91701c25d205e0659a1a4a1f54bb6551cf97ceae
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <ctype.h> /* XXX for isupper (). */
23
24 #include "frame.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h" /* For register styles. */
30 #include "disasm.h"
31 #include "regcache.h"
32 #include "reggroups.h"
33 #include "target-float.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42 #include "gdbtypes.h"
43 #include "prologue-value.h"
44 #include "remote.h"
45 #include "target-descriptions.h"
46 #include "user-regs.h"
47 #include "observable.h"
48
49 #include "arch/arm.h"
50 #include "arch/arm-get-next-pcs.h"
51 #include "arm-tdep.h"
52 #include "gdb/sim-arm.h"
53
54 #include "elf-bfd.h"
55 #include "coff/internal.h"
56 #include "elf/arm.h"
57
58 #include "record.h"
59 #include "record-full.h"
60 #include <algorithm>
61
62 #if GDB_SELF_TEST
63 #include "gdbsupport/selftest.h"
64 #endif
65
66 static bool arm_debug;
67
68 /* Macros for setting and testing a bit in a minimal symbol that marks
69 it as Thumb function. The MSB of the minimal symbol's "info" field
70 is used for this purpose.
71
72 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
73 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
74
75 #define MSYMBOL_SET_SPECIAL(msym) \
76 MSYMBOL_TARGET_FLAG_1 (msym) = 1
77
78 #define MSYMBOL_IS_SPECIAL(msym) \
79 MSYMBOL_TARGET_FLAG_1 (msym)
80
81 struct arm_mapping_symbol
82 {
83 bfd_vma value;
84 char type;
85
86 bool operator< (const arm_mapping_symbol &other) const
87 { return this->value < other.value; }
88 };
89
90 typedef std::vector<arm_mapping_symbol> arm_mapping_symbol_vec;
91
92 struct arm_per_bfd
93 {
94 explicit arm_per_bfd (size_t num_sections)
95 : section_maps (new arm_mapping_symbol_vec[num_sections]),
96 section_maps_sorted (new bool[num_sections] ())
97 {}
98
99 DISABLE_COPY_AND_ASSIGN (arm_per_bfd);
100
101 /* Information about mapping symbols ($a, $d, $t) in the objfile.
102
103 The format is an array of vectors of arm_mapping_symbols, there is one
104 vector for each section of the objfile (the array is index by BFD section
105 index).
106
107 For each section, the vector of arm_mapping_symbol is sorted by
108 symbol value (address). */
109 std::unique_ptr<arm_mapping_symbol_vec[]> section_maps;
110
111 /* For each corresponding element of section_maps above, is this vector
112 sorted. */
113 std::unique_ptr<bool[]> section_maps_sorted;
114 };
115
116 /* Per-bfd data used for mapping symbols. */
117 static bfd_key<arm_per_bfd> arm_bfd_data_key;
118
119 /* The list of available "set arm ..." and "show arm ..." commands. */
120 static struct cmd_list_element *setarmcmdlist = NULL;
121 static struct cmd_list_element *showarmcmdlist = NULL;
122
123 /* The type of floating-point to use. Keep this in sync with enum
124 arm_float_model, and the help string in _initialize_arm_tdep. */
125 static const char *const fp_model_strings[] =
126 {
127 "auto",
128 "softfpa",
129 "fpa",
130 "softvfp",
131 "vfp",
132 NULL
133 };
134
135 /* A variable that can be configured by the user. */
136 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
137 static const char *current_fp_model = "auto";
138
139 /* The ABI to use. Keep this in sync with arm_abi_kind. */
140 static const char *const arm_abi_strings[] =
141 {
142 "auto",
143 "APCS",
144 "AAPCS",
145 NULL
146 };
147
148 /* A variable that can be configured by the user. */
149 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
150 static const char *arm_abi_string = "auto";
151
152 /* The execution mode to assume. */
153 static const char *const arm_mode_strings[] =
154 {
155 "auto",
156 "arm",
157 "thumb",
158 NULL
159 };
160
161 static const char *arm_fallback_mode_string = "auto";
162 static const char *arm_force_mode_string = "auto";
163
164 /* The standard register names, and all the valid aliases for them. Note
165 that `fp', `sp' and `pc' are not added in this alias list, because they
166 have been added as builtin user registers in
167 std-regs.c:_initialize_frame_reg. */
168 static const struct
169 {
170 const char *name;
171 int regnum;
172 } arm_register_aliases[] = {
173 /* Basic register numbers. */
174 { "r0", 0 },
175 { "r1", 1 },
176 { "r2", 2 },
177 { "r3", 3 },
178 { "r4", 4 },
179 { "r5", 5 },
180 { "r6", 6 },
181 { "r7", 7 },
182 { "r8", 8 },
183 { "r9", 9 },
184 { "r10", 10 },
185 { "r11", 11 },
186 { "r12", 12 },
187 { "r13", 13 },
188 { "r14", 14 },
189 { "r15", 15 },
190 /* Synonyms (argument and variable registers). */
191 { "a1", 0 },
192 { "a2", 1 },
193 { "a3", 2 },
194 { "a4", 3 },
195 { "v1", 4 },
196 { "v2", 5 },
197 { "v3", 6 },
198 { "v4", 7 },
199 { "v5", 8 },
200 { "v6", 9 },
201 { "v7", 10 },
202 { "v8", 11 },
203 /* Other platform-specific names for r9. */
204 { "sb", 9 },
205 { "tr", 9 },
206 /* Special names. */
207 { "ip", 12 },
208 { "lr", 14 },
209 /* Names used by GCC (not listed in the ARM EABI). */
210 { "sl", 10 },
211 /* A special name from the older ATPCS. */
212 { "wr", 7 },
213 };
214
215 static const char *const arm_register_names[] =
216 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
217 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
218 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
219 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
220 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
221 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
222 "fps", "cpsr" }; /* 24 25 */
223
224 /* Holds the current set of options to be passed to the disassembler. */
225 static char *arm_disassembler_options;
226
227 /* Valid register name styles. */
228 static const char **valid_disassembly_styles;
229
230 /* Disassembly style to use. Default to "std" register names. */
231 static const char *disassembly_style;
232
233 /* All possible arm target descriptors. */
234 static struct target_desc *tdesc_arm_list[ARM_FP_TYPE_INVALID];
235 static struct target_desc *tdesc_arm_mprofile_list[ARM_M_TYPE_INVALID];
236
237 /* This is used to keep the bfd arch_info in sync with the disassembly
238 style. */
239 static void set_disassembly_style_sfunc (const char *, int,
240 struct cmd_list_element *);
241 static void show_disassembly_style_sfunc (struct ui_file *, int,
242 struct cmd_list_element *,
243 const char *);
244
245 static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
246 readable_regcache *regcache,
247 int regnum, gdb_byte *buf);
248 static void arm_neon_quad_write (struct gdbarch *gdbarch,
249 struct regcache *regcache,
250 int regnum, const gdb_byte *buf);
251
252 static CORE_ADDR
253 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
254
255
256 /* get_next_pcs operations. */
257 static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
258 arm_get_next_pcs_read_memory_unsigned_integer,
259 arm_get_next_pcs_syscall_next_pc,
260 arm_get_next_pcs_addr_bits_remove,
261 arm_get_next_pcs_is_thumb,
262 NULL,
263 };
264
265 struct arm_prologue_cache
266 {
267 /* The stack pointer at the time this frame was created; i.e. the
268 caller's stack pointer when this function was called. It is used
269 to identify this frame. */
270 CORE_ADDR prev_sp;
271
272 /* The frame base for this frame is just prev_sp - frame size.
273 FRAMESIZE is the distance from the frame pointer to the
274 initial stack pointer. */
275
276 int framesize;
277
278 /* The register used to hold the frame pointer for this frame. */
279 int framereg;
280
281 /* Saved register offsets. */
282 struct trad_frame_saved_reg *saved_regs;
283 };
284
285 static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
286 CORE_ADDR prologue_start,
287 CORE_ADDR prologue_end,
288 struct arm_prologue_cache *cache);
289
290 /* Architecture version for displaced stepping. This effects the behaviour of
291 certain instructions, and really should not be hard-wired. */
292
293 #define DISPLACED_STEPPING_ARCH_VERSION 5
294
295 /* See arm-tdep.h. */
296
297 bool arm_apcs_32 = true;
298
299 /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
300
301 int
302 arm_psr_thumb_bit (struct gdbarch *gdbarch)
303 {
304 if (gdbarch_tdep (gdbarch)->is_m)
305 return XPSR_T;
306 else
307 return CPSR_T;
308 }
309
310 /* Determine if the processor is currently executing in Thumb mode. */
311
312 int
313 arm_is_thumb (struct regcache *regcache)
314 {
315 ULONGEST cpsr;
316 ULONGEST t_bit = arm_psr_thumb_bit (regcache->arch ());
317
318 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
319
320 return (cpsr & t_bit) != 0;
321 }
322
323 /* Determine if FRAME is executing in Thumb mode. */
324
325 int
326 arm_frame_is_thumb (struct frame_info *frame)
327 {
328 CORE_ADDR cpsr;
329 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
330
331 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
332 directly (from a signal frame or dummy frame) or by interpreting
333 the saved LR (from a prologue or DWARF frame). So consult it and
334 trust the unwinders. */
335 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
336
337 return (cpsr & t_bit) != 0;
338 }
339
340 /* Search for the mapping symbol covering MEMADDR. If one is found,
341 return its type. Otherwise, return 0. If START is non-NULL,
342 set *START to the location of the mapping symbol. */
343
344 static char
345 arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
346 {
347 struct obj_section *sec;
348
349 /* If there are mapping symbols, consult them. */
350 sec = find_pc_section (memaddr);
351 if (sec != NULL)
352 {
353 arm_per_bfd *data = arm_bfd_data_key.get (sec->objfile->obfd);
354 if (data != NULL)
355 {
356 unsigned int section_idx = sec->the_bfd_section->index;
357 arm_mapping_symbol_vec &map
358 = data->section_maps[section_idx];
359
360 /* Sort the vector on first use. */
361 if (!data->section_maps_sorted[section_idx])
362 {
363 std::sort (map.begin (), map.end ());
364 data->section_maps_sorted[section_idx] = true;
365 }
366
367 struct arm_mapping_symbol map_key
368 = { memaddr - obj_section_addr (sec), 0 };
369 arm_mapping_symbol_vec::const_iterator it
370 = std::lower_bound (map.begin (), map.end (), map_key);
371
372 /* std::lower_bound finds the earliest ordered insertion
373 point. If the symbol at this position starts at this exact
374 address, we use that; otherwise, the preceding
375 mapping symbol covers this address. */
376 if (it < map.end ())
377 {
378 if (it->value == map_key.value)
379 {
380 if (start)
381 *start = it->value + obj_section_addr (sec);
382 return it->type;
383 }
384 }
385
386 if (it > map.begin ())
387 {
388 arm_mapping_symbol_vec::const_iterator prev_it
389 = it - 1;
390
391 if (start)
392 *start = prev_it->value + obj_section_addr (sec);
393 return prev_it->type;
394 }
395 }
396 }
397
398 return 0;
399 }
400
401 /* Determine if the program counter specified in MEMADDR is in a Thumb
402 function. This function should be called for addresses unrelated to
403 any executing frame; otherwise, prefer arm_frame_is_thumb. */
404
405 int
406 arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
407 {
408 struct bound_minimal_symbol sym;
409 char type;
410 arm_displaced_step_closure *dsc
411 = ((arm_displaced_step_closure * )
412 get_displaced_step_closure_by_addr (memaddr));
413
414 /* If checking the mode of displaced instruction in copy area, the mode
415 should be determined by instruction on the original address. */
416 if (dsc)
417 {
418 if (debug_displaced)
419 fprintf_unfiltered (gdb_stdlog,
420 "displaced: check mode of %.8lx instead of %.8lx\n",
421 (unsigned long) dsc->insn_addr,
422 (unsigned long) memaddr);
423 memaddr = dsc->insn_addr;
424 }
425
426 /* If bit 0 of the address is set, assume this is a Thumb address. */
427 if (IS_THUMB_ADDR (memaddr))
428 return 1;
429
430 /* If the user wants to override the symbol table, let him. */
431 if (strcmp (arm_force_mode_string, "arm") == 0)
432 return 0;
433 if (strcmp (arm_force_mode_string, "thumb") == 0)
434 return 1;
435
436 /* ARM v6-M and v7-M are always in Thumb mode. */
437 if (gdbarch_tdep (gdbarch)->is_m)
438 return 1;
439
440 /* If there are mapping symbols, consult them. */
441 type = arm_find_mapping_symbol (memaddr, NULL);
442 if (type)
443 return type == 't';
444
445 /* Thumb functions have a "special" bit set in minimal symbols. */
446 sym = lookup_minimal_symbol_by_pc (memaddr);
447 if (sym.minsym)
448 return (MSYMBOL_IS_SPECIAL (sym.minsym));
449
450 /* If the user wants to override the fallback mode, let them. */
451 if (strcmp (arm_fallback_mode_string, "arm") == 0)
452 return 0;
453 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
454 return 1;
455
456 /* If we couldn't find any symbol, but we're talking to a running
457 target, then trust the current value of $cpsr. This lets
458 "display/i $pc" always show the correct mode (though if there is
459 a symbol table we will not reach here, so it still may not be
460 displayed in the mode it will be executed). */
461 if (target_has_registers)
462 return arm_frame_is_thumb (get_current_frame ());
463
464 /* Otherwise we're out of luck; we assume ARM. */
465 return 0;
466 }
467
468 /* Determine if the address specified equals any of these magic return
469 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
470 architectures.
471
472 From ARMv6-M Reference Manual B1.5.8
473 Table B1-5 Exception return behavior
474
475 EXC_RETURN Return To Return Stack
476 0xFFFFFFF1 Handler mode Main
477 0xFFFFFFF9 Thread mode Main
478 0xFFFFFFFD Thread mode Process
479
480 From ARMv7-M Reference Manual B1.5.8
481 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
482
483 EXC_RETURN Return To Return Stack
484 0xFFFFFFF1 Handler mode Main
485 0xFFFFFFF9 Thread mode Main
486 0xFFFFFFFD Thread mode Process
487
488 Table B1-9 EXC_RETURN definition of exception return behavior, with
489 FP
490
491 EXC_RETURN Return To Return Stack Frame Type
492 0xFFFFFFE1 Handler mode Main Extended
493 0xFFFFFFE9 Thread mode Main Extended
494 0xFFFFFFED Thread mode Process Extended
495 0xFFFFFFF1 Handler mode Main Basic
496 0xFFFFFFF9 Thread mode Main Basic
497 0xFFFFFFFD Thread mode Process Basic
498
499 For more details see "B1.5.8 Exception return behavior"
500 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
501
502 static int
503 arm_m_addr_is_magic (CORE_ADDR addr)
504 {
505 switch (addr)
506 {
507 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
508 the exception return behavior. */
509 case 0xffffffe1:
510 case 0xffffffe9:
511 case 0xffffffed:
512 case 0xfffffff1:
513 case 0xfffffff9:
514 case 0xfffffffd:
515 /* Address is magic. */
516 return 1;
517
518 default:
519 /* Address is not magic. */
520 return 0;
521 }
522 }
523
524 /* Remove useless bits from addresses in a running program. */
525 static CORE_ADDR
526 arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
527 {
528 /* On M-profile devices, do not strip the low bit from EXC_RETURN
529 (the magic exception return address). */
530 if (gdbarch_tdep (gdbarch)->is_m
531 && arm_m_addr_is_magic (val))
532 return val;
533
534 if (arm_apcs_32)
535 return UNMAKE_THUMB_ADDR (val);
536 else
537 return (val & 0x03fffffc);
538 }
539
540 /* Return 1 if PC is the start of a compiler helper function which
541 can be safely ignored during prologue skipping. IS_THUMB is true
542 if the function is known to be a Thumb function due to the way it
543 is being called. */
544 static int
545 skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
546 {
547 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
548 struct bound_minimal_symbol msym;
549
550 msym = lookup_minimal_symbol_by_pc (pc);
551 if (msym.minsym != NULL
552 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
553 && msym.minsym->linkage_name () != NULL)
554 {
555 const char *name = msym.minsym->linkage_name ();
556
557 /* The GNU linker's Thumb call stub to foo is named
558 __foo_from_thumb. */
559 if (strstr (name, "_from_thumb") != NULL)
560 name += 2;
561
562 /* On soft-float targets, __truncdfsf2 is called to convert promoted
563 arguments to their argument types in non-prototyped
564 functions. */
565 if (startswith (name, "__truncdfsf2"))
566 return 1;
567 if (startswith (name, "__aeabi_d2f"))
568 return 1;
569
570 /* Internal functions related to thread-local storage. */
571 if (startswith (name, "__tls_get_addr"))
572 return 1;
573 if (startswith (name, "__aeabi_read_tp"))
574 return 1;
575 }
576 else
577 {
578 /* If we run against a stripped glibc, we may be unable to identify
579 special functions by name. Check for one important case,
580 __aeabi_read_tp, by comparing the *code* against the default
581 implementation (this is hand-written ARM assembler in glibc). */
582
583 if (!is_thumb
584 && read_code_unsigned_integer (pc, 4, byte_order_for_code)
585 == 0xe3e00a0f /* mov r0, #0xffff0fff */
586 && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code)
587 == 0xe240f01f) /* sub pc, r0, #31 */
588 return 1;
589 }
590
591 return 0;
592 }
593
594 /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
595 the first 16-bit of instruction, and INSN2 is the second 16-bit of
596 instruction. */
597 #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
598 ((bits ((insn1), 0, 3) << 12) \
599 | (bits ((insn1), 10, 10) << 11) \
600 | (bits ((insn2), 12, 14) << 8) \
601 | bits ((insn2), 0, 7))
602
603 /* Extract the immediate from instruction movw/movt of encoding A. INSN is
604 the 32-bit instruction. */
605 #define EXTRACT_MOVW_MOVT_IMM_A(insn) \
606 ((bits ((insn), 16, 19) << 12) \
607 | bits ((insn), 0, 11))
608
609 /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
610
611 static unsigned int
612 thumb_expand_immediate (unsigned int imm)
613 {
614 unsigned int count = imm >> 7;
615
616 if (count < 8)
617 switch (count / 2)
618 {
619 case 0:
620 return imm & 0xff;
621 case 1:
622 return (imm & 0xff) | ((imm & 0xff) << 16);
623 case 2:
624 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
625 case 3:
626 return (imm & 0xff) | ((imm & 0xff) << 8)
627 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
628 }
629
630 return (0x80 | (imm & 0x7f)) << (32 - count);
631 }
632
633 /* Return 1 if the 16-bit Thumb instruction INSN restores SP in
634 epilogue, 0 otherwise. */
635
636 static int
637 thumb_instruction_restores_sp (unsigned short insn)
638 {
639 return (insn == 0x46bd /* mov sp, r7 */
640 || (insn & 0xff80) == 0xb000 /* add sp, imm */
641 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
642 }
643
644 /* Analyze a Thumb prologue, looking for a recognizable stack frame
645 and frame pointer. Scan until we encounter a store that could
646 clobber the stack frame unexpectedly, or an unknown instruction.
647 Return the last address which is definitely safe to skip for an
648 initial breakpoint. */
649
650 static CORE_ADDR
651 thumb_analyze_prologue (struct gdbarch *gdbarch,
652 CORE_ADDR start, CORE_ADDR limit,
653 struct arm_prologue_cache *cache)
654 {
655 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
656 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
657 int i;
658 pv_t regs[16];
659 CORE_ADDR offset;
660 CORE_ADDR unrecognized_pc = 0;
661
662 for (i = 0; i < 16; i++)
663 regs[i] = pv_register (i, 0);
664 pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
665
666 while (start < limit)
667 {
668 unsigned short insn;
669
670 insn = read_code_unsigned_integer (start, 2, byte_order_for_code);
671
672 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
673 {
674 int regno;
675 int mask;
676
677 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
678 break;
679
680 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
681 whether to save LR (R14). */
682 mask = (insn & 0xff) | ((insn & 0x100) << 6);
683
684 /* Calculate offsets of saved R0-R7 and LR. */
685 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
686 if (mask & (1 << regno))
687 {
688 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
689 -4);
690 stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]);
691 }
692 }
693 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
694 {
695 offset = (insn & 0x7f) << 2; /* get scaled offset */
696 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
697 -offset);
698 }
699 else if (thumb_instruction_restores_sp (insn))
700 {
701 /* Don't scan past the epilogue. */
702 break;
703 }
704 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
705 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
706 (insn & 0xff) << 2);
707 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
708 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
709 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
710 bits (insn, 6, 8));
711 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
712 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
713 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
714 bits (insn, 0, 7));
715 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
716 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
717 && pv_is_constant (regs[bits (insn, 3, 5)]))
718 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
719 regs[bits (insn, 6, 8)]);
720 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
721 && pv_is_constant (regs[bits (insn, 3, 6)]))
722 {
723 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
724 int rm = bits (insn, 3, 6);
725 regs[rd] = pv_add (regs[rd], regs[rm]);
726 }
727 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
728 {
729 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
730 int src_reg = (insn & 0x78) >> 3;
731 regs[dst_reg] = regs[src_reg];
732 }
733 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
734 {
735 /* Handle stores to the stack. Normally pushes are used,
736 but with GCC -mtpcs-frame, there may be other stores
737 in the prologue to create the frame. */
738 int regno = (insn >> 8) & 0x7;
739 pv_t addr;
740
741 offset = (insn & 0xff) << 2;
742 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
743
744 if (stack.store_would_trash (addr))
745 break;
746
747 stack.store (addr, 4, regs[regno]);
748 }
749 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
750 {
751 int rd = bits (insn, 0, 2);
752 int rn = bits (insn, 3, 5);
753 pv_t addr;
754
755 offset = bits (insn, 6, 10) << 2;
756 addr = pv_add_constant (regs[rn], offset);
757
758 if (stack.store_would_trash (addr))
759 break;
760
761 stack.store (addr, 4, regs[rd]);
762 }
763 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
764 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
765 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
766 /* Ignore stores of argument registers to the stack. */
767 ;
768 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
769 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
770 /* Ignore block loads from the stack, potentially copying
771 parameters from memory. */
772 ;
773 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
774 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
775 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
776 /* Similarly ignore single loads from the stack. */
777 ;
778 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
779 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
780 /* Skip register copies, i.e. saves to another register
781 instead of the stack. */
782 ;
783 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
784 /* Recognize constant loads; even with small stacks these are necessary
785 on Thumb. */
786 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
787 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
788 {
789 /* Constant pool loads, for the same reason. */
790 unsigned int constant;
791 CORE_ADDR loc;
792
793 loc = start + 4 + bits (insn, 0, 7) * 4;
794 constant = read_memory_unsigned_integer (loc, 4, byte_order);
795 regs[bits (insn, 8, 10)] = pv_constant (constant);
796 }
797 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
798 {
799 unsigned short inst2;
800
801 inst2 = read_code_unsigned_integer (start + 2, 2,
802 byte_order_for_code);
803
804 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
805 {
806 /* BL, BLX. Allow some special function calls when
807 skipping the prologue; GCC generates these before
808 storing arguments to the stack. */
809 CORE_ADDR nextpc;
810 int j1, j2, imm1, imm2;
811
812 imm1 = sbits (insn, 0, 10);
813 imm2 = bits (inst2, 0, 10);
814 j1 = bit (inst2, 13);
815 j2 = bit (inst2, 11);
816
817 offset = ((imm1 << 12) + (imm2 << 1));
818 offset ^= ((!j2) << 22) | ((!j1) << 23);
819
820 nextpc = start + 4 + offset;
821 /* For BLX make sure to clear the low bits. */
822 if (bit (inst2, 12) == 0)
823 nextpc = nextpc & 0xfffffffc;
824
825 if (!skip_prologue_function (gdbarch, nextpc,
826 bit (inst2, 12) != 0))
827 break;
828 }
829
830 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
831 { registers } */
832 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
833 {
834 pv_t addr = regs[bits (insn, 0, 3)];
835 int regno;
836
837 if (stack.store_would_trash (addr))
838 break;
839
840 /* Calculate offsets of saved registers. */
841 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
842 if (inst2 & (1 << regno))
843 {
844 addr = pv_add_constant (addr, -4);
845 stack.store (addr, 4, regs[regno]);
846 }
847
848 if (insn & 0x0020)
849 regs[bits (insn, 0, 3)] = addr;
850 }
851
852 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
853 [Rn, #+/-imm]{!} */
854 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
855 {
856 int regno1 = bits (inst2, 12, 15);
857 int regno2 = bits (inst2, 8, 11);
858 pv_t addr = regs[bits (insn, 0, 3)];
859
860 offset = inst2 & 0xff;
861 if (insn & 0x0080)
862 addr = pv_add_constant (addr, offset);
863 else
864 addr = pv_add_constant (addr, -offset);
865
866 if (stack.store_would_trash (addr))
867 break;
868
869 stack.store (addr, 4, regs[regno1]);
870 stack.store (pv_add_constant (addr, 4),
871 4, regs[regno2]);
872
873 if (insn & 0x0020)
874 regs[bits (insn, 0, 3)] = addr;
875 }
876
877 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
878 && (inst2 & 0x0c00) == 0x0c00
879 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
880 {
881 int regno = bits (inst2, 12, 15);
882 pv_t addr = regs[bits (insn, 0, 3)];
883
884 offset = inst2 & 0xff;
885 if (inst2 & 0x0200)
886 addr = pv_add_constant (addr, offset);
887 else
888 addr = pv_add_constant (addr, -offset);
889
890 if (stack.store_would_trash (addr))
891 break;
892
893 stack.store (addr, 4, regs[regno]);
894
895 if (inst2 & 0x0100)
896 regs[bits (insn, 0, 3)] = addr;
897 }
898
899 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
900 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
901 {
902 int regno = bits (inst2, 12, 15);
903 pv_t addr;
904
905 offset = inst2 & 0xfff;
906 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
907
908 if (stack.store_would_trash (addr))
909 break;
910
911 stack.store (addr, 4, regs[regno]);
912 }
913
914 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
915 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
916 /* Ignore stores of argument registers to the stack. */
917 ;
918
919 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
920 && (inst2 & 0x0d00) == 0x0c00
921 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
922 /* Ignore stores of argument registers to the stack. */
923 ;
924
925 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
926 { registers } */
927 && (inst2 & 0x8000) == 0x0000
928 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
929 /* Ignore block loads from the stack, potentially copying
930 parameters from memory. */
931 ;
932
933 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
934 [Rn, #+/-imm] */
935 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
936 /* Similarly ignore dual loads from the stack. */
937 ;
938
939 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
940 && (inst2 & 0x0d00) == 0x0c00
941 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
942 /* Similarly ignore single loads from the stack. */
943 ;
944
945 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
946 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
947 /* Similarly ignore single loads from the stack. */
948 ;
949
950 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
951 && (inst2 & 0x8000) == 0x0000)
952 {
953 unsigned int imm = ((bits (insn, 10, 10) << 11)
954 | (bits (inst2, 12, 14) << 8)
955 | bits (inst2, 0, 7));
956
957 regs[bits (inst2, 8, 11)]
958 = pv_add_constant (regs[bits (insn, 0, 3)],
959 thumb_expand_immediate (imm));
960 }
961
962 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
963 && (inst2 & 0x8000) == 0x0000)
964 {
965 unsigned int imm = ((bits (insn, 10, 10) << 11)
966 | (bits (inst2, 12, 14) << 8)
967 | bits (inst2, 0, 7));
968
969 regs[bits (inst2, 8, 11)]
970 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
971 }
972
973 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
974 && (inst2 & 0x8000) == 0x0000)
975 {
976 unsigned int imm = ((bits (insn, 10, 10) << 11)
977 | (bits (inst2, 12, 14) << 8)
978 | bits (inst2, 0, 7));
979
980 regs[bits (inst2, 8, 11)]
981 = pv_add_constant (regs[bits (insn, 0, 3)],
982 - (CORE_ADDR) thumb_expand_immediate (imm));
983 }
984
985 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
986 && (inst2 & 0x8000) == 0x0000)
987 {
988 unsigned int imm = ((bits (insn, 10, 10) << 11)
989 | (bits (inst2, 12, 14) << 8)
990 | bits (inst2, 0, 7));
991
992 regs[bits (inst2, 8, 11)]
993 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
994 }
995
996 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
997 {
998 unsigned int imm = ((bits (insn, 10, 10) << 11)
999 | (bits (inst2, 12, 14) << 8)
1000 | bits (inst2, 0, 7));
1001
1002 regs[bits (inst2, 8, 11)]
1003 = pv_constant (thumb_expand_immediate (imm));
1004 }
1005
1006 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1007 {
1008 unsigned int imm
1009 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
1010
1011 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1012 }
1013
1014 else if (insn == 0xea5f /* mov.w Rd,Rm */
1015 && (inst2 & 0xf0f0) == 0)
1016 {
1017 int dst_reg = (inst2 & 0x0f00) >> 8;
1018 int src_reg = inst2 & 0xf;
1019 regs[dst_reg] = regs[src_reg];
1020 }
1021
1022 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1023 {
1024 /* Constant pool loads. */
1025 unsigned int constant;
1026 CORE_ADDR loc;
1027
1028 offset = bits (inst2, 0, 11);
1029 if (insn & 0x0080)
1030 loc = start + 4 + offset;
1031 else
1032 loc = start + 4 - offset;
1033
1034 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1035 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1036 }
1037
1038 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1039 {
1040 /* Constant pool loads. */
1041 unsigned int constant;
1042 CORE_ADDR loc;
1043
1044 offset = bits (inst2, 0, 7) << 2;
1045 if (insn & 0x0080)
1046 loc = start + 4 + offset;
1047 else
1048 loc = start + 4 - offset;
1049
1050 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1051 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1052
1053 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1054 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1055 }
1056
1057 else if (thumb2_instruction_changes_pc (insn, inst2))
1058 {
1059 /* Don't scan past anything that might change control flow. */
1060 break;
1061 }
1062 else
1063 {
1064 /* The optimizer might shove anything into the prologue,
1065 so we just skip what we don't recognize. */
1066 unrecognized_pc = start;
1067 }
1068
1069 start += 2;
1070 }
1071 else if (thumb_instruction_changes_pc (insn))
1072 {
1073 /* Don't scan past anything that might change control flow. */
1074 break;
1075 }
1076 else
1077 {
1078 /* The optimizer might shove anything into the prologue,
1079 so we just skip what we don't recognize. */
1080 unrecognized_pc = start;
1081 }
1082
1083 start += 2;
1084 }
1085
1086 if (arm_debug)
1087 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1088 paddress (gdbarch, start));
1089
1090 if (unrecognized_pc == 0)
1091 unrecognized_pc = start;
1092
1093 if (cache == NULL)
1094 return unrecognized_pc;
1095
1096 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1097 {
1098 /* Frame pointer is fp. Frame size is constant. */
1099 cache->framereg = ARM_FP_REGNUM;
1100 cache->framesize = -regs[ARM_FP_REGNUM].k;
1101 }
1102 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1103 {
1104 /* Frame pointer is r7. Frame size is constant. */
1105 cache->framereg = THUMB_FP_REGNUM;
1106 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1107 }
1108 else
1109 {
1110 /* Try the stack pointer... this is a bit desperate. */
1111 cache->framereg = ARM_SP_REGNUM;
1112 cache->framesize = -regs[ARM_SP_REGNUM].k;
1113 }
1114
1115 for (i = 0; i < 16; i++)
1116 if (stack.find_reg (gdbarch, i, &offset))
1117 cache->saved_regs[i].addr = offset;
1118
1119 return unrecognized_pc;
1120 }
1121
1122
1123 /* Try to analyze the instructions starting from PC, which load symbol
1124 __stack_chk_guard. Return the address of instruction after loading this
1125 symbol, set the dest register number to *BASEREG, and set the size of
1126 instructions for loading symbol in OFFSET. Return 0 if instructions are
1127 not recognized. */
1128
1129 static CORE_ADDR
1130 arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1131 unsigned int *destreg, int *offset)
1132 {
1133 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1134 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1135 unsigned int low, high, address;
1136
1137 address = 0;
1138 if (is_thumb)
1139 {
1140 unsigned short insn1
1141 = read_code_unsigned_integer (pc, 2, byte_order_for_code);
1142
1143 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1144 {
1145 *destreg = bits (insn1, 8, 10);
1146 *offset = 2;
1147 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1148 address = read_memory_unsigned_integer (address, 4,
1149 byte_order_for_code);
1150 }
1151 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1152 {
1153 unsigned short insn2
1154 = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code);
1155
1156 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1157
1158 insn1
1159 = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code);
1160 insn2
1161 = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code);
1162
1163 /* movt Rd, #const */
1164 if ((insn1 & 0xfbc0) == 0xf2c0)
1165 {
1166 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1167 *destreg = bits (insn2, 8, 11);
1168 *offset = 8;
1169 address = (high << 16 | low);
1170 }
1171 }
1172 }
1173 else
1174 {
1175 unsigned int insn
1176 = read_code_unsigned_integer (pc, 4, byte_order_for_code);
1177
1178 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
1179 {
1180 address = bits (insn, 0, 11) + pc + 8;
1181 address = read_memory_unsigned_integer (address, 4,
1182 byte_order_for_code);
1183
1184 *destreg = bits (insn, 12, 15);
1185 *offset = 4;
1186 }
1187 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1188 {
1189 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1190
1191 insn
1192 = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code);
1193
1194 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1195 {
1196 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1197 *destreg = bits (insn, 12, 15);
1198 *offset = 8;
1199 address = (high << 16 | low);
1200 }
1201 }
1202 }
1203
1204 return address;
1205 }
1206
1207 /* Try to skip a sequence of instructions used for stack protector. If PC
1208 points to the first instruction of this sequence, return the address of
1209 first instruction after this sequence, otherwise, return original PC.
1210
1211 On arm, this sequence of instructions is composed of mainly three steps,
1212 Step 1: load symbol __stack_chk_guard,
1213 Step 2: load from address of __stack_chk_guard,
1214 Step 3: store it to somewhere else.
1215
1216 Usually, instructions on step 2 and step 3 are the same on various ARM
1217 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1218 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1219 instructions in step 1 vary from different ARM architectures. On ARMv7,
1220 they are,
1221
1222 movw Rn, #:lower16:__stack_chk_guard
1223 movt Rn, #:upper16:__stack_chk_guard
1224
1225 On ARMv5t, it is,
1226
1227 ldr Rn, .Label
1228 ....
1229 .Lable:
1230 .word __stack_chk_guard
1231
1232 Since ldr/str is a very popular instruction, we can't use them as
1233 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1234 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1235 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1236
1237 static CORE_ADDR
1238 arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1239 {
1240 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1241 unsigned int basereg;
1242 struct bound_minimal_symbol stack_chk_guard;
1243 int offset;
1244 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1245 CORE_ADDR addr;
1246
1247 /* Try to parse the instructions in Step 1. */
1248 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1249 &basereg, &offset);
1250 if (!addr)
1251 return pc;
1252
1253 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1254 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1255 Otherwise, this sequence cannot be for stack protector. */
1256 if (stack_chk_guard.minsym == NULL
1257 || !startswith (stack_chk_guard.minsym->linkage_name (), "__stack_chk_guard"))
1258 return pc;
1259
1260 if (is_thumb)
1261 {
1262 unsigned int destreg;
1263 unsigned short insn
1264 = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code);
1265
1266 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1267 if ((insn & 0xf800) != 0x6800)
1268 return pc;
1269 if (bits (insn, 3, 5) != basereg)
1270 return pc;
1271 destreg = bits (insn, 0, 2);
1272
1273 insn = read_code_unsigned_integer (pc + offset + 2, 2,
1274 byte_order_for_code);
1275 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1276 if ((insn & 0xf800) != 0x6000)
1277 return pc;
1278 if (destreg != bits (insn, 0, 2))
1279 return pc;
1280 }
1281 else
1282 {
1283 unsigned int destreg;
1284 unsigned int insn
1285 = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code);
1286
1287 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1288 if ((insn & 0x0e500000) != 0x04100000)
1289 return pc;
1290 if (bits (insn, 16, 19) != basereg)
1291 return pc;
1292 destreg = bits (insn, 12, 15);
1293 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1294 insn = read_code_unsigned_integer (pc + offset + 4,
1295 4, byte_order_for_code);
1296 if ((insn & 0x0e500000) != 0x04000000)
1297 return pc;
1298 if (bits (insn, 12, 15) != destreg)
1299 return pc;
1300 }
1301 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1302 on arm. */
1303 if (is_thumb)
1304 return pc + offset + 4;
1305 else
1306 return pc + offset + 8;
1307 }
1308
1309 /* Advance the PC across any function entry prologue instructions to
1310 reach some "real" code.
1311
1312 The APCS (ARM Procedure Call Standard) defines the following
1313 prologue:
1314
1315 mov ip, sp
1316 [stmfd sp!, {a1,a2,a3,a4}]
1317 stmfd sp!, {...,fp,ip,lr,pc}
1318 [stfe f7, [sp, #-12]!]
1319 [stfe f6, [sp, #-12]!]
1320 [stfe f5, [sp, #-12]!]
1321 [stfe f4, [sp, #-12]!]
1322 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
1323
1324 static CORE_ADDR
1325 arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1326 {
1327 CORE_ADDR func_addr, limit_pc;
1328
1329 /* See if we can determine the end of the prologue via the symbol table.
1330 If so, then return either PC, or the PC after the prologue, whichever
1331 is greater. */
1332 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1333 {
1334 CORE_ADDR post_prologue_pc
1335 = skip_prologue_using_sal (gdbarch, func_addr);
1336 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1337
1338 if (post_prologue_pc)
1339 post_prologue_pc
1340 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1341
1342
1343 /* GCC always emits a line note before the prologue and another
1344 one after, even if the two are at the same address or on the
1345 same line. Take advantage of this so that we do not need to
1346 know every instruction that might appear in the prologue. We
1347 will have producer information for most binaries; if it is
1348 missing (e.g. for -gstabs), assuming the GNU tools. */
1349 if (post_prologue_pc
1350 && (cust == NULL
1351 || COMPUNIT_PRODUCER (cust) == NULL
1352 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1353 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1354 return post_prologue_pc;
1355
1356 if (post_prologue_pc != 0)
1357 {
1358 CORE_ADDR analyzed_limit;
1359
1360 /* For non-GCC compilers, make sure the entire line is an
1361 acceptable prologue; GDB will round this function's
1362 return value up to the end of the following line so we
1363 can not skip just part of a line (and we do not want to).
1364
1365 RealView does not treat the prologue specially, but does
1366 associate prologue code with the opening brace; so this
1367 lets us skip the first line if we think it is the opening
1368 brace. */
1369 if (arm_pc_is_thumb (gdbarch, func_addr))
1370 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1371 post_prologue_pc, NULL);
1372 else
1373 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1374 post_prologue_pc, NULL);
1375
1376 if (analyzed_limit != post_prologue_pc)
1377 return func_addr;
1378
1379 return post_prologue_pc;
1380 }
1381 }
1382
1383 /* Can't determine prologue from the symbol table, need to examine
1384 instructions. */
1385
1386 /* Find an upper limit on the function prologue using the debug
1387 information. If the debug information could not be used to provide
1388 that bound, then use an arbitrary large number as the upper bound. */
1389 /* Like arm_scan_prologue, stop no later than pc + 64. */
1390 limit_pc = skip_prologue_using_sal (gdbarch, pc);
1391 if (limit_pc == 0)
1392 limit_pc = pc + 64; /* Magic. */
1393
1394
1395 /* Check if this is Thumb code. */
1396 if (arm_pc_is_thumb (gdbarch, pc))
1397 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1398 else
1399 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1400 }
1401
1402 /* *INDENT-OFF* */
1403 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1404 This function decodes a Thumb function prologue to determine:
1405 1) the size of the stack frame
1406 2) which registers are saved on it
1407 3) the offsets of saved regs
1408 4) the offset from the stack pointer to the frame pointer
1409
1410 A typical Thumb function prologue would create this stack frame
1411 (offsets relative to FP)
1412 old SP -> 24 stack parameters
1413 20 LR
1414 16 R7
1415 R7 -> 0 local variables (16 bytes)
1416 SP -> -12 additional stack space (12 bytes)
1417 The frame size would thus be 36 bytes, and the frame offset would be
1418 12 bytes. The frame register is R7.
1419
1420 The comments for thumb_skip_prolog() describe the algorithm we use
1421 to detect the end of the prolog. */
1422 /* *INDENT-ON* */
1423
1424 static void
1425 thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
1426 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
1427 {
1428 CORE_ADDR prologue_start;
1429 CORE_ADDR prologue_end;
1430
1431 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1432 &prologue_end))
1433 {
1434 /* See comment in arm_scan_prologue for an explanation of
1435 this heuristics. */
1436 if (prologue_end > prologue_start + 64)
1437 {
1438 prologue_end = prologue_start + 64;
1439 }
1440 }
1441 else
1442 /* We're in the boondocks: we have no idea where the start of the
1443 function is. */
1444 return;
1445
1446 prologue_end = std::min (prologue_end, prev_pc);
1447
1448 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1449 }
1450
1451 /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1452 otherwise. */
1453
1454 static int
1455 arm_instruction_restores_sp (unsigned int insn)
1456 {
1457 if (bits (insn, 28, 31) != INST_NV)
1458 {
1459 if ((insn & 0x0df0f000) == 0x0080d000
1460 /* ADD SP (register or immediate). */
1461 || (insn & 0x0df0f000) == 0x0040d000
1462 /* SUB SP (register or immediate). */
1463 || (insn & 0x0ffffff0) == 0x01a0d000
1464 /* MOV SP. */
1465 || (insn & 0x0fff0000) == 0x08bd0000
1466 /* POP (LDMIA). */
1467 || (insn & 0x0fff0000) == 0x049d0000)
1468 /* POP of a single register. */
1469 return 1;
1470 }
1471
1472 return 0;
1473 }
1474
1475 /* Analyze an ARM mode prologue starting at PROLOGUE_START and
1476 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1477 fill it in. Return the first address not recognized as a prologue
1478 instruction.
1479
1480 We recognize all the instructions typically found in ARM prologues,
1481 plus harmless instructions which can be skipped (either for analysis
1482 purposes, or a more restrictive set that can be skipped when finding
1483 the end of the prologue). */
1484
1485 static CORE_ADDR
1486 arm_analyze_prologue (struct gdbarch *gdbarch,
1487 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1488 struct arm_prologue_cache *cache)
1489 {
1490 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1491 int regno;
1492 CORE_ADDR offset, current_pc;
1493 pv_t regs[ARM_FPS_REGNUM];
1494 CORE_ADDR unrecognized_pc = 0;
1495
1496 /* Search the prologue looking for instructions that set up the
1497 frame pointer, adjust the stack pointer, and save registers.
1498
1499 Be careful, however, and if it doesn't look like a prologue,
1500 don't try to scan it. If, for instance, a frameless function
1501 begins with stmfd sp!, then we will tell ourselves there is
1502 a frame, which will confuse stack traceback, as well as "finish"
1503 and other operations that rely on a knowledge of the stack
1504 traceback. */
1505
1506 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1507 regs[regno] = pv_register (regno, 0);
1508 pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1509
1510 for (current_pc = prologue_start;
1511 current_pc < prologue_end;
1512 current_pc += 4)
1513 {
1514 unsigned int insn
1515 = read_code_unsigned_integer (current_pc, 4, byte_order_for_code);
1516
1517 if (insn == 0xe1a0c00d) /* mov ip, sp */
1518 {
1519 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
1520 continue;
1521 }
1522 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1523 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1524 {
1525 unsigned imm = insn & 0xff; /* immediate value */
1526 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1527 int rd = bits (insn, 12, 15);
1528 imm = (imm >> rot) | (imm << (32 - rot));
1529 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
1530 continue;
1531 }
1532 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1533 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1534 {
1535 unsigned imm = insn & 0xff; /* immediate value */
1536 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1537 int rd = bits (insn, 12, 15);
1538 imm = (imm >> rot) | (imm << (32 - rot));
1539 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
1540 continue;
1541 }
1542 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1543 [sp, #-4]! */
1544 {
1545 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
1546 break;
1547 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1548 stack.store (regs[ARM_SP_REGNUM], 4,
1549 regs[bits (insn, 12, 15)]);
1550 continue;
1551 }
1552 else if ((insn & 0xffff0000) == 0xe92d0000)
1553 /* stmfd sp!, {..., fp, ip, lr, pc}
1554 or
1555 stmfd sp!, {a1, a2, a3, a4} */
1556 {
1557 int mask = insn & 0xffff;
1558
1559 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
1560 break;
1561
1562 /* Calculate offsets of saved registers. */
1563 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
1564 if (mask & (1 << regno))
1565 {
1566 regs[ARM_SP_REGNUM]
1567 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1568 stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]);
1569 }
1570 }
1571 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1572 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
1573 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
1574 {
1575 /* No need to add this to saved_regs -- it's just an arg reg. */
1576 continue;
1577 }
1578 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1579 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
1580 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
1581 {
1582 /* No need to add this to saved_regs -- it's just an arg reg. */
1583 continue;
1584 }
1585 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1586 { registers } */
1587 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1588 {
1589 /* No need to add this to saved_regs -- it's just arg regs. */
1590 continue;
1591 }
1592 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1593 {
1594 unsigned imm = insn & 0xff; /* immediate value */
1595 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1596 imm = (imm >> rot) | (imm << (32 - rot));
1597 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
1598 }
1599 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1600 {
1601 unsigned imm = insn & 0xff; /* immediate value */
1602 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1603 imm = (imm >> rot) | (imm << (32 - rot));
1604 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
1605 }
1606 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1607 [sp, -#c]! */
1608 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1609 {
1610 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
1611 break;
1612
1613 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1614 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
1615 stack.store (regs[ARM_SP_REGNUM], 12, regs[regno]);
1616 }
1617 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1618 [sp!] */
1619 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1620 {
1621 int n_saved_fp_regs;
1622 unsigned int fp_start_reg, fp_bound_reg;
1623
1624 if (stack.store_would_trash (regs[ARM_SP_REGNUM]))
1625 break;
1626
1627 if ((insn & 0x800) == 0x800) /* N0 is set */
1628 {
1629 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1630 n_saved_fp_regs = 3;
1631 else
1632 n_saved_fp_regs = 1;
1633 }
1634 else
1635 {
1636 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1637 n_saved_fp_regs = 2;
1638 else
1639 n_saved_fp_regs = 4;
1640 }
1641
1642 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
1643 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1644 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
1645 {
1646 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1647 stack.store (regs[ARM_SP_REGNUM], 12,
1648 regs[fp_start_reg++]);
1649 }
1650 }
1651 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1652 {
1653 /* Allow some special function calls when skipping the
1654 prologue; GCC generates these before storing arguments to
1655 the stack. */
1656 CORE_ADDR dest = BranchDest (current_pc, insn);
1657
1658 if (skip_prologue_function (gdbarch, dest, 0))
1659 continue;
1660 else
1661 break;
1662 }
1663 else if ((insn & 0xf0000000) != 0xe0000000)
1664 break; /* Condition not true, exit early. */
1665 else if (arm_instruction_changes_pc (insn))
1666 /* Don't scan past anything that might change control flow. */
1667 break;
1668 else if (arm_instruction_restores_sp (insn))
1669 {
1670 /* Don't scan past the epilogue. */
1671 break;
1672 }
1673 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1674 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1675 /* Ignore block loads from the stack, potentially copying
1676 parameters from memory. */
1677 continue;
1678 else if ((insn & 0xfc500000) == 0xe4100000
1679 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1680 /* Similarly ignore single loads from the stack. */
1681 continue;
1682 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1683 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1684 register instead of the stack. */
1685 continue;
1686 else
1687 {
1688 /* The optimizer might shove anything into the prologue, if
1689 we build up cache (cache != NULL) from scanning prologue,
1690 we just skip what we don't recognize and scan further to
1691 make cache as complete as possible. However, if we skip
1692 prologue, we'll stop immediately on unrecognized
1693 instruction. */
1694 unrecognized_pc = current_pc;
1695 if (cache != NULL)
1696 continue;
1697 else
1698 break;
1699 }
1700 }
1701
1702 if (unrecognized_pc == 0)
1703 unrecognized_pc = current_pc;
1704
1705 if (cache)
1706 {
1707 int framereg, framesize;
1708
1709 /* The frame size is just the distance from the frame register
1710 to the original stack pointer. */
1711 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1712 {
1713 /* Frame pointer is fp. */
1714 framereg = ARM_FP_REGNUM;
1715 framesize = -regs[ARM_FP_REGNUM].k;
1716 }
1717 else
1718 {
1719 /* Try the stack pointer... this is a bit desperate. */
1720 framereg = ARM_SP_REGNUM;
1721 framesize = -regs[ARM_SP_REGNUM].k;
1722 }
1723
1724 cache->framereg = framereg;
1725 cache->framesize = framesize;
1726
1727 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1728 if (stack.find_reg (gdbarch, regno, &offset))
1729 cache->saved_regs[regno].addr = offset;
1730 }
1731
1732 if (arm_debug)
1733 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1734 paddress (gdbarch, unrecognized_pc));
1735
1736 return unrecognized_pc;
1737 }
1738
1739 static void
1740 arm_scan_prologue (struct frame_info *this_frame,
1741 struct arm_prologue_cache *cache)
1742 {
1743 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1744 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1745 CORE_ADDR prologue_start, prologue_end;
1746 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1747 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1748
1749 /* Assume there is no frame until proven otherwise. */
1750 cache->framereg = ARM_SP_REGNUM;
1751 cache->framesize = 0;
1752
1753 /* Check for Thumb prologue. */
1754 if (arm_frame_is_thumb (this_frame))
1755 {
1756 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1757 return;
1758 }
1759
1760 /* Find the function prologue. If we can't find the function in
1761 the symbol table, peek in the stack frame to find the PC. */
1762 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1763 &prologue_end))
1764 {
1765 /* One way to find the end of the prologue (which works well
1766 for unoptimized code) is to do the following:
1767
1768 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1769
1770 if (sal.line == 0)
1771 prologue_end = prev_pc;
1772 else if (sal.end < prologue_end)
1773 prologue_end = sal.end;
1774
1775 This mechanism is very accurate so long as the optimizer
1776 doesn't move any instructions from the function body into the
1777 prologue. If this happens, sal.end will be the last
1778 instruction in the first hunk of prologue code just before
1779 the first instruction that the scheduler has moved from
1780 the body to the prologue.
1781
1782 In order to make sure that we scan all of the prologue
1783 instructions, we use a slightly less accurate mechanism which
1784 may scan more than necessary. To help compensate for this
1785 lack of accuracy, the prologue scanning loop below contains
1786 several clauses which'll cause the loop to terminate early if
1787 an implausible prologue instruction is encountered.
1788
1789 The expression
1790
1791 prologue_start + 64
1792
1793 is a suitable endpoint since it accounts for the largest
1794 possible prologue plus up to five instructions inserted by
1795 the scheduler. */
1796
1797 if (prologue_end > prologue_start + 64)
1798 {
1799 prologue_end = prologue_start + 64; /* See above. */
1800 }
1801 }
1802 else
1803 {
1804 /* We have no symbol information. Our only option is to assume this
1805 function has a standard stack frame and the normal frame register.
1806 Then, we can find the value of our frame pointer on entrance to
1807 the callee (or at the present moment if this is the innermost frame).
1808 The value stored there should be the address of the stmfd + 8. */
1809 CORE_ADDR frame_loc;
1810 ULONGEST return_value;
1811
1812 /* AAPCS does not use a frame register, so we can abort here. */
1813 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_AAPCS)
1814 return;
1815
1816 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1817 if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order,
1818 &return_value))
1819 return;
1820 else
1821 {
1822 prologue_start = gdbarch_addr_bits_remove
1823 (gdbarch, return_value) - 8;
1824 prologue_end = prologue_start + 64; /* See above. */
1825 }
1826 }
1827
1828 if (prev_pc < prologue_end)
1829 prologue_end = prev_pc;
1830
1831 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1832 }
1833
1834 static struct arm_prologue_cache *
1835 arm_make_prologue_cache (struct frame_info *this_frame)
1836 {
1837 int reg;
1838 struct arm_prologue_cache *cache;
1839 CORE_ADDR unwound_fp;
1840
1841 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1842 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1843
1844 arm_scan_prologue (this_frame, cache);
1845
1846 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
1847 if (unwound_fp == 0)
1848 return cache;
1849
1850 cache->prev_sp = unwound_fp + cache->framesize;
1851
1852 /* Calculate actual addresses of saved registers using offsets
1853 determined by arm_scan_prologue. */
1854 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
1855 if (trad_frame_addr_p (cache->saved_regs, reg))
1856 cache->saved_regs[reg].addr += cache->prev_sp;
1857
1858 return cache;
1859 }
1860
1861 /* Implementation of the stop_reason hook for arm_prologue frames. */
1862
1863 static enum unwind_stop_reason
1864 arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1865 void **this_cache)
1866 {
1867 struct arm_prologue_cache *cache;
1868 CORE_ADDR pc;
1869
1870 if (*this_cache == NULL)
1871 *this_cache = arm_make_prologue_cache (this_frame);
1872 cache = (struct arm_prologue_cache *) *this_cache;
1873
1874 /* This is meant to halt the backtrace at "_start". */
1875 pc = get_frame_pc (this_frame);
1876 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1877 return UNWIND_OUTERMOST;
1878
1879 /* If we've hit a wall, stop. */
1880 if (cache->prev_sp == 0)
1881 return UNWIND_OUTERMOST;
1882
1883 return UNWIND_NO_REASON;
1884 }
1885
1886 /* Our frame ID for a normal frame is the current function's starting PC
1887 and the caller's SP when we were called. */
1888
1889 static void
1890 arm_prologue_this_id (struct frame_info *this_frame,
1891 void **this_cache,
1892 struct frame_id *this_id)
1893 {
1894 struct arm_prologue_cache *cache;
1895 struct frame_id id;
1896 CORE_ADDR pc, func;
1897
1898 if (*this_cache == NULL)
1899 *this_cache = arm_make_prologue_cache (this_frame);
1900 cache = (struct arm_prologue_cache *) *this_cache;
1901
1902 /* Use function start address as part of the frame ID. If we cannot
1903 identify the start address (due to missing symbol information),
1904 fall back to just using the current PC. */
1905 pc = get_frame_pc (this_frame);
1906 func = get_frame_func (this_frame);
1907 if (!func)
1908 func = pc;
1909
1910 id = frame_id_build (cache->prev_sp, func);
1911 *this_id = id;
1912 }
1913
1914 static struct value *
1915 arm_prologue_prev_register (struct frame_info *this_frame,
1916 void **this_cache,
1917 int prev_regnum)
1918 {
1919 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1920 struct arm_prologue_cache *cache;
1921
1922 if (*this_cache == NULL)
1923 *this_cache = arm_make_prologue_cache (this_frame);
1924 cache = (struct arm_prologue_cache *) *this_cache;
1925
1926 /* If we are asked to unwind the PC, then we need to return the LR
1927 instead. The prologue may save PC, but it will point into this
1928 frame's prologue, not the next frame's resume location. Also
1929 strip the saved T bit. A valid LR may have the low bit set, but
1930 a valid PC never does. */
1931 if (prev_regnum == ARM_PC_REGNUM)
1932 {
1933 CORE_ADDR lr;
1934
1935 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1936 return frame_unwind_got_constant (this_frame, prev_regnum,
1937 arm_addr_bits_remove (gdbarch, lr));
1938 }
1939
1940 /* SP is generally not saved to the stack, but this frame is
1941 identified by the next frame's stack pointer at the time of the call.
1942 The value was already reconstructed into PREV_SP. */
1943 if (prev_regnum == ARM_SP_REGNUM)
1944 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1945
1946 /* The CPSR may have been changed by the call instruction and by the
1947 called function. The only bit we can reconstruct is the T bit,
1948 by checking the low bit of LR as of the call. This is a reliable
1949 indicator of Thumb-ness except for some ARM v4T pre-interworking
1950 Thumb code, which could get away with a clear low bit as long as
1951 the called function did not use bx. Guess that all other
1952 bits are unchanged; the condition flags are presumably lost,
1953 but the processor status is likely valid. */
1954 if (prev_regnum == ARM_PS_REGNUM)
1955 {
1956 CORE_ADDR lr, cpsr;
1957 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
1958
1959 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1960 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1961 if (IS_THUMB_ADDR (lr))
1962 cpsr |= t_bit;
1963 else
1964 cpsr &= ~t_bit;
1965 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1966 }
1967
1968 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1969 prev_regnum);
1970 }
1971
1972 struct frame_unwind arm_prologue_unwind = {
1973 NORMAL_FRAME,
1974 arm_prologue_unwind_stop_reason,
1975 arm_prologue_this_id,
1976 arm_prologue_prev_register,
1977 NULL,
1978 default_frame_sniffer
1979 };
1980
1981 /* Maintain a list of ARM exception table entries per objfile, similar to the
1982 list of mapping symbols. We only cache entries for standard ARM-defined
1983 personality routines; the cache will contain only the frame unwinding
1984 instructions associated with the entry (not the descriptors). */
1985
1986 struct arm_exidx_entry
1987 {
1988 bfd_vma addr;
1989 gdb_byte *entry;
1990
1991 bool operator< (const arm_exidx_entry &other) const
1992 {
1993 return addr < other.addr;
1994 }
1995 };
1996
1997 struct arm_exidx_data
1998 {
1999 std::vector<std::vector<arm_exidx_entry>> section_maps;
2000 };
2001
2002 /* Per-BFD key to store exception handling information. */
2003 static const struct bfd_key<arm_exidx_data> arm_exidx_data_key;
2004
2005 static struct obj_section *
2006 arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2007 {
2008 struct obj_section *osect;
2009
2010 ALL_OBJFILE_OSECTIONS (objfile, osect)
2011 if (bfd_section_flags (osect->the_bfd_section) & SEC_ALLOC)
2012 {
2013 bfd_vma start, size;
2014 start = bfd_section_vma (osect->the_bfd_section);
2015 size = bfd_section_size (osect->the_bfd_section);
2016
2017 if (start <= vma && vma < start + size)
2018 return osect;
2019 }
2020
2021 return NULL;
2022 }
2023
2024 /* Parse contents of exception table and exception index sections
2025 of OBJFILE, and fill in the exception table entry cache.
2026
2027 For each entry that refers to a standard ARM-defined personality
2028 routine, extract the frame unwinding instructions (from either
2029 the index or the table section). The unwinding instructions
2030 are normalized by:
2031 - extracting them from the rest of the table data
2032 - converting to host endianness
2033 - appending the implicit 0xb0 ("Finish") code
2034
2035 The extracted and normalized instructions are stored for later
2036 retrieval by the arm_find_exidx_entry routine. */
2037
2038 static void
2039 arm_exidx_new_objfile (struct objfile *objfile)
2040 {
2041 struct arm_exidx_data *data;
2042 asection *exidx, *extab;
2043 bfd_vma exidx_vma = 0, extab_vma = 0;
2044 LONGEST i;
2045
2046 /* If we've already touched this file, do nothing. */
2047 if (!objfile || arm_exidx_data_key.get (objfile->obfd) != NULL)
2048 return;
2049
2050 /* Read contents of exception table and index. */
2051 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
2052 gdb::byte_vector exidx_data;
2053 if (exidx)
2054 {
2055 exidx_vma = bfd_section_vma (exidx);
2056 exidx_data.resize (bfd_section_size (exidx));
2057
2058 if (!bfd_get_section_contents (objfile->obfd, exidx,
2059 exidx_data.data (), 0,
2060 exidx_data.size ()))
2061 return;
2062 }
2063
2064 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2065 gdb::byte_vector extab_data;
2066 if (extab)
2067 {
2068 extab_vma = bfd_section_vma (extab);
2069 extab_data.resize (bfd_section_size (extab));
2070
2071 if (!bfd_get_section_contents (objfile->obfd, extab,
2072 extab_data.data (), 0,
2073 extab_data.size ()))
2074 return;
2075 }
2076
2077 /* Allocate exception table data structure. */
2078 data = arm_exidx_data_key.emplace (objfile->obfd);
2079 data->section_maps.resize (objfile->obfd->section_count);
2080
2081 /* Fill in exception table. */
2082 for (i = 0; i < exidx_data.size () / 8; i++)
2083 {
2084 struct arm_exidx_entry new_exidx_entry;
2085 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data.data () + i * 8);
2086 bfd_vma val = bfd_h_get_32 (objfile->obfd,
2087 exidx_data.data () + i * 8 + 4);
2088 bfd_vma addr = 0, word = 0;
2089 int n_bytes = 0, n_words = 0;
2090 struct obj_section *sec;
2091 gdb_byte *entry = NULL;
2092
2093 /* Extract address of start of function. */
2094 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2095 idx += exidx_vma + i * 8;
2096
2097 /* Find section containing function and compute section offset. */
2098 sec = arm_obj_section_from_vma (objfile, idx);
2099 if (sec == NULL)
2100 continue;
2101 idx -= bfd_section_vma (sec->the_bfd_section);
2102
2103 /* Determine address of exception table entry. */
2104 if (val == 1)
2105 {
2106 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2107 }
2108 else if ((val & 0xff000000) == 0x80000000)
2109 {
2110 /* Exception table entry embedded in .ARM.exidx
2111 -- must be short form. */
2112 word = val;
2113 n_bytes = 3;
2114 }
2115 else if (!(val & 0x80000000))
2116 {
2117 /* Exception table entry in .ARM.extab. */
2118 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2119 addr += exidx_vma + i * 8 + 4;
2120
2121 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_data.size ())
2122 {
2123 word = bfd_h_get_32 (objfile->obfd,
2124 extab_data.data () + addr - extab_vma);
2125 addr += 4;
2126
2127 if ((word & 0xff000000) == 0x80000000)
2128 {
2129 /* Short form. */
2130 n_bytes = 3;
2131 }
2132 else if ((word & 0xff000000) == 0x81000000
2133 || (word & 0xff000000) == 0x82000000)
2134 {
2135 /* Long form. */
2136 n_bytes = 2;
2137 n_words = ((word >> 16) & 0xff);
2138 }
2139 else if (!(word & 0x80000000))
2140 {
2141 bfd_vma pers;
2142 struct obj_section *pers_sec;
2143 int gnu_personality = 0;
2144
2145 /* Custom personality routine. */
2146 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2147 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2148
2149 /* Check whether we've got one of the variants of the
2150 GNU personality routines. */
2151 pers_sec = arm_obj_section_from_vma (objfile, pers);
2152 if (pers_sec)
2153 {
2154 static const char *personality[] =
2155 {
2156 "__gcc_personality_v0",
2157 "__gxx_personality_v0",
2158 "__gcj_personality_v0",
2159 "__gnu_objc_personality_v0",
2160 NULL
2161 };
2162
2163 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2164 int k;
2165
2166 for (k = 0; personality[k]; k++)
2167 if (lookup_minimal_symbol_by_pc_name
2168 (pc, personality[k], objfile))
2169 {
2170 gnu_personality = 1;
2171 break;
2172 }
2173 }
2174
2175 /* If so, the next word contains a word count in the high
2176 byte, followed by the same unwind instructions as the
2177 pre-defined forms. */
2178 if (gnu_personality
2179 && addr + 4 <= extab_vma + extab_data.size ())
2180 {
2181 word = bfd_h_get_32 (objfile->obfd,
2182 (extab_data.data ()
2183 + addr - extab_vma));
2184 addr += 4;
2185 n_bytes = 3;
2186 n_words = ((word >> 24) & 0xff);
2187 }
2188 }
2189 }
2190 }
2191
2192 /* Sanity check address. */
2193 if (n_words)
2194 if (addr < extab_vma
2195 || addr + 4 * n_words > extab_vma + extab_data.size ())
2196 n_words = n_bytes = 0;
2197
2198 /* The unwind instructions reside in WORD (only the N_BYTES least
2199 significant bytes are valid), followed by N_WORDS words in the
2200 extab section starting at ADDR. */
2201 if (n_bytes || n_words)
2202 {
2203 gdb_byte *p = entry
2204 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2205 n_bytes + n_words * 4 + 1);
2206
2207 while (n_bytes--)
2208 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2209
2210 while (n_words--)
2211 {
2212 word = bfd_h_get_32 (objfile->obfd,
2213 extab_data.data () + addr - extab_vma);
2214 addr += 4;
2215
2216 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2217 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2218 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2219 *p++ = (gdb_byte) (word & 0xff);
2220 }
2221
2222 /* Implied "Finish" to terminate the list. */
2223 *p++ = 0xb0;
2224 }
2225
2226 /* Push entry onto vector. They are guaranteed to always
2227 appear in order of increasing addresses. */
2228 new_exidx_entry.addr = idx;
2229 new_exidx_entry.entry = entry;
2230 data->section_maps[sec->the_bfd_section->index].push_back
2231 (new_exidx_entry);
2232 }
2233 }
2234
2235 /* Search for the exception table entry covering MEMADDR. If one is found,
2236 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2237 set *START to the start of the region covered by this entry. */
2238
2239 static gdb_byte *
2240 arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2241 {
2242 struct obj_section *sec;
2243
2244 sec = find_pc_section (memaddr);
2245 if (sec != NULL)
2246 {
2247 struct arm_exidx_data *data;
2248 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2249
2250 data = arm_exidx_data_key.get (sec->objfile->obfd);
2251 if (data != NULL)
2252 {
2253 std::vector<arm_exidx_entry> &map
2254 = data->section_maps[sec->the_bfd_section->index];
2255 if (!map.empty ())
2256 {
2257 auto idx = std::lower_bound (map.begin (), map.end (), map_key);
2258
2259 /* std::lower_bound finds the earliest ordered insertion
2260 point. If the following symbol starts at this exact
2261 address, we use that; otherwise, the preceding
2262 exception table entry covers this address. */
2263 if (idx < map.end ())
2264 {
2265 if (idx->addr == map_key.addr)
2266 {
2267 if (start)
2268 *start = idx->addr + obj_section_addr (sec);
2269 return idx->entry;
2270 }
2271 }
2272
2273 if (idx > map.begin ())
2274 {
2275 idx = idx - 1;
2276 if (start)
2277 *start = idx->addr + obj_section_addr (sec);
2278 return idx->entry;
2279 }
2280 }
2281 }
2282 }
2283
2284 return NULL;
2285 }
2286
2287 /* Given the current frame THIS_FRAME, and its associated frame unwinding
2288 instruction list from the ARM exception table entry ENTRY, allocate and
2289 return a prologue cache structure describing how to unwind this frame.
2290
2291 Return NULL if the unwinding instruction list contains a "spare",
2292 "reserved" or "refuse to unwind" instruction as defined in section
2293 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2294 for the ARM Architecture" document. */
2295
2296 static struct arm_prologue_cache *
2297 arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2298 {
2299 CORE_ADDR vsp = 0;
2300 int vsp_valid = 0;
2301
2302 struct arm_prologue_cache *cache;
2303 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2304 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2305
2306 for (;;)
2307 {
2308 gdb_byte insn;
2309
2310 /* Whenever we reload SP, we actually have to retrieve its
2311 actual value in the current frame. */
2312 if (!vsp_valid)
2313 {
2314 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2315 {
2316 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2317 vsp = get_frame_register_unsigned (this_frame, reg);
2318 }
2319 else
2320 {
2321 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2322 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2323 }
2324
2325 vsp_valid = 1;
2326 }
2327
2328 /* Decode next unwind instruction. */
2329 insn = *entry++;
2330
2331 if ((insn & 0xc0) == 0)
2332 {
2333 int offset = insn & 0x3f;
2334 vsp += (offset << 2) + 4;
2335 }
2336 else if ((insn & 0xc0) == 0x40)
2337 {
2338 int offset = insn & 0x3f;
2339 vsp -= (offset << 2) + 4;
2340 }
2341 else if ((insn & 0xf0) == 0x80)
2342 {
2343 int mask = ((insn & 0xf) << 8) | *entry++;
2344 int i;
2345
2346 /* The special case of an all-zero mask identifies
2347 "Refuse to unwind". We return NULL to fall back
2348 to the prologue analyzer. */
2349 if (mask == 0)
2350 return NULL;
2351
2352 /* Pop registers r4..r15 under mask. */
2353 for (i = 0; i < 12; i++)
2354 if (mask & (1 << i))
2355 {
2356 cache->saved_regs[4 + i].addr = vsp;
2357 vsp += 4;
2358 }
2359
2360 /* Special-case popping SP -- we need to reload vsp. */
2361 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2362 vsp_valid = 0;
2363 }
2364 else if ((insn & 0xf0) == 0x90)
2365 {
2366 int reg = insn & 0xf;
2367
2368 /* Reserved cases. */
2369 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2370 return NULL;
2371
2372 /* Set SP from another register and mark VSP for reload. */
2373 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2374 vsp_valid = 0;
2375 }
2376 else if ((insn & 0xf0) == 0xa0)
2377 {
2378 int count = insn & 0x7;
2379 int pop_lr = (insn & 0x8) != 0;
2380 int i;
2381
2382 /* Pop r4..r[4+count]. */
2383 for (i = 0; i <= count; i++)
2384 {
2385 cache->saved_regs[4 + i].addr = vsp;
2386 vsp += 4;
2387 }
2388
2389 /* If indicated by flag, pop LR as well. */
2390 if (pop_lr)
2391 {
2392 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2393 vsp += 4;
2394 }
2395 }
2396 else if (insn == 0xb0)
2397 {
2398 /* We could only have updated PC by popping into it; if so, it
2399 will show up as address. Otherwise, copy LR into PC. */
2400 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2401 cache->saved_regs[ARM_PC_REGNUM]
2402 = cache->saved_regs[ARM_LR_REGNUM];
2403
2404 /* We're done. */
2405 break;
2406 }
2407 else if (insn == 0xb1)
2408 {
2409 int mask = *entry++;
2410 int i;
2411
2412 /* All-zero mask and mask >= 16 is "spare". */
2413 if (mask == 0 || mask >= 16)
2414 return NULL;
2415
2416 /* Pop r0..r3 under mask. */
2417 for (i = 0; i < 4; i++)
2418 if (mask & (1 << i))
2419 {
2420 cache->saved_regs[i].addr = vsp;
2421 vsp += 4;
2422 }
2423 }
2424 else if (insn == 0xb2)
2425 {
2426 ULONGEST offset = 0;
2427 unsigned shift = 0;
2428
2429 do
2430 {
2431 offset |= (*entry & 0x7f) << shift;
2432 shift += 7;
2433 }
2434 while (*entry++ & 0x80);
2435
2436 vsp += 0x204 + (offset << 2);
2437 }
2438 else if (insn == 0xb3)
2439 {
2440 int start = *entry >> 4;
2441 int count = (*entry++) & 0xf;
2442 int i;
2443
2444 /* Only registers D0..D15 are valid here. */
2445 if (start + count >= 16)
2446 return NULL;
2447
2448 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2449 for (i = 0; i <= count; i++)
2450 {
2451 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2452 vsp += 8;
2453 }
2454
2455 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2456 vsp += 4;
2457 }
2458 else if ((insn & 0xf8) == 0xb8)
2459 {
2460 int count = insn & 0x7;
2461 int i;
2462
2463 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2464 for (i = 0; i <= count; i++)
2465 {
2466 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2467 vsp += 8;
2468 }
2469
2470 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2471 vsp += 4;
2472 }
2473 else if (insn == 0xc6)
2474 {
2475 int start = *entry >> 4;
2476 int count = (*entry++) & 0xf;
2477 int i;
2478
2479 /* Only registers WR0..WR15 are valid. */
2480 if (start + count >= 16)
2481 return NULL;
2482
2483 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2484 for (i = 0; i <= count; i++)
2485 {
2486 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2487 vsp += 8;
2488 }
2489 }
2490 else if (insn == 0xc7)
2491 {
2492 int mask = *entry++;
2493 int i;
2494
2495 /* All-zero mask and mask >= 16 is "spare". */
2496 if (mask == 0 || mask >= 16)
2497 return NULL;
2498
2499 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2500 for (i = 0; i < 4; i++)
2501 if (mask & (1 << i))
2502 {
2503 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2504 vsp += 4;
2505 }
2506 }
2507 else if ((insn & 0xf8) == 0xc0)
2508 {
2509 int count = insn & 0x7;
2510 int i;
2511
2512 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2513 for (i = 0; i <= count; i++)
2514 {
2515 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2516 vsp += 8;
2517 }
2518 }
2519 else if (insn == 0xc8)
2520 {
2521 int start = *entry >> 4;
2522 int count = (*entry++) & 0xf;
2523 int i;
2524
2525 /* Only registers D0..D31 are valid. */
2526 if (start + count >= 16)
2527 return NULL;
2528
2529 /* Pop VFP double-precision registers
2530 D[16+start]..D[16+start+count]. */
2531 for (i = 0; i <= count; i++)
2532 {
2533 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2534 vsp += 8;
2535 }
2536 }
2537 else if (insn == 0xc9)
2538 {
2539 int start = *entry >> 4;
2540 int count = (*entry++) & 0xf;
2541 int i;
2542
2543 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2544 for (i = 0; i <= count; i++)
2545 {
2546 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2547 vsp += 8;
2548 }
2549 }
2550 else if ((insn & 0xf8) == 0xd0)
2551 {
2552 int count = insn & 0x7;
2553 int i;
2554
2555 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2556 for (i = 0; i <= count; i++)
2557 {
2558 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2559 vsp += 8;
2560 }
2561 }
2562 else
2563 {
2564 /* Everything else is "spare". */
2565 return NULL;
2566 }
2567 }
2568
2569 /* If we restore SP from a register, assume this was the frame register.
2570 Otherwise just fall back to SP as frame register. */
2571 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2572 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2573 else
2574 cache->framereg = ARM_SP_REGNUM;
2575
2576 /* Determine offset to previous frame. */
2577 cache->framesize
2578 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2579
2580 /* We already got the previous SP. */
2581 cache->prev_sp = vsp;
2582
2583 return cache;
2584 }
2585
2586 /* Unwinding via ARM exception table entries. Note that the sniffer
2587 already computes a filled-in prologue cache, which is then used
2588 with the same arm_prologue_this_id and arm_prologue_prev_register
2589 routines also used for prologue-parsing based unwinding. */
2590
2591 static int
2592 arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2593 struct frame_info *this_frame,
2594 void **this_prologue_cache)
2595 {
2596 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2597 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2598 CORE_ADDR addr_in_block, exidx_region, func_start;
2599 struct arm_prologue_cache *cache;
2600 gdb_byte *entry;
2601
2602 /* See if we have an ARM exception table entry covering this address. */
2603 addr_in_block = get_frame_address_in_block (this_frame);
2604 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2605 if (!entry)
2606 return 0;
2607
2608 /* The ARM exception table does not describe unwind information
2609 for arbitrary PC values, but is guaranteed to be correct only
2610 at call sites. We have to decide here whether we want to use
2611 ARM exception table information for this frame, or fall back
2612 to using prologue parsing. (Note that if we have DWARF CFI,
2613 this sniffer isn't even called -- CFI is always preferred.)
2614
2615 Before we make this decision, however, we check whether we
2616 actually have *symbol* information for the current frame.
2617 If not, prologue parsing would not work anyway, so we might
2618 as well use the exception table and hope for the best. */
2619 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2620 {
2621 int exc_valid = 0;
2622
2623 /* If the next frame is "normal", we are at a call site in this
2624 frame, so exception information is guaranteed to be valid. */
2625 if (get_next_frame (this_frame)
2626 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2627 exc_valid = 1;
2628
2629 /* We also assume exception information is valid if we're currently
2630 blocked in a system call. The system library is supposed to
2631 ensure this, so that e.g. pthread cancellation works. */
2632 if (arm_frame_is_thumb (this_frame))
2633 {
2634 ULONGEST insn;
2635
2636 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2,
2637 2, byte_order_for_code, &insn)
2638 && (insn & 0xff00) == 0xdf00 /* svc */)
2639 exc_valid = 1;
2640 }
2641 else
2642 {
2643 ULONGEST insn;
2644
2645 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4,
2646 4, byte_order_for_code, &insn)
2647 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2648 exc_valid = 1;
2649 }
2650
2651 /* Bail out if we don't know that exception information is valid. */
2652 if (!exc_valid)
2653 return 0;
2654
2655 /* The ARM exception index does not mark the *end* of the region
2656 covered by the entry, and some functions will not have any entry.
2657 To correctly recognize the end of the covered region, the linker
2658 should have inserted dummy records with a CANTUNWIND marker.
2659
2660 Unfortunately, current versions of GNU ld do not reliably do
2661 this, and thus we may have found an incorrect entry above.
2662 As a (temporary) sanity check, we only use the entry if it
2663 lies *within* the bounds of the function. Note that this check
2664 might reject perfectly valid entries that just happen to cover
2665 multiple functions; therefore this check ought to be removed
2666 once the linker is fixed. */
2667 if (func_start > exidx_region)
2668 return 0;
2669 }
2670
2671 /* Decode the list of unwinding instructions into a prologue cache.
2672 Note that this may fail due to e.g. a "refuse to unwind" code. */
2673 cache = arm_exidx_fill_cache (this_frame, entry);
2674 if (!cache)
2675 return 0;
2676
2677 *this_prologue_cache = cache;
2678 return 1;
2679 }
2680
2681 struct frame_unwind arm_exidx_unwind = {
2682 NORMAL_FRAME,
2683 default_frame_unwind_stop_reason,
2684 arm_prologue_this_id,
2685 arm_prologue_prev_register,
2686 NULL,
2687 arm_exidx_unwind_sniffer
2688 };
2689
2690 static struct arm_prologue_cache *
2691 arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2692 {
2693 struct arm_prologue_cache *cache;
2694 int reg;
2695
2696 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2697 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2698
2699 /* Still rely on the offset calculated from prologue. */
2700 arm_scan_prologue (this_frame, cache);
2701
2702 /* Since we are in epilogue, the SP has been restored. */
2703 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2704
2705 /* Calculate actual addresses of saved registers using offsets
2706 determined by arm_scan_prologue. */
2707 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2708 if (trad_frame_addr_p (cache->saved_regs, reg))
2709 cache->saved_regs[reg].addr += cache->prev_sp;
2710
2711 return cache;
2712 }
2713
2714 /* Implementation of function hook 'this_id' in
2715 'struct frame_uwnind' for epilogue unwinder. */
2716
2717 static void
2718 arm_epilogue_frame_this_id (struct frame_info *this_frame,
2719 void **this_cache,
2720 struct frame_id *this_id)
2721 {
2722 struct arm_prologue_cache *cache;
2723 CORE_ADDR pc, func;
2724
2725 if (*this_cache == NULL)
2726 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2727 cache = (struct arm_prologue_cache *) *this_cache;
2728
2729 /* Use function start address as part of the frame ID. If we cannot
2730 identify the start address (due to missing symbol information),
2731 fall back to just using the current PC. */
2732 pc = get_frame_pc (this_frame);
2733 func = get_frame_func (this_frame);
2734 if (func == 0)
2735 func = pc;
2736
2737 (*this_id) = frame_id_build (cache->prev_sp, pc);
2738 }
2739
2740 /* Implementation of function hook 'prev_register' in
2741 'struct frame_uwnind' for epilogue unwinder. */
2742
2743 static struct value *
2744 arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2745 void **this_cache, int regnum)
2746 {
2747 if (*this_cache == NULL)
2748 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2749
2750 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2751 }
2752
2753 static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2754 CORE_ADDR pc);
2755 static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2756 CORE_ADDR pc);
2757
2758 /* Implementation of function hook 'sniffer' in
2759 'struct frame_uwnind' for epilogue unwinder. */
2760
2761 static int
2762 arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2763 struct frame_info *this_frame,
2764 void **this_prologue_cache)
2765 {
2766 if (frame_relative_level (this_frame) == 0)
2767 {
2768 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2769 CORE_ADDR pc = get_frame_pc (this_frame);
2770
2771 if (arm_frame_is_thumb (this_frame))
2772 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2773 else
2774 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2775 }
2776 else
2777 return 0;
2778 }
2779
2780 /* Frame unwinder from epilogue. */
2781
2782 static const struct frame_unwind arm_epilogue_frame_unwind =
2783 {
2784 NORMAL_FRAME,
2785 default_frame_unwind_stop_reason,
2786 arm_epilogue_frame_this_id,
2787 arm_epilogue_frame_prev_register,
2788 NULL,
2789 arm_epilogue_frame_sniffer,
2790 };
2791
2792 /* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2793 trampoline, return the target PC. Otherwise return 0.
2794
2795 void call0a (char c, short s, int i, long l) {}
2796
2797 int main (void)
2798 {
2799 (*pointer_to_call0a) (c, s, i, l);
2800 }
2801
2802 Instead of calling a stub library function _call_via_xx (xx is
2803 the register name), GCC may inline the trampoline in the object
2804 file as below (register r2 has the address of call0a).
2805
2806 .global main
2807 .type main, %function
2808 ...
2809 bl .L1
2810 ...
2811 .size main, .-main
2812
2813 .L1:
2814 bx r2
2815
2816 The trampoline 'bx r2' doesn't belong to main. */
2817
2818 static CORE_ADDR
2819 arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2820 {
2821 /* The heuristics of recognizing such trampoline is that FRAME is
2822 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2823 if (arm_frame_is_thumb (frame))
2824 {
2825 gdb_byte buf[2];
2826
2827 if (target_read_memory (pc, buf, 2) == 0)
2828 {
2829 struct gdbarch *gdbarch = get_frame_arch (frame);
2830 enum bfd_endian byte_order_for_code
2831 = gdbarch_byte_order_for_code (gdbarch);
2832 uint16_t insn
2833 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2834
2835 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2836 {
2837 CORE_ADDR dest
2838 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2839
2840 /* Clear the LSB so that gdb core sets step-resume
2841 breakpoint at the right address. */
2842 return UNMAKE_THUMB_ADDR (dest);
2843 }
2844 }
2845 }
2846
2847 return 0;
2848 }
2849
2850 static struct arm_prologue_cache *
2851 arm_make_stub_cache (struct frame_info *this_frame)
2852 {
2853 struct arm_prologue_cache *cache;
2854
2855 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2856 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2857
2858 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2859
2860 return cache;
2861 }
2862
2863 /* Our frame ID for a stub frame is the current SP and LR. */
2864
2865 static void
2866 arm_stub_this_id (struct frame_info *this_frame,
2867 void **this_cache,
2868 struct frame_id *this_id)
2869 {
2870 struct arm_prologue_cache *cache;
2871
2872 if (*this_cache == NULL)
2873 *this_cache = arm_make_stub_cache (this_frame);
2874 cache = (struct arm_prologue_cache *) *this_cache;
2875
2876 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
2877 }
2878
2879 static int
2880 arm_stub_unwind_sniffer (const struct frame_unwind *self,
2881 struct frame_info *this_frame,
2882 void **this_prologue_cache)
2883 {
2884 CORE_ADDR addr_in_block;
2885 gdb_byte dummy[4];
2886 CORE_ADDR pc, start_addr;
2887 const char *name;
2888
2889 addr_in_block = get_frame_address_in_block (this_frame);
2890 pc = get_frame_pc (this_frame);
2891 if (in_plt_section (addr_in_block)
2892 /* We also use the stub winder if the target memory is unreadable
2893 to avoid having the prologue unwinder trying to read it. */
2894 || target_read_memory (pc, dummy, 4) != 0)
2895 return 1;
2896
2897 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2898 && arm_skip_bx_reg (this_frame, pc) != 0)
2899 return 1;
2900
2901 return 0;
2902 }
2903
2904 struct frame_unwind arm_stub_unwind = {
2905 NORMAL_FRAME,
2906 default_frame_unwind_stop_reason,
2907 arm_stub_this_id,
2908 arm_prologue_prev_register,
2909 NULL,
2910 arm_stub_unwind_sniffer
2911 };
2912
2913 /* Put here the code to store, into CACHE->saved_regs, the addresses
2914 of the saved registers of frame described by THIS_FRAME. CACHE is
2915 returned. */
2916
2917 static struct arm_prologue_cache *
2918 arm_m_exception_cache (struct frame_info *this_frame)
2919 {
2920 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2921 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2922 struct arm_prologue_cache *cache;
2923 CORE_ADDR unwound_sp;
2924 LONGEST xpsr;
2925
2926 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2927 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2928
2929 unwound_sp = get_frame_register_unsigned (this_frame,
2930 ARM_SP_REGNUM);
2931
2932 /* The hardware saves eight 32-bit words, comprising xPSR,
2933 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2934 "B1.5.6 Exception entry behavior" in
2935 "ARMv7-M Architecture Reference Manual". */
2936 cache->saved_regs[0].addr = unwound_sp;
2937 cache->saved_regs[1].addr = unwound_sp + 4;
2938 cache->saved_regs[2].addr = unwound_sp + 8;
2939 cache->saved_regs[3].addr = unwound_sp + 12;
2940 cache->saved_regs[12].addr = unwound_sp + 16;
2941 cache->saved_regs[14].addr = unwound_sp + 20;
2942 cache->saved_regs[15].addr = unwound_sp + 24;
2943 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2944
2945 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2946 aligner between the top of the 32-byte stack frame and the
2947 previous context's stack pointer. */
2948 cache->prev_sp = unwound_sp + 32;
2949 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2950 && (xpsr & (1 << 9)) != 0)
2951 cache->prev_sp += 4;
2952
2953 return cache;
2954 }
2955
2956 /* Implementation of function hook 'this_id' in
2957 'struct frame_uwnind'. */
2958
2959 static void
2960 arm_m_exception_this_id (struct frame_info *this_frame,
2961 void **this_cache,
2962 struct frame_id *this_id)
2963 {
2964 struct arm_prologue_cache *cache;
2965
2966 if (*this_cache == NULL)
2967 *this_cache = arm_m_exception_cache (this_frame);
2968 cache = (struct arm_prologue_cache *) *this_cache;
2969
2970 /* Our frame ID for a stub frame is the current SP and LR. */
2971 *this_id = frame_id_build (cache->prev_sp,
2972 get_frame_pc (this_frame));
2973 }
2974
2975 /* Implementation of function hook 'prev_register' in
2976 'struct frame_uwnind'. */
2977
2978 static struct value *
2979 arm_m_exception_prev_register (struct frame_info *this_frame,
2980 void **this_cache,
2981 int prev_regnum)
2982 {
2983 struct arm_prologue_cache *cache;
2984
2985 if (*this_cache == NULL)
2986 *this_cache = arm_m_exception_cache (this_frame);
2987 cache = (struct arm_prologue_cache *) *this_cache;
2988
2989 /* The value was already reconstructed into PREV_SP. */
2990 if (prev_regnum == ARM_SP_REGNUM)
2991 return frame_unwind_got_constant (this_frame, prev_regnum,
2992 cache->prev_sp);
2993
2994 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
2995 prev_regnum);
2996 }
2997
2998 /* Implementation of function hook 'sniffer' in
2999 'struct frame_uwnind'. */
3000
3001 static int
3002 arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3003 struct frame_info *this_frame,
3004 void **this_prologue_cache)
3005 {
3006 CORE_ADDR this_pc = get_frame_pc (this_frame);
3007
3008 /* No need to check is_m; this sniffer is only registered for
3009 M-profile architectures. */
3010
3011 /* Check if exception frame returns to a magic PC value. */
3012 return arm_m_addr_is_magic (this_pc);
3013 }
3014
3015 /* Frame unwinder for M-profile exceptions. */
3016
3017 struct frame_unwind arm_m_exception_unwind =
3018 {
3019 SIGTRAMP_FRAME,
3020 default_frame_unwind_stop_reason,
3021 arm_m_exception_this_id,
3022 arm_m_exception_prev_register,
3023 NULL,
3024 arm_m_exception_unwind_sniffer
3025 };
3026
3027 static CORE_ADDR
3028 arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
3029 {
3030 struct arm_prologue_cache *cache;
3031
3032 if (*this_cache == NULL)
3033 *this_cache = arm_make_prologue_cache (this_frame);
3034 cache = (struct arm_prologue_cache *) *this_cache;
3035
3036 return cache->prev_sp - cache->framesize;
3037 }
3038
3039 struct frame_base arm_normal_base = {
3040 &arm_prologue_unwind,
3041 arm_normal_frame_base,
3042 arm_normal_frame_base,
3043 arm_normal_frame_base
3044 };
3045
3046 static struct value *
3047 arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3048 int regnum)
3049 {
3050 struct gdbarch * gdbarch = get_frame_arch (this_frame);
3051 CORE_ADDR lr, cpsr;
3052 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
3053
3054 switch (regnum)
3055 {
3056 case ARM_PC_REGNUM:
3057 /* The PC is normally copied from the return column, which
3058 describes saves of LR. However, that version may have an
3059 extra bit set to indicate Thumb state. The bit is not
3060 part of the PC. */
3061 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3062 return frame_unwind_got_constant (this_frame, regnum,
3063 arm_addr_bits_remove (gdbarch, lr));
3064
3065 case ARM_PS_REGNUM:
3066 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
3067 cpsr = get_frame_register_unsigned (this_frame, regnum);
3068 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3069 if (IS_THUMB_ADDR (lr))
3070 cpsr |= t_bit;
3071 else
3072 cpsr &= ~t_bit;
3073 return frame_unwind_got_constant (this_frame, regnum, cpsr);
3074
3075 default:
3076 internal_error (__FILE__, __LINE__,
3077 _("Unexpected register %d"), regnum);
3078 }
3079 }
3080
3081 static void
3082 arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3083 struct dwarf2_frame_state_reg *reg,
3084 struct frame_info *this_frame)
3085 {
3086 switch (regnum)
3087 {
3088 case ARM_PC_REGNUM:
3089 case ARM_PS_REGNUM:
3090 reg->how = DWARF2_FRAME_REG_FN;
3091 reg->loc.fn = arm_dwarf2_prev_register;
3092 break;
3093 case ARM_SP_REGNUM:
3094 reg->how = DWARF2_FRAME_REG_CFA;
3095 break;
3096 }
3097 }
3098
3099 /* Implement the stack_frame_destroyed_p gdbarch method. */
3100
3101 static int
3102 thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3103 {
3104 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3105 unsigned int insn, insn2;
3106 int found_return = 0, found_stack_adjust = 0;
3107 CORE_ADDR func_start, func_end;
3108 CORE_ADDR scan_pc;
3109 gdb_byte buf[4];
3110
3111 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3112 return 0;
3113
3114 /* The epilogue is a sequence of instructions along the following lines:
3115
3116 - add stack frame size to SP or FP
3117 - [if frame pointer used] restore SP from FP
3118 - restore registers from SP [may include PC]
3119 - a return-type instruction [if PC wasn't already restored]
3120
3121 In a first pass, we scan forward from the current PC and verify the
3122 instructions we find as compatible with this sequence, ending in a
3123 return instruction.
3124
3125 However, this is not sufficient to distinguish indirect function calls
3126 within a function from indirect tail calls in the epilogue in some cases.
3127 Therefore, if we didn't already find any SP-changing instruction during
3128 forward scan, we add a backward scanning heuristic to ensure we actually
3129 are in the epilogue. */
3130
3131 scan_pc = pc;
3132 while (scan_pc < func_end && !found_return)
3133 {
3134 if (target_read_memory (scan_pc, buf, 2))
3135 break;
3136
3137 scan_pc += 2;
3138 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3139
3140 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3141 found_return = 1;
3142 else if (insn == 0x46f7) /* mov pc, lr */
3143 found_return = 1;
3144 else if (thumb_instruction_restores_sp (insn))
3145 {
3146 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
3147 found_return = 1;
3148 }
3149 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
3150 {
3151 if (target_read_memory (scan_pc, buf, 2))
3152 break;
3153
3154 scan_pc += 2;
3155 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3156
3157 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3158 {
3159 if (insn2 & 0x8000) /* <registers> include PC. */
3160 found_return = 1;
3161 }
3162 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3163 && (insn2 & 0x0fff) == 0x0b04)
3164 {
3165 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3166 found_return = 1;
3167 }
3168 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3169 && (insn2 & 0x0e00) == 0x0a00)
3170 ;
3171 else
3172 break;
3173 }
3174 else
3175 break;
3176 }
3177
3178 if (!found_return)
3179 return 0;
3180
3181 /* Since any instruction in the epilogue sequence, with the possible
3182 exception of return itself, updates the stack pointer, we need to
3183 scan backwards for at most one instruction. Try either a 16-bit or
3184 a 32-bit instruction. This is just a heuristic, so we do not worry
3185 too much about false positives. */
3186
3187 if (pc - 4 < func_start)
3188 return 0;
3189 if (target_read_memory (pc - 4, buf, 4))
3190 return 0;
3191
3192 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3193 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3194
3195 if (thumb_instruction_restores_sp (insn2))
3196 found_stack_adjust = 1;
3197 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3198 found_stack_adjust = 1;
3199 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3200 && (insn2 & 0x0fff) == 0x0b04)
3201 found_stack_adjust = 1;
3202 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3203 && (insn2 & 0x0e00) == 0x0a00)
3204 found_stack_adjust = 1;
3205
3206 return found_stack_adjust;
3207 }
3208
3209 static int
3210 arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
3211 {
3212 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3213 unsigned int insn;
3214 int found_return;
3215 CORE_ADDR func_start, func_end;
3216
3217 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3218 return 0;
3219
3220 /* We are in the epilogue if the previous instruction was a stack
3221 adjustment and the next instruction is a possible return (bx, mov
3222 pc, or pop). We could have to scan backwards to find the stack
3223 adjustment, or forwards to find the return, but this is a decent
3224 approximation. First scan forwards. */
3225
3226 found_return = 0;
3227 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3228 if (bits (insn, 28, 31) != INST_NV)
3229 {
3230 if ((insn & 0x0ffffff0) == 0x012fff10)
3231 /* BX. */
3232 found_return = 1;
3233 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3234 /* MOV PC. */
3235 found_return = 1;
3236 else if ((insn & 0x0fff0000) == 0x08bd0000
3237 && (insn & 0x0000c000) != 0)
3238 /* POP (LDMIA), including PC or LR. */
3239 found_return = 1;
3240 }
3241
3242 if (!found_return)
3243 return 0;
3244
3245 /* Scan backwards. This is just a heuristic, so do not worry about
3246 false positives from mode changes. */
3247
3248 if (pc < func_start + 4)
3249 return 0;
3250
3251 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3252 if (arm_instruction_restores_sp (insn))
3253 return 1;
3254
3255 return 0;
3256 }
3257
3258 /* Implement the stack_frame_destroyed_p gdbarch method. */
3259
3260 static int
3261 arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3262 {
3263 if (arm_pc_is_thumb (gdbarch, pc))
3264 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3265 else
3266 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3267 }
3268
3269 /* When arguments must be pushed onto the stack, they go on in reverse
3270 order. The code below implements a FILO (stack) to do this. */
3271
3272 struct stack_item
3273 {
3274 int len;
3275 struct stack_item *prev;
3276 gdb_byte *data;
3277 };
3278
3279 static struct stack_item *
3280 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
3281 {
3282 struct stack_item *si;
3283 si = XNEW (struct stack_item);
3284 si->data = (gdb_byte *) xmalloc (len);
3285 si->len = len;
3286 si->prev = prev;
3287 memcpy (si->data, contents, len);
3288 return si;
3289 }
3290
3291 static struct stack_item *
3292 pop_stack_item (struct stack_item *si)
3293 {
3294 struct stack_item *dead = si;
3295 si = si->prev;
3296 xfree (dead->data);
3297 xfree (dead);
3298 return si;
3299 }
3300
3301 /* Implement the gdbarch type alignment method, overrides the generic
3302 alignment algorithm for anything that is arm specific. */
3303
3304 static ULONGEST
3305 arm_type_align (gdbarch *gdbarch, struct type *t)
3306 {
3307 t = check_typedef (t);
3308 if (TYPE_CODE (t) == TYPE_CODE_ARRAY && TYPE_VECTOR (t))
3309 {
3310 /* Use the natural alignment for vector types (the same for
3311 scalar type), but the maximum alignment is 64-bit. */
3312 if (TYPE_LENGTH (t) > 8)
3313 return 8;
3314 else
3315 return TYPE_LENGTH (t);
3316 }
3317
3318 /* Allow the common code to calculate the alignment. */
3319 return 0;
3320 }
3321
3322 /* Possible base types for a candidate for passing and returning in
3323 VFP registers. */
3324
3325 enum arm_vfp_cprc_base_type
3326 {
3327 VFP_CPRC_UNKNOWN,
3328 VFP_CPRC_SINGLE,
3329 VFP_CPRC_DOUBLE,
3330 VFP_CPRC_VEC64,
3331 VFP_CPRC_VEC128
3332 };
3333
3334 /* The length of one element of base type B. */
3335
3336 static unsigned
3337 arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3338 {
3339 switch (b)
3340 {
3341 case VFP_CPRC_SINGLE:
3342 return 4;
3343 case VFP_CPRC_DOUBLE:
3344 return 8;
3345 case VFP_CPRC_VEC64:
3346 return 8;
3347 case VFP_CPRC_VEC128:
3348 return 16;
3349 default:
3350 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3351 (int) b);
3352 }
3353 }
3354
3355 /* The character ('s', 'd' or 'q') for the type of VFP register used
3356 for passing base type B. */
3357
3358 static int
3359 arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3360 {
3361 switch (b)
3362 {
3363 case VFP_CPRC_SINGLE:
3364 return 's';
3365 case VFP_CPRC_DOUBLE:
3366 return 'd';
3367 case VFP_CPRC_VEC64:
3368 return 'd';
3369 case VFP_CPRC_VEC128:
3370 return 'q';
3371 default:
3372 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3373 (int) b);
3374 }
3375 }
3376
3377 /* Determine whether T may be part of a candidate for passing and
3378 returning in VFP registers, ignoring the limit on the total number
3379 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3380 classification of the first valid component found; if it is not
3381 VFP_CPRC_UNKNOWN, all components must have the same classification
3382 as *BASE_TYPE. If it is found that T contains a type not permitted
3383 for passing and returning in VFP registers, a type differently
3384 classified from *BASE_TYPE, or two types differently classified
3385 from each other, return -1, otherwise return the total number of
3386 base-type elements found (possibly 0 in an empty structure or
3387 array). Vector types are not currently supported, matching the
3388 generic AAPCS support. */
3389
3390 static int
3391 arm_vfp_cprc_sub_candidate (struct type *t,
3392 enum arm_vfp_cprc_base_type *base_type)
3393 {
3394 t = check_typedef (t);
3395 switch (TYPE_CODE (t))
3396 {
3397 case TYPE_CODE_FLT:
3398 switch (TYPE_LENGTH (t))
3399 {
3400 case 4:
3401 if (*base_type == VFP_CPRC_UNKNOWN)
3402 *base_type = VFP_CPRC_SINGLE;
3403 else if (*base_type != VFP_CPRC_SINGLE)
3404 return -1;
3405 return 1;
3406
3407 case 8:
3408 if (*base_type == VFP_CPRC_UNKNOWN)
3409 *base_type = VFP_CPRC_DOUBLE;
3410 else if (*base_type != VFP_CPRC_DOUBLE)
3411 return -1;
3412 return 1;
3413
3414 default:
3415 return -1;
3416 }
3417 break;
3418
3419 case TYPE_CODE_COMPLEX:
3420 /* Arguments of complex T where T is one of the types float or
3421 double get treated as if they are implemented as:
3422
3423 struct complexT
3424 {
3425 T real;
3426 T imag;
3427 };
3428
3429 */
3430 switch (TYPE_LENGTH (t))
3431 {
3432 case 8:
3433 if (*base_type == VFP_CPRC_UNKNOWN)
3434 *base_type = VFP_CPRC_SINGLE;
3435 else if (*base_type != VFP_CPRC_SINGLE)
3436 return -1;
3437 return 2;
3438
3439 case 16:
3440 if (*base_type == VFP_CPRC_UNKNOWN)
3441 *base_type = VFP_CPRC_DOUBLE;
3442 else if (*base_type != VFP_CPRC_DOUBLE)
3443 return -1;
3444 return 2;
3445
3446 default:
3447 return -1;
3448 }
3449 break;
3450
3451 case TYPE_CODE_ARRAY:
3452 {
3453 if (TYPE_VECTOR (t))
3454 {
3455 /* A 64-bit or 128-bit containerized vector type are VFP
3456 CPRCs. */
3457 switch (TYPE_LENGTH (t))
3458 {
3459 case 8:
3460 if (*base_type == VFP_CPRC_UNKNOWN)
3461 *base_type = VFP_CPRC_VEC64;
3462 return 1;
3463 case 16:
3464 if (*base_type == VFP_CPRC_UNKNOWN)
3465 *base_type = VFP_CPRC_VEC128;
3466 return 1;
3467 default:
3468 return -1;
3469 }
3470 }
3471 else
3472 {
3473 int count;
3474 unsigned unitlen;
3475
3476 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3477 base_type);
3478 if (count == -1)
3479 return -1;
3480 if (TYPE_LENGTH (t) == 0)
3481 {
3482 gdb_assert (count == 0);
3483 return 0;
3484 }
3485 else if (count == 0)
3486 return -1;
3487 unitlen = arm_vfp_cprc_unit_length (*base_type);
3488 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3489 return TYPE_LENGTH (t) / unitlen;
3490 }
3491 }
3492 break;
3493
3494 case TYPE_CODE_STRUCT:
3495 {
3496 int count = 0;
3497 unsigned unitlen;
3498 int i;
3499 for (i = 0; i < TYPE_NFIELDS (t); i++)
3500 {
3501 int sub_count = 0;
3502
3503 if (!field_is_static (&TYPE_FIELD (t, i)))
3504 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3505 base_type);
3506 if (sub_count == -1)
3507 return -1;
3508 count += sub_count;
3509 }
3510 if (TYPE_LENGTH (t) == 0)
3511 {
3512 gdb_assert (count == 0);
3513 return 0;
3514 }
3515 else if (count == 0)
3516 return -1;
3517 unitlen = arm_vfp_cprc_unit_length (*base_type);
3518 if (TYPE_LENGTH (t) != unitlen * count)
3519 return -1;
3520 return count;
3521 }
3522
3523 case TYPE_CODE_UNION:
3524 {
3525 int count = 0;
3526 unsigned unitlen;
3527 int i;
3528 for (i = 0; i < TYPE_NFIELDS (t); i++)
3529 {
3530 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3531 base_type);
3532 if (sub_count == -1)
3533 return -1;
3534 count = (count > sub_count ? count : sub_count);
3535 }
3536 if (TYPE_LENGTH (t) == 0)
3537 {
3538 gdb_assert (count == 0);
3539 return 0;
3540 }
3541 else if (count == 0)
3542 return -1;
3543 unitlen = arm_vfp_cprc_unit_length (*base_type);
3544 if (TYPE_LENGTH (t) != unitlen * count)
3545 return -1;
3546 return count;
3547 }
3548
3549 default:
3550 break;
3551 }
3552
3553 return -1;
3554 }
3555
3556 /* Determine whether T is a VFP co-processor register candidate (CPRC)
3557 if passed to or returned from a non-variadic function with the VFP
3558 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3559 *BASE_TYPE to the base type for T and *COUNT to the number of
3560 elements of that base type before returning. */
3561
3562 static int
3563 arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3564 int *count)
3565 {
3566 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3567 int c = arm_vfp_cprc_sub_candidate (t, &b);
3568 if (c <= 0 || c > 4)
3569 return 0;
3570 *base_type = b;
3571 *count = c;
3572 return 1;
3573 }
3574
3575 /* Return 1 if the VFP ABI should be used for passing arguments to and
3576 returning values from a function of type FUNC_TYPE, 0
3577 otherwise. */
3578
3579 static int
3580 arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3581 {
3582 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3583 /* Variadic functions always use the base ABI. Assume that functions
3584 without debug info are not variadic. */
3585 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3586 return 0;
3587 /* The VFP ABI is only supported as a variant of AAPCS. */
3588 if (tdep->arm_abi != ARM_ABI_AAPCS)
3589 return 0;
3590 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3591 }
3592
3593 /* We currently only support passing parameters in integer registers, which
3594 conforms with GCC's default model, and VFP argument passing following
3595 the VFP variant of AAPCS. Several other variants exist and
3596 we should probably support some of them based on the selected ABI. */
3597
3598 static CORE_ADDR
3599 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3600 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3601 struct value **args, CORE_ADDR sp,
3602 function_call_return_method return_method,
3603 CORE_ADDR struct_addr)
3604 {
3605 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3606 int argnum;
3607 int argreg;
3608 int nstack;
3609 struct stack_item *si = NULL;
3610 int use_vfp_abi;
3611 struct type *ftype;
3612 unsigned vfp_regs_free = (1 << 16) - 1;
3613
3614 /* Determine the type of this function and whether the VFP ABI
3615 applies. */
3616 ftype = check_typedef (value_type (function));
3617 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3618 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3619 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
3620
3621 /* Set the return address. For the ARM, the return breakpoint is
3622 always at BP_ADDR. */
3623 if (arm_pc_is_thumb (gdbarch, bp_addr))
3624 bp_addr |= 1;
3625 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
3626
3627 /* Walk through the list of args and determine how large a temporary
3628 stack is required. Need to take care here as structs may be
3629 passed on the stack, and we have to push them. */
3630 nstack = 0;
3631
3632 argreg = ARM_A1_REGNUM;
3633 nstack = 0;
3634
3635 /* The struct_return pointer occupies the first parameter
3636 passing register. */
3637 if (return_method == return_method_struct)
3638 {
3639 if (arm_debug)
3640 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
3641 gdbarch_register_name (gdbarch, argreg),
3642 paddress (gdbarch, struct_addr));
3643 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3644 argreg++;
3645 }
3646
3647 for (argnum = 0; argnum < nargs; argnum++)
3648 {
3649 int len;
3650 struct type *arg_type;
3651 struct type *target_type;
3652 enum type_code typecode;
3653 const bfd_byte *val;
3654 int align;
3655 enum arm_vfp_cprc_base_type vfp_base_type;
3656 int vfp_base_count;
3657 int may_use_core_reg = 1;
3658
3659 arg_type = check_typedef (value_type (args[argnum]));
3660 len = TYPE_LENGTH (arg_type);
3661 target_type = TYPE_TARGET_TYPE (arg_type);
3662 typecode = TYPE_CODE (arg_type);
3663 val = value_contents (args[argnum]);
3664
3665 align = type_align (arg_type);
3666 /* Round alignment up to a whole number of words. */
3667 align = (align + ARM_INT_REGISTER_SIZE - 1)
3668 & ~(ARM_INT_REGISTER_SIZE - 1);
3669 /* Different ABIs have different maximum alignments. */
3670 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3671 {
3672 /* The APCS ABI only requires word alignment. */
3673 align = ARM_INT_REGISTER_SIZE;
3674 }
3675 else
3676 {
3677 /* The AAPCS requires at most doubleword alignment. */
3678 if (align > ARM_INT_REGISTER_SIZE * 2)
3679 align = ARM_INT_REGISTER_SIZE * 2;
3680 }
3681
3682 if (use_vfp_abi
3683 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3684 &vfp_base_count))
3685 {
3686 int regno;
3687 int unit_length;
3688 int shift;
3689 unsigned mask;
3690
3691 /* Because this is a CPRC it cannot go in a core register or
3692 cause a core register to be skipped for alignment.
3693 Either it goes in VFP registers and the rest of this loop
3694 iteration is skipped for this argument, or it goes on the
3695 stack (and the stack alignment code is correct for this
3696 case). */
3697 may_use_core_reg = 0;
3698
3699 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3700 shift = unit_length / 4;
3701 mask = (1 << (shift * vfp_base_count)) - 1;
3702 for (regno = 0; regno < 16; regno += shift)
3703 if (((vfp_regs_free >> regno) & mask) == mask)
3704 break;
3705
3706 if (regno < 16)
3707 {
3708 int reg_char;
3709 int reg_scaled;
3710 int i;
3711
3712 vfp_regs_free &= ~(mask << regno);
3713 reg_scaled = regno / shift;
3714 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3715 for (i = 0; i < vfp_base_count; i++)
3716 {
3717 char name_buf[4];
3718 int regnum;
3719 if (reg_char == 'q')
3720 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
3721 val + i * unit_length);
3722 else
3723 {
3724 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3725 reg_char, reg_scaled + i);
3726 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3727 strlen (name_buf));
3728 regcache->cooked_write (regnum, val + i * unit_length);
3729 }
3730 }
3731 continue;
3732 }
3733 else
3734 {
3735 /* This CPRC could not go in VFP registers, so all VFP
3736 registers are now marked as used. */
3737 vfp_regs_free = 0;
3738 }
3739 }
3740
3741 /* Push stack padding for doubleword alignment. */
3742 if (nstack & (align - 1))
3743 {
3744 si = push_stack_item (si, val, ARM_INT_REGISTER_SIZE);
3745 nstack += ARM_INT_REGISTER_SIZE;
3746 }
3747
3748 /* Doubleword aligned quantities must go in even register pairs. */
3749 if (may_use_core_reg
3750 && argreg <= ARM_LAST_ARG_REGNUM
3751 && align > ARM_INT_REGISTER_SIZE
3752 && argreg & 1)
3753 argreg++;
3754
3755 /* If the argument is a pointer to a function, and it is a
3756 Thumb function, create a LOCAL copy of the value and set
3757 the THUMB bit in it. */
3758 if (TYPE_CODE_PTR == typecode
3759 && target_type != NULL
3760 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
3761 {
3762 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
3763 if (arm_pc_is_thumb (gdbarch, regval))
3764 {
3765 bfd_byte *copy = (bfd_byte *) alloca (len);
3766 store_unsigned_integer (copy, len, byte_order,
3767 MAKE_THUMB_ADDR (regval));
3768 val = copy;
3769 }
3770 }
3771
3772 /* Copy the argument to general registers or the stack in
3773 register-sized pieces. Large arguments are split between
3774 registers and stack. */
3775 while (len > 0)
3776 {
3777 int partial_len = len < ARM_INT_REGISTER_SIZE
3778 ? len : ARM_INT_REGISTER_SIZE;
3779 CORE_ADDR regval
3780 = extract_unsigned_integer (val, partial_len, byte_order);
3781
3782 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
3783 {
3784 /* The argument is being passed in a general purpose
3785 register. */
3786 if (byte_order == BFD_ENDIAN_BIG)
3787 regval <<= (ARM_INT_REGISTER_SIZE - partial_len) * 8;
3788 if (arm_debug)
3789 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
3790 argnum,
3791 gdbarch_register_name
3792 (gdbarch, argreg),
3793 phex (regval, ARM_INT_REGISTER_SIZE));
3794 regcache_cooked_write_unsigned (regcache, argreg, regval);
3795 argreg++;
3796 }
3797 else
3798 {
3799 gdb_byte buf[ARM_INT_REGISTER_SIZE];
3800
3801 memset (buf, 0, sizeof (buf));
3802 store_unsigned_integer (buf, partial_len, byte_order, regval);
3803
3804 /* Push the arguments onto the stack. */
3805 if (arm_debug)
3806 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3807 argnum, nstack);
3808 si = push_stack_item (si, buf, ARM_INT_REGISTER_SIZE);
3809 nstack += ARM_INT_REGISTER_SIZE;
3810 }
3811
3812 len -= partial_len;
3813 val += partial_len;
3814 }
3815 }
3816 /* If we have an odd number of words to push, then decrement the stack
3817 by one word now, so first stack argument will be dword aligned. */
3818 if (nstack & 4)
3819 sp -= 4;
3820
3821 while (si)
3822 {
3823 sp -= si->len;
3824 write_memory (sp, si->data, si->len);
3825 si = pop_stack_item (si);
3826 }
3827
3828 /* Finally, update teh SP register. */
3829 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3830
3831 return sp;
3832 }
3833
3834
3835 /* Always align the frame to an 8-byte boundary. This is required on
3836 some platforms and harmless on the rest. */
3837
3838 static CORE_ADDR
3839 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3840 {
3841 /* Align the stack to eight bytes. */
3842 return sp & ~ (CORE_ADDR) 7;
3843 }
3844
3845 static void
3846 print_fpu_flags (struct ui_file *file, int flags)
3847 {
3848 if (flags & (1 << 0))
3849 fputs_filtered ("IVO ", file);
3850 if (flags & (1 << 1))
3851 fputs_filtered ("DVZ ", file);
3852 if (flags & (1 << 2))
3853 fputs_filtered ("OFL ", file);
3854 if (flags & (1 << 3))
3855 fputs_filtered ("UFL ", file);
3856 if (flags & (1 << 4))
3857 fputs_filtered ("INX ", file);
3858 fputc_filtered ('\n', file);
3859 }
3860
3861 /* Print interesting information about the floating point processor
3862 (if present) or emulator. */
3863 static void
3864 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
3865 struct frame_info *frame, const char *args)
3866 {
3867 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
3868 int type;
3869
3870 type = (status >> 24) & 127;
3871 if (status & (1 << 31))
3872 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
3873 else
3874 fprintf_filtered (file, _("Software FPU type %d\n"), type);
3875 /* i18n: [floating point unit] mask */
3876 fputs_filtered (_("mask: "), file);
3877 print_fpu_flags (file, status >> 16);
3878 /* i18n: [floating point unit] flags */
3879 fputs_filtered (_("flags: "), file);
3880 print_fpu_flags (file, status);
3881 }
3882
3883 /* Construct the ARM extended floating point type. */
3884 static struct type *
3885 arm_ext_type (struct gdbarch *gdbarch)
3886 {
3887 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3888
3889 if (!tdep->arm_ext_type)
3890 tdep->arm_ext_type
3891 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
3892 floatformats_arm_ext);
3893
3894 return tdep->arm_ext_type;
3895 }
3896
3897 static struct type *
3898 arm_neon_double_type (struct gdbarch *gdbarch)
3899 {
3900 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3901
3902 if (tdep->neon_double_type == NULL)
3903 {
3904 struct type *t, *elem;
3905
3906 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
3907 TYPE_CODE_UNION);
3908 elem = builtin_type (gdbarch)->builtin_uint8;
3909 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
3910 elem = builtin_type (gdbarch)->builtin_uint16;
3911 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
3912 elem = builtin_type (gdbarch)->builtin_uint32;
3913 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
3914 elem = builtin_type (gdbarch)->builtin_uint64;
3915 append_composite_type_field (t, "u64", elem);
3916 elem = builtin_type (gdbarch)->builtin_float;
3917 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
3918 elem = builtin_type (gdbarch)->builtin_double;
3919 append_composite_type_field (t, "f64", elem);
3920
3921 TYPE_VECTOR (t) = 1;
3922 TYPE_NAME (t) = "neon_d";
3923 tdep->neon_double_type = t;
3924 }
3925
3926 return tdep->neon_double_type;
3927 }
3928
3929 /* FIXME: The vector types are not correctly ordered on big-endian
3930 targets. Just as s0 is the low bits of d0, d0[0] is also the low
3931 bits of d0 - regardless of what unit size is being held in d0. So
3932 the offset of the first uint8 in d0 is 7, but the offset of the
3933 first float is 4. This code works as-is for little-endian
3934 targets. */
3935
3936 static struct type *
3937 arm_neon_quad_type (struct gdbarch *gdbarch)
3938 {
3939 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3940
3941 if (tdep->neon_quad_type == NULL)
3942 {
3943 struct type *t, *elem;
3944
3945 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
3946 TYPE_CODE_UNION);
3947 elem = builtin_type (gdbarch)->builtin_uint8;
3948 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
3949 elem = builtin_type (gdbarch)->builtin_uint16;
3950 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
3951 elem = builtin_type (gdbarch)->builtin_uint32;
3952 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
3953 elem = builtin_type (gdbarch)->builtin_uint64;
3954 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
3955 elem = builtin_type (gdbarch)->builtin_float;
3956 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
3957 elem = builtin_type (gdbarch)->builtin_double;
3958 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
3959
3960 TYPE_VECTOR (t) = 1;
3961 TYPE_NAME (t) = "neon_q";
3962 tdep->neon_quad_type = t;
3963 }
3964
3965 return tdep->neon_quad_type;
3966 }
3967
3968 /* Return the GDB type object for the "standard" data type of data in
3969 register N. */
3970
3971 static struct type *
3972 arm_register_type (struct gdbarch *gdbarch, int regnum)
3973 {
3974 int num_regs = gdbarch_num_regs (gdbarch);
3975
3976 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
3977 && regnum >= num_regs && regnum < num_regs + 32)
3978 return builtin_type (gdbarch)->builtin_float;
3979
3980 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
3981 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
3982 return arm_neon_quad_type (gdbarch);
3983
3984 /* If the target description has register information, we are only
3985 in this function so that we can override the types of
3986 double-precision registers for NEON. */
3987 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
3988 {
3989 struct type *t = tdesc_register_type (gdbarch, regnum);
3990
3991 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
3992 && TYPE_CODE (t) == TYPE_CODE_FLT
3993 && gdbarch_tdep (gdbarch)->have_neon)
3994 return arm_neon_double_type (gdbarch);
3995 else
3996 return t;
3997 }
3998
3999 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
4000 {
4001 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4002 return builtin_type (gdbarch)->builtin_void;
4003
4004 return arm_ext_type (gdbarch);
4005 }
4006 else if (regnum == ARM_SP_REGNUM)
4007 return builtin_type (gdbarch)->builtin_data_ptr;
4008 else if (regnum == ARM_PC_REGNUM)
4009 return builtin_type (gdbarch)->builtin_func_ptr;
4010 else if (regnum >= ARRAY_SIZE (arm_register_names))
4011 /* These registers are only supported on targets which supply
4012 an XML description. */
4013 return builtin_type (gdbarch)->builtin_int0;
4014 else
4015 return builtin_type (gdbarch)->builtin_uint32;
4016 }
4017
4018 /* Map a DWARF register REGNUM onto the appropriate GDB register
4019 number. */
4020
4021 static int
4022 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
4023 {
4024 /* Core integer regs. */
4025 if (reg >= 0 && reg <= 15)
4026 return reg;
4027
4028 /* Legacy FPA encoding. These were once used in a way which
4029 overlapped with VFP register numbering, so their use is
4030 discouraged, but GDB doesn't support the ARM toolchain
4031 which used them for VFP. */
4032 if (reg >= 16 && reg <= 23)
4033 return ARM_F0_REGNUM + reg - 16;
4034
4035 /* New assignments for the FPA registers. */
4036 if (reg >= 96 && reg <= 103)
4037 return ARM_F0_REGNUM + reg - 96;
4038
4039 /* WMMX register assignments. */
4040 if (reg >= 104 && reg <= 111)
4041 return ARM_WCGR0_REGNUM + reg - 104;
4042
4043 if (reg >= 112 && reg <= 127)
4044 return ARM_WR0_REGNUM + reg - 112;
4045
4046 if (reg >= 192 && reg <= 199)
4047 return ARM_WC0_REGNUM + reg - 192;
4048
4049 /* VFP v2 registers. A double precision value is actually
4050 in d1 rather than s2, but the ABI only defines numbering
4051 for the single precision registers. This will "just work"
4052 in GDB for little endian targets (we'll read eight bytes,
4053 starting in s0 and then progressing to s1), but will be
4054 reversed on big endian targets with VFP. This won't
4055 be a problem for the new Neon quad registers; you're supposed
4056 to use DW_OP_piece for those. */
4057 if (reg >= 64 && reg <= 95)
4058 {
4059 char name_buf[4];
4060
4061 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
4062 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4063 strlen (name_buf));
4064 }
4065
4066 /* VFP v3 / Neon registers. This range is also used for VFP v2
4067 registers, except that it now describes d0 instead of s0. */
4068 if (reg >= 256 && reg <= 287)
4069 {
4070 char name_buf[4];
4071
4072 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
4073 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4074 strlen (name_buf));
4075 }
4076
4077 return -1;
4078 }
4079
4080 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4081 static int
4082 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
4083 {
4084 int reg = regnum;
4085 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
4086
4087 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4088 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4089
4090 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4091 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4092
4093 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4094 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4095
4096 if (reg < NUM_GREGS)
4097 return SIM_ARM_R0_REGNUM + reg;
4098 reg -= NUM_GREGS;
4099
4100 if (reg < NUM_FREGS)
4101 return SIM_ARM_FP0_REGNUM + reg;
4102 reg -= NUM_FREGS;
4103
4104 if (reg < NUM_SREGS)
4105 return SIM_ARM_FPS_REGNUM + reg;
4106 reg -= NUM_SREGS;
4107
4108 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
4109 }
4110
4111 /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4112 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4113 NULL if an error occurs. BUF is freed. */
4114
4115 static gdb_byte *
4116 extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4117 int old_len, int new_len)
4118 {
4119 gdb_byte *new_buf;
4120 int bytes_to_read = new_len - old_len;
4121
4122 new_buf = (gdb_byte *) xmalloc (new_len);
4123 memcpy (new_buf + bytes_to_read, buf, old_len);
4124 xfree (buf);
4125 if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0)
4126 {
4127 xfree (new_buf);
4128 return NULL;
4129 }
4130 return new_buf;
4131 }
4132
4133 /* An IT block is at most the 2-byte IT instruction followed by
4134 four 4-byte instructions. The furthest back we must search to
4135 find an IT block that affects the current instruction is thus
4136 2 + 3 * 4 == 14 bytes. */
4137 #define MAX_IT_BLOCK_PREFIX 14
4138
4139 /* Use a quick scan if there are more than this many bytes of
4140 code. */
4141 #define IT_SCAN_THRESHOLD 32
4142
4143 /* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4144 A breakpoint in an IT block may not be hit, depending on the
4145 condition flags. */
4146 static CORE_ADDR
4147 arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4148 {
4149 gdb_byte *buf;
4150 char map_type;
4151 CORE_ADDR boundary, func_start;
4152 int buf_len;
4153 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4154 int i, any, last_it, last_it_count;
4155
4156 /* If we are using BKPT breakpoints, none of this is necessary. */
4157 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4158 return bpaddr;
4159
4160 /* ARM mode does not have this problem. */
4161 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4162 return bpaddr;
4163
4164 /* We are setting a breakpoint in Thumb code that could potentially
4165 contain an IT block. The first step is to find how much Thumb
4166 code there is; we do not need to read outside of known Thumb
4167 sequences. */
4168 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4169 if (map_type == 0)
4170 /* Thumb-2 code must have mapping symbols to have a chance. */
4171 return bpaddr;
4172
4173 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4174
4175 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4176 && func_start > boundary)
4177 boundary = func_start;
4178
4179 /* Search for a candidate IT instruction. We have to do some fancy
4180 footwork to distinguish a real IT instruction from the second
4181 half of a 32-bit instruction, but there is no need for that if
4182 there's no candidate. */
4183 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
4184 if (buf_len == 0)
4185 /* No room for an IT instruction. */
4186 return bpaddr;
4187
4188 buf = (gdb_byte *) xmalloc (buf_len);
4189 if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0)
4190 return bpaddr;
4191 any = 0;
4192 for (i = 0; i < buf_len; i += 2)
4193 {
4194 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4195 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4196 {
4197 any = 1;
4198 break;
4199 }
4200 }
4201
4202 if (any == 0)
4203 {
4204 xfree (buf);
4205 return bpaddr;
4206 }
4207
4208 /* OK, the code bytes before this instruction contain at least one
4209 halfword which resembles an IT instruction. We know that it's
4210 Thumb code, but there are still two possibilities. Either the
4211 halfword really is an IT instruction, or it is the second half of
4212 a 32-bit Thumb instruction. The only way we can tell is to
4213 scan forwards from a known instruction boundary. */
4214 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4215 {
4216 int definite;
4217
4218 /* There's a lot of code before this instruction. Start with an
4219 optimistic search; it's easy to recognize halfwords that can
4220 not be the start of a 32-bit instruction, and use that to
4221 lock on to the instruction boundaries. */
4222 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4223 if (buf == NULL)
4224 return bpaddr;
4225 buf_len = IT_SCAN_THRESHOLD;
4226
4227 definite = 0;
4228 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4229 {
4230 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4231 if (thumb_insn_size (inst1) == 2)
4232 {
4233 definite = 1;
4234 break;
4235 }
4236 }
4237
4238 /* At this point, if DEFINITE, BUF[I] is the first place we
4239 are sure that we know the instruction boundaries, and it is far
4240 enough from BPADDR that we could not miss an IT instruction
4241 affecting BPADDR. If ! DEFINITE, give up - start from a
4242 known boundary. */
4243 if (! definite)
4244 {
4245 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4246 bpaddr - boundary);
4247 if (buf == NULL)
4248 return bpaddr;
4249 buf_len = bpaddr - boundary;
4250 i = 0;
4251 }
4252 }
4253 else
4254 {
4255 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4256 if (buf == NULL)
4257 return bpaddr;
4258 buf_len = bpaddr - boundary;
4259 i = 0;
4260 }
4261
4262 /* Scan forwards. Find the last IT instruction before BPADDR. */
4263 last_it = -1;
4264 last_it_count = 0;
4265 while (i < buf_len)
4266 {
4267 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4268 last_it_count--;
4269 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4270 {
4271 last_it = i;
4272 if (inst1 & 0x0001)
4273 last_it_count = 4;
4274 else if (inst1 & 0x0002)
4275 last_it_count = 3;
4276 else if (inst1 & 0x0004)
4277 last_it_count = 2;
4278 else
4279 last_it_count = 1;
4280 }
4281 i += thumb_insn_size (inst1);
4282 }
4283
4284 xfree (buf);
4285
4286 if (last_it == -1)
4287 /* There wasn't really an IT instruction after all. */
4288 return bpaddr;
4289
4290 if (last_it_count < 1)
4291 /* It was too far away. */
4292 return bpaddr;
4293
4294 /* This really is a trouble spot. Move the breakpoint to the IT
4295 instruction. */
4296 return bpaddr - buf_len + last_it;
4297 }
4298
4299 /* ARM displaced stepping support.
4300
4301 Generally ARM displaced stepping works as follows:
4302
4303 1. When an instruction is to be single-stepped, it is first decoded by
4304 arm_process_displaced_insn. Depending on the type of instruction, it is
4305 then copied to a scratch location, possibly in a modified form. The
4306 copy_* set of functions performs such modification, as necessary. A
4307 breakpoint is placed after the modified instruction in the scratch space
4308 to return control to GDB. Note in particular that instructions which
4309 modify the PC will no longer do so after modification.
4310
4311 2. The instruction is single-stepped, by setting the PC to the scratch
4312 location address, and resuming. Control returns to GDB when the
4313 breakpoint is hit.
4314
4315 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4316 function used for the current instruction. This function's job is to
4317 put the CPU/memory state back to what it would have been if the
4318 instruction had been executed unmodified in its original location. */
4319
4320 /* NOP instruction (mov r0, r0). */
4321 #define ARM_NOP 0xe1a00000
4322 #define THUMB_NOP 0x4600
4323
4324 /* Helper for register reads for displaced stepping. In particular, this
4325 returns the PC as it would be seen by the instruction at its original
4326 location. */
4327
4328 ULONGEST
4329 displaced_read_reg (struct regcache *regs, arm_displaced_step_closure *dsc,
4330 int regno)
4331 {
4332 ULONGEST ret;
4333 CORE_ADDR from = dsc->insn_addr;
4334
4335 if (regno == ARM_PC_REGNUM)
4336 {
4337 /* Compute pipeline offset:
4338 - When executing an ARM instruction, PC reads as the address of the
4339 current instruction plus 8.
4340 - When executing a Thumb instruction, PC reads as the address of the
4341 current instruction plus 4. */
4342
4343 if (!dsc->is_thumb)
4344 from += 8;
4345 else
4346 from += 4;
4347
4348 if (debug_displaced)
4349 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4350 (unsigned long) from);
4351 return (ULONGEST) from;
4352 }
4353 else
4354 {
4355 regcache_cooked_read_unsigned (regs, regno, &ret);
4356 if (debug_displaced)
4357 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4358 regno, (unsigned long) ret);
4359 return ret;
4360 }
4361 }
4362
4363 static int
4364 displaced_in_arm_mode (struct regcache *regs)
4365 {
4366 ULONGEST ps;
4367 ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ());
4368
4369 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4370
4371 return (ps & t_bit) == 0;
4372 }
4373
4374 /* Write to the PC as from a branch instruction. */
4375
4376 static void
4377 branch_write_pc (struct regcache *regs, arm_displaced_step_closure *dsc,
4378 ULONGEST val)
4379 {
4380 if (!dsc->is_thumb)
4381 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4382 architecture versions < 6. */
4383 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4384 val & ~(ULONGEST) 0x3);
4385 else
4386 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4387 val & ~(ULONGEST) 0x1);
4388 }
4389
4390 /* Write to the PC as from a branch-exchange instruction. */
4391
4392 static void
4393 bx_write_pc (struct regcache *regs, ULONGEST val)
4394 {
4395 ULONGEST ps;
4396 ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ());
4397
4398 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4399
4400 if ((val & 1) == 1)
4401 {
4402 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
4403 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4404 }
4405 else if ((val & 2) == 0)
4406 {
4407 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4408 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
4409 }
4410 else
4411 {
4412 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4413 mode, align dest to 4 bytes). */
4414 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
4415 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4416 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
4417 }
4418 }
4419
4420 /* Write to the PC as if from a load instruction. */
4421
4422 static void
4423 load_write_pc (struct regcache *regs, arm_displaced_step_closure *dsc,
4424 ULONGEST val)
4425 {
4426 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4427 bx_write_pc (regs, val);
4428 else
4429 branch_write_pc (regs, dsc, val);
4430 }
4431
4432 /* Write to the PC as if from an ALU instruction. */
4433
4434 static void
4435 alu_write_pc (struct regcache *regs, arm_displaced_step_closure *dsc,
4436 ULONGEST val)
4437 {
4438 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
4439 bx_write_pc (regs, val);
4440 else
4441 branch_write_pc (regs, dsc, val);
4442 }
4443
4444 /* Helper for writing to registers for displaced stepping. Writing to the PC
4445 has a varying effects depending on the instruction which does the write:
4446 this is controlled by the WRITE_PC argument. */
4447
4448 void
4449 displaced_write_reg (struct regcache *regs, arm_displaced_step_closure *dsc,
4450 int regno, ULONGEST val, enum pc_write_style write_pc)
4451 {
4452 if (regno == ARM_PC_REGNUM)
4453 {
4454 if (debug_displaced)
4455 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4456 (unsigned long) val);
4457 switch (write_pc)
4458 {
4459 case BRANCH_WRITE_PC:
4460 branch_write_pc (regs, dsc, val);
4461 break;
4462
4463 case BX_WRITE_PC:
4464 bx_write_pc (regs, val);
4465 break;
4466
4467 case LOAD_WRITE_PC:
4468 load_write_pc (regs, dsc, val);
4469 break;
4470
4471 case ALU_WRITE_PC:
4472 alu_write_pc (regs, dsc, val);
4473 break;
4474
4475 case CANNOT_WRITE_PC:
4476 warning (_("Instruction wrote to PC in an unexpected way when "
4477 "single-stepping"));
4478 break;
4479
4480 default:
4481 internal_error (__FILE__, __LINE__,
4482 _("Invalid argument to displaced_write_reg"));
4483 }
4484
4485 dsc->wrote_to_pc = 1;
4486 }
4487 else
4488 {
4489 if (debug_displaced)
4490 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4491 regno, (unsigned long) val);
4492 regcache_cooked_write_unsigned (regs, regno, val);
4493 }
4494 }
4495
4496 /* This function is used to concisely determine if an instruction INSN
4497 references PC. Register fields of interest in INSN should have the
4498 corresponding fields of BITMASK set to 0b1111. The function
4499 returns return 1 if any of these fields in INSN reference the PC
4500 (also 0b1111, r15), else it returns 0. */
4501
4502 static int
4503 insn_references_pc (uint32_t insn, uint32_t bitmask)
4504 {
4505 uint32_t lowbit = 1;
4506
4507 while (bitmask != 0)
4508 {
4509 uint32_t mask;
4510
4511 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4512 ;
4513
4514 if (!lowbit)
4515 break;
4516
4517 mask = lowbit * 0xf;
4518
4519 if ((insn & mask) == mask)
4520 return 1;
4521
4522 bitmask &= ~mask;
4523 }
4524
4525 return 0;
4526 }
4527
4528 /* The simplest copy function. Many instructions have the same effect no
4529 matter what address they are executed at: in those cases, use this. */
4530
4531 static int
4532 arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4533 const char *iname, arm_displaced_step_closure *dsc)
4534 {
4535 if (debug_displaced)
4536 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4537 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4538 iname);
4539
4540 dsc->modinsn[0] = insn;
4541
4542 return 0;
4543 }
4544
4545 static int
4546 thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4547 uint16_t insn2, const char *iname,
4548 arm_displaced_step_closure *dsc)
4549 {
4550 if (debug_displaced)
4551 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4552 "opcode/class '%s' unmodified\n", insn1, insn2,
4553 iname);
4554
4555 dsc->modinsn[0] = insn1;
4556 dsc->modinsn[1] = insn2;
4557 dsc->numinsns = 2;
4558
4559 return 0;
4560 }
4561
4562 /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4563 modification. */
4564 static int
4565 thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
4566 const char *iname,
4567 arm_displaced_step_closure *dsc)
4568 {
4569 if (debug_displaced)
4570 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4571 "opcode/class '%s' unmodified\n", insn,
4572 iname);
4573
4574 dsc->modinsn[0] = insn;
4575
4576 return 0;
4577 }
4578
4579 /* Preload instructions with immediate offset. */
4580
4581 static void
4582 cleanup_preload (struct gdbarch *gdbarch,
4583 struct regcache *regs, arm_displaced_step_closure *dsc)
4584 {
4585 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4586 if (!dsc->u.preload.immed)
4587 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4588 }
4589
4590 static void
4591 install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4592 arm_displaced_step_closure *dsc, unsigned int rn)
4593 {
4594 ULONGEST rn_val;
4595 /* Preload instructions:
4596
4597 {pli/pld} [rn, #+/-imm]
4598 ->
4599 {pli/pld} [r0, #+/-imm]. */
4600
4601 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4602 rn_val = displaced_read_reg (regs, dsc, rn);
4603 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4604 dsc->u.preload.immed = 1;
4605
4606 dsc->cleanup = &cleanup_preload;
4607 }
4608
4609 static int
4610 arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
4611 arm_displaced_step_closure *dsc)
4612 {
4613 unsigned int rn = bits (insn, 16, 19);
4614
4615 if (!insn_references_pc (insn, 0x000f0000ul))
4616 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
4617
4618 if (debug_displaced)
4619 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4620 (unsigned long) insn);
4621
4622 dsc->modinsn[0] = insn & 0xfff0ffff;
4623
4624 install_preload (gdbarch, regs, dsc, rn);
4625
4626 return 0;
4627 }
4628
4629 static int
4630 thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4631 struct regcache *regs, arm_displaced_step_closure *dsc)
4632 {
4633 unsigned int rn = bits (insn1, 0, 3);
4634 unsigned int u_bit = bit (insn1, 7);
4635 int imm12 = bits (insn2, 0, 11);
4636 ULONGEST pc_val;
4637
4638 if (rn != ARM_PC_REGNUM)
4639 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4640
4641 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4642 PLD (literal) Encoding T1. */
4643 if (debug_displaced)
4644 fprintf_unfiltered (gdb_stdlog,
4645 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4646 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4647 imm12);
4648
4649 if (!u_bit)
4650 imm12 = -1 * imm12;
4651
4652 /* Rewrite instruction {pli/pld} PC imm12 into:
4653 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4654
4655 {pli/pld} [r0, r1]
4656
4657 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4658
4659 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4660 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4661
4662 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4663
4664 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4665 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4666 dsc->u.preload.immed = 0;
4667
4668 /* {pli/pld} [r0, r1] */
4669 dsc->modinsn[0] = insn1 & 0xfff0;
4670 dsc->modinsn[1] = 0xf001;
4671 dsc->numinsns = 2;
4672
4673 dsc->cleanup = &cleanup_preload;
4674 return 0;
4675 }
4676
4677 /* Preload instructions with register offset. */
4678
4679 static void
4680 install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4681 arm_displaced_step_closure *dsc, unsigned int rn,
4682 unsigned int rm)
4683 {
4684 ULONGEST rn_val, rm_val;
4685
4686 /* Preload register-offset instructions:
4687
4688 {pli/pld} [rn, rm {, shift}]
4689 ->
4690 {pli/pld} [r0, r1 {, shift}]. */
4691
4692 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4693 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4694 rn_val = displaced_read_reg (regs, dsc, rn);
4695 rm_val = displaced_read_reg (regs, dsc, rm);
4696 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4697 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
4698 dsc->u.preload.immed = 0;
4699
4700 dsc->cleanup = &cleanup_preload;
4701 }
4702
4703 static int
4704 arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4705 struct regcache *regs,
4706 arm_displaced_step_closure *dsc)
4707 {
4708 unsigned int rn = bits (insn, 16, 19);
4709 unsigned int rm = bits (insn, 0, 3);
4710
4711
4712 if (!insn_references_pc (insn, 0x000f000ful))
4713 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4714
4715 if (debug_displaced)
4716 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4717 (unsigned long) insn);
4718
4719 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
4720
4721 install_preload_reg (gdbarch, regs, dsc, rn, rm);
4722 return 0;
4723 }
4724
4725 /* Copy/cleanup coprocessor load and store instructions. */
4726
4727 static void
4728 cleanup_copro_load_store (struct gdbarch *gdbarch,
4729 struct regcache *regs,
4730 arm_displaced_step_closure *dsc)
4731 {
4732 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
4733
4734 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4735
4736 if (dsc->u.ldst.writeback)
4737 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4738 }
4739
4740 static void
4741 install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4742 arm_displaced_step_closure *dsc,
4743 int writeback, unsigned int rn)
4744 {
4745 ULONGEST rn_val;
4746
4747 /* Coprocessor load/store instructions:
4748
4749 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4750 ->
4751 {stc/stc2} [r0, #+/-imm].
4752
4753 ldc/ldc2 are handled identically. */
4754
4755 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4756 rn_val = displaced_read_reg (regs, dsc, rn);
4757 /* PC should be 4-byte aligned. */
4758 rn_val = rn_val & 0xfffffffc;
4759 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4760
4761 dsc->u.ldst.writeback = writeback;
4762 dsc->u.ldst.rn = rn;
4763
4764 dsc->cleanup = &cleanup_copro_load_store;
4765 }
4766
4767 static int
4768 arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4769 struct regcache *regs,
4770 arm_displaced_step_closure *dsc)
4771 {
4772 unsigned int rn = bits (insn, 16, 19);
4773
4774 if (!insn_references_pc (insn, 0x000f0000ul))
4775 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4776
4777 if (debug_displaced)
4778 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4779 "load/store insn %.8lx\n", (unsigned long) insn);
4780
4781 dsc->modinsn[0] = insn & 0xfff0ffff;
4782
4783 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
4784
4785 return 0;
4786 }
4787
4788 static int
4789 thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4790 uint16_t insn2, struct regcache *regs,
4791 arm_displaced_step_closure *dsc)
4792 {
4793 unsigned int rn = bits (insn1, 0, 3);
4794
4795 if (rn != ARM_PC_REGNUM)
4796 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4797 "copro load/store", dsc);
4798
4799 if (debug_displaced)
4800 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4801 "load/store insn %.4x%.4x\n", insn1, insn2);
4802
4803 dsc->modinsn[0] = insn1 & 0xfff0;
4804 dsc->modinsn[1] = insn2;
4805 dsc->numinsns = 2;
4806
4807 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4808 doesn't support writeback, so pass 0. */
4809 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4810
4811 return 0;
4812 }
4813
4814 /* Clean up branch instructions (actually perform the branch, by setting
4815 PC). */
4816
4817 static void
4818 cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
4819 arm_displaced_step_closure *dsc)
4820 {
4821 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
4822 int branch_taken = condition_true (dsc->u.branch.cond, status);
4823 enum pc_write_style write_pc = dsc->u.branch.exchange
4824 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4825
4826 if (!branch_taken)
4827 return;
4828
4829 if (dsc->u.branch.link)
4830 {
4831 /* The value of LR should be the next insn of current one. In order
4832 not to confuse logic handling later insn `bx lr', if current insn mode
4833 is Thumb, the bit 0 of LR value should be set to 1. */
4834 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4835
4836 if (dsc->is_thumb)
4837 next_insn_addr |= 0x1;
4838
4839 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4840 CANNOT_WRITE_PC);
4841 }
4842
4843 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
4844 }
4845
4846 /* Copy B/BL/BLX instructions with immediate destinations. */
4847
4848 static void
4849 install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
4850 arm_displaced_step_closure *dsc,
4851 unsigned int cond, int exchange, int link, long offset)
4852 {
4853 /* Implement "BL<cond> <label>" as:
4854
4855 Preparation: cond <- instruction condition
4856 Insn: mov r0, r0 (nop)
4857 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
4858
4859 B<cond> similar, but don't set r14 in cleanup. */
4860
4861 dsc->u.branch.cond = cond;
4862 dsc->u.branch.link = link;
4863 dsc->u.branch.exchange = exchange;
4864
4865 dsc->u.branch.dest = dsc->insn_addr;
4866 if (link && exchange)
4867 /* For BLX, offset is computed from the Align (PC, 4). */
4868 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
4869
4870 if (dsc->is_thumb)
4871 dsc->u.branch.dest += 4 + offset;
4872 else
4873 dsc->u.branch.dest += 8 + offset;
4874
4875 dsc->cleanup = &cleanup_branch;
4876 }
4877 static int
4878 arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
4879 struct regcache *regs, arm_displaced_step_closure *dsc)
4880 {
4881 unsigned int cond = bits (insn, 28, 31);
4882 int exchange = (cond == 0xf);
4883 int link = exchange || bit (insn, 24);
4884 long offset;
4885
4886 if (debug_displaced)
4887 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
4888 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
4889 (unsigned long) insn);
4890 if (exchange)
4891 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
4892 then arrange the switch into Thumb mode. */
4893 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
4894 else
4895 offset = bits (insn, 0, 23) << 2;
4896
4897 if (bit (offset, 25))
4898 offset = offset | ~0x3ffffff;
4899
4900 dsc->modinsn[0] = ARM_NOP;
4901
4902 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
4903 return 0;
4904 }
4905
4906 static int
4907 thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
4908 uint16_t insn2, struct regcache *regs,
4909 arm_displaced_step_closure *dsc)
4910 {
4911 int link = bit (insn2, 14);
4912 int exchange = link && !bit (insn2, 12);
4913 int cond = INST_AL;
4914 long offset = 0;
4915 int j1 = bit (insn2, 13);
4916 int j2 = bit (insn2, 11);
4917 int s = sbits (insn1, 10, 10);
4918 int i1 = !(j1 ^ bit (insn1, 10));
4919 int i2 = !(j2 ^ bit (insn1, 10));
4920
4921 if (!link && !exchange) /* B */
4922 {
4923 offset = (bits (insn2, 0, 10) << 1);
4924 if (bit (insn2, 12)) /* Encoding T4 */
4925 {
4926 offset |= (bits (insn1, 0, 9) << 12)
4927 | (i2 << 22)
4928 | (i1 << 23)
4929 | (s << 24);
4930 cond = INST_AL;
4931 }
4932 else /* Encoding T3 */
4933 {
4934 offset |= (bits (insn1, 0, 5) << 12)
4935 | (j1 << 18)
4936 | (j2 << 19)
4937 | (s << 20);
4938 cond = bits (insn1, 6, 9);
4939 }
4940 }
4941 else
4942 {
4943 offset = (bits (insn1, 0, 9) << 12);
4944 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
4945 offset |= exchange ?
4946 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
4947 }
4948
4949 if (debug_displaced)
4950 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
4951 "%.4x %.4x with offset %.8lx\n",
4952 link ? (exchange) ? "blx" : "bl" : "b",
4953 insn1, insn2, offset);
4954
4955 dsc->modinsn[0] = THUMB_NOP;
4956
4957 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
4958 return 0;
4959 }
4960
4961 /* Copy B Thumb instructions. */
4962 static int
4963 thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
4964 arm_displaced_step_closure *dsc)
4965 {
4966 unsigned int cond = 0;
4967 int offset = 0;
4968 unsigned short bit_12_15 = bits (insn, 12, 15);
4969 CORE_ADDR from = dsc->insn_addr;
4970
4971 if (bit_12_15 == 0xd)
4972 {
4973 /* offset = SignExtend (imm8:0, 32) */
4974 offset = sbits ((insn << 1), 0, 8);
4975 cond = bits (insn, 8, 11);
4976 }
4977 else if (bit_12_15 == 0xe) /* Encoding T2 */
4978 {
4979 offset = sbits ((insn << 1), 0, 11);
4980 cond = INST_AL;
4981 }
4982
4983 if (debug_displaced)
4984 fprintf_unfiltered (gdb_stdlog,
4985 "displaced: copying b immediate insn %.4x "
4986 "with offset %d\n", insn, offset);
4987
4988 dsc->u.branch.cond = cond;
4989 dsc->u.branch.link = 0;
4990 dsc->u.branch.exchange = 0;
4991 dsc->u.branch.dest = from + 4 + offset;
4992
4993 dsc->modinsn[0] = THUMB_NOP;
4994
4995 dsc->cleanup = &cleanup_branch;
4996
4997 return 0;
4998 }
4999
5000 /* Copy BX/BLX with register-specified destinations. */
5001
5002 static void
5003 install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5004 arm_displaced_step_closure *dsc, int link,
5005 unsigned int cond, unsigned int rm)
5006 {
5007 /* Implement {BX,BLX}<cond> <reg>" as:
5008
5009 Preparation: cond <- instruction condition
5010 Insn: mov r0, r0 (nop)
5011 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5012
5013 Don't set r14 in cleanup for BX. */
5014
5015 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
5016
5017 dsc->u.branch.cond = cond;
5018 dsc->u.branch.link = link;
5019
5020 dsc->u.branch.exchange = 1;
5021
5022 dsc->cleanup = &cleanup_branch;
5023 }
5024
5025 static int
5026 arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5027 struct regcache *regs, arm_displaced_step_closure *dsc)
5028 {
5029 unsigned int cond = bits (insn, 28, 31);
5030 /* BX: x12xxx1x
5031 BLX: x12xxx3x. */
5032 int link = bit (insn, 5);
5033 unsigned int rm = bits (insn, 0, 3);
5034
5035 if (debug_displaced)
5036 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5037 (unsigned long) insn);
5038
5039 dsc->modinsn[0] = ARM_NOP;
5040
5041 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
5042 return 0;
5043 }
5044
5045 static int
5046 thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5047 struct regcache *regs,
5048 arm_displaced_step_closure *dsc)
5049 {
5050 int link = bit (insn, 7);
5051 unsigned int rm = bits (insn, 3, 6);
5052
5053 if (debug_displaced)
5054 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5055 (unsigned short) insn);
5056
5057 dsc->modinsn[0] = THUMB_NOP;
5058
5059 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5060
5061 return 0;
5062 }
5063
5064
5065 /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
5066
5067 static void
5068 cleanup_alu_imm (struct gdbarch *gdbarch,
5069 struct regcache *regs, arm_displaced_step_closure *dsc)
5070 {
5071 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5072 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5073 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5074 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5075 }
5076
5077 static int
5078 arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5079 arm_displaced_step_closure *dsc)
5080 {
5081 unsigned int rn = bits (insn, 16, 19);
5082 unsigned int rd = bits (insn, 12, 15);
5083 unsigned int op = bits (insn, 21, 24);
5084 int is_mov = (op == 0xd);
5085 ULONGEST rd_val, rn_val;
5086
5087 if (!insn_references_pc (insn, 0x000ff000ul))
5088 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
5089
5090 if (debug_displaced)
5091 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5092 "%.8lx\n", is_mov ? "move" : "ALU",
5093 (unsigned long) insn);
5094
5095 /* Instruction is of form:
5096
5097 <op><cond> rd, [rn,] #imm
5098
5099 Rewrite as:
5100
5101 Preparation: tmp1, tmp2 <- r0, r1;
5102 r0, r1 <- rd, rn
5103 Insn: <op><cond> r0, r1, #imm
5104 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5105 */
5106
5107 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5108 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5109 rn_val = displaced_read_reg (regs, dsc, rn);
5110 rd_val = displaced_read_reg (regs, dsc, rd);
5111 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5112 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5113 dsc->rd = rd;
5114
5115 if (is_mov)
5116 dsc->modinsn[0] = insn & 0xfff00fff;
5117 else
5118 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5119
5120 dsc->cleanup = &cleanup_alu_imm;
5121
5122 return 0;
5123 }
5124
5125 static int
5126 thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5127 uint16_t insn2, struct regcache *regs,
5128 arm_displaced_step_closure *dsc)
5129 {
5130 unsigned int op = bits (insn1, 5, 8);
5131 unsigned int rn, rm, rd;
5132 ULONGEST rd_val, rn_val;
5133
5134 rn = bits (insn1, 0, 3); /* Rn */
5135 rm = bits (insn2, 0, 3); /* Rm */
5136 rd = bits (insn2, 8, 11); /* Rd */
5137
5138 /* This routine is only called for instruction MOV. */
5139 gdb_assert (op == 0x2 && rn == 0xf);
5140
5141 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5142 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5143
5144 if (debug_displaced)
5145 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5146 "ALU", insn1, insn2);
5147
5148 /* Instruction is of form:
5149
5150 <op><cond> rd, [rn,] #imm
5151
5152 Rewrite as:
5153
5154 Preparation: tmp1, tmp2 <- r0, r1;
5155 r0, r1 <- rd, rn
5156 Insn: <op><cond> r0, r1, #imm
5157 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5158 */
5159
5160 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5161 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5162 rn_val = displaced_read_reg (regs, dsc, rn);
5163 rd_val = displaced_read_reg (regs, dsc, rd);
5164 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5165 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5166 dsc->rd = rd;
5167
5168 dsc->modinsn[0] = insn1;
5169 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5170 dsc->numinsns = 2;
5171
5172 dsc->cleanup = &cleanup_alu_imm;
5173
5174 return 0;
5175 }
5176
5177 /* Copy/cleanup arithmetic/logic insns with register RHS. */
5178
5179 static void
5180 cleanup_alu_reg (struct gdbarch *gdbarch,
5181 struct regcache *regs, arm_displaced_step_closure *dsc)
5182 {
5183 ULONGEST rd_val;
5184 int i;
5185
5186 rd_val = displaced_read_reg (regs, dsc, 0);
5187
5188 for (i = 0; i < 3; i++)
5189 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5190
5191 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5192 }
5193
5194 static void
5195 install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5196 arm_displaced_step_closure *dsc,
5197 unsigned int rd, unsigned int rn, unsigned int rm)
5198 {
5199 ULONGEST rd_val, rn_val, rm_val;
5200
5201 /* Instruction is of form:
5202
5203 <op><cond> rd, [rn,] rm [, <shift>]
5204
5205 Rewrite as:
5206
5207 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5208 r0, r1, r2 <- rd, rn, rm
5209 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
5210 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5211 */
5212
5213 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5214 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5215 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5216 rd_val = displaced_read_reg (regs, dsc, rd);
5217 rn_val = displaced_read_reg (regs, dsc, rn);
5218 rm_val = displaced_read_reg (regs, dsc, rm);
5219 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5220 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5221 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5222 dsc->rd = rd;
5223
5224 dsc->cleanup = &cleanup_alu_reg;
5225 }
5226
5227 static int
5228 arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5229 arm_displaced_step_closure *dsc)
5230 {
5231 unsigned int op = bits (insn, 21, 24);
5232 int is_mov = (op == 0xd);
5233
5234 if (!insn_references_pc (insn, 0x000ff00ful))
5235 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5236
5237 if (debug_displaced)
5238 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5239 is_mov ? "move" : "ALU", (unsigned long) insn);
5240
5241 if (is_mov)
5242 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5243 else
5244 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5245
5246 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5247 bits (insn, 0, 3));
5248 return 0;
5249 }
5250
5251 static int
5252 thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5253 struct regcache *regs,
5254 arm_displaced_step_closure *dsc)
5255 {
5256 unsigned rm, rd;
5257
5258 rm = bits (insn, 3, 6);
5259 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
5260
5261 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
5262 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5263
5264 if (debug_displaced)
5265 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5266 (unsigned short) insn);
5267
5268 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
5269
5270 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
5271
5272 return 0;
5273 }
5274
5275 /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5276
5277 static void
5278 cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
5279 struct regcache *regs,
5280 arm_displaced_step_closure *dsc)
5281 {
5282 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5283 int i;
5284
5285 for (i = 0; i < 4; i++)
5286 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5287
5288 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5289 }
5290
5291 static void
5292 install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5293 arm_displaced_step_closure *dsc,
5294 unsigned int rd, unsigned int rn, unsigned int rm,
5295 unsigned rs)
5296 {
5297 int i;
5298 ULONGEST rd_val, rn_val, rm_val, rs_val;
5299
5300 /* Instruction is of form:
5301
5302 <op><cond> rd, [rn,] rm, <shift> rs
5303
5304 Rewrite as:
5305
5306 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5307 r0, r1, r2, r3 <- rd, rn, rm, rs
5308 Insn: <op><cond> r0, r1, r2, <shift> r3
5309 Cleanup: tmp5 <- r0
5310 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5311 rd <- tmp5
5312 */
5313
5314 for (i = 0; i < 4; i++)
5315 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
5316
5317 rd_val = displaced_read_reg (regs, dsc, rd);
5318 rn_val = displaced_read_reg (regs, dsc, rn);
5319 rm_val = displaced_read_reg (regs, dsc, rm);
5320 rs_val = displaced_read_reg (regs, dsc, rs);
5321 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5322 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5323 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5324 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5325 dsc->rd = rd;
5326 dsc->cleanup = &cleanup_alu_shifted_reg;
5327 }
5328
5329 static int
5330 arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5331 struct regcache *regs,
5332 arm_displaced_step_closure *dsc)
5333 {
5334 unsigned int op = bits (insn, 21, 24);
5335 int is_mov = (op == 0xd);
5336 unsigned int rd, rn, rm, rs;
5337
5338 if (!insn_references_pc (insn, 0x000fff0ful))
5339 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5340
5341 if (debug_displaced)
5342 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5343 "%.8lx\n", is_mov ? "move" : "ALU",
5344 (unsigned long) insn);
5345
5346 rn = bits (insn, 16, 19);
5347 rm = bits (insn, 0, 3);
5348 rs = bits (insn, 8, 11);
5349 rd = bits (insn, 12, 15);
5350
5351 if (is_mov)
5352 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5353 else
5354 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5355
5356 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
5357
5358 return 0;
5359 }
5360
5361 /* Clean up load instructions. */
5362
5363 static void
5364 cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
5365 arm_displaced_step_closure *dsc)
5366 {
5367 ULONGEST rt_val, rt_val2 = 0, rn_val;
5368
5369 rt_val = displaced_read_reg (regs, dsc, 0);
5370 if (dsc->u.ldst.xfersize == 8)
5371 rt_val2 = displaced_read_reg (regs, dsc, 1);
5372 rn_val = displaced_read_reg (regs, dsc, 2);
5373
5374 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5375 if (dsc->u.ldst.xfersize > 4)
5376 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5377 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5378 if (!dsc->u.ldst.immed)
5379 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5380
5381 /* Handle register writeback. */
5382 if (dsc->u.ldst.writeback)
5383 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5384 /* Put result in right place. */
5385 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5386 if (dsc->u.ldst.xfersize == 8)
5387 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5388 }
5389
5390 /* Clean up store instructions. */
5391
5392 static void
5393 cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
5394 arm_displaced_step_closure *dsc)
5395 {
5396 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
5397
5398 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5399 if (dsc->u.ldst.xfersize > 4)
5400 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5401 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5402 if (!dsc->u.ldst.immed)
5403 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5404 if (!dsc->u.ldst.restore_r4)
5405 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5406
5407 /* Writeback. */
5408 if (dsc->u.ldst.writeback)
5409 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5410 }
5411
5412 /* Copy "extra" load/store instructions. These are halfword/doubleword
5413 transfers, which have a different encoding to byte/word transfers. */
5414
5415 static int
5416 arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
5417 struct regcache *regs, arm_displaced_step_closure *dsc)
5418 {
5419 unsigned int op1 = bits (insn, 20, 24);
5420 unsigned int op2 = bits (insn, 5, 6);
5421 unsigned int rt = bits (insn, 12, 15);
5422 unsigned int rn = bits (insn, 16, 19);
5423 unsigned int rm = bits (insn, 0, 3);
5424 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5425 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5426 int immed = (op1 & 0x4) != 0;
5427 int opcode;
5428 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
5429
5430 if (!insn_references_pc (insn, 0x000ff00ful))
5431 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
5432
5433 if (debug_displaced)
5434 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5435 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
5436 (unsigned long) insn);
5437
5438 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5439
5440 if (opcode < 0)
5441 internal_error (__FILE__, __LINE__,
5442 _("copy_extra_ld_st: instruction decode error"));
5443
5444 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5445 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5446 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5447 if (!immed)
5448 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5449
5450 rt_val = displaced_read_reg (regs, dsc, rt);
5451 if (bytesize[opcode] == 8)
5452 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5453 rn_val = displaced_read_reg (regs, dsc, rn);
5454 if (!immed)
5455 rm_val = displaced_read_reg (regs, dsc, rm);
5456
5457 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5458 if (bytesize[opcode] == 8)
5459 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5460 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5461 if (!immed)
5462 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5463
5464 dsc->rd = rt;
5465 dsc->u.ldst.xfersize = bytesize[opcode];
5466 dsc->u.ldst.rn = rn;
5467 dsc->u.ldst.immed = immed;
5468 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5469 dsc->u.ldst.restore_r4 = 0;
5470
5471 if (immed)
5472 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5473 ->
5474 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5475 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5476 else
5477 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5478 ->
5479 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5480 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5481
5482 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5483
5484 return 0;
5485 }
5486
5487 /* Copy byte/half word/word loads and stores. */
5488
5489 static void
5490 install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5491 arm_displaced_step_closure *dsc, int load,
5492 int immed, int writeback, int size, int usermode,
5493 int rt, int rm, int rn)
5494 {
5495 ULONGEST rt_val, rn_val, rm_val = 0;
5496
5497 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5498 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5499 if (!immed)
5500 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5501 if (!load)
5502 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
5503
5504 rt_val = displaced_read_reg (regs, dsc, rt);
5505 rn_val = displaced_read_reg (regs, dsc, rn);
5506 if (!immed)
5507 rm_val = displaced_read_reg (regs, dsc, rm);
5508
5509 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5510 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5511 if (!immed)
5512 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5513 dsc->rd = rt;
5514 dsc->u.ldst.xfersize = size;
5515 dsc->u.ldst.rn = rn;
5516 dsc->u.ldst.immed = immed;
5517 dsc->u.ldst.writeback = writeback;
5518
5519 /* To write PC we can do:
5520
5521 Before this sequence of instructions:
5522 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5523 r2 is the Rn value got from displaced_read_reg.
5524
5525 Insn1: push {pc} Write address of STR instruction + offset on stack
5526 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5527 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5528 = addr(Insn1) + offset - addr(Insn3) - 8
5529 = offset - 16
5530 Insn4: add r4, r4, #8 r4 = offset - 8
5531 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5532 = from + offset
5533 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
5534
5535 Otherwise we don't know what value to write for PC, since the offset is
5536 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5537 of this can be found in Section "Saving from r15" in
5538 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
5539
5540 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5541 }
5542
5543
5544 static int
5545 thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5546 uint16_t insn2, struct regcache *regs,
5547 arm_displaced_step_closure *dsc, int size)
5548 {
5549 unsigned int u_bit = bit (insn1, 7);
5550 unsigned int rt = bits (insn2, 12, 15);
5551 int imm12 = bits (insn2, 0, 11);
5552 ULONGEST pc_val;
5553
5554 if (debug_displaced)
5555 fprintf_unfiltered (gdb_stdlog,
5556 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5557 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5558 imm12);
5559
5560 if (!u_bit)
5561 imm12 = -1 * imm12;
5562
5563 /* Rewrite instruction LDR Rt imm12 into:
5564
5565 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5566
5567 LDR R0, R2, R3,
5568
5569 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5570
5571
5572 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5573 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5574 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5575
5576 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5577
5578 pc_val = pc_val & 0xfffffffc;
5579
5580 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5581 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5582
5583 dsc->rd = rt;
5584
5585 dsc->u.ldst.xfersize = size;
5586 dsc->u.ldst.immed = 0;
5587 dsc->u.ldst.writeback = 0;
5588 dsc->u.ldst.restore_r4 = 0;
5589
5590 /* LDR R0, R2, R3 */
5591 dsc->modinsn[0] = 0xf852;
5592 dsc->modinsn[1] = 0x3;
5593 dsc->numinsns = 2;
5594
5595 dsc->cleanup = &cleanup_load;
5596
5597 return 0;
5598 }
5599
5600 static int
5601 thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5602 uint16_t insn2, struct regcache *regs,
5603 arm_displaced_step_closure *dsc,
5604 int writeback, int immed)
5605 {
5606 unsigned int rt = bits (insn2, 12, 15);
5607 unsigned int rn = bits (insn1, 0, 3);
5608 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5609 /* In LDR (register), there is also a register Rm, which is not allowed to
5610 be PC, so we don't have to check it. */
5611
5612 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5613 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5614 dsc);
5615
5616 if (debug_displaced)
5617 fprintf_unfiltered (gdb_stdlog,
5618 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5619 rt, rn, insn1, insn2);
5620
5621 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5622 0, rt, rm, rn);
5623
5624 dsc->u.ldst.restore_r4 = 0;
5625
5626 if (immed)
5627 /* ldr[b]<cond> rt, [rn, #imm], etc.
5628 ->
5629 ldr[b]<cond> r0, [r2, #imm]. */
5630 {
5631 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5632 dsc->modinsn[1] = insn2 & 0x0fff;
5633 }
5634 else
5635 /* ldr[b]<cond> rt, [rn, rm], etc.
5636 ->
5637 ldr[b]<cond> r0, [r2, r3]. */
5638 {
5639 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5640 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5641 }
5642
5643 dsc->numinsns = 2;
5644
5645 return 0;
5646 }
5647
5648
5649 static int
5650 arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5651 struct regcache *regs,
5652 arm_displaced_step_closure *dsc,
5653 int load, int size, int usermode)
5654 {
5655 int immed = !bit (insn, 25);
5656 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5657 unsigned int rt = bits (insn, 12, 15);
5658 unsigned int rn = bits (insn, 16, 19);
5659 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5660
5661 if (!insn_references_pc (insn, 0x000ff00ful))
5662 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5663
5664 if (debug_displaced)
5665 fprintf_unfiltered (gdb_stdlog,
5666 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
5667 load ? (size == 1 ? "ldrb" : "ldr")
5668 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
5669 rt, rn,
5670 (unsigned long) insn);
5671
5672 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5673 usermode, rt, rm, rn);
5674
5675 if (load || rt != ARM_PC_REGNUM)
5676 {
5677 dsc->u.ldst.restore_r4 = 0;
5678
5679 if (immed)
5680 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5681 ->
5682 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5683 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5684 else
5685 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5686 ->
5687 {ldr,str}[b]<cond> r0, [r2, r3]. */
5688 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5689 }
5690 else
5691 {
5692 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5693 dsc->u.ldst.restore_r4 = 1;
5694 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5695 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
5696 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5697 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5698 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5699
5700 /* As above. */
5701 if (immed)
5702 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5703 else
5704 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5705
5706 dsc->numinsns = 6;
5707 }
5708
5709 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5710
5711 return 0;
5712 }
5713
5714 /* Cleanup LDM instructions with fully-populated register list. This is an
5715 unfortunate corner case: it's impossible to implement correctly by modifying
5716 the instruction. The issue is as follows: we have an instruction,
5717
5718 ldm rN, {r0-r15}
5719
5720 which we must rewrite to avoid loading PC. A possible solution would be to
5721 do the load in two halves, something like (with suitable cleanup
5722 afterwards):
5723
5724 mov r8, rN
5725 ldm[id][ab] r8!, {r0-r7}
5726 str r7, <temp>
5727 ldm[id][ab] r8, {r7-r14}
5728 <bkpt>
5729
5730 but at present there's no suitable place for <temp>, since the scratch space
5731 is overwritten before the cleanup routine is called. For now, we simply
5732 emulate the instruction. */
5733
5734 static void
5735 cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5736 arm_displaced_step_closure *dsc)
5737 {
5738 int inc = dsc->u.block.increment;
5739 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5740 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5741 uint32_t regmask = dsc->u.block.regmask;
5742 int regno = inc ? 0 : 15;
5743 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5744 int exception_return = dsc->u.block.load && dsc->u.block.user
5745 && (regmask & 0x8000) != 0;
5746 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5747 int do_transfer = condition_true (dsc->u.block.cond, status);
5748 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5749
5750 if (!do_transfer)
5751 return;
5752
5753 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5754 sensible we can do here. Complain loudly. */
5755 if (exception_return)
5756 error (_("Cannot single-step exception return"));
5757
5758 /* We don't handle any stores here for now. */
5759 gdb_assert (dsc->u.block.load != 0);
5760
5761 if (debug_displaced)
5762 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5763 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5764 dsc->u.block.increment ? "inc" : "dec",
5765 dsc->u.block.before ? "before" : "after");
5766
5767 while (regmask)
5768 {
5769 uint32_t memword;
5770
5771 if (inc)
5772 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
5773 regno++;
5774 else
5775 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5776 regno--;
5777
5778 xfer_addr += bump_before;
5779
5780 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5781 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5782
5783 xfer_addr += bump_after;
5784
5785 regmask &= ~(1 << regno);
5786 }
5787
5788 if (dsc->u.block.writeback)
5789 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5790 CANNOT_WRITE_PC);
5791 }
5792
5793 /* Clean up an STM which included the PC in the register list. */
5794
5795 static void
5796 cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5797 arm_displaced_step_closure *dsc)
5798 {
5799 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5800 int store_executed = condition_true (dsc->u.block.cond, status);
5801 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5802 CORE_ADDR stm_insn_addr;
5803 uint32_t pc_val;
5804 long offset;
5805 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5806
5807 /* If condition code fails, there's nothing else to do. */
5808 if (!store_executed)
5809 return;
5810
5811 if (dsc->u.block.increment)
5812 {
5813 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5814
5815 if (dsc->u.block.before)
5816 pc_stored_at += 4;
5817 }
5818 else
5819 {
5820 pc_stored_at = dsc->u.block.xfer_addr;
5821
5822 if (dsc->u.block.before)
5823 pc_stored_at -= 4;
5824 }
5825
5826 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5827 stm_insn_addr = dsc->scratch_base;
5828 offset = pc_val - stm_insn_addr;
5829
5830 if (debug_displaced)
5831 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5832 "STM instruction\n", offset);
5833
5834 /* Rewrite the stored PC to the proper value for the non-displaced original
5835 instruction. */
5836 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5837 dsc->insn_addr + offset);
5838 }
5839
5840 /* Clean up an LDM which includes the PC in the register list. We clumped all
5841 the registers in the transferred list into a contiguous range r0...rX (to
5842 avoid loading PC directly and losing control of the debugged program), so we
5843 must undo that here. */
5844
5845 static void
5846 cleanup_block_load_pc (struct gdbarch *gdbarch,
5847 struct regcache *regs,
5848 arm_displaced_step_closure *dsc)
5849 {
5850 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5851 int load_executed = condition_true (dsc->u.block.cond, status);
5852 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
5853 unsigned int regs_loaded = bitcount (mask);
5854 unsigned int num_to_shuffle = regs_loaded, clobbered;
5855
5856 /* The method employed here will fail if the register list is fully populated
5857 (we need to avoid loading PC directly). */
5858 gdb_assert (num_to_shuffle < 16);
5859
5860 if (!load_executed)
5861 return;
5862
5863 clobbered = (1 << num_to_shuffle) - 1;
5864
5865 while (num_to_shuffle > 0)
5866 {
5867 if ((mask & (1 << write_reg)) != 0)
5868 {
5869 unsigned int read_reg = num_to_shuffle - 1;
5870
5871 if (read_reg != write_reg)
5872 {
5873 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
5874 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
5875 if (debug_displaced)
5876 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
5877 "loaded register r%d to r%d\n"), read_reg,
5878 write_reg);
5879 }
5880 else if (debug_displaced)
5881 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
5882 "r%d already in the right place\n"),
5883 write_reg);
5884
5885 clobbered &= ~(1 << write_reg);
5886
5887 num_to_shuffle--;
5888 }
5889
5890 write_reg--;
5891 }
5892
5893 /* Restore any registers we scribbled over. */
5894 for (write_reg = 0; clobbered != 0; write_reg++)
5895 {
5896 if ((clobbered & (1 << write_reg)) != 0)
5897 {
5898 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
5899 CANNOT_WRITE_PC);
5900 if (debug_displaced)
5901 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
5902 "clobbered register r%d\n"), write_reg);
5903 clobbered &= ~(1 << write_reg);
5904 }
5905 }
5906
5907 /* Perform register writeback manually. */
5908 if (dsc->u.block.writeback)
5909 {
5910 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
5911
5912 if (dsc->u.block.increment)
5913 new_rn_val += regs_loaded * 4;
5914 else
5915 new_rn_val -= regs_loaded * 4;
5916
5917 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
5918 CANNOT_WRITE_PC);
5919 }
5920 }
5921
5922 /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
5923 in user-level code (in particular exception return, ldm rn, {...pc}^). */
5924
5925 static int
5926 arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
5927 struct regcache *regs,
5928 arm_displaced_step_closure *dsc)
5929 {
5930 int load = bit (insn, 20);
5931 int user = bit (insn, 22);
5932 int increment = bit (insn, 23);
5933 int before = bit (insn, 24);
5934 int writeback = bit (insn, 21);
5935 int rn = bits (insn, 16, 19);
5936
5937 /* Block transfers which don't mention PC can be run directly
5938 out-of-line. */
5939 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
5940 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
5941
5942 if (rn == ARM_PC_REGNUM)
5943 {
5944 warning (_("displaced: Unpredictable LDM or STM with "
5945 "base register r15"));
5946 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
5947 }
5948
5949 if (debug_displaced)
5950 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
5951 "%.8lx\n", (unsigned long) insn);
5952
5953 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
5954 dsc->u.block.rn = rn;
5955
5956 dsc->u.block.load = load;
5957 dsc->u.block.user = user;
5958 dsc->u.block.increment = increment;
5959 dsc->u.block.before = before;
5960 dsc->u.block.writeback = writeback;
5961 dsc->u.block.cond = bits (insn, 28, 31);
5962
5963 dsc->u.block.regmask = insn & 0xffff;
5964
5965 if (load)
5966 {
5967 if ((insn & 0xffff) == 0xffff)
5968 {
5969 /* LDM with a fully-populated register list. This case is
5970 particularly tricky. Implement for now by fully emulating the
5971 instruction (which might not behave perfectly in all cases, but
5972 these instructions should be rare enough for that not to matter
5973 too much). */
5974 dsc->modinsn[0] = ARM_NOP;
5975
5976 dsc->cleanup = &cleanup_block_load_all;
5977 }
5978 else
5979 {
5980 /* LDM of a list of registers which includes PC. Implement by
5981 rewriting the list of registers to be transferred into a
5982 contiguous chunk r0...rX before doing the transfer, then shuffling
5983 registers into the correct places in the cleanup routine. */
5984 unsigned int regmask = insn & 0xffff;
5985 unsigned int num_in_list = bitcount (regmask), new_regmask;
5986 unsigned int i;
5987
5988 for (i = 0; i < num_in_list; i++)
5989 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
5990
5991 /* Writeback makes things complicated. We need to avoid clobbering
5992 the base register with one of the registers in our modified
5993 register list, but just using a different register can't work in
5994 all cases, e.g.:
5995
5996 ldm r14!, {r0-r13,pc}
5997
5998 which would need to be rewritten as:
5999
6000 ldm rN!, {r0-r14}
6001
6002 but that can't work, because there's no free register for N.
6003
6004 Solve this by turning off the writeback bit, and emulating
6005 writeback manually in the cleanup routine. */
6006
6007 if (writeback)
6008 insn &= ~(1 << 21);
6009
6010 new_regmask = (1 << num_in_list) - 1;
6011
6012 if (debug_displaced)
6013 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6014 "{..., pc}: original reg list %.4x, modified "
6015 "list %.4x\n"), rn, writeback ? "!" : "",
6016 (int) insn & 0xffff, new_regmask);
6017
6018 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6019
6020 dsc->cleanup = &cleanup_block_load_pc;
6021 }
6022 }
6023 else
6024 {
6025 /* STM of a list of registers which includes PC. Run the instruction
6026 as-is, but out of line: this will store the wrong value for the PC,
6027 so we must manually fix up the memory in the cleanup routine.
6028 Doing things this way has the advantage that we can auto-detect
6029 the offset of the PC write (which is architecture-dependent) in
6030 the cleanup routine. */
6031 dsc->modinsn[0] = insn;
6032
6033 dsc->cleanup = &cleanup_block_store_pc;
6034 }
6035
6036 return 0;
6037 }
6038
6039 static int
6040 thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6041 struct regcache *regs,
6042 arm_displaced_step_closure *dsc)
6043 {
6044 int rn = bits (insn1, 0, 3);
6045 int load = bit (insn1, 4);
6046 int writeback = bit (insn1, 5);
6047
6048 /* Block transfers which don't mention PC can be run directly
6049 out-of-line. */
6050 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6051 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
6052
6053 if (rn == ARM_PC_REGNUM)
6054 {
6055 warning (_("displaced: Unpredictable LDM or STM with "
6056 "base register r15"));
6057 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6058 "unpredictable ldm/stm", dsc);
6059 }
6060
6061 if (debug_displaced)
6062 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6063 "%.4x%.4x\n", insn1, insn2);
6064
6065 /* Clear bit 13, since it should be always zero. */
6066 dsc->u.block.regmask = (insn2 & 0xdfff);
6067 dsc->u.block.rn = rn;
6068
6069 dsc->u.block.load = load;
6070 dsc->u.block.user = 0;
6071 dsc->u.block.increment = bit (insn1, 7);
6072 dsc->u.block.before = bit (insn1, 8);
6073 dsc->u.block.writeback = writeback;
6074 dsc->u.block.cond = INST_AL;
6075 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6076
6077 if (load)
6078 {
6079 if (dsc->u.block.regmask == 0xffff)
6080 {
6081 /* This branch is impossible to happen. */
6082 gdb_assert (0);
6083 }
6084 else
6085 {
6086 unsigned int regmask = dsc->u.block.regmask;
6087 unsigned int num_in_list = bitcount (regmask), new_regmask;
6088 unsigned int i;
6089
6090 for (i = 0; i < num_in_list; i++)
6091 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6092
6093 if (writeback)
6094 insn1 &= ~(1 << 5);
6095
6096 new_regmask = (1 << num_in_list) - 1;
6097
6098 if (debug_displaced)
6099 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6100 "{..., pc}: original reg list %.4x, modified "
6101 "list %.4x\n"), rn, writeback ? "!" : "",
6102 (int) dsc->u.block.regmask, new_regmask);
6103
6104 dsc->modinsn[0] = insn1;
6105 dsc->modinsn[1] = (new_regmask & 0xffff);
6106 dsc->numinsns = 2;
6107
6108 dsc->cleanup = &cleanup_block_load_pc;
6109 }
6110 }
6111 else
6112 {
6113 dsc->modinsn[0] = insn1;
6114 dsc->modinsn[1] = insn2;
6115 dsc->numinsns = 2;
6116 dsc->cleanup = &cleanup_block_store_pc;
6117 }
6118 return 0;
6119 }
6120
6121 /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6122 This is used to avoid a dependency on BFD's bfd_endian enum. */
6123
6124 ULONGEST
6125 arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6126 int byte_order)
6127 {
6128 return read_memory_unsigned_integer (memaddr, len,
6129 (enum bfd_endian) byte_order);
6130 }
6131
6132 /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6133
6134 CORE_ADDR
6135 arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6136 CORE_ADDR val)
6137 {
6138 return gdbarch_addr_bits_remove (self->regcache->arch (), val);
6139 }
6140
6141 /* Wrapper over syscall_next_pc for use in get_next_pcs. */
6142
6143 static CORE_ADDR
6144 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
6145 {
6146 return 0;
6147 }
6148
6149 /* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6150
6151 int
6152 arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6153 {
6154 return arm_is_thumb (self->regcache);
6155 }
6156
6157 /* single_step() is called just before we want to resume the inferior,
6158 if we want to single-step it but there is no hardware or kernel
6159 single-step support. We find the target of the coming instructions
6160 and breakpoint them. */
6161
6162 std::vector<CORE_ADDR>
6163 arm_software_single_step (struct regcache *regcache)
6164 {
6165 struct gdbarch *gdbarch = regcache->arch ();
6166 struct arm_get_next_pcs next_pcs_ctx;
6167
6168 arm_get_next_pcs_ctor (&next_pcs_ctx,
6169 &arm_get_next_pcs_ops,
6170 gdbarch_byte_order (gdbarch),
6171 gdbarch_byte_order_for_code (gdbarch),
6172 0,
6173 regcache);
6174
6175 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
6176
6177 for (CORE_ADDR &pc_ref : next_pcs)
6178 pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
6179
6180 return next_pcs;
6181 }
6182
6183 /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6184 for Linux, where some SVC instructions must be treated specially. */
6185
6186 static void
6187 cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6188 arm_displaced_step_closure *dsc)
6189 {
6190 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6191
6192 if (debug_displaced)
6193 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6194 "%.8lx\n", (unsigned long) resume_addr);
6195
6196 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6197 }
6198
6199
6200 /* Common copy routine for svc instruction. */
6201
6202 static int
6203 install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6204 arm_displaced_step_closure *dsc)
6205 {
6206 /* Preparation: none.
6207 Insn: unmodified svc.
6208 Cleanup: pc <- insn_addr + insn_size. */
6209
6210 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6211 instruction. */
6212 dsc->wrote_to_pc = 1;
6213
6214 /* Allow OS-specific code to override SVC handling. */
6215 if (dsc->u.svc.copy_svc_os)
6216 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6217 else
6218 {
6219 dsc->cleanup = &cleanup_svc;
6220 return 0;
6221 }
6222 }
6223
6224 static int
6225 arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6226 struct regcache *regs, arm_displaced_step_closure *dsc)
6227 {
6228
6229 if (debug_displaced)
6230 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6231 (unsigned long) insn);
6232
6233 dsc->modinsn[0] = insn;
6234
6235 return install_svc (gdbarch, regs, dsc);
6236 }
6237
6238 static int
6239 thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6240 struct regcache *regs, arm_displaced_step_closure *dsc)
6241 {
6242
6243 if (debug_displaced)
6244 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6245 insn);
6246
6247 dsc->modinsn[0] = insn;
6248
6249 return install_svc (gdbarch, regs, dsc);
6250 }
6251
6252 /* Copy undefined instructions. */
6253
6254 static int
6255 arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6256 arm_displaced_step_closure *dsc)
6257 {
6258 if (debug_displaced)
6259 fprintf_unfiltered (gdb_stdlog,
6260 "displaced: copying undefined insn %.8lx\n",
6261 (unsigned long) insn);
6262
6263 dsc->modinsn[0] = insn;
6264
6265 return 0;
6266 }
6267
6268 static int
6269 thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6270 arm_displaced_step_closure *dsc)
6271 {
6272
6273 if (debug_displaced)
6274 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6275 "%.4x %.4x\n", (unsigned short) insn1,
6276 (unsigned short) insn2);
6277
6278 dsc->modinsn[0] = insn1;
6279 dsc->modinsn[1] = insn2;
6280 dsc->numinsns = 2;
6281
6282 return 0;
6283 }
6284
6285 /* Copy unpredictable instructions. */
6286
6287 static int
6288 arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6289 arm_displaced_step_closure *dsc)
6290 {
6291 if (debug_displaced)
6292 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6293 "%.8lx\n", (unsigned long) insn);
6294
6295 dsc->modinsn[0] = insn;
6296
6297 return 0;
6298 }
6299
6300 /* The decode_* functions are instruction decoding helpers. They mostly follow
6301 the presentation in the ARM ARM. */
6302
6303 static int
6304 arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6305 struct regcache *regs,
6306 arm_displaced_step_closure *dsc)
6307 {
6308 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6309 unsigned int rn = bits (insn, 16, 19);
6310
6311 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0x1) == 0x0)
6312 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
6313 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0x1) == 0x1)
6314 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
6315 else if ((op1 & 0x60) == 0x20)
6316 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
6317 else if ((op1 & 0x71) == 0x40)
6318 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6319 dsc);
6320 else if ((op1 & 0x77) == 0x41)
6321 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6322 else if ((op1 & 0x77) == 0x45)
6323 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
6324 else if ((op1 & 0x77) == 0x51)
6325 {
6326 if (rn != 0xf)
6327 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6328 else
6329 return arm_copy_unpred (gdbarch, insn, dsc);
6330 }
6331 else if ((op1 & 0x77) == 0x55)
6332 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6333 else if (op1 == 0x57)
6334 switch (op2)
6335 {
6336 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6337 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6338 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6339 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6340 default: return arm_copy_unpred (gdbarch, insn, dsc);
6341 }
6342 else if ((op1 & 0x63) == 0x43)
6343 return arm_copy_unpred (gdbarch, insn, dsc);
6344 else if ((op2 & 0x1) == 0x0)
6345 switch (op1 & ~0x80)
6346 {
6347 case 0x61:
6348 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6349 case 0x65:
6350 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
6351 case 0x71: case 0x75:
6352 /* pld/pldw reg. */
6353 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
6354 case 0x63: case 0x67: case 0x73: case 0x77:
6355 return arm_copy_unpred (gdbarch, insn, dsc);
6356 default:
6357 return arm_copy_undef (gdbarch, insn, dsc);
6358 }
6359 else
6360 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
6361 }
6362
6363 static int
6364 arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6365 struct regcache *regs,
6366 arm_displaced_step_closure *dsc)
6367 {
6368 if (bit (insn, 27) == 0)
6369 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
6370 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6371 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6372 {
6373 case 0x0: case 0x2:
6374 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
6375
6376 case 0x1: case 0x3:
6377 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
6378
6379 case 0x4: case 0x5: case 0x6: case 0x7:
6380 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6381
6382 case 0x8:
6383 switch ((insn & 0xe00000) >> 21)
6384 {
6385 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6386 /* stc/stc2. */
6387 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6388
6389 case 0x2:
6390 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6391
6392 default:
6393 return arm_copy_undef (gdbarch, insn, dsc);
6394 }
6395
6396 case 0x9:
6397 {
6398 int rn_f = (bits (insn, 16, 19) == 0xf);
6399 switch ((insn & 0xe00000) >> 21)
6400 {
6401 case 0x1: case 0x3:
6402 /* ldc/ldc2 imm (undefined for rn == pc). */
6403 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6404 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6405
6406 case 0x2:
6407 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6408
6409 case 0x4: case 0x5: case 0x6: case 0x7:
6410 /* ldc/ldc2 lit (undefined for rn != pc). */
6411 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6412 : arm_copy_undef (gdbarch, insn, dsc);
6413
6414 default:
6415 return arm_copy_undef (gdbarch, insn, dsc);
6416 }
6417 }
6418
6419 case 0xa:
6420 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
6421
6422 case 0xb:
6423 if (bits (insn, 16, 19) == 0xf)
6424 /* ldc/ldc2 lit. */
6425 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6426 else
6427 return arm_copy_undef (gdbarch, insn, dsc);
6428
6429 case 0xc:
6430 if (bit (insn, 4))
6431 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6432 else
6433 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6434
6435 case 0xd:
6436 if (bit (insn, 4))
6437 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6438 else
6439 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6440
6441 default:
6442 return arm_copy_undef (gdbarch, insn, dsc);
6443 }
6444 }
6445
6446 /* Decode miscellaneous instructions in dp/misc encoding space. */
6447
6448 static int
6449 arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6450 struct regcache *regs,
6451 arm_displaced_step_closure *dsc)
6452 {
6453 unsigned int op2 = bits (insn, 4, 6);
6454 unsigned int op = bits (insn, 21, 22);
6455
6456 switch (op2)
6457 {
6458 case 0x0:
6459 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
6460
6461 case 0x1:
6462 if (op == 0x1) /* bx. */
6463 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
6464 else if (op == 0x3)
6465 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
6466 else
6467 return arm_copy_undef (gdbarch, insn, dsc);
6468
6469 case 0x2:
6470 if (op == 0x1)
6471 /* Not really supported. */
6472 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
6473 else
6474 return arm_copy_undef (gdbarch, insn, dsc);
6475
6476 case 0x3:
6477 if (op == 0x1)
6478 return arm_copy_bx_blx_reg (gdbarch, insn,
6479 regs, dsc); /* blx register. */
6480 else
6481 return arm_copy_undef (gdbarch, insn, dsc);
6482
6483 case 0x5:
6484 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
6485
6486 case 0x7:
6487 if (op == 0x1)
6488 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
6489 else if (op == 0x3)
6490 /* Not really supported. */
6491 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
6492 /* Fall through. */
6493
6494 default:
6495 return arm_copy_undef (gdbarch, insn, dsc);
6496 }
6497 }
6498
6499 static int
6500 arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6501 struct regcache *regs,
6502 arm_displaced_step_closure *dsc)
6503 {
6504 if (bit (insn, 25))
6505 switch (bits (insn, 20, 24))
6506 {
6507 case 0x10:
6508 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
6509
6510 case 0x14:
6511 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
6512
6513 case 0x12: case 0x16:
6514 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
6515
6516 default:
6517 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
6518 }
6519 else
6520 {
6521 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6522
6523 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
6524 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
6525 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
6526 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
6527 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
6528 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
6529 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
6530 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
6531 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
6532 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
6533 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
6534 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
6535 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6536 /* 2nd arg means "unprivileged". */
6537 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6538 dsc);
6539 }
6540
6541 /* Should be unreachable. */
6542 return 1;
6543 }
6544
6545 static int
6546 arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6547 struct regcache *regs,
6548 arm_displaced_step_closure *dsc)
6549 {
6550 int a = bit (insn, 25), b = bit (insn, 4);
6551 uint32_t op1 = bits (insn, 20, 24);
6552
6553 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6554 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
6555 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
6556 else if ((!a && (op1 & 0x17) == 0x02)
6557 || (a && (op1 & 0x17) == 0x02 && !b))
6558 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
6559 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6560 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
6561 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
6562 else if ((!a && (op1 & 0x17) == 0x03)
6563 || (a && (op1 & 0x17) == 0x03 && !b))
6564 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
6565 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6566 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
6567 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
6568 else if ((!a && (op1 & 0x17) == 0x06)
6569 || (a && (op1 & 0x17) == 0x06 && !b))
6570 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
6571 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6572 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
6573 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
6574 else if ((!a && (op1 & 0x17) == 0x07)
6575 || (a && (op1 & 0x17) == 0x07 && !b))
6576 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
6577
6578 /* Should be unreachable. */
6579 return 1;
6580 }
6581
6582 static int
6583 arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6584 arm_displaced_step_closure *dsc)
6585 {
6586 switch (bits (insn, 20, 24))
6587 {
6588 case 0x00: case 0x01: case 0x02: case 0x03:
6589 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
6590
6591 case 0x04: case 0x05: case 0x06: case 0x07:
6592 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
6593
6594 case 0x08: case 0x09: case 0x0a: case 0x0b:
6595 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
6596 return arm_copy_unmodified (gdbarch, insn,
6597 "decode/pack/unpack/saturate/reverse", dsc);
6598
6599 case 0x18:
6600 if (bits (insn, 5, 7) == 0) /* op2. */
6601 {
6602 if (bits (insn, 12, 15) == 0xf)
6603 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
6604 else
6605 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
6606 }
6607 else
6608 return arm_copy_undef (gdbarch, insn, dsc);
6609
6610 case 0x1a: case 0x1b:
6611 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6612 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
6613 else
6614 return arm_copy_undef (gdbarch, insn, dsc);
6615
6616 case 0x1c: case 0x1d:
6617 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6618 {
6619 if (bits (insn, 0, 3) == 0xf)
6620 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
6621 else
6622 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
6623 }
6624 else
6625 return arm_copy_undef (gdbarch, insn, dsc);
6626
6627 case 0x1e: case 0x1f:
6628 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6629 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
6630 else
6631 return arm_copy_undef (gdbarch, insn, dsc);
6632 }
6633
6634 /* Should be unreachable. */
6635 return 1;
6636 }
6637
6638 static int
6639 arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
6640 struct regcache *regs,
6641 arm_displaced_step_closure *dsc)
6642 {
6643 if (bit (insn, 25))
6644 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6645 else
6646 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
6647 }
6648
6649 static int
6650 arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6651 struct regcache *regs,
6652 arm_displaced_step_closure *dsc)
6653 {
6654 unsigned int opcode = bits (insn, 20, 24);
6655
6656 switch (opcode)
6657 {
6658 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
6659 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
6660
6661 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6662 case 0x12: case 0x16:
6663 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
6664
6665 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6666 case 0x13: case 0x17:
6667 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
6668
6669 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6670 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6671 /* Note: no writeback for these instructions. Bit 25 will always be
6672 zero though (via caller), so the following works OK. */
6673 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6674 }
6675
6676 /* Should be unreachable. */
6677 return 1;
6678 }
6679
6680 /* Decode shifted register instructions. */
6681
6682 static int
6683 thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6684 uint16_t insn2, struct regcache *regs,
6685 arm_displaced_step_closure *dsc)
6686 {
6687 /* PC is only allowed to be used in instruction MOV. */
6688
6689 unsigned int op = bits (insn1, 5, 8);
6690 unsigned int rn = bits (insn1, 0, 3);
6691
6692 if (op == 0x2 && rn == 0xf) /* MOV */
6693 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6694 else
6695 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6696 "dp (shift reg)", dsc);
6697 }
6698
6699
6700 /* Decode extension register load/store. Exactly the same as
6701 arm_decode_ext_reg_ld_st. */
6702
6703 static int
6704 thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6705 uint16_t insn2, struct regcache *regs,
6706 arm_displaced_step_closure *dsc)
6707 {
6708 unsigned int opcode = bits (insn1, 4, 8);
6709
6710 switch (opcode)
6711 {
6712 case 0x04: case 0x05:
6713 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6714 "vfp/neon vmov", dsc);
6715
6716 case 0x08: case 0x0c: /* 01x00 */
6717 case 0x0a: case 0x0e: /* 01x10 */
6718 case 0x12: case 0x16: /* 10x10 */
6719 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6720 "vfp/neon vstm/vpush", dsc);
6721
6722 case 0x09: case 0x0d: /* 01x01 */
6723 case 0x0b: case 0x0f: /* 01x11 */
6724 case 0x13: case 0x17: /* 10x11 */
6725 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6726 "vfp/neon vldm/vpop", dsc);
6727
6728 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6729 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6730 "vstr", dsc);
6731 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6732 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6733 }
6734
6735 /* Should be unreachable. */
6736 return 1;
6737 }
6738
6739 static int
6740 arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
6741 struct regcache *regs, arm_displaced_step_closure *dsc)
6742 {
6743 unsigned int op1 = bits (insn, 20, 25);
6744 int op = bit (insn, 4);
6745 unsigned int coproc = bits (insn, 8, 11);
6746
6747 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
6748 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
6749 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6750 && (coproc & 0xe) != 0xa)
6751 /* stc/stc2. */
6752 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6753 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6754 && (coproc & 0xe) != 0xa)
6755 /* ldc/ldc2 imm/lit. */
6756 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6757 else if ((op1 & 0x3e) == 0x00)
6758 return arm_copy_undef (gdbarch, insn, dsc);
6759 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
6760 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
6761 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
6762 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6763 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
6764 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6765 else if ((op1 & 0x30) == 0x20 && !op)
6766 {
6767 if ((coproc & 0xe) == 0xa)
6768 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
6769 else
6770 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6771 }
6772 else if ((op1 & 0x30) == 0x20 && op)
6773 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
6774 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
6775 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6776 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
6777 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6778 else if ((op1 & 0x30) == 0x30)
6779 return arm_copy_svc (gdbarch, insn, regs, dsc);
6780 else
6781 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
6782 }
6783
6784 static int
6785 thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6786 uint16_t insn2, struct regcache *regs,
6787 arm_displaced_step_closure *dsc)
6788 {
6789 unsigned int coproc = bits (insn2, 8, 11);
6790 unsigned int bit_5_8 = bits (insn1, 5, 8);
6791 unsigned int bit_9 = bit (insn1, 9);
6792 unsigned int bit_4 = bit (insn1, 4);
6793
6794 if (bit_9 == 0)
6795 {
6796 if (bit_5_8 == 2)
6797 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6798 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6799 dsc);
6800 else if (bit_5_8 == 0) /* UNDEFINED. */
6801 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6802 else
6803 {
6804 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6805 if ((coproc & 0xe) == 0xa)
6806 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6807 dsc);
6808 else /* coproc is not 101x. */
6809 {
6810 if (bit_4 == 0) /* STC/STC2. */
6811 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6812 "stc/stc2", dsc);
6813 else /* LDC/LDC2 {literal, immediate}. */
6814 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6815 regs, dsc);
6816 }
6817 }
6818 }
6819 else
6820 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6821
6822 return 0;
6823 }
6824
6825 static void
6826 install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6827 arm_displaced_step_closure *dsc, int rd)
6828 {
6829 /* ADR Rd, #imm
6830
6831 Rewrite as:
6832
6833 Preparation: Rd <- PC
6834 Insn: ADD Rd, #imm
6835 Cleanup: Null.
6836 */
6837
6838 /* Rd <- PC */
6839 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6840 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
6841 }
6842
6843 static int
6844 thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
6845 arm_displaced_step_closure *dsc,
6846 int rd, unsigned int imm)
6847 {
6848
6849 /* Encoding T2: ADDS Rd, #imm */
6850 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
6851
6852 install_pc_relative (gdbarch, regs, dsc, rd);
6853
6854 return 0;
6855 }
6856
6857 static int
6858 thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
6859 struct regcache *regs,
6860 arm_displaced_step_closure *dsc)
6861 {
6862 unsigned int rd = bits (insn, 8, 10);
6863 unsigned int imm8 = bits (insn, 0, 7);
6864
6865 if (debug_displaced)
6866 fprintf_unfiltered (gdb_stdlog,
6867 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
6868 rd, imm8, insn);
6869
6870 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
6871 }
6872
6873 static int
6874 thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
6875 uint16_t insn2, struct regcache *regs,
6876 arm_displaced_step_closure *dsc)
6877 {
6878 unsigned int rd = bits (insn2, 8, 11);
6879 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
6880 extract raw immediate encoding rather than computing immediate. When
6881 generating ADD or SUB instruction, we can simply perform OR operation to
6882 set immediate into ADD. */
6883 unsigned int imm_3_8 = insn2 & 0x70ff;
6884 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
6885
6886 if (debug_displaced)
6887 fprintf_unfiltered (gdb_stdlog,
6888 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
6889 rd, imm_i, imm_3_8, insn1, insn2);
6890
6891 if (bit (insn1, 7)) /* Encoding T2 */
6892 {
6893 /* Encoding T3: SUB Rd, Rd, #imm */
6894 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
6895 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
6896 }
6897 else /* Encoding T3 */
6898 {
6899 /* Encoding T3: ADD Rd, Rd, #imm */
6900 dsc->modinsn[0] = (0xf100 | rd | imm_i);
6901 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
6902 }
6903 dsc->numinsns = 2;
6904
6905 install_pc_relative (gdbarch, regs, dsc, rd);
6906
6907 return 0;
6908 }
6909
6910 static int
6911 thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
6912 struct regcache *regs,
6913 arm_displaced_step_closure *dsc)
6914 {
6915 unsigned int rt = bits (insn1, 8, 10);
6916 unsigned int pc;
6917 int imm8 = (bits (insn1, 0, 7) << 2);
6918
6919 /* LDR Rd, #imm8
6920
6921 Rwrite as:
6922
6923 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
6924
6925 Insn: LDR R0, [R2, R3];
6926 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
6927
6928 if (debug_displaced)
6929 fprintf_unfiltered (gdb_stdlog,
6930 "displaced: copying thumb ldr r%d [pc #%d]\n"
6931 , rt, imm8);
6932
6933 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
6934 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
6935 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
6936 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6937 /* The assembler calculates the required value of the offset from the
6938 Align(PC,4) value of this instruction to the label. */
6939 pc = pc & 0xfffffffc;
6940
6941 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
6942 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
6943
6944 dsc->rd = rt;
6945 dsc->u.ldst.xfersize = 4;
6946 dsc->u.ldst.rn = 0;
6947 dsc->u.ldst.immed = 0;
6948 dsc->u.ldst.writeback = 0;
6949 dsc->u.ldst.restore_r4 = 0;
6950
6951 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
6952
6953 dsc->cleanup = &cleanup_load;
6954
6955 return 0;
6956 }
6957
6958 /* Copy Thumb cbnz/cbz instruction. */
6959
6960 static int
6961 thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
6962 struct regcache *regs,
6963 arm_displaced_step_closure *dsc)
6964 {
6965 int non_zero = bit (insn1, 11);
6966 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
6967 CORE_ADDR from = dsc->insn_addr;
6968 int rn = bits (insn1, 0, 2);
6969 int rn_val = displaced_read_reg (regs, dsc, rn);
6970
6971 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
6972 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
6973 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
6974 condition is false, let it be, cleanup_branch will do nothing. */
6975 if (dsc->u.branch.cond)
6976 {
6977 dsc->u.branch.cond = INST_AL;
6978 dsc->u.branch.dest = from + 4 + imm5;
6979 }
6980 else
6981 dsc->u.branch.dest = from + 2;
6982
6983 dsc->u.branch.link = 0;
6984 dsc->u.branch.exchange = 0;
6985
6986 if (debug_displaced)
6987 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
6988 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
6989 rn, rn_val, insn1, dsc->u.branch.dest);
6990
6991 dsc->modinsn[0] = THUMB_NOP;
6992
6993 dsc->cleanup = &cleanup_branch;
6994 return 0;
6995 }
6996
6997 /* Copy Table Branch Byte/Halfword */
6998 static int
6999 thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7000 uint16_t insn2, struct regcache *regs,
7001 arm_displaced_step_closure *dsc)
7002 {
7003 ULONGEST rn_val, rm_val;
7004 int is_tbh = bit (insn2, 4);
7005 CORE_ADDR halfwords = 0;
7006 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7007
7008 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7009 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7010
7011 if (is_tbh)
7012 {
7013 gdb_byte buf[2];
7014
7015 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7016 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7017 }
7018 else
7019 {
7020 gdb_byte buf[1];
7021
7022 target_read_memory (rn_val + rm_val, buf, 1);
7023 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7024 }
7025
7026 if (debug_displaced)
7027 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7028 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7029 (unsigned int) rn_val, (unsigned int) rm_val,
7030 (unsigned int) halfwords);
7031
7032 dsc->u.branch.cond = INST_AL;
7033 dsc->u.branch.link = 0;
7034 dsc->u.branch.exchange = 0;
7035 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7036
7037 dsc->cleanup = &cleanup_branch;
7038
7039 return 0;
7040 }
7041
7042 static void
7043 cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7044 arm_displaced_step_closure *dsc)
7045 {
7046 /* PC <- r7 */
7047 int val = displaced_read_reg (regs, dsc, 7);
7048 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7049
7050 /* r7 <- r8 */
7051 val = displaced_read_reg (regs, dsc, 8);
7052 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7053
7054 /* r8 <- tmp[0] */
7055 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7056
7057 }
7058
7059 static int
7060 thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
7061 struct regcache *regs,
7062 arm_displaced_step_closure *dsc)
7063 {
7064 dsc->u.block.regmask = insn1 & 0x00ff;
7065
7066 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7067 to :
7068
7069 (1) register list is full, that is, r0-r7 are used.
7070 Prepare: tmp[0] <- r8
7071
7072 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7073 MOV r8, r7; Move value of r7 to r8;
7074 POP {r7}; Store PC value into r7.
7075
7076 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7077
7078 (2) register list is not full, supposing there are N registers in
7079 register list (except PC, 0 <= N <= 7).
7080 Prepare: for each i, 0 - N, tmp[i] <- ri.
7081
7082 POP {r0, r1, ...., rN};
7083
7084 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7085 from tmp[] properly.
7086 */
7087 if (debug_displaced)
7088 fprintf_unfiltered (gdb_stdlog,
7089 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7090 dsc->u.block.regmask, insn1);
7091
7092 if (dsc->u.block.regmask == 0xff)
7093 {
7094 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7095
7096 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7097 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7098 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7099
7100 dsc->numinsns = 3;
7101 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7102 }
7103 else
7104 {
7105 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
7106 unsigned int i;
7107 unsigned int new_regmask;
7108
7109 for (i = 0; i < num_in_list + 1; i++)
7110 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7111
7112 new_regmask = (1 << (num_in_list + 1)) - 1;
7113
7114 if (debug_displaced)
7115 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7116 "{..., pc}: original reg list %.4x,"
7117 " modified list %.4x\n"),
7118 (int) dsc->u.block.regmask, new_regmask);
7119
7120 dsc->u.block.regmask |= 0x8000;
7121 dsc->u.block.writeback = 0;
7122 dsc->u.block.cond = INST_AL;
7123
7124 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7125
7126 dsc->cleanup = &cleanup_block_load_pc;
7127 }
7128
7129 return 0;
7130 }
7131
7132 static void
7133 thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7134 struct regcache *regs,
7135 arm_displaced_step_closure *dsc)
7136 {
7137 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7138 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7139 int err = 0;
7140
7141 /* 16-bit thumb instructions. */
7142 switch (op_bit_12_15)
7143 {
7144 /* Shift (imme), add, subtract, move and compare. */
7145 case 0: case 1: case 2: case 3:
7146 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7147 "shift/add/sub/mov/cmp",
7148 dsc);
7149 break;
7150 case 4:
7151 switch (op_bit_10_11)
7152 {
7153 case 0: /* Data-processing */
7154 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7155 "data-processing",
7156 dsc);
7157 break;
7158 case 1: /* Special data instructions and branch and exchange. */
7159 {
7160 unsigned short op = bits (insn1, 7, 9);
7161 if (op == 6 || op == 7) /* BX or BLX */
7162 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7163 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7164 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7165 else
7166 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7167 dsc);
7168 }
7169 break;
7170 default: /* LDR (literal) */
7171 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7172 }
7173 break;
7174 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7175 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7176 break;
7177 case 10:
7178 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7179 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7180 else /* Generate SP-relative address */
7181 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7182 break;
7183 case 11: /* Misc 16-bit instructions */
7184 {
7185 switch (bits (insn1, 8, 11))
7186 {
7187 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7188 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7189 break;
7190 case 12: case 13: /* POP */
7191 if (bit (insn1, 8)) /* PC is in register list. */
7192 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7193 else
7194 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7195 break;
7196 case 15: /* If-Then, and hints */
7197 if (bits (insn1, 0, 3))
7198 /* If-Then makes up to four following instructions conditional.
7199 IT instruction itself is not conditional, so handle it as a
7200 common unmodified instruction. */
7201 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7202 dsc);
7203 else
7204 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7205 break;
7206 default:
7207 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7208 }
7209 }
7210 break;
7211 case 12:
7212 if (op_bit_10_11 < 2) /* Store multiple registers */
7213 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7214 else /* Load multiple registers */
7215 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7216 break;
7217 case 13: /* Conditional branch and supervisor call */
7218 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7219 err = thumb_copy_b (gdbarch, insn1, dsc);
7220 else
7221 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7222 break;
7223 case 14: /* Unconditional branch */
7224 err = thumb_copy_b (gdbarch, insn1, dsc);
7225 break;
7226 default:
7227 err = 1;
7228 }
7229
7230 if (err)
7231 internal_error (__FILE__, __LINE__,
7232 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7233 }
7234
7235 static int
7236 decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7237 uint16_t insn1, uint16_t insn2,
7238 struct regcache *regs,
7239 arm_displaced_step_closure *dsc)
7240 {
7241 int rt = bits (insn2, 12, 15);
7242 int rn = bits (insn1, 0, 3);
7243 int op1 = bits (insn1, 7, 8);
7244
7245 switch (bits (insn1, 5, 6))
7246 {
7247 case 0: /* Load byte and memory hints */
7248 if (rt == 0xf) /* PLD/PLI */
7249 {
7250 if (rn == 0xf)
7251 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7252 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7253 else
7254 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7255 "pli/pld", dsc);
7256 }
7257 else
7258 {
7259 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7260 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7261 1);
7262 else
7263 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7264 "ldrb{reg, immediate}/ldrbt",
7265 dsc);
7266 }
7267
7268 break;
7269 case 1: /* Load halfword and memory hints. */
7270 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7271 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7272 "pld/unalloc memhint", dsc);
7273 else
7274 {
7275 if (rn == 0xf)
7276 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7277 2);
7278 else
7279 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7280 "ldrh/ldrht", dsc);
7281 }
7282 break;
7283 case 2: /* Load word */
7284 {
7285 int insn2_bit_8_11 = bits (insn2, 8, 11);
7286
7287 if (rn == 0xf)
7288 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7289 else if (op1 == 0x1) /* Encoding T3 */
7290 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7291 0, 1);
7292 else /* op1 == 0x0 */
7293 {
7294 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7295 /* LDR (immediate) */
7296 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7297 dsc, bit (insn2, 8), 1);
7298 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7299 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7300 "ldrt", dsc);
7301 else
7302 /* LDR (register) */
7303 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7304 dsc, 0, 0);
7305 }
7306 break;
7307 }
7308 default:
7309 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7310 break;
7311 }
7312 return 0;
7313 }
7314
7315 static void
7316 thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7317 uint16_t insn2, struct regcache *regs,
7318 arm_displaced_step_closure *dsc)
7319 {
7320 int err = 0;
7321 unsigned short op = bit (insn2, 15);
7322 unsigned int op1 = bits (insn1, 11, 12);
7323
7324 switch (op1)
7325 {
7326 case 1:
7327 {
7328 switch (bits (insn1, 9, 10))
7329 {
7330 case 0:
7331 if (bit (insn1, 6))
7332 {
7333 /* Load/store {dual, exclusive}, table branch. */
7334 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7335 && bits (insn2, 5, 7) == 0)
7336 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7337 dsc);
7338 else
7339 /* PC is not allowed to use in load/store {dual, exclusive}
7340 instructions. */
7341 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7342 "load/store dual/ex", dsc);
7343 }
7344 else /* load/store multiple */
7345 {
7346 switch (bits (insn1, 7, 8))
7347 {
7348 case 0: case 3: /* SRS, RFE */
7349 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7350 "srs/rfe", dsc);
7351 break;
7352 case 1: case 2: /* LDM/STM/PUSH/POP */
7353 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7354 break;
7355 }
7356 }
7357 break;
7358
7359 case 1:
7360 /* Data-processing (shift register). */
7361 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7362 dsc);
7363 break;
7364 default: /* Coprocessor instructions. */
7365 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7366 break;
7367 }
7368 break;
7369 }
7370 case 2: /* op1 = 2 */
7371 if (op) /* Branch and misc control. */
7372 {
7373 if (bit (insn2, 14) /* BLX/BL */
7374 || bit (insn2, 12) /* Unconditional branch */
7375 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7376 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7377 else
7378 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7379 "misc ctrl", dsc);
7380 }
7381 else
7382 {
7383 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7384 {
7385 int dp_op = bits (insn1, 4, 8);
7386 int rn = bits (insn1, 0, 3);
7387 if ((dp_op == 0 || dp_op == 0xa) && rn == 0xf)
7388 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7389 regs, dsc);
7390 else
7391 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7392 "dp/pb", dsc);
7393 }
7394 else /* Data processing (modified immediate) */
7395 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7396 "dp/mi", dsc);
7397 }
7398 break;
7399 case 3: /* op1 = 3 */
7400 switch (bits (insn1, 9, 10))
7401 {
7402 case 0:
7403 if (bit (insn1, 4))
7404 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7405 regs, dsc);
7406 else /* NEON Load/Store and Store single data item */
7407 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7408 "neon elt/struct load/store",
7409 dsc);
7410 break;
7411 case 1: /* op1 = 3, bits (9, 10) == 1 */
7412 switch (bits (insn1, 7, 8))
7413 {
7414 case 0: case 1: /* Data processing (register) */
7415 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7416 "dp(reg)", dsc);
7417 break;
7418 case 2: /* Multiply and absolute difference */
7419 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7420 "mul/mua/diff", dsc);
7421 break;
7422 case 3: /* Long multiply and divide */
7423 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7424 "lmul/lmua", dsc);
7425 break;
7426 }
7427 break;
7428 default: /* Coprocessor instructions */
7429 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7430 break;
7431 }
7432 break;
7433 default:
7434 err = 1;
7435 }
7436
7437 if (err)
7438 internal_error (__FILE__, __LINE__,
7439 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7440
7441 }
7442
7443 static void
7444 thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7445 struct regcache *regs,
7446 arm_displaced_step_closure *dsc)
7447 {
7448 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7449 uint16_t insn1
7450 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7451
7452 if (debug_displaced)
7453 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7454 "at %.8lx\n", insn1, (unsigned long) from);
7455
7456 dsc->is_thumb = 1;
7457 dsc->insn_size = thumb_insn_size (insn1);
7458 if (thumb_insn_size (insn1) == 4)
7459 {
7460 uint16_t insn2
7461 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7462 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7463 }
7464 else
7465 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
7466 }
7467
7468 void
7469 arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7470 CORE_ADDR to, struct regcache *regs,
7471 arm_displaced_step_closure *dsc)
7472 {
7473 int err = 0;
7474 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7475 uint32_t insn;
7476
7477 /* Most displaced instructions use a 1-instruction scratch space, so set this
7478 here and override below if/when necessary. */
7479 dsc->numinsns = 1;
7480 dsc->insn_addr = from;
7481 dsc->scratch_base = to;
7482 dsc->cleanup = NULL;
7483 dsc->wrote_to_pc = 0;
7484
7485 if (!displaced_in_arm_mode (regs))
7486 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
7487
7488 dsc->is_thumb = 0;
7489 dsc->insn_size = 4;
7490 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7491 if (debug_displaced)
7492 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7493 "at %.8lx\n", (unsigned long) insn,
7494 (unsigned long) from);
7495
7496 if ((insn & 0xf0000000) == 0xf0000000)
7497 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
7498 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7499 {
7500 case 0x0: case 0x1: case 0x2: case 0x3:
7501 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
7502 break;
7503
7504 case 0x4: case 0x5: case 0x6:
7505 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
7506 break;
7507
7508 case 0x7:
7509 err = arm_decode_media (gdbarch, insn, dsc);
7510 break;
7511
7512 case 0x8: case 0x9: case 0xa: case 0xb:
7513 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
7514 break;
7515
7516 case 0xc: case 0xd: case 0xe: case 0xf:
7517 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
7518 break;
7519 }
7520
7521 if (err)
7522 internal_error (__FILE__, __LINE__,
7523 _("arm_process_displaced_insn: Instruction decode error"));
7524 }
7525
7526 /* Actually set up the scratch space for a displaced instruction. */
7527
7528 void
7529 arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7530 CORE_ADDR to, arm_displaced_step_closure *dsc)
7531 {
7532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7533 unsigned int i, len, offset;
7534 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7535 int size = dsc->is_thumb? 2 : 4;
7536 const gdb_byte *bkp_insn;
7537
7538 offset = 0;
7539 /* Poke modified instruction(s). */
7540 for (i = 0; i < dsc->numinsns; i++)
7541 {
7542 if (debug_displaced)
7543 {
7544 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7545 if (size == 4)
7546 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7547 dsc->modinsn[i]);
7548 else if (size == 2)
7549 fprintf_unfiltered (gdb_stdlog, "%.4x",
7550 (unsigned short)dsc->modinsn[i]);
7551
7552 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7553 (unsigned long) to + offset);
7554
7555 }
7556 write_memory_unsigned_integer (to + offset, size,
7557 byte_order_for_code,
7558 dsc->modinsn[i]);
7559 offset += size;
7560 }
7561
7562 /* Choose the correct breakpoint instruction. */
7563 if (dsc->is_thumb)
7564 {
7565 bkp_insn = tdep->thumb_breakpoint;
7566 len = tdep->thumb_breakpoint_size;
7567 }
7568 else
7569 {
7570 bkp_insn = tdep->arm_breakpoint;
7571 len = tdep->arm_breakpoint_size;
7572 }
7573
7574 /* Put breakpoint afterwards. */
7575 write_memory (to + offset, bkp_insn, len);
7576
7577 if (debug_displaced)
7578 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7579 paddress (gdbarch, from), paddress (gdbarch, to));
7580 }
7581
7582 /* Entry point for cleaning things up after a displaced instruction has been
7583 single-stepped. */
7584
7585 void
7586 arm_displaced_step_fixup (struct gdbarch *gdbarch,
7587 struct displaced_step_closure *dsc_,
7588 CORE_ADDR from, CORE_ADDR to,
7589 struct regcache *regs)
7590 {
7591 arm_displaced_step_closure *dsc = (arm_displaced_step_closure *) dsc_;
7592
7593 if (dsc->cleanup)
7594 dsc->cleanup (gdbarch, regs, dsc);
7595
7596 if (!dsc->wrote_to_pc)
7597 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7598 dsc->insn_addr + dsc->insn_size);
7599
7600 }
7601
7602 #include "bfd-in2.h"
7603 #include "libcoff.h"
7604
7605 static int
7606 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7607 {
7608 gdb_disassembler *di
7609 = static_cast<gdb_disassembler *>(info->application_data);
7610 struct gdbarch *gdbarch = di->arch ();
7611
7612 if (arm_pc_is_thumb (gdbarch, memaddr))
7613 {
7614 static asymbol *asym;
7615 static combined_entry_type ce;
7616 static struct coff_symbol_struct csym;
7617 static struct bfd fake_bfd;
7618 static bfd_target fake_target;
7619
7620 if (csym.native == NULL)
7621 {
7622 /* Create a fake symbol vector containing a Thumb symbol.
7623 This is solely so that the code in print_insn_little_arm()
7624 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7625 the presence of a Thumb symbol and switch to decoding
7626 Thumb instructions. */
7627
7628 fake_target.flavour = bfd_target_coff_flavour;
7629 fake_bfd.xvec = &fake_target;
7630 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7631 csym.native = &ce;
7632 csym.symbol.the_bfd = &fake_bfd;
7633 csym.symbol.name = "fake";
7634 asym = (asymbol *) & csym;
7635 }
7636
7637 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7638 info->symbols = &asym;
7639 }
7640 else
7641 info->symbols = NULL;
7642
7643 /* GDB is able to get bfd_mach from the exe_bfd, info->mach is
7644 accurate, so mark USER_SPECIFIED_MACHINE_TYPE bit. Otherwise,
7645 opcodes/arm-dis.c:print_insn reset info->mach, and it will trigger
7646 the assert on the mismatch of info->mach and bfd_get_mach (exec_bfd)
7647 in default_print_insn. */
7648 if (exec_bfd != NULL)
7649 info->flags |= USER_SPECIFIED_MACHINE_TYPE;
7650
7651 return default_print_insn (memaddr, info);
7652 }
7653
7654 /* The following define instruction sequences that will cause ARM
7655 cpu's to take an undefined instruction trap. These are used to
7656 signal a breakpoint to GDB.
7657
7658 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7659 modes. A different instruction is required for each mode. The ARM
7660 cpu's can also be big or little endian. Thus four different
7661 instructions are needed to support all cases.
7662
7663 Note: ARMv4 defines several new instructions that will take the
7664 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7665 not in fact add the new instructions. The new undefined
7666 instructions in ARMv4 are all instructions that had no defined
7667 behaviour in earlier chips. There is no guarantee that they will
7668 raise an exception, but may be treated as NOP's. In practice, it
7669 may only safe to rely on instructions matching:
7670
7671 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7672 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7673 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7674
7675 Even this may only true if the condition predicate is true. The
7676 following use a condition predicate of ALWAYS so it is always TRUE.
7677
7678 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7679 and NetBSD all use a software interrupt rather than an undefined
7680 instruction to force a trap. This can be handled by by the
7681 abi-specific code during establishment of the gdbarch vector. */
7682
7683 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7684 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7685 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7686 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7687
7688 static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7689 static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7690 static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7691 static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7692
7693 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7694
7695 static int
7696 arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7697 {
7698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7699 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7700
7701 if (arm_pc_is_thumb (gdbarch, *pcptr))
7702 {
7703 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
7704
7705 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7706 check whether we are replacing a 32-bit instruction. */
7707 if (tdep->thumb2_breakpoint != NULL)
7708 {
7709 gdb_byte buf[2];
7710
7711 if (target_read_memory (*pcptr, buf, 2) == 0)
7712 {
7713 unsigned short inst1;
7714
7715 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7716 if (thumb_insn_size (inst1) == 4)
7717 return ARM_BP_KIND_THUMB2;
7718 }
7719 }
7720
7721 return ARM_BP_KIND_THUMB;
7722 }
7723 else
7724 return ARM_BP_KIND_ARM;
7725
7726 }
7727
7728 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7729
7730 static const gdb_byte *
7731 arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7732 {
7733 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7734
7735 switch (kind)
7736 {
7737 case ARM_BP_KIND_ARM:
7738 *size = tdep->arm_breakpoint_size;
7739 return tdep->arm_breakpoint;
7740 case ARM_BP_KIND_THUMB:
7741 *size = tdep->thumb_breakpoint_size;
7742 return tdep->thumb_breakpoint;
7743 case ARM_BP_KIND_THUMB2:
7744 *size = tdep->thumb2_breakpoint_size;
7745 return tdep->thumb2_breakpoint;
7746 default:
7747 gdb_assert_not_reached ("unexpected arm breakpoint kind");
7748 }
7749 }
7750
7751 /* Implement the breakpoint_kind_from_current_state gdbarch method. */
7752
7753 static int
7754 arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
7755 struct regcache *regcache,
7756 CORE_ADDR *pcptr)
7757 {
7758 gdb_byte buf[4];
7759
7760 /* Check the memory pointed by PC is readable. */
7761 if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0)
7762 {
7763 struct arm_get_next_pcs next_pcs_ctx;
7764
7765 arm_get_next_pcs_ctor (&next_pcs_ctx,
7766 &arm_get_next_pcs_ops,
7767 gdbarch_byte_order (gdbarch),
7768 gdbarch_byte_order_for_code (gdbarch),
7769 0,
7770 regcache);
7771
7772 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
7773
7774 /* If MEMADDR is the next instruction of current pc, do the
7775 software single step computation, and get the thumb mode by
7776 the destination address. */
7777 for (CORE_ADDR pc : next_pcs)
7778 {
7779 if (UNMAKE_THUMB_ADDR (pc) == *pcptr)
7780 {
7781 if (IS_THUMB_ADDR (pc))
7782 {
7783 *pcptr = MAKE_THUMB_ADDR (*pcptr);
7784 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7785 }
7786 else
7787 return ARM_BP_KIND_ARM;
7788 }
7789 }
7790 }
7791
7792 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7793 }
7794
7795 /* Extract from an array REGBUF containing the (raw) register state a
7796 function return value of type TYPE, and copy that, in virtual
7797 format, into VALBUF. */
7798
7799 static void
7800 arm_extract_return_value (struct type *type, struct regcache *regs,
7801 gdb_byte *valbuf)
7802 {
7803 struct gdbarch *gdbarch = regs->arch ();
7804 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7805
7806 if (TYPE_CODE_FLT == TYPE_CODE (type))
7807 {
7808 switch (gdbarch_tdep (gdbarch)->fp_model)
7809 {
7810 case ARM_FLOAT_FPA:
7811 {
7812 /* The value is in register F0 in internal format. We need to
7813 extract the raw value and then convert it to the desired
7814 internal type. */
7815 bfd_byte tmpbuf[ARM_FP_REGISTER_SIZE];
7816
7817 regs->cooked_read (ARM_F0_REGNUM, tmpbuf);
7818 target_float_convert (tmpbuf, arm_ext_type (gdbarch),
7819 valbuf, type);
7820 }
7821 break;
7822
7823 case ARM_FLOAT_SOFT_FPA:
7824 case ARM_FLOAT_SOFT_VFP:
7825 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7826 not using the VFP ABI code. */
7827 case ARM_FLOAT_VFP:
7828 regs->cooked_read (ARM_A1_REGNUM, valbuf);
7829 if (TYPE_LENGTH (type) > 4)
7830 regs->cooked_read (ARM_A1_REGNUM + 1,
7831 valbuf + ARM_INT_REGISTER_SIZE);
7832 break;
7833
7834 default:
7835 internal_error (__FILE__, __LINE__,
7836 _("arm_extract_return_value: "
7837 "Floating point model not supported"));
7838 break;
7839 }
7840 }
7841 else if (TYPE_CODE (type) == TYPE_CODE_INT
7842 || TYPE_CODE (type) == TYPE_CODE_CHAR
7843 || TYPE_CODE (type) == TYPE_CODE_BOOL
7844 || TYPE_CODE (type) == TYPE_CODE_PTR
7845 || TYPE_IS_REFERENCE (type)
7846 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7847 {
7848 /* If the type is a plain integer, then the access is
7849 straight-forward. Otherwise we have to play around a bit
7850 more. */
7851 int len = TYPE_LENGTH (type);
7852 int regno = ARM_A1_REGNUM;
7853 ULONGEST tmp;
7854
7855 while (len > 0)
7856 {
7857 /* By using store_unsigned_integer we avoid having to do
7858 anything special for small big-endian values. */
7859 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7860 store_unsigned_integer (valbuf,
7861 (len > ARM_INT_REGISTER_SIZE
7862 ? ARM_INT_REGISTER_SIZE : len),
7863 byte_order, tmp);
7864 len -= ARM_INT_REGISTER_SIZE;
7865 valbuf += ARM_INT_REGISTER_SIZE;
7866 }
7867 }
7868 else
7869 {
7870 /* For a structure or union the behaviour is as if the value had
7871 been stored to word-aligned memory and then loaded into
7872 registers with 32-bit load instruction(s). */
7873 int len = TYPE_LENGTH (type);
7874 int regno = ARM_A1_REGNUM;
7875 bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE];
7876
7877 while (len > 0)
7878 {
7879 regs->cooked_read (regno++, tmpbuf);
7880 memcpy (valbuf, tmpbuf,
7881 len > ARM_INT_REGISTER_SIZE ? ARM_INT_REGISTER_SIZE : len);
7882 len -= ARM_INT_REGISTER_SIZE;
7883 valbuf += ARM_INT_REGISTER_SIZE;
7884 }
7885 }
7886 }
7887
7888
7889 /* Will a function return an aggregate type in memory or in a
7890 register? Return 0 if an aggregate type can be returned in a
7891 register, 1 if it must be returned in memory. */
7892
7893 static int
7894 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
7895 {
7896 enum type_code code;
7897
7898 type = check_typedef (type);
7899
7900 /* Simple, non-aggregate types (ie not including vectors and
7901 complex) are always returned in a register (or registers). */
7902 code = TYPE_CODE (type);
7903 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
7904 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
7905 return 0;
7906
7907 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
7908 {
7909 /* Vector values should be returned using ARM registers if they
7910 are not over 16 bytes. */
7911 return (TYPE_LENGTH (type) > 16);
7912 }
7913
7914 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
7915 {
7916 /* The AAPCS says all aggregates not larger than a word are returned
7917 in a register. */
7918 if (TYPE_LENGTH (type) <= ARM_INT_REGISTER_SIZE)
7919 return 0;
7920
7921 return 1;
7922 }
7923 else
7924 {
7925 int nRc;
7926
7927 /* All aggregate types that won't fit in a register must be returned
7928 in memory. */
7929 if (TYPE_LENGTH (type) > ARM_INT_REGISTER_SIZE)
7930 return 1;
7931
7932 /* In the ARM ABI, "integer" like aggregate types are returned in
7933 registers. For an aggregate type to be integer like, its size
7934 must be less than or equal to ARM_INT_REGISTER_SIZE and the
7935 offset of each addressable subfield must be zero. Note that bit
7936 fields are not addressable, and all addressable subfields of
7937 unions always start at offset zero.
7938
7939 This function is based on the behaviour of GCC 2.95.1.
7940 See: gcc/arm.c: arm_return_in_memory() for details.
7941
7942 Note: All versions of GCC before GCC 2.95.2 do not set up the
7943 parameters correctly for a function returning the following
7944 structure: struct { float f;}; This should be returned in memory,
7945 not a register. Richard Earnshaw sent me a patch, but I do not
7946 know of any way to detect if a function like the above has been
7947 compiled with the correct calling convention. */
7948
7949 /* Assume all other aggregate types can be returned in a register.
7950 Run a check for structures, unions and arrays. */
7951 nRc = 0;
7952
7953 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
7954 {
7955 int i;
7956 /* Need to check if this struct/union is "integer" like. For
7957 this to be true, its size must be less than or equal to
7958 ARM_INT_REGISTER_SIZE and the offset of each addressable
7959 subfield must be zero. Note that bit fields are not
7960 addressable, and unions always start at offset zero. If any
7961 of the subfields is a floating point type, the struct/union
7962 cannot be an integer type. */
7963
7964 /* For each field in the object, check:
7965 1) Is it FP? --> yes, nRc = 1;
7966 2) Is it addressable (bitpos != 0) and
7967 not packed (bitsize == 0)?
7968 --> yes, nRc = 1
7969 */
7970
7971 for (i = 0; i < TYPE_NFIELDS (type); i++)
7972 {
7973 enum type_code field_type_code;
7974
7975 field_type_code
7976 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
7977 i)));
7978
7979 /* Is it a floating point type field? */
7980 if (field_type_code == TYPE_CODE_FLT)
7981 {
7982 nRc = 1;
7983 break;
7984 }
7985
7986 /* If bitpos != 0, then we have to care about it. */
7987 if (TYPE_FIELD_BITPOS (type, i) != 0)
7988 {
7989 /* Bitfields are not addressable. If the field bitsize is
7990 zero, then the field is not packed. Hence it cannot be
7991 a bitfield or any other packed type. */
7992 if (TYPE_FIELD_BITSIZE (type, i) == 0)
7993 {
7994 nRc = 1;
7995 break;
7996 }
7997 }
7998 }
7999 }
8000
8001 return nRc;
8002 }
8003 }
8004
8005 /* Write into appropriate registers a function return value of type
8006 TYPE, given in virtual format. */
8007
8008 static void
8009 arm_store_return_value (struct type *type, struct regcache *regs,
8010 const gdb_byte *valbuf)
8011 {
8012 struct gdbarch *gdbarch = regs->arch ();
8013 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8014
8015 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8016 {
8017 gdb_byte buf[ARM_FP_REGISTER_SIZE];
8018
8019 switch (gdbarch_tdep (gdbarch)->fp_model)
8020 {
8021 case ARM_FLOAT_FPA:
8022
8023 target_float_convert (valbuf, type, buf, arm_ext_type (gdbarch));
8024 regs->cooked_write (ARM_F0_REGNUM, buf);
8025 break;
8026
8027 case ARM_FLOAT_SOFT_FPA:
8028 case ARM_FLOAT_SOFT_VFP:
8029 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8030 not using the VFP ABI code. */
8031 case ARM_FLOAT_VFP:
8032 regs->cooked_write (ARM_A1_REGNUM, valbuf);
8033 if (TYPE_LENGTH (type) > 4)
8034 regs->cooked_write (ARM_A1_REGNUM + 1,
8035 valbuf + ARM_INT_REGISTER_SIZE);
8036 break;
8037
8038 default:
8039 internal_error (__FILE__, __LINE__,
8040 _("arm_store_return_value: Floating "
8041 "point model not supported"));
8042 break;
8043 }
8044 }
8045 else if (TYPE_CODE (type) == TYPE_CODE_INT
8046 || TYPE_CODE (type) == TYPE_CODE_CHAR
8047 || TYPE_CODE (type) == TYPE_CODE_BOOL
8048 || TYPE_CODE (type) == TYPE_CODE_PTR
8049 || TYPE_IS_REFERENCE (type)
8050 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8051 {
8052 if (TYPE_LENGTH (type) <= 4)
8053 {
8054 /* Values of one word or less are zero/sign-extended and
8055 returned in r0. */
8056 bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE];
8057 LONGEST val = unpack_long (type, valbuf);
8058
8059 store_signed_integer (tmpbuf, ARM_INT_REGISTER_SIZE, byte_order, val);
8060 regs->cooked_write (ARM_A1_REGNUM, tmpbuf);
8061 }
8062 else
8063 {
8064 /* Integral values greater than one word are stored in consecutive
8065 registers starting with r0. This will always be a multiple of
8066 the regiser size. */
8067 int len = TYPE_LENGTH (type);
8068 int regno = ARM_A1_REGNUM;
8069
8070 while (len > 0)
8071 {
8072 regs->cooked_write (regno++, valbuf);
8073 len -= ARM_INT_REGISTER_SIZE;
8074 valbuf += ARM_INT_REGISTER_SIZE;
8075 }
8076 }
8077 }
8078 else
8079 {
8080 /* For a structure or union the behaviour is as if the value had
8081 been stored to word-aligned memory and then loaded into
8082 registers with 32-bit load instruction(s). */
8083 int len = TYPE_LENGTH (type);
8084 int regno = ARM_A1_REGNUM;
8085 bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE];
8086
8087 while (len > 0)
8088 {
8089 memcpy (tmpbuf, valbuf,
8090 len > ARM_INT_REGISTER_SIZE ? ARM_INT_REGISTER_SIZE : len);
8091 regs->cooked_write (regno++, tmpbuf);
8092 len -= ARM_INT_REGISTER_SIZE;
8093 valbuf += ARM_INT_REGISTER_SIZE;
8094 }
8095 }
8096 }
8097
8098
8099 /* Handle function return values. */
8100
8101 static enum return_value_convention
8102 arm_return_value (struct gdbarch *gdbarch, struct value *function,
8103 struct type *valtype, struct regcache *regcache,
8104 gdb_byte *readbuf, const gdb_byte *writebuf)
8105 {
8106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8107 struct type *func_type = function ? value_type (function) : NULL;
8108 enum arm_vfp_cprc_base_type vfp_base_type;
8109 int vfp_base_count;
8110
8111 if (arm_vfp_abi_for_function (gdbarch, func_type)
8112 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8113 {
8114 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8115 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8116 int i;
8117 for (i = 0; i < vfp_base_count; i++)
8118 {
8119 if (reg_char == 'q')
8120 {
8121 if (writebuf)
8122 arm_neon_quad_write (gdbarch, regcache, i,
8123 writebuf + i * unit_length);
8124
8125 if (readbuf)
8126 arm_neon_quad_read (gdbarch, regcache, i,
8127 readbuf + i * unit_length);
8128 }
8129 else
8130 {
8131 char name_buf[4];
8132 int regnum;
8133
8134 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
8135 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8136 strlen (name_buf));
8137 if (writebuf)
8138 regcache->cooked_write (regnum, writebuf + i * unit_length);
8139 if (readbuf)
8140 regcache->cooked_read (regnum, readbuf + i * unit_length);
8141 }
8142 }
8143 return RETURN_VALUE_REGISTER_CONVENTION;
8144 }
8145
8146 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8147 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8148 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8149 {
8150 if (tdep->struct_return == pcc_struct_return
8151 || arm_return_in_memory (gdbarch, valtype))
8152 return RETURN_VALUE_STRUCT_CONVENTION;
8153 }
8154 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8155 {
8156 if (arm_return_in_memory (gdbarch, valtype))
8157 return RETURN_VALUE_STRUCT_CONVENTION;
8158 }
8159
8160 if (writebuf)
8161 arm_store_return_value (valtype, regcache, writebuf);
8162
8163 if (readbuf)
8164 arm_extract_return_value (valtype, regcache, readbuf);
8165
8166 return RETURN_VALUE_REGISTER_CONVENTION;
8167 }
8168
8169
8170 static int
8171 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
8172 {
8173 struct gdbarch *gdbarch = get_frame_arch (frame);
8174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8175 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8176 CORE_ADDR jb_addr;
8177 gdb_byte buf[ARM_INT_REGISTER_SIZE];
8178
8179 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
8180
8181 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
8182 ARM_INT_REGISTER_SIZE))
8183 return 0;
8184
8185 *pc = extract_unsigned_integer (buf, ARM_INT_REGISTER_SIZE, byte_order);
8186 return 1;
8187 }
8188 /* A call to cmse secure entry function "foo" at "a" is modified by
8189 GNU ld as "b".
8190 a) bl xxxx <foo>
8191
8192 <foo>
8193 xxxx:
8194
8195 b) bl yyyy <__acle_se_foo>
8196
8197 section .gnu.sgstubs:
8198 <foo>
8199 yyyy: sg // secure gateway
8200 b.w xxxx <__acle_se_foo> // original_branch_dest
8201
8202 <__acle_se_foo>
8203 xxxx:
8204
8205 When the control at "b", the pc contains "yyyy" (sg address) which is a
8206 trampoline and does not exist in source code. This function returns the
8207 target pc "xxxx". For more details please refer to section 5.4
8208 (Entry functions) and section 3.4.4 (C level development flow of secure code)
8209 of "armv8-m-security-extensions-requirements-on-development-tools-engineering-specification"
8210 document on www.developer.arm.com. */
8211
8212 static CORE_ADDR
8213 arm_skip_cmse_entry (CORE_ADDR pc, const char *name, struct objfile *objfile)
8214 {
8215 int target_len = strlen (name) + strlen ("__acle_se_") + 1;
8216 char *target_name = (char *) alloca (target_len);
8217 xsnprintf (target_name, target_len, "%s%s", "__acle_se_", name);
8218
8219 struct bound_minimal_symbol minsym
8220 = lookup_minimal_symbol (target_name, NULL, objfile);
8221
8222 if (minsym.minsym != nullptr)
8223 return BMSYMBOL_VALUE_ADDRESS (minsym);
8224
8225 return 0;
8226 }
8227
8228 /* Return true when SEC points to ".gnu.sgstubs" section. */
8229
8230 static bool
8231 arm_is_sgstubs_section (struct obj_section *sec)
8232 {
8233 return (sec != nullptr
8234 && sec->the_bfd_section != nullptr
8235 && sec->the_bfd_section->name != nullptr
8236 && streq (sec->the_bfd_section->name, ".gnu.sgstubs"));
8237 }
8238
8239 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8240 return the target PC. Otherwise return 0. */
8241
8242 CORE_ADDR
8243 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
8244 {
8245 const char *name;
8246 int namelen;
8247 CORE_ADDR start_addr;
8248
8249 /* Find the starting address and name of the function containing the PC. */
8250 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
8251 {
8252 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8253 check here. */
8254 start_addr = arm_skip_bx_reg (frame, pc);
8255 if (start_addr != 0)
8256 return start_addr;
8257
8258 return 0;
8259 }
8260
8261 /* If PC is in a Thumb call or return stub, return the address of the
8262 target PC, which is in a register. The thunk functions are called
8263 _call_via_xx, where x is the register name. The possible names
8264 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8265 functions, named __ARM_call_via_r[0-7]. */
8266 if (startswith (name, "_call_via_")
8267 || startswith (name, "__ARM_call_via_"))
8268 {
8269 /* Use the name suffix to determine which register contains the
8270 target PC. */
8271 static const char *table[15] =
8272 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8273 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8274 };
8275 int regno;
8276 int offset = strlen (name) - 2;
8277
8278 for (regno = 0; regno <= 14; regno++)
8279 if (strcmp (&name[offset], table[regno]) == 0)
8280 return get_frame_register_unsigned (frame, regno);
8281 }
8282
8283 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8284 non-interworking calls to foo. We could decode the stubs
8285 to find the target but it's easier to use the symbol table. */
8286 namelen = strlen (name);
8287 if (name[0] == '_' && name[1] == '_'
8288 && ((namelen > 2 + strlen ("_from_thumb")
8289 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
8290 || (namelen > 2 + strlen ("_from_arm")
8291 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
8292 {
8293 char *target_name;
8294 int target_len = namelen - 2;
8295 struct bound_minimal_symbol minsym;
8296 struct objfile *objfile;
8297 struct obj_section *sec;
8298
8299 if (name[namelen - 1] == 'b')
8300 target_len -= strlen ("_from_thumb");
8301 else
8302 target_len -= strlen ("_from_arm");
8303
8304 target_name = (char *) alloca (target_len + 1);
8305 memcpy (target_name, name + 2, target_len);
8306 target_name[target_len] = '\0';
8307
8308 sec = find_pc_section (pc);
8309 objfile = (sec == NULL) ? NULL : sec->objfile;
8310 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
8311 if (minsym.minsym != NULL)
8312 return BMSYMBOL_VALUE_ADDRESS (minsym);
8313 else
8314 return 0;
8315 }
8316
8317 struct obj_section *section = find_pc_section (pc);
8318
8319 /* Check whether SECTION points to the ".gnu.sgstubs" section. */
8320 if (arm_is_sgstubs_section (section))
8321 return arm_skip_cmse_entry (pc, name, section->objfile);
8322
8323 return 0; /* not a stub */
8324 }
8325
8326 static void
8327 set_arm_command (const char *args, int from_tty)
8328 {
8329 printf_unfiltered (_("\
8330 \"set arm\" must be followed by an apporpriate subcommand.\n"));
8331 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8332 }
8333
8334 static void
8335 show_arm_command (const char *args, int from_tty)
8336 {
8337 cmd_show_list (showarmcmdlist, from_tty, "");
8338 }
8339
8340 static void
8341 arm_update_current_architecture (void)
8342 {
8343 struct gdbarch_info info;
8344
8345 /* If the current architecture is not ARM, we have nothing to do. */
8346 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
8347 return;
8348
8349 /* Update the architecture. */
8350 gdbarch_info_init (&info);
8351
8352 if (!gdbarch_update_p (info))
8353 internal_error (__FILE__, __LINE__, _("could not update architecture"));
8354 }
8355
8356 static void
8357 set_fp_model_sfunc (const char *args, int from_tty,
8358 struct cmd_list_element *c)
8359 {
8360 int fp_model;
8361
8362 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8363 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8364 {
8365 arm_fp_model = (enum arm_float_model) fp_model;
8366 break;
8367 }
8368
8369 if (fp_model == ARM_FLOAT_LAST)
8370 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
8371 current_fp_model);
8372
8373 arm_update_current_architecture ();
8374 }
8375
8376 static void
8377 show_fp_model (struct ui_file *file, int from_tty,
8378 struct cmd_list_element *c, const char *value)
8379 {
8380 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8381
8382 if (arm_fp_model == ARM_FLOAT_AUTO
8383 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8384 fprintf_filtered (file, _("\
8385 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8386 fp_model_strings[tdep->fp_model]);
8387 else
8388 fprintf_filtered (file, _("\
8389 The current ARM floating point model is \"%s\".\n"),
8390 fp_model_strings[arm_fp_model]);
8391 }
8392
8393 static void
8394 arm_set_abi (const char *args, int from_tty,
8395 struct cmd_list_element *c)
8396 {
8397 int arm_abi;
8398
8399 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8400 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8401 {
8402 arm_abi_global = (enum arm_abi_kind) arm_abi;
8403 break;
8404 }
8405
8406 if (arm_abi == ARM_ABI_LAST)
8407 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8408 arm_abi_string);
8409
8410 arm_update_current_architecture ();
8411 }
8412
8413 static void
8414 arm_show_abi (struct ui_file *file, int from_tty,
8415 struct cmd_list_element *c, const char *value)
8416 {
8417 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8418
8419 if (arm_abi_global == ARM_ABI_AUTO
8420 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8421 fprintf_filtered (file, _("\
8422 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8423 arm_abi_strings[tdep->arm_abi]);
8424 else
8425 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8426 arm_abi_string);
8427 }
8428
8429 static void
8430 arm_show_fallback_mode (struct ui_file *file, int from_tty,
8431 struct cmd_list_element *c, const char *value)
8432 {
8433 fprintf_filtered (file,
8434 _("The current execution mode assumed "
8435 "(when symbols are unavailable) is \"%s\".\n"),
8436 arm_fallback_mode_string);
8437 }
8438
8439 static void
8440 arm_show_force_mode (struct ui_file *file, int from_tty,
8441 struct cmd_list_element *c, const char *value)
8442 {
8443 fprintf_filtered (file,
8444 _("The current execution mode assumed "
8445 "(even when symbols are available) is \"%s\".\n"),
8446 arm_force_mode_string);
8447 }
8448
8449 /* If the user changes the register disassembly style used for info
8450 register and other commands, we have to also switch the style used
8451 in opcodes for disassembly output. This function is run in the "set
8452 arm disassembly" command, and does that. */
8453
8454 static void
8455 set_disassembly_style_sfunc (const char *args, int from_tty,
8456 struct cmd_list_element *c)
8457 {
8458 /* Convert the short style name into the long style name (eg, reg-names-*)
8459 before calling the generic set_disassembler_options() function. */
8460 std::string long_name = std::string ("reg-names-") + disassembly_style;
8461 set_disassembler_options (&long_name[0]);
8462 }
8463
8464 static void
8465 show_disassembly_style_sfunc (struct ui_file *file, int from_tty,
8466 struct cmd_list_element *c, const char *value)
8467 {
8468 struct gdbarch *gdbarch = get_current_arch ();
8469 char *options = get_disassembler_options (gdbarch);
8470 const char *style = "";
8471 int len = 0;
8472 const char *opt;
8473
8474 FOR_EACH_DISASSEMBLER_OPTION (opt, options)
8475 if (CONST_STRNEQ (opt, "reg-names-"))
8476 {
8477 style = &opt[strlen ("reg-names-")];
8478 len = strcspn (style, ",");
8479 }
8480
8481 fprintf_unfiltered (file, "The disassembly style is \"%.*s\".\n", len, style);
8482 }
8483 \f
8484 /* Return the ARM register name corresponding to register I. */
8485 static const char *
8486 arm_register_name (struct gdbarch *gdbarch, int i)
8487 {
8488 const int num_regs = gdbarch_num_regs (gdbarch);
8489
8490 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8491 && i >= num_regs && i < num_regs + 32)
8492 {
8493 static const char *const vfp_pseudo_names[] = {
8494 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8495 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8496 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8497 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8498 };
8499
8500 return vfp_pseudo_names[i - num_regs];
8501 }
8502
8503 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8504 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8505 {
8506 static const char *const neon_pseudo_names[] = {
8507 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8508 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8509 };
8510
8511 return neon_pseudo_names[i - num_regs - 32];
8512 }
8513
8514 if (i >= ARRAY_SIZE (arm_register_names))
8515 /* These registers are only supported on targets which supply
8516 an XML description. */
8517 return "";
8518
8519 return arm_register_names[i];
8520 }
8521
8522 /* Test whether the coff symbol specific value corresponds to a Thumb
8523 function. */
8524
8525 static int
8526 coff_sym_is_thumb (int val)
8527 {
8528 return (val == C_THUMBEXT
8529 || val == C_THUMBSTAT
8530 || val == C_THUMBEXTFUNC
8531 || val == C_THUMBSTATFUNC
8532 || val == C_THUMBLABEL);
8533 }
8534
8535 /* arm_coff_make_msymbol_special()
8536 arm_elf_make_msymbol_special()
8537
8538 These functions test whether the COFF or ELF symbol corresponds to
8539 an address in thumb code, and set a "special" bit in a minimal
8540 symbol to indicate that it does. */
8541
8542 static void
8543 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8544 {
8545 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8546
8547 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
8548 == ST_BRANCH_TO_THUMB)
8549 MSYMBOL_SET_SPECIAL (msym);
8550 }
8551
8552 static void
8553 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8554 {
8555 if (coff_sym_is_thumb (val))
8556 MSYMBOL_SET_SPECIAL (msym);
8557 }
8558
8559 static void
8560 arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8561 asymbol *sym)
8562 {
8563 const char *name = bfd_asymbol_name (sym);
8564 struct arm_per_bfd *data;
8565 struct arm_mapping_symbol new_map_sym;
8566
8567 gdb_assert (name[0] == '$');
8568 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8569 return;
8570
8571 data = arm_bfd_data_key.get (objfile->obfd);
8572 if (data == NULL)
8573 data = arm_bfd_data_key.emplace (objfile->obfd,
8574 objfile->obfd->section_count);
8575 arm_mapping_symbol_vec &map
8576 = data->section_maps[bfd_asymbol_section (sym)->index];
8577
8578 new_map_sym.value = sym->value;
8579 new_map_sym.type = name[1];
8580
8581 /* Insert at the end, the vector will be sorted on first use. */
8582 map.push_back (new_map_sym);
8583 }
8584
8585 static void
8586 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
8587 {
8588 struct gdbarch *gdbarch = regcache->arch ();
8589 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
8590
8591 /* If necessary, set the T bit. */
8592 if (arm_apcs_32)
8593 {
8594 ULONGEST val, t_bit;
8595 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
8596 t_bit = arm_psr_thumb_bit (gdbarch);
8597 if (arm_pc_is_thumb (gdbarch, pc))
8598 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8599 val | t_bit);
8600 else
8601 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8602 val & ~t_bit);
8603 }
8604 }
8605
8606 /* Read the contents of a NEON quad register, by reading from two
8607 double registers. This is used to implement the quad pseudo
8608 registers, and for argument passing in case the quad registers are
8609 missing; vectors are passed in quad registers when using the VFP
8610 ABI, even if a NEON unit is not present. REGNUM is the index of
8611 the quad register, in [0, 15]. */
8612
8613 static enum register_status
8614 arm_neon_quad_read (struct gdbarch *gdbarch, readable_regcache *regcache,
8615 int regnum, gdb_byte *buf)
8616 {
8617 char name_buf[4];
8618 gdb_byte reg_buf[8];
8619 int offset, double_regnum;
8620 enum register_status status;
8621
8622 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8623 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8624 strlen (name_buf));
8625
8626 /* d0 is always the least significant half of q0. */
8627 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8628 offset = 8;
8629 else
8630 offset = 0;
8631
8632 status = regcache->raw_read (double_regnum, reg_buf);
8633 if (status != REG_VALID)
8634 return status;
8635 memcpy (buf + offset, reg_buf, 8);
8636
8637 offset = 8 - offset;
8638 status = regcache->raw_read (double_regnum + 1, reg_buf);
8639 if (status != REG_VALID)
8640 return status;
8641 memcpy (buf + offset, reg_buf, 8);
8642
8643 return REG_VALID;
8644 }
8645
8646 static enum register_status
8647 arm_pseudo_read (struct gdbarch *gdbarch, readable_regcache *regcache,
8648 int regnum, gdb_byte *buf)
8649 {
8650 const int num_regs = gdbarch_num_regs (gdbarch);
8651 char name_buf[4];
8652 gdb_byte reg_buf[8];
8653 int offset, double_regnum;
8654
8655 gdb_assert (regnum >= num_regs);
8656 regnum -= num_regs;
8657
8658 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8659 /* Quad-precision register. */
8660 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
8661 else
8662 {
8663 enum register_status status;
8664
8665 /* Single-precision register. */
8666 gdb_assert (regnum < 32);
8667
8668 /* s0 is always the least significant half of d0. */
8669 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8670 offset = (regnum & 1) ? 0 : 4;
8671 else
8672 offset = (regnum & 1) ? 4 : 0;
8673
8674 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8675 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8676 strlen (name_buf));
8677
8678 status = regcache->raw_read (double_regnum, reg_buf);
8679 if (status == REG_VALID)
8680 memcpy (buf, reg_buf + offset, 4);
8681 return status;
8682 }
8683 }
8684
8685 /* Store the contents of BUF to a NEON quad register, by writing to
8686 two double registers. This is used to implement the quad pseudo
8687 registers, and for argument passing in case the quad registers are
8688 missing; vectors are passed in quad registers when using the VFP
8689 ABI, even if a NEON unit is not present. REGNUM is the index
8690 of the quad register, in [0, 15]. */
8691
8692 static void
8693 arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8694 int regnum, const gdb_byte *buf)
8695 {
8696 char name_buf[4];
8697 int offset, double_regnum;
8698
8699 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8700 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8701 strlen (name_buf));
8702
8703 /* d0 is always the least significant half of q0. */
8704 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8705 offset = 8;
8706 else
8707 offset = 0;
8708
8709 regcache->raw_write (double_regnum, buf + offset);
8710 offset = 8 - offset;
8711 regcache->raw_write (double_regnum + 1, buf + offset);
8712 }
8713
8714 static void
8715 arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8716 int regnum, const gdb_byte *buf)
8717 {
8718 const int num_regs = gdbarch_num_regs (gdbarch);
8719 char name_buf[4];
8720 gdb_byte reg_buf[8];
8721 int offset, double_regnum;
8722
8723 gdb_assert (regnum >= num_regs);
8724 regnum -= num_regs;
8725
8726 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8727 /* Quad-precision register. */
8728 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8729 else
8730 {
8731 /* Single-precision register. */
8732 gdb_assert (regnum < 32);
8733
8734 /* s0 is always the least significant half of d0. */
8735 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8736 offset = (regnum & 1) ? 0 : 4;
8737 else
8738 offset = (regnum & 1) ? 4 : 0;
8739
8740 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8741 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8742 strlen (name_buf));
8743
8744 regcache->raw_read (double_regnum, reg_buf);
8745 memcpy (reg_buf + offset, buf, 4);
8746 regcache->raw_write (double_regnum, reg_buf);
8747 }
8748 }
8749
8750 static struct value *
8751 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8752 {
8753 const int *reg_p = (const int *) baton;
8754 return value_of_register (*reg_p, frame);
8755 }
8756 \f
8757 static enum gdb_osabi
8758 arm_elf_osabi_sniffer (bfd *abfd)
8759 {
8760 unsigned int elfosabi;
8761 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
8762
8763 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
8764
8765 if (elfosabi == ELFOSABI_ARM)
8766 /* GNU tools use this value. Check note sections in this case,
8767 as well. */
8768 bfd_map_over_sections (abfd,
8769 generic_elf_osabi_sniff_abi_tag_sections,
8770 &osabi);
8771
8772 /* Anything else will be handled by the generic ELF sniffer. */
8773 return osabi;
8774 }
8775
8776 static int
8777 arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8778 struct reggroup *group)
8779 {
8780 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8781 this, FPS register belongs to save_regroup, restore_reggroup, and
8782 all_reggroup, of course. */
8783 if (regnum == ARM_FPS_REGNUM)
8784 return (group == float_reggroup
8785 || group == save_reggroup
8786 || group == restore_reggroup
8787 || group == all_reggroup);
8788 else
8789 return default_register_reggroup_p (gdbarch, regnum, group);
8790 }
8791
8792 /* For backward-compatibility we allow two 'g' packet lengths with
8793 the remote protocol depending on whether FPA registers are
8794 supplied. M-profile targets do not have FPA registers, but some
8795 stubs already exist in the wild which use a 'g' packet which
8796 supplies them albeit with dummy values. The packet format which
8797 includes FPA registers should be considered deprecated for
8798 M-profile targets. */
8799
8800 static void
8801 arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8802 {
8803 if (gdbarch_tdep (gdbarch)->is_m)
8804 {
8805 const target_desc *tdesc;
8806
8807 /* If we know from the executable this is an M-profile target,
8808 cater for remote targets whose register set layout is the
8809 same as the FPA layout. */
8810 tdesc = arm_read_mprofile_description (ARM_M_TYPE_WITH_FPA);
8811 register_remote_g_packet_guess (gdbarch,
8812 ARM_CORE_REGS_SIZE + ARM_FP_REGS_SIZE,
8813 tdesc);
8814
8815 /* The regular M-profile layout. */
8816 tdesc = arm_read_mprofile_description (ARM_M_TYPE_M_PROFILE);
8817 register_remote_g_packet_guess (gdbarch, ARM_CORE_REGS_SIZE,
8818 tdesc);
8819
8820 /* M-profile plus M4F VFP. */
8821 tdesc = arm_read_mprofile_description (ARM_M_TYPE_VFP_D16);
8822 register_remote_g_packet_guess (gdbarch,
8823 ARM_CORE_REGS_SIZE + ARM_VFP2_REGS_SIZE,
8824 tdesc);
8825 }
8826
8827 /* Otherwise we don't have a useful guess. */
8828 }
8829
8830 /* Implement the code_of_frame_writable gdbarch method. */
8831
8832 static int
8833 arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8834 {
8835 if (gdbarch_tdep (gdbarch)->is_m
8836 && get_frame_type (frame) == SIGTRAMP_FRAME)
8837 {
8838 /* M-profile exception frames return to some magic PCs, where
8839 isn't writable at all. */
8840 return 0;
8841 }
8842 else
8843 return 1;
8844 }
8845
8846 /* Implement gdbarch_gnu_triplet_regexp. If the arch name is arm then allow it
8847 to be postfixed by a version (eg armv7hl). */
8848
8849 static const char *
8850 arm_gnu_triplet_regexp (struct gdbarch *gdbarch)
8851 {
8852 if (strcmp (gdbarch_bfd_arch_info (gdbarch)->arch_name, "arm") == 0)
8853 return "arm(v[^- ]*)?";
8854 return gdbarch_bfd_arch_info (gdbarch)->arch_name;
8855 }
8856
8857 /* Initialize the current architecture based on INFO. If possible,
8858 re-use an architecture from ARCHES, which is a list of
8859 architectures already created during this debugging session.
8860
8861 Called e.g. at program startup, when reading a core file, and when
8862 reading a binary file. */
8863
8864 static struct gdbarch *
8865 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8866 {
8867 struct gdbarch_tdep *tdep;
8868 struct gdbarch *gdbarch;
8869 struct gdbarch_list *best_arch;
8870 enum arm_abi_kind arm_abi = arm_abi_global;
8871 enum arm_float_model fp_model = arm_fp_model;
8872 struct tdesc_arch_data *tdesc_data = NULL;
8873 int i, is_m = 0;
8874 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8875 int have_wmmx_registers = 0;
8876 int have_neon = 0;
8877 int have_fpa_registers = 1;
8878 const struct target_desc *tdesc = info.target_desc;
8879
8880 /* If we have an object to base this architecture on, try to determine
8881 its ABI. */
8882
8883 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8884 {
8885 int ei_osabi, e_flags;
8886
8887 switch (bfd_get_flavour (info.abfd))
8888 {
8889 case bfd_target_coff_flavour:
8890 /* Assume it's an old APCS-style ABI. */
8891 /* XXX WinCE? */
8892 arm_abi = ARM_ABI_APCS;
8893 break;
8894
8895 case bfd_target_elf_flavour:
8896 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
8897 e_flags = elf_elfheader (info.abfd)->e_flags;
8898
8899 if (ei_osabi == ELFOSABI_ARM)
8900 {
8901 /* GNU tools used to use this value, but do not for EABI
8902 objects. There's nowhere to tag an EABI version
8903 anyway, so assume APCS. */
8904 arm_abi = ARM_ABI_APCS;
8905 }
8906 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
8907 {
8908 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
8909
8910 switch (eabi_ver)
8911 {
8912 case EF_ARM_EABI_UNKNOWN:
8913 /* Assume GNU tools. */
8914 arm_abi = ARM_ABI_APCS;
8915 break;
8916
8917 case EF_ARM_EABI_VER4:
8918 case EF_ARM_EABI_VER5:
8919 arm_abi = ARM_ABI_AAPCS;
8920 /* EABI binaries default to VFP float ordering.
8921 They may also contain build attributes that can
8922 be used to identify if the VFP argument-passing
8923 ABI is in use. */
8924 if (fp_model == ARM_FLOAT_AUTO)
8925 {
8926 #ifdef HAVE_ELF
8927 switch (bfd_elf_get_obj_attr_int (info.abfd,
8928 OBJ_ATTR_PROC,
8929 Tag_ABI_VFP_args))
8930 {
8931 case AEABI_VFP_args_base:
8932 /* "The user intended FP parameter/result
8933 passing to conform to AAPCS, base
8934 variant". */
8935 fp_model = ARM_FLOAT_SOFT_VFP;
8936 break;
8937 case AEABI_VFP_args_vfp:
8938 /* "The user intended FP parameter/result
8939 passing to conform to AAPCS, VFP
8940 variant". */
8941 fp_model = ARM_FLOAT_VFP;
8942 break;
8943 case AEABI_VFP_args_toolchain:
8944 /* "The user intended FP parameter/result
8945 passing to conform to tool chain-specific
8946 conventions" - we don't know any such
8947 conventions, so leave it as "auto". */
8948 break;
8949 case AEABI_VFP_args_compatible:
8950 /* "Code is compatible with both the base
8951 and VFP variants; the user did not permit
8952 non-variadic functions to pass FP
8953 parameters/results" - leave it as
8954 "auto". */
8955 break;
8956 default:
8957 /* Attribute value not mentioned in the
8958 November 2012 ABI, so leave it as
8959 "auto". */
8960 break;
8961 }
8962 #else
8963 fp_model = ARM_FLOAT_SOFT_VFP;
8964 #endif
8965 }
8966 break;
8967
8968 default:
8969 /* Leave it as "auto". */
8970 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
8971 break;
8972 }
8973
8974 #ifdef HAVE_ELF
8975 /* Detect M-profile programs. This only works if the
8976 executable file includes build attributes; GCC does
8977 copy them to the executable, but e.g. RealView does
8978 not. */
8979 int attr_arch
8980 = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
8981 Tag_CPU_arch);
8982 int attr_profile
8983 = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
8984 Tag_CPU_arch_profile);
8985
8986 /* GCC specifies the profile for v6-M; RealView only
8987 specifies the profile for architectures starting with
8988 V7 (as opposed to architectures with a tag
8989 numerically greater than TAG_CPU_ARCH_V7). */
8990 if (!tdesc_has_registers (tdesc)
8991 && (attr_arch == TAG_CPU_ARCH_V6_M
8992 || attr_arch == TAG_CPU_ARCH_V6S_M
8993 || attr_profile == 'M'))
8994 is_m = 1;
8995 #endif
8996 }
8997
8998 if (fp_model == ARM_FLOAT_AUTO)
8999 {
9000 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9001 {
9002 case 0:
9003 /* Leave it as "auto". Strictly speaking this case
9004 means FPA, but almost nobody uses that now, and
9005 many toolchains fail to set the appropriate bits
9006 for the floating-point model they use. */
9007 break;
9008 case EF_ARM_SOFT_FLOAT:
9009 fp_model = ARM_FLOAT_SOFT_FPA;
9010 break;
9011 case EF_ARM_VFP_FLOAT:
9012 fp_model = ARM_FLOAT_VFP;
9013 break;
9014 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9015 fp_model = ARM_FLOAT_SOFT_VFP;
9016 break;
9017 }
9018 }
9019
9020 if (e_flags & EF_ARM_BE8)
9021 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9022
9023 break;
9024
9025 default:
9026 /* Leave it as "auto". */
9027 break;
9028 }
9029 }
9030
9031 /* Check any target description for validity. */
9032 if (tdesc_has_registers (tdesc))
9033 {
9034 /* For most registers we require GDB's default names; but also allow
9035 the numeric names for sp / lr / pc, as a convenience. */
9036 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9037 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9038 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9039
9040 const struct tdesc_feature *feature;
9041 int valid_p;
9042
9043 feature = tdesc_find_feature (tdesc,
9044 "org.gnu.gdb.arm.core");
9045 if (feature == NULL)
9046 {
9047 feature = tdesc_find_feature (tdesc,
9048 "org.gnu.gdb.arm.m-profile");
9049 if (feature == NULL)
9050 return NULL;
9051 else
9052 is_m = 1;
9053 }
9054
9055 tdesc_data = tdesc_data_alloc ();
9056
9057 valid_p = 1;
9058 for (i = 0; i < ARM_SP_REGNUM; i++)
9059 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9060 arm_register_names[i]);
9061 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9062 ARM_SP_REGNUM,
9063 arm_sp_names);
9064 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9065 ARM_LR_REGNUM,
9066 arm_lr_names);
9067 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9068 ARM_PC_REGNUM,
9069 arm_pc_names);
9070 if (is_m)
9071 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9072 ARM_PS_REGNUM, "xpsr");
9073 else
9074 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9075 ARM_PS_REGNUM, "cpsr");
9076
9077 if (!valid_p)
9078 {
9079 tdesc_data_cleanup (tdesc_data);
9080 return NULL;
9081 }
9082
9083 feature = tdesc_find_feature (tdesc,
9084 "org.gnu.gdb.arm.fpa");
9085 if (feature != NULL)
9086 {
9087 valid_p = 1;
9088 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9089 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9090 arm_register_names[i]);
9091 if (!valid_p)
9092 {
9093 tdesc_data_cleanup (tdesc_data);
9094 return NULL;
9095 }
9096 }
9097 else
9098 have_fpa_registers = 0;
9099
9100 feature = tdesc_find_feature (tdesc,
9101 "org.gnu.gdb.xscale.iwmmxt");
9102 if (feature != NULL)
9103 {
9104 static const char *const iwmmxt_names[] = {
9105 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9106 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9107 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9108 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9109 };
9110
9111 valid_p = 1;
9112 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9113 valid_p
9114 &= tdesc_numbered_register (feature, tdesc_data, i,
9115 iwmmxt_names[i - ARM_WR0_REGNUM]);
9116
9117 /* Check for the control registers, but do not fail if they
9118 are missing. */
9119 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9120 tdesc_numbered_register (feature, tdesc_data, i,
9121 iwmmxt_names[i - ARM_WR0_REGNUM]);
9122
9123 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9124 valid_p
9125 &= tdesc_numbered_register (feature, tdesc_data, i,
9126 iwmmxt_names[i - ARM_WR0_REGNUM]);
9127
9128 if (!valid_p)
9129 {
9130 tdesc_data_cleanup (tdesc_data);
9131 return NULL;
9132 }
9133
9134 have_wmmx_registers = 1;
9135 }
9136
9137 /* If we have a VFP unit, check whether the single precision registers
9138 are present. If not, then we will synthesize them as pseudo
9139 registers. */
9140 feature = tdesc_find_feature (tdesc,
9141 "org.gnu.gdb.arm.vfp");
9142 if (feature != NULL)
9143 {
9144 static const char *const vfp_double_names[] = {
9145 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9146 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9147 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9148 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9149 };
9150
9151 /* Require the double precision registers. There must be either
9152 16 or 32. */
9153 valid_p = 1;
9154 for (i = 0; i < 32; i++)
9155 {
9156 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9157 ARM_D0_REGNUM + i,
9158 vfp_double_names[i]);
9159 if (!valid_p)
9160 break;
9161 }
9162 if (!valid_p && i == 16)
9163 valid_p = 1;
9164
9165 /* Also require FPSCR. */
9166 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9167 ARM_FPSCR_REGNUM, "fpscr");
9168 if (!valid_p)
9169 {
9170 tdesc_data_cleanup (tdesc_data);
9171 return NULL;
9172 }
9173
9174 if (tdesc_unnumbered_register (feature, "s0") == 0)
9175 have_vfp_pseudos = 1;
9176
9177 vfp_register_count = i;
9178
9179 /* If we have VFP, also check for NEON. The architecture allows
9180 NEON without VFP (integer vector operations only), but GDB
9181 does not support that. */
9182 feature = tdesc_find_feature (tdesc,
9183 "org.gnu.gdb.arm.neon");
9184 if (feature != NULL)
9185 {
9186 /* NEON requires 32 double-precision registers. */
9187 if (i != 32)
9188 {
9189 tdesc_data_cleanup (tdesc_data);
9190 return NULL;
9191 }
9192
9193 /* If there are quad registers defined by the stub, use
9194 their type; otherwise (normally) provide them with
9195 the default type. */
9196 if (tdesc_unnumbered_register (feature, "q0") == 0)
9197 have_neon_pseudos = 1;
9198
9199 have_neon = 1;
9200 }
9201 }
9202 }
9203
9204 /* If there is already a candidate, use it. */
9205 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9206 best_arch != NULL;
9207 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9208 {
9209 if (arm_abi != ARM_ABI_AUTO
9210 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
9211 continue;
9212
9213 if (fp_model != ARM_FLOAT_AUTO
9214 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
9215 continue;
9216
9217 /* There are various other properties in tdep that we do not
9218 need to check here: those derived from a target description,
9219 since gdbarches with a different target description are
9220 automatically disqualified. */
9221
9222 /* Do check is_m, though, since it might come from the binary. */
9223 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9224 continue;
9225
9226 /* Found a match. */
9227 break;
9228 }
9229
9230 if (best_arch != NULL)
9231 {
9232 if (tdesc_data != NULL)
9233 tdesc_data_cleanup (tdesc_data);
9234 return best_arch->gdbarch;
9235 }
9236
9237 tdep = XCNEW (struct gdbarch_tdep);
9238 gdbarch = gdbarch_alloc (&info, tdep);
9239
9240 /* Record additional information about the architecture we are defining.
9241 These are gdbarch discriminators, like the OSABI. */
9242 tdep->arm_abi = arm_abi;
9243 tdep->fp_model = fp_model;
9244 tdep->is_m = is_m;
9245 tdep->have_fpa_registers = have_fpa_registers;
9246 tdep->have_wmmx_registers = have_wmmx_registers;
9247 gdb_assert (vfp_register_count == 0
9248 || vfp_register_count == 16
9249 || vfp_register_count == 32);
9250 tdep->vfp_register_count = vfp_register_count;
9251 tdep->have_vfp_pseudos = have_vfp_pseudos;
9252 tdep->have_neon_pseudos = have_neon_pseudos;
9253 tdep->have_neon = have_neon;
9254
9255 arm_register_g_packet_guesses (gdbarch);
9256
9257 /* Breakpoints. */
9258 switch (info.byte_order_for_code)
9259 {
9260 case BFD_ENDIAN_BIG:
9261 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9262 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9263 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9264 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9265
9266 break;
9267
9268 case BFD_ENDIAN_LITTLE:
9269 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9270 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9271 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9272 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9273
9274 break;
9275
9276 default:
9277 internal_error (__FILE__, __LINE__,
9278 _("arm_gdbarch_init: bad byte order for float format"));
9279 }
9280
9281 /* On ARM targets char defaults to unsigned. */
9282 set_gdbarch_char_signed (gdbarch, 0);
9283
9284 /* wchar_t is unsigned under the AAPCS. */
9285 if (tdep->arm_abi == ARM_ABI_AAPCS)
9286 set_gdbarch_wchar_signed (gdbarch, 0);
9287 else
9288 set_gdbarch_wchar_signed (gdbarch, 1);
9289
9290 /* Compute type alignment. */
9291 set_gdbarch_type_align (gdbarch, arm_type_align);
9292
9293 /* Note: for displaced stepping, this includes the breakpoint, and one word
9294 of additional scratch space. This setting isn't used for anything beside
9295 displaced stepping at present. */
9296 set_gdbarch_max_insn_length (gdbarch, 4 * ARM_DISPLACED_MODIFIED_INSNS);
9297
9298 /* This should be low enough for everything. */
9299 tdep->lowest_pc = 0x20;
9300 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
9301
9302 /* The default, for both APCS and AAPCS, is to return small
9303 structures in registers. */
9304 tdep->struct_return = reg_struct_return;
9305
9306 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
9307 set_gdbarch_frame_align (gdbarch, arm_frame_align);
9308
9309 if (is_m)
9310 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9311
9312 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9313
9314 frame_base_set_default (gdbarch, &arm_normal_base);
9315
9316 /* Address manipulation. */
9317 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9318
9319 /* Advance PC across function entry code. */
9320 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9321
9322 /* Detect whether PC is at a point where the stack has been destroyed. */
9323 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
9324
9325 /* Skip trampolines. */
9326 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9327
9328 /* The stack grows downward. */
9329 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9330
9331 /* Breakpoint manipulation. */
9332 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc);
9333 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind);
9334 set_gdbarch_breakpoint_kind_from_current_state (gdbarch,
9335 arm_breakpoint_kind_from_current_state);
9336
9337 /* Information about registers, etc. */
9338 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9339 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9340 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
9341 set_gdbarch_register_type (gdbarch, arm_register_type);
9342 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
9343
9344 /* This "info float" is FPA-specific. Use the generic version if we
9345 do not have FPA. */
9346 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9347 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9348
9349 /* Internal <-> external register number maps. */
9350 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
9351 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9352
9353 set_gdbarch_register_name (gdbarch, arm_register_name);
9354
9355 /* Returning results. */
9356 set_gdbarch_return_value (gdbarch, arm_return_value);
9357
9358 /* Disassembly. */
9359 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9360
9361 /* Minsymbol frobbing. */
9362 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9363 set_gdbarch_coff_make_msymbol_special (gdbarch,
9364 arm_coff_make_msymbol_special);
9365 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
9366
9367 /* Thumb-2 IT block support. */
9368 set_gdbarch_adjust_breakpoint_address (gdbarch,
9369 arm_adjust_breakpoint_address);
9370
9371 /* Virtual tables. */
9372 set_gdbarch_vbit_in_delta (gdbarch, 1);
9373
9374 /* Hook in the ABI-specific overrides, if they have been registered. */
9375 gdbarch_init_osabi (info, gdbarch);
9376
9377 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9378
9379 /* Add some default predicates. */
9380 if (is_m)
9381 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
9382 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9383 dwarf2_append_unwinders (gdbarch);
9384 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
9385 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
9386 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
9387
9388 /* Now we have tuned the configuration, set a few final things,
9389 based on what the OS ABI has told us. */
9390
9391 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9392 binaries are always marked. */
9393 if (tdep->arm_abi == ARM_ABI_AUTO)
9394 tdep->arm_abi = ARM_ABI_APCS;
9395
9396 /* Watchpoints are not steppable. */
9397 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9398
9399 /* We used to default to FPA for generic ARM, but almost nobody
9400 uses that now, and we now provide a way for the user to force
9401 the model. So default to the most useful variant. */
9402 if (tdep->fp_model == ARM_FLOAT_AUTO)
9403 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9404
9405 if (tdep->jb_pc >= 0)
9406 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9407
9408 /* Floating point sizes and format. */
9409 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
9410 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
9411 {
9412 set_gdbarch_double_format
9413 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9414 set_gdbarch_long_double_format
9415 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9416 }
9417 else
9418 {
9419 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9420 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
9421 }
9422
9423 if (have_vfp_pseudos)
9424 {
9425 /* NOTE: These are the only pseudo registers used by
9426 the ARM target at the moment. If more are added, a
9427 little more care in numbering will be needed. */
9428
9429 int num_pseudos = 32;
9430 if (have_neon_pseudos)
9431 num_pseudos += 16;
9432 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9433 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9434 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9435 }
9436
9437 if (tdesc_data)
9438 {
9439 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9440
9441 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
9442
9443 /* Override tdesc_register_type to adjust the types of VFP
9444 registers for NEON. */
9445 set_gdbarch_register_type (gdbarch, arm_register_type);
9446 }
9447
9448 /* Add standard register aliases. We add aliases even for those
9449 names which are used by the current architecture - it's simpler,
9450 and does no harm, since nothing ever lists user registers. */
9451 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9452 user_reg_add (gdbarch, arm_register_aliases[i].name,
9453 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9454
9455 set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options);
9456 set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ());
9457
9458 set_gdbarch_gnu_triplet_regexp (gdbarch, arm_gnu_triplet_regexp);
9459
9460 return gdbarch;
9461 }
9462
9463 static void
9464 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
9465 {
9466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9467
9468 if (tdep == NULL)
9469 return;
9470
9471 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
9472 (unsigned long) tdep->lowest_pc);
9473 }
9474
9475 #if GDB_SELF_TEST
9476 namespace selftests
9477 {
9478 static void arm_record_test (void);
9479 }
9480 #endif
9481
9482 void
9483 _initialize_arm_tdep (void)
9484 {
9485 long length;
9486 int i, j;
9487 char regdesc[1024], *rdptr = regdesc;
9488 size_t rest = sizeof (regdesc);
9489
9490 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
9491
9492 /* Add ourselves to objfile event chain. */
9493 gdb::observers::new_objfile.attach (arm_exidx_new_objfile);
9494
9495 /* Register an ELF OS ABI sniffer for ARM binaries. */
9496 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9497 bfd_target_elf_flavour,
9498 arm_elf_osabi_sniffer);
9499
9500 /* Add root prefix command for all "set arm"/"show arm" commands. */
9501 add_prefix_cmd ("arm", no_class, set_arm_command,
9502 _("Various ARM-specific commands."),
9503 &setarmcmdlist, "set arm ", 0, &setlist);
9504
9505 add_prefix_cmd ("arm", no_class, show_arm_command,
9506 _("Various ARM-specific commands."),
9507 &showarmcmdlist, "show arm ", 0, &showlist);
9508
9509
9510 arm_disassembler_options = xstrdup ("reg-names-std");
9511 const disasm_options_t *disasm_options
9512 = &disassembler_options_arm ()->options;
9513 int num_disassembly_styles = 0;
9514 for (i = 0; disasm_options->name[i] != NULL; i++)
9515 if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
9516 num_disassembly_styles++;
9517
9518 /* Initialize the array that will be passed to add_setshow_enum_cmd(). */
9519 valid_disassembly_styles = XNEWVEC (const char *,
9520 num_disassembly_styles + 1);
9521 for (i = j = 0; disasm_options->name[i] != NULL; i++)
9522 if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
9523 {
9524 size_t offset = strlen ("reg-names-");
9525 const char *style = disasm_options->name[i];
9526 valid_disassembly_styles[j++] = &style[offset];
9527 length = snprintf (rdptr, rest, "%s - %s\n", &style[offset],
9528 disasm_options->description[i]);
9529 rdptr += length;
9530 rest -= length;
9531 }
9532 /* Mark the end of valid options. */
9533 valid_disassembly_styles[num_disassembly_styles] = NULL;
9534
9535 /* Create the help text. */
9536 std::string helptext = string_printf ("%s%s%s",
9537 _("The valid values are:\n"),
9538 regdesc,
9539 _("The default is \"std\"."));
9540
9541 add_setshow_enum_cmd("disassembler", no_class,
9542 valid_disassembly_styles, &disassembly_style,
9543 _("Set the disassembly style."),
9544 _("Show the disassembly style."),
9545 helptext.c_str (),
9546 set_disassembly_style_sfunc,
9547 show_disassembly_style_sfunc,
9548 &setarmcmdlist, &showarmcmdlist);
9549
9550 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9551 _("Set usage of ARM 32-bit mode."),
9552 _("Show usage of ARM 32-bit mode."),
9553 _("When off, a 26-bit PC will be used."),
9554 NULL,
9555 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9556 mode is %s. */
9557 &setarmcmdlist, &showarmcmdlist);
9558
9559 /* Add a command to allow the user to force the FPU model. */
9560 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
9561 _("Set the floating point type."),
9562 _("Show the floating point type."),
9563 _("auto - Determine the FP typefrom the OS-ABI.\n\
9564 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9565 fpa - FPA co-processor (GCC compiled).\n\
9566 softvfp - Software FP with pure-endian doubles.\n\
9567 vfp - VFP co-processor."),
9568 set_fp_model_sfunc, show_fp_model,
9569 &setarmcmdlist, &showarmcmdlist);
9570
9571 /* Add a command to allow the user to force the ABI. */
9572 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9573 _("Set the ABI."),
9574 _("Show the ABI."),
9575 NULL, arm_set_abi, arm_show_abi,
9576 &setarmcmdlist, &showarmcmdlist);
9577
9578 /* Add two commands to allow the user to force the assumed
9579 execution mode. */
9580 add_setshow_enum_cmd ("fallback-mode", class_support,
9581 arm_mode_strings, &arm_fallback_mode_string,
9582 _("Set the mode assumed when symbols are unavailable."),
9583 _("Show the mode assumed when symbols are unavailable."),
9584 NULL, NULL, arm_show_fallback_mode,
9585 &setarmcmdlist, &showarmcmdlist);
9586 add_setshow_enum_cmd ("force-mode", class_support,
9587 arm_mode_strings, &arm_force_mode_string,
9588 _("Set the mode assumed even when symbols are available."),
9589 _("Show the mode assumed even when symbols are available."),
9590 NULL, NULL, arm_show_force_mode,
9591 &setarmcmdlist, &showarmcmdlist);
9592
9593 /* Debugging flag. */
9594 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9595 _("Set ARM debugging."),
9596 _("Show ARM debugging."),
9597 _("When on, arm-specific debugging is enabled."),
9598 NULL,
9599 NULL, /* FIXME: i18n: "ARM debugging is %s. */
9600 &setdebuglist, &showdebuglist);
9601
9602 #if GDB_SELF_TEST
9603 selftests::register_test ("arm-record", selftests::arm_record_test);
9604 #endif
9605
9606 }
9607
9608 /* ARM-reversible process record data structures. */
9609
9610 #define ARM_INSN_SIZE_BYTES 4
9611 #define THUMB_INSN_SIZE_BYTES 2
9612 #define THUMB2_INSN_SIZE_BYTES 4
9613
9614
9615 /* Position of the bit within a 32-bit ARM instruction
9616 that defines whether the instruction is a load or store. */
9617 #define INSN_S_L_BIT_NUM 20
9618
9619 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9620 do \
9621 { \
9622 unsigned int reg_len = LENGTH; \
9623 if (reg_len) \
9624 { \
9625 REGS = XNEWVEC (uint32_t, reg_len); \
9626 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9627 } \
9628 } \
9629 while (0)
9630
9631 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9632 do \
9633 { \
9634 unsigned int mem_len = LENGTH; \
9635 if (mem_len) \
9636 { \
9637 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9638 memcpy(&MEMS->len, &RECORD_BUF[0], \
9639 sizeof(struct arm_mem_r) * LENGTH); \
9640 } \
9641 } \
9642 while (0)
9643
9644 /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9645 #define INSN_RECORDED(ARM_RECORD) \
9646 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9647
9648 /* ARM memory record structure. */
9649 struct arm_mem_r
9650 {
9651 uint32_t len; /* Record length. */
9652 uint32_t addr; /* Memory address. */
9653 };
9654
9655 /* ARM instruction record contains opcode of current insn
9656 and execution state (before entry to decode_insn()),
9657 contains list of to-be-modified registers and
9658 memory blocks (on return from decode_insn()). */
9659
9660 typedef struct insn_decode_record_t
9661 {
9662 struct gdbarch *gdbarch;
9663 struct regcache *regcache;
9664 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9665 uint32_t arm_insn; /* Should accommodate thumb. */
9666 uint32_t cond; /* Condition code. */
9667 uint32_t opcode; /* Insn opcode. */
9668 uint32_t decode; /* Insn decode bits. */
9669 uint32_t mem_rec_count; /* No of mem records. */
9670 uint32_t reg_rec_count; /* No of reg records. */
9671 uint32_t *arm_regs; /* Registers to be saved for this record. */
9672 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9673 } insn_decode_record;
9674
9675
9676 /* Checks ARM SBZ and SBO mandatory fields. */
9677
9678 static int
9679 sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9680 {
9681 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9682
9683 if (!len)
9684 return 1;
9685
9686 if (!sbo)
9687 ones = ~ones;
9688
9689 while (ones)
9690 {
9691 if (!(ones & sbo))
9692 {
9693 return 0;
9694 }
9695 ones = ones >> 1;
9696 }
9697 return 1;
9698 }
9699
9700 enum arm_record_result
9701 {
9702 ARM_RECORD_SUCCESS = 0,
9703 ARM_RECORD_FAILURE = 1
9704 };
9705
9706 typedef enum
9707 {
9708 ARM_RECORD_STRH=1,
9709 ARM_RECORD_STRD
9710 } arm_record_strx_t;
9711
9712 typedef enum
9713 {
9714 ARM_RECORD=1,
9715 THUMB_RECORD,
9716 THUMB2_RECORD
9717 } record_type_t;
9718
9719
9720 static int
9721 arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9722 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9723 {
9724
9725 struct regcache *reg_cache = arm_insn_r->regcache;
9726 ULONGEST u_regval[2]= {0};
9727
9728 uint32_t reg_src1 = 0, reg_src2 = 0;
9729 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
9730
9731 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9732 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
9733
9734 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9735 {
9736 /* 1) Handle misc store, immediate offset. */
9737 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9738 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9739 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9740 regcache_raw_read_unsigned (reg_cache, reg_src1,
9741 &u_regval[0]);
9742 if (ARM_PC_REGNUM == reg_src1)
9743 {
9744 /* If R15 was used as Rn, hence current PC+8. */
9745 u_regval[0] = u_regval[0] + 8;
9746 }
9747 offset_8 = (immed_high << 4) | immed_low;
9748 /* Calculate target store address. */
9749 if (14 == arm_insn_r->opcode)
9750 {
9751 tgt_mem_addr = u_regval[0] + offset_8;
9752 }
9753 else
9754 {
9755 tgt_mem_addr = u_regval[0] - offset_8;
9756 }
9757 if (ARM_RECORD_STRH == str_type)
9758 {
9759 record_buf_mem[0] = 2;
9760 record_buf_mem[1] = tgt_mem_addr;
9761 arm_insn_r->mem_rec_count = 1;
9762 }
9763 else if (ARM_RECORD_STRD == str_type)
9764 {
9765 record_buf_mem[0] = 4;
9766 record_buf_mem[1] = tgt_mem_addr;
9767 record_buf_mem[2] = 4;
9768 record_buf_mem[3] = tgt_mem_addr + 4;
9769 arm_insn_r->mem_rec_count = 2;
9770 }
9771 }
9772 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9773 {
9774 /* 2) Store, register offset. */
9775 /* Get Rm. */
9776 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9777 /* Get Rn. */
9778 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9779 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9780 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9781 if (15 == reg_src2)
9782 {
9783 /* If R15 was used as Rn, hence current PC+8. */
9784 u_regval[0] = u_regval[0] + 8;
9785 }
9786 /* Calculate target store address, Rn +/- Rm, register offset. */
9787 if (12 == arm_insn_r->opcode)
9788 {
9789 tgt_mem_addr = u_regval[0] + u_regval[1];
9790 }
9791 else
9792 {
9793 tgt_mem_addr = u_regval[1] - u_regval[0];
9794 }
9795 if (ARM_RECORD_STRH == str_type)
9796 {
9797 record_buf_mem[0] = 2;
9798 record_buf_mem[1] = tgt_mem_addr;
9799 arm_insn_r->mem_rec_count = 1;
9800 }
9801 else if (ARM_RECORD_STRD == str_type)
9802 {
9803 record_buf_mem[0] = 4;
9804 record_buf_mem[1] = tgt_mem_addr;
9805 record_buf_mem[2] = 4;
9806 record_buf_mem[3] = tgt_mem_addr + 4;
9807 arm_insn_r->mem_rec_count = 2;
9808 }
9809 }
9810 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9811 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9812 {
9813 /* 3) Store, immediate pre-indexed. */
9814 /* 5) Store, immediate post-indexed. */
9815 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9816 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9817 offset_8 = (immed_high << 4) | immed_low;
9818 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9819 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9820 /* Calculate target store address, Rn +/- Rm, register offset. */
9821 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9822 {
9823 tgt_mem_addr = u_regval[0] + offset_8;
9824 }
9825 else
9826 {
9827 tgt_mem_addr = u_regval[0] - offset_8;
9828 }
9829 if (ARM_RECORD_STRH == str_type)
9830 {
9831 record_buf_mem[0] = 2;
9832 record_buf_mem[1] = tgt_mem_addr;
9833 arm_insn_r->mem_rec_count = 1;
9834 }
9835 else if (ARM_RECORD_STRD == str_type)
9836 {
9837 record_buf_mem[0] = 4;
9838 record_buf_mem[1] = tgt_mem_addr;
9839 record_buf_mem[2] = 4;
9840 record_buf_mem[3] = tgt_mem_addr + 4;
9841 arm_insn_r->mem_rec_count = 2;
9842 }
9843 /* Record Rn also as it changes. */
9844 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9845 arm_insn_r->reg_rec_count = 1;
9846 }
9847 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9848 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9849 {
9850 /* 4) Store, register pre-indexed. */
9851 /* 6) Store, register post -indexed. */
9852 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9853 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9854 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9855 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9856 /* Calculate target store address, Rn +/- Rm, register offset. */
9857 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9858 {
9859 tgt_mem_addr = u_regval[0] + u_regval[1];
9860 }
9861 else
9862 {
9863 tgt_mem_addr = u_regval[1] - u_regval[0];
9864 }
9865 if (ARM_RECORD_STRH == str_type)
9866 {
9867 record_buf_mem[0] = 2;
9868 record_buf_mem[1] = tgt_mem_addr;
9869 arm_insn_r->mem_rec_count = 1;
9870 }
9871 else if (ARM_RECORD_STRD == str_type)
9872 {
9873 record_buf_mem[0] = 4;
9874 record_buf_mem[1] = tgt_mem_addr;
9875 record_buf_mem[2] = 4;
9876 record_buf_mem[3] = tgt_mem_addr + 4;
9877 arm_insn_r->mem_rec_count = 2;
9878 }
9879 /* Record Rn also as it changes. */
9880 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9881 arm_insn_r->reg_rec_count = 1;
9882 }
9883 return 0;
9884 }
9885
9886 /* Handling ARM extension space insns. */
9887
9888 static int
9889 arm_record_extension_space (insn_decode_record *arm_insn_r)
9890 {
9891 int ret = 0; /* Return value: -1:record failure ; 0:success */
9892 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
9893 uint32_t record_buf[8], record_buf_mem[8];
9894 uint32_t reg_src1 = 0;
9895 struct regcache *reg_cache = arm_insn_r->regcache;
9896 ULONGEST u_regval = 0;
9897
9898 gdb_assert (!INSN_RECORDED(arm_insn_r));
9899 /* Handle unconditional insn extension space. */
9900
9901 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
9902 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
9903 if (arm_insn_r->cond)
9904 {
9905 /* PLD has no affect on architectural state, it just affects
9906 the caches. */
9907 if (5 == ((opcode1 & 0xE0) >> 5))
9908 {
9909 /* BLX(1) */
9910 record_buf[0] = ARM_PS_REGNUM;
9911 record_buf[1] = ARM_LR_REGNUM;
9912 arm_insn_r->reg_rec_count = 2;
9913 }
9914 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
9915 }
9916
9917
9918 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
9919 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
9920 {
9921 ret = -1;
9922 /* Undefined instruction on ARM V5; need to handle if later
9923 versions define it. */
9924 }
9925
9926 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
9927 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
9928 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
9929
9930 /* Handle arithmetic insn extension space. */
9931 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
9932 && !INSN_RECORDED(arm_insn_r))
9933 {
9934 /* Handle MLA(S) and MUL(S). */
9935 if (in_inclusive_range (insn_op1, 0U, 3U))
9936 {
9937 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
9938 record_buf[1] = ARM_PS_REGNUM;
9939 arm_insn_r->reg_rec_count = 2;
9940 }
9941 else if (in_inclusive_range (insn_op1, 4U, 15U))
9942 {
9943 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
9944 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
9945 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
9946 record_buf[2] = ARM_PS_REGNUM;
9947 arm_insn_r->reg_rec_count = 3;
9948 }
9949 }
9950
9951 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
9952 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
9953 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
9954
9955 /* Handle control insn extension space. */
9956
9957 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
9958 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
9959 {
9960 if (!bit (arm_insn_r->arm_insn,25))
9961 {
9962 if (!bits (arm_insn_r->arm_insn, 4, 7))
9963 {
9964 if ((0 == insn_op1) || (2 == insn_op1))
9965 {
9966 /* MRS. */
9967 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
9968 arm_insn_r->reg_rec_count = 1;
9969 }
9970 else if (1 == insn_op1)
9971 {
9972 /* CSPR is going to be changed. */
9973 record_buf[0] = ARM_PS_REGNUM;
9974 arm_insn_r->reg_rec_count = 1;
9975 }
9976 else if (3 == insn_op1)
9977 {
9978 /* SPSR is going to be changed. */
9979 /* We need to get SPSR value, which is yet to be done. */
9980 return -1;
9981 }
9982 }
9983 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
9984 {
9985 if (1 == insn_op1)
9986 {
9987 /* BX. */
9988 record_buf[0] = ARM_PS_REGNUM;
9989 arm_insn_r->reg_rec_count = 1;
9990 }
9991 else if (3 == insn_op1)
9992 {
9993 /* CLZ. */
9994 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
9995 arm_insn_r->reg_rec_count = 1;
9996 }
9997 }
9998 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
9999 {
10000 /* BLX. */
10001 record_buf[0] = ARM_PS_REGNUM;
10002 record_buf[1] = ARM_LR_REGNUM;
10003 arm_insn_r->reg_rec_count = 2;
10004 }
10005 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10006 {
10007 /* QADD, QSUB, QDADD, QDSUB */
10008 record_buf[0] = ARM_PS_REGNUM;
10009 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10010 arm_insn_r->reg_rec_count = 2;
10011 }
10012 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10013 {
10014 /* BKPT. */
10015 record_buf[0] = ARM_PS_REGNUM;
10016 record_buf[1] = ARM_LR_REGNUM;
10017 arm_insn_r->reg_rec_count = 2;
10018
10019 /* Save SPSR also;how? */
10020 return -1;
10021 }
10022 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10023 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10024 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10025 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10026 )
10027 {
10028 if (0 == insn_op1 || 1 == insn_op1)
10029 {
10030 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10031 /* We dont do optimization for SMULW<y> where we
10032 need only Rd. */
10033 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10034 record_buf[1] = ARM_PS_REGNUM;
10035 arm_insn_r->reg_rec_count = 2;
10036 }
10037 else if (2 == insn_op1)
10038 {
10039 /* SMLAL<x><y>. */
10040 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10041 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10042 arm_insn_r->reg_rec_count = 2;
10043 }
10044 else if (3 == insn_op1)
10045 {
10046 /* SMUL<x><y>. */
10047 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10048 arm_insn_r->reg_rec_count = 1;
10049 }
10050 }
10051 }
10052 else
10053 {
10054 /* MSR : immediate form. */
10055 if (1 == insn_op1)
10056 {
10057 /* CSPR is going to be changed. */
10058 record_buf[0] = ARM_PS_REGNUM;
10059 arm_insn_r->reg_rec_count = 1;
10060 }
10061 else if (3 == insn_op1)
10062 {
10063 /* SPSR is going to be changed. */
10064 /* we need to get SPSR value, which is yet to be done */
10065 return -1;
10066 }
10067 }
10068 }
10069
10070 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10071 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10072 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10073
10074 /* Handle load/store insn extension space. */
10075
10076 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10077 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10078 && !INSN_RECORDED(arm_insn_r))
10079 {
10080 /* SWP/SWPB. */
10081 if (0 == insn_op1)
10082 {
10083 /* These insn, changes register and memory as well. */
10084 /* SWP or SWPB insn. */
10085 /* Get memory address given by Rn. */
10086 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10087 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10088 /* SWP insn ?, swaps word. */
10089 if (8 == arm_insn_r->opcode)
10090 {
10091 record_buf_mem[0] = 4;
10092 }
10093 else
10094 {
10095 /* SWPB insn, swaps only byte. */
10096 record_buf_mem[0] = 1;
10097 }
10098 record_buf_mem[1] = u_regval;
10099 arm_insn_r->mem_rec_count = 1;
10100 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10101 arm_insn_r->reg_rec_count = 1;
10102 }
10103 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10104 {
10105 /* STRH. */
10106 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10107 ARM_RECORD_STRH);
10108 }
10109 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10110 {
10111 /* LDRD. */
10112 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10113 record_buf[1] = record_buf[0] + 1;
10114 arm_insn_r->reg_rec_count = 2;
10115 }
10116 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10117 {
10118 /* STRD. */
10119 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10120 ARM_RECORD_STRD);
10121 }
10122 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10123 {
10124 /* LDRH, LDRSB, LDRSH. */
10125 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10126 arm_insn_r->reg_rec_count = 1;
10127 }
10128
10129 }
10130
10131 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10132 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10133 && !INSN_RECORDED(arm_insn_r))
10134 {
10135 ret = -1;
10136 /* Handle coprocessor insn extension space. */
10137 }
10138
10139 /* To be done for ARMv5 and later; as of now we return -1. */
10140 if (-1 == ret)
10141 return ret;
10142
10143 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10144 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10145
10146 return ret;
10147 }
10148
10149 /* Handling opcode 000 insns. */
10150
10151 static int
10152 arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10153 {
10154 struct regcache *reg_cache = arm_insn_r->regcache;
10155 uint32_t record_buf[8], record_buf_mem[8];
10156 ULONGEST u_regval[2] = {0};
10157
10158 uint32_t reg_src1 = 0;
10159 uint32_t opcode1 = 0;
10160
10161 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10162 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10163 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10164
10165 if (!((opcode1 & 0x19) == 0x10))
10166 {
10167 /* Data-processing (register) and Data-processing (register-shifted
10168 register */
10169 /* Out of 11 shifter operands mode, all the insn modifies destination
10170 register, which is specified by 13-16 decode. */
10171 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10172 record_buf[1] = ARM_PS_REGNUM;
10173 arm_insn_r->reg_rec_count = 2;
10174 }
10175 else if ((arm_insn_r->decode < 8) && ((opcode1 & 0x19) == 0x10))
10176 {
10177 /* Miscellaneous instructions */
10178
10179 if (3 == arm_insn_r->decode && 0x12 == opcode1
10180 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10181 {
10182 /* Handle BLX, branch and link/exchange. */
10183 if (9 == arm_insn_r->opcode)
10184 {
10185 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10186 and R14 stores the return address. */
10187 record_buf[0] = ARM_PS_REGNUM;
10188 record_buf[1] = ARM_LR_REGNUM;
10189 arm_insn_r->reg_rec_count = 2;
10190 }
10191 }
10192 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10193 {
10194 /* Handle enhanced software breakpoint insn, BKPT. */
10195 /* CPSR is changed to be executed in ARM state, disabling normal
10196 interrupts, entering abort mode. */
10197 /* According to high vector configuration PC is set. */
10198 /* user hit breakpoint and type reverse, in
10199 that case, we need to go back with previous CPSR and
10200 Program Counter. */
10201 record_buf[0] = ARM_PS_REGNUM;
10202 record_buf[1] = ARM_LR_REGNUM;
10203 arm_insn_r->reg_rec_count = 2;
10204
10205 /* Save SPSR also; how? */
10206 return -1;
10207 }
10208 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10209 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10210 {
10211 /* Handle BX, branch and link/exchange. */
10212 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10213 record_buf[0] = ARM_PS_REGNUM;
10214 arm_insn_r->reg_rec_count = 1;
10215 }
10216 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10217 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10218 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10219 {
10220 /* Count leading zeros: CLZ. */
10221 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10222 arm_insn_r->reg_rec_count = 1;
10223 }
10224 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10225 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10226 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10227 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0))
10228 {
10229 /* Handle MRS insn. */
10230 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10231 arm_insn_r->reg_rec_count = 1;
10232 }
10233 }
10234 else if (9 == arm_insn_r->decode && opcode1 < 0x10)
10235 {
10236 /* Multiply and multiply-accumulate */
10237
10238 /* Handle multiply instructions. */
10239 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10240 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10241 {
10242 /* Handle MLA and MUL. */
10243 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10244 record_buf[1] = ARM_PS_REGNUM;
10245 arm_insn_r->reg_rec_count = 2;
10246 }
10247 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10248 {
10249 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10250 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10251 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10252 record_buf[2] = ARM_PS_REGNUM;
10253 arm_insn_r->reg_rec_count = 3;
10254 }
10255 }
10256 else if (9 == arm_insn_r->decode && opcode1 > 0x10)
10257 {
10258 /* Synchronization primitives */
10259
10260 /* Handling SWP, SWPB. */
10261 /* These insn, changes register and memory as well. */
10262 /* SWP or SWPB insn. */
10263
10264 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10265 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10266 /* SWP insn ?, swaps word. */
10267 if (8 == arm_insn_r->opcode)
10268 {
10269 record_buf_mem[0] = 4;
10270 }
10271 else
10272 {
10273 /* SWPB insn, swaps only byte. */
10274 record_buf_mem[0] = 1;
10275 }
10276 record_buf_mem[1] = u_regval[0];
10277 arm_insn_r->mem_rec_count = 1;
10278 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10279 arm_insn_r->reg_rec_count = 1;
10280 }
10281 else if (11 == arm_insn_r->decode || 13 == arm_insn_r->decode
10282 || 15 == arm_insn_r->decode)
10283 {
10284 if ((opcode1 & 0x12) == 2)
10285 {
10286 /* Extra load/store (unprivileged) */
10287 return -1;
10288 }
10289 else
10290 {
10291 /* Extra load/store */
10292 switch (bits (arm_insn_r->arm_insn, 5, 6))
10293 {
10294 case 1:
10295 if ((opcode1 & 0x05) == 0x0 || (opcode1 & 0x05) == 0x4)
10296 {
10297 /* STRH (register), STRH (immediate) */
10298 arm_record_strx (arm_insn_r, &record_buf[0],
10299 &record_buf_mem[0], ARM_RECORD_STRH);
10300 }
10301 else if ((opcode1 & 0x05) == 0x1)
10302 {
10303 /* LDRH (register) */
10304 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10305 arm_insn_r->reg_rec_count = 1;
10306
10307 if (bit (arm_insn_r->arm_insn, 21))
10308 {
10309 /* Write back to Rn. */
10310 record_buf[arm_insn_r->reg_rec_count++]
10311 = bits (arm_insn_r->arm_insn, 16, 19);
10312 }
10313 }
10314 else if ((opcode1 & 0x05) == 0x5)
10315 {
10316 /* LDRH (immediate), LDRH (literal) */
10317 int rn = bits (arm_insn_r->arm_insn, 16, 19);
10318
10319 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10320 arm_insn_r->reg_rec_count = 1;
10321
10322 if (rn != 15)
10323 {
10324 /*LDRH (immediate) */
10325 if (bit (arm_insn_r->arm_insn, 21))
10326 {
10327 /* Write back to Rn. */
10328 record_buf[arm_insn_r->reg_rec_count++] = rn;
10329 }
10330 }
10331 }
10332 else
10333 return -1;
10334 break;
10335 case 2:
10336 if ((opcode1 & 0x05) == 0x0)
10337 {
10338 /* LDRD (register) */
10339 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10340 record_buf[1] = record_buf[0] + 1;
10341 arm_insn_r->reg_rec_count = 2;
10342
10343 if (bit (arm_insn_r->arm_insn, 21))
10344 {
10345 /* Write back to Rn. */
10346 record_buf[arm_insn_r->reg_rec_count++]
10347 = bits (arm_insn_r->arm_insn, 16, 19);
10348 }
10349 }
10350 else if ((opcode1 & 0x05) == 0x1)
10351 {
10352 /* LDRSB (register) */
10353 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10354 arm_insn_r->reg_rec_count = 1;
10355
10356 if (bit (arm_insn_r->arm_insn, 21))
10357 {
10358 /* Write back to Rn. */
10359 record_buf[arm_insn_r->reg_rec_count++]
10360 = bits (arm_insn_r->arm_insn, 16, 19);
10361 }
10362 }
10363 else if ((opcode1 & 0x05) == 0x4 || (opcode1 & 0x05) == 0x5)
10364 {
10365 /* LDRD (immediate), LDRD (literal), LDRSB (immediate),
10366 LDRSB (literal) */
10367 int rn = bits (arm_insn_r->arm_insn, 16, 19);
10368
10369 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10370 arm_insn_r->reg_rec_count = 1;
10371
10372 if (rn != 15)
10373 {
10374 /*LDRD (immediate), LDRSB (immediate) */
10375 if (bit (arm_insn_r->arm_insn, 21))
10376 {
10377 /* Write back to Rn. */
10378 record_buf[arm_insn_r->reg_rec_count++] = rn;
10379 }
10380 }
10381 }
10382 else
10383 return -1;
10384 break;
10385 case 3:
10386 if ((opcode1 & 0x05) == 0x0)
10387 {
10388 /* STRD (register) */
10389 arm_record_strx (arm_insn_r, &record_buf[0],
10390 &record_buf_mem[0], ARM_RECORD_STRD);
10391 }
10392 else if ((opcode1 & 0x05) == 0x1)
10393 {
10394 /* LDRSH (register) */
10395 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10396 arm_insn_r->reg_rec_count = 1;
10397
10398 if (bit (arm_insn_r->arm_insn, 21))
10399 {
10400 /* Write back to Rn. */
10401 record_buf[arm_insn_r->reg_rec_count++]
10402 = bits (arm_insn_r->arm_insn, 16, 19);
10403 }
10404 }
10405 else if ((opcode1 & 0x05) == 0x4)
10406 {
10407 /* STRD (immediate) */
10408 arm_record_strx (arm_insn_r, &record_buf[0],
10409 &record_buf_mem[0], ARM_RECORD_STRD);
10410 }
10411 else if ((opcode1 & 0x05) == 0x5)
10412 {
10413 /* LDRSH (immediate), LDRSH (literal) */
10414 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10415 arm_insn_r->reg_rec_count = 1;
10416
10417 if (bit (arm_insn_r->arm_insn, 21))
10418 {
10419 /* Write back to Rn. */
10420 record_buf[arm_insn_r->reg_rec_count++]
10421 = bits (arm_insn_r->arm_insn, 16, 19);
10422 }
10423 }
10424 else
10425 return -1;
10426 break;
10427 default:
10428 return -1;
10429 }
10430 }
10431 }
10432 else
10433 {
10434 return -1;
10435 }
10436
10437 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10438 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10439 return 0;
10440 }
10441
10442 /* Handling opcode 001 insns. */
10443
10444 static int
10445 arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10446 {
10447 uint32_t record_buf[8], record_buf_mem[8];
10448
10449 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10450 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10451
10452 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10453 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10454 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10455 )
10456 {
10457 /* Handle MSR insn. */
10458 if (9 == arm_insn_r->opcode)
10459 {
10460 /* CSPR is going to be changed. */
10461 record_buf[0] = ARM_PS_REGNUM;
10462 arm_insn_r->reg_rec_count = 1;
10463 }
10464 else
10465 {
10466 /* SPSR is going to be changed. */
10467 }
10468 }
10469 else if (arm_insn_r->opcode <= 15)
10470 {
10471 /* Normal data processing insns. */
10472 /* Out of 11 shifter operands mode, all the insn modifies destination
10473 register, which is specified by 13-16 decode. */
10474 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10475 record_buf[1] = ARM_PS_REGNUM;
10476 arm_insn_r->reg_rec_count = 2;
10477 }
10478 else
10479 {
10480 return -1;
10481 }
10482
10483 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10484 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10485 return 0;
10486 }
10487
10488 static int
10489 arm_record_media (insn_decode_record *arm_insn_r)
10490 {
10491 uint32_t record_buf[8];
10492
10493 switch (bits (arm_insn_r->arm_insn, 22, 24))
10494 {
10495 case 0:
10496 /* Parallel addition and subtraction, signed */
10497 case 1:
10498 /* Parallel addition and subtraction, unsigned */
10499 case 2:
10500 case 3:
10501 /* Packing, unpacking, saturation and reversal */
10502 {
10503 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10504
10505 record_buf[arm_insn_r->reg_rec_count++] = rd;
10506 }
10507 break;
10508
10509 case 4:
10510 case 5:
10511 /* Signed multiplies */
10512 {
10513 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10514 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10515
10516 record_buf[arm_insn_r->reg_rec_count++] = rd;
10517 if (op1 == 0x0)
10518 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10519 else if (op1 == 0x4)
10520 record_buf[arm_insn_r->reg_rec_count++]
10521 = bits (arm_insn_r->arm_insn, 12, 15);
10522 }
10523 break;
10524
10525 case 6:
10526 {
10527 if (bit (arm_insn_r->arm_insn, 21)
10528 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10529 {
10530 /* SBFX */
10531 record_buf[arm_insn_r->reg_rec_count++]
10532 = bits (arm_insn_r->arm_insn, 12, 15);
10533 }
10534 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10535 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10536 {
10537 /* USAD8 and USADA8 */
10538 record_buf[arm_insn_r->reg_rec_count++]
10539 = bits (arm_insn_r->arm_insn, 16, 19);
10540 }
10541 }
10542 break;
10543
10544 case 7:
10545 {
10546 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10547 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10548 {
10549 /* Permanently UNDEFINED */
10550 return -1;
10551 }
10552 else
10553 {
10554 /* BFC, BFI and UBFX */
10555 record_buf[arm_insn_r->reg_rec_count++]
10556 = bits (arm_insn_r->arm_insn, 12, 15);
10557 }
10558 }
10559 break;
10560
10561 default:
10562 return -1;
10563 }
10564
10565 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10566
10567 return 0;
10568 }
10569
10570 /* Handle ARM mode instructions with opcode 010. */
10571
10572 static int
10573 arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10574 {
10575 struct regcache *reg_cache = arm_insn_r->regcache;
10576
10577 uint32_t reg_base , reg_dest;
10578 uint32_t offset_12, tgt_mem_addr;
10579 uint32_t record_buf[8], record_buf_mem[8];
10580 unsigned char wback;
10581 ULONGEST u_regval;
10582
10583 /* Calculate wback. */
10584 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10585 || (bit (arm_insn_r->arm_insn, 21) == 1);
10586
10587 arm_insn_r->reg_rec_count = 0;
10588 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10589
10590 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10591 {
10592 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10593 and LDRT. */
10594
10595 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10596 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10597
10598 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10599 preceeds a LDR instruction having R15 as reg_base, it
10600 emulates a branch and link instruction, and hence we need to save
10601 CPSR and PC as well. */
10602 if (ARM_PC_REGNUM == reg_dest)
10603 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10604
10605 /* If wback is true, also save the base register, which is going to be
10606 written to. */
10607 if (wback)
10608 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10609 }
10610 else
10611 {
10612 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10613
10614 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
10615 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10616
10617 /* Handle bit U. */
10618 if (bit (arm_insn_r->arm_insn, 23))
10619 {
10620 /* U == 1: Add the offset. */
10621 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10622 }
10623 else
10624 {
10625 /* U == 0: subtract the offset. */
10626 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10627 }
10628
10629 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10630 bytes. */
10631 if (bit (arm_insn_r->arm_insn, 22))
10632 {
10633 /* STRB and STRBT: 1 byte. */
10634 record_buf_mem[0] = 1;
10635 }
10636 else
10637 {
10638 /* STR and STRT: 4 bytes. */
10639 record_buf_mem[0] = 4;
10640 }
10641
10642 /* Handle bit P. */
10643 if (bit (arm_insn_r->arm_insn, 24))
10644 record_buf_mem[1] = tgt_mem_addr;
10645 else
10646 record_buf_mem[1] = (uint32_t) u_regval;
10647
10648 arm_insn_r->mem_rec_count = 1;
10649
10650 /* If wback is true, also save the base register, which is going to be
10651 written to. */
10652 if (wback)
10653 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10654 }
10655
10656 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10657 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10658 return 0;
10659 }
10660
10661 /* Handling opcode 011 insns. */
10662
10663 static int
10664 arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10665 {
10666 struct regcache *reg_cache = arm_insn_r->regcache;
10667
10668 uint32_t shift_imm = 0;
10669 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10670 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10671 uint32_t record_buf[8], record_buf_mem[8];
10672
10673 LONGEST s_word;
10674 ULONGEST u_regval[2];
10675
10676 if (bit (arm_insn_r->arm_insn, 4))
10677 return arm_record_media (arm_insn_r);
10678
10679 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10680 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10681
10682 /* Handle enhanced store insns and LDRD DSP insn,
10683 order begins according to addressing modes for store insns
10684 STRH insn. */
10685
10686 /* LDR or STR? */
10687 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10688 {
10689 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10690 /* LDR insn has a capability to do branching, if
10691 MOV LR, PC is preceded by LDR insn having Rn as R15
10692 in that case, it emulates branch and link insn, and hence we
10693 need to save CSPR and PC as well. */
10694 if (15 != reg_dest)
10695 {
10696 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10697 arm_insn_r->reg_rec_count = 1;
10698 }
10699 else
10700 {
10701 record_buf[0] = reg_dest;
10702 record_buf[1] = ARM_PS_REGNUM;
10703 arm_insn_r->reg_rec_count = 2;
10704 }
10705 }
10706 else
10707 {
10708 if (! bits (arm_insn_r->arm_insn, 4, 11))
10709 {
10710 /* Store insn, register offset and register pre-indexed,
10711 register post-indexed. */
10712 /* Get Rm. */
10713 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10714 /* Get Rn. */
10715 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10716 regcache_raw_read_unsigned (reg_cache, reg_src1
10717 , &u_regval[0]);
10718 regcache_raw_read_unsigned (reg_cache, reg_src2
10719 , &u_regval[1]);
10720 if (15 == reg_src2)
10721 {
10722 /* If R15 was used as Rn, hence current PC+8. */
10723 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10724 u_regval[0] = u_regval[0] + 8;
10725 }
10726 /* Calculate target store address, Rn +/- Rm, register offset. */
10727 /* U == 1. */
10728 if (bit (arm_insn_r->arm_insn, 23))
10729 {
10730 tgt_mem_addr = u_regval[0] + u_regval[1];
10731 }
10732 else
10733 {
10734 tgt_mem_addr = u_regval[1] - u_regval[0];
10735 }
10736
10737 switch (arm_insn_r->opcode)
10738 {
10739 /* STR. */
10740 case 8:
10741 case 12:
10742 /* STR. */
10743 case 9:
10744 case 13:
10745 /* STRT. */
10746 case 1:
10747 case 5:
10748 /* STR. */
10749 case 0:
10750 case 4:
10751 record_buf_mem[0] = 4;
10752 break;
10753
10754 /* STRB. */
10755 case 10:
10756 case 14:
10757 /* STRB. */
10758 case 11:
10759 case 15:
10760 /* STRBT. */
10761 case 3:
10762 case 7:
10763 /* STRB. */
10764 case 2:
10765 case 6:
10766 record_buf_mem[0] = 1;
10767 break;
10768
10769 default:
10770 gdb_assert_not_reached ("no decoding pattern found");
10771 break;
10772 }
10773 record_buf_mem[1] = tgt_mem_addr;
10774 arm_insn_r->mem_rec_count = 1;
10775
10776 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10777 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10778 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10779 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10780 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10781 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10782 )
10783 {
10784 /* Rn is going to be changed in pre-indexed mode and
10785 post-indexed mode as well. */
10786 record_buf[0] = reg_src2;
10787 arm_insn_r->reg_rec_count = 1;
10788 }
10789 }
10790 else
10791 {
10792 /* Store insn, scaled register offset; scaled pre-indexed. */
10793 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10794 /* Get Rm. */
10795 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10796 /* Get Rn. */
10797 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10798 /* Get shift_imm. */
10799 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10800 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10801 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10802 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10803 /* Offset_12 used as shift. */
10804 switch (offset_12)
10805 {
10806 case 0:
10807 /* Offset_12 used as index. */
10808 offset_12 = u_regval[0] << shift_imm;
10809 break;
10810
10811 case 1:
10812 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10813 break;
10814
10815 case 2:
10816 if (!shift_imm)
10817 {
10818 if (bit (u_regval[0], 31))
10819 {
10820 offset_12 = 0xFFFFFFFF;
10821 }
10822 else
10823 {
10824 offset_12 = 0;
10825 }
10826 }
10827 else
10828 {
10829 /* This is arithmetic shift. */
10830 offset_12 = s_word >> shift_imm;
10831 }
10832 break;
10833
10834 case 3:
10835 if (!shift_imm)
10836 {
10837 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10838 &u_regval[1]);
10839 /* Get C flag value and shift it by 31. */
10840 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10841 | (u_regval[0]) >> 1);
10842 }
10843 else
10844 {
10845 offset_12 = (u_regval[0] >> shift_imm) \
10846 | (u_regval[0] <<
10847 (sizeof(uint32_t) - shift_imm));
10848 }
10849 break;
10850
10851 default:
10852 gdb_assert_not_reached ("no decoding pattern found");
10853 break;
10854 }
10855
10856 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10857 /* bit U set. */
10858 if (bit (arm_insn_r->arm_insn, 23))
10859 {
10860 tgt_mem_addr = u_regval[1] + offset_12;
10861 }
10862 else
10863 {
10864 tgt_mem_addr = u_regval[1] - offset_12;
10865 }
10866
10867 switch (arm_insn_r->opcode)
10868 {
10869 /* STR. */
10870 case 8:
10871 case 12:
10872 /* STR. */
10873 case 9:
10874 case 13:
10875 /* STRT. */
10876 case 1:
10877 case 5:
10878 /* STR. */
10879 case 0:
10880 case 4:
10881 record_buf_mem[0] = 4;
10882 break;
10883
10884 /* STRB. */
10885 case 10:
10886 case 14:
10887 /* STRB. */
10888 case 11:
10889 case 15:
10890 /* STRBT. */
10891 case 3:
10892 case 7:
10893 /* STRB. */
10894 case 2:
10895 case 6:
10896 record_buf_mem[0] = 1;
10897 break;
10898
10899 default:
10900 gdb_assert_not_reached ("no decoding pattern found");
10901 break;
10902 }
10903 record_buf_mem[1] = tgt_mem_addr;
10904 arm_insn_r->mem_rec_count = 1;
10905
10906 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10907 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10908 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10909 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10910 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10911 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10912 )
10913 {
10914 /* Rn is going to be changed in register scaled pre-indexed
10915 mode,and scaled post indexed mode. */
10916 record_buf[0] = reg_src2;
10917 arm_insn_r->reg_rec_count = 1;
10918 }
10919 }
10920 }
10921
10922 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10923 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10924 return 0;
10925 }
10926
10927 /* Handle ARM mode instructions with opcode 100. */
10928
10929 static int
10930 arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10931 {
10932 struct regcache *reg_cache = arm_insn_r->regcache;
10933 uint32_t register_count = 0, register_bits;
10934 uint32_t reg_base, addr_mode;
10935 uint32_t record_buf[24], record_buf_mem[48];
10936 uint32_t wback;
10937 ULONGEST u_regval;
10938
10939 /* Fetch the list of registers. */
10940 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10941 arm_insn_r->reg_rec_count = 0;
10942
10943 /* Fetch the base register that contains the address we are loading data
10944 to. */
10945 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10946
10947 /* Calculate wback. */
10948 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
10949
10950 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10951 {
10952 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
10953
10954 /* Find out which registers are going to be loaded from memory. */
10955 while (register_bits)
10956 {
10957 if (register_bits & 0x00000001)
10958 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10959 register_bits = register_bits >> 1;
10960 register_count++;
10961 }
10962
10963
10964 /* If wback is true, also save the base register, which is going to be
10965 written to. */
10966 if (wback)
10967 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10968
10969 /* Save the CPSR register. */
10970 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10971 }
10972 else
10973 {
10974 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
10975
10976 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
10977
10978 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10979
10980 /* Find out how many registers are going to be stored to memory. */
10981 while (register_bits)
10982 {
10983 if (register_bits & 0x00000001)
10984 register_count++;
10985 register_bits = register_bits >> 1;
10986 }
10987
10988 switch (addr_mode)
10989 {
10990 /* STMDA (STMED): Decrement after. */
10991 case 0:
10992 record_buf_mem[1] = (uint32_t) u_regval
10993 - register_count * ARM_INT_REGISTER_SIZE + 4;
10994 break;
10995 /* STM (STMIA, STMEA): Increment after. */
10996 case 1:
10997 record_buf_mem[1] = (uint32_t) u_regval;
10998 break;
10999 /* STMDB (STMFD): Decrement before. */
11000 case 2:
11001 record_buf_mem[1] = (uint32_t) u_regval
11002 - register_count * ARM_INT_REGISTER_SIZE;
11003 break;
11004 /* STMIB (STMFA): Increment before. */
11005 case 3:
11006 record_buf_mem[1] = (uint32_t) u_regval + ARM_INT_REGISTER_SIZE;
11007 break;
11008 default:
11009 gdb_assert_not_reached ("no decoding pattern found");
11010 break;
11011 }
11012
11013 record_buf_mem[0] = register_count * ARM_INT_REGISTER_SIZE;
11014 arm_insn_r->mem_rec_count = 1;
11015
11016 /* If wback is true, also save the base register, which is going to be
11017 written to. */
11018 if (wback)
11019 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
11020 }
11021
11022 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11023 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11024 return 0;
11025 }
11026
11027 /* Handling opcode 101 insns. */
11028
11029 static int
11030 arm_record_b_bl (insn_decode_record *arm_insn_r)
11031 {
11032 uint32_t record_buf[8];
11033
11034 /* Handle B, BL, BLX(1) insns. */
11035 /* B simply branches so we do nothing here. */
11036 /* Note: BLX(1) doesnt fall here but instead it falls into
11037 extension space. */
11038 if (bit (arm_insn_r->arm_insn, 24))
11039 {
11040 record_buf[0] = ARM_LR_REGNUM;
11041 arm_insn_r->reg_rec_count = 1;
11042 }
11043
11044 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11045
11046 return 0;
11047 }
11048
11049 static int
11050 arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
11051 {
11052 printf_unfiltered (_("Process record does not support instruction "
11053 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11054 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11055
11056 return -1;
11057 }
11058
11059 /* Record handler for vector data transfer instructions. */
11060
11061 static int
11062 arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11063 {
11064 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11065 uint32_t record_buf[4];
11066
11067 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11068 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11069 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11070 bit_l = bit (arm_insn_r->arm_insn, 20);
11071 bit_c = bit (arm_insn_r->arm_insn, 8);
11072
11073 /* Handle VMOV instruction. */
11074 if (bit_l && bit_c)
11075 {
11076 record_buf[0] = reg_t;
11077 arm_insn_r->reg_rec_count = 1;
11078 }
11079 else if (bit_l && !bit_c)
11080 {
11081 /* Handle VMOV instruction. */
11082 if (bits_a == 0x00)
11083 {
11084 record_buf[0] = reg_t;
11085 arm_insn_r->reg_rec_count = 1;
11086 }
11087 /* Handle VMRS instruction. */
11088 else if (bits_a == 0x07)
11089 {
11090 if (reg_t == 15)
11091 reg_t = ARM_PS_REGNUM;
11092
11093 record_buf[0] = reg_t;
11094 arm_insn_r->reg_rec_count = 1;
11095 }
11096 }
11097 else if (!bit_l && !bit_c)
11098 {
11099 /* Handle VMOV instruction. */
11100 if (bits_a == 0x00)
11101 {
11102 record_buf[0] = ARM_D0_REGNUM + reg_v;
11103
11104 arm_insn_r->reg_rec_count = 1;
11105 }
11106 /* Handle VMSR instruction. */
11107 else if (bits_a == 0x07)
11108 {
11109 record_buf[0] = ARM_FPSCR_REGNUM;
11110 arm_insn_r->reg_rec_count = 1;
11111 }
11112 }
11113 else if (!bit_l && bit_c)
11114 {
11115 /* Handle VMOV instruction. */
11116 if (!(bits_a & 0x04))
11117 {
11118 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11119 + ARM_D0_REGNUM;
11120 arm_insn_r->reg_rec_count = 1;
11121 }
11122 /* Handle VDUP instruction. */
11123 else
11124 {
11125 if (bit (arm_insn_r->arm_insn, 21))
11126 {
11127 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11128 record_buf[0] = reg_v + ARM_D0_REGNUM;
11129 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11130 arm_insn_r->reg_rec_count = 2;
11131 }
11132 else
11133 {
11134 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11135 record_buf[0] = reg_v + ARM_D0_REGNUM;
11136 arm_insn_r->reg_rec_count = 1;
11137 }
11138 }
11139 }
11140
11141 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11142 return 0;
11143 }
11144
11145 /* Record handler for extension register load/store instructions. */
11146
11147 static int
11148 arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11149 {
11150 uint32_t opcode, single_reg;
11151 uint8_t op_vldm_vstm;
11152 uint32_t record_buf[8], record_buf_mem[128];
11153 ULONGEST u_regval = 0;
11154
11155 struct regcache *reg_cache = arm_insn_r->regcache;
11156
11157 opcode = bits (arm_insn_r->arm_insn, 20, 24);
11158 single_reg = !bit (arm_insn_r->arm_insn, 8);
11159 op_vldm_vstm = opcode & 0x1b;
11160
11161 /* Handle VMOV instructions. */
11162 if ((opcode & 0x1e) == 0x04)
11163 {
11164 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
11165 {
11166 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11167 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11168 arm_insn_r->reg_rec_count = 2;
11169 }
11170 else
11171 {
11172 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11173 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
11174
11175 if (single_reg)
11176 {
11177 /* The first S register number m is REG_M:M (M is bit 5),
11178 the corresponding D register number is REG_M:M / 2, which
11179 is REG_M. */
11180 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11181 /* The second S register number is REG_M:M + 1, the
11182 corresponding D register number is (REG_M:M + 1) / 2.
11183 IOW, if bit M is 1, the first and second S registers
11184 are mapped to different D registers, otherwise, they are
11185 in the same D register. */
11186 if (bit_m)
11187 {
11188 record_buf[arm_insn_r->reg_rec_count++]
11189 = ARM_D0_REGNUM + reg_m + 1;
11190 }
11191 }
11192 else
11193 {
11194 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
11195 arm_insn_r->reg_rec_count = 1;
11196 }
11197 }
11198 }
11199 /* Handle VSTM and VPUSH instructions. */
11200 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
11201 || op_vldm_vstm == 0x12)
11202 {
11203 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11204 uint32_t memory_index = 0;
11205
11206 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11207 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11208 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11209 imm_off32 = imm_off8 << 2;
11210 memory_count = imm_off8;
11211
11212 if (bit (arm_insn_r->arm_insn, 23))
11213 start_address = u_regval;
11214 else
11215 start_address = u_regval - imm_off32;
11216
11217 if (bit (arm_insn_r->arm_insn, 21))
11218 {
11219 record_buf[0] = reg_rn;
11220 arm_insn_r->reg_rec_count = 1;
11221 }
11222
11223 while (memory_count > 0)
11224 {
11225 if (single_reg)
11226 {
11227 record_buf_mem[memory_index] = 4;
11228 record_buf_mem[memory_index + 1] = start_address;
11229 start_address = start_address + 4;
11230 memory_index = memory_index + 2;
11231 }
11232 else
11233 {
11234 record_buf_mem[memory_index] = 4;
11235 record_buf_mem[memory_index + 1] = start_address;
11236 record_buf_mem[memory_index + 2] = 4;
11237 record_buf_mem[memory_index + 3] = start_address + 4;
11238 start_address = start_address + 8;
11239 memory_index = memory_index + 4;
11240 }
11241 memory_count--;
11242 }
11243 arm_insn_r->mem_rec_count = (memory_index >> 1);
11244 }
11245 /* Handle VLDM instructions. */
11246 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
11247 || op_vldm_vstm == 0x13)
11248 {
11249 uint32_t reg_count, reg_vd;
11250 uint32_t reg_index = 0;
11251 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
11252
11253 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11254 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11255
11256 /* REG_VD is the first D register number. If the instruction
11257 loads memory to S registers (SINGLE_REG is TRUE), the register
11258 number is (REG_VD << 1 | bit D), so the corresponding D
11259 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11260 if (!single_reg)
11261 reg_vd = reg_vd | (bit_d << 4);
11262
11263 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
11264 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
11265
11266 /* If the instruction loads memory to D register, REG_COUNT should
11267 be divided by 2, according to the ARM Architecture Reference
11268 Manual. If the instruction loads memory to S register, divide by
11269 2 as well because two S registers are mapped to D register. */
11270 reg_count = reg_count / 2;
11271 if (single_reg && bit_d)
11272 {
11273 /* Increase the register count if S register list starts from
11274 an odd number (bit d is one). */
11275 reg_count++;
11276 }
11277
11278 while (reg_count > 0)
11279 {
11280 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
11281 reg_count--;
11282 }
11283 arm_insn_r->reg_rec_count = reg_index;
11284 }
11285 /* VSTR Vector store register. */
11286 else if ((opcode & 0x13) == 0x10)
11287 {
11288 uint32_t start_address, reg_rn, imm_off32, imm_off8;
11289 uint32_t memory_index = 0;
11290
11291 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11292 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11293 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11294 imm_off32 = imm_off8 << 2;
11295
11296 if (bit (arm_insn_r->arm_insn, 23))
11297 start_address = u_regval + imm_off32;
11298 else
11299 start_address = u_regval - imm_off32;
11300
11301 if (single_reg)
11302 {
11303 record_buf_mem[memory_index] = 4;
11304 record_buf_mem[memory_index + 1] = start_address;
11305 arm_insn_r->mem_rec_count = 1;
11306 }
11307 else
11308 {
11309 record_buf_mem[memory_index] = 4;
11310 record_buf_mem[memory_index + 1] = start_address;
11311 record_buf_mem[memory_index + 2] = 4;
11312 record_buf_mem[memory_index + 3] = start_address + 4;
11313 arm_insn_r->mem_rec_count = 2;
11314 }
11315 }
11316 /* VLDR Vector load register. */
11317 else if ((opcode & 0x13) == 0x11)
11318 {
11319 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11320
11321 if (!single_reg)
11322 {
11323 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11324 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11325 }
11326 else
11327 {
11328 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
11329 /* Record register D rather than pseudo register S. */
11330 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
11331 }
11332 arm_insn_r->reg_rec_count = 1;
11333 }
11334
11335 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11336 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11337 return 0;
11338 }
11339
11340 /* Record handler for arm/thumb mode VFP data processing instructions. */
11341
11342 static int
11343 arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11344 {
11345 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11346 uint32_t record_buf[4];
11347 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11348 enum insn_types curr_insn_type = INSN_INV;
11349
11350 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11351 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11352 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11353 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11354 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11355 bit_d = bit (arm_insn_r->arm_insn, 22);
11356 /* Mask off the "D" bit. */
11357 opc1 = opc1 & ~0x04;
11358
11359 /* Handle VMLA, VMLS. */
11360 if (opc1 == 0x00)
11361 {
11362 if (bit (arm_insn_r->arm_insn, 10))
11363 {
11364 if (bit (arm_insn_r->arm_insn, 6))
11365 curr_insn_type = INSN_T0;
11366 else
11367 curr_insn_type = INSN_T1;
11368 }
11369 else
11370 {
11371 if (dp_op_sz)
11372 curr_insn_type = INSN_T1;
11373 else
11374 curr_insn_type = INSN_T2;
11375 }
11376 }
11377 /* Handle VNMLA, VNMLS, VNMUL. */
11378 else if (opc1 == 0x01)
11379 {
11380 if (dp_op_sz)
11381 curr_insn_type = INSN_T1;
11382 else
11383 curr_insn_type = INSN_T2;
11384 }
11385 /* Handle VMUL. */
11386 else if (opc1 == 0x02 && !(opc3 & 0x01))
11387 {
11388 if (bit (arm_insn_r->arm_insn, 10))
11389 {
11390 if (bit (arm_insn_r->arm_insn, 6))
11391 curr_insn_type = INSN_T0;
11392 else
11393 curr_insn_type = INSN_T1;
11394 }
11395 else
11396 {
11397 if (dp_op_sz)
11398 curr_insn_type = INSN_T1;
11399 else
11400 curr_insn_type = INSN_T2;
11401 }
11402 }
11403 /* Handle VADD, VSUB. */
11404 else if (opc1 == 0x03)
11405 {
11406 if (!bit (arm_insn_r->arm_insn, 9))
11407 {
11408 if (bit (arm_insn_r->arm_insn, 6))
11409 curr_insn_type = INSN_T0;
11410 else
11411 curr_insn_type = INSN_T1;
11412 }
11413 else
11414 {
11415 if (dp_op_sz)
11416 curr_insn_type = INSN_T1;
11417 else
11418 curr_insn_type = INSN_T2;
11419 }
11420 }
11421 /* Handle VDIV. */
11422 else if (opc1 == 0x08)
11423 {
11424 if (dp_op_sz)
11425 curr_insn_type = INSN_T1;
11426 else
11427 curr_insn_type = INSN_T2;
11428 }
11429 /* Handle all other vfp data processing instructions. */
11430 else if (opc1 == 0x0b)
11431 {
11432 /* Handle VMOV. */
11433 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11434 {
11435 if (bit (arm_insn_r->arm_insn, 4))
11436 {
11437 if (bit (arm_insn_r->arm_insn, 6))
11438 curr_insn_type = INSN_T0;
11439 else
11440 curr_insn_type = INSN_T1;
11441 }
11442 else
11443 {
11444 if (dp_op_sz)
11445 curr_insn_type = INSN_T1;
11446 else
11447 curr_insn_type = INSN_T2;
11448 }
11449 }
11450 /* Handle VNEG and VABS. */
11451 else if ((opc2 == 0x01 && opc3 == 0x01)
11452 || (opc2 == 0x00 && opc3 == 0x03))
11453 {
11454 if (!bit (arm_insn_r->arm_insn, 11))
11455 {
11456 if (bit (arm_insn_r->arm_insn, 6))
11457 curr_insn_type = INSN_T0;
11458 else
11459 curr_insn_type = INSN_T1;
11460 }
11461 else
11462 {
11463 if (dp_op_sz)
11464 curr_insn_type = INSN_T1;
11465 else
11466 curr_insn_type = INSN_T2;
11467 }
11468 }
11469 /* Handle VSQRT. */
11470 else if (opc2 == 0x01 && opc3 == 0x03)
11471 {
11472 if (dp_op_sz)
11473 curr_insn_type = INSN_T1;
11474 else
11475 curr_insn_type = INSN_T2;
11476 }
11477 /* Handle VCVT. */
11478 else if (opc2 == 0x07 && opc3 == 0x03)
11479 {
11480 if (!dp_op_sz)
11481 curr_insn_type = INSN_T1;
11482 else
11483 curr_insn_type = INSN_T2;
11484 }
11485 else if (opc3 & 0x01)
11486 {
11487 /* Handle VCVT. */
11488 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11489 {
11490 if (!bit (arm_insn_r->arm_insn, 18))
11491 curr_insn_type = INSN_T2;
11492 else
11493 {
11494 if (dp_op_sz)
11495 curr_insn_type = INSN_T1;
11496 else
11497 curr_insn_type = INSN_T2;
11498 }
11499 }
11500 /* Handle VCVT. */
11501 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11502 {
11503 if (dp_op_sz)
11504 curr_insn_type = INSN_T1;
11505 else
11506 curr_insn_type = INSN_T2;
11507 }
11508 /* Handle VCVTB, VCVTT. */
11509 else if ((opc2 & 0x0e) == 0x02)
11510 curr_insn_type = INSN_T2;
11511 /* Handle VCMP, VCMPE. */
11512 else if ((opc2 & 0x0e) == 0x04)
11513 curr_insn_type = INSN_T3;
11514 }
11515 }
11516
11517 switch (curr_insn_type)
11518 {
11519 case INSN_T0:
11520 reg_vd = reg_vd | (bit_d << 4);
11521 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11522 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11523 arm_insn_r->reg_rec_count = 2;
11524 break;
11525
11526 case INSN_T1:
11527 reg_vd = reg_vd | (bit_d << 4);
11528 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11529 arm_insn_r->reg_rec_count = 1;
11530 break;
11531
11532 case INSN_T2:
11533 reg_vd = (reg_vd << 1) | bit_d;
11534 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11535 arm_insn_r->reg_rec_count = 1;
11536 break;
11537
11538 case INSN_T3:
11539 record_buf[0] = ARM_FPSCR_REGNUM;
11540 arm_insn_r->reg_rec_count = 1;
11541 break;
11542
11543 default:
11544 gdb_assert_not_reached ("no decoding pattern found");
11545 break;
11546 }
11547
11548 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11549 return 0;
11550 }
11551
11552 /* Handling opcode 110 insns. */
11553
11554 static int
11555 arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11556 {
11557 uint32_t op1, op1_ebit, coproc;
11558
11559 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11560 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11561 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11562
11563 if ((coproc & 0x0e) == 0x0a)
11564 {
11565 /* Handle extension register ld/st instructions. */
11566 if (!(op1 & 0x20))
11567 return arm_record_exreg_ld_st_insn (arm_insn_r);
11568
11569 /* 64-bit transfers between arm core and extension registers. */
11570 if ((op1 & 0x3e) == 0x04)
11571 return arm_record_exreg_ld_st_insn (arm_insn_r);
11572 }
11573 else
11574 {
11575 /* Handle coprocessor ld/st instructions. */
11576 if (!(op1 & 0x3a))
11577 {
11578 /* Store. */
11579 if (!op1_ebit)
11580 return arm_record_unsupported_insn (arm_insn_r);
11581 else
11582 /* Load. */
11583 return arm_record_unsupported_insn (arm_insn_r);
11584 }
11585
11586 /* Move to coprocessor from two arm core registers. */
11587 if (op1 == 0x4)
11588 return arm_record_unsupported_insn (arm_insn_r);
11589
11590 /* Move to two arm core registers from coprocessor. */
11591 if (op1 == 0x5)
11592 {
11593 uint32_t reg_t[2];
11594
11595 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11596 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11597 arm_insn_r->reg_rec_count = 2;
11598
11599 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11600 return 0;
11601 }
11602 }
11603 return arm_record_unsupported_insn (arm_insn_r);
11604 }
11605
11606 /* Handling opcode 111 insns. */
11607
11608 static int
11609 arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11610 {
11611 uint32_t op, op1_ebit, coproc, bits_24_25;
11612 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11613 struct regcache *reg_cache = arm_insn_r->regcache;
11614
11615 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
11616 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11617 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11618 op = bit (arm_insn_r->arm_insn, 4);
11619 bits_24_25 = bits (arm_insn_r->arm_insn, 24, 25);
11620
11621 /* Handle arm SWI/SVC system call instructions. */
11622 if (bits_24_25 == 0x3)
11623 {
11624 if (tdep->arm_syscall_record != NULL)
11625 {
11626 ULONGEST svc_operand, svc_number;
11627
11628 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11629
11630 if (svc_operand) /* OABI. */
11631 svc_number = svc_operand - 0x900000;
11632 else /* EABI. */
11633 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11634
11635 return tdep->arm_syscall_record (reg_cache, svc_number);
11636 }
11637 else
11638 {
11639 printf_unfiltered (_("no syscall record support\n"));
11640 return -1;
11641 }
11642 }
11643 else if (bits_24_25 == 0x02)
11644 {
11645 if (op)
11646 {
11647 if ((coproc & 0x0e) == 0x0a)
11648 {
11649 /* 8, 16, and 32-bit transfer */
11650 return arm_record_vdata_transfer_insn (arm_insn_r);
11651 }
11652 else
11653 {
11654 if (op1_ebit)
11655 {
11656 /* MRC, MRC2 */
11657 uint32_t record_buf[1];
11658
11659 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11660 if (record_buf[0] == 15)
11661 record_buf[0] = ARM_PS_REGNUM;
11662
11663 arm_insn_r->reg_rec_count = 1;
11664 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11665 record_buf);
11666 return 0;
11667 }
11668 else
11669 {
11670 /* MCR, MCR2 */
11671 return -1;
11672 }
11673 }
11674 }
11675 else
11676 {
11677 if ((coproc & 0x0e) == 0x0a)
11678 {
11679 /* VFP data-processing instructions. */
11680 return arm_record_vfp_data_proc_insn (arm_insn_r);
11681 }
11682 else
11683 {
11684 /* CDP, CDP2 */
11685 return -1;
11686 }
11687 }
11688 }
11689 else
11690 {
11691 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 25);
11692
11693 if (op1 == 5)
11694 {
11695 if ((coproc & 0x0e) != 0x0a)
11696 {
11697 /* MRRC, MRRC2 */
11698 return -1;
11699 }
11700 }
11701 else if (op1 == 4 || op1 == 5)
11702 {
11703 if ((coproc & 0x0e) == 0x0a)
11704 {
11705 /* 64-bit transfers between ARM core and extension */
11706 return -1;
11707 }
11708 else if (op1 == 4)
11709 {
11710 /* MCRR, MCRR2 */
11711 return -1;
11712 }
11713 }
11714 else if (op1 == 0 || op1 == 1)
11715 {
11716 /* UNDEFINED */
11717 return -1;
11718 }
11719 else
11720 {
11721 if ((coproc & 0x0e) == 0x0a)
11722 {
11723 /* Extension register load/store */
11724 }
11725 else
11726 {
11727 /* STC, STC2, LDC, LDC2 */
11728 }
11729 return -1;
11730 }
11731 }
11732
11733 return -1;
11734 }
11735
11736 /* Handling opcode 000 insns. */
11737
11738 static int
11739 thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11740 {
11741 uint32_t record_buf[8];
11742 uint32_t reg_src1 = 0;
11743
11744 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11745
11746 record_buf[0] = ARM_PS_REGNUM;
11747 record_buf[1] = reg_src1;
11748 thumb_insn_r->reg_rec_count = 2;
11749
11750 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11751
11752 return 0;
11753 }
11754
11755
11756 /* Handling opcode 001 insns. */
11757
11758 static int
11759 thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11760 {
11761 uint32_t record_buf[8];
11762 uint32_t reg_src1 = 0;
11763
11764 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11765
11766 record_buf[0] = ARM_PS_REGNUM;
11767 record_buf[1] = reg_src1;
11768 thumb_insn_r->reg_rec_count = 2;
11769
11770 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11771
11772 return 0;
11773 }
11774
11775 /* Handling opcode 010 insns. */
11776
11777 static int
11778 thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11779 {
11780 struct regcache *reg_cache = thumb_insn_r->regcache;
11781 uint32_t record_buf[8], record_buf_mem[8];
11782
11783 uint32_t reg_src1 = 0, reg_src2 = 0;
11784 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11785
11786 ULONGEST u_regval[2] = {0};
11787
11788 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11789
11790 if (bit (thumb_insn_r->arm_insn, 12))
11791 {
11792 /* Handle load/store register offset. */
11793 uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11);
11794
11795 if (in_inclusive_range (opB, 4U, 7U))
11796 {
11797 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11798 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11799 record_buf[0] = reg_src1;
11800 thumb_insn_r->reg_rec_count = 1;
11801 }
11802 else if (in_inclusive_range (opB, 0U, 2U))
11803 {
11804 /* STR(2), STRB(2), STRH(2) . */
11805 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11806 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11807 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11808 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11809 if (0 == opB)
11810 record_buf_mem[0] = 4; /* STR (2). */
11811 else if (2 == opB)
11812 record_buf_mem[0] = 1; /* STRB (2). */
11813 else if (1 == opB)
11814 record_buf_mem[0] = 2; /* STRH (2). */
11815 record_buf_mem[1] = u_regval[0] + u_regval[1];
11816 thumb_insn_r->mem_rec_count = 1;
11817 }
11818 }
11819 else if (bit (thumb_insn_r->arm_insn, 11))
11820 {
11821 /* Handle load from literal pool. */
11822 /* LDR(3). */
11823 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11824 record_buf[0] = reg_src1;
11825 thumb_insn_r->reg_rec_count = 1;
11826 }
11827 else if (opcode1)
11828 {
11829 /* Special data instructions and branch and exchange */
11830 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11831 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11832 if ((3 == opcode2) && (!opcode3))
11833 {
11834 /* Branch with exchange. */
11835 record_buf[0] = ARM_PS_REGNUM;
11836 thumb_insn_r->reg_rec_count = 1;
11837 }
11838 else
11839 {
11840 /* Format 8; special data processing insns. */
11841 record_buf[0] = ARM_PS_REGNUM;
11842 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11843 | bits (thumb_insn_r->arm_insn, 0, 2));
11844 thumb_insn_r->reg_rec_count = 2;
11845 }
11846 }
11847 else
11848 {
11849 /* Format 5; data processing insns. */
11850 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11851 if (bit (thumb_insn_r->arm_insn, 7))
11852 {
11853 reg_src1 = reg_src1 + 8;
11854 }
11855 record_buf[0] = ARM_PS_REGNUM;
11856 record_buf[1] = reg_src1;
11857 thumb_insn_r->reg_rec_count = 2;
11858 }
11859
11860 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11861 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11862 record_buf_mem);
11863
11864 return 0;
11865 }
11866
11867 /* Handling opcode 001 insns. */
11868
11869 static int
11870 thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11871 {
11872 struct regcache *reg_cache = thumb_insn_r->regcache;
11873 uint32_t record_buf[8], record_buf_mem[8];
11874
11875 uint32_t reg_src1 = 0;
11876 uint32_t opcode = 0, immed_5 = 0;
11877
11878 ULONGEST u_regval = 0;
11879
11880 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11881
11882 if (opcode)
11883 {
11884 /* LDR(1). */
11885 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11886 record_buf[0] = reg_src1;
11887 thumb_insn_r->reg_rec_count = 1;
11888 }
11889 else
11890 {
11891 /* STR(1). */
11892 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11893 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11894 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11895 record_buf_mem[0] = 4;
11896 record_buf_mem[1] = u_regval + (immed_5 * 4);
11897 thumb_insn_r->mem_rec_count = 1;
11898 }
11899
11900 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11901 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11902 record_buf_mem);
11903
11904 return 0;
11905 }
11906
11907 /* Handling opcode 100 insns. */
11908
11909 static int
11910 thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11911 {
11912 struct regcache *reg_cache = thumb_insn_r->regcache;
11913 uint32_t record_buf[8], record_buf_mem[8];
11914
11915 uint32_t reg_src1 = 0;
11916 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11917
11918 ULONGEST u_regval = 0;
11919
11920 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11921
11922 if (3 == opcode)
11923 {
11924 /* LDR(4). */
11925 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11926 record_buf[0] = reg_src1;
11927 thumb_insn_r->reg_rec_count = 1;
11928 }
11929 else if (1 == opcode)
11930 {
11931 /* LDRH(1). */
11932 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11933 record_buf[0] = reg_src1;
11934 thumb_insn_r->reg_rec_count = 1;
11935 }
11936 else if (2 == opcode)
11937 {
11938 /* STR(3). */
11939 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11940 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11941 record_buf_mem[0] = 4;
11942 record_buf_mem[1] = u_regval + (immed_8 * 4);
11943 thumb_insn_r->mem_rec_count = 1;
11944 }
11945 else if (0 == opcode)
11946 {
11947 /* STRH(1). */
11948 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11949 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11950 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11951 record_buf_mem[0] = 2;
11952 record_buf_mem[1] = u_regval + (immed_5 * 2);
11953 thumb_insn_r->mem_rec_count = 1;
11954 }
11955
11956 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11957 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11958 record_buf_mem);
11959
11960 return 0;
11961 }
11962
11963 /* Handling opcode 101 insns. */
11964
11965 static int
11966 thumb_record_misc (insn_decode_record *thumb_insn_r)
11967 {
11968 struct regcache *reg_cache = thumb_insn_r->regcache;
11969
11970 uint32_t opcode = 0;
11971 uint32_t register_bits = 0, register_count = 0;
11972 uint32_t index = 0, start_address = 0;
11973 uint32_t record_buf[24], record_buf_mem[48];
11974 uint32_t reg_src1;
11975
11976 ULONGEST u_regval = 0;
11977
11978 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11979
11980 if (opcode == 0 || opcode == 1)
11981 {
11982 /* ADR and ADD (SP plus immediate) */
11983
11984 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11985 record_buf[0] = reg_src1;
11986 thumb_insn_r->reg_rec_count = 1;
11987 }
11988 else
11989 {
11990 /* Miscellaneous 16-bit instructions */
11991 uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11);
11992
11993 switch (opcode2)
11994 {
11995 case 6:
11996 /* SETEND and CPS */
11997 break;
11998 case 0:
11999 /* ADD/SUB (SP plus immediate) */
12000 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12001 record_buf[0] = ARM_SP_REGNUM;
12002 thumb_insn_r->reg_rec_count = 1;
12003 break;
12004 case 1: /* fall through */
12005 case 3: /* fall through */
12006 case 9: /* fall through */
12007 case 11:
12008 /* CBNZ, CBZ */
12009 break;
12010 case 2:
12011 /* SXTH, SXTB, UXTH, UXTB */
12012 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
12013 thumb_insn_r->reg_rec_count = 1;
12014 break;
12015 case 4: /* fall through */
12016 case 5:
12017 /* PUSH. */
12018 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12019 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
12020 while (register_bits)
12021 {
12022 if (register_bits & 0x00000001)
12023 register_count++;
12024 register_bits = register_bits >> 1;
12025 }
12026 start_address = u_regval - \
12027 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
12028 thumb_insn_r->mem_rec_count = register_count;
12029 while (register_count)
12030 {
12031 record_buf_mem[(register_count * 2) - 1] = start_address;
12032 record_buf_mem[(register_count * 2) - 2] = 4;
12033 start_address = start_address + 4;
12034 register_count--;
12035 }
12036 record_buf[0] = ARM_SP_REGNUM;
12037 thumb_insn_r->reg_rec_count = 1;
12038 break;
12039 case 10:
12040 /* REV, REV16, REVSH */
12041 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
12042 thumb_insn_r->reg_rec_count = 1;
12043 break;
12044 case 12: /* fall through */
12045 case 13:
12046 /* POP. */
12047 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12048 while (register_bits)
12049 {
12050 if (register_bits & 0x00000001)
12051 record_buf[index++] = register_count;
12052 register_bits = register_bits >> 1;
12053 register_count++;
12054 }
12055 record_buf[index++] = ARM_PS_REGNUM;
12056 record_buf[index++] = ARM_SP_REGNUM;
12057 thumb_insn_r->reg_rec_count = index;
12058 break;
12059 case 0xe:
12060 /* BKPT insn. */
12061 /* Handle enhanced software breakpoint insn, BKPT. */
12062 /* CPSR is changed to be executed in ARM state, disabling normal
12063 interrupts, entering abort mode. */
12064 /* According to high vector configuration PC is set. */
12065 /* User hits breakpoint and type reverse, in that case, we need to go back with
12066 previous CPSR and Program Counter. */
12067 record_buf[0] = ARM_PS_REGNUM;
12068 record_buf[1] = ARM_LR_REGNUM;
12069 thumb_insn_r->reg_rec_count = 2;
12070 /* We need to save SPSR value, which is not yet done. */
12071 printf_unfiltered (_("Process record does not support instruction "
12072 "0x%0x at address %s.\n"),
12073 thumb_insn_r->arm_insn,
12074 paddress (thumb_insn_r->gdbarch,
12075 thumb_insn_r->this_addr));
12076 return -1;
12077
12078 case 0xf:
12079 /* If-Then, and hints */
12080 break;
12081 default:
12082 return -1;
12083 };
12084 }
12085
12086 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12087 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12088 record_buf_mem);
12089
12090 return 0;
12091 }
12092
12093 /* Handling opcode 110 insns. */
12094
12095 static int
12096 thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12097 {
12098 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12099 struct regcache *reg_cache = thumb_insn_r->regcache;
12100
12101 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12102 uint32_t reg_src1 = 0;
12103 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
12104 uint32_t index = 0, start_address = 0;
12105 uint32_t record_buf[24], record_buf_mem[48];
12106
12107 ULONGEST u_regval = 0;
12108
12109 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12110 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12111
12112 if (1 == opcode2)
12113 {
12114
12115 /* LDMIA. */
12116 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12117 /* Get Rn. */
12118 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12119 while (register_bits)
12120 {
12121 if (register_bits & 0x00000001)
12122 record_buf[index++] = register_count;
12123 register_bits = register_bits >> 1;
12124 register_count++;
12125 }
12126 record_buf[index++] = reg_src1;
12127 thumb_insn_r->reg_rec_count = index;
12128 }
12129 else if (0 == opcode2)
12130 {
12131 /* It handles both STMIA. */
12132 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12133 /* Get Rn. */
12134 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12135 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12136 while (register_bits)
12137 {
12138 if (register_bits & 0x00000001)
12139 register_count++;
12140 register_bits = register_bits >> 1;
12141 }
12142 start_address = u_regval;
12143 thumb_insn_r->mem_rec_count = register_count;
12144 while (register_count)
12145 {
12146 record_buf_mem[(register_count * 2) - 1] = start_address;
12147 record_buf_mem[(register_count * 2) - 2] = 4;
12148 start_address = start_address + 4;
12149 register_count--;
12150 }
12151 }
12152 else if (0x1F == opcode1)
12153 {
12154 /* Handle arm syscall insn. */
12155 if (tdep->arm_syscall_record != NULL)
12156 {
12157 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12158 ret = tdep->arm_syscall_record (reg_cache, u_regval);
12159 }
12160 else
12161 {
12162 printf_unfiltered (_("no syscall record support\n"));
12163 return -1;
12164 }
12165 }
12166
12167 /* B (1), conditional branch is automatically taken care in process_record,
12168 as PC is saved there. */
12169
12170 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12171 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12172 record_buf_mem);
12173
12174 return ret;
12175 }
12176
12177 /* Handling opcode 111 insns. */
12178
12179 static int
12180 thumb_record_branch (insn_decode_record *thumb_insn_r)
12181 {
12182 uint32_t record_buf[8];
12183 uint32_t bits_h = 0;
12184
12185 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12186
12187 if (2 == bits_h || 3 == bits_h)
12188 {
12189 /* BL */
12190 record_buf[0] = ARM_LR_REGNUM;
12191 thumb_insn_r->reg_rec_count = 1;
12192 }
12193 else if (1 == bits_h)
12194 {
12195 /* BLX(1). */
12196 record_buf[0] = ARM_PS_REGNUM;
12197 record_buf[1] = ARM_LR_REGNUM;
12198 thumb_insn_r->reg_rec_count = 2;
12199 }
12200
12201 /* B(2) is automatically taken care in process_record, as PC is
12202 saved there. */
12203
12204 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12205
12206 return 0;
12207 }
12208
12209 /* Handler for thumb2 load/store multiple instructions. */
12210
12211 static int
12212 thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12213 {
12214 struct regcache *reg_cache = thumb2_insn_r->regcache;
12215
12216 uint32_t reg_rn, op;
12217 uint32_t register_bits = 0, register_count = 0;
12218 uint32_t index = 0, start_address = 0;
12219 uint32_t record_buf[24], record_buf_mem[48];
12220
12221 ULONGEST u_regval = 0;
12222
12223 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12224 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12225
12226 if (0 == op || 3 == op)
12227 {
12228 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12229 {
12230 /* Handle RFE instruction. */
12231 record_buf[0] = ARM_PS_REGNUM;
12232 thumb2_insn_r->reg_rec_count = 1;
12233 }
12234 else
12235 {
12236 /* Handle SRS instruction after reading banked SP. */
12237 return arm_record_unsupported_insn (thumb2_insn_r);
12238 }
12239 }
12240 else if (1 == op || 2 == op)
12241 {
12242 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12243 {
12244 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12245 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12246 while (register_bits)
12247 {
12248 if (register_bits & 0x00000001)
12249 record_buf[index++] = register_count;
12250
12251 register_count++;
12252 register_bits = register_bits >> 1;
12253 }
12254 record_buf[index++] = reg_rn;
12255 record_buf[index++] = ARM_PS_REGNUM;
12256 thumb2_insn_r->reg_rec_count = index;
12257 }
12258 else
12259 {
12260 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12261 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12262 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12263 while (register_bits)
12264 {
12265 if (register_bits & 0x00000001)
12266 register_count++;
12267
12268 register_bits = register_bits >> 1;
12269 }
12270
12271 if (1 == op)
12272 {
12273 /* Start address calculation for LDMDB/LDMEA. */
12274 start_address = u_regval;
12275 }
12276 else if (2 == op)
12277 {
12278 /* Start address calculation for LDMDB/LDMEA. */
12279 start_address = u_regval - register_count * 4;
12280 }
12281
12282 thumb2_insn_r->mem_rec_count = register_count;
12283 while (register_count)
12284 {
12285 record_buf_mem[register_count * 2 - 1] = start_address;
12286 record_buf_mem[register_count * 2 - 2] = 4;
12287 start_address = start_address + 4;
12288 register_count--;
12289 }
12290 record_buf[0] = reg_rn;
12291 record_buf[1] = ARM_PS_REGNUM;
12292 thumb2_insn_r->reg_rec_count = 2;
12293 }
12294 }
12295
12296 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12297 record_buf_mem);
12298 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12299 record_buf);
12300 return ARM_RECORD_SUCCESS;
12301 }
12302
12303 /* Handler for thumb2 load/store (dual/exclusive) and table branch
12304 instructions. */
12305
12306 static int
12307 thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12308 {
12309 struct regcache *reg_cache = thumb2_insn_r->regcache;
12310
12311 uint32_t reg_rd, reg_rn, offset_imm;
12312 uint32_t reg_dest1, reg_dest2;
12313 uint32_t address, offset_addr;
12314 uint32_t record_buf[8], record_buf_mem[8];
12315 uint32_t op1, op2, op3;
12316
12317 ULONGEST u_regval[2];
12318
12319 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12320 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12321 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12322
12323 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12324 {
12325 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12326 {
12327 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12328 record_buf[0] = reg_dest1;
12329 record_buf[1] = ARM_PS_REGNUM;
12330 thumb2_insn_r->reg_rec_count = 2;
12331 }
12332
12333 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12334 {
12335 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12336 record_buf[2] = reg_dest2;
12337 thumb2_insn_r->reg_rec_count = 3;
12338 }
12339 }
12340 else
12341 {
12342 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12343 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12344
12345 if (0 == op1 && 0 == op2)
12346 {
12347 /* Handle STREX. */
12348 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12349 address = u_regval[0] + (offset_imm * 4);
12350 record_buf_mem[0] = 4;
12351 record_buf_mem[1] = address;
12352 thumb2_insn_r->mem_rec_count = 1;
12353 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12354 record_buf[0] = reg_rd;
12355 thumb2_insn_r->reg_rec_count = 1;
12356 }
12357 else if (1 == op1 && 0 == op2)
12358 {
12359 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12360 record_buf[0] = reg_rd;
12361 thumb2_insn_r->reg_rec_count = 1;
12362 address = u_regval[0];
12363 record_buf_mem[1] = address;
12364
12365 if (4 == op3)
12366 {
12367 /* Handle STREXB. */
12368 record_buf_mem[0] = 1;
12369 thumb2_insn_r->mem_rec_count = 1;
12370 }
12371 else if (5 == op3)
12372 {
12373 /* Handle STREXH. */
12374 record_buf_mem[0] = 2 ;
12375 thumb2_insn_r->mem_rec_count = 1;
12376 }
12377 else if (7 == op3)
12378 {
12379 /* Handle STREXD. */
12380 address = u_regval[0];
12381 record_buf_mem[0] = 4;
12382 record_buf_mem[2] = 4;
12383 record_buf_mem[3] = address + 4;
12384 thumb2_insn_r->mem_rec_count = 2;
12385 }
12386 }
12387 else
12388 {
12389 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12390
12391 if (bit (thumb2_insn_r->arm_insn, 24))
12392 {
12393 if (bit (thumb2_insn_r->arm_insn, 23))
12394 offset_addr = u_regval[0] + (offset_imm * 4);
12395 else
12396 offset_addr = u_regval[0] - (offset_imm * 4);
12397
12398 address = offset_addr;
12399 }
12400 else
12401 address = u_regval[0];
12402
12403 record_buf_mem[0] = 4;
12404 record_buf_mem[1] = address;
12405 record_buf_mem[2] = 4;
12406 record_buf_mem[3] = address + 4;
12407 thumb2_insn_r->mem_rec_count = 2;
12408 record_buf[0] = reg_rn;
12409 thumb2_insn_r->reg_rec_count = 1;
12410 }
12411 }
12412
12413 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12414 record_buf);
12415 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12416 record_buf_mem);
12417 return ARM_RECORD_SUCCESS;
12418 }
12419
12420 /* Handler for thumb2 data processing (shift register and modified immediate)
12421 instructions. */
12422
12423 static int
12424 thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12425 {
12426 uint32_t reg_rd, op;
12427 uint32_t record_buf[8];
12428
12429 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12430 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12431
12432 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12433 {
12434 record_buf[0] = ARM_PS_REGNUM;
12435 thumb2_insn_r->reg_rec_count = 1;
12436 }
12437 else
12438 {
12439 record_buf[0] = reg_rd;
12440 record_buf[1] = ARM_PS_REGNUM;
12441 thumb2_insn_r->reg_rec_count = 2;
12442 }
12443
12444 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12445 record_buf);
12446 return ARM_RECORD_SUCCESS;
12447 }
12448
12449 /* Generic handler for thumb2 instructions which effect destination and PS
12450 registers. */
12451
12452 static int
12453 thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12454 {
12455 uint32_t reg_rd;
12456 uint32_t record_buf[8];
12457
12458 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12459
12460 record_buf[0] = reg_rd;
12461 record_buf[1] = ARM_PS_REGNUM;
12462 thumb2_insn_r->reg_rec_count = 2;
12463
12464 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12465 record_buf);
12466 return ARM_RECORD_SUCCESS;
12467 }
12468
12469 /* Handler for thumb2 branch and miscellaneous control instructions. */
12470
12471 static int
12472 thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12473 {
12474 uint32_t op, op1, op2;
12475 uint32_t record_buf[8];
12476
12477 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12478 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12479 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12480
12481 /* Handle MSR insn. */
12482 if (!(op1 & 0x2) && 0x38 == op)
12483 {
12484 if (!(op2 & 0x3))
12485 {
12486 /* CPSR is going to be changed. */
12487 record_buf[0] = ARM_PS_REGNUM;
12488 thumb2_insn_r->reg_rec_count = 1;
12489 }
12490 else
12491 {
12492 arm_record_unsupported_insn(thumb2_insn_r);
12493 return -1;
12494 }
12495 }
12496 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12497 {
12498 /* BLX. */
12499 record_buf[0] = ARM_PS_REGNUM;
12500 record_buf[1] = ARM_LR_REGNUM;
12501 thumb2_insn_r->reg_rec_count = 2;
12502 }
12503
12504 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12505 record_buf);
12506 return ARM_RECORD_SUCCESS;
12507 }
12508
12509 /* Handler for thumb2 store single data item instructions. */
12510
12511 static int
12512 thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12513 {
12514 struct regcache *reg_cache = thumb2_insn_r->regcache;
12515
12516 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12517 uint32_t address, offset_addr;
12518 uint32_t record_buf[8], record_buf_mem[8];
12519 uint32_t op1, op2;
12520
12521 ULONGEST u_regval[2];
12522
12523 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12524 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12525 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12526 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12527
12528 if (bit (thumb2_insn_r->arm_insn, 23))
12529 {
12530 /* T2 encoding. */
12531 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12532 offset_addr = u_regval[0] + offset_imm;
12533 address = offset_addr;
12534 }
12535 else
12536 {
12537 /* T3 encoding. */
12538 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12539 {
12540 /* Handle STRB (register). */
12541 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12542 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12543 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12544 offset_addr = u_regval[1] << shift_imm;
12545 address = u_regval[0] + offset_addr;
12546 }
12547 else
12548 {
12549 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12550 if (bit (thumb2_insn_r->arm_insn, 10))
12551 {
12552 if (bit (thumb2_insn_r->arm_insn, 9))
12553 offset_addr = u_regval[0] + offset_imm;
12554 else
12555 offset_addr = u_regval[0] - offset_imm;
12556
12557 address = offset_addr;
12558 }
12559 else
12560 address = u_regval[0];
12561 }
12562 }
12563
12564 switch (op1)
12565 {
12566 /* Store byte instructions. */
12567 case 4:
12568 case 0:
12569 record_buf_mem[0] = 1;
12570 break;
12571 /* Store half word instructions. */
12572 case 1:
12573 case 5:
12574 record_buf_mem[0] = 2;
12575 break;
12576 /* Store word instructions. */
12577 case 2:
12578 case 6:
12579 record_buf_mem[0] = 4;
12580 break;
12581
12582 default:
12583 gdb_assert_not_reached ("no decoding pattern found");
12584 break;
12585 }
12586
12587 record_buf_mem[1] = address;
12588 thumb2_insn_r->mem_rec_count = 1;
12589 record_buf[0] = reg_rn;
12590 thumb2_insn_r->reg_rec_count = 1;
12591
12592 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12593 record_buf);
12594 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12595 record_buf_mem);
12596 return ARM_RECORD_SUCCESS;
12597 }
12598
12599 /* Handler for thumb2 load memory hints instructions. */
12600
12601 static int
12602 thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12603 {
12604 uint32_t record_buf[8];
12605 uint32_t reg_rt, reg_rn;
12606
12607 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12608 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12609
12610 if (ARM_PC_REGNUM != reg_rt)
12611 {
12612 record_buf[0] = reg_rt;
12613 record_buf[1] = reg_rn;
12614 record_buf[2] = ARM_PS_REGNUM;
12615 thumb2_insn_r->reg_rec_count = 3;
12616
12617 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12618 record_buf);
12619 return ARM_RECORD_SUCCESS;
12620 }
12621
12622 return ARM_RECORD_FAILURE;
12623 }
12624
12625 /* Handler for thumb2 load word instructions. */
12626
12627 static int
12628 thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12629 {
12630 uint32_t record_buf[8];
12631
12632 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12633 record_buf[1] = ARM_PS_REGNUM;
12634 thumb2_insn_r->reg_rec_count = 2;
12635
12636 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12637 record_buf);
12638 return ARM_RECORD_SUCCESS;
12639 }
12640
12641 /* Handler for thumb2 long multiply, long multiply accumulate, and
12642 divide instructions. */
12643
12644 static int
12645 thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12646 {
12647 uint32_t opcode1 = 0, opcode2 = 0;
12648 uint32_t record_buf[8];
12649
12650 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12651 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12652
12653 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12654 {
12655 /* Handle SMULL, UMULL, SMULAL. */
12656 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12657 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12658 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12659 record_buf[2] = ARM_PS_REGNUM;
12660 thumb2_insn_r->reg_rec_count = 3;
12661 }
12662 else if (1 == opcode1 || 3 == opcode2)
12663 {
12664 /* Handle SDIV and UDIV. */
12665 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12666 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12667 record_buf[2] = ARM_PS_REGNUM;
12668 thumb2_insn_r->reg_rec_count = 3;
12669 }
12670 else
12671 return ARM_RECORD_FAILURE;
12672
12673 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12674 record_buf);
12675 return ARM_RECORD_SUCCESS;
12676 }
12677
12678 /* Record handler for thumb32 coprocessor instructions. */
12679
12680 static int
12681 thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12682 {
12683 if (bit (thumb2_insn_r->arm_insn, 25))
12684 return arm_record_coproc_data_proc (thumb2_insn_r);
12685 else
12686 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12687 }
12688
12689 /* Record handler for advance SIMD structure load/store instructions. */
12690
12691 static int
12692 thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12693 {
12694 struct regcache *reg_cache = thumb2_insn_r->regcache;
12695 uint32_t l_bit, a_bit, b_bits;
12696 uint32_t record_buf[128], record_buf_mem[128];
12697 uint32_t reg_rn, reg_vd, address, f_elem;
12698 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12699 uint8_t f_ebytes;
12700
12701 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12702 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12703 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12704 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12705 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12706 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12707 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
12708 f_elem = 8 / f_ebytes;
12709
12710 if (!l_bit)
12711 {
12712 ULONGEST u_regval = 0;
12713 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12714 address = u_regval;
12715
12716 if (!a_bit)
12717 {
12718 /* Handle VST1. */
12719 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12720 {
12721 if (b_bits == 0x07)
12722 bf_regs = 1;
12723 else if (b_bits == 0x0a)
12724 bf_regs = 2;
12725 else if (b_bits == 0x06)
12726 bf_regs = 3;
12727 else if (b_bits == 0x02)
12728 bf_regs = 4;
12729 else
12730 bf_regs = 0;
12731
12732 for (index_r = 0; index_r < bf_regs; index_r++)
12733 {
12734 for (index_e = 0; index_e < f_elem; index_e++)
12735 {
12736 record_buf_mem[index_m++] = f_ebytes;
12737 record_buf_mem[index_m++] = address;
12738 address = address + f_ebytes;
12739 thumb2_insn_r->mem_rec_count += 1;
12740 }
12741 }
12742 }
12743 /* Handle VST2. */
12744 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12745 {
12746 if (b_bits == 0x09 || b_bits == 0x08)
12747 bf_regs = 1;
12748 else if (b_bits == 0x03)
12749 bf_regs = 2;
12750 else
12751 bf_regs = 0;
12752
12753 for (index_r = 0; index_r < bf_regs; index_r++)
12754 for (index_e = 0; index_e < f_elem; index_e++)
12755 {
12756 for (loop_t = 0; loop_t < 2; loop_t++)
12757 {
12758 record_buf_mem[index_m++] = f_ebytes;
12759 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12760 thumb2_insn_r->mem_rec_count += 1;
12761 }
12762 address = address + (2 * f_ebytes);
12763 }
12764 }
12765 /* Handle VST3. */
12766 else if ((b_bits & 0x0e) == 0x04)
12767 {
12768 for (index_e = 0; index_e < f_elem; index_e++)
12769 {
12770 for (loop_t = 0; loop_t < 3; loop_t++)
12771 {
12772 record_buf_mem[index_m++] = f_ebytes;
12773 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12774 thumb2_insn_r->mem_rec_count += 1;
12775 }
12776 address = address + (3 * f_ebytes);
12777 }
12778 }
12779 /* Handle VST4. */
12780 else if (!(b_bits & 0x0e))
12781 {
12782 for (index_e = 0; index_e < f_elem; index_e++)
12783 {
12784 for (loop_t = 0; loop_t < 4; loop_t++)
12785 {
12786 record_buf_mem[index_m++] = f_ebytes;
12787 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12788 thumb2_insn_r->mem_rec_count += 1;
12789 }
12790 address = address + (4 * f_ebytes);
12791 }
12792 }
12793 }
12794 else
12795 {
12796 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12797
12798 if (bft_size == 0x00)
12799 f_ebytes = 1;
12800 else if (bft_size == 0x01)
12801 f_ebytes = 2;
12802 else if (bft_size == 0x02)
12803 f_ebytes = 4;
12804 else
12805 f_ebytes = 0;
12806
12807 /* Handle VST1. */
12808 if (!(b_bits & 0x0b) || b_bits == 0x08)
12809 thumb2_insn_r->mem_rec_count = 1;
12810 /* Handle VST2. */
12811 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12812 thumb2_insn_r->mem_rec_count = 2;
12813 /* Handle VST3. */
12814 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12815 thumb2_insn_r->mem_rec_count = 3;
12816 /* Handle VST4. */
12817 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12818 thumb2_insn_r->mem_rec_count = 4;
12819
12820 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12821 {
12822 record_buf_mem[index_m] = f_ebytes;
12823 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12824 }
12825 }
12826 }
12827 else
12828 {
12829 if (!a_bit)
12830 {
12831 /* Handle VLD1. */
12832 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12833 thumb2_insn_r->reg_rec_count = 1;
12834 /* Handle VLD2. */
12835 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12836 thumb2_insn_r->reg_rec_count = 2;
12837 /* Handle VLD3. */
12838 else if ((b_bits & 0x0e) == 0x04)
12839 thumb2_insn_r->reg_rec_count = 3;
12840 /* Handle VLD4. */
12841 else if (!(b_bits & 0x0e))
12842 thumb2_insn_r->reg_rec_count = 4;
12843 }
12844 else
12845 {
12846 /* Handle VLD1. */
12847 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12848 thumb2_insn_r->reg_rec_count = 1;
12849 /* Handle VLD2. */
12850 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12851 thumb2_insn_r->reg_rec_count = 2;
12852 /* Handle VLD3. */
12853 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12854 thumb2_insn_r->reg_rec_count = 3;
12855 /* Handle VLD4. */
12856 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12857 thumb2_insn_r->reg_rec_count = 4;
12858
12859 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12860 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12861 }
12862 }
12863
12864 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12865 {
12866 record_buf[index_r] = reg_rn;
12867 thumb2_insn_r->reg_rec_count += 1;
12868 }
12869
12870 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12871 record_buf);
12872 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12873 record_buf_mem);
12874 return 0;
12875 }
12876
12877 /* Decodes thumb2 instruction type and invokes its record handler. */
12878
12879 static unsigned int
12880 thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12881 {
12882 uint32_t op, op1, op2;
12883
12884 op = bit (thumb2_insn_r->arm_insn, 15);
12885 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12886 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12887
12888 if (op1 == 0x01)
12889 {
12890 if (!(op2 & 0x64 ))
12891 {
12892 /* Load/store multiple instruction. */
12893 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12894 }
12895 else if ((op2 & 0x64) == 0x4)
12896 {
12897 /* Load/store (dual/exclusive) and table branch instruction. */
12898 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12899 }
12900 else if ((op2 & 0x60) == 0x20)
12901 {
12902 /* Data-processing (shifted register). */
12903 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12904 }
12905 else if (op2 & 0x40)
12906 {
12907 /* Co-processor instructions. */
12908 return thumb2_record_coproc_insn (thumb2_insn_r);
12909 }
12910 }
12911 else if (op1 == 0x02)
12912 {
12913 if (op)
12914 {
12915 /* Branches and miscellaneous control instructions. */
12916 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12917 }
12918 else if (op2 & 0x20)
12919 {
12920 /* Data-processing (plain binary immediate) instruction. */
12921 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12922 }
12923 else
12924 {
12925 /* Data-processing (modified immediate). */
12926 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12927 }
12928 }
12929 else if (op1 == 0x03)
12930 {
12931 if (!(op2 & 0x71 ))
12932 {
12933 /* Store single data item. */
12934 return thumb2_record_str_single_data (thumb2_insn_r);
12935 }
12936 else if (!((op2 & 0x71) ^ 0x10))
12937 {
12938 /* Advanced SIMD or structure load/store instructions. */
12939 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
12940 }
12941 else if (!((op2 & 0x67) ^ 0x01))
12942 {
12943 /* Load byte, memory hints instruction. */
12944 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12945 }
12946 else if (!((op2 & 0x67) ^ 0x03))
12947 {
12948 /* Load halfword, memory hints instruction. */
12949 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12950 }
12951 else if (!((op2 & 0x67) ^ 0x05))
12952 {
12953 /* Load word instruction. */
12954 return thumb2_record_ld_word (thumb2_insn_r);
12955 }
12956 else if (!((op2 & 0x70) ^ 0x20))
12957 {
12958 /* Data-processing (register) instruction. */
12959 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12960 }
12961 else if (!((op2 & 0x78) ^ 0x30))
12962 {
12963 /* Multiply, multiply accumulate, abs diff instruction. */
12964 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12965 }
12966 else if (!((op2 & 0x78) ^ 0x38))
12967 {
12968 /* Long multiply, long multiply accumulate, and divide. */
12969 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
12970 }
12971 else if (op2 & 0x40)
12972 {
12973 /* Co-processor instructions. */
12974 return thumb2_record_coproc_insn (thumb2_insn_r);
12975 }
12976 }
12977
12978 return -1;
12979 }
12980
12981 namespace {
12982 /* Abstract memory reader. */
12983
12984 class abstract_memory_reader
12985 {
12986 public:
12987 /* Read LEN bytes of target memory at address MEMADDR, placing the
12988 results in GDB's memory at BUF. Return true on success. */
12989
12990 virtual bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) = 0;
12991 };
12992
12993 /* Instruction reader from real target. */
12994
12995 class instruction_reader : public abstract_memory_reader
12996 {
12997 public:
12998 bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) override
12999 {
13000 if (target_read_memory (memaddr, buf, len))
13001 return false;
13002 else
13003 return true;
13004 }
13005 };
13006
13007 } // namespace
13008
13009 /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
13010 and positive val on failure. */
13011
13012 static int
13013 extract_arm_insn (abstract_memory_reader& reader,
13014 insn_decode_record *insn_record, uint32_t insn_size)
13015 {
13016 gdb_byte buf[insn_size];
13017
13018 memset (&buf[0], 0, insn_size);
13019
13020 if (!reader.read (insn_record->this_addr, buf, insn_size))
13021 return 1;
13022 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
13023 insn_size,
13024 gdbarch_byte_order_for_code (insn_record->gdbarch));
13025 return 0;
13026 }
13027
13028 typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
13029
13030 /* Decode arm/thumb insn depending on condition cods and opcodes; and
13031 dispatch it. */
13032
13033 static int
13034 decode_insn (abstract_memory_reader &reader, insn_decode_record *arm_record,
13035 record_type_t record_type, uint32_t insn_size)
13036 {
13037
13038 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
13039 instruction. */
13040 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
13041 {
13042 arm_record_data_proc_misc_ld_str, /* 000. */
13043 arm_record_data_proc_imm, /* 001. */
13044 arm_record_ld_st_imm_offset, /* 010. */
13045 arm_record_ld_st_reg_offset, /* 011. */
13046 arm_record_ld_st_multiple, /* 100. */
13047 arm_record_b_bl, /* 101. */
13048 arm_record_asimd_vfp_coproc, /* 110. */
13049 arm_record_coproc_data_proc /* 111. */
13050 };
13051
13052 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
13053 instruction. */
13054 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
13055 { \
13056 thumb_record_shift_add_sub, /* 000. */
13057 thumb_record_add_sub_cmp_mov, /* 001. */
13058 thumb_record_ld_st_reg_offset, /* 010. */
13059 thumb_record_ld_st_imm_offset, /* 011. */
13060 thumb_record_ld_st_stack, /* 100. */
13061 thumb_record_misc, /* 101. */
13062 thumb_record_ldm_stm_swi, /* 110. */
13063 thumb_record_branch /* 111. */
13064 };
13065
13066 uint32_t ret = 0; /* return value: negative:failure 0:success. */
13067 uint32_t insn_id = 0;
13068
13069 if (extract_arm_insn (reader, arm_record, insn_size))
13070 {
13071 if (record_debug)
13072 {
13073 printf_unfiltered (_("Process record: error reading memory at "
13074 "addr %s len = %d.\n"),
13075 paddress (arm_record->gdbarch,
13076 arm_record->this_addr), insn_size);
13077 }
13078 return -1;
13079 }
13080 else if (ARM_RECORD == record_type)
13081 {
13082 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
13083 insn_id = bits (arm_record->arm_insn, 25, 27);
13084
13085 if (arm_record->cond == 0xf)
13086 ret = arm_record_extension_space (arm_record);
13087 else
13088 {
13089 /* If this insn has fallen into extension space
13090 then we need not decode it anymore. */
13091 ret = arm_handle_insn[insn_id] (arm_record);
13092 }
13093 if (ret != ARM_RECORD_SUCCESS)
13094 {
13095 arm_record_unsupported_insn (arm_record);
13096 ret = -1;
13097 }
13098 }
13099 else if (THUMB_RECORD == record_type)
13100 {
13101 /* As thumb does not have condition codes, we set negative. */
13102 arm_record->cond = -1;
13103 insn_id = bits (arm_record->arm_insn, 13, 15);
13104 ret = thumb_handle_insn[insn_id] (arm_record);
13105 if (ret != ARM_RECORD_SUCCESS)
13106 {
13107 arm_record_unsupported_insn (arm_record);
13108 ret = -1;
13109 }
13110 }
13111 else if (THUMB2_RECORD == record_type)
13112 {
13113 /* As thumb does not have condition codes, we set negative. */
13114 arm_record->cond = -1;
13115
13116 /* Swap first half of 32bit thumb instruction with second half. */
13117 arm_record->arm_insn
13118 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
13119
13120 ret = thumb2_record_decode_insn_handler (arm_record);
13121
13122 if (ret != ARM_RECORD_SUCCESS)
13123 {
13124 arm_record_unsupported_insn (arm_record);
13125 ret = -1;
13126 }
13127 }
13128 else
13129 {
13130 /* Throw assertion. */
13131 gdb_assert_not_reached ("not a valid instruction, could not decode");
13132 }
13133
13134 return ret;
13135 }
13136
13137 #if GDB_SELF_TEST
13138 namespace selftests {
13139
13140 /* Provide both 16-bit and 32-bit thumb instructions. */
13141
13142 class instruction_reader_thumb : public abstract_memory_reader
13143 {
13144 public:
13145 template<size_t SIZE>
13146 instruction_reader_thumb (enum bfd_endian endian,
13147 const uint16_t (&insns)[SIZE])
13148 : m_endian (endian), m_insns (insns), m_insns_size (SIZE)
13149 {}
13150
13151 bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) override
13152 {
13153 SELF_CHECK (len == 4 || len == 2);
13154 SELF_CHECK (memaddr % 2 == 0);
13155 SELF_CHECK ((memaddr / 2) < m_insns_size);
13156
13157 store_unsigned_integer (buf, 2, m_endian, m_insns[memaddr / 2]);
13158 if (len == 4)
13159 {
13160 store_unsigned_integer (&buf[2], 2, m_endian,
13161 m_insns[memaddr / 2 + 1]);
13162 }
13163 return true;
13164 }
13165
13166 private:
13167 enum bfd_endian m_endian;
13168 const uint16_t *m_insns;
13169 size_t m_insns_size;
13170 };
13171
13172 static void
13173 arm_record_test (void)
13174 {
13175 struct gdbarch_info info;
13176 gdbarch_info_init (&info);
13177 info.bfd_arch_info = bfd_scan_arch ("arm");
13178
13179 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
13180
13181 SELF_CHECK (gdbarch != NULL);
13182
13183 /* 16-bit Thumb instructions. */
13184 {
13185 insn_decode_record arm_record;
13186
13187 memset (&arm_record, 0, sizeof (insn_decode_record));
13188 arm_record.gdbarch = gdbarch;
13189
13190 static const uint16_t insns[] = {
13191 /* db b2 uxtb r3, r3 */
13192 0xb2db,
13193 /* cd 58 ldr r5, [r1, r3] */
13194 0x58cd,
13195 };
13196
13197 enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
13198 instruction_reader_thumb reader (endian, insns);
13199 int ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13200 THUMB_INSN_SIZE_BYTES);
13201
13202 SELF_CHECK (ret == 0);
13203 SELF_CHECK (arm_record.mem_rec_count == 0);
13204 SELF_CHECK (arm_record.reg_rec_count == 1);
13205 SELF_CHECK (arm_record.arm_regs[0] == 3);
13206
13207 arm_record.this_addr += 2;
13208 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13209 THUMB_INSN_SIZE_BYTES);
13210
13211 SELF_CHECK (ret == 0);
13212 SELF_CHECK (arm_record.mem_rec_count == 0);
13213 SELF_CHECK (arm_record.reg_rec_count == 1);
13214 SELF_CHECK (arm_record.arm_regs[0] == 5);
13215 }
13216
13217 /* 32-bit Thumb-2 instructions. */
13218 {
13219 insn_decode_record arm_record;
13220
13221 memset (&arm_record, 0, sizeof (insn_decode_record));
13222 arm_record.gdbarch = gdbarch;
13223
13224 static const uint16_t insns[] = {
13225 /* 1d ee 70 7f mrc 15, 0, r7, cr13, cr0, {3} */
13226 0xee1d, 0x7f70,
13227 };
13228
13229 enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
13230 instruction_reader_thumb reader (endian, insns);
13231 int ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
13232 THUMB2_INSN_SIZE_BYTES);
13233
13234 SELF_CHECK (ret == 0);
13235 SELF_CHECK (arm_record.mem_rec_count == 0);
13236 SELF_CHECK (arm_record.reg_rec_count == 1);
13237 SELF_CHECK (arm_record.arm_regs[0] == 7);
13238 }
13239 }
13240 } // namespace selftests
13241 #endif /* GDB_SELF_TEST */
13242
13243 /* Cleans up local record registers and memory allocations. */
13244
13245 static void
13246 deallocate_reg_mem (insn_decode_record *record)
13247 {
13248 xfree (record->arm_regs);
13249 xfree (record->arm_mems);
13250 }
13251
13252
13253 /* Parse the current instruction and record the values of the registers and
13254 memory that will be changed in current instruction to record_arch_list".
13255 Return -1 if something is wrong. */
13256
13257 int
13258 arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13259 CORE_ADDR insn_addr)
13260 {
13261
13262 uint32_t no_of_rec = 0;
13263 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13264 ULONGEST t_bit = 0, insn_id = 0;
13265
13266 ULONGEST u_regval = 0;
13267
13268 insn_decode_record arm_record;
13269
13270 memset (&arm_record, 0, sizeof (insn_decode_record));
13271 arm_record.regcache = regcache;
13272 arm_record.this_addr = insn_addr;
13273 arm_record.gdbarch = gdbarch;
13274
13275
13276 if (record_debug > 1)
13277 {
13278 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
13279 "addr = %s\n",
13280 paddress (gdbarch, arm_record.this_addr));
13281 }
13282
13283 instruction_reader reader;
13284 if (extract_arm_insn (reader, &arm_record, 2))
13285 {
13286 if (record_debug)
13287 {
13288 printf_unfiltered (_("Process record: error reading memory at "
13289 "addr %s len = %d.\n"),
13290 paddress (arm_record.gdbarch,
13291 arm_record.this_addr), 2);
13292 }
13293 return -1;
13294 }
13295
13296 /* Check the insn, whether it is thumb or arm one. */
13297
13298 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13299 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13300
13301
13302 if (!(u_regval & t_bit))
13303 {
13304 /* We are decoding arm insn. */
13305 ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
13306 }
13307 else
13308 {
13309 insn_id = bits (arm_record.arm_insn, 11, 15);
13310 /* is it thumb2 insn? */
13311 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
13312 {
13313 ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
13314 THUMB2_INSN_SIZE_BYTES);
13315 }
13316 else
13317 {
13318 /* We are decoding thumb insn. */
13319 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13320 THUMB_INSN_SIZE_BYTES);
13321 }
13322 }
13323
13324 if (0 == ret)
13325 {
13326 /* Record registers. */
13327 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
13328 if (arm_record.arm_regs)
13329 {
13330 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13331 {
13332 if (record_full_arch_list_add_reg
13333 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
13334 ret = -1;
13335 }
13336 }
13337 /* Record memories. */
13338 if (arm_record.arm_mems)
13339 {
13340 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13341 {
13342 if (record_full_arch_list_add_mem
13343 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
13344 arm_record.arm_mems[no_of_rec].len))
13345 ret = -1;
13346 }
13347 }
13348
13349 if (record_full_arch_list_add_end ())
13350 ret = -1;
13351 }
13352
13353
13354 deallocate_reg_mem (&arm_record);
13355
13356 return ret;
13357 }
13358
13359 /* See arm-tdep.h. */
13360
13361 const target_desc *
13362 arm_read_description (arm_fp_type fp_type)
13363 {
13364 struct target_desc *tdesc = tdesc_arm_list[fp_type];
13365
13366 if (tdesc == nullptr)
13367 {
13368 tdesc = arm_create_target_description (fp_type);
13369 tdesc_arm_list[fp_type] = tdesc;
13370 }
13371
13372 return tdesc;
13373 }
13374
13375 /* See arm-tdep.h. */
13376
13377 const target_desc *
13378 arm_read_mprofile_description (arm_m_profile_type m_type)
13379 {
13380 struct target_desc *tdesc = tdesc_arm_mprofile_list[m_type];
13381
13382 if (tdesc == nullptr)
13383 {
13384 tdesc = arm_create_mprofile_target_description (m_type);
13385 tdesc_arm_mprofile_list[m_type] = tdesc;
13386 }
13387
13388 return tdesc;
13389 }
This page took 0.339367 seconds and 3 git commands to generate.