Change section_offsets to a std::vector
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "dwarf2read.h"
39 #include "ax.h"
40 #include "dwarf2loc.h"
41 #include "dwarf2-frame-tailcall.h"
42 #include "gdbsupport/gdb_binary_search.h"
43 #if GDB_SELF_TEST
44 #include "gdbsupport/selftest.h"
45 #include "selftest-arch.h"
46 #endif
47 #include <unordered_map>
48
49 #include <algorithm>
50
51 struct comp_unit;
52
53 /* Call Frame Information (CFI). */
54
55 /* Common Information Entry (CIE). */
56
57 struct dwarf2_cie
58 {
59 /* Computation Unit for this CIE. */
60 struct comp_unit *unit;
61
62 /* Offset into the .debug_frame section where this CIE was found.
63 Used to identify this CIE. */
64 ULONGEST cie_pointer;
65
66 /* Constant that is factored out of all advance location
67 instructions. */
68 ULONGEST code_alignment_factor;
69
70 /* Constants that is factored out of all offset instructions. */
71 LONGEST data_alignment_factor;
72
73 /* Return address column. */
74 ULONGEST return_address_register;
75
76 /* Instruction sequence to initialize a register set. */
77 const gdb_byte *initial_instructions;
78 const gdb_byte *end;
79
80 /* Saved augmentation, in case it's needed later. */
81 char *augmentation;
82
83 /* Encoding of addresses. */
84 gdb_byte encoding;
85
86 /* Target address size in bytes. */
87 int addr_size;
88
89 /* Target pointer size in bytes. */
90 int ptr_size;
91
92 /* True if a 'z' augmentation existed. */
93 unsigned char saw_z_augmentation;
94
95 /* True if an 'S' augmentation existed. */
96 unsigned char signal_frame;
97
98 /* The version recorded in the CIE. */
99 unsigned char version;
100
101 /* The segment size. */
102 unsigned char segment_size;
103 };
104
105 /* The CIE table is used to find CIEs during parsing, but then
106 discarded. It maps from the CIE's offset to the CIE. */
107 typedef std::unordered_map<ULONGEST, dwarf2_cie *> dwarf2_cie_table;
108
109 /* Frame Description Entry (FDE). */
110
111 struct dwarf2_fde
112 {
113 /* CIE for this FDE. */
114 struct dwarf2_cie *cie;
115
116 /* First location associated with this FDE. */
117 CORE_ADDR initial_location;
118
119 /* Number of bytes of program instructions described by this FDE. */
120 CORE_ADDR address_range;
121
122 /* Instruction sequence. */
123 const gdb_byte *instructions;
124 const gdb_byte *end;
125
126 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
127 section. */
128 unsigned char eh_frame_p;
129 };
130
131 struct dwarf2_fde_table
132 {
133 int num_entries;
134 struct dwarf2_fde **entries;
135 };
136
137 /* A minimal decoding of DWARF2 compilation units. We only decode
138 what's needed to get to the call frame information. */
139
140 struct comp_unit
141 {
142 /* Keep the bfd convenient. */
143 bfd *abfd;
144
145 struct objfile *objfile;
146
147 /* Pointer to the .debug_frame section loaded into memory. */
148 const gdb_byte *dwarf_frame_buffer;
149
150 /* Length of the loaded .debug_frame section. */
151 bfd_size_type dwarf_frame_size;
152
153 /* Pointer to the .debug_frame section. */
154 asection *dwarf_frame_section;
155
156 /* Base for DW_EH_PE_datarel encodings. */
157 bfd_vma dbase;
158
159 /* Base for DW_EH_PE_textrel encodings. */
160 bfd_vma tbase;
161 };
162
163 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
164 CORE_ADDR *out_offset);
165
166 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
167 int eh_frame_p);
168
169 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
170 int ptr_len, const gdb_byte *buf,
171 unsigned int *bytes_read_ptr,
172 CORE_ADDR func_base);
173 \f
174
175 /* See dwarf2-frame.h. */
176 bool dwarf2_frame_unwinders_enabled_p = true;
177
178 /* Store the length the expression for the CFA in the `cfa_reg' field,
179 which is unused in that case. */
180 #define cfa_exp_len cfa_reg
181
182 dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
183 : pc (pc_), data_align (cie->data_alignment_factor),
184 code_align (cie->code_alignment_factor),
185 retaddr_column (cie->return_address_register)
186 {
187 }
188 \f
189
190 /* Helper functions for execute_stack_op. */
191
192 static CORE_ADDR
193 read_addr_from_reg (struct frame_info *this_frame, int reg)
194 {
195 struct gdbarch *gdbarch = get_frame_arch (this_frame);
196 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
197
198 return address_from_register (regnum, this_frame);
199 }
200
201 /* Execute the required actions for both the DW_CFA_restore and
202 DW_CFA_restore_extended instructions. */
203 static void
204 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
205 struct dwarf2_frame_state *fs, int eh_frame_p)
206 {
207 ULONGEST reg;
208
209 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
210 fs->regs.alloc_regs (reg + 1);
211
212 /* Check if this register was explicitly initialized in the
213 CIE initial instructions. If not, default the rule to
214 UNSPECIFIED. */
215 if (reg < fs->initial.reg.size ())
216 fs->regs.reg[reg] = fs->initial.reg[reg];
217 else
218 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
219
220 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
221 {
222 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
223
224 complaint (_("\
225 incomplete CFI data; DW_CFA_restore unspecified\n\
226 register %s (#%d) at %s"),
227 gdbarch_register_name (gdbarch, regnum), regnum,
228 paddress (gdbarch, fs->pc));
229 }
230 }
231
232 class dwarf_expr_executor : public dwarf_expr_context
233 {
234 public:
235
236 struct frame_info *this_frame;
237
238 CORE_ADDR read_addr_from_reg (int reg) override
239 {
240 return ::read_addr_from_reg (this_frame, reg);
241 }
242
243 struct value *get_reg_value (struct type *type, int reg) override
244 {
245 struct gdbarch *gdbarch = get_frame_arch (this_frame);
246 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
247
248 return value_from_register (type, regnum, this_frame);
249 }
250
251 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
252 {
253 read_memory (addr, buf, len);
254 }
255
256 void get_frame_base (const gdb_byte **start, size_t *length) override
257 {
258 invalid ("DW_OP_fbreg");
259 }
260
261 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
262 union call_site_parameter_u kind_u,
263 int deref_size) override
264 {
265 invalid ("DW_OP_entry_value");
266 }
267
268 CORE_ADDR get_object_address () override
269 {
270 invalid ("DW_OP_push_object_address");
271 }
272
273 CORE_ADDR get_frame_cfa () override
274 {
275 invalid ("DW_OP_call_frame_cfa");
276 }
277
278 CORE_ADDR get_tls_address (CORE_ADDR offset) override
279 {
280 invalid ("DW_OP_form_tls_address");
281 }
282
283 void dwarf_call (cu_offset die_offset) override
284 {
285 invalid ("DW_OP_call*");
286 }
287
288 struct value *dwarf_variable_value (sect_offset sect_off) override
289 {
290 invalid ("DW_OP_GNU_variable_value");
291 }
292
293 CORE_ADDR get_addr_index (unsigned int index) override
294 {
295 invalid ("DW_OP_addrx or DW_OP_GNU_addr_index");
296 }
297
298 private:
299
300 void invalid (const char *op) ATTRIBUTE_NORETURN
301 {
302 error (_("%s is invalid in this context"), op);
303 }
304 };
305
306 static CORE_ADDR
307 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
308 CORE_ADDR offset, struct frame_info *this_frame,
309 CORE_ADDR initial, int initial_in_stack_memory)
310 {
311 CORE_ADDR result;
312
313 dwarf_expr_executor ctx;
314 scoped_value_mark free_values;
315
316 ctx.this_frame = this_frame;
317 ctx.gdbarch = get_frame_arch (this_frame);
318 ctx.addr_size = addr_size;
319 ctx.ref_addr_size = -1;
320 ctx.offset = offset;
321
322 ctx.push_address (initial, initial_in_stack_memory);
323 ctx.eval (exp, len);
324
325 if (ctx.location == DWARF_VALUE_MEMORY)
326 result = ctx.fetch_address (0);
327 else if (ctx.location == DWARF_VALUE_REGISTER)
328 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
329 else
330 {
331 /* This is actually invalid DWARF, but if we ever do run across
332 it somehow, we might as well support it. So, instead, report
333 it as unimplemented. */
334 error (_("\
335 Not implemented: computing unwound register using explicit value operator"));
336 }
337
338 return result;
339 }
340 \f
341
342 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
343 PC. Modify FS state accordingly. Return current INSN_PTR where the
344 execution has stopped, one can resume it on the next call. */
345
346 static const gdb_byte *
347 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
348 const gdb_byte *insn_end, struct gdbarch *gdbarch,
349 CORE_ADDR pc, struct dwarf2_frame_state *fs)
350 {
351 int eh_frame_p = fde->eh_frame_p;
352 unsigned int bytes_read;
353 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
354
355 while (insn_ptr < insn_end && fs->pc <= pc)
356 {
357 gdb_byte insn = *insn_ptr++;
358 uint64_t utmp, reg;
359 int64_t offset;
360
361 if ((insn & 0xc0) == DW_CFA_advance_loc)
362 fs->pc += (insn & 0x3f) * fs->code_align;
363 else if ((insn & 0xc0) == DW_CFA_offset)
364 {
365 reg = insn & 0x3f;
366 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
367 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
368 offset = utmp * fs->data_align;
369 fs->regs.alloc_regs (reg + 1);
370 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
371 fs->regs.reg[reg].loc.offset = offset;
372 }
373 else if ((insn & 0xc0) == DW_CFA_restore)
374 {
375 reg = insn & 0x3f;
376 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
377 }
378 else
379 {
380 switch (insn)
381 {
382 case DW_CFA_set_loc:
383 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
384 fde->cie->ptr_size, insn_ptr,
385 &bytes_read, fde->initial_location);
386 /* Apply the objfile offset for relocatable objects. */
387 fs->pc += fde->cie->unit->objfile->section_offsets[SECT_OFF_TEXT (fde->cie->unit->objfile)];
388 insn_ptr += bytes_read;
389 break;
390
391 case DW_CFA_advance_loc1:
392 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
393 fs->pc += utmp * fs->code_align;
394 insn_ptr++;
395 break;
396 case DW_CFA_advance_loc2:
397 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
398 fs->pc += utmp * fs->code_align;
399 insn_ptr += 2;
400 break;
401 case DW_CFA_advance_loc4:
402 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
403 fs->pc += utmp * fs->code_align;
404 insn_ptr += 4;
405 break;
406
407 case DW_CFA_offset_extended:
408 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
409 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
410 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
411 offset = utmp * fs->data_align;
412 fs->regs.alloc_regs (reg + 1);
413 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
414 fs->regs.reg[reg].loc.offset = offset;
415 break;
416
417 case DW_CFA_restore_extended:
418 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
419 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
420 break;
421
422 case DW_CFA_undefined:
423 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
424 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
425 fs->regs.alloc_regs (reg + 1);
426 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
427 break;
428
429 case DW_CFA_same_value:
430 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
431 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
432 fs->regs.alloc_regs (reg + 1);
433 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
434 break;
435
436 case DW_CFA_register:
437 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
438 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
439 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
440 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
441 fs->regs.alloc_regs (reg + 1);
442 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
443 fs->regs.reg[reg].loc.reg = utmp;
444 break;
445
446 case DW_CFA_remember_state:
447 {
448 struct dwarf2_frame_state_reg_info *new_rs;
449
450 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
451 fs->regs.prev = new_rs;
452 }
453 break;
454
455 case DW_CFA_restore_state:
456 {
457 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
458
459 if (old_rs == NULL)
460 {
461 complaint (_("\
462 bad CFI data; mismatched DW_CFA_restore_state at %s"),
463 paddress (gdbarch, fs->pc));
464 }
465 else
466 fs->regs = std::move (*old_rs);
467 }
468 break;
469
470 case DW_CFA_def_cfa:
471 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
472 fs->regs.cfa_reg = reg;
473 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
474
475 if (fs->armcc_cfa_offsets_sf)
476 utmp *= fs->data_align;
477
478 fs->regs.cfa_offset = utmp;
479 fs->regs.cfa_how = CFA_REG_OFFSET;
480 break;
481
482 case DW_CFA_def_cfa_register:
483 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
484 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
485 eh_frame_p);
486 fs->regs.cfa_how = CFA_REG_OFFSET;
487 break;
488
489 case DW_CFA_def_cfa_offset:
490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
491
492 if (fs->armcc_cfa_offsets_sf)
493 utmp *= fs->data_align;
494
495 fs->regs.cfa_offset = utmp;
496 /* cfa_how deliberately not set. */
497 break;
498
499 case DW_CFA_nop:
500 break;
501
502 case DW_CFA_def_cfa_expression:
503 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
504 fs->regs.cfa_exp_len = utmp;
505 fs->regs.cfa_exp = insn_ptr;
506 fs->regs.cfa_how = CFA_EXP;
507 insn_ptr += fs->regs.cfa_exp_len;
508 break;
509
510 case DW_CFA_expression:
511 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
512 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
513 fs->regs.alloc_regs (reg + 1);
514 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
515 fs->regs.reg[reg].loc.exp.start = insn_ptr;
516 fs->regs.reg[reg].loc.exp.len = utmp;
517 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
518 insn_ptr += utmp;
519 break;
520
521 case DW_CFA_offset_extended_sf:
522 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
523 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
524 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
525 offset *= fs->data_align;
526 fs->regs.alloc_regs (reg + 1);
527 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
528 fs->regs.reg[reg].loc.offset = offset;
529 break;
530
531 case DW_CFA_val_offset:
532 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
533 fs->regs.alloc_regs (reg + 1);
534 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
535 offset = utmp * fs->data_align;
536 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
537 fs->regs.reg[reg].loc.offset = offset;
538 break;
539
540 case DW_CFA_val_offset_sf:
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
542 fs->regs.alloc_regs (reg + 1);
543 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
544 offset *= fs->data_align;
545 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
546 fs->regs.reg[reg].loc.offset = offset;
547 break;
548
549 case DW_CFA_val_expression:
550 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
551 fs->regs.alloc_regs (reg + 1);
552 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
553 fs->regs.reg[reg].loc.exp.start = insn_ptr;
554 fs->regs.reg[reg].loc.exp.len = utmp;
555 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
556 insn_ptr += utmp;
557 break;
558
559 case DW_CFA_def_cfa_sf:
560 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
561 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
562 eh_frame_p);
563 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
564 fs->regs.cfa_offset = offset * fs->data_align;
565 fs->regs.cfa_how = CFA_REG_OFFSET;
566 break;
567
568 case DW_CFA_def_cfa_offset_sf:
569 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
570 fs->regs.cfa_offset = offset * fs->data_align;
571 /* cfa_how deliberately not set. */
572 break;
573
574 case DW_CFA_GNU_args_size:
575 /* Ignored. */
576 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
577 break;
578
579 case DW_CFA_GNU_negative_offset_extended:
580 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
581 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 offset = utmp * fs->data_align;
584 fs->regs.alloc_regs (reg + 1);
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
586 fs->regs.reg[reg].loc.offset = -offset;
587 break;
588
589 default:
590 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
591 {
592 /* Handle vendor-specific CFI for different architectures. */
593 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
594 error (_("Call Frame Instruction op %d in vendor extension "
595 "space is not handled on this architecture."),
596 insn);
597 }
598 else
599 internal_error (__FILE__, __LINE__,
600 _("Unknown CFI encountered."));
601 }
602 }
603 }
604
605 if (fs->initial.reg.empty ())
606 {
607 /* Don't allow remember/restore between CIE and FDE programs. */
608 delete fs->regs.prev;
609 fs->regs.prev = NULL;
610 }
611
612 return insn_ptr;
613 }
614
615 #if GDB_SELF_TEST
616
617 namespace selftests {
618
619 /* Unit test to function execute_cfa_program. */
620
621 static void
622 execute_cfa_program_test (struct gdbarch *gdbarch)
623 {
624 struct dwarf2_fde fde;
625 struct dwarf2_cie cie;
626
627 memset (&fde, 0, sizeof fde);
628 memset (&cie, 0, sizeof cie);
629
630 cie.data_alignment_factor = -4;
631 cie.code_alignment_factor = 2;
632 fde.cie = &cie;
633
634 dwarf2_frame_state fs (0, fde.cie);
635
636 gdb_byte insns[] =
637 {
638 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
639 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
640 DW_CFA_remember_state,
641 DW_CFA_restore_state,
642 };
643
644 const gdb_byte *insn_end = insns + sizeof (insns);
645 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
646 0, &fs);
647
648 SELF_CHECK (out == insn_end);
649 SELF_CHECK (fs.pc == 0);
650
651 /* The instructions above only use r1 and r2, but the register numbers
652 used are adjusted by dwarf2_frame_adjust_regnum. */
653 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
654 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
655
656 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
657
658 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
659 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
660
661 for (auto i = 0; i < fs.regs.reg.size (); i++)
662 if (i != r2)
663 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
664
665 SELF_CHECK (fs.regs.cfa_reg == 1);
666 SELF_CHECK (fs.regs.cfa_offset == 4);
667 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
668 SELF_CHECK (fs.regs.cfa_exp == NULL);
669 SELF_CHECK (fs.regs.prev == NULL);
670 }
671
672 } // namespace selftests
673 #endif /* GDB_SELF_TEST */
674
675 \f
676
677 /* Architecture-specific operations. */
678
679 /* Per-architecture data key. */
680 static struct gdbarch_data *dwarf2_frame_data;
681
682 struct dwarf2_frame_ops
683 {
684 /* Pre-initialize the register state REG for register REGNUM. */
685 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
686 struct frame_info *);
687
688 /* Check whether the THIS_FRAME is a signal trampoline. */
689 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
690
691 /* Convert .eh_frame register number to DWARF register number, or
692 adjust .debug_frame register number. */
693 int (*adjust_regnum) (struct gdbarch *, int, int);
694 };
695
696 /* Default architecture-specific register state initialization
697 function. */
698
699 static void
700 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
701 struct dwarf2_frame_state_reg *reg,
702 struct frame_info *this_frame)
703 {
704 /* If we have a register that acts as a program counter, mark it as
705 a destination for the return address. If we have a register that
706 serves as the stack pointer, arrange for it to be filled with the
707 call frame address (CFA). The other registers are marked as
708 unspecified.
709
710 We copy the return address to the program counter, since many
711 parts in GDB assume that it is possible to get the return address
712 by unwinding the program counter register. However, on ISA's
713 with a dedicated return address register, the CFI usually only
714 contains information to unwind that return address register.
715
716 The reason we're treating the stack pointer special here is
717 because in many cases GCC doesn't emit CFI for the stack pointer
718 and implicitly assumes that it is equal to the CFA. This makes
719 some sense since the DWARF specification (version 3, draft 8,
720 p. 102) says that:
721
722 "Typically, the CFA is defined to be the value of the stack
723 pointer at the call site in the previous frame (which may be
724 different from its value on entry to the current frame)."
725
726 However, this isn't true for all platforms supported by GCC
727 (e.g. IBM S/390 and zSeries). Those architectures should provide
728 their own architecture-specific initialization function. */
729
730 if (regnum == gdbarch_pc_regnum (gdbarch))
731 reg->how = DWARF2_FRAME_REG_RA;
732 else if (regnum == gdbarch_sp_regnum (gdbarch))
733 reg->how = DWARF2_FRAME_REG_CFA;
734 }
735
736 /* Return a default for the architecture-specific operations. */
737
738 static void *
739 dwarf2_frame_init (struct obstack *obstack)
740 {
741 struct dwarf2_frame_ops *ops;
742
743 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
744 ops->init_reg = dwarf2_frame_default_init_reg;
745 return ops;
746 }
747
748 /* Set the architecture-specific register state initialization
749 function for GDBARCH to INIT_REG. */
750
751 void
752 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
753 void (*init_reg) (struct gdbarch *, int,
754 struct dwarf2_frame_state_reg *,
755 struct frame_info *))
756 {
757 struct dwarf2_frame_ops *ops
758 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
759
760 ops->init_reg = init_reg;
761 }
762
763 /* Pre-initialize the register state REG for register REGNUM. */
764
765 static void
766 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
767 struct dwarf2_frame_state_reg *reg,
768 struct frame_info *this_frame)
769 {
770 struct dwarf2_frame_ops *ops
771 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
772
773 ops->init_reg (gdbarch, regnum, reg, this_frame);
774 }
775
776 /* Set the architecture-specific signal trampoline recognition
777 function for GDBARCH to SIGNAL_FRAME_P. */
778
779 void
780 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
781 int (*signal_frame_p) (struct gdbarch *,
782 struct frame_info *))
783 {
784 struct dwarf2_frame_ops *ops
785 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
786
787 ops->signal_frame_p = signal_frame_p;
788 }
789
790 /* Query the architecture-specific signal frame recognizer for
791 THIS_FRAME. */
792
793 static int
794 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
795 struct frame_info *this_frame)
796 {
797 struct dwarf2_frame_ops *ops
798 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
799
800 if (ops->signal_frame_p == NULL)
801 return 0;
802 return ops->signal_frame_p (gdbarch, this_frame);
803 }
804
805 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
806 register numbers. */
807
808 void
809 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
810 int (*adjust_regnum) (struct gdbarch *,
811 int, int))
812 {
813 struct dwarf2_frame_ops *ops
814 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
815
816 ops->adjust_regnum = adjust_regnum;
817 }
818
819 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
820 register. */
821
822 static int
823 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
824 int regnum, int eh_frame_p)
825 {
826 struct dwarf2_frame_ops *ops
827 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
828
829 if (ops->adjust_regnum == NULL)
830 return regnum;
831 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
832 }
833
834 static void
835 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
836 struct dwarf2_fde *fde)
837 {
838 struct compunit_symtab *cust;
839
840 cust = find_pc_compunit_symtab (fs->pc);
841 if (cust == NULL)
842 return;
843
844 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
845 {
846 if (fde->cie->version == 1)
847 fs->armcc_cfa_offsets_sf = 1;
848
849 if (fde->cie->version == 1)
850 fs->armcc_cfa_offsets_reversed = 1;
851
852 /* The reversed offset problem is present in some compilers
853 using DWARF3, but it was eventually fixed. Check the ARM
854 defined augmentations, which are in the format "armcc" followed
855 by a list of one-character options. The "+" option means
856 this problem is fixed (no quirk needed). If the armcc
857 augmentation is missing, the quirk is needed. */
858 if (fde->cie->version == 3
859 && (!startswith (fde->cie->augmentation, "armcc")
860 || strchr (fde->cie->augmentation + 5, '+') == NULL))
861 fs->armcc_cfa_offsets_reversed = 1;
862
863 return;
864 }
865 }
866 \f
867
868 /* See dwarf2-frame.h. */
869
870 int
871 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
872 struct dwarf2_per_cu_data *data,
873 int *regnum_out, LONGEST *offset_out,
874 CORE_ADDR *text_offset_out,
875 const gdb_byte **cfa_start_out,
876 const gdb_byte **cfa_end_out)
877 {
878 struct dwarf2_fde *fde;
879 CORE_ADDR text_offset;
880 CORE_ADDR pc1 = pc;
881
882 /* Find the correct FDE. */
883 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
884 if (fde == NULL)
885 error (_("Could not compute CFA; needed to translate this expression"));
886
887 dwarf2_frame_state fs (pc1, fde->cie);
888
889 /* Check for "quirks" - known bugs in producers. */
890 dwarf2_frame_find_quirks (&fs, fde);
891
892 /* First decode all the insns in the CIE. */
893 execute_cfa_program (fde, fde->cie->initial_instructions,
894 fde->cie->end, gdbarch, pc, &fs);
895
896 /* Save the initialized register set. */
897 fs.initial = fs.regs;
898
899 /* Then decode the insns in the FDE up to our target PC. */
900 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
901
902 /* Calculate the CFA. */
903 switch (fs.regs.cfa_how)
904 {
905 case CFA_REG_OFFSET:
906 {
907 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
908
909 *regnum_out = regnum;
910 if (fs.armcc_cfa_offsets_reversed)
911 *offset_out = -fs.regs.cfa_offset;
912 else
913 *offset_out = fs.regs.cfa_offset;
914 return 1;
915 }
916
917 case CFA_EXP:
918 *text_offset_out = text_offset;
919 *cfa_start_out = fs.regs.cfa_exp;
920 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
921 return 0;
922
923 default:
924 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
925 }
926 }
927
928 \f
929 struct dwarf2_frame_cache
930 {
931 /* DWARF Call Frame Address. */
932 CORE_ADDR cfa;
933
934 /* Set if the return address column was marked as unavailable
935 (required non-collected memory or registers to compute). */
936 int unavailable_retaddr;
937
938 /* Set if the return address column was marked as undefined. */
939 int undefined_retaddr;
940
941 /* Saved registers, indexed by GDB register number, not by DWARF
942 register number. */
943 struct dwarf2_frame_state_reg *reg;
944
945 /* Return address register. */
946 struct dwarf2_frame_state_reg retaddr_reg;
947
948 /* Target address size in bytes. */
949 int addr_size;
950
951 /* The .text offset. */
952 CORE_ADDR text_offset;
953
954 /* True if we already checked whether this frame is the bottom frame
955 of a virtual tail call frame chain. */
956 int checked_tailcall_bottom;
957
958 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
959 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
960 involved. Non-bottom frames of a virtual tail call frames chain use
961 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
962 them. */
963 void *tailcall_cache;
964
965 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
966 base to get the SP, to simulate the return address pushed on the
967 stack. */
968 LONGEST entry_cfa_sp_offset;
969 int entry_cfa_sp_offset_p;
970 };
971
972 static struct dwarf2_frame_cache *
973 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
974 {
975 struct gdbarch *gdbarch = get_frame_arch (this_frame);
976 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
977 struct dwarf2_frame_cache *cache;
978 struct dwarf2_fde *fde;
979 CORE_ADDR entry_pc;
980 const gdb_byte *instr;
981
982 if (*this_cache)
983 return (struct dwarf2_frame_cache *) *this_cache;
984
985 /* Allocate a new cache. */
986 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
987 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
988 *this_cache = cache;
989
990 /* Unwind the PC.
991
992 Note that if the next frame is never supposed to return (i.e. a call
993 to abort), the compiler might optimize away the instruction at
994 its return address. As a result the return address will
995 point at some random instruction, and the CFI for that
996 instruction is probably worthless to us. GCC's unwinder solves
997 this problem by substracting 1 from the return address to get an
998 address in the middle of a presumed call instruction (or the
999 instruction in the associated delay slot). This should only be
1000 done for "normal" frames and not for resume-type frames (signal
1001 handlers, sentinel frames, dummy frames). The function
1002 get_frame_address_in_block does just this. It's not clear how
1003 reliable the method is though; there is the potential for the
1004 register state pre-call being different to that on return. */
1005 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
1006
1007 /* Find the correct FDE. */
1008 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
1009 gdb_assert (fde != NULL);
1010
1011 /* Allocate and initialize the frame state. */
1012 struct dwarf2_frame_state fs (pc1, fde->cie);
1013
1014 cache->addr_size = fde->cie->addr_size;
1015
1016 /* Check for "quirks" - known bugs in producers. */
1017 dwarf2_frame_find_quirks (&fs, fde);
1018
1019 /* First decode all the insns in the CIE. */
1020 execute_cfa_program (fde, fde->cie->initial_instructions,
1021 fde->cie->end, gdbarch,
1022 get_frame_address_in_block (this_frame), &fs);
1023
1024 /* Save the initialized register set. */
1025 fs.initial = fs.regs;
1026
1027 /* Fetching the entry pc for THIS_FRAME won't necessarily result
1028 in an address that's within the range of FDE locations. This
1029 is due to the possibility of the function occupying non-contiguous
1030 ranges. */
1031 if (get_frame_func_if_available (this_frame, &entry_pc)
1032 && fde->initial_location <= entry_pc
1033 && entry_pc < fde->initial_location + fde->address_range)
1034 {
1035 /* Decode the insns in the FDE up to the entry PC. */
1036 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1037 entry_pc, &fs);
1038
1039 if (fs.regs.cfa_how == CFA_REG_OFFSET
1040 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
1041 == gdbarch_sp_regnum (gdbarch)))
1042 {
1043 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1044 cache->entry_cfa_sp_offset_p = 1;
1045 }
1046 }
1047 else
1048 instr = fde->instructions;
1049
1050 /* Then decode the insns in the FDE up to our target PC. */
1051 execute_cfa_program (fde, instr, fde->end, gdbarch,
1052 get_frame_address_in_block (this_frame), &fs);
1053
1054 try
1055 {
1056 /* Calculate the CFA. */
1057 switch (fs.regs.cfa_how)
1058 {
1059 case CFA_REG_OFFSET:
1060 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1061 if (fs.armcc_cfa_offsets_reversed)
1062 cache->cfa -= fs.regs.cfa_offset;
1063 else
1064 cache->cfa += fs.regs.cfa_offset;
1065 break;
1066
1067 case CFA_EXP:
1068 cache->cfa =
1069 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
1070 cache->addr_size, cache->text_offset,
1071 this_frame, 0, 0);
1072 break;
1073
1074 default:
1075 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1076 }
1077 }
1078 catch (const gdb_exception_error &ex)
1079 {
1080 if (ex.error == NOT_AVAILABLE_ERROR)
1081 {
1082 cache->unavailable_retaddr = 1;
1083 return cache;
1084 }
1085
1086 throw;
1087 }
1088
1089 /* Initialize the register state. */
1090 {
1091 int regnum;
1092
1093 for (regnum = 0; regnum < num_regs; regnum++)
1094 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1095 }
1096
1097 /* Go through the DWARF2 CFI generated table and save its register
1098 location information in the cache. Note that we don't skip the
1099 return address column; it's perfectly all right for it to
1100 correspond to a real register. */
1101 {
1102 int column; /* CFI speak for "register number". */
1103
1104 for (column = 0; column < fs.regs.reg.size (); column++)
1105 {
1106 /* Use the GDB register number as the destination index. */
1107 int regnum = dwarf_reg_to_regnum (gdbarch, column);
1108
1109 /* Protect against a target returning a bad register. */
1110 if (regnum < 0 || regnum >= num_regs)
1111 continue;
1112
1113 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1114 of all debug info registers. If it doesn't, complain (but
1115 not too loudly). It turns out that GCC assumes that an
1116 unspecified register implies "same value" when CFI (draft
1117 7) specifies nothing at all. Such a register could equally
1118 be interpreted as "undefined". Also note that this check
1119 isn't sufficient; it only checks that all registers in the
1120 range [0 .. max column] are specified, and won't detect
1121 problems when a debug info register falls outside of the
1122 table. We need a way of iterating through all the valid
1123 DWARF2 register numbers. */
1124 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1125 {
1126 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1127 complaint (_("\
1128 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1129 gdbarch_register_name (gdbarch, regnum),
1130 paddress (gdbarch, fs.pc));
1131 }
1132 else
1133 cache->reg[regnum] = fs.regs.reg[column];
1134 }
1135 }
1136
1137 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1138 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1139 {
1140 int regnum;
1141
1142 for (regnum = 0; regnum < num_regs; regnum++)
1143 {
1144 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1145 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1146 {
1147 const std::vector<struct dwarf2_frame_state_reg> &regs
1148 = fs.regs.reg;
1149 ULONGEST retaddr_column = fs.retaddr_column;
1150
1151 /* It seems rather bizarre to specify an "empty" column as
1152 the return adress column. However, this is exactly
1153 what GCC does on some targets. It turns out that GCC
1154 assumes that the return address can be found in the
1155 register corresponding to the return address column.
1156 Incidentally, that's how we should treat a return
1157 address column specifying "same value" too. */
1158 if (fs.retaddr_column < fs.regs.reg.size ()
1159 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1160 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
1161 {
1162 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1163 cache->reg[regnum] = regs[retaddr_column];
1164 else
1165 cache->retaddr_reg = regs[retaddr_column];
1166 }
1167 else
1168 {
1169 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1170 {
1171 cache->reg[regnum].loc.reg = fs.retaddr_column;
1172 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1173 }
1174 else
1175 {
1176 cache->retaddr_reg.loc.reg = fs.retaddr_column;
1177 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1178 }
1179 }
1180 }
1181 }
1182 }
1183
1184 if (fs.retaddr_column < fs.regs.reg.size ()
1185 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1186 cache->undefined_retaddr = 1;
1187
1188 return cache;
1189 }
1190
1191 static enum unwind_stop_reason
1192 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1193 void **this_cache)
1194 {
1195 struct dwarf2_frame_cache *cache
1196 = dwarf2_frame_cache (this_frame, this_cache);
1197
1198 if (cache->unavailable_retaddr)
1199 return UNWIND_UNAVAILABLE;
1200
1201 if (cache->undefined_retaddr)
1202 return UNWIND_OUTERMOST;
1203
1204 return UNWIND_NO_REASON;
1205 }
1206
1207 static void
1208 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1209 struct frame_id *this_id)
1210 {
1211 struct dwarf2_frame_cache *cache =
1212 dwarf2_frame_cache (this_frame, this_cache);
1213
1214 if (cache->unavailable_retaddr)
1215 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1216 else if (cache->undefined_retaddr)
1217 return;
1218 else
1219 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1220 }
1221
1222 static struct value *
1223 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1224 int regnum)
1225 {
1226 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1227 struct dwarf2_frame_cache *cache =
1228 dwarf2_frame_cache (this_frame, this_cache);
1229 CORE_ADDR addr;
1230 int realnum;
1231
1232 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1233 call frame chain. */
1234 if (!cache->checked_tailcall_bottom)
1235 {
1236 cache->checked_tailcall_bottom = 1;
1237 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1238 (cache->entry_cfa_sp_offset_p
1239 ? &cache->entry_cfa_sp_offset : NULL));
1240 }
1241
1242 /* Non-bottom frames of a virtual tail call frames chain use
1243 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1244 them. If dwarf2_tailcall_prev_register_first does not have specific value
1245 unwind the register, tail call frames are assumed to have the register set
1246 of the top caller. */
1247 if (cache->tailcall_cache)
1248 {
1249 struct value *val;
1250
1251 val = dwarf2_tailcall_prev_register_first (this_frame,
1252 &cache->tailcall_cache,
1253 regnum);
1254 if (val)
1255 return val;
1256 }
1257
1258 switch (cache->reg[regnum].how)
1259 {
1260 case DWARF2_FRAME_REG_UNDEFINED:
1261 /* If CFI explicitly specified that the value isn't defined,
1262 mark it as optimized away; the value isn't available. */
1263 return frame_unwind_got_optimized (this_frame, regnum);
1264
1265 case DWARF2_FRAME_REG_SAVED_OFFSET:
1266 addr = cache->cfa + cache->reg[regnum].loc.offset;
1267 return frame_unwind_got_memory (this_frame, regnum, addr);
1268
1269 case DWARF2_FRAME_REG_SAVED_REG:
1270 realnum = dwarf_reg_to_regnum_or_error
1271 (gdbarch, cache->reg[regnum].loc.reg);
1272 return frame_unwind_got_register (this_frame, regnum, realnum);
1273
1274 case DWARF2_FRAME_REG_SAVED_EXP:
1275 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1276 cache->reg[regnum].loc.exp.len,
1277 cache->addr_size, cache->text_offset,
1278 this_frame, cache->cfa, 1);
1279 return frame_unwind_got_memory (this_frame, regnum, addr);
1280
1281 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1282 addr = cache->cfa + cache->reg[regnum].loc.offset;
1283 return frame_unwind_got_constant (this_frame, regnum, addr);
1284
1285 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1286 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1287 cache->reg[regnum].loc.exp.len,
1288 cache->addr_size, cache->text_offset,
1289 this_frame, cache->cfa, 1);
1290 return frame_unwind_got_constant (this_frame, regnum, addr);
1291
1292 case DWARF2_FRAME_REG_UNSPECIFIED:
1293 /* GCC, in its infinite wisdom decided to not provide unwind
1294 information for registers that are "same value". Since
1295 DWARF2 (3 draft 7) doesn't define such behavior, said
1296 registers are actually undefined (which is different to CFI
1297 "undefined"). Code above issues a complaint about this.
1298 Here just fudge the books, assume GCC, and that the value is
1299 more inner on the stack. */
1300 return frame_unwind_got_register (this_frame, regnum, regnum);
1301
1302 case DWARF2_FRAME_REG_SAME_VALUE:
1303 return frame_unwind_got_register (this_frame, regnum, regnum);
1304
1305 case DWARF2_FRAME_REG_CFA:
1306 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1307
1308 case DWARF2_FRAME_REG_CFA_OFFSET:
1309 addr = cache->cfa + cache->reg[regnum].loc.offset;
1310 return frame_unwind_got_address (this_frame, regnum, addr);
1311
1312 case DWARF2_FRAME_REG_RA_OFFSET:
1313 addr = cache->reg[regnum].loc.offset;
1314 regnum = dwarf_reg_to_regnum_or_error
1315 (gdbarch, cache->retaddr_reg.loc.reg);
1316 addr += get_frame_register_unsigned (this_frame, regnum);
1317 return frame_unwind_got_address (this_frame, regnum, addr);
1318
1319 case DWARF2_FRAME_REG_FN:
1320 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1321
1322 default:
1323 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1324 }
1325 }
1326
1327 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1328 call frames chain. */
1329
1330 static void
1331 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1332 {
1333 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1334
1335 if (cache->tailcall_cache)
1336 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1337 }
1338
1339 static int
1340 dwarf2_frame_sniffer (const struct frame_unwind *self,
1341 struct frame_info *this_frame, void **this_cache)
1342 {
1343 if (!dwarf2_frame_unwinders_enabled_p)
1344 return 0;
1345
1346 /* Grab an address that is guaranteed to reside somewhere within the
1347 function. get_frame_pc(), with a no-return next function, can
1348 end up returning something past the end of this function's body.
1349 If the frame we're sniffing for is a signal frame whose start
1350 address is placed on the stack by the OS, its FDE must
1351 extend one byte before its start address or we could potentially
1352 select the FDE of the previous function. */
1353 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1354 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1355
1356 if (!fde)
1357 return 0;
1358
1359 /* On some targets, signal trampolines may have unwind information.
1360 We need to recognize them so that we set the frame type
1361 correctly. */
1362
1363 if (fde->cie->signal_frame
1364 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1365 this_frame))
1366 return self->type == SIGTRAMP_FRAME;
1367
1368 if (self->type != NORMAL_FRAME)
1369 return 0;
1370
1371 return 1;
1372 }
1373
1374 static const struct frame_unwind dwarf2_frame_unwind =
1375 {
1376 NORMAL_FRAME,
1377 dwarf2_frame_unwind_stop_reason,
1378 dwarf2_frame_this_id,
1379 dwarf2_frame_prev_register,
1380 NULL,
1381 dwarf2_frame_sniffer,
1382 dwarf2_frame_dealloc_cache
1383 };
1384
1385 static const struct frame_unwind dwarf2_signal_frame_unwind =
1386 {
1387 SIGTRAMP_FRAME,
1388 dwarf2_frame_unwind_stop_reason,
1389 dwarf2_frame_this_id,
1390 dwarf2_frame_prev_register,
1391 NULL,
1392 dwarf2_frame_sniffer,
1393
1394 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1395 NULL
1396 };
1397
1398 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1399
1400 void
1401 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1402 {
1403 /* TAILCALL_FRAME must be first to find the record by
1404 dwarf2_tailcall_sniffer_first. */
1405 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1406
1407 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1408 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1409 }
1410 \f
1411
1412 /* There is no explicitly defined relationship between the CFA and the
1413 location of frame's local variables and arguments/parameters.
1414 Therefore, frame base methods on this page should probably only be
1415 used as a last resort, just to avoid printing total garbage as a
1416 response to the "info frame" command. */
1417
1418 static CORE_ADDR
1419 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1420 {
1421 struct dwarf2_frame_cache *cache =
1422 dwarf2_frame_cache (this_frame, this_cache);
1423
1424 return cache->cfa;
1425 }
1426
1427 static const struct frame_base dwarf2_frame_base =
1428 {
1429 &dwarf2_frame_unwind,
1430 dwarf2_frame_base_address,
1431 dwarf2_frame_base_address,
1432 dwarf2_frame_base_address
1433 };
1434
1435 const struct frame_base *
1436 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1437 {
1438 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1439
1440 if (dwarf2_frame_find_fde (&block_addr, NULL))
1441 return &dwarf2_frame_base;
1442
1443 return NULL;
1444 }
1445
1446 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1447 the DWARF unwinder. This is used to implement
1448 DW_OP_call_frame_cfa. */
1449
1450 CORE_ADDR
1451 dwarf2_frame_cfa (struct frame_info *this_frame)
1452 {
1453 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1454 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1455 throw_error (NOT_AVAILABLE_ERROR,
1456 _("cfa not available for record btrace target"));
1457
1458 while (get_frame_type (this_frame) == INLINE_FRAME)
1459 this_frame = get_prev_frame (this_frame);
1460 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1461 throw_error (NOT_AVAILABLE_ERROR,
1462 _("can't compute CFA for this frame: "
1463 "required registers or memory are unavailable"));
1464
1465 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1466 throw_error (NOT_AVAILABLE_ERROR,
1467 _("can't compute CFA for this frame: "
1468 "frame base not available"));
1469
1470 return get_frame_base (this_frame);
1471 }
1472 \f
1473 const struct objfile_key<dwarf2_fde_table,
1474 gdb::noop_deleter<dwarf2_fde_table>>
1475 dwarf2_frame_objfile_data;
1476
1477 static unsigned int
1478 read_1_byte (bfd *abfd, const gdb_byte *buf)
1479 {
1480 return bfd_get_8 (abfd, buf);
1481 }
1482
1483 static unsigned int
1484 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1485 {
1486 return bfd_get_32 (abfd, buf);
1487 }
1488
1489 static ULONGEST
1490 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1491 {
1492 return bfd_get_64 (abfd, buf);
1493 }
1494
1495 static ULONGEST
1496 read_initial_length (bfd *abfd, const gdb_byte *buf,
1497 unsigned int *bytes_read_ptr)
1498 {
1499 ULONGEST result;
1500
1501 result = bfd_get_32 (abfd, buf);
1502 if (result == 0xffffffff)
1503 {
1504 result = bfd_get_64 (abfd, buf + 4);
1505 *bytes_read_ptr = 12;
1506 }
1507 else
1508 *bytes_read_ptr = 4;
1509
1510 return result;
1511 }
1512 \f
1513
1514 /* Pointer encoding helper functions. */
1515
1516 /* GCC supports exception handling based on DWARF2 CFI. However, for
1517 technical reasons, it encodes addresses in its FDE's in a different
1518 way. Several "pointer encodings" are supported. The encoding
1519 that's used for a particular FDE is determined by the 'R'
1520 augmentation in the associated CIE. The argument of this
1521 augmentation is a single byte.
1522
1523 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1524 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1525 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1526 address should be interpreted (absolute, relative to the current
1527 position in the FDE, ...). Bit 7, indicates that the address
1528 should be dereferenced. */
1529
1530 static gdb_byte
1531 encoding_for_size (unsigned int size)
1532 {
1533 switch (size)
1534 {
1535 case 2:
1536 return DW_EH_PE_udata2;
1537 case 4:
1538 return DW_EH_PE_udata4;
1539 case 8:
1540 return DW_EH_PE_udata8;
1541 default:
1542 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1543 }
1544 }
1545
1546 static CORE_ADDR
1547 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1548 int ptr_len, const gdb_byte *buf,
1549 unsigned int *bytes_read_ptr,
1550 CORE_ADDR func_base)
1551 {
1552 ptrdiff_t offset;
1553 CORE_ADDR base;
1554
1555 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1556 FDE's. */
1557 if (encoding & DW_EH_PE_indirect)
1558 internal_error (__FILE__, __LINE__,
1559 _("Unsupported encoding: DW_EH_PE_indirect"));
1560
1561 *bytes_read_ptr = 0;
1562
1563 switch (encoding & 0x70)
1564 {
1565 case DW_EH_PE_absptr:
1566 base = 0;
1567 break;
1568 case DW_EH_PE_pcrel:
1569 base = bfd_section_vma (unit->dwarf_frame_section);
1570 base += (buf - unit->dwarf_frame_buffer);
1571 break;
1572 case DW_EH_PE_datarel:
1573 base = unit->dbase;
1574 break;
1575 case DW_EH_PE_textrel:
1576 base = unit->tbase;
1577 break;
1578 case DW_EH_PE_funcrel:
1579 base = func_base;
1580 break;
1581 case DW_EH_PE_aligned:
1582 base = 0;
1583 offset = buf - unit->dwarf_frame_buffer;
1584 if ((offset % ptr_len) != 0)
1585 {
1586 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1587 buf += *bytes_read_ptr;
1588 }
1589 break;
1590 default:
1591 internal_error (__FILE__, __LINE__,
1592 _("Invalid or unsupported encoding"));
1593 }
1594
1595 if ((encoding & 0x07) == 0x00)
1596 {
1597 encoding |= encoding_for_size (ptr_len);
1598 if (bfd_get_sign_extend_vma (unit->abfd))
1599 encoding |= DW_EH_PE_signed;
1600 }
1601
1602 switch (encoding & 0x0f)
1603 {
1604 case DW_EH_PE_uleb128:
1605 {
1606 uint64_t value;
1607 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1608
1609 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1610 return base + value;
1611 }
1612 case DW_EH_PE_udata2:
1613 *bytes_read_ptr += 2;
1614 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1615 case DW_EH_PE_udata4:
1616 *bytes_read_ptr += 4;
1617 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1618 case DW_EH_PE_udata8:
1619 *bytes_read_ptr += 8;
1620 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1621 case DW_EH_PE_sleb128:
1622 {
1623 int64_t value;
1624 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1625
1626 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1627 return base + value;
1628 }
1629 case DW_EH_PE_sdata2:
1630 *bytes_read_ptr += 2;
1631 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1632 case DW_EH_PE_sdata4:
1633 *bytes_read_ptr += 4;
1634 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1635 case DW_EH_PE_sdata8:
1636 *bytes_read_ptr += 8;
1637 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1638 default:
1639 internal_error (__FILE__, __LINE__,
1640 _("Invalid or unsupported encoding"));
1641 }
1642 }
1643 \f
1644
1645 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1646 static struct dwarf2_cie *
1647 find_cie (const dwarf2_cie_table &cie_table, ULONGEST cie_pointer)
1648 {
1649 auto iter = cie_table.find (cie_pointer);
1650 if (iter != cie_table.end ())
1651 return iter->second;
1652 return NULL;
1653 }
1654
1655 static inline int
1656 bsearch_fde_cmp (const dwarf2_fde *fde, CORE_ADDR seek_pc)
1657 {
1658 if (fde->initial_location + fde->address_range <= seek_pc)
1659 return -1;
1660 if (fde->initial_location <= seek_pc)
1661 return 0;
1662 return 1;
1663 }
1664
1665 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1666 initial location associated with it into *PC. */
1667
1668 static struct dwarf2_fde *
1669 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1670 {
1671 for (objfile *objfile : current_program_space->objfiles ())
1672 {
1673 struct dwarf2_fde_table *fde_table;
1674 CORE_ADDR offset;
1675 CORE_ADDR seek_pc;
1676
1677 fde_table = dwarf2_frame_objfile_data.get (objfile);
1678 if (fde_table == NULL)
1679 {
1680 dwarf2_build_frame_info (objfile);
1681 fde_table = dwarf2_frame_objfile_data.get (objfile);
1682 }
1683 gdb_assert (fde_table != NULL);
1684
1685 if (fde_table->num_entries == 0)
1686 continue;
1687
1688 gdb_assert (!objfile->section_offsets.empty ());
1689 offset = objfile->section_offsets[SECT_OFF_TEXT (objfile)];
1690
1691 gdb_assert (fde_table->num_entries > 0);
1692 if (*pc < offset + fde_table->entries[0]->initial_location)
1693 continue;
1694
1695 seek_pc = *pc - offset;
1696 auto end = fde_table->entries + fde_table->num_entries;
1697 auto it = gdb::binary_search (fde_table->entries, end, seek_pc, bsearch_fde_cmp);
1698 if (it != end)
1699 {
1700 *pc = (*it)->initial_location + offset;
1701 if (out_offset)
1702 *out_offset = offset;
1703 return *it;
1704 }
1705 }
1706 return NULL;
1707 }
1708
1709 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1710 static void
1711 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1712 {
1713 if (fde->address_range == 0)
1714 /* Discard useless FDEs. */
1715 return;
1716
1717 fde_table->num_entries += 1;
1718 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1719 fde_table->num_entries);
1720 fde_table->entries[fde_table->num_entries - 1] = fde;
1721 }
1722
1723 #define DW64_CIE_ID 0xffffffffffffffffULL
1724
1725 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1726 or any of them. */
1727
1728 enum eh_frame_type
1729 {
1730 EH_CIE_TYPE_ID = 1 << 0,
1731 EH_FDE_TYPE_ID = 1 << 1,
1732 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1733 };
1734
1735 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1736 const gdb_byte *start,
1737 int eh_frame_p,
1738 dwarf2_cie_table &cie_table,
1739 struct dwarf2_fde_table *fde_table,
1740 enum eh_frame_type entry_type);
1741
1742 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1743 Return NULL if invalid input, otherwise the next byte to be processed. */
1744
1745 static const gdb_byte *
1746 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1747 int eh_frame_p,
1748 dwarf2_cie_table &cie_table,
1749 struct dwarf2_fde_table *fde_table,
1750 enum eh_frame_type entry_type)
1751 {
1752 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1753 const gdb_byte *buf, *end;
1754 ULONGEST length;
1755 unsigned int bytes_read;
1756 int dwarf64_p;
1757 ULONGEST cie_id;
1758 ULONGEST cie_pointer;
1759 int64_t sleb128;
1760 uint64_t uleb128;
1761
1762 buf = start;
1763 length = read_initial_length (unit->abfd, buf, &bytes_read);
1764 buf += bytes_read;
1765 end = buf + (size_t) length;
1766
1767 if (length == 0)
1768 return end;
1769
1770 /* Are we still within the section? */
1771 if (end <= buf || end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1772 return NULL;
1773
1774 /* Distinguish between 32 and 64-bit encoded frame info. */
1775 dwarf64_p = (bytes_read == 12);
1776
1777 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1778 if (eh_frame_p)
1779 cie_id = 0;
1780 else if (dwarf64_p)
1781 cie_id = DW64_CIE_ID;
1782 else
1783 cie_id = DW_CIE_ID;
1784
1785 if (dwarf64_p)
1786 {
1787 cie_pointer = read_8_bytes (unit->abfd, buf);
1788 buf += 8;
1789 }
1790 else
1791 {
1792 cie_pointer = read_4_bytes (unit->abfd, buf);
1793 buf += 4;
1794 }
1795
1796 if (cie_pointer == cie_id)
1797 {
1798 /* This is a CIE. */
1799 struct dwarf2_cie *cie;
1800 char *augmentation;
1801 unsigned int cie_version;
1802
1803 /* Check that a CIE was expected. */
1804 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1805 error (_("Found a CIE when not expecting it."));
1806
1807 /* Record the offset into the .debug_frame section of this CIE. */
1808 cie_pointer = start - unit->dwarf_frame_buffer;
1809
1810 /* Check whether we've already read it. */
1811 if (find_cie (cie_table, cie_pointer))
1812 return end;
1813
1814 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1815 cie->initial_instructions = NULL;
1816 cie->cie_pointer = cie_pointer;
1817
1818 /* The encoding for FDE's in a normal .debug_frame section
1819 depends on the target address size. */
1820 cie->encoding = DW_EH_PE_absptr;
1821
1822 /* We'll determine the final value later, but we need to
1823 initialize it conservatively. */
1824 cie->signal_frame = 0;
1825
1826 /* Check version number. */
1827 cie_version = read_1_byte (unit->abfd, buf);
1828 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1829 return NULL;
1830 cie->version = cie_version;
1831 buf += 1;
1832
1833 /* Interpret the interesting bits of the augmentation. */
1834 cie->augmentation = augmentation = (char *) buf;
1835 buf += (strlen (augmentation) + 1);
1836
1837 /* Ignore armcc augmentations. We only use them for quirks,
1838 and that doesn't happen until later. */
1839 if (startswith (augmentation, "armcc"))
1840 augmentation += strlen (augmentation);
1841
1842 /* The GCC 2.x "eh" augmentation has a pointer immediately
1843 following the augmentation string, so it must be handled
1844 first. */
1845 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1846 {
1847 /* Skip. */
1848 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1849 augmentation += 2;
1850 }
1851
1852 if (cie->version >= 4)
1853 {
1854 /* FIXME: check that this is the same as from the CU header. */
1855 cie->addr_size = read_1_byte (unit->abfd, buf);
1856 ++buf;
1857 cie->segment_size = read_1_byte (unit->abfd, buf);
1858 ++buf;
1859 }
1860 else
1861 {
1862 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1863 cie->segment_size = 0;
1864 }
1865 /* Address values in .eh_frame sections are defined to have the
1866 target's pointer size. Watchout: This breaks frame info for
1867 targets with pointer size < address size, unless a .debug_frame
1868 section exists as well. */
1869 if (eh_frame_p)
1870 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1871 else
1872 cie->ptr_size = cie->addr_size;
1873
1874 buf = gdb_read_uleb128 (buf, end, &uleb128);
1875 if (buf == NULL)
1876 return NULL;
1877 cie->code_alignment_factor = uleb128;
1878
1879 buf = gdb_read_sleb128 (buf, end, &sleb128);
1880 if (buf == NULL)
1881 return NULL;
1882 cie->data_alignment_factor = sleb128;
1883
1884 if (cie_version == 1)
1885 {
1886 cie->return_address_register = read_1_byte (unit->abfd, buf);
1887 ++buf;
1888 }
1889 else
1890 {
1891 buf = gdb_read_uleb128 (buf, end, &uleb128);
1892 if (buf == NULL)
1893 return NULL;
1894 cie->return_address_register = uleb128;
1895 }
1896
1897 cie->return_address_register
1898 = dwarf2_frame_adjust_regnum (gdbarch,
1899 cie->return_address_register,
1900 eh_frame_p);
1901
1902 cie->saw_z_augmentation = (*augmentation == 'z');
1903 if (cie->saw_z_augmentation)
1904 {
1905 uint64_t uleb_length;
1906
1907 buf = gdb_read_uleb128 (buf, end, &uleb_length);
1908 if (buf == NULL)
1909 return NULL;
1910 cie->initial_instructions = buf + uleb_length;
1911 augmentation++;
1912 }
1913
1914 while (*augmentation)
1915 {
1916 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1917 if (*augmentation == 'L')
1918 {
1919 /* Skip. */
1920 buf++;
1921 augmentation++;
1922 }
1923
1924 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1925 else if (*augmentation == 'R')
1926 {
1927 cie->encoding = *buf++;
1928 augmentation++;
1929 }
1930
1931 /* "P" indicates a personality routine in the CIE augmentation. */
1932 else if (*augmentation == 'P')
1933 {
1934 /* Skip. Avoid indirection since we throw away the result. */
1935 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1936 read_encoded_value (unit, encoding, cie->ptr_size,
1937 buf, &bytes_read, 0);
1938 buf += bytes_read;
1939 augmentation++;
1940 }
1941
1942 /* "S" indicates a signal frame, such that the return
1943 address must not be decremented to locate the call frame
1944 info for the previous frame; it might even be the first
1945 instruction of a function, so decrementing it would take
1946 us to a different function. */
1947 else if (*augmentation == 'S')
1948 {
1949 cie->signal_frame = 1;
1950 augmentation++;
1951 }
1952
1953 /* Otherwise we have an unknown augmentation. Assume that either
1954 there is no augmentation data, or we saw a 'z' prefix. */
1955 else
1956 {
1957 if (cie->initial_instructions)
1958 buf = cie->initial_instructions;
1959 break;
1960 }
1961 }
1962
1963 cie->initial_instructions = buf;
1964 cie->end = end;
1965 cie->unit = unit;
1966
1967 cie_table[cie->cie_pointer] = cie;
1968 }
1969 else
1970 {
1971 /* This is a FDE. */
1972 struct dwarf2_fde *fde;
1973 CORE_ADDR addr;
1974
1975 /* Check that an FDE was expected. */
1976 if ((entry_type & EH_FDE_TYPE_ID) == 0)
1977 error (_("Found an FDE when not expecting it."));
1978
1979 /* In an .eh_frame section, the CIE pointer is the delta between the
1980 address within the FDE where the CIE pointer is stored and the
1981 address of the CIE. Convert it to an offset into the .eh_frame
1982 section. */
1983 if (eh_frame_p)
1984 {
1985 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1986 cie_pointer -= (dwarf64_p ? 8 : 4);
1987 }
1988
1989 /* In either case, validate the result is still within the section. */
1990 if (cie_pointer >= unit->dwarf_frame_size)
1991 return NULL;
1992
1993 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
1994 fde->cie = find_cie (cie_table, cie_pointer);
1995 if (fde->cie == NULL)
1996 {
1997 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1998 eh_frame_p, cie_table, fde_table,
1999 EH_CIE_TYPE_ID);
2000 fde->cie = find_cie (cie_table, cie_pointer);
2001 }
2002
2003 gdb_assert (fde->cie != NULL);
2004
2005 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2006 buf, &bytes_read, 0);
2007 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2008 buf += bytes_read;
2009
2010 fde->address_range =
2011 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2012 fde->cie->ptr_size, buf, &bytes_read, 0);
2013 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2014 fde->address_range = addr - fde->initial_location;
2015 buf += bytes_read;
2016
2017 /* A 'z' augmentation in the CIE implies the presence of an
2018 augmentation field in the FDE as well. The only thing known
2019 to be in here at present is the LSDA entry for EH. So we
2020 can skip the whole thing. */
2021 if (fde->cie->saw_z_augmentation)
2022 {
2023 uint64_t uleb_length;
2024
2025 buf = gdb_read_uleb128 (buf, end, &uleb_length);
2026 if (buf == NULL)
2027 return NULL;
2028 buf += uleb_length;
2029 if (buf > end)
2030 return NULL;
2031 }
2032
2033 fde->instructions = buf;
2034 fde->end = end;
2035
2036 fde->eh_frame_p = eh_frame_p;
2037
2038 add_fde (fde_table, fde);
2039 }
2040
2041 return end;
2042 }
2043
2044 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2045 expect an FDE or a CIE. */
2046
2047 static const gdb_byte *
2048 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2049 int eh_frame_p,
2050 dwarf2_cie_table &cie_table,
2051 struct dwarf2_fde_table *fde_table,
2052 enum eh_frame_type entry_type)
2053 {
2054 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2055 const gdb_byte *ret;
2056 ptrdiff_t start_offset;
2057
2058 while (1)
2059 {
2060 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2061 cie_table, fde_table, entry_type);
2062 if (ret != NULL)
2063 break;
2064
2065 /* We have corrupt input data of some form. */
2066
2067 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2068 and mismatches wrt padding and alignment of debug sections. */
2069 /* Note that there is no requirement in the standard for any
2070 alignment at all in the frame unwind sections. Testing for
2071 alignment before trying to interpret data would be incorrect.
2072
2073 However, GCC traditionally arranged for frame sections to be
2074 sized such that the FDE length and CIE fields happen to be
2075 aligned (in theory, for performance). This, unfortunately,
2076 was done with .align directives, which had the side effect of
2077 forcing the section to be aligned by the linker.
2078
2079 This becomes a problem when you have some other producer that
2080 creates frame sections that are not as strictly aligned. That
2081 produces a hole in the frame info that gets filled by the
2082 linker with zeros.
2083
2084 The GCC behaviour is arguably a bug, but it's effectively now
2085 part of the ABI, so we're now stuck with it, at least at the
2086 object file level. A smart linker may decide, in the process
2087 of compressing duplicate CIE information, that it can rewrite
2088 the entire output section without this extra padding. */
2089
2090 start_offset = start - unit->dwarf_frame_buffer;
2091 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2092 {
2093 start += 4 - (start_offset & 3);
2094 workaround = ALIGN4;
2095 continue;
2096 }
2097 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2098 {
2099 start += 8 - (start_offset & 7);
2100 workaround = ALIGN8;
2101 continue;
2102 }
2103
2104 /* Nothing left to try. Arrange to return as if we've consumed
2105 the entire input section. Hopefully we'll get valid info from
2106 the other of .debug_frame/.eh_frame. */
2107 workaround = FAIL;
2108 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2109 break;
2110 }
2111
2112 switch (workaround)
2113 {
2114 case NONE:
2115 break;
2116
2117 case ALIGN4:
2118 complaint (_("\
2119 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2120 unit->dwarf_frame_section->owner->filename,
2121 unit->dwarf_frame_section->name);
2122 break;
2123
2124 case ALIGN8:
2125 complaint (_("\
2126 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2127 unit->dwarf_frame_section->owner->filename,
2128 unit->dwarf_frame_section->name);
2129 break;
2130
2131 default:
2132 complaint (_("Corrupt data in %s:%s"),
2133 unit->dwarf_frame_section->owner->filename,
2134 unit->dwarf_frame_section->name);
2135 break;
2136 }
2137
2138 return ret;
2139 }
2140 \f
2141 static bool
2142 fde_is_less_than (const dwarf2_fde *aa, const dwarf2_fde *bb)
2143 {
2144 if (aa->initial_location == bb->initial_location)
2145 {
2146 if (aa->address_range != bb->address_range
2147 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2148 /* Linker bug, e.g. gold/10400.
2149 Work around it by keeping stable sort order. */
2150 return aa < bb;
2151 else
2152 /* Put eh_frame entries after debug_frame ones. */
2153 return aa->eh_frame_p < bb->eh_frame_p;
2154 }
2155
2156 return aa->initial_location < bb->initial_location;
2157 }
2158
2159 void
2160 dwarf2_build_frame_info (struct objfile *objfile)
2161 {
2162 struct comp_unit *unit;
2163 const gdb_byte *frame_ptr;
2164 dwarf2_cie_table cie_table;
2165 struct dwarf2_fde_table fde_table;
2166 struct dwarf2_fde_table *fde_table2;
2167
2168 fde_table.num_entries = 0;
2169 fde_table.entries = NULL;
2170
2171 /* Build a minimal decoding of the DWARF2 compilation unit. */
2172 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
2173 unit->abfd = objfile->obfd;
2174 unit->objfile = objfile;
2175 unit->dbase = 0;
2176 unit->tbase = 0;
2177
2178 if (objfile->separate_debug_objfile_backlink == NULL)
2179 {
2180 /* Do not read .eh_frame from separate file as they must be also
2181 present in the main file. */
2182 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2183 &unit->dwarf_frame_section,
2184 &unit->dwarf_frame_buffer,
2185 &unit->dwarf_frame_size);
2186 if (unit->dwarf_frame_size)
2187 {
2188 asection *got, *txt;
2189
2190 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2191 that is used for the i386/amd64 target, which currently is
2192 the only target in GCC that supports/uses the
2193 DW_EH_PE_datarel encoding. */
2194 got = bfd_get_section_by_name (unit->abfd, ".got");
2195 if (got)
2196 unit->dbase = got->vma;
2197
2198 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2199 so far. */
2200 txt = bfd_get_section_by_name (unit->abfd, ".text");
2201 if (txt)
2202 unit->tbase = txt->vma;
2203
2204 try
2205 {
2206 frame_ptr = unit->dwarf_frame_buffer;
2207 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2208 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2209 cie_table, &fde_table,
2210 EH_CIE_OR_FDE_TYPE_ID);
2211 }
2212
2213 catch (const gdb_exception_error &e)
2214 {
2215 warning (_("skipping .eh_frame info of %s: %s"),
2216 objfile_name (objfile), e.what ());
2217
2218 if (fde_table.num_entries != 0)
2219 {
2220 xfree (fde_table.entries);
2221 fde_table.entries = NULL;
2222 fde_table.num_entries = 0;
2223 }
2224 /* The cie_table is discarded below. */
2225 }
2226
2227 cie_table.clear ();
2228 }
2229 }
2230
2231 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2232 &unit->dwarf_frame_section,
2233 &unit->dwarf_frame_buffer,
2234 &unit->dwarf_frame_size);
2235 if (unit->dwarf_frame_size)
2236 {
2237 int num_old_fde_entries = fde_table.num_entries;
2238
2239 try
2240 {
2241 frame_ptr = unit->dwarf_frame_buffer;
2242 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2243 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2244 cie_table, &fde_table,
2245 EH_CIE_OR_FDE_TYPE_ID);
2246 }
2247 catch (const gdb_exception_error &e)
2248 {
2249 warning (_("skipping .debug_frame info of %s: %s"),
2250 objfile_name (objfile), e.what ());
2251
2252 if (fde_table.num_entries != 0)
2253 {
2254 fde_table.num_entries = num_old_fde_entries;
2255 if (num_old_fde_entries == 0)
2256 {
2257 xfree (fde_table.entries);
2258 fde_table.entries = NULL;
2259 }
2260 else
2261 {
2262 fde_table.entries
2263 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2264 fde_table.num_entries);
2265 }
2266 }
2267 fde_table.num_entries = num_old_fde_entries;
2268 }
2269 }
2270
2271 /* Copy fde_table to obstack: it is needed at runtime. */
2272 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2273
2274 if (fde_table.num_entries == 0)
2275 {
2276 fde_table2->entries = NULL;
2277 fde_table2->num_entries = 0;
2278 }
2279 else
2280 {
2281 struct dwarf2_fde *fde_prev = NULL;
2282 struct dwarf2_fde *first_non_zero_fde = NULL;
2283 int i;
2284
2285 /* Prepare FDE table for lookups. */
2286 std::sort (fde_table.entries, fde_table.entries + fde_table.num_entries,
2287 fde_is_less_than);
2288
2289 /* Check for leftovers from --gc-sections. The GNU linker sets
2290 the relevant symbols to zero, but doesn't zero the FDE *end*
2291 ranges because there's no relocation there. It's (offset,
2292 length), not (start, end). On targets where address zero is
2293 just another valid address this can be a problem, since the
2294 FDEs appear to be non-empty in the output --- we could pick
2295 out the wrong FDE. To work around this, when overlaps are
2296 detected, we prefer FDEs that do not start at zero.
2297
2298 Start by finding the first FDE with non-zero start. Below
2299 we'll discard all FDEs that start at zero and overlap this
2300 one. */
2301 for (i = 0; i < fde_table.num_entries; i++)
2302 {
2303 struct dwarf2_fde *fde = fde_table.entries[i];
2304
2305 if (fde->initial_location != 0)
2306 {
2307 first_non_zero_fde = fde;
2308 break;
2309 }
2310 }
2311
2312 /* Since we'll be doing bsearch, squeeze out identical (except
2313 for eh_frame_p) fde entries so bsearch result is predictable.
2314 Also discard leftovers from --gc-sections. */
2315 fde_table2->num_entries = 0;
2316 for (i = 0; i < fde_table.num_entries; i++)
2317 {
2318 struct dwarf2_fde *fde = fde_table.entries[i];
2319
2320 if (fde->initial_location == 0
2321 && first_non_zero_fde != NULL
2322 && (first_non_zero_fde->initial_location
2323 < fde->initial_location + fde->address_range))
2324 continue;
2325
2326 if (fde_prev != NULL
2327 && fde_prev->initial_location == fde->initial_location)
2328 continue;
2329
2330 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2331 sizeof (fde_table.entries[0]));
2332 ++fde_table2->num_entries;
2333 fde_prev = fde;
2334 }
2335 fde_table2->entries
2336 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2337
2338 /* Discard the original fde_table. */
2339 xfree (fde_table.entries);
2340 }
2341
2342 dwarf2_frame_objfile_data.set (objfile, fde_table2);
2343 }
2344
2345 /* Handle 'maintenance show dwarf unwinders'. */
2346
2347 static void
2348 show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2349 struct cmd_list_element *c,
2350 const char *value)
2351 {
2352 fprintf_filtered (file,
2353 _("The DWARF stack unwinders are currently %s.\n"),
2354 value);
2355 }
2356
2357 void
2358 _initialize_dwarf2_frame (void)
2359 {
2360 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2361
2362 add_setshow_boolean_cmd ("unwinders", class_obscure,
2363 &dwarf2_frame_unwinders_enabled_p , _("\
2364 Set whether the DWARF stack frame unwinders are used."), _("\
2365 Show whether the DWARF stack frame unwinders are used."), _("\
2366 When enabled the DWARF stack frame unwinders can be used for architectures\n\
2367 that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2368 architecture that doesn't support them will have no effect."),
2369 NULL,
2370 show_dwarf_unwinders_enabled_p,
2371 &set_dwarf_cmdlist,
2372 &show_dwarf_cmdlist);
2373
2374 #if GDB_SELF_TEST
2375 selftests::register_test_foreach_arch ("execute_cfa_program",
2376 selftests::execute_cfa_program_test);
2377 #endif
2378 }
This page took 0.087537 seconds and 4 git commands to generate.