gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "gdbcore.h"
25 #include "frame.h"
26 #include "regcache.h"
27 #include "solib-svr4.h"
28 #include "osabi.h"
29 #include "regset.h"
30 #include "trad-frame.h"
31 #include "tramp-frame.h"
32 #include "breakpoint.h"
33 #include "auxv.h"
34 #include "xml-syscall.h"
35
36 #include "aarch32-tdep.h"
37 #include "arch/arm.h"
38 #include "arch/arm-get-next-pcs.h"
39 #include "arch/arm-linux.h"
40 #include "arm-tdep.h"
41 #include "arm-linux-tdep.h"
42 #include "linux-tdep.h"
43 #include "glibc-tdep.h"
44 #include "arch-utils.h"
45 #include "inferior.h"
46 #include "infrun.h"
47 #include "gdbthread.h"
48 #include "symfile.h"
49
50 #include "record-full.h"
51 #include "linux-record.h"
52
53 #include "cli/cli-utils.h"
54 #include "stap-probe.h"
55 #include "parser-defs.h"
56 #include "user-regs.h"
57 #include <ctype.h>
58 #include "elf/common.h"
59
60 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
61 is to execute a particular software interrupt, rather than use a
62 particular undefined instruction to provoke a trap. Upon exection
63 of the software interrupt the kernel stops the inferior with a
64 SIGTRAP, and wakes the debugger. */
65
66 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
67
68 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
69
70 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
71 the operand of the swi if old-ABI compatibility is disabled. Therefore,
72 use an undefined instruction instead. This is supported as of kernel
73 version 2.5.70 (May 2003), so should be a safe assumption for EABI
74 binaries. */
75
76 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
77
78 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
79
80 /* All the kernels which support Thumb support using a specific undefined
81 instruction for the Thumb breakpoint. */
82
83 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
84
85 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
86
87 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
88 we must use a length-appropriate breakpoint for 32-bit Thumb
89 instructions. See also thumb_get_next_pc. */
90
91 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
92
93 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
94
95 /* Description of the longjmp buffer. The buffer is treated as an array of
96 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
97
98 The location of saved registers in this buffer (in particular the PC
99 to use after longjmp is called) varies depending on the ABI (in
100 particular the FP model) and also (possibly) the C Library.
101
102 For glibc, eglibc, and uclibc the following holds: If the FP model is
103 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
104 buffer. This is also true for the SoftFPA model. However, for the FPA
105 model the PC is at offset 21 in the buffer. */
106 #define ARM_LINUX_JB_ELEMENT_SIZE ARM_INT_REGISTER_SIZE
107 #define ARM_LINUX_JB_PC_FPA 21
108 #define ARM_LINUX_JB_PC_EABI 9
109
110 /*
111 Dynamic Linking on ARM GNU/Linux
112 --------------------------------
113
114 Note: PLT = procedure linkage table
115 GOT = global offset table
116
117 As much as possible, ELF dynamic linking defers the resolution of
118 jump/call addresses until the last minute. The technique used is
119 inspired by the i386 ELF design, and is based on the following
120 constraints.
121
122 1) The calling technique should not force a change in the assembly
123 code produced for apps; it MAY cause changes in the way assembly
124 code is produced for position independent code (i.e. shared
125 libraries).
126
127 2) The technique must be such that all executable areas must not be
128 modified; and any modified areas must not be executed.
129
130 To do this, there are three steps involved in a typical jump:
131
132 1) in the code
133 2) through the PLT
134 3) using a pointer from the GOT
135
136 When the executable or library is first loaded, each GOT entry is
137 initialized to point to the code which implements dynamic name
138 resolution and code finding. This is normally a function in the
139 program interpreter (on ARM GNU/Linux this is usually
140 ld-linux.so.2, but it does not have to be). On the first
141 invocation, the function is located and the GOT entry is replaced
142 with the real function address. Subsequent calls go through steps
143 1, 2 and 3 and end up calling the real code.
144
145 1) In the code:
146
147 b function_call
148 bl function_call
149
150 This is typical ARM code using the 26 bit relative branch or branch
151 and link instructions. The target of the instruction
152 (function_call is usually the address of the function to be called.
153 In position independent code, the target of the instruction is
154 actually an entry in the PLT when calling functions in a shared
155 library. Note that this call is identical to a normal function
156 call, only the target differs.
157
158 2) In the PLT:
159
160 The PLT is a synthetic area, created by the linker. It exists in
161 both executables and libraries. It is an array of stubs, one per
162 imported function call. It looks like this:
163
164 PLT[0]:
165 str lr, [sp, #-4]! @push the return address (lr)
166 ldr lr, [pc, #16] @load from 6 words ahead
167 add lr, pc, lr @form an address for GOT[0]
168 ldr pc, [lr, #8]! @jump to the contents of that addr
169
170 The return address (lr) is pushed on the stack and used for
171 calculations. The load on the second line loads the lr with
172 &GOT[3] - . - 20. The addition on the third leaves:
173
174 lr = (&GOT[3] - . - 20) + (. + 8)
175 lr = (&GOT[3] - 12)
176 lr = &GOT[0]
177
178 On the fourth line, the pc and lr are both updated, so that:
179
180 pc = GOT[2]
181 lr = &GOT[0] + 8
182 = &GOT[2]
183
184 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
185 "tight", but allows us to keep all the PLT entries the same size.
186
187 PLT[n+1]:
188 ldr ip, [pc, #4] @load offset from gotoff
189 add ip, pc, ip @add the offset to the pc
190 ldr pc, [ip] @jump to that address
191 gotoff: .word GOT[n+3] - .
192
193 The load on the first line, gets an offset from the fourth word of
194 the PLT entry. The add on the second line makes ip = &GOT[n+3],
195 which contains either a pointer to PLT[0] (the fixup trampoline) or
196 a pointer to the actual code.
197
198 3) In the GOT:
199
200 The GOT contains helper pointers for both code (PLT) fixups and
201 data fixups. The first 3 entries of the GOT are special. The next
202 M entries (where M is the number of entries in the PLT) belong to
203 the PLT fixups. The next D (all remaining) entries belong to
204 various data fixups. The actual size of the GOT is 3 + M + D.
205
206 The GOT is also a synthetic area, created by the linker. It exists
207 in both executables and libraries. When the GOT is first
208 initialized , all the GOT entries relating to PLT fixups are
209 pointing to code back at PLT[0].
210
211 The special entries in the GOT are:
212
213 GOT[0] = linked list pointer used by the dynamic loader
214 GOT[1] = pointer to the reloc table for this module
215 GOT[2] = pointer to the fixup/resolver code
216
217 The first invocation of function call comes through and uses the
218 fixup/resolver code. On the entry to the fixup/resolver code:
219
220 ip = &GOT[n+3]
221 lr = &GOT[2]
222 stack[0] = return address (lr) of the function call
223 [r0, r1, r2, r3] are still the arguments to the function call
224
225 This is enough information for the fixup/resolver code to work
226 with. Before the fixup/resolver code returns, it actually calls
227 the requested function and repairs &GOT[n+3]. */
228
229 /* The constants below were determined by examining the following files
230 in the linux kernel sources:
231
232 arch/arm/kernel/signal.c
233 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
234 include/asm-arm/unistd.h
235 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
236
237 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
238 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
239
240 /* For ARM EABI, the syscall number is not in the SWI instruction
241 (instead it is loaded into r7). We recognize the pattern that
242 glibc uses... alternatively, we could arrange to do this by
243 function name, but they are not always exported. */
244 #define ARM_SET_R7_SIGRETURN 0xe3a07077
245 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
246 #define ARM_EABI_SYSCALL 0xef000000
247
248 /* Equivalent patterns for Thumb2. */
249 #define THUMB2_SET_R7_SIGRETURN1 0xf04f
250 #define THUMB2_SET_R7_SIGRETURN2 0x0777
251 #define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
252 #define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
253 #define THUMB2_EABI_SYSCALL 0xdf00
254
255 /* OABI syscall restart trampoline, used for EABI executables too
256 whenever OABI support has been enabled in the kernel. */
257 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
258 #define ARM_LDR_PC_SP_12 0xe49df00c
259 #define ARM_LDR_PC_SP_4 0xe49df004
260
261 /* Syscall number for sigreturn. */
262 #define ARM_SIGRETURN 119
263 /* Syscall number for rt_sigreturn. */
264 #define ARM_RT_SIGRETURN 173
265
266 static CORE_ADDR
267 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
268
269 /* Operation function pointers for get_next_pcs. */
270 static struct arm_get_next_pcs_ops arm_linux_get_next_pcs_ops = {
271 arm_get_next_pcs_read_memory_unsigned_integer,
272 arm_linux_get_next_pcs_syscall_next_pc,
273 arm_get_next_pcs_addr_bits_remove,
274 arm_get_next_pcs_is_thumb,
275 arm_linux_get_next_pcs_fixup,
276 };
277
278 static void
279 arm_linux_sigtramp_cache (struct frame_info *this_frame,
280 struct trad_frame_cache *this_cache,
281 CORE_ADDR func, int regs_offset)
282 {
283 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
284 CORE_ADDR base = sp + regs_offset;
285 int i;
286
287 for (i = 0; i < 16; i++)
288 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
289
290 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
291
292 /* The VFP or iWMMXt registers may be saved on the stack, but there's
293 no reliable way to restore them (yet). */
294
295 /* Save a frame ID. */
296 trad_frame_set_id (this_cache, frame_id_build (sp, func));
297 }
298
299 /* See arm-linux.h for stack layout details. */
300 static void
301 arm_linux_sigreturn_init (const struct tramp_frame *self,
302 struct frame_info *this_frame,
303 struct trad_frame_cache *this_cache,
304 CORE_ADDR func)
305 {
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
309 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
310
311 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
312 arm_linux_sigtramp_cache (this_frame, this_cache, func,
313 ARM_UCONTEXT_SIGCONTEXT
314 + ARM_SIGCONTEXT_R0);
315 else
316 arm_linux_sigtramp_cache (this_frame, this_cache, func,
317 ARM_SIGCONTEXT_R0);
318 }
319
320 static void
321 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
322 struct frame_info *this_frame,
323 struct trad_frame_cache *this_cache,
324 CORE_ADDR func)
325 {
326 struct gdbarch *gdbarch = get_frame_arch (this_frame);
327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
328 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
329 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
330
331 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
332 arm_linux_sigtramp_cache (this_frame, this_cache, func,
333 ARM_OLD_RT_SIGFRAME_UCONTEXT
334 + ARM_UCONTEXT_SIGCONTEXT
335 + ARM_SIGCONTEXT_R0);
336 else
337 arm_linux_sigtramp_cache (this_frame, this_cache, func,
338 ARM_NEW_RT_SIGFRAME_UCONTEXT
339 + ARM_UCONTEXT_SIGCONTEXT
340 + ARM_SIGCONTEXT_R0);
341 }
342
343 static void
344 arm_linux_restart_syscall_init (const struct tramp_frame *self,
345 struct frame_info *this_frame,
346 struct trad_frame_cache *this_cache,
347 CORE_ADDR func)
348 {
349 struct gdbarch *gdbarch = get_frame_arch (this_frame);
350 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
351 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
352 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
353 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
354 int sp_offset;
355
356 /* There are two variants of this trampoline; with older kernels, the
357 stub is placed on the stack, while newer kernels use the stub from
358 the vector page. They are identical except that the older version
359 increments SP by 12 (to skip stored PC and the stub itself), while
360 the newer version increments SP only by 4 (just the stored PC). */
361 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
362 sp_offset = 4;
363 else
364 sp_offset = 12;
365
366 /* Update Thumb bit in CPSR. */
367 if (pc & 1)
368 cpsr |= t_bit;
369 else
370 cpsr &= ~t_bit;
371
372 /* Remove Thumb bit from PC. */
373 pc = gdbarch_addr_bits_remove (gdbarch, pc);
374
375 /* Save previous register values. */
376 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
377 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
378 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
379
380 /* Save a frame ID. */
381 trad_frame_set_id (this_cache, frame_id_build (sp, func));
382 }
383
384 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
385 SIGTRAMP_FRAME,
386 4,
387 {
388 { ARM_LINUX_SIGRETURN_INSTR, ULONGEST_MAX },
389 { TRAMP_SENTINEL_INSN }
390 },
391 arm_linux_sigreturn_init
392 };
393
394 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
395 SIGTRAMP_FRAME,
396 4,
397 {
398 { ARM_LINUX_RT_SIGRETURN_INSTR, ULONGEST_MAX },
399 { TRAMP_SENTINEL_INSN }
400 },
401 arm_linux_rt_sigreturn_init
402 };
403
404 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
405 SIGTRAMP_FRAME,
406 4,
407 {
408 { ARM_SET_R7_SIGRETURN, ULONGEST_MAX },
409 { ARM_EABI_SYSCALL, ULONGEST_MAX },
410 { TRAMP_SENTINEL_INSN }
411 },
412 arm_linux_sigreturn_init
413 };
414
415 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
416 SIGTRAMP_FRAME,
417 4,
418 {
419 { ARM_SET_R7_RT_SIGRETURN, ULONGEST_MAX },
420 { ARM_EABI_SYSCALL, ULONGEST_MAX },
421 { TRAMP_SENTINEL_INSN }
422 },
423 arm_linux_rt_sigreturn_init
424 };
425
426 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
427 SIGTRAMP_FRAME,
428 2,
429 {
430 { THUMB2_SET_R7_SIGRETURN1, ULONGEST_MAX },
431 { THUMB2_SET_R7_SIGRETURN2, ULONGEST_MAX },
432 { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
433 { TRAMP_SENTINEL_INSN }
434 },
435 arm_linux_sigreturn_init
436 };
437
438 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
439 SIGTRAMP_FRAME,
440 2,
441 {
442 { THUMB2_SET_R7_RT_SIGRETURN1, ULONGEST_MAX },
443 { THUMB2_SET_R7_RT_SIGRETURN2, ULONGEST_MAX },
444 { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
445 { TRAMP_SENTINEL_INSN }
446 },
447 arm_linux_rt_sigreturn_init
448 };
449
450 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
451 NORMAL_FRAME,
452 4,
453 {
454 { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
455 { ARM_LDR_PC_SP_12, ULONGEST_MAX },
456 { TRAMP_SENTINEL_INSN }
457 },
458 arm_linux_restart_syscall_init
459 };
460
461 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
462 NORMAL_FRAME,
463 4,
464 {
465 { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
466 { ARM_LDR_PC_SP_4, ULONGEST_MAX },
467 { TRAMP_SENTINEL_INSN }
468 },
469 arm_linux_restart_syscall_init
470 };
471
472 /* Core file and register set support. */
473
474 #define ARM_LINUX_SIZEOF_GREGSET (18 * ARM_INT_REGISTER_SIZE)
475
476 void
477 arm_linux_supply_gregset (const struct regset *regset,
478 struct regcache *regcache,
479 int regnum, const void *gregs_buf, size_t len)
480 {
481 struct gdbarch *gdbarch = regcache->arch ();
482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
483 const gdb_byte *gregs = (const gdb_byte *) gregs_buf;
484 int regno;
485 CORE_ADDR reg_pc;
486 gdb_byte pc_buf[ARM_INT_REGISTER_SIZE];
487
488 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
489 if (regnum == -1 || regnum == regno)
490 regcache->raw_supply (regno, gregs + ARM_INT_REGISTER_SIZE * regno);
491
492 if (regnum == ARM_PS_REGNUM || regnum == -1)
493 {
494 if (arm_apcs_32)
495 regcache->raw_supply (ARM_PS_REGNUM,
496 gregs + ARM_INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
497 else
498 regcache->raw_supply (ARM_PS_REGNUM,
499 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
500 }
501
502 if (regnum == ARM_PC_REGNUM || regnum == -1)
503 {
504 reg_pc = extract_unsigned_integer (
505 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM,
506 ARM_INT_REGISTER_SIZE, byte_order);
507 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
508 store_unsigned_integer (pc_buf, ARM_INT_REGISTER_SIZE, byte_order,
509 reg_pc);
510 regcache->raw_supply (ARM_PC_REGNUM, pc_buf);
511 }
512 }
513
514 void
515 arm_linux_collect_gregset (const struct regset *regset,
516 const struct regcache *regcache,
517 int regnum, void *gregs_buf, size_t len)
518 {
519 gdb_byte *gregs = (gdb_byte *) gregs_buf;
520 int regno;
521
522 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
523 if (regnum == -1 || regnum == regno)
524 regcache->raw_collect (regno,
525 gregs + ARM_INT_REGISTER_SIZE * regno);
526
527 if (regnum == ARM_PS_REGNUM || regnum == -1)
528 {
529 if (arm_apcs_32)
530 regcache->raw_collect (ARM_PS_REGNUM,
531 gregs + ARM_INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
532 else
533 regcache->raw_collect (ARM_PS_REGNUM,
534 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
535 }
536
537 if (regnum == ARM_PC_REGNUM || regnum == -1)
538 regcache->raw_collect (ARM_PC_REGNUM,
539 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
540 }
541
542 /* Support for register format used by the NWFPE FPA emulator. */
543
544 #define typeNone 0x00
545 #define typeSingle 0x01
546 #define typeDouble 0x02
547 #define typeExtended 0x03
548
549 void
550 supply_nwfpe_register (struct regcache *regcache, int regno,
551 const gdb_byte *regs)
552 {
553 const gdb_byte *reg_data;
554 gdb_byte reg_tag;
555 gdb_byte buf[ARM_FP_REGISTER_SIZE];
556
557 reg_data = regs + (regno - ARM_F0_REGNUM) * ARM_FP_REGISTER_SIZE;
558 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
559 memset (buf, 0, ARM_FP_REGISTER_SIZE);
560
561 switch (reg_tag)
562 {
563 case typeSingle:
564 memcpy (buf, reg_data, 4);
565 break;
566 case typeDouble:
567 memcpy (buf, reg_data + 4, 4);
568 memcpy (buf + 4, reg_data, 4);
569 break;
570 case typeExtended:
571 /* We want sign and exponent, then least significant bits,
572 then most significant. NWFPE does sign, most, least. */
573 memcpy (buf, reg_data, 4);
574 memcpy (buf + 4, reg_data + 8, 4);
575 memcpy (buf + 8, reg_data + 4, 4);
576 break;
577 default:
578 break;
579 }
580
581 regcache->raw_supply (regno, buf);
582 }
583
584 void
585 collect_nwfpe_register (const struct regcache *regcache, int regno,
586 gdb_byte *regs)
587 {
588 gdb_byte *reg_data;
589 gdb_byte reg_tag;
590 gdb_byte buf[ARM_FP_REGISTER_SIZE];
591
592 regcache->raw_collect (regno, buf);
593
594 /* NOTE drow/2006-06-07: This code uses the tag already in the
595 register buffer. I've preserved that when moving the code
596 from the native file to the target file. But this doesn't
597 always make sense. */
598
599 reg_data = regs + (regno - ARM_F0_REGNUM) * ARM_FP_REGISTER_SIZE;
600 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
601
602 switch (reg_tag)
603 {
604 case typeSingle:
605 memcpy (reg_data, buf, 4);
606 break;
607 case typeDouble:
608 memcpy (reg_data, buf + 4, 4);
609 memcpy (reg_data + 4, buf, 4);
610 break;
611 case typeExtended:
612 memcpy (reg_data, buf, 4);
613 memcpy (reg_data + 4, buf + 8, 4);
614 memcpy (reg_data + 8, buf + 4, 4);
615 break;
616 default:
617 break;
618 }
619 }
620
621 void
622 arm_linux_supply_nwfpe (const struct regset *regset,
623 struct regcache *regcache,
624 int regnum, const void *regs_buf, size_t len)
625 {
626 const gdb_byte *regs = (const gdb_byte *) regs_buf;
627 int regno;
628
629 if (regnum == ARM_FPS_REGNUM || regnum == -1)
630 regcache->raw_supply (ARM_FPS_REGNUM,
631 regs + NWFPE_FPSR_OFFSET);
632
633 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
634 if (regnum == -1 || regnum == regno)
635 supply_nwfpe_register (regcache, regno, regs);
636 }
637
638 void
639 arm_linux_collect_nwfpe (const struct regset *regset,
640 const struct regcache *regcache,
641 int regnum, void *regs_buf, size_t len)
642 {
643 gdb_byte *regs = (gdb_byte *) regs_buf;
644 int regno;
645
646 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
647 if (regnum == -1 || regnum == regno)
648 collect_nwfpe_register (regcache, regno, regs);
649
650 if (regnum == ARM_FPS_REGNUM || regnum == -1)
651 regcache->raw_collect (ARM_FPS_REGNUM,
652 regs + ARM_INT_REGISTER_SIZE * ARM_FPS_REGNUM);
653 }
654
655 /* Support VFP register format. */
656
657 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
658
659 static void
660 arm_linux_supply_vfp (const struct regset *regset,
661 struct regcache *regcache,
662 int regnum, const void *regs_buf, size_t len)
663 {
664 const gdb_byte *regs = (const gdb_byte *) regs_buf;
665 int regno;
666
667 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
668 regcache->raw_supply (ARM_FPSCR_REGNUM, regs + 32 * 8);
669
670 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
671 if (regnum == -1 || regnum == regno)
672 regcache->raw_supply (regno, regs + (regno - ARM_D0_REGNUM) * 8);
673 }
674
675 static void
676 arm_linux_collect_vfp (const struct regset *regset,
677 const struct regcache *regcache,
678 int regnum, void *regs_buf, size_t len)
679 {
680 gdb_byte *regs = (gdb_byte *) regs_buf;
681 int regno;
682
683 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
684 regcache->raw_collect (ARM_FPSCR_REGNUM, regs + 32 * 8);
685
686 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
687 if (regnum == -1 || regnum == regno)
688 regcache->raw_collect (regno, regs + (regno - ARM_D0_REGNUM) * 8);
689 }
690
691 static const struct regset arm_linux_gregset =
692 {
693 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
694 };
695
696 static const struct regset arm_linux_fpregset =
697 {
698 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
699 };
700
701 static const struct regset arm_linux_vfpregset =
702 {
703 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
704 };
705
706 /* Iterate over core file register note sections. */
707
708 static void
709 arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
710 iterate_over_regset_sections_cb *cb,
711 void *cb_data,
712 const struct regcache *regcache)
713 {
714 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
715
716 cb (".reg", ARM_LINUX_SIZEOF_GREGSET, ARM_LINUX_SIZEOF_GREGSET,
717 &arm_linux_gregset, NULL, cb_data);
718
719 if (tdep->vfp_register_count > 0)
720 cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, ARM_LINUX_SIZEOF_VFP,
721 &arm_linux_vfpregset, "VFP floating-point", cb_data);
722 else if (tdep->have_fpa_registers)
723 cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, ARM_LINUX_SIZEOF_NWFPE,
724 &arm_linux_fpregset, "FPA floating-point", cb_data);
725 }
726
727 /* Determine target description from core file. */
728
729 static const struct target_desc *
730 arm_linux_core_read_description (struct gdbarch *gdbarch,
731 struct target_ops *target,
732 bfd *abfd)
733 {
734 CORE_ADDR arm_hwcap = linux_get_hwcap (target);
735
736 if (arm_hwcap & HWCAP_VFP)
737 {
738 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
739 Neon with VFPv3-D32. */
740 if (arm_hwcap & HWCAP_NEON)
741 return aarch32_read_description ();
742 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
743 return arm_read_description (ARM_FP_TYPE_VFPV3);
744
745 return arm_read_description (ARM_FP_TYPE_VFPV2);
746 }
747
748 return nullptr;
749 }
750
751
752 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
753 return 1. In addition, set IS_THUMB depending on whether we
754 will return to ARM or Thumb code. Return 0 if it is not a
755 rt_sigreturn/sigreturn syscall. */
756 static int
757 arm_linux_sigreturn_return_addr (struct frame_info *frame,
758 unsigned long svc_number,
759 CORE_ADDR *pc, int *is_thumb)
760 {
761 /* Is this a sigreturn or rt_sigreturn syscall? */
762 if (svc_number == 119 || svc_number == 173)
763 {
764 if (get_frame_type (frame) == SIGTRAMP_FRAME)
765 {
766 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
767 CORE_ADDR cpsr
768 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
769
770 *is_thumb = (cpsr & t_bit) != 0;
771 *pc = frame_unwind_caller_pc (frame);
772 return 1;
773 }
774 }
775 return 0;
776 }
777
778 /* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
779 based on current processor state. In addition, set IS_THUMB depending
780 on whether we will return to ARM or Thumb code. */
781
782 static CORE_ADDR
783 arm_linux_sigreturn_next_pc (struct regcache *regcache,
784 unsigned long svc_number, int *is_thumb)
785 {
786 ULONGEST sp;
787 unsigned long sp_data;
788 CORE_ADDR next_pc = 0;
789 struct gdbarch *gdbarch = regcache->arch ();
790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
791 int pc_offset = 0;
792 int is_sigreturn = 0;
793 CORE_ADDR cpsr;
794
795 gdb_assert (svc_number == ARM_SIGRETURN
796 || svc_number == ARM_RT_SIGRETURN);
797
798 is_sigreturn = (svc_number == ARM_SIGRETURN);
799 regcache_cooked_read_unsigned (regcache, ARM_SP_REGNUM, &sp);
800 sp_data = read_memory_unsigned_integer (sp, 4, byte_order);
801
802 pc_offset = arm_linux_sigreturn_next_pc_offset (sp, sp_data, svc_number,
803 is_sigreturn);
804
805 next_pc = read_memory_unsigned_integer (sp + pc_offset, 4, byte_order);
806
807 /* Set IS_THUMB according the CPSR saved on the stack. */
808 cpsr = read_memory_unsigned_integer (sp + pc_offset + 4, 4, byte_order);
809 *is_thumb = ((cpsr & arm_psr_thumb_bit (gdbarch)) != 0);
810
811 return next_pc;
812 }
813
814 /* At a ptrace syscall-stop, return the syscall number. This either
815 comes from the SWI instruction (OABI) or from r7 (EABI).
816
817 When the function fails, it should return -1. */
818
819 static LONGEST
820 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
821 thread_info *thread)
822 {
823 struct regcache *regs = get_thread_regcache (thread);
824
825 ULONGEST pc;
826 ULONGEST cpsr;
827 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
828 int is_thumb;
829 ULONGEST svc_number = -1;
830
831 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
832 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
833 is_thumb = (cpsr & t_bit) != 0;
834
835 if (is_thumb)
836 {
837 regcache_cooked_read_unsigned (regs, 7, &svc_number);
838 }
839 else
840 {
841 enum bfd_endian byte_order_for_code =
842 gdbarch_byte_order_for_code (gdbarch);
843
844 /* PC gets incremented before the syscall-stop, so read the
845 previous instruction. */
846 unsigned long this_instr =
847 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
848
849 unsigned long svc_operand = (0x00ffffff & this_instr);
850
851 if (svc_operand)
852 {
853 /* OABI */
854 svc_number = svc_operand - 0x900000;
855 }
856 else
857 {
858 /* EABI */
859 regcache_cooked_read_unsigned (regs, 7, &svc_number);
860 }
861 }
862
863 return svc_number;
864 }
865
866 static CORE_ADDR
867 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
868 {
869 CORE_ADDR next_pc = 0;
870 CORE_ADDR pc = regcache_read_pc (self->regcache);
871 int is_thumb = arm_is_thumb (self->regcache);
872 ULONGEST svc_number = 0;
873
874 if (is_thumb)
875 {
876 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
877 next_pc = pc + 2;
878 }
879 else
880 {
881 struct gdbarch *gdbarch = self->regcache->arch ();
882 enum bfd_endian byte_order_for_code =
883 gdbarch_byte_order_for_code (gdbarch);
884 unsigned long this_instr =
885 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
886
887 unsigned long svc_operand = (0x00ffffff & this_instr);
888 if (svc_operand) /* OABI. */
889 {
890 svc_number = svc_operand - 0x900000;
891 }
892 else /* EABI. */
893 {
894 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
895 }
896
897 next_pc = pc + 4;
898 }
899
900 if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
901 {
902 /* SIGRETURN or RT_SIGRETURN may affect the arm thumb mode, so
903 update IS_THUMB. */
904 next_pc = arm_linux_sigreturn_next_pc (self->regcache, svc_number,
905 &is_thumb);
906 }
907
908 /* Addresses for calling Thumb functions have the bit 0 set. */
909 if (is_thumb)
910 next_pc = MAKE_THUMB_ADDR (next_pc);
911
912 return next_pc;
913 }
914
915
916 /* Insert a single step breakpoint at the next executed instruction. */
917
918 static std::vector<CORE_ADDR>
919 arm_linux_software_single_step (struct regcache *regcache)
920 {
921 struct gdbarch *gdbarch = regcache->arch ();
922 struct arm_get_next_pcs next_pcs_ctx;
923
924 /* If the target does have hardware single step, GDB doesn't have
925 to bother software single step. */
926 if (target_can_do_single_step () == 1)
927 return {};
928
929 arm_get_next_pcs_ctor (&next_pcs_ctx,
930 &arm_linux_get_next_pcs_ops,
931 gdbarch_byte_order (gdbarch),
932 gdbarch_byte_order_for_code (gdbarch),
933 1,
934 regcache);
935
936 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
937
938 for (CORE_ADDR &pc_ref : next_pcs)
939 pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
940
941 return next_pcs;
942 }
943
944 /* Support for displaced stepping of Linux SVC instructions. */
945
946 static void
947 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
948 struct regcache *regs,
949 arm_displaced_step_copy_insn_closure *dsc)
950 {
951 ULONGEST apparent_pc;
952 int within_scratch;
953
954 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
955
956 within_scratch = (apparent_pc >= dsc->scratch_base
957 && apparent_pc < (dsc->scratch_base
958 + ARM_DISPLACED_MODIFIED_INSNS * 4 + 4));
959
960 if (debug_displaced)
961 {
962 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
963 "SVC step ", (unsigned long) apparent_pc);
964 if (within_scratch)
965 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
966 else
967 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
968 }
969
970 if (within_scratch)
971 displaced_write_reg (regs, dsc, ARM_PC_REGNUM,
972 dsc->insn_addr + dsc->insn_size, BRANCH_WRITE_PC);
973 }
974
975 static int
976 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
977 arm_displaced_step_copy_insn_closure *dsc)
978 {
979 CORE_ADDR return_to = 0;
980
981 struct frame_info *frame;
982 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
983 int is_sigreturn = 0;
984 int is_thumb;
985
986 frame = get_current_frame ();
987
988 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
989 &return_to, &is_thumb);
990 if (is_sigreturn)
991 {
992 struct symtab_and_line sal;
993
994 if (debug_displaced)
995 fprintf_unfiltered (gdb_stdlog, "displaced: found "
996 "sigreturn/rt_sigreturn SVC call. PC in "
997 "frame = %lx\n",
998 (unsigned long) get_frame_pc (frame));
999
1000 if (debug_displaced)
1001 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
1002 "Setting momentary breakpoint.\n",
1003 (unsigned long) return_to);
1004
1005 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
1006 == NULL);
1007
1008 sal = find_pc_line (return_to, 0);
1009 sal.pc = return_to;
1010 sal.section = find_pc_overlay (return_to);
1011 sal.explicit_pc = 1;
1012
1013 frame = get_prev_frame (frame);
1014
1015 if (frame)
1016 {
1017 inferior_thread ()->control.step_resume_breakpoint
1018 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1019 bp_step_resume).release ();
1020
1021 /* set_momentary_breakpoint invalidates FRAME. */
1022 frame = NULL;
1023
1024 /* We need to make sure we actually insert the momentary
1025 breakpoint set above. */
1026 insert_breakpoints ();
1027 }
1028 else if (debug_displaced)
1029 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1030 "frame to set momentary breakpoint for "
1031 "sigreturn/rt_sigreturn\n");
1032 }
1033 else if (debug_displaced)
1034 fprintf_unfiltered (gdb_stdlog, "displaced: found SVC call\n");
1035
1036 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1037 location, else nothing.
1038 Insn: unmodified svc.
1039 Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
1040 else leave pc alone. */
1041
1042
1043 dsc->cleanup = &arm_linux_cleanup_svc;
1044 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1045 instruction. */
1046 dsc->wrote_to_pc = 1;
1047
1048 return 0;
1049 }
1050
1051
1052 /* The following two functions implement single-stepping over calls to Linux
1053 kernel helper routines, which perform e.g. atomic operations on architecture
1054 variants which don't support them natively.
1055
1056 When this function is called, the PC will be pointing at the kernel helper
1057 (at an address inaccessible to GDB), and r14 will point to the return
1058 address. Displaced stepping always executes code in the copy area:
1059 so, make the copy-area instruction branch back to the kernel helper (the
1060 "from" address), and make r14 point to the breakpoint in the copy area. In
1061 that way, we regain control once the kernel helper returns, and can clean
1062 up appropriately (as if we had just returned from the kernel helper as it
1063 would have been called from the non-displaced location). */
1064
1065 static void
1066 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1067 struct regcache *regs,
1068 arm_displaced_step_copy_insn_closure *dsc)
1069 {
1070 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1071 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1072 }
1073
1074 static void
1075 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1076 CORE_ADDR to, struct regcache *regs,
1077 arm_displaced_step_copy_insn_closure *dsc)
1078 {
1079 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1080
1081 dsc->numinsns = 1;
1082 dsc->insn_addr = from;
1083 dsc->cleanup = &cleanup_kernel_helper_return;
1084 /* Say we wrote to the PC, else cleanup will set PC to the next
1085 instruction in the helper, which isn't helpful. */
1086 dsc->wrote_to_pc = 1;
1087
1088 /* Preparation: tmp[0] <- r14
1089 r14 <- <scratch space>+4
1090 *(<scratch space>+8) <- from
1091 Insn: ldr pc, [r14, #4]
1092 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1093
1094 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1095 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1096 CANNOT_WRITE_PC);
1097 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1098
1099 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1100 }
1101
1102 /* Linux-specific displaced step instruction copying function. Detects when
1103 the program has stepped into a Linux kernel helper routine (which must be
1104 handled as a special case). */
1105
1106 static displaced_step_copy_insn_closure_up
1107 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1108 CORE_ADDR from, CORE_ADDR to,
1109 struct regcache *regs)
1110 {
1111 std::unique_ptr<arm_displaced_step_copy_insn_closure> dsc
1112 (new arm_displaced_step_copy_insn_closure);
1113
1114 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1115 stop at the return location. */
1116 if (from > 0xffff0000)
1117 {
1118 if (debug_displaced)
1119 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1120 "at %.8lx\n", (unsigned long) from);
1121
1122 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc.get ());
1123 }
1124 else
1125 {
1126 /* Override the default handling of SVC instructions. */
1127 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1128
1129 arm_process_displaced_insn (gdbarch, from, to, regs, dsc.get ());
1130 }
1131
1132 arm_displaced_init_closure (gdbarch, from, to, dsc.get ());
1133
1134 /* This is a work around for a problem with g++ 4.8. */
1135 return displaced_step_copy_insn_closure_up (dsc.release ());
1136 }
1137
1138 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1139 gdbarch.h. */
1140
1141 static int
1142 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1143 {
1144 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
1145 || *s == '[' /* Register indirection or
1146 displacement. */
1147 || isalpha (*s)); /* Register value. */
1148 }
1149
1150 /* This routine is used to parse a special token in ARM's assembly.
1151
1152 The special tokens parsed by it are:
1153
1154 - Register displacement (e.g, [fp, #-8])
1155
1156 It returns one if the special token has been parsed successfully,
1157 or zero if the current token is not considered special. */
1158
1159 static int
1160 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1161 struct stap_parse_info *p)
1162 {
1163 if (*p->arg == '[')
1164 {
1165 /* Temporary holder for lookahead. */
1166 const char *tmp = p->arg;
1167 char *endp;
1168 /* Used to save the register name. */
1169 const char *start;
1170 char *regname;
1171 int len, offset;
1172 int got_minus = 0;
1173 long displacement;
1174 struct stoken str;
1175
1176 ++tmp;
1177 start = tmp;
1178
1179 /* Register name. */
1180 while (isalnum (*tmp))
1181 ++tmp;
1182
1183 if (*tmp != ',')
1184 return 0;
1185
1186 len = tmp - start;
1187 regname = (char *) alloca (len + 2);
1188
1189 offset = 0;
1190 if (isdigit (*start))
1191 {
1192 /* If we are dealing with a register whose name begins with a
1193 digit, it means we should prefix the name with the letter
1194 `r', because GDB expects this name pattern. Otherwise (e.g.,
1195 we are dealing with the register `fp'), we don't need to
1196 add such a prefix. */
1197 regname[0] = 'r';
1198 offset = 1;
1199 }
1200
1201 strncpy (regname + offset, start, len);
1202 len += offset;
1203 regname[len] = '\0';
1204
1205 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1206 error (_("Invalid register name `%s' on expression `%s'."),
1207 regname, p->saved_arg);
1208
1209 ++tmp;
1210 tmp = skip_spaces (tmp);
1211 if (*tmp == '#' || *tmp == '$')
1212 ++tmp;
1213
1214 if (*tmp == '-')
1215 {
1216 ++tmp;
1217 got_minus = 1;
1218 }
1219
1220 displacement = strtol (tmp, &endp, 10);
1221 tmp = endp;
1222
1223 /* Skipping last `]'. */
1224 if (*tmp++ != ']')
1225 return 0;
1226
1227 /* The displacement. */
1228 write_exp_elt_opcode (&p->pstate, OP_LONG);
1229 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1230 write_exp_elt_longcst (&p->pstate, displacement);
1231 write_exp_elt_opcode (&p->pstate, OP_LONG);
1232 if (got_minus)
1233 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
1234
1235 /* The register name. */
1236 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1237 str.ptr = regname;
1238 str.length = len;
1239 write_exp_string (&p->pstate, str);
1240 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1241
1242 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
1243
1244 /* Casting to the expected type. */
1245 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1246 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1247 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1248
1249 write_exp_elt_opcode (&p->pstate, UNOP_IND);
1250
1251 p->arg = tmp;
1252 }
1253 else
1254 return 0;
1255
1256 return 1;
1257 }
1258
1259 /* ARM process record-replay constructs: syscall, signal etc. */
1260
1261 struct linux_record_tdep arm_linux_record_tdep;
1262
1263 /* arm_canonicalize_syscall maps from the native arm Linux set
1264 of syscall ids into a canonical set of syscall ids used by
1265 process record. */
1266
1267 static enum gdb_syscall
1268 arm_canonicalize_syscall (int syscall)
1269 {
1270 switch (syscall)
1271 {
1272 case 0: return gdb_sys_restart_syscall;
1273 case 1: return gdb_sys_exit;
1274 case 2: return gdb_sys_fork;
1275 case 3: return gdb_sys_read;
1276 case 4: return gdb_sys_write;
1277 case 5: return gdb_sys_open;
1278 case 6: return gdb_sys_close;
1279 case 8: return gdb_sys_creat;
1280 case 9: return gdb_sys_link;
1281 case 10: return gdb_sys_unlink;
1282 case 11: return gdb_sys_execve;
1283 case 12: return gdb_sys_chdir;
1284 case 13: return gdb_sys_time;
1285 case 14: return gdb_sys_mknod;
1286 case 15: return gdb_sys_chmod;
1287 case 16: return gdb_sys_lchown16;
1288 case 19: return gdb_sys_lseek;
1289 case 20: return gdb_sys_getpid;
1290 case 21: return gdb_sys_mount;
1291 case 22: return gdb_sys_oldumount;
1292 case 23: return gdb_sys_setuid16;
1293 case 24: return gdb_sys_getuid16;
1294 case 25: return gdb_sys_stime;
1295 case 26: return gdb_sys_ptrace;
1296 case 27: return gdb_sys_alarm;
1297 case 29: return gdb_sys_pause;
1298 case 30: return gdb_sys_utime;
1299 case 33: return gdb_sys_access;
1300 case 34: return gdb_sys_nice;
1301 case 36: return gdb_sys_sync;
1302 case 37: return gdb_sys_kill;
1303 case 38: return gdb_sys_rename;
1304 case 39: return gdb_sys_mkdir;
1305 case 40: return gdb_sys_rmdir;
1306 case 41: return gdb_sys_dup;
1307 case 42: return gdb_sys_pipe;
1308 case 43: return gdb_sys_times;
1309 case 45: return gdb_sys_brk;
1310 case 46: return gdb_sys_setgid16;
1311 case 47: return gdb_sys_getgid16;
1312 case 49: return gdb_sys_geteuid16;
1313 case 50: return gdb_sys_getegid16;
1314 case 51: return gdb_sys_acct;
1315 case 52: return gdb_sys_umount;
1316 case 54: return gdb_sys_ioctl;
1317 case 55: return gdb_sys_fcntl;
1318 case 57: return gdb_sys_setpgid;
1319 case 60: return gdb_sys_umask;
1320 case 61: return gdb_sys_chroot;
1321 case 62: return gdb_sys_ustat;
1322 case 63: return gdb_sys_dup2;
1323 case 64: return gdb_sys_getppid;
1324 case 65: return gdb_sys_getpgrp;
1325 case 66: return gdb_sys_setsid;
1326 case 67: return gdb_sys_sigaction;
1327 case 70: return gdb_sys_setreuid16;
1328 case 71: return gdb_sys_setregid16;
1329 case 72: return gdb_sys_sigsuspend;
1330 case 73: return gdb_sys_sigpending;
1331 case 74: return gdb_sys_sethostname;
1332 case 75: return gdb_sys_setrlimit;
1333 case 76: return gdb_sys_getrlimit;
1334 case 77: return gdb_sys_getrusage;
1335 case 78: return gdb_sys_gettimeofday;
1336 case 79: return gdb_sys_settimeofday;
1337 case 80: return gdb_sys_getgroups16;
1338 case 81: return gdb_sys_setgroups16;
1339 case 82: return gdb_sys_select;
1340 case 83: return gdb_sys_symlink;
1341 case 85: return gdb_sys_readlink;
1342 case 86: return gdb_sys_uselib;
1343 case 87: return gdb_sys_swapon;
1344 case 88: return gdb_sys_reboot;
1345 case 89: return gdb_old_readdir;
1346 case 90: return gdb_old_mmap;
1347 case 91: return gdb_sys_munmap;
1348 case 92: return gdb_sys_truncate;
1349 case 93: return gdb_sys_ftruncate;
1350 case 94: return gdb_sys_fchmod;
1351 case 95: return gdb_sys_fchown16;
1352 case 96: return gdb_sys_getpriority;
1353 case 97: return gdb_sys_setpriority;
1354 case 99: return gdb_sys_statfs;
1355 case 100: return gdb_sys_fstatfs;
1356 case 102: return gdb_sys_socketcall;
1357 case 103: return gdb_sys_syslog;
1358 case 104: return gdb_sys_setitimer;
1359 case 105: return gdb_sys_getitimer;
1360 case 106: return gdb_sys_stat;
1361 case 107: return gdb_sys_lstat;
1362 case 108: return gdb_sys_fstat;
1363 case 111: return gdb_sys_vhangup;
1364 case 113: /* sys_syscall */
1365 return gdb_sys_no_syscall;
1366 case 114: return gdb_sys_wait4;
1367 case 115: return gdb_sys_swapoff;
1368 case 116: return gdb_sys_sysinfo;
1369 case 117: return gdb_sys_ipc;
1370 case 118: return gdb_sys_fsync;
1371 case 119: return gdb_sys_sigreturn;
1372 case 120: return gdb_sys_clone;
1373 case 121: return gdb_sys_setdomainname;
1374 case 122: return gdb_sys_uname;
1375 case 124: return gdb_sys_adjtimex;
1376 case 125: return gdb_sys_mprotect;
1377 case 126: return gdb_sys_sigprocmask;
1378 case 128: return gdb_sys_init_module;
1379 case 129: return gdb_sys_delete_module;
1380 case 131: return gdb_sys_quotactl;
1381 case 132: return gdb_sys_getpgid;
1382 case 133: return gdb_sys_fchdir;
1383 case 134: return gdb_sys_bdflush;
1384 case 135: return gdb_sys_sysfs;
1385 case 136: return gdb_sys_personality;
1386 case 138: return gdb_sys_setfsuid16;
1387 case 139: return gdb_sys_setfsgid16;
1388 case 140: return gdb_sys_llseek;
1389 case 141: return gdb_sys_getdents;
1390 case 142: return gdb_sys_select;
1391 case 143: return gdb_sys_flock;
1392 case 144: return gdb_sys_msync;
1393 case 145: return gdb_sys_readv;
1394 case 146: return gdb_sys_writev;
1395 case 147: return gdb_sys_getsid;
1396 case 148: return gdb_sys_fdatasync;
1397 case 149: return gdb_sys_sysctl;
1398 case 150: return gdb_sys_mlock;
1399 case 151: return gdb_sys_munlock;
1400 case 152: return gdb_sys_mlockall;
1401 case 153: return gdb_sys_munlockall;
1402 case 154: return gdb_sys_sched_setparam;
1403 case 155: return gdb_sys_sched_getparam;
1404 case 156: return gdb_sys_sched_setscheduler;
1405 case 157: return gdb_sys_sched_getscheduler;
1406 case 158: return gdb_sys_sched_yield;
1407 case 159: return gdb_sys_sched_get_priority_max;
1408 case 160: return gdb_sys_sched_get_priority_min;
1409 case 161: return gdb_sys_sched_rr_get_interval;
1410 case 162: return gdb_sys_nanosleep;
1411 case 163: return gdb_sys_mremap;
1412 case 164: return gdb_sys_setresuid16;
1413 case 165: return gdb_sys_getresuid16;
1414 case 168: return gdb_sys_poll;
1415 case 169: return gdb_sys_nfsservctl;
1416 case 170: return gdb_sys_setresgid;
1417 case 171: return gdb_sys_getresgid;
1418 case 172: return gdb_sys_prctl;
1419 case 173: return gdb_sys_rt_sigreturn;
1420 case 174: return gdb_sys_rt_sigaction;
1421 case 175: return gdb_sys_rt_sigprocmask;
1422 case 176: return gdb_sys_rt_sigpending;
1423 case 177: return gdb_sys_rt_sigtimedwait;
1424 case 178: return gdb_sys_rt_sigqueueinfo;
1425 case 179: return gdb_sys_rt_sigsuspend;
1426 case 180: return gdb_sys_pread64;
1427 case 181: return gdb_sys_pwrite64;
1428 case 182: return gdb_sys_chown;
1429 case 183: return gdb_sys_getcwd;
1430 case 184: return gdb_sys_capget;
1431 case 185: return gdb_sys_capset;
1432 case 186: return gdb_sys_sigaltstack;
1433 case 187: return gdb_sys_sendfile;
1434 case 190: return gdb_sys_vfork;
1435 case 191: return gdb_sys_getrlimit;
1436 case 192: return gdb_sys_mmap2;
1437 case 193: return gdb_sys_truncate64;
1438 case 194: return gdb_sys_ftruncate64;
1439 case 195: return gdb_sys_stat64;
1440 case 196: return gdb_sys_lstat64;
1441 case 197: return gdb_sys_fstat64;
1442 case 198: return gdb_sys_lchown;
1443 case 199: return gdb_sys_getuid;
1444 case 200: return gdb_sys_getgid;
1445 case 201: return gdb_sys_geteuid;
1446 case 202: return gdb_sys_getegid;
1447 case 203: return gdb_sys_setreuid;
1448 case 204: return gdb_sys_setregid;
1449 case 205: return gdb_sys_getgroups;
1450 case 206: return gdb_sys_setgroups;
1451 case 207: return gdb_sys_fchown;
1452 case 208: return gdb_sys_setresuid;
1453 case 209: return gdb_sys_getresuid;
1454 case 210: return gdb_sys_setresgid;
1455 case 211: return gdb_sys_getresgid;
1456 case 212: return gdb_sys_chown;
1457 case 213: return gdb_sys_setuid;
1458 case 214: return gdb_sys_setgid;
1459 case 215: return gdb_sys_setfsuid;
1460 case 216: return gdb_sys_setfsgid;
1461 case 217: return gdb_sys_getdents64;
1462 case 218: return gdb_sys_pivot_root;
1463 case 219: return gdb_sys_mincore;
1464 case 220: return gdb_sys_madvise;
1465 case 221: return gdb_sys_fcntl64;
1466 case 224: return gdb_sys_gettid;
1467 case 225: return gdb_sys_readahead;
1468 case 226: return gdb_sys_setxattr;
1469 case 227: return gdb_sys_lsetxattr;
1470 case 228: return gdb_sys_fsetxattr;
1471 case 229: return gdb_sys_getxattr;
1472 case 230: return gdb_sys_lgetxattr;
1473 case 231: return gdb_sys_fgetxattr;
1474 case 232: return gdb_sys_listxattr;
1475 case 233: return gdb_sys_llistxattr;
1476 case 234: return gdb_sys_flistxattr;
1477 case 235: return gdb_sys_removexattr;
1478 case 236: return gdb_sys_lremovexattr;
1479 case 237: return gdb_sys_fremovexattr;
1480 case 238: return gdb_sys_tkill;
1481 case 239: return gdb_sys_sendfile64;
1482 case 240: return gdb_sys_futex;
1483 case 241: return gdb_sys_sched_setaffinity;
1484 case 242: return gdb_sys_sched_getaffinity;
1485 case 243: return gdb_sys_io_setup;
1486 case 244: return gdb_sys_io_destroy;
1487 case 245: return gdb_sys_io_getevents;
1488 case 246: return gdb_sys_io_submit;
1489 case 247: return gdb_sys_io_cancel;
1490 case 248: return gdb_sys_exit_group;
1491 case 249: return gdb_sys_lookup_dcookie;
1492 case 250: return gdb_sys_epoll_create;
1493 case 251: return gdb_sys_epoll_ctl;
1494 case 252: return gdb_sys_epoll_wait;
1495 case 253: return gdb_sys_remap_file_pages;
1496 case 256: return gdb_sys_set_tid_address;
1497 case 257: return gdb_sys_timer_create;
1498 case 258: return gdb_sys_timer_settime;
1499 case 259: return gdb_sys_timer_gettime;
1500 case 260: return gdb_sys_timer_getoverrun;
1501 case 261: return gdb_sys_timer_delete;
1502 case 262: return gdb_sys_clock_settime;
1503 case 263: return gdb_sys_clock_gettime;
1504 case 264: return gdb_sys_clock_getres;
1505 case 265: return gdb_sys_clock_nanosleep;
1506 case 266: return gdb_sys_statfs64;
1507 case 267: return gdb_sys_fstatfs64;
1508 case 268: return gdb_sys_tgkill;
1509 case 269: return gdb_sys_utimes;
1510 /*
1511 case 270: return gdb_sys_arm_fadvise64_64;
1512 case 271: return gdb_sys_pciconfig_iobase;
1513 case 272: return gdb_sys_pciconfig_read;
1514 case 273: return gdb_sys_pciconfig_write;
1515 */
1516 case 274: return gdb_sys_mq_open;
1517 case 275: return gdb_sys_mq_unlink;
1518 case 276: return gdb_sys_mq_timedsend;
1519 case 277: return gdb_sys_mq_timedreceive;
1520 case 278: return gdb_sys_mq_notify;
1521 case 279: return gdb_sys_mq_getsetattr;
1522 case 280: return gdb_sys_waitid;
1523 case 281: return gdb_sys_socket;
1524 case 282: return gdb_sys_bind;
1525 case 283: return gdb_sys_connect;
1526 case 284: return gdb_sys_listen;
1527 case 285: return gdb_sys_accept;
1528 case 286: return gdb_sys_getsockname;
1529 case 287: return gdb_sys_getpeername;
1530 case 288: return gdb_sys_socketpair;
1531 case 289: /* send */ return gdb_sys_no_syscall;
1532 case 290: return gdb_sys_sendto;
1533 case 291: return gdb_sys_recv;
1534 case 292: return gdb_sys_recvfrom;
1535 case 293: return gdb_sys_shutdown;
1536 case 294: return gdb_sys_setsockopt;
1537 case 295: return gdb_sys_getsockopt;
1538 case 296: return gdb_sys_sendmsg;
1539 case 297: return gdb_sys_recvmsg;
1540 case 298: return gdb_sys_semop;
1541 case 299: return gdb_sys_semget;
1542 case 300: return gdb_sys_semctl;
1543 case 301: return gdb_sys_msgsnd;
1544 case 302: return gdb_sys_msgrcv;
1545 case 303: return gdb_sys_msgget;
1546 case 304: return gdb_sys_msgctl;
1547 case 305: return gdb_sys_shmat;
1548 case 306: return gdb_sys_shmdt;
1549 case 307: return gdb_sys_shmget;
1550 case 308: return gdb_sys_shmctl;
1551 case 309: return gdb_sys_add_key;
1552 case 310: return gdb_sys_request_key;
1553 case 311: return gdb_sys_keyctl;
1554 case 312: return gdb_sys_semtimedop;
1555 case 313: /* vserver */ return gdb_sys_no_syscall;
1556 case 314: return gdb_sys_ioprio_set;
1557 case 315: return gdb_sys_ioprio_get;
1558 case 316: return gdb_sys_inotify_init;
1559 case 317: return gdb_sys_inotify_add_watch;
1560 case 318: return gdb_sys_inotify_rm_watch;
1561 case 319: return gdb_sys_mbind;
1562 case 320: return gdb_sys_get_mempolicy;
1563 case 321: return gdb_sys_set_mempolicy;
1564 case 322: return gdb_sys_openat;
1565 case 323: return gdb_sys_mkdirat;
1566 case 324: return gdb_sys_mknodat;
1567 case 325: return gdb_sys_fchownat;
1568 case 326: return gdb_sys_futimesat;
1569 case 327: return gdb_sys_fstatat64;
1570 case 328: return gdb_sys_unlinkat;
1571 case 329: return gdb_sys_renameat;
1572 case 330: return gdb_sys_linkat;
1573 case 331: return gdb_sys_symlinkat;
1574 case 332: return gdb_sys_readlinkat;
1575 case 333: return gdb_sys_fchmodat;
1576 case 334: return gdb_sys_faccessat;
1577 case 335: return gdb_sys_pselect6;
1578 case 336: return gdb_sys_ppoll;
1579 case 337: return gdb_sys_unshare;
1580 case 338: return gdb_sys_set_robust_list;
1581 case 339: return gdb_sys_get_robust_list;
1582 case 340: return gdb_sys_splice;
1583 /*case 341: return gdb_sys_arm_sync_file_range;*/
1584 case 342: return gdb_sys_tee;
1585 case 343: return gdb_sys_vmsplice;
1586 case 344: return gdb_sys_move_pages;
1587 case 345: return gdb_sys_getcpu;
1588 case 346: return gdb_sys_epoll_pwait;
1589 case 347: return gdb_sys_kexec_load;
1590 /*
1591 case 348: return gdb_sys_utimensat;
1592 case 349: return gdb_sys_signalfd;
1593 case 350: return gdb_sys_timerfd_create;
1594 case 351: return gdb_sys_eventfd;
1595 */
1596 case 352: return gdb_sys_fallocate;
1597 /*
1598 case 353: return gdb_sys_timerfd_settime;
1599 case 354: return gdb_sys_timerfd_gettime;
1600 case 355: return gdb_sys_signalfd4;
1601 */
1602 case 356: return gdb_sys_eventfd2;
1603 case 357: return gdb_sys_epoll_create1;
1604 case 358: return gdb_sys_dup3;
1605 case 359: return gdb_sys_pipe2;
1606 case 360: return gdb_sys_inotify_init1;
1607 /*
1608 case 361: return gdb_sys_preadv;
1609 case 362: return gdb_sys_pwritev;
1610 case 363: return gdb_sys_rt_tgsigqueueinfo;
1611 case 364: return gdb_sys_perf_event_open;
1612 case 365: return gdb_sys_recvmmsg;
1613 case 366: return gdb_sys_accept4;
1614 case 367: return gdb_sys_fanotify_init;
1615 case 368: return gdb_sys_fanotify_mark;
1616 case 369: return gdb_sys_prlimit64;
1617 case 370: return gdb_sys_name_to_handle_at;
1618 case 371: return gdb_sys_open_by_handle_at;
1619 case 372: return gdb_sys_clock_adjtime;
1620 case 373: return gdb_sys_syncfs;
1621 case 374: return gdb_sys_sendmmsg;
1622 case 375: return gdb_sys_setns;
1623 case 376: return gdb_sys_process_vm_readv;
1624 case 377: return gdb_sys_process_vm_writev;
1625 case 378: return gdb_sys_kcmp;
1626 case 379: return gdb_sys_finit_module;
1627 */
1628 case 983041: /* ARM_breakpoint */ return gdb_sys_no_syscall;
1629 case 983042: /* ARM_cacheflush */ return gdb_sys_no_syscall;
1630 case 983043: /* ARM_usr26 */ return gdb_sys_no_syscall;
1631 case 983044: /* ARM_usr32 */ return gdb_sys_no_syscall;
1632 case 983045: /* ARM_set_tls */ return gdb_sys_no_syscall;
1633 default: return gdb_sys_no_syscall;
1634 }
1635 }
1636
1637 /* Record all registers but PC register for process-record. */
1638
1639 static int
1640 arm_all_but_pc_registers_record (struct regcache *regcache)
1641 {
1642 int i;
1643
1644 for (i = 0; i < ARM_PC_REGNUM; i++)
1645 {
1646 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1647 return -1;
1648 }
1649
1650 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1651 return -1;
1652
1653 return 0;
1654 }
1655
1656 /* Handler for arm system call instruction recording. */
1657
1658 static int
1659 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1660 {
1661 int ret = 0;
1662 enum gdb_syscall syscall_gdb;
1663
1664 syscall_gdb = arm_canonicalize_syscall (svc_number);
1665
1666 if (syscall_gdb == gdb_sys_no_syscall)
1667 {
1668 printf_unfiltered (_("Process record and replay target doesn't "
1669 "support syscall number %s\n"),
1670 plongest (svc_number));
1671 return -1;
1672 }
1673
1674 if (syscall_gdb == gdb_sys_sigreturn
1675 || syscall_gdb == gdb_sys_rt_sigreturn)
1676 {
1677 if (arm_all_but_pc_registers_record (regcache))
1678 return -1;
1679 return 0;
1680 }
1681
1682 ret = record_linux_system_call (syscall_gdb, regcache,
1683 &arm_linux_record_tdep);
1684 if (ret != 0)
1685 return ret;
1686
1687 /* Record the return value of the system call. */
1688 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1689 return -1;
1690 /* Record LR. */
1691 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1692 return -1;
1693 /* Record CPSR. */
1694 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1695 return -1;
1696
1697 return 0;
1698 }
1699
1700 /* Implement the skip_trampoline_code gdbarch method. */
1701
1702 static CORE_ADDR
1703 arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1704 {
1705 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1706
1707 if (target_pc != 0)
1708 return target_pc;
1709
1710 return find_solib_trampoline_target (frame, pc);
1711 }
1712
1713 /* Implement the gcc_target_options gdbarch method. */
1714
1715 static std::string
1716 arm_linux_gcc_target_options (struct gdbarch *gdbarch)
1717 {
1718 /* GCC doesn't know "-m32". */
1719 return {};
1720 }
1721
1722 static void
1723 arm_linux_init_abi (struct gdbarch_info info,
1724 struct gdbarch *gdbarch)
1725 {
1726 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1727 static const char *const stap_register_prefixes[] = { "r", NULL };
1728 static const char *const stap_register_indirection_prefixes[] = { "[",
1729 NULL };
1730 static const char *const stap_register_indirection_suffixes[] = { "]",
1731 NULL };
1732 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1733
1734 linux_init_abi (info, gdbarch);
1735
1736 tdep->lowest_pc = 0x8000;
1737 if (info.byte_order_for_code == BFD_ENDIAN_BIG)
1738 {
1739 if (tdep->arm_abi == ARM_ABI_AAPCS)
1740 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1741 else
1742 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1743 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1744 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1745 }
1746 else
1747 {
1748 if (tdep->arm_abi == ARM_ABI_AAPCS)
1749 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1750 else
1751 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1752 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1753 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1754 }
1755 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1756 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1757 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1758
1759 if (tdep->fp_model == ARM_FLOAT_AUTO)
1760 tdep->fp_model = ARM_FLOAT_FPA;
1761
1762 switch (tdep->fp_model)
1763 {
1764 case ARM_FLOAT_FPA:
1765 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1766 break;
1767 case ARM_FLOAT_SOFT_FPA:
1768 case ARM_FLOAT_SOFT_VFP:
1769 case ARM_FLOAT_VFP:
1770 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1771 break;
1772 default:
1773 internal_error
1774 (__FILE__, __LINE__,
1775 _("arm_linux_init_abi: Floating point model not supported"));
1776 break;
1777 }
1778 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1779
1780 set_solib_svr4_fetch_link_map_offsets
1781 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1782
1783 /* Single stepping. */
1784 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1785
1786 /* Shared library handling. */
1787 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
1788 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1789
1790 /* Enable TLS support. */
1791 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1792 svr4_fetch_objfile_link_map);
1793
1794 tramp_frame_prepend_unwinder (gdbarch,
1795 &arm_linux_sigreturn_tramp_frame);
1796 tramp_frame_prepend_unwinder (gdbarch,
1797 &arm_linux_rt_sigreturn_tramp_frame);
1798 tramp_frame_prepend_unwinder (gdbarch,
1799 &arm_eabi_linux_sigreturn_tramp_frame);
1800 tramp_frame_prepend_unwinder (gdbarch,
1801 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1802 tramp_frame_prepend_unwinder (gdbarch,
1803 &thumb2_eabi_linux_sigreturn_tramp_frame);
1804 tramp_frame_prepend_unwinder (gdbarch,
1805 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
1806 tramp_frame_prepend_unwinder (gdbarch,
1807 &arm_linux_restart_syscall_tramp_frame);
1808 tramp_frame_prepend_unwinder (gdbarch,
1809 &arm_kernel_linux_restart_syscall_tramp_frame);
1810
1811 /* Core file support. */
1812 set_gdbarch_iterate_over_regset_sections
1813 (gdbarch, arm_linux_iterate_over_regset_sections);
1814 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1815
1816 /* Displaced stepping. */
1817 set_gdbarch_displaced_step_copy_insn (gdbarch,
1818 arm_linux_displaced_step_copy_insn);
1819 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1820 set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
1821
1822 /* Reversible debugging, process record. */
1823 set_gdbarch_process_record (gdbarch, arm_process_record);
1824
1825 /* SystemTap functions. */
1826 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1827 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1828 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1829 stap_register_indirection_prefixes);
1830 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1831 stap_register_indirection_suffixes);
1832 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1833 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1834 set_gdbarch_stap_parse_special_token (gdbarch,
1835 arm_stap_parse_special_token);
1836
1837 /* `catch syscall' */
1838 set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
1839 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1840
1841 /* Syscall record. */
1842 tdep->arm_syscall_record = arm_linux_syscall_record;
1843
1844 /* Initialize the arm_linux_record_tdep. */
1845 /* These values are the size of the type that will be used in a system
1846 call. They are obtained from Linux Kernel source. */
1847 arm_linux_record_tdep.size_pointer
1848 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1849 arm_linux_record_tdep.size__old_kernel_stat = 32;
1850 arm_linux_record_tdep.size_tms = 16;
1851 arm_linux_record_tdep.size_loff_t = 8;
1852 arm_linux_record_tdep.size_flock = 16;
1853 arm_linux_record_tdep.size_oldold_utsname = 45;
1854 arm_linux_record_tdep.size_ustat = 20;
1855 arm_linux_record_tdep.size_old_sigaction = 16;
1856 arm_linux_record_tdep.size_old_sigset_t = 4;
1857 arm_linux_record_tdep.size_rlimit = 8;
1858 arm_linux_record_tdep.size_rusage = 72;
1859 arm_linux_record_tdep.size_timeval = 8;
1860 arm_linux_record_tdep.size_timezone = 8;
1861 arm_linux_record_tdep.size_old_gid_t = 2;
1862 arm_linux_record_tdep.size_old_uid_t = 2;
1863 arm_linux_record_tdep.size_fd_set = 128;
1864 arm_linux_record_tdep.size_old_dirent = 268;
1865 arm_linux_record_tdep.size_statfs = 64;
1866 arm_linux_record_tdep.size_statfs64 = 84;
1867 arm_linux_record_tdep.size_sockaddr = 16;
1868 arm_linux_record_tdep.size_int
1869 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1870 arm_linux_record_tdep.size_long
1871 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1872 arm_linux_record_tdep.size_ulong
1873 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1874 arm_linux_record_tdep.size_msghdr = 28;
1875 arm_linux_record_tdep.size_itimerval = 16;
1876 arm_linux_record_tdep.size_stat = 88;
1877 arm_linux_record_tdep.size_old_utsname = 325;
1878 arm_linux_record_tdep.size_sysinfo = 64;
1879 arm_linux_record_tdep.size_msqid_ds = 88;
1880 arm_linux_record_tdep.size_shmid_ds = 84;
1881 arm_linux_record_tdep.size_new_utsname = 390;
1882 arm_linux_record_tdep.size_timex = 128;
1883 arm_linux_record_tdep.size_mem_dqinfo = 24;
1884 arm_linux_record_tdep.size_if_dqblk = 68;
1885 arm_linux_record_tdep.size_fs_quota_stat = 68;
1886 arm_linux_record_tdep.size_timespec = 8;
1887 arm_linux_record_tdep.size_pollfd = 8;
1888 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1889 arm_linux_record_tdep.size_knfsd_fh = 132;
1890 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1891 arm_linux_record_tdep.size_sigaction = 20;
1892 arm_linux_record_tdep.size_sigset_t = 8;
1893 arm_linux_record_tdep.size_siginfo_t = 128;
1894 arm_linux_record_tdep.size_cap_user_data_t = 12;
1895 arm_linux_record_tdep.size_stack_t = 12;
1896 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1897 arm_linux_record_tdep.size_stat64 = 96;
1898 arm_linux_record_tdep.size_gid_t = 4;
1899 arm_linux_record_tdep.size_uid_t = 4;
1900 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1901 arm_linux_record_tdep.size_flock64 = 24;
1902 arm_linux_record_tdep.size_user_desc = 16;
1903 arm_linux_record_tdep.size_io_event = 32;
1904 arm_linux_record_tdep.size_iocb = 64;
1905 arm_linux_record_tdep.size_epoll_event = 12;
1906 arm_linux_record_tdep.size_itimerspec
1907 = arm_linux_record_tdep.size_timespec * 2;
1908 arm_linux_record_tdep.size_mq_attr = 32;
1909 arm_linux_record_tdep.size_termios = 36;
1910 arm_linux_record_tdep.size_termios2 = 44;
1911 arm_linux_record_tdep.size_pid_t = 4;
1912 arm_linux_record_tdep.size_winsize = 8;
1913 arm_linux_record_tdep.size_serial_struct = 60;
1914 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1915 arm_linux_record_tdep.size_hayes_esp_config = 12;
1916 arm_linux_record_tdep.size_size_t = 4;
1917 arm_linux_record_tdep.size_iovec = 8;
1918 arm_linux_record_tdep.size_time_t = 4;
1919
1920 /* These values are the second argument of system call "sys_ioctl".
1921 They are obtained from Linux Kernel source. */
1922 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1923 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1924 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1925 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1926 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1927 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1928 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1929 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1930 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1931 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1932 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1933 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1934 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1935 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1936 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1937 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1938 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1939 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1940 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1941 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1942 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1943 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1944 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1945 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1946 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1947 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1948 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1949 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1950 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1951 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1952 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1953 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1954 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1955 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1956 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1957 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1958 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1959 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1960 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1961 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1962 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1963 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1964 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1965 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1966 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1967 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1968 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1969 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1970 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1971 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1972 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1973 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1974 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1975 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1976 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1977 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1978 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1979 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1980 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1981 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1982 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1983 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1984 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1985 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1986 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1987
1988 /* These values are the second argument of system call "sys_fcntl"
1989 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1990 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1991 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1992 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1993 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1994
1995 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM;
1996 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 1;
1997 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 2;
1998 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
1999 arm_linux_record_tdep.arg5 = ARM_A1_REGNUM + 4;
2000 arm_linux_record_tdep.arg6 = ARM_A1_REGNUM + 5;
2001 arm_linux_record_tdep.arg7 = ARM_A1_REGNUM + 6;
2002
2003 set_gdbarch_gcc_target_options (gdbarch, arm_linux_gcc_target_options);
2004 }
2005
2006 void _initialize_arm_linux_tdep ();
2007 void
2008 _initialize_arm_linux_tdep ()
2009 {
2010 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
2011 arm_linux_init_abi);
2012 }
This page took 0.077603 seconds and 4 git commands to generate.