gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2020 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "gdbsupport/x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "gdbsupport/byte-vector.h"
50 #include "osabi.h"
51 #include "x86-tdep.h"
52
53 /* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
55 returned by config.guess, and used as the name for the AMD64 port
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
59
60 /* Register information. */
61
62 static const char *amd64_register_names[] =
63 {
64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
65
66 /* %r8 is indeed register number 8. */
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
69
70 /* %st0 is register number 24. */
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
73
74 /* %xmm0 is register number 40. */
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 "mxcsr",
78 };
79
80 static const char *amd64_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
86 };
87
88 static const char *amd64_ymm_avx512_names[] =
89 {
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
94 };
95
96 static const char *amd64_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102 };
103
104 static const char *amd64_ymmh_avx512_names[] =
105 {
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110 };
111
112 static const char *amd64_mpx_names[] =
113 {
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115 };
116
117 static const char *amd64_k_names[] =
118 {
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
121 };
122
123 static const char *amd64_zmmh_names[] =
124 {
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133 };
134
135 static const char *amd64_zmm_names[] =
136 {
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
145 };
146
147 static const char *amd64_xmm_avx512_names[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
152 };
153
154 static const char *amd64_pkeys_names[] = {
155 "pkru"
156 };
157
158 /* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
160
161 static int amd64_dwarf_regmap[] =
162 {
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
167
168 /* Frame Pointer Register RBP. */
169 AMD64_RBP_REGNUM,
170
171 /* Stack Pointer Register RSP. */
172 AMD64_RSP_REGNUM,
173
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
183
184 /* Return Address RA. Mapped to RIP. */
185 AMD64_RIP_REGNUM,
186
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
192
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
198
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
238 };
239
240 static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
242
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
245
246 static int
247 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
251 int regnum = -1;
252
253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
254 regnum = amd64_dwarf_regmap[reg];
255
256 if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 readable_regcache *regcache,
353 int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 value *result_value = allocate_value (register_type (gdbarch, regnum));
358 VALUE_LVAL (result_value) = lval_register;
359 VALUE_REGNUM (result_value) = regnum;
360 gdb_byte *buf = value_contents_raw (result_value);
361
362 if (i386_byte_regnum_p (gdbarch, regnum))
363 {
364 int gpnum = regnum - tdep->al_regnum;
365
366 /* Extract (always little endian). */
367 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
368 {
369 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
370 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
371
372 /* Special handling for AH, BH, CH, DH. */
373 register_status status = regcache->raw_read (gpnum, raw_buf);
374 if (status == REG_VALID)
375 memcpy (buf, raw_buf + 1, 1);
376 else
377 mark_value_bytes_unavailable (result_value, 0,
378 TYPE_LENGTH (value_type (result_value)));
379 }
380 else
381 {
382 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
383 register_status status = regcache->raw_read (gpnum, raw_buf);
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
386 else
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
389 }
390 }
391 else if (i386_dword_regnum_p (gdbarch, regnum))
392 {
393 int gpnum = regnum - tdep->eax_regnum;
394 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
395 /* Extract (always little endian). */
396 register_status status = regcache->raw_read (gpnum, raw_buf);
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
402 }
403 else
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
408 }
409
410 static void
411 amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414 {
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416
417 if (i386_byte_regnum_p (gdbarch, regnum))
418 {
419 int gpnum = regnum - tdep->al_regnum;
420
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
422 {
423 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
424 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
425
426 /* Read ... AH, BH, CH, DH. */
427 regcache->raw_read (gpnum, raw_buf);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
431 regcache->raw_write (gpnum, raw_buf);
432 }
433 else
434 {
435 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
436
437 /* Read ... */
438 regcache->raw_read (gpnum, raw_buf);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
442 regcache->raw_write (gpnum, raw_buf);
443 }
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
448 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
449
450 /* Read ... */
451 regcache->raw_read (gpnum, raw_buf);
452 /* ... Modify ... (always little endian). */
453 memcpy (raw_buf, buf, 4);
454 /* ... Write. */
455 regcache->raw_write (gpnum, raw_buf);
456 }
457 else
458 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
459 }
460
461 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
462
463 static int
464 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
465 struct agent_expr *ax, int regnum)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 if (i386_byte_regnum_p (gdbarch, regnum))
470 {
471 int gpnum = regnum - tdep->al_regnum;
472
473 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
474 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
475 else
476 ax_reg_mask (ax, gpnum);
477 return 0;
478 }
479 else if (i386_dword_regnum_p (gdbarch, regnum))
480 {
481 int gpnum = regnum - tdep->eax_regnum;
482
483 ax_reg_mask (ax, gpnum);
484 return 0;
485 }
486 else
487 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
488 }
489
490 \f
491
492 /* Register classes as defined in the psABI. */
493
494 enum amd64_reg_class
495 {
496 AMD64_INTEGER,
497 AMD64_SSE,
498 AMD64_SSEUP,
499 AMD64_X87,
500 AMD64_X87UP,
501 AMD64_COMPLEX_X87,
502 AMD64_NO_CLASS,
503 AMD64_MEMORY
504 };
505
506 /* Return the union class of CLASS1 and CLASS2. See the psABI for
507 details. */
508
509 static enum amd64_reg_class
510 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
511 {
512 /* Rule (a): If both classes are equal, this is the resulting class. */
513 if (class1 == class2)
514 return class1;
515
516 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
517 is the other class. */
518 if (class1 == AMD64_NO_CLASS)
519 return class2;
520 if (class2 == AMD64_NO_CLASS)
521 return class1;
522
523 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
524 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
525 return AMD64_MEMORY;
526
527 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
528 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
529 return AMD64_INTEGER;
530
531 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
532 MEMORY is used as class. */
533 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
534 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
535 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
536 return AMD64_MEMORY;
537
538 /* Rule (f): Otherwise class SSE is used. */
539 return AMD64_SSE;
540 }
541
542 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
543
544 /* Return true if TYPE is a structure or union with unaligned fields. */
545
546 static bool
547 amd64_has_unaligned_fields (struct type *type)
548 {
549 if (type->code () == TYPE_CODE_STRUCT
550 || type->code () == TYPE_CODE_UNION)
551 {
552 for (int i = 0; i < type->num_fields (); i++)
553 {
554 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
555 int bitpos = TYPE_FIELD_BITPOS (type, i);
556 int align = type_align(subtype);
557
558 /* Ignore static fields, empty fields (for example nested
559 empty structures), and bitfields (these are handled by
560 the caller). */
561 if (field_is_static (&type->field (i))
562 || (TYPE_FIELD_BITSIZE (type, i) == 0
563 && TYPE_LENGTH (subtype) == 0)
564 || TYPE_FIELD_PACKED (type, i))
565 continue;
566
567 if (bitpos % 8 != 0)
568 return true;
569
570 int bytepos = bitpos / 8;
571 if (bytepos % align != 0)
572 return true;
573
574 if (amd64_has_unaligned_fields (subtype))
575 return true;
576 }
577 }
578
579 return false;
580 }
581
582 /* Classify field I of TYPE starting at BITOFFSET according to the rules for
583 structures and union types, and store the result in THECLASS. */
584
585 static void
586 amd64_classify_aggregate_field (struct type *type, int i,
587 enum amd64_reg_class theclass[2],
588 unsigned int bitoffset)
589 {
590 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
591 int bitpos = bitoffset + TYPE_FIELD_BITPOS (type, i);
592 int pos = bitpos / 64;
593 enum amd64_reg_class subclass[2];
594 int bitsize = TYPE_FIELD_BITSIZE (type, i);
595 int endpos;
596
597 if (bitsize == 0)
598 bitsize = TYPE_LENGTH (subtype) * 8;
599 endpos = (bitpos + bitsize - 1) / 64;
600
601 /* Ignore static fields, or empty fields, for example nested
602 empty structures.*/
603 if (field_is_static (&type->field (i)) || bitsize == 0)
604 return;
605
606 if (subtype->code () == TYPE_CODE_STRUCT
607 || subtype->code () == TYPE_CODE_UNION)
608 {
609 /* Each field of an object is classified recursively. */
610 int j;
611 for (j = 0; j < subtype->num_fields (); j++)
612 amd64_classify_aggregate_field (subtype, j, theclass, bitpos);
613 return;
614 }
615
616 gdb_assert (pos == 0 || pos == 1);
617
618 amd64_classify (subtype, subclass);
619 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
620 if (bitsize <= 64 && pos == 0 && endpos == 1)
621 /* This is a bit of an odd case: We have a field that would
622 normally fit in one of the two eightbytes, except that
623 it is placed in a way that this field straddles them.
624 This has been seen with a structure containing an array.
625
626 The ABI is a bit unclear in this case, but we assume that
627 this field's class (stored in subclass[0]) must also be merged
628 into class[1]. In other words, our field has a piece stored
629 in the second eight-byte, and thus its class applies to
630 the second eight-byte as well.
631
632 In the case where the field length exceeds 8 bytes,
633 it should not be necessary to merge the field class
634 into class[1]. As LEN > 8, subclass[1] is necessarily
635 different from AMD64_NO_CLASS. If subclass[1] is equal
636 to subclass[0], then the normal class[1]/subclass[1]
637 merging will take care of everything. For subclass[1]
638 to be different from subclass[0], I can only see the case
639 where we have a SSE/SSEUP or X87/X87UP pair, which both
640 use up all 16 bytes of the aggregate, and are already
641 handled just fine (because each portion sits on its own
642 8-byte). */
643 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
644 if (pos == 0)
645 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
646 }
647
648 /* Classify TYPE according to the rules for aggregate (structures and
649 arrays) and union types, and store the result in CLASS. */
650
651 static void
652 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
653 {
654 /* 1. If the size of an object is larger than two eightbytes, or it has
655 unaligned fields, it has class memory. */
656 if (TYPE_LENGTH (type) > 16 || amd64_has_unaligned_fields (type))
657 {
658 theclass[0] = theclass[1] = AMD64_MEMORY;
659 return;
660 }
661
662 /* 2. Both eightbytes get initialized to class NO_CLASS. */
663 theclass[0] = theclass[1] = AMD64_NO_CLASS;
664
665 /* 3. Each field of an object is classified recursively so that
666 always two fields are considered. The resulting class is
667 calculated according to the classes of the fields in the
668 eightbyte: */
669
670 if (type->code () == TYPE_CODE_ARRAY)
671 {
672 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
673
674 /* All fields in an array have the same type. */
675 amd64_classify (subtype, theclass);
676 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
677 theclass[1] = theclass[0];
678 }
679 else
680 {
681 int i;
682
683 /* Structure or union. */
684 gdb_assert (type->code () == TYPE_CODE_STRUCT
685 || type->code () == TYPE_CODE_UNION);
686
687 for (i = 0; i < type->num_fields (); i++)
688 amd64_classify_aggregate_field (type, i, theclass, 0);
689 }
690
691 /* 4. Then a post merger cleanup is done: */
692
693 /* Rule (a): If one of the classes is MEMORY, the whole argument is
694 passed in memory. */
695 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
696 theclass[0] = theclass[1] = AMD64_MEMORY;
697
698 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
699 SSE. */
700 if (theclass[0] == AMD64_SSEUP)
701 theclass[0] = AMD64_SSE;
702 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
703 theclass[1] = AMD64_SSE;
704 }
705
706 /* Classify TYPE, and store the result in CLASS. */
707
708 static void
709 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
710 {
711 enum type_code code = type->code ();
712 int len = TYPE_LENGTH (type);
713
714 theclass[0] = theclass[1] = AMD64_NO_CLASS;
715
716 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
717 long, long long, and pointers are in the INTEGER class. Similarly,
718 range types, used by languages such as Ada, are also in the INTEGER
719 class. */
720 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
721 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
722 || code == TYPE_CODE_CHAR
723 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
724 && (len == 1 || len == 2 || len == 4 || len == 8))
725 theclass[0] = AMD64_INTEGER;
726
727 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
728 are in class SSE. */
729 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
730 && (len == 4 || len == 8))
731 /* FIXME: __m64 . */
732 theclass[0] = AMD64_SSE;
733
734 /* Arguments of types __float128, _Decimal128 and __m128 are split into
735 two halves. The least significant ones belong to class SSE, the most
736 significant one to class SSEUP. */
737 else if (code == TYPE_CODE_DECFLOAT && len == 16)
738 /* FIXME: __float128, __m128. */
739 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
740
741 /* The 64-bit mantissa of arguments of type long double belongs to
742 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
743 class X87UP. */
744 else if (code == TYPE_CODE_FLT && len == 16)
745 /* Class X87 and X87UP. */
746 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
747
748 /* Arguments of complex T where T is one of the types float or
749 double get treated as if they are implemented as:
750
751 struct complexT {
752 T real;
753 T imag;
754 };
755
756 */
757 else if (code == TYPE_CODE_COMPLEX && len == 8)
758 theclass[0] = AMD64_SSE;
759 else if (code == TYPE_CODE_COMPLEX && len == 16)
760 theclass[0] = theclass[1] = AMD64_SSE;
761
762 /* A variable of type complex long double is classified as type
763 COMPLEX_X87. */
764 else if (code == TYPE_CODE_COMPLEX && len == 32)
765 theclass[0] = AMD64_COMPLEX_X87;
766
767 /* Aggregates. */
768 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
769 || code == TYPE_CODE_UNION)
770 amd64_classify_aggregate (type, theclass);
771 }
772
773 static enum return_value_convention
774 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
775 struct type *type, struct regcache *regcache,
776 gdb_byte *readbuf, const gdb_byte *writebuf)
777 {
778 enum amd64_reg_class theclass[2];
779 int len = TYPE_LENGTH (type);
780 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
781 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
782 int integer_reg = 0;
783 int sse_reg = 0;
784 int i;
785
786 gdb_assert (!(readbuf && writebuf));
787
788 /* 1. Classify the return type with the classification algorithm. */
789 amd64_classify (type, theclass);
790
791 /* 2. If the type has class MEMORY, then the caller provides space
792 for the return value and passes the address of this storage in
793 %rdi as if it were the first argument to the function. In effect,
794 this address becomes a hidden first argument.
795
796 On return %rax will contain the address that has been passed in
797 by the caller in %rdi. */
798 if (theclass[0] == AMD64_MEMORY)
799 {
800 /* As indicated by the comment above, the ABI guarantees that we
801 can always find the return value just after the function has
802 returned. */
803
804 if (readbuf)
805 {
806 ULONGEST addr;
807
808 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
809 read_memory (addr, readbuf, TYPE_LENGTH (type));
810 }
811
812 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
813 }
814
815 /* 8. If the class is COMPLEX_X87, the real part of the value is
816 returned in %st0 and the imaginary part in %st1. */
817 if (theclass[0] == AMD64_COMPLEX_X87)
818 {
819 if (readbuf)
820 {
821 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
822 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
823 }
824
825 if (writebuf)
826 {
827 i387_return_value (gdbarch, regcache);
828 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
829 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
830
831 /* Fix up the tag word such that both %st(0) and %st(1) are
832 marked as valid. */
833 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
834 }
835
836 return RETURN_VALUE_REGISTER_CONVENTION;
837 }
838
839 gdb_assert (theclass[1] != AMD64_MEMORY);
840 gdb_assert (len <= 16);
841
842 for (i = 0; len > 0; i++, len -= 8)
843 {
844 int regnum = -1;
845 int offset = 0;
846
847 switch (theclass[i])
848 {
849 case AMD64_INTEGER:
850 /* 3. If the class is INTEGER, the next available register
851 of the sequence %rax, %rdx is used. */
852 regnum = integer_regnum[integer_reg++];
853 break;
854
855 case AMD64_SSE:
856 /* 4. If the class is SSE, the next available SSE register
857 of the sequence %xmm0, %xmm1 is used. */
858 regnum = sse_regnum[sse_reg++];
859 break;
860
861 case AMD64_SSEUP:
862 /* 5. If the class is SSEUP, the eightbyte is passed in the
863 upper half of the last used SSE register. */
864 gdb_assert (sse_reg > 0);
865 regnum = sse_regnum[sse_reg - 1];
866 offset = 8;
867 break;
868
869 case AMD64_X87:
870 /* 6. If the class is X87, the value is returned on the X87
871 stack in %st0 as 80-bit x87 number. */
872 regnum = AMD64_ST0_REGNUM;
873 if (writebuf)
874 i387_return_value (gdbarch, regcache);
875 break;
876
877 case AMD64_X87UP:
878 /* 7. If the class is X87UP, the value is returned together
879 with the previous X87 value in %st0. */
880 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
881 regnum = AMD64_ST0_REGNUM;
882 offset = 8;
883 len = 2;
884 break;
885
886 case AMD64_NO_CLASS:
887 continue;
888
889 default:
890 gdb_assert (!"Unexpected register class.");
891 }
892
893 gdb_assert (regnum != -1);
894
895 if (readbuf)
896 regcache->raw_read_part (regnum, offset, std::min (len, 8),
897 readbuf + i * 8);
898 if (writebuf)
899 regcache->raw_write_part (regnum, offset, std::min (len, 8),
900 writebuf + i * 8);
901 }
902
903 return RETURN_VALUE_REGISTER_CONVENTION;
904 }
905 \f
906
907 static CORE_ADDR
908 amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
909 CORE_ADDR sp, function_call_return_method return_method)
910 {
911 static int integer_regnum[] =
912 {
913 AMD64_RDI_REGNUM, /* %rdi */
914 AMD64_RSI_REGNUM, /* %rsi */
915 AMD64_RDX_REGNUM, /* %rdx */
916 AMD64_RCX_REGNUM, /* %rcx */
917 AMD64_R8_REGNUM, /* %r8 */
918 AMD64_R9_REGNUM /* %r9 */
919 };
920 static int sse_regnum[] =
921 {
922 /* %xmm0 ... %xmm7 */
923 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
924 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
925 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
926 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
927 };
928 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
929 int num_stack_args = 0;
930 int num_elements = 0;
931 int element = 0;
932 int integer_reg = 0;
933 int sse_reg = 0;
934 int i;
935
936 /* Reserve a register for the "hidden" argument. */
937 if (return_method == return_method_struct)
938 integer_reg++;
939
940 for (i = 0; i < nargs; i++)
941 {
942 struct type *type = value_type (args[i]);
943 int len = TYPE_LENGTH (type);
944 enum amd64_reg_class theclass[2];
945 int needed_integer_regs = 0;
946 int needed_sse_regs = 0;
947 int j;
948
949 /* Classify argument. */
950 amd64_classify (type, theclass);
951
952 /* Calculate the number of integer and SSE registers needed for
953 this argument. */
954 for (j = 0; j < 2; j++)
955 {
956 if (theclass[j] == AMD64_INTEGER)
957 needed_integer_regs++;
958 else if (theclass[j] == AMD64_SSE)
959 needed_sse_regs++;
960 }
961
962 /* Check whether enough registers are available, and if the
963 argument should be passed in registers at all. */
964 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
965 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
966 || (needed_integer_regs == 0 && needed_sse_regs == 0))
967 {
968 /* The argument will be passed on the stack. */
969 num_elements += ((len + 7) / 8);
970 stack_args[num_stack_args++] = args[i];
971 }
972 else
973 {
974 /* The argument will be passed in registers. */
975 const gdb_byte *valbuf = value_contents (args[i]);
976 gdb_byte buf[8];
977
978 gdb_assert (len <= 16);
979
980 for (j = 0; len > 0; j++, len -= 8)
981 {
982 int regnum = -1;
983 int offset = 0;
984
985 switch (theclass[j])
986 {
987 case AMD64_INTEGER:
988 regnum = integer_regnum[integer_reg++];
989 break;
990
991 case AMD64_SSE:
992 regnum = sse_regnum[sse_reg++];
993 break;
994
995 case AMD64_SSEUP:
996 gdb_assert (sse_reg > 0);
997 regnum = sse_regnum[sse_reg - 1];
998 offset = 8;
999 break;
1000
1001 case AMD64_NO_CLASS:
1002 continue;
1003
1004 default:
1005 gdb_assert (!"Unexpected register class.");
1006 }
1007
1008 gdb_assert (regnum != -1);
1009 memset (buf, 0, sizeof buf);
1010 memcpy (buf, valbuf + j * 8, std::min (len, 8));
1011 regcache->raw_write_part (regnum, offset, 8, buf);
1012 }
1013 }
1014 }
1015
1016 /* Allocate space for the arguments on the stack. */
1017 sp -= num_elements * 8;
1018
1019 /* The psABI says that "The end of the input argument area shall be
1020 aligned on a 16 byte boundary." */
1021 sp &= ~0xf;
1022
1023 /* Write out the arguments to the stack. */
1024 for (i = 0; i < num_stack_args; i++)
1025 {
1026 struct type *type = value_type (stack_args[i]);
1027 const gdb_byte *valbuf = value_contents (stack_args[i]);
1028 int len = TYPE_LENGTH (type);
1029
1030 write_memory (sp + element * 8, valbuf, len);
1031 element += ((len + 7) / 8);
1032 }
1033
1034 /* The psABI says that "For calls that may call functions that use
1035 varargs or stdargs (prototype-less calls or calls to functions
1036 containing ellipsis (...) in the declaration) %al is used as
1037 hidden argument to specify the number of SSE registers used. */
1038 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
1039 return sp;
1040 }
1041
1042 static CORE_ADDR
1043 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1044 struct regcache *regcache, CORE_ADDR bp_addr,
1045 int nargs, struct value **args, CORE_ADDR sp,
1046 function_call_return_method return_method,
1047 CORE_ADDR struct_addr)
1048 {
1049 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1050 gdb_byte buf[8];
1051
1052 /* BND registers can be in arbitrary values at the moment of the
1053 inferior call. This can cause boundary violations that are not
1054 due to a real bug or even desired by the user. The best to be done
1055 is set the BND registers to allow access to the whole memory, INIT
1056 state, before pushing the inferior call. */
1057 i387_reset_bnd_regs (gdbarch, regcache);
1058
1059 /* Pass arguments. */
1060 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
1061
1062 /* Pass "hidden" argument". */
1063 if (return_method == return_method_struct)
1064 {
1065 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1066 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
1067 }
1068
1069 /* Store return address. */
1070 sp -= 8;
1071 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1072 write_memory (sp, buf, 8);
1073
1074 /* Finally, update the stack pointer... */
1075 store_unsigned_integer (buf, 8, byte_order, sp);
1076 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
1077
1078 /* ...and fake a frame pointer. */
1079 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
1080
1081 return sp + 16;
1082 }
1083 \f
1084 /* Displaced instruction handling. */
1085
1086 /* A partially decoded instruction.
1087 This contains enough details for displaced stepping purposes. */
1088
1089 struct amd64_insn
1090 {
1091 /* The number of opcode bytes. */
1092 int opcode_len;
1093 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1094 not present. */
1095 int enc_prefix_offset;
1096 /* The offset to the first opcode byte. */
1097 int opcode_offset;
1098 /* The offset to the modrm byte or -1 if not present. */
1099 int modrm_offset;
1100
1101 /* The raw instruction. */
1102 gdb_byte *raw_insn;
1103 };
1104
1105 struct amd64_displaced_step_copy_insn_closure : public displaced_step_copy_insn_closure
1106 {
1107 amd64_displaced_step_copy_insn_closure (int insn_buf_len)
1108 : insn_buf (insn_buf_len, 0)
1109 {}
1110
1111 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1112 int tmp_used = 0;
1113 int tmp_regno;
1114 ULONGEST tmp_save;
1115
1116 /* Details of the instruction. */
1117 struct amd64_insn insn_details;
1118
1119 /* The possibly modified insn. */
1120 gdb::byte_vector insn_buf;
1121 };
1122
1123 typedef std::unique_ptr<amd64_displaced_step_copy_insn_closure>
1124 amd64_displaced_step_copy_insn_closure_up;
1125
1126 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1127 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1128 at which point delete these in favor of libopcodes' versions). */
1129
1130 static const unsigned char onebyte_has_modrm[256] = {
1131 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1132 /* ------------------------------- */
1133 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1134 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1135 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1136 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1137 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1138 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1139 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1140 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1141 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1142 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1143 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1144 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1145 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1146 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1147 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1148 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1149 /* ------------------------------- */
1150 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1151 };
1152
1153 static const unsigned char twobyte_has_modrm[256] = {
1154 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1155 /* ------------------------------- */
1156 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1157 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1158 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1159 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1160 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1161 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1162 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1163 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1164 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1165 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1166 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1167 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1168 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1169 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1170 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1171 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1172 /* ------------------------------- */
1173 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1174 };
1175
1176 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1177
1178 static int
1179 rex_prefix_p (gdb_byte pfx)
1180 {
1181 return REX_PREFIX_P (pfx);
1182 }
1183
1184 /* True if PFX is the start of the 2-byte VEX prefix. */
1185
1186 static bool
1187 vex2_prefix_p (gdb_byte pfx)
1188 {
1189 return pfx == 0xc5;
1190 }
1191
1192 /* True if PFX is the start of the 3-byte VEX prefix. */
1193
1194 static bool
1195 vex3_prefix_p (gdb_byte pfx)
1196 {
1197 return pfx == 0xc4;
1198 }
1199
1200 /* Skip the legacy instruction prefixes in INSN.
1201 We assume INSN is properly sentineled so we don't have to worry
1202 about falling off the end of the buffer. */
1203
1204 static gdb_byte *
1205 amd64_skip_prefixes (gdb_byte *insn)
1206 {
1207 while (1)
1208 {
1209 switch (*insn)
1210 {
1211 case DATA_PREFIX_OPCODE:
1212 case ADDR_PREFIX_OPCODE:
1213 case CS_PREFIX_OPCODE:
1214 case DS_PREFIX_OPCODE:
1215 case ES_PREFIX_OPCODE:
1216 case FS_PREFIX_OPCODE:
1217 case GS_PREFIX_OPCODE:
1218 case SS_PREFIX_OPCODE:
1219 case LOCK_PREFIX_OPCODE:
1220 case REPE_PREFIX_OPCODE:
1221 case REPNE_PREFIX_OPCODE:
1222 ++insn;
1223 continue;
1224 default:
1225 break;
1226 }
1227 break;
1228 }
1229
1230 return insn;
1231 }
1232
1233 /* Return an integer register (other than RSP) that is unused as an input
1234 operand in INSN.
1235 In order to not require adding a rex prefix if the insn doesn't already
1236 have one, the result is restricted to RAX ... RDI, sans RSP.
1237 The register numbering of the result follows architecture ordering,
1238 e.g. RDI = 7. */
1239
1240 static int
1241 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1242 {
1243 /* 1 bit for each reg */
1244 int used_regs_mask = 0;
1245
1246 /* There can be at most 3 int regs used as inputs in an insn, and we have
1247 7 to choose from (RAX ... RDI, sans RSP).
1248 This allows us to take a conservative approach and keep things simple.
1249 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1250 that implicitly specify RAX. */
1251
1252 /* Avoid RAX. */
1253 used_regs_mask |= 1 << EAX_REG_NUM;
1254 /* Similarily avoid RDX, implicit operand in divides. */
1255 used_regs_mask |= 1 << EDX_REG_NUM;
1256 /* Avoid RSP. */
1257 used_regs_mask |= 1 << ESP_REG_NUM;
1258
1259 /* If the opcode is one byte long and there's no ModRM byte,
1260 assume the opcode specifies a register. */
1261 if (details->opcode_len == 1 && details->modrm_offset == -1)
1262 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1263
1264 /* Mark used regs in the modrm/sib bytes. */
1265 if (details->modrm_offset != -1)
1266 {
1267 int modrm = details->raw_insn[details->modrm_offset];
1268 int mod = MODRM_MOD_FIELD (modrm);
1269 int reg = MODRM_REG_FIELD (modrm);
1270 int rm = MODRM_RM_FIELD (modrm);
1271 int have_sib = mod != 3 && rm == 4;
1272
1273 /* Assume the reg field of the modrm byte specifies a register. */
1274 used_regs_mask |= 1 << reg;
1275
1276 if (have_sib)
1277 {
1278 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1279 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1280 used_regs_mask |= 1 << base;
1281 used_regs_mask |= 1 << idx;
1282 }
1283 else
1284 {
1285 used_regs_mask |= 1 << rm;
1286 }
1287 }
1288
1289 gdb_assert (used_regs_mask < 256);
1290 gdb_assert (used_regs_mask != 255);
1291
1292 /* Finally, find a free reg. */
1293 {
1294 int i;
1295
1296 for (i = 0; i < 8; ++i)
1297 {
1298 if (! (used_regs_mask & (1 << i)))
1299 return i;
1300 }
1301
1302 /* We shouldn't get here. */
1303 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1304 }
1305 }
1306
1307 /* Extract the details of INSN that we need. */
1308
1309 static void
1310 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1311 {
1312 gdb_byte *start = insn;
1313 int need_modrm;
1314
1315 details->raw_insn = insn;
1316
1317 details->opcode_len = -1;
1318 details->enc_prefix_offset = -1;
1319 details->opcode_offset = -1;
1320 details->modrm_offset = -1;
1321
1322 /* Skip legacy instruction prefixes. */
1323 insn = amd64_skip_prefixes (insn);
1324
1325 /* Skip REX/VEX instruction encoding prefixes. */
1326 if (rex_prefix_p (*insn))
1327 {
1328 details->enc_prefix_offset = insn - start;
1329 ++insn;
1330 }
1331 else if (vex2_prefix_p (*insn))
1332 {
1333 /* Don't record the offset in this case because this prefix has
1334 no REX.B equivalent. */
1335 insn += 2;
1336 }
1337 else if (vex3_prefix_p (*insn))
1338 {
1339 details->enc_prefix_offset = insn - start;
1340 insn += 3;
1341 }
1342
1343 details->opcode_offset = insn - start;
1344
1345 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1346 {
1347 /* Two or three-byte opcode. */
1348 ++insn;
1349 need_modrm = twobyte_has_modrm[*insn];
1350
1351 /* Check for three-byte opcode. */
1352 switch (*insn)
1353 {
1354 case 0x24:
1355 case 0x25:
1356 case 0x38:
1357 case 0x3a:
1358 case 0x7a:
1359 case 0x7b:
1360 ++insn;
1361 details->opcode_len = 3;
1362 break;
1363 default:
1364 details->opcode_len = 2;
1365 break;
1366 }
1367 }
1368 else
1369 {
1370 /* One-byte opcode. */
1371 need_modrm = onebyte_has_modrm[*insn];
1372 details->opcode_len = 1;
1373 }
1374
1375 if (need_modrm)
1376 {
1377 ++insn;
1378 details->modrm_offset = insn - start;
1379 }
1380 }
1381
1382 /* Update %rip-relative addressing in INSN.
1383
1384 %rip-relative addressing only uses a 32-bit displacement.
1385 32 bits is not enough to be guaranteed to cover the distance between where
1386 the real instruction is and where its copy is.
1387 Convert the insn to use base+disp addressing.
1388 We set base = pc + insn_length so we can leave disp unchanged. */
1389
1390 static void
1391 fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_copy_insn_closure *dsc,
1392 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1393 {
1394 const struct amd64_insn *insn_details = &dsc->insn_details;
1395 int modrm_offset = insn_details->modrm_offset;
1396 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1397 CORE_ADDR rip_base;
1398 int insn_length;
1399 int arch_tmp_regno, tmp_regno;
1400 ULONGEST orig_value;
1401
1402 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1403 ++insn;
1404
1405 /* Compute the rip-relative address. */
1406 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1407 dsc->insn_buf.size (), from);
1408 rip_base = from + insn_length;
1409
1410 /* We need a register to hold the address.
1411 Pick one not used in the insn.
1412 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1413 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1414 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1415
1416 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1417 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1418
1419 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1420 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1421 is not r8-r15. */
1422 if (insn_details->enc_prefix_offset != -1)
1423 {
1424 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1425 if (rex_prefix_p (pfx[0]))
1426 pfx[0] &= ~REX_B;
1427 else if (vex3_prefix_p (pfx[0]))
1428 pfx[1] |= VEX3_NOT_B;
1429 else
1430 gdb_assert_not_reached ("unhandled prefix");
1431 }
1432
1433 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1434 dsc->tmp_regno = tmp_regno;
1435 dsc->tmp_save = orig_value;
1436 dsc->tmp_used = 1;
1437
1438 /* Convert the ModRM field to be base+disp. */
1439 dsc->insn_buf[modrm_offset] &= ~0xc7;
1440 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1441
1442 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1443
1444 if (debug_displaced)
1445 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1446 "displaced: using temp reg %d, old value %s, new value %s\n",
1447 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1448 paddress (gdbarch, rip_base));
1449 }
1450
1451 static void
1452 fixup_displaced_copy (struct gdbarch *gdbarch,
1453 amd64_displaced_step_copy_insn_closure *dsc,
1454 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1455 {
1456 const struct amd64_insn *details = &dsc->insn_details;
1457
1458 if (details->modrm_offset != -1)
1459 {
1460 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1461
1462 if ((modrm & 0xc7) == 0x05)
1463 {
1464 /* The insn uses rip-relative addressing.
1465 Deal with it. */
1466 fixup_riprel (gdbarch, dsc, from, to, regs);
1467 }
1468 }
1469 }
1470
1471 displaced_step_copy_insn_closure_up
1472 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1473 CORE_ADDR from, CORE_ADDR to,
1474 struct regcache *regs)
1475 {
1476 int len = gdbarch_max_insn_length (gdbarch);
1477 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1478 continually watch for running off the end of the buffer. */
1479 int fixup_sentinel_space = len;
1480 std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc
1481 (new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space));
1482 gdb_byte *buf = &dsc->insn_buf[0];
1483 struct amd64_insn *details = &dsc->insn_details;
1484
1485 read_memory (from, buf, len);
1486
1487 /* Set up the sentinel space so we don't have to worry about running
1488 off the end of the buffer. An excessive number of leading prefixes
1489 could otherwise cause this. */
1490 memset (buf + len, 0, fixup_sentinel_space);
1491
1492 amd64_get_insn_details (buf, details);
1493
1494 /* GDB may get control back after the insn after the syscall.
1495 Presumably this is a kernel bug.
1496 If this is a syscall, make sure there's a nop afterwards. */
1497 {
1498 int syscall_length;
1499
1500 if (amd64_syscall_p (details, &syscall_length))
1501 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1502 }
1503
1504 /* Modify the insn to cope with the address where it will be executed from.
1505 In particular, handle any rip-relative addressing. */
1506 fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs);
1507
1508 write_memory (to, buf, len);
1509
1510 if (debug_displaced)
1511 {
1512 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1513 paddress (gdbarch, from), paddress (gdbarch, to));
1514 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1515 }
1516
1517 /* This is a work around for a problem with g++ 4.8. */
1518 return displaced_step_copy_insn_closure_up (dsc.release ());
1519 }
1520
1521 static int
1522 amd64_absolute_jmp_p (const struct amd64_insn *details)
1523 {
1524 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1525
1526 if (insn[0] == 0xff)
1527 {
1528 /* jump near, absolute indirect (/4) */
1529 if ((insn[1] & 0x38) == 0x20)
1530 return 1;
1531
1532 /* jump far, absolute indirect (/5) */
1533 if ((insn[1] & 0x38) == 0x28)
1534 return 1;
1535 }
1536
1537 return 0;
1538 }
1539
1540 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1541
1542 static int
1543 amd64_jmp_p (const struct amd64_insn *details)
1544 {
1545 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1546
1547 /* jump short, relative. */
1548 if (insn[0] == 0xeb)
1549 return 1;
1550
1551 /* jump near, relative. */
1552 if (insn[0] == 0xe9)
1553 return 1;
1554
1555 return amd64_absolute_jmp_p (details);
1556 }
1557
1558 static int
1559 amd64_absolute_call_p (const struct amd64_insn *details)
1560 {
1561 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1562
1563 if (insn[0] == 0xff)
1564 {
1565 /* Call near, absolute indirect (/2) */
1566 if ((insn[1] & 0x38) == 0x10)
1567 return 1;
1568
1569 /* Call far, absolute indirect (/3) */
1570 if ((insn[1] & 0x38) == 0x18)
1571 return 1;
1572 }
1573
1574 return 0;
1575 }
1576
1577 static int
1578 amd64_ret_p (const struct amd64_insn *details)
1579 {
1580 /* NOTE: gcc can emit "repz ; ret". */
1581 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1582
1583 switch (insn[0])
1584 {
1585 case 0xc2: /* ret near, pop N bytes */
1586 case 0xc3: /* ret near */
1587 case 0xca: /* ret far, pop N bytes */
1588 case 0xcb: /* ret far */
1589 case 0xcf: /* iret */
1590 return 1;
1591
1592 default:
1593 return 0;
1594 }
1595 }
1596
1597 static int
1598 amd64_call_p (const struct amd64_insn *details)
1599 {
1600 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1601
1602 if (amd64_absolute_call_p (details))
1603 return 1;
1604
1605 /* call near, relative */
1606 if (insn[0] == 0xe8)
1607 return 1;
1608
1609 return 0;
1610 }
1611
1612 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1613 length in bytes. Otherwise, return zero. */
1614
1615 static int
1616 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1617 {
1618 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1619
1620 if (insn[0] == 0x0f && insn[1] == 0x05)
1621 {
1622 *lengthp = 2;
1623 return 1;
1624 }
1625
1626 return 0;
1627 }
1628
1629 /* Classify the instruction at ADDR using PRED.
1630 Throw an error if the memory can't be read. */
1631
1632 static int
1633 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1634 int (*pred) (const struct amd64_insn *))
1635 {
1636 struct amd64_insn details;
1637 gdb_byte *buf;
1638 int len, classification;
1639
1640 len = gdbarch_max_insn_length (gdbarch);
1641 buf = (gdb_byte *) alloca (len);
1642
1643 read_code (addr, buf, len);
1644 amd64_get_insn_details (buf, &details);
1645
1646 classification = pred (&details);
1647
1648 return classification;
1649 }
1650
1651 /* The gdbarch insn_is_call method. */
1652
1653 static int
1654 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1655 {
1656 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1657 }
1658
1659 /* The gdbarch insn_is_ret method. */
1660
1661 static int
1662 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1663 {
1664 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1665 }
1666
1667 /* The gdbarch insn_is_jump method. */
1668
1669 static int
1670 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1671 {
1672 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1673 }
1674
1675 /* Fix up the state of registers and memory after having single-stepped
1676 a displaced instruction. */
1677
1678 void
1679 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1680 struct displaced_step_copy_insn_closure *dsc_,
1681 CORE_ADDR from, CORE_ADDR to,
1682 struct regcache *regs)
1683 {
1684 amd64_displaced_step_copy_insn_closure *dsc = (amd64_displaced_step_copy_insn_closure *) dsc_;
1685 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1686 /* The offset we applied to the instruction's address. */
1687 ULONGEST insn_offset = to - from;
1688 gdb_byte *insn = dsc->insn_buf.data ();
1689 const struct amd64_insn *insn_details = &dsc->insn_details;
1690
1691 if (debug_displaced)
1692 fprintf_unfiltered (gdb_stdlog,
1693 "displaced: fixup (%s, %s), "
1694 "insn = 0x%02x 0x%02x ...\n",
1695 paddress (gdbarch, from), paddress (gdbarch, to),
1696 insn[0], insn[1]);
1697
1698 /* If we used a tmp reg, restore it. */
1699
1700 if (dsc->tmp_used)
1701 {
1702 if (debug_displaced)
1703 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1704 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1705 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1706 }
1707
1708 /* The list of issues to contend with here is taken from
1709 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1710 Yay for Free Software! */
1711
1712 /* Relocate the %rip back to the program's instruction stream,
1713 if necessary. */
1714
1715 /* Except in the case of absolute or indirect jump or call
1716 instructions, or a return instruction, the new rip is relative to
1717 the displaced instruction; make it relative to the original insn.
1718 Well, signal handler returns don't need relocation either, but we use the
1719 value of %rip to recognize those; see below. */
1720 if (! amd64_absolute_jmp_p (insn_details)
1721 && ! amd64_absolute_call_p (insn_details)
1722 && ! amd64_ret_p (insn_details))
1723 {
1724 ULONGEST orig_rip;
1725 int insn_len;
1726
1727 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1728
1729 /* A signal trampoline system call changes the %rip, resuming
1730 execution of the main program after the signal handler has
1731 returned. That makes them like 'return' instructions; we
1732 shouldn't relocate %rip.
1733
1734 But most system calls don't, and we do need to relocate %rip.
1735
1736 Our heuristic for distinguishing these cases: if stepping
1737 over the system call instruction left control directly after
1738 the instruction, the we relocate --- control almost certainly
1739 doesn't belong in the displaced copy. Otherwise, we assume
1740 the instruction has put control where it belongs, and leave
1741 it unrelocated. Goodness help us if there are PC-relative
1742 system calls. */
1743 if (amd64_syscall_p (insn_details, &insn_len)
1744 && orig_rip != to + insn_len
1745 /* GDB can get control back after the insn after the syscall.
1746 Presumably this is a kernel bug.
1747 Fixup ensures its a nop, we add one to the length for it. */
1748 && orig_rip != to + insn_len + 1)
1749 {
1750 if (debug_displaced)
1751 fprintf_unfiltered (gdb_stdlog,
1752 "displaced: syscall changed %%rip; "
1753 "not relocating\n");
1754 }
1755 else
1756 {
1757 ULONGEST rip = orig_rip - insn_offset;
1758
1759 /* If we just stepped over a breakpoint insn, we don't backup
1760 the pc on purpose; this is to match behaviour without
1761 stepping. */
1762
1763 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1764
1765 if (debug_displaced)
1766 fprintf_unfiltered (gdb_stdlog,
1767 "displaced: "
1768 "relocated %%rip from %s to %s\n",
1769 paddress (gdbarch, orig_rip),
1770 paddress (gdbarch, rip));
1771 }
1772 }
1773
1774 /* If the instruction was PUSHFL, then the TF bit will be set in the
1775 pushed value, and should be cleared. We'll leave this for later,
1776 since GDB already messes up the TF flag when stepping over a
1777 pushfl. */
1778
1779 /* If the instruction was a call, the return address now atop the
1780 stack is the address following the copied instruction. We need
1781 to make it the address following the original instruction. */
1782 if (amd64_call_p (insn_details))
1783 {
1784 ULONGEST rsp;
1785 ULONGEST retaddr;
1786 const ULONGEST retaddr_len = 8;
1787
1788 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1789 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1790 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1791 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1792
1793 if (debug_displaced)
1794 fprintf_unfiltered (gdb_stdlog,
1795 "displaced: relocated return addr at %s "
1796 "to %s\n",
1797 paddress (gdbarch, rsp),
1798 paddress (gdbarch, retaddr));
1799 }
1800 }
1801
1802 /* If the instruction INSN uses RIP-relative addressing, return the
1803 offset into the raw INSN where the displacement to be adjusted is
1804 found. Returns 0 if the instruction doesn't use RIP-relative
1805 addressing. */
1806
1807 static int
1808 rip_relative_offset (struct amd64_insn *insn)
1809 {
1810 if (insn->modrm_offset != -1)
1811 {
1812 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1813
1814 if ((modrm & 0xc7) == 0x05)
1815 {
1816 /* The displacement is found right after the ModRM byte. */
1817 return insn->modrm_offset + 1;
1818 }
1819 }
1820
1821 return 0;
1822 }
1823
1824 static void
1825 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1826 {
1827 target_write_memory (*to, buf, len);
1828 *to += len;
1829 }
1830
1831 static void
1832 amd64_relocate_instruction (struct gdbarch *gdbarch,
1833 CORE_ADDR *to, CORE_ADDR oldloc)
1834 {
1835 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1836 int len = gdbarch_max_insn_length (gdbarch);
1837 /* Extra space for sentinels. */
1838 int fixup_sentinel_space = len;
1839 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1840 struct amd64_insn insn_details;
1841 int offset = 0;
1842 LONGEST rel32, newrel;
1843 gdb_byte *insn;
1844 int insn_length;
1845
1846 read_memory (oldloc, buf, len);
1847
1848 /* Set up the sentinel space so we don't have to worry about running
1849 off the end of the buffer. An excessive number of leading prefixes
1850 could otherwise cause this. */
1851 memset (buf + len, 0, fixup_sentinel_space);
1852
1853 insn = buf;
1854 amd64_get_insn_details (insn, &insn_details);
1855
1856 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1857
1858 /* Skip legacy instruction prefixes. */
1859 insn = amd64_skip_prefixes (insn);
1860
1861 /* Adjust calls with 32-bit relative addresses as push/jump, with
1862 the address pushed being the location where the original call in
1863 the user program would return to. */
1864 if (insn[0] == 0xe8)
1865 {
1866 gdb_byte push_buf[32];
1867 CORE_ADDR ret_addr;
1868 int i = 0;
1869
1870 /* Where "ret" in the original code will return to. */
1871 ret_addr = oldloc + insn_length;
1872
1873 /* If pushing an address higher than or equal to 0x80000000,
1874 avoid 'pushq', as that sign extends its 32-bit operand, which
1875 would be incorrect. */
1876 if (ret_addr <= 0x7fffffff)
1877 {
1878 push_buf[0] = 0x68; /* pushq $... */
1879 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1880 i = 5;
1881 }
1882 else
1883 {
1884 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1885 push_buf[i++] = 0x83;
1886 push_buf[i++] = 0xec;
1887 push_buf[i++] = 0x08;
1888
1889 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1890 push_buf[i++] = 0x04;
1891 push_buf[i++] = 0x24;
1892 store_unsigned_integer (&push_buf[i], 4, byte_order,
1893 ret_addr & 0xffffffff);
1894 i += 4;
1895
1896 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1897 push_buf[i++] = 0x44;
1898 push_buf[i++] = 0x24;
1899 push_buf[i++] = 0x04;
1900 store_unsigned_integer (&push_buf[i], 4, byte_order,
1901 ret_addr >> 32);
1902 i += 4;
1903 }
1904 gdb_assert (i <= sizeof (push_buf));
1905 /* Push the push. */
1906 append_insns (to, i, push_buf);
1907
1908 /* Convert the relative call to a relative jump. */
1909 insn[0] = 0xe9;
1910
1911 /* Adjust the destination offset. */
1912 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1913 newrel = (oldloc - *to) + rel32;
1914 store_signed_integer (insn + 1, 4, byte_order, newrel);
1915
1916 if (debug_displaced)
1917 fprintf_unfiltered (gdb_stdlog,
1918 "Adjusted insn rel32=%s at %s to"
1919 " rel32=%s at %s\n",
1920 hex_string (rel32), paddress (gdbarch, oldloc),
1921 hex_string (newrel), paddress (gdbarch, *to));
1922
1923 /* Write the adjusted jump into its displaced location. */
1924 append_insns (to, 5, insn);
1925 return;
1926 }
1927
1928 offset = rip_relative_offset (&insn_details);
1929 if (!offset)
1930 {
1931 /* Adjust jumps with 32-bit relative addresses. Calls are
1932 already handled above. */
1933 if (insn[0] == 0xe9)
1934 offset = 1;
1935 /* Adjust conditional jumps. */
1936 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1937 offset = 2;
1938 }
1939
1940 if (offset)
1941 {
1942 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1943 newrel = (oldloc - *to) + rel32;
1944 store_signed_integer (insn + offset, 4, byte_order, newrel);
1945 if (debug_displaced)
1946 fprintf_unfiltered (gdb_stdlog,
1947 "Adjusted insn rel32=%s at %s to"
1948 " rel32=%s at %s\n",
1949 hex_string (rel32), paddress (gdbarch, oldloc),
1950 hex_string (newrel), paddress (gdbarch, *to));
1951 }
1952
1953 /* Write the adjusted instruction into its displaced location. */
1954 append_insns (to, insn_length, buf);
1955 }
1956
1957 \f
1958 /* The maximum number of saved registers. This should include %rip. */
1959 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1960
1961 struct amd64_frame_cache
1962 {
1963 /* Base address. */
1964 CORE_ADDR base;
1965 int base_p;
1966 CORE_ADDR sp_offset;
1967 CORE_ADDR pc;
1968
1969 /* Saved registers. */
1970 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1971 CORE_ADDR saved_sp;
1972 int saved_sp_reg;
1973
1974 /* Do we have a frame? */
1975 int frameless_p;
1976 };
1977
1978 /* Initialize a frame cache. */
1979
1980 static void
1981 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1982 {
1983 int i;
1984
1985 /* Base address. */
1986 cache->base = 0;
1987 cache->base_p = 0;
1988 cache->sp_offset = -8;
1989 cache->pc = 0;
1990
1991 /* Saved registers. We initialize these to -1 since zero is a valid
1992 offset (that's where %rbp is supposed to be stored).
1993 The values start out as being offsets, and are later converted to
1994 addresses (at which point -1 is interpreted as an address, still meaning
1995 "invalid"). */
1996 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1997 cache->saved_regs[i] = -1;
1998 cache->saved_sp = 0;
1999 cache->saved_sp_reg = -1;
2000
2001 /* Frameless until proven otherwise. */
2002 cache->frameless_p = 1;
2003 }
2004
2005 /* Allocate and initialize a frame cache. */
2006
2007 static struct amd64_frame_cache *
2008 amd64_alloc_frame_cache (void)
2009 {
2010 struct amd64_frame_cache *cache;
2011
2012 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
2013 amd64_init_frame_cache (cache);
2014 return cache;
2015 }
2016
2017 /* GCC 4.4 and later, can put code in the prologue to realign the
2018 stack pointer. Check whether PC points to such code, and update
2019 CACHE accordingly. Return the first instruction after the code
2020 sequence or CURRENT_PC, whichever is smaller. If we don't
2021 recognize the code, return PC. */
2022
2023 static CORE_ADDR
2024 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2025 struct amd64_frame_cache *cache)
2026 {
2027 /* There are 2 code sequences to re-align stack before the frame
2028 gets set up:
2029
2030 1. Use a caller-saved saved register:
2031
2032 leaq 8(%rsp), %reg
2033 andq $-XXX, %rsp
2034 pushq -8(%reg)
2035
2036 2. Use a callee-saved saved register:
2037
2038 pushq %reg
2039 leaq 16(%rsp), %reg
2040 andq $-XXX, %rsp
2041 pushq -8(%reg)
2042
2043 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2044
2045 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2046 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2047 */
2048
2049 gdb_byte buf[18];
2050 int reg, r;
2051 int offset, offset_and;
2052
2053 if (target_read_code (pc, buf, sizeof buf))
2054 return pc;
2055
2056 /* Check caller-saved saved register. The first instruction has
2057 to be "leaq 8(%rsp), %reg". */
2058 if ((buf[0] & 0xfb) == 0x48
2059 && buf[1] == 0x8d
2060 && buf[3] == 0x24
2061 && buf[4] == 0x8)
2062 {
2063 /* MOD must be binary 10 and R/M must be binary 100. */
2064 if ((buf[2] & 0xc7) != 0x44)
2065 return pc;
2066
2067 /* REG has register number. */
2068 reg = (buf[2] >> 3) & 7;
2069
2070 /* Check the REX.R bit. */
2071 if (buf[0] == 0x4c)
2072 reg += 8;
2073
2074 offset = 5;
2075 }
2076 else
2077 {
2078 /* Check callee-saved saved register. The first instruction
2079 has to be "pushq %reg". */
2080 reg = 0;
2081 if ((buf[0] & 0xf8) == 0x50)
2082 offset = 0;
2083 else if ((buf[0] & 0xf6) == 0x40
2084 && (buf[1] & 0xf8) == 0x50)
2085 {
2086 /* Check the REX.B bit. */
2087 if ((buf[0] & 1) != 0)
2088 reg = 8;
2089
2090 offset = 1;
2091 }
2092 else
2093 return pc;
2094
2095 /* Get register. */
2096 reg += buf[offset] & 0x7;
2097
2098 offset++;
2099
2100 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2101 if ((buf[offset] & 0xfb) != 0x48
2102 || buf[offset + 1] != 0x8d
2103 || buf[offset + 3] != 0x24
2104 || buf[offset + 4] != 0x10)
2105 return pc;
2106
2107 /* MOD must be binary 10 and R/M must be binary 100. */
2108 if ((buf[offset + 2] & 0xc7) != 0x44)
2109 return pc;
2110
2111 /* REG has register number. */
2112 r = (buf[offset + 2] >> 3) & 7;
2113
2114 /* Check the REX.R bit. */
2115 if (buf[offset] == 0x4c)
2116 r += 8;
2117
2118 /* Registers in pushq and leaq have to be the same. */
2119 if (reg != r)
2120 return pc;
2121
2122 offset += 5;
2123 }
2124
2125 /* Rigister can't be %rsp nor %rbp. */
2126 if (reg == 4 || reg == 5)
2127 return pc;
2128
2129 /* The next instruction has to be "andq $-XXX, %rsp". */
2130 if (buf[offset] != 0x48
2131 || buf[offset + 2] != 0xe4
2132 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2133 return pc;
2134
2135 offset_and = offset;
2136 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2137
2138 /* The next instruction has to be "pushq -8(%reg)". */
2139 r = 0;
2140 if (buf[offset] == 0xff)
2141 offset++;
2142 else if ((buf[offset] & 0xf6) == 0x40
2143 && buf[offset + 1] == 0xff)
2144 {
2145 /* Check the REX.B bit. */
2146 if ((buf[offset] & 0x1) != 0)
2147 r = 8;
2148 offset += 2;
2149 }
2150 else
2151 return pc;
2152
2153 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2154 01. */
2155 if (buf[offset + 1] != 0xf8
2156 || (buf[offset] & 0xf8) != 0x70)
2157 return pc;
2158
2159 /* R/M has register. */
2160 r += buf[offset] & 7;
2161
2162 /* Registers in leaq and pushq have to be the same. */
2163 if (reg != r)
2164 return pc;
2165
2166 if (current_pc > pc + offset_and)
2167 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2168
2169 return std::min (pc + offset + 2, current_pc);
2170 }
2171
2172 /* Similar to amd64_analyze_stack_align for x32. */
2173
2174 static CORE_ADDR
2175 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2176 struct amd64_frame_cache *cache)
2177 {
2178 /* There are 2 code sequences to re-align stack before the frame
2179 gets set up:
2180
2181 1. Use a caller-saved saved register:
2182
2183 leaq 8(%rsp), %reg
2184 andq $-XXX, %rsp
2185 pushq -8(%reg)
2186
2187 or
2188
2189 [addr32] leal 8(%rsp), %reg
2190 andl $-XXX, %esp
2191 [addr32] pushq -8(%reg)
2192
2193 2. Use a callee-saved saved register:
2194
2195 pushq %reg
2196 leaq 16(%rsp), %reg
2197 andq $-XXX, %rsp
2198 pushq -8(%reg)
2199
2200 or
2201
2202 pushq %reg
2203 [addr32] leal 16(%rsp), %reg
2204 andl $-XXX, %esp
2205 [addr32] pushq -8(%reg)
2206
2207 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2208
2209 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2210 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2211
2212 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2213
2214 0x83 0xe4 0xf0 andl $-16, %esp
2215 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2216 */
2217
2218 gdb_byte buf[19];
2219 int reg, r;
2220 int offset, offset_and;
2221
2222 if (target_read_memory (pc, buf, sizeof buf))
2223 return pc;
2224
2225 /* Skip optional addr32 prefix. */
2226 offset = buf[0] == 0x67 ? 1 : 0;
2227
2228 /* Check caller-saved saved register. The first instruction has
2229 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2230 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2231 && buf[offset + 1] == 0x8d
2232 && buf[offset + 3] == 0x24
2233 && buf[offset + 4] == 0x8)
2234 {
2235 /* MOD must be binary 10 and R/M must be binary 100. */
2236 if ((buf[offset + 2] & 0xc7) != 0x44)
2237 return pc;
2238
2239 /* REG has register number. */
2240 reg = (buf[offset + 2] >> 3) & 7;
2241
2242 /* Check the REX.R bit. */
2243 if ((buf[offset] & 0x4) != 0)
2244 reg += 8;
2245
2246 offset += 5;
2247 }
2248 else
2249 {
2250 /* Check callee-saved saved register. The first instruction
2251 has to be "pushq %reg". */
2252 reg = 0;
2253 if ((buf[offset] & 0xf6) == 0x40
2254 && (buf[offset + 1] & 0xf8) == 0x50)
2255 {
2256 /* Check the REX.B bit. */
2257 if ((buf[offset] & 1) != 0)
2258 reg = 8;
2259
2260 offset += 1;
2261 }
2262 else if ((buf[offset] & 0xf8) != 0x50)
2263 return pc;
2264
2265 /* Get register. */
2266 reg += buf[offset] & 0x7;
2267
2268 offset++;
2269
2270 /* Skip optional addr32 prefix. */
2271 if (buf[offset] == 0x67)
2272 offset++;
2273
2274 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2275 "leal 16(%rsp), %reg". */
2276 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2277 || buf[offset + 1] != 0x8d
2278 || buf[offset + 3] != 0x24
2279 || buf[offset + 4] != 0x10)
2280 return pc;
2281
2282 /* MOD must be binary 10 and R/M must be binary 100. */
2283 if ((buf[offset + 2] & 0xc7) != 0x44)
2284 return pc;
2285
2286 /* REG has register number. */
2287 r = (buf[offset + 2] >> 3) & 7;
2288
2289 /* Check the REX.R bit. */
2290 if ((buf[offset] & 0x4) != 0)
2291 r += 8;
2292
2293 /* Registers in pushq and leaq have to be the same. */
2294 if (reg != r)
2295 return pc;
2296
2297 offset += 5;
2298 }
2299
2300 /* Rigister can't be %rsp nor %rbp. */
2301 if (reg == 4 || reg == 5)
2302 return pc;
2303
2304 /* The next instruction may be "andq $-XXX, %rsp" or
2305 "andl $-XXX, %esp". */
2306 if (buf[offset] != 0x48)
2307 offset--;
2308
2309 if (buf[offset + 2] != 0xe4
2310 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2311 return pc;
2312
2313 offset_and = offset;
2314 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2315
2316 /* Skip optional addr32 prefix. */
2317 if (buf[offset] == 0x67)
2318 offset++;
2319
2320 /* The next instruction has to be "pushq -8(%reg)". */
2321 r = 0;
2322 if (buf[offset] == 0xff)
2323 offset++;
2324 else if ((buf[offset] & 0xf6) == 0x40
2325 && buf[offset + 1] == 0xff)
2326 {
2327 /* Check the REX.B bit. */
2328 if ((buf[offset] & 0x1) != 0)
2329 r = 8;
2330 offset += 2;
2331 }
2332 else
2333 return pc;
2334
2335 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2336 01. */
2337 if (buf[offset + 1] != 0xf8
2338 || (buf[offset] & 0xf8) != 0x70)
2339 return pc;
2340
2341 /* R/M has register. */
2342 r += buf[offset] & 7;
2343
2344 /* Registers in leaq and pushq have to be the same. */
2345 if (reg != r)
2346 return pc;
2347
2348 if (current_pc > pc + offset_and)
2349 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2350
2351 return std::min (pc + offset + 2, current_pc);
2352 }
2353
2354 /* Do a limited analysis of the prologue at PC and update CACHE
2355 accordingly. Bail out early if CURRENT_PC is reached. Return the
2356 address where the analysis stopped.
2357
2358 We will handle only functions beginning with:
2359
2360 pushq %rbp 0x55
2361 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2362
2363 or (for the X32 ABI):
2364
2365 pushq %rbp 0x55
2366 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2367
2368 The `endbr64` instruction can be found before these sequences, and will be
2369 skipped if found.
2370
2371 Any function that doesn't start with one of these sequences will be
2372 assumed to have no prologue and thus no valid frame pointer in
2373 %rbp. */
2374
2375 static CORE_ADDR
2376 amd64_analyze_prologue (struct gdbarch *gdbarch,
2377 CORE_ADDR pc, CORE_ADDR current_pc,
2378 struct amd64_frame_cache *cache)
2379 {
2380 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2381 /* The `endbr64` instruction. */
2382 static const gdb_byte endbr64[4] = { 0xf3, 0x0f, 0x1e, 0xfa };
2383 /* There are two variations of movq %rsp, %rbp. */
2384 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2385 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2386 /* Ditto for movl %esp, %ebp. */
2387 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2388 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2389
2390 gdb_byte buf[3];
2391 gdb_byte op;
2392
2393 if (current_pc <= pc)
2394 return current_pc;
2395
2396 if (gdbarch_ptr_bit (gdbarch) == 32)
2397 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2398 else
2399 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2400
2401 op = read_code_unsigned_integer (pc, 1, byte_order);
2402
2403 /* Check for the `endbr64` instruction, skip it if found. */
2404 if (op == endbr64[0])
2405 {
2406 read_code (pc + 1, buf, 3);
2407
2408 if (memcmp (buf, &endbr64[1], 3) == 0)
2409 pc += 4;
2410
2411 op = read_code_unsigned_integer (pc, 1, byte_order);
2412 }
2413
2414 if (current_pc <= pc)
2415 return current_pc;
2416
2417 if (op == 0x55) /* pushq %rbp */
2418 {
2419 /* Take into account that we've executed the `pushq %rbp' that
2420 starts this instruction sequence. */
2421 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2422 cache->sp_offset += 8;
2423
2424 /* If that's all, return now. */
2425 if (current_pc <= pc + 1)
2426 return current_pc;
2427
2428 read_code (pc + 1, buf, 3);
2429
2430 /* Check for `movq %rsp, %rbp'. */
2431 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2432 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2433 {
2434 /* OK, we actually have a frame. */
2435 cache->frameless_p = 0;
2436 return pc + 4;
2437 }
2438
2439 /* For X32, also check for `movq %esp, %ebp'. */
2440 if (gdbarch_ptr_bit (gdbarch) == 32)
2441 {
2442 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2443 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2444 {
2445 /* OK, we actually have a frame. */
2446 cache->frameless_p = 0;
2447 return pc + 3;
2448 }
2449 }
2450
2451 return pc + 1;
2452 }
2453
2454 return pc;
2455 }
2456
2457 /* Work around false termination of prologue - GCC PR debug/48827.
2458
2459 START_PC is the first instruction of a function, PC is its minimal already
2460 determined advanced address. Function returns PC if it has nothing to do.
2461
2462 84 c0 test %al,%al
2463 74 23 je after
2464 <-- here is 0 lines advance - the false prologue end marker.
2465 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2466 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2467 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2468 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2469 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2470 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2471 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2472 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2473 after: */
2474
2475 static CORE_ADDR
2476 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2477 {
2478 struct symtab_and_line start_pc_sal, next_sal;
2479 gdb_byte buf[4 + 8 * 7];
2480 int offset, xmmreg;
2481
2482 if (pc == start_pc)
2483 return pc;
2484
2485 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2486 if (start_pc_sal.symtab == NULL
2487 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2488 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2489 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2490 return pc;
2491
2492 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2493 if (next_sal.line != start_pc_sal.line)
2494 return pc;
2495
2496 /* START_PC can be from overlayed memory, ignored here. */
2497 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2498 return pc;
2499
2500 /* test %al,%al */
2501 if (buf[0] != 0x84 || buf[1] != 0xc0)
2502 return pc;
2503 /* je AFTER */
2504 if (buf[2] != 0x74)
2505 return pc;
2506
2507 offset = 4;
2508 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2509 {
2510 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2511 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2512 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2513 return pc;
2514
2515 /* 0b01?????? */
2516 if ((buf[offset + 2] & 0xc0) == 0x40)
2517 {
2518 /* 8-bit displacement. */
2519 offset += 4;
2520 }
2521 /* 0b10?????? */
2522 else if ((buf[offset + 2] & 0xc0) == 0x80)
2523 {
2524 /* 32-bit displacement. */
2525 offset += 7;
2526 }
2527 else
2528 return pc;
2529 }
2530
2531 /* je AFTER */
2532 if (offset - 4 != buf[3])
2533 return pc;
2534
2535 return next_sal.end;
2536 }
2537
2538 /* Return PC of first real instruction. */
2539
2540 static CORE_ADDR
2541 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2542 {
2543 struct amd64_frame_cache cache;
2544 CORE_ADDR pc;
2545 CORE_ADDR func_addr;
2546
2547 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2548 {
2549 CORE_ADDR post_prologue_pc
2550 = skip_prologue_using_sal (gdbarch, func_addr);
2551 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2552
2553 /* Clang always emits a line note before the prologue and another
2554 one after. We trust clang to emit usable line notes. */
2555 if (post_prologue_pc
2556 && (cust != NULL
2557 && COMPUNIT_PRODUCER (cust) != NULL
2558 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2559 return std::max (start_pc, post_prologue_pc);
2560 }
2561
2562 amd64_init_frame_cache (&cache);
2563 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2564 &cache);
2565 if (cache.frameless_p)
2566 return start_pc;
2567
2568 return amd64_skip_xmm_prologue (pc, start_pc);
2569 }
2570 \f
2571
2572 /* Normal frames. */
2573
2574 static void
2575 amd64_frame_cache_1 (struct frame_info *this_frame,
2576 struct amd64_frame_cache *cache)
2577 {
2578 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2579 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2580 gdb_byte buf[8];
2581 int i;
2582
2583 cache->pc = get_frame_func (this_frame);
2584 if (cache->pc != 0)
2585 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2586 cache);
2587
2588 if (cache->frameless_p)
2589 {
2590 /* We didn't find a valid frame. If we're at the start of a
2591 function, or somewhere half-way its prologue, the function's
2592 frame probably hasn't been fully setup yet. Try to
2593 reconstruct the base address for the stack frame by looking
2594 at the stack pointer. For truly "frameless" functions this
2595 might work too. */
2596
2597 if (cache->saved_sp_reg != -1)
2598 {
2599 /* Stack pointer has been saved. */
2600 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2601 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2602
2603 /* We're halfway aligning the stack. */
2604 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2605 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2606
2607 /* This will be added back below. */
2608 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2609 }
2610 else
2611 {
2612 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2613 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2614 + cache->sp_offset;
2615 }
2616 }
2617 else
2618 {
2619 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2620 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2621 }
2622
2623 /* Now that we have the base address for the stack frame we can
2624 calculate the value of %rsp in the calling frame. */
2625 cache->saved_sp = cache->base + 16;
2626
2627 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2628 frame we find it at the same offset from the reconstructed base
2629 address. If we're halfway aligning the stack, %rip is handled
2630 differently (see above). */
2631 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2632 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2633
2634 /* Adjust all the saved registers such that they contain addresses
2635 instead of offsets. */
2636 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2637 if (cache->saved_regs[i] != -1)
2638 cache->saved_regs[i] += cache->base;
2639
2640 cache->base_p = 1;
2641 }
2642
2643 static struct amd64_frame_cache *
2644 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2645 {
2646 struct amd64_frame_cache *cache;
2647
2648 if (*this_cache)
2649 return (struct amd64_frame_cache *) *this_cache;
2650
2651 cache = amd64_alloc_frame_cache ();
2652 *this_cache = cache;
2653
2654 try
2655 {
2656 amd64_frame_cache_1 (this_frame, cache);
2657 }
2658 catch (const gdb_exception_error &ex)
2659 {
2660 if (ex.error != NOT_AVAILABLE_ERROR)
2661 throw;
2662 }
2663
2664 return cache;
2665 }
2666
2667 static enum unwind_stop_reason
2668 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2669 void **this_cache)
2670 {
2671 struct amd64_frame_cache *cache =
2672 amd64_frame_cache (this_frame, this_cache);
2673
2674 if (!cache->base_p)
2675 return UNWIND_UNAVAILABLE;
2676
2677 /* This marks the outermost frame. */
2678 if (cache->base == 0)
2679 return UNWIND_OUTERMOST;
2680
2681 return UNWIND_NO_REASON;
2682 }
2683
2684 static void
2685 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2686 struct frame_id *this_id)
2687 {
2688 struct amd64_frame_cache *cache =
2689 amd64_frame_cache (this_frame, this_cache);
2690
2691 if (!cache->base_p)
2692 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2693 else if (cache->base == 0)
2694 {
2695 /* This marks the outermost frame. */
2696 return;
2697 }
2698 else
2699 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2700 }
2701
2702 static struct value *
2703 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2704 int regnum)
2705 {
2706 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2707 struct amd64_frame_cache *cache =
2708 amd64_frame_cache (this_frame, this_cache);
2709
2710 gdb_assert (regnum >= 0);
2711
2712 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2713 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2714
2715 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2716 return frame_unwind_got_memory (this_frame, regnum,
2717 cache->saved_regs[regnum]);
2718
2719 return frame_unwind_got_register (this_frame, regnum, regnum);
2720 }
2721
2722 static const struct frame_unwind amd64_frame_unwind =
2723 {
2724 NORMAL_FRAME,
2725 amd64_frame_unwind_stop_reason,
2726 amd64_frame_this_id,
2727 amd64_frame_prev_register,
2728 NULL,
2729 default_frame_sniffer
2730 };
2731 \f
2732 /* Generate a bytecode expression to get the value of the saved PC. */
2733
2734 static void
2735 amd64_gen_return_address (struct gdbarch *gdbarch,
2736 struct agent_expr *ax, struct axs_value *value,
2737 CORE_ADDR scope)
2738 {
2739 /* The following sequence assumes the traditional use of the base
2740 register. */
2741 ax_reg (ax, AMD64_RBP_REGNUM);
2742 ax_const_l (ax, 8);
2743 ax_simple (ax, aop_add);
2744 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2745 value->kind = axs_lvalue_memory;
2746 }
2747 \f
2748
2749 /* Signal trampolines. */
2750
2751 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2752 64-bit variants. This would require using identical frame caches
2753 on both platforms. */
2754
2755 static struct amd64_frame_cache *
2756 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2757 {
2758 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2761 struct amd64_frame_cache *cache;
2762 CORE_ADDR addr;
2763 gdb_byte buf[8];
2764 int i;
2765
2766 if (*this_cache)
2767 return (struct amd64_frame_cache *) *this_cache;
2768
2769 cache = amd64_alloc_frame_cache ();
2770
2771 try
2772 {
2773 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2774 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2775
2776 addr = tdep->sigcontext_addr (this_frame);
2777 gdb_assert (tdep->sc_reg_offset);
2778 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2779 for (i = 0; i < tdep->sc_num_regs; i++)
2780 if (tdep->sc_reg_offset[i] != -1)
2781 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2782
2783 cache->base_p = 1;
2784 }
2785 catch (const gdb_exception_error &ex)
2786 {
2787 if (ex.error != NOT_AVAILABLE_ERROR)
2788 throw;
2789 }
2790
2791 *this_cache = cache;
2792 return cache;
2793 }
2794
2795 static enum unwind_stop_reason
2796 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2797 void **this_cache)
2798 {
2799 struct amd64_frame_cache *cache =
2800 amd64_sigtramp_frame_cache (this_frame, this_cache);
2801
2802 if (!cache->base_p)
2803 return UNWIND_UNAVAILABLE;
2804
2805 return UNWIND_NO_REASON;
2806 }
2807
2808 static void
2809 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2810 void **this_cache, struct frame_id *this_id)
2811 {
2812 struct amd64_frame_cache *cache =
2813 amd64_sigtramp_frame_cache (this_frame, this_cache);
2814
2815 if (!cache->base_p)
2816 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2817 else if (cache->base == 0)
2818 {
2819 /* This marks the outermost frame. */
2820 return;
2821 }
2822 else
2823 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2824 }
2825
2826 static struct value *
2827 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2828 void **this_cache, int regnum)
2829 {
2830 /* Make sure we've initialized the cache. */
2831 amd64_sigtramp_frame_cache (this_frame, this_cache);
2832
2833 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2834 }
2835
2836 static int
2837 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2838 struct frame_info *this_frame,
2839 void **this_cache)
2840 {
2841 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2842
2843 /* We shouldn't even bother if we don't have a sigcontext_addr
2844 handler. */
2845 if (tdep->sigcontext_addr == NULL)
2846 return 0;
2847
2848 if (tdep->sigtramp_p != NULL)
2849 {
2850 if (tdep->sigtramp_p (this_frame))
2851 return 1;
2852 }
2853
2854 if (tdep->sigtramp_start != 0)
2855 {
2856 CORE_ADDR pc = get_frame_pc (this_frame);
2857
2858 gdb_assert (tdep->sigtramp_end != 0);
2859 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2860 return 1;
2861 }
2862
2863 return 0;
2864 }
2865
2866 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2867 {
2868 SIGTRAMP_FRAME,
2869 amd64_sigtramp_frame_unwind_stop_reason,
2870 amd64_sigtramp_frame_this_id,
2871 amd64_sigtramp_frame_prev_register,
2872 NULL,
2873 amd64_sigtramp_frame_sniffer
2874 };
2875 \f
2876
2877 static CORE_ADDR
2878 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2879 {
2880 struct amd64_frame_cache *cache =
2881 amd64_frame_cache (this_frame, this_cache);
2882
2883 return cache->base;
2884 }
2885
2886 static const struct frame_base amd64_frame_base =
2887 {
2888 &amd64_frame_unwind,
2889 amd64_frame_base_address,
2890 amd64_frame_base_address,
2891 amd64_frame_base_address
2892 };
2893
2894 /* Normal frames, but in a function epilogue. */
2895
2896 /* Implement the stack_frame_destroyed_p gdbarch method.
2897
2898 The epilogue is defined here as the 'ret' instruction, which will
2899 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2900 the function's stack frame. */
2901
2902 static int
2903 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2904 {
2905 gdb_byte insn;
2906 struct compunit_symtab *cust;
2907
2908 cust = find_pc_compunit_symtab (pc);
2909 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2910 return 0;
2911
2912 if (target_read_memory (pc, &insn, 1))
2913 return 0; /* Can't read memory at pc. */
2914
2915 if (insn != 0xc3) /* 'ret' instruction. */
2916 return 0;
2917
2918 return 1;
2919 }
2920
2921 static int
2922 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2923 struct frame_info *this_frame,
2924 void **this_prologue_cache)
2925 {
2926 if (frame_relative_level (this_frame) == 0)
2927 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2928 get_frame_pc (this_frame));
2929 else
2930 return 0;
2931 }
2932
2933 static struct amd64_frame_cache *
2934 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2935 {
2936 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2937 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2938 struct amd64_frame_cache *cache;
2939 gdb_byte buf[8];
2940
2941 if (*this_cache)
2942 return (struct amd64_frame_cache *) *this_cache;
2943
2944 cache = amd64_alloc_frame_cache ();
2945 *this_cache = cache;
2946
2947 try
2948 {
2949 /* Cache base will be %esp plus cache->sp_offset (-8). */
2950 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2951 cache->base = extract_unsigned_integer (buf, 8,
2952 byte_order) + cache->sp_offset;
2953
2954 /* Cache pc will be the frame func. */
2955 cache->pc = get_frame_pc (this_frame);
2956
2957 /* The saved %esp will be at cache->base plus 16. */
2958 cache->saved_sp = cache->base + 16;
2959
2960 /* The saved %eip will be at cache->base plus 8. */
2961 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2962
2963 cache->base_p = 1;
2964 }
2965 catch (const gdb_exception_error &ex)
2966 {
2967 if (ex.error != NOT_AVAILABLE_ERROR)
2968 throw;
2969 }
2970
2971 return cache;
2972 }
2973
2974 static enum unwind_stop_reason
2975 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2976 void **this_cache)
2977 {
2978 struct amd64_frame_cache *cache
2979 = amd64_epilogue_frame_cache (this_frame, this_cache);
2980
2981 if (!cache->base_p)
2982 return UNWIND_UNAVAILABLE;
2983
2984 return UNWIND_NO_REASON;
2985 }
2986
2987 static void
2988 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2989 void **this_cache,
2990 struct frame_id *this_id)
2991 {
2992 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2993 this_cache);
2994
2995 if (!cache->base_p)
2996 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2997 else
2998 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2999 }
3000
3001 static const struct frame_unwind amd64_epilogue_frame_unwind =
3002 {
3003 NORMAL_FRAME,
3004 amd64_epilogue_frame_unwind_stop_reason,
3005 amd64_epilogue_frame_this_id,
3006 amd64_frame_prev_register,
3007 NULL,
3008 amd64_epilogue_frame_sniffer
3009 };
3010
3011 static struct frame_id
3012 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3013 {
3014 CORE_ADDR fp;
3015
3016 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
3017
3018 return frame_id_build (fp + 16, get_frame_pc (this_frame));
3019 }
3020
3021 /* 16 byte align the SP per frame requirements. */
3022
3023 static CORE_ADDR
3024 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3025 {
3026 return sp & -(CORE_ADDR)16;
3027 }
3028 \f
3029
3030 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3031 in the floating-point register set REGSET to register cache
3032 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3033
3034 static void
3035 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3036 int regnum, const void *fpregs, size_t len)
3037 {
3038 struct gdbarch *gdbarch = regcache->arch ();
3039 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3040
3041 gdb_assert (len >= tdep->sizeof_fpregset);
3042 amd64_supply_fxsave (regcache, regnum, fpregs);
3043 }
3044
3045 /* Collect register REGNUM from the register cache REGCACHE and store
3046 it in the buffer specified by FPREGS and LEN as described by the
3047 floating-point register set REGSET. If REGNUM is -1, do this for
3048 all registers in REGSET. */
3049
3050 static void
3051 amd64_collect_fpregset (const struct regset *regset,
3052 const struct regcache *regcache,
3053 int regnum, void *fpregs, size_t len)
3054 {
3055 struct gdbarch *gdbarch = regcache->arch ();
3056 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3057
3058 gdb_assert (len >= tdep->sizeof_fpregset);
3059 amd64_collect_fxsave (regcache, regnum, fpregs);
3060 }
3061
3062 const struct regset amd64_fpregset =
3063 {
3064 NULL, amd64_supply_fpregset, amd64_collect_fpregset
3065 };
3066 \f
3067
3068 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
3069 %rdi. We expect its value to be a pointer to the jmp_buf structure
3070 from which we extract the address that we will land at. This
3071 address is copied into PC. This routine returns non-zero on
3072 success. */
3073
3074 static int
3075 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
3076 {
3077 gdb_byte buf[8];
3078 CORE_ADDR jb_addr;
3079 struct gdbarch *gdbarch = get_frame_arch (frame);
3080 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
3081 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
3082
3083 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3084 longjmp will land. */
3085 if (jb_pc_offset == -1)
3086 return 0;
3087
3088 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
3089 jb_addr= extract_typed_address
3090 (buf, builtin_type (gdbarch)->builtin_data_ptr);
3091 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3092 return 0;
3093
3094 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
3095
3096 return 1;
3097 }
3098
3099 static const int amd64_record_regmap[] =
3100 {
3101 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3102 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3103 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3104 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3105 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3106 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3107 };
3108
3109 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3110
3111 static bool
3112 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3113 {
3114 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3115 AMD64_RAX_REGNUM,
3116 AMD64_RIP_REGNUM);
3117 }
3118
3119 void
3120 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3121 const target_desc *default_tdesc)
3122 {
3123 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3124 const struct target_desc *tdesc = info.target_desc;
3125 static const char *const stap_integer_prefixes[] = { "$", NULL };
3126 static const char *const stap_register_prefixes[] = { "%", NULL };
3127 static const char *const stap_register_indirection_prefixes[] = { "(",
3128 NULL };
3129 static const char *const stap_register_indirection_suffixes[] = { ")",
3130 NULL };
3131
3132 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3133 floating-point registers. */
3134 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3135 tdep->fpregset = &amd64_fpregset;
3136
3137 if (! tdesc_has_registers (tdesc))
3138 tdesc = default_tdesc;
3139 tdep->tdesc = tdesc;
3140
3141 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3142 tdep->register_names = amd64_register_names;
3143
3144 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3145 {
3146 tdep->zmmh_register_names = amd64_zmmh_names;
3147 tdep->k_register_names = amd64_k_names;
3148 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3149 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3150
3151 tdep->num_zmm_regs = 32;
3152 tdep->num_xmm_avx512_regs = 16;
3153 tdep->num_ymm_avx512_regs = 16;
3154
3155 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3156 tdep->k0_regnum = AMD64_K0_REGNUM;
3157 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3158 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3159 }
3160
3161 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3162 {
3163 tdep->ymmh_register_names = amd64_ymmh_names;
3164 tdep->num_ymm_regs = 16;
3165 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3166 }
3167
3168 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3169 {
3170 tdep->mpx_register_names = amd64_mpx_names;
3171 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3172 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3173 }
3174
3175 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3176 {
3177 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
3178 }
3179
3180 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3181 {
3182 tdep->pkeys_register_names = amd64_pkeys_names;
3183 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3184 tdep->num_pkeys_regs = 1;
3185 }
3186
3187 tdep->num_byte_regs = 20;
3188 tdep->num_word_regs = 16;
3189 tdep->num_dword_regs = 16;
3190 /* Avoid wiring in the MMX registers for now. */
3191 tdep->num_mmx_regs = 0;
3192
3193 set_gdbarch_pseudo_register_read_value (gdbarch,
3194 amd64_pseudo_register_read_value);
3195 set_gdbarch_pseudo_register_write (gdbarch,
3196 amd64_pseudo_register_write);
3197 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3198 amd64_ax_pseudo_register_collect);
3199
3200 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3201
3202 /* AMD64 has an FPU and 16 SSE registers. */
3203 tdep->st0_regnum = AMD64_ST0_REGNUM;
3204 tdep->num_xmm_regs = 16;
3205
3206 /* This is what all the fuss is about. */
3207 set_gdbarch_long_bit (gdbarch, 64);
3208 set_gdbarch_long_long_bit (gdbarch, 64);
3209 set_gdbarch_ptr_bit (gdbarch, 64);
3210
3211 /* In contrast to the i386, on AMD64 a `long double' actually takes
3212 up 128 bits, even though it's still based on the i387 extended
3213 floating-point format which has only 80 significant bits. */
3214 set_gdbarch_long_double_bit (gdbarch, 128);
3215
3216 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3217
3218 /* Register numbers of various important registers. */
3219 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3220 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3221 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3222 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3223
3224 /* The "default" register numbering scheme for AMD64 is referred to
3225 as the "DWARF Register Number Mapping" in the System V psABI.
3226 The preferred debugging format for all known AMD64 targets is
3227 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3228 DWARF-1), but we provide the same mapping just in case. This
3229 mapping is also used for stabs, which GCC does support. */
3230 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3231 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3232
3233 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3234 be in use on any of the supported AMD64 targets. */
3235
3236 /* Call dummy code. */
3237 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3238 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3239 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3240
3241 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3242 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3243 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3244
3245 set_gdbarch_return_value (gdbarch, amd64_return_value);
3246
3247 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3248
3249 tdep->record_regmap = amd64_record_regmap;
3250
3251 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3252
3253 /* Hook the function epilogue frame unwinder. This unwinder is
3254 appended to the list first, so that it supercedes the other
3255 unwinders in function epilogues. */
3256 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3257
3258 /* Hook the prologue-based frame unwinders. */
3259 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3260 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3261 frame_base_set_default (gdbarch, &amd64_frame_base);
3262
3263 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3264
3265 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3266
3267 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3268
3269 /* SystemTap variables and functions. */
3270 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3271 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3272 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3273 stap_register_indirection_prefixes);
3274 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3275 stap_register_indirection_suffixes);
3276 set_gdbarch_stap_is_single_operand (gdbarch,
3277 i386_stap_is_single_operand);
3278 set_gdbarch_stap_parse_special_token (gdbarch,
3279 i386_stap_parse_special_token);
3280 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3281 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3282 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3283
3284 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3285 amd64_in_indirect_branch_thunk);
3286 }
3287
3288 /* Initialize ARCH for x86-64, no osabi. */
3289
3290 static void
3291 amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3292 {
3293 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3294 true));
3295 }
3296
3297 static struct type *
3298 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3299 {
3300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3301
3302 switch (regnum - tdep->eax_regnum)
3303 {
3304 case AMD64_RBP_REGNUM: /* %ebp */
3305 case AMD64_RSP_REGNUM: /* %esp */
3306 return builtin_type (gdbarch)->builtin_data_ptr;
3307 case AMD64_RIP_REGNUM: /* %eip */
3308 return builtin_type (gdbarch)->builtin_func_ptr;
3309 }
3310
3311 return i386_pseudo_register_type (gdbarch, regnum);
3312 }
3313
3314 void
3315 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3316 const target_desc *default_tdesc)
3317 {
3318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3319
3320 amd64_init_abi (info, gdbarch, default_tdesc);
3321
3322 tdep->num_dword_regs = 17;
3323 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3324
3325 set_gdbarch_long_bit (gdbarch, 32);
3326 set_gdbarch_ptr_bit (gdbarch, 32);
3327 }
3328
3329 /* Initialize ARCH for x64-32, no osabi. */
3330
3331 static void
3332 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3333 {
3334 amd64_x32_init_abi (info, arch,
3335 amd64_target_description (X86_XSTATE_SSE_MASK, true));
3336 }
3337
3338 /* Return the target description for a specified XSAVE feature mask. */
3339
3340 const struct target_desc *
3341 amd64_target_description (uint64_t xcr0, bool segments)
3342 {
3343 static target_desc *amd64_tdescs \
3344 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
3345 target_desc **tdesc;
3346
3347 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3348 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3349 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3350 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3351 [segments ? 1 : 0];
3352
3353 if (*tdesc == NULL)
3354 *tdesc = amd64_create_target_description (xcr0, false, false,
3355 segments);
3356
3357 return *tdesc;
3358 }
3359
3360 void _initialize_amd64_tdep ();
3361 void
3362 _initialize_amd64_tdep ()
3363 {
3364 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3365 amd64_none_init_abi);
3366 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3367 amd64_x32_none_init_abi);
3368 }
3369 \f
3370
3371 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3372 sense that the instruction pointer and data pointer are simply
3373 64-bit offsets into the code segment and the data segment instead
3374 of a selector offset pair. The functions below store the upper 32
3375 bits of these pointers (instead of just the 16-bits of the segment
3376 selector). */
3377
3378 /* Fill register REGNUM in REGCACHE with the appropriate
3379 floating-point or SSE register value from *FXSAVE. If REGNUM is
3380 -1, do this for all registers. This function masks off any of the
3381 reserved bits in *FXSAVE. */
3382
3383 void
3384 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3385 const void *fxsave)
3386 {
3387 struct gdbarch *gdbarch = regcache->arch ();
3388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3389
3390 i387_supply_fxsave (regcache, regnum, fxsave);
3391
3392 if (fxsave
3393 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3394 {
3395 const gdb_byte *regs = (const gdb_byte *) fxsave;
3396
3397 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3398 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3399 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3400 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3401 }
3402 }
3403
3404 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3405
3406 void
3407 amd64_supply_xsave (struct regcache *regcache, int regnum,
3408 const void *xsave)
3409 {
3410 struct gdbarch *gdbarch = regcache->arch ();
3411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3412
3413 i387_supply_xsave (regcache, regnum, xsave);
3414
3415 if (xsave
3416 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3417 {
3418 const gdb_byte *regs = (const gdb_byte *) xsave;
3419 ULONGEST clear_bv;
3420
3421 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3422
3423 /* If the FISEG and FOSEG registers have not been initialised yet
3424 (their CLEAR_BV bit is set) then their default values of zero will
3425 have already been setup by I387_SUPPLY_XSAVE. */
3426 if (!(clear_bv & X86_XSTATE_X87))
3427 {
3428 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3429 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3430 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3431 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3432 }
3433 }
3434 }
3435
3436 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3437 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3438 all registers. This function doesn't touch any of the reserved
3439 bits in *FXSAVE. */
3440
3441 void
3442 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3443 void *fxsave)
3444 {
3445 struct gdbarch *gdbarch = regcache->arch ();
3446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3447 gdb_byte *regs = (gdb_byte *) fxsave;
3448
3449 i387_collect_fxsave (regcache, regnum, fxsave);
3450
3451 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3452 {
3453 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3454 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
3455 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3456 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
3457 }
3458 }
3459
3460 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3461
3462 void
3463 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3464 void *xsave, int gcore)
3465 {
3466 struct gdbarch *gdbarch = regcache->arch ();
3467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3468 gdb_byte *regs = (gdb_byte *) xsave;
3469
3470 i387_collect_xsave (regcache, regnum, xsave, gcore);
3471
3472 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3473 {
3474 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3475 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
3476 regs + 12);
3477 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3478 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
3479 regs + 20);
3480 }
3481 }
This page took 0.105455 seconds and 4 git commands to generate.