Change boolean options to bool instead of int
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "dwarf2read.h"
39 #include "ax.h"
40 #include "dwarf2loc.h"
41 #include "dwarf2-frame-tailcall.h"
42 #if GDB_SELF_TEST
43 #include "gdbsupport/selftest.h"
44 #include "selftest-arch.h"
45 #endif
46
47 struct comp_unit;
48
49 /* Call Frame Information (CFI). */
50
51 /* Common Information Entry (CIE). */
52
53 struct dwarf2_cie
54 {
55 /* Computation Unit for this CIE. */
56 struct comp_unit *unit;
57
58 /* Offset into the .debug_frame section where this CIE was found.
59 Used to identify this CIE. */
60 ULONGEST cie_pointer;
61
62 /* Constant that is factored out of all advance location
63 instructions. */
64 ULONGEST code_alignment_factor;
65
66 /* Constants that is factored out of all offset instructions. */
67 LONGEST data_alignment_factor;
68
69 /* Return address column. */
70 ULONGEST return_address_register;
71
72 /* Instruction sequence to initialize a register set. */
73 const gdb_byte *initial_instructions;
74 const gdb_byte *end;
75
76 /* Saved augmentation, in case it's needed later. */
77 char *augmentation;
78
79 /* Encoding of addresses. */
80 gdb_byte encoding;
81
82 /* Target address size in bytes. */
83 int addr_size;
84
85 /* Target pointer size in bytes. */
86 int ptr_size;
87
88 /* True if a 'z' augmentation existed. */
89 unsigned char saw_z_augmentation;
90
91 /* True if an 'S' augmentation existed. */
92 unsigned char signal_frame;
93
94 /* The version recorded in the CIE. */
95 unsigned char version;
96
97 /* The segment size. */
98 unsigned char segment_size;
99 };
100
101 struct dwarf2_cie_table
102 {
103 int num_entries;
104 struct dwarf2_cie **entries;
105 };
106
107 /* Frame Description Entry (FDE). */
108
109 struct dwarf2_fde
110 {
111 /* CIE for this FDE. */
112 struct dwarf2_cie *cie;
113
114 /* First location associated with this FDE. */
115 CORE_ADDR initial_location;
116
117 /* Number of bytes of program instructions described by this FDE. */
118 CORE_ADDR address_range;
119
120 /* Instruction sequence. */
121 const gdb_byte *instructions;
122 const gdb_byte *end;
123
124 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
125 section. */
126 unsigned char eh_frame_p;
127 };
128
129 struct dwarf2_fde_table
130 {
131 int num_entries;
132 struct dwarf2_fde **entries;
133 };
134
135 /* A minimal decoding of DWARF2 compilation units. We only decode
136 what's needed to get to the call frame information. */
137
138 struct comp_unit
139 {
140 /* Keep the bfd convenient. */
141 bfd *abfd;
142
143 struct objfile *objfile;
144
145 /* Pointer to the .debug_frame section loaded into memory. */
146 const gdb_byte *dwarf_frame_buffer;
147
148 /* Length of the loaded .debug_frame section. */
149 bfd_size_type dwarf_frame_size;
150
151 /* Pointer to the .debug_frame section. */
152 asection *dwarf_frame_section;
153
154 /* Base for DW_EH_PE_datarel encodings. */
155 bfd_vma dbase;
156
157 /* Base for DW_EH_PE_textrel encodings. */
158 bfd_vma tbase;
159 };
160
161 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
162 CORE_ADDR *out_offset);
163
164 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
165 int eh_frame_p);
166
167 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
168 int ptr_len, const gdb_byte *buf,
169 unsigned int *bytes_read_ptr,
170 CORE_ADDR func_base);
171 \f
172
173 /* See dwarf2-frame.h. */
174 bool dwarf2_frame_unwinders_enabled_p = true;
175
176 /* Store the length the expression for the CFA in the `cfa_reg' field,
177 which is unused in that case. */
178 #define cfa_exp_len cfa_reg
179
180 dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
181 : pc (pc_), data_align (cie->data_alignment_factor),
182 code_align (cie->code_alignment_factor),
183 retaddr_column (cie->return_address_register)
184 {
185 }
186 \f
187
188 /* Helper functions for execute_stack_op. */
189
190 static CORE_ADDR
191 read_addr_from_reg (struct frame_info *this_frame, int reg)
192 {
193 struct gdbarch *gdbarch = get_frame_arch (this_frame);
194 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
195
196 return address_from_register (regnum, this_frame);
197 }
198
199 /* Execute the required actions for both the DW_CFA_restore and
200 DW_CFA_restore_extended instructions. */
201 static void
202 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
203 struct dwarf2_frame_state *fs, int eh_frame_p)
204 {
205 ULONGEST reg;
206
207 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
208 fs->regs.alloc_regs (reg + 1);
209
210 /* Check if this register was explicitly initialized in the
211 CIE initial instructions. If not, default the rule to
212 UNSPECIFIED. */
213 if (reg < fs->initial.reg.size ())
214 fs->regs.reg[reg] = fs->initial.reg[reg];
215 else
216 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
217
218 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
219 {
220 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
221
222 complaint (_("\
223 incomplete CFI data; DW_CFA_restore unspecified\n\
224 register %s (#%d) at %s"),
225 gdbarch_register_name (gdbarch, regnum), regnum,
226 paddress (gdbarch, fs->pc));
227 }
228 }
229
230 class dwarf_expr_executor : public dwarf_expr_context
231 {
232 public:
233
234 struct frame_info *this_frame;
235
236 CORE_ADDR read_addr_from_reg (int reg) override
237 {
238 return ::read_addr_from_reg (this_frame, reg);
239 }
240
241 struct value *get_reg_value (struct type *type, int reg) override
242 {
243 struct gdbarch *gdbarch = get_frame_arch (this_frame);
244 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
245
246 return value_from_register (type, regnum, this_frame);
247 }
248
249 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
250 {
251 read_memory (addr, buf, len);
252 }
253
254 void get_frame_base (const gdb_byte **start, size_t *length) override
255 {
256 invalid ("DW_OP_fbreg");
257 }
258
259 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
260 union call_site_parameter_u kind_u,
261 int deref_size) override
262 {
263 invalid ("DW_OP_entry_value");
264 }
265
266 CORE_ADDR get_object_address () override
267 {
268 invalid ("DW_OP_push_object_address");
269 }
270
271 CORE_ADDR get_frame_cfa () override
272 {
273 invalid ("DW_OP_call_frame_cfa");
274 }
275
276 CORE_ADDR get_tls_address (CORE_ADDR offset) override
277 {
278 invalid ("DW_OP_form_tls_address");
279 }
280
281 void dwarf_call (cu_offset die_offset) override
282 {
283 invalid ("DW_OP_call*");
284 }
285
286 struct value *dwarf_variable_value (sect_offset sect_off) override
287 {
288 invalid ("DW_OP_GNU_variable_value");
289 }
290
291 CORE_ADDR get_addr_index (unsigned int index) override
292 {
293 invalid ("DW_OP_addrx or DW_OP_GNU_addr_index");
294 }
295
296 private:
297
298 void invalid (const char *op) ATTRIBUTE_NORETURN
299 {
300 error (_("%s is invalid in this context"), op);
301 }
302 };
303
304 static CORE_ADDR
305 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
306 CORE_ADDR offset, struct frame_info *this_frame,
307 CORE_ADDR initial, int initial_in_stack_memory)
308 {
309 CORE_ADDR result;
310
311 dwarf_expr_executor ctx;
312 scoped_value_mark free_values;
313
314 ctx.this_frame = this_frame;
315 ctx.gdbarch = get_frame_arch (this_frame);
316 ctx.addr_size = addr_size;
317 ctx.ref_addr_size = -1;
318 ctx.offset = offset;
319
320 ctx.push_address (initial, initial_in_stack_memory);
321 ctx.eval (exp, len);
322
323 if (ctx.location == DWARF_VALUE_MEMORY)
324 result = ctx.fetch_address (0);
325 else if (ctx.location == DWARF_VALUE_REGISTER)
326 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
327 else
328 {
329 /* This is actually invalid DWARF, but if we ever do run across
330 it somehow, we might as well support it. So, instead, report
331 it as unimplemented. */
332 error (_("\
333 Not implemented: computing unwound register using explicit value operator"));
334 }
335
336 return result;
337 }
338 \f
339
340 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
341 PC. Modify FS state accordingly. Return current INSN_PTR where the
342 execution has stopped, one can resume it on the next call. */
343
344 static const gdb_byte *
345 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
346 const gdb_byte *insn_end, struct gdbarch *gdbarch,
347 CORE_ADDR pc, struct dwarf2_frame_state *fs)
348 {
349 int eh_frame_p = fde->eh_frame_p;
350 unsigned int bytes_read;
351 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
352
353 while (insn_ptr < insn_end && fs->pc <= pc)
354 {
355 gdb_byte insn = *insn_ptr++;
356 uint64_t utmp, reg;
357 int64_t offset;
358
359 if ((insn & 0xc0) == DW_CFA_advance_loc)
360 fs->pc += (insn & 0x3f) * fs->code_align;
361 else if ((insn & 0xc0) == DW_CFA_offset)
362 {
363 reg = insn & 0x3f;
364 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
365 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
366 offset = utmp * fs->data_align;
367 fs->regs.alloc_regs (reg + 1);
368 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
369 fs->regs.reg[reg].loc.offset = offset;
370 }
371 else if ((insn & 0xc0) == DW_CFA_restore)
372 {
373 reg = insn & 0x3f;
374 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
375 }
376 else
377 {
378 switch (insn)
379 {
380 case DW_CFA_set_loc:
381 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
382 fde->cie->ptr_size, insn_ptr,
383 &bytes_read, fde->initial_location);
384 /* Apply the objfile offset for relocatable objects. */
385 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
386 SECT_OFF_TEXT (fde->cie->unit->objfile));
387 insn_ptr += bytes_read;
388 break;
389
390 case DW_CFA_advance_loc1:
391 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
392 fs->pc += utmp * fs->code_align;
393 insn_ptr++;
394 break;
395 case DW_CFA_advance_loc2:
396 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
397 fs->pc += utmp * fs->code_align;
398 insn_ptr += 2;
399 break;
400 case DW_CFA_advance_loc4:
401 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
402 fs->pc += utmp * fs->code_align;
403 insn_ptr += 4;
404 break;
405
406 case DW_CFA_offset_extended:
407 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
408 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
409 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
410 offset = utmp * fs->data_align;
411 fs->regs.alloc_regs (reg + 1);
412 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
413 fs->regs.reg[reg].loc.offset = offset;
414 break;
415
416 case DW_CFA_restore_extended:
417 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
418 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
419 break;
420
421 case DW_CFA_undefined:
422 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
423 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
424 fs->regs.alloc_regs (reg + 1);
425 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
426 break;
427
428 case DW_CFA_same_value:
429 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
430 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
431 fs->regs.alloc_regs (reg + 1);
432 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
433 break;
434
435 case DW_CFA_register:
436 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
437 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
438 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
439 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
440 fs->regs.alloc_regs (reg + 1);
441 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
442 fs->regs.reg[reg].loc.reg = utmp;
443 break;
444
445 case DW_CFA_remember_state:
446 {
447 struct dwarf2_frame_state_reg_info *new_rs;
448
449 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
450 fs->regs.prev = new_rs;
451 }
452 break;
453
454 case DW_CFA_restore_state:
455 {
456 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
457
458 if (old_rs == NULL)
459 {
460 complaint (_("\
461 bad CFI data; mismatched DW_CFA_restore_state at %s"),
462 paddress (gdbarch, fs->pc));
463 }
464 else
465 fs->regs = std::move (*old_rs);
466 }
467 break;
468
469 case DW_CFA_def_cfa:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
471 fs->regs.cfa_reg = reg;
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473
474 if (fs->armcc_cfa_offsets_sf)
475 utmp *= fs->data_align;
476
477 fs->regs.cfa_offset = utmp;
478 fs->regs.cfa_how = CFA_REG_OFFSET;
479 break;
480
481 case DW_CFA_def_cfa_register:
482 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
483 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
484 eh_frame_p);
485 fs->regs.cfa_how = CFA_REG_OFFSET;
486 break;
487
488 case DW_CFA_def_cfa_offset:
489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
490
491 if (fs->armcc_cfa_offsets_sf)
492 utmp *= fs->data_align;
493
494 fs->regs.cfa_offset = utmp;
495 /* cfa_how deliberately not set. */
496 break;
497
498 case DW_CFA_nop:
499 break;
500
501 case DW_CFA_def_cfa_expression:
502 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
503 fs->regs.cfa_exp_len = utmp;
504 fs->regs.cfa_exp = insn_ptr;
505 fs->regs.cfa_how = CFA_EXP;
506 insn_ptr += fs->regs.cfa_exp_len;
507 break;
508
509 case DW_CFA_expression:
510 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
511 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
512 fs->regs.alloc_regs (reg + 1);
513 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
514 fs->regs.reg[reg].loc.exp.start = insn_ptr;
515 fs->regs.reg[reg].loc.exp.len = utmp;
516 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
517 insn_ptr += utmp;
518 break;
519
520 case DW_CFA_offset_extended_sf:
521 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
522 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
523 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
524 offset *= fs->data_align;
525 fs->regs.alloc_regs (reg + 1);
526 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
527 fs->regs.reg[reg].loc.offset = offset;
528 break;
529
530 case DW_CFA_val_offset:
531 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
532 fs->regs.alloc_regs (reg + 1);
533 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
534 offset = utmp * fs->data_align;
535 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
536 fs->regs.reg[reg].loc.offset = offset;
537 break;
538
539 case DW_CFA_val_offset_sf:
540 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
541 fs->regs.alloc_regs (reg + 1);
542 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
543 offset *= fs->data_align;
544 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
545 fs->regs.reg[reg].loc.offset = offset;
546 break;
547
548 case DW_CFA_val_expression:
549 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
550 fs->regs.alloc_regs (reg + 1);
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
552 fs->regs.reg[reg].loc.exp.start = insn_ptr;
553 fs->regs.reg[reg].loc.exp.len = utmp;
554 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
555 insn_ptr += utmp;
556 break;
557
558 case DW_CFA_def_cfa_sf:
559 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
560 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
561 eh_frame_p);
562 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
563 fs->regs.cfa_offset = offset * fs->data_align;
564 fs->regs.cfa_how = CFA_REG_OFFSET;
565 break;
566
567 case DW_CFA_def_cfa_offset_sf:
568 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
569 fs->regs.cfa_offset = offset * fs->data_align;
570 /* cfa_how deliberately not set. */
571 break;
572
573 case DW_CFA_GNU_args_size:
574 /* Ignored. */
575 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
576 break;
577
578 case DW_CFA_GNU_negative_offset_extended:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
582 offset = utmp * fs->data_align;
583 fs->regs.alloc_regs (reg + 1);
584 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
585 fs->regs.reg[reg].loc.offset = -offset;
586 break;
587
588 default:
589 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
590 {
591 /* Handle vendor-specific CFI for different architectures. */
592 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
593 error (_("Call Frame Instruction op %d in vendor extension "
594 "space is not handled on this architecture."),
595 insn);
596 }
597 else
598 internal_error (__FILE__, __LINE__,
599 _("Unknown CFI encountered."));
600 }
601 }
602 }
603
604 if (fs->initial.reg.empty ())
605 {
606 /* Don't allow remember/restore between CIE and FDE programs. */
607 delete fs->regs.prev;
608 fs->regs.prev = NULL;
609 }
610
611 return insn_ptr;
612 }
613
614 #if GDB_SELF_TEST
615
616 namespace selftests {
617
618 /* Unit test to function execute_cfa_program. */
619
620 static void
621 execute_cfa_program_test (struct gdbarch *gdbarch)
622 {
623 struct dwarf2_fde fde;
624 struct dwarf2_cie cie;
625
626 memset (&fde, 0, sizeof fde);
627 memset (&cie, 0, sizeof cie);
628
629 cie.data_alignment_factor = -4;
630 cie.code_alignment_factor = 2;
631 fde.cie = &cie;
632
633 dwarf2_frame_state fs (0, fde.cie);
634
635 gdb_byte insns[] =
636 {
637 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
638 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
639 DW_CFA_remember_state,
640 DW_CFA_restore_state,
641 };
642
643 const gdb_byte *insn_end = insns + sizeof (insns);
644 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
645 0, &fs);
646
647 SELF_CHECK (out == insn_end);
648 SELF_CHECK (fs.pc == 0);
649
650 /* The instructions above only use r1 and r2, but the register numbers
651 used are adjusted by dwarf2_frame_adjust_regnum. */
652 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
653 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
654
655 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
656
657 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
658 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
659
660 for (auto i = 0; i < fs.regs.reg.size (); i++)
661 if (i != r2)
662 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
663
664 SELF_CHECK (fs.regs.cfa_reg == 1);
665 SELF_CHECK (fs.regs.cfa_offset == 4);
666 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
667 SELF_CHECK (fs.regs.cfa_exp == NULL);
668 SELF_CHECK (fs.regs.prev == NULL);
669 }
670
671 } // namespace selftests
672 #endif /* GDB_SELF_TEST */
673
674 \f
675
676 /* Architecture-specific operations. */
677
678 /* Per-architecture data key. */
679 static struct gdbarch_data *dwarf2_frame_data;
680
681 struct dwarf2_frame_ops
682 {
683 /* Pre-initialize the register state REG for register REGNUM. */
684 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
685 struct frame_info *);
686
687 /* Check whether the THIS_FRAME is a signal trampoline. */
688 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
689
690 /* Convert .eh_frame register number to DWARF register number, or
691 adjust .debug_frame register number. */
692 int (*adjust_regnum) (struct gdbarch *, int, int);
693 };
694
695 /* Default architecture-specific register state initialization
696 function. */
697
698 static void
699 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
700 struct dwarf2_frame_state_reg *reg,
701 struct frame_info *this_frame)
702 {
703 /* If we have a register that acts as a program counter, mark it as
704 a destination for the return address. If we have a register that
705 serves as the stack pointer, arrange for it to be filled with the
706 call frame address (CFA). The other registers are marked as
707 unspecified.
708
709 We copy the return address to the program counter, since many
710 parts in GDB assume that it is possible to get the return address
711 by unwinding the program counter register. However, on ISA's
712 with a dedicated return address register, the CFI usually only
713 contains information to unwind that return address register.
714
715 The reason we're treating the stack pointer special here is
716 because in many cases GCC doesn't emit CFI for the stack pointer
717 and implicitly assumes that it is equal to the CFA. This makes
718 some sense since the DWARF specification (version 3, draft 8,
719 p. 102) says that:
720
721 "Typically, the CFA is defined to be the value of the stack
722 pointer at the call site in the previous frame (which may be
723 different from its value on entry to the current frame)."
724
725 However, this isn't true for all platforms supported by GCC
726 (e.g. IBM S/390 and zSeries). Those architectures should provide
727 their own architecture-specific initialization function. */
728
729 if (regnum == gdbarch_pc_regnum (gdbarch))
730 reg->how = DWARF2_FRAME_REG_RA;
731 else if (regnum == gdbarch_sp_regnum (gdbarch))
732 reg->how = DWARF2_FRAME_REG_CFA;
733 }
734
735 /* Return a default for the architecture-specific operations. */
736
737 static void *
738 dwarf2_frame_init (struct obstack *obstack)
739 {
740 struct dwarf2_frame_ops *ops;
741
742 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
743 ops->init_reg = dwarf2_frame_default_init_reg;
744 return ops;
745 }
746
747 /* Set the architecture-specific register state initialization
748 function for GDBARCH to INIT_REG. */
749
750 void
751 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
752 void (*init_reg) (struct gdbarch *, int,
753 struct dwarf2_frame_state_reg *,
754 struct frame_info *))
755 {
756 struct dwarf2_frame_ops *ops
757 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
758
759 ops->init_reg = init_reg;
760 }
761
762 /* Pre-initialize the register state REG for register REGNUM. */
763
764 static void
765 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
766 struct dwarf2_frame_state_reg *reg,
767 struct frame_info *this_frame)
768 {
769 struct dwarf2_frame_ops *ops
770 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
771
772 ops->init_reg (gdbarch, regnum, reg, this_frame);
773 }
774
775 /* Set the architecture-specific signal trampoline recognition
776 function for GDBARCH to SIGNAL_FRAME_P. */
777
778 void
779 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
780 int (*signal_frame_p) (struct gdbarch *,
781 struct frame_info *))
782 {
783 struct dwarf2_frame_ops *ops
784 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
785
786 ops->signal_frame_p = signal_frame_p;
787 }
788
789 /* Query the architecture-specific signal frame recognizer for
790 THIS_FRAME. */
791
792 static int
793 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
794 struct frame_info *this_frame)
795 {
796 struct dwarf2_frame_ops *ops
797 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
798
799 if (ops->signal_frame_p == NULL)
800 return 0;
801 return ops->signal_frame_p (gdbarch, this_frame);
802 }
803
804 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
805 register numbers. */
806
807 void
808 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
809 int (*adjust_regnum) (struct gdbarch *,
810 int, int))
811 {
812 struct dwarf2_frame_ops *ops
813 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
814
815 ops->adjust_regnum = adjust_regnum;
816 }
817
818 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
819 register. */
820
821 static int
822 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
823 int regnum, int eh_frame_p)
824 {
825 struct dwarf2_frame_ops *ops
826 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 if (ops->adjust_regnum == NULL)
829 return regnum;
830 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
831 }
832
833 static void
834 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
835 struct dwarf2_fde *fde)
836 {
837 struct compunit_symtab *cust;
838
839 cust = find_pc_compunit_symtab (fs->pc);
840 if (cust == NULL)
841 return;
842
843 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
844 {
845 if (fde->cie->version == 1)
846 fs->armcc_cfa_offsets_sf = 1;
847
848 if (fde->cie->version == 1)
849 fs->armcc_cfa_offsets_reversed = 1;
850
851 /* The reversed offset problem is present in some compilers
852 using DWARF3, but it was eventually fixed. Check the ARM
853 defined augmentations, which are in the format "armcc" followed
854 by a list of one-character options. The "+" option means
855 this problem is fixed (no quirk needed). If the armcc
856 augmentation is missing, the quirk is needed. */
857 if (fde->cie->version == 3
858 && (!startswith (fde->cie->augmentation, "armcc")
859 || strchr (fde->cie->augmentation + 5, '+') == NULL))
860 fs->armcc_cfa_offsets_reversed = 1;
861
862 return;
863 }
864 }
865 \f
866
867 /* See dwarf2-frame.h. */
868
869 int
870 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
871 struct dwarf2_per_cu_data *data,
872 int *regnum_out, LONGEST *offset_out,
873 CORE_ADDR *text_offset_out,
874 const gdb_byte **cfa_start_out,
875 const gdb_byte **cfa_end_out)
876 {
877 struct dwarf2_fde *fde;
878 CORE_ADDR text_offset;
879 CORE_ADDR pc1 = pc;
880
881 /* Find the correct FDE. */
882 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
883 if (fde == NULL)
884 error (_("Could not compute CFA; needed to translate this expression"));
885
886 dwarf2_frame_state fs (pc1, fde->cie);
887
888 /* Check for "quirks" - known bugs in producers. */
889 dwarf2_frame_find_quirks (&fs, fde);
890
891 /* First decode all the insns in the CIE. */
892 execute_cfa_program (fde, fde->cie->initial_instructions,
893 fde->cie->end, gdbarch, pc, &fs);
894
895 /* Save the initialized register set. */
896 fs.initial = fs.regs;
897
898 /* Then decode the insns in the FDE up to our target PC. */
899 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
900
901 /* Calculate the CFA. */
902 switch (fs.regs.cfa_how)
903 {
904 case CFA_REG_OFFSET:
905 {
906 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
907
908 *regnum_out = regnum;
909 if (fs.armcc_cfa_offsets_reversed)
910 *offset_out = -fs.regs.cfa_offset;
911 else
912 *offset_out = fs.regs.cfa_offset;
913 return 1;
914 }
915
916 case CFA_EXP:
917 *text_offset_out = text_offset;
918 *cfa_start_out = fs.regs.cfa_exp;
919 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
920 return 0;
921
922 default:
923 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
924 }
925 }
926
927 \f
928 struct dwarf2_frame_cache
929 {
930 /* DWARF Call Frame Address. */
931 CORE_ADDR cfa;
932
933 /* Set if the return address column was marked as unavailable
934 (required non-collected memory or registers to compute). */
935 int unavailable_retaddr;
936
937 /* Set if the return address column was marked as undefined. */
938 int undefined_retaddr;
939
940 /* Saved registers, indexed by GDB register number, not by DWARF
941 register number. */
942 struct dwarf2_frame_state_reg *reg;
943
944 /* Return address register. */
945 struct dwarf2_frame_state_reg retaddr_reg;
946
947 /* Target address size in bytes. */
948 int addr_size;
949
950 /* The .text offset. */
951 CORE_ADDR text_offset;
952
953 /* True if we already checked whether this frame is the bottom frame
954 of a virtual tail call frame chain. */
955 int checked_tailcall_bottom;
956
957 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
958 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
959 involved. Non-bottom frames of a virtual tail call frames chain use
960 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
961 them. */
962 void *tailcall_cache;
963
964 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
965 base to get the SP, to simulate the return address pushed on the
966 stack. */
967 LONGEST entry_cfa_sp_offset;
968 int entry_cfa_sp_offset_p;
969 };
970
971 static struct dwarf2_frame_cache *
972 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
973 {
974 struct gdbarch *gdbarch = get_frame_arch (this_frame);
975 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
976 struct dwarf2_frame_cache *cache;
977 struct dwarf2_fde *fde;
978 CORE_ADDR entry_pc;
979 const gdb_byte *instr;
980
981 if (*this_cache)
982 return (struct dwarf2_frame_cache *) *this_cache;
983
984 /* Allocate a new cache. */
985 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
986 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
987 *this_cache = cache;
988
989 /* Unwind the PC.
990
991 Note that if the next frame is never supposed to return (i.e. a call
992 to abort), the compiler might optimize away the instruction at
993 its return address. As a result the return address will
994 point at some random instruction, and the CFI for that
995 instruction is probably worthless to us. GCC's unwinder solves
996 this problem by substracting 1 from the return address to get an
997 address in the middle of a presumed call instruction (or the
998 instruction in the associated delay slot). This should only be
999 done for "normal" frames and not for resume-type frames (signal
1000 handlers, sentinel frames, dummy frames). The function
1001 get_frame_address_in_block does just this. It's not clear how
1002 reliable the method is though; there is the potential for the
1003 register state pre-call being different to that on return. */
1004 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
1005
1006 /* Find the correct FDE. */
1007 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
1008 gdb_assert (fde != NULL);
1009
1010 /* Allocate and initialize the frame state. */
1011 struct dwarf2_frame_state fs (pc1, fde->cie);
1012
1013 cache->addr_size = fde->cie->addr_size;
1014
1015 /* Check for "quirks" - known bugs in producers. */
1016 dwarf2_frame_find_quirks (&fs, fde);
1017
1018 /* First decode all the insns in the CIE. */
1019 execute_cfa_program (fde, fde->cie->initial_instructions,
1020 fde->cie->end, gdbarch,
1021 get_frame_address_in_block (this_frame), &fs);
1022
1023 /* Save the initialized register set. */
1024 fs.initial = fs.regs;
1025
1026 /* Fetching the entry pc for THIS_FRAME won't necessarily result
1027 in an address that's within the range of FDE locations. This
1028 is due to the possibility of the function occupying non-contiguous
1029 ranges. */
1030 if (get_frame_func_if_available (this_frame, &entry_pc)
1031 && fde->initial_location <= entry_pc
1032 && entry_pc < fde->initial_location + fde->address_range)
1033 {
1034 /* Decode the insns in the FDE up to the entry PC. */
1035 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1036 entry_pc, &fs);
1037
1038 if (fs.regs.cfa_how == CFA_REG_OFFSET
1039 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
1040 == gdbarch_sp_regnum (gdbarch)))
1041 {
1042 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1043 cache->entry_cfa_sp_offset_p = 1;
1044 }
1045 }
1046 else
1047 instr = fde->instructions;
1048
1049 /* Then decode the insns in the FDE up to our target PC. */
1050 execute_cfa_program (fde, instr, fde->end, gdbarch,
1051 get_frame_address_in_block (this_frame), &fs);
1052
1053 try
1054 {
1055 /* Calculate the CFA. */
1056 switch (fs.regs.cfa_how)
1057 {
1058 case CFA_REG_OFFSET:
1059 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1060 if (fs.armcc_cfa_offsets_reversed)
1061 cache->cfa -= fs.regs.cfa_offset;
1062 else
1063 cache->cfa += fs.regs.cfa_offset;
1064 break;
1065
1066 case CFA_EXP:
1067 cache->cfa =
1068 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
1069 cache->addr_size, cache->text_offset,
1070 this_frame, 0, 0);
1071 break;
1072
1073 default:
1074 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1075 }
1076 }
1077 catch (const gdb_exception_error &ex)
1078 {
1079 if (ex.error == NOT_AVAILABLE_ERROR)
1080 {
1081 cache->unavailable_retaddr = 1;
1082 return cache;
1083 }
1084
1085 throw;
1086 }
1087
1088 /* Initialize the register state. */
1089 {
1090 int regnum;
1091
1092 for (regnum = 0; regnum < num_regs; regnum++)
1093 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1094 }
1095
1096 /* Go through the DWARF2 CFI generated table and save its register
1097 location information in the cache. Note that we don't skip the
1098 return address column; it's perfectly all right for it to
1099 correspond to a real register. */
1100 {
1101 int column; /* CFI speak for "register number". */
1102
1103 for (column = 0; column < fs.regs.reg.size (); column++)
1104 {
1105 /* Use the GDB register number as the destination index. */
1106 int regnum = dwarf_reg_to_regnum (gdbarch, column);
1107
1108 /* Protect against a target returning a bad register. */
1109 if (regnum < 0 || regnum >= num_regs)
1110 continue;
1111
1112 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1113 of all debug info registers. If it doesn't, complain (but
1114 not too loudly). It turns out that GCC assumes that an
1115 unspecified register implies "same value" when CFI (draft
1116 7) specifies nothing at all. Such a register could equally
1117 be interpreted as "undefined". Also note that this check
1118 isn't sufficient; it only checks that all registers in the
1119 range [0 .. max column] are specified, and won't detect
1120 problems when a debug info register falls outside of the
1121 table. We need a way of iterating through all the valid
1122 DWARF2 register numbers. */
1123 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1124 {
1125 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1126 complaint (_("\
1127 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1128 gdbarch_register_name (gdbarch, regnum),
1129 paddress (gdbarch, fs.pc));
1130 }
1131 else
1132 cache->reg[regnum] = fs.regs.reg[column];
1133 }
1134 }
1135
1136 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1137 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1138 {
1139 int regnum;
1140
1141 for (regnum = 0; regnum < num_regs; regnum++)
1142 {
1143 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1144 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1145 {
1146 const std::vector<struct dwarf2_frame_state_reg> &regs
1147 = fs.regs.reg;
1148 ULONGEST retaddr_column = fs.retaddr_column;
1149
1150 /* It seems rather bizarre to specify an "empty" column as
1151 the return adress column. However, this is exactly
1152 what GCC does on some targets. It turns out that GCC
1153 assumes that the return address can be found in the
1154 register corresponding to the return address column.
1155 Incidentally, that's how we should treat a return
1156 address column specifying "same value" too. */
1157 if (fs.retaddr_column < fs.regs.reg.size ()
1158 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1159 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
1160 {
1161 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1162 cache->reg[regnum] = regs[retaddr_column];
1163 else
1164 cache->retaddr_reg = regs[retaddr_column];
1165 }
1166 else
1167 {
1168 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1169 {
1170 cache->reg[regnum].loc.reg = fs.retaddr_column;
1171 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1172 }
1173 else
1174 {
1175 cache->retaddr_reg.loc.reg = fs.retaddr_column;
1176 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1177 }
1178 }
1179 }
1180 }
1181 }
1182
1183 if (fs.retaddr_column < fs.regs.reg.size ()
1184 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1185 cache->undefined_retaddr = 1;
1186
1187 return cache;
1188 }
1189
1190 static enum unwind_stop_reason
1191 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1192 void **this_cache)
1193 {
1194 struct dwarf2_frame_cache *cache
1195 = dwarf2_frame_cache (this_frame, this_cache);
1196
1197 if (cache->unavailable_retaddr)
1198 return UNWIND_UNAVAILABLE;
1199
1200 if (cache->undefined_retaddr)
1201 return UNWIND_OUTERMOST;
1202
1203 return UNWIND_NO_REASON;
1204 }
1205
1206 static void
1207 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1208 struct frame_id *this_id)
1209 {
1210 struct dwarf2_frame_cache *cache =
1211 dwarf2_frame_cache (this_frame, this_cache);
1212
1213 if (cache->unavailable_retaddr)
1214 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1215 else if (cache->undefined_retaddr)
1216 return;
1217 else
1218 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1219 }
1220
1221 static struct value *
1222 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1223 int regnum)
1224 {
1225 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1226 struct dwarf2_frame_cache *cache =
1227 dwarf2_frame_cache (this_frame, this_cache);
1228 CORE_ADDR addr;
1229 int realnum;
1230
1231 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1232 call frame chain. */
1233 if (!cache->checked_tailcall_bottom)
1234 {
1235 cache->checked_tailcall_bottom = 1;
1236 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1237 (cache->entry_cfa_sp_offset_p
1238 ? &cache->entry_cfa_sp_offset : NULL));
1239 }
1240
1241 /* Non-bottom frames of a virtual tail call frames chain use
1242 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1243 them. If dwarf2_tailcall_prev_register_first does not have specific value
1244 unwind the register, tail call frames are assumed to have the register set
1245 of the top caller. */
1246 if (cache->tailcall_cache)
1247 {
1248 struct value *val;
1249
1250 val = dwarf2_tailcall_prev_register_first (this_frame,
1251 &cache->tailcall_cache,
1252 regnum);
1253 if (val)
1254 return val;
1255 }
1256
1257 switch (cache->reg[regnum].how)
1258 {
1259 case DWARF2_FRAME_REG_UNDEFINED:
1260 /* If CFI explicitly specified that the value isn't defined,
1261 mark it as optimized away; the value isn't available. */
1262 return frame_unwind_got_optimized (this_frame, regnum);
1263
1264 case DWARF2_FRAME_REG_SAVED_OFFSET:
1265 addr = cache->cfa + cache->reg[regnum].loc.offset;
1266 return frame_unwind_got_memory (this_frame, regnum, addr);
1267
1268 case DWARF2_FRAME_REG_SAVED_REG:
1269 realnum = dwarf_reg_to_regnum_or_error
1270 (gdbarch, cache->reg[regnum].loc.reg);
1271 return frame_unwind_got_register (this_frame, regnum, realnum);
1272
1273 case DWARF2_FRAME_REG_SAVED_EXP:
1274 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1275 cache->reg[regnum].loc.exp.len,
1276 cache->addr_size, cache->text_offset,
1277 this_frame, cache->cfa, 1);
1278 return frame_unwind_got_memory (this_frame, regnum, addr);
1279
1280 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1281 addr = cache->cfa + cache->reg[regnum].loc.offset;
1282 return frame_unwind_got_constant (this_frame, regnum, addr);
1283
1284 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1285 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1286 cache->reg[regnum].loc.exp.len,
1287 cache->addr_size, cache->text_offset,
1288 this_frame, cache->cfa, 1);
1289 return frame_unwind_got_constant (this_frame, regnum, addr);
1290
1291 case DWARF2_FRAME_REG_UNSPECIFIED:
1292 /* GCC, in its infinite wisdom decided to not provide unwind
1293 information for registers that are "same value". Since
1294 DWARF2 (3 draft 7) doesn't define such behavior, said
1295 registers are actually undefined (which is different to CFI
1296 "undefined"). Code above issues a complaint about this.
1297 Here just fudge the books, assume GCC, and that the value is
1298 more inner on the stack. */
1299 return frame_unwind_got_register (this_frame, regnum, regnum);
1300
1301 case DWARF2_FRAME_REG_SAME_VALUE:
1302 return frame_unwind_got_register (this_frame, regnum, regnum);
1303
1304 case DWARF2_FRAME_REG_CFA:
1305 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1306
1307 case DWARF2_FRAME_REG_CFA_OFFSET:
1308 addr = cache->cfa + cache->reg[regnum].loc.offset;
1309 return frame_unwind_got_address (this_frame, regnum, addr);
1310
1311 case DWARF2_FRAME_REG_RA_OFFSET:
1312 addr = cache->reg[regnum].loc.offset;
1313 regnum = dwarf_reg_to_regnum_or_error
1314 (gdbarch, cache->retaddr_reg.loc.reg);
1315 addr += get_frame_register_unsigned (this_frame, regnum);
1316 return frame_unwind_got_address (this_frame, regnum, addr);
1317
1318 case DWARF2_FRAME_REG_FN:
1319 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1320
1321 default:
1322 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1323 }
1324 }
1325
1326 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1327 call frames chain. */
1328
1329 static void
1330 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1331 {
1332 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1333
1334 if (cache->tailcall_cache)
1335 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1336 }
1337
1338 static int
1339 dwarf2_frame_sniffer (const struct frame_unwind *self,
1340 struct frame_info *this_frame, void **this_cache)
1341 {
1342 if (!dwarf2_frame_unwinders_enabled_p)
1343 return 0;
1344
1345 /* Grab an address that is guarenteed to reside somewhere within the
1346 function. get_frame_pc(), with a no-return next function, can
1347 end up returning something past the end of this function's body.
1348 If the frame we're sniffing for is a signal frame whose start
1349 address is placed on the stack by the OS, its FDE must
1350 extend one byte before its start address or we could potentially
1351 select the FDE of the previous function. */
1352 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1353 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1354
1355 if (!fde)
1356 return 0;
1357
1358 /* On some targets, signal trampolines may have unwind information.
1359 We need to recognize them so that we set the frame type
1360 correctly. */
1361
1362 if (fde->cie->signal_frame
1363 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1364 this_frame))
1365 return self->type == SIGTRAMP_FRAME;
1366
1367 if (self->type != NORMAL_FRAME)
1368 return 0;
1369
1370 return 1;
1371 }
1372
1373 static const struct frame_unwind dwarf2_frame_unwind =
1374 {
1375 NORMAL_FRAME,
1376 dwarf2_frame_unwind_stop_reason,
1377 dwarf2_frame_this_id,
1378 dwarf2_frame_prev_register,
1379 NULL,
1380 dwarf2_frame_sniffer,
1381 dwarf2_frame_dealloc_cache
1382 };
1383
1384 static const struct frame_unwind dwarf2_signal_frame_unwind =
1385 {
1386 SIGTRAMP_FRAME,
1387 dwarf2_frame_unwind_stop_reason,
1388 dwarf2_frame_this_id,
1389 dwarf2_frame_prev_register,
1390 NULL,
1391 dwarf2_frame_sniffer,
1392
1393 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1394 NULL
1395 };
1396
1397 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1398
1399 void
1400 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1401 {
1402 /* TAILCALL_FRAME must be first to find the record by
1403 dwarf2_tailcall_sniffer_first. */
1404 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1405
1406 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1407 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1408 }
1409 \f
1410
1411 /* There is no explicitly defined relationship between the CFA and the
1412 location of frame's local variables and arguments/parameters.
1413 Therefore, frame base methods on this page should probably only be
1414 used as a last resort, just to avoid printing total garbage as a
1415 response to the "info frame" command. */
1416
1417 static CORE_ADDR
1418 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1419 {
1420 struct dwarf2_frame_cache *cache =
1421 dwarf2_frame_cache (this_frame, this_cache);
1422
1423 return cache->cfa;
1424 }
1425
1426 static const struct frame_base dwarf2_frame_base =
1427 {
1428 &dwarf2_frame_unwind,
1429 dwarf2_frame_base_address,
1430 dwarf2_frame_base_address,
1431 dwarf2_frame_base_address
1432 };
1433
1434 const struct frame_base *
1435 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1436 {
1437 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1438
1439 if (dwarf2_frame_find_fde (&block_addr, NULL))
1440 return &dwarf2_frame_base;
1441
1442 return NULL;
1443 }
1444
1445 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1446 the DWARF unwinder. This is used to implement
1447 DW_OP_call_frame_cfa. */
1448
1449 CORE_ADDR
1450 dwarf2_frame_cfa (struct frame_info *this_frame)
1451 {
1452 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1453 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1454 throw_error (NOT_AVAILABLE_ERROR,
1455 _("cfa not available for record btrace target"));
1456
1457 while (get_frame_type (this_frame) == INLINE_FRAME)
1458 this_frame = get_prev_frame (this_frame);
1459 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1460 throw_error (NOT_AVAILABLE_ERROR,
1461 _("can't compute CFA for this frame: "
1462 "required registers or memory are unavailable"));
1463
1464 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1465 throw_error (NOT_AVAILABLE_ERROR,
1466 _("can't compute CFA for this frame: "
1467 "frame base not available"));
1468
1469 return get_frame_base (this_frame);
1470 }
1471 \f
1472 const struct objfile_key<dwarf2_fde_table,
1473 gdb::noop_deleter<dwarf2_fde_table>>
1474 dwarf2_frame_objfile_data;
1475
1476 static unsigned int
1477 read_1_byte (bfd *abfd, const gdb_byte *buf)
1478 {
1479 return bfd_get_8 (abfd, buf);
1480 }
1481
1482 static unsigned int
1483 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1484 {
1485 return bfd_get_32 (abfd, buf);
1486 }
1487
1488 static ULONGEST
1489 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1490 {
1491 return bfd_get_64 (abfd, buf);
1492 }
1493
1494 static ULONGEST
1495 read_initial_length (bfd *abfd, const gdb_byte *buf,
1496 unsigned int *bytes_read_ptr)
1497 {
1498 ULONGEST result;
1499
1500 result = bfd_get_32 (abfd, buf);
1501 if (result == 0xffffffff)
1502 {
1503 result = bfd_get_64 (abfd, buf + 4);
1504 *bytes_read_ptr = 12;
1505 }
1506 else
1507 *bytes_read_ptr = 4;
1508
1509 return result;
1510 }
1511 \f
1512
1513 /* Pointer encoding helper functions. */
1514
1515 /* GCC supports exception handling based on DWARF2 CFI. However, for
1516 technical reasons, it encodes addresses in its FDE's in a different
1517 way. Several "pointer encodings" are supported. The encoding
1518 that's used for a particular FDE is determined by the 'R'
1519 augmentation in the associated CIE. The argument of this
1520 augmentation is a single byte.
1521
1522 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1523 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1524 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1525 address should be interpreted (absolute, relative to the current
1526 position in the FDE, ...). Bit 7, indicates that the address
1527 should be dereferenced. */
1528
1529 static gdb_byte
1530 encoding_for_size (unsigned int size)
1531 {
1532 switch (size)
1533 {
1534 case 2:
1535 return DW_EH_PE_udata2;
1536 case 4:
1537 return DW_EH_PE_udata4;
1538 case 8:
1539 return DW_EH_PE_udata8;
1540 default:
1541 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1542 }
1543 }
1544
1545 static CORE_ADDR
1546 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1547 int ptr_len, const gdb_byte *buf,
1548 unsigned int *bytes_read_ptr,
1549 CORE_ADDR func_base)
1550 {
1551 ptrdiff_t offset;
1552 CORE_ADDR base;
1553
1554 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1555 FDE's. */
1556 if (encoding & DW_EH_PE_indirect)
1557 internal_error (__FILE__, __LINE__,
1558 _("Unsupported encoding: DW_EH_PE_indirect"));
1559
1560 *bytes_read_ptr = 0;
1561
1562 switch (encoding & 0x70)
1563 {
1564 case DW_EH_PE_absptr:
1565 base = 0;
1566 break;
1567 case DW_EH_PE_pcrel:
1568 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1569 base += (buf - unit->dwarf_frame_buffer);
1570 break;
1571 case DW_EH_PE_datarel:
1572 base = unit->dbase;
1573 break;
1574 case DW_EH_PE_textrel:
1575 base = unit->tbase;
1576 break;
1577 case DW_EH_PE_funcrel:
1578 base = func_base;
1579 break;
1580 case DW_EH_PE_aligned:
1581 base = 0;
1582 offset = buf - unit->dwarf_frame_buffer;
1583 if ((offset % ptr_len) != 0)
1584 {
1585 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1586 buf += *bytes_read_ptr;
1587 }
1588 break;
1589 default:
1590 internal_error (__FILE__, __LINE__,
1591 _("Invalid or unsupported encoding"));
1592 }
1593
1594 if ((encoding & 0x07) == 0x00)
1595 {
1596 encoding |= encoding_for_size (ptr_len);
1597 if (bfd_get_sign_extend_vma (unit->abfd))
1598 encoding |= DW_EH_PE_signed;
1599 }
1600
1601 switch (encoding & 0x0f)
1602 {
1603 case DW_EH_PE_uleb128:
1604 {
1605 uint64_t value;
1606 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1607
1608 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1609 return base + value;
1610 }
1611 case DW_EH_PE_udata2:
1612 *bytes_read_ptr += 2;
1613 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1614 case DW_EH_PE_udata4:
1615 *bytes_read_ptr += 4;
1616 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1617 case DW_EH_PE_udata8:
1618 *bytes_read_ptr += 8;
1619 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1620 case DW_EH_PE_sleb128:
1621 {
1622 int64_t value;
1623 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1624
1625 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1626 return base + value;
1627 }
1628 case DW_EH_PE_sdata2:
1629 *bytes_read_ptr += 2;
1630 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1631 case DW_EH_PE_sdata4:
1632 *bytes_read_ptr += 4;
1633 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1634 case DW_EH_PE_sdata8:
1635 *bytes_read_ptr += 8;
1636 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1637 default:
1638 internal_error (__FILE__, __LINE__,
1639 _("Invalid or unsupported encoding"));
1640 }
1641 }
1642 \f
1643
1644 static int
1645 bsearch_cie_cmp (const void *key, const void *element)
1646 {
1647 ULONGEST cie_pointer = *(ULONGEST *) key;
1648 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1649
1650 if (cie_pointer == cie->cie_pointer)
1651 return 0;
1652
1653 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1654 }
1655
1656 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1657 static struct dwarf2_cie *
1658 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1659 {
1660 struct dwarf2_cie **p_cie;
1661
1662 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1663 bsearch be non-NULL. */
1664 if (cie_table->entries == NULL)
1665 {
1666 gdb_assert (cie_table->num_entries == 0);
1667 return NULL;
1668 }
1669
1670 p_cie = ((struct dwarf2_cie **)
1671 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1672 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
1673 if (p_cie != NULL)
1674 return *p_cie;
1675 return NULL;
1676 }
1677
1678 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1679 static void
1680 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1681 {
1682 const int n = cie_table->num_entries;
1683
1684 gdb_assert (n < 1
1685 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1686
1687 cie_table->entries
1688 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
1689 cie_table->entries[n] = cie;
1690 cie_table->num_entries = n + 1;
1691 }
1692
1693 static int
1694 bsearch_fde_cmp (const void *key, const void *element)
1695 {
1696 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1697 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1698
1699 if (seek_pc < fde->initial_location)
1700 return -1;
1701 if (seek_pc < fde->initial_location + fde->address_range)
1702 return 0;
1703 return 1;
1704 }
1705
1706 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1707 inital location associated with it into *PC. */
1708
1709 static struct dwarf2_fde *
1710 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1711 {
1712 for (objfile *objfile : current_program_space->objfiles ())
1713 {
1714 struct dwarf2_fde_table *fde_table;
1715 struct dwarf2_fde **p_fde;
1716 CORE_ADDR offset;
1717 CORE_ADDR seek_pc;
1718
1719 fde_table = dwarf2_frame_objfile_data.get (objfile);
1720 if (fde_table == NULL)
1721 {
1722 dwarf2_build_frame_info (objfile);
1723 fde_table = dwarf2_frame_objfile_data.get (objfile);
1724 }
1725 gdb_assert (fde_table != NULL);
1726
1727 if (fde_table->num_entries == 0)
1728 continue;
1729
1730 gdb_assert (objfile->section_offsets);
1731 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1732
1733 gdb_assert (fde_table->num_entries > 0);
1734 if (*pc < offset + fde_table->entries[0]->initial_location)
1735 continue;
1736
1737 seek_pc = *pc - offset;
1738 p_fde = ((struct dwarf2_fde **)
1739 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1740 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
1741 if (p_fde != NULL)
1742 {
1743 *pc = (*p_fde)->initial_location + offset;
1744 if (out_offset)
1745 *out_offset = offset;
1746 return *p_fde;
1747 }
1748 }
1749 return NULL;
1750 }
1751
1752 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1753 static void
1754 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1755 {
1756 if (fde->address_range == 0)
1757 /* Discard useless FDEs. */
1758 return;
1759
1760 fde_table->num_entries += 1;
1761 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1762 fde_table->num_entries);
1763 fde_table->entries[fde_table->num_entries - 1] = fde;
1764 }
1765
1766 #define DW64_CIE_ID 0xffffffffffffffffULL
1767
1768 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1769 or any of them. */
1770
1771 enum eh_frame_type
1772 {
1773 EH_CIE_TYPE_ID = 1 << 0,
1774 EH_FDE_TYPE_ID = 1 << 1,
1775 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1776 };
1777
1778 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1779 const gdb_byte *start,
1780 int eh_frame_p,
1781 struct dwarf2_cie_table *cie_table,
1782 struct dwarf2_fde_table *fde_table,
1783 enum eh_frame_type entry_type);
1784
1785 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1786 Return NULL if invalid input, otherwise the next byte to be processed. */
1787
1788 static const gdb_byte *
1789 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1790 int eh_frame_p,
1791 struct dwarf2_cie_table *cie_table,
1792 struct dwarf2_fde_table *fde_table,
1793 enum eh_frame_type entry_type)
1794 {
1795 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1796 const gdb_byte *buf, *end;
1797 ULONGEST length;
1798 unsigned int bytes_read;
1799 int dwarf64_p;
1800 ULONGEST cie_id;
1801 ULONGEST cie_pointer;
1802 int64_t sleb128;
1803 uint64_t uleb128;
1804
1805 buf = start;
1806 length = read_initial_length (unit->abfd, buf, &bytes_read);
1807 buf += bytes_read;
1808 end = buf + (size_t) length;
1809
1810 if (length == 0)
1811 return end;
1812
1813 /* Are we still within the section? */
1814 if (end <= buf || end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1815 return NULL;
1816
1817 /* Distinguish between 32 and 64-bit encoded frame info. */
1818 dwarf64_p = (bytes_read == 12);
1819
1820 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1821 if (eh_frame_p)
1822 cie_id = 0;
1823 else if (dwarf64_p)
1824 cie_id = DW64_CIE_ID;
1825 else
1826 cie_id = DW_CIE_ID;
1827
1828 if (dwarf64_p)
1829 {
1830 cie_pointer = read_8_bytes (unit->abfd, buf);
1831 buf += 8;
1832 }
1833 else
1834 {
1835 cie_pointer = read_4_bytes (unit->abfd, buf);
1836 buf += 4;
1837 }
1838
1839 if (cie_pointer == cie_id)
1840 {
1841 /* This is a CIE. */
1842 struct dwarf2_cie *cie;
1843 char *augmentation;
1844 unsigned int cie_version;
1845
1846 /* Check that a CIE was expected. */
1847 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1848 error (_("Found a CIE when not expecting it."));
1849
1850 /* Record the offset into the .debug_frame section of this CIE. */
1851 cie_pointer = start - unit->dwarf_frame_buffer;
1852
1853 /* Check whether we've already read it. */
1854 if (find_cie (cie_table, cie_pointer))
1855 return end;
1856
1857 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1858 cie->initial_instructions = NULL;
1859 cie->cie_pointer = cie_pointer;
1860
1861 /* The encoding for FDE's in a normal .debug_frame section
1862 depends on the target address size. */
1863 cie->encoding = DW_EH_PE_absptr;
1864
1865 /* We'll determine the final value later, but we need to
1866 initialize it conservatively. */
1867 cie->signal_frame = 0;
1868
1869 /* Check version number. */
1870 cie_version = read_1_byte (unit->abfd, buf);
1871 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1872 return NULL;
1873 cie->version = cie_version;
1874 buf += 1;
1875
1876 /* Interpret the interesting bits of the augmentation. */
1877 cie->augmentation = augmentation = (char *) buf;
1878 buf += (strlen (augmentation) + 1);
1879
1880 /* Ignore armcc augmentations. We only use them for quirks,
1881 and that doesn't happen until later. */
1882 if (startswith (augmentation, "armcc"))
1883 augmentation += strlen (augmentation);
1884
1885 /* The GCC 2.x "eh" augmentation has a pointer immediately
1886 following the augmentation string, so it must be handled
1887 first. */
1888 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1889 {
1890 /* Skip. */
1891 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1892 augmentation += 2;
1893 }
1894
1895 if (cie->version >= 4)
1896 {
1897 /* FIXME: check that this is the same as from the CU header. */
1898 cie->addr_size = read_1_byte (unit->abfd, buf);
1899 ++buf;
1900 cie->segment_size = read_1_byte (unit->abfd, buf);
1901 ++buf;
1902 }
1903 else
1904 {
1905 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1906 cie->segment_size = 0;
1907 }
1908 /* Address values in .eh_frame sections are defined to have the
1909 target's pointer size. Watchout: This breaks frame info for
1910 targets with pointer size < address size, unless a .debug_frame
1911 section exists as well. */
1912 if (eh_frame_p)
1913 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1914 else
1915 cie->ptr_size = cie->addr_size;
1916
1917 buf = gdb_read_uleb128 (buf, end, &uleb128);
1918 if (buf == NULL)
1919 return NULL;
1920 cie->code_alignment_factor = uleb128;
1921
1922 buf = gdb_read_sleb128 (buf, end, &sleb128);
1923 if (buf == NULL)
1924 return NULL;
1925 cie->data_alignment_factor = sleb128;
1926
1927 if (cie_version == 1)
1928 {
1929 cie->return_address_register = read_1_byte (unit->abfd, buf);
1930 ++buf;
1931 }
1932 else
1933 {
1934 buf = gdb_read_uleb128 (buf, end, &uleb128);
1935 if (buf == NULL)
1936 return NULL;
1937 cie->return_address_register = uleb128;
1938 }
1939
1940 cie->return_address_register
1941 = dwarf2_frame_adjust_regnum (gdbarch,
1942 cie->return_address_register,
1943 eh_frame_p);
1944
1945 cie->saw_z_augmentation = (*augmentation == 'z');
1946 if (cie->saw_z_augmentation)
1947 {
1948 uint64_t uleb_length;
1949
1950 buf = gdb_read_uleb128 (buf, end, &uleb_length);
1951 if (buf == NULL)
1952 return NULL;
1953 cie->initial_instructions = buf + uleb_length;
1954 augmentation++;
1955 }
1956
1957 while (*augmentation)
1958 {
1959 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1960 if (*augmentation == 'L')
1961 {
1962 /* Skip. */
1963 buf++;
1964 augmentation++;
1965 }
1966
1967 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1968 else if (*augmentation == 'R')
1969 {
1970 cie->encoding = *buf++;
1971 augmentation++;
1972 }
1973
1974 /* "P" indicates a personality routine in the CIE augmentation. */
1975 else if (*augmentation == 'P')
1976 {
1977 /* Skip. Avoid indirection since we throw away the result. */
1978 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1979 read_encoded_value (unit, encoding, cie->ptr_size,
1980 buf, &bytes_read, 0);
1981 buf += bytes_read;
1982 augmentation++;
1983 }
1984
1985 /* "S" indicates a signal frame, such that the return
1986 address must not be decremented to locate the call frame
1987 info for the previous frame; it might even be the first
1988 instruction of a function, so decrementing it would take
1989 us to a different function. */
1990 else if (*augmentation == 'S')
1991 {
1992 cie->signal_frame = 1;
1993 augmentation++;
1994 }
1995
1996 /* Otherwise we have an unknown augmentation. Assume that either
1997 there is no augmentation data, or we saw a 'z' prefix. */
1998 else
1999 {
2000 if (cie->initial_instructions)
2001 buf = cie->initial_instructions;
2002 break;
2003 }
2004 }
2005
2006 cie->initial_instructions = buf;
2007 cie->end = end;
2008 cie->unit = unit;
2009
2010 add_cie (cie_table, cie);
2011 }
2012 else
2013 {
2014 /* This is a FDE. */
2015 struct dwarf2_fde *fde;
2016 CORE_ADDR addr;
2017
2018 /* Check that an FDE was expected. */
2019 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2020 error (_("Found an FDE when not expecting it."));
2021
2022 /* In an .eh_frame section, the CIE pointer is the delta between the
2023 address within the FDE where the CIE pointer is stored and the
2024 address of the CIE. Convert it to an offset into the .eh_frame
2025 section. */
2026 if (eh_frame_p)
2027 {
2028 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2029 cie_pointer -= (dwarf64_p ? 8 : 4);
2030 }
2031
2032 /* In either case, validate the result is still within the section. */
2033 if (cie_pointer >= unit->dwarf_frame_size)
2034 return NULL;
2035
2036 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
2037 fde->cie = find_cie (cie_table, cie_pointer);
2038 if (fde->cie == NULL)
2039 {
2040 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2041 eh_frame_p, cie_table, fde_table,
2042 EH_CIE_TYPE_ID);
2043 fde->cie = find_cie (cie_table, cie_pointer);
2044 }
2045
2046 gdb_assert (fde->cie != NULL);
2047
2048 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2049 buf, &bytes_read, 0);
2050 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2051 buf += bytes_read;
2052
2053 fde->address_range =
2054 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2055 fde->cie->ptr_size, buf, &bytes_read, 0);
2056 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2057 fde->address_range = addr - fde->initial_location;
2058 buf += bytes_read;
2059
2060 /* A 'z' augmentation in the CIE implies the presence of an
2061 augmentation field in the FDE as well. The only thing known
2062 to be in here at present is the LSDA entry for EH. So we
2063 can skip the whole thing. */
2064 if (fde->cie->saw_z_augmentation)
2065 {
2066 uint64_t uleb_length;
2067
2068 buf = gdb_read_uleb128 (buf, end, &uleb_length);
2069 if (buf == NULL)
2070 return NULL;
2071 buf += uleb_length;
2072 if (buf > end)
2073 return NULL;
2074 }
2075
2076 fde->instructions = buf;
2077 fde->end = end;
2078
2079 fde->eh_frame_p = eh_frame_p;
2080
2081 add_fde (fde_table, fde);
2082 }
2083
2084 return end;
2085 }
2086
2087 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2088 expect an FDE or a CIE. */
2089
2090 static const gdb_byte *
2091 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2092 int eh_frame_p,
2093 struct dwarf2_cie_table *cie_table,
2094 struct dwarf2_fde_table *fde_table,
2095 enum eh_frame_type entry_type)
2096 {
2097 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2098 const gdb_byte *ret;
2099 ptrdiff_t start_offset;
2100
2101 while (1)
2102 {
2103 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2104 cie_table, fde_table, entry_type);
2105 if (ret != NULL)
2106 break;
2107
2108 /* We have corrupt input data of some form. */
2109
2110 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2111 and mismatches wrt padding and alignment of debug sections. */
2112 /* Note that there is no requirement in the standard for any
2113 alignment at all in the frame unwind sections. Testing for
2114 alignment before trying to interpret data would be incorrect.
2115
2116 However, GCC traditionally arranged for frame sections to be
2117 sized such that the FDE length and CIE fields happen to be
2118 aligned (in theory, for performance). This, unfortunately,
2119 was done with .align directives, which had the side effect of
2120 forcing the section to be aligned by the linker.
2121
2122 This becomes a problem when you have some other producer that
2123 creates frame sections that are not as strictly aligned. That
2124 produces a hole in the frame info that gets filled by the
2125 linker with zeros.
2126
2127 The GCC behaviour is arguably a bug, but it's effectively now
2128 part of the ABI, so we're now stuck with it, at least at the
2129 object file level. A smart linker may decide, in the process
2130 of compressing duplicate CIE information, that it can rewrite
2131 the entire output section without this extra padding. */
2132
2133 start_offset = start - unit->dwarf_frame_buffer;
2134 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2135 {
2136 start += 4 - (start_offset & 3);
2137 workaround = ALIGN4;
2138 continue;
2139 }
2140 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2141 {
2142 start += 8 - (start_offset & 7);
2143 workaround = ALIGN8;
2144 continue;
2145 }
2146
2147 /* Nothing left to try. Arrange to return as if we've consumed
2148 the entire input section. Hopefully we'll get valid info from
2149 the other of .debug_frame/.eh_frame. */
2150 workaround = FAIL;
2151 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2152 break;
2153 }
2154
2155 switch (workaround)
2156 {
2157 case NONE:
2158 break;
2159
2160 case ALIGN4:
2161 complaint (_("\
2162 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2163 unit->dwarf_frame_section->owner->filename,
2164 unit->dwarf_frame_section->name);
2165 break;
2166
2167 case ALIGN8:
2168 complaint (_("\
2169 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2170 unit->dwarf_frame_section->owner->filename,
2171 unit->dwarf_frame_section->name);
2172 break;
2173
2174 default:
2175 complaint (_("Corrupt data in %s:%s"),
2176 unit->dwarf_frame_section->owner->filename,
2177 unit->dwarf_frame_section->name);
2178 break;
2179 }
2180
2181 return ret;
2182 }
2183 \f
2184 static int
2185 qsort_fde_cmp (const void *a, const void *b)
2186 {
2187 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2188 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2189
2190 if (aa->initial_location == bb->initial_location)
2191 {
2192 if (aa->address_range != bb->address_range
2193 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2194 /* Linker bug, e.g. gold/10400.
2195 Work around it by keeping stable sort order. */
2196 return (a < b) ? -1 : 1;
2197 else
2198 /* Put eh_frame entries after debug_frame ones. */
2199 return aa->eh_frame_p - bb->eh_frame_p;
2200 }
2201
2202 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2203 }
2204
2205 void
2206 dwarf2_build_frame_info (struct objfile *objfile)
2207 {
2208 struct comp_unit *unit;
2209 const gdb_byte *frame_ptr;
2210 struct dwarf2_cie_table cie_table;
2211 struct dwarf2_fde_table fde_table;
2212 struct dwarf2_fde_table *fde_table2;
2213
2214 cie_table.num_entries = 0;
2215 cie_table.entries = NULL;
2216
2217 fde_table.num_entries = 0;
2218 fde_table.entries = NULL;
2219
2220 /* Build a minimal decoding of the DWARF2 compilation unit. */
2221 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
2222 unit->abfd = objfile->obfd;
2223 unit->objfile = objfile;
2224 unit->dbase = 0;
2225 unit->tbase = 0;
2226
2227 if (objfile->separate_debug_objfile_backlink == NULL)
2228 {
2229 /* Do not read .eh_frame from separate file as they must be also
2230 present in the main file. */
2231 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2232 &unit->dwarf_frame_section,
2233 &unit->dwarf_frame_buffer,
2234 &unit->dwarf_frame_size);
2235 if (unit->dwarf_frame_size)
2236 {
2237 asection *got, *txt;
2238
2239 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2240 that is used for the i386/amd64 target, which currently is
2241 the only target in GCC that supports/uses the
2242 DW_EH_PE_datarel encoding. */
2243 got = bfd_get_section_by_name (unit->abfd, ".got");
2244 if (got)
2245 unit->dbase = got->vma;
2246
2247 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2248 so far. */
2249 txt = bfd_get_section_by_name (unit->abfd, ".text");
2250 if (txt)
2251 unit->tbase = txt->vma;
2252
2253 try
2254 {
2255 frame_ptr = unit->dwarf_frame_buffer;
2256 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2257 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2258 &cie_table, &fde_table,
2259 EH_CIE_OR_FDE_TYPE_ID);
2260 }
2261
2262 catch (const gdb_exception_error &e)
2263 {
2264 warning (_("skipping .eh_frame info of %s: %s"),
2265 objfile_name (objfile), e.what ());
2266
2267 if (fde_table.num_entries != 0)
2268 {
2269 xfree (fde_table.entries);
2270 fde_table.entries = NULL;
2271 fde_table.num_entries = 0;
2272 }
2273 /* The cie_table is discarded by the next if. */
2274 }
2275
2276 if (cie_table.num_entries != 0)
2277 {
2278 /* Reinit cie_table: debug_frame has different CIEs. */
2279 xfree (cie_table.entries);
2280 cie_table.num_entries = 0;
2281 cie_table.entries = NULL;
2282 }
2283 }
2284 }
2285
2286 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2287 &unit->dwarf_frame_section,
2288 &unit->dwarf_frame_buffer,
2289 &unit->dwarf_frame_size);
2290 if (unit->dwarf_frame_size)
2291 {
2292 int num_old_fde_entries = fde_table.num_entries;
2293
2294 try
2295 {
2296 frame_ptr = unit->dwarf_frame_buffer;
2297 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2298 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2299 &cie_table, &fde_table,
2300 EH_CIE_OR_FDE_TYPE_ID);
2301 }
2302 catch (const gdb_exception_error &e)
2303 {
2304 warning (_("skipping .debug_frame info of %s: %s"),
2305 objfile_name (objfile), e.what ());
2306
2307 if (fde_table.num_entries != 0)
2308 {
2309 fde_table.num_entries = num_old_fde_entries;
2310 if (num_old_fde_entries == 0)
2311 {
2312 xfree (fde_table.entries);
2313 fde_table.entries = NULL;
2314 }
2315 else
2316 {
2317 fde_table.entries
2318 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2319 fde_table.num_entries);
2320 }
2321 }
2322 fde_table.num_entries = num_old_fde_entries;
2323 /* The cie_table is discarded by the next if. */
2324 }
2325 }
2326
2327 /* Discard the cie_table, it is no longer needed. */
2328 if (cie_table.num_entries != 0)
2329 {
2330 xfree (cie_table.entries);
2331 cie_table.entries = NULL; /* Paranoia. */
2332 cie_table.num_entries = 0; /* Paranoia. */
2333 }
2334
2335 /* Copy fde_table to obstack: it is needed at runtime. */
2336 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2337
2338 if (fde_table.num_entries == 0)
2339 {
2340 fde_table2->entries = NULL;
2341 fde_table2->num_entries = 0;
2342 }
2343 else
2344 {
2345 struct dwarf2_fde *fde_prev = NULL;
2346 struct dwarf2_fde *first_non_zero_fde = NULL;
2347 int i;
2348
2349 /* Prepare FDE table for lookups. */
2350 qsort (fde_table.entries, fde_table.num_entries,
2351 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2352
2353 /* Check for leftovers from --gc-sections. The GNU linker sets
2354 the relevant symbols to zero, but doesn't zero the FDE *end*
2355 ranges because there's no relocation there. It's (offset,
2356 length), not (start, end). On targets where address zero is
2357 just another valid address this can be a problem, since the
2358 FDEs appear to be non-empty in the output --- we could pick
2359 out the wrong FDE. To work around this, when overlaps are
2360 detected, we prefer FDEs that do not start at zero.
2361
2362 Start by finding the first FDE with non-zero start. Below
2363 we'll discard all FDEs that start at zero and overlap this
2364 one. */
2365 for (i = 0; i < fde_table.num_entries; i++)
2366 {
2367 struct dwarf2_fde *fde = fde_table.entries[i];
2368
2369 if (fde->initial_location != 0)
2370 {
2371 first_non_zero_fde = fde;
2372 break;
2373 }
2374 }
2375
2376 /* Since we'll be doing bsearch, squeeze out identical (except
2377 for eh_frame_p) fde entries so bsearch result is predictable.
2378 Also discard leftovers from --gc-sections. */
2379 fde_table2->num_entries = 0;
2380 for (i = 0; i < fde_table.num_entries; i++)
2381 {
2382 struct dwarf2_fde *fde = fde_table.entries[i];
2383
2384 if (fde->initial_location == 0
2385 && first_non_zero_fde != NULL
2386 && (first_non_zero_fde->initial_location
2387 < fde->initial_location + fde->address_range))
2388 continue;
2389
2390 if (fde_prev != NULL
2391 && fde_prev->initial_location == fde->initial_location)
2392 continue;
2393
2394 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2395 sizeof (fde_table.entries[0]));
2396 ++fde_table2->num_entries;
2397 fde_prev = fde;
2398 }
2399 fde_table2->entries
2400 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2401
2402 /* Discard the original fde_table. */
2403 xfree (fde_table.entries);
2404 }
2405
2406 dwarf2_frame_objfile_data.set (objfile, fde_table2);
2407 }
2408
2409 /* Handle 'maintenance show dwarf unwinders'. */
2410
2411 static void
2412 show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2413 struct cmd_list_element *c,
2414 const char *value)
2415 {
2416 fprintf_filtered (file,
2417 _("The DWARF stack unwinders are currently %s.\n"),
2418 value);
2419 }
2420
2421 void
2422 _initialize_dwarf2_frame (void)
2423 {
2424 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2425
2426 add_setshow_boolean_cmd ("unwinders", class_obscure,
2427 &dwarf2_frame_unwinders_enabled_p , _("\
2428 Set whether the DWARF stack frame unwinders are used."), _("\
2429 Show whether the DWARF stack frame unwinders are used."), _("\
2430 When enabled the DWARF stack frame unwinders can be used for architectures\n\
2431 that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2432 architecture that doesn't support them will have no effect."),
2433 NULL,
2434 show_dwarf_unwinders_enabled_p,
2435 &set_dwarf_cmdlist,
2436 &show_dwarf_cmdlist);
2437
2438 #if GDB_SELF_TEST
2439 selftests::register_test_foreach_arch ("execute_cfa_program",
2440 selftests::execute_cfa_program_test);
2441 #endif
2442 }
This page took 0.079289 seconds and 4 git commands to generate.