Change all_objfiles adapter to be a method on program_space
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "dwarf2read.h"
39 #include "ax.h"
40 #include "dwarf2loc.h"
41 #include "dwarf2-frame-tailcall.h"
42 #if GDB_SELF_TEST
43 #include "selftest.h"
44 #include "selftest-arch.h"
45 #endif
46
47 struct comp_unit;
48
49 /* Call Frame Information (CFI). */
50
51 /* Common Information Entry (CIE). */
52
53 struct dwarf2_cie
54 {
55 /* Computation Unit for this CIE. */
56 struct comp_unit *unit;
57
58 /* Offset into the .debug_frame section where this CIE was found.
59 Used to identify this CIE. */
60 ULONGEST cie_pointer;
61
62 /* Constant that is factored out of all advance location
63 instructions. */
64 ULONGEST code_alignment_factor;
65
66 /* Constants that is factored out of all offset instructions. */
67 LONGEST data_alignment_factor;
68
69 /* Return address column. */
70 ULONGEST return_address_register;
71
72 /* Instruction sequence to initialize a register set. */
73 const gdb_byte *initial_instructions;
74 const gdb_byte *end;
75
76 /* Saved augmentation, in case it's needed later. */
77 char *augmentation;
78
79 /* Encoding of addresses. */
80 gdb_byte encoding;
81
82 /* Target address size in bytes. */
83 int addr_size;
84
85 /* Target pointer size in bytes. */
86 int ptr_size;
87
88 /* True if a 'z' augmentation existed. */
89 unsigned char saw_z_augmentation;
90
91 /* True if an 'S' augmentation existed. */
92 unsigned char signal_frame;
93
94 /* The version recorded in the CIE. */
95 unsigned char version;
96
97 /* The segment size. */
98 unsigned char segment_size;
99 };
100
101 struct dwarf2_cie_table
102 {
103 int num_entries;
104 struct dwarf2_cie **entries;
105 };
106
107 /* Frame Description Entry (FDE). */
108
109 struct dwarf2_fde
110 {
111 /* CIE for this FDE. */
112 struct dwarf2_cie *cie;
113
114 /* First location associated with this FDE. */
115 CORE_ADDR initial_location;
116
117 /* Number of bytes of program instructions described by this FDE. */
118 CORE_ADDR address_range;
119
120 /* Instruction sequence. */
121 const gdb_byte *instructions;
122 const gdb_byte *end;
123
124 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
125 section. */
126 unsigned char eh_frame_p;
127 };
128
129 struct dwarf2_fde_table
130 {
131 int num_entries;
132 struct dwarf2_fde **entries;
133 };
134
135 /* A minimal decoding of DWARF2 compilation units. We only decode
136 what's needed to get to the call frame information. */
137
138 struct comp_unit
139 {
140 /* Keep the bfd convenient. */
141 bfd *abfd;
142
143 struct objfile *objfile;
144
145 /* Pointer to the .debug_frame section loaded into memory. */
146 const gdb_byte *dwarf_frame_buffer;
147
148 /* Length of the loaded .debug_frame section. */
149 bfd_size_type dwarf_frame_size;
150
151 /* Pointer to the .debug_frame section. */
152 asection *dwarf_frame_section;
153
154 /* Base for DW_EH_PE_datarel encodings. */
155 bfd_vma dbase;
156
157 /* Base for DW_EH_PE_textrel encodings. */
158 bfd_vma tbase;
159 };
160
161 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
162 CORE_ADDR *out_offset);
163
164 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
165 int eh_frame_p);
166
167 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
168 int ptr_len, const gdb_byte *buf,
169 unsigned int *bytes_read_ptr,
170 CORE_ADDR func_base);
171 \f
172
173 /* See dwarf2-frame.h. */
174 int dwarf2_frame_unwinders_enabled_p = 1;
175
176 /* Store the length the expression for the CFA in the `cfa_reg' field,
177 which is unused in that case. */
178 #define cfa_exp_len cfa_reg
179
180 dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
181 : pc (pc_), data_align (cie->data_alignment_factor),
182 code_align (cie->code_alignment_factor),
183 retaddr_column (cie->return_address_register)
184 {
185 }
186 \f
187
188 /* Helper functions for execute_stack_op. */
189
190 static CORE_ADDR
191 read_addr_from_reg (struct frame_info *this_frame, int reg)
192 {
193 struct gdbarch *gdbarch = get_frame_arch (this_frame);
194 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
195
196 return address_from_register (regnum, this_frame);
197 }
198
199 /* Execute the required actions for both the DW_CFA_restore and
200 DW_CFA_restore_extended instructions. */
201 static void
202 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
203 struct dwarf2_frame_state *fs, int eh_frame_p)
204 {
205 ULONGEST reg;
206
207 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
208 fs->regs.alloc_regs (reg + 1);
209
210 /* Check if this register was explicitly initialized in the
211 CIE initial instructions. If not, default the rule to
212 UNSPECIFIED. */
213 if (reg < fs->initial.reg.size ())
214 fs->regs.reg[reg] = fs->initial.reg[reg];
215 else
216 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
217
218 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
219 {
220 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
221
222 complaint (_("\
223 incomplete CFI data; DW_CFA_restore unspecified\n\
224 register %s (#%d) at %s"),
225 gdbarch_register_name (gdbarch, regnum), regnum,
226 paddress (gdbarch, fs->pc));
227 }
228 }
229
230 class dwarf_expr_executor : public dwarf_expr_context
231 {
232 public:
233
234 struct frame_info *this_frame;
235
236 CORE_ADDR read_addr_from_reg (int reg) override
237 {
238 return ::read_addr_from_reg (this_frame, reg);
239 }
240
241 struct value *get_reg_value (struct type *type, int reg) override
242 {
243 struct gdbarch *gdbarch = get_frame_arch (this_frame);
244 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
245
246 return value_from_register (type, regnum, this_frame);
247 }
248
249 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
250 {
251 read_memory (addr, buf, len);
252 }
253
254 void get_frame_base (const gdb_byte **start, size_t *length) override
255 {
256 invalid ("DW_OP_fbreg");
257 }
258
259 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
260 union call_site_parameter_u kind_u,
261 int deref_size) override
262 {
263 invalid ("DW_OP_entry_value");
264 }
265
266 CORE_ADDR get_object_address () override
267 {
268 invalid ("DW_OP_push_object_address");
269 }
270
271 CORE_ADDR get_frame_cfa () override
272 {
273 invalid ("DW_OP_call_frame_cfa");
274 }
275
276 CORE_ADDR get_tls_address (CORE_ADDR offset) override
277 {
278 invalid ("DW_OP_form_tls_address");
279 }
280
281 void dwarf_call (cu_offset die_offset) override
282 {
283 invalid ("DW_OP_call*");
284 }
285
286 struct value *dwarf_variable_value (sect_offset sect_off) override
287 {
288 invalid ("DW_OP_GNU_variable_value");
289 }
290
291 CORE_ADDR get_addr_index (unsigned int index) override
292 {
293 invalid ("DW_OP_GNU_addr_index");
294 }
295
296 private:
297
298 void invalid (const char *op) ATTRIBUTE_NORETURN
299 {
300 error (_("%s is invalid in this context"), op);
301 }
302 };
303
304 static CORE_ADDR
305 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
306 CORE_ADDR offset, struct frame_info *this_frame,
307 CORE_ADDR initial, int initial_in_stack_memory)
308 {
309 CORE_ADDR result;
310
311 dwarf_expr_executor ctx;
312 scoped_value_mark free_values;
313
314 ctx.this_frame = this_frame;
315 ctx.gdbarch = get_frame_arch (this_frame);
316 ctx.addr_size = addr_size;
317 ctx.ref_addr_size = -1;
318 ctx.offset = offset;
319
320 ctx.push_address (initial, initial_in_stack_memory);
321 ctx.eval (exp, len);
322
323 if (ctx.location == DWARF_VALUE_MEMORY)
324 result = ctx.fetch_address (0);
325 else if (ctx.location == DWARF_VALUE_REGISTER)
326 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
327 else
328 {
329 /* This is actually invalid DWARF, but if we ever do run across
330 it somehow, we might as well support it. So, instead, report
331 it as unimplemented. */
332 error (_("\
333 Not implemented: computing unwound register using explicit value operator"));
334 }
335
336 return result;
337 }
338 \f
339
340 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
341 PC. Modify FS state accordingly. Return current INSN_PTR where the
342 execution has stopped, one can resume it on the next call. */
343
344 static const gdb_byte *
345 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
346 const gdb_byte *insn_end, struct gdbarch *gdbarch,
347 CORE_ADDR pc, struct dwarf2_frame_state *fs)
348 {
349 int eh_frame_p = fde->eh_frame_p;
350 unsigned int bytes_read;
351 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
352
353 while (insn_ptr < insn_end && fs->pc <= pc)
354 {
355 gdb_byte insn = *insn_ptr++;
356 uint64_t utmp, reg;
357 int64_t offset;
358
359 if ((insn & 0xc0) == DW_CFA_advance_loc)
360 fs->pc += (insn & 0x3f) * fs->code_align;
361 else if ((insn & 0xc0) == DW_CFA_offset)
362 {
363 reg = insn & 0x3f;
364 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
365 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
366 offset = utmp * fs->data_align;
367 fs->regs.alloc_regs (reg + 1);
368 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
369 fs->regs.reg[reg].loc.offset = offset;
370 }
371 else if ((insn & 0xc0) == DW_CFA_restore)
372 {
373 reg = insn & 0x3f;
374 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
375 }
376 else
377 {
378 switch (insn)
379 {
380 case DW_CFA_set_loc:
381 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
382 fde->cie->ptr_size, insn_ptr,
383 &bytes_read, fde->initial_location);
384 /* Apply the objfile offset for relocatable objects. */
385 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
386 SECT_OFF_TEXT (fde->cie->unit->objfile));
387 insn_ptr += bytes_read;
388 break;
389
390 case DW_CFA_advance_loc1:
391 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
392 fs->pc += utmp * fs->code_align;
393 insn_ptr++;
394 break;
395 case DW_CFA_advance_loc2:
396 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
397 fs->pc += utmp * fs->code_align;
398 insn_ptr += 2;
399 break;
400 case DW_CFA_advance_loc4:
401 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
402 fs->pc += utmp * fs->code_align;
403 insn_ptr += 4;
404 break;
405
406 case DW_CFA_offset_extended:
407 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
408 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
409 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
410 offset = utmp * fs->data_align;
411 fs->regs.alloc_regs (reg + 1);
412 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
413 fs->regs.reg[reg].loc.offset = offset;
414 break;
415
416 case DW_CFA_restore_extended:
417 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
418 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
419 break;
420
421 case DW_CFA_undefined:
422 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
423 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
424 fs->regs.alloc_regs (reg + 1);
425 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
426 break;
427
428 case DW_CFA_same_value:
429 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
430 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
431 fs->regs.alloc_regs (reg + 1);
432 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
433 break;
434
435 case DW_CFA_register:
436 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
437 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
438 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
439 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
440 fs->regs.alloc_regs (reg + 1);
441 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
442 fs->regs.reg[reg].loc.reg = utmp;
443 break;
444
445 case DW_CFA_remember_state:
446 {
447 struct dwarf2_frame_state_reg_info *new_rs;
448
449 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
450 fs->regs.prev = new_rs;
451 }
452 break;
453
454 case DW_CFA_restore_state:
455 {
456 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
457
458 if (old_rs == NULL)
459 {
460 complaint (_("\
461 bad CFI data; mismatched DW_CFA_restore_state at %s"),
462 paddress (gdbarch, fs->pc));
463 }
464 else
465 fs->regs = std::move (*old_rs);
466 }
467 break;
468
469 case DW_CFA_def_cfa:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
471 fs->regs.cfa_reg = reg;
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473
474 if (fs->armcc_cfa_offsets_sf)
475 utmp *= fs->data_align;
476
477 fs->regs.cfa_offset = utmp;
478 fs->regs.cfa_how = CFA_REG_OFFSET;
479 break;
480
481 case DW_CFA_def_cfa_register:
482 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
483 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
484 eh_frame_p);
485 fs->regs.cfa_how = CFA_REG_OFFSET;
486 break;
487
488 case DW_CFA_def_cfa_offset:
489 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
490
491 if (fs->armcc_cfa_offsets_sf)
492 utmp *= fs->data_align;
493
494 fs->regs.cfa_offset = utmp;
495 /* cfa_how deliberately not set. */
496 break;
497
498 case DW_CFA_nop:
499 break;
500
501 case DW_CFA_def_cfa_expression:
502 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
503 fs->regs.cfa_exp_len = utmp;
504 fs->regs.cfa_exp = insn_ptr;
505 fs->regs.cfa_how = CFA_EXP;
506 insn_ptr += fs->regs.cfa_exp_len;
507 break;
508
509 case DW_CFA_expression:
510 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
511 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
512 fs->regs.alloc_regs (reg + 1);
513 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
514 fs->regs.reg[reg].loc.exp.start = insn_ptr;
515 fs->regs.reg[reg].loc.exp.len = utmp;
516 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
517 insn_ptr += utmp;
518 break;
519
520 case DW_CFA_offset_extended_sf:
521 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
522 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
523 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
524 offset *= fs->data_align;
525 fs->regs.alloc_regs (reg + 1);
526 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
527 fs->regs.reg[reg].loc.offset = offset;
528 break;
529
530 case DW_CFA_val_offset:
531 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
532 fs->regs.alloc_regs (reg + 1);
533 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
534 offset = utmp * fs->data_align;
535 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
536 fs->regs.reg[reg].loc.offset = offset;
537 break;
538
539 case DW_CFA_val_offset_sf:
540 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
541 fs->regs.alloc_regs (reg + 1);
542 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
543 offset *= fs->data_align;
544 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
545 fs->regs.reg[reg].loc.offset = offset;
546 break;
547
548 case DW_CFA_val_expression:
549 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
550 fs->regs.alloc_regs (reg + 1);
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
552 fs->regs.reg[reg].loc.exp.start = insn_ptr;
553 fs->regs.reg[reg].loc.exp.len = utmp;
554 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
555 insn_ptr += utmp;
556 break;
557
558 case DW_CFA_def_cfa_sf:
559 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
560 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
561 eh_frame_p);
562 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
563 fs->regs.cfa_offset = offset * fs->data_align;
564 fs->regs.cfa_how = CFA_REG_OFFSET;
565 break;
566
567 case DW_CFA_def_cfa_offset_sf:
568 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
569 fs->regs.cfa_offset = offset * fs->data_align;
570 /* cfa_how deliberately not set. */
571 break;
572
573 case DW_CFA_GNU_args_size:
574 /* Ignored. */
575 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
576 break;
577
578 case DW_CFA_GNU_negative_offset_extended:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
582 offset = utmp * fs->data_align;
583 fs->regs.alloc_regs (reg + 1);
584 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
585 fs->regs.reg[reg].loc.offset = -offset;
586 break;
587
588 default:
589 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
590 {
591 /* Handle vendor-specific CFI for different architectures. */
592 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
593 error (_("Call Frame Instruction op %d in vendor extension "
594 "space is not handled on this architecture."),
595 insn);
596 }
597 else
598 internal_error (__FILE__, __LINE__,
599 _("Unknown CFI encountered."));
600 }
601 }
602 }
603
604 if (fs->initial.reg.empty ())
605 {
606 /* Don't allow remember/restore between CIE and FDE programs. */
607 delete fs->regs.prev;
608 fs->regs.prev = NULL;
609 }
610
611 return insn_ptr;
612 }
613
614 #if GDB_SELF_TEST
615
616 namespace selftests {
617
618 /* Unit test to function execute_cfa_program. */
619
620 static void
621 execute_cfa_program_test (struct gdbarch *gdbarch)
622 {
623 struct dwarf2_fde fde;
624 struct dwarf2_cie cie;
625
626 memset (&fde, 0, sizeof fde);
627 memset (&cie, 0, sizeof cie);
628
629 cie.data_alignment_factor = -4;
630 cie.code_alignment_factor = 2;
631 fde.cie = &cie;
632
633 dwarf2_frame_state fs (0, fde.cie);
634
635 gdb_byte insns[] =
636 {
637 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
638 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
639 DW_CFA_remember_state,
640 DW_CFA_restore_state,
641 };
642
643 const gdb_byte *insn_end = insns + sizeof (insns);
644 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
645 0, &fs);
646
647 SELF_CHECK (out == insn_end);
648 SELF_CHECK (fs.pc == 0);
649
650 /* The instructions above only use r1 and r2, but the register numbers
651 used are adjusted by dwarf2_frame_adjust_regnum. */
652 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
653 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
654
655 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
656
657 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
658 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
659
660 for (auto i = 0; i < fs.regs.reg.size (); i++)
661 if (i != r2)
662 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
663
664 SELF_CHECK (fs.regs.cfa_reg == 1);
665 SELF_CHECK (fs.regs.cfa_offset == 4);
666 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
667 SELF_CHECK (fs.regs.cfa_exp == NULL);
668 SELF_CHECK (fs.regs.prev == NULL);
669 }
670
671 } // namespace selftests
672 #endif /* GDB_SELF_TEST */
673
674 \f
675
676 /* Architecture-specific operations. */
677
678 /* Per-architecture data key. */
679 static struct gdbarch_data *dwarf2_frame_data;
680
681 struct dwarf2_frame_ops
682 {
683 /* Pre-initialize the register state REG for register REGNUM. */
684 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
685 struct frame_info *);
686
687 /* Check whether the THIS_FRAME is a signal trampoline. */
688 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
689
690 /* Convert .eh_frame register number to DWARF register number, or
691 adjust .debug_frame register number. */
692 int (*adjust_regnum) (struct gdbarch *, int, int);
693 };
694
695 /* Default architecture-specific register state initialization
696 function. */
697
698 static void
699 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
700 struct dwarf2_frame_state_reg *reg,
701 struct frame_info *this_frame)
702 {
703 /* If we have a register that acts as a program counter, mark it as
704 a destination for the return address. If we have a register that
705 serves as the stack pointer, arrange for it to be filled with the
706 call frame address (CFA). The other registers are marked as
707 unspecified.
708
709 We copy the return address to the program counter, since many
710 parts in GDB assume that it is possible to get the return address
711 by unwinding the program counter register. However, on ISA's
712 with a dedicated return address register, the CFI usually only
713 contains information to unwind that return address register.
714
715 The reason we're treating the stack pointer special here is
716 because in many cases GCC doesn't emit CFI for the stack pointer
717 and implicitly assumes that it is equal to the CFA. This makes
718 some sense since the DWARF specification (version 3, draft 8,
719 p. 102) says that:
720
721 "Typically, the CFA is defined to be the value of the stack
722 pointer at the call site in the previous frame (which may be
723 different from its value on entry to the current frame)."
724
725 However, this isn't true for all platforms supported by GCC
726 (e.g. IBM S/390 and zSeries). Those architectures should provide
727 their own architecture-specific initialization function. */
728
729 if (regnum == gdbarch_pc_regnum (gdbarch))
730 reg->how = DWARF2_FRAME_REG_RA;
731 else if (regnum == gdbarch_sp_regnum (gdbarch))
732 reg->how = DWARF2_FRAME_REG_CFA;
733 }
734
735 /* Return a default for the architecture-specific operations. */
736
737 static void *
738 dwarf2_frame_init (struct obstack *obstack)
739 {
740 struct dwarf2_frame_ops *ops;
741
742 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
743 ops->init_reg = dwarf2_frame_default_init_reg;
744 return ops;
745 }
746
747 /* Set the architecture-specific register state initialization
748 function for GDBARCH to INIT_REG. */
749
750 void
751 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
752 void (*init_reg) (struct gdbarch *, int,
753 struct dwarf2_frame_state_reg *,
754 struct frame_info *))
755 {
756 struct dwarf2_frame_ops *ops
757 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
758
759 ops->init_reg = init_reg;
760 }
761
762 /* Pre-initialize the register state REG for register REGNUM. */
763
764 static void
765 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
766 struct dwarf2_frame_state_reg *reg,
767 struct frame_info *this_frame)
768 {
769 struct dwarf2_frame_ops *ops
770 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
771
772 ops->init_reg (gdbarch, regnum, reg, this_frame);
773 }
774
775 /* Set the architecture-specific signal trampoline recognition
776 function for GDBARCH to SIGNAL_FRAME_P. */
777
778 void
779 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
780 int (*signal_frame_p) (struct gdbarch *,
781 struct frame_info *))
782 {
783 struct dwarf2_frame_ops *ops
784 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
785
786 ops->signal_frame_p = signal_frame_p;
787 }
788
789 /* Query the architecture-specific signal frame recognizer for
790 THIS_FRAME. */
791
792 static int
793 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
794 struct frame_info *this_frame)
795 {
796 struct dwarf2_frame_ops *ops
797 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
798
799 if (ops->signal_frame_p == NULL)
800 return 0;
801 return ops->signal_frame_p (gdbarch, this_frame);
802 }
803
804 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
805 register numbers. */
806
807 void
808 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
809 int (*adjust_regnum) (struct gdbarch *,
810 int, int))
811 {
812 struct dwarf2_frame_ops *ops
813 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
814
815 ops->adjust_regnum = adjust_regnum;
816 }
817
818 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
819 register. */
820
821 static int
822 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
823 int regnum, int eh_frame_p)
824 {
825 struct dwarf2_frame_ops *ops
826 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
827
828 if (ops->adjust_regnum == NULL)
829 return regnum;
830 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
831 }
832
833 static void
834 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
835 struct dwarf2_fde *fde)
836 {
837 struct compunit_symtab *cust;
838
839 cust = find_pc_compunit_symtab (fs->pc);
840 if (cust == NULL)
841 return;
842
843 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
844 {
845 if (fde->cie->version == 1)
846 fs->armcc_cfa_offsets_sf = 1;
847
848 if (fde->cie->version == 1)
849 fs->armcc_cfa_offsets_reversed = 1;
850
851 /* The reversed offset problem is present in some compilers
852 using DWARF3, but it was eventually fixed. Check the ARM
853 defined augmentations, which are in the format "armcc" followed
854 by a list of one-character options. The "+" option means
855 this problem is fixed (no quirk needed). If the armcc
856 augmentation is missing, the quirk is needed. */
857 if (fde->cie->version == 3
858 && (!startswith (fde->cie->augmentation, "armcc")
859 || strchr (fde->cie->augmentation + 5, '+') == NULL))
860 fs->armcc_cfa_offsets_reversed = 1;
861
862 return;
863 }
864 }
865 \f
866
867 /* See dwarf2-frame.h. */
868
869 int
870 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
871 struct dwarf2_per_cu_data *data,
872 int *regnum_out, LONGEST *offset_out,
873 CORE_ADDR *text_offset_out,
874 const gdb_byte **cfa_start_out,
875 const gdb_byte **cfa_end_out)
876 {
877 struct dwarf2_fde *fde;
878 CORE_ADDR text_offset;
879 CORE_ADDR pc1 = pc;
880
881 /* Find the correct FDE. */
882 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
883 if (fde == NULL)
884 error (_("Could not compute CFA; needed to translate this expression"));
885
886 dwarf2_frame_state fs (pc1, fde->cie);
887
888 /* Check for "quirks" - known bugs in producers. */
889 dwarf2_frame_find_quirks (&fs, fde);
890
891 /* First decode all the insns in the CIE. */
892 execute_cfa_program (fde, fde->cie->initial_instructions,
893 fde->cie->end, gdbarch, pc, &fs);
894
895 /* Save the initialized register set. */
896 fs.initial = fs.regs;
897
898 /* Then decode the insns in the FDE up to our target PC. */
899 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
900
901 /* Calculate the CFA. */
902 switch (fs.regs.cfa_how)
903 {
904 case CFA_REG_OFFSET:
905 {
906 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
907
908 *regnum_out = regnum;
909 if (fs.armcc_cfa_offsets_reversed)
910 *offset_out = -fs.regs.cfa_offset;
911 else
912 *offset_out = fs.regs.cfa_offset;
913 return 1;
914 }
915
916 case CFA_EXP:
917 *text_offset_out = text_offset;
918 *cfa_start_out = fs.regs.cfa_exp;
919 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
920 return 0;
921
922 default:
923 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
924 }
925 }
926
927 \f
928 struct dwarf2_frame_cache
929 {
930 /* DWARF Call Frame Address. */
931 CORE_ADDR cfa;
932
933 /* Set if the return address column was marked as unavailable
934 (required non-collected memory or registers to compute). */
935 int unavailable_retaddr;
936
937 /* Set if the return address column was marked as undefined. */
938 int undefined_retaddr;
939
940 /* Saved registers, indexed by GDB register number, not by DWARF
941 register number. */
942 struct dwarf2_frame_state_reg *reg;
943
944 /* Return address register. */
945 struct dwarf2_frame_state_reg retaddr_reg;
946
947 /* Target address size in bytes. */
948 int addr_size;
949
950 /* The .text offset. */
951 CORE_ADDR text_offset;
952
953 /* True if we already checked whether this frame is the bottom frame
954 of a virtual tail call frame chain. */
955 int checked_tailcall_bottom;
956
957 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
958 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
959 involved. Non-bottom frames of a virtual tail call frames chain use
960 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
961 them. */
962 void *tailcall_cache;
963
964 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
965 base to get the SP, to simulate the return address pushed on the
966 stack. */
967 LONGEST entry_cfa_sp_offset;
968 int entry_cfa_sp_offset_p;
969 };
970
971 static struct dwarf2_frame_cache *
972 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
973 {
974 struct gdbarch *gdbarch = get_frame_arch (this_frame);
975 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
976 struct dwarf2_frame_cache *cache;
977 struct dwarf2_fde *fde;
978 CORE_ADDR entry_pc;
979 const gdb_byte *instr;
980
981 if (*this_cache)
982 return (struct dwarf2_frame_cache *) *this_cache;
983
984 /* Allocate a new cache. */
985 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
986 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
987 *this_cache = cache;
988
989 /* Unwind the PC.
990
991 Note that if the next frame is never supposed to return (i.e. a call
992 to abort), the compiler might optimize away the instruction at
993 its return address. As a result the return address will
994 point at some random instruction, and the CFI for that
995 instruction is probably worthless to us. GCC's unwinder solves
996 this problem by substracting 1 from the return address to get an
997 address in the middle of a presumed call instruction (or the
998 instruction in the associated delay slot). This should only be
999 done for "normal" frames and not for resume-type frames (signal
1000 handlers, sentinel frames, dummy frames). The function
1001 get_frame_address_in_block does just this. It's not clear how
1002 reliable the method is though; there is the potential for the
1003 register state pre-call being different to that on return. */
1004 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
1005
1006 /* Find the correct FDE. */
1007 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
1008 gdb_assert (fde != NULL);
1009
1010 /* Allocate and initialize the frame state. */
1011 struct dwarf2_frame_state fs (pc1, fde->cie);
1012
1013 cache->addr_size = fde->cie->addr_size;
1014
1015 /* Check for "quirks" - known bugs in producers. */
1016 dwarf2_frame_find_quirks (&fs, fde);
1017
1018 /* First decode all the insns in the CIE. */
1019 execute_cfa_program (fde, fde->cie->initial_instructions,
1020 fde->cie->end, gdbarch,
1021 get_frame_address_in_block (this_frame), &fs);
1022
1023 /* Save the initialized register set. */
1024 fs.initial = fs.regs;
1025
1026 if (get_frame_func_if_available (this_frame, &entry_pc))
1027 {
1028 /* Decode the insns in the FDE up to the entry PC. */
1029 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1030 entry_pc, &fs);
1031
1032 if (fs.regs.cfa_how == CFA_REG_OFFSET
1033 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
1034 == gdbarch_sp_regnum (gdbarch)))
1035 {
1036 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1037 cache->entry_cfa_sp_offset_p = 1;
1038 }
1039 }
1040 else
1041 instr = fde->instructions;
1042
1043 /* Then decode the insns in the FDE up to our target PC. */
1044 execute_cfa_program (fde, instr, fde->end, gdbarch,
1045 get_frame_address_in_block (this_frame), &fs);
1046
1047 TRY
1048 {
1049 /* Calculate the CFA. */
1050 switch (fs.regs.cfa_how)
1051 {
1052 case CFA_REG_OFFSET:
1053 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1054 if (fs.armcc_cfa_offsets_reversed)
1055 cache->cfa -= fs.regs.cfa_offset;
1056 else
1057 cache->cfa += fs.regs.cfa_offset;
1058 break;
1059
1060 case CFA_EXP:
1061 cache->cfa =
1062 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
1063 cache->addr_size, cache->text_offset,
1064 this_frame, 0, 0);
1065 break;
1066
1067 default:
1068 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1069 }
1070 }
1071 CATCH (ex, RETURN_MASK_ERROR)
1072 {
1073 if (ex.error == NOT_AVAILABLE_ERROR)
1074 {
1075 cache->unavailable_retaddr = 1;
1076 return cache;
1077 }
1078
1079 throw_exception (ex);
1080 }
1081 END_CATCH
1082
1083 /* Initialize the register state. */
1084 {
1085 int regnum;
1086
1087 for (regnum = 0; regnum < num_regs; regnum++)
1088 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1089 }
1090
1091 /* Go through the DWARF2 CFI generated table and save its register
1092 location information in the cache. Note that we don't skip the
1093 return address column; it's perfectly all right for it to
1094 correspond to a real register. */
1095 {
1096 int column; /* CFI speak for "register number". */
1097
1098 for (column = 0; column < fs.regs.reg.size (); column++)
1099 {
1100 /* Use the GDB register number as the destination index. */
1101 int regnum = dwarf_reg_to_regnum (gdbarch, column);
1102
1103 /* Protect against a target returning a bad register. */
1104 if (regnum < 0 || regnum >= num_regs)
1105 continue;
1106
1107 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1108 of all debug info registers. If it doesn't, complain (but
1109 not too loudly). It turns out that GCC assumes that an
1110 unspecified register implies "same value" when CFI (draft
1111 7) specifies nothing at all. Such a register could equally
1112 be interpreted as "undefined". Also note that this check
1113 isn't sufficient; it only checks that all registers in the
1114 range [0 .. max column] are specified, and won't detect
1115 problems when a debug info register falls outside of the
1116 table. We need a way of iterating through all the valid
1117 DWARF2 register numbers. */
1118 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1119 {
1120 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1121 complaint (_("\
1122 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1123 gdbarch_register_name (gdbarch, regnum),
1124 paddress (gdbarch, fs.pc));
1125 }
1126 else
1127 cache->reg[regnum] = fs.regs.reg[column];
1128 }
1129 }
1130
1131 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1132 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1133 {
1134 int regnum;
1135
1136 for (regnum = 0; regnum < num_regs; regnum++)
1137 {
1138 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1139 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1140 {
1141 const std::vector<struct dwarf2_frame_state_reg> &regs
1142 = fs.regs.reg;
1143 ULONGEST retaddr_column = fs.retaddr_column;
1144
1145 /* It seems rather bizarre to specify an "empty" column as
1146 the return adress column. However, this is exactly
1147 what GCC does on some targets. It turns out that GCC
1148 assumes that the return address can be found in the
1149 register corresponding to the return address column.
1150 Incidentally, that's how we should treat a return
1151 address column specifying "same value" too. */
1152 if (fs.retaddr_column < fs.regs.reg.size ()
1153 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1154 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
1155 {
1156 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1157 cache->reg[regnum] = regs[retaddr_column];
1158 else
1159 cache->retaddr_reg = regs[retaddr_column];
1160 }
1161 else
1162 {
1163 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1164 {
1165 cache->reg[regnum].loc.reg = fs.retaddr_column;
1166 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1167 }
1168 else
1169 {
1170 cache->retaddr_reg.loc.reg = fs.retaddr_column;
1171 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1172 }
1173 }
1174 }
1175 }
1176 }
1177
1178 if (fs.retaddr_column < fs.regs.reg.size ()
1179 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1180 cache->undefined_retaddr = 1;
1181
1182 return cache;
1183 }
1184
1185 static enum unwind_stop_reason
1186 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1187 void **this_cache)
1188 {
1189 struct dwarf2_frame_cache *cache
1190 = dwarf2_frame_cache (this_frame, this_cache);
1191
1192 if (cache->unavailable_retaddr)
1193 return UNWIND_UNAVAILABLE;
1194
1195 if (cache->undefined_retaddr)
1196 return UNWIND_OUTERMOST;
1197
1198 return UNWIND_NO_REASON;
1199 }
1200
1201 static void
1202 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1203 struct frame_id *this_id)
1204 {
1205 struct dwarf2_frame_cache *cache =
1206 dwarf2_frame_cache (this_frame, this_cache);
1207
1208 if (cache->unavailable_retaddr)
1209 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1210 else if (cache->undefined_retaddr)
1211 return;
1212 else
1213 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1214 }
1215
1216 static struct value *
1217 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1218 int regnum)
1219 {
1220 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1221 struct dwarf2_frame_cache *cache =
1222 dwarf2_frame_cache (this_frame, this_cache);
1223 CORE_ADDR addr;
1224 int realnum;
1225
1226 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1227 call frame chain. */
1228 if (!cache->checked_tailcall_bottom)
1229 {
1230 cache->checked_tailcall_bottom = 1;
1231 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1232 (cache->entry_cfa_sp_offset_p
1233 ? &cache->entry_cfa_sp_offset : NULL));
1234 }
1235
1236 /* Non-bottom frames of a virtual tail call frames chain use
1237 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1238 them. If dwarf2_tailcall_prev_register_first does not have specific value
1239 unwind the register, tail call frames are assumed to have the register set
1240 of the top caller. */
1241 if (cache->tailcall_cache)
1242 {
1243 struct value *val;
1244
1245 val = dwarf2_tailcall_prev_register_first (this_frame,
1246 &cache->tailcall_cache,
1247 regnum);
1248 if (val)
1249 return val;
1250 }
1251
1252 switch (cache->reg[regnum].how)
1253 {
1254 case DWARF2_FRAME_REG_UNDEFINED:
1255 /* If CFI explicitly specified that the value isn't defined,
1256 mark it as optimized away; the value isn't available. */
1257 return frame_unwind_got_optimized (this_frame, regnum);
1258
1259 case DWARF2_FRAME_REG_SAVED_OFFSET:
1260 addr = cache->cfa + cache->reg[regnum].loc.offset;
1261 return frame_unwind_got_memory (this_frame, regnum, addr);
1262
1263 case DWARF2_FRAME_REG_SAVED_REG:
1264 realnum = dwarf_reg_to_regnum_or_error
1265 (gdbarch, cache->reg[regnum].loc.reg);
1266 return frame_unwind_got_register (this_frame, regnum, realnum);
1267
1268 case DWARF2_FRAME_REG_SAVED_EXP:
1269 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1270 cache->reg[regnum].loc.exp.len,
1271 cache->addr_size, cache->text_offset,
1272 this_frame, cache->cfa, 1);
1273 return frame_unwind_got_memory (this_frame, regnum, addr);
1274
1275 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1276 addr = cache->cfa + cache->reg[regnum].loc.offset;
1277 return frame_unwind_got_constant (this_frame, regnum, addr);
1278
1279 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1280 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1281 cache->reg[regnum].loc.exp.len,
1282 cache->addr_size, cache->text_offset,
1283 this_frame, cache->cfa, 1);
1284 return frame_unwind_got_constant (this_frame, regnum, addr);
1285
1286 case DWARF2_FRAME_REG_UNSPECIFIED:
1287 /* GCC, in its infinite wisdom decided to not provide unwind
1288 information for registers that are "same value". Since
1289 DWARF2 (3 draft 7) doesn't define such behavior, said
1290 registers are actually undefined (which is different to CFI
1291 "undefined"). Code above issues a complaint about this.
1292 Here just fudge the books, assume GCC, and that the value is
1293 more inner on the stack. */
1294 return frame_unwind_got_register (this_frame, regnum, regnum);
1295
1296 case DWARF2_FRAME_REG_SAME_VALUE:
1297 return frame_unwind_got_register (this_frame, regnum, regnum);
1298
1299 case DWARF2_FRAME_REG_CFA:
1300 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1301
1302 case DWARF2_FRAME_REG_CFA_OFFSET:
1303 addr = cache->cfa + cache->reg[regnum].loc.offset;
1304 return frame_unwind_got_address (this_frame, regnum, addr);
1305
1306 case DWARF2_FRAME_REG_RA_OFFSET:
1307 addr = cache->reg[regnum].loc.offset;
1308 regnum = dwarf_reg_to_regnum_or_error
1309 (gdbarch, cache->retaddr_reg.loc.reg);
1310 addr += get_frame_register_unsigned (this_frame, regnum);
1311 return frame_unwind_got_address (this_frame, regnum, addr);
1312
1313 case DWARF2_FRAME_REG_FN:
1314 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1315
1316 default:
1317 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1318 }
1319 }
1320
1321 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1322 call frames chain. */
1323
1324 static void
1325 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1326 {
1327 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1328
1329 if (cache->tailcall_cache)
1330 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1331 }
1332
1333 static int
1334 dwarf2_frame_sniffer (const struct frame_unwind *self,
1335 struct frame_info *this_frame, void **this_cache)
1336 {
1337 if (!dwarf2_frame_unwinders_enabled_p)
1338 return 0;
1339
1340 /* Grab an address that is guarenteed to reside somewhere within the
1341 function. get_frame_pc(), with a no-return next function, can
1342 end up returning something past the end of this function's body.
1343 If the frame we're sniffing for is a signal frame whose start
1344 address is placed on the stack by the OS, its FDE must
1345 extend one byte before its start address or we could potentially
1346 select the FDE of the previous function. */
1347 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1348 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1349
1350 if (!fde)
1351 return 0;
1352
1353 /* On some targets, signal trampolines may have unwind information.
1354 We need to recognize them so that we set the frame type
1355 correctly. */
1356
1357 if (fde->cie->signal_frame
1358 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1359 this_frame))
1360 return self->type == SIGTRAMP_FRAME;
1361
1362 if (self->type != NORMAL_FRAME)
1363 return 0;
1364
1365 return 1;
1366 }
1367
1368 static const struct frame_unwind dwarf2_frame_unwind =
1369 {
1370 NORMAL_FRAME,
1371 dwarf2_frame_unwind_stop_reason,
1372 dwarf2_frame_this_id,
1373 dwarf2_frame_prev_register,
1374 NULL,
1375 dwarf2_frame_sniffer,
1376 dwarf2_frame_dealloc_cache
1377 };
1378
1379 static const struct frame_unwind dwarf2_signal_frame_unwind =
1380 {
1381 SIGTRAMP_FRAME,
1382 dwarf2_frame_unwind_stop_reason,
1383 dwarf2_frame_this_id,
1384 dwarf2_frame_prev_register,
1385 NULL,
1386 dwarf2_frame_sniffer,
1387
1388 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1389 NULL
1390 };
1391
1392 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1393
1394 void
1395 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1396 {
1397 /* TAILCALL_FRAME must be first to find the record by
1398 dwarf2_tailcall_sniffer_first. */
1399 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1400
1401 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1402 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1403 }
1404 \f
1405
1406 /* There is no explicitly defined relationship between the CFA and the
1407 location of frame's local variables and arguments/parameters.
1408 Therefore, frame base methods on this page should probably only be
1409 used as a last resort, just to avoid printing total garbage as a
1410 response to the "info frame" command. */
1411
1412 static CORE_ADDR
1413 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1414 {
1415 struct dwarf2_frame_cache *cache =
1416 dwarf2_frame_cache (this_frame, this_cache);
1417
1418 return cache->cfa;
1419 }
1420
1421 static const struct frame_base dwarf2_frame_base =
1422 {
1423 &dwarf2_frame_unwind,
1424 dwarf2_frame_base_address,
1425 dwarf2_frame_base_address,
1426 dwarf2_frame_base_address
1427 };
1428
1429 const struct frame_base *
1430 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1431 {
1432 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1433
1434 if (dwarf2_frame_find_fde (&block_addr, NULL))
1435 return &dwarf2_frame_base;
1436
1437 return NULL;
1438 }
1439
1440 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1441 the DWARF unwinder. This is used to implement
1442 DW_OP_call_frame_cfa. */
1443
1444 CORE_ADDR
1445 dwarf2_frame_cfa (struct frame_info *this_frame)
1446 {
1447 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1448 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1449 throw_error (NOT_AVAILABLE_ERROR,
1450 _("cfa not available for record btrace target"));
1451
1452 while (get_frame_type (this_frame) == INLINE_FRAME)
1453 this_frame = get_prev_frame (this_frame);
1454 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1455 throw_error (NOT_AVAILABLE_ERROR,
1456 _("can't compute CFA for this frame: "
1457 "required registers or memory are unavailable"));
1458
1459 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1460 throw_error (NOT_AVAILABLE_ERROR,
1461 _("can't compute CFA for this frame: "
1462 "frame base not available"));
1463
1464 return get_frame_base (this_frame);
1465 }
1466 \f
1467 const struct objfile_data *dwarf2_frame_objfile_data;
1468
1469 static unsigned int
1470 read_1_byte (bfd *abfd, const gdb_byte *buf)
1471 {
1472 return bfd_get_8 (abfd, buf);
1473 }
1474
1475 static unsigned int
1476 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1477 {
1478 return bfd_get_32 (abfd, buf);
1479 }
1480
1481 static ULONGEST
1482 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1483 {
1484 return bfd_get_64 (abfd, buf);
1485 }
1486
1487 static ULONGEST
1488 read_initial_length (bfd *abfd, const gdb_byte *buf,
1489 unsigned int *bytes_read_ptr)
1490 {
1491 LONGEST result;
1492
1493 result = bfd_get_32 (abfd, buf);
1494 if (result == 0xffffffff)
1495 {
1496 result = bfd_get_64 (abfd, buf + 4);
1497 *bytes_read_ptr = 12;
1498 }
1499 else
1500 *bytes_read_ptr = 4;
1501
1502 return result;
1503 }
1504 \f
1505
1506 /* Pointer encoding helper functions. */
1507
1508 /* GCC supports exception handling based on DWARF2 CFI. However, for
1509 technical reasons, it encodes addresses in its FDE's in a different
1510 way. Several "pointer encodings" are supported. The encoding
1511 that's used for a particular FDE is determined by the 'R'
1512 augmentation in the associated CIE. The argument of this
1513 augmentation is a single byte.
1514
1515 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1516 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1517 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1518 address should be interpreted (absolute, relative to the current
1519 position in the FDE, ...). Bit 7, indicates that the address
1520 should be dereferenced. */
1521
1522 static gdb_byte
1523 encoding_for_size (unsigned int size)
1524 {
1525 switch (size)
1526 {
1527 case 2:
1528 return DW_EH_PE_udata2;
1529 case 4:
1530 return DW_EH_PE_udata4;
1531 case 8:
1532 return DW_EH_PE_udata8;
1533 default:
1534 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1535 }
1536 }
1537
1538 static CORE_ADDR
1539 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1540 int ptr_len, const gdb_byte *buf,
1541 unsigned int *bytes_read_ptr,
1542 CORE_ADDR func_base)
1543 {
1544 ptrdiff_t offset;
1545 CORE_ADDR base;
1546
1547 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1548 FDE's. */
1549 if (encoding & DW_EH_PE_indirect)
1550 internal_error (__FILE__, __LINE__,
1551 _("Unsupported encoding: DW_EH_PE_indirect"));
1552
1553 *bytes_read_ptr = 0;
1554
1555 switch (encoding & 0x70)
1556 {
1557 case DW_EH_PE_absptr:
1558 base = 0;
1559 break;
1560 case DW_EH_PE_pcrel:
1561 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1562 base += (buf - unit->dwarf_frame_buffer);
1563 break;
1564 case DW_EH_PE_datarel:
1565 base = unit->dbase;
1566 break;
1567 case DW_EH_PE_textrel:
1568 base = unit->tbase;
1569 break;
1570 case DW_EH_PE_funcrel:
1571 base = func_base;
1572 break;
1573 case DW_EH_PE_aligned:
1574 base = 0;
1575 offset = buf - unit->dwarf_frame_buffer;
1576 if ((offset % ptr_len) != 0)
1577 {
1578 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1579 buf += *bytes_read_ptr;
1580 }
1581 break;
1582 default:
1583 internal_error (__FILE__, __LINE__,
1584 _("Invalid or unsupported encoding"));
1585 }
1586
1587 if ((encoding & 0x07) == 0x00)
1588 {
1589 encoding |= encoding_for_size (ptr_len);
1590 if (bfd_get_sign_extend_vma (unit->abfd))
1591 encoding |= DW_EH_PE_signed;
1592 }
1593
1594 switch (encoding & 0x0f)
1595 {
1596 case DW_EH_PE_uleb128:
1597 {
1598 uint64_t value;
1599 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1600
1601 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1602 return base + value;
1603 }
1604 case DW_EH_PE_udata2:
1605 *bytes_read_ptr += 2;
1606 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1607 case DW_EH_PE_udata4:
1608 *bytes_read_ptr += 4;
1609 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1610 case DW_EH_PE_udata8:
1611 *bytes_read_ptr += 8;
1612 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1613 case DW_EH_PE_sleb128:
1614 {
1615 int64_t value;
1616 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1617
1618 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1619 return base + value;
1620 }
1621 case DW_EH_PE_sdata2:
1622 *bytes_read_ptr += 2;
1623 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1624 case DW_EH_PE_sdata4:
1625 *bytes_read_ptr += 4;
1626 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1627 case DW_EH_PE_sdata8:
1628 *bytes_read_ptr += 8;
1629 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1630 default:
1631 internal_error (__FILE__, __LINE__,
1632 _("Invalid or unsupported encoding"));
1633 }
1634 }
1635 \f
1636
1637 static int
1638 bsearch_cie_cmp (const void *key, const void *element)
1639 {
1640 ULONGEST cie_pointer = *(ULONGEST *) key;
1641 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1642
1643 if (cie_pointer == cie->cie_pointer)
1644 return 0;
1645
1646 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1647 }
1648
1649 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1650 static struct dwarf2_cie *
1651 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1652 {
1653 struct dwarf2_cie **p_cie;
1654
1655 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1656 bsearch be non-NULL. */
1657 if (cie_table->entries == NULL)
1658 {
1659 gdb_assert (cie_table->num_entries == 0);
1660 return NULL;
1661 }
1662
1663 p_cie = ((struct dwarf2_cie **)
1664 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1665 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
1666 if (p_cie != NULL)
1667 return *p_cie;
1668 return NULL;
1669 }
1670
1671 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1672 static void
1673 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1674 {
1675 const int n = cie_table->num_entries;
1676
1677 gdb_assert (n < 1
1678 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1679
1680 cie_table->entries
1681 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
1682 cie_table->entries[n] = cie;
1683 cie_table->num_entries = n + 1;
1684 }
1685
1686 static int
1687 bsearch_fde_cmp (const void *key, const void *element)
1688 {
1689 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1690 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1691
1692 if (seek_pc < fde->initial_location)
1693 return -1;
1694 if (seek_pc < fde->initial_location + fde->address_range)
1695 return 0;
1696 return 1;
1697 }
1698
1699 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1700 inital location associated with it into *PC. */
1701
1702 static struct dwarf2_fde *
1703 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1704 {
1705 for (objfile *objfile : current_program_space->objfiles ())
1706 {
1707 struct dwarf2_fde_table *fde_table;
1708 struct dwarf2_fde **p_fde;
1709 CORE_ADDR offset;
1710 CORE_ADDR seek_pc;
1711
1712 fde_table = ((struct dwarf2_fde_table *)
1713 objfile_data (objfile, dwarf2_frame_objfile_data));
1714 if (fde_table == NULL)
1715 {
1716 dwarf2_build_frame_info (objfile);
1717 fde_table = ((struct dwarf2_fde_table *)
1718 objfile_data (objfile, dwarf2_frame_objfile_data));
1719 }
1720 gdb_assert (fde_table != NULL);
1721
1722 if (fde_table->num_entries == 0)
1723 continue;
1724
1725 gdb_assert (objfile->section_offsets);
1726 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1727
1728 gdb_assert (fde_table->num_entries > 0);
1729 if (*pc < offset + fde_table->entries[0]->initial_location)
1730 continue;
1731
1732 seek_pc = *pc - offset;
1733 p_fde = ((struct dwarf2_fde **)
1734 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1735 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
1736 if (p_fde != NULL)
1737 {
1738 *pc = (*p_fde)->initial_location + offset;
1739 if (out_offset)
1740 *out_offset = offset;
1741 return *p_fde;
1742 }
1743 }
1744 return NULL;
1745 }
1746
1747 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1748 static void
1749 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1750 {
1751 if (fde->address_range == 0)
1752 /* Discard useless FDEs. */
1753 return;
1754
1755 fde_table->num_entries += 1;
1756 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1757 fde_table->num_entries);
1758 fde_table->entries[fde_table->num_entries - 1] = fde;
1759 }
1760
1761 #define DW64_CIE_ID 0xffffffffffffffffULL
1762
1763 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1764 or any of them. */
1765
1766 enum eh_frame_type
1767 {
1768 EH_CIE_TYPE_ID = 1 << 0,
1769 EH_FDE_TYPE_ID = 1 << 1,
1770 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1771 };
1772
1773 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1774 const gdb_byte *start,
1775 int eh_frame_p,
1776 struct dwarf2_cie_table *cie_table,
1777 struct dwarf2_fde_table *fde_table,
1778 enum eh_frame_type entry_type);
1779
1780 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1781 Return NULL if invalid input, otherwise the next byte to be processed. */
1782
1783 static const gdb_byte *
1784 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1785 int eh_frame_p,
1786 struct dwarf2_cie_table *cie_table,
1787 struct dwarf2_fde_table *fde_table,
1788 enum eh_frame_type entry_type)
1789 {
1790 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1791 const gdb_byte *buf, *end;
1792 LONGEST length;
1793 unsigned int bytes_read;
1794 int dwarf64_p;
1795 ULONGEST cie_id;
1796 ULONGEST cie_pointer;
1797 int64_t sleb128;
1798 uint64_t uleb128;
1799
1800 buf = start;
1801 length = read_initial_length (unit->abfd, buf, &bytes_read);
1802 buf += bytes_read;
1803 end = buf + length;
1804
1805 /* Are we still within the section? */
1806 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1807 return NULL;
1808
1809 if (length == 0)
1810 return end;
1811
1812 /* Distinguish between 32 and 64-bit encoded frame info. */
1813 dwarf64_p = (bytes_read == 12);
1814
1815 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1816 if (eh_frame_p)
1817 cie_id = 0;
1818 else if (dwarf64_p)
1819 cie_id = DW64_CIE_ID;
1820 else
1821 cie_id = DW_CIE_ID;
1822
1823 if (dwarf64_p)
1824 {
1825 cie_pointer = read_8_bytes (unit->abfd, buf);
1826 buf += 8;
1827 }
1828 else
1829 {
1830 cie_pointer = read_4_bytes (unit->abfd, buf);
1831 buf += 4;
1832 }
1833
1834 if (cie_pointer == cie_id)
1835 {
1836 /* This is a CIE. */
1837 struct dwarf2_cie *cie;
1838 char *augmentation;
1839 unsigned int cie_version;
1840
1841 /* Check that a CIE was expected. */
1842 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1843 error (_("Found a CIE when not expecting it."));
1844
1845 /* Record the offset into the .debug_frame section of this CIE. */
1846 cie_pointer = start - unit->dwarf_frame_buffer;
1847
1848 /* Check whether we've already read it. */
1849 if (find_cie (cie_table, cie_pointer))
1850 return end;
1851
1852 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1853 cie->initial_instructions = NULL;
1854 cie->cie_pointer = cie_pointer;
1855
1856 /* The encoding for FDE's in a normal .debug_frame section
1857 depends on the target address size. */
1858 cie->encoding = DW_EH_PE_absptr;
1859
1860 /* We'll determine the final value later, but we need to
1861 initialize it conservatively. */
1862 cie->signal_frame = 0;
1863
1864 /* Check version number. */
1865 cie_version = read_1_byte (unit->abfd, buf);
1866 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1867 return NULL;
1868 cie->version = cie_version;
1869 buf += 1;
1870
1871 /* Interpret the interesting bits of the augmentation. */
1872 cie->augmentation = augmentation = (char *) buf;
1873 buf += (strlen (augmentation) + 1);
1874
1875 /* Ignore armcc augmentations. We only use them for quirks,
1876 and that doesn't happen until later. */
1877 if (startswith (augmentation, "armcc"))
1878 augmentation += strlen (augmentation);
1879
1880 /* The GCC 2.x "eh" augmentation has a pointer immediately
1881 following the augmentation string, so it must be handled
1882 first. */
1883 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1884 {
1885 /* Skip. */
1886 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1887 augmentation += 2;
1888 }
1889
1890 if (cie->version >= 4)
1891 {
1892 /* FIXME: check that this is the same as from the CU header. */
1893 cie->addr_size = read_1_byte (unit->abfd, buf);
1894 ++buf;
1895 cie->segment_size = read_1_byte (unit->abfd, buf);
1896 ++buf;
1897 }
1898 else
1899 {
1900 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1901 cie->segment_size = 0;
1902 }
1903 /* Address values in .eh_frame sections are defined to have the
1904 target's pointer size. Watchout: This breaks frame info for
1905 targets with pointer size < address size, unless a .debug_frame
1906 section exists as well. */
1907 if (eh_frame_p)
1908 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1909 else
1910 cie->ptr_size = cie->addr_size;
1911
1912 buf = gdb_read_uleb128 (buf, end, &uleb128);
1913 if (buf == NULL)
1914 return NULL;
1915 cie->code_alignment_factor = uleb128;
1916
1917 buf = gdb_read_sleb128 (buf, end, &sleb128);
1918 if (buf == NULL)
1919 return NULL;
1920 cie->data_alignment_factor = sleb128;
1921
1922 if (cie_version == 1)
1923 {
1924 cie->return_address_register = read_1_byte (unit->abfd, buf);
1925 ++buf;
1926 }
1927 else
1928 {
1929 buf = gdb_read_uleb128 (buf, end, &uleb128);
1930 if (buf == NULL)
1931 return NULL;
1932 cie->return_address_register = uleb128;
1933 }
1934
1935 cie->return_address_register
1936 = dwarf2_frame_adjust_regnum (gdbarch,
1937 cie->return_address_register,
1938 eh_frame_p);
1939
1940 cie->saw_z_augmentation = (*augmentation == 'z');
1941 if (cie->saw_z_augmentation)
1942 {
1943 uint64_t uleb_length;
1944
1945 buf = gdb_read_uleb128 (buf, end, &uleb_length);
1946 if (buf == NULL)
1947 return NULL;
1948 cie->initial_instructions = buf + uleb_length;
1949 augmentation++;
1950 }
1951
1952 while (*augmentation)
1953 {
1954 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1955 if (*augmentation == 'L')
1956 {
1957 /* Skip. */
1958 buf++;
1959 augmentation++;
1960 }
1961
1962 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1963 else if (*augmentation == 'R')
1964 {
1965 cie->encoding = *buf++;
1966 augmentation++;
1967 }
1968
1969 /* "P" indicates a personality routine in the CIE augmentation. */
1970 else if (*augmentation == 'P')
1971 {
1972 /* Skip. Avoid indirection since we throw away the result. */
1973 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1974 read_encoded_value (unit, encoding, cie->ptr_size,
1975 buf, &bytes_read, 0);
1976 buf += bytes_read;
1977 augmentation++;
1978 }
1979
1980 /* "S" indicates a signal frame, such that the return
1981 address must not be decremented to locate the call frame
1982 info for the previous frame; it might even be the first
1983 instruction of a function, so decrementing it would take
1984 us to a different function. */
1985 else if (*augmentation == 'S')
1986 {
1987 cie->signal_frame = 1;
1988 augmentation++;
1989 }
1990
1991 /* Otherwise we have an unknown augmentation. Assume that either
1992 there is no augmentation data, or we saw a 'z' prefix. */
1993 else
1994 {
1995 if (cie->initial_instructions)
1996 buf = cie->initial_instructions;
1997 break;
1998 }
1999 }
2000
2001 cie->initial_instructions = buf;
2002 cie->end = end;
2003 cie->unit = unit;
2004
2005 add_cie (cie_table, cie);
2006 }
2007 else
2008 {
2009 /* This is a FDE. */
2010 struct dwarf2_fde *fde;
2011 CORE_ADDR addr;
2012
2013 /* Check that an FDE was expected. */
2014 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2015 error (_("Found an FDE when not expecting it."));
2016
2017 /* In an .eh_frame section, the CIE pointer is the delta between the
2018 address within the FDE where the CIE pointer is stored and the
2019 address of the CIE. Convert it to an offset into the .eh_frame
2020 section. */
2021 if (eh_frame_p)
2022 {
2023 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2024 cie_pointer -= (dwarf64_p ? 8 : 4);
2025 }
2026
2027 /* In either case, validate the result is still within the section. */
2028 if (cie_pointer >= unit->dwarf_frame_size)
2029 return NULL;
2030
2031 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
2032 fde->cie = find_cie (cie_table, cie_pointer);
2033 if (fde->cie == NULL)
2034 {
2035 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2036 eh_frame_p, cie_table, fde_table,
2037 EH_CIE_TYPE_ID);
2038 fde->cie = find_cie (cie_table, cie_pointer);
2039 }
2040
2041 gdb_assert (fde->cie != NULL);
2042
2043 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2044 buf, &bytes_read, 0);
2045 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2046 buf += bytes_read;
2047
2048 fde->address_range =
2049 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2050 fde->cie->ptr_size, buf, &bytes_read, 0);
2051 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2052 fde->address_range = addr - fde->initial_location;
2053 buf += bytes_read;
2054
2055 /* A 'z' augmentation in the CIE implies the presence of an
2056 augmentation field in the FDE as well. The only thing known
2057 to be in here at present is the LSDA entry for EH. So we
2058 can skip the whole thing. */
2059 if (fde->cie->saw_z_augmentation)
2060 {
2061 uint64_t uleb_length;
2062
2063 buf = gdb_read_uleb128 (buf, end, &uleb_length);
2064 if (buf == NULL)
2065 return NULL;
2066 buf += uleb_length;
2067 if (buf > end)
2068 return NULL;
2069 }
2070
2071 fde->instructions = buf;
2072 fde->end = end;
2073
2074 fde->eh_frame_p = eh_frame_p;
2075
2076 add_fde (fde_table, fde);
2077 }
2078
2079 return end;
2080 }
2081
2082 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2083 expect an FDE or a CIE. */
2084
2085 static const gdb_byte *
2086 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2087 int eh_frame_p,
2088 struct dwarf2_cie_table *cie_table,
2089 struct dwarf2_fde_table *fde_table,
2090 enum eh_frame_type entry_type)
2091 {
2092 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2093 const gdb_byte *ret;
2094 ptrdiff_t start_offset;
2095
2096 while (1)
2097 {
2098 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2099 cie_table, fde_table, entry_type);
2100 if (ret != NULL)
2101 break;
2102
2103 /* We have corrupt input data of some form. */
2104
2105 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2106 and mismatches wrt padding and alignment of debug sections. */
2107 /* Note that there is no requirement in the standard for any
2108 alignment at all in the frame unwind sections. Testing for
2109 alignment before trying to interpret data would be incorrect.
2110
2111 However, GCC traditionally arranged for frame sections to be
2112 sized such that the FDE length and CIE fields happen to be
2113 aligned (in theory, for performance). This, unfortunately,
2114 was done with .align directives, which had the side effect of
2115 forcing the section to be aligned by the linker.
2116
2117 This becomes a problem when you have some other producer that
2118 creates frame sections that are not as strictly aligned. That
2119 produces a hole in the frame info that gets filled by the
2120 linker with zeros.
2121
2122 The GCC behaviour is arguably a bug, but it's effectively now
2123 part of the ABI, so we're now stuck with it, at least at the
2124 object file level. A smart linker may decide, in the process
2125 of compressing duplicate CIE information, that it can rewrite
2126 the entire output section without this extra padding. */
2127
2128 start_offset = start - unit->dwarf_frame_buffer;
2129 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2130 {
2131 start += 4 - (start_offset & 3);
2132 workaround = ALIGN4;
2133 continue;
2134 }
2135 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2136 {
2137 start += 8 - (start_offset & 7);
2138 workaround = ALIGN8;
2139 continue;
2140 }
2141
2142 /* Nothing left to try. Arrange to return as if we've consumed
2143 the entire input section. Hopefully we'll get valid info from
2144 the other of .debug_frame/.eh_frame. */
2145 workaround = FAIL;
2146 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2147 break;
2148 }
2149
2150 switch (workaround)
2151 {
2152 case NONE:
2153 break;
2154
2155 case ALIGN4:
2156 complaint (_("\
2157 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2158 unit->dwarf_frame_section->owner->filename,
2159 unit->dwarf_frame_section->name);
2160 break;
2161
2162 case ALIGN8:
2163 complaint (_("\
2164 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2165 unit->dwarf_frame_section->owner->filename,
2166 unit->dwarf_frame_section->name);
2167 break;
2168
2169 default:
2170 complaint (_("Corrupt data in %s:%s"),
2171 unit->dwarf_frame_section->owner->filename,
2172 unit->dwarf_frame_section->name);
2173 break;
2174 }
2175
2176 return ret;
2177 }
2178 \f
2179 static int
2180 qsort_fde_cmp (const void *a, const void *b)
2181 {
2182 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2183 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2184
2185 if (aa->initial_location == bb->initial_location)
2186 {
2187 if (aa->address_range != bb->address_range
2188 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2189 /* Linker bug, e.g. gold/10400.
2190 Work around it by keeping stable sort order. */
2191 return (a < b) ? -1 : 1;
2192 else
2193 /* Put eh_frame entries after debug_frame ones. */
2194 return aa->eh_frame_p - bb->eh_frame_p;
2195 }
2196
2197 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2198 }
2199
2200 void
2201 dwarf2_build_frame_info (struct objfile *objfile)
2202 {
2203 struct comp_unit *unit;
2204 const gdb_byte *frame_ptr;
2205 struct dwarf2_cie_table cie_table;
2206 struct dwarf2_fde_table fde_table;
2207 struct dwarf2_fde_table *fde_table2;
2208
2209 cie_table.num_entries = 0;
2210 cie_table.entries = NULL;
2211
2212 fde_table.num_entries = 0;
2213 fde_table.entries = NULL;
2214
2215 /* Build a minimal decoding of the DWARF2 compilation unit. */
2216 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
2217 unit->abfd = objfile->obfd;
2218 unit->objfile = objfile;
2219 unit->dbase = 0;
2220 unit->tbase = 0;
2221
2222 if (objfile->separate_debug_objfile_backlink == NULL)
2223 {
2224 /* Do not read .eh_frame from separate file as they must be also
2225 present in the main file. */
2226 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2227 &unit->dwarf_frame_section,
2228 &unit->dwarf_frame_buffer,
2229 &unit->dwarf_frame_size);
2230 if (unit->dwarf_frame_size)
2231 {
2232 asection *got, *txt;
2233
2234 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2235 that is used for the i386/amd64 target, which currently is
2236 the only target in GCC that supports/uses the
2237 DW_EH_PE_datarel encoding. */
2238 got = bfd_get_section_by_name (unit->abfd, ".got");
2239 if (got)
2240 unit->dbase = got->vma;
2241
2242 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2243 so far. */
2244 txt = bfd_get_section_by_name (unit->abfd, ".text");
2245 if (txt)
2246 unit->tbase = txt->vma;
2247
2248 TRY
2249 {
2250 frame_ptr = unit->dwarf_frame_buffer;
2251 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2252 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2253 &cie_table, &fde_table,
2254 EH_CIE_OR_FDE_TYPE_ID);
2255 }
2256
2257 CATCH (e, RETURN_MASK_ERROR)
2258 {
2259 warning (_("skipping .eh_frame info of %s: %s"),
2260 objfile_name (objfile), e.message);
2261
2262 if (fde_table.num_entries != 0)
2263 {
2264 xfree (fde_table.entries);
2265 fde_table.entries = NULL;
2266 fde_table.num_entries = 0;
2267 }
2268 /* The cie_table is discarded by the next if. */
2269 }
2270 END_CATCH
2271
2272 if (cie_table.num_entries != 0)
2273 {
2274 /* Reinit cie_table: debug_frame has different CIEs. */
2275 xfree (cie_table.entries);
2276 cie_table.num_entries = 0;
2277 cie_table.entries = NULL;
2278 }
2279 }
2280 }
2281
2282 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2283 &unit->dwarf_frame_section,
2284 &unit->dwarf_frame_buffer,
2285 &unit->dwarf_frame_size);
2286 if (unit->dwarf_frame_size)
2287 {
2288 int num_old_fde_entries = fde_table.num_entries;
2289
2290 TRY
2291 {
2292 frame_ptr = unit->dwarf_frame_buffer;
2293 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2294 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2295 &cie_table, &fde_table,
2296 EH_CIE_OR_FDE_TYPE_ID);
2297 }
2298 CATCH (e, RETURN_MASK_ERROR)
2299 {
2300 warning (_("skipping .debug_frame info of %s: %s"),
2301 objfile_name (objfile), e.message);
2302
2303 if (fde_table.num_entries != 0)
2304 {
2305 fde_table.num_entries = num_old_fde_entries;
2306 if (num_old_fde_entries == 0)
2307 {
2308 xfree (fde_table.entries);
2309 fde_table.entries = NULL;
2310 }
2311 else
2312 {
2313 fde_table.entries
2314 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2315 fde_table.num_entries);
2316 }
2317 }
2318 fde_table.num_entries = num_old_fde_entries;
2319 /* The cie_table is discarded by the next if. */
2320 }
2321 END_CATCH
2322 }
2323
2324 /* Discard the cie_table, it is no longer needed. */
2325 if (cie_table.num_entries != 0)
2326 {
2327 xfree (cie_table.entries);
2328 cie_table.entries = NULL; /* Paranoia. */
2329 cie_table.num_entries = 0; /* Paranoia. */
2330 }
2331
2332 /* Copy fde_table to obstack: it is needed at runtime. */
2333 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2334
2335 if (fde_table.num_entries == 0)
2336 {
2337 fde_table2->entries = NULL;
2338 fde_table2->num_entries = 0;
2339 }
2340 else
2341 {
2342 struct dwarf2_fde *fde_prev = NULL;
2343 struct dwarf2_fde *first_non_zero_fde = NULL;
2344 int i;
2345
2346 /* Prepare FDE table for lookups. */
2347 qsort (fde_table.entries, fde_table.num_entries,
2348 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2349
2350 /* Check for leftovers from --gc-sections. The GNU linker sets
2351 the relevant symbols to zero, but doesn't zero the FDE *end*
2352 ranges because there's no relocation there. It's (offset,
2353 length), not (start, end). On targets where address zero is
2354 just another valid address this can be a problem, since the
2355 FDEs appear to be non-empty in the output --- we could pick
2356 out the wrong FDE. To work around this, when overlaps are
2357 detected, we prefer FDEs that do not start at zero.
2358
2359 Start by finding the first FDE with non-zero start. Below
2360 we'll discard all FDEs that start at zero and overlap this
2361 one. */
2362 for (i = 0; i < fde_table.num_entries; i++)
2363 {
2364 struct dwarf2_fde *fde = fde_table.entries[i];
2365
2366 if (fde->initial_location != 0)
2367 {
2368 first_non_zero_fde = fde;
2369 break;
2370 }
2371 }
2372
2373 /* Since we'll be doing bsearch, squeeze out identical (except
2374 for eh_frame_p) fde entries so bsearch result is predictable.
2375 Also discard leftovers from --gc-sections. */
2376 fde_table2->num_entries = 0;
2377 for (i = 0; i < fde_table.num_entries; i++)
2378 {
2379 struct dwarf2_fde *fde = fde_table.entries[i];
2380
2381 if (fde->initial_location == 0
2382 && first_non_zero_fde != NULL
2383 && (first_non_zero_fde->initial_location
2384 < fde->initial_location + fde->address_range))
2385 continue;
2386
2387 if (fde_prev != NULL
2388 && fde_prev->initial_location == fde->initial_location)
2389 continue;
2390
2391 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2392 sizeof (fde_table.entries[0]));
2393 ++fde_table2->num_entries;
2394 fde_prev = fde;
2395 }
2396 fde_table2->entries
2397 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2398
2399 /* Discard the original fde_table. */
2400 xfree (fde_table.entries);
2401 }
2402
2403 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2404 }
2405
2406 /* Handle 'maintenance show dwarf unwinders'. */
2407
2408 static void
2409 show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2410 struct cmd_list_element *c,
2411 const char *value)
2412 {
2413 fprintf_filtered (file,
2414 _("The DWARF stack unwinders are currently %s.\n"),
2415 value);
2416 }
2417
2418 void
2419 _initialize_dwarf2_frame (void)
2420 {
2421 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2422 dwarf2_frame_objfile_data = register_objfile_data ();
2423
2424 add_setshow_boolean_cmd ("unwinders", class_obscure,
2425 &dwarf2_frame_unwinders_enabled_p , _("\
2426 Set whether the DWARF stack frame unwinders are used."), _("\
2427 Show whether the DWARF stack frame unwinders are used."), _("\
2428 When enabled the DWARF stack frame unwinders can be used for architectures\n\
2429 that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2430 architecture that doesn't support them will have no effect."),
2431 NULL,
2432 show_dwarf_unwinders_enabled_p,
2433 &set_dwarf_cmdlist,
2434 &show_dwarf_cmdlist);
2435
2436 #if GDB_SELF_TEST
2437 selftests::register_test_foreach_arch ("execute_cfa_program",
2438 selftests::execute_cfa_program_test);
2439 #endif
2440 }
This page took 0.07823 seconds and 5 git commands to generate.