gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #include "frame.h" /* required by inferior.h */
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/tilde.h"
39 #include "solib.h"
40 #include "filenames.h"
41 #include "progspace.h"
42 #include "objfiles.h"
43 #include "gdb_bfd.h"
44 #include "completer.h"
45 #include "gdbsupport/filestuff.h"
46 #include "build-id.h"
47 #include "gdbsupport/pathstuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 /* The core file target. */
54
55 static const target_info core_target_info = {
56 "core",
57 N_("Local core dump file"),
58 N_("Use a core file as a target.\n\
59 Specify the filename of the core file.")
60 };
61
62 class core_target final : public process_stratum_target
63 {
64 public:
65 core_target ();
66 ~core_target () override;
67
68 const target_info &info () const override
69 { return core_target_info; }
70
71 void close () override;
72 void detach (inferior *, int) override;
73 void fetch_registers (struct regcache *, int) override;
74
75 enum target_xfer_status xfer_partial (enum target_object object,
76 const char *annex,
77 gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, ULONGEST len,
80 ULONGEST *xfered_len) override;
81 void files_info () override;
82
83 bool thread_alive (ptid_t ptid) override;
84 const struct target_desc *read_description () override;
85
86 std::string pid_to_str (ptid_t) override;
87
88 const char *thread_name (struct thread_info *) override;
89
90 bool has_all_memory () override { return false; }
91 bool has_memory () override;
92 bool has_stack () override;
93 bool has_registers () override;
94 bool has_execution (inferior *inf) override { return false; }
95
96 bool info_proc (const char *, enum info_proc_what) override;
97
98 /* A few helpers. */
99
100 /* Getter, see variable definition. */
101 struct gdbarch *core_gdbarch ()
102 {
103 return m_core_gdbarch;
104 }
105
106 /* See definition. */
107 void get_core_register_section (struct regcache *regcache,
108 const struct regset *regset,
109 const char *name,
110 int section_min_size,
111 const char *human_name,
112 bool required);
113
114 private: /* per-core data */
115
116 /* The core's section table. Note that these target sections are
117 *not* mapped in the current address spaces' set of target
118 sections --- those should come only from pure executable or
119 shared library bfds. The core bfd sections are an implementation
120 detail of the core target, just like ptrace is for unix child
121 targets. */
122 target_section_table m_core_section_table {};
123
124 /* FIXME: kettenis/20031023: Eventually this field should
125 disappear. */
126 struct gdbarch *m_core_gdbarch = NULL;
127 };
128
129 core_target::core_target ()
130 {
131 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
132
133 if (!m_core_gdbarch
134 || !gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
135 error (_("\"%s\": Core file format not supported"),
136 bfd_get_filename (core_bfd));
137
138 /* Find the data section */
139 if (build_section_table (core_bfd,
140 &m_core_section_table.sections,
141 &m_core_section_table.sections_end))
142 error (_("\"%s\": Can't find sections: %s"),
143 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
144 }
145
146 core_target::~core_target ()
147 {
148 xfree (m_core_section_table.sections);
149 }
150
151 static void add_to_thread_list (bfd *, asection *, void *);
152
153 /* An arbitrary identifier for the core inferior. */
154 #define CORELOW_PID 1
155
156 /* Close the core target. */
157
158 void
159 core_target::close ()
160 {
161 if (core_bfd)
162 {
163 inferior_ptid = null_ptid; /* Avoid confusion from thread
164 stuff. */
165 exit_inferior_silent (current_inferior ());
166
167 /* Clear out solib state while the bfd is still open. See
168 comments in clear_solib in solib.c. */
169 clear_solib ();
170
171 current_program_space->cbfd.reset (nullptr);
172 }
173
174 /* Core targets are heap-allocated (see core_target_open), so here
175 we delete ourselves. */
176 delete this;
177 }
178
179 /* Look for sections whose names start with `.reg/' so that we can
180 extract the list of threads in a core file. */
181
182 static void
183 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
184 {
185 ptid_t ptid;
186 int core_tid;
187 int pid, lwpid;
188 asection *reg_sect = (asection *) reg_sect_arg;
189 bool fake_pid_p = false;
190 struct inferior *inf;
191
192 if (!startswith (bfd_section_name (asect), ".reg/"))
193 return;
194
195 core_tid = atoi (bfd_section_name (asect) + 5);
196
197 pid = bfd_core_file_pid (core_bfd);
198 if (pid == 0)
199 {
200 fake_pid_p = true;
201 pid = CORELOW_PID;
202 }
203
204 lwpid = core_tid;
205
206 inf = current_inferior ();
207 if (inf->pid == 0)
208 {
209 inferior_appeared (inf, pid);
210 inf->fake_pid_p = fake_pid_p;
211 }
212
213 ptid = ptid_t (pid, lwpid, 0);
214
215 add_thread (inf->process_target (), ptid);
216
217 /* Warning, Will Robinson, looking at BFD private data! */
218
219 if (reg_sect != NULL
220 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
221 inferior_ptid = ptid; /* Yes, make it current. */
222 }
223
224 /* Issue a message saying we have no core to debug, if FROM_TTY. */
225
226 static void
227 maybe_say_no_core_file_now (int from_tty)
228 {
229 if (from_tty)
230 printf_filtered (_("No core file now.\n"));
231 }
232
233 /* Backward compatibility with old way of specifying core files. */
234
235 void
236 core_file_command (const char *filename, int from_tty)
237 {
238 dont_repeat (); /* Either way, seems bogus. */
239
240 if (filename == NULL)
241 {
242 if (core_bfd != NULL)
243 {
244 target_detach (current_inferior (), from_tty);
245 gdb_assert (core_bfd == NULL);
246 }
247 else
248 maybe_say_no_core_file_now (from_tty);
249 }
250 else
251 core_target_open (filename, from_tty);
252 }
253
254 /* Locate (and load) an executable file (and symbols) given the core file
255 BFD ABFD. */
256
257 static void
258 locate_exec_from_corefile_build_id (bfd *abfd, int from_tty)
259 {
260 const bfd_build_id *build_id = build_id_bfd_get (abfd);
261 if (build_id == nullptr)
262 return;
263
264 gdb_bfd_ref_ptr execbfd
265 = build_id_to_exec_bfd (build_id->size, build_id->data);
266
267 if (execbfd != nullptr)
268 {
269 exec_file_attach (bfd_get_filename (execbfd.get ()), from_tty);
270 symbol_file_add_main (bfd_get_filename (execbfd.get ()),
271 symfile_add_flag (from_tty ? SYMFILE_VERBOSE : 0));
272 }
273 }
274
275 /* See gdbcore.h. */
276
277 void
278 core_target_open (const char *arg, int from_tty)
279 {
280 const char *p;
281 int siggy;
282 int scratch_chan;
283 int flags;
284
285 target_preopen (from_tty);
286 if (!arg)
287 {
288 if (core_bfd)
289 error (_("No core file specified. (Use `detach' "
290 "to stop debugging a core file.)"));
291 else
292 error (_("No core file specified."));
293 }
294
295 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
296 if (!IS_ABSOLUTE_PATH (filename.get ()))
297 filename = gdb_abspath (filename.get ());
298
299 flags = O_BINARY | O_LARGEFILE;
300 if (write_files)
301 flags |= O_RDWR;
302 else
303 flags |= O_RDONLY;
304 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
305 if (scratch_chan < 0)
306 perror_with_name (filename.get ());
307
308 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
309 write_files ? FOPEN_RUB : FOPEN_RB,
310 scratch_chan));
311 if (temp_bfd == NULL)
312 perror_with_name (filename.get ());
313
314 if (!bfd_check_format (temp_bfd.get (), bfd_core))
315 {
316 /* Do it after the err msg */
317 /* FIXME: should be checking for errors from bfd_close (for one
318 thing, on error it does not free all the storage associated
319 with the bfd). */
320 error (_("\"%s\" is not a core dump: %s"),
321 filename.get (), bfd_errmsg (bfd_get_error ()));
322 }
323
324 current_program_space->cbfd = std::move (temp_bfd);
325
326 core_target *target = new core_target ();
327
328 /* Own the target until it is successfully pushed. */
329 target_ops_up target_holder (target);
330
331 validate_files ();
332
333 /* If we have no exec file, try to set the architecture from the
334 core file. We don't do this unconditionally since an exec file
335 typically contains more information that helps us determine the
336 architecture than a core file. */
337 if (!exec_bfd)
338 set_gdbarch_from_file (core_bfd);
339
340 push_target (std::move (target_holder));
341
342 inferior_ptid = null_ptid;
343
344 /* Need to flush the register cache (and the frame cache) from a
345 previous debug session. If inferior_ptid ends up the same as the
346 last debug session --- e.g., b foo; run; gcore core1; step; gcore
347 core2; core core1; core core2 --- then there's potential for
348 get_current_regcache to return the cached regcache of the
349 previous session, and the frame cache being stale. */
350 registers_changed ();
351
352 /* Build up thread list from BFD sections, and possibly set the
353 current thread to the .reg/NN section matching the .reg
354 section. */
355 bfd_map_over_sections (core_bfd, add_to_thread_list,
356 bfd_get_section_by_name (core_bfd, ".reg"));
357
358 if (inferior_ptid == null_ptid)
359 {
360 /* Either we found no .reg/NN section, and hence we have a
361 non-threaded core (single-threaded, from gdb's perspective),
362 or for some reason add_to_thread_list couldn't determine
363 which was the "main" thread. The latter case shouldn't
364 usually happen, but we're dealing with input here, which can
365 always be broken in different ways. */
366 thread_info *thread = first_thread_of_inferior (current_inferior ());
367
368 if (thread == NULL)
369 {
370 inferior_appeared (current_inferior (), CORELOW_PID);
371 inferior_ptid = ptid_t (CORELOW_PID);
372 add_thread_silent (target, inferior_ptid);
373 }
374 else
375 switch_to_thread (thread);
376 }
377
378 if (exec_bfd == nullptr)
379 locate_exec_from_corefile_build_id (core_bfd, from_tty);
380
381 post_create_inferior (target, from_tty);
382
383 /* Now go through the target stack looking for threads since there
384 may be a thread_stratum target loaded on top of target core by
385 now. The layer above should claim threads found in the BFD
386 sections. */
387 try
388 {
389 target_update_thread_list ();
390 }
391
392 catch (const gdb_exception_error &except)
393 {
394 exception_print (gdb_stderr, except);
395 }
396
397 p = bfd_core_file_failing_command (core_bfd);
398 if (p)
399 printf_filtered (_("Core was generated by `%s'.\n"), p);
400
401 /* Clearing any previous state of convenience variables. */
402 clear_exit_convenience_vars ();
403
404 siggy = bfd_core_file_failing_signal (core_bfd);
405 if (siggy > 0)
406 {
407 gdbarch *core_gdbarch = target->core_gdbarch ();
408
409 /* If we don't have a CORE_GDBARCH to work with, assume a native
410 core (map gdb_signal from host signals). If we do have
411 CORE_GDBARCH to work with, but no gdb_signal_from_target
412 implementation for that gdbarch, as a fallback measure,
413 assume the host signal mapping. It'll be correct for native
414 cores, but most likely incorrect for cross-cores. */
415 enum gdb_signal sig = (core_gdbarch != NULL
416 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
417 ? gdbarch_gdb_signal_from_target (core_gdbarch,
418 siggy)
419 : gdb_signal_from_host (siggy));
420
421 printf_filtered (_("Program terminated with signal %s, %s.\n"),
422 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
423
424 /* Set the value of the internal variable $_exitsignal,
425 which holds the signal uncaught by the inferior. */
426 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
427 siggy);
428 }
429
430 /* Fetch all registers from core file. */
431 target_fetch_registers (get_current_regcache (), -1);
432
433 /* Now, set up the frame cache, and print the top of stack. */
434 reinit_frame_cache ();
435 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
436
437 /* Current thread should be NUM 1 but the user does not know that.
438 If a program is single threaded gdb in general does not mention
439 anything about threads. That is why the test is >= 2. */
440 if (thread_count (target) >= 2)
441 {
442 try
443 {
444 thread_command (NULL, from_tty);
445 }
446 catch (const gdb_exception_error &except)
447 {
448 exception_print (gdb_stderr, except);
449 }
450 }
451 }
452
453 void
454 core_target::detach (inferior *inf, int from_tty)
455 {
456 /* Note that 'this' is dangling after this call. unpush_target
457 closes the target, and our close implementation deletes
458 'this'. */
459 unpush_target (this);
460
461 /* Clear the register cache and the frame cache. */
462 registers_changed ();
463 reinit_frame_cache ();
464 maybe_say_no_core_file_now (from_tty);
465 }
466
467 /* Try to retrieve registers from a section in core_bfd, and supply
468 them to REGSET.
469
470 If ptid's lwp member is zero, do the single-threaded
471 thing: look for a section named NAME. If ptid's lwp
472 member is non-zero, do the multi-threaded thing: look for a section
473 named "NAME/LWP", where LWP is the shortest ASCII decimal
474 representation of ptid's lwp member.
475
476 HUMAN_NAME is a human-readable name for the kind of registers the
477 NAME section contains, for use in error messages.
478
479 If REQUIRED is true, print an error if the core file doesn't have a
480 section by the appropriate name. Otherwise, just do nothing. */
481
482 void
483 core_target::get_core_register_section (struct regcache *regcache,
484 const struct regset *regset,
485 const char *name,
486 int section_min_size,
487 const char *human_name,
488 bool required)
489 {
490 gdb_assert (regset != nullptr);
491
492 struct bfd_section *section;
493 bfd_size_type size;
494 bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
495
496 thread_section_name section_name (name, regcache->ptid ());
497
498 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
499 if (! section)
500 {
501 if (required)
502 warning (_("Couldn't find %s registers in core file."),
503 human_name);
504 return;
505 }
506
507 size = bfd_section_size (section);
508 if (size < section_min_size)
509 {
510 warning (_("Section `%s' in core file too small."),
511 section_name.c_str ());
512 return;
513 }
514 if (size != section_min_size && !variable_size_section)
515 {
516 warning (_("Unexpected size of section `%s' in core file."),
517 section_name.c_str ());
518 }
519
520 gdb::byte_vector contents (size);
521 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
522 (file_ptr) 0, size))
523 {
524 warning (_("Couldn't read %s registers from `%s' section in core file."),
525 human_name, section_name.c_str ());
526 return;
527 }
528
529 regset->supply_regset (regset, regcache, -1, contents.data (), size);
530 }
531
532 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
533 struct get_core_registers_cb_data
534 {
535 core_target *target;
536 struct regcache *regcache;
537 };
538
539 /* Callback for get_core_registers that handles a single core file
540 register note section. */
541
542 static void
543 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
544 const struct regset *regset,
545 const char *human_name, void *cb_data)
546 {
547 gdb_assert (regset != nullptr);
548
549 auto *data = (get_core_registers_cb_data *) cb_data;
550 bool required = false;
551 bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
552
553 if (!variable_size_section)
554 gdb_assert (supply_size == collect_size);
555
556 if (strcmp (sect_name, ".reg") == 0)
557 {
558 required = true;
559 if (human_name == NULL)
560 human_name = "general-purpose";
561 }
562 else if (strcmp (sect_name, ".reg2") == 0)
563 {
564 if (human_name == NULL)
565 human_name = "floating-point";
566 }
567
568 data->target->get_core_register_section (data->regcache, regset, sect_name,
569 supply_size, human_name, required);
570 }
571
572 /* Get the registers out of a core file. This is the machine-
573 independent part. Fetch_core_registers is the machine-dependent
574 part, typically implemented in the xm-file for each
575 architecture. */
576
577 /* We just get all the registers, so we don't use regno. */
578
579 void
580 core_target::fetch_registers (struct regcache *regcache, int regno)
581 {
582 if (!(m_core_gdbarch != nullptr
583 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch)))
584 {
585 fprintf_filtered (gdb_stderr,
586 "Can't fetch registers from this type of core file\n");
587 return;
588 }
589
590 struct gdbarch *gdbarch = regcache->arch ();
591 get_core_registers_cb_data data = { this, regcache };
592 gdbarch_iterate_over_regset_sections (gdbarch,
593 get_core_registers_cb,
594 (void *) &data, NULL);
595
596 /* Mark all registers not found in the core as unavailable. */
597 for (int i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
598 if (regcache->get_register_status (i) == REG_UNKNOWN)
599 regcache->raw_supply (i, NULL);
600 }
601
602 void
603 core_target::files_info ()
604 {
605 print_section_info (&m_core_section_table, core_bfd);
606 }
607 \f
608 enum target_xfer_status
609 core_target::xfer_partial (enum target_object object, const char *annex,
610 gdb_byte *readbuf, const gdb_byte *writebuf,
611 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
612 {
613 switch (object)
614 {
615 case TARGET_OBJECT_MEMORY:
616 return (section_table_xfer_memory_partial
617 (readbuf, writebuf,
618 offset, len, xfered_len,
619 m_core_section_table.sections,
620 m_core_section_table.sections_end,
621 NULL));
622
623 case TARGET_OBJECT_AUXV:
624 if (readbuf)
625 {
626 /* When the aux vector is stored in core file, BFD
627 represents this with a fake section called ".auxv". */
628
629 struct bfd_section *section;
630 bfd_size_type size;
631
632 section = bfd_get_section_by_name (core_bfd, ".auxv");
633 if (section == NULL)
634 return TARGET_XFER_E_IO;
635
636 size = bfd_section_size (section);
637 if (offset >= size)
638 return TARGET_XFER_EOF;
639 size -= offset;
640 if (size > len)
641 size = len;
642
643 if (size == 0)
644 return TARGET_XFER_EOF;
645 if (!bfd_get_section_contents (core_bfd, section, readbuf,
646 (file_ptr) offset, size))
647 {
648 warning (_("Couldn't read NT_AUXV note in core file."));
649 return TARGET_XFER_E_IO;
650 }
651
652 *xfered_len = (ULONGEST) size;
653 return TARGET_XFER_OK;
654 }
655 return TARGET_XFER_E_IO;
656
657 case TARGET_OBJECT_WCOOKIE:
658 if (readbuf)
659 {
660 /* When the StackGhost cookie is stored in core file, BFD
661 represents this with a fake section called
662 ".wcookie". */
663
664 struct bfd_section *section;
665 bfd_size_type size;
666
667 section = bfd_get_section_by_name (core_bfd, ".wcookie");
668 if (section == NULL)
669 return TARGET_XFER_E_IO;
670
671 size = bfd_section_size (section);
672 if (offset >= size)
673 return TARGET_XFER_EOF;
674 size -= offset;
675 if (size > len)
676 size = len;
677
678 if (size == 0)
679 return TARGET_XFER_EOF;
680 if (!bfd_get_section_contents (core_bfd, section, readbuf,
681 (file_ptr) offset, size))
682 {
683 warning (_("Couldn't read StackGhost cookie in core file."));
684 return TARGET_XFER_E_IO;
685 }
686
687 *xfered_len = (ULONGEST) size;
688 return TARGET_XFER_OK;
689
690 }
691 return TARGET_XFER_E_IO;
692
693 case TARGET_OBJECT_LIBRARIES:
694 if (m_core_gdbarch != nullptr
695 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
696 {
697 if (writebuf)
698 return TARGET_XFER_E_IO;
699 else
700 {
701 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
702 readbuf,
703 offset, len);
704
705 if (*xfered_len == 0)
706 return TARGET_XFER_EOF;
707 else
708 return TARGET_XFER_OK;
709 }
710 }
711 /* FALL THROUGH */
712
713 case TARGET_OBJECT_LIBRARIES_AIX:
714 if (m_core_gdbarch != nullptr
715 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
716 {
717 if (writebuf)
718 return TARGET_XFER_E_IO;
719 else
720 {
721 *xfered_len
722 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
723 readbuf, offset,
724 len);
725
726 if (*xfered_len == 0)
727 return TARGET_XFER_EOF;
728 else
729 return TARGET_XFER_OK;
730 }
731 }
732 /* FALL THROUGH */
733
734 case TARGET_OBJECT_SIGNAL_INFO:
735 if (readbuf)
736 {
737 if (m_core_gdbarch != nullptr
738 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
739 {
740 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
741 offset, len);
742
743 if (l >= 0)
744 {
745 *xfered_len = l;
746 if (l == 0)
747 return TARGET_XFER_EOF;
748 else
749 return TARGET_XFER_OK;
750 }
751 }
752 }
753 return TARGET_XFER_E_IO;
754
755 default:
756 return this->beneath ()->xfer_partial (object, annex, readbuf,
757 writebuf, offset, len,
758 xfered_len);
759 }
760 }
761
762 \f
763
764 /* Okay, let's be honest: threads gleaned from a core file aren't
765 exactly lively, are they? On the other hand, if we don't claim
766 that each & every one is alive, then we don't get any of them
767 to appear in an "info thread" command, which is quite a useful
768 behaviour.
769 */
770 bool
771 core_target::thread_alive (ptid_t ptid)
772 {
773 return true;
774 }
775
776 /* Ask the current architecture what it knows about this core file.
777 That will be used, in turn, to pick a better architecture. This
778 wrapper could be avoided if targets got a chance to specialize
779 core_target. */
780
781 const struct target_desc *
782 core_target::read_description ()
783 {
784 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
785 {
786 const struct target_desc *result;
787
788 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
789 if (result != NULL)
790 return result;
791 }
792
793 return this->beneath ()->read_description ();
794 }
795
796 std::string
797 core_target::pid_to_str (ptid_t ptid)
798 {
799 struct inferior *inf;
800 int pid;
801
802 /* The preferred way is to have a gdbarch/OS specific
803 implementation. */
804 if (m_core_gdbarch != nullptr
805 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
806 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
807
808 /* Otherwise, if we don't have one, we'll just fallback to
809 "process", with normal_pid_to_str. */
810
811 /* Try the LWPID field first. */
812 pid = ptid.lwp ();
813 if (pid != 0)
814 return normal_pid_to_str (ptid_t (pid));
815
816 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
817 only if it isn't a fake PID. */
818 inf = find_inferior_ptid (this, ptid);
819 if (inf != NULL && !inf->fake_pid_p)
820 return normal_pid_to_str (ptid);
821
822 /* No luck. We simply don't have a valid PID to print. */
823 return "<main task>";
824 }
825
826 const char *
827 core_target::thread_name (struct thread_info *thr)
828 {
829 if (m_core_gdbarch != nullptr
830 && gdbarch_core_thread_name_p (m_core_gdbarch))
831 return gdbarch_core_thread_name (m_core_gdbarch, thr);
832 return NULL;
833 }
834
835 bool
836 core_target::has_memory ()
837 {
838 return (core_bfd != NULL);
839 }
840
841 bool
842 core_target::has_stack ()
843 {
844 return (core_bfd != NULL);
845 }
846
847 bool
848 core_target::has_registers ()
849 {
850 return (core_bfd != NULL);
851 }
852
853 /* Implement the to_info_proc method. */
854
855 bool
856 core_target::info_proc (const char *args, enum info_proc_what request)
857 {
858 struct gdbarch *gdbarch = get_current_arch ();
859
860 /* Since this is the core file target, call the 'core_info_proc'
861 method on gdbarch, not 'info_proc'. */
862 if (gdbarch_core_info_proc_p (gdbarch))
863 gdbarch_core_info_proc (gdbarch, args, request);
864
865 return true;
866 }
867
868 void _initialize_corelow ();
869 void
870 _initialize_corelow ()
871 {
872 add_target (core_target_info, core_target_open, filename_completer);
873 }
This page took 0.047324 seconds and 4 git commands to generate.