split dwarf2_fetch_cfa_info from dwarf2_compile_expr_to_ax
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "ax.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame-tailcall.h"
41
42 struct comp_unit;
43
44 /* Call Frame Information (CFI). */
45
46 /* Common Information Entry (CIE). */
47
48 struct dwarf2_cie
49 {
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* Target pointer size in bytes. */
81 int ptr_size;
82
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
89 /* The version recorded in the CIE. */
90 unsigned char version;
91
92 /* The segment size. */
93 unsigned char segment_size;
94 };
95
96 struct dwarf2_cie_table
97 {
98 int num_entries;
99 struct dwarf2_cie **entries;
100 };
101
102 /* Frame Description Entry (FDE). */
103
104 struct dwarf2_fde
105 {
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
116 const gdb_byte *instructions;
117 const gdb_byte *end;
118
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
122 };
123
124 struct dwarf2_fde_table
125 {
126 int num_entries;
127 struct dwarf2_fde **entries;
128 };
129
130 /* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133 struct comp_unit
134 {
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
140 /* Pointer to the .debug_frame section loaded into memory. */
141 const gdb_byte *dwarf_frame_buffer;
142
143 /* Length of the loaded .debug_frame section. */
144 bfd_size_type dwarf_frame_size;
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154 };
155
156 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
158
159 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
161
162 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
163 int ptr_len, const gdb_byte *buf,
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
166 \f
167
168 /* Structure describing a frame state. */
169
170 struct dwarf2_frame_state
171 {
172 /* Each register save state can be described in terms of a CFA slot,
173 another register, or a location expression. */
174 struct dwarf2_frame_state_reg_info
175 {
176 struct dwarf2_frame_state_reg *reg;
177 int num_regs;
178
179 LONGEST cfa_offset;
180 ULONGEST cfa_reg;
181 enum {
182 CFA_UNSET,
183 CFA_REG_OFFSET,
184 CFA_EXP
185 } cfa_how;
186 const gdb_byte *cfa_exp;
187
188 /* Used to implement DW_CFA_remember_state. */
189 struct dwarf2_frame_state_reg_info *prev;
190 } regs;
191
192 /* The PC described by the current frame state. */
193 CORE_ADDR pc;
194
195 /* Initial register set from the CIE.
196 Used to implement DW_CFA_restore. */
197 struct dwarf2_frame_state_reg_info initial;
198
199 /* The information we care about from the CIE. */
200 LONGEST data_align;
201 ULONGEST code_align;
202 ULONGEST retaddr_column;
203
204 /* Flags for known producer quirks. */
205
206 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
207 and DW_CFA_def_cfa_offset takes a factored offset. */
208 int armcc_cfa_offsets_sf;
209
210 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
211 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
212 int armcc_cfa_offsets_reversed;
213 };
214
215 /* Store the length the expression for the CFA in the `cfa_reg' field,
216 which is unused in that case. */
217 #define cfa_exp_len cfa_reg
218
219 /* Assert that the register set RS is large enough to store gdbarch_num_regs
220 columns. If necessary, enlarge the register set. */
221
222 static void
223 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
224 int num_regs)
225 {
226 size_t size = sizeof (struct dwarf2_frame_state_reg);
227
228 if (num_regs <= rs->num_regs)
229 return;
230
231 rs->reg = (struct dwarf2_frame_state_reg *)
232 xrealloc (rs->reg, num_regs * size);
233
234 /* Initialize newly allocated registers. */
235 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
236 rs->num_regs = num_regs;
237 }
238
239 /* Copy the register columns in register set RS into newly allocated
240 memory and return a pointer to this newly created copy. */
241
242 static struct dwarf2_frame_state_reg *
243 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
244 {
245 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
246 struct dwarf2_frame_state_reg *reg;
247
248 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
249 memcpy (reg, rs->reg, size);
250
251 return reg;
252 }
253
254 /* Release the memory allocated to register set RS. */
255
256 static void
257 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
258 {
259 if (rs)
260 {
261 dwarf2_frame_state_free_regs (rs->prev);
262
263 xfree (rs->reg);
264 xfree (rs);
265 }
266 }
267
268 /* Release the memory allocated to the frame state FS. */
269
270 static void
271 dwarf2_frame_state_free (void *p)
272 {
273 struct dwarf2_frame_state *fs = p;
274
275 dwarf2_frame_state_free_regs (fs->initial.prev);
276 dwarf2_frame_state_free_regs (fs->regs.prev);
277 xfree (fs->initial.reg);
278 xfree (fs->regs.reg);
279 xfree (fs);
280 }
281 \f
282
283 /* Helper functions for execute_stack_op. */
284
285 static CORE_ADDR
286 read_addr_from_reg (void *baton, int reg)
287 {
288 struct frame_info *this_frame = (struct frame_info *) baton;
289 struct gdbarch *gdbarch = get_frame_arch (this_frame);
290 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
291
292 return address_from_register (regnum, this_frame);
293 }
294
295 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
296
297 static struct value *
298 get_reg_value (void *baton, struct type *type, int reg)
299 {
300 struct frame_info *this_frame = (struct frame_info *) baton;
301 struct gdbarch *gdbarch = get_frame_arch (this_frame);
302 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
303
304 return value_from_register (type, regnum, this_frame);
305 }
306
307 static void
308 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
309 {
310 read_memory (addr, buf, len);
311 }
312
313 /* Execute the required actions for both the DW_CFA_restore and
314 DW_CFA_restore_extended instructions. */
315 static void
316 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
317 struct dwarf2_frame_state *fs, int eh_frame_p)
318 {
319 ULONGEST reg;
320
321 gdb_assert (fs->initial.reg);
322 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
323 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
324
325 /* Check if this register was explicitly initialized in the
326 CIE initial instructions. If not, default the rule to
327 UNSPECIFIED. */
328 if (reg < fs->initial.num_regs)
329 fs->regs.reg[reg] = fs->initial.reg[reg];
330 else
331 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
332
333 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
334 complaint (&symfile_complaints, _("\
335 incomplete CFI data; DW_CFA_restore unspecified\n\
336 register %s (#%d) at %s"),
337 gdbarch_register_name
338 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
339 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
340 paddress (gdbarch, fs->pc));
341 }
342
343 /* Virtual method table for execute_stack_op below. */
344
345 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
346 {
347 read_addr_from_reg,
348 get_reg_value,
349 read_mem,
350 ctx_no_get_frame_base,
351 ctx_no_get_frame_cfa,
352 ctx_no_get_frame_pc,
353 ctx_no_get_tls_address,
354 ctx_no_dwarf_call,
355 ctx_no_get_base_type,
356 ctx_no_push_dwarf_reg_entry_value,
357 ctx_no_get_addr_index
358 };
359
360 static CORE_ADDR
361 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
362 CORE_ADDR offset, struct frame_info *this_frame,
363 CORE_ADDR initial, int initial_in_stack_memory)
364 {
365 struct dwarf_expr_context *ctx;
366 CORE_ADDR result;
367 struct cleanup *old_chain;
368
369 ctx = new_dwarf_expr_context ();
370 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
371 make_cleanup_value_free_to_mark (value_mark ());
372
373 ctx->gdbarch = get_frame_arch (this_frame);
374 ctx->addr_size = addr_size;
375 ctx->ref_addr_size = -1;
376 ctx->offset = offset;
377 ctx->baton = this_frame;
378 ctx->funcs = &dwarf2_frame_ctx_funcs;
379
380 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
381 dwarf_expr_eval (ctx, exp, len);
382
383 if (ctx->location == DWARF_VALUE_MEMORY)
384 result = dwarf_expr_fetch_address (ctx, 0);
385 else if (ctx->location == DWARF_VALUE_REGISTER)
386 result = read_addr_from_reg (this_frame,
387 value_as_long (dwarf_expr_fetch (ctx, 0)));
388 else
389 {
390 /* This is actually invalid DWARF, but if we ever do run across
391 it somehow, we might as well support it. So, instead, report
392 it as unimplemented. */
393 error (_("\
394 Not implemented: computing unwound register using explicit value operator"));
395 }
396
397 do_cleanups (old_chain);
398
399 return result;
400 }
401 \f
402
403 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
404 PC. Modify FS state accordingly. Return current INSN_PTR where the
405 execution has stopped, one can resume it on the next call. */
406
407 static const gdb_byte *
408 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
409 const gdb_byte *insn_end, struct gdbarch *gdbarch,
410 CORE_ADDR pc, struct dwarf2_frame_state *fs)
411 {
412 int eh_frame_p = fde->eh_frame_p;
413 unsigned int bytes_read;
414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
415
416 while (insn_ptr < insn_end && fs->pc <= pc)
417 {
418 gdb_byte insn = *insn_ptr++;
419 uint64_t utmp, reg;
420 int64_t offset;
421
422 if ((insn & 0xc0) == DW_CFA_advance_loc)
423 fs->pc += (insn & 0x3f) * fs->code_align;
424 else if ((insn & 0xc0) == DW_CFA_offset)
425 {
426 reg = insn & 0x3f;
427 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
428 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
429 offset = utmp * fs->data_align;
430 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
431 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
432 fs->regs.reg[reg].loc.offset = offset;
433 }
434 else if ((insn & 0xc0) == DW_CFA_restore)
435 {
436 reg = insn & 0x3f;
437 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
438 }
439 else
440 {
441 switch (insn)
442 {
443 case DW_CFA_set_loc:
444 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
445 fde->cie->ptr_size, insn_ptr,
446 &bytes_read, fde->initial_location);
447 /* Apply the objfile offset for relocatable objects. */
448 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
449 SECT_OFF_TEXT (fde->cie->unit->objfile));
450 insn_ptr += bytes_read;
451 break;
452
453 case DW_CFA_advance_loc1:
454 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
455 fs->pc += utmp * fs->code_align;
456 insn_ptr++;
457 break;
458 case DW_CFA_advance_loc2:
459 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr += 2;
462 break;
463 case DW_CFA_advance_loc4:
464 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 4;
467 break;
468
469 case DW_CFA_offset_extended:
470 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
471 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
473 offset = utmp * fs->data_align;
474 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
475 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
476 fs->regs.reg[reg].loc.offset = offset;
477 break;
478
479 case DW_CFA_restore_extended:
480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
481 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
482 break;
483
484 case DW_CFA_undefined:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
486 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
487 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
488 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
489 break;
490
491 case DW_CFA_same_value:
492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
496 break;
497
498 case DW_CFA_register:
499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
501 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
502 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
503 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
504 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
505 fs->regs.reg[reg].loc.reg = utmp;
506 break;
507
508 case DW_CFA_remember_state:
509 {
510 struct dwarf2_frame_state_reg_info *new_rs;
511
512 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
513 *new_rs = fs->regs;
514 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
515 fs->regs.prev = new_rs;
516 }
517 break;
518
519 case DW_CFA_restore_state:
520 {
521 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
522
523 if (old_rs == NULL)
524 {
525 complaint (&symfile_complaints, _("\
526 bad CFI data; mismatched DW_CFA_restore_state at %s"),
527 paddress (gdbarch, fs->pc));
528 }
529 else
530 {
531 xfree (fs->regs.reg);
532 fs->regs = *old_rs;
533 xfree (old_rs);
534 }
535 }
536 break;
537
538 case DW_CFA_def_cfa:
539 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
540 fs->regs.cfa_reg = reg;
541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
542
543 if (fs->armcc_cfa_offsets_sf)
544 utmp *= fs->data_align;
545
546 fs->regs.cfa_offset = utmp;
547 fs->regs.cfa_how = CFA_REG_OFFSET;
548 break;
549
550 case DW_CFA_def_cfa_register:
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
552 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
553 eh_frame_p);
554 fs->regs.cfa_how = CFA_REG_OFFSET;
555 break;
556
557 case DW_CFA_def_cfa_offset:
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
559
560 if (fs->armcc_cfa_offsets_sf)
561 utmp *= fs->data_align;
562
563 fs->regs.cfa_offset = utmp;
564 /* cfa_how deliberately not set. */
565 break;
566
567 case DW_CFA_nop:
568 break;
569
570 case DW_CFA_def_cfa_expression:
571 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
572 fs->regs.cfa_exp_len = utmp;
573 fs->regs.cfa_exp = insn_ptr;
574 fs->regs.cfa_how = CFA_EXP;
575 insn_ptr += fs->regs.cfa_exp_len;
576 break;
577
578 case DW_CFA_expression:
579 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
580 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
581 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 fs->regs.reg[reg].loc.exp = insn_ptr;
584 fs->regs.reg[reg].exp_len = utmp;
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
586 insn_ptr += utmp;
587 break;
588
589 case DW_CFA_offset_extended_sf:
590 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
591 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
592 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
593 offset *= fs->data_align;
594 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
596 fs->regs.reg[reg].loc.offset = offset;
597 break;
598
599 case DW_CFA_val_offset:
600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
602 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
603 offset = utmp * fs->data_align;
604 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
605 fs->regs.reg[reg].loc.offset = offset;
606 break;
607
608 case DW_CFA_val_offset_sf:
609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
610 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
611 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
612 offset *= fs->data_align;
613 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
614 fs->regs.reg[reg].loc.offset = offset;
615 break;
616
617 case DW_CFA_val_expression:
618 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
620 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
621 fs->regs.reg[reg].loc.exp = insn_ptr;
622 fs->regs.reg[reg].exp_len = utmp;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
624 insn_ptr += utmp;
625 break;
626
627 case DW_CFA_def_cfa_sf:
628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
629 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
630 eh_frame_p);
631 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
632 fs->regs.cfa_offset = offset * fs->data_align;
633 fs->regs.cfa_how = CFA_REG_OFFSET;
634 break;
635
636 case DW_CFA_def_cfa_offset_sf:
637 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
638 fs->regs.cfa_offset = offset * fs->data_align;
639 /* cfa_how deliberately not set. */
640 break;
641
642 case DW_CFA_GNU_window_save:
643 /* This is SPARC-specific code, and contains hard-coded
644 constants for the register numbering scheme used by
645 GCC. Rather than having a architecture-specific
646 operation that's only ever used by a single
647 architecture, we provide the implementation here.
648 Incidentally that's what GCC does too in its
649 unwinder. */
650 {
651 int size = register_size (gdbarch, 0);
652
653 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
654 for (reg = 8; reg < 16; reg++)
655 {
656 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
657 fs->regs.reg[reg].loc.reg = reg + 16;
658 }
659 for (reg = 16; reg < 32; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
662 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
663 }
664 }
665 break;
666
667 case DW_CFA_GNU_args_size:
668 /* Ignored. */
669 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
670 break;
671
672 case DW_CFA_GNU_negative_offset_extended:
673 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
674 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
675 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
676 offset = utmp * fs->data_align;
677 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
678 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
679 fs->regs.reg[reg].loc.offset = -offset;
680 break;
681
682 default:
683 internal_error (__FILE__, __LINE__,
684 _("Unknown CFI encountered."));
685 }
686 }
687 }
688
689 if (fs->initial.reg == NULL)
690 {
691 /* Don't allow remember/restore between CIE and FDE programs. */
692 dwarf2_frame_state_free_regs (fs->regs.prev);
693 fs->regs.prev = NULL;
694 }
695
696 return insn_ptr;
697 }
698 \f
699
700 /* Architecture-specific operations. */
701
702 /* Per-architecture data key. */
703 static struct gdbarch_data *dwarf2_frame_data;
704
705 struct dwarf2_frame_ops
706 {
707 /* Pre-initialize the register state REG for register REGNUM. */
708 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
709 struct frame_info *);
710
711 /* Check whether the THIS_FRAME is a signal trampoline. */
712 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
713
714 /* Convert .eh_frame register number to DWARF register number, or
715 adjust .debug_frame register number. */
716 int (*adjust_regnum) (struct gdbarch *, int, int);
717 };
718
719 /* Default architecture-specific register state initialization
720 function. */
721
722 static void
723 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
724 struct dwarf2_frame_state_reg *reg,
725 struct frame_info *this_frame)
726 {
727 /* If we have a register that acts as a program counter, mark it as
728 a destination for the return address. If we have a register that
729 serves as the stack pointer, arrange for it to be filled with the
730 call frame address (CFA). The other registers are marked as
731 unspecified.
732
733 We copy the return address to the program counter, since many
734 parts in GDB assume that it is possible to get the return address
735 by unwinding the program counter register. However, on ISA's
736 with a dedicated return address register, the CFI usually only
737 contains information to unwind that return address register.
738
739 The reason we're treating the stack pointer special here is
740 because in many cases GCC doesn't emit CFI for the stack pointer
741 and implicitly assumes that it is equal to the CFA. This makes
742 some sense since the DWARF specification (version 3, draft 8,
743 p. 102) says that:
744
745 "Typically, the CFA is defined to be the value of the stack
746 pointer at the call site in the previous frame (which may be
747 different from its value on entry to the current frame)."
748
749 However, this isn't true for all platforms supported by GCC
750 (e.g. IBM S/390 and zSeries). Those architectures should provide
751 their own architecture-specific initialization function. */
752
753 if (regnum == gdbarch_pc_regnum (gdbarch))
754 reg->how = DWARF2_FRAME_REG_RA;
755 else if (regnum == gdbarch_sp_regnum (gdbarch))
756 reg->how = DWARF2_FRAME_REG_CFA;
757 }
758
759 /* Return a default for the architecture-specific operations. */
760
761 static void *
762 dwarf2_frame_init (struct obstack *obstack)
763 {
764 struct dwarf2_frame_ops *ops;
765
766 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
767 ops->init_reg = dwarf2_frame_default_init_reg;
768 return ops;
769 }
770
771 /* Set the architecture-specific register state initialization
772 function for GDBARCH to INIT_REG. */
773
774 void
775 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
776 void (*init_reg) (struct gdbarch *, int,
777 struct dwarf2_frame_state_reg *,
778 struct frame_info *))
779 {
780 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
781
782 ops->init_reg = init_reg;
783 }
784
785 /* Pre-initialize the register state REG for register REGNUM. */
786
787 static void
788 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
789 struct dwarf2_frame_state_reg *reg,
790 struct frame_info *this_frame)
791 {
792 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
793
794 ops->init_reg (gdbarch, regnum, reg, this_frame);
795 }
796
797 /* Set the architecture-specific signal trampoline recognition
798 function for GDBARCH to SIGNAL_FRAME_P. */
799
800 void
801 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
802 int (*signal_frame_p) (struct gdbarch *,
803 struct frame_info *))
804 {
805 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806
807 ops->signal_frame_p = signal_frame_p;
808 }
809
810 /* Query the architecture-specific signal frame recognizer for
811 THIS_FRAME. */
812
813 static int
814 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
815 struct frame_info *this_frame)
816 {
817 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
818
819 if (ops->signal_frame_p == NULL)
820 return 0;
821 return ops->signal_frame_p (gdbarch, this_frame);
822 }
823
824 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
825 register numbers. */
826
827 void
828 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
829 int (*adjust_regnum) (struct gdbarch *,
830 int, int))
831 {
832 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
833
834 ops->adjust_regnum = adjust_regnum;
835 }
836
837 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
838 register. */
839
840 static int
841 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
842 int regnum, int eh_frame_p)
843 {
844 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
845
846 if (ops->adjust_regnum == NULL)
847 return regnum;
848 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
849 }
850
851 static void
852 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
853 struct dwarf2_fde *fde)
854 {
855 struct compunit_symtab *cust;
856
857 cust = find_pc_compunit_symtab (fs->pc);
858 if (cust == NULL)
859 return;
860
861 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
862 {
863 if (fde->cie->version == 1)
864 fs->armcc_cfa_offsets_sf = 1;
865
866 if (fde->cie->version == 1)
867 fs->armcc_cfa_offsets_reversed = 1;
868
869 /* The reversed offset problem is present in some compilers
870 using DWARF3, but it was eventually fixed. Check the ARM
871 defined augmentations, which are in the format "armcc" followed
872 by a list of one-character options. The "+" option means
873 this problem is fixed (no quirk needed). If the armcc
874 augmentation is missing, the quirk is needed. */
875 if (fde->cie->version == 3
876 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
877 || strchr (fde->cie->augmentation + 5, '+') == NULL))
878 fs->armcc_cfa_offsets_reversed = 1;
879
880 return;
881 }
882 }
883 \f
884
885 /* See dwarf2-frame.h. */
886
887 int
888 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
889 struct dwarf2_per_cu_data *data,
890 int *regnum_out, LONGEST *offset_out,
891 CORE_ADDR *text_offset_out,
892 const gdb_byte **cfa_start_out,
893 const gdb_byte **cfa_end_out)
894 {
895 struct dwarf2_fde *fde;
896 CORE_ADDR text_offset;
897 struct dwarf2_frame_state fs;
898 int addr_size;
899
900 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
901
902 fs.pc = pc;
903
904 /* Find the correct FDE. */
905 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
906 if (fde == NULL)
907 error (_("Could not compute CFA; needed to translate this expression"));
908
909 /* Extract any interesting information from the CIE. */
910 fs.data_align = fde->cie->data_alignment_factor;
911 fs.code_align = fde->cie->code_alignment_factor;
912 fs.retaddr_column = fde->cie->return_address_register;
913 addr_size = fde->cie->addr_size;
914
915 /* Check for "quirks" - known bugs in producers. */
916 dwarf2_frame_find_quirks (&fs, fde);
917
918 /* First decode all the insns in the CIE. */
919 execute_cfa_program (fde, fde->cie->initial_instructions,
920 fde->cie->end, gdbarch, pc, &fs);
921
922 /* Save the initialized register set. */
923 fs.initial = fs.regs;
924 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
925
926 /* Then decode the insns in the FDE up to our target PC. */
927 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
928
929 /* Calculate the CFA. */
930 switch (fs.regs.cfa_how)
931 {
932 case CFA_REG_OFFSET:
933 {
934 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
935
936 if (regnum == -1)
937 error (_("Unable to access DWARF register number %d"),
938 (int) fs.regs.cfa_reg); /* FIXME */
939
940 *regnum_out = regnum;
941 if (fs.armcc_cfa_offsets_reversed)
942 *offset_out = -fs.regs.cfa_offset;
943 else
944 *offset_out = fs.regs.cfa_offset;
945 return 1;
946 }
947
948 case CFA_EXP:
949 *text_offset_out = text_offset;
950 *cfa_start_out = fs.regs.cfa_exp;
951 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
952 return 0;
953
954 default:
955 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
956 }
957 }
958
959 \f
960 struct dwarf2_frame_cache
961 {
962 /* DWARF Call Frame Address. */
963 CORE_ADDR cfa;
964
965 /* Set if the return address column was marked as unavailable
966 (required non-collected memory or registers to compute). */
967 int unavailable_retaddr;
968
969 /* Set if the return address column was marked as undefined. */
970 int undefined_retaddr;
971
972 /* Saved registers, indexed by GDB register number, not by DWARF
973 register number. */
974 struct dwarf2_frame_state_reg *reg;
975
976 /* Return address register. */
977 struct dwarf2_frame_state_reg retaddr_reg;
978
979 /* Target address size in bytes. */
980 int addr_size;
981
982 /* The .text offset. */
983 CORE_ADDR text_offset;
984
985 /* True if we already checked whether this frame is the bottom frame
986 of a virtual tail call frame chain. */
987 int checked_tailcall_bottom;
988
989 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
990 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
991 involved. Non-bottom frames of a virtual tail call frames chain use
992 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
993 them. */
994 void *tailcall_cache;
995
996 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
997 base to get the SP, to simulate the return address pushed on the
998 stack. */
999 LONGEST entry_cfa_sp_offset;
1000 int entry_cfa_sp_offset_p;
1001 };
1002
1003 /* A cleanup that sets a pointer to NULL. */
1004
1005 static void
1006 clear_pointer_cleanup (void *arg)
1007 {
1008 void **ptr = arg;
1009
1010 *ptr = NULL;
1011 }
1012
1013 static struct dwarf2_frame_cache *
1014 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1015 {
1016 struct cleanup *reset_cache_cleanup, *old_chain;
1017 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1018 const int num_regs = gdbarch_num_regs (gdbarch)
1019 + gdbarch_num_pseudo_regs (gdbarch);
1020 struct dwarf2_frame_cache *cache;
1021 struct dwarf2_frame_state *fs;
1022 struct dwarf2_fde *fde;
1023 volatile struct gdb_exception ex;
1024 CORE_ADDR entry_pc;
1025 const gdb_byte *instr;
1026
1027 if (*this_cache)
1028 return *this_cache;
1029
1030 /* Allocate a new cache. */
1031 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1032 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1033 *this_cache = cache;
1034 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1035
1036 /* Allocate and initialize the frame state. */
1037 fs = XCNEW (struct dwarf2_frame_state);
1038 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1039
1040 /* Unwind the PC.
1041
1042 Note that if the next frame is never supposed to return (i.e. a call
1043 to abort), the compiler might optimize away the instruction at
1044 its return address. As a result the return address will
1045 point at some random instruction, and the CFI for that
1046 instruction is probably worthless to us. GCC's unwinder solves
1047 this problem by substracting 1 from the return address to get an
1048 address in the middle of a presumed call instruction (or the
1049 instruction in the associated delay slot). This should only be
1050 done for "normal" frames and not for resume-type frames (signal
1051 handlers, sentinel frames, dummy frames). The function
1052 get_frame_address_in_block does just this. It's not clear how
1053 reliable the method is though; there is the potential for the
1054 register state pre-call being different to that on return. */
1055 fs->pc = get_frame_address_in_block (this_frame);
1056
1057 /* Find the correct FDE. */
1058 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1059 gdb_assert (fde != NULL);
1060
1061 /* Extract any interesting information from the CIE. */
1062 fs->data_align = fde->cie->data_alignment_factor;
1063 fs->code_align = fde->cie->code_alignment_factor;
1064 fs->retaddr_column = fde->cie->return_address_register;
1065 cache->addr_size = fde->cie->addr_size;
1066
1067 /* Check for "quirks" - known bugs in producers. */
1068 dwarf2_frame_find_quirks (fs, fde);
1069
1070 /* First decode all the insns in the CIE. */
1071 execute_cfa_program (fde, fde->cie->initial_instructions,
1072 fde->cie->end, gdbarch,
1073 get_frame_address_in_block (this_frame), fs);
1074
1075 /* Save the initialized register set. */
1076 fs->initial = fs->regs;
1077 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1078
1079 if (get_frame_func_if_available (this_frame, &entry_pc))
1080 {
1081 /* Decode the insns in the FDE up to the entry PC. */
1082 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1083 entry_pc, fs);
1084
1085 if (fs->regs.cfa_how == CFA_REG_OFFSET
1086 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1087 == gdbarch_sp_regnum (gdbarch)))
1088 {
1089 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1090 cache->entry_cfa_sp_offset_p = 1;
1091 }
1092 }
1093 else
1094 instr = fde->instructions;
1095
1096 /* Then decode the insns in the FDE up to our target PC. */
1097 execute_cfa_program (fde, instr, fde->end, gdbarch,
1098 get_frame_address_in_block (this_frame), fs);
1099
1100 TRY_CATCH (ex, RETURN_MASK_ERROR)
1101 {
1102 /* Calculate the CFA. */
1103 switch (fs->regs.cfa_how)
1104 {
1105 case CFA_REG_OFFSET:
1106 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1107 if (fs->armcc_cfa_offsets_reversed)
1108 cache->cfa -= fs->regs.cfa_offset;
1109 else
1110 cache->cfa += fs->regs.cfa_offset;
1111 break;
1112
1113 case CFA_EXP:
1114 cache->cfa =
1115 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1116 cache->addr_size, cache->text_offset,
1117 this_frame, 0, 0);
1118 break;
1119
1120 default:
1121 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1122 }
1123 }
1124 if (ex.reason < 0)
1125 {
1126 if (ex.error == NOT_AVAILABLE_ERROR)
1127 {
1128 cache->unavailable_retaddr = 1;
1129 do_cleanups (old_chain);
1130 discard_cleanups (reset_cache_cleanup);
1131 return cache;
1132 }
1133
1134 throw_exception (ex);
1135 }
1136
1137 /* Initialize the register state. */
1138 {
1139 int regnum;
1140
1141 for (regnum = 0; regnum < num_regs; regnum++)
1142 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1143 }
1144
1145 /* Go through the DWARF2 CFI generated table and save its register
1146 location information in the cache. Note that we don't skip the
1147 return address column; it's perfectly all right for it to
1148 correspond to a real register. If it doesn't correspond to a
1149 real register, or if we shouldn't treat it as such,
1150 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1151 the range [0, gdbarch_num_regs). */
1152 {
1153 int column; /* CFI speak for "register number". */
1154
1155 for (column = 0; column < fs->regs.num_regs; column++)
1156 {
1157 /* Use the GDB register number as the destination index. */
1158 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1159
1160 /* If there's no corresponding GDB register, ignore it. */
1161 if (regnum < 0 || regnum >= num_regs)
1162 continue;
1163
1164 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1165 of all debug info registers. If it doesn't, complain (but
1166 not too loudly). It turns out that GCC assumes that an
1167 unspecified register implies "same value" when CFI (draft
1168 7) specifies nothing at all. Such a register could equally
1169 be interpreted as "undefined". Also note that this check
1170 isn't sufficient; it only checks that all registers in the
1171 range [0 .. max column] are specified, and won't detect
1172 problems when a debug info register falls outside of the
1173 table. We need a way of iterating through all the valid
1174 DWARF2 register numbers. */
1175 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1176 {
1177 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1178 complaint (&symfile_complaints, _("\
1179 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1180 gdbarch_register_name (gdbarch, regnum),
1181 paddress (gdbarch, fs->pc));
1182 }
1183 else
1184 cache->reg[regnum] = fs->regs.reg[column];
1185 }
1186 }
1187
1188 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1189 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1190 {
1191 int regnum;
1192
1193 for (regnum = 0; regnum < num_regs; regnum++)
1194 {
1195 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1196 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1197 {
1198 struct dwarf2_frame_state_reg *retaddr_reg =
1199 &fs->regs.reg[fs->retaddr_column];
1200
1201 /* It seems rather bizarre to specify an "empty" column as
1202 the return adress column. However, this is exactly
1203 what GCC does on some targets. It turns out that GCC
1204 assumes that the return address can be found in the
1205 register corresponding to the return address column.
1206 Incidentally, that's how we should treat a return
1207 address column specifying "same value" too. */
1208 if (fs->retaddr_column < fs->regs.num_regs
1209 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1210 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1211 {
1212 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1213 cache->reg[regnum] = *retaddr_reg;
1214 else
1215 cache->retaddr_reg = *retaddr_reg;
1216 }
1217 else
1218 {
1219 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1220 {
1221 cache->reg[regnum].loc.reg = fs->retaddr_column;
1222 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1223 }
1224 else
1225 {
1226 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1227 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1228 }
1229 }
1230 }
1231 }
1232 }
1233
1234 if (fs->retaddr_column < fs->regs.num_regs
1235 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1236 cache->undefined_retaddr = 1;
1237
1238 do_cleanups (old_chain);
1239 discard_cleanups (reset_cache_cleanup);
1240 return cache;
1241 }
1242
1243 static enum unwind_stop_reason
1244 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1245 void **this_cache)
1246 {
1247 struct dwarf2_frame_cache *cache
1248 = dwarf2_frame_cache (this_frame, this_cache);
1249
1250 if (cache->unavailable_retaddr)
1251 return UNWIND_UNAVAILABLE;
1252
1253 if (cache->undefined_retaddr)
1254 return UNWIND_OUTERMOST;
1255
1256 return UNWIND_NO_REASON;
1257 }
1258
1259 static void
1260 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1261 struct frame_id *this_id)
1262 {
1263 struct dwarf2_frame_cache *cache =
1264 dwarf2_frame_cache (this_frame, this_cache);
1265
1266 if (cache->unavailable_retaddr)
1267 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1268 else if (cache->undefined_retaddr)
1269 return;
1270 else
1271 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1272 }
1273
1274 static struct value *
1275 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1276 int regnum)
1277 {
1278 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1279 struct dwarf2_frame_cache *cache =
1280 dwarf2_frame_cache (this_frame, this_cache);
1281 CORE_ADDR addr;
1282 int realnum;
1283
1284 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1285 call frame chain. */
1286 if (!cache->checked_tailcall_bottom)
1287 {
1288 cache->checked_tailcall_bottom = 1;
1289 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1290 (cache->entry_cfa_sp_offset_p
1291 ? &cache->entry_cfa_sp_offset : NULL));
1292 }
1293
1294 /* Non-bottom frames of a virtual tail call frames chain use
1295 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1296 them. If dwarf2_tailcall_prev_register_first does not have specific value
1297 unwind the register, tail call frames are assumed to have the register set
1298 of the top caller. */
1299 if (cache->tailcall_cache)
1300 {
1301 struct value *val;
1302
1303 val = dwarf2_tailcall_prev_register_first (this_frame,
1304 &cache->tailcall_cache,
1305 regnum);
1306 if (val)
1307 return val;
1308 }
1309
1310 switch (cache->reg[regnum].how)
1311 {
1312 case DWARF2_FRAME_REG_UNDEFINED:
1313 /* If CFI explicitly specified that the value isn't defined,
1314 mark it as optimized away; the value isn't available. */
1315 return frame_unwind_got_optimized (this_frame, regnum);
1316
1317 case DWARF2_FRAME_REG_SAVED_OFFSET:
1318 addr = cache->cfa + cache->reg[regnum].loc.offset;
1319 return frame_unwind_got_memory (this_frame, regnum, addr);
1320
1321 case DWARF2_FRAME_REG_SAVED_REG:
1322 realnum
1323 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1324 return frame_unwind_got_register (this_frame, regnum, realnum);
1325
1326 case DWARF2_FRAME_REG_SAVED_EXP:
1327 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1328 cache->reg[regnum].exp_len,
1329 cache->addr_size, cache->text_offset,
1330 this_frame, cache->cfa, 1);
1331 return frame_unwind_got_memory (this_frame, regnum, addr);
1332
1333 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1334 addr = cache->cfa + cache->reg[regnum].loc.offset;
1335 return frame_unwind_got_constant (this_frame, regnum, addr);
1336
1337 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1338 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1339 cache->reg[regnum].exp_len,
1340 cache->addr_size, cache->text_offset,
1341 this_frame, cache->cfa, 1);
1342 return frame_unwind_got_constant (this_frame, regnum, addr);
1343
1344 case DWARF2_FRAME_REG_UNSPECIFIED:
1345 /* GCC, in its infinite wisdom decided to not provide unwind
1346 information for registers that are "same value". Since
1347 DWARF2 (3 draft 7) doesn't define such behavior, said
1348 registers are actually undefined (which is different to CFI
1349 "undefined"). Code above issues a complaint about this.
1350 Here just fudge the books, assume GCC, and that the value is
1351 more inner on the stack. */
1352 return frame_unwind_got_register (this_frame, regnum, regnum);
1353
1354 case DWARF2_FRAME_REG_SAME_VALUE:
1355 return frame_unwind_got_register (this_frame, regnum, regnum);
1356
1357 case DWARF2_FRAME_REG_CFA:
1358 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1359
1360 case DWARF2_FRAME_REG_CFA_OFFSET:
1361 addr = cache->cfa + cache->reg[regnum].loc.offset;
1362 return frame_unwind_got_address (this_frame, regnum, addr);
1363
1364 case DWARF2_FRAME_REG_RA_OFFSET:
1365 addr = cache->reg[regnum].loc.offset;
1366 regnum = gdbarch_dwarf2_reg_to_regnum
1367 (gdbarch, cache->retaddr_reg.loc.reg);
1368 addr += get_frame_register_unsigned (this_frame, regnum);
1369 return frame_unwind_got_address (this_frame, regnum, addr);
1370
1371 case DWARF2_FRAME_REG_FN:
1372 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1373
1374 default:
1375 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1376 }
1377 }
1378
1379 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1380 call frames chain. */
1381
1382 static void
1383 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1384 {
1385 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1386
1387 if (cache->tailcall_cache)
1388 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1389 }
1390
1391 static int
1392 dwarf2_frame_sniffer (const struct frame_unwind *self,
1393 struct frame_info *this_frame, void **this_cache)
1394 {
1395 /* Grab an address that is guarenteed to reside somewhere within the
1396 function. get_frame_pc(), with a no-return next function, can
1397 end up returning something past the end of this function's body.
1398 If the frame we're sniffing for is a signal frame whose start
1399 address is placed on the stack by the OS, its FDE must
1400 extend one byte before its start address or we could potentially
1401 select the FDE of the previous function. */
1402 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1403 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1404
1405 if (!fde)
1406 return 0;
1407
1408 /* On some targets, signal trampolines may have unwind information.
1409 We need to recognize them so that we set the frame type
1410 correctly. */
1411
1412 if (fde->cie->signal_frame
1413 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1414 this_frame))
1415 return self->type == SIGTRAMP_FRAME;
1416
1417 if (self->type != NORMAL_FRAME)
1418 return 0;
1419
1420 return 1;
1421 }
1422
1423 static const struct frame_unwind dwarf2_frame_unwind =
1424 {
1425 NORMAL_FRAME,
1426 dwarf2_frame_unwind_stop_reason,
1427 dwarf2_frame_this_id,
1428 dwarf2_frame_prev_register,
1429 NULL,
1430 dwarf2_frame_sniffer,
1431 dwarf2_frame_dealloc_cache
1432 };
1433
1434 static const struct frame_unwind dwarf2_signal_frame_unwind =
1435 {
1436 SIGTRAMP_FRAME,
1437 dwarf2_frame_unwind_stop_reason,
1438 dwarf2_frame_this_id,
1439 dwarf2_frame_prev_register,
1440 NULL,
1441 dwarf2_frame_sniffer,
1442
1443 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1444 NULL
1445 };
1446
1447 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1448
1449 void
1450 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1451 {
1452 /* TAILCALL_FRAME must be first to find the record by
1453 dwarf2_tailcall_sniffer_first. */
1454 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1455
1456 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1457 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1458 }
1459 \f
1460
1461 /* There is no explicitly defined relationship between the CFA and the
1462 location of frame's local variables and arguments/parameters.
1463 Therefore, frame base methods on this page should probably only be
1464 used as a last resort, just to avoid printing total garbage as a
1465 response to the "info frame" command. */
1466
1467 static CORE_ADDR
1468 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1469 {
1470 struct dwarf2_frame_cache *cache =
1471 dwarf2_frame_cache (this_frame, this_cache);
1472
1473 return cache->cfa;
1474 }
1475
1476 static const struct frame_base dwarf2_frame_base =
1477 {
1478 &dwarf2_frame_unwind,
1479 dwarf2_frame_base_address,
1480 dwarf2_frame_base_address,
1481 dwarf2_frame_base_address
1482 };
1483
1484 const struct frame_base *
1485 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1486 {
1487 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1488
1489 if (dwarf2_frame_find_fde (&block_addr, NULL))
1490 return &dwarf2_frame_base;
1491
1492 return NULL;
1493 }
1494
1495 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1496 the DWARF unwinder. This is used to implement
1497 DW_OP_call_frame_cfa. */
1498
1499 CORE_ADDR
1500 dwarf2_frame_cfa (struct frame_info *this_frame)
1501 {
1502 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1503 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1504 throw_error (NOT_AVAILABLE_ERROR,
1505 _("cfa not available for record btrace target"));
1506
1507 while (get_frame_type (this_frame) == INLINE_FRAME)
1508 this_frame = get_prev_frame (this_frame);
1509 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1510 throw_error (NOT_AVAILABLE_ERROR,
1511 _("can't compute CFA for this frame: "
1512 "required registers or memory are unavailable"));
1513 /* This restriction could be lifted if other unwinders are known to
1514 compute the frame base in a way compatible with the DWARF
1515 unwinder. */
1516 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1517 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
1518 error (_("can't compute CFA for this frame"));
1519 return get_frame_base (this_frame);
1520 }
1521 \f
1522 const struct objfile_data *dwarf2_frame_objfile_data;
1523
1524 static unsigned int
1525 read_1_byte (bfd *abfd, const gdb_byte *buf)
1526 {
1527 return bfd_get_8 (abfd, buf);
1528 }
1529
1530 static unsigned int
1531 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1532 {
1533 return bfd_get_32 (abfd, buf);
1534 }
1535
1536 static ULONGEST
1537 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1538 {
1539 return bfd_get_64 (abfd, buf);
1540 }
1541
1542 static ULONGEST
1543 read_initial_length (bfd *abfd, const gdb_byte *buf,
1544 unsigned int *bytes_read_ptr)
1545 {
1546 LONGEST result;
1547
1548 result = bfd_get_32 (abfd, buf);
1549 if (result == 0xffffffff)
1550 {
1551 result = bfd_get_64 (abfd, buf + 4);
1552 *bytes_read_ptr = 12;
1553 }
1554 else
1555 *bytes_read_ptr = 4;
1556
1557 return result;
1558 }
1559 \f
1560
1561 /* Pointer encoding helper functions. */
1562
1563 /* GCC supports exception handling based on DWARF2 CFI. However, for
1564 technical reasons, it encodes addresses in its FDE's in a different
1565 way. Several "pointer encodings" are supported. The encoding
1566 that's used for a particular FDE is determined by the 'R'
1567 augmentation in the associated CIE. The argument of this
1568 augmentation is a single byte.
1569
1570 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1571 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1572 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1573 address should be interpreted (absolute, relative to the current
1574 position in the FDE, ...). Bit 7, indicates that the address
1575 should be dereferenced. */
1576
1577 static gdb_byte
1578 encoding_for_size (unsigned int size)
1579 {
1580 switch (size)
1581 {
1582 case 2:
1583 return DW_EH_PE_udata2;
1584 case 4:
1585 return DW_EH_PE_udata4;
1586 case 8:
1587 return DW_EH_PE_udata8;
1588 default:
1589 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1590 }
1591 }
1592
1593 static CORE_ADDR
1594 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1595 int ptr_len, const gdb_byte *buf,
1596 unsigned int *bytes_read_ptr,
1597 CORE_ADDR func_base)
1598 {
1599 ptrdiff_t offset;
1600 CORE_ADDR base;
1601
1602 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1603 FDE's. */
1604 if (encoding & DW_EH_PE_indirect)
1605 internal_error (__FILE__, __LINE__,
1606 _("Unsupported encoding: DW_EH_PE_indirect"));
1607
1608 *bytes_read_ptr = 0;
1609
1610 switch (encoding & 0x70)
1611 {
1612 case DW_EH_PE_absptr:
1613 base = 0;
1614 break;
1615 case DW_EH_PE_pcrel:
1616 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1617 base += (buf - unit->dwarf_frame_buffer);
1618 break;
1619 case DW_EH_PE_datarel:
1620 base = unit->dbase;
1621 break;
1622 case DW_EH_PE_textrel:
1623 base = unit->tbase;
1624 break;
1625 case DW_EH_PE_funcrel:
1626 base = func_base;
1627 break;
1628 case DW_EH_PE_aligned:
1629 base = 0;
1630 offset = buf - unit->dwarf_frame_buffer;
1631 if ((offset % ptr_len) != 0)
1632 {
1633 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1634 buf += *bytes_read_ptr;
1635 }
1636 break;
1637 default:
1638 internal_error (__FILE__, __LINE__,
1639 _("Invalid or unsupported encoding"));
1640 }
1641
1642 if ((encoding & 0x07) == 0x00)
1643 {
1644 encoding |= encoding_for_size (ptr_len);
1645 if (bfd_get_sign_extend_vma (unit->abfd))
1646 encoding |= DW_EH_PE_signed;
1647 }
1648
1649 switch (encoding & 0x0f)
1650 {
1651 case DW_EH_PE_uleb128:
1652 {
1653 uint64_t value;
1654 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1655
1656 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1657 return base + value;
1658 }
1659 case DW_EH_PE_udata2:
1660 *bytes_read_ptr += 2;
1661 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1662 case DW_EH_PE_udata4:
1663 *bytes_read_ptr += 4;
1664 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1665 case DW_EH_PE_udata8:
1666 *bytes_read_ptr += 8;
1667 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1668 case DW_EH_PE_sleb128:
1669 {
1670 int64_t value;
1671 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1672
1673 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1674 return base + value;
1675 }
1676 case DW_EH_PE_sdata2:
1677 *bytes_read_ptr += 2;
1678 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1679 case DW_EH_PE_sdata4:
1680 *bytes_read_ptr += 4;
1681 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1682 case DW_EH_PE_sdata8:
1683 *bytes_read_ptr += 8;
1684 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1685 default:
1686 internal_error (__FILE__, __LINE__,
1687 _("Invalid or unsupported encoding"));
1688 }
1689 }
1690 \f
1691
1692 static int
1693 bsearch_cie_cmp (const void *key, const void *element)
1694 {
1695 ULONGEST cie_pointer = *(ULONGEST *) key;
1696 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1697
1698 if (cie_pointer == cie->cie_pointer)
1699 return 0;
1700
1701 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1702 }
1703
1704 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1705 static struct dwarf2_cie *
1706 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1707 {
1708 struct dwarf2_cie **p_cie;
1709
1710 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1711 bsearch be non-NULL. */
1712 if (cie_table->entries == NULL)
1713 {
1714 gdb_assert (cie_table->num_entries == 0);
1715 return NULL;
1716 }
1717
1718 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1719 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1720 if (p_cie != NULL)
1721 return *p_cie;
1722 return NULL;
1723 }
1724
1725 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1726 static void
1727 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1728 {
1729 const int n = cie_table->num_entries;
1730
1731 gdb_assert (n < 1
1732 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1733
1734 cie_table->entries =
1735 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1736 cie_table->entries[n] = cie;
1737 cie_table->num_entries = n + 1;
1738 }
1739
1740 static int
1741 bsearch_fde_cmp (const void *key, const void *element)
1742 {
1743 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1744 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1745
1746 if (seek_pc < fde->initial_location)
1747 return -1;
1748 if (seek_pc < fde->initial_location + fde->address_range)
1749 return 0;
1750 return 1;
1751 }
1752
1753 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1754 inital location associated with it into *PC. */
1755
1756 static struct dwarf2_fde *
1757 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1758 {
1759 struct objfile *objfile;
1760
1761 ALL_OBJFILES (objfile)
1762 {
1763 struct dwarf2_fde_table *fde_table;
1764 struct dwarf2_fde **p_fde;
1765 CORE_ADDR offset;
1766 CORE_ADDR seek_pc;
1767
1768 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1769 if (fde_table == NULL)
1770 {
1771 dwarf2_build_frame_info (objfile);
1772 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1773 }
1774 gdb_assert (fde_table != NULL);
1775
1776 if (fde_table->num_entries == 0)
1777 continue;
1778
1779 gdb_assert (objfile->section_offsets);
1780 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1781
1782 gdb_assert (fde_table->num_entries > 0);
1783 if (*pc < offset + fde_table->entries[0]->initial_location)
1784 continue;
1785
1786 seek_pc = *pc - offset;
1787 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1788 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1789 if (p_fde != NULL)
1790 {
1791 *pc = (*p_fde)->initial_location + offset;
1792 if (out_offset)
1793 *out_offset = offset;
1794 return *p_fde;
1795 }
1796 }
1797 return NULL;
1798 }
1799
1800 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1801 static void
1802 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1803 {
1804 if (fde->address_range == 0)
1805 /* Discard useless FDEs. */
1806 return;
1807
1808 fde_table->num_entries += 1;
1809 fde_table->entries =
1810 xrealloc (fde_table->entries,
1811 fde_table->num_entries * sizeof (fde_table->entries[0]));
1812 fde_table->entries[fde_table->num_entries - 1] = fde;
1813 }
1814
1815 #define DW64_CIE_ID 0xffffffffffffffffULL
1816
1817 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1818 or any of them. */
1819
1820 enum eh_frame_type
1821 {
1822 EH_CIE_TYPE_ID = 1 << 0,
1823 EH_FDE_TYPE_ID = 1 << 1,
1824 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1825 };
1826
1827 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1828 const gdb_byte *start,
1829 int eh_frame_p,
1830 struct dwarf2_cie_table *cie_table,
1831 struct dwarf2_fde_table *fde_table,
1832 enum eh_frame_type entry_type);
1833
1834 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1835 Return NULL if invalid input, otherwise the next byte to be processed. */
1836
1837 static const gdb_byte *
1838 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1839 int eh_frame_p,
1840 struct dwarf2_cie_table *cie_table,
1841 struct dwarf2_fde_table *fde_table,
1842 enum eh_frame_type entry_type)
1843 {
1844 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1845 const gdb_byte *buf, *end;
1846 LONGEST length;
1847 unsigned int bytes_read;
1848 int dwarf64_p;
1849 ULONGEST cie_id;
1850 ULONGEST cie_pointer;
1851 int64_t sleb128;
1852 uint64_t uleb128;
1853
1854 buf = start;
1855 length = read_initial_length (unit->abfd, buf, &bytes_read);
1856 buf += bytes_read;
1857 end = buf + length;
1858
1859 /* Are we still within the section? */
1860 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1861 return NULL;
1862
1863 if (length == 0)
1864 return end;
1865
1866 /* Distinguish between 32 and 64-bit encoded frame info. */
1867 dwarf64_p = (bytes_read == 12);
1868
1869 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1870 if (eh_frame_p)
1871 cie_id = 0;
1872 else if (dwarf64_p)
1873 cie_id = DW64_CIE_ID;
1874 else
1875 cie_id = DW_CIE_ID;
1876
1877 if (dwarf64_p)
1878 {
1879 cie_pointer = read_8_bytes (unit->abfd, buf);
1880 buf += 8;
1881 }
1882 else
1883 {
1884 cie_pointer = read_4_bytes (unit->abfd, buf);
1885 buf += 4;
1886 }
1887
1888 if (cie_pointer == cie_id)
1889 {
1890 /* This is a CIE. */
1891 struct dwarf2_cie *cie;
1892 char *augmentation;
1893 unsigned int cie_version;
1894
1895 /* Check that a CIE was expected. */
1896 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1897 error (_("Found a CIE when not expecting it."));
1898
1899 /* Record the offset into the .debug_frame section of this CIE. */
1900 cie_pointer = start - unit->dwarf_frame_buffer;
1901
1902 /* Check whether we've already read it. */
1903 if (find_cie (cie_table, cie_pointer))
1904 return end;
1905
1906 cie = (struct dwarf2_cie *)
1907 obstack_alloc (&unit->objfile->objfile_obstack,
1908 sizeof (struct dwarf2_cie));
1909 cie->initial_instructions = NULL;
1910 cie->cie_pointer = cie_pointer;
1911
1912 /* The encoding for FDE's in a normal .debug_frame section
1913 depends on the target address size. */
1914 cie->encoding = DW_EH_PE_absptr;
1915
1916 /* We'll determine the final value later, but we need to
1917 initialize it conservatively. */
1918 cie->signal_frame = 0;
1919
1920 /* Check version number. */
1921 cie_version = read_1_byte (unit->abfd, buf);
1922 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1923 return NULL;
1924 cie->version = cie_version;
1925 buf += 1;
1926
1927 /* Interpret the interesting bits of the augmentation. */
1928 cie->augmentation = augmentation = (char *) buf;
1929 buf += (strlen (augmentation) + 1);
1930
1931 /* Ignore armcc augmentations. We only use them for quirks,
1932 and that doesn't happen until later. */
1933 if (strncmp (augmentation, "armcc", 5) == 0)
1934 augmentation += strlen (augmentation);
1935
1936 /* The GCC 2.x "eh" augmentation has a pointer immediately
1937 following the augmentation string, so it must be handled
1938 first. */
1939 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1940 {
1941 /* Skip. */
1942 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1943 augmentation += 2;
1944 }
1945
1946 if (cie->version >= 4)
1947 {
1948 /* FIXME: check that this is the same as from the CU header. */
1949 cie->addr_size = read_1_byte (unit->abfd, buf);
1950 ++buf;
1951 cie->segment_size = read_1_byte (unit->abfd, buf);
1952 ++buf;
1953 }
1954 else
1955 {
1956 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1957 cie->segment_size = 0;
1958 }
1959 /* Address values in .eh_frame sections are defined to have the
1960 target's pointer size. Watchout: This breaks frame info for
1961 targets with pointer size < address size, unless a .debug_frame
1962 section exists as well. */
1963 if (eh_frame_p)
1964 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1965 else
1966 cie->ptr_size = cie->addr_size;
1967
1968 buf = gdb_read_uleb128 (buf, end, &uleb128);
1969 if (buf == NULL)
1970 return NULL;
1971 cie->code_alignment_factor = uleb128;
1972
1973 buf = gdb_read_sleb128 (buf, end, &sleb128);
1974 if (buf == NULL)
1975 return NULL;
1976 cie->data_alignment_factor = sleb128;
1977
1978 if (cie_version == 1)
1979 {
1980 cie->return_address_register = read_1_byte (unit->abfd, buf);
1981 ++buf;
1982 }
1983 else
1984 {
1985 buf = gdb_read_uleb128 (buf, end, &uleb128);
1986 if (buf == NULL)
1987 return NULL;
1988 cie->return_address_register = uleb128;
1989 }
1990
1991 cie->return_address_register
1992 = dwarf2_frame_adjust_regnum (gdbarch,
1993 cie->return_address_register,
1994 eh_frame_p);
1995
1996 cie->saw_z_augmentation = (*augmentation == 'z');
1997 if (cie->saw_z_augmentation)
1998 {
1999 uint64_t length;
2000
2001 buf = gdb_read_uleb128 (buf, end, &length);
2002 if (buf == NULL)
2003 return NULL;
2004 cie->initial_instructions = buf + length;
2005 augmentation++;
2006 }
2007
2008 while (*augmentation)
2009 {
2010 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2011 if (*augmentation == 'L')
2012 {
2013 /* Skip. */
2014 buf++;
2015 augmentation++;
2016 }
2017
2018 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2019 else if (*augmentation == 'R')
2020 {
2021 cie->encoding = *buf++;
2022 augmentation++;
2023 }
2024
2025 /* "P" indicates a personality routine in the CIE augmentation. */
2026 else if (*augmentation == 'P')
2027 {
2028 /* Skip. Avoid indirection since we throw away the result. */
2029 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2030 read_encoded_value (unit, encoding, cie->ptr_size,
2031 buf, &bytes_read, 0);
2032 buf += bytes_read;
2033 augmentation++;
2034 }
2035
2036 /* "S" indicates a signal frame, such that the return
2037 address must not be decremented to locate the call frame
2038 info for the previous frame; it might even be the first
2039 instruction of a function, so decrementing it would take
2040 us to a different function. */
2041 else if (*augmentation == 'S')
2042 {
2043 cie->signal_frame = 1;
2044 augmentation++;
2045 }
2046
2047 /* Otherwise we have an unknown augmentation. Assume that either
2048 there is no augmentation data, or we saw a 'z' prefix. */
2049 else
2050 {
2051 if (cie->initial_instructions)
2052 buf = cie->initial_instructions;
2053 break;
2054 }
2055 }
2056
2057 cie->initial_instructions = buf;
2058 cie->end = end;
2059 cie->unit = unit;
2060
2061 add_cie (cie_table, cie);
2062 }
2063 else
2064 {
2065 /* This is a FDE. */
2066 struct dwarf2_fde *fde;
2067 CORE_ADDR addr;
2068
2069 /* Check that an FDE was expected. */
2070 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2071 error (_("Found an FDE when not expecting it."));
2072
2073 /* In an .eh_frame section, the CIE pointer is the delta between the
2074 address within the FDE where the CIE pointer is stored and the
2075 address of the CIE. Convert it to an offset into the .eh_frame
2076 section. */
2077 if (eh_frame_p)
2078 {
2079 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2080 cie_pointer -= (dwarf64_p ? 8 : 4);
2081 }
2082
2083 /* In either case, validate the result is still within the section. */
2084 if (cie_pointer >= unit->dwarf_frame_size)
2085 return NULL;
2086
2087 fde = (struct dwarf2_fde *)
2088 obstack_alloc (&unit->objfile->objfile_obstack,
2089 sizeof (struct dwarf2_fde));
2090 fde->cie = find_cie (cie_table, cie_pointer);
2091 if (fde->cie == NULL)
2092 {
2093 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2094 eh_frame_p, cie_table, fde_table,
2095 EH_CIE_TYPE_ID);
2096 fde->cie = find_cie (cie_table, cie_pointer);
2097 }
2098
2099 gdb_assert (fde->cie != NULL);
2100
2101 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2102 buf, &bytes_read, 0);
2103 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2104 buf += bytes_read;
2105
2106 fde->address_range =
2107 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2108 fde->cie->ptr_size, buf, &bytes_read, 0);
2109 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2110 fde->address_range = addr - fde->initial_location;
2111 buf += bytes_read;
2112
2113 /* A 'z' augmentation in the CIE implies the presence of an
2114 augmentation field in the FDE as well. The only thing known
2115 to be in here at present is the LSDA entry for EH. So we
2116 can skip the whole thing. */
2117 if (fde->cie->saw_z_augmentation)
2118 {
2119 uint64_t length;
2120
2121 buf = gdb_read_uleb128 (buf, end, &length);
2122 if (buf == NULL)
2123 return NULL;
2124 buf += length;
2125 if (buf > end)
2126 return NULL;
2127 }
2128
2129 fde->instructions = buf;
2130 fde->end = end;
2131
2132 fde->eh_frame_p = eh_frame_p;
2133
2134 add_fde (fde_table, fde);
2135 }
2136
2137 return end;
2138 }
2139
2140 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2141 expect an FDE or a CIE. */
2142
2143 static const gdb_byte *
2144 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2145 int eh_frame_p,
2146 struct dwarf2_cie_table *cie_table,
2147 struct dwarf2_fde_table *fde_table,
2148 enum eh_frame_type entry_type)
2149 {
2150 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2151 const gdb_byte *ret;
2152 ptrdiff_t start_offset;
2153
2154 while (1)
2155 {
2156 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2157 cie_table, fde_table, entry_type);
2158 if (ret != NULL)
2159 break;
2160
2161 /* We have corrupt input data of some form. */
2162
2163 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2164 and mismatches wrt padding and alignment of debug sections. */
2165 /* Note that there is no requirement in the standard for any
2166 alignment at all in the frame unwind sections. Testing for
2167 alignment before trying to interpret data would be incorrect.
2168
2169 However, GCC traditionally arranged for frame sections to be
2170 sized such that the FDE length and CIE fields happen to be
2171 aligned (in theory, for performance). This, unfortunately,
2172 was done with .align directives, which had the side effect of
2173 forcing the section to be aligned by the linker.
2174
2175 This becomes a problem when you have some other producer that
2176 creates frame sections that are not as strictly aligned. That
2177 produces a hole in the frame info that gets filled by the
2178 linker with zeros.
2179
2180 The GCC behaviour is arguably a bug, but it's effectively now
2181 part of the ABI, so we're now stuck with it, at least at the
2182 object file level. A smart linker may decide, in the process
2183 of compressing duplicate CIE information, that it can rewrite
2184 the entire output section without this extra padding. */
2185
2186 start_offset = start - unit->dwarf_frame_buffer;
2187 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2188 {
2189 start += 4 - (start_offset & 3);
2190 workaround = ALIGN4;
2191 continue;
2192 }
2193 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2194 {
2195 start += 8 - (start_offset & 7);
2196 workaround = ALIGN8;
2197 continue;
2198 }
2199
2200 /* Nothing left to try. Arrange to return as if we've consumed
2201 the entire input section. Hopefully we'll get valid info from
2202 the other of .debug_frame/.eh_frame. */
2203 workaround = FAIL;
2204 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2205 break;
2206 }
2207
2208 switch (workaround)
2209 {
2210 case NONE:
2211 break;
2212
2213 case ALIGN4:
2214 complaint (&symfile_complaints, _("\
2215 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2216 unit->dwarf_frame_section->owner->filename,
2217 unit->dwarf_frame_section->name);
2218 break;
2219
2220 case ALIGN8:
2221 complaint (&symfile_complaints, _("\
2222 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2223 unit->dwarf_frame_section->owner->filename,
2224 unit->dwarf_frame_section->name);
2225 break;
2226
2227 default:
2228 complaint (&symfile_complaints,
2229 _("Corrupt data in %s:%s"),
2230 unit->dwarf_frame_section->owner->filename,
2231 unit->dwarf_frame_section->name);
2232 break;
2233 }
2234
2235 return ret;
2236 }
2237 \f
2238 static int
2239 qsort_fde_cmp (const void *a, const void *b)
2240 {
2241 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2242 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2243
2244 if (aa->initial_location == bb->initial_location)
2245 {
2246 if (aa->address_range != bb->address_range
2247 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2248 /* Linker bug, e.g. gold/10400.
2249 Work around it by keeping stable sort order. */
2250 return (a < b) ? -1 : 1;
2251 else
2252 /* Put eh_frame entries after debug_frame ones. */
2253 return aa->eh_frame_p - bb->eh_frame_p;
2254 }
2255
2256 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2257 }
2258
2259 void
2260 dwarf2_build_frame_info (struct objfile *objfile)
2261 {
2262 struct comp_unit *unit;
2263 const gdb_byte *frame_ptr;
2264 struct dwarf2_cie_table cie_table;
2265 struct dwarf2_fde_table fde_table;
2266 struct dwarf2_fde_table *fde_table2;
2267 volatile struct gdb_exception e;
2268
2269 cie_table.num_entries = 0;
2270 cie_table.entries = NULL;
2271
2272 fde_table.num_entries = 0;
2273 fde_table.entries = NULL;
2274
2275 /* Build a minimal decoding of the DWARF2 compilation unit. */
2276 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2277 sizeof (struct comp_unit));
2278 unit->abfd = objfile->obfd;
2279 unit->objfile = objfile;
2280 unit->dbase = 0;
2281 unit->tbase = 0;
2282
2283 if (objfile->separate_debug_objfile_backlink == NULL)
2284 {
2285 /* Do not read .eh_frame from separate file as they must be also
2286 present in the main file. */
2287 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2288 &unit->dwarf_frame_section,
2289 &unit->dwarf_frame_buffer,
2290 &unit->dwarf_frame_size);
2291 if (unit->dwarf_frame_size)
2292 {
2293 asection *got, *txt;
2294
2295 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2296 that is used for the i386/amd64 target, which currently is
2297 the only target in GCC that supports/uses the
2298 DW_EH_PE_datarel encoding. */
2299 got = bfd_get_section_by_name (unit->abfd, ".got");
2300 if (got)
2301 unit->dbase = got->vma;
2302
2303 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2304 so far. */
2305 txt = bfd_get_section_by_name (unit->abfd, ".text");
2306 if (txt)
2307 unit->tbase = txt->vma;
2308
2309 TRY_CATCH (e, RETURN_MASK_ERROR)
2310 {
2311 frame_ptr = unit->dwarf_frame_buffer;
2312 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2313 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2314 &cie_table, &fde_table,
2315 EH_CIE_OR_FDE_TYPE_ID);
2316 }
2317
2318 if (e.reason < 0)
2319 {
2320 warning (_("skipping .eh_frame info of %s: %s"),
2321 objfile_name (objfile), e.message);
2322
2323 if (fde_table.num_entries != 0)
2324 {
2325 xfree (fde_table.entries);
2326 fde_table.entries = NULL;
2327 fde_table.num_entries = 0;
2328 }
2329 /* The cie_table is discarded by the next if. */
2330 }
2331
2332 if (cie_table.num_entries != 0)
2333 {
2334 /* Reinit cie_table: debug_frame has different CIEs. */
2335 xfree (cie_table.entries);
2336 cie_table.num_entries = 0;
2337 cie_table.entries = NULL;
2338 }
2339 }
2340 }
2341
2342 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2343 &unit->dwarf_frame_section,
2344 &unit->dwarf_frame_buffer,
2345 &unit->dwarf_frame_size);
2346 if (unit->dwarf_frame_size)
2347 {
2348 int num_old_fde_entries = fde_table.num_entries;
2349
2350 TRY_CATCH (e, RETURN_MASK_ERROR)
2351 {
2352 frame_ptr = unit->dwarf_frame_buffer;
2353 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2354 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2355 &cie_table, &fde_table,
2356 EH_CIE_OR_FDE_TYPE_ID);
2357 }
2358 if (e.reason < 0)
2359 {
2360 warning (_("skipping .debug_frame info of %s: %s"),
2361 objfile_name (objfile), e.message);
2362
2363 if (fde_table.num_entries != 0)
2364 {
2365 fde_table.num_entries = num_old_fde_entries;
2366 if (num_old_fde_entries == 0)
2367 {
2368 xfree (fde_table.entries);
2369 fde_table.entries = NULL;
2370 }
2371 else
2372 {
2373 fde_table.entries = xrealloc (fde_table.entries,
2374 fde_table.num_entries *
2375 sizeof (fde_table.entries[0]));
2376 }
2377 }
2378 fde_table.num_entries = num_old_fde_entries;
2379 /* The cie_table is discarded by the next if. */
2380 }
2381 }
2382
2383 /* Discard the cie_table, it is no longer needed. */
2384 if (cie_table.num_entries != 0)
2385 {
2386 xfree (cie_table.entries);
2387 cie_table.entries = NULL; /* Paranoia. */
2388 cie_table.num_entries = 0; /* Paranoia. */
2389 }
2390
2391 /* Copy fde_table to obstack: it is needed at runtime. */
2392 fde_table2 = (struct dwarf2_fde_table *)
2393 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2394
2395 if (fde_table.num_entries == 0)
2396 {
2397 fde_table2->entries = NULL;
2398 fde_table2->num_entries = 0;
2399 }
2400 else
2401 {
2402 struct dwarf2_fde *fde_prev = NULL;
2403 struct dwarf2_fde *first_non_zero_fde = NULL;
2404 int i;
2405
2406 /* Prepare FDE table for lookups. */
2407 qsort (fde_table.entries, fde_table.num_entries,
2408 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2409
2410 /* Check for leftovers from --gc-sections. The GNU linker sets
2411 the relevant symbols to zero, but doesn't zero the FDE *end*
2412 ranges because there's no relocation there. It's (offset,
2413 length), not (start, end). On targets where address zero is
2414 just another valid address this can be a problem, since the
2415 FDEs appear to be non-empty in the output --- we could pick
2416 out the wrong FDE. To work around this, when overlaps are
2417 detected, we prefer FDEs that do not start at zero.
2418
2419 Start by finding the first FDE with non-zero start. Below
2420 we'll discard all FDEs that start at zero and overlap this
2421 one. */
2422 for (i = 0; i < fde_table.num_entries; i++)
2423 {
2424 struct dwarf2_fde *fde = fde_table.entries[i];
2425
2426 if (fde->initial_location != 0)
2427 {
2428 first_non_zero_fde = fde;
2429 break;
2430 }
2431 }
2432
2433 /* Since we'll be doing bsearch, squeeze out identical (except
2434 for eh_frame_p) fde entries so bsearch result is predictable.
2435 Also discard leftovers from --gc-sections. */
2436 fde_table2->num_entries = 0;
2437 for (i = 0; i < fde_table.num_entries; i++)
2438 {
2439 struct dwarf2_fde *fde = fde_table.entries[i];
2440
2441 if (fde->initial_location == 0
2442 && first_non_zero_fde != NULL
2443 && (first_non_zero_fde->initial_location
2444 < fde->initial_location + fde->address_range))
2445 continue;
2446
2447 if (fde_prev != NULL
2448 && fde_prev->initial_location == fde->initial_location)
2449 continue;
2450
2451 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2452 sizeof (fde_table.entries[0]));
2453 ++fde_table2->num_entries;
2454 fde_prev = fde;
2455 }
2456 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2457
2458 /* Discard the original fde_table. */
2459 xfree (fde_table.entries);
2460 }
2461
2462 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2463 }
2464
2465 /* Provide a prototype to silence -Wmissing-prototypes. */
2466 void _initialize_dwarf2_frame (void);
2467
2468 void
2469 _initialize_dwarf2_frame (void)
2470 {
2471 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2472 dwarf2_frame_objfile_data = register_objfile_data ();
2473 }
This page took 0.079607 seconds and 5 git commands to generate.