 Length : Integer;
9848 Buffer : String (1 .. Max_Size);
9849 end record;
9850 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9851
9852 In this case, the compiler describes the array as an array of
9853 variable-size elements (identified by its XVS suffix) for which
9854 the size can be read in the parallel XVZ variable.
9855
9856 In the case of an array of an unconstrained element type, the compiler
9857 wraps the array element inside a private PAD type. This type should not
9858 be shown to the user, and must be "unwrap"'ed before printing. Note
9859 that we also use the adjective "aligner" in our code to designate
9860 these wrapper types.
9861
9862 In some cases, the size allocated for each element is statically
9863 known. In that case, the PAD type already has the correct size,
9864 and the array element should remain unfixed.
9865
9866 But there are cases when this size is not statically known.
9867 For instance, assuming that "Five" is an integer variable:
9868
9869 type Dynamic is array (1 .. Five) of Integer;
9870 type Wrapper (Has_Length : Boolean := False) is record
9871 Data : Dynamic;
9872 case Has_Length is
9873 when True => Length : Integer;
9874 when False => null;
9875 end case;
9876 end record;
9877 type Wrapper_Array is array (1 .. 2) of Wrapper;
9878
9879 Hello : Wrapper_Array := (others => (Has_Length => True,
9880 Data => (others => 17),
9881 Length => 1));
9882
9883
9884 The debugging info would describe variable Hello as being an
9885 array of a PAD type. The size of that PAD type is not statically
9886 known, but can be determined using a parallel XVZ variable.
9887 In that case, a copy of the PAD type with the correct size should
9888 be used for the fixed array.
9889
9890 3. ``Fixing'' record type objects:
9891 ----------------------------------
9892
9893 Things are slightly different from arrays in the case of dynamic
9894 record types. In this case, in order to compute the associated
9895 fixed type, we need to determine the size and offset of each of
9896 its components. This, in turn, requires us to compute the fixed
9897 type of each of these components.
9898
9899 Consider for instance the example:
9900
9901 type Bounded_String (Max_Size : Natural) is record
9902 Str : String (1 .. Max_Size);
9903 Length : Natural;
9904 end record;
9905 My_String : Bounded_String (Max_Size => 10);
9906
9907 In that case, the position of field "Length" depends on the size
9908 of field Str, which itself depends on the value of the Max_Size
9909 discriminant. In order to fix the type of variable My_String,
9910 we need to fix the type of field Str. Therefore, fixing a variant
9911 record requires us to fix each of its components.
9912
9913 However, if a component does not have a dynamic size, the component
9914 should not be fixed. In particular, fields that use a PAD type
9915 should not fixed. Here is an example where this might happen
9916 (assuming type Rec above):
9917
9918 type Container (Big : Boolean) is record
9919 First : Rec;
9920 After : Integer;
9921 case Big is
9922 when True => Another : Integer;
9923 when False => null;
9924 end case;
9925 end record;
9926 My_Container : Container := (Big => False,
9927 First => (Empty => True),
9928 After => 42);
9929
9930 In that example, the compiler creates a PAD type for component First,
9931 whose size is constant, and then positions the component After just
9932 right after it. The offset of component After is therefore constant
9933 in this case.
9934
9935 The debugger computes the position of each field based on an algorithm
9936 that uses, among other things, the actual position and size of the field
9937 preceding it. Let's now imagine that the user is trying to print
9938 the value of My_Container. If the type fixing was recursive, we would
9939 end up computing the offset of field After based on the size of the
9940 fixed version of field First. And since in our example First has
9941 only one actual field, the size of the fixed type is actually smaller
9942 than the amount of space allocated to that field, and thus we would
9943 compute the wrong offset of field After.
9944
9945 To make things more complicated, we need to watch out for dynamic
9946 components of variant records (identified by the ___XVL suffix in
9947 the component name). Even if the target type is a PAD type, the size
9948 of that type might not be statically known. So the PAD type needs
9949 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9950 we might end up with the wrong size for our component. This can be
9951 observed with the following type declarations:
9952
9953 type Octal is new Integer range 0 .. 7;
9954 type Octal_Array is array (Positive range <>) of Octal;
9955 pragma Pack (Octal_Array);
9956
9957 type Octal_Buffer (Size : Positive) is record
9958 Buffer : Octal_Array (1 .. Size);
9959 Length : Integer;
9960 end record;
9961
9962 In that case, Buffer is a PAD type whose size is unset and needs
9963 to be computed by fixing the unwrapped type.
9964
9965 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9966 ----------------------------------------------------------
9967
9968 Lastly, when should the sub-elements of an entity that remained unfixed
9969 thus far, be actually fixed?
9970
9971 The answer is: Only when referencing that element. For instance
9972 when selecting one component of a record, this specific component
9973 should be fixed at that point in time. Or when printing the value
9974 of a record, each component should be fixed before its value gets
9975 printed. Similarly for arrays, the element of the array should be
9976 fixed when printing each element of the array, or when extracting
9977 one element out of that array. On the other hand, fixing should
9978 not be performed on the elements when taking a slice of an array!
9979
9980 Note that one of the side effects of miscomputing the offset and
9981 size of each field is that we end up also miscomputing the size
9982 of the containing type. This can have adverse results when computing
9983 the value of an entity. GDB fetches the value of an entity based
9984 on the size of its type, and thus a wrong size causes GDB to fetch
9985 the wrong amount of memory. In the case where the computed size is
9986 too small, GDB fetches too little data to print the value of our
9987 entity. Results in this case are unpredictable, as we usually read
9988 past the buffer containing the data =:-o. */
9989
9990 /* Evaluate a subexpression of EXP, at index *POS, and return a value
9991 for that subexpression cast to TO_TYPE. Advance *POS over the
9992 subexpression. */
9993
9994 static value *
9995 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
9996 enum noside noside, struct type *to_type)
9997 {
9998 int pc = *pos;
9999
10000 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10001 || exp->elts[pc].opcode == OP_VAR_VALUE)
10002 {
10003 (*pos) += 4;
10004
10005 value *val;
10006 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10007 {
10008 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10009 return value_zero (to_type, not_lval);
10010
10011 val = evaluate_var_msym_value (noside,
10012 exp->elts[pc + 1].objfile,
10013 exp->elts[pc + 2].msymbol);
10014 }
10015 else
10016 val = evaluate_var_value (noside,
10017 exp->elts[pc + 1].block,
10018 exp->elts[pc + 2].symbol);
10019
10020 if (noside == EVAL_SKIP)
10021 return eval_skip_value (exp);
10022
10023 val = ada_value_cast (to_type, val);
10024
10025 /* Follow the Ada language semantics that do not allow taking
10026 an address of the result of a cast (view conversion in Ada). */
10027 if (VALUE_LVAL (val) == lval_memory)
10028 {
10029 if (value_lazy (val))
10030 value_fetch_lazy (val);
10031 VALUE_LVAL (val) = not_lval;
10032 }
10033 return val;
10034 }
10035
10036 value *val = evaluate_subexp (to_type, exp, pos, noside);
10037 if (noside == EVAL_SKIP)
10038 return eval_skip_value (exp);
10039 return ada_value_cast (to_type, val);
10040 }
10041
10042 /* Implement the evaluate_exp routine in the exp_descriptor structure
10043 for the Ada language. */
10044
10045 static struct value *
10046 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10047 int *pos, enum noside noside)
10048 {
10049 enum exp_opcode op;
10050 int tem;
10051 int pc;
10052 int preeval_pos;
10053 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10054 struct type *type;
10055 int nargs, oplen;
10056 struct value **argvec;
10057
10058 pc = *pos;
10059 *pos += 1;
10060 op = exp->elts[pc].opcode;
10061
10062 switch (op)
10063 {
10064 default:
10065 *pos -= 1;
10066 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10067
10068 if (noside == EVAL_NORMAL)
10069 arg1 = unwrap_value (arg1);
10070
10071 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10072 then we need to perform the conversion manually, because
10073 evaluate_subexp_standard doesn't do it. This conversion is
10074 necessary in Ada because the different kinds of float/fixed
10075 types in Ada have different representations.
10076
10077 Similarly, we need to perform the conversion from OP_LONG
10078 ourselves. */
10079 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10080 arg1 = ada_value_cast (expect_type, arg1);
10081
10082 return arg1;
10083
10084 case OP_STRING:
10085 {
10086 struct value *result;
10087
10088 *pos -= 1;
10089 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10090 /* The result type will have code OP_STRING, bashed there from
10091 OP_ARRAY. Bash it back. */
10092 if (value_type (result)->code () == TYPE_CODE_STRING)
10093 value_type (result)->set_code (TYPE_CODE_ARRAY);
10094 return result;
10095 }
10096
10097 case UNOP_CAST:
10098 (*pos) += 2;
10099 type = exp->elts[pc + 1].type;
10100 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10101
10102 case UNOP_QUAL:
10103 (*pos) += 2;
10104 type = exp->elts[pc + 1].type;
10105 return ada_evaluate_subexp (type, exp, pos, noside);
10106
10107 case BINOP_ASSIGN:
10108 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10109 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10110 {
10111 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10112 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10113 return arg1;
10114 return ada_value_assign (arg1, arg1);
10115 }
10116 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10117 except if the lhs of our assignment is a convenience variable.
10118 In the case of assigning to a convenience variable, the lhs
10119 should be exactly the result of the evaluation of the rhs. */
10120 type = value_type (arg1);
10121 if (VALUE_LVAL (arg1) == lval_internalvar)
10122 type = NULL;
10123 arg2 = evaluate_subexp (type, exp, pos, noside);
10124 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10125 return arg1;
10126 if (VALUE_LVAL (arg1) == lval_internalvar)
10127 {
10128 /* Nothing. */
10129 }
10130 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10131 arg2 = cast_to_fixed (value_type (arg1), arg2);
10132 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10133 error
10134 (_("Fixed-point values must be assigned to fixed-point variables"));
10135 else
10136 arg2 = coerce_for_assign (value_type (arg1), arg2);
10137 return ada_value_assign (arg1, arg2);
10138
10139 case BINOP_ADD:
10140 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10141 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10142 if (noside == EVAL_SKIP)
10143 goto nosideret;
10144 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10145 return (value_from_longest
10146 (value_type (arg1),
10147 value_as_long (arg1) + value_as_long (arg2)));
10148 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10149 return (value_from_longest
10150 (value_type (arg2),
10151 value_as_long (arg1) + value_as_long (arg2)));
10152 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10153 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10154 && value_type (arg1) != value_type (arg2))
10155 error (_("Operands of fixed-point addition must have the same type"));
10156 /* Do the addition, and cast the result to the type of the first
10157 argument. We cannot cast the result to a reference type, so if
10158 ARG1 is a reference type, find its underlying type. */
10159 type = value_type (arg1);
10160 while (type->code () == TYPE_CODE_REF)
10161 type = TYPE_TARGET_TYPE (type);
10162 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10163 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10164
10165 case BINOP_SUB:
10166 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10167 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10168 if (noside == EVAL_SKIP)
10169 goto nosideret;
10170 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10171 return (value_from_longest
10172 (value_type (arg1),
10173 value_as_long (arg1) - value_as_long (arg2)));
10174 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10175 return (value_from_longest
10176 (value_type (arg2),
10177 value_as_long (arg1) - value_as_long (arg2)));
10178 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10179 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10180 && value_type (arg1) != value_type (arg2))
10181 error (_("Operands of fixed-point subtraction "
10182 "must have the same type"));
10183 /* Do the substraction, and cast the result to the type of the first
10184 argument. We cannot cast the result to a reference type, so if
10185 ARG1 is a reference type, find its underlying type. */
10186 type = value_type (arg1);
10187 while (type->code () == TYPE_CODE_REF)
10188 type = TYPE_TARGET_TYPE (type);
10189 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10190 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10191
10192 case BINOP_MUL:
10193 case BINOP_DIV:
10194 case BINOP_REM:
10195 case BINOP_MOD:
10196 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10197 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10198 if (noside == EVAL_SKIP)
10199 goto nosideret;
10200 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10201 {
10202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10203 return value_zero (value_type (arg1), not_lval);
10204 }
10205 else
10206 {
10207 type = builtin_type (exp->gdbarch)->builtin_double;
10208 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10209 arg1 = cast_from_fixed (type, arg1);
10210 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10211 arg2 = cast_from_fixed (type, arg2);
10212 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10213 return ada_value_binop (arg1, arg2, op);
10214 }
10215
10216 case BINOP_EQUAL:
10217 case BINOP_NOTEQUAL:
10218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10219 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10220 if (noside == EVAL_SKIP)
10221 goto nosideret;
10222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10223 tem = 0;
10224 else
10225 {
10226 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10227 tem = ada_value_equal (arg1, arg2);
10228 }
10229 if (op == BINOP_NOTEQUAL)
10230 tem = !tem;
10231 type = language_bool_type (exp->language_defn, exp->gdbarch);
10232 return value_from_longest (type, (LONGEST) tem);
10233
10234 case UNOP_NEG:
10235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10236 if (noside == EVAL_SKIP)
10237 goto nosideret;
10238 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10239 return value_cast (value_type (arg1), value_neg (arg1));
10240 else
10241 {
10242 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10243 return value_neg (arg1);
10244 }
10245
10246 case BINOP_LOGICAL_AND:
10247 case BINOP_LOGICAL_OR:
10248 case UNOP_LOGICAL_NOT:
10249 {
10250 struct value *val;
10251
10252 *pos -= 1;
10253 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10254 type = language_bool_type (exp->language_defn, exp->gdbarch);
10255 return value_cast (type, val);
10256 }
10257
10258 case BINOP_BITWISE_AND:
10259 case BINOP_BITWISE_IOR:
10260 case BINOP_BITWISE_XOR:
10261 {
10262 struct value *val;
10263
10264 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10265 *pos = pc;
10266 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10267
10268 return value_cast (value_type (arg1), val);
10269 }
10270
10271 case OP_VAR_VALUE:
10272 *pos -= 1;
10273
10274 if (noside == EVAL_SKIP)
10275 {
10276 *pos += 4;
10277 goto nosideret;
10278 }
10279
10280 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10281 /* Only encountered when an unresolved symbol occurs in a
10282 context other than a function call, in which case, it is
10283 invalid. */
10284 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10285 exp->elts[pc + 2].symbol->print_name ());
10286
10287 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10288 {
10289 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10290 /* Check to see if this is a tagged type. We also need to handle
10291 the case where the type is a reference to a tagged type, but
10292 we have to be careful to exclude pointers to tagged types.
10293 The latter should be shown as usual (as a pointer), whereas
10294 a reference should mostly be transparent to the user. */
10295 if (ada_is_tagged_type (type, 0)
10296 || (type->code () == TYPE_CODE_REF
10297 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10298 {
10299 /* Tagged types are a little special in the fact that the real
10300 type is dynamic and can only be determined by inspecting the
10301 object's tag. This means that we need to get the object's
10302 value first (EVAL_NORMAL) and then extract the actual object
10303 type from its tag.
10304
10305 Note that we cannot skip the final step where we extract
10306 the object type from its tag, because the EVAL_NORMAL phase
10307 results in dynamic components being resolved into fixed ones.
10308 This can cause problems when trying to print the type
10309 description of tagged types whose parent has a dynamic size:
10310 We use the type name of the "_parent" component in order
10311 to print the name of the ancestor type in the type description.
10312 If that component had a dynamic size, the resolution into
10313 a fixed type would result in the loss of that type name,
10314 thus preventing us from printing the name of the ancestor
10315 type in the type description. */
10316 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10317
10318 if (type->code () != TYPE_CODE_REF)
10319 {
10320 struct type *actual_type;
10321
10322 actual_type = type_from_tag (ada_value_tag (arg1));
10323 if (actual_type == NULL)
10324 /* If, for some reason, we were unable to determine
10325 the actual type from the tag, then use the static
10326 approximation that we just computed as a fallback.
10327 This can happen if the debugging information is
10328 incomplete, for instance. */
10329 actual_type = type;
10330 return value_zero (actual_type, not_lval);
10331 }
10332 else
10333 {
10334 /* In the case of a ref, ada_coerce_ref takes care
10335 of determining the actual type. But the evaluation
10336 should return a ref as it should be valid to ask
10337 for its address; so rebuild a ref after coerce. */
10338 arg1 = ada_coerce_ref (arg1);
10339 return value_ref (arg1, TYPE_CODE_REF);
10340 }
10341 }
10342
10343 /* Records and unions for which GNAT encodings have been
10344 generated need to be statically fixed as well.
10345 Otherwise, non-static fixing produces a type where
10346 all dynamic properties are removed, which prevents "ptype"
10347 from being able to completely describe the type.
10348 For instance, a case statement in a variant record would be
10349 replaced by the relevant components based on the actual
10350 value of the discriminants. */
10351 if ((type->code () == TYPE_CODE_STRUCT
10352 && dynamic_template_type (type) != NULL)
10353 || (type->code () == TYPE_CODE_UNION
10354 && ada_find_parallel_type (type, "___XVU") != NULL))
10355 {
10356 *pos += 4;
10357 return value_zero (to_static_fixed_type (type), not_lval);
10358 }
10359 }
10360
10361 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10362 return ada_to_fixed_value (arg1);
10363
10364 case OP_FUNCALL:
10365 (*pos) += 2;
10366
10367 /* Allocate arg vector, including space for the function to be
10368 called in argvec[0] and a terminating NULL. */
10369 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10370 argvec = XALLOCAVEC (struct value *, nargs + 2);
10371
10372 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10373 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10374 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10375 exp->elts[pc + 5].symbol->print_name ());
10376 else
10377 {
10378 for (tem = 0; tem <= nargs; tem += 1)
10379 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10380 argvec[tem] = 0;
10381
10382 if (noside == EVAL_SKIP)
10383 goto nosideret;
10384 }
10385
10386 if (ada_is_constrained_packed_array_type
10387 (desc_base_type (value_type (argvec[0]))))
10388 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10389 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10390 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10391 /* This is a packed array that has already been fixed, and
10392 therefore already coerced to a simple array. Nothing further
10393 to do. */
10394 ;
10395 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10396 {
10397 /* Make sure we dereference references so that all the code below
10398 feels like it's really handling the referenced value. Wrapping
10399 types (for alignment) may be there, so make sure we strip them as
10400 well. */
10401 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10402 }
10403 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10404 && VALUE_LVAL (argvec[0]) == lval_memory)
10405 argvec[0] = value_addr (argvec[0]);
10406
10407 type = ada_check_typedef (value_type (argvec[0]));
10408
10409 /* Ada allows us to implicitly dereference arrays when subscripting
10410 them. So, if this is an array typedef (encoding use for array
10411 access types encoded as fat pointers), strip it now. */
10412 if (type->code () == TYPE_CODE_TYPEDEF)
10413 type = ada_typedef_target_type (type);
10414
10415 if (type->code () == TYPE_CODE_PTR)
10416 {
10417 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10418 {
10419 case TYPE_CODE_FUNC:
10420 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10421 break;
10422 case TYPE_CODE_ARRAY:
10423 break;
10424 case TYPE_CODE_STRUCT:
10425 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10426 argvec[0] = ada_value_ind (argvec[0]);
10427 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10428 break;
10429 default:
10430 error (_("cannot subscript or call something of type `%s'"),
10431 ada_type_name (value_type (argvec[0])));
10432 break;
10433 }
10434 }
10435
10436 switch (type->code ())
10437 {
10438 case TYPE_CODE_FUNC:
10439 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10440 {
10441 if (TYPE_TARGET_TYPE (type) == NULL)
10442 error_call_unknown_return_type (NULL);
10443 return allocate_value (TYPE_TARGET_TYPE (type));
10444 }
10445 return call_function_by_hand (argvec[0], NULL,
10446 gdb::make_array_view (argvec + 1,
10447 nargs));
10448 case TYPE_CODE_INTERNAL_FUNCTION:
10449 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10450 /* We don't know anything about what the internal
10451 function might return, but we have to return
10452 something. */
10453 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10454 not_lval);
10455 else
10456 return call_internal_function (exp->gdbarch, exp->language_defn,
10457 argvec[0], nargs, argvec + 1);
10458
10459 case TYPE_CODE_STRUCT:
10460 {
10461 int arity;
10462
10463 arity = ada_array_arity (type);
10464 type = ada_array_element_type (type, nargs);
10465 if (type == NULL)
10466 error (_("cannot subscript or call a record"));
10467 if (arity != nargs)
10468 error (_("wrong number of subscripts; expecting %d"), arity);
10469 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10470 return value_zero (ada_aligned_type (type), lval_memory);
10471 return
10472 unwrap_value (ada_value_subscript
10473 (argvec[0], nargs, argvec + 1));
10474 }
10475 case TYPE_CODE_ARRAY:
10476 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10477 {
10478 type = ada_array_element_type (type, nargs);
10479 if (type == NULL)
10480 error (_("element type of array unknown"));
10481 else
10482 return value_zero (ada_aligned_type (type), lval_memory);
10483 }
10484 return
10485 unwrap_value (ada_value_subscript
10486 (ada_coerce_to_simple_array (argvec[0]),
10487 nargs, argvec + 1));
10488 case TYPE_CODE_PTR: /* Pointer to array */
10489 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10490 {
10491 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10492 type = ada_array_element_type (type, nargs);
10493 if (type == NULL)
10494 error (_("element type of array unknown"));
10495 else
10496 return value_zero (ada_aligned_type (type), lval_memory);
10497 }
10498 return
10499 unwrap_value (ada_value_ptr_subscript (argvec[0],
10500 nargs, argvec + 1));
10501
10502 default:
10503 error (_("Attempt to index or call something other than an "
10504 "array or function"));
10505 }
10506
10507 case TERNOP_SLICE:
10508 {
10509 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10510 struct value *low_bound_val =
10511 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10512 struct value *high_bound_val =
10513 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10514 LONGEST low_bound;
10515 LONGEST high_bound;
10516
10517 low_bound_val = coerce_ref (low_bound_val);
10518 high_bound_val = coerce_ref (high_bound_val);
10519 low_bound = value_as_long (low_bound_val);
10520 high_bound = value_as_long (high_bound_val);
10521
10522 if (noside == EVAL_SKIP)
10523 goto nosideret;
10524
10525 /* If this is a reference to an aligner type, then remove all
10526 the aligners. */
10527 if (value_type (array)->code () == TYPE_CODE_REF
10528 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10529 TYPE_TARGET_TYPE (value_type (array)) =
10530 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10531
10532 if (ada_is_constrained_packed_array_type (value_type (array)))
10533 error (_("cannot slice a packed array"));
10534
10535 /* If this is a reference to an array or an array lvalue,
10536 convert to a pointer. */
10537 if (value_type (array)->code () == TYPE_CODE_REF
10538 || (value_type (array)->code () == TYPE_CODE_ARRAY
10539 && VALUE_LVAL (array) == lval_memory))
10540 array = value_addr (array);
10541
10542 if (noside == EVAL_AVOID_SIDE_EFFECTS
10543 && ada_is_array_descriptor_type (ada_check_typedef
10544 (value_type (array))))
10545 return empty_array (ada_type_of_array (array, 0), low_bound,
10546 high_bound);
10547
10548 array = ada_coerce_to_simple_array_ptr (array);
10549
10550 /* If we have more than one level of pointer indirection,
10551 dereference the value until we get only one level. */
10552 while (value_type (array)->code () == TYPE_CODE_PTR
10553 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10554 == TYPE_CODE_PTR))
10555 array = value_ind (array);
10556
10557 /* Make sure we really do have an array type before going further,
10558 to avoid a SEGV when trying to get the index type or the target
10559 type later down the road if the debug info generated by
10560 the compiler is incorrect or incomplete. */
10561 if (!ada_is_simple_array_type (value_type (array)))
10562 error (_("cannot take slice of non-array"));
10563
10564 if (ada_check_typedef (value_type (array))->code ()
10565 == TYPE_CODE_PTR)
10566 {
10567 struct type *type0 = ada_check_typedef (value_type (array));
10568
10569 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10570 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10571 else
10572 {
10573 struct type *arr_type0 =
10574 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10575
10576 return ada_value_slice_from_ptr (array, arr_type0,
10577 longest_to_int (low_bound),
10578 longest_to_int (high_bound));
10579 }
10580 }
10581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10582 return array;
10583 else if (high_bound < low_bound)
10584 return empty_array (value_type (array), low_bound, high_bound);
10585 else
10586 return ada_value_slice (array, longest_to_int (low_bound),
10587 longest_to_int (high_bound));
10588 }
10589
10590 case UNOP_IN_RANGE:
10591 (*pos) += 2;
10592 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10593 type = check_typedef (exp->elts[pc + 1].type);
10594
10595 if (noside == EVAL_SKIP)
10596 goto nosideret;
10597
10598 switch (type->code ())
10599 {
10600 default:
10601 lim_warning (_("Membership test incompletely implemented; "
10602 "always returns true"));
10603 type = language_bool_type (exp->language_defn, exp->gdbarch);
10604 return value_from_longest (type, (LONGEST) 1);
10605
10606 case TYPE_CODE_RANGE:
10607 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10608 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10609 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10610 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10611 type = language_bool_type (exp->language_defn, exp->gdbarch);
10612 return
10613 value_from_longest (type,
10614 (value_less (arg1, arg3)
10615 || value_equal (arg1, arg3))
10616 && (value_less (arg2, arg1)
10617 || value_equal (arg2, arg1)));
10618 }
10619
10620 case BINOP_IN_BOUNDS:
10621 (*pos) += 2;
10622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10623 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10624
10625 if (noside == EVAL_SKIP)
10626 goto nosideret;
10627
10628 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10629 {
10630 type = language_bool_type (exp->language_defn, exp->gdbarch);
10631 return value_zero (type, not_lval);
10632 }
10633
10634 tem = longest_to_int (exp->elts[pc + 1].longconst);
10635
10636 type = ada_index_type (value_type (arg2), tem, "range");
10637 if (!type)
10638 type = value_type (arg1);
10639
10640 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10641 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10642
10643 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10644 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10645 type = language_bool_type (exp->language_defn, exp->gdbarch);
10646 return
10647 value_from_longest (type,
10648 (value_less (arg1, arg3)
10649 || value_equal (arg1, arg3))
10650 && (value_less (arg2, arg1)
10651 || value_equal (arg2, arg1)));
10652
10653 case TERNOP_IN_RANGE:
10654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10655 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10656 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10657
10658 if (noside == EVAL_SKIP)
10659 goto nosideret;
10660
10661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10662 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10663 type = language_bool_type (exp->language_defn, exp->gdbarch);
10664 return
10665 value_from_longest (type,
10666 (value_less (arg1, arg3)
10667 || value_equal (arg1, arg3))
10668 && (value_less (arg2, arg1)
10669 || value_equal (arg2, arg1)));
10670
10671 case OP_ATR_FIRST:
10672 case OP_ATR_LAST:
10673 case OP_ATR_LENGTH:
10674 {
10675 struct type *type_arg;
10676
10677 if (exp->elts[*pos].opcode == OP_TYPE)
10678 {
10679 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10680 arg1 = NULL;
10681 type_arg = check_typedef (exp->elts[pc + 2].type);
10682 }
10683 else
10684 {
10685 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10686 type_arg = NULL;
10687 }
10688
10689 if (exp->elts[*pos].opcode != OP_LONG)
10690 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10691 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10692 *pos += 4;
10693
10694 if (noside == EVAL_SKIP)
10695 goto nosideret;
10696 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10697 {
10698 if (type_arg == NULL)
10699 type_arg = value_type (arg1);
10700
10701 if (ada_is_constrained_packed_array_type (type_arg))
10702 type_arg = decode_constrained_packed_array_type (type_arg);
10703
10704 if (!discrete_type_p (type_arg))
10705 {
10706 switch (op)
10707 {
10708 default: /* Should never happen. */
10709 error (_("unexpected attribute encountered"));
10710 case OP_ATR_FIRST:
10711 case OP_ATR_LAST:
10712 type_arg = ada_index_type (type_arg, tem,
10713 ada_attribute_name (op));
10714 break;
10715 case OP_ATR_LENGTH:
10716 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10717 break;
10718 }
10719 }
10720
10721 return value_zero (type_arg, not_lval);
10722 }
10723 else if (type_arg == NULL)
10724 {
10725 arg1 = ada_coerce_ref (arg1);
10726
10727 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10728 arg1 = ada_coerce_to_simple_array (arg1);
10729
10730 if (op == OP_ATR_LENGTH)
10731 type = builtin_type (exp->gdbarch)->builtin_int;
10732 else
10733 {
10734 type = ada_index_type (value_type (arg1), tem,
10735 ada_attribute_name (op));
10736 if (type == NULL)
10737 type = builtin_type (exp->gdbarch)->builtin_int;
10738 }
10739
10740 switch (op)
10741 {
10742 default: /* Should never happen. */
10743 error (_("unexpected attribute encountered"));
10744 case OP_ATR_FIRST:
10745 return value_from_longest
10746 (type, ada_array_bound (arg1, tem, 0));
10747 case OP_ATR_LAST:
10748 return value_from_longest
10749 (type, ada_array_bound (arg1, tem, 1));
10750 case OP_ATR_LENGTH:
10751 return value_from_longest
10752 (type, ada_array_length (arg1, tem));
10753 }
10754 }
10755 else if (discrete_type_p (type_arg))
10756 {
10757 struct type *range_type;
10758 const char *name = ada_type_name (type_arg);
10759
10760 range_type = NULL;
10761 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10762 range_type = to_fixed_range_type (type_arg, NULL);
10763 if (range_type == NULL)
10764 range_type = type_arg;
10765 switch (op)
10766 {
10767 default:
10768 error (_("unexpected attribute encountered"));
10769 case OP_ATR_FIRST:
10770 return value_from_longest
10771 (range_type, ada_discrete_type_low_bound (range_type));
10772 case OP_ATR_LAST:
10773 return value_from_longest
10774 (range_type, ada_discrete_type_high_bound (range_type));
10775 case OP_ATR_LENGTH:
10776 error (_("the 'length attribute applies only to array types"));
10777 }
10778 }
10779 else if (type_arg->code () == TYPE_CODE_FLT)
10780 error (_("unimplemented type attribute"));
10781 else
10782 {
10783 LONGEST low, high;
10784
10785 if (ada_is_constrained_packed_array_type (type_arg))
10786 type_arg = decode_constrained_packed_array_type (type_arg);
10787
10788 if (op == OP_ATR_LENGTH)
10789 type = builtin_type (exp->gdbarch)->builtin_int;
10790 else
10791 {
10792 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10793 if (type == NULL)
10794 type = builtin_type (exp->gdbarch)->builtin_int;
10795 }
10796
10797 switch (op)
10798 {
10799 default:
10800 error (_("unexpected attribute encountered"));
10801 case OP_ATR_FIRST:
10802 low = ada_array_bound_from_type (type_arg, tem, 0);
10803 return value_from_longest (type, low);
10804 case OP_ATR_LAST:
10805 high = ada_array_bound_from_type (type_arg, tem, 1);
10806 return value_from_longest (type, high);
10807 case OP_ATR_LENGTH:
10808 low = ada_array_bound_from_type (type_arg, tem, 0);
10809 high = ada_array_bound_from_type (type_arg, tem, 1);
10810 return value_from_longest (type, high - low + 1);
10811 }
10812 }
10813 }
10814
10815 case OP_ATR_TAG:
10816 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10817 if (noside == EVAL_SKIP)
10818 goto nosideret;
10819
10820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10821 return value_zero (ada_tag_type (arg1), not_lval);
10822
10823 return ada_value_tag (arg1);
10824
10825 case OP_ATR_MIN:
10826 case OP_ATR_MAX:
10827 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10828 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10829 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10830 if (noside == EVAL_SKIP)
10831 goto nosideret;
10832 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10833 return value_zero (value_type (arg1), not_lval);
10834 else
10835 {
10836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10837 return value_binop (arg1, arg2,
10838 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10839 }
10840
10841 case OP_ATR_MODULUS:
10842 {
10843 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10844
10845 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10846 if (noside == EVAL_SKIP)
10847 goto nosideret;
10848
10849 if (!ada_is_modular_type (type_arg))
10850 error (_("'modulus must be applied to modular type"));
10851
10852 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10853 ada_modulus (type_arg));
10854 }
10855
10856
10857 case OP_ATR_POS:
10858 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10859 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10860 if (noside == EVAL_SKIP)
10861 goto nosideret;
10862 type = builtin_type (exp->gdbarch)->builtin_int;
10863 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10864 return value_zero (type, not_lval);
10865 else
10866 return value_pos_atr (type, arg1);
10867
10868 case OP_ATR_SIZE:
10869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10870 type = value_type (arg1);
10871
10872 /* If the argument is a reference, then dereference its type, since
10873 the user is really asking for the size of the actual object,
10874 not the size of the pointer. */
10875 if (type->code () == TYPE_CODE_REF)
10876 type = TYPE_TARGET_TYPE (type);
10877
10878 if (noside == EVAL_SKIP)
10879 goto nosideret;
10880 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10881 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10882 else
10883 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10884 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10885
10886 case OP_ATR_VAL:
10887 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10888 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10889 type = exp->elts[pc + 2].type;
10890 if (noside == EVAL_SKIP)
10891 goto nosideret;
10892 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10893 return value_zero (type, not_lval);
10894 else
10895 return value_val_atr (type, arg1);
10896
10897 case BINOP_EXP:
10898 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10899 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10900 if (noside == EVAL_SKIP)
10901 goto nosideret;
10902 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10903 return value_zero (value_type (arg1), not_lval);
10904 else
10905 {
10906 /* For integer exponentiation operations,
10907 only promote the first argument. */
10908 if (is_integral_type (value_type (arg2)))
10909 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10910 else
10911 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10912
10913 return value_binop (arg1, arg2, op);
10914 }
10915
10916 case UNOP_PLUS:
10917 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10918 if (noside == EVAL_SKIP)
10919 goto nosideret;
10920 else
10921 return arg1;
10922
10923 case UNOP_ABS:
10924 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10925 if (noside == EVAL_SKIP)
10926 goto nosideret;
10927 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10928 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10929 return value_neg (arg1);
10930 else
10931 return arg1;
10932
10933 case UNOP_IND:
10934 preeval_pos = *pos;
10935 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10936 if (noside == EVAL_SKIP)
10937 goto nosideret;
10938 type = ada_check_typedef (value_type (arg1));
10939 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10940 {
10941 if (ada_is_array_descriptor_type (type))
10942 /* GDB allows dereferencing GNAT array descriptors. */
10943 {
10944 struct type *arrType = ada_type_of_array (arg1, 0);
10945
10946 if (arrType == NULL)
10947 error (_("Attempt to dereference null array pointer."));
10948 return value_at_lazy (arrType, 0);
10949 }
10950 else if (type->code () == TYPE_CODE_PTR
10951 || type->code () == TYPE_CODE_REF
10952 /* In C you can dereference an array to get the 1st elt. */
10953 || type->code () == TYPE_CODE_ARRAY)
10954 {
10955 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10956 only be determined by inspecting the object's tag.
10957 This means that we need to evaluate completely the
10958 expression in order to get its type. */
10959
10960 if ((type->code () == TYPE_CODE_REF
10961 || type->code () == TYPE_CODE_PTR)
10962 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10963 {
10964 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10965 EVAL_NORMAL);
10966 type = value_type (ada_value_ind (arg1));
10967 }
10968 else
10969 {
10970 type = to_static_fixed_type
10971 (ada_aligned_type
10972 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10973 }
10974 ada_ensure_varsize_limit (type);
10975 return value_zero (type, lval_memory);
10976 }
10977 else if (type->code () == TYPE_CODE_INT)
10978 {
10979 /* GDB allows dereferencing an int. */
10980 if (expect_type == NULL)
10981 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10982 lval_memory);
10983 else
10984 {
10985 expect_type =
10986 to_static_fixed_type (ada_aligned_type (expect_type));
10987 return value_zero (expect_type, lval_memory);
10988 }
10989 }
10990 else
10991 error (_("Attempt to take contents of a non-pointer value."));
10992 }
10993 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10994 type = ada_check_typedef (value_type (arg1));
10995
10996 if (type->code () == TYPE_CODE_INT)
10997 /* GDB allows dereferencing an int. If we were given
10998 the expect_type, then use that as the target type.
10999 Otherwise, assume that the target type is an int. */
11000 {
11001 if (expect_type != NULL)
11002 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11003 arg1));
11004 else
11005 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11006 (CORE_ADDR) value_as_address (arg1));
11007 }
11008
11009 if (ada_is_array_descriptor_type (type))
11010 /* GDB allows dereferencing GNAT array descriptors. */
11011 return ada_coerce_to_simple_array (arg1);
11012 else
11013 return ada_value_ind (arg1);
11014
11015 case STRUCTOP_STRUCT:
11016 tem = longest_to_int (exp->elts[pc + 1].longconst);
11017 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11018 preeval_pos = *pos;
11019 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11020 if (noside == EVAL_SKIP)
11021 goto nosideret;
11022 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11023 {
11024 struct type *type1 = value_type (arg1);
11025
11026 if (ada_is_tagged_type (type1, 1))
11027 {
11028 type = ada_lookup_struct_elt_type (type1,
11029 &exp->elts[pc + 2].string,
11030 1, 1);
11031
11032 /* If the field is not found, check if it exists in the
11033 extension of this object's type. This means that we
11034 need to evaluate completely the expression. */
11035
11036 if (type == NULL)
11037 {
11038 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11039 EVAL_NORMAL);
11040 arg1 = ada_value_struct_elt (arg1,
11041 &exp->elts[pc + 2].string,
11042 0);
11043 arg1 = unwrap_value (arg1);
11044 type = value_type (ada_to_fixed_value (arg1));
11045 }
11046 }
11047 else
11048 type =
11049 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11050 0);
11051
11052 return value_zero (ada_aligned_type (type), lval_memory);
11053 }
11054 else
11055 {
11056 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11057 arg1 = unwrap_value (arg1);
11058 return ada_to_fixed_value (arg1);
11059 }
11060
11061 case OP_TYPE:
11062 /* The value is not supposed to be used. This is here to make it
11063 easier to accommodate expressions that contain types. */
11064 (*pos) += 2;
11065 if (noside == EVAL_SKIP)
11066 goto nosideret;
11067 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11068 return allocate_value (exp->elts[pc + 1].type);
11069 else
11070 error (_("Attempt to use a type name as an expression"));
11071
11072 case OP_AGGREGATE:
11073 case OP_CHOICES:
11074 case OP_OTHERS:
11075 case OP_DISCRETE_RANGE:
11076 case OP_POSITIONAL:
11077 case OP_NAME:
11078 if (noside == EVAL_NORMAL)
11079 switch (op)
11080 {
11081 case OP_NAME:
11082 error (_("Undefined name, ambiguous name, or renaming used in "
11083 "component association: %s."), &exp->elts[pc+2].string);
11084 case OP_AGGREGATE:
11085 error (_("Aggregates only allowed on the right of an assignment"));
11086 default:
11087 internal_error (__FILE__, __LINE__,
11088 _("aggregate apparently mangled"));
11089 }
11090
11091 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11092 *pos += oplen - 1;
11093 for (tem = 0; tem < nargs; tem += 1)
11094 ada_evaluate_subexp (NULL, exp, pos, noside);
11095 goto nosideret;
11096 }
11097
11098 nosideret:
11099 return eval_skip_value (exp);
11100 }
11101 \f
11102
11103 /* Fixed point */
11104
11105 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11106 type name that encodes the 'small and 'delta information.
11107 Otherwise, return NULL. */
11108
11109 static const char *
11110 gnat_encoded_fixed_type_info (struct type *type)
11111 {
11112 const char *name = ada_type_name (type);
11113 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11114
11115 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11116 {
11117 const char *tail = strstr (name, "___XF_");
11118
11119 if (tail == NULL)
11120 return NULL;
11121 else
11122 return tail + 5;
11123 }
11124 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11125 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11126 else
11127 return NULL;
11128 }
11129
11130 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11131
11132 int
11133 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11134 {
11135 return gnat_encoded_fixed_type_info (type) != NULL;
11136 }
11137
11138 /* Return non-zero iff TYPE represents a System.Address type. */
11139
11140 int
11141 ada_is_system_address_type (struct type *type)
11142 {
11143 return (type->name () && strcmp (type->name (), "system__address") == 0);
11144 }
11145
11146 /* Assuming that TYPE is the representation of an Ada fixed-point
11147 type, return the target floating-point type to be used to represent
11148 of this type during internal computation. */
11149
11150 static struct type *
11151 ada_scaling_type (struct type *type)
11152 {
11153 return builtin_type (get_type_arch (type))->builtin_long_double;
11154 }
11155
11156 /* Assuming that TYPE is the representation of an Ada fixed-point
11157 type, return its delta, or NULL if the type is malformed and the
11158 delta cannot be determined. */
11159
11160 struct value *
11161 gnat_encoded_fixed_point_delta (struct type *type)
11162 {
11163 const char *encoding = gnat_encoded_fixed_type_info (type);
11164 struct type *scale_type = ada_scaling_type (type);
11165
11166 long long num, den;
11167
11168 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11169 return nullptr;
11170 else
11171 return value_binop (value_from_longest (scale_type, num),
11172 value_from_longest (scale_type, den), BINOP_DIV);
11173 }
11174
11175 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11176 the scaling factor ('SMALL value) associated with the type. */
11177
11178 struct value *
11179 ada_scaling_factor (struct type *type)
11180 {
11181 const char *encoding = gnat_encoded_fixed_type_info (type);
11182 struct type *scale_type = ada_scaling_type (type);
11183
11184 long long num0, den0, num1, den1;
11185 int n;
11186
11187 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11188 &num0, &den0, &num1, &den1);
11189
11190 if (n < 2)
11191 return value_from_longest (scale_type, 1);
11192 else if (n == 4)
11193 return value_binop (value_from_longest (scale_type, num1),
11194 value_from_longest (scale_type, den1), BINOP_DIV);
11195 else
11196 return value_binop (value_from_longest (scale_type, num0),
11197 value_from_longest (scale_type, den0), BINOP_DIV);
11198 }
11199
11200 \f
11201
11202 /* Range types */
11203
11204 /* Scan STR beginning at position K for a discriminant name, and
11205 return the value of that discriminant field of DVAL in *PX. If
11206 PNEW_K is not null, put the position of the character beyond the
11207 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11208 not alter *PX and *PNEW_K if unsuccessful. */
11209
11210 static int
11211 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11212 int *pnew_k)
11213 {
11214 static char *bound_buffer = NULL;
11215 static size_t bound_buffer_len = 0;
11216 const char *pstart, *pend, *bound;
11217 struct value *bound_val;
11218
11219 if (dval == NULL || str == NULL || str[k] == '\0')
11220 return 0;
11221
11222 pstart = str + k;
11223 pend = strstr (pstart, "__");
11224 if (pend == NULL)
11225 {
11226 bound = pstart;
11227 k += strlen (bound);
11228 }
11229 else
11230 {
11231 int len = pend - pstart;
11232
11233 /* Strip __ and beyond. */
11234 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11235 strncpy (bound_buffer, pstart, len);
11236 bound_buffer[len] = '\0';
11237
11238 bound = bound_buffer;
11239 k = pend - str;
11240 }
11241
11242 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11243 if (bound_val == NULL)
11244 return 0;
11245
11246 *px = value_as_long (bound_val);
11247 if (pnew_k != NULL)
11248 *pnew_k = k;
11249 return 1;
11250 }
11251
11252 /* Value of variable named NAME in the current environment. If
11253 no such variable found, then if ERR_MSG is null, returns 0, and
11254 otherwise causes an error with message ERR_MSG. */
11255
11256 static struct value *
11257 get_var_value (const char *name, const char *err_msg)
11258 {
11259 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11260
11261 std::vector<struct block_symbol> syms;
11262 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11263 get_selected_block (0),
11264 VAR_DOMAIN, &syms, 1);
11265
11266 if (nsyms != 1)
11267 {
11268 if (err_msg == NULL)
11269 return 0;
11270 else
11271 error (("%s"), err_msg);
11272 }
11273
11274 return value_of_variable (syms[0].symbol, syms[0].block);
11275 }
11276
11277 /* Value of integer variable named NAME in the current environment.
11278 If no such variable is found, returns false. Otherwise, sets VALUE
11279 to the variable's value and returns true. */
11280
11281 bool
11282 get_int_var_value (const char *name, LONGEST &value)
11283 {
11284 struct value *var_val = get_var_value (name, 0);
11285
11286 if (var_val == 0)
11287 return false;
11288
11289 value = value_as_long (var_val);
11290 return true;
11291 }
11292
11293
11294 /* Return a range type whose base type is that of the range type named
11295 NAME in the current environment, and whose bounds are calculated
11296 from NAME according to the GNAT range encoding conventions.
11297 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11298 corresponding range type from debug information; fall back to using it
11299 if symbol lookup fails. If a new type must be created, allocate it
11300 like ORIG_TYPE was. The bounds information, in general, is encoded
11301 in NAME, the base type given in the named range type. */
11302
11303 static struct type *
11304 to_fixed_range_type (struct type *raw_type, struct value *dval)
11305 {
11306 const char *name;
11307 struct type *base_type;
11308 const char *subtype_info;
11309
11310 gdb_assert (raw_type != NULL);
11311 gdb_assert (raw_type->name () != NULL);
11312
11313 if (raw_type->code () == TYPE_CODE_RANGE)
11314 base_type = TYPE_TARGET_TYPE (raw_type);
11315 else
11316 base_type = raw_type;
11317
11318 name = raw_type->name ();
11319 subtype_info = strstr (name, "___XD");
11320 if (subtype_info == NULL)
11321 {
11322 LONGEST L = ada_discrete_type_low_bound (raw_type);
11323 LONGEST U = ada_discrete_type_high_bound (raw_type);
11324
11325 if (L < INT_MIN || U > INT_MAX)
11326 return raw_type;
11327 else
11328 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11329 L, U);
11330 }
11331 else
11332 {
11333 static char *name_buf = NULL;
11334 static size_t name_len = 0;
11335 int prefix_len = subtype_info - name;
11336 LONGEST L, U;
11337 struct type *type;
11338 const char *bounds_str;
11339 int n;
11340
11341 GROW_VECT (name_buf, name_len, prefix_len + 5);
11342 strncpy (name_buf, name, prefix_len);
11343 name_buf[prefix_len] = '\0';
11344
11345 subtype_info += 5;
11346 bounds_str = strchr (subtype_info, '_');
11347 n = 1;
11348
11349 if (*subtype_info == 'L')
11350 {
11351 if (!ada_scan_number (bounds_str, n, &L, &n)
11352 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11353 return raw_type;
11354 if (bounds_str[n] == '_')
11355 n += 2;
11356 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11357 n += 1;
11358 subtype_info += 1;
11359 }
11360 else
11361 {
11362 strcpy (name_buf + prefix_len, "___L");
11363 if (!get_int_var_value (name_buf, L))
11364 {
11365 lim_warning (_("Unknown lower bound, using 1."));
11366 L = 1;
11367 }
11368 }
11369
11370 if (*subtype_info == 'U')
11371 {
11372 if (!ada_scan_number (bounds_str, n, &U, &n)
11373 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11374 return raw_type;
11375 }
11376 else
11377 {
11378 strcpy (name_buf + prefix_len, "___U");
11379 if (!get_int_var_value (name_buf, U))
11380 {
11381 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11382 U = L;
11383 }
11384 }
11385
11386 type = create_static_range_type (alloc_type_copy (raw_type),
11387 base_type, L, U);
11388 /* create_static_range_type alters the resulting type's length
11389 to match the size of the base_type, which is not what we want.
11390 Set it back to the original range type's length. */
11391 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11392 type->set_name (name);
11393 return type;
11394 }
11395 }
11396
11397 /* True iff NAME is the name of a range type. */
11398
11399 int
11400 ada_is_range_type_name (const char *name)
11401 {
11402 return (name != NULL && strstr (name, "___XD"));
11403 }
11404 \f
11405
11406 /* Modular types */
11407
11408 /* True iff TYPE is an Ada modular type. */
11409
11410 int
11411 ada_is_modular_type (struct type *type)
11412 {
11413 struct type *subranged_type = get_base_type (type);
11414
11415 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11416 && subranged_type->code () == TYPE_CODE_INT
11417 && TYPE_UNSIGNED (subranged_type));
11418 }
11419
11420 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11421
11422 ULONGEST
11423 ada_modulus (struct type *type)
11424 {
11425 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11426 }
11427 \f
11428
11429 /* Ada exception catchpoint support:
11430 ---------------------------------
11431
11432 We support 3 kinds of exception catchpoints:
11433 . catchpoints on Ada exceptions
11434 . catchpoints on unhandled Ada exceptions
11435 . catchpoints on failed assertions
11436
11437 Exceptions raised during failed assertions, or unhandled exceptions
11438 could perfectly be caught with the general catchpoint on Ada exceptions.
11439 However, we can easily differentiate these two special cases, and having
11440 the option to distinguish these two cases from the rest can be useful
11441 to zero-in on certain situations.
11442
11443 Exception catchpoints are a specialized form of breakpoint,
11444 since they rely on inserting breakpoints inside known routines
11445 of the GNAT runtime. The implementation therefore uses a standard
11446 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11447 of breakpoint_ops.
11448
11449 Support in the runtime for exception catchpoints have been changed
11450 a few times already, and these changes affect the implementation
11451 of these catchpoints. In order to be able to support several
11452 variants of the runtime, we use a sniffer that will determine
11453 the runtime variant used by the program being debugged. */
11454
11455 /* Ada's standard exceptions.
11456
11457 The Ada 83 standard also defined Numeric_Error. But there so many
11458 situations where it was unclear from the Ada 83 Reference Manual
11459 (RM) whether Constraint_Error or Numeric_Error should be raised,
11460 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11461 Interpretation saying that anytime the RM says that Numeric_Error
11462 should be raised, the implementation may raise Constraint_Error.
11463 Ada 95 went one step further and pretty much removed Numeric_Error
11464 from the list of standard exceptions (it made it a renaming of
11465 Constraint_Error, to help preserve compatibility when compiling
11466 an Ada83 compiler). As such, we do not include Numeric_Error from
11467 this list of standard exceptions. */
11468
11469 static const char *standard_exc[] = {
11470 "constraint_error",
11471 "program_error",
11472 "storage_error",
11473 "tasking_error"
11474 };
11475
11476 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11477
11478 /* A structure that describes how to support exception catchpoints
11479 for a given executable. */
11480
11481 struct exception_support_info
11482 {
11483 /* The name of the symbol to break on in order to insert
11484 a catchpoint on exceptions. */
11485 const char *catch_exception_sym;
11486
11487 /* The name of the symbol to break on in order to insert
11488 a catchpoint on unhandled exceptions. */
11489 const char *catch_exception_unhandled_sym;
11490
11491 /* The name of the symbol to break on in order to insert
11492 a catchpoint on failed assertions. */
11493 const char *catch_assert_sym;
11494
11495 /* The name of the symbol to break on in order to insert
11496 a catchpoint on exception handling. */
11497 const char *catch_handlers_sym;
11498
11499 /* Assuming that the inferior just triggered an unhandled exception
11500 catchpoint, this function is responsible for returning the address
11501 in inferior memory where the name of that exception is stored.
11502 Return zero if the address could not be computed. */
11503 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11504 };
11505
11506 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11507 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11508
11509 /* The following exception support info structure describes how to
11510 implement exception catchpoints with the latest version of the
11511 Ada runtime (as of 2019-08-??). */
11512
11513 static const struct exception_support_info default_exception_support_info =
11514 {
11515 "__gnat_debug_raise_exception", /* catch_exception_sym */
11516 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11517 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11518 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11519 ada_unhandled_exception_name_addr
11520 };
11521
11522 /* The following exception support info structure describes how to
11523 implement exception catchpoints with an earlier version of the
11524 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11525
11526 static const struct exception_support_info exception_support_info_v0 =
11527 {
11528 "__gnat_debug_raise_exception", /* catch_exception_sym */
11529 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11530 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11531 "__gnat_begin_handler", /* catch_handlers_sym */
11532 ada_unhandled_exception_name_addr
11533 };
11534
11535 /* The following exception support info structure describes how to
11536 implement exception catchpoints with a slightly older version
11537 of the Ada runtime. */
11538
11539 static const struct exception_support_info exception_support_info_fallback =
11540 {
11541 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11542 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11543 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11544 "__gnat_begin_handler", /* catch_handlers_sym */
11545 ada_unhandled_exception_name_addr_from_raise
11546 };
11547
11548 /* Return nonzero if we can detect the exception support routines
11549 described in EINFO.
11550
11551 This function errors out if an abnormal situation is detected
11552 (for instance, if we find the exception support routines, but
11553 that support is found to be incomplete). */
11554
11555 static int
11556 ada_has_this_exception_support (const struct exception_support_info *einfo)
11557 {
11558 struct symbol *sym;
11559
11560 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11561 that should be compiled with debugging information. As a result, we
11562 expect to find that symbol in the symtabs. */
11563
11564 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11565 if (sym == NULL)
11566 {
11567 /* Perhaps we did not find our symbol because the Ada runtime was
11568 compiled without debugging info, or simply stripped of it.
11569 It happens on some GNU/Linux distributions for instance, where
11570 users have to install a separate debug package in order to get
11571 the runtime's debugging info. In that situation, let the user
11572 know why we cannot insert an Ada exception catchpoint.
11573
11574 Note: Just for the purpose of inserting our Ada exception
11575 catchpoint, we could rely purely on the associated minimal symbol.
11576 But we would be operating in degraded mode anyway, since we are
11577 still lacking the debugging info needed later on to extract
11578 the name of the exception being raised (this name is printed in
11579 the catchpoint message, and is also used when trying to catch
11580 a specific exception). We do not handle this case for now. */
11581 struct bound_minimal_symbol msym
11582 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11583
11584 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11585 error (_("Your Ada runtime appears to be missing some debugging "
11586 "information.\nCannot insert Ada exception catchpoint "
11587 "in this configuration."));
11588
11589 return 0;
11590 }
11591
11592 /* Make sure that the symbol we found corresponds to a function. */
11593
11594 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11595 {
11596 error (_("Symbol \"%s\" is not a function (class = %d)"),
11597 sym->linkage_name (), SYMBOL_CLASS (sym));
11598 return 0;
11599 }
11600
11601 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11602 if (sym == NULL)
11603 {
11604 struct bound_minimal_symbol msym
11605 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11606
11607 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11608 error (_("Your Ada runtime appears to be missing some debugging "
11609 "information.\nCannot insert Ada exception catchpoint "
11610 "in this configuration."));
11611
11612 return 0;
11613 }
11614
11615 /* Make sure that the symbol we found corresponds to a function. */
11616
11617 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11618 {
11619 error (_("Symbol \"%s\" is not a function (class = %d)"),
11620 sym->linkage_name (), SYMBOL_CLASS (sym));
11621 return 0;
11622 }
11623
11624 return 1;
11625 }
11626
11627 /* Inspect the Ada runtime and determine which exception info structure
11628 should be used to provide support for exception catchpoints.
11629
11630 This function will always set the per-inferior exception_info,
11631 or raise an error. */
11632
11633 static void
11634 ada_exception_support_info_sniffer (void)
11635 {
11636 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11637
11638 /* If the exception info is already known, then no need to recompute it. */
11639 if (data->exception_info != NULL)
11640 return;
11641
11642 /* Check the latest (default) exception support info. */
11643 if (ada_has_this_exception_support (&default_exception_support_info))
11644 {
11645 data->exception_info = &default_exception_support_info;
11646 return;
11647 }
11648
11649 /* Try the v0 exception suport info. */
11650 if (ada_has_this_exception_support (&exception_support_info_v0))
11651 {
11652 data->exception_info = &exception_support_info_v0;
11653 return;
11654 }
11655
11656 /* Try our fallback exception suport info. */
11657 if (ada_has_this_exception_support (&exception_support_info_fallback))
11658 {
11659 data->exception_info = &exception_support_info_fallback;
11660 return;
11661 }
11662
11663 /* Sometimes, it is normal for us to not be able to find the routine
11664 we are looking for. This happens when the program is linked with
11665 the shared version of the GNAT runtime, and the program has not been
11666 started yet. Inform the user of these two possible causes if
11667 applicable. */
11668
11669 if (ada_update_initial_language (language_unknown) != language_ada)
11670 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11671
11672 /* If the symbol does not exist, then check that the program is
11673 already started, to make sure that shared libraries have been
11674 loaded. If it is not started, this may mean that the symbol is
11675 in a shared library. */
11676
11677 if (inferior_ptid.pid () == 0)
11678 error (_("Unable to insert catchpoint. Try to start the program first."));
11679
11680 /* At this point, we know that we are debugging an Ada program and
11681 that the inferior has been started, but we still are not able to
11682 find the run-time symbols. That can mean that we are in
11683 configurable run time mode, or that a-except as been optimized
11684 out by the linker... In any case, at this point it is not worth
11685 supporting this feature. */
11686
11687 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11688 }
11689
11690 /* True iff FRAME is very likely to be that of a function that is
11691 part of the runtime system. This is all very heuristic, but is
11692 intended to be used as advice as to what frames are uninteresting
11693 to most users. */
11694
11695 static int
11696 is_known_support_routine (struct frame_info *frame)
11697 {
11698 enum language func_lang;
11699 int i;
11700 const char *fullname;
11701
11702 /* If this code does not have any debugging information (no symtab),
11703 This cannot be any user code. */
11704
11705 symtab_and_line sal = find_frame_sal (frame);
11706 if (sal.symtab == NULL)
11707 return 1;
11708
11709 /* If there is a symtab, but the associated source file cannot be
11710 located, then assume this is not user code: Selecting a frame
11711 for which we cannot display the code would not be very helpful
11712 for the user. This should also take care of case such as VxWorks
11713 where the kernel has some debugging info provided for a few units. */
11714
11715 fullname = symtab_to_fullname (sal.symtab);
11716 if (access (fullname, R_OK) != 0)
11717 return 1;
11718
11719 /* Check the unit filename against the Ada runtime file naming.
11720 We also check the name of the objfile against the name of some
11721 known system libraries that sometimes come with debugging info
11722 too. */
11723
11724 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11725 {
11726 re_comp (known_runtime_file_name_patterns[i]);
11727 if (re_exec (lbasename (sal.symtab->filename)))
11728 return 1;
11729 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11730 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11731 return 1;
11732 }
11733
11734 /* Check whether the function is a GNAT-generated entity. */
11735
11736 gdb::unique_xmalloc_ptr<char> func_name
11737 = find_frame_funname (frame, &func_lang, NULL);
11738 if (func_name == NULL)
11739 return 1;
11740
11741 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11742 {
11743 re_comp (known_auxiliary_function_name_patterns[i]);
11744 if (re_exec (func_name.get ()))
11745 return 1;
11746 }
11747
11748 return 0;
11749 }
11750
11751 /* Find the first frame that contains debugging information and that is not
11752 part of the Ada run-time, starting from FI and moving upward. */
11753
11754 void
11755 ada_find_printable_frame (struct frame_info *fi)
11756 {
11757 for (; fi != NULL; fi = get_prev_frame (fi))
11758 {
11759 if (!is_known_support_routine (fi))
11760 {
11761 select_frame (fi);
11762 break;
11763 }
11764 }
11765
11766 }
11767
11768 /* Assuming that the inferior just triggered an unhandled exception
11769 catchpoint, return the address in inferior memory where the name
11770 of the exception is stored.
11771
11772 Return zero if the address could not be computed. */
11773
11774 static CORE_ADDR
11775 ada_unhandled_exception_name_addr (void)
11776 {
11777 return parse_and_eval_address ("e.full_name");
11778 }
11779
11780 /* Same as ada_unhandled_exception_name_addr, except that this function
11781 should be used when the inferior uses an older version of the runtime,
11782 where the exception name needs to be extracted from a specific frame
11783 several frames up in the callstack. */
11784
11785 static CORE_ADDR
11786 ada_unhandled_exception_name_addr_from_raise (void)
11787 {
11788 int frame_level;
11789 struct frame_info *fi;
11790 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11791
11792 /* To determine the name of this exception, we need to select
11793 the frame corresponding to RAISE_SYM_NAME. This frame is
11794 at least 3 levels up, so we simply skip the first 3 frames
11795 without checking the name of their associated function. */
11796 fi = get_current_frame ();
11797 for (frame_level = 0; frame_level < 3; frame_level += 1)
11798 if (fi != NULL)
11799 fi = get_prev_frame (fi);
11800
11801 while (fi != NULL)
11802 {
11803 enum language func_lang;
11804
11805 gdb::unique_xmalloc_ptr<char> func_name
11806 = find_frame_funname (fi, &func_lang, NULL);
11807 if (func_name != NULL)
11808 {
11809 if (strcmp (func_name.get (),
11810 data->exception_info->catch_exception_sym) == 0)
11811 break; /* We found the frame we were looking for... */
11812 }
11813 fi = get_prev_frame (fi);
11814 }
11815
11816 if (fi == NULL)
11817 return 0;
11818
11819 select_frame (fi);
11820 return parse_and_eval_address ("id.full_name");
11821 }
11822
11823 /* Assuming the inferior just triggered an Ada exception catchpoint
11824 (of any type), return the address in inferior memory where the name
11825 of the exception is stored, if applicable.
11826
11827 Assumes the selected frame is the current frame.
11828
11829 Return zero if the address could not be computed, or if not relevant. */
11830
11831 static CORE_ADDR
11832 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11833 struct breakpoint *b)
11834 {
11835 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11836
11837 switch (ex)
11838 {
11839 case ada_catch_exception:
11840 return (parse_and_eval_address ("e.full_name"));
11841 break;
11842
11843 case ada_catch_exception_unhandled:
11844 return data->exception_info->unhandled_exception_name_addr ();
11845 break;
11846
11847 case ada_catch_handlers:
11848 return 0; /* The runtimes does not provide access to the exception
11849 name. */
11850 break;
11851
11852 case ada_catch_assert:
11853 return 0; /* Exception name is not relevant in this case. */
11854 break;
11855
11856 default:
11857 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11858 break;
11859 }
11860
11861 return 0; /* Should never be reached. */
11862 }
11863
11864 /* Assuming the inferior is stopped at an exception catchpoint,
11865 return the message which was associated to the exception, if
11866 available. Return NULL if the message could not be retrieved.
11867
11868 Note: The exception message can be associated to an exception
11869 either through the use of the Raise_Exception function, or
11870 more simply (Ada 2005 and later), via:
11871
11872 raise Exception_Name with "exception message";
11873
11874 */
11875
11876 static gdb::unique_xmalloc_ptr<char>
11877 ada_exception_message_1 (void)
11878 {
11879 struct value *e_msg_val;
11880 int e_msg_len;
11881
11882 /* For runtimes that support this feature, the exception message
11883 is passed as an unbounded string argument called "message". */
11884 e_msg_val = parse_and_eval ("message");
11885 if (e_msg_val == NULL)
11886 return NULL; /* Exception message not supported. */
11887
11888 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11889 gdb_assert (e_msg_val != NULL);
11890 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11891
11892 /* If the message string is empty, then treat it as if there was
11893 no exception message. */
11894 if (e_msg_len <= 0)
11895 return NULL;
11896
11897 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11898 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11899 e_msg_len);
11900 e_msg.get ()[e_msg_len] = '\0';
11901
11902 return e_msg;
11903 }
11904
11905 /* Same as ada_exception_message_1, except that all exceptions are
11906 contained here (returning NULL instead). */
11907
11908 static gdb::unique_xmalloc_ptr<char>
11909 ada_exception_message (void)
11910 {
11911 gdb::unique_xmalloc_ptr<char> e_msg;
11912
11913 try
11914 {
11915 e_msg = ada_exception_message_1 ();
11916 }
11917 catch (const gdb_exception_error &e)
11918 {
11919 e_msg.reset (nullptr);
11920 }
11921
11922 return e_msg;
11923 }
11924
11925 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11926 any error that ada_exception_name_addr_1 might cause to be thrown.
11927 When an error is intercepted, a warning with the error message is printed,
11928 and zero is returned. */
11929
11930 static CORE_ADDR
11931 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11932 struct breakpoint *b)
11933 {
11934 CORE_ADDR result = 0;
11935
11936 try
11937 {
11938 result = ada_exception_name_addr_1 (ex, b);
11939 }
11940
11941 catch (const gdb_exception_error &e)
11942 {
11943 warning (_("failed to get exception name: %s"), e.what ());
11944 return 0;
11945 }
11946
11947 return result;
11948 }
11949
11950 static std::string ada_exception_catchpoint_cond_string
11951 (const char *excep_string,
11952 enum ada_exception_catchpoint_kind ex);
11953
11954 /* Ada catchpoints.
11955
11956 In the case of catchpoints on Ada exceptions, the catchpoint will
11957 stop the target on every exception the program throws. When a user
11958 specifies the name of a specific exception, we translate this
11959 request into a condition expression (in text form), and then parse
11960 it into an expression stored in each of the catchpoint's locations.
11961 We then use this condition to check whether the exception that was
11962 raised is the one the user is interested in. If not, then the
11963 target is resumed again. We store the name of the requested
11964 exception, in order to be able to re-set the condition expression
11965 when symbols change. */
11966
11967 /* An instance of this type is used to represent an Ada catchpoint
11968 breakpoint location. */
11969
11970 class ada_catchpoint_location : public bp_location
11971 {
11972 public:
11973 ada_catchpoint_location (breakpoint *owner)
11974 : bp_location (owner, bp_loc_software_breakpoint)
11975 {}
11976
11977 /* The condition that checks whether the exception that was raised
11978 is the specific exception the user specified on catchpoint
11979 creation. */
11980 expression_up excep_cond_expr;
11981 };
11982
11983 /* An instance of this type is used to represent an Ada catchpoint. */
11984
11985 struct ada_catchpoint : public breakpoint
11986 {
11987 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11988 : m_kind (kind)
11989 {
11990 }
11991
11992 /* The name of the specific exception the user specified. */
11993 std::string excep_string;
11994
11995 /* What kind of catchpoint this is. */
11996 enum ada_exception_catchpoint_kind m_kind;
11997 };
11998
11999 /* Parse the exception condition string in the context of each of the
12000 catchpoint's locations, and store them for later evaluation. */
12001
12002 static void
12003 create_excep_cond_exprs (struct ada_catchpoint *c,
12004 enum ada_exception_catchpoint_kind ex)
12005 {
12006 struct bp_location *bl;
12007
12008 /* Nothing to do if there's no specific exception to catch. */
12009 if (c->excep_string.empty ())
12010 return;
12011
12012 /* Same if there are no locations... */
12013 if (c->loc == NULL)
12014 return;
12015
12016 /* Compute the condition expression in text form, from the specific
12017 expection we want to catch. */
12018 std::string cond_string
12019 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12020
12021 /* Iterate over all the catchpoint's locations, and parse an
12022 expression for each. */
12023 for (bl = c->loc; bl != NULL; bl = bl->next)
12024 {
12025 struct ada_catchpoint_location *ada_loc
12026 = (struct ada_catchpoint_location *) bl;
12027 expression_up exp;
12028
12029 if (!bl->shlib_disabled)
12030 {
12031 const char *s;
12032
12033 s = cond_string.c_str ();
12034 try
12035 {
12036 exp = parse_exp_1 (&s, bl->address,
12037 block_for_pc (bl->address),
12038 0);
12039 }
12040 catch (const gdb_exception_error &e)
12041 {
12042 warning (_("failed to reevaluate internal exception condition "
12043 "for catchpoint %d: %s"),
12044 c->number, e.what ());
12045 }
12046 }
12047
12048 ada_loc->excep_cond_expr = std::move (exp);
12049 }
12050 }
12051
12052 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12053 structure for all exception catchpoint kinds. */
12054
12055 static struct bp_location *
12056 allocate_location_exception (struct breakpoint *self)
12057 {
12058 return new ada_catchpoint_location (self);
12059 }
12060
12061 /* Implement the RE_SET method in the breakpoint_ops structure for all
12062 exception catchpoint kinds. */
12063
12064 static void
12065 re_set_exception (struct breakpoint *b)
12066 {
12067 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12068
12069 /* Call the base class's method. This updates the catchpoint's
12070 locations. */
12071 bkpt_breakpoint_ops.re_set (b);
12072
12073 /* Reparse the exception conditional expressions. One for each
12074 location. */
12075 create_excep_cond_exprs (c, c->m_kind);
12076 }
12077
12078 /* Returns true if we should stop for this breakpoint hit. If the
12079 user specified a specific exception, we only want to cause a stop
12080 if the program thrown that exception. */
12081
12082 static int
12083 should_stop_exception (const struct bp_location *bl)
12084 {
12085 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12086 const struct ada_catchpoint_location *ada_loc
12087 = (const struct ada_catchpoint_location *) bl;
12088 int stop;
12089
12090 struct internalvar *var = lookup_internalvar ("_ada_exception");
12091 if (c->m_kind == ada_catch_assert)
12092 clear_internalvar (var);
12093 else
12094 {
12095 try
12096 {
12097 const char *expr;
12098
12099 if (c->m_kind == ada_catch_handlers)
12100 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12101 ".all.occurrence.id");
12102 else
12103 expr = "e";
12104
12105 struct value *exc = parse_and_eval (expr);
12106 set_internalvar (var, exc);
12107 }
12108 catch (const gdb_exception_error &ex)
12109 {
12110 clear_internalvar (var);
12111 }
12112 }
12113
12114 /* With no specific exception, should always stop. */
12115 if (c->excep_string.empty ())
12116 return 1;
12117
12118 if (ada_loc->excep_cond_expr == NULL)
12119 {
12120 /* We will have a NULL expression if back when we were creating
12121 the expressions, this location's had failed to parse. */
12122 return 1;
12123 }
12124
12125 stop = 1;
12126 try
12127 {
12128 struct value *mark;
12129
12130 mark = value_mark ();
12131 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12132 value_free_to_mark (mark);
12133 }
12134 catch (const gdb_exception &ex)
12135 {
12136 exception_fprintf (gdb_stderr, ex,
12137 _("Error in testing exception condition:\n"));
12138 }
12139
12140 return stop;
12141 }
12142
12143 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12144 for all exception catchpoint kinds. */
12145
12146 static void
12147 check_status_exception (bpstat bs)
12148 {
12149 bs->stop = should_stop_exception (bs->bp_location_at);
12150 }
12151
12152 /* Implement the PRINT_IT method in the breakpoint_ops structure
12153 for all exception catchpoint kinds. */
12154
12155 static enum print_stop_action
12156 print_it_exception (bpstat bs)
12157 {
12158 struct ui_out *uiout = current_uiout;
12159 struct breakpoint *b = bs->breakpoint_at;
12160
12161 annotate_catchpoint (b->number);
12162
12163 if (uiout->is_mi_like_p ())
12164 {
12165 uiout->field_string ("reason",
12166 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12167 uiout->field_string ("disp", bpdisp_text (b->disposition));
12168 }
12169
12170 uiout->text (b->disposition == disp_del
12171 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12172 uiout->field_signed ("bkptno", b->number);
12173 uiout->text (", ");
12174
12175 /* ada_exception_name_addr relies on the selected frame being the
12176 current frame. Need to do this here because this function may be
12177 called more than once when printing a stop, and below, we'll
12178 select the first frame past the Ada run-time (see
12179 ada_find_printable_frame). */
12180 select_frame (get_current_frame ());
12181
12182 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12183 switch (c->m_kind)
12184 {
12185 case ada_catch_exception:
12186 case ada_catch_exception_unhandled:
12187 case ada_catch_handlers:
12188 {
12189 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12190 char exception_name[256];
12191
12192 if (addr != 0)
12193 {
12194 read_memory (addr, (gdb_byte *) exception_name,
12195 sizeof (exception_name) - 1);
12196 exception_name [sizeof (exception_name) - 1] = '\0';
12197 }
12198 else
12199 {
12200 /* For some reason, we were unable to read the exception
12201 name. This could happen if the Runtime was compiled
12202 without debugging info, for instance. In that case,
12203 just replace the exception name by the generic string
12204 "exception" - it will read as "an exception" in the
12205 notification we are about to print. */
12206 memcpy (exception_name, "exception", sizeof ("exception"));
12207 }
12208 /* In the case of unhandled exception breakpoints, we print
12209 the exception name as "unhandled EXCEPTION_NAME", to make
12210 it clearer to the user which kind of catchpoint just got
12211 hit. We used ui_out_text to make sure that this extra
12212 info does not pollute the exception name in the MI case. */
12213 if (c->m_kind == ada_catch_exception_unhandled)
12214 uiout->text ("unhandled ");
12215 uiout->field_string ("exception-name", exception_name);
12216 }
12217 break;
12218 case ada_catch_assert:
12219 /* In this case, the name of the exception is not really
12220 important. Just print "failed assertion" to make it clearer
12221 that his program just hit an assertion-failure catchpoint.
12222 We used ui_out_text because this info does not belong in
12223 the MI output. */
12224 uiout->text ("failed assertion");
12225 break;
12226 }
12227
12228 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12229 if (exception_message != NULL)
12230 {
12231 uiout->text (" (");
12232 uiout->field_string ("exception-message", exception_message.get ());
12233 uiout->text (")");
12234 }
12235
12236 uiout->text (" at ");
12237 ada_find_printable_frame (get_current_frame ());
12238
12239 return PRINT_SRC_AND_LOC;
12240 }
12241
12242 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12243 for all exception catchpoint kinds. */
12244
12245 static void
12246 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12247 {
12248 struct ui_out *uiout = current_uiout;
12249 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12250 struct value_print_options opts;
12251
12252 get_user_print_options (&opts);
12253
12254 if (opts.addressprint)
12255 uiout->field_skip ("addr");
12256
12257 annotate_field (5);
12258 switch (c->m_kind)
12259 {
12260 case ada_catch_exception:
12261 if (!c->excep_string.empty ())
12262 {
12263 std::string msg = string_printf (_("`%s' Ada exception"),
12264 c->excep_string.c_str ());
12265
12266 uiout->field_string ("what", msg);
12267 }
12268 else
12269 uiout->field_string ("what", "all Ada exceptions");
12270
12271 break;
12272
12273 case ada_catch_exception_unhandled:
12274 uiout->field_string ("what", "unhandled Ada exceptions");
12275 break;
12276
12277 case ada_catch_handlers:
12278 if (!c->excep_string.empty ())
12279 {
12280 uiout->field_fmt ("what",
12281 _("`%s' Ada exception handlers"),
12282 c->excep_string.c_str ());
12283 }
12284 else
12285 uiout->field_string ("what", "all Ada exceptions handlers");
12286 break;
12287
12288 case ada_catch_assert:
12289 uiout->field_string ("what", "failed Ada assertions");
12290 break;
12291
12292 default:
12293 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12294 break;
12295 }
12296 }
12297
12298 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12299 for all exception catchpoint kinds. */
12300
12301 static void
12302 print_mention_exception (struct breakpoint *b)
12303 {
12304 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12305 struct ui_out *uiout = current_uiout;
12306
12307 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12308 : _("Catchpoint "));
12309 uiout->field_signed ("bkptno", b->number);
12310 uiout->text (": ");
12311
12312 switch (c->m_kind)
12313 {
12314 case ada_catch_exception:
12315 if (!c->excep_string.empty ())
12316 {
12317 std::string info = string_printf (_("`%s' Ada exception"),
12318 c->excep_string.c_str ());
12319 uiout->text (info.c_str ());
12320 }
12321 else
12322 uiout->text (_("all Ada exceptions"));
12323 break;
12324
12325 case ada_catch_exception_unhandled:
12326 uiout->text (_("unhandled Ada exceptions"));
12327 break;
12328
12329 case ada_catch_handlers:
12330 if (!c->excep_string.empty ())
12331 {
12332 std::string info
12333 = string_printf (_("`%s' Ada exception handlers"),
12334 c->excep_string.c_str ());
12335 uiout->text (info.c_str ());
12336 }
12337 else
12338 uiout->text (_("all Ada exceptions handlers"));
12339 break;
12340
12341 case ada_catch_assert:
12342 uiout->text (_("failed Ada assertions"));
12343 break;
12344
12345 default:
12346 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12347 break;
12348 }
12349 }
12350
12351 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12352 for all exception catchpoint kinds. */
12353
12354 static void
12355 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12356 {
12357 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12358
12359 switch (c->m_kind)
12360 {
12361 case ada_catch_exception:
12362 fprintf_filtered (fp, "catch exception");
12363 if (!c->excep_string.empty ())
12364 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12365 break;
12366
12367 case ada_catch_exception_unhandled:
12368 fprintf_filtered (fp, "catch exception unhandled");
12369 break;
12370
12371 case ada_catch_handlers:
12372 fprintf_filtered (fp, "catch handlers");
12373 break;
12374
12375 case ada_catch_assert:
12376 fprintf_filtered (fp, "catch assert");
12377 break;
12378
12379 default:
12380 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12381 }
12382 print_recreate_thread (b, fp);
12383 }
12384
12385 /* Virtual tables for various breakpoint types. */
12386 static struct breakpoint_ops catch_exception_breakpoint_ops;
12387 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12388 static struct breakpoint_ops catch_assert_breakpoint_ops;
12389 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12390
12391 /* See ada-lang.h. */
12392
12393 bool
12394 is_ada_exception_catchpoint (breakpoint *bp)
12395 {
12396 return (bp->ops == &catch_exception_breakpoint_ops
12397 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12398 || bp->ops == &catch_assert_breakpoint_ops
12399 || bp->ops == &catch_handlers_breakpoint_ops);
12400 }
12401
12402 /* Split the arguments specified in a "catch exception" command.
12403 Set EX to the appropriate catchpoint type.
12404 Set EXCEP_STRING to the name of the specific exception if
12405 specified by the user.
12406 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12407 "catch handlers" command. False otherwise.
12408 If a condition is found at the end of the arguments, the condition
12409 expression is stored in COND_STRING (memory must be deallocated
12410 after use). Otherwise COND_STRING is set to NULL. */
12411
12412 static void
12413 catch_ada_exception_command_split (const char *args,
12414 bool is_catch_handlers_cmd,
12415 enum ada_exception_catchpoint_kind *ex,
12416 std::string *excep_string,
12417 std::string *cond_string)
12418 {
12419 std::string exception_name;
12420
12421 exception_name = extract_arg (&args);
12422 if (exception_name == "if")
12423 {
12424 /* This is not an exception name; this is the start of a condition
12425 expression for a catchpoint on all exceptions. So, "un-get"
12426 this token, and set exception_name to NULL. */
12427 exception_name.clear ();
12428 args -= 2;
12429 }
12430
12431 /* Check to see if we have a condition. */
12432
12433 args = skip_spaces (args);
12434 if (startswith (args, "if")
12435 && (isspace (args[2]) || args[2] == '\0'))
12436 {
12437 args += 2;
12438 args = skip_spaces (args);
12439
12440 if (args[0] == '\0')
12441 error (_("Condition missing after `if' keyword"));
12442 *cond_string = args;
12443
12444 args += strlen (args);
12445 }
12446
12447 /* Check that we do not have any more arguments. Anything else
12448 is unexpected. */
12449
12450 if (args[0] != '\0')
12451 error (_("Junk at end of expression"));
12452
12453 if (is_catch_handlers_cmd)
12454 {
12455 /* Catch handling of exceptions. */
12456 *ex = ada_catch_handlers;
12457 *excep_string = exception_name;
12458 }
12459 else if (exception_name.empty ())
12460 {
12461 /* Catch all exceptions. */
12462 *ex = ada_catch_exception;
12463 excep_string->clear ();
12464 }
12465 else if (exception_name == "unhandled")
12466 {
12467 /* Catch unhandled exceptions. */
12468 *ex = ada_catch_exception_unhandled;
12469 excep_string->clear ();
12470 }
12471 else
12472 {
12473 /* Catch a specific exception. */
12474 *ex = ada_catch_exception;
12475 *excep_string = exception_name;
12476 }
12477 }
12478
12479 /* Return the name of the symbol on which we should break in order to
12480 implement a catchpoint of the EX kind. */
12481
12482 static const char *
12483 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12484 {
12485 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12486
12487 gdb_assert (data->exception_info != NULL);
12488
12489 switch (ex)
12490 {
12491 case ada_catch_exception:
12492 return (data->exception_info->catch_exception_sym);
12493 break;
12494 case ada_catch_exception_unhandled:
12495 return (data->exception_info->catch_exception_unhandled_sym);
12496 break;
12497 case ada_catch_assert:
12498 return (data->exception_info->catch_assert_sym);
12499 break;
12500 case ada_catch_handlers:
12501 return (data->exception_info->catch_handlers_sym);
12502 break;
12503 default:
12504 internal_error (__FILE__, __LINE__,
12505 _("unexpected catchpoint kind (%d)"), ex);
12506 }
12507 }
12508
12509 /* Return the breakpoint ops "virtual table" used for catchpoints
12510 of the EX kind. */
12511
12512 static const struct breakpoint_ops *
12513 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12514 {
12515 switch (ex)
12516 {
12517 case ada_catch_exception:
12518 return (&catch_exception_breakpoint_ops);
12519 break;
12520 case ada_catch_exception_unhandled:
12521 return (&catch_exception_unhandled_breakpoint_ops);
12522 break;
12523 case ada_catch_assert:
12524 return (&catch_assert_breakpoint_ops);
12525 break;
12526 case ada_catch_handlers:
12527 return (&catch_handlers_breakpoint_ops);
12528 break;
12529 default:
12530 internal_error (__FILE__, __LINE__,
12531 _("unexpected catchpoint kind (%d)"), ex);
12532 }
12533 }
12534
12535 /* Return the condition that will be used to match the current exception
12536 being raised with the exception that the user wants to catch. This
12537 assumes that this condition is used when the inferior just triggered
12538 an exception catchpoint.
12539 EX: the type of catchpoints used for catching Ada exceptions. */
12540
12541 static std::string
12542 ada_exception_catchpoint_cond_string (const char *excep_string,
12543 enum ada_exception_catchpoint_kind ex)
12544 {
12545 int i;
12546 bool is_standard_exc = false;
12547 std::string result;
12548
12549 if (ex == ada_catch_handlers)
12550 {
12551 /* For exception handlers catchpoints, the condition string does
12552 not use the same parameter as for the other exceptions. */
12553 result = ("long_integer (GNAT_GCC_exception_Access"
12554 "(gcc_exception).all.occurrence.id)");
12555 }
12556 else
12557 result = "long_integer (e)";
12558
12559 /* The standard exceptions are a special case. They are defined in
12560 runtime units that have been compiled without debugging info; if
12561 EXCEP_STRING is the not-fully-qualified name of a standard
12562 exception (e.g. "constraint_error") then, during the evaluation
12563 of the condition expression, the symbol lookup on this name would
12564 *not* return this standard exception. The catchpoint condition
12565 may then be set only on user-defined exceptions which have the
12566 same not-fully-qualified name (e.g. my_package.constraint_error).
12567
12568 To avoid this unexcepted behavior, these standard exceptions are
12569 systematically prefixed by "standard". This means that "catch
12570 exception constraint_error" is rewritten into "catch exception
12571 standard.constraint_error".
12572
12573 If an exception named constraint_error is defined in another package of
12574 the inferior program, then the only way to specify this exception as a
12575 breakpoint condition is to use its fully-qualified named:
12576 e.g. my_package.constraint_error. */
12577
12578 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12579 {
12580 if (strcmp (standard_exc [i], excep_string) == 0)
12581 {
12582 is_standard_exc = true;
12583 break;
12584 }
12585 }
12586
12587 result += " = ";
12588
12589 if (is_standard_exc)
12590 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12591 else
12592 string_appendf (result, "long_integer (&%s)", excep_string);
12593
12594 return result;
12595 }
12596
12597 /* Return the symtab_and_line that should be used to insert an exception
12598 catchpoint of the TYPE kind.
12599
12600 ADDR_STRING returns the name of the function where the real
12601 breakpoint that implements the catchpoints is set, depending on the
12602 type of catchpoint we need to create. */
12603
12604 static struct symtab_and_line
12605 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12606 std::string *addr_string, const struct breakpoint_ops **ops)
12607 {
12608 const char *sym_name;
12609 struct symbol *sym;
12610
12611 /* First, find out which exception support info to use. */
12612 ada_exception_support_info_sniffer ();
12613
12614 /* Then lookup the function on which we will break in order to catch
12615 the Ada exceptions requested by the user. */
12616 sym_name = ada_exception_sym_name (ex);
12617 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12618
12619 if (sym == NULL)
12620 error (_("Catchpoint symbol not found: %s"), sym_name);
12621
12622 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12623 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12624
12625 /* Set ADDR_STRING. */
12626 *addr_string = sym_name;
12627
12628 /* Set OPS. */
12629 *ops = ada_exception_breakpoint_ops (ex);
12630
12631 return find_function_start_sal (sym, 1);
12632 }
12633
12634 /* Create an Ada exception catchpoint.
12635
12636 EX_KIND is the kind of exception catchpoint to be created.
12637
12638 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12639 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12640 of the exception to which this catchpoint applies.
12641
12642 COND_STRING, if not empty, is the catchpoint condition.
12643
12644 TEMPFLAG, if nonzero, means that the underlying breakpoint
12645 should be temporary.
12646
12647 FROM_TTY is the usual argument passed to all commands implementations. */
12648
12649 void
12650 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12651 enum ada_exception_catchpoint_kind ex_kind,
12652 const std::string &excep_string,
12653 const std::string &cond_string,
12654 int tempflag,
12655 int disabled,
12656 int from_tty)
12657 {
12658 std::string addr_string;
12659 const struct breakpoint_ops *ops = NULL;
12660 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12661
12662 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12663 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12664 ops, tempflag, disabled, from_tty);
12665 c->excep_string = excep_string;
12666 create_excep_cond_exprs (c.get (), ex_kind);
12667 if (!cond_string.empty ())
12668 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12669 install_breakpoint (0, std::move (c), 1);
12670 }
12671
12672 /* Implement the "catch exception" command. */
12673
12674 static void
12675 catch_ada_exception_command (const char *arg_entry, int from_tty,
12676 struct cmd_list_element *command)
12677 {
12678 const char *arg = arg_entry;
12679 struct gdbarch *gdbarch = get_current_arch ();
12680 int tempflag;
12681 enum ada_exception_catchpoint_kind ex_kind;
12682 std::string excep_string;
12683 std::string cond_string;
12684
12685 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12686
12687 if (!arg)
12688 arg = "";
12689 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12690 &cond_string);
12691 create_ada_exception_catchpoint (gdbarch, ex_kind,
12692 excep_string, cond_string,
12693 tempflag, 1 /* enabled */,
12694 from_tty);
12695 }
12696
12697 /* Implement the "catch handlers" command. */
12698
12699 static void
12700 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12701 struct cmd_list_element *command)
12702 {
12703 const char *arg = arg_entry;
12704 struct gdbarch *gdbarch = get_current_arch ();
12705 int tempflag;
12706 enum ada_exception_catchpoint_kind ex_kind;
12707 std::string excep_string;
12708 std::string cond_string;
12709
12710 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12711
12712 if (!arg)
12713 arg = "";
12714 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12715 &cond_string);
12716 create_ada_exception_catchpoint (gdbarch, ex_kind,
12717 excep_string, cond_string,
12718 tempflag, 1 /* enabled */,
12719 from_tty);
12720 }
12721
12722 /* Completion function for the Ada "catch" commands. */
12723
12724 static void
12725 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12726 const char *text, const char *word)
12727 {
12728 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12729
12730 for (const ada_exc_info &info : exceptions)
12731 {
12732 if (startswith (info.name, word))
12733 tracker.add_completion (make_unique_xstrdup (info.name));
12734 }
12735 }
12736
12737 /* Split the arguments specified in a "catch assert" command.
12738
12739 ARGS contains the command's arguments (or the empty string if
12740 no arguments were passed).
12741
12742 If ARGS contains a condition, set COND_STRING to that condition
12743 (the memory needs to be deallocated after use). */
12744
12745 static void
12746 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12747 {
12748 args = skip_spaces (args);
12749
12750 /* Check whether a condition was provided. */
12751 if (startswith (args, "if")
12752 && (isspace (args[2]) || args[2] == '\0'))
12753 {
12754 args += 2;
12755 args = skip_spaces (args);
12756 if (args[0] == '\0')
12757 error (_("condition missing after `if' keyword"));
12758 cond_string.assign (args);
12759 }
12760
12761 /* Otherwise, there should be no other argument at the end of
12762 the command. */
12763 else if (args[0] != '\0')
12764 error (_("Junk at end of arguments."));
12765 }
12766
12767 /* Implement the "catch assert" command. */
12768
12769 static void
12770 catch_assert_command (const char *arg_entry, int from_tty,
12771 struct cmd_list_element *command)
12772 {
12773 const char *arg = arg_entry;
12774 struct gdbarch *gdbarch = get_current_arch ();
12775 int tempflag;
12776 std::string cond_string;
12777
12778 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12779
12780 if (!arg)
12781 arg = "";
12782 catch_ada_assert_command_split (arg, cond_string);
12783 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12784 "", cond_string,
12785 tempflag, 1 /* enabled */,
12786 from_tty);
12787 }
12788
12789 /* Return non-zero if the symbol SYM is an Ada exception object. */
12790
12791 static int
12792 ada_is_exception_sym (struct symbol *sym)
12793 {
12794 const char *type_name = SYMBOL_TYPE (sym)->name ();
12795
12796 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12797 && SYMBOL_CLASS (sym) != LOC_BLOCK
12798 && SYMBOL_CLASS (sym) != LOC_CONST
12799 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12800 && type_name != NULL && strcmp (type_name, "exception") == 0);
12801 }
12802
12803 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12804 Ada exception object. This matches all exceptions except the ones
12805 defined by the Ada language. */
12806
12807 static int
12808 ada_is_non_standard_exception_sym (struct symbol *sym)
12809 {
12810 int i;
12811
12812 if (!ada_is_exception_sym (sym))
12813 return 0;
12814
12815 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12816 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12817 return 0; /* A standard exception. */
12818
12819 /* Numeric_Error is also a standard exception, so exclude it.
12820 See the STANDARD_EXC description for more details as to why
12821 this exception is not listed in that array. */
12822 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12823 return 0;
12824
12825 return 1;
12826 }
12827
12828 /* A helper function for std::sort, comparing two struct ada_exc_info
12829 objects.
12830
12831 The comparison is determined first by exception name, and then
12832 by exception address. */
12833
12834 bool
12835 ada_exc_info::operator< (const ada_exc_info &other) const
12836 {
12837 int result;
12838
12839 result = strcmp (name, other.name);
12840 if (result < 0)
12841 return true;
12842 if (result == 0 && addr < other.addr)
12843 return true;
12844 return false;
12845 }
12846
12847 bool
12848 ada_exc_info::operator== (const ada_exc_info &other) const
12849 {
12850 return addr == other.addr && strcmp (name, other.name) == 0;
12851 }
12852
12853 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12854 routine, but keeping the first SKIP elements untouched.
12855
12856 All duplicates are also removed. */
12857
12858 static void
12859 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12860 int skip)
12861 {
12862 std::sort (exceptions->begin () + skip, exceptions->end ());
12863 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12864 exceptions->end ());
12865 }
12866
12867 /* Add all exceptions defined by the Ada standard whose name match
12868 a regular expression.
12869
12870 If PREG is not NULL, then this regexp_t object is used to
12871 perform the symbol name matching. Otherwise, no name-based
12872 filtering is performed.
12873
12874 EXCEPTIONS is a vector of exceptions to which matching exceptions
12875 gets pushed. */
12876
12877 static void
12878 ada_add_standard_exceptions (compiled_regex *preg,
12879 std::vector<ada_exc_info> *exceptions)
12880 {
12881 int i;
12882
12883 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12884 {
12885 if (preg == NULL
12886 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12887 {
12888 struct bound_minimal_symbol msymbol
12889 = ada_lookup_simple_minsym (standard_exc[i]);
12890
12891 if (msymbol.minsym != NULL)
12892 {
12893 struct ada_exc_info info
12894 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12895
12896 exceptions->push_back (info);
12897 }
12898 }
12899 }
12900 }
12901
12902 /* Add all Ada exceptions defined locally and accessible from the given
12903 FRAME.
12904
12905 If PREG is not NULL, then this regexp_t object is used to
12906 perform the symbol name matching. Otherwise, no name-based
12907 filtering is performed.
12908
12909 EXCEPTIONS is a vector of exceptions to which matching exceptions
12910 gets pushed. */
12911
12912 static void
12913 ada_add_exceptions_from_frame (compiled_regex *preg,
12914 struct frame_info *frame,
12915 std::vector<ada_exc_info> *exceptions)
12916 {
12917 const struct block *block = get_frame_block (frame, 0);
12918
12919 while (block != 0)
12920 {
12921 struct block_iterator iter;
12922 struct symbol *sym;
12923
12924 ALL_BLOCK_SYMBOLS (block, iter, sym)
12925 {
12926 switch (SYMBOL_CLASS (sym))
12927 {
12928 case LOC_TYPEDEF:
12929 case LOC_BLOCK:
12930 case LOC_CONST:
12931 break;
12932 default:
12933 if (ada_is_exception_sym (sym))
12934 {
12935 struct ada_exc_info info = {sym->print_name (),
12936 SYMBOL_VALUE_ADDRESS (sym)};
12937
12938 exceptions->push_back (info);
12939 }
12940 }
12941 }
12942 if (BLOCK_FUNCTION (block) != NULL)
12943 break;
12944 block = BLOCK_SUPERBLOCK (block);
12945 }
12946 }
12947
12948 /* Return true if NAME matches PREG or if PREG is NULL. */
12949
12950 static bool
12951 name_matches_regex (const char *name, compiled_regex *preg)
12952 {
12953 return (preg == NULL
12954 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12955 }
12956
12957 /* Add all exceptions defined globally whose name name match
12958 a regular expression, excluding standard exceptions.
12959
12960 The reason we exclude standard exceptions is that they need
12961 to be handled separately: Standard exceptions are defined inside
12962 a runtime unit which is normally not compiled with debugging info,
12963 and thus usually do not show up in our symbol search. However,
12964 if the unit was in fact built with debugging info, we need to
12965 exclude them because they would duplicate the entry we found
12966 during the special loop that specifically searches for those
12967 standard exceptions.
12968
12969 If PREG is not NULL, then this regexp_t object is used to
12970 perform the symbol name matching. Otherwise, no name-based
12971 filtering is performed.
12972
12973 EXCEPTIONS is a vector of exceptions to which matching exceptions
12974 gets pushed. */
12975
12976 static void
12977 ada_add_global_exceptions (compiled_regex *preg,
12978 std::vector<ada_exc_info> *exceptions)
12979 {
12980 /* In Ada, the symbol "search name" is a linkage name, whereas the
12981 regular expression used to do the matching refers to the natural
12982 name. So match against the decoded name. */
12983 expand_symtabs_matching (NULL,
12984 lookup_name_info::match_any (),
12985 [&] (const char *search_name)
12986 {
12987 std::string decoded = ada_decode (search_name);
12988 return name_matches_regex (decoded.c_str (), preg);
12989 },
12990 NULL,
12991 VARIABLES_DOMAIN);
12992
12993 for (objfile *objfile : current_program_space->objfiles ())
12994 {
12995 for (compunit_symtab *s : objfile->compunits ())
12996 {
12997 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12998 int i;
12999
13000 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13001 {
13002 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13003 struct block_iterator iter;
13004 struct symbol *sym;
13005
13006 ALL_BLOCK_SYMBOLS (b, iter, sym)
13007 if (ada_is_non_standard_exception_sym (sym)
13008 && name_matches_regex (sym->natural_name (), preg))
13009 {
13010 struct ada_exc_info info
13011 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13012
13013 exceptions->push_back (info);
13014 }
13015 }
13016 }
13017 }
13018 }
13019
13020 /* Implements ada_exceptions_list with the regular expression passed
13021 as a regex_t, rather than a string.
13022
13023 If not NULL, PREG is used to filter out exceptions whose names
13024 do not match. Otherwise, all exceptions are listed. */
13025
13026 static std::vector<ada_exc_info>
13027 ada_exceptions_list_1 (compiled_regex *preg)
13028 {
13029 std::vector<ada_exc_info> result;
13030 int prev_len;
13031
13032 /* First, list the known standard exceptions. These exceptions
13033 need to be handled separately, as they are usually defined in
13034 runtime units that have been compiled without debugging info. */
13035
13036 ada_add_standard_exceptions (preg, &result);
13037
13038 /* Next, find all exceptions whose scope is local and accessible
13039 from the currently selected frame. */
13040
13041 if (has_stack_frames ())
13042 {
13043 prev_len = result.size ();
13044 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13045 &result);
13046 if (result.size () > prev_len)
13047 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13048 }
13049
13050 /* Add all exceptions whose scope is global. */
13051
13052 prev_len = result.size ();
13053 ada_add_global_exceptions (preg, &result);
13054 if (result.size () > prev_len)
13055 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13056
13057 return result;
13058 }
13059
13060 /* Return a vector of ada_exc_info.
13061
13062 If REGEXP is NULL, all exceptions are included in the result.
13063 Otherwise, it should contain a valid regular expression,
13064 and only the exceptions whose names match that regular expression
13065 are included in the result.
13066
13067 The exceptions are sorted in the following order:
13068 - Standard exceptions (defined by the Ada language), in
13069 alphabetical order;
13070 - Exceptions only visible from the current frame, in
13071 alphabetical order;
13072 - Exceptions whose scope is global, in alphabetical order. */
13073
13074 std::vector<ada_exc_info>
13075 ada_exceptions_list (const char *regexp)
13076 {
13077 if (regexp == NULL)
13078 return ada_exceptions_list_1 (NULL);
13079
13080 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13081 return ada_exceptions_list_1 (&reg);
13082 }
13083
13084 /* Implement the "info exceptions" command. */
13085
13086 static void
13087 info_exceptions_command (const char *regexp, int from_tty)
13088 {
13089 struct gdbarch *gdbarch = get_current_arch ();
13090
13091 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13092
13093 if (regexp != NULL)
13094 printf_filtered
13095 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13096 else
13097 printf_filtered (_("All defined Ada exceptions:\n"));
13098
13099 for (const ada_exc_info &info : exceptions)
13100 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13101 }
13102
13103 /* Operators */
13104 /* Information about operators given special treatment in functions
13105 below. */
13106 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13107
13108 #define ADA_OPERATORS \
13109 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13110 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13111 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13112 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13113 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13114 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13115 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13116 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13117 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13118 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13119 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13120 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13121 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13122 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13123 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13124 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13125 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13126 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13127 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13128
13129 static void
13130 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13131 int *argsp)
13132 {
13133 switch (exp->elts[pc - 1].opcode)
13134 {
13135 default:
13136 operator_length_standard (exp, pc, oplenp, argsp);
13137 break;
13138
13139 #define OP_DEFN(op, len, args, binop) \
13140 case op: *oplenp = len; *argsp = args; break;
13141 ADA_OPERATORS;
13142 #undef OP_DEFN
13143
13144 case OP_AGGREGATE:
13145 *oplenp = 3;
13146 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13147 break;
13148
13149 case OP_CHOICES:
13150 *oplenp = 3;
13151 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13152 break;
13153 }
13154 }
13155
13156 /* Implementation of the exp_descriptor method operator_check. */
13157
13158 static int
13159 ada_operator_check (struct expression *exp, int pos,
13160 int (*objfile_func) (struct objfile *objfile, void *data),
13161 void *data)
13162 {
13163 const union exp_element *const elts = exp->elts;
13164 struct type *type = NULL;
13165
13166 switch (elts[pos].opcode)
13167 {
13168 case UNOP_IN_RANGE:
13169 case UNOP_QUAL:
13170 type = elts[pos + 1].type;
13171 break;
13172
13173 default:
13174 return operator_check_standard (exp, pos, objfile_func, data);
13175 }
13176
13177 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13178
13179 if (type && TYPE_OBJFILE (type)
13180 && (*objfile_func) (TYPE_OBJFILE (type), data))
13181 return 1;
13182
13183 return 0;
13184 }
13185
13186 static const char *
13187 ada_op_name (enum exp_opcode opcode)
13188 {
13189 switch (opcode)
13190 {
13191 default:
13192 return op_name_standard (opcode);
13193
13194 #define OP_DEFN(op, len, args, binop) case op: return #op;
13195 ADA_OPERATORS;
13196 #undef OP_DEFN
13197
13198 case OP_AGGREGATE:
13199 return "OP_AGGREGATE";
13200 case OP_CHOICES:
13201 return "OP_CHOICES";
13202 case OP_NAME:
13203 return "OP_NAME";
13204 }
13205 }
13206
13207 /* As for operator_length, but assumes PC is pointing at the first
13208 element of the operator, and gives meaningful results only for the
13209 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13210
13211 static void
13212 ada_forward_operator_length (struct expression *exp, int pc,
13213 int *oplenp, int *argsp)
13214 {
13215 switch (exp->elts[pc].opcode)
13216 {
13217 default:
13218 *oplenp = *argsp = 0;
13219 break;
13220
13221 #define OP_DEFN(op, len, args, binop) \
13222 case op: *oplenp = len; *argsp = args; break;
13223 ADA_OPERATORS;
13224 #undef OP_DEFN
13225
13226 case OP_AGGREGATE:
13227 *oplenp = 3;
13228 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13229 break;
13230
13231 case OP_CHOICES:
13232 *oplenp = 3;
13233 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13234 break;
13235
13236 case OP_STRING:
13237 case OP_NAME:
13238 {
13239 int len = longest_to_int (exp->elts[pc + 1].longconst);
13240
13241 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13242 *argsp = 0;
13243 break;
13244 }
13245 }
13246 }
13247
13248 static int
13249 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13250 {
13251 enum exp_opcode op = exp->elts[elt].opcode;
13252 int oplen, nargs;
13253 int pc = elt;
13254 int i;
13255
13256 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13257
13258 switch (op)
13259 {
13260 /* Ada attributes ('Foo). */
13261 case OP_ATR_FIRST:
13262 case OP_ATR_LAST:
13263 case OP_ATR_LENGTH:
13264 case OP_ATR_IMAGE:
13265 case OP_ATR_MAX:
13266 case OP_ATR_MIN:
13267 case OP_ATR_MODULUS:
13268 case OP_ATR_POS:
13269 case OP_ATR_SIZE:
13270 case OP_ATR_TAG:
13271 case OP_ATR_VAL:
13272 break;
13273
13274 case UNOP_IN_RANGE:
13275 case UNOP_QUAL:
13276 /* XXX: gdb_sprint_host_address, type_sprint */
13277 fprintf_filtered (stream, _("Type @"));
13278 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13279 fprintf_filtered (stream, " (");
13280 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13281 fprintf_filtered (stream, ")");
13282 break;
13283 case BINOP_IN_BOUNDS:
13284 fprintf_filtered (stream, " (%d)",
13285 longest_to_int (exp->elts[pc + 2].longconst));
13286 break;
13287 case TERNOP_IN_RANGE:
13288 break;
13289
13290 case OP_AGGREGATE:
13291 case OP_OTHERS:
13292 case OP_DISCRETE_RANGE:
13293 case OP_POSITIONAL:
13294 case OP_CHOICES:
13295 break;
13296
13297 case OP_NAME:
13298 case OP_STRING:
13299 {
13300 char *name = &exp->elts[elt + 2].string;
13301 int len = longest_to_int (exp->elts[elt + 1].longconst);
13302
13303 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13304 break;
13305 }
13306
13307 default:
13308 return dump_subexp_body_standard (exp, stream, elt);
13309 }
13310
13311 elt += oplen;
13312 for (i = 0; i < nargs; i += 1)
13313 elt = dump_subexp (exp, stream, elt);
13314
13315 return elt;
13316 }
13317
13318 /* The Ada extension of print_subexp (q.v.). */
13319
13320 static void
13321 ada_print_subexp (struct expression *exp, int *pos,
13322 struct ui_file *stream, enum precedence prec)
13323 {
13324 int oplen, nargs, i;
13325 int pc = *pos;
13326 enum exp_opcode op = exp->elts[pc].opcode;
13327
13328 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13329
13330 *pos += oplen;
13331 switch (op)
13332 {
13333 default:
13334 *pos -= oplen;
13335 print_subexp_standard (exp, pos, stream, prec);
13336 return;
13337
13338 case OP_VAR_VALUE:
13339 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13340 return;
13341
13342 case BINOP_IN_BOUNDS:
13343 /* XXX: sprint_subexp */
13344 print_subexp (exp, pos, stream, PREC_SUFFIX);
13345 fputs_filtered (" in ", stream);
13346 print_subexp (exp, pos, stream, PREC_SUFFIX);
13347 fputs_filtered ("'range", stream);
13348 if (exp->elts[pc + 1].longconst > 1)
13349 fprintf_filtered (stream, "(%ld)",
13350 (long) exp->elts[pc + 1].longconst);
13351 return;
13352
13353 case TERNOP_IN_RANGE:
13354 if (prec >= PREC_EQUAL)
13355 fputs_filtered ("(", stream);
13356 /* XXX: sprint_subexp */
13357 print_subexp (exp, pos, stream, PREC_SUFFIX);
13358 fputs_filtered (" in ", stream);
13359 print_subexp (exp, pos, stream, PREC_EQUAL);
13360 fputs_filtered (" .. ", stream);
13361 print_subexp (exp, pos, stream, PREC_EQUAL);
13362 if (prec >= PREC_EQUAL)
13363 fputs_filtered (")", stream);
13364 return;
13365
13366 case OP_ATR_FIRST:
13367 case OP_ATR_LAST:
13368 case OP_ATR_LENGTH:
13369 case OP_ATR_IMAGE:
13370 case OP_ATR_MAX:
13371 case OP_ATR_MIN:
13372 case OP_ATR_MODULUS:
13373 case OP_ATR_POS:
13374 case OP_ATR_SIZE:
13375 case OP_ATR_TAG:
13376 case OP_ATR_VAL:
13377 if (exp->elts[*pos].opcode == OP_TYPE)
13378 {
13379 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13380 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13381 &type_print_raw_options);
13382 *pos += 3;
13383 }
13384 else
13385 print_subexp (exp, pos, stream, PREC_SUFFIX);
13386 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13387 if (nargs > 1)
13388 {
13389 int tem;
13390
13391 for (tem = 1; tem < nargs; tem += 1)
13392 {
13393 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13394 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13395 }
13396 fputs_filtered (")", stream);
13397 }
13398 return;
13399
13400 case UNOP_QUAL:
13401 type_print (exp->elts[pc + 1].type, "", stream, 0);
13402 fputs_filtered ("'(", stream);
13403 print_subexp (exp, pos, stream, PREC_PREFIX);
13404 fputs_filtered (")", stream);
13405 return;
13406
13407 case UNOP_IN_RANGE:
13408 /* XXX: sprint_subexp */
13409 print_subexp (exp, pos, stream, PREC_SUFFIX);
13410 fputs_filtered (" in ", stream);
13411 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13412 &type_print_raw_options);
13413 return;
13414
13415 case OP_DISCRETE_RANGE:
13416 print_subexp (exp, pos, stream, PREC_SUFFIX);
13417 fputs_filtered ("..", stream);
13418 print_subexp (exp, pos, stream, PREC_SUFFIX);
13419 return;
13420
13421 case OP_OTHERS:
13422 fputs_filtered ("others => ", stream);
13423 print_subexp (exp, pos, stream, PREC_SUFFIX);
13424 return;
13425
13426 case OP_CHOICES:
13427 for (i = 0; i < nargs-1; i += 1)
13428 {
13429 if (i > 0)
13430 fputs_filtered ("|", stream);
13431 print_subexp (exp, pos, stream, PREC_SUFFIX);
13432 }
13433 fputs_filtered (" => ", stream);
13434 print_subexp (exp, pos, stream, PREC_SUFFIX);
13435 return;
13436
13437 case OP_POSITIONAL:
13438 print_subexp (exp, pos, stream, PREC_SUFFIX);
13439 return;
13440
13441 case OP_AGGREGATE:
13442 fputs_filtered ("(", stream);
13443 for (i = 0; i < nargs; i += 1)
13444 {
13445 if (i > 0)
13446 fputs_filtered (", ", stream);
13447 print_subexp (exp, pos, stream, PREC_SUFFIX);
13448 }
13449 fputs_filtered (")", stream);
13450 return;
13451 }
13452 }
13453
13454 /* Table mapping opcodes into strings for printing operators
13455 and precedences of the operators. */
13456
13457 static const struct op_print ada_op_print_tab[] = {
13458 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13459 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13460 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13461 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13462 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13463 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13464 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13465 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13466 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13467 {">=", BINOP_GEQ, PREC_ORDER, 0},
13468 {">", BINOP_GTR, PREC_ORDER, 0},
13469 {"<", BINOP_LESS, PREC_ORDER, 0},
13470 {">>", BINOP_RSH, PREC_SHIFT, 0},
13471 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13472 {"+", BINOP_ADD, PREC_ADD, 0},
13473 {"-", BINOP_SUB, PREC_ADD, 0},
13474 {"&", BINOP_CONCAT, PREC_ADD, 0},
13475 {"*", BINOP_MUL, PREC_MUL, 0},
13476 {"/", BINOP_DIV, PREC_MUL, 0},
13477 {"rem", BINOP_REM, PREC_MUL, 0},
13478 {"mod", BINOP_MOD, PREC_MUL, 0},
13479 {"**", BINOP_EXP, PREC_REPEAT, 0},
13480 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13481 {"-", UNOP_NEG, PREC_PREFIX, 0},
13482 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13483 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13484 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13485 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13486 {".all", UNOP_IND, PREC_SUFFIX, 1},
13487 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13488 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13489 {NULL, OP_NULL, PREC_SUFFIX, 0}
13490 };
13491 \f
13492 enum ada_primitive_types {
13493 ada_primitive_type_int,
13494 ada_primitive_type_long,
13495 ada_primitive_type_short,
13496 ada_primitive_type_char,
13497 ada_primitive_type_float,
13498 ada_primitive_type_double,
13499 ada_primitive_type_void,
13500 ada_primitive_type_long_long,
13501 ada_primitive_type_long_double,
13502 ada_primitive_type_natural,
13503 ada_primitive_type_positive,
13504 ada_primitive_type_system_address,
13505 ada_primitive_type_storage_offset,
13506 nr_ada_primitive_types
13507 };
13508
13509 \f
13510 /* Language vector */
13511
13512 static const struct exp_descriptor ada_exp_descriptor = {
13513 ada_print_subexp,
13514 ada_operator_length,
13515 ada_operator_check,
13516 ada_op_name,
13517 ada_dump_subexp_body,
13518 ada_evaluate_subexp
13519 };
13520
13521 /* symbol_name_matcher_ftype adapter for wild_match. */
13522
13523 static bool
13524 do_wild_match (const char *symbol_search_name,
13525 const lookup_name_info &lookup_name,
13526 completion_match_result *comp_match_res)
13527 {
13528 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13529 }
13530
13531 /* symbol_name_matcher_ftype adapter for full_match. */
13532
13533 static bool
13534 do_full_match (const char *symbol_search_name,
13535 const lookup_name_info &lookup_name,
13536 completion_match_result *comp_match_res)
13537 {
13538 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13539 }
13540
13541 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13542
13543 static bool
13544 do_exact_match (const char *symbol_search_name,
13545 const lookup_name_info &lookup_name,
13546 completion_match_result *comp_match_res)
13547 {
13548 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13549 }
13550
13551 /* Build the Ada lookup name for LOOKUP_NAME. */
13552
13553 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13554 {
13555 gdb::string_view user_name = lookup_name.name ();
13556
13557 if (user_name[0] == '<')
13558 {
13559 if (user_name.back () == '>')
13560 m_encoded_name
13561 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13562 else
13563 m_encoded_name
13564 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13565 m_encoded_p = true;
13566 m_verbatim_p = true;
13567 m_wild_match_p = false;
13568 m_standard_p = false;
13569 }
13570 else
13571 {
13572 m_verbatim_p = false;
13573
13574 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13575
13576 if (!m_encoded_p)
13577 {
13578 const char *folded = ada_fold_name (user_name);
13579 const char *encoded = ada_encode_1 (folded, false);
13580 if (encoded != NULL)
13581 m_encoded_name = encoded;
13582 else
13583 m_encoded_name = gdb::to_string (user_name);
13584 }
13585 else
13586 m_encoded_name = gdb::to_string (user_name);
13587
13588 /* Handle the 'package Standard' special case. See description
13589 of m_standard_p. */
13590 if (startswith (m_encoded_name.c_str (), "standard__"))
13591 {
13592 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13593 m_standard_p = true;
13594 }
13595 else
13596 m_standard_p = false;
13597
13598 /* If the name contains a ".", then the user is entering a fully
13599 qualified entity name, and the match must not be done in wild
13600 mode. Similarly, if the user wants to complete what looks
13601 like an encoded name, the match must not be done in wild
13602 mode. Also, in the standard__ special case always do
13603 non-wild matching. */
13604 m_wild_match_p
13605 = (lookup_name.match_type () != symbol_name_match_type::FULL
13606 && !m_encoded_p
13607 && !m_standard_p
13608 && user_name.find ('.') == std::string::npos);
13609 }
13610 }
13611
13612 /* symbol_name_matcher_ftype method for Ada. This only handles
13613 completion mode. */
13614
13615 static bool
13616 ada_symbol_name_matches (const char *symbol_search_name,
13617 const lookup_name_info &lookup_name,
13618 completion_match_result *comp_match_res)
13619 {
13620 return lookup_name.ada ().matches (symbol_search_name,
13621 lookup_name.match_type (),
13622 comp_match_res);
13623 }
13624
13625 /* A name matcher that matches the symbol name exactly, with
13626 strcmp. */
13627
13628 static bool
13629 literal_symbol_name_matcher (const char *symbol_search_name,
13630 const lookup_name_info &lookup_name,
13631 completion_match_result *comp_match_res)
13632 {
13633 gdb::string_view name_view = lookup_name.name ();
13634
13635 if (lookup_name.completion_mode ()
13636 ? (strncmp (symbol_search_name, name_view.data (),
13637 name_view.size ()) == 0)
13638 : symbol_search_name == name_view)
13639 {
13640 if (comp_match_res != NULL)
13641 comp_match_res->set_match (symbol_search_name);
13642 return true;
13643 }
13644 else
13645 return false;
13646 }
13647
13648 /* Implement the "get_symbol_name_matcher" language_defn method for
13649 Ada. */
13650
13651 static symbol_name_matcher_ftype *
13652 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13653 {
13654 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13655 return literal_symbol_name_matcher;
13656
13657 if (lookup_name.completion_mode ())
13658 return ada_symbol_name_matches;
13659 else
13660 {
13661 if (lookup_name.ada ().wild_match_p ())
13662 return do_wild_match;
13663 else if (lookup_name.ada ().verbatim_p ())
13664 return do_exact_match;
13665 else
13666 return do_full_match;
13667 }
13668 }
13669
13670 static const char *ada_extensions[] =
13671 {
13672 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13673 };
13674
13675 /* Constant data that describes the Ada language. */
13676
13677 extern const struct language_data ada_language_data =
13678 {
13679 "ada", /* Language name */
13680 "Ada",
13681 language_ada,
13682 range_check_off,
13683 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13684 that's not quite what this means. */
13685 array_row_major,
13686 macro_expansion_no,
13687 ada_extensions,
13688 &ada_exp_descriptor,
13689 NULL, /* name_of_this */
13690 true, /* la_store_sym_names_in_linkage_form_p */
13691 ada_op_print_tab, /* expression operators for printing */
13692 0, /* c-style arrays */
13693 1, /* String lower bound */
13694 &ada_varobj_ops,
13695 "(...)" /* la_struct_too_deep_ellipsis */
13696 };
13697
13698 /* Class representing the Ada language. */
13699
13700 class ada_language : public language_defn
13701 {
13702 public:
13703 ada_language ()
13704 : language_defn (language_ada, ada_language_data)
13705 { /* Nothing. */ }
13706
13707 /* Print an array element index using the Ada syntax. */
13708
13709 void print_array_index (struct type *index_type,
13710 LONGEST index,
13711 struct ui_file *stream,
13712 const value_print_options *options) const override
13713 {
13714 struct value *index_value = val_atr (index_type, index);
13715
13716 LA_VALUE_PRINT (index_value, stream, options);
13717 fprintf_filtered (stream, " => ");
13718 }
13719
13720 /* Implement the "read_var_value" language_defn method for Ada. */
13721
13722 struct value *read_var_value (struct symbol *var,
13723 const struct block *var_block,
13724 struct frame_info *frame) const override
13725 {
13726 /* The only case where default_read_var_value is not sufficient
13727 is when VAR is a renaming... */
13728 if (frame != nullptr)
13729 {
13730 const struct block *frame_block = get_frame_block (frame, NULL);
13731 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13732 return ada_read_renaming_var_value (var, frame_block);
13733 }
13734
13735 /* This is a typical case where we expect the default_read_var_value
13736 function to work. */
13737 return language_defn::read_var_value (var, var_block, frame);
13738 }
13739
13740 /* See language.h. */
13741 void language_arch_info (struct gdbarch *gdbarch,
13742 struct language_arch_info *lai) const override
13743 {
13744 const struct builtin_type *builtin = builtin_type (gdbarch);
13745
13746 lai->primitive_type_vector
13747 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13748 struct type *);
13749
13750 lai->primitive_type_vector [ada_primitive_type_int]
13751 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13752 0, "integer");
13753 lai->primitive_type_vector [ada_primitive_type_long]
13754 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13755 0, "long_integer");
13756 lai->primitive_type_vector [ada_primitive_type_short]
13757 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13758 0, "short_integer");
13759 lai->string_char_type
13760 = lai->primitive_type_vector [ada_primitive_type_char]
13761 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13762 lai->primitive_type_vector [ada_primitive_type_float]
13763 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13764 "float", gdbarch_float_format (gdbarch));
13765 lai->primitive_type_vector [ada_primitive_type_double]
13766 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13767 "long_float", gdbarch_double_format (gdbarch));
13768 lai->primitive_type_vector [ada_primitive_type_long_long]
13769 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13770 0, "long_long_integer");
13771 lai->primitive_type_vector [ada_primitive_type_long_double]
13772 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13773 "long_long_float", gdbarch_long_double_format (gdbarch));
13774 lai->primitive_type_vector [ada_primitive_type_natural]
13775 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13776 0, "natural");
13777 lai->primitive_type_vector [ada_primitive_type_positive]
13778 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13779 0, "positive");
13780 lai->primitive_type_vector [ada_primitive_type_void]
13781 = builtin->builtin_void;
13782
13783 lai->primitive_type_vector [ada_primitive_type_system_address]
13784 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13785 "void"));
13786 lai->primitive_type_vector [ada_primitive_type_system_address]
13787 ->set_name ("system__address");
13788
13789 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13790 type. This is a signed integral type whose size is the same as
13791 the size of addresses. */
13792 {
13793 unsigned int addr_length = TYPE_LENGTH
13794 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13795
13796 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13797 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13798 "storage_offset");
13799 }
13800
13801 lai->bool_type_symbol = NULL;
13802 lai->bool_type_default = builtin->builtin_bool;
13803 }
13804
13805 /* See language.h. */
13806
13807 bool iterate_over_symbols
13808 (const struct block *block, const lookup_name_info &name,
13809 domain_enum domain,
13810 gdb::function_view<symbol_found_callback_ftype> callback) const override
13811 {
13812 std::vector<struct block_symbol> results;
13813
13814 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13815 for (block_symbol &sym : results)
13816 {
13817 if (!callback (&sym))
13818 return false;
13819 }
13820
13821 return true;
13822 }
13823
13824 /* See language.h. */
13825 bool sniff_from_mangled_name (const char *mangled,
13826 char **out) const override
13827 {
13828 std::string demangled = ada_decode (mangled);
13829
13830 *out = NULL;
13831
13832 if (demangled != mangled && demangled[0] != '<')
13833 {
13834 /* Set the gsymbol language to Ada, but still return 0.
13835 Two reasons for that:
13836
13837 1. For Ada, we prefer computing the symbol's decoded name
13838 on the fly rather than pre-compute it, in order to save
13839 memory (Ada projects are typically very large).
13840
13841 2. There are some areas in the definition of the GNAT
13842 encoding where, with a bit of bad luck, we might be able
13843 to decode a non-Ada symbol, generating an incorrect
13844 demangled name (Eg: names ending with "TB" for instance
13845 are identified as task bodies and so stripped from
13846 the decoded name returned).
13847
13848 Returning true, here, but not setting *DEMANGLED, helps us get
13849 a little bit of the best of both worlds. Because we're last,
13850 we should not affect any of the other languages that were
13851 able to demangle the symbol before us; we get to correctly
13852 tag Ada symbols as such; and even if we incorrectly tagged a
13853 non-Ada symbol, which should be rare, any routing through the
13854 Ada language should be transparent (Ada tries to behave much
13855 like C/C++ with non-Ada symbols). */
13856 return true;
13857 }
13858
13859 return false;
13860 }
13861
13862 /* See language.h. */
13863
13864 char *demangle (const char *mangled, int options) const override
13865 {
13866 return ada_la_decode (mangled, options);
13867 }
13868
13869 /* See language.h. */
13870
13871 void print_type (struct type *type, const char *varstring,
13872 struct ui_file *stream, int show, int level,
13873 const struct type_print_options *flags) const override
13874 {
13875 ada_print_type (type, varstring, stream, show, level, flags);
13876 }
13877
13878 /* See language.h. */
13879
13880 const char *word_break_characters (void) const override
13881 {
13882 return ada_completer_word_break_characters;
13883 }
13884
13885 /* See language.h. */
13886
13887 void collect_symbol_completion_matches (completion_tracker &tracker,
13888 complete_symbol_mode mode,
13889 symbol_name_match_type name_match_type,
13890 const char *text, const char *word,
13891 enum type_code code) const override
13892 {
13893 struct symbol *sym;
13894 const struct block *b, *surrounding_static_block = 0;
13895 struct block_iterator iter;
13896
13897 gdb_assert (code == TYPE_CODE_UNDEF);
13898
13899 lookup_name_info lookup_name (text, name_match_type, true);
13900
13901 /* First, look at the partial symtab symbols. */
13902 expand_symtabs_matching (NULL,
13903 lookup_name,
13904 NULL,
13905 NULL,
13906 ALL_DOMAIN);
13907
13908 /* At this point scan through the misc symbol vectors and add each
13909 symbol you find to the list. Eventually we want to ignore
13910 anything that isn't a text symbol (everything else will be
13911 handled by the psymtab code above). */
13912
13913 for (objfile *objfile : current_program_space->objfiles ())
13914 {
13915 for (minimal_symbol *msymbol : objfile->msymbols ())
13916 {
13917 QUIT;
13918
13919 if (completion_skip_symbol (mode, msymbol))
13920 continue;
13921
13922 language symbol_language = msymbol->language ();
13923
13924 /* Ada minimal symbols won't have their language set to Ada. If
13925 we let completion_list_add_name compare using the
13926 default/C-like matcher, then when completing e.g., symbols in a
13927 package named "pck", we'd match internal Ada symbols like
13928 "pckS", which are invalid in an Ada expression, unless you wrap
13929 them in '<' '>' to request a verbatim match.
13930
13931 Unfortunately, some Ada encoded names successfully demangle as
13932 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13933 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13934 with the wrong language set. Paper over that issue here. */
13935 if (symbol_language == language_auto
13936 || symbol_language == language_cplus)
13937 symbol_language = language_ada;
13938
13939 completion_list_add_name (tracker,
13940 symbol_language,
13941 msymbol->linkage_name (),
13942 lookup_name, text, word);
13943 }
13944 }
13945
13946 /* Search upwards from currently selected frame (so that we can
13947 complete on local vars. */
13948
13949 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13950 {
13951 if (!BLOCK_SUPERBLOCK (b))
13952 surrounding_static_block = b; /* For elmin of dups */
13953
13954 ALL_BLOCK_SYMBOLS (b, iter, sym)
13955 {
13956 if (completion_skip_symbol (mode, sym))
13957 continue;
13958
13959 completion_list_add_name (tracker,
13960 sym->language (),
13961 sym->linkage_name (),
13962 lookup_name, text, word);
13963 }
13964 }
13965
13966 /* Go through the symtabs and check the externs and statics for
13967 symbols which match. */
13968
13969 for (objfile *objfile : current_program_space->objfiles ())
13970 {
13971 for (compunit_symtab *s : objfile->compunits ())
13972 {
13973 QUIT;
13974 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13975 ALL_BLOCK_SYMBOLS (b, iter, sym)
13976 {
13977 if (completion_skip_symbol (mode, sym))
13978 continue;
13979
13980 completion_list_add_name (tracker,
13981 sym->language (),
13982 sym->linkage_name (),
13983 lookup_name, text, word);
13984 }
13985 }
13986 }
13987
13988 for (objfile *objfile : current_program_space->objfiles ())
13989 {
13990 for (compunit_symtab *s : objfile->compunits ())
13991 {
13992 QUIT;
13993 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13994 /* Don't do this block twice. */
13995 if (b == surrounding_static_block)
13996 continue;
13997 ALL_BLOCK_SYMBOLS (b, iter, sym)
13998 {
13999 if (completion_skip_symbol (mode, sym))
14000 continue;
14001
14002 completion_list_add_name (tracker,
14003 sym->language (),
14004 sym->linkage_name (),
14005 lookup_name, text, word);
14006 }
14007 }
14008 }
14009 }
14010
14011 /* See language.h. */
14012
14013 gdb::unique_xmalloc_ptr<char> watch_location_expression
14014 (struct type *type, CORE_ADDR addr) const override
14015 {
14016 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14017 std::string name = type_to_string (type);
14018 return gdb::unique_xmalloc_ptr<char>
14019 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14020 }
14021
14022 /* See language.h. */
14023
14024 void value_print (struct value *val, struct ui_file *stream,
14025 const struct value_print_options *options) const override
14026 {
14027 return ada_value_print (val, stream, options);
14028 }
14029
14030 /* See language.h. */
14031
14032 void value_print_inner
14033 (struct value *val, struct ui_file *stream, int recurse,
14034 const struct value_print_options *options) const override
14035 {
14036 return ada_value_print_inner (val, stream, recurse, options);
14037 }
14038
14039 /* See language.h. */
14040
14041 struct block_symbol lookup_symbol_nonlocal
14042 (const char *name, const struct block *block,
14043 const domain_enum domain) const override
14044 {
14045 struct block_symbol sym;
14046
14047 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14048 if (sym.symbol != NULL)
14049 return sym;
14050
14051 /* If we haven't found a match at this point, try the primitive
14052 types. In other languages, this search is performed before
14053 searching for global symbols in order to short-circuit that
14054 global-symbol search if it happens that the name corresponds
14055 to a primitive type. But we cannot do the same in Ada, because
14056 it is perfectly legitimate for a program to declare a type which
14057 has the same name as a standard type. If looking up a type in
14058 that situation, we have traditionally ignored the primitive type
14059 in favor of user-defined types. This is why, unlike most other
14060 languages, we search the primitive types this late and only after
14061 having searched the global symbols without success. */
14062
14063 if (domain == VAR_DOMAIN)
14064 {
14065 struct gdbarch *gdbarch;
14066
14067 if (block == NULL)
14068 gdbarch = target_gdbarch ();
14069 else
14070 gdbarch = block_gdbarch (block);
14071 sym.symbol
14072 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14073 if (sym.symbol != NULL)
14074 return sym;
14075 }
14076
14077 return {};
14078 }
14079
14080 /* See language.h. */
14081
14082 int parser (struct parser_state *ps) const override
14083 {
14084 warnings_issued = 0;
14085 return ada_parse (ps);
14086 }
14087
14088 /* See language.h.
14089
14090 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14091 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14092 namespace) and converts operators that are user-defined into
14093 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14094 a preferred result type [at the moment, only type void has any
14095 effect---causing procedures to be preferred over functions in calls].
14096 A null CONTEXT_TYPE indicates that a non-void return type is
14097 preferred. May change (expand) *EXP. */
14098
14099 void post_parser (expression_up *expp, int void_context_p, int completing,
14100 innermost_block_tracker *tracker) const override
14101 {
14102 struct type *context_type = NULL;
14103 int pc = 0;
14104
14105 if (void_context_p)
14106 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14107
14108 resolve_subexp (expp, &pc, 1, context_type, completing, tracker);
14109 }
14110
14111 /* See language.h. */
14112
14113 void emitchar (int ch, struct type *chtype,
14114 struct ui_file *stream, int quoter) const override
14115 {
14116 ada_emit_char (ch, chtype, stream, quoter, 1);
14117 }
14118
14119 /* See language.h. */
14120
14121 void printchar (int ch, struct type *chtype,
14122 struct ui_file *stream) const override
14123 {
14124 ada_printchar (ch, chtype, stream);
14125 }
14126
14127 /* See language.h. */
14128
14129 void printstr (struct ui_file *stream, struct type *elttype,
14130 const gdb_byte *string, unsigned int length,
14131 const char *encoding, int force_ellipses,
14132 const struct value_print_options *options) const override
14133 {
14134 ada_printstr (stream, elttype, string, length, encoding,
14135 force_ellipses, options);
14136 }
14137
14138 /* See language.h. */
14139
14140 void print_typedef (struct type *type, struct symbol *new_symbol,
14141 struct ui_file *stream) const override
14142 {
14143 ada_print_typedef (type, new_symbol, stream);
14144 }
14145
14146 /* See language.h. */
14147
14148 bool is_string_type_p (struct type *type) const override
14149 {
14150 return ada_is_string_type (type);
14151 }
14152
14153
14154 protected:
14155 /* See language.h. */
14156
14157 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14158 (const lookup_name_info &lookup_name) const override
14159 {
14160 return ada_get_symbol_name_matcher (lookup_name);
14161 }
14162 };
14163
14164 /* Single instance of the Ada language class. */
14165
14166 static ada_language ada_language_defn;
14167
14168 /* Command-list for the "set/show ada" prefix command. */
14169 static struct cmd_list_element *set_ada_list;
14170 static struct cmd_list_element *show_ada_list;
14171
14172 static void
14173 initialize_ada_catchpoint_ops (void)
14174 {
14175 struct breakpoint_ops *ops;
14176
14177 initialize_breakpoint_ops ();
14178
14179 ops = &catch_exception_breakpoint_ops;
14180 *ops = bkpt_breakpoint_ops;
14181 ops->allocate_location = allocate_location_exception;
14182 ops->re_set = re_set_exception;
14183 ops->check_status = check_status_exception;
14184 ops->print_it = print_it_exception;
14185 ops->print_one = print_one_exception;
14186 ops->print_mention = print_mention_exception;
14187 ops->print_recreate = print_recreate_exception;
14188
14189 ops = &catch_exception_unhandled_breakpoint_ops;
14190 *ops = bkpt_breakpoint_ops;
14191 ops->allocate_location = allocate_location_exception;
14192 ops->re_set = re_set_exception;
14193 ops->check_status = check_status_exception;
14194 ops->print_it = print_it_exception;
14195 ops->print_one = print_one_exception;
14196 ops->print_mention = print_mention_exception;
14197 ops->print_recreate = print_recreate_exception;
14198
14199 ops = &catch_assert_breakpoint_ops;
14200 *ops = bkpt_breakpoint_ops;
14201 ops->allocate_location = allocate_location_exception;
14202 ops->re_set = re_set_exception;
14203 ops->check_status = check_status_exception;
14204 ops->print_it = print_it_exception;
14205 ops->print_one = print_one_exception;
14206 ops->print_mention = print_mention_exception;
14207 ops->print_recreate = print_recreate_exception;
14208
14209 ops = &catch_handlers_breakpoint_ops;
14210 *ops = bkpt_breakpoint_ops;
14211 ops->allocate_location = allocate_location_exception;
14212 ops->re_set = re_set_exception;
14213 ops->check_status = check_status_exception;
14214 ops->print_it = print_it_exception;
14215 ops->print_one = print_one_exception;
14216 ops->print_mention = print_mention_exception;
14217 ops->print_recreate = print_recreate_exception;
14218 }
14219
14220 /* This module's 'new_objfile' observer. */
14221
14222 static void
14223 ada_new_objfile_observer (struct objfile *objfile)
14224 {
14225 ada_clear_symbol_cache ();
14226 }
14227
14228 /* This module's 'free_objfile' observer. */
14229
14230 static void
14231 ada_free_objfile_observer (struct objfile *objfile)
14232 {
14233 ada_clear_symbol_cache ();
14234 }
14235
14236 void _initialize_ada_language ();
14237 void
14238 _initialize_ada_language ()
14239 {
14240 initialize_ada_catchpoint_ops ();
14241
14242 add_basic_prefix_cmd ("ada", no_class,
14243 _("Prefix command for changing Ada-specific settings."),
14244 &set_ada_list, "set ada ", 0, &setlist);
14245
14246 add_show_prefix_cmd ("ada", no_class,
14247 _("Generic command for showing Ada-specific settings."),
14248 &show_ada_list, "show ada ", 0, &showlist);
14249
14250 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14251 &trust_pad_over_xvs, _("\
14252 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14253 Show whether an optimization trusting PAD types over XVS types is activated."),
14254 _("\
14255 This is related to the encoding used by the GNAT compiler. The debugger\n\
14256 should normally trust the contents of PAD types, but certain older versions\n\
14257 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14258 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14259 work around this bug. It is always safe to turn this option \"off\", but\n\
14260 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14261 this option to \"off\" unless necessary."),
14262 NULL, NULL, &set_ada_list, &show_ada_list);
14263
14264 add_setshow_boolean_cmd ("print-signatures", class_vars,
14265 &print_signatures, _("\
14266 Enable or disable the output of formal and return types for functions in the \
14267 overloads selection menu."), _("\
14268 Show whether the output of formal and return types for functions in the \
14269 overloads selection menu is activated."),
14270 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14271
14272 add_catch_command ("exception", _("\
14273 Catch Ada exceptions, when raised.\n\
14274 Usage: catch exception [ARG] [if CONDITION]\n\
14275 Without any argument, stop when any Ada exception is raised.\n\
14276 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14277 being raised does not have a handler (and will therefore lead to the task's\n\
14278 termination).\n\
14279 Otherwise, the catchpoint only stops when the name of the exception being\n\
14280 raised is the same as ARG.\n\
14281 CONDITION is a boolean expression that is evaluated to see whether the\n\
14282 exception should cause a stop."),
14283 catch_ada_exception_command,
14284 catch_ada_completer,
14285 CATCH_PERMANENT,
14286 CATCH_TEMPORARY);
14287
14288 add_catch_command ("handlers", _("\
14289 Catch Ada exceptions, when handled.\n\
14290 Usage: catch handlers [ARG] [if CONDITION]\n\
14291 Without any argument, stop when any Ada exception is handled.\n\
14292 With an argument, catch only exceptions with the given name.\n\
14293 CONDITION is a boolean expression that is evaluated to see whether the\n\
14294 exception should cause a stop."),
14295 catch_ada_handlers_command,
14296 catch_ada_completer,
14297 CATCH_PERMANENT,
14298 CATCH_TEMPORARY);
14299 add_catch_command ("assert", _("\
14300 Catch failed Ada assertions, when raised.\n\
14301 Usage: catch assert [if CONDITION]\n\
14302 CONDITION is a boolean expression that is evaluated to see whether the\n\
14303 exception should cause a stop."),
14304 catch_assert_command,
14305 NULL,
14306 CATCH_PERMANENT,
14307 CATCH_TEMPORARY);
14308
14309 varsize_limit = 65536;
14310 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14311 &varsize_limit, _("\
14312 Set the maximum number of bytes allowed in a variable-size object."), _("\
14313 Show the maximum number of bytes allowed in a variable-size object."), _("\
14314 Attempts to access an object whose size is not a compile-time constant\n\
14315 and exceeds this limit will cause an error."),
14316 NULL, NULL, &setlist, &showlist);
14317
14318 add_info ("exceptions", info_exceptions_command,
14319 _("\
14320 List all Ada exception names.\n\
14321 Usage: info exceptions [REGEXP]\n\
14322 If a regular expression is passed as an argument, only those matching\n\
14323 the regular expression are listed."));
14324
14325 add_basic_prefix_cmd ("ada", class_maintenance,
14326 _("Set Ada maintenance-related variables."),
14327 &maint_set_ada_cmdlist, "maintenance set ada ",
14328 0/*allow-unknown*/, &maintenance_set_cmdlist);
14329
14330 add_show_prefix_cmd ("ada", class_maintenance,
14331 _("Show Ada maintenance-related variables."),
14332 &maint_show_ada_cmdlist, "maintenance show ada ",
14333 0/*allow-unknown*/, &maintenance_show_cmdlist);
14334
14335 add_setshow_boolean_cmd
14336 ("ignore-descriptive-types", class_maintenance,
14337 &ada_ignore_descriptive_types_p,
14338 _("Set whether descriptive types generated by GNAT should be ignored."),
14339 _("Show whether descriptive types generated by GNAT should be ignored."),
14340 _("\
14341 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14342 DWARF attribute."),
14343 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14344
14345 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14346 NULL, xcalloc, xfree);
14347
14348 /* The ada-lang observers. */
14349 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14350 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14351 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14352 }
This page took 0.33392 seconds and 4 git commands to generate.