Use an accessor function for general_symbol_info::language
[deliverable/binutils-gdb.git] / gdb / block.c
1 /* Block-related functions for the GNU debugger, GDB.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "block.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdb_obstack.h"
25 #include "cp-support.h"
26 #include "addrmap.h"
27 #include "gdbtypes.h"
28 #include "objfiles.h"
29
30 /* This is used by struct block to store namespace-related info for
31 C++ files, namely using declarations and the current namespace in
32 scope. */
33
34 struct block_namespace_info : public allocate_on_obstack
35 {
36 const char *scope = nullptr;
37 struct using_direct *using_decl = nullptr;
38 };
39
40 static void block_initialize_namespace (struct block *block,
41 struct obstack *obstack);
42
43 /* See block.h. */
44
45 struct objfile *
46 block_objfile (const struct block *block)
47 {
48 const struct global_block *global_block;
49
50 if (BLOCK_FUNCTION (block) != NULL)
51 return symbol_objfile (BLOCK_FUNCTION (block));
52
53 global_block = (struct global_block *) block_global_block (block);
54 return COMPUNIT_OBJFILE (global_block->compunit_symtab);
55 }
56
57 /* See block. */
58
59 struct gdbarch *
60 block_gdbarch (const struct block *block)
61 {
62 if (BLOCK_FUNCTION (block) != NULL)
63 return symbol_arch (BLOCK_FUNCTION (block));
64
65 return get_objfile_arch (block_objfile (block));
66 }
67
68 /* See block.h. */
69
70 bool
71 contained_in (const struct block *a, const struct block *b,
72 bool allow_nested)
73 {
74 if (!a || !b)
75 return false;
76
77 do
78 {
79 if (a == b)
80 return true;
81 /* If A is a function block, then A cannot be contained in B,
82 except if A was inlined. */
83 if (!allow_nested && BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
84 return false;
85 a = BLOCK_SUPERBLOCK (a);
86 }
87 while (a != NULL);
88
89 return false;
90 }
91
92
93 /* Return the symbol for the function which contains a specified
94 lexical block, described by a struct block BL. The return value
95 will not be an inlined function; the containing function will be
96 returned instead. */
97
98 struct symbol *
99 block_linkage_function (const struct block *bl)
100 {
101 while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
102 && BLOCK_SUPERBLOCK (bl) != NULL)
103 bl = BLOCK_SUPERBLOCK (bl);
104
105 return BLOCK_FUNCTION (bl);
106 }
107
108 /* Return the symbol for the function which contains a specified
109 block, described by a struct block BL. The return value will be
110 the closest enclosing function, which might be an inline
111 function. */
112
113 struct symbol *
114 block_containing_function (const struct block *bl)
115 {
116 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
117 bl = BLOCK_SUPERBLOCK (bl);
118
119 return BLOCK_FUNCTION (bl);
120 }
121
122 /* Return one if BL represents an inlined function. */
123
124 int
125 block_inlined_p (const struct block *bl)
126 {
127 return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
128 }
129
130 /* A helper function that checks whether PC is in the blockvector BL.
131 It returns the containing block if there is one, or else NULL. */
132
133 static const struct block *
134 find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
135 {
136 const struct block *b;
137 int bot, top, half;
138
139 /* If we have an addrmap mapping code addresses to blocks, then use
140 that. */
141 if (BLOCKVECTOR_MAP (bl))
142 return (const struct block *) addrmap_find (BLOCKVECTOR_MAP (bl), pc);
143
144 /* Otherwise, use binary search to find the last block that starts
145 before PC.
146 Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
147 They both have the same START,END values.
148 Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
149 fact that this choice was made was subtle, now we make it explicit. */
150 gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
151 bot = STATIC_BLOCK;
152 top = BLOCKVECTOR_NBLOCKS (bl);
153
154 while (top - bot > 1)
155 {
156 half = (top - bot + 1) >> 1;
157 b = BLOCKVECTOR_BLOCK (bl, bot + half);
158 if (BLOCK_START (b) <= pc)
159 bot += half;
160 else
161 top = bot + half;
162 }
163
164 /* Now search backward for a block that ends after PC. */
165
166 while (bot >= STATIC_BLOCK)
167 {
168 b = BLOCKVECTOR_BLOCK (bl, bot);
169 if (BLOCK_END (b) > pc)
170 return b;
171 bot--;
172 }
173
174 return NULL;
175 }
176
177 /* Return the blockvector immediately containing the innermost lexical
178 block containing the specified pc value and section, or 0 if there
179 is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
180 don't pass this information back to the caller. */
181
182 const struct blockvector *
183 blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
184 const struct block **pblock,
185 struct compunit_symtab *cust)
186 {
187 const struct blockvector *bl;
188 const struct block *b;
189
190 if (cust == NULL)
191 {
192 /* First search all symtabs for one whose file contains our pc */
193 cust = find_pc_sect_compunit_symtab (pc, section);
194 if (cust == NULL)
195 return 0;
196 }
197
198 bl = COMPUNIT_BLOCKVECTOR (cust);
199
200 /* Then search that symtab for the smallest block that wins. */
201 b = find_block_in_blockvector (bl, pc);
202 if (b == NULL)
203 return NULL;
204
205 if (pblock)
206 *pblock = b;
207 return bl;
208 }
209
210 /* Return true if the blockvector BV contains PC, false otherwise. */
211
212 int
213 blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
214 {
215 return find_block_in_blockvector (bv, pc) != NULL;
216 }
217
218 /* Return call_site for specified PC in GDBARCH. PC must match exactly, it
219 must be the next instruction after call (or after tail call jump). Throw
220 NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
221
222 struct call_site *
223 call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
224 {
225 struct compunit_symtab *cust;
226 void **slot = NULL;
227
228 /* -1 as tail call PC can be already after the compilation unit range. */
229 cust = find_pc_compunit_symtab (pc - 1);
230
231 if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
232 slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
233
234 if (slot == NULL)
235 {
236 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
237
238 /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
239 the call target. */
240 throw_error (NO_ENTRY_VALUE_ERROR,
241 _("DW_OP_entry_value resolving cannot find "
242 "DW_TAG_call_site %s in %s"),
243 paddress (gdbarch, pc),
244 (msym.minsym == NULL ? "???"
245 : msym.minsym->print_name ()));
246 }
247
248 return (struct call_site *) *slot;
249 }
250
251 /* Return the blockvector immediately containing the innermost lexical block
252 containing the specified pc value, or 0 if there is none.
253 Backward compatibility, no section. */
254
255 const struct blockvector *
256 blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
257 {
258 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
259 pblock, NULL);
260 }
261
262 /* Return the innermost lexical block containing the specified pc value
263 in the specified section, or 0 if there is none. */
264
265 const struct block *
266 block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
267 {
268 const struct blockvector *bl;
269 const struct block *b;
270
271 bl = blockvector_for_pc_sect (pc, section, &b, NULL);
272 if (bl)
273 return b;
274 return 0;
275 }
276
277 /* Return the innermost lexical block containing the specified pc value,
278 or 0 if there is none. Backward compatibility, no section. */
279
280 const struct block *
281 block_for_pc (CORE_ADDR pc)
282 {
283 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
284 }
285
286 /* Now come some functions designed to deal with C++ namespace issues.
287 The accessors are safe to use even in the non-C++ case. */
288
289 /* This returns the namespace that BLOCK is enclosed in, or "" if it
290 isn't enclosed in a namespace at all. This travels the chain of
291 superblocks looking for a scope, if necessary. */
292
293 const char *
294 block_scope (const struct block *block)
295 {
296 for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
297 {
298 if (BLOCK_NAMESPACE (block) != NULL
299 && BLOCK_NAMESPACE (block)->scope != NULL)
300 return BLOCK_NAMESPACE (block)->scope;
301 }
302
303 return "";
304 }
305
306 /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
307 OBSTACK. (It won't make a copy of SCOPE, however, so that already
308 has to be allocated correctly.) */
309
310 void
311 block_set_scope (struct block *block, const char *scope,
312 struct obstack *obstack)
313 {
314 block_initialize_namespace (block, obstack);
315
316 BLOCK_NAMESPACE (block)->scope = scope;
317 }
318
319 /* This returns the using directives list associated with BLOCK, if
320 any. */
321
322 struct using_direct *
323 block_using (const struct block *block)
324 {
325 if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
326 return NULL;
327 else
328 return BLOCK_NAMESPACE (block)->using_decl;
329 }
330
331 /* Set BLOCK's using member to USING; if needed, allocate memory via
332 OBSTACK. (It won't make a copy of USING, however, so that already
333 has to be allocated correctly.) */
334
335 void
336 block_set_using (struct block *block,
337 struct using_direct *using_decl,
338 struct obstack *obstack)
339 {
340 block_initialize_namespace (block, obstack);
341
342 BLOCK_NAMESPACE (block)->using_decl = using_decl;
343 }
344
345 /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
346 initialize its members to zero. */
347
348 static void
349 block_initialize_namespace (struct block *block, struct obstack *obstack)
350 {
351 if (BLOCK_NAMESPACE (block) == NULL)
352 BLOCK_NAMESPACE (block) = new (obstack) struct block_namespace_info ();
353 }
354
355 /* Return the static block associated to BLOCK. Return NULL if block
356 is NULL or if block is a global block. */
357
358 const struct block *
359 block_static_block (const struct block *block)
360 {
361 if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
362 return NULL;
363
364 while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
365 block = BLOCK_SUPERBLOCK (block);
366
367 return block;
368 }
369
370 /* Return the static block associated to BLOCK. Return NULL if block
371 is NULL. */
372
373 const struct block *
374 block_global_block (const struct block *block)
375 {
376 if (block == NULL)
377 return NULL;
378
379 while (BLOCK_SUPERBLOCK (block) != NULL)
380 block = BLOCK_SUPERBLOCK (block);
381
382 return block;
383 }
384
385 /* Allocate a block on OBSTACK, and initialize its elements to
386 zero/NULL. This is useful for creating "dummy" blocks that don't
387 correspond to actual source files.
388
389 Warning: it sets the block's BLOCK_MULTIDICT to NULL, which isn't a
390 valid value. If you really don't want the block to have a
391 dictionary, then you should subsequently set its BLOCK_MULTIDICT to
392 dict_create_linear (obstack, NULL). */
393
394 struct block *
395 allocate_block (struct obstack *obstack)
396 {
397 struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
398
399 return bl;
400 }
401
402 /* Allocate a global block. */
403
404 struct block *
405 allocate_global_block (struct obstack *obstack)
406 {
407 struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
408
409 return &bl->block;
410 }
411
412 /* Set the compunit of the global block. */
413
414 void
415 set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
416 {
417 struct global_block *gb;
418
419 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
420 gb = (struct global_block *) block;
421 gdb_assert (gb->compunit_symtab == NULL);
422 gb->compunit_symtab = cu;
423 }
424
425 /* See block.h. */
426
427 struct dynamic_prop *
428 block_static_link (const struct block *block)
429 {
430 struct objfile *objfile = block_objfile (block);
431
432 /* Only objfile-owned blocks that materialize top function scopes can have
433 static links. */
434 if (objfile == NULL || BLOCK_FUNCTION (block) == NULL)
435 return NULL;
436
437 return (struct dynamic_prop *) objfile_lookup_static_link (objfile, block);
438 }
439
440 /* Return the compunit of the global block. */
441
442 static struct compunit_symtab *
443 get_block_compunit_symtab (const struct block *block)
444 {
445 struct global_block *gb;
446
447 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
448 gb = (struct global_block *) block;
449 gdb_assert (gb->compunit_symtab != NULL);
450 return gb->compunit_symtab;
451 }
452
453 \f
454
455 /* Initialize a block iterator, either to iterate over a single block,
456 or, for static and global blocks, all the included symtabs as
457 well. */
458
459 static void
460 initialize_block_iterator (const struct block *block,
461 struct block_iterator *iter)
462 {
463 enum block_enum which;
464 struct compunit_symtab *cu;
465
466 iter->idx = -1;
467
468 if (BLOCK_SUPERBLOCK (block) == NULL)
469 {
470 which = GLOBAL_BLOCK;
471 cu = get_block_compunit_symtab (block);
472 }
473 else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
474 {
475 which = STATIC_BLOCK;
476 cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
477 }
478 else
479 {
480 iter->d.block = block;
481 /* A signal value meaning that we're iterating over a single
482 block. */
483 iter->which = FIRST_LOCAL_BLOCK;
484 return;
485 }
486
487 /* If this is an included symtab, find the canonical includer and
488 use it instead. */
489 while (cu->user != NULL)
490 cu = cu->user;
491
492 /* Putting this check here simplifies the logic of the iterator
493 functions. If there are no included symtabs, we only need to
494 search a single block, so we might as well just do that
495 directly. */
496 if (cu->includes == NULL)
497 {
498 iter->d.block = block;
499 /* A signal value meaning that we're iterating over a single
500 block. */
501 iter->which = FIRST_LOCAL_BLOCK;
502 }
503 else
504 {
505 iter->d.compunit_symtab = cu;
506 iter->which = which;
507 }
508 }
509
510 /* A helper function that finds the current compunit over whose static
511 or global block we should iterate. */
512
513 static struct compunit_symtab *
514 find_iterator_compunit_symtab (struct block_iterator *iterator)
515 {
516 if (iterator->idx == -1)
517 return iterator->d.compunit_symtab;
518 return iterator->d.compunit_symtab->includes[iterator->idx];
519 }
520
521 /* Perform a single step for a plain block iterator, iterating across
522 symbol tables as needed. Returns the next symbol, or NULL when
523 iteration is complete. */
524
525 static struct symbol *
526 block_iterator_step (struct block_iterator *iterator, int first)
527 {
528 struct symbol *sym;
529
530 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
531
532 while (1)
533 {
534 if (first)
535 {
536 struct compunit_symtab *cust
537 = find_iterator_compunit_symtab (iterator);
538 const struct block *block;
539
540 /* Iteration is complete. */
541 if (cust == NULL)
542 return NULL;
543
544 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
545 iterator->which);
546 sym = mdict_iterator_first (BLOCK_MULTIDICT (block),
547 &iterator->mdict_iter);
548 }
549 else
550 sym = mdict_iterator_next (&iterator->mdict_iter);
551
552 if (sym != NULL)
553 return sym;
554
555 /* We have finished iterating the appropriate block of one
556 symtab. Now advance to the next symtab and begin iteration
557 there. */
558 ++iterator->idx;
559 first = 1;
560 }
561 }
562
563 /* See block.h. */
564
565 struct symbol *
566 block_iterator_first (const struct block *block,
567 struct block_iterator *iterator)
568 {
569 initialize_block_iterator (block, iterator);
570
571 if (iterator->which == FIRST_LOCAL_BLOCK)
572 return mdict_iterator_first (block->multidict, &iterator->mdict_iter);
573
574 return block_iterator_step (iterator, 1);
575 }
576
577 /* See block.h. */
578
579 struct symbol *
580 block_iterator_next (struct block_iterator *iterator)
581 {
582 if (iterator->which == FIRST_LOCAL_BLOCK)
583 return mdict_iterator_next (&iterator->mdict_iter);
584
585 return block_iterator_step (iterator, 0);
586 }
587
588 /* Perform a single step for a "match" block iterator, iterating
589 across symbol tables as needed. Returns the next symbol, or NULL
590 when iteration is complete. */
591
592 static struct symbol *
593 block_iter_match_step (struct block_iterator *iterator,
594 const lookup_name_info &name,
595 int first)
596 {
597 struct symbol *sym;
598
599 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
600
601 while (1)
602 {
603 if (first)
604 {
605 struct compunit_symtab *cust
606 = find_iterator_compunit_symtab (iterator);
607 const struct block *block;
608
609 /* Iteration is complete. */
610 if (cust == NULL)
611 return NULL;
612
613 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
614 iterator->which);
615 sym = mdict_iter_match_first (BLOCK_MULTIDICT (block), name,
616 &iterator->mdict_iter);
617 }
618 else
619 sym = mdict_iter_match_next (name, &iterator->mdict_iter);
620
621 if (sym != NULL)
622 return sym;
623
624 /* We have finished iterating the appropriate block of one
625 symtab. Now advance to the next symtab and begin iteration
626 there. */
627 ++iterator->idx;
628 first = 1;
629 }
630 }
631
632 /* See block.h. */
633
634 struct symbol *
635 block_iter_match_first (const struct block *block,
636 const lookup_name_info &name,
637 struct block_iterator *iterator)
638 {
639 initialize_block_iterator (block, iterator);
640
641 if (iterator->which == FIRST_LOCAL_BLOCK)
642 return mdict_iter_match_first (block->multidict, name,
643 &iterator->mdict_iter);
644
645 return block_iter_match_step (iterator, name, 1);
646 }
647
648 /* See block.h. */
649
650 struct symbol *
651 block_iter_match_next (const lookup_name_info &name,
652 struct block_iterator *iterator)
653 {
654 if (iterator->which == FIRST_LOCAL_BLOCK)
655 return mdict_iter_match_next (name, &iterator->mdict_iter);
656
657 return block_iter_match_step (iterator, name, 0);
658 }
659
660 /* Return true if symbol A is the best match possible for DOMAIN. */
661
662 static bool
663 best_symbol (struct symbol *a, const domain_enum domain)
664 {
665 return (SYMBOL_DOMAIN (a) == domain
666 && SYMBOL_CLASS (a) != LOC_UNRESOLVED);
667 }
668
669 /* Return symbol B if it is a better match than symbol A for DOMAIN.
670 Otherwise return A. */
671
672 static struct symbol *
673 better_symbol (struct symbol *a, struct symbol *b, const domain_enum domain)
674 {
675 if (a == NULL)
676 return b;
677 if (b == NULL)
678 return a;
679
680 if (SYMBOL_DOMAIN (a) == domain
681 && SYMBOL_DOMAIN (b) != domain)
682 return a;
683 if (SYMBOL_DOMAIN (b) == domain
684 && SYMBOL_DOMAIN (a) != domain)
685 return b;
686
687 if (SYMBOL_CLASS (a) != LOC_UNRESOLVED
688 && SYMBOL_CLASS (b) == LOC_UNRESOLVED)
689 return a;
690 if (SYMBOL_CLASS (b) != LOC_UNRESOLVED
691 && SYMBOL_CLASS (a) == LOC_UNRESOLVED)
692 return b;
693
694 return a;
695 }
696
697 /* See block.h.
698
699 Note that if NAME is the demangled form of a C++ symbol, we will fail
700 to find a match during the binary search of the non-encoded names, but
701 for now we don't worry about the slight inefficiency of looking for
702 a match we'll never find, since it will go pretty quick. Once the
703 binary search terminates, we drop through and do a straight linear
704 search on the symbols. Each symbol which is marked as being a ObjC/C++
705 symbol (language_cplus or language_objc set) has both the encoded and
706 non-encoded names tested for a match. */
707
708 struct symbol *
709 block_lookup_symbol (const struct block *block, const char *name,
710 symbol_name_match_type match_type,
711 const domain_enum domain)
712 {
713 struct block_iterator iter;
714 struct symbol *sym;
715
716 lookup_name_info lookup_name (name, match_type);
717
718 if (!BLOCK_FUNCTION (block))
719 {
720 struct symbol *other = NULL;
721
722 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
723 {
724 /* See comment related to PR gcc/debug/91507 in
725 block_lookup_symbol_primary. */
726 if (best_symbol (sym, domain))
727 return sym;
728 /* This is a bit of a hack, but symbol_matches_domain might ignore
729 STRUCT vs VAR domain symbols. So if a matching symbol is found,
730 make sure there is no "better" matching symbol, i.e., one with
731 exactly the same domain. PR 16253. */
732 if (symbol_matches_domain (sym->language (),
733 SYMBOL_DOMAIN (sym), domain))
734 other = better_symbol (other, sym, domain);
735 }
736 return other;
737 }
738 else
739 {
740 /* Note that parameter symbols do not always show up last in the
741 list; this loop makes sure to take anything else other than
742 parameter symbols first; it only uses parameter symbols as a
743 last resort. Note that this only takes up extra computation
744 time on a match.
745 It's hard to define types in the parameter list (at least in
746 C/C++) so we don't do the same PR 16253 hack here that is done
747 for the !BLOCK_FUNCTION case. */
748
749 struct symbol *sym_found = NULL;
750
751 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
752 {
753 if (symbol_matches_domain (sym->language (),
754 SYMBOL_DOMAIN (sym), domain))
755 {
756 sym_found = sym;
757 if (!SYMBOL_IS_ARGUMENT (sym))
758 {
759 break;
760 }
761 }
762 }
763 return (sym_found); /* Will be NULL if not found. */
764 }
765 }
766
767 /* See block.h. */
768
769 struct symbol *
770 block_lookup_symbol_primary (const struct block *block, const char *name,
771 const domain_enum domain)
772 {
773 struct symbol *sym, *other;
774 struct mdict_iterator mdict_iter;
775
776 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
777
778 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
779 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
780 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
781
782 other = NULL;
783 for (sym
784 = mdict_iter_match_first (block->multidict, lookup_name, &mdict_iter);
785 sym != NULL;
786 sym = mdict_iter_match_next (lookup_name, &mdict_iter))
787 {
788 /* With the fix for PR gcc/debug/91507, we get for:
789 ...
790 extern char *zzz[];
791 char *zzz[ ] = {
792 "abc",
793 "cde"
794 };
795 ...
796 DWARF which will result in two entries in the symbol table, a decl
797 with type char *[] and a def with type char *[2].
798
799 If we return the decl here, we don't get the value of zzz:
800 ...
801 $ gdb a.spec.out -batch -ex "p zzz"
802 $1 = 0x601030 <zzz>
803 ...
804 because we're returning the symbol without location information, and
805 because the fallback that uses the address from the minimal symbols
806 doesn't work either because the type of the decl does not specify a
807 size.
808
809 To fix this, we prefer def over decl in best_symbol and
810 better_symbol.
811
812 In absence of the gcc fix, both def and decl have type char *[], so
813 the only option to make this work is improve the fallback to use the
814 size of the minimal symbol. Filed as PR exp/24989. */
815 if (best_symbol (sym, domain))
816 return sym;
817
818 /* This is a bit of a hack, but symbol_matches_domain might ignore
819 STRUCT vs VAR domain symbols. So if a matching symbol is found,
820 make sure there is no "better" matching symbol, i.e., one with
821 exactly the same domain. PR 16253. */
822 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
823 other = better_symbol (other, sym, domain);
824 }
825
826 return other;
827 }
828
829 /* See block.h. */
830
831 struct symbol *
832 block_find_symbol (const struct block *block, const char *name,
833 const domain_enum domain,
834 block_symbol_matcher_ftype *matcher, void *data)
835 {
836 struct block_iterator iter;
837 struct symbol *sym;
838
839 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
840
841 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
842 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
843 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
844
845 ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
846 {
847 /* MATCHER is deliberately called second here so that it never sees
848 a non-domain-matching symbol. */
849 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain)
850 && matcher (sym, data))
851 return sym;
852 }
853 return NULL;
854 }
855
856 /* See block.h. */
857
858 int
859 block_find_non_opaque_type (struct symbol *sym, void *data)
860 {
861 return !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym));
862 }
863
864 /* See block.h. */
865
866 int
867 block_find_non_opaque_type_preferred (struct symbol *sym, void *data)
868 {
869 struct symbol **best = (struct symbol **) data;
870
871 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
872 return 1;
873 *best = sym;
874 return 0;
875 }
876
877 /* See block.h. */
878
879 struct blockranges *
880 make_blockranges (struct objfile *objfile,
881 const std::vector<blockrange> &rangevec)
882 {
883 struct blockranges *blr;
884 size_t n = rangevec.size();
885
886 blr = (struct blockranges *)
887 obstack_alloc (&objfile->objfile_obstack,
888 sizeof (struct blockranges)
889 + (n - 1) * sizeof (struct blockrange));
890
891 blr->nranges = n;
892 for (int i = 0; i < n; i++)
893 blr->range[i] = rangevec[i];
894 return blr;
895 }
896
This page took 0.04744 seconds and 4 git commands to generate.