Create new common/pathstuff.[ch]
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2018 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "psympriv.h"
57 #include <sys/stat.h>
58 #include "completer.h"
59 #include "vec.h"
60 #include "c-lang.h"
61 #include "go-lang.h"
62 #include "valprint.h"
63 #include "gdbcore.h" /* for gnutarget */
64 #include "gdb/gdb-index.h"
65 #include <ctype.h>
66 #include "gdb_bfd.h"
67 #include "f-lang.h"
68 #include "source.h"
69 #include "filestuff.h"
70 #include "build-id.h"
71 #include "namespace.h"
72 #include "common/gdb_unlinker.h"
73 #include "common/function-view.h"
74 #include "common/gdb_optional.h"
75 #include "common/underlying.h"
76 #include "common/byte-vector.h"
77 #include "common/hash_enum.h"
78 #include "filename-seen-cache.h"
79 #include "producer.h"
80 #include <fcntl.h>
81 #include <sys/types.h>
82 #include <algorithm>
83 #include <unordered_set>
84 #include <unordered_map>
85 #include "selftest.h"
86 #include <cmath>
87 #include <set>
88 #include <forward_list>
89 #include "rust-lang.h"
90 #include "common/pathstuff.h"
91
92 /* When == 1, print basic high level tracing messages.
93 When > 1, be more verbose.
94 This is in contrast to the low level DIE reading of dwarf_die_debug. */
95 static unsigned int dwarf_read_debug = 0;
96
97 /* When non-zero, dump DIEs after they are read in. */
98 static unsigned int dwarf_die_debug = 0;
99
100 /* When non-zero, dump line number entries as they are read in. */
101 static unsigned int dwarf_line_debug = 0;
102
103 /* When non-zero, cross-check physname against demangler. */
104 static int check_physname = 0;
105
106 /* When non-zero, do not reject deprecated .gdb_index sections. */
107 static int use_deprecated_index_sections = 0;
108
109 static const struct objfile_data *dwarf2_objfile_data_key;
110
111 /* The "aclass" indices for various kinds of computed DWARF symbols. */
112
113 static int dwarf2_locexpr_index;
114 static int dwarf2_loclist_index;
115 static int dwarf2_locexpr_block_index;
116 static int dwarf2_loclist_block_index;
117
118 /* A descriptor for dwarf sections.
119
120 S.ASECTION, SIZE are typically initialized when the objfile is first
121 scanned. BUFFER, READIN are filled in later when the section is read.
122 If the section contained compressed data then SIZE is updated to record
123 the uncompressed size of the section.
124
125 DWP file format V2 introduces a wrinkle that is easiest to handle by
126 creating the concept of virtual sections contained within a real section.
127 In DWP V2 the sections of the input DWO files are concatenated together
128 into one section, but section offsets are kept relative to the original
129 input section.
130 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
131 the real section this "virtual" section is contained in, and BUFFER,SIZE
132 describe the virtual section. */
133
134 struct dwarf2_section_info
135 {
136 union
137 {
138 /* If this is a real section, the bfd section. */
139 asection *section;
140 /* If this is a virtual section, pointer to the containing ("real")
141 section. */
142 struct dwarf2_section_info *containing_section;
143 } s;
144 /* Pointer to section data, only valid if readin. */
145 const gdb_byte *buffer;
146 /* The size of the section, real or virtual. */
147 bfd_size_type size;
148 /* If this is a virtual section, the offset in the real section.
149 Only valid if is_virtual. */
150 bfd_size_type virtual_offset;
151 /* True if we have tried to read this section. */
152 char readin;
153 /* True if this is a virtual section, False otherwise.
154 This specifies which of s.section and s.containing_section to use. */
155 char is_virtual;
156 };
157
158 typedef struct dwarf2_section_info dwarf2_section_info_def;
159 DEF_VEC_O (dwarf2_section_info_def);
160
161 /* All offsets in the index are of this type. It must be
162 architecture-independent. */
163 typedef uint32_t offset_type;
164
165 DEF_VEC_I (offset_type);
166
167 /* Ensure only legit values are used. */
168 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
169 do { \
170 gdb_assert ((unsigned int) (value) <= 1); \
171 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
172 } while (0)
173
174 /* Ensure only legit values are used. */
175 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
176 do { \
177 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
178 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
179 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
180 } while (0)
181
182 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
183 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
184 do { \
185 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
186 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
187 } while (0)
188
189 #if WORDS_BIGENDIAN
190
191 /* Convert VALUE between big- and little-endian. */
192
193 static offset_type
194 byte_swap (offset_type value)
195 {
196 offset_type result;
197
198 result = (value & 0xff) << 24;
199 result |= (value & 0xff00) << 8;
200 result |= (value & 0xff0000) >> 8;
201 result |= (value & 0xff000000) >> 24;
202 return result;
203 }
204
205 #define MAYBE_SWAP(V) byte_swap (V)
206
207 #else
208 #define MAYBE_SWAP(V) static_cast<offset_type> (V)
209 #endif /* WORDS_BIGENDIAN */
210
211 /* An index into a (C++) symbol name component in a symbol name as
212 recorded in the mapped_index's symbol table. For each C++ symbol
213 in the symbol table, we record one entry for the start of each
214 component in the symbol in a table of name components, and then
215 sort the table, in order to be able to binary search symbol names,
216 ignoring leading namespaces, both completion and regular look up.
217 For example, for symbol "A::B::C", we'll have an entry that points
218 to "A::B::C", another that points to "B::C", and another for "C".
219 Note that function symbols in GDB index have no parameter
220 information, just the function/method names. You can convert a
221 name_component to a "const char *" using the
222 'mapped_index::symbol_name_at(offset_type)' method. */
223
224 struct name_component
225 {
226 /* Offset in the symbol name where the component starts. Stored as
227 a (32-bit) offset instead of a pointer to save memory and improve
228 locality on 64-bit architectures. */
229 offset_type name_offset;
230
231 /* The symbol's index in the symbol and constant pool tables of a
232 mapped_index. */
233 offset_type idx;
234 };
235
236 /* Base class containing bits shared by both .gdb_index and
237 .debug_name indexes. */
238
239 struct mapped_index_base
240 {
241 /* The name_component table (a sorted vector). See name_component's
242 description above. */
243 std::vector<name_component> name_components;
244
245 /* How NAME_COMPONENTS is sorted. */
246 enum case_sensitivity name_components_casing;
247
248 /* Return the number of names in the symbol table. */
249 virtual size_t symbol_name_count () const = 0;
250
251 /* Get the name of the symbol at IDX in the symbol table. */
252 virtual const char *symbol_name_at (offset_type idx) const = 0;
253
254 /* Return whether the name at IDX in the symbol table should be
255 ignored. */
256 virtual bool symbol_name_slot_invalid (offset_type idx) const
257 {
258 return false;
259 }
260
261 /* Build the symbol name component sorted vector, if we haven't
262 yet. */
263 void build_name_components ();
264
265 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
266 possible matches for LN_NO_PARAMS in the name component
267 vector. */
268 std::pair<std::vector<name_component>::const_iterator,
269 std::vector<name_component>::const_iterator>
270 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
271
272 /* Prevent deleting/destroying via a base class pointer. */
273 protected:
274 ~mapped_index_base() = default;
275 };
276
277 /* A description of the mapped index. The file format is described in
278 a comment by the code that writes the index. */
279 struct mapped_index final : public mapped_index_base
280 {
281 /* A slot/bucket in the symbol table hash. */
282 struct symbol_table_slot
283 {
284 const offset_type name;
285 const offset_type vec;
286 };
287
288 /* Index data format version. */
289 int version;
290
291 /* The total length of the buffer. */
292 off_t total_size;
293
294 /* The address table data. */
295 gdb::array_view<const gdb_byte> address_table;
296
297 /* The symbol table, implemented as a hash table. */
298 gdb::array_view<symbol_table_slot> symbol_table;
299
300 /* A pointer to the constant pool. */
301 const char *constant_pool;
302
303 bool symbol_name_slot_invalid (offset_type idx) const override
304 {
305 const auto &bucket = this->symbol_table[idx];
306 return bucket.name == 0 && bucket.vec;
307 }
308
309 /* Convenience method to get at the name of the symbol at IDX in the
310 symbol table. */
311 const char *symbol_name_at (offset_type idx) const override
312 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
313
314 size_t symbol_name_count () const override
315 { return this->symbol_table.size (); }
316 };
317
318 /* A description of the mapped .debug_names.
319 Uninitialized map has CU_COUNT 0. */
320 struct mapped_debug_names final : public mapped_index_base
321 {
322 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
323 : dwarf2_per_objfile (dwarf2_per_objfile_)
324 {}
325
326 struct dwarf2_per_objfile *dwarf2_per_objfile;
327 bfd_endian dwarf5_byte_order;
328 bool dwarf5_is_dwarf64;
329 bool augmentation_is_gdb;
330 uint8_t offset_size;
331 uint32_t cu_count = 0;
332 uint32_t tu_count, bucket_count, name_count;
333 const gdb_byte *cu_table_reordered, *tu_table_reordered;
334 const uint32_t *bucket_table_reordered, *hash_table_reordered;
335 const gdb_byte *name_table_string_offs_reordered;
336 const gdb_byte *name_table_entry_offs_reordered;
337 const gdb_byte *entry_pool;
338
339 struct index_val
340 {
341 ULONGEST dwarf_tag;
342 struct attr
343 {
344 /* Attribute name DW_IDX_*. */
345 ULONGEST dw_idx;
346
347 /* Attribute form DW_FORM_*. */
348 ULONGEST form;
349
350 /* Value if FORM is DW_FORM_implicit_const. */
351 LONGEST implicit_const;
352 };
353 std::vector<attr> attr_vec;
354 };
355
356 std::unordered_map<ULONGEST, index_val> abbrev_map;
357
358 const char *namei_to_name (uint32_t namei) const;
359
360 /* Implementation of the mapped_index_base virtual interface, for
361 the name_components cache. */
362
363 const char *symbol_name_at (offset_type idx) const override
364 { return namei_to_name (idx); }
365
366 size_t symbol_name_count () const override
367 { return this->name_count; }
368 };
369
370 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
371 DEF_VEC_P (dwarf2_per_cu_ptr);
372
373 struct tu_stats
374 {
375 int nr_uniq_abbrev_tables;
376 int nr_symtabs;
377 int nr_symtab_sharers;
378 int nr_stmt_less_type_units;
379 int nr_all_type_units_reallocs;
380 };
381
382 /* Collection of data recorded per objfile.
383 This hangs off of dwarf2_objfile_data_key. */
384
385 struct dwarf2_per_objfile : public allocate_on_obstack
386 {
387 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
388 dwarf2 section names, or is NULL if the standard ELF names are
389 used. */
390 dwarf2_per_objfile (struct objfile *objfile,
391 const dwarf2_debug_sections *names);
392
393 ~dwarf2_per_objfile ();
394
395 DISABLE_COPY_AND_ASSIGN (dwarf2_per_objfile);
396
397 /* Free all cached compilation units. */
398 void free_cached_comp_units ();
399 private:
400 /* This function is mapped across the sections and remembers the
401 offset and size of each of the debugging sections we are
402 interested in. */
403 void locate_sections (bfd *abfd, asection *sectp,
404 const dwarf2_debug_sections &names);
405
406 public:
407 dwarf2_section_info info {};
408 dwarf2_section_info abbrev {};
409 dwarf2_section_info line {};
410 dwarf2_section_info loc {};
411 dwarf2_section_info loclists {};
412 dwarf2_section_info macinfo {};
413 dwarf2_section_info macro {};
414 dwarf2_section_info str {};
415 dwarf2_section_info line_str {};
416 dwarf2_section_info ranges {};
417 dwarf2_section_info rnglists {};
418 dwarf2_section_info addr {};
419 dwarf2_section_info frame {};
420 dwarf2_section_info eh_frame {};
421 dwarf2_section_info gdb_index {};
422 dwarf2_section_info debug_names {};
423 dwarf2_section_info debug_aranges {};
424
425 VEC (dwarf2_section_info_def) *types = NULL;
426
427 /* Back link. */
428 struct objfile *objfile = NULL;
429
430 /* Table of all the compilation units. This is used to locate
431 the target compilation unit of a particular reference. */
432 struct dwarf2_per_cu_data **all_comp_units = NULL;
433
434 /* The number of compilation units in ALL_COMP_UNITS. */
435 int n_comp_units = 0;
436
437 /* The number of .debug_types-related CUs. */
438 int n_type_units = 0;
439
440 /* The number of elements allocated in all_type_units.
441 If there are skeleton-less TUs, we add them to all_type_units lazily. */
442 int n_allocated_type_units = 0;
443
444 /* The .debug_types-related CUs (TUs).
445 This is stored in malloc space because we may realloc it. */
446 struct signatured_type **all_type_units = NULL;
447
448 /* Table of struct type_unit_group objects.
449 The hash key is the DW_AT_stmt_list value. */
450 htab_t type_unit_groups {};
451
452 /* A table mapping .debug_types signatures to its signatured_type entry.
453 This is NULL if the .debug_types section hasn't been read in yet. */
454 htab_t signatured_types {};
455
456 /* Type unit statistics, to see how well the scaling improvements
457 are doing. */
458 struct tu_stats tu_stats {};
459
460 /* A chain of compilation units that are currently read in, so that
461 they can be freed later. */
462 dwarf2_per_cu_data *read_in_chain = NULL;
463
464 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
465 This is NULL if the table hasn't been allocated yet. */
466 htab_t dwo_files {};
467
468 /* True if we've checked for whether there is a DWP file. */
469 bool dwp_checked = false;
470
471 /* The DWP file if there is one, or NULL. */
472 struct dwp_file *dwp_file = NULL;
473
474 /* The shared '.dwz' file, if one exists. This is used when the
475 original data was compressed using 'dwz -m'. */
476 struct dwz_file *dwz_file = NULL;
477
478 /* A flag indicating whether this objfile has a section loaded at a
479 VMA of 0. */
480 bool has_section_at_zero = false;
481
482 /* True if we are using the mapped index,
483 or we are faking it for OBJF_READNOW's sake. */
484 bool using_index = false;
485
486 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
487 mapped_index *index_table = NULL;
488
489 /* The mapped index, or NULL if .debug_names is missing or not being used. */
490 std::unique_ptr<mapped_debug_names> debug_names_table;
491
492 /* When using index_table, this keeps track of all quick_file_names entries.
493 TUs typically share line table entries with a CU, so we maintain a
494 separate table of all line table entries to support the sharing.
495 Note that while there can be way more TUs than CUs, we've already
496 sorted all the TUs into "type unit groups", grouped by their
497 DW_AT_stmt_list value. Therefore the only sharing done here is with a
498 CU and its associated TU group if there is one. */
499 htab_t quick_file_names_table {};
500
501 /* Set during partial symbol reading, to prevent queueing of full
502 symbols. */
503 bool reading_partial_symbols = false;
504
505 /* Table mapping type DIEs to their struct type *.
506 This is NULL if not allocated yet.
507 The mapping is done via (CU/TU + DIE offset) -> type. */
508 htab_t die_type_hash {};
509
510 /* The CUs we recently read. */
511 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
512
513 /* Table containing line_header indexed by offset and offset_in_dwz. */
514 htab_t line_header_hash {};
515
516 /* Table containing all filenames. This is an optional because the
517 table is lazily constructed on first access. */
518 gdb::optional<filename_seen_cache> filenames_cache;
519 };
520
521 /* Get the dwarf2_per_objfile associated to OBJFILE. */
522
523 struct dwarf2_per_objfile *
524 get_dwarf2_per_objfile (struct objfile *objfile)
525 {
526 return ((struct dwarf2_per_objfile *)
527 objfile_data (objfile, dwarf2_objfile_data_key));
528 }
529
530 /* Set the dwarf2_per_objfile associated to OBJFILE. */
531
532 void
533 set_dwarf2_per_objfile (struct objfile *objfile,
534 struct dwarf2_per_objfile *dwarf2_per_objfile)
535 {
536 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
537 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
538 }
539
540 /* Default names of the debugging sections. */
541
542 /* Note that if the debugging section has been compressed, it might
543 have a name like .zdebug_info. */
544
545 static const struct dwarf2_debug_sections dwarf2_elf_names =
546 {
547 { ".debug_info", ".zdebug_info" },
548 { ".debug_abbrev", ".zdebug_abbrev" },
549 { ".debug_line", ".zdebug_line" },
550 { ".debug_loc", ".zdebug_loc" },
551 { ".debug_loclists", ".zdebug_loclists" },
552 { ".debug_macinfo", ".zdebug_macinfo" },
553 { ".debug_macro", ".zdebug_macro" },
554 { ".debug_str", ".zdebug_str" },
555 { ".debug_line_str", ".zdebug_line_str" },
556 { ".debug_ranges", ".zdebug_ranges" },
557 { ".debug_rnglists", ".zdebug_rnglists" },
558 { ".debug_types", ".zdebug_types" },
559 { ".debug_addr", ".zdebug_addr" },
560 { ".debug_frame", ".zdebug_frame" },
561 { ".eh_frame", NULL },
562 { ".gdb_index", ".zgdb_index" },
563 { ".debug_names", ".zdebug_names" },
564 { ".debug_aranges", ".zdebug_aranges" },
565 23
566 };
567
568 /* List of DWO/DWP sections. */
569
570 static const struct dwop_section_names
571 {
572 struct dwarf2_section_names abbrev_dwo;
573 struct dwarf2_section_names info_dwo;
574 struct dwarf2_section_names line_dwo;
575 struct dwarf2_section_names loc_dwo;
576 struct dwarf2_section_names loclists_dwo;
577 struct dwarf2_section_names macinfo_dwo;
578 struct dwarf2_section_names macro_dwo;
579 struct dwarf2_section_names str_dwo;
580 struct dwarf2_section_names str_offsets_dwo;
581 struct dwarf2_section_names types_dwo;
582 struct dwarf2_section_names cu_index;
583 struct dwarf2_section_names tu_index;
584 }
585 dwop_section_names =
586 {
587 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
588 { ".debug_info.dwo", ".zdebug_info.dwo" },
589 { ".debug_line.dwo", ".zdebug_line.dwo" },
590 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
591 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
592 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
593 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
594 { ".debug_str.dwo", ".zdebug_str.dwo" },
595 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
596 { ".debug_types.dwo", ".zdebug_types.dwo" },
597 { ".debug_cu_index", ".zdebug_cu_index" },
598 { ".debug_tu_index", ".zdebug_tu_index" },
599 };
600
601 /* local data types */
602
603 /* The data in a compilation unit header, after target2host
604 translation, looks like this. */
605 struct comp_unit_head
606 {
607 unsigned int length;
608 short version;
609 unsigned char addr_size;
610 unsigned char signed_addr_p;
611 sect_offset abbrev_sect_off;
612
613 /* Size of file offsets; either 4 or 8. */
614 unsigned int offset_size;
615
616 /* Size of the length field; either 4 or 12. */
617 unsigned int initial_length_size;
618
619 enum dwarf_unit_type unit_type;
620
621 /* Offset to the first byte of this compilation unit header in the
622 .debug_info section, for resolving relative reference dies. */
623 sect_offset sect_off;
624
625 /* Offset to first die in this cu from the start of the cu.
626 This will be the first byte following the compilation unit header. */
627 cu_offset first_die_cu_offset;
628
629 /* 64-bit signature of this type unit - it is valid only for
630 UNIT_TYPE DW_UT_type. */
631 ULONGEST signature;
632
633 /* For types, offset in the type's DIE of the type defined by this TU. */
634 cu_offset type_cu_offset_in_tu;
635 };
636
637 /* Type used for delaying computation of method physnames.
638 See comments for compute_delayed_physnames. */
639 struct delayed_method_info
640 {
641 /* The type to which the method is attached, i.e., its parent class. */
642 struct type *type;
643
644 /* The index of the method in the type's function fieldlists. */
645 int fnfield_index;
646
647 /* The index of the method in the fieldlist. */
648 int index;
649
650 /* The name of the DIE. */
651 const char *name;
652
653 /* The DIE associated with this method. */
654 struct die_info *die;
655 };
656
657 /* Internal state when decoding a particular compilation unit. */
658 struct dwarf2_cu
659 {
660 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
661 ~dwarf2_cu ();
662
663 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
664
665 /* The header of the compilation unit. */
666 struct comp_unit_head header {};
667
668 /* Base address of this compilation unit. */
669 CORE_ADDR base_address = 0;
670
671 /* Non-zero if base_address has been set. */
672 int base_known = 0;
673
674 /* The language we are debugging. */
675 enum language language = language_unknown;
676 const struct language_defn *language_defn = nullptr;
677
678 const char *producer = nullptr;
679
680 /* The generic symbol table building routines have separate lists for
681 file scope symbols and all all other scopes (local scopes). So
682 we need to select the right one to pass to add_symbol_to_list().
683 We do it by keeping a pointer to the correct list in list_in_scope.
684
685 FIXME: The original dwarf code just treated the file scope as the
686 first local scope, and all other local scopes as nested local
687 scopes, and worked fine. Check to see if we really need to
688 distinguish these in buildsym.c. */
689 struct pending **list_in_scope = nullptr;
690
691 /* Hash table holding all the loaded partial DIEs
692 with partial_die->offset.SECT_OFF as hash. */
693 htab_t partial_dies = nullptr;
694
695 /* Storage for things with the same lifetime as this read-in compilation
696 unit, including partial DIEs. */
697 auto_obstack comp_unit_obstack;
698
699 /* When multiple dwarf2_cu structures are living in memory, this field
700 chains them all together, so that they can be released efficiently.
701 We will probably also want a generation counter so that most-recently-used
702 compilation units are cached... */
703 struct dwarf2_per_cu_data *read_in_chain = nullptr;
704
705 /* Backlink to our per_cu entry. */
706 struct dwarf2_per_cu_data *per_cu;
707
708 /* How many compilation units ago was this CU last referenced? */
709 int last_used = 0;
710
711 /* A hash table of DIE cu_offset for following references with
712 die_info->offset.sect_off as hash. */
713 htab_t die_hash = nullptr;
714
715 /* Full DIEs if read in. */
716 struct die_info *dies = nullptr;
717
718 /* A set of pointers to dwarf2_per_cu_data objects for compilation
719 units referenced by this one. Only set during full symbol processing;
720 partial symbol tables do not have dependencies. */
721 htab_t dependencies = nullptr;
722
723 /* Header data from the line table, during full symbol processing. */
724 struct line_header *line_header = nullptr;
725 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
726 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
727 this is the DW_TAG_compile_unit die for this CU. We'll hold on
728 to the line header as long as this DIE is being processed. See
729 process_die_scope. */
730 die_info *line_header_die_owner = nullptr;
731
732 /* A list of methods which need to have physnames computed
733 after all type information has been read. */
734 std::vector<delayed_method_info> method_list;
735
736 /* To be copied to symtab->call_site_htab. */
737 htab_t call_site_htab = nullptr;
738
739 /* Non-NULL if this CU came from a DWO file.
740 There is an invariant here that is important to remember:
741 Except for attributes copied from the top level DIE in the "main"
742 (or "stub") file in preparation for reading the DWO file
743 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
744 Either there isn't a DWO file (in which case this is NULL and the point
745 is moot), or there is and either we're not going to read it (in which
746 case this is NULL) or there is and we are reading it (in which case this
747 is non-NULL). */
748 struct dwo_unit *dwo_unit = nullptr;
749
750 /* The DW_AT_addr_base attribute if present, zero otherwise
751 (zero is a valid value though).
752 Note this value comes from the Fission stub CU/TU's DIE. */
753 ULONGEST addr_base = 0;
754
755 /* The DW_AT_ranges_base attribute if present, zero otherwise
756 (zero is a valid value though).
757 Note this value comes from the Fission stub CU/TU's DIE.
758 Also note that the value is zero in the non-DWO case so this value can
759 be used without needing to know whether DWO files are in use or not.
760 N.B. This does not apply to DW_AT_ranges appearing in
761 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
762 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
763 DW_AT_ranges_base *would* have to be applied, and we'd have to care
764 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
765 ULONGEST ranges_base = 0;
766
767 /* When reading debug info generated by older versions of rustc, we
768 have to rewrite some union types to be struct types with a
769 variant part. This rewriting must be done after the CU is fully
770 read in, because otherwise at the point of rewriting some struct
771 type might not have been fully processed. So, we keep a list of
772 all such types here and process them after expansion. */
773 std::vector<struct type *> rust_unions;
774
775 /* Mark used when releasing cached dies. */
776 unsigned int mark : 1;
777
778 /* This CU references .debug_loc. See the symtab->locations_valid field.
779 This test is imperfect as there may exist optimized debug code not using
780 any location list and still facing inlining issues if handled as
781 unoptimized code. For a future better test see GCC PR other/32998. */
782 unsigned int has_loclist : 1;
783
784 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
785 if all the producer_is_* fields are valid. This information is cached
786 because profiling CU expansion showed excessive time spent in
787 producer_is_gxx_lt_4_6. */
788 unsigned int checked_producer : 1;
789 unsigned int producer_is_gxx_lt_4_6 : 1;
790 unsigned int producer_is_gcc_lt_4_3 : 1;
791 unsigned int producer_is_icc_lt_14 : 1;
792
793 /* When set, the file that we're processing is known to have
794 debugging info for C++ namespaces. GCC 3.3.x did not produce
795 this information, but later versions do. */
796
797 unsigned int processing_has_namespace_info : 1;
798
799 struct partial_die_info *find_partial_die (sect_offset sect_off);
800 };
801
802 /* Persistent data held for a compilation unit, even when not
803 processing it. We put a pointer to this structure in the
804 read_symtab_private field of the psymtab. */
805
806 struct dwarf2_per_cu_data
807 {
808 /* The start offset and length of this compilation unit.
809 NOTE: Unlike comp_unit_head.length, this length includes
810 initial_length_size.
811 If the DIE refers to a DWO file, this is always of the original die,
812 not the DWO file. */
813 sect_offset sect_off;
814 unsigned int length;
815
816 /* DWARF standard version this data has been read from (such as 4 or 5). */
817 short dwarf_version;
818
819 /* Flag indicating this compilation unit will be read in before
820 any of the current compilation units are processed. */
821 unsigned int queued : 1;
822
823 /* This flag will be set when reading partial DIEs if we need to load
824 absolutely all DIEs for this compilation unit, instead of just the ones
825 we think are interesting. It gets set if we look for a DIE in the
826 hash table and don't find it. */
827 unsigned int load_all_dies : 1;
828
829 /* Non-zero if this CU is from .debug_types.
830 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
831 this is non-zero. */
832 unsigned int is_debug_types : 1;
833
834 /* Non-zero if this CU is from the .dwz file. */
835 unsigned int is_dwz : 1;
836
837 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
838 This flag is only valid if is_debug_types is true.
839 We can't read a CU directly from a DWO file: There are required
840 attributes in the stub. */
841 unsigned int reading_dwo_directly : 1;
842
843 /* Non-zero if the TU has been read.
844 This is used to assist the "Stay in DWO Optimization" for Fission:
845 When reading a DWO, it's faster to read TUs from the DWO instead of
846 fetching them from random other DWOs (due to comdat folding).
847 If the TU has already been read, the optimization is unnecessary
848 (and unwise - we don't want to change where gdb thinks the TU lives
849 "midflight").
850 This flag is only valid if is_debug_types is true. */
851 unsigned int tu_read : 1;
852
853 /* The section this CU/TU lives in.
854 If the DIE refers to a DWO file, this is always the original die,
855 not the DWO file. */
856 struct dwarf2_section_info *section;
857
858 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
859 of the CU cache it gets reset to NULL again. This is left as NULL for
860 dummy CUs (a CU header, but nothing else). */
861 struct dwarf2_cu *cu;
862
863 /* The corresponding dwarf2_per_objfile. */
864 struct dwarf2_per_objfile *dwarf2_per_objfile;
865
866 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
867 is active. Otherwise, the 'psymtab' field is active. */
868 union
869 {
870 /* The partial symbol table associated with this compilation unit,
871 or NULL for unread partial units. */
872 struct partial_symtab *psymtab;
873
874 /* Data needed by the "quick" functions. */
875 struct dwarf2_per_cu_quick_data *quick;
876 } v;
877
878 /* The CUs we import using DW_TAG_imported_unit. This is filled in
879 while reading psymtabs, used to compute the psymtab dependencies,
880 and then cleared. Then it is filled in again while reading full
881 symbols, and only deleted when the objfile is destroyed.
882
883 This is also used to work around a difference between the way gold
884 generates .gdb_index version <=7 and the way gdb does. Arguably this
885 is a gold bug. For symbols coming from TUs, gold records in the index
886 the CU that includes the TU instead of the TU itself. This breaks
887 dw2_lookup_symbol: It assumes that if the index says symbol X lives
888 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
889 will find X. Alas TUs live in their own symtab, so after expanding CU Y
890 we need to look in TU Z to find X. Fortunately, this is akin to
891 DW_TAG_imported_unit, so we just use the same mechanism: For
892 .gdb_index version <=7 this also records the TUs that the CU referred
893 to. Concurrently with this change gdb was modified to emit version 8
894 indices so we only pay a price for gold generated indices.
895 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
896 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
897 };
898
899 /* Entry in the signatured_types hash table. */
900
901 struct signatured_type
902 {
903 /* The "per_cu" object of this type.
904 This struct is used iff per_cu.is_debug_types.
905 N.B.: This is the first member so that it's easy to convert pointers
906 between them. */
907 struct dwarf2_per_cu_data per_cu;
908
909 /* The type's signature. */
910 ULONGEST signature;
911
912 /* Offset in the TU of the type's DIE, as read from the TU header.
913 If this TU is a DWO stub and the definition lives in a DWO file
914 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
915 cu_offset type_offset_in_tu;
916
917 /* Offset in the section of the type's DIE.
918 If the definition lives in a DWO file, this is the offset in the
919 .debug_types.dwo section.
920 The value is zero until the actual value is known.
921 Zero is otherwise not a valid section offset. */
922 sect_offset type_offset_in_section;
923
924 /* Type units are grouped by their DW_AT_stmt_list entry so that they
925 can share them. This points to the containing symtab. */
926 struct type_unit_group *type_unit_group;
927
928 /* The type.
929 The first time we encounter this type we fully read it in and install it
930 in the symbol tables. Subsequent times we only need the type. */
931 struct type *type;
932
933 /* Containing DWO unit.
934 This field is valid iff per_cu.reading_dwo_directly. */
935 struct dwo_unit *dwo_unit;
936 };
937
938 typedef struct signatured_type *sig_type_ptr;
939 DEF_VEC_P (sig_type_ptr);
940
941 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
942 This includes type_unit_group and quick_file_names. */
943
944 struct stmt_list_hash
945 {
946 /* The DWO unit this table is from or NULL if there is none. */
947 struct dwo_unit *dwo_unit;
948
949 /* Offset in .debug_line or .debug_line.dwo. */
950 sect_offset line_sect_off;
951 };
952
953 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
954 an object of this type. */
955
956 struct type_unit_group
957 {
958 /* dwarf2read.c's main "handle" on a TU symtab.
959 To simplify things we create an artificial CU that "includes" all the
960 type units using this stmt_list so that the rest of the code still has
961 a "per_cu" handle on the symtab.
962 This PER_CU is recognized by having no section. */
963 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
964 struct dwarf2_per_cu_data per_cu;
965
966 /* The TUs that share this DW_AT_stmt_list entry.
967 This is added to while parsing type units to build partial symtabs,
968 and is deleted afterwards and not used again. */
969 VEC (sig_type_ptr) *tus;
970
971 /* The compunit symtab.
972 Type units in a group needn't all be defined in the same source file,
973 so we create an essentially anonymous symtab as the compunit symtab. */
974 struct compunit_symtab *compunit_symtab;
975
976 /* The data used to construct the hash key. */
977 struct stmt_list_hash hash;
978
979 /* The number of symtabs from the line header.
980 The value here must match line_header.num_file_names. */
981 unsigned int num_symtabs;
982
983 /* The symbol tables for this TU (obtained from the files listed in
984 DW_AT_stmt_list).
985 WARNING: The order of entries here must match the order of entries
986 in the line header. After the first TU using this type_unit_group, the
987 line header for the subsequent TUs is recreated from this. This is done
988 because we need to use the same symtabs for each TU using the same
989 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
990 there's no guarantee the line header doesn't have duplicate entries. */
991 struct symtab **symtabs;
992 };
993
994 /* These sections are what may appear in a (real or virtual) DWO file. */
995
996 struct dwo_sections
997 {
998 struct dwarf2_section_info abbrev;
999 struct dwarf2_section_info line;
1000 struct dwarf2_section_info loc;
1001 struct dwarf2_section_info loclists;
1002 struct dwarf2_section_info macinfo;
1003 struct dwarf2_section_info macro;
1004 struct dwarf2_section_info str;
1005 struct dwarf2_section_info str_offsets;
1006 /* In the case of a virtual DWO file, these two are unused. */
1007 struct dwarf2_section_info info;
1008 VEC (dwarf2_section_info_def) *types;
1009 };
1010
1011 /* CUs/TUs in DWP/DWO files. */
1012
1013 struct dwo_unit
1014 {
1015 /* Backlink to the containing struct dwo_file. */
1016 struct dwo_file *dwo_file;
1017
1018 /* The "id" that distinguishes this CU/TU.
1019 .debug_info calls this "dwo_id", .debug_types calls this "signature".
1020 Since signatures came first, we stick with it for consistency. */
1021 ULONGEST signature;
1022
1023 /* The section this CU/TU lives in, in the DWO file. */
1024 struct dwarf2_section_info *section;
1025
1026 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
1027 sect_offset sect_off;
1028 unsigned int length;
1029
1030 /* For types, offset in the type's DIE of the type defined by this TU. */
1031 cu_offset type_offset_in_tu;
1032 };
1033
1034 /* include/dwarf2.h defines the DWP section codes.
1035 It defines a max value but it doesn't define a min value, which we
1036 use for error checking, so provide one. */
1037
1038 enum dwp_v2_section_ids
1039 {
1040 DW_SECT_MIN = 1
1041 };
1042
1043 /* Data for one DWO file.
1044
1045 This includes virtual DWO files (a virtual DWO file is a DWO file as it
1046 appears in a DWP file). DWP files don't really have DWO files per se -
1047 comdat folding of types "loses" the DWO file they came from, and from
1048 a high level view DWP files appear to contain a mass of random types.
1049 However, to maintain consistency with the non-DWP case we pretend DWP
1050 files contain virtual DWO files, and we assign each TU with one virtual
1051 DWO file (generally based on the line and abbrev section offsets -
1052 a heuristic that seems to work in practice). */
1053
1054 struct dwo_file
1055 {
1056 /* The DW_AT_GNU_dwo_name attribute.
1057 For virtual DWO files the name is constructed from the section offsets
1058 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
1059 from related CU+TUs. */
1060 const char *dwo_name;
1061
1062 /* The DW_AT_comp_dir attribute. */
1063 const char *comp_dir;
1064
1065 /* The bfd, when the file is open. Otherwise this is NULL.
1066 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
1067 bfd *dbfd;
1068
1069 /* The sections that make up this DWO file.
1070 Remember that for virtual DWO files in DWP V2, these are virtual
1071 sections (for lack of a better name). */
1072 struct dwo_sections sections;
1073
1074 /* The CUs in the file.
1075 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
1076 an extension to handle LLVM's Link Time Optimization output (where
1077 multiple source files may be compiled into a single object/dwo pair). */
1078 htab_t cus;
1079
1080 /* Table of TUs in the file.
1081 Each element is a struct dwo_unit. */
1082 htab_t tus;
1083 };
1084
1085 /* These sections are what may appear in a DWP file. */
1086
1087 struct dwp_sections
1088 {
1089 /* These are used by both DWP version 1 and 2. */
1090 struct dwarf2_section_info str;
1091 struct dwarf2_section_info cu_index;
1092 struct dwarf2_section_info tu_index;
1093
1094 /* These are only used by DWP version 2 files.
1095 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
1096 sections are referenced by section number, and are not recorded here.
1097 In DWP version 2 there is at most one copy of all these sections, each
1098 section being (effectively) comprised of the concatenation of all of the
1099 individual sections that exist in the version 1 format.
1100 To keep the code simple we treat each of these concatenated pieces as a
1101 section itself (a virtual section?). */
1102 struct dwarf2_section_info abbrev;
1103 struct dwarf2_section_info info;
1104 struct dwarf2_section_info line;
1105 struct dwarf2_section_info loc;
1106 struct dwarf2_section_info macinfo;
1107 struct dwarf2_section_info macro;
1108 struct dwarf2_section_info str_offsets;
1109 struct dwarf2_section_info types;
1110 };
1111
1112 /* These sections are what may appear in a virtual DWO file in DWP version 1.
1113 A virtual DWO file is a DWO file as it appears in a DWP file. */
1114
1115 struct virtual_v1_dwo_sections
1116 {
1117 struct dwarf2_section_info abbrev;
1118 struct dwarf2_section_info line;
1119 struct dwarf2_section_info loc;
1120 struct dwarf2_section_info macinfo;
1121 struct dwarf2_section_info macro;
1122 struct dwarf2_section_info str_offsets;
1123 /* Each DWP hash table entry records one CU or one TU.
1124 That is recorded here, and copied to dwo_unit.section. */
1125 struct dwarf2_section_info info_or_types;
1126 };
1127
1128 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
1129 In version 2, the sections of the DWO files are concatenated together
1130 and stored in one section of that name. Thus each ELF section contains
1131 several "virtual" sections. */
1132
1133 struct virtual_v2_dwo_sections
1134 {
1135 bfd_size_type abbrev_offset;
1136 bfd_size_type abbrev_size;
1137
1138 bfd_size_type line_offset;
1139 bfd_size_type line_size;
1140
1141 bfd_size_type loc_offset;
1142 bfd_size_type loc_size;
1143
1144 bfd_size_type macinfo_offset;
1145 bfd_size_type macinfo_size;
1146
1147 bfd_size_type macro_offset;
1148 bfd_size_type macro_size;
1149
1150 bfd_size_type str_offsets_offset;
1151 bfd_size_type str_offsets_size;
1152
1153 /* Each DWP hash table entry records one CU or one TU.
1154 That is recorded here, and copied to dwo_unit.section. */
1155 bfd_size_type info_or_types_offset;
1156 bfd_size_type info_or_types_size;
1157 };
1158
1159 /* Contents of DWP hash tables. */
1160
1161 struct dwp_hash_table
1162 {
1163 uint32_t version, nr_columns;
1164 uint32_t nr_units, nr_slots;
1165 const gdb_byte *hash_table, *unit_table;
1166 union
1167 {
1168 struct
1169 {
1170 const gdb_byte *indices;
1171 } v1;
1172 struct
1173 {
1174 /* This is indexed by column number and gives the id of the section
1175 in that column. */
1176 #define MAX_NR_V2_DWO_SECTIONS \
1177 (1 /* .debug_info or .debug_types */ \
1178 + 1 /* .debug_abbrev */ \
1179 + 1 /* .debug_line */ \
1180 + 1 /* .debug_loc */ \
1181 + 1 /* .debug_str_offsets */ \
1182 + 1 /* .debug_macro or .debug_macinfo */)
1183 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1184 const gdb_byte *offsets;
1185 const gdb_byte *sizes;
1186 } v2;
1187 } section_pool;
1188 };
1189
1190 /* Data for one DWP file. */
1191
1192 struct dwp_file
1193 {
1194 /* Name of the file. */
1195 const char *name;
1196
1197 /* File format version. */
1198 int version;
1199
1200 /* The bfd. */
1201 bfd *dbfd;
1202
1203 /* Section info for this file. */
1204 struct dwp_sections sections;
1205
1206 /* Table of CUs in the file. */
1207 const struct dwp_hash_table *cus;
1208
1209 /* Table of TUs in the file. */
1210 const struct dwp_hash_table *tus;
1211
1212 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1213 htab_t loaded_cus;
1214 htab_t loaded_tus;
1215
1216 /* Table to map ELF section numbers to their sections.
1217 This is only needed for the DWP V1 file format. */
1218 unsigned int num_sections;
1219 asection **elf_sections;
1220 };
1221
1222 /* This represents a '.dwz' file. */
1223
1224 struct dwz_file
1225 {
1226 /* A dwz file can only contain a few sections. */
1227 struct dwarf2_section_info abbrev;
1228 struct dwarf2_section_info info;
1229 struct dwarf2_section_info str;
1230 struct dwarf2_section_info line;
1231 struct dwarf2_section_info macro;
1232 struct dwarf2_section_info gdb_index;
1233 struct dwarf2_section_info debug_names;
1234
1235 /* The dwz's BFD. */
1236 bfd *dwz_bfd;
1237 };
1238
1239 /* Struct used to pass misc. parameters to read_die_and_children, et
1240 al. which are used for both .debug_info and .debug_types dies.
1241 All parameters here are unchanging for the life of the call. This
1242 struct exists to abstract away the constant parameters of die reading. */
1243
1244 struct die_reader_specs
1245 {
1246 /* The bfd of die_section. */
1247 bfd* abfd;
1248
1249 /* The CU of the DIE we are parsing. */
1250 struct dwarf2_cu *cu;
1251
1252 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1253 struct dwo_file *dwo_file;
1254
1255 /* The section the die comes from.
1256 This is either .debug_info or .debug_types, or the .dwo variants. */
1257 struct dwarf2_section_info *die_section;
1258
1259 /* die_section->buffer. */
1260 const gdb_byte *buffer;
1261
1262 /* The end of the buffer. */
1263 const gdb_byte *buffer_end;
1264
1265 /* The value of the DW_AT_comp_dir attribute. */
1266 const char *comp_dir;
1267
1268 /* The abbreviation table to use when reading the DIEs. */
1269 struct abbrev_table *abbrev_table;
1270 };
1271
1272 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1273 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1274 const gdb_byte *info_ptr,
1275 struct die_info *comp_unit_die,
1276 int has_children,
1277 void *data);
1278
1279 /* A 1-based directory index. This is a strong typedef to prevent
1280 accidentally using a directory index as a 0-based index into an
1281 array/vector. */
1282 enum class dir_index : unsigned int {};
1283
1284 /* Likewise, a 1-based file name index. */
1285 enum class file_name_index : unsigned int {};
1286
1287 struct file_entry
1288 {
1289 file_entry () = default;
1290
1291 file_entry (const char *name_, dir_index d_index_,
1292 unsigned int mod_time_, unsigned int length_)
1293 : name (name_),
1294 d_index (d_index_),
1295 mod_time (mod_time_),
1296 length (length_)
1297 {}
1298
1299 /* Return the include directory at D_INDEX stored in LH. Returns
1300 NULL if D_INDEX is out of bounds. */
1301 const char *include_dir (const line_header *lh) const;
1302
1303 /* The file name. Note this is an observing pointer. The memory is
1304 owned by debug_line_buffer. */
1305 const char *name {};
1306
1307 /* The directory index (1-based). */
1308 dir_index d_index {};
1309
1310 unsigned int mod_time {};
1311
1312 unsigned int length {};
1313
1314 /* True if referenced by the Line Number Program. */
1315 bool included_p {};
1316
1317 /* The associated symbol table, if any. */
1318 struct symtab *symtab {};
1319 };
1320
1321 /* The line number information for a compilation unit (found in the
1322 .debug_line section) begins with a "statement program header",
1323 which contains the following information. */
1324 struct line_header
1325 {
1326 line_header ()
1327 : offset_in_dwz {}
1328 {}
1329
1330 /* Add an entry to the include directory table. */
1331 void add_include_dir (const char *include_dir);
1332
1333 /* Add an entry to the file name table. */
1334 void add_file_name (const char *name, dir_index d_index,
1335 unsigned int mod_time, unsigned int length);
1336
1337 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1338 is out of bounds. */
1339 const char *include_dir_at (dir_index index) const
1340 {
1341 /* Convert directory index number (1-based) to vector index
1342 (0-based). */
1343 size_t vec_index = to_underlying (index) - 1;
1344
1345 if (vec_index >= include_dirs.size ())
1346 return NULL;
1347 return include_dirs[vec_index];
1348 }
1349
1350 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1351 is out of bounds. */
1352 file_entry *file_name_at (file_name_index index)
1353 {
1354 /* Convert file name index number (1-based) to vector index
1355 (0-based). */
1356 size_t vec_index = to_underlying (index) - 1;
1357
1358 if (vec_index >= file_names.size ())
1359 return NULL;
1360 return &file_names[vec_index];
1361 }
1362
1363 /* Const version of the above. */
1364 const file_entry *file_name_at (unsigned int index) const
1365 {
1366 if (index >= file_names.size ())
1367 return NULL;
1368 return &file_names[index];
1369 }
1370
1371 /* Offset of line number information in .debug_line section. */
1372 sect_offset sect_off {};
1373
1374 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1375 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1376
1377 unsigned int total_length {};
1378 unsigned short version {};
1379 unsigned int header_length {};
1380 unsigned char minimum_instruction_length {};
1381 unsigned char maximum_ops_per_instruction {};
1382 unsigned char default_is_stmt {};
1383 int line_base {};
1384 unsigned char line_range {};
1385 unsigned char opcode_base {};
1386
1387 /* standard_opcode_lengths[i] is the number of operands for the
1388 standard opcode whose value is i. This means that
1389 standard_opcode_lengths[0] is unused, and the last meaningful
1390 element is standard_opcode_lengths[opcode_base - 1]. */
1391 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1392
1393 /* The include_directories table. Note these are observing
1394 pointers. The memory is owned by debug_line_buffer. */
1395 std::vector<const char *> include_dirs;
1396
1397 /* The file_names table. */
1398 std::vector<file_entry> file_names;
1399
1400 /* The start and end of the statement program following this
1401 header. These point into dwarf2_per_objfile->line_buffer. */
1402 const gdb_byte *statement_program_start {}, *statement_program_end {};
1403 };
1404
1405 typedef std::unique_ptr<line_header> line_header_up;
1406
1407 const char *
1408 file_entry::include_dir (const line_header *lh) const
1409 {
1410 return lh->include_dir_at (d_index);
1411 }
1412
1413 /* When we construct a partial symbol table entry we only
1414 need this much information. */
1415 struct partial_die_info : public allocate_on_obstack
1416 {
1417 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1418
1419 /* Disable assign but still keep copy ctor, which is needed
1420 load_partial_dies. */
1421 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1422
1423 /* Adjust the partial die before generating a symbol for it. This
1424 function may set the is_external flag or change the DIE's
1425 name. */
1426 void fixup (struct dwarf2_cu *cu);
1427
1428 /* Read a minimal amount of information into the minimal die
1429 structure. */
1430 const gdb_byte *read (const struct die_reader_specs *reader,
1431 const struct abbrev_info &abbrev,
1432 const gdb_byte *info_ptr);
1433
1434 /* Offset of this DIE. */
1435 const sect_offset sect_off;
1436
1437 /* DWARF-2 tag for this DIE. */
1438 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1439
1440 /* Assorted flags describing the data found in this DIE. */
1441 const unsigned int has_children : 1;
1442
1443 unsigned int is_external : 1;
1444 unsigned int is_declaration : 1;
1445 unsigned int has_type : 1;
1446 unsigned int has_specification : 1;
1447 unsigned int has_pc_info : 1;
1448 unsigned int may_be_inlined : 1;
1449
1450 /* This DIE has been marked DW_AT_main_subprogram. */
1451 unsigned int main_subprogram : 1;
1452
1453 /* Flag set if the SCOPE field of this structure has been
1454 computed. */
1455 unsigned int scope_set : 1;
1456
1457 /* Flag set if the DIE has a byte_size attribute. */
1458 unsigned int has_byte_size : 1;
1459
1460 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1461 unsigned int has_const_value : 1;
1462
1463 /* Flag set if any of the DIE's children are template arguments. */
1464 unsigned int has_template_arguments : 1;
1465
1466 /* Flag set if fixup has been called on this die. */
1467 unsigned int fixup_called : 1;
1468
1469 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1470 unsigned int is_dwz : 1;
1471
1472 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1473 unsigned int spec_is_dwz : 1;
1474
1475 /* The name of this DIE. Normally the value of DW_AT_name, but
1476 sometimes a default name for unnamed DIEs. */
1477 const char *name = nullptr;
1478
1479 /* The linkage name, if present. */
1480 const char *linkage_name = nullptr;
1481
1482 /* The scope to prepend to our children. This is generally
1483 allocated on the comp_unit_obstack, so will disappear
1484 when this compilation unit leaves the cache. */
1485 const char *scope = nullptr;
1486
1487 /* Some data associated with the partial DIE. The tag determines
1488 which field is live. */
1489 union
1490 {
1491 /* The location description associated with this DIE, if any. */
1492 struct dwarf_block *locdesc;
1493 /* The offset of an import, for DW_TAG_imported_unit. */
1494 sect_offset sect_off;
1495 } d {};
1496
1497 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1498 CORE_ADDR lowpc = 0;
1499 CORE_ADDR highpc = 0;
1500
1501 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1502 DW_AT_sibling, if any. */
1503 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1504 could return DW_AT_sibling values to its caller load_partial_dies. */
1505 const gdb_byte *sibling = nullptr;
1506
1507 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1508 DW_AT_specification (or DW_AT_abstract_origin or
1509 DW_AT_extension). */
1510 sect_offset spec_offset {};
1511
1512 /* Pointers to this DIE's parent, first child, and next sibling,
1513 if any. */
1514 struct partial_die_info *die_parent = nullptr;
1515 struct partial_die_info *die_child = nullptr;
1516 struct partial_die_info *die_sibling = nullptr;
1517
1518 friend struct partial_die_info *
1519 dwarf2_cu::find_partial_die (sect_offset sect_off);
1520
1521 private:
1522 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1523 partial_die_info (sect_offset sect_off)
1524 : partial_die_info (sect_off, DW_TAG_padding, 0)
1525 {
1526 }
1527
1528 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1529 int has_children_)
1530 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1531 {
1532 is_external = 0;
1533 is_declaration = 0;
1534 has_type = 0;
1535 has_specification = 0;
1536 has_pc_info = 0;
1537 may_be_inlined = 0;
1538 main_subprogram = 0;
1539 scope_set = 0;
1540 has_byte_size = 0;
1541 has_const_value = 0;
1542 has_template_arguments = 0;
1543 fixup_called = 0;
1544 is_dwz = 0;
1545 spec_is_dwz = 0;
1546 }
1547 };
1548
1549 /* This data structure holds the information of an abbrev. */
1550 struct abbrev_info
1551 {
1552 unsigned int number; /* number identifying abbrev */
1553 enum dwarf_tag tag; /* dwarf tag */
1554 unsigned short has_children; /* boolean */
1555 unsigned short num_attrs; /* number of attributes */
1556 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1557 struct abbrev_info *next; /* next in chain */
1558 };
1559
1560 struct attr_abbrev
1561 {
1562 ENUM_BITFIELD(dwarf_attribute) name : 16;
1563 ENUM_BITFIELD(dwarf_form) form : 16;
1564
1565 /* It is valid only if FORM is DW_FORM_implicit_const. */
1566 LONGEST implicit_const;
1567 };
1568
1569 /* Size of abbrev_table.abbrev_hash_table. */
1570 #define ABBREV_HASH_SIZE 121
1571
1572 /* Top level data structure to contain an abbreviation table. */
1573
1574 struct abbrev_table
1575 {
1576 explicit abbrev_table (sect_offset off)
1577 : sect_off (off)
1578 {
1579 m_abbrevs =
1580 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1581 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1582 }
1583
1584 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1585
1586 /* Allocate space for a struct abbrev_info object in
1587 ABBREV_TABLE. */
1588 struct abbrev_info *alloc_abbrev ();
1589
1590 /* Add an abbreviation to the table. */
1591 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1592
1593 /* Look up an abbrev in the table.
1594 Returns NULL if the abbrev is not found. */
1595
1596 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1597
1598
1599 /* Where the abbrev table came from.
1600 This is used as a sanity check when the table is used. */
1601 const sect_offset sect_off;
1602
1603 /* Storage for the abbrev table. */
1604 auto_obstack abbrev_obstack;
1605
1606 private:
1607
1608 /* Hash table of abbrevs.
1609 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1610 It could be statically allocated, but the previous code didn't so we
1611 don't either. */
1612 struct abbrev_info **m_abbrevs;
1613 };
1614
1615 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1616
1617 /* Attributes have a name and a value. */
1618 struct attribute
1619 {
1620 ENUM_BITFIELD(dwarf_attribute) name : 16;
1621 ENUM_BITFIELD(dwarf_form) form : 15;
1622
1623 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1624 field should be in u.str (existing only for DW_STRING) but it is kept
1625 here for better struct attribute alignment. */
1626 unsigned int string_is_canonical : 1;
1627
1628 union
1629 {
1630 const char *str;
1631 struct dwarf_block *blk;
1632 ULONGEST unsnd;
1633 LONGEST snd;
1634 CORE_ADDR addr;
1635 ULONGEST signature;
1636 }
1637 u;
1638 };
1639
1640 /* This data structure holds a complete die structure. */
1641 struct die_info
1642 {
1643 /* DWARF-2 tag for this DIE. */
1644 ENUM_BITFIELD(dwarf_tag) tag : 16;
1645
1646 /* Number of attributes */
1647 unsigned char num_attrs;
1648
1649 /* True if we're presently building the full type name for the
1650 type derived from this DIE. */
1651 unsigned char building_fullname : 1;
1652
1653 /* True if this die is in process. PR 16581. */
1654 unsigned char in_process : 1;
1655
1656 /* Abbrev number */
1657 unsigned int abbrev;
1658
1659 /* Offset in .debug_info or .debug_types section. */
1660 sect_offset sect_off;
1661
1662 /* The dies in a compilation unit form an n-ary tree. PARENT
1663 points to this die's parent; CHILD points to the first child of
1664 this node; and all the children of a given node are chained
1665 together via their SIBLING fields. */
1666 struct die_info *child; /* Its first child, if any. */
1667 struct die_info *sibling; /* Its next sibling, if any. */
1668 struct die_info *parent; /* Its parent, if any. */
1669
1670 /* An array of attributes, with NUM_ATTRS elements. There may be
1671 zero, but it's not common and zero-sized arrays are not
1672 sufficiently portable C. */
1673 struct attribute attrs[1];
1674 };
1675
1676 /* Get at parts of an attribute structure. */
1677
1678 #define DW_STRING(attr) ((attr)->u.str)
1679 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1680 #define DW_UNSND(attr) ((attr)->u.unsnd)
1681 #define DW_BLOCK(attr) ((attr)->u.blk)
1682 #define DW_SND(attr) ((attr)->u.snd)
1683 #define DW_ADDR(attr) ((attr)->u.addr)
1684 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1685
1686 /* Blocks are a bunch of untyped bytes. */
1687 struct dwarf_block
1688 {
1689 size_t size;
1690
1691 /* Valid only if SIZE is not zero. */
1692 const gdb_byte *data;
1693 };
1694
1695 #ifndef ATTR_ALLOC_CHUNK
1696 #define ATTR_ALLOC_CHUNK 4
1697 #endif
1698
1699 /* Allocate fields for structs, unions and enums in this size. */
1700 #ifndef DW_FIELD_ALLOC_CHUNK
1701 #define DW_FIELD_ALLOC_CHUNK 4
1702 #endif
1703
1704 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1705 but this would require a corresponding change in unpack_field_as_long
1706 and friends. */
1707 static int bits_per_byte = 8;
1708
1709 /* When reading a variant or variant part, we track a bit more
1710 information about the field, and store it in an object of this
1711 type. */
1712
1713 struct variant_field
1714 {
1715 /* If we see a DW_TAG_variant, then this will be the discriminant
1716 value. */
1717 ULONGEST discriminant_value;
1718 /* If we see a DW_TAG_variant, then this will be set if this is the
1719 default branch. */
1720 bool default_branch;
1721 /* While reading a DW_TAG_variant_part, this will be set if this
1722 field is the discriminant. */
1723 bool is_discriminant;
1724 };
1725
1726 struct nextfield
1727 {
1728 struct nextfield *next;
1729 int accessibility;
1730 int virtuality;
1731 /* Extra information to describe a variant or variant part. */
1732 struct variant_field variant;
1733 struct field field;
1734 };
1735
1736 struct nextfnfield
1737 {
1738 struct nextfnfield *next;
1739 struct fn_field fnfield;
1740 };
1741
1742 struct fnfieldlist
1743 {
1744 const char *name;
1745 int length;
1746 struct nextfnfield *head;
1747 };
1748
1749 struct decl_field_list
1750 {
1751 struct decl_field field;
1752 struct decl_field_list *next;
1753 };
1754
1755 /* The routines that read and process dies for a C struct or C++ class
1756 pass lists of data member fields and lists of member function fields
1757 in an instance of a field_info structure, as defined below. */
1758 struct field_info
1759 {
1760 /* List of data member and baseclasses fields. */
1761 struct nextfield *fields, *baseclasses;
1762
1763 /* Number of fields (including baseclasses). */
1764 int nfields;
1765
1766 /* Number of baseclasses. */
1767 int nbaseclasses;
1768
1769 /* Set if the accesibility of one of the fields is not public. */
1770 int non_public_fields;
1771
1772 /* Member function fieldlist array, contains name of possibly overloaded
1773 member function, number of overloaded member functions and a pointer
1774 to the head of the member function field chain. */
1775 struct fnfieldlist *fnfieldlists;
1776
1777 /* Number of entries in the fnfieldlists array. */
1778 int nfnfields;
1779
1780 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1781 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1782 struct decl_field_list *typedef_field_list;
1783 unsigned typedef_field_list_count;
1784
1785 /* Nested types defined by this class and the number of elements in this
1786 list. */
1787 struct decl_field_list *nested_types_list;
1788 unsigned nested_types_list_count;
1789 };
1790
1791 /* One item on the queue of compilation units to read in full symbols
1792 for. */
1793 struct dwarf2_queue_item
1794 {
1795 struct dwarf2_per_cu_data *per_cu;
1796 enum language pretend_language;
1797 struct dwarf2_queue_item *next;
1798 };
1799
1800 /* The current queue. */
1801 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1802
1803 /* Loaded secondary compilation units are kept in memory until they
1804 have not been referenced for the processing of this many
1805 compilation units. Set this to zero to disable caching. Cache
1806 sizes of up to at least twenty will improve startup time for
1807 typical inter-CU-reference binaries, at an obvious memory cost. */
1808 static int dwarf_max_cache_age = 5;
1809 static void
1810 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1811 struct cmd_list_element *c, const char *value)
1812 {
1813 fprintf_filtered (file, _("The upper bound on the age of cached "
1814 "DWARF compilation units is %s.\n"),
1815 value);
1816 }
1817 \f
1818 /* local function prototypes */
1819
1820 static const char *get_section_name (const struct dwarf2_section_info *);
1821
1822 static const char *get_section_file_name (const struct dwarf2_section_info *);
1823
1824 static void dwarf2_find_base_address (struct die_info *die,
1825 struct dwarf2_cu *cu);
1826
1827 static struct partial_symtab *create_partial_symtab
1828 (struct dwarf2_per_cu_data *per_cu, const char *name);
1829
1830 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1831 const gdb_byte *info_ptr,
1832 struct die_info *type_unit_die,
1833 int has_children, void *data);
1834
1835 static void dwarf2_build_psymtabs_hard
1836 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1837
1838 static void scan_partial_symbols (struct partial_die_info *,
1839 CORE_ADDR *, CORE_ADDR *,
1840 int, struct dwarf2_cu *);
1841
1842 static void add_partial_symbol (struct partial_die_info *,
1843 struct dwarf2_cu *);
1844
1845 static void add_partial_namespace (struct partial_die_info *pdi,
1846 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1847 int set_addrmap, struct dwarf2_cu *cu);
1848
1849 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1850 CORE_ADDR *highpc, int set_addrmap,
1851 struct dwarf2_cu *cu);
1852
1853 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1854 struct dwarf2_cu *cu);
1855
1856 static void add_partial_subprogram (struct partial_die_info *pdi,
1857 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1858 int need_pc, struct dwarf2_cu *cu);
1859
1860 static void dwarf2_read_symtab (struct partial_symtab *,
1861 struct objfile *);
1862
1863 static void psymtab_to_symtab_1 (struct partial_symtab *);
1864
1865 static abbrev_table_up abbrev_table_read_table
1866 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1867 sect_offset);
1868
1869 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1870
1871 static struct partial_die_info *load_partial_dies
1872 (const struct die_reader_specs *, const gdb_byte *, int);
1873
1874 static struct partial_die_info *find_partial_die (sect_offset, int,
1875 struct dwarf2_cu *);
1876
1877 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1878 struct attribute *, struct attr_abbrev *,
1879 const gdb_byte *);
1880
1881 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1882
1883 static int read_1_signed_byte (bfd *, const gdb_byte *);
1884
1885 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1886
1887 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1888
1889 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1890
1891 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1892 unsigned int *);
1893
1894 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1895
1896 static LONGEST read_checked_initial_length_and_offset
1897 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1898 unsigned int *, unsigned int *);
1899
1900 static LONGEST read_offset (bfd *, const gdb_byte *,
1901 const struct comp_unit_head *,
1902 unsigned int *);
1903
1904 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1905
1906 static sect_offset read_abbrev_offset
1907 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1908 struct dwarf2_section_info *, sect_offset);
1909
1910 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1911
1912 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1913
1914 static const char *read_indirect_string
1915 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1916 const struct comp_unit_head *, unsigned int *);
1917
1918 static const char *read_indirect_line_string
1919 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1920 const struct comp_unit_head *, unsigned int *);
1921
1922 static const char *read_indirect_string_at_offset
1923 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1924 LONGEST str_offset);
1925
1926 static const char *read_indirect_string_from_dwz
1927 (struct objfile *objfile, struct dwz_file *, LONGEST);
1928
1929 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1930
1931 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1932 const gdb_byte *,
1933 unsigned int *);
1934
1935 static const char *read_str_index (const struct die_reader_specs *reader,
1936 ULONGEST str_index);
1937
1938 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1939
1940 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1941 struct dwarf2_cu *);
1942
1943 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1944 unsigned int);
1945
1946 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1947 struct dwarf2_cu *cu);
1948
1949 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1950 struct dwarf2_cu *cu);
1951
1952 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1953
1954 static struct die_info *die_specification (struct die_info *die,
1955 struct dwarf2_cu **);
1956
1957 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1958 struct dwarf2_cu *cu);
1959
1960 static void dwarf_decode_lines (struct line_header *, const char *,
1961 struct dwarf2_cu *, struct partial_symtab *,
1962 CORE_ADDR, int decode_mapping);
1963
1964 static void dwarf2_start_subfile (const char *, const char *);
1965
1966 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1967 const char *, const char *,
1968 CORE_ADDR);
1969
1970 static struct symbol *new_symbol (struct die_info *, struct type *,
1971 struct dwarf2_cu *, struct symbol * = NULL);
1972
1973 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1974 struct dwarf2_cu *);
1975
1976 static void dwarf2_const_value_attr (const struct attribute *attr,
1977 struct type *type,
1978 const char *name,
1979 struct obstack *obstack,
1980 struct dwarf2_cu *cu, LONGEST *value,
1981 const gdb_byte **bytes,
1982 struct dwarf2_locexpr_baton **baton);
1983
1984 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1985
1986 static int need_gnat_info (struct dwarf2_cu *);
1987
1988 static struct type *die_descriptive_type (struct die_info *,
1989 struct dwarf2_cu *);
1990
1991 static void set_descriptive_type (struct type *, struct die_info *,
1992 struct dwarf2_cu *);
1993
1994 static struct type *die_containing_type (struct die_info *,
1995 struct dwarf2_cu *);
1996
1997 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1998 struct dwarf2_cu *);
1999
2000 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
2001
2002 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
2003
2004 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
2005
2006 static char *typename_concat (struct obstack *obs, const char *prefix,
2007 const char *suffix, int physname,
2008 struct dwarf2_cu *cu);
2009
2010 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
2011
2012 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
2013
2014 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
2015
2016 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
2017
2018 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
2019
2020 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
2021
2022 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
2023 struct dwarf2_cu *, struct partial_symtab *);
2024
2025 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
2026 values. Keep the items ordered with increasing constraints compliance. */
2027 enum pc_bounds_kind
2028 {
2029 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
2030 PC_BOUNDS_NOT_PRESENT,
2031
2032 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
2033 were present but they do not form a valid range of PC addresses. */
2034 PC_BOUNDS_INVALID,
2035
2036 /* Discontiguous range was found - that is DW_AT_ranges was found. */
2037 PC_BOUNDS_RANGES,
2038
2039 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
2040 PC_BOUNDS_HIGH_LOW,
2041 };
2042
2043 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
2044 CORE_ADDR *, CORE_ADDR *,
2045 struct dwarf2_cu *,
2046 struct partial_symtab *);
2047
2048 static void get_scope_pc_bounds (struct die_info *,
2049 CORE_ADDR *, CORE_ADDR *,
2050 struct dwarf2_cu *);
2051
2052 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
2053 CORE_ADDR, struct dwarf2_cu *);
2054
2055 static void dwarf2_add_field (struct field_info *, struct die_info *,
2056 struct dwarf2_cu *);
2057
2058 static void dwarf2_attach_fields_to_type (struct field_info *,
2059 struct type *, struct dwarf2_cu *);
2060
2061 static void dwarf2_add_member_fn (struct field_info *,
2062 struct die_info *, struct type *,
2063 struct dwarf2_cu *);
2064
2065 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
2066 struct type *,
2067 struct dwarf2_cu *);
2068
2069 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
2070
2071 static void read_common_block (struct die_info *, struct dwarf2_cu *);
2072
2073 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
2074
2075 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
2076
2077 static struct using_direct **using_directives (enum language);
2078
2079 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
2080
2081 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
2082
2083 static struct type *read_module_type (struct die_info *die,
2084 struct dwarf2_cu *cu);
2085
2086 static const char *namespace_name (struct die_info *die,
2087 int *is_anonymous, struct dwarf2_cu *);
2088
2089 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
2090
2091 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
2092
2093 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
2094 struct dwarf2_cu *);
2095
2096 static struct die_info *read_die_and_siblings_1
2097 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
2098 struct die_info *);
2099
2100 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
2101 const gdb_byte *info_ptr,
2102 const gdb_byte **new_info_ptr,
2103 struct die_info *parent);
2104
2105 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
2106 struct die_info **, const gdb_byte *,
2107 int *, int);
2108
2109 static const gdb_byte *read_full_die (const struct die_reader_specs *,
2110 struct die_info **, const gdb_byte *,
2111 int *);
2112
2113 static void process_die (struct die_info *, struct dwarf2_cu *);
2114
2115 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
2116 struct obstack *);
2117
2118 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
2119
2120 static const char *dwarf2_full_name (const char *name,
2121 struct die_info *die,
2122 struct dwarf2_cu *cu);
2123
2124 static const char *dwarf2_physname (const char *name, struct die_info *die,
2125 struct dwarf2_cu *cu);
2126
2127 static struct die_info *dwarf2_extension (struct die_info *die,
2128 struct dwarf2_cu **);
2129
2130 static const char *dwarf_tag_name (unsigned int);
2131
2132 static const char *dwarf_attr_name (unsigned int);
2133
2134 static const char *dwarf_form_name (unsigned int);
2135
2136 static const char *dwarf_bool_name (unsigned int);
2137
2138 static const char *dwarf_type_encoding_name (unsigned int);
2139
2140 static struct die_info *sibling_die (struct die_info *);
2141
2142 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
2143
2144 static void dump_die_for_error (struct die_info *);
2145
2146 static void dump_die_1 (struct ui_file *, int level, int max_level,
2147 struct die_info *);
2148
2149 /*static*/ void dump_die (struct die_info *, int max_level);
2150
2151 static void store_in_ref_table (struct die_info *,
2152 struct dwarf2_cu *);
2153
2154 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
2155
2156 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
2157
2158 static struct die_info *follow_die_ref_or_sig (struct die_info *,
2159 const struct attribute *,
2160 struct dwarf2_cu **);
2161
2162 static struct die_info *follow_die_ref (struct die_info *,
2163 const struct attribute *,
2164 struct dwarf2_cu **);
2165
2166 static struct die_info *follow_die_sig (struct die_info *,
2167 const struct attribute *,
2168 struct dwarf2_cu **);
2169
2170 static struct type *get_signatured_type (struct die_info *, ULONGEST,
2171 struct dwarf2_cu *);
2172
2173 static struct type *get_DW_AT_signature_type (struct die_info *,
2174 const struct attribute *,
2175 struct dwarf2_cu *);
2176
2177 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
2178
2179 static void read_signatured_type (struct signatured_type *);
2180
2181 static int attr_to_dynamic_prop (const struct attribute *attr,
2182 struct die_info *die, struct dwarf2_cu *cu,
2183 struct dynamic_prop *prop);
2184
2185 /* memory allocation interface */
2186
2187 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
2188
2189 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
2190
2191 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2192
2193 static int attr_form_is_block (const struct attribute *);
2194
2195 static int attr_form_is_section_offset (const struct attribute *);
2196
2197 static int attr_form_is_constant (const struct attribute *);
2198
2199 static int attr_form_is_ref (const struct attribute *);
2200
2201 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
2202 struct dwarf2_loclist_baton *baton,
2203 const struct attribute *attr);
2204
2205 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
2206 struct symbol *sym,
2207 struct dwarf2_cu *cu,
2208 int is_block);
2209
2210 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
2211 const gdb_byte *info_ptr,
2212 struct abbrev_info *abbrev);
2213
2214 static hashval_t partial_die_hash (const void *item);
2215
2216 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
2217
2218 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
2219 (sect_offset sect_off, unsigned int offset_in_dwz,
2220 struct dwarf2_per_objfile *dwarf2_per_objfile);
2221
2222 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
2223 struct die_info *comp_unit_die,
2224 enum language pretend_language);
2225
2226 static void free_cached_comp_units (void *);
2227
2228 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2229
2230 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
2231
2232 static struct type *set_die_type (struct die_info *, struct type *,
2233 struct dwarf2_cu *);
2234
2235 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2236
2237 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
2238
2239 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
2240 enum language);
2241
2242 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
2243 enum language);
2244
2245 static void process_full_type_unit (struct dwarf2_per_cu_data *,
2246 enum language);
2247
2248 static void dwarf2_add_dependence (struct dwarf2_cu *,
2249 struct dwarf2_per_cu_data *);
2250
2251 static void dwarf2_mark (struct dwarf2_cu *);
2252
2253 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
2254
2255 static struct type *get_die_type_at_offset (sect_offset,
2256 struct dwarf2_per_cu_data *);
2257
2258 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
2259
2260 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
2261 enum language pretend_language);
2262
2263 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
2264
2265 /* Class, the destructor of which frees all allocated queue entries. This
2266 will only have work to do if an error was thrown while processing the
2267 dwarf. If no error was thrown then the queue entries should have all
2268 been processed, and freed, as we went along. */
2269
2270 class dwarf2_queue_guard
2271 {
2272 public:
2273 dwarf2_queue_guard () = default;
2274
2275 /* Free any entries remaining on the queue. There should only be
2276 entries left if we hit an error while processing the dwarf. */
2277 ~dwarf2_queue_guard ()
2278 {
2279 struct dwarf2_queue_item *item, *last;
2280
2281 item = dwarf2_queue;
2282 while (item)
2283 {
2284 /* Anything still marked queued is likely to be in an
2285 inconsistent state, so discard it. */
2286 if (item->per_cu->queued)
2287 {
2288 if (item->per_cu->cu != NULL)
2289 free_one_cached_comp_unit (item->per_cu);
2290 item->per_cu->queued = 0;
2291 }
2292
2293 last = item;
2294 item = item->next;
2295 xfree (last);
2296 }
2297
2298 dwarf2_queue = dwarf2_queue_tail = NULL;
2299 }
2300 };
2301
2302 /* The return type of find_file_and_directory. Note, the enclosed
2303 string pointers are only valid while this object is valid. */
2304
2305 struct file_and_directory
2306 {
2307 /* The filename. This is never NULL. */
2308 const char *name;
2309
2310 /* The compilation directory. NULL if not known. If we needed to
2311 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2312 points directly to the DW_AT_comp_dir string attribute owned by
2313 the obstack that owns the DIE. */
2314 const char *comp_dir;
2315
2316 /* If we needed to build a new string for comp_dir, this is what
2317 owns the storage. */
2318 std::string comp_dir_storage;
2319 };
2320
2321 static file_and_directory find_file_and_directory (struct die_info *die,
2322 struct dwarf2_cu *cu);
2323
2324 static char *file_full_name (int file, struct line_header *lh,
2325 const char *comp_dir);
2326
2327 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
2328 enum class rcuh_kind { COMPILE, TYPE };
2329
2330 static const gdb_byte *read_and_check_comp_unit_head
2331 (struct dwarf2_per_objfile* dwarf2_per_objfile,
2332 struct comp_unit_head *header,
2333 struct dwarf2_section_info *section,
2334 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
2335 rcuh_kind section_kind);
2336
2337 static void init_cutu_and_read_dies
2338 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2339 int use_existing_cu, int keep,
2340 die_reader_func_ftype *die_reader_func, void *data);
2341
2342 static void init_cutu_and_read_dies_simple
2343 (struct dwarf2_per_cu_data *this_cu,
2344 die_reader_func_ftype *die_reader_func, void *data);
2345
2346 static htab_t allocate_signatured_type_table (struct objfile *objfile);
2347
2348 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2349
2350 static struct dwo_unit *lookup_dwo_unit_in_dwp
2351 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2352 struct dwp_file *dwp_file, const char *comp_dir,
2353 ULONGEST signature, int is_debug_types);
2354
2355 static struct dwp_file *get_dwp_file
2356 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2357
2358 static struct dwo_unit *lookup_dwo_comp_unit
2359 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2360
2361 static struct dwo_unit *lookup_dwo_type_unit
2362 (struct signatured_type *, const char *, const char *);
2363
2364 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2365
2366 static void free_dwo_file_cleanup (void *);
2367
2368 struct free_dwo_file_cleanup_data
2369 {
2370 struct dwo_file *dwo_file;
2371 struct dwarf2_per_objfile *dwarf2_per_objfile;
2372 };
2373
2374 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2375
2376 static void check_producer (struct dwarf2_cu *cu);
2377
2378 static void free_line_header_voidp (void *arg);
2379 \f
2380 /* Various complaints about symbol reading that don't abort the process. */
2381
2382 static void
2383 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2384 {
2385 complaint (&symfile_complaints,
2386 _("statement list doesn't fit in .debug_line section"));
2387 }
2388
2389 static void
2390 dwarf2_debug_line_missing_file_complaint (void)
2391 {
2392 complaint (&symfile_complaints,
2393 _(".debug_line section has line data without a file"));
2394 }
2395
2396 static void
2397 dwarf2_debug_line_missing_end_sequence_complaint (void)
2398 {
2399 complaint (&symfile_complaints,
2400 _(".debug_line section has line "
2401 "program sequence without an end"));
2402 }
2403
2404 static void
2405 dwarf2_complex_location_expr_complaint (void)
2406 {
2407 complaint (&symfile_complaints, _("location expression too complex"));
2408 }
2409
2410 static void
2411 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2412 int arg3)
2413 {
2414 complaint (&symfile_complaints,
2415 _("const value length mismatch for '%s', got %d, expected %d"),
2416 arg1, arg2, arg3);
2417 }
2418
2419 static void
2420 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2421 {
2422 complaint (&symfile_complaints,
2423 _("debug info runs off end of %s section"
2424 " [in module %s]"),
2425 get_section_name (section),
2426 get_section_file_name (section));
2427 }
2428
2429 static void
2430 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2431 {
2432 complaint (&symfile_complaints,
2433 _("macro debug info contains a "
2434 "malformed macro definition:\n`%s'"),
2435 arg1);
2436 }
2437
2438 static void
2439 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2440 {
2441 complaint (&symfile_complaints,
2442 _("invalid attribute class or form for '%s' in '%s'"),
2443 arg1, arg2);
2444 }
2445
2446 /* Hash function for line_header_hash. */
2447
2448 static hashval_t
2449 line_header_hash (const struct line_header *ofs)
2450 {
2451 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2452 }
2453
2454 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2455
2456 static hashval_t
2457 line_header_hash_voidp (const void *item)
2458 {
2459 const struct line_header *ofs = (const struct line_header *) item;
2460
2461 return line_header_hash (ofs);
2462 }
2463
2464 /* Equality function for line_header_hash. */
2465
2466 static int
2467 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2468 {
2469 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2470 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2471
2472 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2473 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2474 }
2475
2476 \f
2477
2478 /* Read the given attribute value as an address, taking the attribute's
2479 form into account. */
2480
2481 static CORE_ADDR
2482 attr_value_as_address (struct attribute *attr)
2483 {
2484 CORE_ADDR addr;
2485
2486 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2487 {
2488 /* Aside from a few clearly defined exceptions, attributes that
2489 contain an address must always be in DW_FORM_addr form.
2490 Unfortunately, some compilers happen to be violating this
2491 requirement by encoding addresses using other forms, such
2492 as DW_FORM_data4 for example. For those broken compilers,
2493 we try to do our best, without any guarantee of success,
2494 to interpret the address correctly. It would also be nice
2495 to generate a complaint, but that would require us to maintain
2496 a list of legitimate cases where a non-address form is allowed,
2497 as well as update callers to pass in at least the CU's DWARF
2498 version. This is more overhead than what we're willing to
2499 expand for a pretty rare case. */
2500 addr = DW_UNSND (attr);
2501 }
2502 else
2503 addr = DW_ADDR (attr);
2504
2505 return addr;
2506 }
2507
2508 /* The suffix for an index file. */
2509 #define INDEX4_SUFFIX ".gdb-index"
2510 #define INDEX5_SUFFIX ".debug_names"
2511 #define DEBUG_STR_SUFFIX ".debug_str"
2512
2513 /* See declaration. */
2514
2515 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2516 const dwarf2_debug_sections *names)
2517 : objfile (objfile_)
2518 {
2519 if (names == NULL)
2520 names = &dwarf2_elf_names;
2521
2522 bfd *obfd = objfile->obfd;
2523
2524 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2525 locate_sections (obfd, sec, *names);
2526 }
2527
2528 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2529
2530 dwarf2_per_objfile::~dwarf2_per_objfile ()
2531 {
2532 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2533 free_cached_comp_units ();
2534
2535 if (quick_file_names_table)
2536 htab_delete (quick_file_names_table);
2537
2538 if (line_header_hash)
2539 htab_delete (line_header_hash);
2540
2541 for (int ix = 0; ix < n_comp_units; ++ix)
2542 VEC_free (dwarf2_per_cu_ptr, all_comp_units[ix]->imported_symtabs);
2543
2544 for (int ix = 0; ix < n_type_units; ++ix)
2545 VEC_free (dwarf2_per_cu_ptr,
2546 all_type_units[ix]->per_cu.imported_symtabs);
2547 xfree (all_type_units);
2548
2549 VEC_free (dwarf2_section_info_def, types);
2550
2551 if (dwo_files != NULL)
2552 free_dwo_files (dwo_files, objfile);
2553 if (dwp_file != NULL)
2554 gdb_bfd_unref (dwp_file->dbfd);
2555
2556 if (dwz_file != NULL && dwz_file->dwz_bfd)
2557 gdb_bfd_unref (dwz_file->dwz_bfd);
2558
2559 if (index_table != NULL)
2560 index_table->~mapped_index ();
2561
2562 /* Everything else should be on the objfile obstack. */
2563 }
2564
2565 /* See declaration. */
2566
2567 void
2568 dwarf2_per_objfile::free_cached_comp_units ()
2569 {
2570 dwarf2_per_cu_data *per_cu = read_in_chain;
2571 dwarf2_per_cu_data **last_chain = &read_in_chain;
2572 while (per_cu != NULL)
2573 {
2574 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2575
2576 delete per_cu->cu;
2577 *last_chain = next_cu;
2578 per_cu = next_cu;
2579 }
2580 }
2581
2582 /* Try to locate the sections we need for DWARF 2 debugging
2583 information and return true if we have enough to do something.
2584 NAMES points to the dwarf2 section names, or is NULL if the standard
2585 ELF names are used. */
2586
2587 int
2588 dwarf2_has_info (struct objfile *objfile,
2589 const struct dwarf2_debug_sections *names)
2590 {
2591 if (objfile->flags & OBJF_READNEVER)
2592 return 0;
2593
2594 struct dwarf2_per_objfile *dwarf2_per_objfile
2595 = get_dwarf2_per_objfile (objfile);
2596
2597 if (dwarf2_per_objfile == NULL)
2598 {
2599 /* Initialize per-objfile state. */
2600 dwarf2_per_objfile
2601 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2602 names);
2603 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2604 }
2605 return (!dwarf2_per_objfile->info.is_virtual
2606 && dwarf2_per_objfile->info.s.section != NULL
2607 && !dwarf2_per_objfile->abbrev.is_virtual
2608 && dwarf2_per_objfile->abbrev.s.section != NULL);
2609 }
2610
2611 /* Return the containing section of virtual section SECTION. */
2612
2613 static struct dwarf2_section_info *
2614 get_containing_section (const struct dwarf2_section_info *section)
2615 {
2616 gdb_assert (section->is_virtual);
2617 return section->s.containing_section;
2618 }
2619
2620 /* Return the bfd owner of SECTION. */
2621
2622 static struct bfd *
2623 get_section_bfd_owner (const struct dwarf2_section_info *section)
2624 {
2625 if (section->is_virtual)
2626 {
2627 section = get_containing_section (section);
2628 gdb_assert (!section->is_virtual);
2629 }
2630 return section->s.section->owner;
2631 }
2632
2633 /* Return the bfd section of SECTION.
2634 Returns NULL if the section is not present. */
2635
2636 static asection *
2637 get_section_bfd_section (const struct dwarf2_section_info *section)
2638 {
2639 if (section->is_virtual)
2640 {
2641 section = get_containing_section (section);
2642 gdb_assert (!section->is_virtual);
2643 }
2644 return section->s.section;
2645 }
2646
2647 /* Return the name of SECTION. */
2648
2649 static const char *
2650 get_section_name (const struct dwarf2_section_info *section)
2651 {
2652 asection *sectp = get_section_bfd_section (section);
2653
2654 gdb_assert (sectp != NULL);
2655 return bfd_section_name (get_section_bfd_owner (section), sectp);
2656 }
2657
2658 /* Return the name of the file SECTION is in. */
2659
2660 static const char *
2661 get_section_file_name (const struct dwarf2_section_info *section)
2662 {
2663 bfd *abfd = get_section_bfd_owner (section);
2664
2665 return bfd_get_filename (abfd);
2666 }
2667
2668 /* Return the id of SECTION.
2669 Returns 0 if SECTION doesn't exist. */
2670
2671 static int
2672 get_section_id (const struct dwarf2_section_info *section)
2673 {
2674 asection *sectp = get_section_bfd_section (section);
2675
2676 if (sectp == NULL)
2677 return 0;
2678 return sectp->id;
2679 }
2680
2681 /* Return the flags of SECTION.
2682 SECTION (or containing section if this is a virtual section) must exist. */
2683
2684 static int
2685 get_section_flags (const struct dwarf2_section_info *section)
2686 {
2687 asection *sectp = get_section_bfd_section (section);
2688
2689 gdb_assert (sectp != NULL);
2690 return bfd_get_section_flags (sectp->owner, sectp);
2691 }
2692
2693 /* When loading sections, we look either for uncompressed section or for
2694 compressed section names. */
2695
2696 static int
2697 section_is_p (const char *section_name,
2698 const struct dwarf2_section_names *names)
2699 {
2700 if (names->normal != NULL
2701 && strcmp (section_name, names->normal) == 0)
2702 return 1;
2703 if (names->compressed != NULL
2704 && strcmp (section_name, names->compressed) == 0)
2705 return 1;
2706 return 0;
2707 }
2708
2709 /* See declaration. */
2710
2711 void
2712 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2713 const dwarf2_debug_sections &names)
2714 {
2715 flagword aflag = bfd_get_section_flags (abfd, sectp);
2716
2717 if ((aflag & SEC_HAS_CONTENTS) == 0)
2718 {
2719 }
2720 else if (section_is_p (sectp->name, &names.info))
2721 {
2722 this->info.s.section = sectp;
2723 this->info.size = bfd_get_section_size (sectp);
2724 }
2725 else if (section_is_p (sectp->name, &names.abbrev))
2726 {
2727 this->abbrev.s.section = sectp;
2728 this->abbrev.size = bfd_get_section_size (sectp);
2729 }
2730 else if (section_is_p (sectp->name, &names.line))
2731 {
2732 this->line.s.section = sectp;
2733 this->line.size = bfd_get_section_size (sectp);
2734 }
2735 else if (section_is_p (sectp->name, &names.loc))
2736 {
2737 this->loc.s.section = sectp;
2738 this->loc.size = bfd_get_section_size (sectp);
2739 }
2740 else if (section_is_p (sectp->name, &names.loclists))
2741 {
2742 this->loclists.s.section = sectp;
2743 this->loclists.size = bfd_get_section_size (sectp);
2744 }
2745 else if (section_is_p (sectp->name, &names.macinfo))
2746 {
2747 this->macinfo.s.section = sectp;
2748 this->macinfo.size = bfd_get_section_size (sectp);
2749 }
2750 else if (section_is_p (sectp->name, &names.macro))
2751 {
2752 this->macro.s.section = sectp;
2753 this->macro.size = bfd_get_section_size (sectp);
2754 }
2755 else if (section_is_p (sectp->name, &names.str))
2756 {
2757 this->str.s.section = sectp;
2758 this->str.size = bfd_get_section_size (sectp);
2759 }
2760 else if (section_is_p (sectp->name, &names.line_str))
2761 {
2762 this->line_str.s.section = sectp;
2763 this->line_str.size = bfd_get_section_size (sectp);
2764 }
2765 else if (section_is_p (sectp->name, &names.addr))
2766 {
2767 this->addr.s.section = sectp;
2768 this->addr.size = bfd_get_section_size (sectp);
2769 }
2770 else if (section_is_p (sectp->name, &names.frame))
2771 {
2772 this->frame.s.section = sectp;
2773 this->frame.size = bfd_get_section_size (sectp);
2774 }
2775 else if (section_is_p (sectp->name, &names.eh_frame))
2776 {
2777 this->eh_frame.s.section = sectp;
2778 this->eh_frame.size = bfd_get_section_size (sectp);
2779 }
2780 else if (section_is_p (sectp->name, &names.ranges))
2781 {
2782 this->ranges.s.section = sectp;
2783 this->ranges.size = bfd_get_section_size (sectp);
2784 }
2785 else if (section_is_p (sectp->name, &names.rnglists))
2786 {
2787 this->rnglists.s.section = sectp;
2788 this->rnglists.size = bfd_get_section_size (sectp);
2789 }
2790 else if (section_is_p (sectp->name, &names.types))
2791 {
2792 struct dwarf2_section_info type_section;
2793
2794 memset (&type_section, 0, sizeof (type_section));
2795 type_section.s.section = sectp;
2796 type_section.size = bfd_get_section_size (sectp);
2797
2798 VEC_safe_push (dwarf2_section_info_def, this->types,
2799 &type_section);
2800 }
2801 else if (section_is_p (sectp->name, &names.gdb_index))
2802 {
2803 this->gdb_index.s.section = sectp;
2804 this->gdb_index.size = bfd_get_section_size (sectp);
2805 }
2806 else if (section_is_p (sectp->name, &names.debug_names))
2807 {
2808 this->debug_names.s.section = sectp;
2809 this->debug_names.size = bfd_get_section_size (sectp);
2810 }
2811 else if (section_is_p (sectp->name, &names.debug_aranges))
2812 {
2813 this->debug_aranges.s.section = sectp;
2814 this->debug_aranges.size = bfd_get_section_size (sectp);
2815 }
2816
2817 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2818 && bfd_section_vma (abfd, sectp) == 0)
2819 this->has_section_at_zero = true;
2820 }
2821
2822 /* A helper function that decides whether a section is empty,
2823 or not present. */
2824
2825 static int
2826 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2827 {
2828 if (section->is_virtual)
2829 return section->size == 0;
2830 return section->s.section == NULL || section->size == 0;
2831 }
2832
2833 /* Read the contents of the section INFO.
2834 OBJFILE is the main object file, but not necessarily the file where
2835 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2836 of the DWO file.
2837 If the section is compressed, uncompress it before returning. */
2838
2839 static void
2840 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2841 {
2842 asection *sectp;
2843 bfd *abfd;
2844 gdb_byte *buf, *retbuf;
2845
2846 if (info->readin)
2847 return;
2848 info->buffer = NULL;
2849 info->readin = 1;
2850
2851 if (dwarf2_section_empty_p (info))
2852 return;
2853
2854 sectp = get_section_bfd_section (info);
2855
2856 /* If this is a virtual section we need to read in the real one first. */
2857 if (info->is_virtual)
2858 {
2859 struct dwarf2_section_info *containing_section =
2860 get_containing_section (info);
2861
2862 gdb_assert (sectp != NULL);
2863 if ((sectp->flags & SEC_RELOC) != 0)
2864 {
2865 error (_("Dwarf Error: DWP format V2 with relocations is not"
2866 " supported in section %s [in module %s]"),
2867 get_section_name (info), get_section_file_name (info));
2868 }
2869 dwarf2_read_section (objfile, containing_section);
2870 /* Other code should have already caught virtual sections that don't
2871 fit. */
2872 gdb_assert (info->virtual_offset + info->size
2873 <= containing_section->size);
2874 /* If the real section is empty or there was a problem reading the
2875 section we shouldn't get here. */
2876 gdb_assert (containing_section->buffer != NULL);
2877 info->buffer = containing_section->buffer + info->virtual_offset;
2878 return;
2879 }
2880
2881 /* If the section has relocations, we must read it ourselves.
2882 Otherwise we attach it to the BFD. */
2883 if ((sectp->flags & SEC_RELOC) == 0)
2884 {
2885 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2886 return;
2887 }
2888
2889 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2890 info->buffer = buf;
2891
2892 /* When debugging .o files, we may need to apply relocations; see
2893 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2894 We never compress sections in .o files, so we only need to
2895 try this when the section is not compressed. */
2896 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2897 if (retbuf != NULL)
2898 {
2899 info->buffer = retbuf;
2900 return;
2901 }
2902
2903 abfd = get_section_bfd_owner (info);
2904 gdb_assert (abfd != NULL);
2905
2906 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2907 || bfd_bread (buf, info->size, abfd) != info->size)
2908 {
2909 error (_("Dwarf Error: Can't read DWARF data"
2910 " in section %s [in module %s]"),
2911 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2912 }
2913 }
2914
2915 /* A helper function that returns the size of a section in a safe way.
2916 If you are positive that the section has been read before using the
2917 size, then it is safe to refer to the dwarf2_section_info object's
2918 "size" field directly. In other cases, you must call this
2919 function, because for compressed sections the size field is not set
2920 correctly until the section has been read. */
2921
2922 static bfd_size_type
2923 dwarf2_section_size (struct objfile *objfile,
2924 struct dwarf2_section_info *info)
2925 {
2926 if (!info->readin)
2927 dwarf2_read_section (objfile, info);
2928 return info->size;
2929 }
2930
2931 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2932 SECTION_NAME. */
2933
2934 void
2935 dwarf2_get_section_info (struct objfile *objfile,
2936 enum dwarf2_section_enum sect,
2937 asection **sectp, const gdb_byte **bufp,
2938 bfd_size_type *sizep)
2939 {
2940 struct dwarf2_per_objfile *data
2941 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2942 dwarf2_objfile_data_key);
2943 struct dwarf2_section_info *info;
2944
2945 /* We may see an objfile without any DWARF, in which case we just
2946 return nothing. */
2947 if (data == NULL)
2948 {
2949 *sectp = NULL;
2950 *bufp = NULL;
2951 *sizep = 0;
2952 return;
2953 }
2954 switch (sect)
2955 {
2956 case DWARF2_DEBUG_FRAME:
2957 info = &data->frame;
2958 break;
2959 case DWARF2_EH_FRAME:
2960 info = &data->eh_frame;
2961 break;
2962 default:
2963 gdb_assert_not_reached ("unexpected section");
2964 }
2965
2966 dwarf2_read_section (objfile, info);
2967
2968 *sectp = get_section_bfd_section (info);
2969 *bufp = info->buffer;
2970 *sizep = info->size;
2971 }
2972
2973 /* A helper function to find the sections for a .dwz file. */
2974
2975 static void
2976 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2977 {
2978 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2979
2980 /* Note that we only support the standard ELF names, because .dwz
2981 is ELF-only (at the time of writing). */
2982 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2983 {
2984 dwz_file->abbrev.s.section = sectp;
2985 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2986 }
2987 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2988 {
2989 dwz_file->info.s.section = sectp;
2990 dwz_file->info.size = bfd_get_section_size (sectp);
2991 }
2992 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2993 {
2994 dwz_file->str.s.section = sectp;
2995 dwz_file->str.size = bfd_get_section_size (sectp);
2996 }
2997 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2998 {
2999 dwz_file->line.s.section = sectp;
3000 dwz_file->line.size = bfd_get_section_size (sectp);
3001 }
3002 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
3003 {
3004 dwz_file->macro.s.section = sectp;
3005 dwz_file->macro.size = bfd_get_section_size (sectp);
3006 }
3007 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
3008 {
3009 dwz_file->gdb_index.s.section = sectp;
3010 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
3011 }
3012 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
3013 {
3014 dwz_file->debug_names.s.section = sectp;
3015 dwz_file->debug_names.size = bfd_get_section_size (sectp);
3016 }
3017 }
3018
3019 /* Open the separate '.dwz' debug file, if needed. Return NULL if
3020 there is no .gnu_debugaltlink section in the file. Error if there
3021 is such a section but the file cannot be found. */
3022
3023 static struct dwz_file *
3024 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
3025 {
3026 const char *filename;
3027 struct dwz_file *result;
3028 bfd_size_type buildid_len_arg;
3029 size_t buildid_len;
3030 bfd_byte *buildid;
3031
3032 if (dwarf2_per_objfile->dwz_file != NULL)
3033 return dwarf2_per_objfile->dwz_file;
3034
3035 bfd_set_error (bfd_error_no_error);
3036 gdb::unique_xmalloc_ptr<char> data
3037 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
3038 &buildid_len_arg, &buildid));
3039 if (data == NULL)
3040 {
3041 if (bfd_get_error () == bfd_error_no_error)
3042 return NULL;
3043 error (_("could not read '.gnu_debugaltlink' section: %s"),
3044 bfd_errmsg (bfd_get_error ()));
3045 }
3046
3047 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
3048
3049 buildid_len = (size_t) buildid_len_arg;
3050
3051 filename = data.get ();
3052
3053 std::string abs_storage;
3054 if (!IS_ABSOLUTE_PATH (filename))
3055 {
3056 gdb::unique_xmalloc_ptr<char> abs
3057 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
3058
3059 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
3060 filename = abs_storage.c_str ();
3061 }
3062
3063 /* First try the file name given in the section. If that doesn't
3064 work, try to use the build-id instead. */
3065 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
3066 if (dwz_bfd != NULL)
3067 {
3068 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
3069 dwz_bfd.release ();
3070 }
3071
3072 if (dwz_bfd == NULL)
3073 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
3074
3075 if (dwz_bfd == NULL)
3076 error (_("could not find '.gnu_debugaltlink' file for %s"),
3077 objfile_name (dwarf2_per_objfile->objfile));
3078
3079 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
3080 struct dwz_file);
3081 result->dwz_bfd = dwz_bfd.release ();
3082
3083 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
3084
3085 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
3086 dwarf2_per_objfile->dwz_file = result;
3087 return result;
3088 }
3089 \f
3090 /* DWARF quick_symbols_functions support. */
3091
3092 /* TUs can share .debug_line entries, and there can be a lot more TUs than
3093 unique line tables, so we maintain a separate table of all .debug_line
3094 derived entries to support the sharing.
3095 All the quick functions need is the list of file names. We discard the
3096 line_header when we're done and don't need to record it here. */
3097 struct quick_file_names
3098 {
3099 /* The data used to construct the hash key. */
3100 struct stmt_list_hash hash;
3101
3102 /* The number of entries in file_names, real_names. */
3103 unsigned int num_file_names;
3104
3105 /* The file names from the line table, after being run through
3106 file_full_name. */
3107 const char **file_names;
3108
3109 /* The file names from the line table after being run through
3110 gdb_realpath. These are computed lazily. */
3111 const char **real_names;
3112 };
3113
3114 /* When using the index (and thus not using psymtabs), each CU has an
3115 object of this type. This is used to hold information needed by
3116 the various "quick" methods. */
3117 struct dwarf2_per_cu_quick_data
3118 {
3119 /* The file table. This can be NULL if there was no file table
3120 or it's currently not read in.
3121 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
3122 struct quick_file_names *file_names;
3123
3124 /* The corresponding symbol table. This is NULL if symbols for this
3125 CU have not yet been read. */
3126 struct compunit_symtab *compunit_symtab;
3127
3128 /* A temporary mark bit used when iterating over all CUs in
3129 expand_symtabs_matching. */
3130 unsigned int mark : 1;
3131
3132 /* True if we've tried to read the file table and found there isn't one.
3133 There will be no point in trying to read it again next time. */
3134 unsigned int no_file_data : 1;
3135 };
3136
3137 /* Utility hash function for a stmt_list_hash. */
3138
3139 static hashval_t
3140 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
3141 {
3142 hashval_t v = 0;
3143
3144 if (stmt_list_hash->dwo_unit != NULL)
3145 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
3146 v += to_underlying (stmt_list_hash->line_sect_off);
3147 return v;
3148 }
3149
3150 /* Utility equality function for a stmt_list_hash. */
3151
3152 static int
3153 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
3154 const struct stmt_list_hash *rhs)
3155 {
3156 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
3157 return 0;
3158 if (lhs->dwo_unit != NULL
3159 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
3160 return 0;
3161
3162 return lhs->line_sect_off == rhs->line_sect_off;
3163 }
3164
3165 /* Hash function for a quick_file_names. */
3166
3167 static hashval_t
3168 hash_file_name_entry (const void *e)
3169 {
3170 const struct quick_file_names *file_data
3171 = (const struct quick_file_names *) e;
3172
3173 return hash_stmt_list_entry (&file_data->hash);
3174 }
3175
3176 /* Equality function for a quick_file_names. */
3177
3178 static int
3179 eq_file_name_entry (const void *a, const void *b)
3180 {
3181 const struct quick_file_names *ea = (const struct quick_file_names *) a;
3182 const struct quick_file_names *eb = (const struct quick_file_names *) b;
3183
3184 return eq_stmt_list_entry (&ea->hash, &eb->hash);
3185 }
3186
3187 /* Delete function for a quick_file_names. */
3188
3189 static void
3190 delete_file_name_entry (void *e)
3191 {
3192 struct quick_file_names *file_data = (struct quick_file_names *) e;
3193 int i;
3194
3195 for (i = 0; i < file_data->num_file_names; ++i)
3196 {
3197 xfree ((void*) file_data->file_names[i]);
3198 if (file_data->real_names)
3199 xfree ((void*) file_data->real_names[i]);
3200 }
3201
3202 /* The space for the struct itself lives on objfile_obstack,
3203 so we don't free it here. */
3204 }
3205
3206 /* Create a quick_file_names hash table. */
3207
3208 static htab_t
3209 create_quick_file_names_table (unsigned int nr_initial_entries)
3210 {
3211 return htab_create_alloc (nr_initial_entries,
3212 hash_file_name_entry, eq_file_name_entry,
3213 delete_file_name_entry, xcalloc, xfree);
3214 }
3215
3216 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
3217 have to be created afterwards. You should call age_cached_comp_units after
3218 processing PER_CU->CU. dw2_setup must have been already called. */
3219
3220 static void
3221 load_cu (struct dwarf2_per_cu_data *per_cu)
3222 {
3223 if (per_cu->is_debug_types)
3224 load_full_type_unit (per_cu);
3225 else
3226 load_full_comp_unit (per_cu, language_minimal);
3227
3228 if (per_cu->cu == NULL)
3229 return; /* Dummy CU. */
3230
3231 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
3232 }
3233
3234 /* Read in the symbols for PER_CU. */
3235
3236 static void
3237 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3238 {
3239 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3240
3241 /* Skip type_unit_groups, reading the type units they contain
3242 is handled elsewhere. */
3243 if (IS_TYPE_UNIT_GROUP (per_cu))
3244 return;
3245
3246 /* The destructor of dwarf2_queue_guard frees any entries left on
3247 the queue. After this point we're guaranteed to leave this function
3248 with the dwarf queue empty. */
3249 dwarf2_queue_guard q_guard;
3250
3251 if (dwarf2_per_objfile->using_index
3252 ? per_cu->v.quick->compunit_symtab == NULL
3253 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
3254 {
3255 queue_comp_unit (per_cu, language_minimal);
3256 load_cu (per_cu);
3257
3258 /* If we just loaded a CU from a DWO, and we're working with an index
3259 that may badly handle TUs, load all the TUs in that DWO as well.
3260 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
3261 if (!per_cu->is_debug_types
3262 && per_cu->cu != NULL
3263 && per_cu->cu->dwo_unit != NULL
3264 && dwarf2_per_objfile->index_table != NULL
3265 && dwarf2_per_objfile->index_table->version <= 7
3266 /* DWP files aren't supported yet. */
3267 && get_dwp_file (dwarf2_per_objfile) == NULL)
3268 queue_and_load_all_dwo_tus (per_cu);
3269 }
3270
3271 process_queue (dwarf2_per_objfile);
3272
3273 /* Age the cache, releasing compilation units that have not
3274 been used recently. */
3275 age_cached_comp_units (dwarf2_per_objfile);
3276 }
3277
3278 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
3279 the objfile from which this CU came. Returns the resulting symbol
3280 table. */
3281
3282 static struct compunit_symtab *
3283 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
3284 {
3285 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
3286
3287 gdb_assert (dwarf2_per_objfile->using_index);
3288 if (!per_cu->v.quick->compunit_symtab)
3289 {
3290 struct cleanup *back_to = make_cleanup (free_cached_comp_units,
3291 dwarf2_per_objfile);
3292 scoped_restore decrementer = increment_reading_symtab ();
3293 dw2_do_instantiate_symtab (per_cu);
3294 process_cu_includes (dwarf2_per_objfile);
3295 do_cleanups (back_to);
3296 }
3297
3298 return per_cu->v.quick->compunit_symtab;
3299 }
3300
3301 /* Return the CU/TU given its index.
3302
3303 This is intended for loops like:
3304
3305 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3306 + dwarf2_per_objfile->n_type_units); ++i)
3307 {
3308 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3309
3310 ...;
3311 }
3312 */
3313
3314 static struct dwarf2_per_cu_data *
3315 dw2_get_cutu (struct dwarf2_per_objfile *dwarf2_per_objfile,
3316 int index)
3317 {
3318 if (index >= dwarf2_per_objfile->n_comp_units)
3319 {
3320 index -= dwarf2_per_objfile->n_comp_units;
3321 gdb_assert (index < dwarf2_per_objfile->n_type_units);
3322 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
3323 }
3324
3325 return dwarf2_per_objfile->all_comp_units[index];
3326 }
3327
3328 /* Return the CU given its index.
3329 This differs from dw2_get_cutu in that it's for when you know INDEX
3330 refers to a CU. */
3331
3332 static struct dwarf2_per_cu_data *
3333 dw2_get_cu (struct dwarf2_per_objfile *dwarf2_per_objfile, int index)
3334 {
3335 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
3336
3337 return dwarf2_per_objfile->all_comp_units[index];
3338 }
3339
3340 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
3341 objfile_obstack, and constructed with the specified field
3342 values. */
3343
3344 static dwarf2_per_cu_data *
3345 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3346 struct dwarf2_section_info *section,
3347 int is_dwz,
3348 sect_offset sect_off, ULONGEST length)
3349 {
3350 struct objfile *objfile = dwarf2_per_objfile->objfile;
3351 dwarf2_per_cu_data *the_cu
3352 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3353 struct dwarf2_per_cu_data);
3354 the_cu->sect_off = sect_off;
3355 the_cu->length = length;
3356 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3357 the_cu->section = section;
3358 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3359 struct dwarf2_per_cu_quick_data);
3360 the_cu->is_dwz = is_dwz;
3361 return the_cu;
3362 }
3363
3364 /* A helper for create_cus_from_index that handles a given list of
3365 CUs. */
3366
3367 static void
3368 create_cus_from_index_list (struct objfile *objfile,
3369 const gdb_byte *cu_list, offset_type n_elements,
3370 struct dwarf2_section_info *section,
3371 int is_dwz,
3372 int base_offset)
3373 {
3374 offset_type i;
3375 struct dwarf2_per_objfile *dwarf2_per_objfile
3376 = get_dwarf2_per_objfile (objfile);
3377
3378 for (i = 0; i < n_elements; i += 2)
3379 {
3380 gdb_static_assert (sizeof (ULONGEST) >= 8);
3381
3382 sect_offset sect_off
3383 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3384 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3385 cu_list += 2 * 8;
3386
3387 dwarf2_per_objfile->all_comp_units[base_offset + i / 2]
3388 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3389 sect_off, length);
3390 }
3391 }
3392
3393 /* Read the CU list from the mapped index, and use it to create all
3394 the CU objects for this objfile. */
3395
3396 static void
3397 create_cus_from_index (struct objfile *objfile,
3398 const gdb_byte *cu_list, offset_type cu_list_elements,
3399 const gdb_byte *dwz_list, offset_type dwz_elements)
3400 {
3401 struct dwz_file *dwz;
3402 struct dwarf2_per_objfile *dwarf2_per_objfile
3403 = get_dwarf2_per_objfile (objfile);
3404
3405 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
3406 dwarf2_per_objfile->all_comp_units =
3407 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3408 dwarf2_per_objfile->n_comp_units);
3409
3410 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3411 &dwarf2_per_objfile->info, 0, 0);
3412
3413 if (dwz_elements == 0)
3414 return;
3415
3416 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3417 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3418 cu_list_elements / 2);
3419 }
3420
3421 /* Create the signatured type hash table from the index. */
3422
3423 static void
3424 create_signatured_type_table_from_index (struct objfile *objfile,
3425 struct dwarf2_section_info *section,
3426 const gdb_byte *bytes,
3427 offset_type elements)
3428 {
3429 offset_type i;
3430 htab_t sig_types_hash;
3431 struct dwarf2_per_objfile *dwarf2_per_objfile
3432 = get_dwarf2_per_objfile (objfile);
3433
3434 dwarf2_per_objfile->n_type_units
3435 = dwarf2_per_objfile->n_allocated_type_units
3436 = elements / 3;
3437 dwarf2_per_objfile->all_type_units =
3438 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3439
3440 sig_types_hash = allocate_signatured_type_table (objfile);
3441
3442 for (i = 0; i < elements; i += 3)
3443 {
3444 struct signatured_type *sig_type;
3445 ULONGEST signature;
3446 void **slot;
3447 cu_offset type_offset_in_tu;
3448
3449 gdb_static_assert (sizeof (ULONGEST) >= 8);
3450 sect_offset sect_off
3451 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3452 type_offset_in_tu
3453 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3454 BFD_ENDIAN_LITTLE);
3455 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3456 bytes += 3 * 8;
3457
3458 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3459 struct signatured_type);
3460 sig_type->signature = signature;
3461 sig_type->type_offset_in_tu = type_offset_in_tu;
3462 sig_type->per_cu.is_debug_types = 1;
3463 sig_type->per_cu.section = section;
3464 sig_type->per_cu.sect_off = sect_off;
3465 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3466 sig_type->per_cu.v.quick
3467 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3468 struct dwarf2_per_cu_quick_data);
3469
3470 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3471 *slot = sig_type;
3472
3473 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
3474 }
3475
3476 dwarf2_per_objfile->signatured_types = sig_types_hash;
3477 }
3478
3479 /* Create the signatured type hash table from .debug_names. */
3480
3481 static void
3482 create_signatured_type_table_from_debug_names
3483 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3484 const mapped_debug_names &map,
3485 struct dwarf2_section_info *section,
3486 struct dwarf2_section_info *abbrev_section)
3487 {
3488 struct objfile *objfile = dwarf2_per_objfile->objfile;
3489
3490 dwarf2_read_section (objfile, section);
3491 dwarf2_read_section (objfile, abbrev_section);
3492
3493 dwarf2_per_objfile->n_type_units
3494 = dwarf2_per_objfile->n_allocated_type_units
3495 = map.tu_count;
3496 dwarf2_per_objfile->all_type_units
3497 = XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
3498
3499 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3500
3501 for (uint32_t i = 0; i < map.tu_count; ++i)
3502 {
3503 struct signatured_type *sig_type;
3504 ULONGEST signature;
3505 void **slot;
3506 cu_offset type_offset_in_tu;
3507
3508 sect_offset sect_off
3509 = (sect_offset) (extract_unsigned_integer
3510 (map.tu_table_reordered + i * map.offset_size,
3511 map.offset_size,
3512 map.dwarf5_byte_order));
3513
3514 comp_unit_head cu_header;
3515 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3516 abbrev_section,
3517 section->buffer + to_underlying (sect_off),
3518 rcuh_kind::TYPE);
3519
3520 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3521 struct signatured_type);
3522 sig_type->signature = cu_header.signature;
3523 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3524 sig_type->per_cu.is_debug_types = 1;
3525 sig_type->per_cu.section = section;
3526 sig_type->per_cu.sect_off = sect_off;
3527 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3528 sig_type->per_cu.v.quick
3529 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3530 struct dwarf2_per_cu_quick_data);
3531
3532 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3533 *slot = sig_type;
3534
3535 dwarf2_per_objfile->all_type_units[i] = sig_type;
3536 }
3537
3538 dwarf2_per_objfile->signatured_types = sig_types_hash;
3539 }
3540
3541 /* Read the address map data from the mapped index, and use it to
3542 populate the objfile's psymtabs_addrmap. */
3543
3544 static void
3545 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3546 struct mapped_index *index)
3547 {
3548 struct objfile *objfile = dwarf2_per_objfile->objfile;
3549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3550 const gdb_byte *iter, *end;
3551 struct addrmap *mutable_map;
3552 CORE_ADDR baseaddr;
3553
3554 auto_obstack temp_obstack;
3555
3556 mutable_map = addrmap_create_mutable (&temp_obstack);
3557
3558 iter = index->address_table.data ();
3559 end = iter + index->address_table.size ();
3560
3561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3562
3563 while (iter < end)
3564 {
3565 ULONGEST hi, lo, cu_index;
3566 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3567 iter += 8;
3568 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3569 iter += 8;
3570 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3571 iter += 4;
3572
3573 if (lo > hi)
3574 {
3575 complaint (&symfile_complaints,
3576 _(".gdb_index address table has invalid range (%s - %s)"),
3577 hex_string (lo), hex_string (hi));
3578 continue;
3579 }
3580
3581 if (cu_index >= dwarf2_per_objfile->n_comp_units)
3582 {
3583 complaint (&symfile_complaints,
3584 _(".gdb_index address table has invalid CU number %u"),
3585 (unsigned) cu_index);
3586 continue;
3587 }
3588
3589 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3590 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3591 addrmap_set_empty (mutable_map, lo, hi - 1,
3592 dw2_get_cutu (dwarf2_per_objfile, cu_index));
3593 }
3594
3595 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3596 &objfile->objfile_obstack);
3597 }
3598
3599 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3600 populate the objfile's psymtabs_addrmap. */
3601
3602 static void
3603 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3604 struct dwarf2_section_info *section)
3605 {
3606 struct objfile *objfile = dwarf2_per_objfile->objfile;
3607 bfd *abfd = objfile->obfd;
3608 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3609 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3610 SECT_OFF_TEXT (objfile));
3611
3612 auto_obstack temp_obstack;
3613 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3614
3615 std::unordered_map<sect_offset,
3616 dwarf2_per_cu_data *,
3617 gdb::hash_enum<sect_offset>>
3618 debug_info_offset_to_per_cu;
3619 for (int cui = 0; cui < dwarf2_per_objfile->n_comp_units; ++cui)
3620 {
3621 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, cui);
3622 const auto insertpair
3623 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3624 if (!insertpair.second)
3625 {
3626 warning (_("Section .debug_aranges in %s has duplicate "
3627 "debug_info_offset %s, ignoring .debug_aranges."),
3628 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3629 return;
3630 }
3631 }
3632
3633 dwarf2_read_section (objfile, section);
3634
3635 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3636
3637 const gdb_byte *addr = section->buffer;
3638
3639 while (addr < section->buffer + section->size)
3640 {
3641 const gdb_byte *const entry_addr = addr;
3642 unsigned int bytes_read;
3643
3644 const LONGEST entry_length = read_initial_length (abfd, addr,
3645 &bytes_read);
3646 addr += bytes_read;
3647
3648 const gdb_byte *const entry_end = addr + entry_length;
3649 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3650 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3651 if (addr + entry_length > section->buffer + section->size)
3652 {
3653 warning (_("Section .debug_aranges in %s entry at offset %zu "
3654 "length %s exceeds section length %s, "
3655 "ignoring .debug_aranges."),
3656 objfile_name (objfile), entry_addr - section->buffer,
3657 plongest (bytes_read + entry_length),
3658 pulongest (section->size));
3659 return;
3660 }
3661
3662 /* The version number. */
3663 const uint16_t version = read_2_bytes (abfd, addr);
3664 addr += 2;
3665 if (version != 2)
3666 {
3667 warning (_("Section .debug_aranges in %s entry at offset %zu "
3668 "has unsupported version %d, ignoring .debug_aranges."),
3669 objfile_name (objfile), entry_addr - section->buffer,
3670 version);
3671 return;
3672 }
3673
3674 const uint64_t debug_info_offset
3675 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3676 addr += offset_size;
3677 const auto per_cu_it
3678 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3679 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3680 {
3681 warning (_("Section .debug_aranges in %s entry at offset %zu "
3682 "debug_info_offset %s does not exists, "
3683 "ignoring .debug_aranges."),
3684 objfile_name (objfile), entry_addr - section->buffer,
3685 pulongest (debug_info_offset));
3686 return;
3687 }
3688 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3689
3690 const uint8_t address_size = *addr++;
3691 if (address_size < 1 || address_size > 8)
3692 {
3693 warning (_("Section .debug_aranges in %s entry at offset %zu "
3694 "address_size %u is invalid, ignoring .debug_aranges."),
3695 objfile_name (objfile), entry_addr - section->buffer,
3696 address_size);
3697 return;
3698 }
3699
3700 const uint8_t segment_selector_size = *addr++;
3701 if (segment_selector_size != 0)
3702 {
3703 warning (_("Section .debug_aranges in %s entry at offset %zu "
3704 "segment_selector_size %u is not supported, "
3705 "ignoring .debug_aranges."),
3706 objfile_name (objfile), entry_addr - section->buffer,
3707 segment_selector_size);
3708 return;
3709 }
3710
3711 /* Must pad to an alignment boundary that is twice the address
3712 size. It is undocumented by the DWARF standard but GCC does
3713 use it. */
3714 for (size_t padding = ((-(addr - section->buffer))
3715 & (2 * address_size - 1));
3716 padding > 0; padding--)
3717 if (*addr++ != 0)
3718 {
3719 warning (_("Section .debug_aranges in %s entry at offset %zu "
3720 "padding is not zero, ignoring .debug_aranges."),
3721 objfile_name (objfile), entry_addr - section->buffer);
3722 return;
3723 }
3724
3725 for (;;)
3726 {
3727 if (addr + 2 * address_size > entry_end)
3728 {
3729 warning (_("Section .debug_aranges in %s entry at offset %zu "
3730 "address list is not properly terminated, "
3731 "ignoring .debug_aranges."),
3732 objfile_name (objfile), entry_addr - section->buffer);
3733 return;
3734 }
3735 ULONGEST start = extract_unsigned_integer (addr, address_size,
3736 dwarf5_byte_order);
3737 addr += address_size;
3738 ULONGEST length = extract_unsigned_integer (addr, address_size,
3739 dwarf5_byte_order);
3740 addr += address_size;
3741 if (start == 0 && length == 0)
3742 break;
3743 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3744 {
3745 /* Symbol was eliminated due to a COMDAT group. */
3746 continue;
3747 }
3748 ULONGEST end = start + length;
3749 start = gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr);
3750 end = gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr);
3751 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3752 }
3753 }
3754
3755 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3756 &objfile->objfile_obstack);
3757 }
3758
3759 /* The hash function for strings in the mapped index. This is the same as
3760 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3761 implementation. This is necessary because the hash function is tied to the
3762 format of the mapped index file. The hash values do not have to match with
3763 SYMBOL_HASH_NEXT.
3764
3765 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
3766
3767 static hashval_t
3768 mapped_index_string_hash (int index_version, const void *p)
3769 {
3770 const unsigned char *str = (const unsigned char *) p;
3771 hashval_t r = 0;
3772 unsigned char c;
3773
3774 while ((c = *str++) != 0)
3775 {
3776 if (index_version >= 5)
3777 c = tolower (c);
3778 r = r * 67 + c - 113;
3779 }
3780
3781 return r;
3782 }
3783
3784 /* Find a slot in the mapped index INDEX for the object named NAME.
3785 If NAME is found, set *VEC_OUT to point to the CU vector in the
3786 constant pool and return true. If NAME cannot be found, return
3787 false. */
3788
3789 static bool
3790 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3791 offset_type **vec_out)
3792 {
3793 offset_type hash;
3794 offset_type slot, step;
3795 int (*cmp) (const char *, const char *);
3796
3797 gdb::unique_xmalloc_ptr<char> without_params;
3798 if (current_language->la_language == language_cplus
3799 || current_language->la_language == language_fortran
3800 || current_language->la_language == language_d)
3801 {
3802 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3803 not contain any. */
3804
3805 if (strchr (name, '(') != NULL)
3806 {
3807 without_params = cp_remove_params (name);
3808
3809 if (without_params != NULL)
3810 name = without_params.get ();
3811 }
3812 }
3813
3814 /* Index version 4 did not support case insensitive searches. But the
3815 indices for case insensitive languages are built in lowercase, therefore
3816 simulate our NAME being searched is also lowercased. */
3817 hash = mapped_index_string_hash ((index->version == 4
3818 && case_sensitivity == case_sensitive_off
3819 ? 5 : index->version),
3820 name);
3821
3822 slot = hash & (index->symbol_table.size () - 1);
3823 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3824 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3825
3826 for (;;)
3827 {
3828 const char *str;
3829
3830 const auto &bucket = index->symbol_table[slot];
3831 if (bucket.name == 0 && bucket.vec == 0)
3832 return false;
3833
3834 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3835 if (!cmp (name, str))
3836 {
3837 *vec_out = (offset_type *) (index->constant_pool
3838 + MAYBE_SWAP (bucket.vec));
3839 return true;
3840 }
3841
3842 slot = (slot + step) & (index->symbol_table.size () - 1);
3843 }
3844 }
3845
3846 /* A helper function that reads the .gdb_index from SECTION and fills
3847 in MAP. FILENAME is the name of the file containing the section;
3848 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3849 ok to use deprecated sections.
3850
3851 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3852 out parameters that are filled in with information about the CU and
3853 TU lists in the section.
3854
3855 Returns 1 if all went well, 0 otherwise. */
3856
3857 static int
3858 read_index_from_section (struct objfile *objfile,
3859 const char *filename,
3860 int deprecated_ok,
3861 struct dwarf2_section_info *section,
3862 struct mapped_index *map,
3863 const gdb_byte **cu_list,
3864 offset_type *cu_list_elements,
3865 const gdb_byte **types_list,
3866 offset_type *types_list_elements)
3867 {
3868 const gdb_byte *addr;
3869 offset_type version;
3870 offset_type *metadata;
3871 int i;
3872
3873 if (dwarf2_section_empty_p (section))
3874 return 0;
3875
3876 /* Older elfutils strip versions could keep the section in the main
3877 executable while splitting it for the separate debug info file. */
3878 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3879 return 0;
3880
3881 dwarf2_read_section (objfile, section);
3882
3883 addr = section->buffer;
3884 /* Version check. */
3885 version = MAYBE_SWAP (*(offset_type *) addr);
3886 /* Versions earlier than 3 emitted every copy of a psymbol. This
3887 causes the index to behave very poorly for certain requests. Version 3
3888 contained incomplete addrmap. So, it seems better to just ignore such
3889 indices. */
3890 if (version < 4)
3891 {
3892 static int warning_printed = 0;
3893 if (!warning_printed)
3894 {
3895 warning (_("Skipping obsolete .gdb_index section in %s."),
3896 filename);
3897 warning_printed = 1;
3898 }
3899 return 0;
3900 }
3901 /* Index version 4 uses a different hash function than index version
3902 5 and later.
3903
3904 Versions earlier than 6 did not emit psymbols for inlined
3905 functions. Using these files will cause GDB not to be able to
3906 set breakpoints on inlined functions by name, so we ignore these
3907 indices unless the user has done
3908 "set use-deprecated-index-sections on". */
3909 if (version < 6 && !deprecated_ok)
3910 {
3911 static int warning_printed = 0;
3912 if (!warning_printed)
3913 {
3914 warning (_("\
3915 Skipping deprecated .gdb_index section in %s.\n\
3916 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3917 to use the section anyway."),
3918 filename);
3919 warning_printed = 1;
3920 }
3921 return 0;
3922 }
3923 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3924 of the TU (for symbols coming from TUs),
3925 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3926 Plus gold-generated indices can have duplicate entries for global symbols,
3927 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3928 These are just performance bugs, and we can't distinguish gdb-generated
3929 indices from gold-generated ones, so issue no warning here. */
3930
3931 /* Indexes with higher version than the one supported by GDB may be no
3932 longer backward compatible. */
3933 if (version > 8)
3934 return 0;
3935
3936 map->version = version;
3937 map->total_size = section->size;
3938
3939 metadata = (offset_type *) (addr + sizeof (offset_type));
3940
3941 i = 0;
3942 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3943 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3944 / 8);
3945 ++i;
3946
3947 *types_list = addr + MAYBE_SWAP (metadata[i]);
3948 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3949 - MAYBE_SWAP (metadata[i]))
3950 / 8);
3951 ++i;
3952
3953 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3954 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3955 map->address_table
3956 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3957 ++i;
3958
3959 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3960 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3961 map->symbol_table
3962 = gdb::array_view<mapped_index::symbol_table_slot>
3963 ((mapped_index::symbol_table_slot *) symbol_table,
3964 (mapped_index::symbol_table_slot *) symbol_table_end);
3965
3966 ++i;
3967 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3968
3969 return 1;
3970 }
3971
3972 /* Read .gdb_index. If everything went ok, initialize the "quick"
3973 elements of all the CUs and return 1. Otherwise, return 0. */
3974
3975 static int
3976 dwarf2_read_index (struct objfile *objfile)
3977 {
3978 struct mapped_index local_map, *map;
3979 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3980 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3981 struct dwz_file *dwz;
3982 struct dwarf2_per_objfile *dwarf2_per_objfile
3983 = get_dwarf2_per_objfile (objfile);
3984
3985 if (!read_index_from_section (objfile, objfile_name (objfile),
3986 use_deprecated_index_sections,
3987 &dwarf2_per_objfile->gdb_index, &local_map,
3988 &cu_list, &cu_list_elements,
3989 &types_list, &types_list_elements))
3990 return 0;
3991
3992 /* Don't use the index if it's empty. */
3993 if (local_map.symbol_table.empty ())
3994 return 0;
3995
3996 /* If there is a .dwz file, read it so we can get its CU list as
3997 well. */
3998 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3999 if (dwz != NULL)
4000 {
4001 struct mapped_index dwz_map;
4002 const gdb_byte *dwz_types_ignore;
4003 offset_type dwz_types_elements_ignore;
4004
4005 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
4006 1,
4007 &dwz->gdb_index, &dwz_map,
4008 &dwz_list, &dwz_list_elements,
4009 &dwz_types_ignore,
4010 &dwz_types_elements_ignore))
4011 {
4012 warning (_("could not read '.gdb_index' section from %s; skipping"),
4013 bfd_get_filename (dwz->dwz_bfd));
4014 return 0;
4015 }
4016 }
4017
4018 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
4019 dwz_list_elements);
4020
4021 if (types_list_elements)
4022 {
4023 struct dwarf2_section_info *section;
4024
4025 /* We can only handle a single .debug_types when we have an
4026 index. */
4027 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
4028 return 0;
4029
4030 section = VEC_index (dwarf2_section_info_def,
4031 dwarf2_per_objfile->types, 0);
4032
4033 create_signatured_type_table_from_index (objfile, section, types_list,
4034 types_list_elements);
4035 }
4036
4037 create_addrmap_from_index (dwarf2_per_objfile, &local_map);
4038
4039 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
4040 map = new (map) mapped_index ();
4041 *map = local_map;
4042
4043 dwarf2_per_objfile->index_table = map;
4044 dwarf2_per_objfile->using_index = 1;
4045 dwarf2_per_objfile->quick_file_names_table =
4046 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4047
4048 return 1;
4049 }
4050
4051 /* die_reader_func for dw2_get_file_names. */
4052
4053 static void
4054 dw2_get_file_names_reader (const struct die_reader_specs *reader,
4055 const gdb_byte *info_ptr,
4056 struct die_info *comp_unit_die,
4057 int has_children,
4058 void *data)
4059 {
4060 struct dwarf2_cu *cu = reader->cu;
4061 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
4062 struct dwarf2_per_objfile *dwarf2_per_objfile
4063 = cu->per_cu->dwarf2_per_objfile;
4064 struct objfile *objfile = dwarf2_per_objfile->objfile;
4065 struct dwarf2_per_cu_data *lh_cu;
4066 struct attribute *attr;
4067 int i;
4068 void **slot;
4069 struct quick_file_names *qfn;
4070
4071 gdb_assert (! this_cu->is_debug_types);
4072
4073 /* Our callers never want to match partial units -- instead they
4074 will match the enclosing full CU. */
4075 if (comp_unit_die->tag == DW_TAG_partial_unit)
4076 {
4077 this_cu->v.quick->no_file_data = 1;
4078 return;
4079 }
4080
4081 lh_cu = this_cu;
4082 slot = NULL;
4083
4084 line_header_up lh;
4085 sect_offset line_offset {};
4086
4087 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4088 if (attr)
4089 {
4090 struct quick_file_names find_entry;
4091
4092 line_offset = (sect_offset) DW_UNSND (attr);
4093
4094 /* We may have already read in this line header (TU line header sharing).
4095 If we have we're done. */
4096 find_entry.hash.dwo_unit = cu->dwo_unit;
4097 find_entry.hash.line_sect_off = line_offset;
4098 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
4099 &find_entry, INSERT);
4100 if (*slot != NULL)
4101 {
4102 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
4103 return;
4104 }
4105
4106 lh = dwarf_decode_line_header (line_offset, cu);
4107 }
4108 if (lh == NULL)
4109 {
4110 lh_cu->v.quick->no_file_data = 1;
4111 return;
4112 }
4113
4114 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
4115 qfn->hash.dwo_unit = cu->dwo_unit;
4116 qfn->hash.line_sect_off = line_offset;
4117 gdb_assert (slot != NULL);
4118 *slot = qfn;
4119
4120 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
4121
4122 qfn->num_file_names = lh->file_names.size ();
4123 qfn->file_names =
4124 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
4125 for (i = 0; i < lh->file_names.size (); ++i)
4126 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
4127 qfn->real_names = NULL;
4128
4129 lh_cu->v.quick->file_names = qfn;
4130 }
4131
4132 /* A helper for the "quick" functions which attempts to read the line
4133 table for THIS_CU. */
4134
4135 static struct quick_file_names *
4136 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
4137 {
4138 /* This should never be called for TUs. */
4139 gdb_assert (! this_cu->is_debug_types);
4140 /* Nor type unit groups. */
4141 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
4142
4143 if (this_cu->v.quick->file_names != NULL)
4144 return this_cu->v.quick->file_names;
4145 /* If we know there is no line data, no point in looking again. */
4146 if (this_cu->v.quick->no_file_data)
4147 return NULL;
4148
4149 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
4150
4151 if (this_cu->v.quick->no_file_data)
4152 return NULL;
4153 return this_cu->v.quick->file_names;
4154 }
4155
4156 /* A helper for the "quick" functions which computes and caches the
4157 real path for a given file name from the line table. */
4158
4159 static const char *
4160 dw2_get_real_path (struct objfile *objfile,
4161 struct quick_file_names *qfn, int index)
4162 {
4163 if (qfn->real_names == NULL)
4164 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
4165 qfn->num_file_names, const char *);
4166
4167 if (qfn->real_names[index] == NULL)
4168 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
4169
4170 return qfn->real_names[index];
4171 }
4172
4173 static struct symtab *
4174 dw2_find_last_source_symtab (struct objfile *objfile)
4175 {
4176 struct dwarf2_per_objfile *dwarf2_per_objfile
4177 = get_dwarf2_per_objfile (objfile);
4178 int index = dwarf2_per_objfile->n_comp_units - 1;
4179 dwarf2_per_cu_data *dwarf_cu = dw2_get_cutu (dwarf2_per_objfile, index);
4180 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu);
4181
4182 if (cust == NULL)
4183 return NULL;
4184
4185 return compunit_primary_filetab (cust);
4186 }
4187
4188 /* Traversal function for dw2_forget_cached_source_info. */
4189
4190 static int
4191 dw2_free_cached_file_names (void **slot, void *info)
4192 {
4193 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
4194
4195 if (file_data->real_names)
4196 {
4197 int i;
4198
4199 for (i = 0; i < file_data->num_file_names; ++i)
4200 {
4201 xfree ((void*) file_data->real_names[i]);
4202 file_data->real_names[i] = NULL;
4203 }
4204 }
4205
4206 return 1;
4207 }
4208
4209 static void
4210 dw2_forget_cached_source_info (struct objfile *objfile)
4211 {
4212 struct dwarf2_per_objfile *dwarf2_per_objfile
4213 = get_dwarf2_per_objfile (objfile);
4214
4215 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
4216 dw2_free_cached_file_names, NULL);
4217 }
4218
4219 /* Helper function for dw2_map_symtabs_matching_filename that expands
4220 the symtabs and calls the iterator. */
4221
4222 static int
4223 dw2_map_expand_apply (struct objfile *objfile,
4224 struct dwarf2_per_cu_data *per_cu,
4225 const char *name, const char *real_path,
4226 gdb::function_view<bool (symtab *)> callback)
4227 {
4228 struct compunit_symtab *last_made = objfile->compunit_symtabs;
4229
4230 /* Don't visit already-expanded CUs. */
4231 if (per_cu->v.quick->compunit_symtab)
4232 return 0;
4233
4234 /* This may expand more than one symtab, and we want to iterate over
4235 all of them. */
4236 dw2_instantiate_symtab (per_cu);
4237
4238 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
4239 last_made, callback);
4240 }
4241
4242 /* Implementation of the map_symtabs_matching_filename method. */
4243
4244 static bool
4245 dw2_map_symtabs_matching_filename
4246 (struct objfile *objfile, const char *name, const char *real_path,
4247 gdb::function_view<bool (symtab *)> callback)
4248 {
4249 int i;
4250 const char *name_basename = lbasename (name);
4251 struct dwarf2_per_objfile *dwarf2_per_objfile
4252 = get_dwarf2_per_objfile (objfile);
4253
4254 /* The rule is CUs specify all the files, including those used by
4255 any TU, so there's no need to scan TUs here. */
4256
4257 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4258 {
4259 int j;
4260 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
4261 struct quick_file_names *file_data;
4262
4263 /* We only need to look at symtabs not already expanded. */
4264 if (per_cu->v.quick->compunit_symtab)
4265 continue;
4266
4267 file_data = dw2_get_file_names (per_cu);
4268 if (file_data == NULL)
4269 continue;
4270
4271 for (j = 0; j < file_data->num_file_names; ++j)
4272 {
4273 const char *this_name = file_data->file_names[j];
4274 const char *this_real_name;
4275
4276 if (compare_filenames_for_search (this_name, name))
4277 {
4278 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4279 callback))
4280 return true;
4281 continue;
4282 }
4283
4284 /* Before we invoke realpath, which can get expensive when many
4285 files are involved, do a quick comparison of the basenames. */
4286 if (! basenames_may_differ
4287 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
4288 continue;
4289
4290 this_real_name = dw2_get_real_path (objfile, file_data, j);
4291 if (compare_filenames_for_search (this_real_name, name))
4292 {
4293 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4294 callback))
4295 return true;
4296 continue;
4297 }
4298
4299 if (real_path != NULL)
4300 {
4301 gdb_assert (IS_ABSOLUTE_PATH (real_path));
4302 gdb_assert (IS_ABSOLUTE_PATH (name));
4303 if (this_real_name != NULL
4304 && FILENAME_CMP (real_path, this_real_name) == 0)
4305 {
4306 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
4307 callback))
4308 return true;
4309 continue;
4310 }
4311 }
4312 }
4313 }
4314
4315 return false;
4316 }
4317
4318 /* Struct used to manage iterating over all CUs looking for a symbol. */
4319
4320 struct dw2_symtab_iterator
4321 {
4322 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
4323 struct dwarf2_per_objfile *dwarf2_per_objfile;
4324 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
4325 int want_specific_block;
4326 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
4327 Unused if !WANT_SPECIFIC_BLOCK. */
4328 int block_index;
4329 /* The kind of symbol we're looking for. */
4330 domain_enum domain;
4331 /* The list of CUs from the index entry of the symbol,
4332 or NULL if not found. */
4333 offset_type *vec;
4334 /* The next element in VEC to look at. */
4335 int next;
4336 /* The number of elements in VEC, or zero if there is no match. */
4337 int length;
4338 /* Have we seen a global version of the symbol?
4339 If so we can ignore all further global instances.
4340 This is to work around gold/15646, inefficient gold-generated
4341 indices. */
4342 int global_seen;
4343 };
4344
4345 /* Initialize the index symtab iterator ITER.
4346 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
4347 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
4348
4349 static void
4350 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
4351 struct dwarf2_per_objfile *dwarf2_per_objfile,
4352 int want_specific_block,
4353 int block_index,
4354 domain_enum domain,
4355 const char *name)
4356 {
4357 iter->dwarf2_per_objfile = dwarf2_per_objfile;
4358 iter->want_specific_block = want_specific_block;
4359 iter->block_index = block_index;
4360 iter->domain = domain;
4361 iter->next = 0;
4362 iter->global_seen = 0;
4363
4364 mapped_index *index = dwarf2_per_objfile->index_table;
4365
4366 /* index is NULL if OBJF_READNOW. */
4367 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
4368 iter->length = MAYBE_SWAP (*iter->vec);
4369 else
4370 {
4371 iter->vec = NULL;
4372 iter->length = 0;
4373 }
4374 }
4375
4376 /* Return the next matching CU or NULL if there are no more. */
4377
4378 static struct dwarf2_per_cu_data *
4379 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
4380 {
4381 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
4382
4383 for ( ; iter->next < iter->length; ++iter->next)
4384 {
4385 offset_type cu_index_and_attrs =
4386 MAYBE_SWAP (iter->vec[iter->next + 1]);
4387 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4388 struct dwarf2_per_cu_data *per_cu;
4389 int want_static = iter->block_index != GLOBAL_BLOCK;
4390 /* This value is only valid for index versions >= 7. */
4391 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4392 gdb_index_symbol_kind symbol_kind =
4393 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4394 /* Only check the symbol attributes if they're present.
4395 Indices prior to version 7 don't record them,
4396 and indices >= 7 may elide them for certain symbols
4397 (gold does this). */
4398 int attrs_valid =
4399 (dwarf2_per_objfile->index_table->version >= 7
4400 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4401
4402 /* Don't crash on bad data. */
4403 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4404 + dwarf2_per_objfile->n_type_units))
4405 {
4406 complaint (&symfile_complaints,
4407 _(".gdb_index entry has bad CU index"
4408 " [in module %s]"),
4409 objfile_name (dwarf2_per_objfile->objfile));
4410 continue;
4411 }
4412
4413 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
4414
4415 /* Skip if already read in. */
4416 if (per_cu->v.quick->compunit_symtab)
4417 continue;
4418
4419 /* Check static vs global. */
4420 if (attrs_valid)
4421 {
4422 if (iter->want_specific_block
4423 && want_static != is_static)
4424 continue;
4425 /* Work around gold/15646. */
4426 if (!is_static && iter->global_seen)
4427 continue;
4428 if (!is_static)
4429 iter->global_seen = 1;
4430 }
4431
4432 /* Only check the symbol's kind if it has one. */
4433 if (attrs_valid)
4434 {
4435 switch (iter->domain)
4436 {
4437 case VAR_DOMAIN:
4438 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4439 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4440 /* Some types are also in VAR_DOMAIN. */
4441 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4442 continue;
4443 break;
4444 case STRUCT_DOMAIN:
4445 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4446 continue;
4447 break;
4448 case LABEL_DOMAIN:
4449 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4450 continue;
4451 break;
4452 default:
4453 break;
4454 }
4455 }
4456
4457 ++iter->next;
4458 return per_cu;
4459 }
4460
4461 return NULL;
4462 }
4463
4464 static struct compunit_symtab *
4465 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4466 const char *name, domain_enum domain)
4467 {
4468 struct compunit_symtab *stab_best = NULL;
4469 struct dwarf2_per_objfile *dwarf2_per_objfile
4470 = get_dwarf2_per_objfile (objfile);
4471
4472 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4473
4474 struct dw2_symtab_iterator iter;
4475 struct dwarf2_per_cu_data *per_cu;
4476
4477 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4478
4479 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4480 {
4481 struct symbol *sym, *with_opaque = NULL;
4482 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
4483 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4484 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4485
4486 sym = block_find_symbol (block, name, domain,
4487 block_find_non_opaque_type_preferred,
4488 &with_opaque);
4489
4490 /* Some caution must be observed with overloaded functions
4491 and methods, since the index will not contain any overload
4492 information (but NAME might contain it). */
4493
4494 if (sym != NULL
4495 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4496 return stab;
4497 if (with_opaque != NULL
4498 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4499 stab_best = stab;
4500
4501 /* Keep looking through other CUs. */
4502 }
4503
4504 return stab_best;
4505 }
4506
4507 static void
4508 dw2_print_stats (struct objfile *objfile)
4509 {
4510 struct dwarf2_per_objfile *dwarf2_per_objfile
4511 = get_dwarf2_per_objfile (objfile);
4512 int total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
4513 int count = 0;
4514
4515 for (int i = 0; i < total; ++i)
4516 {
4517 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4518
4519 if (!per_cu->v.quick->compunit_symtab)
4520 ++count;
4521 }
4522 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4523 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4524 }
4525
4526 /* This dumps minimal information about the index.
4527 It is called via "mt print objfiles".
4528 One use is to verify .gdb_index has been loaded by the
4529 gdb.dwarf2/gdb-index.exp testcase. */
4530
4531 static void
4532 dw2_dump (struct objfile *objfile)
4533 {
4534 struct dwarf2_per_objfile *dwarf2_per_objfile
4535 = get_dwarf2_per_objfile (objfile);
4536
4537 gdb_assert (dwarf2_per_objfile->using_index);
4538 printf_filtered (".gdb_index:");
4539 if (dwarf2_per_objfile->index_table != NULL)
4540 {
4541 printf_filtered (" version %d\n",
4542 dwarf2_per_objfile->index_table->version);
4543 }
4544 else
4545 printf_filtered (" faked for \"readnow\"\n");
4546 printf_filtered ("\n");
4547 }
4548
4549 static void
4550 dw2_relocate (struct objfile *objfile,
4551 const struct section_offsets *new_offsets,
4552 const struct section_offsets *delta)
4553 {
4554 /* There's nothing to relocate here. */
4555 }
4556
4557 static void
4558 dw2_expand_symtabs_for_function (struct objfile *objfile,
4559 const char *func_name)
4560 {
4561 struct dwarf2_per_objfile *dwarf2_per_objfile
4562 = get_dwarf2_per_objfile (objfile);
4563
4564 struct dw2_symtab_iterator iter;
4565 struct dwarf2_per_cu_data *per_cu;
4566
4567 /* Note: It doesn't matter what we pass for block_index here. */
4568 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4569 func_name);
4570
4571 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4572 dw2_instantiate_symtab (per_cu);
4573
4574 }
4575
4576 static void
4577 dw2_expand_all_symtabs (struct objfile *objfile)
4578 {
4579 struct dwarf2_per_objfile *dwarf2_per_objfile
4580 = get_dwarf2_per_objfile (objfile);
4581 int total_units = (dwarf2_per_objfile->n_comp_units
4582 + dwarf2_per_objfile->n_type_units);
4583
4584 for (int i = 0; i < total_units; ++i)
4585 {
4586 struct dwarf2_per_cu_data *per_cu
4587 = dw2_get_cutu (dwarf2_per_objfile, i);
4588
4589 dw2_instantiate_symtab (per_cu);
4590 }
4591 }
4592
4593 static void
4594 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4595 const char *fullname)
4596 {
4597 struct dwarf2_per_objfile *dwarf2_per_objfile
4598 = get_dwarf2_per_objfile (objfile);
4599
4600 /* We don't need to consider type units here.
4601 This is only called for examining code, e.g. expand_line_sal.
4602 There can be an order of magnitude (or more) more type units
4603 than comp units, and we avoid them if we can. */
4604
4605 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4606 {
4607 int j;
4608 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
4609 struct quick_file_names *file_data;
4610
4611 /* We only need to look at symtabs not already expanded. */
4612 if (per_cu->v.quick->compunit_symtab)
4613 continue;
4614
4615 file_data = dw2_get_file_names (per_cu);
4616 if (file_data == NULL)
4617 continue;
4618
4619 for (j = 0; j < file_data->num_file_names; ++j)
4620 {
4621 const char *this_fullname = file_data->file_names[j];
4622
4623 if (filename_cmp (this_fullname, fullname) == 0)
4624 {
4625 dw2_instantiate_symtab (per_cu);
4626 break;
4627 }
4628 }
4629 }
4630 }
4631
4632 static void
4633 dw2_map_matching_symbols (struct objfile *objfile,
4634 const char * name, domain_enum domain,
4635 int global,
4636 int (*callback) (struct block *,
4637 struct symbol *, void *),
4638 void *data, symbol_name_match_type match,
4639 symbol_compare_ftype *ordered_compare)
4640 {
4641 /* Currently unimplemented; used for Ada. The function can be called if the
4642 current language is Ada for a non-Ada objfile using GNU index. As Ada
4643 does not look for non-Ada symbols this function should just return. */
4644 }
4645
4646 /* Symbol name matcher for .gdb_index names.
4647
4648 Symbol names in .gdb_index have a few particularities:
4649
4650 - There's no indication of which is the language of each symbol.
4651
4652 Since each language has its own symbol name matching algorithm,
4653 and we don't know which language is the right one, we must match
4654 each symbol against all languages. This would be a potential
4655 performance problem if it were not mitigated by the
4656 mapped_index::name_components lookup table, which significantly
4657 reduces the number of times we need to call into this matcher,
4658 making it a non-issue.
4659
4660 - Symbol names in the index have no overload (parameter)
4661 information. I.e., in C++, "foo(int)" and "foo(long)" both
4662 appear as "foo" in the index, for example.
4663
4664 This means that the lookup names passed to the symbol name
4665 matcher functions must have no parameter information either
4666 because (e.g.) symbol search name "foo" does not match
4667 lookup-name "foo(int)" [while swapping search name for lookup
4668 name would match].
4669 */
4670 class gdb_index_symbol_name_matcher
4671 {
4672 public:
4673 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4674 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4675
4676 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4677 Returns true if any matcher matches. */
4678 bool matches (const char *symbol_name);
4679
4680 private:
4681 /* A reference to the lookup name we're matching against. */
4682 const lookup_name_info &m_lookup_name;
4683
4684 /* A vector holding all the different symbol name matchers, for all
4685 languages. */
4686 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4687 };
4688
4689 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4690 (const lookup_name_info &lookup_name)
4691 : m_lookup_name (lookup_name)
4692 {
4693 /* Prepare the vector of comparison functions upfront, to avoid
4694 doing the same work for each symbol. Care is taken to avoid
4695 matching with the same matcher more than once if/when multiple
4696 languages use the same matcher function. */
4697 auto &matchers = m_symbol_name_matcher_funcs;
4698 matchers.reserve (nr_languages);
4699
4700 matchers.push_back (default_symbol_name_matcher);
4701
4702 for (int i = 0; i < nr_languages; i++)
4703 {
4704 const language_defn *lang = language_def ((enum language) i);
4705 symbol_name_matcher_ftype *name_matcher
4706 = get_symbol_name_matcher (lang, m_lookup_name);
4707
4708 /* Don't insert the same comparison routine more than once.
4709 Note that we do this linear walk instead of a seemingly
4710 cheaper sorted insert, or use a std::set or something like
4711 that, because relative order of function addresses is not
4712 stable. This is not a problem in practice because the number
4713 of supported languages is low, and the cost here is tiny
4714 compared to the number of searches we'll do afterwards using
4715 this object. */
4716 if (name_matcher != default_symbol_name_matcher
4717 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4718 == matchers.end ()))
4719 matchers.push_back (name_matcher);
4720 }
4721 }
4722
4723 bool
4724 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4725 {
4726 for (auto matches_name : m_symbol_name_matcher_funcs)
4727 if (matches_name (symbol_name, m_lookup_name, NULL))
4728 return true;
4729
4730 return false;
4731 }
4732
4733 /* Starting from a search name, return the string that finds the upper
4734 bound of all strings that start with SEARCH_NAME in a sorted name
4735 list. Returns the empty string to indicate that the upper bound is
4736 the end of the list. */
4737
4738 static std::string
4739 make_sort_after_prefix_name (const char *search_name)
4740 {
4741 /* When looking to complete "func", we find the upper bound of all
4742 symbols that start with "func" by looking for where we'd insert
4743 the closest string that would follow "func" in lexicographical
4744 order. Usually, that's "func"-with-last-character-incremented,
4745 i.e. "fund". Mind non-ASCII characters, though. Usually those
4746 will be UTF-8 multi-byte sequences, but we can't be certain.
4747 Especially mind the 0xff character, which is a valid character in
4748 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4749 rule out compilers allowing it in identifiers. Note that
4750 conveniently, strcmp/strcasecmp are specified to compare
4751 characters interpreted as unsigned char. So what we do is treat
4752 the whole string as a base 256 number composed of a sequence of
4753 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4754 to 0, and carries 1 to the following more-significant position.
4755 If the very first character in SEARCH_NAME ends up incremented
4756 and carries/overflows, then the upper bound is the end of the
4757 list. The string after the empty string is also the empty
4758 string.
4759
4760 Some examples of this operation:
4761
4762 SEARCH_NAME => "+1" RESULT
4763
4764 "abc" => "abd"
4765 "ab\xff" => "ac"
4766 "\xff" "a" "\xff" => "\xff" "b"
4767 "\xff" => ""
4768 "\xff\xff" => ""
4769 "" => ""
4770
4771 Then, with these symbols for example:
4772
4773 func
4774 func1
4775 fund
4776
4777 completing "func" looks for symbols between "func" and
4778 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4779 which finds "func" and "func1", but not "fund".
4780
4781 And with:
4782
4783 funcÿ (Latin1 'ÿ' [0xff])
4784 funcÿ1
4785 fund
4786
4787 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4788 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4789
4790 And with:
4791
4792 ÿÿ (Latin1 'ÿ' [0xff])
4793 ÿÿ1
4794
4795 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4796 the end of the list.
4797 */
4798 std::string after = search_name;
4799 while (!after.empty () && (unsigned char) after.back () == 0xff)
4800 after.pop_back ();
4801 if (!after.empty ())
4802 after.back () = (unsigned char) after.back () + 1;
4803 return after;
4804 }
4805
4806 /* See declaration. */
4807
4808 std::pair<std::vector<name_component>::const_iterator,
4809 std::vector<name_component>::const_iterator>
4810 mapped_index_base::find_name_components_bounds
4811 (const lookup_name_info &lookup_name_without_params) const
4812 {
4813 auto *name_cmp
4814 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4815
4816 const char *cplus
4817 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4818
4819 /* Comparison function object for lower_bound that matches against a
4820 given symbol name. */
4821 auto lookup_compare_lower = [&] (const name_component &elem,
4822 const char *name)
4823 {
4824 const char *elem_qualified = this->symbol_name_at (elem.idx);
4825 const char *elem_name = elem_qualified + elem.name_offset;
4826 return name_cmp (elem_name, name) < 0;
4827 };
4828
4829 /* Comparison function object for upper_bound that matches against a
4830 given symbol name. */
4831 auto lookup_compare_upper = [&] (const char *name,
4832 const name_component &elem)
4833 {
4834 const char *elem_qualified = this->symbol_name_at (elem.idx);
4835 const char *elem_name = elem_qualified + elem.name_offset;
4836 return name_cmp (name, elem_name) < 0;
4837 };
4838
4839 auto begin = this->name_components.begin ();
4840 auto end = this->name_components.end ();
4841
4842 /* Find the lower bound. */
4843 auto lower = [&] ()
4844 {
4845 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4846 return begin;
4847 else
4848 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4849 } ();
4850
4851 /* Find the upper bound. */
4852 auto upper = [&] ()
4853 {
4854 if (lookup_name_without_params.completion_mode ())
4855 {
4856 /* In completion mode, we want UPPER to point past all
4857 symbols names that have the same prefix. I.e., with
4858 these symbols, and completing "func":
4859
4860 function << lower bound
4861 function1
4862 other_function << upper bound
4863
4864 We find the upper bound by looking for the insertion
4865 point of "func"-with-last-character-incremented,
4866 i.e. "fund". */
4867 std::string after = make_sort_after_prefix_name (cplus);
4868 if (after.empty ())
4869 return end;
4870 return std::lower_bound (lower, end, after.c_str (),
4871 lookup_compare_lower);
4872 }
4873 else
4874 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4875 } ();
4876
4877 return {lower, upper};
4878 }
4879
4880 /* See declaration. */
4881
4882 void
4883 mapped_index_base::build_name_components ()
4884 {
4885 if (!this->name_components.empty ())
4886 return;
4887
4888 this->name_components_casing = case_sensitivity;
4889 auto *name_cmp
4890 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4891
4892 /* The code below only knows how to break apart components of C++
4893 symbol names (and other languages that use '::' as
4894 namespace/module separator). If we add support for wild matching
4895 to some language that uses some other operator (E.g., Ada, Go and
4896 D use '.'), then we'll need to try splitting the symbol name
4897 according to that language too. Note that Ada does support wild
4898 matching, but doesn't currently support .gdb_index. */
4899 auto count = this->symbol_name_count ();
4900 for (offset_type idx = 0; idx < count; idx++)
4901 {
4902 if (this->symbol_name_slot_invalid (idx))
4903 continue;
4904
4905 const char *name = this->symbol_name_at (idx);
4906
4907 /* Add each name component to the name component table. */
4908 unsigned int previous_len = 0;
4909 for (unsigned int current_len = cp_find_first_component (name);
4910 name[current_len] != '\0';
4911 current_len += cp_find_first_component (name + current_len))
4912 {
4913 gdb_assert (name[current_len] == ':');
4914 this->name_components.push_back ({previous_len, idx});
4915 /* Skip the '::'. */
4916 current_len += 2;
4917 previous_len = current_len;
4918 }
4919 this->name_components.push_back ({previous_len, idx});
4920 }
4921
4922 /* Sort name_components elements by name. */
4923 auto name_comp_compare = [&] (const name_component &left,
4924 const name_component &right)
4925 {
4926 const char *left_qualified = this->symbol_name_at (left.idx);
4927 const char *right_qualified = this->symbol_name_at (right.idx);
4928
4929 const char *left_name = left_qualified + left.name_offset;
4930 const char *right_name = right_qualified + right.name_offset;
4931
4932 return name_cmp (left_name, right_name) < 0;
4933 };
4934
4935 std::sort (this->name_components.begin (),
4936 this->name_components.end (),
4937 name_comp_compare);
4938 }
4939
4940 /* Helper for dw2_expand_symtabs_matching that works with a
4941 mapped_index_base instead of the containing objfile. This is split
4942 to a separate function in order to be able to unit test the
4943 name_components matching using a mock mapped_index_base. For each
4944 symbol name that matches, calls MATCH_CALLBACK, passing it the
4945 symbol's index in the mapped_index_base symbol table. */
4946
4947 static void
4948 dw2_expand_symtabs_matching_symbol
4949 (mapped_index_base &index,
4950 const lookup_name_info &lookup_name_in,
4951 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4952 enum search_domain kind,
4953 gdb::function_view<void (offset_type)> match_callback)
4954 {
4955 lookup_name_info lookup_name_without_params
4956 = lookup_name_in.make_ignore_params ();
4957 gdb_index_symbol_name_matcher lookup_name_matcher
4958 (lookup_name_without_params);
4959
4960 /* Build the symbol name component sorted vector, if we haven't
4961 yet. */
4962 index.build_name_components ();
4963
4964 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4965
4966 /* Now for each symbol name in range, check to see if we have a name
4967 match, and if so, call the MATCH_CALLBACK callback. */
4968
4969 /* The same symbol may appear more than once in the range though.
4970 E.g., if we're looking for symbols that complete "w", and we have
4971 a symbol named "w1::w2", we'll find the two name components for
4972 that same symbol in the range. To be sure we only call the
4973 callback once per symbol, we first collect the symbol name
4974 indexes that matched in a temporary vector and ignore
4975 duplicates. */
4976 std::vector<offset_type> matches;
4977 matches.reserve (std::distance (bounds.first, bounds.second));
4978
4979 for (; bounds.first != bounds.second; ++bounds.first)
4980 {
4981 const char *qualified = index.symbol_name_at (bounds.first->idx);
4982
4983 if (!lookup_name_matcher.matches (qualified)
4984 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4985 continue;
4986
4987 matches.push_back (bounds.first->idx);
4988 }
4989
4990 std::sort (matches.begin (), matches.end ());
4991
4992 /* Finally call the callback, once per match. */
4993 ULONGEST prev = -1;
4994 for (offset_type idx : matches)
4995 {
4996 if (prev != idx)
4997 {
4998 match_callback (idx);
4999 prev = idx;
5000 }
5001 }
5002
5003 /* Above we use a type wider than idx's for 'prev', since 0 and
5004 (offset_type)-1 are both possible values. */
5005 static_assert (sizeof (prev) > sizeof (offset_type), "");
5006 }
5007
5008 #if GDB_SELF_TEST
5009
5010 namespace selftests { namespace dw2_expand_symtabs_matching {
5011
5012 /* A mock .gdb_index/.debug_names-like name index table, enough to
5013 exercise dw2_expand_symtabs_matching_symbol, which works with the
5014 mapped_index_base interface. Builds an index from the symbol list
5015 passed as parameter to the constructor. */
5016 class mock_mapped_index : public mapped_index_base
5017 {
5018 public:
5019 mock_mapped_index (gdb::array_view<const char *> symbols)
5020 : m_symbol_table (symbols)
5021 {}
5022
5023 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
5024
5025 /* Return the number of names in the symbol table. */
5026 virtual size_t symbol_name_count () const
5027 {
5028 return m_symbol_table.size ();
5029 }
5030
5031 /* Get the name of the symbol at IDX in the symbol table. */
5032 virtual const char *symbol_name_at (offset_type idx) const
5033 {
5034 return m_symbol_table[idx];
5035 }
5036
5037 private:
5038 gdb::array_view<const char *> m_symbol_table;
5039 };
5040
5041 /* Convenience function that converts a NULL pointer to a "<null>"
5042 string, to pass to print routines. */
5043
5044 static const char *
5045 string_or_null (const char *str)
5046 {
5047 return str != NULL ? str : "<null>";
5048 }
5049
5050 /* Check if a lookup_name_info built from
5051 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
5052 index. EXPECTED_LIST is the list of expected matches, in expected
5053 matching order. If no match expected, then an empty list is
5054 specified. Returns true on success. On failure prints a warning
5055 indicating the file:line that failed, and returns false. */
5056
5057 static bool
5058 check_match (const char *file, int line,
5059 mock_mapped_index &mock_index,
5060 const char *name, symbol_name_match_type match_type,
5061 bool completion_mode,
5062 std::initializer_list<const char *> expected_list)
5063 {
5064 lookup_name_info lookup_name (name, match_type, completion_mode);
5065
5066 bool matched = true;
5067
5068 auto mismatch = [&] (const char *expected_str,
5069 const char *got)
5070 {
5071 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
5072 "expected=\"%s\", got=\"%s\"\n"),
5073 file, line,
5074 (match_type == symbol_name_match_type::FULL
5075 ? "FULL" : "WILD"),
5076 name, string_or_null (expected_str), string_or_null (got));
5077 matched = false;
5078 };
5079
5080 auto expected_it = expected_list.begin ();
5081 auto expected_end = expected_list.end ();
5082
5083 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
5084 NULL, ALL_DOMAIN,
5085 [&] (offset_type idx)
5086 {
5087 const char *matched_name = mock_index.symbol_name_at (idx);
5088 const char *expected_str
5089 = expected_it == expected_end ? NULL : *expected_it++;
5090
5091 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
5092 mismatch (expected_str, matched_name);
5093 });
5094
5095 const char *expected_str
5096 = expected_it == expected_end ? NULL : *expected_it++;
5097 if (expected_str != NULL)
5098 mismatch (expected_str, NULL);
5099
5100 return matched;
5101 }
5102
5103 /* The symbols added to the mock mapped_index for testing (in
5104 canonical form). */
5105 static const char *test_symbols[] = {
5106 "function",
5107 "std::bar",
5108 "std::zfunction",
5109 "std::zfunction2",
5110 "w1::w2",
5111 "ns::foo<char*>",
5112 "ns::foo<int>",
5113 "ns::foo<long>",
5114 "ns2::tmpl<int>::foo2",
5115 "(anonymous namespace)::A::B::C",
5116
5117 /* These are used to check that the increment-last-char in the
5118 matching algorithm for completion doesn't match "t1_fund" when
5119 completing "t1_func". */
5120 "t1_func",
5121 "t1_func1",
5122 "t1_fund",
5123 "t1_fund1",
5124
5125 /* A UTF-8 name with multi-byte sequences to make sure that
5126 cp-name-parser understands this as a single identifier ("função"
5127 is "function" in PT). */
5128 u8"u8função",
5129
5130 /* \377 (0xff) is Latin1 'ÿ'. */
5131 "yfunc\377",
5132
5133 /* \377 (0xff) is Latin1 'ÿ'. */
5134 "\377",
5135 "\377\377123",
5136
5137 /* A name with all sorts of complications. Starts with "z" to make
5138 it easier for the completion tests below. */
5139 #define Z_SYM_NAME \
5140 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
5141 "::tuple<(anonymous namespace)::ui*, " \
5142 "std::default_delete<(anonymous namespace)::ui>, void>"
5143
5144 Z_SYM_NAME
5145 };
5146
5147 /* Returns true if the mapped_index_base::find_name_component_bounds
5148 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
5149 in completion mode. */
5150
5151 static bool
5152 check_find_bounds_finds (mapped_index_base &index,
5153 const char *search_name,
5154 gdb::array_view<const char *> expected_syms)
5155 {
5156 lookup_name_info lookup_name (search_name,
5157 symbol_name_match_type::FULL, true);
5158
5159 auto bounds = index.find_name_components_bounds (lookup_name);
5160
5161 size_t distance = std::distance (bounds.first, bounds.second);
5162 if (distance != expected_syms.size ())
5163 return false;
5164
5165 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
5166 {
5167 auto nc_elem = bounds.first + exp_elem;
5168 const char *qualified = index.symbol_name_at (nc_elem->idx);
5169 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
5170 return false;
5171 }
5172
5173 return true;
5174 }
5175
5176 /* Test the lower-level mapped_index::find_name_component_bounds
5177 method. */
5178
5179 static void
5180 test_mapped_index_find_name_component_bounds ()
5181 {
5182 mock_mapped_index mock_index (test_symbols);
5183
5184 mock_index.build_name_components ();
5185
5186 /* Test the lower-level mapped_index::find_name_component_bounds
5187 method in completion mode. */
5188 {
5189 static const char *expected_syms[] = {
5190 "t1_func",
5191 "t1_func1",
5192 };
5193
5194 SELF_CHECK (check_find_bounds_finds (mock_index,
5195 "t1_func", expected_syms));
5196 }
5197
5198 /* Check that the increment-last-char in the name matching algorithm
5199 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
5200 {
5201 static const char *expected_syms1[] = {
5202 "\377",
5203 "\377\377123",
5204 };
5205 SELF_CHECK (check_find_bounds_finds (mock_index,
5206 "\377", expected_syms1));
5207
5208 static const char *expected_syms2[] = {
5209 "\377\377123",
5210 };
5211 SELF_CHECK (check_find_bounds_finds (mock_index,
5212 "\377\377", expected_syms2));
5213 }
5214 }
5215
5216 /* Test dw2_expand_symtabs_matching_symbol. */
5217
5218 static void
5219 test_dw2_expand_symtabs_matching_symbol ()
5220 {
5221 mock_mapped_index mock_index (test_symbols);
5222
5223 /* We let all tests run until the end even if some fails, for debug
5224 convenience. */
5225 bool any_mismatch = false;
5226
5227 /* Create the expected symbols list (an initializer_list). Needed
5228 because lists have commas, and we need to pass them to CHECK,
5229 which is a macro. */
5230 #define EXPECT(...) { __VA_ARGS__ }
5231
5232 /* Wrapper for check_match that passes down the current
5233 __FILE__/__LINE__. */
5234 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
5235 any_mismatch |= !check_match (__FILE__, __LINE__, \
5236 mock_index, \
5237 NAME, MATCH_TYPE, COMPLETION_MODE, \
5238 EXPECTED_LIST)
5239
5240 /* Identity checks. */
5241 for (const char *sym : test_symbols)
5242 {
5243 /* Should be able to match all existing symbols. */
5244 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
5245 EXPECT (sym));
5246
5247 /* Should be able to match all existing symbols with
5248 parameters. */
5249 std::string with_params = std::string (sym) + "(int)";
5250 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5251 EXPECT (sym));
5252
5253 /* Should be able to match all existing symbols with
5254 parameters and qualifiers. */
5255 with_params = std::string (sym) + " ( int ) const";
5256 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5257 EXPECT (sym));
5258
5259 /* This should really find sym, but cp-name-parser.y doesn't
5260 know about lvalue/rvalue qualifiers yet. */
5261 with_params = std::string (sym) + " ( int ) &&";
5262 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
5263 {});
5264 }
5265
5266 /* Check that the name matching algorithm for completion doesn't get
5267 confused with Latin1 'ÿ' / 0xff. */
5268 {
5269 static const char str[] = "\377";
5270 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5271 EXPECT ("\377", "\377\377123"));
5272 }
5273
5274 /* Check that the increment-last-char in the matching algorithm for
5275 completion doesn't match "t1_fund" when completing "t1_func". */
5276 {
5277 static const char str[] = "t1_func";
5278 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
5279 EXPECT ("t1_func", "t1_func1"));
5280 }
5281
5282 /* Check that completion mode works at each prefix of the expected
5283 symbol name. */
5284 {
5285 static const char str[] = "function(int)";
5286 size_t len = strlen (str);
5287 std::string lookup;
5288
5289 for (size_t i = 1; i < len; i++)
5290 {
5291 lookup.assign (str, i);
5292 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5293 EXPECT ("function"));
5294 }
5295 }
5296
5297 /* While "w" is a prefix of both components, the match function
5298 should still only be called once. */
5299 {
5300 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
5301 EXPECT ("w1::w2"));
5302 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
5303 EXPECT ("w1::w2"));
5304 }
5305
5306 /* Same, with a "complicated" symbol. */
5307 {
5308 static const char str[] = Z_SYM_NAME;
5309 size_t len = strlen (str);
5310 std::string lookup;
5311
5312 for (size_t i = 1; i < len; i++)
5313 {
5314 lookup.assign (str, i);
5315 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
5316 EXPECT (Z_SYM_NAME));
5317 }
5318 }
5319
5320 /* In FULL mode, an incomplete symbol doesn't match. */
5321 {
5322 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
5323 {});
5324 }
5325
5326 /* A complete symbol with parameters matches any overload, since the
5327 index has no overload info. */
5328 {
5329 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
5330 EXPECT ("std::zfunction", "std::zfunction2"));
5331 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
5332 EXPECT ("std::zfunction", "std::zfunction2"));
5333 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
5334 EXPECT ("std::zfunction", "std::zfunction2"));
5335 }
5336
5337 /* Check that whitespace is ignored appropriately. A symbol with a
5338 template argument list. */
5339 {
5340 static const char expected[] = "ns::foo<int>";
5341 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
5342 EXPECT (expected));
5343 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
5344 EXPECT (expected));
5345 }
5346
5347 /* Check that whitespace is ignored appropriately. A symbol with a
5348 template argument list that includes a pointer. */
5349 {
5350 static const char expected[] = "ns::foo<char*>";
5351 /* Try both completion and non-completion modes. */
5352 static const bool completion_mode[2] = {false, true};
5353 for (size_t i = 0; i < 2; i++)
5354 {
5355 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
5356 completion_mode[i], EXPECT (expected));
5357 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
5358 completion_mode[i], EXPECT (expected));
5359
5360 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
5361 completion_mode[i], EXPECT (expected));
5362 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
5363 completion_mode[i], EXPECT (expected));
5364 }
5365 }
5366
5367 {
5368 /* Check method qualifiers are ignored. */
5369 static const char expected[] = "ns::foo<char*>";
5370 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
5371 symbol_name_match_type::FULL, true, EXPECT (expected));
5372 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
5373 symbol_name_match_type::FULL, true, EXPECT (expected));
5374 CHECK_MATCH ("foo < char * > ( int ) const",
5375 symbol_name_match_type::WILD, true, EXPECT (expected));
5376 CHECK_MATCH ("foo < char * > ( int ) &&",
5377 symbol_name_match_type::WILD, true, EXPECT (expected));
5378 }
5379
5380 /* Test lookup names that don't match anything. */
5381 {
5382 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
5383 {});
5384
5385 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
5386 {});
5387 }
5388
5389 /* Some wild matching tests, exercising "(anonymous namespace)",
5390 which should not be confused with a parameter list. */
5391 {
5392 static const char *syms[] = {
5393 "A::B::C",
5394 "B::C",
5395 "C",
5396 "A :: B :: C ( int )",
5397 "B :: C ( int )",
5398 "C ( int )",
5399 };
5400
5401 for (const char *s : syms)
5402 {
5403 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
5404 EXPECT ("(anonymous namespace)::A::B::C"));
5405 }
5406 }
5407
5408 {
5409 static const char expected[] = "ns2::tmpl<int>::foo2";
5410 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5411 EXPECT (expected));
5412 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5413 EXPECT (expected));
5414 }
5415
5416 SELF_CHECK (!any_mismatch);
5417
5418 #undef EXPECT
5419 #undef CHECK_MATCH
5420 }
5421
5422 static void
5423 run_test ()
5424 {
5425 test_mapped_index_find_name_component_bounds ();
5426 test_dw2_expand_symtabs_matching_symbol ();
5427 }
5428
5429 }} // namespace selftests::dw2_expand_symtabs_matching
5430
5431 #endif /* GDB_SELF_TEST */
5432
5433 /* If FILE_MATCHER is NULL or if PER_CU has
5434 dwarf2_per_cu_quick_data::MARK set (see
5435 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5436 EXPANSION_NOTIFY on it. */
5437
5438 static void
5439 dw2_expand_symtabs_matching_one
5440 (struct dwarf2_per_cu_data *per_cu,
5441 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5442 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5443 {
5444 if (file_matcher == NULL || per_cu->v.quick->mark)
5445 {
5446 bool symtab_was_null
5447 = (per_cu->v.quick->compunit_symtab == NULL);
5448
5449 dw2_instantiate_symtab (per_cu);
5450
5451 if (expansion_notify != NULL
5452 && symtab_was_null
5453 && per_cu->v.quick->compunit_symtab != NULL)
5454 expansion_notify (per_cu->v.quick->compunit_symtab);
5455 }
5456 }
5457
5458 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5459 matched, to expand corresponding CUs that were marked. IDX is the
5460 index of the symbol name that matched. */
5461
5462 static void
5463 dw2_expand_marked_cus
5464 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5465 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5466 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5467 search_domain kind)
5468 {
5469 offset_type *vec, vec_len, vec_idx;
5470 bool global_seen = false;
5471 mapped_index &index = *dwarf2_per_objfile->index_table;
5472
5473 vec = (offset_type *) (index.constant_pool
5474 + MAYBE_SWAP (index.symbol_table[idx].vec));
5475 vec_len = MAYBE_SWAP (vec[0]);
5476 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5477 {
5478 struct dwarf2_per_cu_data *per_cu;
5479 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5480 /* This value is only valid for index versions >= 7. */
5481 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5482 gdb_index_symbol_kind symbol_kind =
5483 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5484 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5485 /* Only check the symbol attributes if they're present.
5486 Indices prior to version 7 don't record them,
5487 and indices >= 7 may elide them for certain symbols
5488 (gold does this). */
5489 int attrs_valid =
5490 (index.version >= 7
5491 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5492
5493 /* Work around gold/15646. */
5494 if (attrs_valid)
5495 {
5496 if (!is_static && global_seen)
5497 continue;
5498 if (!is_static)
5499 global_seen = true;
5500 }
5501
5502 /* Only check the symbol's kind if it has one. */
5503 if (attrs_valid)
5504 {
5505 switch (kind)
5506 {
5507 case VARIABLES_DOMAIN:
5508 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5509 continue;
5510 break;
5511 case FUNCTIONS_DOMAIN:
5512 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5513 continue;
5514 break;
5515 case TYPES_DOMAIN:
5516 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5517 continue;
5518 break;
5519 default:
5520 break;
5521 }
5522 }
5523
5524 /* Don't crash on bad data. */
5525 if (cu_index >= (dwarf2_per_objfile->n_comp_units
5526 + dwarf2_per_objfile->n_type_units))
5527 {
5528 complaint (&symfile_complaints,
5529 _(".gdb_index entry has bad CU index"
5530 " [in module %s]"),
5531 objfile_name (dwarf2_per_objfile->objfile));
5532 continue;
5533 }
5534
5535 per_cu = dw2_get_cutu (dwarf2_per_objfile, cu_index);
5536 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5537 expansion_notify);
5538 }
5539 }
5540
5541 /* If FILE_MATCHER is non-NULL, set all the
5542 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5543 that match FILE_MATCHER. */
5544
5545 static void
5546 dw_expand_symtabs_matching_file_matcher
5547 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5548 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5549 {
5550 if (file_matcher == NULL)
5551 return;
5552
5553 objfile *const objfile = dwarf2_per_objfile->objfile;
5554
5555 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5556 htab_eq_pointer,
5557 NULL, xcalloc, xfree));
5558 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5559 htab_eq_pointer,
5560 NULL, xcalloc, xfree));
5561
5562 /* The rule is CUs specify all the files, including those used by
5563 any TU, so there's no need to scan TUs here. */
5564
5565 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5566 {
5567 int j;
5568 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5569 struct quick_file_names *file_data;
5570 void **slot;
5571
5572 QUIT;
5573
5574 per_cu->v.quick->mark = 0;
5575
5576 /* We only need to look at symtabs not already expanded. */
5577 if (per_cu->v.quick->compunit_symtab)
5578 continue;
5579
5580 file_data = dw2_get_file_names (per_cu);
5581 if (file_data == NULL)
5582 continue;
5583
5584 if (htab_find (visited_not_found.get (), file_data) != NULL)
5585 continue;
5586 else if (htab_find (visited_found.get (), file_data) != NULL)
5587 {
5588 per_cu->v.quick->mark = 1;
5589 continue;
5590 }
5591
5592 for (j = 0; j < file_data->num_file_names; ++j)
5593 {
5594 const char *this_real_name;
5595
5596 if (file_matcher (file_data->file_names[j], false))
5597 {
5598 per_cu->v.quick->mark = 1;
5599 break;
5600 }
5601
5602 /* Before we invoke realpath, which can get expensive when many
5603 files are involved, do a quick comparison of the basenames. */
5604 if (!basenames_may_differ
5605 && !file_matcher (lbasename (file_data->file_names[j]),
5606 true))
5607 continue;
5608
5609 this_real_name = dw2_get_real_path (objfile, file_data, j);
5610 if (file_matcher (this_real_name, false))
5611 {
5612 per_cu->v.quick->mark = 1;
5613 break;
5614 }
5615 }
5616
5617 slot = htab_find_slot (per_cu->v.quick->mark
5618 ? visited_found.get ()
5619 : visited_not_found.get (),
5620 file_data, INSERT);
5621 *slot = file_data;
5622 }
5623 }
5624
5625 static void
5626 dw2_expand_symtabs_matching
5627 (struct objfile *objfile,
5628 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5629 const lookup_name_info &lookup_name,
5630 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5631 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5632 enum search_domain kind)
5633 {
5634 struct dwarf2_per_objfile *dwarf2_per_objfile
5635 = get_dwarf2_per_objfile (objfile);
5636
5637 /* index_table is NULL if OBJF_READNOW. */
5638 if (!dwarf2_per_objfile->index_table)
5639 return;
5640
5641 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5642
5643 mapped_index &index = *dwarf2_per_objfile->index_table;
5644
5645 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5646 symbol_matcher,
5647 kind, [&] (offset_type idx)
5648 {
5649 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5650 expansion_notify, kind);
5651 });
5652 }
5653
5654 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5655 symtab. */
5656
5657 static struct compunit_symtab *
5658 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5659 CORE_ADDR pc)
5660 {
5661 int i;
5662
5663 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5664 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5665 return cust;
5666
5667 if (cust->includes == NULL)
5668 return NULL;
5669
5670 for (i = 0; cust->includes[i]; ++i)
5671 {
5672 struct compunit_symtab *s = cust->includes[i];
5673
5674 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5675 if (s != NULL)
5676 return s;
5677 }
5678
5679 return NULL;
5680 }
5681
5682 static struct compunit_symtab *
5683 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5684 struct bound_minimal_symbol msymbol,
5685 CORE_ADDR pc,
5686 struct obj_section *section,
5687 int warn_if_readin)
5688 {
5689 struct dwarf2_per_cu_data *data;
5690 struct compunit_symtab *result;
5691
5692 if (!objfile->psymtabs_addrmap)
5693 return NULL;
5694
5695 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
5696 pc);
5697 if (!data)
5698 return NULL;
5699
5700 if (warn_if_readin && data->v.quick->compunit_symtab)
5701 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5702 paddress (get_objfile_arch (objfile), pc));
5703
5704 result
5705 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
5706 pc);
5707 gdb_assert (result != NULL);
5708 return result;
5709 }
5710
5711 static void
5712 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5713 void *data, int need_fullname)
5714 {
5715 struct dwarf2_per_objfile *dwarf2_per_objfile
5716 = get_dwarf2_per_objfile (objfile);
5717
5718 if (!dwarf2_per_objfile->filenames_cache)
5719 {
5720 dwarf2_per_objfile->filenames_cache.emplace ();
5721
5722 htab_up visited (htab_create_alloc (10,
5723 htab_hash_pointer, htab_eq_pointer,
5724 NULL, xcalloc, xfree));
5725
5726 /* The rule is CUs specify all the files, including those used
5727 by any TU, so there's no need to scan TUs here. We can
5728 ignore file names coming from already-expanded CUs. */
5729
5730 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5731 {
5732 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
5733
5734 if (per_cu->v.quick->compunit_symtab)
5735 {
5736 void **slot = htab_find_slot (visited.get (),
5737 per_cu->v.quick->file_names,
5738 INSERT);
5739
5740 *slot = per_cu->v.quick->file_names;
5741 }
5742 }
5743
5744 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5745 {
5746 dwarf2_per_cu_data *per_cu = dw2_get_cu (dwarf2_per_objfile, i);
5747 struct quick_file_names *file_data;
5748 void **slot;
5749
5750 /* We only need to look at symtabs not already expanded. */
5751 if (per_cu->v.quick->compunit_symtab)
5752 continue;
5753
5754 file_data = dw2_get_file_names (per_cu);
5755 if (file_data == NULL)
5756 continue;
5757
5758 slot = htab_find_slot (visited.get (), file_data, INSERT);
5759 if (*slot)
5760 {
5761 /* Already visited. */
5762 continue;
5763 }
5764 *slot = file_data;
5765
5766 for (int j = 0; j < file_data->num_file_names; ++j)
5767 {
5768 const char *filename = file_data->file_names[j];
5769 dwarf2_per_objfile->filenames_cache->seen (filename);
5770 }
5771 }
5772 }
5773
5774 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5775 {
5776 gdb::unique_xmalloc_ptr<char> this_real_name;
5777
5778 if (need_fullname)
5779 this_real_name = gdb_realpath (filename);
5780 (*fun) (filename, this_real_name.get (), data);
5781 });
5782 }
5783
5784 static int
5785 dw2_has_symbols (struct objfile *objfile)
5786 {
5787 return 1;
5788 }
5789
5790 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5791 {
5792 dw2_has_symbols,
5793 dw2_find_last_source_symtab,
5794 dw2_forget_cached_source_info,
5795 dw2_map_symtabs_matching_filename,
5796 dw2_lookup_symbol,
5797 dw2_print_stats,
5798 dw2_dump,
5799 dw2_relocate,
5800 dw2_expand_symtabs_for_function,
5801 dw2_expand_all_symtabs,
5802 dw2_expand_symtabs_with_fullname,
5803 dw2_map_matching_symbols,
5804 dw2_expand_symtabs_matching,
5805 dw2_find_pc_sect_compunit_symtab,
5806 NULL,
5807 dw2_map_symbol_filenames
5808 };
5809
5810 /* DWARF-5 debug_names reader. */
5811
5812 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5813 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5814
5815 /* A helper function that reads the .debug_names section in SECTION
5816 and fills in MAP. FILENAME is the name of the file containing the
5817 section; it is used for error reporting.
5818
5819 Returns true if all went well, false otherwise. */
5820
5821 static bool
5822 read_debug_names_from_section (struct objfile *objfile,
5823 const char *filename,
5824 struct dwarf2_section_info *section,
5825 mapped_debug_names &map)
5826 {
5827 if (dwarf2_section_empty_p (section))
5828 return false;
5829
5830 /* Older elfutils strip versions could keep the section in the main
5831 executable while splitting it for the separate debug info file. */
5832 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5833 return false;
5834
5835 dwarf2_read_section (objfile, section);
5836
5837 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5838
5839 const gdb_byte *addr = section->buffer;
5840
5841 bfd *const abfd = get_section_bfd_owner (section);
5842
5843 unsigned int bytes_read;
5844 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5845 addr += bytes_read;
5846
5847 map.dwarf5_is_dwarf64 = bytes_read != 4;
5848 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5849 if (bytes_read + length != section->size)
5850 {
5851 /* There may be multiple per-CU indices. */
5852 warning (_("Section .debug_names in %s length %s does not match "
5853 "section length %s, ignoring .debug_names."),
5854 filename, plongest (bytes_read + length),
5855 pulongest (section->size));
5856 return false;
5857 }
5858
5859 /* The version number. */
5860 uint16_t version = read_2_bytes (abfd, addr);
5861 addr += 2;
5862 if (version != 5)
5863 {
5864 warning (_("Section .debug_names in %s has unsupported version %d, "
5865 "ignoring .debug_names."),
5866 filename, version);
5867 return false;
5868 }
5869
5870 /* Padding. */
5871 uint16_t padding = read_2_bytes (abfd, addr);
5872 addr += 2;
5873 if (padding != 0)
5874 {
5875 warning (_("Section .debug_names in %s has unsupported padding %d, "
5876 "ignoring .debug_names."),
5877 filename, padding);
5878 return false;
5879 }
5880
5881 /* comp_unit_count - The number of CUs in the CU list. */
5882 map.cu_count = read_4_bytes (abfd, addr);
5883 addr += 4;
5884
5885 /* local_type_unit_count - The number of TUs in the local TU
5886 list. */
5887 map.tu_count = read_4_bytes (abfd, addr);
5888 addr += 4;
5889
5890 /* foreign_type_unit_count - The number of TUs in the foreign TU
5891 list. */
5892 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5893 addr += 4;
5894 if (foreign_tu_count != 0)
5895 {
5896 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5897 "ignoring .debug_names."),
5898 filename, static_cast<unsigned long> (foreign_tu_count));
5899 return false;
5900 }
5901
5902 /* bucket_count - The number of hash buckets in the hash lookup
5903 table. */
5904 map.bucket_count = read_4_bytes (abfd, addr);
5905 addr += 4;
5906
5907 /* name_count - The number of unique names in the index. */
5908 map.name_count = read_4_bytes (abfd, addr);
5909 addr += 4;
5910
5911 /* abbrev_table_size - The size in bytes of the abbreviations
5912 table. */
5913 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5914 addr += 4;
5915
5916 /* augmentation_string_size - The size in bytes of the augmentation
5917 string. This value is rounded up to a multiple of 4. */
5918 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5919 addr += 4;
5920 map.augmentation_is_gdb = ((augmentation_string_size
5921 == sizeof (dwarf5_augmentation))
5922 && memcmp (addr, dwarf5_augmentation,
5923 sizeof (dwarf5_augmentation)) == 0);
5924 augmentation_string_size += (-augmentation_string_size) & 3;
5925 addr += augmentation_string_size;
5926
5927 /* List of CUs */
5928 map.cu_table_reordered = addr;
5929 addr += map.cu_count * map.offset_size;
5930
5931 /* List of Local TUs */
5932 map.tu_table_reordered = addr;
5933 addr += map.tu_count * map.offset_size;
5934
5935 /* Hash Lookup Table */
5936 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5937 addr += map.bucket_count * 4;
5938 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5939 addr += map.name_count * 4;
5940
5941 /* Name Table */
5942 map.name_table_string_offs_reordered = addr;
5943 addr += map.name_count * map.offset_size;
5944 map.name_table_entry_offs_reordered = addr;
5945 addr += map.name_count * map.offset_size;
5946
5947 const gdb_byte *abbrev_table_start = addr;
5948 for (;;)
5949 {
5950 unsigned int bytes_read;
5951 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5952 addr += bytes_read;
5953 if (index_num == 0)
5954 break;
5955
5956 const auto insertpair
5957 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5958 if (!insertpair.second)
5959 {
5960 warning (_("Section .debug_names in %s has duplicate index %s, "
5961 "ignoring .debug_names."),
5962 filename, pulongest (index_num));
5963 return false;
5964 }
5965 mapped_debug_names::index_val &indexval = insertpair.first->second;
5966 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5967 addr += bytes_read;
5968
5969 for (;;)
5970 {
5971 mapped_debug_names::index_val::attr attr;
5972 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5973 addr += bytes_read;
5974 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5975 addr += bytes_read;
5976 if (attr.form == DW_FORM_implicit_const)
5977 {
5978 attr.implicit_const = read_signed_leb128 (abfd, addr,
5979 &bytes_read);
5980 addr += bytes_read;
5981 }
5982 if (attr.dw_idx == 0 && attr.form == 0)
5983 break;
5984 indexval.attr_vec.push_back (std::move (attr));
5985 }
5986 }
5987 if (addr != abbrev_table_start + abbrev_table_size)
5988 {
5989 warning (_("Section .debug_names in %s has abbreviation_table "
5990 "of size %zu vs. written as %u, ignoring .debug_names."),
5991 filename, addr - abbrev_table_start, abbrev_table_size);
5992 return false;
5993 }
5994 map.entry_pool = addr;
5995
5996 return true;
5997 }
5998
5999 /* A helper for create_cus_from_debug_names that handles the MAP's CU
6000 list. */
6001
6002 static void
6003 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
6004 const mapped_debug_names &map,
6005 dwarf2_section_info &section,
6006 bool is_dwz, int base_offset)
6007 {
6008 sect_offset sect_off_prev;
6009 for (uint32_t i = 0; i <= map.cu_count; ++i)
6010 {
6011 sect_offset sect_off_next;
6012 if (i < map.cu_count)
6013 {
6014 sect_off_next
6015 = (sect_offset) (extract_unsigned_integer
6016 (map.cu_table_reordered + i * map.offset_size,
6017 map.offset_size,
6018 map.dwarf5_byte_order));
6019 }
6020 else
6021 sect_off_next = (sect_offset) section.size;
6022 if (i >= 1)
6023 {
6024 const ULONGEST length = sect_off_next - sect_off_prev;
6025 dwarf2_per_objfile->all_comp_units[base_offset + (i - 1)]
6026 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
6027 sect_off_prev, length);
6028 }
6029 sect_off_prev = sect_off_next;
6030 }
6031 }
6032
6033 /* Read the CU list from the mapped index, and use it to create all
6034 the CU objects for this dwarf2_per_objfile. */
6035
6036 static void
6037 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
6038 const mapped_debug_names &map,
6039 const mapped_debug_names &dwz_map)
6040 {
6041 struct objfile *objfile = dwarf2_per_objfile->objfile;
6042
6043 dwarf2_per_objfile->n_comp_units = map.cu_count + dwz_map.cu_count;
6044 dwarf2_per_objfile->all_comp_units
6045 = XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
6046 dwarf2_per_objfile->n_comp_units);
6047
6048 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
6049 dwarf2_per_objfile->info,
6050 false /* is_dwz */,
6051 0 /* base_offset */);
6052
6053 if (dwz_map.cu_count == 0)
6054 return;
6055
6056 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
6057 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
6058 true /* is_dwz */,
6059 map.cu_count /* base_offset */);
6060 }
6061
6062 /* Read .debug_names. If everything went ok, initialize the "quick"
6063 elements of all the CUs and return true. Otherwise, return false. */
6064
6065 static bool
6066 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
6067 {
6068 mapped_debug_names local_map (dwarf2_per_objfile);
6069 mapped_debug_names dwz_map (dwarf2_per_objfile);
6070 struct objfile *objfile = dwarf2_per_objfile->objfile;
6071
6072 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
6073 &dwarf2_per_objfile->debug_names,
6074 local_map))
6075 return false;
6076
6077 /* Don't use the index if it's empty. */
6078 if (local_map.name_count == 0)
6079 return false;
6080
6081 /* If there is a .dwz file, read it so we can get its CU list as
6082 well. */
6083 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
6084 if (dwz != NULL)
6085 {
6086 if (!read_debug_names_from_section (objfile,
6087 bfd_get_filename (dwz->dwz_bfd),
6088 &dwz->debug_names, dwz_map))
6089 {
6090 warning (_("could not read '.debug_names' section from %s; skipping"),
6091 bfd_get_filename (dwz->dwz_bfd));
6092 return false;
6093 }
6094 }
6095
6096 create_cus_from_debug_names (dwarf2_per_objfile, local_map, dwz_map);
6097
6098 if (local_map.tu_count != 0)
6099 {
6100 /* We can only handle a single .debug_types when we have an
6101 index. */
6102 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
6103 return false;
6104
6105 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
6106 dwarf2_per_objfile->types, 0);
6107
6108 create_signatured_type_table_from_debug_names
6109 (dwarf2_per_objfile, local_map, section, &dwarf2_per_objfile->abbrev);
6110 }
6111
6112 create_addrmap_from_aranges (dwarf2_per_objfile,
6113 &dwarf2_per_objfile->debug_aranges);
6114
6115 dwarf2_per_objfile->debug_names_table.reset
6116 (new mapped_debug_names (dwarf2_per_objfile));
6117 *dwarf2_per_objfile->debug_names_table = std::move (local_map);
6118 dwarf2_per_objfile->using_index = 1;
6119 dwarf2_per_objfile->quick_file_names_table =
6120 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6121
6122 return true;
6123 }
6124
6125 /* Symbol name hashing function as specified by DWARF-5. */
6126
6127 static uint32_t
6128 dwarf5_djb_hash (const char *str_)
6129 {
6130 const unsigned char *str = (const unsigned char *) str_;
6131
6132 /* Note: tolower here ignores UTF-8, which isn't fully compliant.
6133 See http://dwarfstd.org/ShowIssue.php?issue=161027.1. */
6134
6135 uint32_t hash = 5381;
6136 while (int c = *str++)
6137 hash = hash * 33 + tolower (c);
6138 return hash;
6139 }
6140
6141 /* Type used to manage iterating over all CUs looking for a symbol for
6142 .debug_names. */
6143
6144 class dw2_debug_names_iterator
6145 {
6146 public:
6147 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
6148 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
6149 dw2_debug_names_iterator (const mapped_debug_names &map,
6150 bool want_specific_block,
6151 block_enum block_index, domain_enum domain,
6152 const char *name)
6153 : m_map (map), m_want_specific_block (want_specific_block),
6154 m_block_index (block_index), m_domain (domain),
6155 m_addr (find_vec_in_debug_names (map, name))
6156 {}
6157
6158 dw2_debug_names_iterator (const mapped_debug_names &map,
6159 search_domain search, uint32_t namei)
6160 : m_map (map),
6161 m_search (search),
6162 m_addr (find_vec_in_debug_names (map, namei))
6163 {}
6164
6165 /* Return the next matching CU or NULL if there are no more. */
6166 dwarf2_per_cu_data *next ();
6167
6168 private:
6169 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6170 const char *name);
6171 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
6172 uint32_t namei);
6173
6174 /* The internalized form of .debug_names. */
6175 const mapped_debug_names &m_map;
6176
6177 /* If true, only look for symbols that match BLOCK_INDEX. */
6178 const bool m_want_specific_block = false;
6179
6180 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
6181 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
6182 value. */
6183 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
6184
6185 /* The kind of symbol we're looking for. */
6186 const domain_enum m_domain = UNDEF_DOMAIN;
6187 const search_domain m_search = ALL_DOMAIN;
6188
6189 /* The list of CUs from the index entry of the symbol, or NULL if
6190 not found. */
6191 const gdb_byte *m_addr;
6192 };
6193
6194 const char *
6195 mapped_debug_names::namei_to_name (uint32_t namei) const
6196 {
6197 const ULONGEST namei_string_offs
6198 = extract_unsigned_integer ((name_table_string_offs_reordered
6199 + namei * offset_size),
6200 offset_size,
6201 dwarf5_byte_order);
6202 return read_indirect_string_at_offset
6203 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
6204 }
6205
6206 /* Find a slot in .debug_names for the object named NAME. If NAME is
6207 found, return pointer to its pool data. If NAME cannot be found,
6208 return NULL. */
6209
6210 const gdb_byte *
6211 dw2_debug_names_iterator::find_vec_in_debug_names
6212 (const mapped_debug_names &map, const char *name)
6213 {
6214 int (*cmp) (const char *, const char *);
6215
6216 if (current_language->la_language == language_cplus
6217 || current_language->la_language == language_fortran
6218 || current_language->la_language == language_d)
6219 {
6220 /* NAME is already canonical. Drop any qualifiers as
6221 .debug_names does not contain any. */
6222
6223 if (strchr (name, '(') != NULL)
6224 {
6225 gdb::unique_xmalloc_ptr<char> without_params
6226 = cp_remove_params (name);
6227
6228 if (without_params != NULL)
6229 {
6230 name = without_params.get();
6231 }
6232 }
6233 }
6234
6235 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
6236
6237 const uint32_t full_hash = dwarf5_djb_hash (name);
6238 uint32_t namei
6239 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6240 (map.bucket_table_reordered
6241 + (full_hash % map.bucket_count)), 4,
6242 map.dwarf5_byte_order);
6243 if (namei == 0)
6244 return NULL;
6245 --namei;
6246 if (namei >= map.name_count)
6247 {
6248 complaint (&symfile_complaints,
6249 _("Wrong .debug_names with name index %u but name_count=%u "
6250 "[in module %s]"),
6251 namei, map.name_count,
6252 objfile_name (map.dwarf2_per_objfile->objfile));
6253 return NULL;
6254 }
6255
6256 for (;;)
6257 {
6258 const uint32_t namei_full_hash
6259 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
6260 (map.hash_table_reordered + namei), 4,
6261 map.dwarf5_byte_order);
6262 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
6263 return NULL;
6264
6265 if (full_hash == namei_full_hash)
6266 {
6267 const char *const namei_string = map.namei_to_name (namei);
6268
6269 #if 0 /* An expensive sanity check. */
6270 if (namei_full_hash != dwarf5_djb_hash (namei_string))
6271 {
6272 complaint (&symfile_complaints,
6273 _("Wrong .debug_names hash for string at index %u "
6274 "[in module %s]"),
6275 namei, objfile_name (dwarf2_per_objfile->objfile));
6276 return NULL;
6277 }
6278 #endif
6279
6280 if (cmp (namei_string, name) == 0)
6281 {
6282 const ULONGEST namei_entry_offs
6283 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6284 + namei * map.offset_size),
6285 map.offset_size, map.dwarf5_byte_order);
6286 return map.entry_pool + namei_entry_offs;
6287 }
6288 }
6289
6290 ++namei;
6291 if (namei >= map.name_count)
6292 return NULL;
6293 }
6294 }
6295
6296 const gdb_byte *
6297 dw2_debug_names_iterator::find_vec_in_debug_names
6298 (const mapped_debug_names &map, uint32_t namei)
6299 {
6300 if (namei >= map.name_count)
6301 {
6302 complaint (&symfile_complaints,
6303 _("Wrong .debug_names with name index %u but name_count=%u "
6304 "[in module %s]"),
6305 namei, map.name_count,
6306 objfile_name (map.dwarf2_per_objfile->objfile));
6307 return NULL;
6308 }
6309
6310 const ULONGEST namei_entry_offs
6311 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
6312 + namei * map.offset_size),
6313 map.offset_size, map.dwarf5_byte_order);
6314 return map.entry_pool + namei_entry_offs;
6315 }
6316
6317 /* See dw2_debug_names_iterator. */
6318
6319 dwarf2_per_cu_data *
6320 dw2_debug_names_iterator::next ()
6321 {
6322 if (m_addr == NULL)
6323 return NULL;
6324
6325 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
6326 struct objfile *objfile = dwarf2_per_objfile->objfile;
6327 bfd *const abfd = objfile->obfd;
6328
6329 again:
6330
6331 unsigned int bytes_read;
6332 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6333 m_addr += bytes_read;
6334 if (abbrev == 0)
6335 return NULL;
6336
6337 const auto indexval_it = m_map.abbrev_map.find (abbrev);
6338 if (indexval_it == m_map.abbrev_map.cend ())
6339 {
6340 complaint (&symfile_complaints,
6341 _("Wrong .debug_names undefined abbrev code %s "
6342 "[in module %s]"),
6343 pulongest (abbrev), objfile_name (objfile));
6344 return NULL;
6345 }
6346 const mapped_debug_names::index_val &indexval = indexval_it->second;
6347 bool have_is_static = false;
6348 bool is_static;
6349 dwarf2_per_cu_data *per_cu = NULL;
6350 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
6351 {
6352 ULONGEST ull;
6353 switch (attr.form)
6354 {
6355 case DW_FORM_implicit_const:
6356 ull = attr.implicit_const;
6357 break;
6358 case DW_FORM_flag_present:
6359 ull = 1;
6360 break;
6361 case DW_FORM_udata:
6362 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
6363 m_addr += bytes_read;
6364 break;
6365 default:
6366 complaint (&symfile_complaints,
6367 _("Unsupported .debug_names form %s [in module %s]"),
6368 dwarf_form_name (attr.form),
6369 objfile_name (objfile));
6370 return NULL;
6371 }
6372 switch (attr.dw_idx)
6373 {
6374 case DW_IDX_compile_unit:
6375 /* Don't crash on bad data. */
6376 if (ull >= dwarf2_per_objfile->n_comp_units)
6377 {
6378 complaint (&symfile_complaints,
6379 _(".debug_names entry has bad CU index %s"
6380 " [in module %s]"),
6381 pulongest (ull),
6382 objfile_name (dwarf2_per_objfile->objfile));
6383 continue;
6384 }
6385 per_cu = dw2_get_cutu (dwarf2_per_objfile, ull);
6386 break;
6387 case DW_IDX_type_unit:
6388 /* Don't crash on bad data. */
6389 if (ull >= dwarf2_per_objfile->n_type_units)
6390 {
6391 complaint (&symfile_complaints,
6392 _(".debug_names entry has bad TU index %s"
6393 " [in module %s]"),
6394 pulongest (ull),
6395 objfile_name (dwarf2_per_objfile->objfile));
6396 continue;
6397 }
6398 per_cu = dw2_get_cutu (dwarf2_per_objfile,
6399 dwarf2_per_objfile->n_comp_units + ull);
6400 break;
6401 case DW_IDX_GNU_internal:
6402 if (!m_map.augmentation_is_gdb)
6403 break;
6404 have_is_static = true;
6405 is_static = true;
6406 break;
6407 case DW_IDX_GNU_external:
6408 if (!m_map.augmentation_is_gdb)
6409 break;
6410 have_is_static = true;
6411 is_static = false;
6412 break;
6413 }
6414 }
6415
6416 /* Skip if already read in. */
6417 if (per_cu->v.quick->compunit_symtab)
6418 goto again;
6419
6420 /* Check static vs global. */
6421 if (have_is_static)
6422 {
6423 const bool want_static = m_block_index != GLOBAL_BLOCK;
6424 if (m_want_specific_block && want_static != is_static)
6425 goto again;
6426 }
6427
6428 /* Match dw2_symtab_iter_next, symbol_kind
6429 and debug_names::psymbol_tag. */
6430 switch (m_domain)
6431 {
6432 case VAR_DOMAIN:
6433 switch (indexval.dwarf_tag)
6434 {
6435 case DW_TAG_variable:
6436 case DW_TAG_subprogram:
6437 /* Some types are also in VAR_DOMAIN. */
6438 case DW_TAG_typedef:
6439 case DW_TAG_structure_type:
6440 break;
6441 default:
6442 goto again;
6443 }
6444 break;
6445 case STRUCT_DOMAIN:
6446 switch (indexval.dwarf_tag)
6447 {
6448 case DW_TAG_typedef:
6449 case DW_TAG_structure_type:
6450 break;
6451 default:
6452 goto again;
6453 }
6454 break;
6455 case LABEL_DOMAIN:
6456 switch (indexval.dwarf_tag)
6457 {
6458 case 0:
6459 case DW_TAG_variable:
6460 break;
6461 default:
6462 goto again;
6463 }
6464 break;
6465 default:
6466 break;
6467 }
6468
6469 /* Match dw2_expand_symtabs_matching, symbol_kind and
6470 debug_names::psymbol_tag. */
6471 switch (m_search)
6472 {
6473 case VARIABLES_DOMAIN:
6474 switch (indexval.dwarf_tag)
6475 {
6476 case DW_TAG_variable:
6477 break;
6478 default:
6479 goto again;
6480 }
6481 break;
6482 case FUNCTIONS_DOMAIN:
6483 switch (indexval.dwarf_tag)
6484 {
6485 case DW_TAG_subprogram:
6486 break;
6487 default:
6488 goto again;
6489 }
6490 break;
6491 case TYPES_DOMAIN:
6492 switch (indexval.dwarf_tag)
6493 {
6494 case DW_TAG_typedef:
6495 case DW_TAG_structure_type:
6496 break;
6497 default:
6498 goto again;
6499 }
6500 break;
6501 default:
6502 break;
6503 }
6504
6505 return per_cu;
6506 }
6507
6508 static struct compunit_symtab *
6509 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6510 const char *name, domain_enum domain)
6511 {
6512 const block_enum block_index = static_cast<block_enum> (block_index_int);
6513 struct dwarf2_per_objfile *dwarf2_per_objfile
6514 = get_dwarf2_per_objfile (objfile);
6515
6516 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6517 if (!mapp)
6518 {
6519 /* index is NULL if OBJF_READNOW. */
6520 return NULL;
6521 }
6522 const auto &map = *mapp;
6523
6524 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6525 block_index, domain, name);
6526
6527 struct compunit_symtab *stab_best = NULL;
6528 struct dwarf2_per_cu_data *per_cu;
6529 while ((per_cu = iter.next ()) != NULL)
6530 {
6531 struct symbol *sym, *with_opaque = NULL;
6532 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
6533 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6534 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6535
6536 sym = block_find_symbol (block, name, domain,
6537 block_find_non_opaque_type_preferred,
6538 &with_opaque);
6539
6540 /* Some caution must be observed with overloaded functions and
6541 methods, since the index will not contain any overload
6542 information (but NAME might contain it). */
6543
6544 if (sym != NULL
6545 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6546 return stab;
6547 if (with_opaque != NULL
6548 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6549 stab_best = stab;
6550
6551 /* Keep looking through other CUs. */
6552 }
6553
6554 return stab_best;
6555 }
6556
6557 /* This dumps minimal information about .debug_names. It is called
6558 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6559 uses this to verify that .debug_names has been loaded. */
6560
6561 static void
6562 dw2_debug_names_dump (struct objfile *objfile)
6563 {
6564 struct dwarf2_per_objfile *dwarf2_per_objfile
6565 = get_dwarf2_per_objfile (objfile);
6566
6567 gdb_assert (dwarf2_per_objfile->using_index);
6568 printf_filtered (".debug_names:");
6569 if (dwarf2_per_objfile->debug_names_table)
6570 printf_filtered (" exists\n");
6571 else
6572 printf_filtered (" faked for \"readnow\"\n");
6573 printf_filtered ("\n");
6574 }
6575
6576 static void
6577 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6578 const char *func_name)
6579 {
6580 struct dwarf2_per_objfile *dwarf2_per_objfile
6581 = get_dwarf2_per_objfile (objfile);
6582
6583 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6584 if (dwarf2_per_objfile->debug_names_table)
6585 {
6586 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6587
6588 /* Note: It doesn't matter what we pass for block_index here. */
6589 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6590 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6591
6592 struct dwarf2_per_cu_data *per_cu;
6593 while ((per_cu = iter.next ()) != NULL)
6594 dw2_instantiate_symtab (per_cu);
6595 }
6596 }
6597
6598 static void
6599 dw2_debug_names_expand_symtabs_matching
6600 (struct objfile *objfile,
6601 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6602 const lookup_name_info &lookup_name,
6603 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6604 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6605 enum search_domain kind)
6606 {
6607 struct dwarf2_per_objfile *dwarf2_per_objfile
6608 = get_dwarf2_per_objfile (objfile);
6609
6610 /* debug_names_table is NULL if OBJF_READNOW. */
6611 if (!dwarf2_per_objfile->debug_names_table)
6612 return;
6613
6614 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6615
6616 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6617
6618 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6619 symbol_matcher,
6620 kind, [&] (offset_type namei)
6621 {
6622 /* The name was matched, now expand corresponding CUs that were
6623 marked. */
6624 dw2_debug_names_iterator iter (map, kind, namei);
6625
6626 struct dwarf2_per_cu_data *per_cu;
6627 while ((per_cu = iter.next ()) != NULL)
6628 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6629 expansion_notify);
6630 });
6631 }
6632
6633 const struct quick_symbol_functions dwarf2_debug_names_functions =
6634 {
6635 dw2_has_symbols,
6636 dw2_find_last_source_symtab,
6637 dw2_forget_cached_source_info,
6638 dw2_map_symtabs_matching_filename,
6639 dw2_debug_names_lookup_symbol,
6640 dw2_print_stats,
6641 dw2_debug_names_dump,
6642 dw2_relocate,
6643 dw2_debug_names_expand_symtabs_for_function,
6644 dw2_expand_all_symtabs,
6645 dw2_expand_symtabs_with_fullname,
6646 dw2_map_matching_symbols,
6647 dw2_debug_names_expand_symtabs_matching,
6648 dw2_find_pc_sect_compunit_symtab,
6649 NULL,
6650 dw2_map_symbol_filenames
6651 };
6652
6653 /* See symfile.h. */
6654
6655 bool
6656 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6657 {
6658 struct dwarf2_per_objfile *dwarf2_per_objfile
6659 = get_dwarf2_per_objfile (objfile);
6660
6661 /* If we're about to read full symbols, don't bother with the
6662 indices. In this case we also don't care if some other debug
6663 format is making psymtabs, because they are all about to be
6664 expanded anyway. */
6665 if ((objfile->flags & OBJF_READNOW))
6666 {
6667 int i;
6668
6669 dwarf2_per_objfile->using_index = 1;
6670 create_all_comp_units (dwarf2_per_objfile);
6671 create_all_type_units (dwarf2_per_objfile);
6672 dwarf2_per_objfile->quick_file_names_table =
6673 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
6674
6675 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
6676 + dwarf2_per_objfile->n_type_units); ++i)
6677 {
6678 dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
6679
6680 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6681 struct dwarf2_per_cu_quick_data);
6682 }
6683
6684 /* Return 1 so that gdb sees the "quick" functions. However,
6685 these functions will be no-ops because we will have expanded
6686 all symtabs. */
6687 *index_kind = dw_index_kind::GDB_INDEX;
6688 return true;
6689 }
6690
6691 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6692 {
6693 *index_kind = dw_index_kind::DEBUG_NAMES;
6694 return true;
6695 }
6696
6697 if (dwarf2_read_index (objfile))
6698 {
6699 *index_kind = dw_index_kind::GDB_INDEX;
6700 return true;
6701 }
6702
6703 return false;
6704 }
6705
6706 \f
6707
6708 /* Build a partial symbol table. */
6709
6710 void
6711 dwarf2_build_psymtabs (struct objfile *objfile)
6712 {
6713 struct dwarf2_per_objfile *dwarf2_per_objfile
6714 = get_dwarf2_per_objfile (objfile);
6715
6716 if (objfile->global_psymbols.capacity () == 0
6717 && objfile->static_psymbols.capacity () == 0)
6718 init_psymbol_list (objfile, 1024);
6719
6720 TRY
6721 {
6722 /* This isn't really ideal: all the data we allocate on the
6723 objfile's obstack is still uselessly kept around. However,
6724 freeing it seems unsafe. */
6725 psymtab_discarder psymtabs (objfile);
6726 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6727 psymtabs.keep ();
6728 }
6729 CATCH (except, RETURN_MASK_ERROR)
6730 {
6731 exception_print (gdb_stderr, except);
6732 }
6733 END_CATCH
6734 }
6735
6736 /* Return the total length of the CU described by HEADER. */
6737
6738 static unsigned int
6739 get_cu_length (const struct comp_unit_head *header)
6740 {
6741 return header->initial_length_size + header->length;
6742 }
6743
6744 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6745
6746 static inline bool
6747 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6748 {
6749 sect_offset bottom = cu_header->sect_off;
6750 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6751
6752 return sect_off >= bottom && sect_off < top;
6753 }
6754
6755 /* Find the base address of the compilation unit for range lists and
6756 location lists. It will normally be specified by DW_AT_low_pc.
6757 In DWARF-3 draft 4, the base address could be overridden by
6758 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6759 compilation units with discontinuous ranges. */
6760
6761 static void
6762 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6763 {
6764 struct attribute *attr;
6765
6766 cu->base_known = 0;
6767 cu->base_address = 0;
6768
6769 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6770 if (attr)
6771 {
6772 cu->base_address = attr_value_as_address (attr);
6773 cu->base_known = 1;
6774 }
6775 else
6776 {
6777 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6778 if (attr)
6779 {
6780 cu->base_address = attr_value_as_address (attr);
6781 cu->base_known = 1;
6782 }
6783 }
6784 }
6785
6786 /* Read in the comp unit header information from the debug_info at info_ptr.
6787 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6788 NOTE: This leaves members offset, first_die_offset to be filled in
6789 by the caller. */
6790
6791 static const gdb_byte *
6792 read_comp_unit_head (struct comp_unit_head *cu_header,
6793 const gdb_byte *info_ptr,
6794 struct dwarf2_section_info *section,
6795 rcuh_kind section_kind)
6796 {
6797 int signed_addr;
6798 unsigned int bytes_read;
6799 const char *filename = get_section_file_name (section);
6800 bfd *abfd = get_section_bfd_owner (section);
6801
6802 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6803 cu_header->initial_length_size = bytes_read;
6804 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6805 info_ptr += bytes_read;
6806 cu_header->version = read_2_bytes (abfd, info_ptr);
6807 info_ptr += 2;
6808 if (cu_header->version < 5)
6809 switch (section_kind)
6810 {
6811 case rcuh_kind::COMPILE:
6812 cu_header->unit_type = DW_UT_compile;
6813 break;
6814 case rcuh_kind::TYPE:
6815 cu_header->unit_type = DW_UT_type;
6816 break;
6817 default:
6818 internal_error (__FILE__, __LINE__,
6819 _("read_comp_unit_head: invalid section_kind"));
6820 }
6821 else
6822 {
6823 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6824 (read_1_byte (abfd, info_ptr));
6825 info_ptr += 1;
6826 switch (cu_header->unit_type)
6827 {
6828 case DW_UT_compile:
6829 if (section_kind != rcuh_kind::COMPILE)
6830 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6831 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6832 filename);
6833 break;
6834 case DW_UT_type:
6835 section_kind = rcuh_kind::TYPE;
6836 break;
6837 default:
6838 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6839 "(is %d, should be %d or %d) [in module %s]"),
6840 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6841 }
6842
6843 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6844 info_ptr += 1;
6845 }
6846 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6847 cu_header,
6848 &bytes_read);
6849 info_ptr += bytes_read;
6850 if (cu_header->version < 5)
6851 {
6852 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6853 info_ptr += 1;
6854 }
6855 signed_addr = bfd_get_sign_extend_vma (abfd);
6856 if (signed_addr < 0)
6857 internal_error (__FILE__, __LINE__,
6858 _("read_comp_unit_head: dwarf from non elf file"));
6859 cu_header->signed_addr_p = signed_addr;
6860
6861 if (section_kind == rcuh_kind::TYPE)
6862 {
6863 LONGEST type_offset;
6864
6865 cu_header->signature = read_8_bytes (abfd, info_ptr);
6866 info_ptr += 8;
6867
6868 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6869 info_ptr += bytes_read;
6870 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6871 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6872 error (_("Dwarf Error: Too big type_offset in compilation unit "
6873 "header (is %s) [in module %s]"), plongest (type_offset),
6874 filename);
6875 }
6876
6877 return info_ptr;
6878 }
6879
6880 /* Helper function that returns the proper abbrev section for
6881 THIS_CU. */
6882
6883 static struct dwarf2_section_info *
6884 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6885 {
6886 struct dwarf2_section_info *abbrev;
6887 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6888
6889 if (this_cu->is_dwz)
6890 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6891 else
6892 abbrev = &dwarf2_per_objfile->abbrev;
6893
6894 return abbrev;
6895 }
6896
6897 /* Subroutine of read_and_check_comp_unit_head and
6898 read_and_check_type_unit_head to simplify them.
6899 Perform various error checking on the header. */
6900
6901 static void
6902 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6903 struct comp_unit_head *header,
6904 struct dwarf2_section_info *section,
6905 struct dwarf2_section_info *abbrev_section)
6906 {
6907 const char *filename = get_section_file_name (section);
6908
6909 if (header->version < 2 || header->version > 5)
6910 error (_("Dwarf Error: wrong version in compilation unit header "
6911 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
6912 filename);
6913
6914 if (to_underlying (header->abbrev_sect_off)
6915 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6916 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6917 "(offset %s + 6) [in module %s]"),
6918 sect_offset_str (header->abbrev_sect_off),
6919 sect_offset_str (header->sect_off),
6920 filename);
6921
6922 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6923 avoid potential 32-bit overflow. */
6924 if (((ULONGEST) header->sect_off + get_cu_length (header))
6925 > section->size)
6926 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6927 "(offset %s + 0) [in module %s]"),
6928 header->length, sect_offset_str (header->sect_off),
6929 filename);
6930 }
6931
6932 /* Read in a CU/TU header and perform some basic error checking.
6933 The contents of the header are stored in HEADER.
6934 The result is a pointer to the start of the first DIE. */
6935
6936 static const gdb_byte *
6937 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6938 struct comp_unit_head *header,
6939 struct dwarf2_section_info *section,
6940 struct dwarf2_section_info *abbrev_section,
6941 const gdb_byte *info_ptr,
6942 rcuh_kind section_kind)
6943 {
6944 const gdb_byte *beg_of_comp_unit = info_ptr;
6945
6946 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6947
6948 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6949
6950 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6951
6952 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6953 abbrev_section);
6954
6955 return info_ptr;
6956 }
6957
6958 /* Fetch the abbreviation table offset from a comp or type unit header. */
6959
6960 static sect_offset
6961 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6962 struct dwarf2_section_info *section,
6963 sect_offset sect_off)
6964 {
6965 bfd *abfd = get_section_bfd_owner (section);
6966 const gdb_byte *info_ptr;
6967 unsigned int initial_length_size, offset_size;
6968 uint16_t version;
6969
6970 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6971 info_ptr = section->buffer + to_underlying (sect_off);
6972 read_initial_length (abfd, info_ptr, &initial_length_size);
6973 offset_size = initial_length_size == 4 ? 4 : 8;
6974 info_ptr += initial_length_size;
6975
6976 version = read_2_bytes (abfd, info_ptr);
6977 info_ptr += 2;
6978 if (version >= 5)
6979 {
6980 /* Skip unit type and address size. */
6981 info_ptr += 2;
6982 }
6983
6984 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6985 }
6986
6987 /* Allocate a new partial symtab for file named NAME and mark this new
6988 partial symtab as being an include of PST. */
6989
6990 static void
6991 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6992 struct objfile *objfile)
6993 {
6994 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6995
6996 if (!IS_ABSOLUTE_PATH (subpst->filename))
6997 {
6998 /* It shares objfile->objfile_obstack. */
6999 subpst->dirname = pst->dirname;
7000 }
7001
7002 subpst->textlow = 0;
7003 subpst->texthigh = 0;
7004
7005 subpst->dependencies
7006 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
7007 subpst->dependencies[0] = pst;
7008 subpst->number_of_dependencies = 1;
7009
7010 subpst->globals_offset = 0;
7011 subpst->n_global_syms = 0;
7012 subpst->statics_offset = 0;
7013 subpst->n_static_syms = 0;
7014 subpst->compunit_symtab = NULL;
7015 subpst->read_symtab = pst->read_symtab;
7016 subpst->readin = 0;
7017
7018 /* No private part is necessary for include psymtabs. This property
7019 can be used to differentiate between such include psymtabs and
7020 the regular ones. */
7021 subpst->read_symtab_private = NULL;
7022 }
7023
7024 /* Read the Line Number Program data and extract the list of files
7025 included by the source file represented by PST. Build an include
7026 partial symtab for each of these included files. */
7027
7028 static void
7029 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
7030 struct die_info *die,
7031 struct partial_symtab *pst)
7032 {
7033 line_header_up lh;
7034 struct attribute *attr;
7035
7036 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7037 if (attr)
7038 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
7039 if (lh == NULL)
7040 return; /* No linetable, so no includes. */
7041
7042 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
7043 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
7044 }
7045
7046 static hashval_t
7047 hash_signatured_type (const void *item)
7048 {
7049 const struct signatured_type *sig_type
7050 = (const struct signatured_type *) item;
7051
7052 /* This drops the top 32 bits of the signature, but is ok for a hash. */
7053 return sig_type->signature;
7054 }
7055
7056 static int
7057 eq_signatured_type (const void *item_lhs, const void *item_rhs)
7058 {
7059 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
7060 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
7061
7062 return lhs->signature == rhs->signature;
7063 }
7064
7065 /* Allocate a hash table for signatured types. */
7066
7067 static htab_t
7068 allocate_signatured_type_table (struct objfile *objfile)
7069 {
7070 return htab_create_alloc_ex (41,
7071 hash_signatured_type,
7072 eq_signatured_type,
7073 NULL,
7074 &objfile->objfile_obstack,
7075 hashtab_obstack_allocate,
7076 dummy_obstack_deallocate);
7077 }
7078
7079 /* A helper function to add a signatured type CU to a table. */
7080
7081 static int
7082 add_signatured_type_cu_to_table (void **slot, void *datum)
7083 {
7084 struct signatured_type *sigt = (struct signatured_type *) *slot;
7085 struct signatured_type ***datap = (struct signatured_type ***) datum;
7086
7087 **datap = sigt;
7088 ++*datap;
7089
7090 return 1;
7091 }
7092
7093 /* A helper for create_debug_types_hash_table. Read types from SECTION
7094 and fill them into TYPES_HTAB. It will process only type units,
7095 therefore DW_UT_type. */
7096
7097 static void
7098 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7099 struct dwo_file *dwo_file,
7100 dwarf2_section_info *section, htab_t &types_htab,
7101 rcuh_kind section_kind)
7102 {
7103 struct objfile *objfile = dwarf2_per_objfile->objfile;
7104 struct dwarf2_section_info *abbrev_section;
7105 bfd *abfd;
7106 const gdb_byte *info_ptr, *end_ptr;
7107
7108 abbrev_section = (dwo_file != NULL
7109 ? &dwo_file->sections.abbrev
7110 : &dwarf2_per_objfile->abbrev);
7111
7112 if (dwarf_read_debug)
7113 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
7114 get_section_name (section),
7115 get_section_file_name (abbrev_section));
7116
7117 dwarf2_read_section (objfile, section);
7118 info_ptr = section->buffer;
7119
7120 if (info_ptr == NULL)
7121 return;
7122
7123 /* We can't set abfd until now because the section may be empty or
7124 not present, in which case the bfd is unknown. */
7125 abfd = get_section_bfd_owner (section);
7126
7127 /* We don't use init_cutu_and_read_dies_simple, or some such, here
7128 because we don't need to read any dies: the signature is in the
7129 header. */
7130
7131 end_ptr = info_ptr + section->size;
7132 while (info_ptr < end_ptr)
7133 {
7134 struct signatured_type *sig_type;
7135 struct dwo_unit *dwo_tu;
7136 void **slot;
7137 const gdb_byte *ptr = info_ptr;
7138 struct comp_unit_head header;
7139 unsigned int length;
7140
7141 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
7142
7143 /* Initialize it due to a false compiler warning. */
7144 header.signature = -1;
7145 header.type_cu_offset_in_tu = (cu_offset) -1;
7146
7147 /* We need to read the type's signature in order to build the hash
7148 table, but we don't need anything else just yet. */
7149
7150 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
7151 abbrev_section, ptr, section_kind);
7152
7153 length = get_cu_length (&header);
7154
7155 /* Skip dummy type units. */
7156 if (ptr >= info_ptr + length
7157 || peek_abbrev_code (abfd, ptr) == 0
7158 || header.unit_type != DW_UT_type)
7159 {
7160 info_ptr += length;
7161 continue;
7162 }
7163
7164 if (types_htab == NULL)
7165 {
7166 if (dwo_file)
7167 types_htab = allocate_dwo_unit_table (objfile);
7168 else
7169 types_htab = allocate_signatured_type_table (objfile);
7170 }
7171
7172 if (dwo_file)
7173 {
7174 sig_type = NULL;
7175 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7176 struct dwo_unit);
7177 dwo_tu->dwo_file = dwo_file;
7178 dwo_tu->signature = header.signature;
7179 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
7180 dwo_tu->section = section;
7181 dwo_tu->sect_off = sect_off;
7182 dwo_tu->length = length;
7183 }
7184 else
7185 {
7186 /* N.B.: type_offset is not usable if this type uses a DWO file.
7187 The real type_offset is in the DWO file. */
7188 dwo_tu = NULL;
7189 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7190 struct signatured_type);
7191 sig_type->signature = header.signature;
7192 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
7193 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7194 sig_type->per_cu.is_debug_types = 1;
7195 sig_type->per_cu.section = section;
7196 sig_type->per_cu.sect_off = sect_off;
7197 sig_type->per_cu.length = length;
7198 }
7199
7200 slot = htab_find_slot (types_htab,
7201 dwo_file ? (void*) dwo_tu : (void *) sig_type,
7202 INSERT);
7203 gdb_assert (slot != NULL);
7204 if (*slot != NULL)
7205 {
7206 sect_offset dup_sect_off;
7207
7208 if (dwo_file)
7209 {
7210 const struct dwo_unit *dup_tu
7211 = (const struct dwo_unit *) *slot;
7212
7213 dup_sect_off = dup_tu->sect_off;
7214 }
7215 else
7216 {
7217 const struct signatured_type *dup_tu
7218 = (const struct signatured_type *) *slot;
7219
7220 dup_sect_off = dup_tu->per_cu.sect_off;
7221 }
7222
7223 complaint (&symfile_complaints,
7224 _("debug type entry at offset %s is duplicate to"
7225 " the entry at offset %s, signature %s"),
7226 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
7227 hex_string (header.signature));
7228 }
7229 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
7230
7231 if (dwarf_read_debug > 1)
7232 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
7233 sect_offset_str (sect_off),
7234 hex_string (header.signature));
7235
7236 info_ptr += length;
7237 }
7238 }
7239
7240 /* Create the hash table of all entries in the .debug_types
7241 (or .debug_types.dwo) section(s).
7242 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
7243 otherwise it is NULL.
7244
7245 The result is a pointer to the hash table or NULL if there are no types.
7246
7247 Note: This function processes DWO files only, not DWP files. */
7248
7249 static void
7250 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
7251 struct dwo_file *dwo_file,
7252 VEC (dwarf2_section_info_def) *types,
7253 htab_t &types_htab)
7254 {
7255 int ix;
7256 struct dwarf2_section_info *section;
7257
7258 if (VEC_empty (dwarf2_section_info_def, types))
7259 return;
7260
7261 for (ix = 0;
7262 VEC_iterate (dwarf2_section_info_def, types, ix, section);
7263 ++ix)
7264 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
7265 types_htab, rcuh_kind::TYPE);
7266 }
7267
7268 /* Create the hash table of all entries in the .debug_types section,
7269 and initialize all_type_units.
7270 The result is zero if there is an error (e.g. missing .debug_types section),
7271 otherwise non-zero. */
7272
7273 static int
7274 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7275 {
7276 htab_t types_htab = NULL;
7277 struct signatured_type **iter;
7278
7279 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
7280 &dwarf2_per_objfile->info, types_htab,
7281 rcuh_kind::COMPILE);
7282 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
7283 dwarf2_per_objfile->types, types_htab);
7284 if (types_htab == NULL)
7285 {
7286 dwarf2_per_objfile->signatured_types = NULL;
7287 return 0;
7288 }
7289
7290 dwarf2_per_objfile->signatured_types = types_htab;
7291
7292 dwarf2_per_objfile->n_type_units
7293 = dwarf2_per_objfile->n_allocated_type_units
7294 = htab_elements (types_htab);
7295 dwarf2_per_objfile->all_type_units =
7296 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
7297 iter = &dwarf2_per_objfile->all_type_units[0];
7298 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
7299 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
7300 == dwarf2_per_objfile->n_type_units);
7301
7302 return 1;
7303 }
7304
7305 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
7306 If SLOT is non-NULL, it is the entry to use in the hash table.
7307 Otherwise we find one. */
7308
7309 static struct signatured_type *
7310 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
7311 void **slot)
7312 {
7313 struct objfile *objfile = dwarf2_per_objfile->objfile;
7314 int n_type_units = dwarf2_per_objfile->n_type_units;
7315 struct signatured_type *sig_type;
7316
7317 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
7318 ++n_type_units;
7319 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
7320 {
7321 if (dwarf2_per_objfile->n_allocated_type_units == 0)
7322 dwarf2_per_objfile->n_allocated_type_units = 1;
7323 dwarf2_per_objfile->n_allocated_type_units *= 2;
7324 dwarf2_per_objfile->all_type_units
7325 = XRESIZEVEC (struct signatured_type *,
7326 dwarf2_per_objfile->all_type_units,
7327 dwarf2_per_objfile->n_allocated_type_units);
7328 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
7329 }
7330 dwarf2_per_objfile->n_type_units = n_type_units;
7331
7332 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7333 struct signatured_type);
7334 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
7335 sig_type->signature = sig;
7336 sig_type->per_cu.is_debug_types = 1;
7337 if (dwarf2_per_objfile->using_index)
7338 {
7339 sig_type->per_cu.v.quick =
7340 OBSTACK_ZALLOC (&objfile->objfile_obstack,
7341 struct dwarf2_per_cu_quick_data);
7342 }
7343
7344 if (slot == NULL)
7345 {
7346 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7347 sig_type, INSERT);
7348 }
7349 gdb_assert (*slot == NULL);
7350 *slot = sig_type;
7351 /* The rest of sig_type must be filled in by the caller. */
7352 return sig_type;
7353 }
7354
7355 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
7356 Fill in SIG_ENTRY with DWO_ENTRY. */
7357
7358 static void
7359 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
7360 struct signatured_type *sig_entry,
7361 struct dwo_unit *dwo_entry)
7362 {
7363 /* Make sure we're not clobbering something we don't expect to. */
7364 gdb_assert (! sig_entry->per_cu.queued);
7365 gdb_assert (sig_entry->per_cu.cu == NULL);
7366 if (dwarf2_per_objfile->using_index)
7367 {
7368 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7369 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7370 }
7371 else
7372 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7373 gdb_assert (sig_entry->signature == dwo_entry->signature);
7374 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7375 gdb_assert (sig_entry->type_unit_group == NULL);
7376 gdb_assert (sig_entry->dwo_unit == NULL);
7377
7378 sig_entry->per_cu.section = dwo_entry->section;
7379 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7380 sig_entry->per_cu.length = dwo_entry->length;
7381 sig_entry->per_cu.reading_dwo_directly = 1;
7382 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7383 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7384 sig_entry->dwo_unit = dwo_entry;
7385 }
7386
7387 /* Subroutine of lookup_signatured_type.
7388 If we haven't read the TU yet, create the signatured_type data structure
7389 for a TU to be read in directly from a DWO file, bypassing the stub.
7390 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7391 using .gdb_index, then when reading a CU we want to stay in the DWO file
7392 containing that CU. Otherwise we could end up reading several other DWO
7393 files (due to comdat folding) to process the transitive closure of all the
7394 mentioned TUs, and that can be slow. The current DWO file will have every
7395 type signature that it needs.
7396 We only do this for .gdb_index because in the psymtab case we already have
7397 to read all the DWOs to build the type unit groups. */
7398
7399 static struct signatured_type *
7400 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7401 {
7402 struct dwarf2_per_objfile *dwarf2_per_objfile
7403 = cu->per_cu->dwarf2_per_objfile;
7404 struct objfile *objfile = dwarf2_per_objfile->objfile;
7405 struct dwo_file *dwo_file;
7406 struct dwo_unit find_dwo_entry, *dwo_entry;
7407 struct signatured_type find_sig_entry, *sig_entry;
7408 void **slot;
7409
7410 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7411
7412 /* If TU skeletons have been removed then we may not have read in any
7413 TUs yet. */
7414 if (dwarf2_per_objfile->signatured_types == NULL)
7415 {
7416 dwarf2_per_objfile->signatured_types
7417 = allocate_signatured_type_table (objfile);
7418 }
7419
7420 /* We only ever need to read in one copy of a signatured type.
7421 Use the global signatured_types array to do our own comdat-folding
7422 of types. If this is the first time we're reading this TU, and
7423 the TU has an entry in .gdb_index, replace the recorded data from
7424 .gdb_index with this TU. */
7425
7426 find_sig_entry.signature = sig;
7427 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7428 &find_sig_entry, INSERT);
7429 sig_entry = (struct signatured_type *) *slot;
7430
7431 /* We can get here with the TU already read, *or* in the process of being
7432 read. Don't reassign the global entry to point to this DWO if that's
7433 the case. Also note that if the TU is already being read, it may not
7434 have come from a DWO, the program may be a mix of Fission-compiled
7435 code and non-Fission-compiled code. */
7436
7437 /* Have we already tried to read this TU?
7438 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7439 needn't exist in the global table yet). */
7440 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7441 return sig_entry;
7442
7443 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7444 dwo_unit of the TU itself. */
7445 dwo_file = cu->dwo_unit->dwo_file;
7446
7447 /* Ok, this is the first time we're reading this TU. */
7448 if (dwo_file->tus == NULL)
7449 return NULL;
7450 find_dwo_entry.signature = sig;
7451 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7452 if (dwo_entry == NULL)
7453 return NULL;
7454
7455 /* If the global table doesn't have an entry for this TU, add one. */
7456 if (sig_entry == NULL)
7457 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7458
7459 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7460 sig_entry->per_cu.tu_read = 1;
7461 return sig_entry;
7462 }
7463
7464 /* Subroutine of lookup_signatured_type.
7465 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7466 then try the DWP file. If the TU stub (skeleton) has been removed then
7467 it won't be in .gdb_index. */
7468
7469 static struct signatured_type *
7470 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7471 {
7472 struct dwarf2_per_objfile *dwarf2_per_objfile
7473 = cu->per_cu->dwarf2_per_objfile;
7474 struct objfile *objfile = dwarf2_per_objfile->objfile;
7475 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7476 struct dwo_unit *dwo_entry;
7477 struct signatured_type find_sig_entry, *sig_entry;
7478 void **slot;
7479
7480 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7481 gdb_assert (dwp_file != NULL);
7482
7483 /* If TU skeletons have been removed then we may not have read in any
7484 TUs yet. */
7485 if (dwarf2_per_objfile->signatured_types == NULL)
7486 {
7487 dwarf2_per_objfile->signatured_types
7488 = allocate_signatured_type_table (objfile);
7489 }
7490
7491 find_sig_entry.signature = sig;
7492 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7493 &find_sig_entry, INSERT);
7494 sig_entry = (struct signatured_type *) *slot;
7495
7496 /* Have we already tried to read this TU?
7497 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7498 needn't exist in the global table yet). */
7499 if (sig_entry != NULL)
7500 return sig_entry;
7501
7502 if (dwp_file->tus == NULL)
7503 return NULL;
7504 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7505 sig, 1 /* is_debug_types */);
7506 if (dwo_entry == NULL)
7507 return NULL;
7508
7509 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7510 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7511
7512 return sig_entry;
7513 }
7514
7515 /* Lookup a signature based type for DW_FORM_ref_sig8.
7516 Returns NULL if signature SIG is not present in the table.
7517 It is up to the caller to complain about this. */
7518
7519 static struct signatured_type *
7520 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7521 {
7522 struct dwarf2_per_objfile *dwarf2_per_objfile
7523 = cu->per_cu->dwarf2_per_objfile;
7524
7525 if (cu->dwo_unit
7526 && dwarf2_per_objfile->using_index)
7527 {
7528 /* We're in a DWO/DWP file, and we're using .gdb_index.
7529 These cases require special processing. */
7530 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7531 return lookup_dwo_signatured_type (cu, sig);
7532 else
7533 return lookup_dwp_signatured_type (cu, sig);
7534 }
7535 else
7536 {
7537 struct signatured_type find_entry, *entry;
7538
7539 if (dwarf2_per_objfile->signatured_types == NULL)
7540 return NULL;
7541 find_entry.signature = sig;
7542 entry = ((struct signatured_type *)
7543 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7544 return entry;
7545 }
7546 }
7547 \f
7548 /* Low level DIE reading support. */
7549
7550 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7551
7552 static void
7553 init_cu_die_reader (struct die_reader_specs *reader,
7554 struct dwarf2_cu *cu,
7555 struct dwarf2_section_info *section,
7556 struct dwo_file *dwo_file,
7557 struct abbrev_table *abbrev_table)
7558 {
7559 gdb_assert (section->readin && section->buffer != NULL);
7560 reader->abfd = get_section_bfd_owner (section);
7561 reader->cu = cu;
7562 reader->dwo_file = dwo_file;
7563 reader->die_section = section;
7564 reader->buffer = section->buffer;
7565 reader->buffer_end = section->buffer + section->size;
7566 reader->comp_dir = NULL;
7567 reader->abbrev_table = abbrev_table;
7568 }
7569
7570 /* Subroutine of init_cutu_and_read_dies to simplify it.
7571 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7572 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7573 already.
7574
7575 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7576 from it to the DIE in the DWO. If NULL we are skipping the stub.
7577 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7578 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7579 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7580 STUB_COMP_DIR may be non-NULL.
7581 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7582 are filled in with the info of the DIE from the DWO file.
7583 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7584 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7585 kept around for at least as long as *RESULT_READER.
7586
7587 The result is non-zero if a valid (non-dummy) DIE was found. */
7588
7589 static int
7590 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7591 struct dwo_unit *dwo_unit,
7592 struct die_info *stub_comp_unit_die,
7593 const char *stub_comp_dir,
7594 struct die_reader_specs *result_reader,
7595 const gdb_byte **result_info_ptr,
7596 struct die_info **result_comp_unit_die,
7597 int *result_has_children,
7598 abbrev_table_up *result_dwo_abbrev_table)
7599 {
7600 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7601 struct objfile *objfile = dwarf2_per_objfile->objfile;
7602 struct dwarf2_cu *cu = this_cu->cu;
7603 bfd *abfd;
7604 const gdb_byte *begin_info_ptr, *info_ptr;
7605 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7606 int i,num_extra_attrs;
7607 struct dwarf2_section_info *dwo_abbrev_section;
7608 struct attribute *attr;
7609 struct die_info *comp_unit_die;
7610
7611 /* At most one of these may be provided. */
7612 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7613
7614 /* These attributes aren't processed until later:
7615 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7616 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7617 referenced later. However, these attributes are found in the stub
7618 which we won't have later. In order to not impose this complication
7619 on the rest of the code, we read them here and copy them to the
7620 DWO CU/TU die. */
7621
7622 stmt_list = NULL;
7623 low_pc = NULL;
7624 high_pc = NULL;
7625 ranges = NULL;
7626 comp_dir = NULL;
7627
7628 if (stub_comp_unit_die != NULL)
7629 {
7630 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7631 DWO file. */
7632 if (! this_cu->is_debug_types)
7633 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7634 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7635 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7636 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7637 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7638
7639 /* There should be a DW_AT_addr_base attribute here (if needed).
7640 We need the value before we can process DW_FORM_GNU_addr_index. */
7641 cu->addr_base = 0;
7642 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7643 if (attr)
7644 cu->addr_base = DW_UNSND (attr);
7645
7646 /* There should be a DW_AT_ranges_base attribute here (if needed).
7647 We need the value before we can process DW_AT_ranges. */
7648 cu->ranges_base = 0;
7649 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7650 if (attr)
7651 cu->ranges_base = DW_UNSND (attr);
7652 }
7653 else if (stub_comp_dir != NULL)
7654 {
7655 /* Reconstruct the comp_dir attribute to simplify the code below. */
7656 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7657 comp_dir->name = DW_AT_comp_dir;
7658 comp_dir->form = DW_FORM_string;
7659 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7660 DW_STRING (comp_dir) = stub_comp_dir;
7661 }
7662
7663 /* Set up for reading the DWO CU/TU. */
7664 cu->dwo_unit = dwo_unit;
7665 dwarf2_section_info *section = dwo_unit->section;
7666 dwarf2_read_section (objfile, section);
7667 abfd = get_section_bfd_owner (section);
7668 begin_info_ptr = info_ptr = (section->buffer
7669 + to_underlying (dwo_unit->sect_off));
7670 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7671
7672 if (this_cu->is_debug_types)
7673 {
7674 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7675
7676 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7677 &cu->header, section,
7678 dwo_abbrev_section,
7679 info_ptr, rcuh_kind::TYPE);
7680 /* This is not an assert because it can be caused by bad debug info. */
7681 if (sig_type->signature != cu->header.signature)
7682 {
7683 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7684 " TU at offset %s [in module %s]"),
7685 hex_string (sig_type->signature),
7686 hex_string (cu->header.signature),
7687 sect_offset_str (dwo_unit->sect_off),
7688 bfd_get_filename (abfd));
7689 }
7690 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7691 /* For DWOs coming from DWP files, we don't know the CU length
7692 nor the type's offset in the TU until now. */
7693 dwo_unit->length = get_cu_length (&cu->header);
7694 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7695
7696 /* Establish the type offset that can be used to lookup the type.
7697 For DWO files, we don't know it until now. */
7698 sig_type->type_offset_in_section
7699 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7700 }
7701 else
7702 {
7703 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7704 &cu->header, section,
7705 dwo_abbrev_section,
7706 info_ptr, rcuh_kind::COMPILE);
7707 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7708 /* For DWOs coming from DWP files, we don't know the CU length
7709 until now. */
7710 dwo_unit->length = get_cu_length (&cu->header);
7711 }
7712
7713 *result_dwo_abbrev_table
7714 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7715 cu->header.abbrev_sect_off);
7716 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7717 result_dwo_abbrev_table->get ());
7718
7719 /* Read in the die, but leave space to copy over the attributes
7720 from the stub. This has the benefit of simplifying the rest of
7721 the code - all the work to maintain the illusion of a single
7722 DW_TAG_{compile,type}_unit DIE is done here. */
7723 num_extra_attrs = ((stmt_list != NULL)
7724 + (low_pc != NULL)
7725 + (high_pc != NULL)
7726 + (ranges != NULL)
7727 + (comp_dir != NULL));
7728 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7729 result_has_children, num_extra_attrs);
7730
7731 /* Copy over the attributes from the stub to the DIE we just read in. */
7732 comp_unit_die = *result_comp_unit_die;
7733 i = comp_unit_die->num_attrs;
7734 if (stmt_list != NULL)
7735 comp_unit_die->attrs[i++] = *stmt_list;
7736 if (low_pc != NULL)
7737 comp_unit_die->attrs[i++] = *low_pc;
7738 if (high_pc != NULL)
7739 comp_unit_die->attrs[i++] = *high_pc;
7740 if (ranges != NULL)
7741 comp_unit_die->attrs[i++] = *ranges;
7742 if (comp_dir != NULL)
7743 comp_unit_die->attrs[i++] = *comp_dir;
7744 comp_unit_die->num_attrs += num_extra_attrs;
7745
7746 if (dwarf_die_debug)
7747 {
7748 fprintf_unfiltered (gdb_stdlog,
7749 "Read die from %s@0x%x of %s:\n",
7750 get_section_name (section),
7751 (unsigned) (begin_info_ptr - section->buffer),
7752 bfd_get_filename (abfd));
7753 dump_die (comp_unit_die, dwarf_die_debug);
7754 }
7755
7756 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7757 TUs by skipping the stub and going directly to the entry in the DWO file.
7758 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7759 to get it via circuitous means. Blech. */
7760 if (comp_dir != NULL)
7761 result_reader->comp_dir = DW_STRING (comp_dir);
7762
7763 /* Skip dummy compilation units. */
7764 if (info_ptr >= begin_info_ptr + dwo_unit->length
7765 || peek_abbrev_code (abfd, info_ptr) == 0)
7766 return 0;
7767
7768 *result_info_ptr = info_ptr;
7769 return 1;
7770 }
7771
7772 /* Subroutine of init_cutu_and_read_dies to simplify it.
7773 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7774 Returns NULL if the specified DWO unit cannot be found. */
7775
7776 static struct dwo_unit *
7777 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7778 struct die_info *comp_unit_die)
7779 {
7780 struct dwarf2_cu *cu = this_cu->cu;
7781 ULONGEST signature;
7782 struct dwo_unit *dwo_unit;
7783 const char *comp_dir, *dwo_name;
7784
7785 gdb_assert (cu != NULL);
7786
7787 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7788 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7789 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7790
7791 if (this_cu->is_debug_types)
7792 {
7793 struct signatured_type *sig_type;
7794
7795 /* Since this_cu is the first member of struct signatured_type,
7796 we can go from a pointer to one to a pointer to the other. */
7797 sig_type = (struct signatured_type *) this_cu;
7798 signature = sig_type->signature;
7799 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7800 }
7801 else
7802 {
7803 struct attribute *attr;
7804
7805 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7806 if (! attr)
7807 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7808 " [in module %s]"),
7809 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7810 signature = DW_UNSND (attr);
7811 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7812 signature);
7813 }
7814
7815 return dwo_unit;
7816 }
7817
7818 /* Subroutine of init_cutu_and_read_dies to simplify it.
7819 See it for a description of the parameters.
7820 Read a TU directly from a DWO file, bypassing the stub. */
7821
7822 static void
7823 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7824 int use_existing_cu, int keep,
7825 die_reader_func_ftype *die_reader_func,
7826 void *data)
7827 {
7828 std::unique_ptr<dwarf2_cu> new_cu;
7829 struct signatured_type *sig_type;
7830 struct die_reader_specs reader;
7831 const gdb_byte *info_ptr;
7832 struct die_info *comp_unit_die;
7833 int has_children;
7834 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7835
7836 /* Verify we can do the following downcast, and that we have the
7837 data we need. */
7838 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7839 sig_type = (struct signatured_type *) this_cu;
7840 gdb_assert (sig_type->dwo_unit != NULL);
7841
7842 if (use_existing_cu && this_cu->cu != NULL)
7843 {
7844 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7845 /* There's no need to do the rereading_dwo_cu handling that
7846 init_cutu_and_read_dies does since we don't read the stub. */
7847 }
7848 else
7849 {
7850 /* If !use_existing_cu, this_cu->cu must be NULL. */
7851 gdb_assert (this_cu->cu == NULL);
7852 new_cu.reset (new dwarf2_cu (this_cu));
7853 }
7854
7855 /* A future optimization, if needed, would be to use an existing
7856 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7857 could share abbrev tables. */
7858
7859 /* The abbreviation table used by READER, this must live at least as long as
7860 READER. */
7861 abbrev_table_up dwo_abbrev_table;
7862
7863 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7864 NULL /* stub_comp_unit_die */,
7865 sig_type->dwo_unit->dwo_file->comp_dir,
7866 &reader, &info_ptr,
7867 &comp_unit_die, &has_children,
7868 &dwo_abbrev_table) == 0)
7869 {
7870 /* Dummy die. */
7871 return;
7872 }
7873
7874 /* All the "real" work is done here. */
7875 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7876
7877 /* This duplicates the code in init_cutu_and_read_dies,
7878 but the alternative is making the latter more complex.
7879 This function is only for the special case of using DWO files directly:
7880 no point in overly complicating the general case just to handle this. */
7881 if (new_cu != NULL && keep)
7882 {
7883 /* Link this CU into read_in_chain. */
7884 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7885 dwarf2_per_objfile->read_in_chain = this_cu;
7886 /* The chain owns it now. */
7887 new_cu.release ();
7888 }
7889 }
7890
7891 /* Initialize a CU (or TU) and read its DIEs.
7892 If the CU defers to a DWO file, read the DWO file as well.
7893
7894 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7895 Otherwise the table specified in the comp unit header is read in and used.
7896 This is an optimization for when we already have the abbrev table.
7897
7898 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7899 Otherwise, a new CU is allocated with xmalloc.
7900
7901 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7902 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7903
7904 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7905 linker) then DIE_READER_FUNC will not get called. */
7906
7907 static void
7908 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7909 struct abbrev_table *abbrev_table,
7910 int use_existing_cu, int keep,
7911 die_reader_func_ftype *die_reader_func,
7912 void *data)
7913 {
7914 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7915 struct objfile *objfile = dwarf2_per_objfile->objfile;
7916 struct dwarf2_section_info *section = this_cu->section;
7917 bfd *abfd = get_section_bfd_owner (section);
7918 struct dwarf2_cu *cu;
7919 const gdb_byte *begin_info_ptr, *info_ptr;
7920 struct die_reader_specs reader;
7921 struct die_info *comp_unit_die;
7922 int has_children;
7923 struct attribute *attr;
7924 struct signatured_type *sig_type = NULL;
7925 struct dwarf2_section_info *abbrev_section;
7926 /* Non-zero if CU currently points to a DWO file and we need to
7927 reread it. When this happens we need to reread the skeleton die
7928 before we can reread the DWO file (this only applies to CUs, not TUs). */
7929 int rereading_dwo_cu = 0;
7930
7931 if (dwarf_die_debug)
7932 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7933 this_cu->is_debug_types ? "type" : "comp",
7934 sect_offset_str (this_cu->sect_off));
7935
7936 if (use_existing_cu)
7937 gdb_assert (keep);
7938
7939 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7940 file (instead of going through the stub), short-circuit all of this. */
7941 if (this_cu->reading_dwo_directly)
7942 {
7943 /* Narrow down the scope of possibilities to have to understand. */
7944 gdb_assert (this_cu->is_debug_types);
7945 gdb_assert (abbrev_table == NULL);
7946 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7947 die_reader_func, data);
7948 return;
7949 }
7950
7951 /* This is cheap if the section is already read in. */
7952 dwarf2_read_section (objfile, section);
7953
7954 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7955
7956 abbrev_section = get_abbrev_section_for_cu (this_cu);
7957
7958 std::unique_ptr<dwarf2_cu> new_cu;
7959 if (use_existing_cu && this_cu->cu != NULL)
7960 {
7961 cu = this_cu->cu;
7962 /* If this CU is from a DWO file we need to start over, we need to
7963 refetch the attributes from the skeleton CU.
7964 This could be optimized by retrieving those attributes from when we
7965 were here the first time: the previous comp_unit_die was stored in
7966 comp_unit_obstack. But there's no data yet that we need this
7967 optimization. */
7968 if (cu->dwo_unit != NULL)
7969 rereading_dwo_cu = 1;
7970 }
7971 else
7972 {
7973 /* If !use_existing_cu, this_cu->cu must be NULL. */
7974 gdb_assert (this_cu->cu == NULL);
7975 new_cu.reset (new dwarf2_cu (this_cu));
7976 cu = new_cu.get ();
7977 }
7978
7979 /* Get the header. */
7980 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7981 {
7982 /* We already have the header, there's no need to read it in again. */
7983 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7984 }
7985 else
7986 {
7987 if (this_cu->is_debug_types)
7988 {
7989 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7990 &cu->header, section,
7991 abbrev_section, info_ptr,
7992 rcuh_kind::TYPE);
7993
7994 /* Since per_cu is the first member of struct signatured_type,
7995 we can go from a pointer to one to a pointer to the other. */
7996 sig_type = (struct signatured_type *) this_cu;
7997 gdb_assert (sig_type->signature == cu->header.signature);
7998 gdb_assert (sig_type->type_offset_in_tu
7999 == cu->header.type_cu_offset_in_tu);
8000 gdb_assert (this_cu->sect_off == cu->header.sect_off);
8001
8002 /* LENGTH has not been set yet for type units if we're
8003 using .gdb_index. */
8004 this_cu->length = get_cu_length (&cu->header);
8005
8006 /* Establish the type offset that can be used to lookup the type. */
8007 sig_type->type_offset_in_section =
8008 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
8009
8010 this_cu->dwarf_version = cu->header.version;
8011 }
8012 else
8013 {
8014 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
8015 &cu->header, section,
8016 abbrev_section,
8017 info_ptr,
8018 rcuh_kind::COMPILE);
8019
8020 gdb_assert (this_cu->sect_off == cu->header.sect_off);
8021 gdb_assert (this_cu->length == get_cu_length (&cu->header));
8022 this_cu->dwarf_version = cu->header.version;
8023 }
8024 }
8025
8026 /* Skip dummy compilation units. */
8027 if (info_ptr >= begin_info_ptr + this_cu->length
8028 || peek_abbrev_code (abfd, info_ptr) == 0)
8029 return;
8030
8031 /* If we don't have them yet, read the abbrevs for this compilation unit.
8032 And if we need to read them now, make sure they're freed when we're
8033 done (own the table through ABBREV_TABLE_HOLDER). */
8034 abbrev_table_up abbrev_table_holder;
8035 if (abbrev_table != NULL)
8036 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
8037 else
8038 {
8039 abbrev_table_holder
8040 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
8041 cu->header.abbrev_sect_off);
8042 abbrev_table = abbrev_table_holder.get ();
8043 }
8044
8045 /* Read the top level CU/TU die. */
8046 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
8047 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8048
8049 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
8050 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
8051 table from the DWO file and pass the ownership over to us. It will be
8052 referenced from READER, so we must make sure to free it after we're done
8053 with READER.
8054
8055 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
8056 DWO CU, that this test will fail (the attribute will not be present). */
8057 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
8058 abbrev_table_up dwo_abbrev_table;
8059 if (attr)
8060 {
8061 struct dwo_unit *dwo_unit;
8062 struct die_info *dwo_comp_unit_die;
8063
8064 if (has_children)
8065 {
8066 complaint (&symfile_complaints,
8067 _("compilation unit with DW_AT_GNU_dwo_name"
8068 " has children (offset %s) [in module %s]"),
8069 sect_offset_str (this_cu->sect_off),
8070 bfd_get_filename (abfd));
8071 }
8072 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
8073 if (dwo_unit != NULL)
8074 {
8075 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
8076 comp_unit_die, NULL,
8077 &reader, &info_ptr,
8078 &dwo_comp_unit_die, &has_children,
8079 &dwo_abbrev_table) == 0)
8080 {
8081 /* Dummy die. */
8082 return;
8083 }
8084 comp_unit_die = dwo_comp_unit_die;
8085 }
8086 else
8087 {
8088 /* Yikes, we couldn't find the rest of the DIE, we only have
8089 the stub. A complaint has already been logged. There's
8090 not much more we can do except pass on the stub DIE to
8091 die_reader_func. We don't want to throw an error on bad
8092 debug info. */
8093 }
8094 }
8095
8096 /* All of the above is setup for this call. Yikes. */
8097 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8098
8099 /* Done, clean up. */
8100 if (new_cu != NULL && keep)
8101 {
8102 /* Link this CU into read_in_chain. */
8103 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
8104 dwarf2_per_objfile->read_in_chain = this_cu;
8105 /* The chain owns it now. */
8106 new_cu.release ();
8107 }
8108 }
8109
8110 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
8111 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
8112 to have already done the lookup to find the DWO file).
8113
8114 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
8115 THIS_CU->is_debug_types, but nothing else.
8116
8117 We fill in THIS_CU->length.
8118
8119 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
8120 linker) then DIE_READER_FUNC will not get called.
8121
8122 THIS_CU->cu is always freed when done.
8123 This is done in order to not leave THIS_CU->cu in a state where we have
8124 to care whether it refers to the "main" CU or the DWO CU. */
8125
8126 static void
8127 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
8128 struct dwo_file *dwo_file,
8129 die_reader_func_ftype *die_reader_func,
8130 void *data)
8131 {
8132 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
8133 struct objfile *objfile = dwarf2_per_objfile->objfile;
8134 struct dwarf2_section_info *section = this_cu->section;
8135 bfd *abfd = get_section_bfd_owner (section);
8136 struct dwarf2_section_info *abbrev_section;
8137 const gdb_byte *begin_info_ptr, *info_ptr;
8138 struct die_reader_specs reader;
8139 struct die_info *comp_unit_die;
8140 int has_children;
8141
8142 if (dwarf_die_debug)
8143 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
8144 this_cu->is_debug_types ? "type" : "comp",
8145 sect_offset_str (this_cu->sect_off));
8146
8147 gdb_assert (this_cu->cu == NULL);
8148
8149 abbrev_section = (dwo_file != NULL
8150 ? &dwo_file->sections.abbrev
8151 : get_abbrev_section_for_cu (this_cu));
8152
8153 /* This is cheap if the section is already read in. */
8154 dwarf2_read_section (objfile, section);
8155
8156 struct dwarf2_cu cu (this_cu);
8157
8158 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
8159 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
8160 &cu.header, section,
8161 abbrev_section, info_ptr,
8162 (this_cu->is_debug_types
8163 ? rcuh_kind::TYPE
8164 : rcuh_kind::COMPILE));
8165
8166 this_cu->length = get_cu_length (&cu.header);
8167
8168 /* Skip dummy compilation units. */
8169 if (info_ptr >= begin_info_ptr + this_cu->length
8170 || peek_abbrev_code (abfd, info_ptr) == 0)
8171 return;
8172
8173 abbrev_table_up abbrev_table
8174 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
8175 cu.header.abbrev_sect_off);
8176
8177 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
8178 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
8179
8180 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
8181 }
8182
8183 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
8184 does not lookup the specified DWO file.
8185 This cannot be used to read DWO files.
8186
8187 THIS_CU->cu is always freed when done.
8188 This is done in order to not leave THIS_CU->cu in a state where we have
8189 to care whether it refers to the "main" CU or the DWO CU.
8190 We can revisit this if the data shows there's a performance issue. */
8191
8192 static void
8193 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
8194 die_reader_func_ftype *die_reader_func,
8195 void *data)
8196 {
8197 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
8198 }
8199 \f
8200 /* Type Unit Groups.
8201
8202 Type Unit Groups are a way to collapse the set of all TUs (type units) into
8203 a more manageable set. The grouping is done by DW_AT_stmt_list entry
8204 so that all types coming from the same compilation (.o file) are grouped
8205 together. A future step could be to put the types in the same symtab as
8206 the CU the types ultimately came from. */
8207
8208 static hashval_t
8209 hash_type_unit_group (const void *item)
8210 {
8211 const struct type_unit_group *tu_group
8212 = (const struct type_unit_group *) item;
8213
8214 return hash_stmt_list_entry (&tu_group->hash);
8215 }
8216
8217 static int
8218 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
8219 {
8220 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
8221 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
8222
8223 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
8224 }
8225
8226 /* Allocate a hash table for type unit groups. */
8227
8228 static htab_t
8229 allocate_type_unit_groups_table (struct objfile *objfile)
8230 {
8231 return htab_create_alloc_ex (3,
8232 hash_type_unit_group,
8233 eq_type_unit_group,
8234 NULL,
8235 &objfile->objfile_obstack,
8236 hashtab_obstack_allocate,
8237 dummy_obstack_deallocate);
8238 }
8239
8240 /* Type units that don't have DW_AT_stmt_list are grouped into their own
8241 partial symtabs. We combine several TUs per psymtab to not let the size
8242 of any one psymtab grow too big. */
8243 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
8244 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
8245
8246 /* Helper routine for get_type_unit_group.
8247 Create the type_unit_group object used to hold one or more TUs. */
8248
8249 static struct type_unit_group *
8250 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
8251 {
8252 struct dwarf2_per_objfile *dwarf2_per_objfile
8253 = cu->per_cu->dwarf2_per_objfile;
8254 struct objfile *objfile = dwarf2_per_objfile->objfile;
8255 struct dwarf2_per_cu_data *per_cu;
8256 struct type_unit_group *tu_group;
8257
8258 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8259 struct type_unit_group);
8260 per_cu = &tu_group->per_cu;
8261 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8262
8263 if (dwarf2_per_objfile->using_index)
8264 {
8265 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8266 struct dwarf2_per_cu_quick_data);
8267 }
8268 else
8269 {
8270 unsigned int line_offset = to_underlying (line_offset_struct);
8271 struct partial_symtab *pst;
8272 char *name;
8273
8274 /* Give the symtab a useful name for debug purposes. */
8275 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
8276 name = xstrprintf ("<type_units_%d>",
8277 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
8278 else
8279 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
8280
8281 pst = create_partial_symtab (per_cu, name);
8282 pst->anonymous = 1;
8283
8284 xfree (name);
8285 }
8286
8287 tu_group->hash.dwo_unit = cu->dwo_unit;
8288 tu_group->hash.line_sect_off = line_offset_struct;
8289
8290 return tu_group;
8291 }
8292
8293 /* Look up the type_unit_group for type unit CU, and create it if necessary.
8294 STMT_LIST is a DW_AT_stmt_list attribute. */
8295
8296 static struct type_unit_group *
8297 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
8298 {
8299 struct dwarf2_per_objfile *dwarf2_per_objfile
8300 = cu->per_cu->dwarf2_per_objfile;
8301 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8302 struct type_unit_group *tu_group;
8303 void **slot;
8304 unsigned int line_offset;
8305 struct type_unit_group type_unit_group_for_lookup;
8306
8307 if (dwarf2_per_objfile->type_unit_groups == NULL)
8308 {
8309 dwarf2_per_objfile->type_unit_groups =
8310 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
8311 }
8312
8313 /* Do we need to create a new group, or can we use an existing one? */
8314
8315 if (stmt_list)
8316 {
8317 line_offset = DW_UNSND (stmt_list);
8318 ++tu_stats->nr_symtab_sharers;
8319 }
8320 else
8321 {
8322 /* Ugh, no stmt_list. Rare, but we have to handle it.
8323 We can do various things here like create one group per TU or
8324 spread them over multiple groups to split up the expansion work.
8325 To avoid worst case scenarios (too many groups or too large groups)
8326 we, umm, group them in bunches. */
8327 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
8328 | (tu_stats->nr_stmt_less_type_units
8329 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
8330 ++tu_stats->nr_stmt_less_type_units;
8331 }
8332
8333 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
8334 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
8335 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
8336 &type_unit_group_for_lookup, INSERT);
8337 if (*slot != NULL)
8338 {
8339 tu_group = (struct type_unit_group *) *slot;
8340 gdb_assert (tu_group != NULL);
8341 }
8342 else
8343 {
8344 sect_offset line_offset_struct = (sect_offset) line_offset;
8345 tu_group = create_type_unit_group (cu, line_offset_struct);
8346 *slot = tu_group;
8347 ++tu_stats->nr_symtabs;
8348 }
8349
8350 return tu_group;
8351 }
8352 \f
8353 /* Partial symbol tables. */
8354
8355 /* Create a psymtab named NAME and assign it to PER_CU.
8356
8357 The caller must fill in the following details:
8358 dirname, textlow, texthigh. */
8359
8360 static struct partial_symtab *
8361 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8362 {
8363 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
8364 struct partial_symtab *pst;
8365
8366 pst = start_psymtab_common (objfile, name, 0,
8367 objfile->global_psymbols,
8368 objfile->static_psymbols);
8369
8370 pst->psymtabs_addrmap_supported = 1;
8371
8372 /* This is the glue that links PST into GDB's symbol API. */
8373 pst->read_symtab_private = per_cu;
8374 pst->read_symtab = dwarf2_read_symtab;
8375 per_cu->v.psymtab = pst;
8376
8377 return pst;
8378 }
8379
8380 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8381 type. */
8382
8383 struct process_psymtab_comp_unit_data
8384 {
8385 /* True if we are reading a DW_TAG_partial_unit. */
8386
8387 int want_partial_unit;
8388
8389 /* The "pretend" language that is used if the CU doesn't declare a
8390 language. */
8391
8392 enum language pretend_language;
8393 };
8394
8395 /* die_reader_func for process_psymtab_comp_unit. */
8396
8397 static void
8398 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8399 const gdb_byte *info_ptr,
8400 struct die_info *comp_unit_die,
8401 int has_children,
8402 void *data)
8403 {
8404 struct dwarf2_cu *cu = reader->cu;
8405 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8407 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8408 CORE_ADDR baseaddr;
8409 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8410 struct partial_symtab *pst;
8411 enum pc_bounds_kind cu_bounds_kind;
8412 const char *filename;
8413 struct process_psymtab_comp_unit_data *info
8414 = (struct process_psymtab_comp_unit_data *) data;
8415
8416 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8417 return;
8418
8419 gdb_assert (! per_cu->is_debug_types);
8420
8421 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8422
8423 cu->list_in_scope = &file_symbols;
8424
8425 /* Allocate a new partial symbol table structure. */
8426 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8427 if (filename == NULL)
8428 filename = "";
8429
8430 pst = create_partial_symtab (per_cu, filename);
8431
8432 /* This must be done before calling dwarf2_build_include_psymtabs. */
8433 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8434
8435 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8436
8437 dwarf2_find_base_address (comp_unit_die, cu);
8438
8439 /* Possibly set the default values of LOWPC and HIGHPC from
8440 `DW_AT_ranges'. */
8441 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8442 &best_highpc, cu, pst);
8443 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8444 /* Store the contiguous range if it is not empty; it can be empty for
8445 CUs with no code. */
8446 addrmap_set_empty (objfile->psymtabs_addrmap,
8447 gdbarch_adjust_dwarf2_addr (gdbarch,
8448 best_lowpc + baseaddr),
8449 gdbarch_adjust_dwarf2_addr (gdbarch,
8450 best_highpc + baseaddr) - 1,
8451 pst);
8452
8453 /* Check if comp unit has_children.
8454 If so, read the rest of the partial symbols from this comp unit.
8455 If not, there's no more debug_info for this comp unit. */
8456 if (has_children)
8457 {
8458 struct partial_die_info *first_die;
8459 CORE_ADDR lowpc, highpc;
8460
8461 lowpc = ((CORE_ADDR) -1);
8462 highpc = ((CORE_ADDR) 0);
8463
8464 first_die = load_partial_dies (reader, info_ptr, 1);
8465
8466 scan_partial_symbols (first_die, &lowpc, &highpc,
8467 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8468
8469 /* If we didn't find a lowpc, set it to highpc to avoid
8470 complaints from `maint check'. */
8471 if (lowpc == ((CORE_ADDR) -1))
8472 lowpc = highpc;
8473
8474 /* If the compilation unit didn't have an explicit address range,
8475 then use the information extracted from its child dies. */
8476 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8477 {
8478 best_lowpc = lowpc;
8479 best_highpc = highpc;
8480 }
8481 }
8482 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
8483 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
8484
8485 end_psymtab_common (objfile, pst);
8486
8487 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8488 {
8489 int i;
8490 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8491 struct dwarf2_per_cu_data *iter;
8492
8493 /* Fill in 'dependencies' here; we fill in 'users' in a
8494 post-pass. */
8495 pst->number_of_dependencies = len;
8496 pst->dependencies =
8497 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8498 for (i = 0;
8499 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8500 i, iter);
8501 ++i)
8502 pst->dependencies[i] = iter->v.psymtab;
8503
8504 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8505 }
8506
8507 /* Get the list of files included in the current compilation unit,
8508 and build a psymtab for each of them. */
8509 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8510
8511 if (dwarf_read_debug)
8512 {
8513 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8514
8515 fprintf_unfiltered (gdb_stdlog,
8516 "Psymtab for %s unit @%s: %s - %s"
8517 ", %d global, %d static syms\n",
8518 per_cu->is_debug_types ? "type" : "comp",
8519 sect_offset_str (per_cu->sect_off),
8520 paddress (gdbarch, pst->textlow),
8521 paddress (gdbarch, pst->texthigh),
8522 pst->n_global_syms, pst->n_static_syms);
8523 }
8524 }
8525
8526 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8527 Process compilation unit THIS_CU for a psymtab. */
8528
8529 static void
8530 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8531 int want_partial_unit,
8532 enum language pretend_language)
8533 {
8534 /* If this compilation unit was already read in, free the
8535 cached copy in order to read it in again. This is
8536 necessary because we skipped some symbols when we first
8537 read in the compilation unit (see load_partial_dies).
8538 This problem could be avoided, but the benefit is unclear. */
8539 if (this_cu->cu != NULL)
8540 free_one_cached_comp_unit (this_cu);
8541
8542 if (this_cu->is_debug_types)
8543 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
8544 NULL);
8545 else
8546 {
8547 process_psymtab_comp_unit_data info;
8548 info.want_partial_unit = want_partial_unit;
8549 info.pretend_language = pretend_language;
8550 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
8551 process_psymtab_comp_unit_reader, &info);
8552 }
8553
8554 /* Age out any secondary CUs. */
8555 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8556 }
8557
8558 /* Reader function for build_type_psymtabs. */
8559
8560 static void
8561 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8562 const gdb_byte *info_ptr,
8563 struct die_info *type_unit_die,
8564 int has_children,
8565 void *data)
8566 {
8567 struct dwarf2_per_objfile *dwarf2_per_objfile
8568 = reader->cu->per_cu->dwarf2_per_objfile;
8569 struct objfile *objfile = dwarf2_per_objfile->objfile;
8570 struct dwarf2_cu *cu = reader->cu;
8571 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8572 struct signatured_type *sig_type;
8573 struct type_unit_group *tu_group;
8574 struct attribute *attr;
8575 struct partial_die_info *first_die;
8576 CORE_ADDR lowpc, highpc;
8577 struct partial_symtab *pst;
8578
8579 gdb_assert (data == NULL);
8580 gdb_assert (per_cu->is_debug_types);
8581 sig_type = (struct signatured_type *) per_cu;
8582
8583 if (! has_children)
8584 return;
8585
8586 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8587 tu_group = get_type_unit_group (cu, attr);
8588
8589 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8590
8591 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8592 cu->list_in_scope = &file_symbols;
8593 pst = create_partial_symtab (per_cu, "");
8594 pst->anonymous = 1;
8595
8596 first_die = load_partial_dies (reader, info_ptr, 1);
8597
8598 lowpc = (CORE_ADDR) -1;
8599 highpc = (CORE_ADDR) 0;
8600 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8601
8602 end_psymtab_common (objfile, pst);
8603 }
8604
8605 /* Struct used to sort TUs by their abbreviation table offset. */
8606
8607 struct tu_abbrev_offset
8608 {
8609 struct signatured_type *sig_type;
8610 sect_offset abbrev_offset;
8611 };
8612
8613 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
8614
8615 static int
8616 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
8617 {
8618 const struct tu_abbrev_offset * const *a
8619 = (const struct tu_abbrev_offset * const*) ap;
8620 const struct tu_abbrev_offset * const *b
8621 = (const struct tu_abbrev_offset * const*) bp;
8622 sect_offset aoff = (*a)->abbrev_offset;
8623 sect_offset boff = (*b)->abbrev_offset;
8624
8625 return (aoff > boff) - (aoff < boff);
8626 }
8627
8628 /* Efficiently read all the type units.
8629 This does the bulk of the work for build_type_psymtabs.
8630
8631 The efficiency is because we sort TUs by the abbrev table they use and
8632 only read each abbrev table once. In one program there are 200K TUs
8633 sharing 8K abbrev tables.
8634
8635 The main purpose of this function is to support building the
8636 dwarf2_per_objfile->type_unit_groups table.
8637 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8638 can collapse the search space by grouping them by stmt_list.
8639 The savings can be significant, in the same program from above the 200K TUs
8640 share 8K stmt_list tables.
8641
8642 FUNC is expected to call get_type_unit_group, which will create the
8643 struct type_unit_group if necessary and add it to
8644 dwarf2_per_objfile->type_unit_groups. */
8645
8646 static void
8647 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8648 {
8649 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8650 struct cleanup *cleanups;
8651 abbrev_table_up abbrev_table;
8652 sect_offset abbrev_offset;
8653 struct tu_abbrev_offset *sorted_by_abbrev;
8654 int i;
8655
8656 /* It's up to the caller to not call us multiple times. */
8657 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8658
8659 if (dwarf2_per_objfile->n_type_units == 0)
8660 return;
8661
8662 /* TUs typically share abbrev tables, and there can be way more TUs than
8663 abbrev tables. Sort by abbrev table to reduce the number of times we
8664 read each abbrev table in.
8665 Alternatives are to punt or to maintain a cache of abbrev tables.
8666 This is simpler and efficient enough for now.
8667
8668 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8669 symtab to use). Typically TUs with the same abbrev offset have the same
8670 stmt_list value too so in practice this should work well.
8671
8672 The basic algorithm here is:
8673
8674 sort TUs by abbrev table
8675 for each TU with same abbrev table:
8676 read abbrev table if first user
8677 read TU top level DIE
8678 [IWBN if DWO skeletons had DW_AT_stmt_list]
8679 call FUNC */
8680
8681 if (dwarf_read_debug)
8682 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8683
8684 /* Sort in a separate table to maintain the order of all_type_units
8685 for .gdb_index: TU indices directly index all_type_units. */
8686 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
8687 dwarf2_per_objfile->n_type_units);
8688 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8689 {
8690 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
8691
8692 sorted_by_abbrev[i].sig_type = sig_type;
8693 sorted_by_abbrev[i].abbrev_offset =
8694 read_abbrev_offset (dwarf2_per_objfile,
8695 sig_type->per_cu.section,
8696 sig_type->per_cu.sect_off);
8697 }
8698 cleanups = make_cleanup (xfree, sorted_by_abbrev);
8699 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
8700 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
8701
8702 abbrev_offset = (sect_offset) ~(unsigned) 0;
8703
8704 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
8705 {
8706 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
8707
8708 /* Switch to the next abbrev table if necessary. */
8709 if (abbrev_table == NULL
8710 || tu->abbrev_offset != abbrev_offset)
8711 {
8712 abbrev_offset = tu->abbrev_offset;
8713 abbrev_table =
8714 abbrev_table_read_table (dwarf2_per_objfile,
8715 &dwarf2_per_objfile->abbrev,
8716 abbrev_offset);
8717 ++tu_stats->nr_uniq_abbrev_tables;
8718 }
8719
8720 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table.get (),
8721 0, 0, build_type_psymtabs_reader, NULL);
8722 }
8723
8724 do_cleanups (cleanups);
8725 }
8726
8727 /* Print collected type unit statistics. */
8728
8729 static void
8730 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8731 {
8732 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8733
8734 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8735 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
8736 dwarf2_per_objfile->n_type_units);
8737 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8738 tu_stats->nr_uniq_abbrev_tables);
8739 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8740 tu_stats->nr_symtabs);
8741 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8742 tu_stats->nr_symtab_sharers);
8743 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8744 tu_stats->nr_stmt_less_type_units);
8745 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8746 tu_stats->nr_all_type_units_reallocs);
8747 }
8748
8749 /* Traversal function for build_type_psymtabs. */
8750
8751 static int
8752 build_type_psymtab_dependencies (void **slot, void *info)
8753 {
8754 struct dwarf2_per_objfile *dwarf2_per_objfile
8755 = (struct dwarf2_per_objfile *) info;
8756 struct objfile *objfile = dwarf2_per_objfile->objfile;
8757 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8758 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8759 struct partial_symtab *pst = per_cu->v.psymtab;
8760 int len = VEC_length (sig_type_ptr, tu_group->tus);
8761 struct signatured_type *iter;
8762 int i;
8763
8764 gdb_assert (len > 0);
8765 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8766
8767 pst->number_of_dependencies = len;
8768 pst->dependencies =
8769 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
8770 for (i = 0;
8771 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8772 ++i)
8773 {
8774 gdb_assert (iter->per_cu.is_debug_types);
8775 pst->dependencies[i] = iter->per_cu.v.psymtab;
8776 iter->type_unit_group = tu_group;
8777 }
8778
8779 VEC_free (sig_type_ptr, tu_group->tus);
8780
8781 return 1;
8782 }
8783
8784 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8785 Build partial symbol tables for the .debug_types comp-units. */
8786
8787 static void
8788 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8789 {
8790 if (! create_all_type_units (dwarf2_per_objfile))
8791 return;
8792
8793 build_type_psymtabs_1 (dwarf2_per_objfile);
8794 }
8795
8796 /* Traversal function for process_skeletonless_type_unit.
8797 Read a TU in a DWO file and build partial symbols for it. */
8798
8799 static int
8800 process_skeletonless_type_unit (void **slot, void *info)
8801 {
8802 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8803 struct dwarf2_per_objfile *dwarf2_per_objfile
8804 = (struct dwarf2_per_objfile *) info;
8805 struct signatured_type find_entry, *entry;
8806
8807 /* If this TU doesn't exist in the global table, add it and read it in. */
8808
8809 if (dwarf2_per_objfile->signatured_types == NULL)
8810 {
8811 dwarf2_per_objfile->signatured_types
8812 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8813 }
8814
8815 find_entry.signature = dwo_unit->signature;
8816 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8817 INSERT);
8818 /* If we've already seen this type there's nothing to do. What's happening
8819 is we're doing our own version of comdat-folding here. */
8820 if (*slot != NULL)
8821 return 1;
8822
8823 /* This does the job that create_all_type_units would have done for
8824 this TU. */
8825 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8826 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8827 *slot = entry;
8828
8829 /* This does the job that build_type_psymtabs_1 would have done. */
8830 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
8831 build_type_psymtabs_reader, NULL);
8832
8833 return 1;
8834 }
8835
8836 /* Traversal function for process_skeletonless_type_units. */
8837
8838 static int
8839 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8840 {
8841 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8842
8843 if (dwo_file->tus != NULL)
8844 {
8845 htab_traverse_noresize (dwo_file->tus,
8846 process_skeletonless_type_unit, info);
8847 }
8848
8849 return 1;
8850 }
8851
8852 /* Scan all TUs of DWO files, verifying we've processed them.
8853 This is needed in case a TU was emitted without its skeleton.
8854 Note: This can't be done until we know what all the DWO files are. */
8855
8856 static void
8857 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8858 {
8859 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8860 if (get_dwp_file (dwarf2_per_objfile) == NULL
8861 && dwarf2_per_objfile->dwo_files != NULL)
8862 {
8863 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8864 process_dwo_file_for_skeletonless_type_units,
8865 dwarf2_per_objfile);
8866 }
8867 }
8868
8869 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8870
8871 static void
8872 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8873 {
8874 int i;
8875
8876 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8877 {
8878 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8879 struct partial_symtab *pst = per_cu->v.psymtab;
8880 int j;
8881
8882 if (pst == NULL)
8883 continue;
8884
8885 for (j = 0; j < pst->number_of_dependencies; ++j)
8886 {
8887 /* Set the 'user' field only if it is not already set. */
8888 if (pst->dependencies[j]->user == NULL)
8889 pst->dependencies[j]->user = pst;
8890 }
8891 }
8892 }
8893
8894 /* Build the partial symbol table by doing a quick pass through the
8895 .debug_info and .debug_abbrev sections. */
8896
8897 static void
8898 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8899 {
8900 struct cleanup *back_to;
8901 int i;
8902 struct objfile *objfile = dwarf2_per_objfile->objfile;
8903
8904 if (dwarf_read_debug)
8905 {
8906 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8907 objfile_name (objfile));
8908 }
8909
8910 dwarf2_per_objfile->reading_partial_symbols = 1;
8911
8912 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8913
8914 /* Any cached compilation units will be linked by the per-objfile
8915 read_in_chain. Make sure to free them when we're done. */
8916 back_to = make_cleanup (free_cached_comp_units, dwarf2_per_objfile);
8917
8918 build_type_psymtabs (dwarf2_per_objfile);
8919
8920 create_all_comp_units (dwarf2_per_objfile);
8921
8922 /* Create a temporary address map on a temporary obstack. We later
8923 copy this to the final obstack. */
8924 auto_obstack temp_obstack;
8925
8926 scoped_restore save_psymtabs_addrmap
8927 = make_scoped_restore (&objfile->psymtabs_addrmap,
8928 addrmap_create_mutable (&temp_obstack));
8929
8930 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
8931 {
8932 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (dwarf2_per_objfile, i);
8933
8934 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8935 }
8936
8937 /* This has to wait until we read the CUs, we need the list of DWOs. */
8938 process_skeletonless_type_units (dwarf2_per_objfile);
8939
8940 /* Now that all TUs have been processed we can fill in the dependencies. */
8941 if (dwarf2_per_objfile->type_unit_groups != NULL)
8942 {
8943 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8944 build_type_psymtab_dependencies, dwarf2_per_objfile);
8945 }
8946
8947 if (dwarf_read_debug)
8948 print_tu_stats (dwarf2_per_objfile);
8949
8950 set_partial_user (dwarf2_per_objfile);
8951
8952 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
8953 &objfile->objfile_obstack);
8954 /* At this point we want to keep the address map. */
8955 save_psymtabs_addrmap.release ();
8956
8957 do_cleanups (back_to);
8958
8959 if (dwarf_read_debug)
8960 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8961 objfile_name (objfile));
8962 }
8963
8964 /* die_reader_func for load_partial_comp_unit. */
8965
8966 static void
8967 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8968 const gdb_byte *info_ptr,
8969 struct die_info *comp_unit_die,
8970 int has_children,
8971 void *data)
8972 {
8973 struct dwarf2_cu *cu = reader->cu;
8974
8975 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8976
8977 /* Check if comp unit has_children.
8978 If so, read the rest of the partial symbols from this comp unit.
8979 If not, there's no more debug_info for this comp unit. */
8980 if (has_children)
8981 load_partial_dies (reader, info_ptr, 0);
8982 }
8983
8984 /* Load the partial DIEs for a secondary CU into memory.
8985 This is also used when rereading a primary CU with load_all_dies. */
8986
8987 static void
8988 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8989 {
8990 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8991 load_partial_comp_unit_reader, NULL);
8992 }
8993
8994 static void
8995 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8996 struct dwarf2_section_info *section,
8997 struct dwarf2_section_info *abbrev_section,
8998 unsigned int is_dwz,
8999 int *n_allocated,
9000 int *n_comp_units,
9001 struct dwarf2_per_cu_data ***all_comp_units)
9002 {
9003 const gdb_byte *info_ptr;
9004 struct objfile *objfile = dwarf2_per_objfile->objfile;
9005
9006 if (dwarf_read_debug)
9007 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
9008 get_section_name (section),
9009 get_section_file_name (section));
9010
9011 dwarf2_read_section (objfile, section);
9012
9013 info_ptr = section->buffer;
9014
9015 while (info_ptr < section->buffer + section->size)
9016 {
9017 struct dwarf2_per_cu_data *this_cu;
9018
9019 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
9020
9021 comp_unit_head cu_header;
9022 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
9023 abbrev_section, info_ptr,
9024 rcuh_kind::COMPILE);
9025
9026 /* Save the compilation unit for later lookup. */
9027 if (cu_header.unit_type != DW_UT_type)
9028 {
9029 this_cu = XOBNEW (&objfile->objfile_obstack,
9030 struct dwarf2_per_cu_data);
9031 memset (this_cu, 0, sizeof (*this_cu));
9032 }
9033 else
9034 {
9035 auto sig_type = XOBNEW (&objfile->objfile_obstack,
9036 struct signatured_type);
9037 memset (sig_type, 0, sizeof (*sig_type));
9038 sig_type->signature = cu_header.signature;
9039 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
9040 this_cu = &sig_type->per_cu;
9041 }
9042 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9043 this_cu->sect_off = sect_off;
9044 this_cu->length = cu_header.length + cu_header.initial_length_size;
9045 this_cu->is_dwz = is_dwz;
9046 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
9047 this_cu->section = section;
9048
9049 if (*n_comp_units == *n_allocated)
9050 {
9051 *n_allocated *= 2;
9052 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
9053 *all_comp_units, *n_allocated);
9054 }
9055 (*all_comp_units)[*n_comp_units] = this_cu;
9056 ++*n_comp_units;
9057
9058 info_ptr = info_ptr + this_cu->length;
9059 }
9060 }
9061
9062 /* Create a list of all compilation units in OBJFILE.
9063 This is only done for -readnow and building partial symtabs. */
9064
9065 static void
9066 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
9067 {
9068 int n_allocated;
9069 int n_comp_units;
9070 struct dwarf2_per_cu_data **all_comp_units;
9071 struct dwz_file *dwz;
9072 struct objfile *objfile = dwarf2_per_objfile->objfile;
9073
9074 n_comp_units = 0;
9075 n_allocated = 10;
9076 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
9077
9078 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
9079 &dwarf2_per_objfile->abbrev, 0,
9080 &n_allocated, &n_comp_units, &all_comp_units);
9081
9082 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
9083 if (dwz != NULL)
9084 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
9085 1, &n_allocated, &n_comp_units,
9086 &all_comp_units);
9087
9088 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
9089 struct dwarf2_per_cu_data *,
9090 n_comp_units);
9091 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
9092 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
9093 xfree (all_comp_units);
9094 dwarf2_per_objfile->n_comp_units = n_comp_units;
9095 }
9096
9097 /* Process all loaded DIEs for compilation unit CU, starting at
9098 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
9099 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
9100 DW_AT_ranges). See the comments of add_partial_subprogram on how
9101 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
9102
9103 static void
9104 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
9105 CORE_ADDR *highpc, int set_addrmap,
9106 struct dwarf2_cu *cu)
9107 {
9108 struct partial_die_info *pdi;
9109
9110 /* Now, march along the PDI's, descending into ones which have
9111 interesting children but skipping the children of the other ones,
9112 until we reach the end of the compilation unit. */
9113
9114 pdi = first_die;
9115
9116 while (pdi != NULL)
9117 {
9118 pdi->fixup (cu);
9119
9120 /* Anonymous namespaces or modules have no name but have interesting
9121 children, so we need to look at them. Ditto for anonymous
9122 enums. */
9123
9124 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
9125 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
9126 || pdi->tag == DW_TAG_imported_unit
9127 || pdi->tag == DW_TAG_inlined_subroutine)
9128 {
9129 switch (pdi->tag)
9130 {
9131 case DW_TAG_subprogram:
9132 case DW_TAG_inlined_subroutine:
9133 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9134 break;
9135 case DW_TAG_constant:
9136 case DW_TAG_variable:
9137 case DW_TAG_typedef:
9138 case DW_TAG_union_type:
9139 if (!pdi->is_declaration)
9140 {
9141 add_partial_symbol (pdi, cu);
9142 }
9143 break;
9144 case DW_TAG_class_type:
9145 case DW_TAG_interface_type:
9146 case DW_TAG_structure_type:
9147 if (!pdi->is_declaration)
9148 {
9149 add_partial_symbol (pdi, cu);
9150 }
9151 if (cu->language == language_rust && pdi->has_children)
9152 scan_partial_symbols (pdi->die_child, lowpc, highpc,
9153 set_addrmap, cu);
9154 break;
9155 case DW_TAG_enumeration_type:
9156 if (!pdi->is_declaration)
9157 add_partial_enumeration (pdi, cu);
9158 break;
9159 case DW_TAG_base_type:
9160 case DW_TAG_subrange_type:
9161 /* File scope base type definitions are added to the partial
9162 symbol table. */
9163 add_partial_symbol (pdi, cu);
9164 break;
9165 case DW_TAG_namespace:
9166 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
9167 break;
9168 case DW_TAG_module:
9169 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
9170 break;
9171 case DW_TAG_imported_unit:
9172 {
9173 struct dwarf2_per_cu_data *per_cu;
9174
9175 /* For now we don't handle imported units in type units. */
9176 if (cu->per_cu->is_debug_types)
9177 {
9178 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9179 " supported in type units [in module %s]"),
9180 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9181 }
9182
9183 per_cu = dwarf2_find_containing_comp_unit
9184 (pdi->d.sect_off, pdi->is_dwz,
9185 cu->per_cu->dwarf2_per_objfile);
9186
9187 /* Go read the partial unit, if needed. */
9188 if (per_cu->v.psymtab == NULL)
9189 process_psymtab_comp_unit (per_cu, 1, cu->language);
9190
9191 VEC_safe_push (dwarf2_per_cu_ptr,
9192 cu->per_cu->imported_symtabs, per_cu);
9193 }
9194 break;
9195 case DW_TAG_imported_declaration:
9196 add_partial_symbol (pdi, cu);
9197 break;
9198 default:
9199 break;
9200 }
9201 }
9202
9203 /* If the die has a sibling, skip to the sibling. */
9204
9205 pdi = pdi->die_sibling;
9206 }
9207 }
9208
9209 /* Functions used to compute the fully scoped name of a partial DIE.
9210
9211 Normally, this is simple. For C++, the parent DIE's fully scoped
9212 name is concatenated with "::" and the partial DIE's name.
9213 Enumerators are an exception; they use the scope of their parent
9214 enumeration type, i.e. the name of the enumeration type is not
9215 prepended to the enumerator.
9216
9217 There are two complexities. One is DW_AT_specification; in this
9218 case "parent" means the parent of the target of the specification,
9219 instead of the direct parent of the DIE. The other is compilers
9220 which do not emit DW_TAG_namespace; in this case we try to guess
9221 the fully qualified name of structure types from their members'
9222 linkage names. This must be done using the DIE's children rather
9223 than the children of any DW_AT_specification target. We only need
9224 to do this for structures at the top level, i.e. if the target of
9225 any DW_AT_specification (if any; otherwise the DIE itself) does not
9226 have a parent. */
9227
9228 /* Compute the scope prefix associated with PDI's parent, in
9229 compilation unit CU. The result will be allocated on CU's
9230 comp_unit_obstack, or a copy of the already allocated PDI->NAME
9231 field. NULL is returned if no prefix is necessary. */
9232 static const char *
9233 partial_die_parent_scope (struct partial_die_info *pdi,
9234 struct dwarf2_cu *cu)
9235 {
9236 const char *grandparent_scope;
9237 struct partial_die_info *parent, *real_pdi;
9238
9239 /* We need to look at our parent DIE; if we have a DW_AT_specification,
9240 then this means the parent of the specification DIE. */
9241
9242 real_pdi = pdi;
9243 while (real_pdi->has_specification)
9244 real_pdi = find_partial_die (real_pdi->spec_offset,
9245 real_pdi->spec_is_dwz, cu);
9246
9247 parent = real_pdi->die_parent;
9248 if (parent == NULL)
9249 return NULL;
9250
9251 if (parent->scope_set)
9252 return parent->scope;
9253
9254 parent->fixup (cu);
9255
9256 grandparent_scope = partial_die_parent_scope (parent, cu);
9257
9258 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
9259 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
9260 Work around this problem here. */
9261 if (cu->language == language_cplus
9262 && parent->tag == DW_TAG_namespace
9263 && strcmp (parent->name, "::") == 0
9264 && grandparent_scope == NULL)
9265 {
9266 parent->scope = NULL;
9267 parent->scope_set = 1;
9268 return NULL;
9269 }
9270
9271 if (pdi->tag == DW_TAG_enumerator)
9272 /* Enumerators should not get the name of the enumeration as a prefix. */
9273 parent->scope = grandparent_scope;
9274 else if (parent->tag == DW_TAG_namespace
9275 || parent->tag == DW_TAG_module
9276 || parent->tag == DW_TAG_structure_type
9277 || parent->tag == DW_TAG_class_type
9278 || parent->tag == DW_TAG_interface_type
9279 || parent->tag == DW_TAG_union_type
9280 || parent->tag == DW_TAG_enumeration_type)
9281 {
9282 if (grandparent_scope == NULL)
9283 parent->scope = parent->name;
9284 else
9285 parent->scope = typename_concat (&cu->comp_unit_obstack,
9286 grandparent_scope,
9287 parent->name, 0, cu);
9288 }
9289 else
9290 {
9291 /* FIXME drow/2004-04-01: What should we be doing with
9292 function-local names? For partial symbols, we should probably be
9293 ignoring them. */
9294 complaint (&symfile_complaints,
9295 _("unhandled containing DIE tag %d for DIE at %s"),
9296 parent->tag, sect_offset_str (pdi->sect_off));
9297 parent->scope = grandparent_scope;
9298 }
9299
9300 parent->scope_set = 1;
9301 return parent->scope;
9302 }
9303
9304 /* Return the fully scoped name associated with PDI, from compilation unit
9305 CU. The result will be allocated with malloc. */
9306
9307 static char *
9308 partial_die_full_name (struct partial_die_info *pdi,
9309 struct dwarf2_cu *cu)
9310 {
9311 const char *parent_scope;
9312
9313 /* If this is a template instantiation, we can not work out the
9314 template arguments from partial DIEs. So, unfortunately, we have
9315 to go through the full DIEs. At least any work we do building
9316 types here will be reused if full symbols are loaded later. */
9317 if (pdi->has_template_arguments)
9318 {
9319 pdi->fixup (cu);
9320
9321 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
9322 {
9323 struct die_info *die;
9324 struct attribute attr;
9325 struct dwarf2_cu *ref_cu = cu;
9326
9327 /* DW_FORM_ref_addr is using section offset. */
9328 attr.name = (enum dwarf_attribute) 0;
9329 attr.form = DW_FORM_ref_addr;
9330 attr.u.unsnd = to_underlying (pdi->sect_off);
9331 die = follow_die_ref (NULL, &attr, &ref_cu);
9332
9333 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
9334 }
9335 }
9336
9337 parent_scope = partial_die_parent_scope (pdi, cu);
9338 if (parent_scope == NULL)
9339 return NULL;
9340 else
9341 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
9342 }
9343
9344 static void
9345 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
9346 {
9347 struct dwarf2_per_objfile *dwarf2_per_objfile
9348 = cu->per_cu->dwarf2_per_objfile;
9349 struct objfile *objfile = dwarf2_per_objfile->objfile;
9350 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9351 CORE_ADDR addr = 0;
9352 const char *actual_name = NULL;
9353 CORE_ADDR baseaddr;
9354 char *built_actual_name;
9355
9356 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9357
9358 built_actual_name = partial_die_full_name (pdi, cu);
9359 if (built_actual_name != NULL)
9360 actual_name = built_actual_name;
9361
9362 if (actual_name == NULL)
9363 actual_name = pdi->name;
9364
9365 switch (pdi->tag)
9366 {
9367 case DW_TAG_inlined_subroutine:
9368 case DW_TAG_subprogram:
9369 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
9370 if (pdi->is_external || cu->language == language_ada)
9371 {
9372 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
9373 of the global scope. But in Ada, we want to be able to access
9374 nested procedures globally. So all Ada subprograms are stored
9375 in the global scope. */
9376 add_psymbol_to_list (actual_name, strlen (actual_name),
9377 built_actual_name != NULL,
9378 VAR_DOMAIN, LOC_BLOCK,
9379 &objfile->global_psymbols,
9380 addr, cu->language, objfile);
9381 }
9382 else
9383 {
9384 add_psymbol_to_list (actual_name, strlen (actual_name),
9385 built_actual_name != NULL,
9386 VAR_DOMAIN, LOC_BLOCK,
9387 &objfile->static_psymbols,
9388 addr, cu->language, objfile);
9389 }
9390
9391 if (pdi->main_subprogram && actual_name != NULL)
9392 set_objfile_main_name (objfile, actual_name, cu->language);
9393 break;
9394 case DW_TAG_constant:
9395 {
9396 std::vector<partial_symbol *> *list;
9397
9398 if (pdi->is_external)
9399 list = &objfile->global_psymbols;
9400 else
9401 list = &objfile->static_psymbols;
9402 add_psymbol_to_list (actual_name, strlen (actual_name),
9403 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9404 list, 0, cu->language, objfile);
9405 }
9406 break;
9407 case DW_TAG_variable:
9408 if (pdi->d.locdesc)
9409 addr = decode_locdesc (pdi->d.locdesc, cu);
9410
9411 if (pdi->d.locdesc
9412 && addr == 0
9413 && !dwarf2_per_objfile->has_section_at_zero)
9414 {
9415 /* A global or static variable may also have been stripped
9416 out by the linker if unused, in which case its address
9417 will be nullified; do not add such variables into partial
9418 symbol table then. */
9419 }
9420 else if (pdi->is_external)
9421 {
9422 /* Global Variable.
9423 Don't enter into the minimal symbol tables as there is
9424 a minimal symbol table entry from the ELF symbols already.
9425 Enter into partial symbol table if it has a location
9426 descriptor or a type.
9427 If the location descriptor is missing, new_symbol will create
9428 a LOC_UNRESOLVED symbol, the address of the variable will then
9429 be determined from the minimal symbol table whenever the variable
9430 is referenced.
9431 The address for the partial symbol table entry is not
9432 used by GDB, but it comes in handy for debugging partial symbol
9433 table building. */
9434
9435 if (pdi->d.locdesc || pdi->has_type)
9436 add_psymbol_to_list (actual_name, strlen (actual_name),
9437 built_actual_name != NULL,
9438 VAR_DOMAIN, LOC_STATIC,
9439 &objfile->global_psymbols,
9440 addr + baseaddr,
9441 cu->language, objfile);
9442 }
9443 else
9444 {
9445 int has_loc = pdi->d.locdesc != NULL;
9446
9447 /* Static Variable. Skip symbols whose value we cannot know (those
9448 without location descriptors or constant values). */
9449 if (!has_loc && !pdi->has_const_value)
9450 {
9451 xfree (built_actual_name);
9452 return;
9453 }
9454
9455 add_psymbol_to_list (actual_name, strlen (actual_name),
9456 built_actual_name != NULL,
9457 VAR_DOMAIN, LOC_STATIC,
9458 &objfile->static_psymbols,
9459 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
9460 cu->language, objfile);
9461 }
9462 break;
9463 case DW_TAG_typedef:
9464 case DW_TAG_base_type:
9465 case DW_TAG_subrange_type:
9466 add_psymbol_to_list (actual_name, strlen (actual_name),
9467 built_actual_name != NULL,
9468 VAR_DOMAIN, LOC_TYPEDEF,
9469 &objfile->static_psymbols,
9470 0, cu->language, objfile);
9471 break;
9472 case DW_TAG_imported_declaration:
9473 case DW_TAG_namespace:
9474 add_psymbol_to_list (actual_name, strlen (actual_name),
9475 built_actual_name != NULL,
9476 VAR_DOMAIN, LOC_TYPEDEF,
9477 &objfile->global_psymbols,
9478 0, cu->language, objfile);
9479 break;
9480 case DW_TAG_module:
9481 add_psymbol_to_list (actual_name, strlen (actual_name),
9482 built_actual_name != NULL,
9483 MODULE_DOMAIN, LOC_TYPEDEF,
9484 &objfile->global_psymbols,
9485 0, cu->language, objfile);
9486 break;
9487 case DW_TAG_class_type:
9488 case DW_TAG_interface_type:
9489 case DW_TAG_structure_type:
9490 case DW_TAG_union_type:
9491 case DW_TAG_enumeration_type:
9492 /* Skip external references. The DWARF standard says in the section
9493 about "Structure, Union, and Class Type Entries": "An incomplete
9494 structure, union or class type is represented by a structure,
9495 union or class entry that does not have a byte size attribute
9496 and that has a DW_AT_declaration attribute." */
9497 if (!pdi->has_byte_size && pdi->is_declaration)
9498 {
9499 xfree (built_actual_name);
9500 return;
9501 }
9502
9503 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9504 static vs. global. */
9505 add_psymbol_to_list (actual_name, strlen (actual_name),
9506 built_actual_name != NULL,
9507 STRUCT_DOMAIN, LOC_TYPEDEF,
9508 cu->language == language_cplus
9509 ? &objfile->global_psymbols
9510 : &objfile->static_psymbols,
9511 0, cu->language, objfile);
9512
9513 break;
9514 case DW_TAG_enumerator:
9515 add_psymbol_to_list (actual_name, strlen (actual_name),
9516 built_actual_name != NULL,
9517 VAR_DOMAIN, LOC_CONST,
9518 cu->language == language_cplus
9519 ? &objfile->global_psymbols
9520 : &objfile->static_psymbols,
9521 0, cu->language, objfile);
9522 break;
9523 default:
9524 break;
9525 }
9526
9527 xfree (built_actual_name);
9528 }
9529
9530 /* Read a partial die corresponding to a namespace; also, add a symbol
9531 corresponding to that namespace to the symbol table. NAMESPACE is
9532 the name of the enclosing namespace. */
9533
9534 static void
9535 add_partial_namespace (struct partial_die_info *pdi,
9536 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9537 int set_addrmap, struct dwarf2_cu *cu)
9538 {
9539 /* Add a symbol for the namespace. */
9540
9541 add_partial_symbol (pdi, cu);
9542
9543 /* Now scan partial symbols in that namespace. */
9544
9545 if (pdi->has_children)
9546 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9547 }
9548
9549 /* Read a partial die corresponding to a Fortran module. */
9550
9551 static void
9552 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9553 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9554 {
9555 /* Add a symbol for the namespace. */
9556
9557 add_partial_symbol (pdi, cu);
9558
9559 /* Now scan partial symbols in that module. */
9560
9561 if (pdi->has_children)
9562 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9563 }
9564
9565 /* Read a partial die corresponding to a subprogram or an inlined
9566 subprogram and create a partial symbol for that subprogram.
9567 When the CU language allows it, this routine also defines a partial
9568 symbol for each nested subprogram that this subprogram contains.
9569 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9570 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9571
9572 PDI may also be a lexical block, in which case we simply search
9573 recursively for subprograms defined inside that lexical block.
9574 Again, this is only performed when the CU language allows this
9575 type of definitions. */
9576
9577 static void
9578 add_partial_subprogram (struct partial_die_info *pdi,
9579 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9580 int set_addrmap, struct dwarf2_cu *cu)
9581 {
9582 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9583 {
9584 if (pdi->has_pc_info)
9585 {
9586 if (pdi->lowpc < *lowpc)
9587 *lowpc = pdi->lowpc;
9588 if (pdi->highpc > *highpc)
9589 *highpc = pdi->highpc;
9590 if (set_addrmap)
9591 {
9592 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9593 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9594 CORE_ADDR baseaddr;
9595 CORE_ADDR highpc;
9596 CORE_ADDR lowpc;
9597
9598 baseaddr = ANOFFSET (objfile->section_offsets,
9599 SECT_OFF_TEXT (objfile));
9600 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9601 pdi->lowpc + baseaddr);
9602 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
9603 pdi->highpc + baseaddr);
9604 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9605 cu->per_cu->v.psymtab);
9606 }
9607 }
9608
9609 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9610 {
9611 if (!pdi->is_declaration)
9612 /* Ignore subprogram DIEs that do not have a name, they are
9613 illegal. Do not emit a complaint at this point, we will
9614 do so when we convert this psymtab into a symtab. */
9615 if (pdi->name)
9616 add_partial_symbol (pdi, cu);
9617 }
9618 }
9619
9620 if (! pdi->has_children)
9621 return;
9622
9623 if (cu->language == language_ada)
9624 {
9625 pdi = pdi->die_child;
9626 while (pdi != NULL)
9627 {
9628 pdi->fixup (cu);
9629 if (pdi->tag == DW_TAG_subprogram
9630 || pdi->tag == DW_TAG_inlined_subroutine
9631 || pdi->tag == DW_TAG_lexical_block)
9632 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9633 pdi = pdi->die_sibling;
9634 }
9635 }
9636 }
9637
9638 /* Read a partial die corresponding to an enumeration type. */
9639
9640 static void
9641 add_partial_enumeration (struct partial_die_info *enum_pdi,
9642 struct dwarf2_cu *cu)
9643 {
9644 struct partial_die_info *pdi;
9645
9646 if (enum_pdi->name != NULL)
9647 add_partial_symbol (enum_pdi, cu);
9648
9649 pdi = enum_pdi->die_child;
9650 while (pdi)
9651 {
9652 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9653 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
9654 else
9655 add_partial_symbol (pdi, cu);
9656 pdi = pdi->die_sibling;
9657 }
9658 }
9659
9660 /* Return the initial uleb128 in the die at INFO_PTR. */
9661
9662 static unsigned int
9663 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9664 {
9665 unsigned int bytes_read;
9666
9667 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9668 }
9669
9670 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9671 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9672
9673 Return the corresponding abbrev, or NULL if the number is zero (indicating
9674 an empty DIE). In either case *BYTES_READ will be set to the length of
9675 the initial number. */
9676
9677 static struct abbrev_info *
9678 peek_die_abbrev (const die_reader_specs &reader,
9679 const gdb_byte *info_ptr, unsigned int *bytes_read)
9680 {
9681 dwarf2_cu *cu = reader.cu;
9682 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9683 unsigned int abbrev_number
9684 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9685
9686 if (abbrev_number == 0)
9687 return NULL;
9688
9689 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9690 if (!abbrev)
9691 {
9692 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9693 " at offset %s [in module %s]"),
9694 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9695 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9696 }
9697
9698 return abbrev;
9699 }
9700
9701 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9702 Returns a pointer to the end of a series of DIEs, terminated by an empty
9703 DIE. Any children of the skipped DIEs will also be skipped. */
9704
9705 static const gdb_byte *
9706 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9707 {
9708 while (1)
9709 {
9710 unsigned int bytes_read;
9711 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9712
9713 if (abbrev == NULL)
9714 return info_ptr + bytes_read;
9715 else
9716 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9717 }
9718 }
9719
9720 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9721 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9722 abbrev corresponding to that skipped uleb128 should be passed in
9723 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9724 children. */
9725
9726 static const gdb_byte *
9727 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9728 struct abbrev_info *abbrev)
9729 {
9730 unsigned int bytes_read;
9731 struct attribute attr;
9732 bfd *abfd = reader->abfd;
9733 struct dwarf2_cu *cu = reader->cu;
9734 const gdb_byte *buffer = reader->buffer;
9735 const gdb_byte *buffer_end = reader->buffer_end;
9736 unsigned int form, i;
9737
9738 for (i = 0; i < abbrev->num_attrs; i++)
9739 {
9740 /* The only abbrev we care about is DW_AT_sibling. */
9741 if (abbrev->attrs[i].name == DW_AT_sibling)
9742 {
9743 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9744 if (attr.form == DW_FORM_ref_addr)
9745 complaint (&symfile_complaints,
9746 _("ignoring absolute DW_AT_sibling"));
9747 else
9748 {
9749 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9750 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9751
9752 if (sibling_ptr < info_ptr)
9753 complaint (&symfile_complaints,
9754 _("DW_AT_sibling points backwards"));
9755 else if (sibling_ptr > reader->buffer_end)
9756 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9757 else
9758 return sibling_ptr;
9759 }
9760 }
9761
9762 /* If it isn't DW_AT_sibling, skip this attribute. */
9763 form = abbrev->attrs[i].form;
9764 skip_attribute:
9765 switch (form)
9766 {
9767 case DW_FORM_ref_addr:
9768 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9769 and later it is offset sized. */
9770 if (cu->header.version == 2)
9771 info_ptr += cu->header.addr_size;
9772 else
9773 info_ptr += cu->header.offset_size;
9774 break;
9775 case DW_FORM_GNU_ref_alt:
9776 info_ptr += cu->header.offset_size;
9777 break;
9778 case DW_FORM_addr:
9779 info_ptr += cu->header.addr_size;
9780 break;
9781 case DW_FORM_data1:
9782 case DW_FORM_ref1:
9783 case DW_FORM_flag:
9784 info_ptr += 1;
9785 break;
9786 case DW_FORM_flag_present:
9787 case DW_FORM_implicit_const:
9788 break;
9789 case DW_FORM_data2:
9790 case DW_FORM_ref2:
9791 info_ptr += 2;
9792 break;
9793 case DW_FORM_data4:
9794 case DW_FORM_ref4:
9795 info_ptr += 4;
9796 break;
9797 case DW_FORM_data8:
9798 case DW_FORM_ref8:
9799 case DW_FORM_ref_sig8:
9800 info_ptr += 8;
9801 break;
9802 case DW_FORM_data16:
9803 info_ptr += 16;
9804 break;
9805 case DW_FORM_string:
9806 read_direct_string (abfd, info_ptr, &bytes_read);
9807 info_ptr += bytes_read;
9808 break;
9809 case DW_FORM_sec_offset:
9810 case DW_FORM_strp:
9811 case DW_FORM_GNU_strp_alt:
9812 info_ptr += cu->header.offset_size;
9813 break;
9814 case DW_FORM_exprloc:
9815 case DW_FORM_block:
9816 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9817 info_ptr += bytes_read;
9818 break;
9819 case DW_FORM_block1:
9820 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9821 break;
9822 case DW_FORM_block2:
9823 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9824 break;
9825 case DW_FORM_block4:
9826 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9827 break;
9828 case DW_FORM_sdata:
9829 case DW_FORM_udata:
9830 case DW_FORM_ref_udata:
9831 case DW_FORM_GNU_addr_index:
9832 case DW_FORM_GNU_str_index:
9833 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9834 break;
9835 case DW_FORM_indirect:
9836 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9837 info_ptr += bytes_read;
9838 /* We need to continue parsing from here, so just go back to
9839 the top. */
9840 goto skip_attribute;
9841
9842 default:
9843 error (_("Dwarf Error: Cannot handle %s "
9844 "in DWARF reader [in module %s]"),
9845 dwarf_form_name (form),
9846 bfd_get_filename (abfd));
9847 }
9848 }
9849
9850 if (abbrev->has_children)
9851 return skip_children (reader, info_ptr);
9852 else
9853 return info_ptr;
9854 }
9855
9856 /* Locate ORIG_PDI's sibling.
9857 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9858
9859 static const gdb_byte *
9860 locate_pdi_sibling (const struct die_reader_specs *reader,
9861 struct partial_die_info *orig_pdi,
9862 const gdb_byte *info_ptr)
9863 {
9864 /* Do we know the sibling already? */
9865
9866 if (orig_pdi->sibling)
9867 return orig_pdi->sibling;
9868
9869 /* Are there any children to deal with? */
9870
9871 if (!orig_pdi->has_children)
9872 return info_ptr;
9873
9874 /* Skip the children the long way. */
9875
9876 return skip_children (reader, info_ptr);
9877 }
9878
9879 /* Expand this partial symbol table into a full symbol table. SELF is
9880 not NULL. */
9881
9882 static void
9883 dwarf2_read_symtab (struct partial_symtab *self,
9884 struct objfile *objfile)
9885 {
9886 struct dwarf2_per_objfile *dwarf2_per_objfile
9887 = get_dwarf2_per_objfile (objfile);
9888
9889 if (self->readin)
9890 {
9891 warning (_("bug: psymtab for %s is already read in."),
9892 self->filename);
9893 }
9894 else
9895 {
9896 if (info_verbose)
9897 {
9898 printf_filtered (_("Reading in symbols for %s..."),
9899 self->filename);
9900 gdb_flush (gdb_stdout);
9901 }
9902
9903 /* If this psymtab is constructed from a debug-only objfile, the
9904 has_section_at_zero flag will not necessarily be correct. We
9905 can get the correct value for this flag by looking at the data
9906 associated with the (presumably stripped) associated objfile. */
9907 if (objfile->separate_debug_objfile_backlink)
9908 {
9909 struct dwarf2_per_objfile *dpo_backlink
9910 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9911
9912 dwarf2_per_objfile->has_section_at_zero
9913 = dpo_backlink->has_section_at_zero;
9914 }
9915
9916 dwarf2_per_objfile->reading_partial_symbols = 0;
9917
9918 psymtab_to_symtab_1 (self);
9919
9920 /* Finish up the debug error message. */
9921 if (info_verbose)
9922 printf_filtered (_("done.\n"));
9923 }
9924
9925 process_cu_includes (dwarf2_per_objfile);
9926 }
9927 \f
9928 /* Reading in full CUs. */
9929
9930 /* Add PER_CU to the queue. */
9931
9932 static void
9933 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9934 enum language pretend_language)
9935 {
9936 struct dwarf2_queue_item *item;
9937
9938 per_cu->queued = 1;
9939 item = XNEW (struct dwarf2_queue_item);
9940 item->per_cu = per_cu;
9941 item->pretend_language = pretend_language;
9942 item->next = NULL;
9943
9944 if (dwarf2_queue == NULL)
9945 dwarf2_queue = item;
9946 else
9947 dwarf2_queue_tail->next = item;
9948
9949 dwarf2_queue_tail = item;
9950 }
9951
9952 /* If PER_CU is not yet queued, add it to the queue.
9953 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9954 dependency.
9955 The result is non-zero if PER_CU was queued, otherwise the result is zero
9956 meaning either PER_CU is already queued or it is already loaded.
9957
9958 N.B. There is an invariant here that if a CU is queued then it is loaded.
9959 The caller is required to load PER_CU if we return non-zero. */
9960
9961 static int
9962 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9963 struct dwarf2_per_cu_data *per_cu,
9964 enum language pretend_language)
9965 {
9966 /* We may arrive here during partial symbol reading, if we need full
9967 DIEs to process an unusual case (e.g. template arguments). Do
9968 not queue PER_CU, just tell our caller to load its DIEs. */
9969 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9970 {
9971 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9972 return 1;
9973 return 0;
9974 }
9975
9976 /* Mark the dependence relation so that we don't flush PER_CU
9977 too early. */
9978 if (dependent_cu != NULL)
9979 dwarf2_add_dependence (dependent_cu, per_cu);
9980
9981 /* If it's already on the queue, we have nothing to do. */
9982 if (per_cu->queued)
9983 return 0;
9984
9985 /* If the compilation unit is already loaded, just mark it as
9986 used. */
9987 if (per_cu->cu != NULL)
9988 {
9989 per_cu->cu->last_used = 0;
9990 return 0;
9991 }
9992
9993 /* Add it to the queue. */
9994 queue_comp_unit (per_cu, pretend_language);
9995
9996 return 1;
9997 }
9998
9999 /* Process the queue. */
10000
10001 static void
10002 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
10003 {
10004 struct dwarf2_queue_item *item, *next_item;
10005
10006 if (dwarf_read_debug)
10007 {
10008 fprintf_unfiltered (gdb_stdlog,
10009 "Expanding one or more symtabs of objfile %s ...\n",
10010 objfile_name (dwarf2_per_objfile->objfile));
10011 }
10012
10013 /* The queue starts out with one item, but following a DIE reference
10014 may load a new CU, adding it to the end of the queue. */
10015 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
10016 {
10017 if ((dwarf2_per_objfile->using_index
10018 ? !item->per_cu->v.quick->compunit_symtab
10019 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10020 /* Skip dummy CUs. */
10021 && item->per_cu->cu != NULL)
10022 {
10023 struct dwarf2_per_cu_data *per_cu = item->per_cu;
10024 unsigned int debug_print_threshold;
10025 char buf[100];
10026
10027 if (per_cu->is_debug_types)
10028 {
10029 struct signatured_type *sig_type =
10030 (struct signatured_type *) per_cu;
10031
10032 sprintf (buf, "TU %s at offset %s",
10033 hex_string (sig_type->signature),
10034 sect_offset_str (per_cu->sect_off));
10035 /* There can be 100s of TUs.
10036 Only print them in verbose mode. */
10037 debug_print_threshold = 2;
10038 }
10039 else
10040 {
10041 sprintf (buf, "CU at offset %s",
10042 sect_offset_str (per_cu->sect_off));
10043 debug_print_threshold = 1;
10044 }
10045
10046 if (dwarf_read_debug >= debug_print_threshold)
10047 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
10048
10049 if (per_cu->is_debug_types)
10050 process_full_type_unit (per_cu, item->pretend_language);
10051 else
10052 process_full_comp_unit (per_cu, item->pretend_language);
10053
10054 if (dwarf_read_debug >= debug_print_threshold)
10055 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
10056 }
10057
10058 item->per_cu->queued = 0;
10059 next_item = item->next;
10060 xfree (item);
10061 }
10062
10063 dwarf2_queue_tail = NULL;
10064
10065 if (dwarf_read_debug)
10066 {
10067 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
10068 objfile_name (dwarf2_per_objfile->objfile));
10069 }
10070 }
10071
10072 /* Read in full symbols for PST, and anything it depends on. */
10073
10074 static void
10075 psymtab_to_symtab_1 (struct partial_symtab *pst)
10076 {
10077 struct dwarf2_per_cu_data *per_cu;
10078 int i;
10079
10080 if (pst->readin)
10081 return;
10082
10083 for (i = 0; i < pst->number_of_dependencies; i++)
10084 if (!pst->dependencies[i]->readin
10085 && pst->dependencies[i]->user == NULL)
10086 {
10087 /* Inform about additional files that need to be read in. */
10088 if (info_verbose)
10089 {
10090 /* FIXME: i18n: Need to make this a single string. */
10091 fputs_filtered (" ", gdb_stdout);
10092 wrap_here ("");
10093 fputs_filtered ("and ", gdb_stdout);
10094 wrap_here ("");
10095 printf_filtered ("%s...", pst->dependencies[i]->filename);
10096 wrap_here (""); /* Flush output. */
10097 gdb_flush (gdb_stdout);
10098 }
10099 psymtab_to_symtab_1 (pst->dependencies[i]);
10100 }
10101
10102 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10103
10104 if (per_cu == NULL)
10105 {
10106 /* It's an include file, no symbols to read for it.
10107 Everything is in the parent symtab. */
10108 pst->readin = 1;
10109 return;
10110 }
10111
10112 dw2_do_instantiate_symtab (per_cu);
10113 }
10114
10115 /* Trivial hash function for die_info: the hash value of a DIE
10116 is its offset in .debug_info for this objfile. */
10117
10118 static hashval_t
10119 die_hash (const void *item)
10120 {
10121 const struct die_info *die = (const struct die_info *) item;
10122
10123 return to_underlying (die->sect_off);
10124 }
10125
10126 /* Trivial comparison function for die_info structures: two DIEs
10127 are equal if they have the same offset. */
10128
10129 static int
10130 die_eq (const void *item_lhs, const void *item_rhs)
10131 {
10132 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
10133 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
10134
10135 return die_lhs->sect_off == die_rhs->sect_off;
10136 }
10137
10138 /* die_reader_func for load_full_comp_unit.
10139 This is identical to read_signatured_type_reader,
10140 but is kept separate for now. */
10141
10142 static void
10143 load_full_comp_unit_reader (const struct die_reader_specs *reader,
10144 const gdb_byte *info_ptr,
10145 struct die_info *comp_unit_die,
10146 int has_children,
10147 void *data)
10148 {
10149 struct dwarf2_cu *cu = reader->cu;
10150 enum language *language_ptr = (enum language *) data;
10151
10152 gdb_assert (cu->die_hash == NULL);
10153 cu->die_hash =
10154 htab_create_alloc_ex (cu->header.length / 12,
10155 die_hash,
10156 die_eq,
10157 NULL,
10158 &cu->comp_unit_obstack,
10159 hashtab_obstack_allocate,
10160 dummy_obstack_deallocate);
10161
10162 if (has_children)
10163 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
10164 &info_ptr, comp_unit_die);
10165 cu->dies = comp_unit_die;
10166 /* comp_unit_die is not stored in die_hash, no need. */
10167
10168 /* We try not to read any attributes in this function, because not
10169 all CUs needed for references have been loaded yet, and symbol
10170 table processing isn't initialized. But we have to set the CU language,
10171 or we won't be able to build types correctly.
10172 Similarly, if we do not read the producer, we can not apply
10173 producer-specific interpretation. */
10174 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
10175 }
10176
10177 /* Load the DIEs associated with PER_CU into memory. */
10178
10179 static void
10180 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
10181 enum language pretend_language)
10182 {
10183 gdb_assert (! this_cu->is_debug_types);
10184
10185 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
10186 load_full_comp_unit_reader, &pretend_language);
10187 }
10188
10189 /* Add a DIE to the delayed physname list. */
10190
10191 static void
10192 add_to_method_list (struct type *type, int fnfield_index, int index,
10193 const char *name, struct die_info *die,
10194 struct dwarf2_cu *cu)
10195 {
10196 struct delayed_method_info mi;
10197 mi.type = type;
10198 mi.fnfield_index = fnfield_index;
10199 mi.index = index;
10200 mi.name = name;
10201 mi.die = die;
10202 cu->method_list.push_back (mi);
10203 }
10204
10205 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
10206 "const" / "volatile". If so, decrements LEN by the length of the
10207 modifier and return true. Otherwise return false. */
10208
10209 template<size_t N>
10210 static bool
10211 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
10212 {
10213 size_t mod_len = sizeof (mod) - 1;
10214 if (len > mod_len && startswith (physname + (len - mod_len), mod))
10215 {
10216 len -= mod_len;
10217 return true;
10218 }
10219 return false;
10220 }
10221
10222 /* Compute the physnames of any methods on the CU's method list.
10223
10224 The computation of method physnames is delayed in order to avoid the
10225 (bad) condition that one of the method's formal parameters is of an as yet
10226 incomplete type. */
10227
10228 static void
10229 compute_delayed_physnames (struct dwarf2_cu *cu)
10230 {
10231 /* Only C++ delays computing physnames. */
10232 if (cu->method_list.empty ())
10233 return;
10234 gdb_assert (cu->language == language_cplus);
10235
10236 for (struct delayed_method_info &mi : cu->method_list)
10237 {
10238 const char *physname;
10239 struct fn_fieldlist *fn_flp
10240 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
10241 physname = dwarf2_physname (mi.name, mi.die, cu);
10242 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
10243 = physname ? physname : "";
10244
10245 /* Since there's no tag to indicate whether a method is a
10246 const/volatile overload, extract that information out of the
10247 demangled name. */
10248 if (physname != NULL)
10249 {
10250 size_t len = strlen (physname);
10251
10252 while (1)
10253 {
10254 if (physname[len] == ')') /* shortcut */
10255 break;
10256 else if (check_modifier (physname, len, " const"))
10257 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
10258 else if (check_modifier (physname, len, " volatile"))
10259 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
10260 else
10261 break;
10262 }
10263 }
10264 }
10265
10266 /* The list is no longer needed. */
10267 cu->method_list.clear ();
10268 }
10269
10270 /* Go objects should be embedded in a DW_TAG_module DIE,
10271 and it's not clear if/how imported objects will appear.
10272 To keep Go support simple until that's worked out,
10273 go back through what we've read and create something usable.
10274 We could do this while processing each DIE, and feels kinda cleaner,
10275 but that way is more invasive.
10276 This is to, for example, allow the user to type "p var" or "b main"
10277 without having to specify the package name, and allow lookups
10278 of module.object to work in contexts that use the expression
10279 parser. */
10280
10281 static void
10282 fixup_go_packaging (struct dwarf2_cu *cu)
10283 {
10284 char *package_name = NULL;
10285 struct pending *list;
10286 int i;
10287
10288 for (list = global_symbols; list != NULL; list = list->next)
10289 {
10290 for (i = 0; i < list->nsyms; ++i)
10291 {
10292 struct symbol *sym = list->symbol[i];
10293
10294 if (SYMBOL_LANGUAGE (sym) == language_go
10295 && SYMBOL_CLASS (sym) == LOC_BLOCK)
10296 {
10297 char *this_package_name = go_symbol_package_name (sym);
10298
10299 if (this_package_name == NULL)
10300 continue;
10301 if (package_name == NULL)
10302 package_name = this_package_name;
10303 else
10304 {
10305 struct objfile *objfile
10306 = cu->per_cu->dwarf2_per_objfile->objfile;
10307 if (strcmp (package_name, this_package_name) != 0)
10308 complaint (&symfile_complaints,
10309 _("Symtab %s has objects from two different Go packages: %s and %s"),
10310 (symbol_symtab (sym) != NULL
10311 ? symtab_to_filename_for_display
10312 (symbol_symtab (sym))
10313 : objfile_name (objfile)),
10314 this_package_name, package_name);
10315 xfree (this_package_name);
10316 }
10317 }
10318 }
10319 }
10320
10321 if (package_name != NULL)
10322 {
10323 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10324 const char *saved_package_name
10325 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
10326 package_name,
10327 strlen (package_name));
10328 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
10329 saved_package_name);
10330 struct symbol *sym;
10331
10332 TYPE_TAG_NAME (type) = TYPE_NAME (type);
10333
10334 sym = allocate_symbol (objfile);
10335 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
10336 SYMBOL_SET_NAMES (sym, saved_package_name,
10337 strlen (saved_package_name), 0, objfile);
10338 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
10339 e.g., "main" finds the "main" module and not C's main(). */
10340 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
10341 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
10342 SYMBOL_TYPE (sym) = type;
10343
10344 add_symbol_to_list (sym, &global_symbols);
10345
10346 xfree (package_name);
10347 }
10348 }
10349
10350 /* Allocate a fully-qualified name consisting of the two parts on the
10351 obstack. */
10352
10353 static const char *
10354 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
10355 {
10356 return obconcat (obstack, p1, "::", p2, (char *) NULL);
10357 }
10358
10359 /* A helper that allocates a struct discriminant_info to attach to a
10360 union type. */
10361
10362 static struct discriminant_info *
10363 alloc_discriminant_info (struct type *type, int discriminant_index,
10364 int default_index)
10365 {
10366 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10367 gdb_assert (default_index == -1
10368 || (default_index > 0 && default_index < TYPE_NFIELDS (type)));
10369
10370 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
10371
10372 struct discriminant_info *disc
10373 = ((struct discriminant_info *)
10374 TYPE_ZALLOC (type,
10375 offsetof (struct discriminant_info, discriminants)
10376 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
10377 disc->default_index = default_index;
10378 disc->discriminant_index = discriminant_index;
10379
10380 struct dynamic_prop prop;
10381 prop.kind = PROP_UNDEFINED;
10382 prop.data.baton = disc;
10383
10384 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
10385
10386 return disc;
10387 }
10388
10389 /* Some versions of rustc emitted enums in an unusual way.
10390
10391 Ordinary enums were emitted as unions. The first element of each
10392 structure in the union was named "RUST$ENUM$DISR". This element
10393 held the discriminant.
10394
10395 These versions of Rust also implemented the "non-zero"
10396 optimization. When the enum had two values, and one is empty and
10397 the other holds a pointer that cannot be zero, the pointer is used
10398 as the discriminant, with a zero value meaning the empty variant.
10399 Here, the union's first member is of the form
10400 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
10401 where the fieldnos are the indices of the fields that should be
10402 traversed in order to find the field (which may be several fields deep)
10403 and the variantname is the name of the variant of the case when the
10404 field is zero.
10405
10406 This function recognizes whether TYPE is of one of these forms,
10407 and, if so, smashes it to be a variant type. */
10408
10409 static void
10410 quirk_rust_enum (struct type *type, struct objfile *objfile)
10411 {
10412 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10413
10414 /* We don't need to deal with empty enums. */
10415 if (TYPE_NFIELDS (type) == 0)
10416 return;
10417
10418 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
10419 if (TYPE_NFIELDS (type) == 1
10420 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
10421 {
10422 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
10423
10424 /* Decode the field name to find the offset of the
10425 discriminant. */
10426 ULONGEST bit_offset = 0;
10427 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
10428 while (name[0] >= '0' && name[0] <= '9')
10429 {
10430 char *tail;
10431 unsigned long index = strtoul (name, &tail, 10);
10432 name = tail;
10433 if (*name != '$'
10434 || index >= TYPE_NFIELDS (field_type)
10435 || (TYPE_FIELD_LOC_KIND (field_type, index)
10436 != FIELD_LOC_KIND_BITPOS))
10437 {
10438 complaint (&symfile_complaints,
10439 _("Could not parse Rust enum encoding string \"%s\""
10440 "[in module %s]"),
10441 TYPE_FIELD_NAME (type, 0),
10442 objfile_name (objfile));
10443 return;
10444 }
10445 ++name;
10446
10447 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10448 field_type = TYPE_FIELD_TYPE (field_type, index);
10449 }
10450
10451 /* Make a union to hold the variants. */
10452 struct type *union_type = alloc_type (objfile);
10453 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10454 TYPE_NFIELDS (union_type) = 3;
10455 TYPE_FIELDS (union_type)
10456 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10457 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10458
10459 /* Put the discriminant must at index 0. */
10460 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10461 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10462 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10463 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10464
10465 /* The order of fields doesn't really matter, so put the real
10466 field at index 1 and the data-less field at index 2. */
10467 struct discriminant_info *disc
10468 = alloc_discriminant_info (union_type, 0, 1);
10469 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10470 TYPE_FIELD_NAME (union_type, 1)
10471 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10472 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10473 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10474 TYPE_FIELD_NAME (union_type, 1));
10475
10476 const char *dataless_name
10477 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10478 name);
10479 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10480 dataless_name);
10481 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10482 /* NAME points into the original discriminant name, which
10483 already has the correct lifetime. */
10484 TYPE_FIELD_NAME (union_type, 2) = name;
10485 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10486 disc->discriminants[2] = 0;
10487
10488 /* Smash this type to be a structure type. We have to do this
10489 because the type has already been recorded. */
10490 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10491 TYPE_NFIELDS (type) = 1;
10492 TYPE_FIELDS (type)
10493 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10494
10495 /* Install the variant part. */
10496 TYPE_FIELD_TYPE (type, 0) = union_type;
10497 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10498 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10499 }
10500 else if (TYPE_NFIELDS (type) == 1)
10501 {
10502 /* We assume that a union with a single field is a univariant
10503 enum. */
10504 /* Smash this type to be a structure type. We have to do this
10505 because the type has already been recorded. */
10506 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10507
10508 /* Make a union to hold the variants. */
10509 struct type *union_type = alloc_type (objfile);
10510 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10511 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10512 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10513 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10514
10515 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10516 const char *variant_name
10517 = rust_last_path_segment (TYPE_NAME (field_type));
10518 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10519 TYPE_NAME (field_type)
10520 = rust_fully_qualify (&objfile->objfile_obstack,
10521 TYPE_NAME (field_type), variant_name);
10522
10523 /* Install the union in the outer struct type. */
10524 TYPE_NFIELDS (type) = 1;
10525 TYPE_FIELDS (type)
10526 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10527 TYPE_FIELD_TYPE (type, 0) = union_type;
10528 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10529 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10530
10531 alloc_discriminant_info (union_type, -1, 0);
10532 }
10533 else
10534 {
10535 struct type *disr_type = nullptr;
10536 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10537 {
10538 disr_type = TYPE_FIELD_TYPE (type, i);
10539
10540 if (TYPE_NFIELDS (disr_type) == 0)
10541 {
10542 /* Could be data-less variant, so keep going. */
10543 }
10544 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10545 "RUST$ENUM$DISR") != 0)
10546 {
10547 /* Not a Rust enum. */
10548 return;
10549 }
10550 else
10551 {
10552 /* Found one. */
10553 break;
10554 }
10555 }
10556
10557 /* If we got here without a discriminant, then it's probably
10558 just a union. */
10559 if (disr_type == nullptr)
10560 return;
10561
10562 /* Smash this type to be a structure type. We have to do this
10563 because the type has already been recorded. */
10564 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10565
10566 /* Make a union to hold the variants. */
10567 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10568 struct type *union_type = alloc_type (objfile);
10569 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10570 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10571 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10572 TYPE_FIELDS (union_type)
10573 = (struct field *) TYPE_ZALLOC (union_type,
10574 (TYPE_NFIELDS (union_type)
10575 * sizeof (struct field)));
10576
10577 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10578 TYPE_NFIELDS (type) * sizeof (struct field));
10579
10580 /* Install the discriminant at index 0 in the union. */
10581 TYPE_FIELD (union_type, 0) = *disr_field;
10582 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10583 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10584
10585 /* Install the union in the outer struct type. */
10586 TYPE_FIELD_TYPE (type, 0) = union_type;
10587 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10588 TYPE_NFIELDS (type) = 1;
10589
10590 /* Set the size and offset of the union type. */
10591 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10592
10593 /* We need a way to find the correct discriminant given a
10594 variant name. For convenience we build a map here. */
10595 struct type *enum_type = FIELD_TYPE (*disr_field);
10596 std::unordered_map<std::string, ULONGEST> discriminant_map;
10597 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10598 {
10599 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10600 {
10601 const char *name
10602 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10603 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10604 }
10605 }
10606
10607 int n_fields = TYPE_NFIELDS (union_type);
10608 struct discriminant_info *disc
10609 = alloc_discriminant_info (union_type, 0, -1);
10610 /* Skip the discriminant here. */
10611 for (int i = 1; i < n_fields; ++i)
10612 {
10613 /* Find the final word in the name of this variant's type.
10614 That name can be used to look up the correct
10615 discriminant. */
10616 const char *variant_name
10617 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10618 i)));
10619
10620 auto iter = discriminant_map.find (variant_name);
10621 if (iter != discriminant_map.end ())
10622 disc->discriminants[i] = iter->second;
10623
10624 /* Remove the discriminant field. */
10625 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10626 --TYPE_NFIELDS (sub_type);
10627 ++TYPE_FIELDS (sub_type);
10628 TYPE_FIELD_NAME (union_type, i) = variant_name;
10629 TYPE_NAME (sub_type)
10630 = rust_fully_qualify (&objfile->objfile_obstack,
10631 TYPE_NAME (type), variant_name);
10632 }
10633 }
10634 }
10635
10636 /* Rewrite some Rust unions to be structures with variants parts. */
10637
10638 static void
10639 rust_union_quirks (struct dwarf2_cu *cu)
10640 {
10641 gdb_assert (cu->language == language_rust);
10642 for (struct type *type : cu->rust_unions)
10643 quirk_rust_enum (type, cu->per_cu->dwarf2_per_objfile->objfile);
10644 }
10645
10646 /* Return the symtab for PER_CU. This works properly regardless of
10647 whether we're using the index or psymtabs. */
10648
10649 static struct compunit_symtab *
10650 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10651 {
10652 return (per_cu->dwarf2_per_objfile->using_index
10653 ? per_cu->v.quick->compunit_symtab
10654 : per_cu->v.psymtab->compunit_symtab);
10655 }
10656
10657 /* A helper function for computing the list of all symbol tables
10658 included by PER_CU. */
10659
10660 static void
10661 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
10662 htab_t all_children, htab_t all_type_symtabs,
10663 struct dwarf2_per_cu_data *per_cu,
10664 struct compunit_symtab *immediate_parent)
10665 {
10666 void **slot;
10667 int ix;
10668 struct compunit_symtab *cust;
10669 struct dwarf2_per_cu_data *iter;
10670
10671 slot = htab_find_slot (all_children, per_cu, INSERT);
10672 if (*slot != NULL)
10673 {
10674 /* This inclusion and its children have been processed. */
10675 return;
10676 }
10677
10678 *slot = per_cu;
10679 /* Only add a CU if it has a symbol table. */
10680 cust = get_compunit_symtab (per_cu);
10681 if (cust != NULL)
10682 {
10683 /* If this is a type unit only add its symbol table if we haven't
10684 seen it yet (type unit per_cu's can share symtabs). */
10685 if (per_cu->is_debug_types)
10686 {
10687 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10688 if (*slot == NULL)
10689 {
10690 *slot = cust;
10691 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10692 if (cust->user == NULL)
10693 cust->user = immediate_parent;
10694 }
10695 }
10696 else
10697 {
10698 VEC_safe_push (compunit_symtab_ptr, *result, cust);
10699 if (cust->user == NULL)
10700 cust->user = immediate_parent;
10701 }
10702 }
10703
10704 for (ix = 0;
10705 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10706 ++ix)
10707 {
10708 recursively_compute_inclusions (result, all_children,
10709 all_type_symtabs, iter, cust);
10710 }
10711 }
10712
10713 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10714 PER_CU. */
10715
10716 static void
10717 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10718 {
10719 gdb_assert (! per_cu->is_debug_types);
10720
10721 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10722 {
10723 int ix, len;
10724 struct dwarf2_per_cu_data *per_cu_iter;
10725 struct compunit_symtab *compunit_symtab_iter;
10726 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
10727 htab_t all_children, all_type_symtabs;
10728 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10729
10730 /* If we don't have a symtab, we can just skip this case. */
10731 if (cust == NULL)
10732 return;
10733
10734 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10735 NULL, xcalloc, xfree);
10736 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10737 NULL, xcalloc, xfree);
10738
10739 for (ix = 0;
10740 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10741 ix, per_cu_iter);
10742 ++ix)
10743 {
10744 recursively_compute_inclusions (&result_symtabs, all_children,
10745 all_type_symtabs, per_cu_iter,
10746 cust);
10747 }
10748
10749 /* Now we have a transitive closure of all the included symtabs. */
10750 len = VEC_length (compunit_symtab_ptr, result_symtabs);
10751 cust->includes
10752 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10753 struct compunit_symtab *, len + 1);
10754 for (ix = 0;
10755 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
10756 compunit_symtab_iter);
10757 ++ix)
10758 cust->includes[ix] = compunit_symtab_iter;
10759 cust->includes[len] = NULL;
10760
10761 VEC_free (compunit_symtab_ptr, result_symtabs);
10762 htab_delete (all_children);
10763 htab_delete (all_type_symtabs);
10764 }
10765 }
10766
10767 /* Compute the 'includes' field for the symtabs of all the CUs we just
10768 read. */
10769
10770 static void
10771 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10772 {
10773 int ix;
10774 struct dwarf2_per_cu_data *iter;
10775
10776 for (ix = 0;
10777 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
10778 ix, iter);
10779 ++ix)
10780 {
10781 if (! iter->is_debug_types)
10782 compute_compunit_symtab_includes (iter);
10783 }
10784
10785 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
10786 }
10787
10788 /* Generate full symbol information for PER_CU, whose DIEs have
10789 already been loaded into memory. */
10790
10791 static void
10792 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10793 enum language pretend_language)
10794 {
10795 struct dwarf2_cu *cu = per_cu->cu;
10796 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10797 struct objfile *objfile = dwarf2_per_objfile->objfile;
10798 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10799 CORE_ADDR lowpc, highpc;
10800 struct compunit_symtab *cust;
10801 CORE_ADDR baseaddr;
10802 struct block *static_block;
10803 CORE_ADDR addr;
10804
10805 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10806
10807 buildsym_init ();
10808 scoped_free_pendings free_pending;
10809
10810 /* Clear the list here in case something was left over. */
10811 cu->method_list.clear ();
10812
10813 cu->list_in_scope = &file_symbols;
10814
10815 cu->language = pretend_language;
10816 cu->language_defn = language_def (cu->language);
10817
10818 /* Do line number decoding in read_file_scope () */
10819 process_die (cu->dies, cu);
10820
10821 /* For now fudge the Go package. */
10822 if (cu->language == language_go)
10823 fixup_go_packaging (cu);
10824
10825 /* Now that we have processed all the DIEs in the CU, all the types
10826 should be complete, and it should now be safe to compute all of the
10827 physnames. */
10828 compute_delayed_physnames (cu);
10829
10830 if (cu->language == language_rust)
10831 rust_union_quirks (cu);
10832
10833 /* Some compilers don't define a DW_AT_high_pc attribute for the
10834 compilation unit. If the DW_AT_high_pc is missing, synthesize
10835 it, by scanning the DIE's below the compilation unit. */
10836 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10837
10838 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10839 static_block = end_symtab_get_static_block (addr, 0, 1);
10840
10841 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10842 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10843 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10844 addrmap to help ensure it has an accurate map of pc values belonging to
10845 this comp unit. */
10846 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10847
10848 cust = end_symtab_from_static_block (static_block,
10849 SECT_OFF_TEXT (objfile), 0);
10850
10851 if (cust != NULL)
10852 {
10853 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10854
10855 /* Set symtab language to language from DW_AT_language. If the
10856 compilation is from a C file generated by language preprocessors, do
10857 not set the language if it was already deduced by start_subfile. */
10858 if (!(cu->language == language_c
10859 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10860 COMPUNIT_FILETABS (cust)->language = cu->language;
10861
10862 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10863 produce DW_AT_location with location lists but it can be possibly
10864 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10865 there were bugs in prologue debug info, fixed later in GCC-4.5
10866 by "unwind info for epilogues" patch (which is not directly related).
10867
10868 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10869 needed, it would be wrong due to missing DW_AT_producer there.
10870
10871 Still one can confuse GDB by using non-standard GCC compilation
10872 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10873 */
10874 if (cu->has_loclist && gcc_4_minor >= 5)
10875 cust->locations_valid = 1;
10876
10877 if (gcc_4_minor >= 5)
10878 cust->epilogue_unwind_valid = 1;
10879
10880 cust->call_site_htab = cu->call_site_htab;
10881 }
10882
10883 if (dwarf2_per_objfile->using_index)
10884 per_cu->v.quick->compunit_symtab = cust;
10885 else
10886 {
10887 struct partial_symtab *pst = per_cu->v.psymtab;
10888 pst->compunit_symtab = cust;
10889 pst->readin = 1;
10890 }
10891
10892 /* Push it for inclusion processing later. */
10893 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
10894 }
10895
10896 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10897 already been loaded into memory. */
10898
10899 static void
10900 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10901 enum language pretend_language)
10902 {
10903 struct dwarf2_cu *cu = per_cu->cu;
10904 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10905 struct objfile *objfile = dwarf2_per_objfile->objfile;
10906 struct compunit_symtab *cust;
10907 struct signatured_type *sig_type;
10908
10909 gdb_assert (per_cu->is_debug_types);
10910 sig_type = (struct signatured_type *) per_cu;
10911
10912 buildsym_init ();
10913 scoped_free_pendings free_pending;
10914
10915 /* Clear the list here in case something was left over. */
10916 cu->method_list.clear ();
10917
10918 cu->list_in_scope = &file_symbols;
10919
10920 cu->language = pretend_language;
10921 cu->language_defn = language_def (cu->language);
10922
10923 /* The symbol tables are set up in read_type_unit_scope. */
10924 process_die (cu->dies, cu);
10925
10926 /* For now fudge the Go package. */
10927 if (cu->language == language_go)
10928 fixup_go_packaging (cu);
10929
10930 /* Now that we have processed all the DIEs in the CU, all the types
10931 should be complete, and it should now be safe to compute all of the
10932 physnames. */
10933 compute_delayed_physnames (cu);
10934
10935 if (cu->language == language_rust)
10936 rust_union_quirks (cu);
10937
10938 /* TUs share symbol tables.
10939 If this is the first TU to use this symtab, complete the construction
10940 of it with end_expandable_symtab. Otherwise, complete the addition of
10941 this TU's symbols to the existing symtab. */
10942 if (sig_type->type_unit_group->compunit_symtab == NULL)
10943 {
10944 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10945 sig_type->type_unit_group->compunit_symtab = cust;
10946
10947 if (cust != NULL)
10948 {
10949 /* Set symtab language to language from DW_AT_language. If the
10950 compilation is from a C file generated by language preprocessors,
10951 do not set the language if it was already deduced by
10952 start_subfile. */
10953 if (!(cu->language == language_c
10954 && COMPUNIT_FILETABS (cust)->language != language_c))
10955 COMPUNIT_FILETABS (cust)->language = cu->language;
10956 }
10957 }
10958 else
10959 {
10960 augment_type_symtab ();
10961 cust = sig_type->type_unit_group->compunit_symtab;
10962 }
10963
10964 if (dwarf2_per_objfile->using_index)
10965 per_cu->v.quick->compunit_symtab = cust;
10966 else
10967 {
10968 struct partial_symtab *pst = per_cu->v.psymtab;
10969 pst->compunit_symtab = cust;
10970 pst->readin = 1;
10971 }
10972 }
10973
10974 /* Process an imported unit DIE. */
10975
10976 static void
10977 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10978 {
10979 struct attribute *attr;
10980
10981 /* For now we don't handle imported units in type units. */
10982 if (cu->per_cu->is_debug_types)
10983 {
10984 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10985 " supported in type units [in module %s]"),
10986 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10987 }
10988
10989 attr = dwarf2_attr (die, DW_AT_import, cu);
10990 if (attr != NULL)
10991 {
10992 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10993 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10994 dwarf2_per_cu_data *per_cu
10995 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10996 cu->per_cu->dwarf2_per_objfile);
10997
10998 /* If necessary, add it to the queue and load its DIEs. */
10999 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
11000 load_full_comp_unit (per_cu, cu->language);
11001
11002 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
11003 per_cu);
11004 }
11005 }
11006
11007 /* RAII object that represents a process_die scope: i.e.,
11008 starts/finishes processing a DIE. */
11009 class process_die_scope
11010 {
11011 public:
11012 process_die_scope (die_info *die, dwarf2_cu *cu)
11013 : m_die (die), m_cu (cu)
11014 {
11015 /* We should only be processing DIEs not already in process. */
11016 gdb_assert (!m_die->in_process);
11017 m_die->in_process = true;
11018 }
11019
11020 ~process_die_scope ()
11021 {
11022 m_die->in_process = false;
11023
11024 /* If we're done processing the DIE for the CU that owns the line
11025 header, we don't need the line header anymore. */
11026 if (m_cu->line_header_die_owner == m_die)
11027 {
11028 delete m_cu->line_header;
11029 m_cu->line_header = NULL;
11030 m_cu->line_header_die_owner = NULL;
11031 }
11032 }
11033
11034 private:
11035 die_info *m_die;
11036 dwarf2_cu *m_cu;
11037 };
11038
11039 /* Process a die and its children. */
11040
11041 static void
11042 process_die (struct die_info *die, struct dwarf2_cu *cu)
11043 {
11044 process_die_scope scope (die, cu);
11045
11046 switch (die->tag)
11047 {
11048 case DW_TAG_padding:
11049 break;
11050 case DW_TAG_compile_unit:
11051 case DW_TAG_partial_unit:
11052 read_file_scope (die, cu);
11053 break;
11054 case DW_TAG_type_unit:
11055 read_type_unit_scope (die, cu);
11056 break;
11057 case DW_TAG_subprogram:
11058 case DW_TAG_inlined_subroutine:
11059 read_func_scope (die, cu);
11060 break;
11061 case DW_TAG_lexical_block:
11062 case DW_TAG_try_block:
11063 case DW_TAG_catch_block:
11064 read_lexical_block_scope (die, cu);
11065 break;
11066 case DW_TAG_call_site:
11067 case DW_TAG_GNU_call_site:
11068 read_call_site_scope (die, cu);
11069 break;
11070 case DW_TAG_class_type:
11071 case DW_TAG_interface_type:
11072 case DW_TAG_structure_type:
11073 case DW_TAG_union_type:
11074 process_structure_scope (die, cu);
11075 break;
11076 case DW_TAG_enumeration_type:
11077 process_enumeration_scope (die, cu);
11078 break;
11079
11080 /* These dies have a type, but processing them does not create
11081 a symbol or recurse to process the children. Therefore we can
11082 read them on-demand through read_type_die. */
11083 case DW_TAG_subroutine_type:
11084 case DW_TAG_set_type:
11085 case DW_TAG_array_type:
11086 case DW_TAG_pointer_type:
11087 case DW_TAG_ptr_to_member_type:
11088 case DW_TAG_reference_type:
11089 case DW_TAG_rvalue_reference_type:
11090 case DW_TAG_string_type:
11091 break;
11092
11093 case DW_TAG_base_type:
11094 case DW_TAG_subrange_type:
11095 case DW_TAG_typedef:
11096 /* Add a typedef symbol for the type definition, if it has a
11097 DW_AT_name. */
11098 new_symbol (die, read_type_die (die, cu), cu);
11099 break;
11100 case DW_TAG_common_block:
11101 read_common_block (die, cu);
11102 break;
11103 case DW_TAG_common_inclusion:
11104 break;
11105 case DW_TAG_namespace:
11106 cu->processing_has_namespace_info = 1;
11107 read_namespace (die, cu);
11108 break;
11109 case DW_TAG_module:
11110 cu->processing_has_namespace_info = 1;
11111 read_module (die, cu);
11112 break;
11113 case DW_TAG_imported_declaration:
11114 cu->processing_has_namespace_info = 1;
11115 if (read_namespace_alias (die, cu))
11116 break;
11117 /* The declaration is not a global namespace alias: fall through. */
11118 case DW_TAG_imported_module:
11119 cu->processing_has_namespace_info = 1;
11120 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
11121 || cu->language != language_fortran))
11122 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
11123 dwarf_tag_name (die->tag));
11124 read_import_statement (die, cu);
11125 break;
11126
11127 case DW_TAG_imported_unit:
11128 process_imported_unit_die (die, cu);
11129 break;
11130
11131 case DW_TAG_variable:
11132 read_variable (die, cu);
11133 break;
11134
11135 default:
11136 new_symbol (die, NULL, cu);
11137 break;
11138 }
11139 }
11140 \f
11141 /* DWARF name computation. */
11142
11143 /* A helper function for dwarf2_compute_name which determines whether DIE
11144 needs to have the name of the scope prepended to the name listed in the
11145 die. */
11146
11147 static int
11148 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
11149 {
11150 struct attribute *attr;
11151
11152 switch (die->tag)
11153 {
11154 case DW_TAG_namespace:
11155 case DW_TAG_typedef:
11156 case DW_TAG_class_type:
11157 case DW_TAG_interface_type:
11158 case DW_TAG_structure_type:
11159 case DW_TAG_union_type:
11160 case DW_TAG_enumeration_type:
11161 case DW_TAG_enumerator:
11162 case DW_TAG_subprogram:
11163 case DW_TAG_inlined_subroutine:
11164 case DW_TAG_member:
11165 case DW_TAG_imported_declaration:
11166 return 1;
11167
11168 case DW_TAG_variable:
11169 case DW_TAG_constant:
11170 /* We only need to prefix "globally" visible variables. These include
11171 any variable marked with DW_AT_external or any variable that
11172 lives in a namespace. [Variables in anonymous namespaces
11173 require prefixing, but they are not DW_AT_external.] */
11174
11175 if (dwarf2_attr (die, DW_AT_specification, cu))
11176 {
11177 struct dwarf2_cu *spec_cu = cu;
11178
11179 return die_needs_namespace (die_specification (die, &spec_cu),
11180 spec_cu);
11181 }
11182
11183 attr = dwarf2_attr (die, DW_AT_external, cu);
11184 if (attr == NULL && die->parent->tag != DW_TAG_namespace
11185 && die->parent->tag != DW_TAG_module)
11186 return 0;
11187 /* A variable in a lexical block of some kind does not need a
11188 namespace, even though in C++ such variables may be external
11189 and have a mangled name. */
11190 if (die->parent->tag == DW_TAG_lexical_block
11191 || die->parent->tag == DW_TAG_try_block
11192 || die->parent->tag == DW_TAG_catch_block
11193 || die->parent->tag == DW_TAG_subprogram)
11194 return 0;
11195 return 1;
11196
11197 default:
11198 return 0;
11199 }
11200 }
11201
11202 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
11203 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
11204 defined for the given DIE. */
11205
11206 static struct attribute *
11207 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
11208 {
11209 struct attribute *attr;
11210
11211 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
11212 if (attr == NULL)
11213 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
11214
11215 return attr;
11216 }
11217
11218 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
11219 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
11220 defined for the given DIE. */
11221
11222 static const char *
11223 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
11224 {
11225 const char *linkage_name;
11226
11227 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
11228 if (linkage_name == NULL)
11229 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
11230
11231 return linkage_name;
11232 }
11233
11234 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
11235 compute the physname for the object, which include a method's:
11236 - formal parameters (C++),
11237 - receiver type (Go),
11238
11239 The term "physname" is a bit confusing.
11240 For C++, for example, it is the demangled name.
11241 For Go, for example, it's the mangled name.
11242
11243 For Ada, return the DIE's linkage name rather than the fully qualified
11244 name. PHYSNAME is ignored..
11245
11246 The result is allocated on the objfile_obstack and canonicalized. */
11247
11248 static const char *
11249 dwarf2_compute_name (const char *name,
11250 struct die_info *die, struct dwarf2_cu *cu,
11251 int physname)
11252 {
11253 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11254
11255 if (name == NULL)
11256 name = dwarf2_name (die, cu);
11257
11258 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
11259 but otherwise compute it by typename_concat inside GDB.
11260 FIXME: Actually this is not really true, or at least not always true.
11261 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
11262 Fortran names because there is no mangling standard. So new_symbol
11263 will set the demangled name to the result of dwarf2_full_name, and it is
11264 the demangled name that GDB uses if it exists. */
11265 if (cu->language == language_ada
11266 || (cu->language == language_fortran && physname))
11267 {
11268 /* For Ada unit, we prefer the linkage name over the name, as
11269 the former contains the exported name, which the user expects
11270 to be able to reference. Ideally, we want the user to be able
11271 to reference this entity using either natural or linkage name,
11272 but we haven't started looking at this enhancement yet. */
11273 const char *linkage_name = dw2_linkage_name (die, cu);
11274
11275 if (linkage_name != NULL)
11276 return linkage_name;
11277 }
11278
11279 /* These are the only languages we know how to qualify names in. */
11280 if (name != NULL
11281 && (cu->language == language_cplus
11282 || cu->language == language_fortran || cu->language == language_d
11283 || cu->language == language_rust))
11284 {
11285 if (die_needs_namespace (die, cu))
11286 {
11287 const char *prefix;
11288 const char *canonical_name = NULL;
11289
11290 string_file buf;
11291
11292 prefix = determine_prefix (die, cu);
11293 if (*prefix != '\0')
11294 {
11295 char *prefixed_name = typename_concat (NULL, prefix, name,
11296 physname, cu);
11297
11298 buf.puts (prefixed_name);
11299 xfree (prefixed_name);
11300 }
11301 else
11302 buf.puts (name);
11303
11304 /* Template parameters may be specified in the DIE's DW_AT_name, or
11305 as children with DW_TAG_template_type_param or
11306 DW_TAG_value_type_param. If the latter, add them to the name
11307 here. If the name already has template parameters, then
11308 skip this step; some versions of GCC emit both, and
11309 it is more efficient to use the pre-computed name.
11310
11311 Something to keep in mind about this process: it is very
11312 unlikely, or in some cases downright impossible, to produce
11313 something that will match the mangled name of a function.
11314 If the definition of the function has the same debug info,
11315 we should be able to match up with it anyway. But fallbacks
11316 using the minimal symbol, for instance to find a method
11317 implemented in a stripped copy of libstdc++, will not work.
11318 If we do not have debug info for the definition, we will have to
11319 match them up some other way.
11320
11321 When we do name matching there is a related problem with function
11322 templates; two instantiated function templates are allowed to
11323 differ only by their return types, which we do not add here. */
11324
11325 if (cu->language == language_cplus && strchr (name, '<') == NULL)
11326 {
11327 struct attribute *attr;
11328 struct die_info *child;
11329 int first = 1;
11330
11331 die->building_fullname = 1;
11332
11333 for (child = die->child; child != NULL; child = child->sibling)
11334 {
11335 struct type *type;
11336 LONGEST value;
11337 const gdb_byte *bytes;
11338 struct dwarf2_locexpr_baton *baton;
11339 struct value *v;
11340
11341 if (child->tag != DW_TAG_template_type_param
11342 && child->tag != DW_TAG_template_value_param)
11343 continue;
11344
11345 if (first)
11346 {
11347 buf.puts ("<");
11348 first = 0;
11349 }
11350 else
11351 buf.puts (", ");
11352
11353 attr = dwarf2_attr (child, DW_AT_type, cu);
11354 if (attr == NULL)
11355 {
11356 complaint (&symfile_complaints,
11357 _("template parameter missing DW_AT_type"));
11358 buf.puts ("UNKNOWN_TYPE");
11359 continue;
11360 }
11361 type = die_type (child, cu);
11362
11363 if (child->tag == DW_TAG_template_type_param)
11364 {
11365 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
11366 continue;
11367 }
11368
11369 attr = dwarf2_attr (child, DW_AT_const_value, cu);
11370 if (attr == NULL)
11371 {
11372 complaint (&symfile_complaints,
11373 _("template parameter missing "
11374 "DW_AT_const_value"));
11375 buf.puts ("UNKNOWN_VALUE");
11376 continue;
11377 }
11378
11379 dwarf2_const_value_attr (attr, type, name,
11380 &cu->comp_unit_obstack, cu,
11381 &value, &bytes, &baton);
11382
11383 if (TYPE_NOSIGN (type))
11384 /* GDB prints characters as NUMBER 'CHAR'. If that's
11385 changed, this can use value_print instead. */
11386 c_printchar (value, type, &buf);
11387 else
11388 {
11389 struct value_print_options opts;
11390
11391 if (baton != NULL)
11392 v = dwarf2_evaluate_loc_desc (type, NULL,
11393 baton->data,
11394 baton->size,
11395 baton->per_cu);
11396 else if (bytes != NULL)
11397 {
11398 v = allocate_value (type);
11399 memcpy (value_contents_writeable (v), bytes,
11400 TYPE_LENGTH (type));
11401 }
11402 else
11403 v = value_from_longest (type, value);
11404
11405 /* Specify decimal so that we do not depend on
11406 the radix. */
11407 get_formatted_print_options (&opts, 'd');
11408 opts.raw = 1;
11409 value_print (v, &buf, &opts);
11410 release_value (v);
11411 value_free (v);
11412 }
11413 }
11414
11415 die->building_fullname = 0;
11416
11417 if (!first)
11418 {
11419 /* Close the argument list, with a space if necessary
11420 (nested templates). */
11421 if (!buf.empty () && buf.string ().back () == '>')
11422 buf.puts (" >");
11423 else
11424 buf.puts (">");
11425 }
11426 }
11427
11428 /* For C++ methods, append formal parameter type
11429 information, if PHYSNAME. */
11430
11431 if (physname && die->tag == DW_TAG_subprogram
11432 && cu->language == language_cplus)
11433 {
11434 struct type *type = read_type_die (die, cu);
11435
11436 c_type_print_args (type, &buf, 1, cu->language,
11437 &type_print_raw_options);
11438
11439 if (cu->language == language_cplus)
11440 {
11441 /* Assume that an artificial first parameter is
11442 "this", but do not crash if it is not. RealView
11443 marks unnamed (and thus unused) parameters as
11444 artificial; there is no way to differentiate
11445 the two cases. */
11446 if (TYPE_NFIELDS (type) > 0
11447 && TYPE_FIELD_ARTIFICIAL (type, 0)
11448 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11449 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11450 0))))
11451 buf.puts (" const");
11452 }
11453 }
11454
11455 const std::string &intermediate_name = buf.string ();
11456
11457 if (cu->language == language_cplus)
11458 canonical_name
11459 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11460 &objfile->per_bfd->storage_obstack);
11461
11462 /* If we only computed INTERMEDIATE_NAME, or if
11463 INTERMEDIATE_NAME is already canonical, then we need to
11464 copy it to the appropriate obstack. */
11465 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11466 name = ((const char *)
11467 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11468 intermediate_name.c_str (),
11469 intermediate_name.length ()));
11470 else
11471 name = canonical_name;
11472 }
11473 }
11474
11475 return name;
11476 }
11477
11478 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11479 If scope qualifiers are appropriate they will be added. The result
11480 will be allocated on the storage_obstack, or NULL if the DIE does
11481 not have a name. NAME may either be from a previous call to
11482 dwarf2_name or NULL.
11483
11484 The output string will be canonicalized (if C++). */
11485
11486 static const char *
11487 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11488 {
11489 return dwarf2_compute_name (name, die, cu, 0);
11490 }
11491
11492 /* Construct a physname for the given DIE in CU. NAME may either be
11493 from a previous call to dwarf2_name or NULL. The result will be
11494 allocated on the objfile_objstack or NULL if the DIE does not have a
11495 name.
11496
11497 The output string will be canonicalized (if C++). */
11498
11499 static const char *
11500 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11501 {
11502 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11503 const char *retval, *mangled = NULL, *canon = NULL;
11504 int need_copy = 1;
11505
11506 /* In this case dwarf2_compute_name is just a shortcut not building anything
11507 on its own. */
11508 if (!die_needs_namespace (die, cu))
11509 return dwarf2_compute_name (name, die, cu, 1);
11510
11511 mangled = dw2_linkage_name (die, cu);
11512
11513 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11514 See https://github.com/rust-lang/rust/issues/32925. */
11515 if (cu->language == language_rust && mangled != NULL
11516 && strchr (mangled, '{') != NULL)
11517 mangled = NULL;
11518
11519 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11520 has computed. */
11521 gdb::unique_xmalloc_ptr<char> demangled;
11522 if (mangled != NULL)
11523 {
11524
11525 if (cu->language == language_go)
11526 {
11527 /* This is a lie, but we already lie to the caller new_symbol.
11528 new_symbol assumes we return the mangled name.
11529 This just undoes that lie until things are cleaned up. */
11530 }
11531 else
11532 {
11533 /* Use DMGL_RET_DROP for C++ template functions to suppress
11534 their return type. It is easier for GDB users to search
11535 for such functions as `name(params)' than `long name(params)'.
11536 In such case the minimal symbol names do not match the full
11537 symbol names but for template functions there is never a need
11538 to look up their definition from their declaration so
11539 the only disadvantage remains the minimal symbol variant
11540 `long name(params)' does not have the proper inferior type. */
11541 demangled.reset (gdb_demangle (mangled,
11542 (DMGL_PARAMS | DMGL_ANSI
11543 | DMGL_RET_DROP)));
11544 }
11545 if (demangled)
11546 canon = demangled.get ();
11547 else
11548 {
11549 canon = mangled;
11550 need_copy = 0;
11551 }
11552 }
11553
11554 if (canon == NULL || check_physname)
11555 {
11556 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11557
11558 if (canon != NULL && strcmp (physname, canon) != 0)
11559 {
11560 /* It may not mean a bug in GDB. The compiler could also
11561 compute DW_AT_linkage_name incorrectly. But in such case
11562 GDB would need to be bug-to-bug compatible. */
11563
11564 complaint (&symfile_complaints,
11565 _("Computed physname <%s> does not match demangled <%s> "
11566 "(from linkage <%s>) - DIE at %s [in module %s]"),
11567 physname, canon, mangled, sect_offset_str (die->sect_off),
11568 objfile_name (objfile));
11569
11570 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11571 is available here - over computed PHYSNAME. It is safer
11572 against both buggy GDB and buggy compilers. */
11573
11574 retval = canon;
11575 }
11576 else
11577 {
11578 retval = physname;
11579 need_copy = 0;
11580 }
11581 }
11582 else
11583 retval = canon;
11584
11585 if (need_copy)
11586 retval = ((const char *)
11587 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11588 retval, strlen (retval)));
11589
11590 return retval;
11591 }
11592
11593 /* Inspect DIE in CU for a namespace alias. If one exists, record
11594 a new symbol for it.
11595
11596 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11597
11598 static int
11599 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11600 {
11601 struct attribute *attr;
11602
11603 /* If the die does not have a name, this is not a namespace
11604 alias. */
11605 attr = dwarf2_attr (die, DW_AT_name, cu);
11606 if (attr != NULL)
11607 {
11608 int num;
11609 struct die_info *d = die;
11610 struct dwarf2_cu *imported_cu = cu;
11611
11612 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11613 keep inspecting DIEs until we hit the underlying import. */
11614 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11615 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11616 {
11617 attr = dwarf2_attr (d, DW_AT_import, cu);
11618 if (attr == NULL)
11619 break;
11620
11621 d = follow_die_ref (d, attr, &imported_cu);
11622 if (d->tag != DW_TAG_imported_declaration)
11623 break;
11624 }
11625
11626 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11627 {
11628 complaint (&symfile_complaints,
11629 _("DIE at %s has too many recursively imported "
11630 "declarations"), sect_offset_str (d->sect_off));
11631 return 0;
11632 }
11633
11634 if (attr != NULL)
11635 {
11636 struct type *type;
11637 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11638
11639 type = get_die_type_at_offset (sect_off, cu->per_cu);
11640 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11641 {
11642 /* This declaration is a global namespace alias. Add
11643 a symbol for it whose type is the aliased namespace. */
11644 new_symbol (die, type, cu);
11645 return 1;
11646 }
11647 }
11648 }
11649
11650 return 0;
11651 }
11652
11653 /* Return the using directives repository (global or local?) to use in the
11654 current context for LANGUAGE.
11655
11656 For Ada, imported declarations can materialize renamings, which *may* be
11657 global. However it is impossible (for now?) in DWARF to distinguish
11658 "external" imported declarations and "static" ones. As all imported
11659 declarations seem to be static in all other languages, make them all CU-wide
11660 global only in Ada. */
11661
11662 static struct using_direct **
11663 using_directives (enum language language)
11664 {
11665 if (language == language_ada && context_stack_depth == 0)
11666 return &global_using_directives;
11667 else
11668 return &local_using_directives;
11669 }
11670
11671 /* Read the import statement specified by the given die and record it. */
11672
11673 static void
11674 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11675 {
11676 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11677 struct attribute *import_attr;
11678 struct die_info *imported_die, *child_die;
11679 struct dwarf2_cu *imported_cu;
11680 const char *imported_name;
11681 const char *imported_name_prefix;
11682 const char *canonical_name;
11683 const char *import_alias;
11684 const char *imported_declaration = NULL;
11685 const char *import_prefix;
11686 std::vector<const char *> excludes;
11687
11688 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11689 if (import_attr == NULL)
11690 {
11691 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11692 dwarf_tag_name (die->tag));
11693 return;
11694 }
11695
11696 imported_cu = cu;
11697 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11698 imported_name = dwarf2_name (imported_die, imported_cu);
11699 if (imported_name == NULL)
11700 {
11701 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11702
11703 The import in the following code:
11704 namespace A
11705 {
11706 typedef int B;
11707 }
11708
11709 int main ()
11710 {
11711 using A::B;
11712 B b;
11713 return b;
11714 }
11715
11716 ...
11717 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11718 <52> DW_AT_decl_file : 1
11719 <53> DW_AT_decl_line : 6
11720 <54> DW_AT_import : <0x75>
11721 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11722 <59> DW_AT_name : B
11723 <5b> DW_AT_decl_file : 1
11724 <5c> DW_AT_decl_line : 2
11725 <5d> DW_AT_type : <0x6e>
11726 ...
11727 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11728 <76> DW_AT_byte_size : 4
11729 <77> DW_AT_encoding : 5 (signed)
11730
11731 imports the wrong die ( 0x75 instead of 0x58 ).
11732 This case will be ignored until the gcc bug is fixed. */
11733 return;
11734 }
11735
11736 /* Figure out the local name after import. */
11737 import_alias = dwarf2_name (die, cu);
11738
11739 /* Figure out where the statement is being imported to. */
11740 import_prefix = determine_prefix (die, cu);
11741
11742 /* Figure out what the scope of the imported die is and prepend it
11743 to the name of the imported die. */
11744 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11745
11746 if (imported_die->tag != DW_TAG_namespace
11747 && imported_die->tag != DW_TAG_module)
11748 {
11749 imported_declaration = imported_name;
11750 canonical_name = imported_name_prefix;
11751 }
11752 else if (strlen (imported_name_prefix) > 0)
11753 canonical_name = obconcat (&objfile->objfile_obstack,
11754 imported_name_prefix,
11755 (cu->language == language_d ? "." : "::"),
11756 imported_name, (char *) NULL);
11757 else
11758 canonical_name = imported_name;
11759
11760 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11761 for (child_die = die->child; child_die && child_die->tag;
11762 child_die = sibling_die (child_die))
11763 {
11764 /* DWARF-4: A Fortran use statement with a “rename list” may be
11765 represented by an imported module entry with an import attribute
11766 referring to the module and owned entries corresponding to those
11767 entities that are renamed as part of being imported. */
11768
11769 if (child_die->tag != DW_TAG_imported_declaration)
11770 {
11771 complaint (&symfile_complaints,
11772 _("child DW_TAG_imported_declaration expected "
11773 "- DIE at %s [in module %s]"),
11774 sect_offset_str (child_die->sect_off),
11775 objfile_name (objfile));
11776 continue;
11777 }
11778
11779 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11780 if (import_attr == NULL)
11781 {
11782 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
11783 dwarf_tag_name (child_die->tag));
11784 continue;
11785 }
11786
11787 imported_cu = cu;
11788 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11789 &imported_cu);
11790 imported_name = dwarf2_name (imported_die, imported_cu);
11791 if (imported_name == NULL)
11792 {
11793 complaint (&symfile_complaints,
11794 _("child DW_TAG_imported_declaration has unknown "
11795 "imported name - DIE at %s [in module %s]"),
11796 sect_offset_str (child_die->sect_off),
11797 objfile_name (objfile));
11798 continue;
11799 }
11800
11801 excludes.push_back (imported_name);
11802
11803 process_die (child_die, cu);
11804 }
11805
11806 add_using_directive (using_directives (cu->language),
11807 import_prefix,
11808 canonical_name,
11809 import_alias,
11810 imported_declaration,
11811 excludes,
11812 0,
11813 &objfile->objfile_obstack);
11814 }
11815
11816 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11817 types, but gives them a size of zero. Starting with version 14,
11818 ICC is compatible with GCC. */
11819
11820 static int
11821 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11822 {
11823 if (!cu->checked_producer)
11824 check_producer (cu);
11825
11826 return cu->producer_is_icc_lt_14;
11827 }
11828
11829 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11830 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11831 this, it was first present in GCC release 4.3.0. */
11832
11833 static int
11834 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11835 {
11836 if (!cu->checked_producer)
11837 check_producer (cu);
11838
11839 return cu->producer_is_gcc_lt_4_3;
11840 }
11841
11842 static file_and_directory
11843 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11844 {
11845 file_and_directory res;
11846
11847 /* Find the filename. Do not use dwarf2_name here, since the filename
11848 is not a source language identifier. */
11849 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11850 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11851
11852 if (res.comp_dir == NULL
11853 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11854 && IS_ABSOLUTE_PATH (res.name))
11855 {
11856 res.comp_dir_storage = ldirname (res.name);
11857 if (!res.comp_dir_storage.empty ())
11858 res.comp_dir = res.comp_dir_storage.c_str ();
11859 }
11860 if (res.comp_dir != NULL)
11861 {
11862 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11863 directory, get rid of it. */
11864 const char *cp = strchr (res.comp_dir, ':');
11865
11866 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11867 res.comp_dir = cp + 1;
11868 }
11869
11870 if (res.name == NULL)
11871 res.name = "<unknown>";
11872
11873 return res;
11874 }
11875
11876 /* Handle DW_AT_stmt_list for a compilation unit.
11877 DIE is the DW_TAG_compile_unit die for CU.
11878 COMP_DIR is the compilation directory. LOWPC is passed to
11879 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11880
11881 static void
11882 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11883 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11884 {
11885 struct dwarf2_per_objfile *dwarf2_per_objfile
11886 = cu->per_cu->dwarf2_per_objfile;
11887 struct objfile *objfile = dwarf2_per_objfile->objfile;
11888 struct attribute *attr;
11889 struct line_header line_header_local;
11890 hashval_t line_header_local_hash;
11891 void **slot;
11892 int decode_mapping;
11893
11894 gdb_assert (! cu->per_cu->is_debug_types);
11895
11896 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11897 if (attr == NULL)
11898 return;
11899
11900 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11901
11902 /* The line header hash table is only created if needed (it exists to
11903 prevent redundant reading of the line table for partial_units).
11904 If we're given a partial_unit, we'll need it. If we're given a
11905 compile_unit, then use the line header hash table if it's already
11906 created, but don't create one just yet. */
11907
11908 if (dwarf2_per_objfile->line_header_hash == NULL
11909 && die->tag == DW_TAG_partial_unit)
11910 {
11911 dwarf2_per_objfile->line_header_hash
11912 = htab_create_alloc_ex (127, line_header_hash_voidp,
11913 line_header_eq_voidp,
11914 free_line_header_voidp,
11915 &objfile->objfile_obstack,
11916 hashtab_obstack_allocate,
11917 dummy_obstack_deallocate);
11918 }
11919
11920 line_header_local.sect_off = line_offset;
11921 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11922 line_header_local_hash = line_header_hash (&line_header_local);
11923 if (dwarf2_per_objfile->line_header_hash != NULL)
11924 {
11925 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11926 &line_header_local,
11927 line_header_local_hash, NO_INSERT);
11928
11929 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11930 is not present in *SLOT (since if there is something in *SLOT then
11931 it will be for a partial_unit). */
11932 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11933 {
11934 gdb_assert (*slot != NULL);
11935 cu->line_header = (struct line_header *) *slot;
11936 return;
11937 }
11938 }
11939
11940 /* dwarf_decode_line_header does not yet provide sufficient information.
11941 We always have to call also dwarf_decode_lines for it. */
11942 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11943 if (lh == NULL)
11944 return;
11945
11946 cu->line_header = lh.release ();
11947 cu->line_header_die_owner = die;
11948
11949 if (dwarf2_per_objfile->line_header_hash == NULL)
11950 slot = NULL;
11951 else
11952 {
11953 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11954 &line_header_local,
11955 line_header_local_hash, INSERT);
11956 gdb_assert (slot != NULL);
11957 }
11958 if (slot != NULL && *slot == NULL)
11959 {
11960 /* This newly decoded line number information unit will be owned
11961 by line_header_hash hash table. */
11962 *slot = cu->line_header;
11963 cu->line_header_die_owner = NULL;
11964 }
11965 else
11966 {
11967 /* We cannot free any current entry in (*slot) as that struct line_header
11968 may be already used by multiple CUs. Create only temporary decoded
11969 line_header for this CU - it may happen at most once for each line
11970 number information unit. And if we're not using line_header_hash
11971 then this is what we want as well. */
11972 gdb_assert (die->tag != DW_TAG_partial_unit);
11973 }
11974 decode_mapping = (die->tag != DW_TAG_partial_unit);
11975 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11976 decode_mapping);
11977
11978 }
11979
11980 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11981
11982 static void
11983 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11984 {
11985 struct dwarf2_per_objfile *dwarf2_per_objfile
11986 = cu->per_cu->dwarf2_per_objfile;
11987 struct objfile *objfile = dwarf2_per_objfile->objfile;
11988 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11989 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11990 CORE_ADDR highpc = ((CORE_ADDR) 0);
11991 struct attribute *attr;
11992 struct die_info *child_die;
11993 CORE_ADDR baseaddr;
11994
11995 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11996
11997 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11998
11999 /* If we didn't find a lowpc, set it to highpc to avoid complaints
12000 from finish_block. */
12001 if (lowpc == ((CORE_ADDR) -1))
12002 lowpc = highpc;
12003 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12004
12005 file_and_directory fnd = find_file_and_directory (die, cu);
12006
12007 prepare_one_comp_unit (cu, die, cu->language);
12008
12009 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
12010 standardised yet. As a workaround for the language detection we fall
12011 back to the DW_AT_producer string. */
12012 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
12013 cu->language = language_opencl;
12014
12015 /* Similar hack for Go. */
12016 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
12017 set_cu_language (DW_LANG_Go, cu);
12018
12019 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
12020
12021 /* Decode line number information if present. We do this before
12022 processing child DIEs, so that the line header table is available
12023 for DW_AT_decl_file. */
12024 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
12025
12026 /* Process all dies in compilation unit. */
12027 if (die->child != NULL)
12028 {
12029 child_die = die->child;
12030 while (child_die && child_die->tag)
12031 {
12032 process_die (child_die, cu);
12033 child_die = sibling_die (child_die);
12034 }
12035 }
12036
12037 /* Decode macro information, if present. Dwarf 2 macro information
12038 refers to information in the line number info statement program
12039 header, so we can only read it if we've read the header
12040 successfully. */
12041 attr = dwarf2_attr (die, DW_AT_macros, cu);
12042 if (attr == NULL)
12043 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
12044 if (attr && cu->line_header)
12045 {
12046 if (dwarf2_attr (die, DW_AT_macro_info, cu))
12047 complaint (&symfile_complaints,
12048 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
12049
12050 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
12051 }
12052 else
12053 {
12054 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
12055 if (attr && cu->line_header)
12056 {
12057 unsigned int macro_offset = DW_UNSND (attr);
12058
12059 dwarf_decode_macros (cu, macro_offset, 0);
12060 }
12061 }
12062 }
12063
12064 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
12065 Create the set of symtabs used by this TU, or if this TU is sharing
12066 symtabs with another TU and the symtabs have already been created
12067 then restore those symtabs in the line header.
12068 We don't need the pc/line-number mapping for type units. */
12069
12070 static void
12071 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
12072 {
12073 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
12074 struct type_unit_group *tu_group;
12075 int first_time;
12076 struct attribute *attr;
12077 unsigned int i;
12078 struct signatured_type *sig_type;
12079
12080 gdb_assert (per_cu->is_debug_types);
12081 sig_type = (struct signatured_type *) per_cu;
12082
12083 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
12084
12085 /* If we're using .gdb_index (includes -readnow) then
12086 per_cu->type_unit_group may not have been set up yet. */
12087 if (sig_type->type_unit_group == NULL)
12088 sig_type->type_unit_group = get_type_unit_group (cu, attr);
12089 tu_group = sig_type->type_unit_group;
12090
12091 /* If we've already processed this stmt_list there's no real need to
12092 do it again, we could fake it and just recreate the part we need
12093 (file name,index -> symtab mapping). If data shows this optimization
12094 is useful we can do it then. */
12095 first_time = tu_group->compunit_symtab == NULL;
12096
12097 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
12098 debug info. */
12099 line_header_up lh;
12100 if (attr != NULL)
12101 {
12102 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
12103 lh = dwarf_decode_line_header (line_offset, cu);
12104 }
12105 if (lh == NULL)
12106 {
12107 if (first_time)
12108 dwarf2_start_symtab (cu, "", NULL, 0);
12109 else
12110 {
12111 gdb_assert (tu_group->symtabs == NULL);
12112 restart_symtab (tu_group->compunit_symtab, "", 0);
12113 }
12114 return;
12115 }
12116
12117 cu->line_header = lh.release ();
12118 cu->line_header_die_owner = die;
12119
12120 if (first_time)
12121 {
12122 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
12123
12124 /* Note: We don't assign tu_group->compunit_symtab yet because we're
12125 still initializing it, and our caller (a few levels up)
12126 process_full_type_unit still needs to know if this is the first
12127 time. */
12128
12129 tu_group->num_symtabs = cu->line_header->file_names.size ();
12130 tu_group->symtabs = XNEWVEC (struct symtab *,
12131 cu->line_header->file_names.size ());
12132
12133 for (i = 0; i < cu->line_header->file_names.size (); ++i)
12134 {
12135 file_entry &fe = cu->line_header->file_names[i];
12136
12137 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
12138
12139 if (current_subfile->symtab == NULL)
12140 {
12141 /* NOTE: start_subfile will recognize when it's been
12142 passed a file it has already seen. So we can't
12143 assume there's a simple mapping from
12144 cu->line_header->file_names to subfiles, plus
12145 cu->line_header->file_names may contain dups. */
12146 current_subfile->symtab
12147 = allocate_symtab (cust, current_subfile->name);
12148 }
12149
12150 fe.symtab = current_subfile->symtab;
12151 tu_group->symtabs[i] = fe.symtab;
12152 }
12153 }
12154 else
12155 {
12156 restart_symtab (tu_group->compunit_symtab, "", 0);
12157
12158 for (i = 0; i < cu->line_header->file_names.size (); ++i)
12159 {
12160 file_entry &fe = cu->line_header->file_names[i];
12161
12162 fe.symtab = tu_group->symtabs[i];
12163 }
12164 }
12165
12166 /* The main symtab is allocated last. Type units don't have DW_AT_name
12167 so they don't have a "real" (so to speak) symtab anyway.
12168 There is later code that will assign the main symtab to all symbols
12169 that don't have one. We need to handle the case of a symbol with a
12170 missing symtab (DW_AT_decl_file) anyway. */
12171 }
12172
12173 /* Process DW_TAG_type_unit.
12174 For TUs we want to skip the first top level sibling if it's not the
12175 actual type being defined by this TU. In this case the first top
12176 level sibling is there to provide context only. */
12177
12178 static void
12179 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
12180 {
12181 struct die_info *child_die;
12182
12183 prepare_one_comp_unit (cu, die, language_minimal);
12184
12185 /* Initialize (or reinitialize) the machinery for building symtabs.
12186 We do this before processing child DIEs, so that the line header table
12187 is available for DW_AT_decl_file. */
12188 setup_type_unit_groups (die, cu);
12189
12190 if (die->child != NULL)
12191 {
12192 child_die = die->child;
12193 while (child_die && child_die->tag)
12194 {
12195 process_die (child_die, cu);
12196 child_die = sibling_die (child_die);
12197 }
12198 }
12199 }
12200 \f
12201 /* DWO/DWP files.
12202
12203 http://gcc.gnu.org/wiki/DebugFission
12204 http://gcc.gnu.org/wiki/DebugFissionDWP
12205
12206 To simplify handling of both DWO files ("object" files with the DWARF info)
12207 and DWP files (a file with the DWOs packaged up into one file), we treat
12208 DWP files as having a collection of virtual DWO files. */
12209
12210 static hashval_t
12211 hash_dwo_file (const void *item)
12212 {
12213 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
12214 hashval_t hash;
12215
12216 hash = htab_hash_string (dwo_file->dwo_name);
12217 if (dwo_file->comp_dir != NULL)
12218 hash += htab_hash_string (dwo_file->comp_dir);
12219 return hash;
12220 }
12221
12222 static int
12223 eq_dwo_file (const void *item_lhs, const void *item_rhs)
12224 {
12225 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
12226 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
12227
12228 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
12229 return 0;
12230 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
12231 return lhs->comp_dir == rhs->comp_dir;
12232 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
12233 }
12234
12235 /* Allocate a hash table for DWO files. */
12236
12237 static htab_t
12238 allocate_dwo_file_hash_table (struct objfile *objfile)
12239 {
12240 return htab_create_alloc_ex (41,
12241 hash_dwo_file,
12242 eq_dwo_file,
12243 NULL,
12244 &objfile->objfile_obstack,
12245 hashtab_obstack_allocate,
12246 dummy_obstack_deallocate);
12247 }
12248
12249 /* Lookup DWO file DWO_NAME. */
12250
12251 static void **
12252 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
12253 const char *dwo_name,
12254 const char *comp_dir)
12255 {
12256 struct dwo_file find_entry;
12257 void **slot;
12258
12259 if (dwarf2_per_objfile->dwo_files == NULL)
12260 dwarf2_per_objfile->dwo_files
12261 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
12262
12263 memset (&find_entry, 0, sizeof (find_entry));
12264 find_entry.dwo_name = dwo_name;
12265 find_entry.comp_dir = comp_dir;
12266 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
12267
12268 return slot;
12269 }
12270
12271 static hashval_t
12272 hash_dwo_unit (const void *item)
12273 {
12274 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12275
12276 /* This drops the top 32 bits of the id, but is ok for a hash. */
12277 return dwo_unit->signature;
12278 }
12279
12280 static int
12281 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
12282 {
12283 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
12284 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
12285
12286 /* The signature is assumed to be unique within the DWO file.
12287 So while object file CU dwo_id's always have the value zero,
12288 that's OK, assuming each object file DWO file has only one CU,
12289 and that's the rule for now. */
12290 return lhs->signature == rhs->signature;
12291 }
12292
12293 /* Allocate a hash table for DWO CUs,TUs.
12294 There is one of these tables for each of CUs,TUs for each DWO file. */
12295
12296 static htab_t
12297 allocate_dwo_unit_table (struct objfile *objfile)
12298 {
12299 /* Start out with a pretty small number.
12300 Generally DWO files contain only one CU and maybe some TUs. */
12301 return htab_create_alloc_ex (3,
12302 hash_dwo_unit,
12303 eq_dwo_unit,
12304 NULL,
12305 &objfile->objfile_obstack,
12306 hashtab_obstack_allocate,
12307 dummy_obstack_deallocate);
12308 }
12309
12310 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
12311
12312 struct create_dwo_cu_data
12313 {
12314 struct dwo_file *dwo_file;
12315 struct dwo_unit dwo_unit;
12316 };
12317
12318 /* die_reader_func for create_dwo_cu. */
12319
12320 static void
12321 create_dwo_cu_reader (const struct die_reader_specs *reader,
12322 const gdb_byte *info_ptr,
12323 struct die_info *comp_unit_die,
12324 int has_children,
12325 void *datap)
12326 {
12327 struct dwarf2_cu *cu = reader->cu;
12328 sect_offset sect_off = cu->per_cu->sect_off;
12329 struct dwarf2_section_info *section = cu->per_cu->section;
12330 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
12331 struct dwo_file *dwo_file = data->dwo_file;
12332 struct dwo_unit *dwo_unit = &data->dwo_unit;
12333 struct attribute *attr;
12334
12335 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
12336 if (attr == NULL)
12337 {
12338 complaint (&symfile_complaints,
12339 _("Dwarf Error: debug entry at offset %s is missing"
12340 " its dwo_id [in module %s]"),
12341 sect_offset_str (sect_off), dwo_file->dwo_name);
12342 return;
12343 }
12344
12345 dwo_unit->dwo_file = dwo_file;
12346 dwo_unit->signature = DW_UNSND (attr);
12347 dwo_unit->section = section;
12348 dwo_unit->sect_off = sect_off;
12349 dwo_unit->length = cu->per_cu->length;
12350
12351 if (dwarf_read_debug)
12352 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
12353 sect_offset_str (sect_off),
12354 hex_string (dwo_unit->signature));
12355 }
12356
12357 /* Create the dwo_units for the CUs in a DWO_FILE.
12358 Note: This function processes DWO files only, not DWP files. */
12359
12360 static void
12361 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12362 struct dwo_file &dwo_file, dwarf2_section_info &section,
12363 htab_t &cus_htab)
12364 {
12365 struct objfile *objfile = dwarf2_per_objfile->objfile;
12366 const gdb_byte *info_ptr, *end_ptr;
12367
12368 dwarf2_read_section (objfile, &section);
12369 info_ptr = section.buffer;
12370
12371 if (info_ptr == NULL)
12372 return;
12373
12374 if (dwarf_read_debug)
12375 {
12376 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
12377 get_section_name (&section),
12378 get_section_file_name (&section));
12379 }
12380
12381 end_ptr = info_ptr + section.size;
12382 while (info_ptr < end_ptr)
12383 {
12384 struct dwarf2_per_cu_data per_cu;
12385 struct create_dwo_cu_data create_dwo_cu_data;
12386 struct dwo_unit *dwo_unit;
12387 void **slot;
12388 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
12389
12390 memset (&create_dwo_cu_data.dwo_unit, 0,
12391 sizeof (create_dwo_cu_data.dwo_unit));
12392 memset (&per_cu, 0, sizeof (per_cu));
12393 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12394 per_cu.is_debug_types = 0;
12395 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12396 per_cu.section = &section;
12397 create_dwo_cu_data.dwo_file = &dwo_file;
12398
12399 init_cutu_and_read_dies_no_follow (
12400 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12401 info_ptr += per_cu.length;
12402
12403 // If the unit could not be parsed, skip it.
12404 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12405 continue;
12406
12407 if (cus_htab == NULL)
12408 cus_htab = allocate_dwo_unit_table (objfile);
12409
12410 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12411 *dwo_unit = create_dwo_cu_data.dwo_unit;
12412 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12413 gdb_assert (slot != NULL);
12414 if (*slot != NULL)
12415 {
12416 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12417 sect_offset dup_sect_off = dup_cu->sect_off;
12418
12419 complaint (&symfile_complaints,
12420 _("debug cu entry at offset %s is duplicate to"
12421 " the entry at offset %s, signature %s"),
12422 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12423 hex_string (dwo_unit->signature));
12424 }
12425 *slot = (void *)dwo_unit;
12426 }
12427 }
12428
12429 /* DWP file .debug_{cu,tu}_index section format:
12430 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12431
12432 DWP Version 1:
12433
12434 Both index sections have the same format, and serve to map a 64-bit
12435 signature to a set of section numbers. Each section begins with a header,
12436 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12437 indexes, and a pool of 32-bit section numbers. The index sections will be
12438 aligned at 8-byte boundaries in the file.
12439
12440 The index section header consists of:
12441
12442 V, 32 bit version number
12443 -, 32 bits unused
12444 N, 32 bit number of compilation units or type units in the index
12445 M, 32 bit number of slots in the hash table
12446
12447 Numbers are recorded using the byte order of the application binary.
12448
12449 The hash table begins at offset 16 in the section, and consists of an array
12450 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12451 order of the application binary). Unused slots in the hash table are 0.
12452 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12453
12454 The parallel table begins immediately after the hash table
12455 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12456 array of 32-bit indexes (using the byte order of the application binary),
12457 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12458 table contains a 32-bit index into the pool of section numbers. For unused
12459 hash table slots, the corresponding entry in the parallel table will be 0.
12460
12461 The pool of section numbers begins immediately following the hash table
12462 (at offset 16 + 12 * M from the beginning of the section). The pool of
12463 section numbers consists of an array of 32-bit words (using the byte order
12464 of the application binary). Each item in the array is indexed starting
12465 from 0. The hash table entry provides the index of the first section
12466 number in the set. Additional section numbers in the set follow, and the
12467 set is terminated by a 0 entry (section number 0 is not used in ELF).
12468
12469 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12470 section must be the first entry in the set, and the .debug_abbrev.dwo must
12471 be the second entry. Other members of the set may follow in any order.
12472
12473 ---
12474
12475 DWP Version 2:
12476
12477 DWP Version 2 combines all the .debug_info, etc. sections into one,
12478 and the entries in the index tables are now offsets into these sections.
12479 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12480 section.
12481
12482 Index Section Contents:
12483 Header
12484 Hash Table of Signatures dwp_hash_table.hash_table
12485 Parallel Table of Indices dwp_hash_table.unit_table
12486 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12487 Table of Section Sizes dwp_hash_table.v2.sizes
12488
12489 The index section header consists of:
12490
12491 V, 32 bit version number
12492 L, 32 bit number of columns in the table of section offsets
12493 N, 32 bit number of compilation units or type units in the index
12494 M, 32 bit number of slots in the hash table
12495
12496 Numbers are recorded using the byte order of the application binary.
12497
12498 The hash table has the same format as version 1.
12499 The parallel table of indices has the same format as version 1,
12500 except that the entries are origin-1 indices into the table of sections
12501 offsets and the table of section sizes.
12502
12503 The table of offsets begins immediately following the parallel table
12504 (at offset 16 + 12 * M from the beginning of the section). The table is
12505 a two-dimensional array of 32-bit words (using the byte order of the
12506 application binary), with L columns and N+1 rows, in row-major order.
12507 Each row in the array is indexed starting from 0. The first row provides
12508 a key to the remaining rows: each column in this row provides an identifier
12509 for a debug section, and the offsets in the same column of subsequent rows
12510 refer to that section. The section identifiers are:
12511
12512 DW_SECT_INFO 1 .debug_info.dwo
12513 DW_SECT_TYPES 2 .debug_types.dwo
12514 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12515 DW_SECT_LINE 4 .debug_line.dwo
12516 DW_SECT_LOC 5 .debug_loc.dwo
12517 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12518 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12519 DW_SECT_MACRO 8 .debug_macro.dwo
12520
12521 The offsets provided by the CU and TU index sections are the base offsets
12522 for the contributions made by each CU or TU to the corresponding section
12523 in the package file. Each CU and TU header contains an abbrev_offset
12524 field, used to find the abbreviations table for that CU or TU within the
12525 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12526 be interpreted as relative to the base offset given in the index section.
12527 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12528 should be interpreted as relative to the base offset for .debug_line.dwo,
12529 and offsets into other debug sections obtained from DWARF attributes should
12530 also be interpreted as relative to the corresponding base offset.
12531
12532 The table of sizes begins immediately following the table of offsets.
12533 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12534 with L columns and N rows, in row-major order. Each row in the array is
12535 indexed starting from 1 (row 0 is shared by the two tables).
12536
12537 ---
12538
12539 Hash table lookup is handled the same in version 1 and 2:
12540
12541 We assume that N and M will not exceed 2^32 - 1.
12542 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12543
12544 Given a 64-bit compilation unit signature or a type signature S, an entry
12545 in the hash table is located as follows:
12546
12547 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12548 the low-order k bits all set to 1.
12549
12550 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12551
12552 3) If the hash table entry at index H matches the signature, use that
12553 entry. If the hash table entry at index H is unused (all zeroes),
12554 terminate the search: the signature is not present in the table.
12555
12556 4) Let H = (H + H') modulo M. Repeat at Step 3.
12557
12558 Because M > N and H' and M are relatively prime, the search is guaranteed
12559 to stop at an unused slot or find the match. */
12560
12561 /* Create a hash table to map DWO IDs to their CU/TU entry in
12562 .debug_{info,types}.dwo in DWP_FILE.
12563 Returns NULL if there isn't one.
12564 Note: This function processes DWP files only, not DWO files. */
12565
12566 static struct dwp_hash_table *
12567 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12568 struct dwp_file *dwp_file, int is_debug_types)
12569 {
12570 struct objfile *objfile = dwarf2_per_objfile->objfile;
12571 bfd *dbfd = dwp_file->dbfd;
12572 const gdb_byte *index_ptr, *index_end;
12573 struct dwarf2_section_info *index;
12574 uint32_t version, nr_columns, nr_units, nr_slots;
12575 struct dwp_hash_table *htab;
12576
12577 if (is_debug_types)
12578 index = &dwp_file->sections.tu_index;
12579 else
12580 index = &dwp_file->sections.cu_index;
12581
12582 if (dwarf2_section_empty_p (index))
12583 return NULL;
12584 dwarf2_read_section (objfile, index);
12585
12586 index_ptr = index->buffer;
12587 index_end = index_ptr + index->size;
12588
12589 version = read_4_bytes (dbfd, index_ptr);
12590 index_ptr += 4;
12591 if (version == 2)
12592 nr_columns = read_4_bytes (dbfd, index_ptr);
12593 else
12594 nr_columns = 0;
12595 index_ptr += 4;
12596 nr_units = read_4_bytes (dbfd, index_ptr);
12597 index_ptr += 4;
12598 nr_slots = read_4_bytes (dbfd, index_ptr);
12599 index_ptr += 4;
12600
12601 if (version != 1 && version != 2)
12602 {
12603 error (_("Dwarf Error: unsupported DWP file version (%s)"
12604 " [in module %s]"),
12605 pulongest (version), dwp_file->name);
12606 }
12607 if (nr_slots != (nr_slots & -nr_slots))
12608 {
12609 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12610 " is not power of 2 [in module %s]"),
12611 pulongest (nr_slots), dwp_file->name);
12612 }
12613
12614 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12615 htab->version = version;
12616 htab->nr_columns = nr_columns;
12617 htab->nr_units = nr_units;
12618 htab->nr_slots = nr_slots;
12619 htab->hash_table = index_ptr;
12620 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12621
12622 /* Exit early if the table is empty. */
12623 if (nr_slots == 0 || nr_units == 0
12624 || (version == 2 && nr_columns == 0))
12625 {
12626 /* All must be zero. */
12627 if (nr_slots != 0 || nr_units != 0
12628 || (version == 2 && nr_columns != 0))
12629 {
12630 complaint (&symfile_complaints,
12631 _("Empty DWP but nr_slots,nr_units,nr_columns not"
12632 " all zero [in modules %s]"),
12633 dwp_file->name);
12634 }
12635 return htab;
12636 }
12637
12638 if (version == 1)
12639 {
12640 htab->section_pool.v1.indices =
12641 htab->unit_table + sizeof (uint32_t) * nr_slots;
12642 /* It's harder to decide whether the section is too small in v1.
12643 V1 is deprecated anyway so we punt. */
12644 }
12645 else
12646 {
12647 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12648 int *ids = htab->section_pool.v2.section_ids;
12649 /* Reverse map for error checking. */
12650 int ids_seen[DW_SECT_MAX + 1];
12651 int i;
12652
12653 if (nr_columns < 2)
12654 {
12655 error (_("Dwarf Error: bad DWP hash table, too few columns"
12656 " in section table [in module %s]"),
12657 dwp_file->name);
12658 }
12659 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12660 {
12661 error (_("Dwarf Error: bad DWP hash table, too many columns"
12662 " in section table [in module %s]"),
12663 dwp_file->name);
12664 }
12665 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12666 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
12667 for (i = 0; i < nr_columns; ++i)
12668 {
12669 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12670
12671 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12672 {
12673 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12674 " in section table [in module %s]"),
12675 id, dwp_file->name);
12676 }
12677 if (ids_seen[id] != -1)
12678 {
12679 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12680 " id %d in section table [in module %s]"),
12681 id, dwp_file->name);
12682 }
12683 ids_seen[id] = i;
12684 ids[i] = id;
12685 }
12686 /* Must have exactly one info or types section. */
12687 if (((ids_seen[DW_SECT_INFO] != -1)
12688 + (ids_seen[DW_SECT_TYPES] != -1))
12689 != 1)
12690 {
12691 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12692 " DWO info/types section [in module %s]"),
12693 dwp_file->name);
12694 }
12695 /* Must have an abbrev section. */
12696 if (ids_seen[DW_SECT_ABBREV] == -1)
12697 {
12698 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12699 " section [in module %s]"),
12700 dwp_file->name);
12701 }
12702 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12703 htab->section_pool.v2.sizes =
12704 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12705 * nr_units * nr_columns);
12706 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12707 * nr_units * nr_columns))
12708 > index_end)
12709 {
12710 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12711 " [in module %s]"),
12712 dwp_file->name);
12713 }
12714 }
12715
12716 return htab;
12717 }
12718
12719 /* Update SECTIONS with the data from SECTP.
12720
12721 This function is like the other "locate" section routines that are
12722 passed to bfd_map_over_sections, but in this context the sections to
12723 read comes from the DWP V1 hash table, not the full ELF section table.
12724
12725 The result is non-zero for success, or zero if an error was found. */
12726
12727 static int
12728 locate_v1_virtual_dwo_sections (asection *sectp,
12729 struct virtual_v1_dwo_sections *sections)
12730 {
12731 const struct dwop_section_names *names = &dwop_section_names;
12732
12733 if (section_is_p (sectp->name, &names->abbrev_dwo))
12734 {
12735 /* There can be only one. */
12736 if (sections->abbrev.s.section != NULL)
12737 return 0;
12738 sections->abbrev.s.section = sectp;
12739 sections->abbrev.size = bfd_get_section_size (sectp);
12740 }
12741 else if (section_is_p (sectp->name, &names->info_dwo)
12742 || section_is_p (sectp->name, &names->types_dwo))
12743 {
12744 /* There can be only one. */
12745 if (sections->info_or_types.s.section != NULL)
12746 return 0;
12747 sections->info_or_types.s.section = sectp;
12748 sections->info_or_types.size = bfd_get_section_size (sectp);
12749 }
12750 else if (section_is_p (sectp->name, &names->line_dwo))
12751 {
12752 /* There can be only one. */
12753 if (sections->line.s.section != NULL)
12754 return 0;
12755 sections->line.s.section = sectp;
12756 sections->line.size = bfd_get_section_size (sectp);
12757 }
12758 else if (section_is_p (sectp->name, &names->loc_dwo))
12759 {
12760 /* There can be only one. */
12761 if (sections->loc.s.section != NULL)
12762 return 0;
12763 sections->loc.s.section = sectp;
12764 sections->loc.size = bfd_get_section_size (sectp);
12765 }
12766 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12767 {
12768 /* There can be only one. */
12769 if (sections->macinfo.s.section != NULL)
12770 return 0;
12771 sections->macinfo.s.section = sectp;
12772 sections->macinfo.size = bfd_get_section_size (sectp);
12773 }
12774 else if (section_is_p (sectp->name, &names->macro_dwo))
12775 {
12776 /* There can be only one. */
12777 if (sections->macro.s.section != NULL)
12778 return 0;
12779 sections->macro.s.section = sectp;
12780 sections->macro.size = bfd_get_section_size (sectp);
12781 }
12782 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12783 {
12784 /* There can be only one. */
12785 if (sections->str_offsets.s.section != NULL)
12786 return 0;
12787 sections->str_offsets.s.section = sectp;
12788 sections->str_offsets.size = bfd_get_section_size (sectp);
12789 }
12790 else
12791 {
12792 /* No other kind of section is valid. */
12793 return 0;
12794 }
12795
12796 return 1;
12797 }
12798
12799 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12800 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12801 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12802 This is for DWP version 1 files. */
12803
12804 static struct dwo_unit *
12805 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12806 struct dwp_file *dwp_file,
12807 uint32_t unit_index,
12808 const char *comp_dir,
12809 ULONGEST signature, int is_debug_types)
12810 {
12811 struct objfile *objfile = dwarf2_per_objfile->objfile;
12812 const struct dwp_hash_table *dwp_htab =
12813 is_debug_types ? dwp_file->tus : dwp_file->cus;
12814 bfd *dbfd = dwp_file->dbfd;
12815 const char *kind = is_debug_types ? "TU" : "CU";
12816 struct dwo_file *dwo_file;
12817 struct dwo_unit *dwo_unit;
12818 struct virtual_v1_dwo_sections sections;
12819 void **dwo_file_slot;
12820 int i;
12821
12822 gdb_assert (dwp_file->version == 1);
12823
12824 if (dwarf_read_debug)
12825 {
12826 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12827 kind,
12828 pulongest (unit_index), hex_string (signature),
12829 dwp_file->name);
12830 }
12831
12832 /* Fetch the sections of this DWO unit.
12833 Put a limit on the number of sections we look for so that bad data
12834 doesn't cause us to loop forever. */
12835
12836 #define MAX_NR_V1_DWO_SECTIONS \
12837 (1 /* .debug_info or .debug_types */ \
12838 + 1 /* .debug_abbrev */ \
12839 + 1 /* .debug_line */ \
12840 + 1 /* .debug_loc */ \
12841 + 1 /* .debug_str_offsets */ \
12842 + 1 /* .debug_macro or .debug_macinfo */ \
12843 + 1 /* trailing zero */)
12844
12845 memset (&sections, 0, sizeof (sections));
12846
12847 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12848 {
12849 asection *sectp;
12850 uint32_t section_nr =
12851 read_4_bytes (dbfd,
12852 dwp_htab->section_pool.v1.indices
12853 + (unit_index + i) * sizeof (uint32_t));
12854
12855 if (section_nr == 0)
12856 break;
12857 if (section_nr >= dwp_file->num_sections)
12858 {
12859 error (_("Dwarf Error: bad DWP hash table, section number too large"
12860 " [in module %s]"),
12861 dwp_file->name);
12862 }
12863
12864 sectp = dwp_file->elf_sections[section_nr];
12865 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12866 {
12867 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12868 " [in module %s]"),
12869 dwp_file->name);
12870 }
12871 }
12872
12873 if (i < 2
12874 || dwarf2_section_empty_p (&sections.info_or_types)
12875 || dwarf2_section_empty_p (&sections.abbrev))
12876 {
12877 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12878 " [in module %s]"),
12879 dwp_file->name);
12880 }
12881 if (i == MAX_NR_V1_DWO_SECTIONS)
12882 {
12883 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12884 " [in module %s]"),
12885 dwp_file->name);
12886 }
12887
12888 /* It's easier for the rest of the code if we fake a struct dwo_file and
12889 have dwo_unit "live" in that. At least for now.
12890
12891 The DWP file can be made up of a random collection of CUs and TUs.
12892 However, for each CU + set of TUs that came from the same original DWO
12893 file, we can combine them back into a virtual DWO file to save space
12894 (fewer struct dwo_file objects to allocate). Remember that for really
12895 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12896
12897 std::string virtual_dwo_name =
12898 string_printf ("virtual-dwo/%d-%d-%d-%d",
12899 get_section_id (&sections.abbrev),
12900 get_section_id (&sections.line),
12901 get_section_id (&sections.loc),
12902 get_section_id (&sections.str_offsets));
12903 /* Can we use an existing virtual DWO file? */
12904 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12905 virtual_dwo_name.c_str (),
12906 comp_dir);
12907 /* Create one if necessary. */
12908 if (*dwo_file_slot == NULL)
12909 {
12910 if (dwarf_read_debug)
12911 {
12912 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12913 virtual_dwo_name.c_str ());
12914 }
12915 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12916 dwo_file->dwo_name
12917 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12918 virtual_dwo_name.c_str (),
12919 virtual_dwo_name.size ());
12920 dwo_file->comp_dir = comp_dir;
12921 dwo_file->sections.abbrev = sections.abbrev;
12922 dwo_file->sections.line = sections.line;
12923 dwo_file->sections.loc = sections.loc;
12924 dwo_file->sections.macinfo = sections.macinfo;
12925 dwo_file->sections.macro = sections.macro;
12926 dwo_file->sections.str_offsets = sections.str_offsets;
12927 /* The "str" section is global to the entire DWP file. */
12928 dwo_file->sections.str = dwp_file->sections.str;
12929 /* The info or types section is assigned below to dwo_unit,
12930 there's no need to record it in dwo_file.
12931 Also, we can't simply record type sections in dwo_file because
12932 we record a pointer into the vector in dwo_unit. As we collect more
12933 types we'll grow the vector and eventually have to reallocate space
12934 for it, invalidating all copies of pointers into the previous
12935 contents. */
12936 *dwo_file_slot = dwo_file;
12937 }
12938 else
12939 {
12940 if (dwarf_read_debug)
12941 {
12942 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12943 virtual_dwo_name.c_str ());
12944 }
12945 dwo_file = (struct dwo_file *) *dwo_file_slot;
12946 }
12947
12948 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12949 dwo_unit->dwo_file = dwo_file;
12950 dwo_unit->signature = signature;
12951 dwo_unit->section =
12952 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12953 *dwo_unit->section = sections.info_or_types;
12954 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12955
12956 return dwo_unit;
12957 }
12958
12959 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12960 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12961 piece within that section used by a TU/CU, return a virtual section
12962 of just that piece. */
12963
12964 static struct dwarf2_section_info
12965 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12966 struct dwarf2_section_info *section,
12967 bfd_size_type offset, bfd_size_type size)
12968 {
12969 struct dwarf2_section_info result;
12970 asection *sectp;
12971
12972 gdb_assert (section != NULL);
12973 gdb_assert (!section->is_virtual);
12974
12975 memset (&result, 0, sizeof (result));
12976 result.s.containing_section = section;
12977 result.is_virtual = 1;
12978
12979 if (size == 0)
12980 return result;
12981
12982 sectp = get_section_bfd_section (section);
12983
12984 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12985 bounds of the real section. This is a pretty-rare event, so just
12986 flag an error (easier) instead of a warning and trying to cope. */
12987 if (sectp == NULL
12988 || offset + size > bfd_get_section_size (sectp))
12989 {
12990 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12991 " in section %s [in module %s]"),
12992 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12993 objfile_name (dwarf2_per_objfile->objfile));
12994 }
12995
12996 result.virtual_offset = offset;
12997 result.size = size;
12998 return result;
12999 }
13000
13001 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
13002 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
13003 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
13004 This is for DWP version 2 files. */
13005
13006 static struct dwo_unit *
13007 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
13008 struct dwp_file *dwp_file,
13009 uint32_t unit_index,
13010 const char *comp_dir,
13011 ULONGEST signature, int is_debug_types)
13012 {
13013 struct objfile *objfile = dwarf2_per_objfile->objfile;
13014 const struct dwp_hash_table *dwp_htab =
13015 is_debug_types ? dwp_file->tus : dwp_file->cus;
13016 bfd *dbfd = dwp_file->dbfd;
13017 const char *kind = is_debug_types ? "TU" : "CU";
13018 struct dwo_file *dwo_file;
13019 struct dwo_unit *dwo_unit;
13020 struct virtual_v2_dwo_sections sections;
13021 void **dwo_file_slot;
13022 int i;
13023
13024 gdb_assert (dwp_file->version == 2);
13025
13026 if (dwarf_read_debug)
13027 {
13028 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
13029 kind,
13030 pulongest (unit_index), hex_string (signature),
13031 dwp_file->name);
13032 }
13033
13034 /* Fetch the section offsets of this DWO unit. */
13035
13036 memset (&sections, 0, sizeof (sections));
13037
13038 for (i = 0; i < dwp_htab->nr_columns; ++i)
13039 {
13040 uint32_t offset = read_4_bytes (dbfd,
13041 dwp_htab->section_pool.v2.offsets
13042 + (((unit_index - 1) * dwp_htab->nr_columns
13043 + i)
13044 * sizeof (uint32_t)));
13045 uint32_t size = read_4_bytes (dbfd,
13046 dwp_htab->section_pool.v2.sizes
13047 + (((unit_index - 1) * dwp_htab->nr_columns
13048 + i)
13049 * sizeof (uint32_t)));
13050
13051 switch (dwp_htab->section_pool.v2.section_ids[i])
13052 {
13053 case DW_SECT_INFO:
13054 case DW_SECT_TYPES:
13055 sections.info_or_types_offset = offset;
13056 sections.info_or_types_size = size;
13057 break;
13058 case DW_SECT_ABBREV:
13059 sections.abbrev_offset = offset;
13060 sections.abbrev_size = size;
13061 break;
13062 case DW_SECT_LINE:
13063 sections.line_offset = offset;
13064 sections.line_size = size;
13065 break;
13066 case DW_SECT_LOC:
13067 sections.loc_offset = offset;
13068 sections.loc_size = size;
13069 break;
13070 case DW_SECT_STR_OFFSETS:
13071 sections.str_offsets_offset = offset;
13072 sections.str_offsets_size = size;
13073 break;
13074 case DW_SECT_MACINFO:
13075 sections.macinfo_offset = offset;
13076 sections.macinfo_size = size;
13077 break;
13078 case DW_SECT_MACRO:
13079 sections.macro_offset = offset;
13080 sections.macro_size = size;
13081 break;
13082 }
13083 }
13084
13085 /* It's easier for the rest of the code if we fake a struct dwo_file and
13086 have dwo_unit "live" in that. At least for now.
13087
13088 The DWP file can be made up of a random collection of CUs and TUs.
13089 However, for each CU + set of TUs that came from the same original DWO
13090 file, we can combine them back into a virtual DWO file to save space
13091 (fewer struct dwo_file objects to allocate). Remember that for really
13092 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
13093
13094 std::string virtual_dwo_name =
13095 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
13096 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
13097 (long) (sections.line_size ? sections.line_offset : 0),
13098 (long) (sections.loc_size ? sections.loc_offset : 0),
13099 (long) (sections.str_offsets_size
13100 ? sections.str_offsets_offset : 0));
13101 /* Can we use an existing virtual DWO file? */
13102 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13103 virtual_dwo_name.c_str (),
13104 comp_dir);
13105 /* Create one if necessary. */
13106 if (*dwo_file_slot == NULL)
13107 {
13108 if (dwarf_read_debug)
13109 {
13110 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
13111 virtual_dwo_name.c_str ());
13112 }
13113 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
13114 dwo_file->dwo_name
13115 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
13116 virtual_dwo_name.c_str (),
13117 virtual_dwo_name.size ());
13118 dwo_file->comp_dir = comp_dir;
13119 dwo_file->sections.abbrev =
13120 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
13121 sections.abbrev_offset, sections.abbrev_size);
13122 dwo_file->sections.line =
13123 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
13124 sections.line_offset, sections.line_size);
13125 dwo_file->sections.loc =
13126 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
13127 sections.loc_offset, sections.loc_size);
13128 dwo_file->sections.macinfo =
13129 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
13130 sections.macinfo_offset, sections.macinfo_size);
13131 dwo_file->sections.macro =
13132 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
13133 sections.macro_offset, sections.macro_size);
13134 dwo_file->sections.str_offsets =
13135 create_dwp_v2_section (dwarf2_per_objfile,
13136 &dwp_file->sections.str_offsets,
13137 sections.str_offsets_offset,
13138 sections.str_offsets_size);
13139 /* The "str" section is global to the entire DWP file. */
13140 dwo_file->sections.str = dwp_file->sections.str;
13141 /* The info or types section is assigned below to dwo_unit,
13142 there's no need to record it in dwo_file.
13143 Also, we can't simply record type sections in dwo_file because
13144 we record a pointer into the vector in dwo_unit. As we collect more
13145 types we'll grow the vector and eventually have to reallocate space
13146 for it, invalidating all copies of pointers into the previous
13147 contents. */
13148 *dwo_file_slot = dwo_file;
13149 }
13150 else
13151 {
13152 if (dwarf_read_debug)
13153 {
13154 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
13155 virtual_dwo_name.c_str ());
13156 }
13157 dwo_file = (struct dwo_file *) *dwo_file_slot;
13158 }
13159
13160 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
13161 dwo_unit->dwo_file = dwo_file;
13162 dwo_unit->signature = signature;
13163 dwo_unit->section =
13164 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
13165 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
13166 is_debug_types
13167 ? &dwp_file->sections.types
13168 : &dwp_file->sections.info,
13169 sections.info_or_types_offset,
13170 sections.info_or_types_size);
13171 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
13172
13173 return dwo_unit;
13174 }
13175
13176 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
13177 Returns NULL if the signature isn't found. */
13178
13179 static struct dwo_unit *
13180 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
13181 struct dwp_file *dwp_file, const char *comp_dir,
13182 ULONGEST signature, int is_debug_types)
13183 {
13184 const struct dwp_hash_table *dwp_htab =
13185 is_debug_types ? dwp_file->tus : dwp_file->cus;
13186 bfd *dbfd = dwp_file->dbfd;
13187 uint32_t mask = dwp_htab->nr_slots - 1;
13188 uint32_t hash = signature & mask;
13189 uint32_t hash2 = ((signature >> 32) & mask) | 1;
13190 unsigned int i;
13191 void **slot;
13192 struct dwo_unit find_dwo_cu;
13193
13194 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
13195 find_dwo_cu.signature = signature;
13196 slot = htab_find_slot (is_debug_types
13197 ? dwp_file->loaded_tus
13198 : dwp_file->loaded_cus,
13199 &find_dwo_cu, INSERT);
13200
13201 if (*slot != NULL)
13202 return (struct dwo_unit *) *slot;
13203
13204 /* Use a for loop so that we don't loop forever on bad debug info. */
13205 for (i = 0; i < dwp_htab->nr_slots; ++i)
13206 {
13207 ULONGEST signature_in_table;
13208
13209 signature_in_table =
13210 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
13211 if (signature_in_table == signature)
13212 {
13213 uint32_t unit_index =
13214 read_4_bytes (dbfd,
13215 dwp_htab->unit_table + hash * sizeof (uint32_t));
13216
13217 if (dwp_file->version == 1)
13218 {
13219 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
13220 dwp_file, unit_index,
13221 comp_dir, signature,
13222 is_debug_types);
13223 }
13224 else
13225 {
13226 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
13227 dwp_file, unit_index,
13228 comp_dir, signature,
13229 is_debug_types);
13230 }
13231 return (struct dwo_unit *) *slot;
13232 }
13233 if (signature_in_table == 0)
13234 return NULL;
13235 hash = (hash + hash2) & mask;
13236 }
13237
13238 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
13239 " [in module %s]"),
13240 dwp_file->name);
13241 }
13242
13243 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
13244 Open the file specified by FILE_NAME and hand it off to BFD for
13245 preliminary analysis. Return a newly initialized bfd *, which
13246 includes a canonicalized copy of FILE_NAME.
13247 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
13248 SEARCH_CWD is true if the current directory is to be searched.
13249 It will be searched before debug-file-directory.
13250 If successful, the file is added to the bfd include table of the
13251 objfile's bfd (see gdb_bfd_record_inclusion).
13252 If unable to find/open the file, return NULL.
13253 NOTE: This function is derived from symfile_bfd_open. */
13254
13255 static gdb_bfd_ref_ptr
13256 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13257 const char *file_name, int is_dwp, int search_cwd)
13258 {
13259 int desc;
13260 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
13261 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
13262 to debug_file_directory. */
13263 const char *search_path;
13264 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
13265
13266 gdb::unique_xmalloc_ptr<char> search_path_holder;
13267 if (search_cwd)
13268 {
13269 if (*debug_file_directory != '\0')
13270 {
13271 search_path_holder.reset (concat (".", dirname_separator_string,
13272 debug_file_directory,
13273 (char *) NULL));
13274 search_path = search_path_holder.get ();
13275 }
13276 else
13277 search_path = ".";
13278 }
13279 else
13280 search_path = debug_file_directory;
13281
13282 openp_flags flags = OPF_RETURN_REALPATH;
13283 if (is_dwp)
13284 flags |= OPF_SEARCH_IN_PATH;
13285
13286 gdb::unique_xmalloc_ptr<char> absolute_name;
13287 desc = openp (search_path, flags, file_name,
13288 O_RDONLY | O_BINARY, &absolute_name);
13289 if (desc < 0)
13290 return NULL;
13291
13292 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
13293 gnutarget, desc));
13294 if (sym_bfd == NULL)
13295 return NULL;
13296 bfd_set_cacheable (sym_bfd.get (), 1);
13297
13298 if (!bfd_check_format (sym_bfd.get (), bfd_object))
13299 return NULL;
13300
13301 /* Success. Record the bfd as having been included by the objfile's bfd.
13302 This is important because things like demangled_names_hash lives in the
13303 objfile's per_bfd space and may have references to things like symbol
13304 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
13305 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13306
13307 return sym_bfd;
13308 }
13309
13310 /* Try to open DWO file FILE_NAME.
13311 COMP_DIR is the DW_AT_comp_dir attribute.
13312 The result is the bfd handle of the file.
13313 If there is a problem finding or opening the file, return NULL.
13314 Upon success, the canonicalized path of the file is stored in the bfd,
13315 same as symfile_bfd_open. */
13316
13317 static gdb_bfd_ref_ptr
13318 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13319 const char *file_name, const char *comp_dir)
13320 {
13321 if (IS_ABSOLUTE_PATH (file_name))
13322 return try_open_dwop_file (dwarf2_per_objfile, file_name,
13323 0 /*is_dwp*/, 0 /*search_cwd*/);
13324
13325 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
13326
13327 if (comp_dir != NULL)
13328 {
13329 char *path_to_try = concat (comp_dir, SLASH_STRING,
13330 file_name, (char *) NULL);
13331
13332 /* NOTE: If comp_dir is a relative path, this will also try the
13333 search path, which seems useful. */
13334 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
13335 path_to_try,
13336 0 /*is_dwp*/,
13337 1 /*search_cwd*/));
13338 xfree (path_to_try);
13339 if (abfd != NULL)
13340 return abfd;
13341 }
13342
13343 /* That didn't work, try debug-file-directory, which, despite its name,
13344 is a list of paths. */
13345
13346 if (*debug_file_directory == '\0')
13347 return NULL;
13348
13349 return try_open_dwop_file (dwarf2_per_objfile, file_name,
13350 0 /*is_dwp*/, 1 /*search_cwd*/);
13351 }
13352
13353 /* This function is mapped across the sections and remembers the offset and
13354 size of each of the DWO debugging sections we are interested in. */
13355
13356 static void
13357 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
13358 {
13359 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
13360 const struct dwop_section_names *names = &dwop_section_names;
13361
13362 if (section_is_p (sectp->name, &names->abbrev_dwo))
13363 {
13364 dwo_sections->abbrev.s.section = sectp;
13365 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
13366 }
13367 else if (section_is_p (sectp->name, &names->info_dwo))
13368 {
13369 dwo_sections->info.s.section = sectp;
13370 dwo_sections->info.size = bfd_get_section_size (sectp);
13371 }
13372 else if (section_is_p (sectp->name, &names->line_dwo))
13373 {
13374 dwo_sections->line.s.section = sectp;
13375 dwo_sections->line.size = bfd_get_section_size (sectp);
13376 }
13377 else if (section_is_p (sectp->name, &names->loc_dwo))
13378 {
13379 dwo_sections->loc.s.section = sectp;
13380 dwo_sections->loc.size = bfd_get_section_size (sectp);
13381 }
13382 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13383 {
13384 dwo_sections->macinfo.s.section = sectp;
13385 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
13386 }
13387 else if (section_is_p (sectp->name, &names->macro_dwo))
13388 {
13389 dwo_sections->macro.s.section = sectp;
13390 dwo_sections->macro.size = bfd_get_section_size (sectp);
13391 }
13392 else if (section_is_p (sectp->name, &names->str_dwo))
13393 {
13394 dwo_sections->str.s.section = sectp;
13395 dwo_sections->str.size = bfd_get_section_size (sectp);
13396 }
13397 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13398 {
13399 dwo_sections->str_offsets.s.section = sectp;
13400 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
13401 }
13402 else if (section_is_p (sectp->name, &names->types_dwo))
13403 {
13404 struct dwarf2_section_info type_section;
13405
13406 memset (&type_section, 0, sizeof (type_section));
13407 type_section.s.section = sectp;
13408 type_section.size = bfd_get_section_size (sectp);
13409 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
13410 &type_section);
13411 }
13412 }
13413
13414 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13415 by PER_CU. This is for the non-DWP case.
13416 The result is NULL if DWO_NAME can't be found. */
13417
13418 static struct dwo_file *
13419 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13420 const char *dwo_name, const char *comp_dir)
13421 {
13422 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13423 struct objfile *objfile = dwarf2_per_objfile->objfile;
13424 struct dwo_file *dwo_file;
13425 struct cleanup *cleanups;
13426
13427 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
13428 if (dbfd == NULL)
13429 {
13430 if (dwarf_read_debug)
13431 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13432 return NULL;
13433 }
13434 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
13435 dwo_file->dwo_name = dwo_name;
13436 dwo_file->comp_dir = comp_dir;
13437 dwo_file->dbfd = dbfd.release ();
13438
13439 free_dwo_file_cleanup_data *cleanup_data = XNEW (free_dwo_file_cleanup_data);
13440 cleanup_data->dwo_file = dwo_file;
13441 cleanup_data->dwarf2_per_objfile = dwarf2_per_objfile;
13442
13443 cleanups = make_cleanup (free_dwo_file_cleanup, cleanup_data);
13444
13445 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13446 &dwo_file->sections);
13447
13448 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13449 dwo_file->cus);
13450
13451 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file,
13452 dwo_file->sections.types, dwo_file->tus);
13453
13454 discard_cleanups (cleanups);
13455
13456 if (dwarf_read_debug)
13457 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13458
13459 return dwo_file;
13460 }
13461
13462 /* This function is mapped across the sections and remembers the offset and
13463 size of each of the DWP debugging sections common to version 1 and 2 that
13464 we are interested in. */
13465
13466 static void
13467 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13468 void *dwp_file_ptr)
13469 {
13470 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13471 const struct dwop_section_names *names = &dwop_section_names;
13472 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13473
13474 /* Record the ELF section number for later lookup: this is what the
13475 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13476 gdb_assert (elf_section_nr < dwp_file->num_sections);
13477 dwp_file->elf_sections[elf_section_nr] = sectp;
13478
13479 /* Look for specific sections that we need. */
13480 if (section_is_p (sectp->name, &names->str_dwo))
13481 {
13482 dwp_file->sections.str.s.section = sectp;
13483 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13484 }
13485 else if (section_is_p (sectp->name, &names->cu_index))
13486 {
13487 dwp_file->sections.cu_index.s.section = sectp;
13488 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13489 }
13490 else if (section_is_p (sectp->name, &names->tu_index))
13491 {
13492 dwp_file->sections.tu_index.s.section = sectp;
13493 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13494 }
13495 }
13496
13497 /* This function is mapped across the sections and remembers the offset and
13498 size of each of the DWP version 2 debugging sections that we are interested
13499 in. This is split into a separate function because we don't know if we
13500 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13501
13502 static void
13503 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13504 {
13505 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13506 const struct dwop_section_names *names = &dwop_section_names;
13507 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13508
13509 /* Record the ELF section number for later lookup: this is what the
13510 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13511 gdb_assert (elf_section_nr < dwp_file->num_sections);
13512 dwp_file->elf_sections[elf_section_nr] = sectp;
13513
13514 /* Look for specific sections that we need. */
13515 if (section_is_p (sectp->name, &names->abbrev_dwo))
13516 {
13517 dwp_file->sections.abbrev.s.section = sectp;
13518 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13519 }
13520 else if (section_is_p (sectp->name, &names->info_dwo))
13521 {
13522 dwp_file->sections.info.s.section = sectp;
13523 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13524 }
13525 else if (section_is_p (sectp->name, &names->line_dwo))
13526 {
13527 dwp_file->sections.line.s.section = sectp;
13528 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13529 }
13530 else if (section_is_p (sectp->name, &names->loc_dwo))
13531 {
13532 dwp_file->sections.loc.s.section = sectp;
13533 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13534 }
13535 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13536 {
13537 dwp_file->sections.macinfo.s.section = sectp;
13538 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13539 }
13540 else if (section_is_p (sectp->name, &names->macro_dwo))
13541 {
13542 dwp_file->sections.macro.s.section = sectp;
13543 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13544 }
13545 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13546 {
13547 dwp_file->sections.str_offsets.s.section = sectp;
13548 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13549 }
13550 else if (section_is_p (sectp->name, &names->types_dwo))
13551 {
13552 dwp_file->sections.types.s.section = sectp;
13553 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13554 }
13555 }
13556
13557 /* Hash function for dwp_file loaded CUs/TUs. */
13558
13559 static hashval_t
13560 hash_dwp_loaded_cutus (const void *item)
13561 {
13562 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13563
13564 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13565 return dwo_unit->signature;
13566 }
13567
13568 /* Equality function for dwp_file loaded CUs/TUs. */
13569
13570 static int
13571 eq_dwp_loaded_cutus (const void *a, const void *b)
13572 {
13573 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13574 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13575
13576 return dua->signature == dub->signature;
13577 }
13578
13579 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13580
13581 static htab_t
13582 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13583 {
13584 return htab_create_alloc_ex (3,
13585 hash_dwp_loaded_cutus,
13586 eq_dwp_loaded_cutus,
13587 NULL,
13588 &objfile->objfile_obstack,
13589 hashtab_obstack_allocate,
13590 dummy_obstack_deallocate);
13591 }
13592
13593 /* Try to open DWP file FILE_NAME.
13594 The result is the bfd handle of the file.
13595 If there is a problem finding or opening the file, return NULL.
13596 Upon success, the canonicalized path of the file is stored in the bfd,
13597 same as symfile_bfd_open. */
13598
13599 static gdb_bfd_ref_ptr
13600 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13601 const char *file_name)
13602 {
13603 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13604 1 /*is_dwp*/,
13605 1 /*search_cwd*/));
13606 if (abfd != NULL)
13607 return abfd;
13608
13609 /* Work around upstream bug 15652.
13610 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13611 [Whether that's a "bug" is debatable, but it is getting in our way.]
13612 We have no real idea where the dwp file is, because gdb's realpath-ing
13613 of the executable's path may have discarded the needed info.
13614 [IWBN if the dwp file name was recorded in the executable, akin to
13615 .gnu_debuglink, but that doesn't exist yet.]
13616 Strip the directory from FILE_NAME and search again. */
13617 if (*debug_file_directory != '\0')
13618 {
13619 /* Don't implicitly search the current directory here.
13620 If the user wants to search "." to handle this case,
13621 it must be added to debug-file-directory. */
13622 return try_open_dwop_file (dwarf2_per_objfile,
13623 lbasename (file_name), 1 /*is_dwp*/,
13624 0 /*search_cwd*/);
13625 }
13626
13627 return NULL;
13628 }
13629
13630 /* Initialize the use of the DWP file for the current objfile.
13631 By convention the name of the DWP file is ${objfile}.dwp.
13632 The result is NULL if it can't be found. */
13633
13634 static struct dwp_file *
13635 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13636 {
13637 struct objfile *objfile = dwarf2_per_objfile->objfile;
13638 struct dwp_file *dwp_file;
13639
13640 /* Try to find first .dwp for the binary file before any symbolic links
13641 resolving. */
13642
13643 /* If the objfile is a debug file, find the name of the real binary
13644 file and get the name of dwp file from there. */
13645 std::string dwp_name;
13646 if (objfile->separate_debug_objfile_backlink != NULL)
13647 {
13648 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13649 const char *backlink_basename = lbasename (backlink->original_name);
13650
13651 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13652 }
13653 else
13654 dwp_name = objfile->original_name;
13655
13656 dwp_name += ".dwp";
13657
13658 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13659 if (dbfd == NULL
13660 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13661 {
13662 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13663 dwp_name = objfile_name (objfile);
13664 dwp_name += ".dwp";
13665 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13666 }
13667
13668 if (dbfd == NULL)
13669 {
13670 if (dwarf_read_debug)
13671 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13672 return NULL;
13673 }
13674 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
13675 dwp_file->name = bfd_get_filename (dbfd.get ());
13676 dwp_file->dbfd = dbfd.release ();
13677
13678 /* +1: section 0 is unused */
13679 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
13680 dwp_file->elf_sections =
13681 OBSTACK_CALLOC (&objfile->objfile_obstack,
13682 dwp_file->num_sections, asection *);
13683
13684 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
13685 dwp_file);
13686
13687 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 0);
13688
13689 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file, 1);
13690
13691 /* The DWP file version is stored in the hash table. Oh well. */
13692 if (dwp_file->cus && dwp_file->tus
13693 && dwp_file->cus->version != dwp_file->tus->version)
13694 {
13695 /* Technically speaking, we should try to limp along, but this is
13696 pretty bizarre. We use pulongest here because that's the established
13697 portability solution (e.g, we cannot use %u for uint32_t). */
13698 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13699 " TU version %s [in DWP file %s]"),
13700 pulongest (dwp_file->cus->version),
13701 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13702 }
13703
13704 if (dwp_file->cus)
13705 dwp_file->version = dwp_file->cus->version;
13706 else if (dwp_file->tus)
13707 dwp_file->version = dwp_file->tus->version;
13708 else
13709 dwp_file->version = 2;
13710
13711 if (dwp_file->version == 2)
13712 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
13713 dwp_file);
13714
13715 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13716 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13717
13718 if (dwarf_read_debug)
13719 {
13720 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13721 fprintf_unfiltered (gdb_stdlog,
13722 " %s CUs, %s TUs\n",
13723 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13724 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13725 }
13726
13727 return dwp_file;
13728 }
13729
13730 /* Wrapper around open_and_init_dwp_file, only open it once. */
13731
13732 static struct dwp_file *
13733 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13734 {
13735 if (! dwarf2_per_objfile->dwp_checked)
13736 {
13737 dwarf2_per_objfile->dwp_file
13738 = open_and_init_dwp_file (dwarf2_per_objfile);
13739 dwarf2_per_objfile->dwp_checked = 1;
13740 }
13741 return dwarf2_per_objfile->dwp_file;
13742 }
13743
13744 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13745 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13746 or in the DWP file for the objfile, referenced by THIS_UNIT.
13747 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13748 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13749
13750 This is called, for example, when wanting to read a variable with a
13751 complex location. Therefore we don't want to do file i/o for every call.
13752 Therefore we don't want to look for a DWO file on every call.
13753 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13754 then we check if we've already seen DWO_NAME, and only THEN do we check
13755 for a DWO file.
13756
13757 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13758 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13759
13760 static struct dwo_unit *
13761 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13762 const char *dwo_name, const char *comp_dir,
13763 ULONGEST signature, int is_debug_types)
13764 {
13765 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13766 struct objfile *objfile = dwarf2_per_objfile->objfile;
13767 const char *kind = is_debug_types ? "TU" : "CU";
13768 void **dwo_file_slot;
13769 struct dwo_file *dwo_file;
13770 struct dwp_file *dwp_file;
13771
13772 /* First see if there's a DWP file.
13773 If we have a DWP file but didn't find the DWO inside it, don't
13774 look for the original DWO file. It makes gdb behave differently
13775 depending on whether one is debugging in the build tree. */
13776
13777 dwp_file = get_dwp_file (dwarf2_per_objfile);
13778 if (dwp_file != NULL)
13779 {
13780 const struct dwp_hash_table *dwp_htab =
13781 is_debug_types ? dwp_file->tus : dwp_file->cus;
13782
13783 if (dwp_htab != NULL)
13784 {
13785 struct dwo_unit *dwo_cutu =
13786 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13787 signature, is_debug_types);
13788
13789 if (dwo_cutu != NULL)
13790 {
13791 if (dwarf_read_debug)
13792 {
13793 fprintf_unfiltered (gdb_stdlog,
13794 "Virtual DWO %s %s found: @%s\n",
13795 kind, hex_string (signature),
13796 host_address_to_string (dwo_cutu));
13797 }
13798 return dwo_cutu;
13799 }
13800 }
13801 }
13802 else
13803 {
13804 /* No DWP file, look for the DWO file. */
13805
13806 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13807 dwo_name, comp_dir);
13808 if (*dwo_file_slot == NULL)
13809 {
13810 /* Read in the file and build a table of the CUs/TUs it contains. */
13811 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13812 }
13813 /* NOTE: This will be NULL if unable to open the file. */
13814 dwo_file = (struct dwo_file *) *dwo_file_slot;
13815
13816 if (dwo_file != NULL)
13817 {
13818 struct dwo_unit *dwo_cutu = NULL;
13819
13820 if (is_debug_types && dwo_file->tus)
13821 {
13822 struct dwo_unit find_dwo_cutu;
13823
13824 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13825 find_dwo_cutu.signature = signature;
13826 dwo_cutu
13827 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13828 }
13829 else if (!is_debug_types && dwo_file->cus)
13830 {
13831 struct dwo_unit find_dwo_cutu;
13832
13833 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13834 find_dwo_cutu.signature = signature;
13835 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13836 &find_dwo_cutu);
13837 }
13838
13839 if (dwo_cutu != NULL)
13840 {
13841 if (dwarf_read_debug)
13842 {
13843 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13844 kind, dwo_name, hex_string (signature),
13845 host_address_to_string (dwo_cutu));
13846 }
13847 return dwo_cutu;
13848 }
13849 }
13850 }
13851
13852 /* We didn't find it. This could mean a dwo_id mismatch, or
13853 someone deleted the DWO/DWP file, or the search path isn't set up
13854 correctly to find the file. */
13855
13856 if (dwarf_read_debug)
13857 {
13858 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13859 kind, dwo_name, hex_string (signature));
13860 }
13861
13862 /* This is a warning and not a complaint because it can be caused by
13863 pilot error (e.g., user accidentally deleting the DWO). */
13864 {
13865 /* Print the name of the DWP file if we looked there, helps the user
13866 better diagnose the problem. */
13867 std::string dwp_text;
13868
13869 if (dwp_file != NULL)
13870 dwp_text = string_printf (" [in DWP file %s]",
13871 lbasename (dwp_file->name));
13872
13873 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13874 " [in module %s]"),
13875 kind, dwo_name, hex_string (signature),
13876 dwp_text.c_str (),
13877 this_unit->is_debug_types ? "TU" : "CU",
13878 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13879 }
13880 return NULL;
13881 }
13882
13883 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13884 See lookup_dwo_cutu_unit for details. */
13885
13886 static struct dwo_unit *
13887 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13888 const char *dwo_name, const char *comp_dir,
13889 ULONGEST signature)
13890 {
13891 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13892 }
13893
13894 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13895 See lookup_dwo_cutu_unit for details. */
13896
13897 static struct dwo_unit *
13898 lookup_dwo_type_unit (struct signatured_type *this_tu,
13899 const char *dwo_name, const char *comp_dir)
13900 {
13901 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13902 }
13903
13904 /* Traversal function for queue_and_load_all_dwo_tus. */
13905
13906 static int
13907 queue_and_load_dwo_tu (void **slot, void *info)
13908 {
13909 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13910 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13911 ULONGEST signature = dwo_unit->signature;
13912 struct signatured_type *sig_type =
13913 lookup_dwo_signatured_type (per_cu->cu, signature);
13914
13915 if (sig_type != NULL)
13916 {
13917 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13918
13919 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13920 a real dependency of PER_CU on SIG_TYPE. That is detected later
13921 while processing PER_CU. */
13922 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13923 load_full_type_unit (sig_cu);
13924 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13925 }
13926
13927 return 1;
13928 }
13929
13930 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13931 The DWO may have the only definition of the type, though it may not be
13932 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13933 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13934
13935 static void
13936 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13937 {
13938 struct dwo_unit *dwo_unit;
13939 struct dwo_file *dwo_file;
13940
13941 gdb_assert (!per_cu->is_debug_types);
13942 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13943 gdb_assert (per_cu->cu != NULL);
13944
13945 dwo_unit = per_cu->cu->dwo_unit;
13946 gdb_assert (dwo_unit != NULL);
13947
13948 dwo_file = dwo_unit->dwo_file;
13949 if (dwo_file->tus != NULL)
13950 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13951 }
13952
13953 /* Free all resources associated with DWO_FILE.
13954 Close the DWO file and munmap the sections.
13955 All memory should be on the objfile obstack. */
13956
13957 static void
13958 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
13959 {
13960
13961 /* Note: dbfd is NULL for virtual DWO files. */
13962 gdb_bfd_unref (dwo_file->dbfd);
13963
13964 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13965 }
13966
13967 /* Wrapper for free_dwo_file for use in cleanups. */
13968
13969 static void
13970 free_dwo_file_cleanup (void *arg)
13971 {
13972 struct free_dwo_file_cleanup_data *data
13973 = (struct free_dwo_file_cleanup_data *) arg;
13974 struct objfile *objfile = data->dwarf2_per_objfile->objfile;
13975
13976 free_dwo_file (data->dwo_file, objfile);
13977
13978 xfree (data);
13979 }
13980
13981 /* Traversal function for free_dwo_files. */
13982
13983 static int
13984 free_dwo_file_from_slot (void **slot, void *info)
13985 {
13986 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13987 struct objfile *objfile = (struct objfile *) info;
13988
13989 free_dwo_file (dwo_file, objfile);
13990
13991 return 1;
13992 }
13993
13994 /* Free all resources associated with DWO_FILES. */
13995
13996 static void
13997 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13998 {
13999 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
14000 }
14001 \f
14002 /* Read in various DIEs. */
14003
14004 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
14005 Inherit only the children of the DW_AT_abstract_origin DIE not being
14006 already referenced by DW_AT_abstract_origin from the children of the
14007 current DIE. */
14008
14009 static void
14010 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
14011 {
14012 struct die_info *child_die;
14013 sect_offset *offsetp;
14014 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
14015 struct die_info *origin_die;
14016 /* Iterator of the ORIGIN_DIE children. */
14017 struct die_info *origin_child_die;
14018 struct attribute *attr;
14019 struct dwarf2_cu *origin_cu;
14020 struct pending **origin_previous_list_in_scope;
14021
14022 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14023 if (!attr)
14024 return;
14025
14026 /* Note that following die references may follow to a die in a
14027 different cu. */
14028
14029 origin_cu = cu;
14030 origin_die = follow_die_ref (die, attr, &origin_cu);
14031
14032 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
14033 symbols in. */
14034 origin_previous_list_in_scope = origin_cu->list_in_scope;
14035 origin_cu->list_in_scope = cu->list_in_scope;
14036
14037 if (die->tag != origin_die->tag
14038 && !(die->tag == DW_TAG_inlined_subroutine
14039 && origin_die->tag == DW_TAG_subprogram))
14040 complaint (&symfile_complaints,
14041 _("DIE %s and its abstract origin %s have different tags"),
14042 sect_offset_str (die->sect_off),
14043 sect_offset_str (origin_die->sect_off));
14044
14045 std::vector<sect_offset> offsets;
14046
14047 for (child_die = die->child;
14048 child_die && child_die->tag;
14049 child_die = sibling_die (child_die))
14050 {
14051 struct die_info *child_origin_die;
14052 struct dwarf2_cu *child_origin_cu;
14053
14054 /* We are trying to process concrete instance entries:
14055 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
14056 it's not relevant to our analysis here. i.e. detecting DIEs that are
14057 present in the abstract instance but not referenced in the concrete
14058 one. */
14059 if (child_die->tag == DW_TAG_call_site
14060 || child_die->tag == DW_TAG_GNU_call_site)
14061 continue;
14062
14063 /* For each CHILD_DIE, find the corresponding child of
14064 ORIGIN_DIE. If there is more than one layer of
14065 DW_AT_abstract_origin, follow them all; there shouldn't be,
14066 but GCC versions at least through 4.4 generate this (GCC PR
14067 40573). */
14068 child_origin_die = child_die;
14069 child_origin_cu = cu;
14070 while (1)
14071 {
14072 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
14073 child_origin_cu);
14074 if (attr == NULL)
14075 break;
14076 child_origin_die = follow_die_ref (child_origin_die, attr,
14077 &child_origin_cu);
14078 }
14079
14080 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
14081 counterpart may exist. */
14082 if (child_origin_die != child_die)
14083 {
14084 if (child_die->tag != child_origin_die->tag
14085 && !(child_die->tag == DW_TAG_inlined_subroutine
14086 && child_origin_die->tag == DW_TAG_subprogram))
14087 complaint (&symfile_complaints,
14088 _("Child DIE %s and its abstract origin %s have "
14089 "different tags"),
14090 sect_offset_str (child_die->sect_off),
14091 sect_offset_str (child_origin_die->sect_off));
14092 if (child_origin_die->parent != origin_die)
14093 complaint (&symfile_complaints,
14094 _("Child DIE %s and its abstract origin %s have "
14095 "different parents"),
14096 sect_offset_str (child_die->sect_off),
14097 sect_offset_str (child_origin_die->sect_off));
14098 else
14099 offsets.push_back (child_origin_die->sect_off);
14100 }
14101 }
14102 std::sort (offsets.begin (), offsets.end ());
14103 sect_offset *offsets_end = offsets.data () + offsets.size ();
14104 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
14105 if (offsetp[-1] == *offsetp)
14106 complaint (&symfile_complaints,
14107 _("Multiple children of DIE %s refer "
14108 "to DIE %s as their abstract origin"),
14109 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
14110
14111 offsetp = offsets.data ();
14112 origin_child_die = origin_die->child;
14113 while (origin_child_die && origin_child_die->tag)
14114 {
14115 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
14116 while (offsetp < offsets_end
14117 && *offsetp < origin_child_die->sect_off)
14118 offsetp++;
14119 if (offsetp >= offsets_end
14120 || *offsetp > origin_child_die->sect_off)
14121 {
14122 /* Found that ORIGIN_CHILD_DIE is really not referenced.
14123 Check whether we're already processing ORIGIN_CHILD_DIE.
14124 This can happen with mutually referenced abstract_origins.
14125 PR 16581. */
14126 if (!origin_child_die->in_process)
14127 process_die (origin_child_die, origin_cu);
14128 }
14129 origin_child_die = sibling_die (origin_child_die);
14130 }
14131 origin_cu->list_in_scope = origin_previous_list_in_scope;
14132 }
14133
14134 static void
14135 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
14136 {
14137 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14138 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14139 struct context_stack *newobj;
14140 CORE_ADDR lowpc;
14141 CORE_ADDR highpc;
14142 struct die_info *child_die;
14143 struct attribute *attr, *call_line, *call_file;
14144 const char *name;
14145 CORE_ADDR baseaddr;
14146 struct block *block;
14147 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
14148 std::vector<struct symbol *> template_args;
14149 struct template_symbol *templ_func = NULL;
14150
14151 if (inlined_func)
14152 {
14153 /* If we do not have call site information, we can't show the
14154 caller of this inlined function. That's too confusing, so
14155 only use the scope for local variables. */
14156 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
14157 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
14158 if (call_line == NULL || call_file == NULL)
14159 {
14160 read_lexical_block_scope (die, cu);
14161 return;
14162 }
14163 }
14164
14165 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14166
14167 name = dwarf2_name (die, cu);
14168
14169 /* Ignore functions with missing or empty names. These are actually
14170 illegal according to the DWARF standard. */
14171 if (name == NULL)
14172 {
14173 complaint (&symfile_complaints,
14174 _("missing name for subprogram DIE at %s"),
14175 sect_offset_str (die->sect_off));
14176 return;
14177 }
14178
14179 /* Ignore functions with missing or invalid low and high pc attributes. */
14180 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
14181 <= PC_BOUNDS_INVALID)
14182 {
14183 attr = dwarf2_attr (die, DW_AT_external, cu);
14184 if (!attr || !DW_UNSND (attr))
14185 complaint (&symfile_complaints,
14186 _("cannot get low and high bounds "
14187 "for subprogram DIE at %s"),
14188 sect_offset_str (die->sect_off));
14189 return;
14190 }
14191
14192 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14193 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
14194
14195 /* If we have any template arguments, then we must allocate a
14196 different sort of symbol. */
14197 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
14198 {
14199 if (child_die->tag == DW_TAG_template_type_param
14200 || child_die->tag == DW_TAG_template_value_param)
14201 {
14202 templ_func = allocate_template_symbol (objfile);
14203 templ_func->subclass = SYMBOL_TEMPLATE;
14204 break;
14205 }
14206 }
14207
14208 newobj = push_context (0, lowpc);
14209 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
14210 (struct symbol *) templ_func);
14211
14212 /* If there is a location expression for DW_AT_frame_base, record
14213 it. */
14214 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
14215 if (attr)
14216 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
14217
14218 /* If there is a location for the static link, record it. */
14219 newobj->static_link = NULL;
14220 attr = dwarf2_attr (die, DW_AT_static_link, cu);
14221 if (attr)
14222 {
14223 newobj->static_link
14224 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
14225 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
14226 }
14227
14228 cu->list_in_scope = &local_symbols;
14229
14230 if (die->child != NULL)
14231 {
14232 child_die = die->child;
14233 while (child_die && child_die->tag)
14234 {
14235 if (child_die->tag == DW_TAG_template_type_param
14236 || child_die->tag == DW_TAG_template_value_param)
14237 {
14238 struct symbol *arg = new_symbol (child_die, NULL, cu);
14239
14240 if (arg != NULL)
14241 template_args.push_back (arg);
14242 }
14243 else
14244 process_die (child_die, cu);
14245 child_die = sibling_die (child_die);
14246 }
14247 }
14248
14249 inherit_abstract_dies (die, cu);
14250
14251 /* If we have a DW_AT_specification, we might need to import using
14252 directives from the context of the specification DIE. See the
14253 comment in determine_prefix. */
14254 if (cu->language == language_cplus
14255 && dwarf2_attr (die, DW_AT_specification, cu))
14256 {
14257 struct dwarf2_cu *spec_cu = cu;
14258 struct die_info *spec_die = die_specification (die, &spec_cu);
14259
14260 while (spec_die)
14261 {
14262 child_die = spec_die->child;
14263 while (child_die && child_die->tag)
14264 {
14265 if (child_die->tag == DW_TAG_imported_module)
14266 process_die (child_die, spec_cu);
14267 child_die = sibling_die (child_die);
14268 }
14269
14270 /* In some cases, GCC generates specification DIEs that
14271 themselves contain DW_AT_specification attributes. */
14272 spec_die = die_specification (spec_die, &spec_cu);
14273 }
14274 }
14275
14276 newobj = pop_context ();
14277 /* Make a block for the local symbols within. */
14278 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
14279 newobj->static_link, lowpc, highpc);
14280
14281 /* For C++, set the block's scope. */
14282 if ((cu->language == language_cplus
14283 || cu->language == language_fortran
14284 || cu->language == language_d
14285 || cu->language == language_rust)
14286 && cu->processing_has_namespace_info)
14287 block_set_scope (block, determine_prefix (die, cu),
14288 &objfile->objfile_obstack);
14289
14290 /* If we have address ranges, record them. */
14291 dwarf2_record_block_ranges (die, block, baseaddr, cu);
14292
14293 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
14294
14295 /* Attach template arguments to function. */
14296 if (!template_args.empty ())
14297 {
14298 gdb_assert (templ_func != NULL);
14299
14300 templ_func->n_template_arguments = template_args.size ();
14301 templ_func->template_arguments
14302 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
14303 templ_func->n_template_arguments);
14304 memcpy (templ_func->template_arguments,
14305 template_args.data (),
14306 (templ_func->n_template_arguments * sizeof (struct symbol *)));
14307 }
14308
14309 /* In C++, we can have functions nested inside functions (e.g., when
14310 a function declares a class that has methods). This means that
14311 when we finish processing a function scope, we may need to go
14312 back to building a containing block's symbol lists. */
14313 local_symbols = newobj->locals;
14314 local_using_directives = newobj->local_using_directives;
14315
14316 /* If we've finished processing a top-level function, subsequent
14317 symbols go in the file symbol list. */
14318 if (outermost_context_p ())
14319 cu->list_in_scope = &file_symbols;
14320 }
14321
14322 /* Process all the DIES contained within a lexical block scope. Start
14323 a new scope, process the dies, and then close the scope. */
14324
14325 static void
14326 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
14327 {
14328 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14329 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14330 struct context_stack *newobj;
14331 CORE_ADDR lowpc, highpc;
14332 struct die_info *child_die;
14333 CORE_ADDR baseaddr;
14334
14335 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14336
14337 /* Ignore blocks with missing or invalid low and high pc attributes. */
14338 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
14339 as multiple lexical blocks? Handling children in a sane way would
14340 be nasty. Might be easier to properly extend generic blocks to
14341 describe ranges. */
14342 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
14343 {
14344 case PC_BOUNDS_NOT_PRESENT:
14345 /* DW_TAG_lexical_block has no attributes, process its children as if
14346 there was no wrapping by that DW_TAG_lexical_block.
14347 GCC does no longer produces such DWARF since GCC r224161. */
14348 for (child_die = die->child;
14349 child_die != NULL && child_die->tag;
14350 child_die = sibling_die (child_die))
14351 process_die (child_die, cu);
14352 return;
14353 case PC_BOUNDS_INVALID:
14354 return;
14355 }
14356 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14357 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
14358
14359 push_context (0, lowpc);
14360 if (die->child != NULL)
14361 {
14362 child_die = die->child;
14363 while (child_die && child_die->tag)
14364 {
14365 process_die (child_die, cu);
14366 child_die = sibling_die (child_die);
14367 }
14368 }
14369 inherit_abstract_dies (die, cu);
14370 newobj = pop_context ();
14371
14372 if (local_symbols != NULL || local_using_directives != NULL)
14373 {
14374 struct block *block
14375 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
14376 newobj->start_addr, highpc);
14377
14378 /* Note that recording ranges after traversing children, as we
14379 do here, means that recording a parent's ranges entails
14380 walking across all its children's ranges as they appear in
14381 the address map, which is quadratic behavior.
14382
14383 It would be nicer to record the parent's ranges before
14384 traversing its children, simply overriding whatever you find
14385 there. But since we don't even decide whether to create a
14386 block until after we've traversed its children, that's hard
14387 to do. */
14388 dwarf2_record_block_ranges (die, block, baseaddr, cu);
14389 }
14390 local_symbols = newobj->locals;
14391 local_using_directives = newobj->local_using_directives;
14392 }
14393
14394 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
14395
14396 static void
14397 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
14398 {
14399 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14400 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14401 CORE_ADDR pc, baseaddr;
14402 struct attribute *attr;
14403 struct call_site *call_site, call_site_local;
14404 void **slot;
14405 int nparams;
14406 struct die_info *child_die;
14407
14408 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14409
14410 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
14411 if (attr == NULL)
14412 {
14413 /* This was a pre-DWARF-5 GNU extension alias
14414 for DW_AT_call_return_pc. */
14415 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14416 }
14417 if (!attr)
14418 {
14419 complaint (&symfile_complaints,
14420 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
14421 "DIE %s [in module %s]"),
14422 sect_offset_str (die->sect_off), objfile_name (objfile));
14423 return;
14424 }
14425 pc = attr_value_as_address (attr) + baseaddr;
14426 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
14427
14428 if (cu->call_site_htab == NULL)
14429 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14430 NULL, &objfile->objfile_obstack,
14431 hashtab_obstack_allocate, NULL);
14432 call_site_local.pc = pc;
14433 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14434 if (*slot != NULL)
14435 {
14436 complaint (&symfile_complaints,
14437 _("Duplicate PC %s for DW_TAG_call_site "
14438 "DIE %s [in module %s]"),
14439 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
14440 objfile_name (objfile));
14441 return;
14442 }
14443
14444 /* Count parameters at the caller. */
14445
14446 nparams = 0;
14447 for (child_die = die->child; child_die && child_die->tag;
14448 child_die = sibling_die (child_die))
14449 {
14450 if (child_die->tag != DW_TAG_call_site_parameter
14451 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14452 {
14453 complaint (&symfile_complaints,
14454 _("Tag %d is not DW_TAG_call_site_parameter in "
14455 "DW_TAG_call_site child DIE %s [in module %s]"),
14456 child_die->tag, sect_offset_str (child_die->sect_off),
14457 objfile_name (objfile));
14458 continue;
14459 }
14460
14461 nparams++;
14462 }
14463
14464 call_site
14465 = ((struct call_site *)
14466 obstack_alloc (&objfile->objfile_obstack,
14467 sizeof (*call_site)
14468 + (sizeof (*call_site->parameter) * (nparams - 1))));
14469 *slot = call_site;
14470 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14471 call_site->pc = pc;
14472
14473 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14474 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14475 {
14476 struct die_info *func_die;
14477
14478 /* Skip also over DW_TAG_inlined_subroutine. */
14479 for (func_die = die->parent;
14480 func_die && func_die->tag != DW_TAG_subprogram
14481 && func_die->tag != DW_TAG_subroutine_type;
14482 func_die = func_die->parent);
14483
14484 /* DW_AT_call_all_calls is a superset
14485 of DW_AT_call_all_tail_calls. */
14486 if (func_die
14487 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14488 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14489 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14490 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14491 {
14492 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14493 not complete. But keep CALL_SITE for look ups via call_site_htab,
14494 both the initial caller containing the real return address PC and
14495 the final callee containing the current PC of a chain of tail
14496 calls do not need to have the tail call list complete. But any
14497 function candidate for a virtual tail call frame searched via
14498 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14499 determined unambiguously. */
14500 }
14501 else
14502 {
14503 struct type *func_type = NULL;
14504
14505 if (func_die)
14506 func_type = get_die_type (func_die, cu);
14507 if (func_type != NULL)
14508 {
14509 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14510
14511 /* Enlist this call site to the function. */
14512 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14513 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14514 }
14515 else
14516 complaint (&symfile_complaints,
14517 _("Cannot find function owning DW_TAG_call_site "
14518 "DIE %s [in module %s]"),
14519 sect_offset_str (die->sect_off), objfile_name (objfile));
14520 }
14521 }
14522
14523 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14524 if (attr == NULL)
14525 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14526 if (attr == NULL)
14527 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14528 if (attr == NULL)
14529 {
14530 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14531 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14532 }
14533 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14534 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14535 /* Keep NULL DWARF_BLOCK. */;
14536 else if (attr_form_is_block (attr))
14537 {
14538 struct dwarf2_locexpr_baton *dlbaton;
14539
14540 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14541 dlbaton->data = DW_BLOCK (attr)->data;
14542 dlbaton->size = DW_BLOCK (attr)->size;
14543 dlbaton->per_cu = cu->per_cu;
14544
14545 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14546 }
14547 else if (attr_form_is_ref (attr))
14548 {
14549 struct dwarf2_cu *target_cu = cu;
14550 struct die_info *target_die;
14551
14552 target_die = follow_die_ref (die, attr, &target_cu);
14553 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14554 if (die_is_declaration (target_die, target_cu))
14555 {
14556 const char *target_physname;
14557
14558 /* Prefer the mangled name; otherwise compute the demangled one. */
14559 target_physname = dw2_linkage_name (target_die, target_cu);
14560 if (target_physname == NULL)
14561 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14562 if (target_physname == NULL)
14563 complaint (&symfile_complaints,
14564 _("DW_AT_call_target target DIE has invalid "
14565 "physname, for referencing DIE %s [in module %s]"),
14566 sect_offset_str (die->sect_off), objfile_name (objfile));
14567 else
14568 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14569 }
14570 else
14571 {
14572 CORE_ADDR lowpc;
14573
14574 /* DW_AT_entry_pc should be preferred. */
14575 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14576 <= PC_BOUNDS_INVALID)
14577 complaint (&symfile_complaints,
14578 _("DW_AT_call_target target DIE has invalid "
14579 "low pc, for referencing DIE %s [in module %s]"),
14580 sect_offset_str (die->sect_off), objfile_name (objfile));
14581 else
14582 {
14583 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14584 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14585 }
14586 }
14587 }
14588 else
14589 complaint (&symfile_complaints,
14590 _("DW_TAG_call_site DW_AT_call_target is neither "
14591 "block nor reference, for DIE %s [in module %s]"),
14592 sect_offset_str (die->sect_off), objfile_name (objfile));
14593
14594 call_site->per_cu = cu->per_cu;
14595
14596 for (child_die = die->child;
14597 child_die && child_die->tag;
14598 child_die = sibling_die (child_die))
14599 {
14600 struct call_site_parameter *parameter;
14601 struct attribute *loc, *origin;
14602
14603 if (child_die->tag != DW_TAG_call_site_parameter
14604 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14605 {
14606 /* Already printed the complaint above. */
14607 continue;
14608 }
14609
14610 gdb_assert (call_site->parameter_count < nparams);
14611 parameter = &call_site->parameter[call_site->parameter_count];
14612
14613 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14614 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14615 register is contained in DW_AT_call_value. */
14616
14617 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14618 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14619 if (origin == NULL)
14620 {
14621 /* This was a pre-DWARF-5 GNU extension alias
14622 for DW_AT_call_parameter. */
14623 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14624 }
14625 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14626 {
14627 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14628
14629 sect_offset sect_off
14630 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14631 if (!offset_in_cu_p (&cu->header, sect_off))
14632 {
14633 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14634 binding can be done only inside one CU. Such referenced DIE
14635 therefore cannot be even moved to DW_TAG_partial_unit. */
14636 complaint (&symfile_complaints,
14637 _("DW_AT_call_parameter offset is not in CU for "
14638 "DW_TAG_call_site child DIE %s [in module %s]"),
14639 sect_offset_str (child_die->sect_off),
14640 objfile_name (objfile));
14641 continue;
14642 }
14643 parameter->u.param_cu_off
14644 = (cu_offset) (sect_off - cu->header.sect_off);
14645 }
14646 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14647 {
14648 complaint (&symfile_complaints,
14649 _("No DW_FORM_block* DW_AT_location for "
14650 "DW_TAG_call_site child DIE %s [in module %s]"),
14651 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14652 continue;
14653 }
14654 else
14655 {
14656 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14657 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14658 if (parameter->u.dwarf_reg != -1)
14659 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14660 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14661 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14662 &parameter->u.fb_offset))
14663 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14664 else
14665 {
14666 complaint (&symfile_complaints,
14667 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
14668 "for DW_FORM_block* DW_AT_location is supported for "
14669 "DW_TAG_call_site child DIE %s "
14670 "[in module %s]"),
14671 sect_offset_str (child_die->sect_off),
14672 objfile_name (objfile));
14673 continue;
14674 }
14675 }
14676
14677 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14678 if (attr == NULL)
14679 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14680 if (!attr_form_is_block (attr))
14681 {
14682 complaint (&symfile_complaints,
14683 _("No DW_FORM_block* DW_AT_call_value for "
14684 "DW_TAG_call_site child DIE %s [in module %s]"),
14685 sect_offset_str (child_die->sect_off),
14686 objfile_name (objfile));
14687 continue;
14688 }
14689 parameter->value = DW_BLOCK (attr)->data;
14690 parameter->value_size = DW_BLOCK (attr)->size;
14691
14692 /* Parameters are not pre-cleared by memset above. */
14693 parameter->data_value = NULL;
14694 parameter->data_value_size = 0;
14695 call_site->parameter_count++;
14696
14697 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14698 if (attr == NULL)
14699 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14700 if (attr)
14701 {
14702 if (!attr_form_is_block (attr))
14703 complaint (&symfile_complaints,
14704 _("No DW_FORM_block* DW_AT_call_data_value for "
14705 "DW_TAG_call_site child DIE %s [in module %s]"),
14706 sect_offset_str (child_die->sect_off),
14707 objfile_name (objfile));
14708 else
14709 {
14710 parameter->data_value = DW_BLOCK (attr)->data;
14711 parameter->data_value_size = DW_BLOCK (attr)->size;
14712 }
14713 }
14714 }
14715 }
14716
14717 /* Helper function for read_variable. If DIE represents a virtual
14718 table, then return the type of the concrete object that is
14719 associated with the virtual table. Otherwise, return NULL. */
14720
14721 static struct type *
14722 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14723 {
14724 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14725 if (attr == NULL)
14726 return NULL;
14727
14728 /* Find the type DIE. */
14729 struct die_info *type_die = NULL;
14730 struct dwarf2_cu *type_cu = cu;
14731
14732 if (attr_form_is_ref (attr))
14733 type_die = follow_die_ref (die, attr, &type_cu);
14734 if (type_die == NULL)
14735 return NULL;
14736
14737 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14738 return NULL;
14739 return die_containing_type (type_die, type_cu);
14740 }
14741
14742 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14743
14744 static void
14745 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14746 {
14747 struct rust_vtable_symbol *storage = NULL;
14748
14749 if (cu->language == language_rust)
14750 {
14751 struct type *containing_type = rust_containing_type (die, cu);
14752
14753 if (containing_type != NULL)
14754 {
14755 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14756
14757 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14758 struct rust_vtable_symbol);
14759 initialize_objfile_symbol (storage);
14760 storage->concrete_type = containing_type;
14761 storage->subclass = SYMBOL_RUST_VTABLE;
14762 }
14763 }
14764
14765 new_symbol (die, NULL, cu, storage);
14766 }
14767
14768 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14769 reading .debug_rnglists.
14770 Callback's type should be:
14771 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14772 Return true if the attributes are present and valid, otherwise,
14773 return false. */
14774
14775 template <typename Callback>
14776 static bool
14777 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14778 Callback &&callback)
14779 {
14780 struct dwarf2_per_objfile *dwarf2_per_objfile
14781 = cu->per_cu->dwarf2_per_objfile;
14782 struct objfile *objfile = dwarf2_per_objfile->objfile;
14783 bfd *obfd = objfile->obfd;
14784 /* Base address selection entry. */
14785 CORE_ADDR base;
14786 int found_base;
14787 const gdb_byte *buffer;
14788 CORE_ADDR baseaddr;
14789 bool overflow = false;
14790
14791 found_base = cu->base_known;
14792 base = cu->base_address;
14793
14794 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14795 if (offset >= dwarf2_per_objfile->rnglists.size)
14796 {
14797 complaint (&symfile_complaints,
14798 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14799 offset);
14800 return false;
14801 }
14802 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14803
14804 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14805
14806 while (1)
14807 {
14808 /* Initialize it due to a false compiler warning. */
14809 CORE_ADDR range_beginning = 0, range_end = 0;
14810 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14811 + dwarf2_per_objfile->rnglists.size);
14812 unsigned int bytes_read;
14813
14814 if (buffer == buf_end)
14815 {
14816 overflow = true;
14817 break;
14818 }
14819 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14820 switch (rlet)
14821 {
14822 case DW_RLE_end_of_list:
14823 break;
14824 case DW_RLE_base_address:
14825 if (buffer + cu->header.addr_size > buf_end)
14826 {
14827 overflow = true;
14828 break;
14829 }
14830 base = read_address (obfd, buffer, cu, &bytes_read);
14831 found_base = 1;
14832 buffer += bytes_read;
14833 break;
14834 case DW_RLE_start_length:
14835 if (buffer + cu->header.addr_size > buf_end)
14836 {
14837 overflow = true;
14838 break;
14839 }
14840 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14841 buffer += bytes_read;
14842 range_end = (range_beginning
14843 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14844 buffer += bytes_read;
14845 if (buffer > buf_end)
14846 {
14847 overflow = true;
14848 break;
14849 }
14850 break;
14851 case DW_RLE_offset_pair:
14852 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14853 buffer += bytes_read;
14854 if (buffer > buf_end)
14855 {
14856 overflow = true;
14857 break;
14858 }
14859 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14860 buffer += bytes_read;
14861 if (buffer > buf_end)
14862 {
14863 overflow = true;
14864 break;
14865 }
14866 break;
14867 case DW_RLE_start_end:
14868 if (buffer + 2 * cu->header.addr_size > buf_end)
14869 {
14870 overflow = true;
14871 break;
14872 }
14873 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14874 buffer += bytes_read;
14875 range_end = read_address (obfd, buffer, cu, &bytes_read);
14876 buffer += bytes_read;
14877 break;
14878 default:
14879 complaint (&symfile_complaints,
14880 _("Invalid .debug_rnglists data (no base address)"));
14881 return false;
14882 }
14883 if (rlet == DW_RLE_end_of_list || overflow)
14884 break;
14885 if (rlet == DW_RLE_base_address)
14886 continue;
14887
14888 if (!found_base)
14889 {
14890 /* We have no valid base address for the ranges
14891 data. */
14892 complaint (&symfile_complaints,
14893 _("Invalid .debug_rnglists data (no base address)"));
14894 return false;
14895 }
14896
14897 if (range_beginning > range_end)
14898 {
14899 /* Inverted range entries are invalid. */
14900 complaint (&symfile_complaints,
14901 _("Invalid .debug_rnglists data (inverted range)"));
14902 return false;
14903 }
14904
14905 /* Empty range entries have no effect. */
14906 if (range_beginning == range_end)
14907 continue;
14908
14909 range_beginning += base;
14910 range_end += base;
14911
14912 /* A not-uncommon case of bad debug info.
14913 Don't pollute the addrmap with bad data. */
14914 if (range_beginning + baseaddr == 0
14915 && !dwarf2_per_objfile->has_section_at_zero)
14916 {
14917 complaint (&symfile_complaints,
14918 _(".debug_rnglists entry has start address of zero"
14919 " [in module %s]"), objfile_name (objfile));
14920 continue;
14921 }
14922
14923 callback (range_beginning, range_end);
14924 }
14925
14926 if (overflow)
14927 {
14928 complaint (&symfile_complaints,
14929 _("Offset %d is not terminated "
14930 "for DW_AT_ranges attribute"),
14931 offset);
14932 return false;
14933 }
14934
14935 return true;
14936 }
14937
14938 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14939 Callback's type should be:
14940 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14941 Return 1 if the attributes are present and valid, otherwise, return 0. */
14942
14943 template <typename Callback>
14944 static int
14945 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14946 Callback &&callback)
14947 {
14948 struct dwarf2_per_objfile *dwarf2_per_objfile
14949 = cu->per_cu->dwarf2_per_objfile;
14950 struct objfile *objfile = dwarf2_per_objfile->objfile;
14951 struct comp_unit_head *cu_header = &cu->header;
14952 bfd *obfd = objfile->obfd;
14953 unsigned int addr_size = cu_header->addr_size;
14954 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14955 /* Base address selection entry. */
14956 CORE_ADDR base;
14957 int found_base;
14958 unsigned int dummy;
14959 const gdb_byte *buffer;
14960 CORE_ADDR baseaddr;
14961
14962 if (cu_header->version >= 5)
14963 return dwarf2_rnglists_process (offset, cu, callback);
14964
14965 found_base = cu->base_known;
14966 base = cu->base_address;
14967
14968 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14969 if (offset >= dwarf2_per_objfile->ranges.size)
14970 {
14971 complaint (&symfile_complaints,
14972 _("Offset %d out of bounds for DW_AT_ranges attribute"),
14973 offset);
14974 return 0;
14975 }
14976 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14977
14978 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14979
14980 while (1)
14981 {
14982 CORE_ADDR range_beginning, range_end;
14983
14984 range_beginning = read_address (obfd, buffer, cu, &dummy);
14985 buffer += addr_size;
14986 range_end = read_address (obfd, buffer, cu, &dummy);
14987 buffer += addr_size;
14988 offset += 2 * addr_size;
14989
14990 /* An end of list marker is a pair of zero addresses. */
14991 if (range_beginning == 0 && range_end == 0)
14992 /* Found the end of list entry. */
14993 break;
14994
14995 /* Each base address selection entry is a pair of 2 values.
14996 The first is the largest possible address, the second is
14997 the base address. Check for a base address here. */
14998 if ((range_beginning & mask) == mask)
14999 {
15000 /* If we found the largest possible address, then we already
15001 have the base address in range_end. */
15002 base = range_end;
15003 found_base = 1;
15004 continue;
15005 }
15006
15007 if (!found_base)
15008 {
15009 /* We have no valid base address for the ranges
15010 data. */
15011 complaint (&symfile_complaints,
15012 _("Invalid .debug_ranges data (no base address)"));
15013 return 0;
15014 }
15015
15016 if (range_beginning > range_end)
15017 {
15018 /* Inverted range entries are invalid. */
15019 complaint (&symfile_complaints,
15020 _("Invalid .debug_ranges data (inverted range)"));
15021 return 0;
15022 }
15023
15024 /* Empty range entries have no effect. */
15025 if (range_beginning == range_end)
15026 continue;
15027
15028 range_beginning += base;
15029 range_end += base;
15030
15031 /* A not-uncommon case of bad debug info.
15032 Don't pollute the addrmap with bad data. */
15033 if (range_beginning + baseaddr == 0
15034 && !dwarf2_per_objfile->has_section_at_zero)
15035 {
15036 complaint (&symfile_complaints,
15037 _(".debug_ranges entry has start address of zero"
15038 " [in module %s]"), objfile_name (objfile));
15039 continue;
15040 }
15041
15042 callback (range_beginning, range_end);
15043 }
15044
15045 return 1;
15046 }
15047
15048 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
15049 Return 1 if the attributes are present and valid, otherwise, return 0.
15050 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
15051
15052 static int
15053 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
15054 CORE_ADDR *high_return, struct dwarf2_cu *cu,
15055 struct partial_symtab *ranges_pst)
15056 {
15057 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15058 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15059 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
15060 SECT_OFF_TEXT (objfile));
15061 int low_set = 0;
15062 CORE_ADDR low = 0;
15063 CORE_ADDR high = 0;
15064 int retval;
15065
15066 retval = dwarf2_ranges_process (offset, cu,
15067 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
15068 {
15069 if (ranges_pst != NULL)
15070 {
15071 CORE_ADDR lowpc;
15072 CORE_ADDR highpc;
15073
15074 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
15075 range_beginning + baseaddr);
15076 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
15077 range_end + baseaddr);
15078 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
15079 ranges_pst);
15080 }
15081
15082 /* FIXME: This is recording everything as a low-high
15083 segment of consecutive addresses. We should have a
15084 data structure for discontiguous block ranges
15085 instead. */
15086 if (! low_set)
15087 {
15088 low = range_beginning;
15089 high = range_end;
15090 low_set = 1;
15091 }
15092 else
15093 {
15094 if (range_beginning < low)
15095 low = range_beginning;
15096 if (range_end > high)
15097 high = range_end;
15098 }
15099 });
15100 if (!retval)
15101 return 0;
15102
15103 if (! low_set)
15104 /* If the first entry is an end-of-list marker, the range
15105 describes an empty scope, i.e. no instructions. */
15106 return 0;
15107
15108 if (low_return)
15109 *low_return = low;
15110 if (high_return)
15111 *high_return = high;
15112 return 1;
15113 }
15114
15115 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
15116 definition for the return value. *LOWPC and *HIGHPC are set iff
15117 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
15118
15119 static enum pc_bounds_kind
15120 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
15121 CORE_ADDR *highpc, struct dwarf2_cu *cu,
15122 struct partial_symtab *pst)
15123 {
15124 struct dwarf2_per_objfile *dwarf2_per_objfile
15125 = cu->per_cu->dwarf2_per_objfile;
15126 struct attribute *attr;
15127 struct attribute *attr_high;
15128 CORE_ADDR low = 0;
15129 CORE_ADDR high = 0;
15130 enum pc_bounds_kind ret;
15131
15132 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
15133 if (attr_high)
15134 {
15135 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15136 if (attr)
15137 {
15138 low = attr_value_as_address (attr);
15139 high = attr_value_as_address (attr_high);
15140 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
15141 high += low;
15142 }
15143 else
15144 /* Found high w/o low attribute. */
15145 return PC_BOUNDS_INVALID;
15146
15147 /* Found consecutive range of addresses. */
15148 ret = PC_BOUNDS_HIGH_LOW;
15149 }
15150 else
15151 {
15152 attr = dwarf2_attr (die, DW_AT_ranges, cu);
15153 if (attr != NULL)
15154 {
15155 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
15156 We take advantage of the fact that DW_AT_ranges does not appear
15157 in DW_TAG_compile_unit of DWO files. */
15158 int need_ranges_base = die->tag != DW_TAG_compile_unit;
15159 unsigned int ranges_offset = (DW_UNSND (attr)
15160 + (need_ranges_base
15161 ? cu->ranges_base
15162 : 0));
15163
15164 /* Value of the DW_AT_ranges attribute is the offset in the
15165 .debug_ranges section. */
15166 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
15167 return PC_BOUNDS_INVALID;
15168 /* Found discontinuous range of addresses. */
15169 ret = PC_BOUNDS_RANGES;
15170 }
15171 else
15172 return PC_BOUNDS_NOT_PRESENT;
15173 }
15174
15175 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
15176 if (high <= low)
15177 return PC_BOUNDS_INVALID;
15178
15179 /* When using the GNU linker, .gnu.linkonce. sections are used to
15180 eliminate duplicate copies of functions and vtables and such.
15181 The linker will arbitrarily choose one and discard the others.
15182 The AT_*_pc values for such functions refer to local labels in
15183 these sections. If the section from that file was discarded, the
15184 labels are not in the output, so the relocs get a value of 0.
15185 If this is a discarded function, mark the pc bounds as invalid,
15186 so that GDB will ignore it. */
15187 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
15188 return PC_BOUNDS_INVALID;
15189
15190 *lowpc = low;
15191 if (highpc)
15192 *highpc = high;
15193 return ret;
15194 }
15195
15196 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
15197 its low and high PC addresses. Do nothing if these addresses could not
15198 be determined. Otherwise, set LOWPC to the low address if it is smaller,
15199 and HIGHPC to the high address if greater than HIGHPC. */
15200
15201 static void
15202 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
15203 CORE_ADDR *lowpc, CORE_ADDR *highpc,
15204 struct dwarf2_cu *cu)
15205 {
15206 CORE_ADDR low, high;
15207 struct die_info *child = die->child;
15208
15209 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
15210 {
15211 *lowpc = std::min (*lowpc, low);
15212 *highpc = std::max (*highpc, high);
15213 }
15214
15215 /* If the language does not allow nested subprograms (either inside
15216 subprograms or lexical blocks), we're done. */
15217 if (cu->language != language_ada)
15218 return;
15219
15220 /* Check all the children of the given DIE. If it contains nested
15221 subprograms, then check their pc bounds. Likewise, we need to
15222 check lexical blocks as well, as they may also contain subprogram
15223 definitions. */
15224 while (child && child->tag)
15225 {
15226 if (child->tag == DW_TAG_subprogram
15227 || child->tag == DW_TAG_lexical_block)
15228 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
15229 child = sibling_die (child);
15230 }
15231 }
15232
15233 /* Get the low and high pc's represented by the scope DIE, and store
15234 them in *LOWPC and *HIGHPC. If the correct values can't be
15235 determined, set *LOWPC to -1 and *HIGHPC to 0. */
15236
15237 static void
15238 get_scope_pc_bounds (struct die_info *die,
15239 CORE_ADDR *lowpc, CORE_ADDR *highpc,
15240 struct dwarf2_cu *cu)
15241 {
15242 CORE_ADDR best_low = (CORE_ADDR) -1;
15243 CORE_ADDR best_high = (CORE_ADDR) 0;
15244 CORE_ADDR current_low, current_high;
15245
15246 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
15247 >= PC_BOUNDS_RANGES)
15248 {
15249 best_low = current_low;
15250 best_high = current_high;
15251 }
15252 else
15253 {
15254 struct die_info *child = die->child;
15255
15256 while (child && child->tag)
15257 {
15258 switch (child->tag) {
15259 case DW_TAG_subprogram:
15260 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
15261 break;
15262 case DW_TAG_namespace:
15263 case DW_TAG_module:
15264 /* FIXME: carlton/2004-01-16: Should we do this for
15265 DW_TAG_class_type/DW_TAG_structure_type, too? I think
15266 that current GCC's always emit the DIEs corresponding
15267 to definitions of methods of classes as children of a
15268 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
15269 the DIEs giving the declarations, which could be
15270 anywhere). But I don't see any reason why the
15271 standards says that they have to be there. */
15272 get_scope_pc_bounds (child, &current_low, &current_high, cu);
15273
15274 if (current_low != ((CORE_ADDR) -1))
15275 {
15276 best_low = std::min (best_low, current_low);
15277 best_high = std::max (best_high, current_high);
15278 }
15279 break;
15280 default:
15281 /* Ignore. */
15282 break;
15283 }
15284
15285 child = sibling_die (child);
15286 }
15287 }
15288
15289 *lowpc = best_low;
15290 *highpc = best_high;
15291 }
15292
15293 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
15294 in DIE. */
15295
15296 static void
15297 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
15298 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
15299 {
15300 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15301 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15302 struct attribute *attr;
15303 struct attribute *attr_high;
15304
15305 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
15306 if (attr_high)
15307 {
15308 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
15309 if (attr)
15310 {
15311 CORE_ADDR low = attr_value_as_address (attr);
15312 CORE_ADDR high = attr_value_as_address (attr_high);
15313
15314 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
15315 high += low;
15316
15317 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
15318 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
15319 record_block_range (block, low, high - 1);
15320 }
15321 }
15322
15323 attr = dwarf2_attr (die, DW_AT_ranges, cu);
15324 if (attr)
15325 {
15326 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
15327 We take advantage of the fact that DW_AT_ranges does not appear
15328 in DW_TAG_compile_unit of DWO files. */
15329 int need_ranges_base = die->tag != DW_TAG_compile_unit;
15330
15331 /* The value of the DW_AT_ranges attribute is the offset of the
15332 address range list in the .debug_ranges section. */
15333 unsigned long offset = (DW_UNSND (attr)
15334 + (need_ranges_base ? cu->ranges_base : 0));
15335 const gdb_byte *buffer;
15336
15337 /* For some target architectures, but not others, the
15338 read_address function sign-extends the addresses it returns.
15339 To recognize base address selection entries, we need a
15340 mask. */
15341 unsigned int addr_size = cu->header.addr_size;
15342 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
15343
15344 /* The base address, to which the next pair is relative. Note
15345 that this 'base' is a DWARF concept: most entries in a range
15346 list are relative, to reduce the number of relocs against the
15347 debugging information. This is separate from this function's
15348 'baseaddr' argument, which GDB uses to relocate debugging
15349 information from a shared library based on the address at
15350 which the library was loaded. */
15351 CORE_ADDR base = cu->base_address;
15352 int base_known = cu->base_known;
15353
15354 dwarf2_ranges_process (offset, cu,
15355 [&] (CORE_ADDR start, CORE_ADDR end)
15356 {
15357 start += baseaddr;
15358 end += baseaddr;
15359 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
15360 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
15361 record_block_range (block, start, end - 1);
15362 });
15363 }
15364 }
15365
15366 /* Check whether the producer field indicates either of GCC < 4.6, or the
15367 Intel C/C++ compiler, and cache the result in CU. */
15368
15369 static void
15370 check_producer (struct dwarf2_cu *cu)
15371 {
15372 int major, minor;
15373
15374 if (cu->producer == NULL)
15375 {
15376 /* For unknown compilers expect their behavior is DWARF version
15377 compliant.
15378
15379 GCC started to support .debug_types sections by -gdwarf-4 since
15380 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
15381 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
15382 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
15383 interpreted incorrectly by GDB now - GCC PR debug/48229. */
15384 }
15385 else if (producer_is_gcc (cu->producer, &major, &minor))
15386 {
15387 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
15388 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
15389 }
15390 else if (producer_is_icc (cu->producer, &major, &minor))
15391 cu->producer_is_icc_lt_14 = major < 14;
15392 else
15393 {
15394 /* For other non-GCC compilers, expect their behavior is DWARF version
15395 compliant. */
15396 }
15397
15398 cu->checked_producer = 1;
15399 }
15400
15401 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
15402 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
15403 during 4.6.0 experimental. */
15404
15405 static int
15406 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
15407 {
15408 if (!cu->checked_producer)
15409 check_producer (cu);
15410
15411 return cu->producer_is_gxx_lt_4_6;
15412 }
15413
15414 /* Return the default accessibility type if it is not overriden by
15415 DW_AT_accessibility. */
15416
15417 static enum dwarf_access_attribute
15418 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
15419 {
15420 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
15421 {
15422 /* The default DWARF 2 accessibility for members is public, the default
15423 accessibility for inheritance is private. */
15424
15425 if (die->tag != DW_TAG_inheritance)
15426 return DW_ACCESS_public;
15427 else
15428 return DW_ACCESS_private;
15429 }
15430 else
15431 {
15432 /* DWARF 3+ defines the default accessibility a different way. The same
15433 rules apply now for DW_TAG_inheritance as for the members and it only
15434 depends on the container kind. */
15435
15436 if (die->parent->tag == DW_TAG_class_type)
15437 return DW_ACCESS_private;
15438 else
15439 return DW_ACCESS_public;
15440 }
15441 }
15442
15443 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15444 offset. If the attribute was not found return 0, otherwise return
15445 1. If it was found but could not properly be handled, set *OFFSET
15446 to 0. */
15447
15448 static int
15449 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15450 LONGEST *offset)
15451 {
15452 struct attribute *attr;
15453
15454 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15455 if (attr != NULL)
15456 {
15457 *offset = 0;
15458
15459 /* Note that we do not check for a section offset first here.
15460 This is because DW_AT_data_member_location is new in DWARF 4,
15461 so if we see it, we can assume that a constant form is really
15462 a constant and not a section offset. */
15463 if (attr_form_is_constant (attr))
15464 *offset = dwarf2_get_attr_constant_value (attr, 0);
15465 else if (attr_form_is_section_offset (attr))
15466 dwarf2_complex_location_expr_complaint ();
15467 else if (attr_form_is_block (attr))
15468 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15469 else
15470 dwarf2_complex_location_expr_complaint ();
15471
15472 return 1;
15473 }
15474
15475 return 0;
15476 }
15477
15478 /* Add an aggregate field to the field list. */
15479
15480 static void
15481 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15482 struct dwarf2_cu *cu)
15483 {
15484 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15485 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15486 struct nextfield *new_field;
15487 struct attribute *attr;
15488 struct field *fp;
15489 const char *fieldname = "";
15490
15491 /* Allocate a new field list entry and link it in. */
15492 new_field = XNEW (struct nextfield);
15493 make_cleanup (xfree, new_field);
15494 memset (new_field, 0, sizeof (struct nextfield));
15495
15496 if (die->tag == DW_TAG_inheritance)
15497 {
15498 new_field->next = fip->baseclasses;
15499 fip->baseclasses = new_field;
15500 }
15501 else
15502 {
15503 new_field->next = fip->fields;
15504 fip->fields = new_field;
15505 }
15506 fip->nfields++;
15507
15508 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15509 if (attr)
15510 new_field->accessibility = DW_UNSND (attr);
15511 else
15512 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15513 if (new_field->accessibility != DW_ACCESS_public)
15514 fip->non_public_fields = 1;
15515
15516 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15517 if (attr)
15518 new_field->virtuality = DW_UNSND (attr);
15519 else
15520 new_field->virtuality = DW_VIRTUALITY_none;
15521
15522 fp = &new_field->field;
15523
15524 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15525 {
15526 LONGEST offset;
15527
15528 /* Data member other than a C++ static data member. */
15529
15530 /* Get type of field. */
15531 fp->type = die_type (die, cu);
15532
15533 SET_FIELD_BITPOS (*fp, 0);
15534
15535 /* Get bit size of field (zero if none). */
15536 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15537 if (attr)
15538 {
15539 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15540 }
15541 else
15542 {
15543 FIELD_BITSIZE (*fp) = 0;
15544 }
15545
15546 /* Get bit offset of field. */
15547 if (handle_data_member_location (die, cu, &offset))
15548 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15549 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15550 if (attr)
15551 {
15552 if (gdbarch_bits_big_endian (gdbarch))
15553 {
15554 /* For big endian bits, the DW_AT_bit_offset gives the
15555 additional bit offset from the MSB of the containing
15556 anonymous object to the MSB of the field. We don't
15557 have to do anything special since we don't need to
15558 know the size of the anonymous object. */
15559 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15560 }
15561 else
15562 {
15563 /* For little endian bits, compute the bit offset to the
15564 MSB of the anonymous object, subtract off the number of
15565 bits from the MSB of the field to the MSB of the
15566 object, and then subtract off the number of bits of
15567 the field itself. The result is the bit offset of
15568 the LSB of the field. */
15569 int anonymous_size;
15570 int bit_offset = DW_UNSND (attr);
15571
15572 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15573 if (attr)
15574 {
15575 /* The size of the anonymous object containing
15576 the bit field is explicit, so use the
15577 indicated size (in bytes). */
15578 anonymous_size = DW_UNSND (attr);
15579 }
15580 else
15581 {
15582 /* The size of the anonymous object containing
15583 the bit field must be inferred from the type
15584 attribute of the data member containing the
15585 bit field. */
15586 anonymous_size = TYPE_LENGTH (fp->type);
15587 }
15588 SET_FIELD_BITPOS (*fp,
15589 (FIELD_BITPOS (*fp)
15590 + anonymous_size * bits_per_byte
15591 - bit_offset - FIELD_BITSIZE (*fp)));
15592 }
15593 }
15594 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15595 if (attr != NULL)
15596 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15597 + dwarf2_get_attr_constant_value (attr, 0)));
15598
15599 /* Get name of field. */
15600 fieldname = dwarf2_name (die, cu);
15601 if (fieldname == NULL)
15602 fieldname = "";
15603
15604 /* The name is already allocated along with this objfile, so we don't
15605 need to duplicate it for the type. */
15606 fp->name = fieldname;
15607
15608 /* Change accessibility for artificial fields (e.g. virtual table
15609 pointer or virtual base class pointer) to private. */
15610 if (dwarf2_attr (die, DW_AT_artificial, cu))
15611 {
15612 FIELD_ARTIFICIAL (*fp) = 1;
15613 new_field->accessibility = DW_ACCESS_private;
15614 fip->non_public_fields = 1;
15615 }
15616 }
15617 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15618 {
15619 /* C++ static member. */
15620
15621 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15622 is a declaration, but all versions of G++ as of this writing
15623 (so through at least 3.2.1) incorrectly generate
15624 DW_TAG_variable tags. */
15625
15626 const char *physname;
15627
15628 /* Get name of field. */
15629 fieldname = dwarf2_name (die, cu);
15630 if (fieldname == NULL)
15631 return;
15632
15633 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15634 if (attr
15635 /* Only create a symbol if this is an external value.
15636 new_symbol checks this and puts the value in the global symbol
15637 table, which we want. If it is not external, new_symbol
15638 will try to put the value in cu->list_in_scope which is wrong. */
15639 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15640 {
15641 /* A static const member, not much different than an enum as far as
15642 we're concerned, except that we can support more types. */
15643 new_symbol (die, NULL, cu);
15644 }
15645
15646 /* Get physical name. */
15647 physname = dwarf2_physname (fieldname, die, cu);
15648
15649 /* The name is already allocated along with this objfile, so we don't
15650 need to duplicate it for the type. */
15651 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15652 FIELD_TYPE (*fp) = die_type (die, cu);
15653 FIELD_NAME (*fp) = fieldname;
15654 }
15655 else if (die->tag == DW_TAG_inheritance)
15656 {
15657 LONGEST offset;
15658
15659 /* C++ base class field. */
15660 if (handle_data_member_location (die, cu, &offset))
15661 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15662 FIELD_BITSIZE (*fp) = 0;
15663 FIELD_TYPE (*fp) = die_type (die, cu);
15664 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
15665 fip->nbaseclasses++;
15666 }
15667 else if (die->tag == DW_TAG_variant_part)
15668 {
15669 /* process_structure_scope will treat this DIE as a union. */
15670 process_structure_scope (die, cu);
15671
15672 /* The variant part is relative to the start of the enclosing
15673 structure. */
15674 SET_FIELD_BITPOS (*fp, 0);
15675 fp->type = get_die_type (die, cu);
15676 fp->artificial = 1;
15677 fp->name = "<<variant>>";
15678 }
15679 else
15680 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15681 }
15682
15683 /* Can the type given by DIE define another type? */
15684
15685 static bool
15686 type_can_define_types (const struct die_info *die)
15687 {
15688 switch (die->tag)
15689 {
15690 case DW_TAG_typedef:
15691 case DW_TAG_class_type:
15692 case DW_TAG_structure_type:
15693 case DW_TAG_union_type:
15694 case DW_TAG_enumeration_type:
15695 return true;
15696
15697 default:
15698 return false;
15699 }
15700 }
15701
15702 /* Add a type definition defined in the scope of the FIP's class. */
15703
15704 static void
15705 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15706 struct dwarf2_cu *cu)
15707 {
15708 struct decl_field_list *new_field;
15709 struct decl_field *fp;
15710
15711 /* Allocate a new field list entry and link it in. */
15712 new_field = XCNEW (struct decl_field_list);
15713 make_cleanup (xfree, new_field);
15714
15715 gdb_assert (type_can_define_types (die));
15716
15717 fp = &new_field->field;
15718
15719 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15720 fp->name = dwarf2_name (die, cu);
15721 fp->type = read_type_die (die, cu);
15722
15723 /* Save accessibility. */
15724 enum dwarf_access_attribute accessibility;
15725 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15726 if (attr != NULL)
15727 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15728 else
15729 accessibility = dwarf2_default_access_attribute (die, cu);
15730 switch (accessibility)
15731 {
15732 case DW_ACCESS_public:
15733 /* The assumed value if neither private nor protected. */
15734 break;
15735 case DW_ACCESS_private:
15736 fp->is_private = 1;
15737 break;
15738 case DW_ACCESS_protected:
15739 fp->is_protected = 1;
15740 break;
15741 default:
15742 complaint (&symfile_complaints,
15743 _("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15744 }
15745
15746 if (die->tag == DW_TAG_typedef)
15747 {
15748 new_field->next = fip->typedef_field_list;
15749 fip->typedef_field_list = new_field;
15750 fip->typedef_field_list_count++;
15751 }
15752 else
15753 {
15754 new_field->next = fip->nested_types_list;
15755 fip->nested_types_list = new_field;
15756 fip->nested_types_list_count++;
15757 }
15758 }
15759
15760 /* Create the vector of fields, and attach it to the type. */
15761
15762 static void
15763 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15764 struct dwarf2_cu *cu)
15765 {
15766 int nfields = fip->nfields;
15767
15768 /* Record the field count, allocate space for the array of fields,
15769 and create blank accessibility bitfields if necessary. */
15770 TYPE_NFIELDS (type) = nfields;
15771 TYPE_FIELDS (type) = (struct field *)
15772 TYPE_ALLOC (type, sizeof (struct field) * nfields);
15773 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
15774
15775 if (fip->non_public_fields && cu->language != language_ada)
15776 {
15777 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15778
15779 TYPE_FIELD_PRIVATE_BITS (type) =
15780 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15781 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15782
15783 TYPE_FIELD_PROTECTED_BITS (type) =
15784 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15785 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15786
15787 TYPE_FIELD_IGNORE_BITS (type) =
15788 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15789 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15790 }
15791
15792 /* If the type has baseclasses, allocate and clear a bit vector for
15793 TYPE_FIELD_VIRTUAL_BITS. */
15794 if (fip->nbaseclasses && cu->language != language_ada)
15795 {
15796 int num_bytes = B_BYTES (fip->nbaseclasses);
15797 unsigned char *pointer;
15798
15799 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15800 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15801 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15802 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
15803 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
15804 }
15805
15806 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15807 {
15808 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15809
15810 int index = nfields - 1;
15811 struct nextfield *field = fip->fields;
15812
15813 while (index >= 0)
15814 {
15815 if (field->variant.is_discriminant)
15816 di->discriminant_index = index;
15817 else if (field->variant.default_branch)
15818 di->default_index = index;
15819 else
15820 di->discriminants[index] = field->variant.discriminant_value;
15821
15822 --index;
15823 field = field->next;
15824 }
15825 }
15826
15827 /* Copy the saved-up fields into the field vector. Start from the head of
15828 the list, adding to the tail of the field array, so that they end up in
15829 the same order in the array in which they were added to the list. */
15830 while (nfields-- > 0)
15831 {
15832 struct nextfield *fieldp;
15833
15834 if (fip->fields)
15835 {
15836 fieldp = fip->fields;
15837 fip->fields = fieldp->next;
15838 }
15839 else
15840 {
15841 fieldp = fip->baseclasses;
15842 fip->baseclasses = fieldp->next;
15843 }
15844
15845 TYPE_FIELD (type, nfields) = fieldp->field;
15846 switch (fieldp->accessibility)
15847 {
15848 case DW_ACCESS_private:
15849 if (cu->language != language_ada)
15850 SET_TYPE_FIELD_PRIVATE (type, nfields);
15851 break;
15852
15853 case DW_ACCESS_protected:
15854 if (cu->language != language_ada)
15855 SET_TYPE_FIELD_PROTECTED (type, nfields);
15856 break;
15857
15858 case DW_ACCESS_public:
15859 break;
15860
15861 default:
15862 /* Unknown accessibility. Complain and treat it as public. */
15863 {
15864 complaint (&symfile_complaints, _("unsupported accessibility %d"),
15865 fieldp->accessibility);
15866 }
15867 break;
15868 }
15869 if (nfields < fip->nbaseclasses)
15870 {
15871 switch (fieldp->virtuality)
15872 {
15873 case DW_VIRTUALITY_virtual:
15874 case DW_VIRTUALITY_pure_virtual:
15875 if (cu->language == language_ada)
15876 error (_("unexpected virtuality in component of Ada type"));
15877 SET_TYPE_FIELD_VIRTUAL (type, nfields);
15878 break;
15879 }
15880 }
15881 }
15882 }
15883
15884 /* Return true if this member function is a constructor, false
15885 otherwise. */
15886
15887 static int
15888 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15889 {
15890 const char *fieldname;
15891 const char *type_name;
15892 int len;
15893
15894 if (die->parent == NULL)
15895 return 0;
15896
15897 if (die->parent->tag != DW_TAG_structure_type
15898 && die->parent->tag != DW_TAG_union_type
15899 && die->parent->tag != DW_TAG_class_type)
15900 return 0;
15901
15902 fieldname = dwarf2_name (die, cu);
15903 type_name = dwarf2_name (die->parent, cu);
15904 if (fieldname == NULL || type_name == NULL)
15905 return 0;
15906
15907 len = strlen (fieldname);
15908 return (strncmp (fieldname, type_name, len) == 0
15909 && (type_name[len] == '\0' || type_name[len] == '<'));
15910 }
15911
15912 /* Add a member function to the proper fieldlist. */
15913
15914 static void
15915 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15916 struct type *type, struct dwarf2_cu *cu)
15917 {
15918 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15919 struct attribute *attr;
15920 struct fnfieldlist *flp;
15921 int i;
15922 struct fn_field *fnp;
15923 const char *fieldname;
15924 struct nextfnfield *new_fnfield;
15925 struct type *this_type;
15926 enum dwarf_access_attribute accessibility;
15927
15928 if (cu->language == language_ada)
15929 error (_("unexpected member function in Ada type"));
15930
15931 /* Get name of member function. */
15932 fieldname = dwarf2_name (die, cu);
15933 if (fieldname == NULL)
15934 return;
15935
15936 /* Look up member function name in fieldlist. */
15937 for (i = 0; i < fip->nfnfields; i++)
15938 {
15939 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15940 break;
15941 }
15942
15943 /* Create new list element if necessary. */
15944 if (i < fip->nfnfields)
15945 flp = &fip->fnfieldlists[i];
15946 else
15947 {
15948 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
15949 {
15950 fip->fnfieldlists = (struct fnfieldlist *)
15951 xrealloc (fip->fnfieldlists,
15952 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
15953 * sizeof (struct fnfieldlist));
15954 if (fip->nfnfields == 0)
15955 make_cleanup (free_current_contents, &fip->fnfieldlists);
15956 }
15957 flp = &fip->fnfieldlists[fip->nfnfields];
15958 flp->name = fieldname;
15959 flp->length = 0;
15960 flp->head = NULL;
15961 i = fip->nfnfields++;
15962 }
15963
15964 /* Create a new member function field and chain it to the field list
15965 entry. */
15966 new_fnfield = XNEW (struct nextfnfield);
15967 make_cleanup (xfree, new_fnfield);
15968 memset (new_fnfield, 0, sizeof (struct nextfnfield));
15969 new_fnfield->next = flp->head;
15970 flp->head = new_fnfield;
15971 flp->length++;
15972
15973 /* Fill in the member function field info. */
15974 fnp = &new_fnfield->fnfield;
15975
15976 /* Delay processing of the physname until later. */
15977 if (cu->language == language_cplus)
15978 {
15979 add_to_method_list (type, i, flp->length - 1, fieldname,
15980 die, cu);
15981 }
15982 else
15983 {
15984 const char *physname = dwarf2_physname (fieldname, die, cu);
15985 fnp->physname = physname ? physname : "";
15986 }
15987
15988 fnp->type = alloc_type (objfile);
15989 this_type = read_type_die (die, cu);
15990 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15991 {
15992 int nparams = TYPE_NFIELDS (this_type);
15993
15994 /* TYPE is the domain of this method, and THIS_TYPE is the type
15995 of the method itself (TYPE_CODE_METHOD). */
15996 smash_to_method_type (fnp->type, type,
15997 TYPE_TARGET_TYPE (this_type),
15998 TYPE_FIELDS (this_type),
15999 TYPE_NFIELDS (this_type),
16000 TYPE_VARARGS (this_type));
16001
16002 /* Handle static member functions.
16003 Dwarf2 has no clean way to discern C++ static and non-static
16004 member functions. G++ helps GDB by marking the first
16005 parameter for non-static member functions (which is the this
16006 pointer) as artificial. We obtain this information from
16007 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
16008 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
16009 fnp->voffset = VOFFSET_STATIC;
16010 }
16011 else
16012 complaint (&symfile_complaints, _("member function type missing for '%s'"),
16013 dwarf2_full_name (fieldname, die, cu));
16014
16015 /* Get fcontext from DW_AT_containing_type if present. */
16016 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16017 fnp->fcontext = die_containing_type (die, cu);
16018
16019 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
16020 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
16021
16022 /* Get accessibility. */
16023 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
16024 if (attr)
16025 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
16026 else
16027 accessibility = dwarf2_default_access_attribute (die, cu);
16028 switch (accessibility)
16029 {
16030 case DW_ACCESS_private:
16031 fnp->is_private = 1;
16032 break;
16033 case DW_ACCESS_protected:
16034 fnp->is_protected = 1;
16035 break;
16036 }
16037
16038 /* Check for artificial methods. */
16039 attr = dwarf2_attr (die, DW_AT_artificial, cu);
16040 if (attr && DW_UNSND (attr) != 0)
16041 fnp->is_artificial = 1;
16042
16043 fnp->is_constructor = dwarf2_is_constructor (die, cu);
16044
16045 /* Get index in virtual function table if it is a virtual member
16046 function. For older versions of GCC, this is an offset in the
16047 appropriate virtual table, as specified by DW_AT_containing_type.
16048 For everyone else, it is an expression to be evaluated relative
16049 to the object address. */
16050
16051 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
16052 if (attr)
16053 {
16054 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
16055 {
16056 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
16057 {
16058 /* Old-style GCC. */
16059 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
16060 }
16061 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
16062 || (DW_BLOCK (attr)->size > 1
16063 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
16064 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
16065 {
16066 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
16067 if ((fnp->voffset % cu->header.addr_size) != 0)
16068 dwarf2_complex_location_expr_complaint ();
16069 else
16070 fnp->voffset /= cu->header.addr_size;
16071 fnp->voffset += 2;
16072 }
16073 else
16074 dwarf2_complex_location_expr_complaint ();
16075
16076 if (!fnp->fcontext)
16077 {
16078 /* If there is no `this' field and no DW_AT_containing_type,
16079 we cannot actually find a base class context for the
16080 vtable! */
16081 if (TYPE_NFIELDS (this_type) == 0
16082 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
16083 {
16084 complaint (&symfile_complaints,
16085 _("cannot determine context for virtual member "
16086 "function \"%s\" (offset %s)"),
16087 fieldname, sect_offset_str (die->sect_off));
16088 }
16089 else
16090 {
16091 fnp->fcontext
16092 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
16093 }
16094 }
16095 }
16096 else if (attr_form_is_section_offset (attr))
16097 {
16098 dwarf2_complex_location_expr_complaint ();
16099 }
16100 else
16101 {
16102 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
16103 fieldname);
16104 }
16105 }
16106 else
16107 {
16108 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
16109 if (attr && DW_UNSND (attr))
16110 {
16111 /* GCC does this, as of 2008-08-25; PR debug/37237. */
16112 complaint (&symfile_complaints,
16113 _("Member function \"%s\" (offset %s) is virtual "
16114 "but the vtable offset is not specified"),
16115 fieldname, sect_offset_str (die->sect_off));
16116 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16117 TYPE_CPLUS_DYNAMIC (type) = 1;
16118 }
16119 }
16120 }
16121
16122 /* Create the vector of member function fields, and attach it to the type. */
16123
16124 static void
16125 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
16126 struct dwarf2_cu *cu)
16127 {
16128 struct fnfieldlist *flp;
16129 int i;
16130
16131 if (cu->language == language_ada)
16132 error (_("unexpected member functions in Ada type"));
16133
16134 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16135 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
16136 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
16137
16138 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
16139 {
16140 struct nextfnfield *nfp = flp->head;
16141 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
16142 int k;
16143
16144 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
16145 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
16146 fn_flp->fn_fields = (struct fn_field *)
16147 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
16148 for (k = flp->length; (k--, nfp); nfp = nfp->next)
16149 fn_flp->fn_fields[k] = nfp->fnfield;
16150 }
16151
16152 TYPE_NFN_FIELDS (type) = fip->nfnfields;
16153 }
16154
16155 /* Returns non-zero if NAME is the name of a vtable member in CU's
16156 language, zero otherwise. */
16157 static int
16158 is_vtable_name (const char *name, struct dwarf2_cu *cu)
16159 {
16160 static const char vptr[] = "_vptr";
16161
16162 /* Look for the C++ form of the vtable. */
16163 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
16164 return 1;
16165
16166 return 0;
16167 }
16168
16169 /* GCC outputs unnamed structures that are really pointers to member
16170 functions, with the ABI-specified layout. If TYPE describes
16171 such a structure, smash it into a member function type.
16172
16173 GCC shouldn't do this; it should just output pointer to member DIEs.
16174 This is GCC PR debug/28767. */
16175
16176 static void
16177 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
16178 {
16179 struct type *pfn_type, *self_type, *new_type;
16180
16181 /* Check for a structure with no name and two children. */
16182 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
16183 return;
16184
16185 /* Check for __pfn and __delta members. */
16186 if (TYPE_FIELD_NAME (type, 0) == NULL
16187 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
16188 || TYPE_FIELD_NAME (type, 1) == NULL
16189 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
16190 return;
16191
16192 /* Find the type of the method. */
16193 pfn_type = TYPE_FIELD_TYPE (type, 0);
16194 if (pfn_type == NULL
16195 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
16196 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
16197 return;
16198
16199 /* Look for the "this" argument. */
16200 pfn_type = TYPE_TARGET_TYPE (pfn_type);
16201 if (TYPE_NFIELDS (pfn_type) == 0
16202 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
16203 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
16204 return;
16205
16206 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
16207 new_type = alloc_type (objfile);
16208 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
16209 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
16210 TYPE_VARARGS (pfn_type));
16211 smash_to_methodptr_type (type, new_type);
16212 }
16213
16214
16215 /* Called when we find the DIE that starts a structure or union scope
16216 (definition) to create a type for the structure or union. Fill in
16217 the type's name and general properties; the members will not be
16218 processed until process_structure_scope. A symbol table entry for
16219 the type will also not be done until process_structure_scope (assuming
16220 the type has a name).
16221
16222 NOTE: we need to call these functions regardless of whether or not the
16223 DIE has a DW_AT_name attribute, since it might be an anonymous
16224 structure or union. This gets the type entered into our set of
16225 user defined types. */
16226
16227 static struct type *
16228 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
16229 {
16230 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16231 struct type *type;
16232 struct attribute *attr;
16233 const char *name;
16234
16235 /* If the definition of this type lives in .debug_types, read that type.
16236 Don't follow DW_AT_specification though, that will take us back up
16237 the chain and we want to go down. */
16238 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16239 if (attr)
16240 {
16241 type = get_DW_AT_signature_type (die, attr, cu);
16242
16243 /* The type's CU may not be the same as CU.
16244 Ensure TYPE is recorded with CU in die_type_hash. */
16245 return set_die_type (die, type, cu);
16246 }
16247
16248 type = alloc_type (objfile);
16249 INIT_CPLUS_SPECIFIC (type);
16250
16251 name = dwarf2_name (die, cu);
16252 if (name != NULL)
16253 {
16254 if (cu->language == language_cplus
16255 || cu->language == language_d
16256 || cu->language == language_rust)
16257 {
16258 const char *full_name = dwarf2_full_name (name, die, cu);
16259
16260 /* dwarf2_full_name might have already finished building the DIE's
16261 type. If so, there is no need to continue. */
16262 if (get_die_type (die, cu) != NULL)
16263 return get_die_type (die, cu);
16264
16265 TYPE_TAG_NAME (type) = full_name;
16266 if (die->tag == DW_TAG_structure_type
16267 || die->tag == DW_TAG_class_type)
16268 TYPE_NAME (type) = TYPE_TAG_NAME (type);
16269 }
16270 else
16271 {
16272 /* The name is already allocated along with this objfile, so
16273 we don't need to duplicate it for the type. */
16274 TYPE_TAG_NAME (type) = name;
16275 if (die->tag == DW_TAG_class_type)
16276 TYPE_NAME (type) = TYPE_TAG_NAME (type);
16277 }
16278 }
16279
16280 if (die->tag == DW_TAG_structure_type)
16281 {
16282 TYPE_CODE (type) = TYPE_CODE_STRUCT;
16283 }
16284 else if (die->tag == DW_TAG_union_type)
16285 {
16286 TYPE_CODE (type) = TYPE_CODE_UNION;
16287 }
16288 else if (die->tag == DW_TAG_variant_part)
16289 {
16290 TYPE_CODE (type) = TYPE_CODE_UNION;
16291 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
16292 }
16293 else
16294 {
16295 TYPE_CODE (type) = TYPE_CODE_STRUCT;
16296 }
16297
16298 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
16299 TYPE_DECLARED_CLASS (type) = 1;
16300
16301 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16302 if (attr)
16303 {
16304 if (attr_form_is_constant (attr))
16305 TYPE_LENGTH (type) = DW_UNSND (attr);
16306 else
16307 {
16308 /* For the moment, dynamic type sizes are not supported
16309 by GDB's struct type. The actual size is determined
16310 on-demand when resolving the type of a given object,
16311 so set the type's length to zero for now. Otherwise,
16312 we record an expression as the length, and that expression
16313 could lead to a very large value, which could eventually
16314 lead to us trying to allocate that much memory when creating
16315 a value of that type. */
16316 TYPE_LENGTH (type) = 0;
16317 }
16318 }
16319 else
16320 {
16321 TYPE_LENGTH (type) = 0;
16322 }
16323
16324 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
16325 {
16326 /* ICC<14 does not output the required DW_AT_declaration on
16327 incomplete types, but gives them a size of zero. */
16328 TYPE_STUB (type) = 1;
16329 }
16330 else
16331 TYPE_STUB_SUPPORTED (type) = 1;
16332
16333 if (die_is_declaration (die, cu))
16334 TYPE_STUB (type) = 1;
16335 else if (attr == NULL && die->child == NULL
16336 && producer_is_realview (cu->producer))
16337 /* RealView does not output the required DW_AT_declaration
16338 on incomplete types. */
16339 TYPE_STUB (type) = 1;
16340
16341 /* We need to add the type field to the die immediately so we don't
16342 infinitely recurse when dealing with pointers to the structure
16343 type within the structure itself. */
16344 set_die_type (die, type, cu);
16345
16346 /* set_die_type should be already done. */
16347 set_descriptive_type (type, die, cu);
16348
16349 return type;
16350 }
16351
16352 /* A helper for process_structure_scope that handles a single member
16353 DIE. */
16354
16355 static void
16356 handle_struct_member_die (struct die_info *child_die, struct type *type,
16357 struct field_info *fi,
16358 std::vector<struct symbol *> *template_args,
16359 struct dwarf2_cu *cu)
16360 {
16361 if (child_die->tag == DW_TAG_member
16362 || child_die->tag == DW_TAG_variable
16363 || child_die->tag == DW_TAG_variant_part)
16364 {
16365 /* NOTE: carlton/2002-11-05: A C++ static data member
16366 should be a DW_TAG_member that is a declaration, but
16367 all versions of G++ as of this writing (so through at
16368 least 3.2.1) incorrectly generate DW_TAG_variable
16369 tags for them instead. */
16370 dwarf2_add_field (fi, child_die, cu);
16371 }
16372 else if (child_die->tag == DW_TAG_subprogram)
16373 {
16374 /* Rust doesn't have member functions in the C++ sense.
16375 However, it does emit ordinary functions as children
16376 of a struct DIE. */
16377 if (cu->language == language_rust)
16378 read_func_scope (child_die, cu);
16379 else
16380 {
16381 /* C++ member function. */
16382 dwarf2_add_member_fn (fi, child_die, type, cu);
16383 }
16384 }
16385 else if (child_die->tag == DW_TAG_inheritance)
16386 {
16387 /* C++ base class field. */
16388 dwarf2_add_field (fi, child_die, cu);
16389 }
16390 else if (type_can_define_types (child_die))
16391 dwarf2_add_type_defn (fi, child_die, cu);
16392 else if (child_die->tag == DW_TAG_template_type_param
16393 || child_die->tag == DW_TAG_template_value_param)
16394 {
16395 struct symbol *arg = new_symbol (child_die, NULL, cu);
16396
16397 if (arg != NULL)
16398 template_args->push_back (arg);
16399 }
16400 else if (child_die->tag == DW_TAG_variant)
16401 {
16402 /* In a variant we want to get the discriminant and also add a
16403 field for our sole member child. */
16404 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
16405
16406 for (struct die_info *variant_child = child_die->child;
16407 variant_child != NULL;
16408 variant_child = sibling_die (variant_child))
16409 {
16410 if (variant_child->tag == DW_TAG_member)
16411 {
16412 handle_struct_member_die (variant_child, type, fi,
16413 template_args, cu);
16414 /* Only handle the one. */
16415 break;
16416 }
16417 }
16418
16419 /* We don't handle this but we might as well report it if we see
16420 it. */
16421 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
16422 complaint (&symfile_complaints,
16423 _("DW_AT_discr_list is not supported yet"
16424 " - DIE at %s [in module %s]"),
16425 sect_offset_str (child_die->sect_off),
16426 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16427
16428 /* The first field was just added, so we can stash the
16429 discriminant there. */
16430 gdb_assert (fi->fields != NULL);
16431 if (discr == NULL)
16432 fi->fields->variant.default_branch = true;
16433 else
16434 fi->fields->variant.discriminant_value = DW_UNSND (discr);
16435 }
16436 }
16437
16438 /* Finish creating a structure or union type, including filling in
16439 its members and creating a symbol for it. */
16440
16441 static void
16442 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16443 {
16444 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16445 struct die_info *child_die;
16446 struct type *type;
16447
16448 type = get_die_type (die, cu);
16449 if (type == NULL)
16450 type = read_structure_type (die, cu);
16451
16452 /* When reading a DW_TAG_variant_part, we need to notice when we
16453 read the discriminant member, so we can record it later in the
16454 discriminant_info. */
16455 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16456 sect_offset discr_offset;
16457
16458 if (is_variant_part)
16459 {
16460 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16461 if (discr == NULL)
16462 {
16463 /* Maybe it's a univariant form, an extension we support.
16464 In this case arrange not to check the offset. */
16465 is_variant_part = false;
16466 }
16467 else if (attr_form_is_ref (discr))
16468 {
16469 struct dwarf2_cu *target_cu = cu;
16470 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16471
16472 discr_offset = target_die->sect_off;
16473 }
16474 else
16475 {
16476 complaint (&symfile_complaints,
16477 _("DW_AT_discr does not have DIE reference form"
16478 " - DIE at %s [in module %s]"),
16479 sect_offset_str (die->sect_off),
16480 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16481 is_variant_part = false;
16482 }
16483 }
16484
16485 if (die->child != NULL && ! die_is_declaration (die, cu))
16486 {
16487 struct field_info fi;
16488 std::vector<struct symbol *> template_args;
16489 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
16490
16491 memset (&fi, 0, sizeof (struct field_info));
16492
16493 child_die = die->child;
16494
16495 while (child_die && child_die->tag)
16496 {
16497 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16498
16499 if (is_variant_part && discr_offset == child_die->sect_off)
16500 fi.fields->variant.is_discriminant = true;
16501
16502 child_die = sibling_die (child_die);
16503 }
16504
16505 /* Attach template arguments to type. */
16506 if (!template_args.empty ())
16507 {
16508 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16509 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16510 TYPE_TEMPLATE_ARGUMENTS (type)
16511 = XOBNEWVEC (&objfile->objfile_obstack,
16512 struct symbol *,
16513 TYPE_N_TEMPLATE_ARGUMENTS (type));
16514 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16515 template_args.data (),
16516 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16517 * sizeof (struct symbol *)));
16518 }
16519
16520 /* Attach fields and member functions to the type. */
16521 if (fi.nfields)
16522 dwarf2_attach_fields_to_type (&fi, type, cu);
16523 if (fi.nfnfields)
16524 {
16525 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16526
16527 /* Get the type which refers to the base class (possibly this
16528 class itself) which contains the vtable pointer for the current
16529 class from the DW_AT_containing_type attribute. This use of
16530 DW_AT_containing_type is a GNU extension. */
16531
16532 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16533 {
16534 struct type *t = die_containing_type (die, cu);
16535
16536 set_type_vptr_basetype (type, t);
16537 if (type == t)
16538 {
16539 int i;
16540
16541 /* Our own class provides vtbl ptr. */
16542 for (i = TYPE_NFIELDS (t) - 1;
16543 i >= TYPE_N_BASECLASSES (t);
16544 --i)
16545 {
16546 const char *fieldname = TYPE_FIELD_NAME (t, i);
16547
16548 if (is_vtable_name (fieldname, cu))
16549 {
16550 set_type_vptr_fieldno (type, i);
16551 break;
16552 }
16553 }
16554
16555 /* Complain if virtual function table field not found. */
16556 if (i < TYPE_N_BASECLASSES (t))
16557 complaint (&symfile_complaints,
16558 _("virtual function table pointer "
16559 "not found when defining class '%s'"),
16560 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
16561 "");
16562 }
16563 else
16564 {
16565 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16566 }
16567 }
16568 else if (cu->producer
16569 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16570 {
16571 /* The IBM XLC compiler does not provide direct indication
16572 of the containing type, but the vtable pointer is
16573 always named __vfp. */
16574
16575 int i;
16576
16577 for (i = TYPE_NFIELDS (type) - 1;
16578 i >= TYPE_N_BASECLASSES (type);
16579 --i)
16580 {
16581 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16582 {
16583 set_type_vptr_fieldno (type, i);
16584 set_type_vptr_basetype (type, type);
16585 break;
16586 }
16587 }
16588 }
16589 }
16590
16591 /* Copy fi.typedef_field_list linked list elements content into the
16592 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16593 if (fi.typedef_field_list)
16594 {
16595 int i = fi.typedef_field_list_count;
16596
16597 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16598 TYPE_TYPEDEF_FIELD_ARRAY (type)
16599 = ((struct decl_field *)
16600 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
16601 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
16602
16603 /* Reverse the list order to keep the debug info elements order. */
16604 while (--i >= 0)
16605 {
16606 struct decl_field *dest, *src;
16607
16608 dest = &TYPE_TYPEDEF_FIELD (type, i);
16609 src = &fi.typedef_field_list->field;
16610 fi.typedef_field_list = fi.typedef_field_list->next;
16611 *dest = *src;
16612 }
16613 }
16614
16615 /* Copy fi.nested_types_list linked list elements content into the
16616 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16617 if (fi.nested_types_list != NULL && cu->language != language_ada)
16618 {
16619 int i = fi.nested_types_list_count;
16620
16621 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16622 TYPE_NESTED_TYPES_ARRAY (type)
16623 = ((struct decl_field *)
16624 TYPE_ALLOC (type, sizeof (struct decl_field) * i));
16625 TYPE_NESTED_TYPES_COUNT (type) = i;
16626
16627 /* Reverse the list order to keep the debug info elements order. */
16628 while (--i >= 0)
16629 {
16630 struct decl_field *dest, *src;
16631
16632 dest = &TYPE_NESTED_TYPES_FIELD (type, i);
16633 src = &fi.nested_types_list->field;
16634 fi.nested_types_list = fi.nested_types_list->next;
16635 *dest = *src;
16636 }
16637 }
16638
16639 do_cleanups (back_to);
16640 }
16641
16642 quirk_gcc_member_function_pointer (type, objfile);
16643 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16644 cu->rust_unions.push_back (type);
16645
16646 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16647 snapshots) has been known to create a die giving a declaration
16648 for a class that has, as a child, a die giving a definition for a
16649 nested class. So we have to process our children even if the
16650 current die is a declaration. Normally, of course, a declaration
16651 won't have any children at all. */
16652
16653 child_die = die->child;
16654
16655 while (child_die != NULL && child_die->tag)
16656 {
16657 if (child_die->tag == DW_TAG_member
16658 || child_die->tag == DW_TAG_variable
16659 || child_die->tag == DW_TAG_inheritance
16660 || child_die->tag == DW_TAG_template_value_param
16661 || child_die->tag == DW_TAG_template_type_param)
16662 {
16663 /* Do nothing. */
16664 }
16665 else
16666 process_die (child_die, cu);
16667
16668 child_die = sibling_die (child_die);
16669 }
16670
16671 /* Do not consider external references. According to the DWARF standard,
16672 these DIEs are identified by the fact that they have no byte_size
16673 attribute, and a declaration attribute. */
16674 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16675 || !die_is_declaration (die, cu))
16676 new_symbol (die, type, cu);
16677 }
16678
16679 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16680 update TYPE using some information only available in DIE's children. */
16681
16682 static void
16683 update_enumeration_type_from_children (struct die_info *die,
16684 struct type *type,
16685 struct dwarf2_cu *cu)
16686 {
16687 struct die_info *child_die;
16688 int unsigned_enum = 1;
16689 int flag_enum = 1;
16690 ULONGEST mask = 0;
16691
16692 auto_obstack obstack;
16693
16694 for (child_die = die->child;
16695 child_die != NULL && child_die->tag;
16696 child_die = sibling_die (child_die))
16697 {
16698 struct attribute *attr;
16699 LONGEST value;
16700 const gdb_byte *bytes;
16701 struct dwarf2_locexpr_baton *baton;
16702 const char *name;
16703
16704 if (child_die->tag != DW_TAG_enumerator)
16705 continue;
16706
16707 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16708 if (attr == NULL)
16709 continue;
16710
16711 name = dwarf2_name (child_die, cu);
16712 if (name == NULL)
16713 name = "<anonymous enumerator>";
16714
16715 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16716 &value, &bytes, &baton);
16717 if (value < 0)
16718 {
16719 unsigned_enum = 0;
16720 flag_enum = 0;
16721 }
16722 else if ((mask & value) != 0)
16723 flag_enum = 0;
16724 else
16725 mask |= value;
16726
16727 /* If we already know that the enum type is neither unsigned, nor
16728 a flag type, no need to look at the rest of the enumerates. */
16729 if (!unsigned_enum && !flag_enum)
16730 break;
16731 }
16732
16733 if (unsigned_enum)
16734 TYPE_UNSIGNED (type) = 1;
16735 if (flag_enum)
16736 TYPE_FLAG_ENUM (type) = 1;
16737 }
16738
16739 /* Given a DW_AT_enumeration_type die, set its type. We do not
16740 complete the type's fields yet, or create any symbols. */
16741
16742 static struct type *
16743 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16744 {
16745 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16746 struct type *type;
16747 struct attribute *attr;
16748 const char *name;
16749
16750 /* If the definition of this type lives in .debug_types, read that type.
16751 Don't follow DW_AT_specification though, that will take us back up
16752 the chain and we want to go down. */
16753 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16754 if (attr)
16755 {
16756 type = get_DW_AT_signature_type (die, attr, cu);
16757
16758 /* The type's CU may not be the same as CU.
16759 Ensure TYPE is recorded with CU in die_type_hash. */
16760 return set_die_type (die, type, cu);
16761 }
16762
16763 type = alloc_type (objfile);
16764
16765 TYPE_CODE (type) = TYPE_CODE_ENUM;
16766 name = dwarf2_full_name (NULL, die, cu);
16767 if (name != NULL)
16768 TYPE_TAG_NAME (type) = name;
16769
16770 attr = dwarf2_attr (die, DW_AT_type, cu);
16771 if (attr != NULL)
16772 {
16773 struct type *underlying_type = die_type (die, cu);
16774
16775 TYPE_TARGET_TYPE (type) = underlying_type;
16776 }
16777
16778 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16779 if (attr)
16780 {
16781 TYPE_LENGTH (type) = DW_UNSND (attr);
16782 }
16783 else
16784 {
16785 TYPE_LENGTH (type) = 0;
16786 }
16787
16788 /* The enumeration DIE can be incomplete. In Ada, any type can be
16789 declared as private in the package spec, and then defined only
16790 inside the package body. Such types are known as Taft Amendment
16791 Types. When another package uses such a type, an incomplete DIE
16792 may be generated by the compiler. */
16793 if (die_is_declaration (die, cu))
16794 TYPE_STUB (type) = 1;
16795
16796 /* Finish the creation of this type by using the enum's children.
16797 We must call this even when the underlying type has been provided
16798 so that we can determine if we're looking at a "flag" enum. */
16799 update_enumeration_type_from_children (die, type, cu);
16800
16801 /* If this type has an underlying type that is not a stub, then we
16802 may use its attributes. We always use the "unsigned" attribute
16803 in this situation, because ordinarily we guess whether the type
16804 is unsigned -- but the guess can be wrong and the underlying type
16805 can tell us the reality. However, we defer to a local size
16806 attribute if one exists, because this lets the compiler override
16807 the underlying type if needed. */
16808 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16809 {
16810 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16811 if (TYPE_LENGTH (type) == 0)
16812 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16813 }
16814
16815 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16816
16817 return set_die_type (die, type, cu);
16818 }
16819
16820 /* Given a pointer to a die which begins an enumeration, process all
16821 the dies that define the members of the enumeration, and create the
16822 symbol for the enumeration type.
16823
16824 NOTE: We reverse the order of the element list. */
16825
16826 static void
16827 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16828 {
16829 struct type *this_type;
16830
16831 this_type = get_die_type (die, cu);
16832 if (this_type == NULL)
16833 this_type = read_enumeration_type (die, cu);
16834
16835 if (die->child != NULL)
16836 {
16837 struct die_info *child_die;
16838 struct symbol *sym;
16839 struct field *fields = NULL;
16840 int num_fields = 0;
16841 const char *name;
16842
16843 child_die = die->child;
16844 while (child_die && child_die->tag)
16845 {
16846 if (child_die->tag != DW_TAG_enumerator)
16847 {
16848 process_die (child_die, cu);
16849 }
16850 else
16851 {
16852 name = dwarf2_name (child_die, cu);
16853 if (name)
16854 {
16855 sym = new_symbol (child_die, this_type, cu);
16856
16857 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16858 {
16859 fields = (struct field *)
16860 xrealloc (fields,
16861 (num_fields + DW_FIELD_ALLOC_CHUNK)
16862 * sizeof (struct field));
16863 }
16864
16865 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16866 FIELD_TYPE (fields[num_fields]) = NULL;
16867 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16868 FIELD_BITSIZE (fields[num_fields]) = 0;
16869
16870 num_fields++;
16871 }
16872 }
16873
16874 child_die = sibling_die (child_die);
16875 }
16876
16877 if (num_fields)
16878 {
16879 TYPE_NFIELDS (this_type) = num_fields;
16880 TYPE_FIELDS (this_type) = (struct field *)
16881 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16882 memcpy (TYPE_FIELDS (this_type), fields,
16883 sizeof (struct field) * num_fields);
16884 xfree (fields);
16885 }
16886 }
16887
16888 /* If we are reading an enum from a .debug_types unit, and the enum
16889 is a declaration, and the enum is not the signatured type in the
16890 unit, then we do not want to add a symbol for it. Adding a
16891 symbol would in some cases obscure the true definition of the
16892 enum, giving users an incomplete type when the definition is
16893 actually available. Note that we do not want to do this for all
16894 enums which are just declarations, because C++0x allows forward
16895 enum declarations. */
16896 if (cu->per_cu->is_debug_types
16897 && die_is_declaration (die, cu))
16898 {
16899 struct signatured_type *sig_type;
16900
16901 sig_type = (struct signatured_type *) cu->per_cu;
16902 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16903 if (sig_type->type_offset_in_section != die->sect_off)
16904 return;
16905 }
16906
16907 new_symbol (die, this_type, cu);
16908 }
16909
16910 /* Extract all information from a DW_TAG_array_type DIE and put it in
16911 the DIE's type field. For now, this only handles one dimensional
16912 arrays. */
16913
16914 static struct type *
16915 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16916 {
16917 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16918 struct die_info *child_die;
16919 struct type *type;
16920 struct type *element_type, *range_type, *index_type;
16921 struct attribute *attr;
16922 const char *name;
16923 struct dynamic_prop *byte_stride_prop = NULL;
16924 unsigned int bit_stride = 0;
16925
16926 element_type = die_type (die, cu);
16927
16928 /* The die_type call above may have already set the type for this DIE. */
16929 type = get_die_type (die, cu);
16930 if (type)
16931 return type;
16932
16933 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16934 if (attr != NULL)
16935 {
16936 int stride_ok;
16937
16938 byte_stride_prop
16939 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16940 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16941 if (!stride_ok)
16942 {
16943 complaint (&symfile_complaints,
16944 _("unable to read array DW_AT_byte_stride "
16945 " - DIE at %s [in module %s]"),
16946 sect_offset_str (die->sect_off),
16947 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16948 /* Ignore this attribute. We will likely not be able to print
16949 arrays of this type correctly, but there is little we can do
16950 to help if we cannot read the attribute's value. */
16951 byte_stride_prop = NULL;
16952 }
16953 }
16954
16955 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16956 if (attr != NULL)
16957 bit_stride = DW_UNSND (attr);
16958
16959 /* Irix 6.2 native cc creates array types without children for
16960 arrays with unspecified length. */
16961 if (die->child == NULL)
16962 {
16963 index_type = objfile_type (objfile)->builtin_int;
16964 range_type = create_static_range_type (NULL, index_type, 0, -1);
16965 type = create_array_type_with_stride (NULL, element_type, range_type,
16966 byte_stride_prop, bit_stride);
16967 return set_die_type (die, type, cu);
16968 }
16969
16970 std::vector<struct type *> range_types;
16971 child_die = die->child;
16972 while (child_die && child_die->tag)
16973 {
16974 if (child_die->tag == DW_TAG_subrange_type)
16975 {
16976 struct type *child_type = read_type_die (child_die, cu);
16977
16978 if (child_type != NULL)
16979 {
16980 /* The range type was succesfully read. Save it for the
16981 array type creation. */
16982 range_types.push_back (child_type);
16983 }
16984 }
16985 child_die = sibling_die (child_die);
16986 }
16987
16988 /* Dwarf2 dimensions are output from left to right, create the
16989 necessary array types in backwards order. */
16990
16991 type = element_type;
16992
16993 if (read_array_order (die, cu) == DW_ORD_col_major)
16994 {
16995 int i = 0;
16996
16997 while (i < range_types.size ())
16998 type = create_array_type_with_stride (NULL, type, range_types[i++],
16999 byte_stride_prop, bit_stride);
17000 }
17001 else
17002 {
17003 size_t ndim = range_types.size ();
17004 while (ndim-- > 0)
17005 type = create_array_type_with_stride (NULL, type, range_types[ndim],
17006 byte_stride_prop, bit_stride);
17007 }
17008
17009 /* Understand Dwarf2 support for vector types (like they occur on
17010 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
17011 array type. This is not part of the Dwarf2/3 standard yet, but a
17012 custom vendor extension. The main difference between a regular
17013 array and the vector variant is that vectors are passed by value
17014 to functions. */
17015 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
17016 if (attr)
17017 make_vector_type (type);
17018
17019 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
17020 implementation may choose to implement triple vectors using this
17021 attribute. */
17022 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17023 if (attr)
17024 {
17025 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
17026 TYPE_LENGTH (type) = DW_UNSND (attr);
17027 else
17028 complaint (&symfile_complaints,
17029 _("DW_AT_byte_size for array type smaller "
17030 "than the total size of elements"));
17031 }
17032
17033 name = dwarf2_name (die, cu);
17034 if (name)
17035 TYPE_NAME (type) = name;
17036
17037 /* Install the type in the die. */
17038 set_die_type (die, type, cu);
17039
17040 /* set_die_type should be already done. */
17041 set_descriptive_type (type, die, cu);
17042
17043 return type;
17044 }
17045
17046 static enum dwarf_array_dim_ordering
17047 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
17048 {
17049 struct attribute *attr;
17050
17051 attr = dwarf2_attr (die, DW_AT_ordering, cu);
17052
17053 if (attr)
17054 return (enum dwarf_array_dim_ordering) DW_SND (attr);
17055
17056 /* GNU F77 is a special case, as at 08/2004 array type info is the
17057 opposite order to the dwarf2 specification, but data is still
17058 laid out as per normal fortran.
17059
17060 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
17061 version checking. */
17062
17063 if (cu->language == language_fortran
17064 && cu->producer && strstr (cu->producer, "GNU F77"))
17065 {
17066 return DW_ORD_row_major;
17067 }
17068
17069 switch (cu->language_defn->la_array_ordering)
17070 {
17071 case array_column_major:
17072 return DW_ORD_col_major;
17073 case array_row_major:
17074 default:
17075 return DW_ORD_row_major;
17076 };
17077 }
17078
17079 /* Extract all information from a DW_TAG_set_type DIE and put it in
17080 the DIE's type field. */
17081
17082 static struct type *
17083 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
17084 {
17085 struct type *domain_type, *set_type;
17086 struct attribute *attr;
17087
17088 domain_type = die_type (die, cu);
17089
17090 /* The die_type call above may have already set the type for this DIE. */
17091 set_type = get_die_type (die, cu);
17092 if (set_type)
17093 return set_type;
17094
17095 set_type = create_set_type (NULL, domain_type);
17096
17097 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17098 if (attr)
17099 TYPE_LENGTH (set_type) = DW_UNSND (attr);
17100
17101 return set_die_type (die, set_type, cu);
17102 }
17103
17104 /* A helper for read_common_block that creates a locexpr baton.
17105 SYM is the symbol which we are marking as computed.
17106 COMMON_DIE is the DIE for the common block.
17107 COMMON_LOC is the location expression attribute for the common
17108 block itself.
17109 MEMBER_LOC is the location expression attribute for the particular
17110 member of the common block that we are processing.
17111 CU is the CU from which the above come. */
17112
17113 static void
17114 mark_common_block_symbol_computed (struct symbol *sym,
17115 struct die_info *common_die,
17116 struct attribute *common_loc,
17117 struct attribute *member_loc,
17118 struct dwarf2_cu *cu)
17119 {
17120 struct dwarf2_per_objfile *dwarf2_per_objfile
17121 = cu->per_cu->dwarf2_per_objfile;
17122 struct objfile *objfile = dwarf2_per_objfile->objfile;
17123 struct dwarf2_locexpr_baton *baton;
17124 gdb_byte *ptr;
17125 unsigned int cu_off;
17126 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
17127 LONGEST offset = 0;
17128
17129 gdb_assert (common_loc && member_loc);
17130 gdb_assert (attr_form_is_block (common_loc));
17131 gdb_assert (attr_form_is_block (member_loc)
17132 || attr_form_is_constant (member_loc));
17133
17134 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
17135 baton->per_cu = cu->per_cu;
17136 gdb_assert (baton->per_cu);
17137
17138 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
17139
17140 if (attr_form_is_constant (member_loc))
17141 {
17142 offset = dwarf2_get_attr_constant_value (member_loc, 0);
17143 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
17144 }
17145 else
17146 baton->size += DW_BLOCK (member_loc)->size;
17147
17148 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
17149 baton->data = ptr;
17150
17151 *ptr++ = DW_OP_call4;
17152 cu_off = common_die->sect_off - cu->per_cu->sect_off;
17153 store_unsigned_integer (ptr, 4, byte_order, cu_off);
17154 ptr += 4;
17155
17156 if (attr_form_is_constant (member_loc))
17157 {
17158 *ptr++ = DW_OP_addr;
17159 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
17160 ptr += cu->header.addr_size;
17161 }
17162 else
17163 {
17164 /* We have to copy the data here, because DW_OP_call4 will only
17165 use a DW_AT_location attribute. */
17166 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
17167 ptr += DW_BLOCK (member_loc)->size;
17168 }
17169
17170 *ptr++ = DW_OP_plus;
17171 gdb_assert (ptr - baton->data == baton->size);
17172
17173 SYMBOL_LOCATION_BATON (sym) = baton;
17174 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
17175 }
17176
17177 /* Create appropriate locally-scoped variables for all the
17178 DW_TAG_common_block entries. Also create a struct common_block
17179 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
17180 is used to sepate the common blocks name namespace from regular
17181 variable names. */
17182
17183 static void
17184 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
17185 {
17186 struct attribute *attr;
17187
17188 attr = dwarf2_attr (die, DW_AT_location, cu);
17189 if (attr)
17190 {
17191 /* Support the .debug_loc offsets. */
17192 if (attr_form_is_block (attr))
17193 {
17194 /* Ok. */
17195 }
17196 else if (attr_form_is_section_offset (attr))
17197 {
17198 dwarf2_complex_location_expr_complaint ();
17199 attr = NULL;
17200 }
17201 else
17202 {
17203 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17204 "common block member");
17205 attr = NULL;
17206 }
17207 }
17208
17209 if (die->child != NULL)
17210 {
17211 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17212 struct die_info *child_die;
17213 size_t n_entries = 0, size;
17214 struct common_block *common_block;
17215 struct symbol *sym;
17216
17217 for (child_die = die->child;
17218 child_die && child_die->tag;
17219 child_die = sibling_die (child_die))
17220 ++n_entries;
17221
17222 size = (sizeof (struct common_block)
17223 + (n_entries - 1) * sizeof (struct symbol *));
17224 common_block
17225 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
17226 size);
17227 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
17228 common_block->n_entries = 0;
17229
17230 for (child_die = die->child;
17231 child_die && child_die->tag;
17232 child_die = sibling_die (child_die))
17233 {
17234 /* Create the symbol in the DW_TAG_common_block block in the current
17235 symbol scope. */
17236 sym = new_symbol (child_die, NULL, cu);
17237 if (sym != NULL)
17238 {
17239 struct attribute *member_loc;
17240
17241 common_block->contents[common_block->n_entries++] = sym;
17242
17243 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
17244 cu);
17245 if (member_loc)
17246 {
17247 /* GDB has handled this for a long time, but it is
17248 not specified by DWARF. It seems to have been
17249 emitted by gfortran at least as recently as:
17250 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
17251 complaint (&symfile_complaints,
17252 _("Variable in common block has "
17253 "DW_AT_data_member_location "
17254 "- DIE at %s [in module %s]"),
17255 sect_offset_str (child_die->sect_off),
17256 objfile_name (objfile));
17257
17258 if (attr_form_is_section_offset (member_loc))
17259 dwarf2_complex_location_expr_complaint ();
17260 else if (attr_form_is_constant (member_loc)
17261 || attr_form_is_block (member_loc))
17262 {
17263 if (attr)
17264 mark_common_block_symbol_computed (sym, die, attr,
17265 member_loc, cu);
17266 }
17267 else
17268 dwarf2_complex_location_expr_complaint ();
17269 }
17270 }
17271 }
17272
17273 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
17274 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
17275 }
17276 }
17277
17278 /* Create a type for a C++ namespace. */
17279
17280 static struct type *
17281 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
17282 {
17283 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17284 const char *previous_prefix, *name;
17285 int is_anonymous;
17286 struct type *type;
17287
17288 /* For extensions, reuse the type of the original namespace. */
17289 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
17290 {
17291 struct die_info *ext_die;
17292 struct dwarf2_cu *ext_cu = cu;
17293
17294 ext_die = dwarf2_extension (die, &ext_cu);
17295 type = read_type_die (ext_die, ext_cu);
17296
17297 /* EXT_CU may not be the same as CU.
17298 Ensure TYPE is recorded with CU in die_type_hash. */
17299 return set_die_type (die, type, cu);
17300 }
17301
17302 name = namespace_name (die, &is_anonymous, cu);
17303
17304 /* Now build the name of the current namespace. */
17305
17306 previous_prefix = determine_prefix (die, cu);
17307 if (previous_prefix[0] != '\0')
17308 name = typename_concat (&objfile->objfile_obstack,
17309 previous_prefix, name, 0, cu);
17310
17311 /* Create the type. */
17312 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
17313 TYPE_TAG_NAME (type) = TYPE_NAME (type);
17314
17315 return set_die_type (die, type, cu);
17316 }
17317
17318 /* Read a namespace scope. */
17319
17320 static void
17321 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
17322 {
17323 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17324 int is_anonymous;
17325
17326 /* Add a symbol associated to this if we haven't seen the namespace
17327 before. Also, add a using directive if it's an anonymous
17328 namespace. */
17329
17330 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
17331 {
17332 struct type *type;
17333
17334 type = read_type_die (die, cu);
17335 new_symbol (die, type, cu);
17336
17337 namespace_name (die, &is_anonymous, cu);
17338 if (is_anonymous)
17339 {
17340 const char *previous_prefix = determine_prefix (die, cu);
17341
17342 std::vector<const char *> excludes;
17343 add_using_directive (using_directives (cu->language),
17344 previous_prefix, TYPE_NAME (type), NULL,
17345 NULL, excludes, 0, &objfile->objfile_obstack);
17346 }
17347 }
17348
17349 if (die->child != NULL)
17350 {
17351 struct die_info *child_die = die->child;
17352
17353 while (child_die && child_die->tag)
17354 {
17355 process_die (child_die, cu);
17356 child_die = sibling_die (child_die);
17357 }
17358 }
17359 }
17360
17361 /* Read a Fortran module as type. This DIE can be only a declaration used for
17362 imported module. Still we need that type as local Fortran "use ... only"
17363 declaration imports depend on the created type in determine_prefix. */
17364
17365 static struct type *
17366 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
17367 {
17368 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17369 const char *module_name;
17370 struct type *type;
17371
17372 module_name = dwarf2_name (die, cu);
17373 if (!module_name)
17374 complaint (&symfile_complaints,
17375 _("DW_TAG_module has no name, offset %s"),
17376 sect_offset_str (die->sect_off));
17377 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
17378
17379 /* determine_prefix uses TYPE_TAG_NAME. */
17380 TYPE_TAG_NAME (type) = TYPE_NAME (type);
17381
17382 return set_die_type (die, type, cu);
17383 }
17384
17385 /* Read a Fortran module. */
17386
17387 static void
17388 read_module (struct die_info *die, struct dwarf2_cu *cu)
17389 {
17390 struct die_info *child_die = die->child;
17391 struct type *type;
17392
17393 type = read_type_die (die, cu);
17394 new_symbol (die, type, cu);
17395
17396 while (child_die && child_die->tag)
17397 {
17398 process_die (child_die, cu);
17399 child_die = sibling_die (child_die);
17400 }
17401 }
17402
17403 /* Return the name of the namespace represented by DIE. Set
17404 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17405 namespace. */
17406
17407 static const char *
17408 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17409 {
17410 struct die_info *current_die;
17411 const char *name = NULL;
17412
17413 /* Loop through the extensions until we find a name. */
17414
17415 for (current_die = die;
17416 current_die != NULL;
17417 current_die = dwarf2_extension (die, &cu))
17418 {
17419 /* We don't use dwarf2_name here so that we can detect the absence
17420 of a name -> anonymous namespace. */
17421 name = dwarf2_string_attr (die, DW_AT_name, cu);
17422
17423 if (name != NULL)
17424 break;
17425 }
17426
17427 /* Is it an anonymous namespace? */
17428
17429 *is_anonymous = (name == NULL);
17430 if (*is_anonymous)
17431 name = CP_ANONYMOUS_NAMESPACE_STR;
17432
17433 return name;
17434 }
17435
17436 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17437 the user defined type vector. */
17438
17439 static struct type *
17440 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17441 {
17442 struct gdbarch *gdbarch
17443 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17444 struct comp_unit_head *cu_header = &cu->header;
17445 struct type *type;
17446 struct attribute *attr_byte_size;
17447 struct attribute *attr_address_class;
17448 int byte_size, addr_class;
17449 struct type *target_type;
17450
17451 target_type = die_type (die, cu);
17452
17453 /* The die_type call above may have already set the type for this DIE. */
17454 type = get_die_type (die, cu);
17455 if (type)
17456 return type;
17457
17458 type = lookup_pointer_type (target_type);
17459
17460 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17461 if (attr_byte_size)
17462 byte_size = DW_UNSND (attr_byte_size);
17463 else
17464 byte_size = cu_header->addr_size;
17465
17466 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17467 if (attr_address_class)
17468 addr_class = DW_UNSND (attr_address_class);
17469 else
17470 addr_class = DW_ADDR_none;
17471
17472 /* If the pointer size or address class is different than the
17473 default, create a type variant marked as such and set the
17474 length accordingly. */
17475 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
17476 {
17477 if (gdbarch_address_class_type_flags_p (gdbarch))
17478 {
17479 int type_flags;
17480
17481 type_flags = gdbarch_address_class_type_flags
17482 (gdbarch, byte_size, addr_class);
17483 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17484 == 0);
17485 type = make_type_with_address_space (type, type_flags);
17486 }
17487 else if (TYPE_LENGTH (type) != byte_size)
17488 {
17489 complaint (&symfile_complaints,
17490 _("invalid pointer size %d"), byte_size);
17491 }
17492 else
17493 {
17494 /* Should we also complain about unhandled address classes? */
17495 }
17496 }
17497
17498 TYPE_LENGTH (type) = byte_size;
17499 return set_die_type (die, type, cu);
17500 }
17501
17502 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17503 the user defined type vector. */
17504
17505 static struct type *
17506 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17507 {
17508 struct type *type;
17509 struct type *to_type;
17510 struct type *domain;
17511
17512 to_type = die_type (die, cu);
17513 domain = die_containing_type (die, cu);
17514
17515 /* The calls above may have already set the type for this DIE. */
17516 type = get_die_type (die, cu);
17517 if (type)
17518 return type;
17519
17520 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17521 type = lookup_methodptr_type (to_type);
17522 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17523 {
17524 struct type *new_type
17525 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17526
17527 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17528 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17529 TYPE_VARARGS (to_type));
17530 type = lookup_methodptr_type (new_type);
17531 }
17532 else
17533 type = lookup_memberptr_type (to_type, domain);
17534
17535 return set_die_type (die, type, cu);
17536 }
17537
17538 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17539 the user defined type vector. */
17540
17541 static struct type *
17542 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17543 enum type_code refcode)
17544 {
17545 struct comp_unit_head *cu_header = &cu->header;
17546 struct type *type, *target_type;
17547 struct attribute *attr;
17548
17549 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17550
17551 target_type = die_type (die, cu);
17552
17553 /* The die_type call above may have already set the type for this DIE. */
17554 type = get_die_type (die, cu);
17555 if (type)
17556 return type;
17557
17558 type = lookup_reference_type (target_type, refcode);
17559 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17560 if (attr)
17561 {
17562 TYPE_LENGTH (type) = DW_UNSND (attr);
17563 }
17564 else
17565 {
17566 TYPE_LENGTH (type) = cu_header->addr_size;
17567 }
17568 return set_die_type (die, type, cu);
17569 }
17570
17571 /* Add the given cv-qualifiers to the element type of the array. GCC
17572 outputs DWARF type qualifiers that apply to an array, not the
17573 element type. But GDB relies on the array element type to carry
17574 the cv-qualifiers. This mimics section 6.7.3 of the C99
17575 specification. */
17576
17577 static struct type *
17578 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17579 struct type *base_type, int cnst, int voltl)
17580 {
17581 struct type *el_type, *inner_array;
17582
17583 base_type = copy_type (base_type);
17584 inner_array = base_type;
17585
17586 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17587 {
17588 TYPE_TARGET_TYPE (inner_array) =
17589 copy_type (TYPE_TARGET_TYPE (inner_array));
17590 inner_array = TYPE_TARGET_TYPE (inner_array);
17591 }
17592
17593 el_type = TYPE_TARGET_TYPE (inner_array);
17594 cnst |= TYPE_CONST (el_type);
17595 voltl |= TYPE_VOLATILE (el_type);
17596 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17597
17598 return set_die_type (die, base_type, cu);
17599 }
17600
17601 static struct type *
17602 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17603 {
17604 struct type *base_type, *cv_type;
17605
17606 base_type = die_type (die, cu);
17607
17608 /* The die_type call above may have already set the type for this DIE. */
17609 cv_type = get_die_type (die, cu);
17610 if (cv_type)
17611 return cv_type;
17612
17613 /* In case the const qualifier is applied to an array type, the element type
17614 is so qualified, not the array type (section 6.7.3 of C99). */
17615 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17616 return add_array_cv_type (die, cu, base_type, 1, 0);
17617
17618 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17619 return set_die_type (die, cv_type, cu);
17620 }
17621
17622 static struct type *
17623 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17624 {
17625 struct type *base_type, *cv_type;
17626
17627 base_type = die_type (die, cu);
17628
17629 /* The die_type call above may have already set the type for this DIE. */
17630 cv_type = get_die_type (die, cu);
17631 if (cv_type)
17632 return cv_type;
17633
17634 /* In case the volatile qualifier is applied to an array type, the
17635 element type is so qualified, not the array type (section 6.7.3
17636 of C99). */
17637 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17638 return add_array_cv_type (die, cu, base_type, 0, 1);
17639
17640 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17641 return set_die_type (die, cv_type, cu);
17642 }
17643
17644 /* Handle DW_TAG_restrict_type. */
17645
17646 static struct type *
17647 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17648 {
17649 struct type *base_type, *cv_type;
17650
17651 base_type = die_type (die, cu);
17652
17653 /* The die_type call above may have already set the type for this DIE. */
17654 cv_type = get_die_type (die, cu);
17655 if (cv_type)
17656 return cv_type;
17657
17658 cv_type = make_restrict_type (base_type);
17659 return set_die_type (die, cv_type, cu);
17660 }
17661
17662 /* Handle DW_TAG_atomic_type. */
17663
17664 static struct type *
17665 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17666 {
17667 struct type *base_type, *cv_type;
17668
17669 base_type = die_type (die, cu);
17670
17671 /* The die_type call above may have already set the type for this DIE. */
17672 cv_type = get_die_type (die, cu);
17673 if (cv_type)
17674 return cv_type;
17675
17676 cv_type = make_atomic_type (base_type);
17677 return set_die_type (die, cv_type, cu);
17678 }
17679
17680 /* Extract all information from a DW_TAG_string_type DIE and add to
17681 the user defined type vector. It isn't really a user defined type,
17682 but it behaves like one, with other DIE's using an AT_user_def_type
17683 attribute to reference it. */
17684
17685 static struct type *
17686 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17687 {
17688 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17689 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17690 struct type *type, *range_type, *index_type, *char_type;
17691 struct attribute *attr;
17692 unsigned int length;
17693
17694 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17695 if (attr)
17696 {
17697 length = DW_UNSND (attr);
17698 }
17699 else
17700 {
17701 /* Check for the DW_AT_byte_size attribute. */
17702 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17703 if (attr)
17704 {
17705 length = DW_UNSND (attr);
17706 }
17707 else
17708 {
17709 length = 1;
17710 }
17711 }
17712
17713 index_type = objfile_type (objfile)->builtin_int;
17714 range_type = create_static_range_type (NULL, index_type, 1, length);
17715 char_type = language_string_char_type (cu->language_defn, gdbarch);
17716 type = create_string_type (NULL, char_type, range_type);
17717
17718 return set_die_type (die, type, cu);
17719 }
17720
17721 /* Assuming that DIE corresponds to a function, returns nonzero
17722 if the function is prototyped. */
17723
17724 static int
17725 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17726 {
17727 struct attribute *attr;
17728
17729 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17730 if (attr && (DW_UNSND (attr) != 0))
17731 return 1;
17732
17733 /* The DWARF standard implies that the DW_AT_prototyped attribute
17734 is only meaninful for C, but the concept also extends to other
17735 languages that allow unprototyped functions (Eg: Objective C).
17736 For all other languages, assume that functions are always
17737 prototyped. */
17738 if (cu->language != language_c
17739 && cu->language != language_objc
17740 && cu->language != language_opencl)
17741 return 1;
17742
17743 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17744 prototyped and unprototyped functions; default to prototyped,
17745 since that is more common in modern code (and RealView warns
17746 about unprototyped functions). */
17747 if (producer_is_realview (cu->producer))
17748 return 1;
17749
17750 return 0;
17751 }
17752
17753 /* Handle DIES due to C code like:
17754
17755 struct foo
17756 {
17757 int (*funcp)(int a, long l);
17758 int b;
17759 };
17760
17761 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17762
17763 static struct type *
17764 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17765 {
17766 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17767 struct type *type; /* Type that this function returns. */
17768 struct type *ftype; /* Function that returns above type. */
17769 struct attribute *attr;
17770
17771 type = die_type (die, cu);
17772
17773 /* The die_type call above may have already set the type for this DIE. */
17774 ftype = get_die_type (die, cu);
17775 if (ftype)
17776 return ftype;
17777
17778 ftype = lookup_function_type (type);
17779
17780 if (prototyped_function_p (die, cu))
17781 TYPE_PROTOTYPED (ftype) = 1;
17782
17783 /* Store the calling convention in the type if it's available in
17784 the subroutine die. Otherwise set the calling convention to
17785 the default value DW_CC_normal. */
17786 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17787 if (attr)
17788 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17789 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17790 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17791 else
17792 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17793
17794 /* Record whether the function returns normally to its caller or not
17795 if the DWARF producer set that information. */
17796 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17797 if (attr && (DW_UNSND (attr) != 0))
17798 TYPE_NO_RETURN (ftype) = 1;
17799
17800 /* We need to add the subroutine type to the die immediately so
17801 we don't infinitely recurse when dealing with parameters
17802 declared as the same subroutine type. */
17803 set_die_type (die, ftype, cu);
17804
17805 if (die->child != NULL)
17806 {
17807 struct type *void_type = objfile_type (objfile)->builtin_void;
17808 struct die_info *child_die;
17809 int nparams, iparams;
17810
17811 /* Count the number of parameters.
17812 FIXME: GDB currently ignores vararg functions, but knows about
17813 vararg member functions. */
17814 nparams = 0;
17815 child_die = die->child;
17816 while (child_die && child_die->tag)
17817 {
17818 if (child_die->tag == DW_TAG_formal_parameter)
17819 nparams++;
17820 else if (child_die->tag == DW_TAG_unspecified_parameters)
17821 TYPE_VARARGS (ftype) = 1;
17822 child_die = sibling_die (child_die);
17823 }
17824
17825 /* Allocate storage for parameters and fill them in. */
17826 TYPE_NFIELDS (ftype) = nparams;
17827 TYPE_FIELDS (ftype) = (struct field *)
17828 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17829
17830 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17831 even if we error out during the parameters reading below. */
17832 for (iparams = 0; iparams < nparams; iparams++)
17833 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17834
17835 iparams = 0;
17836 child_die = die->child;
17837 while (child_die && child_die->tag)
17838 {
17839 if (child_die->tag == DW_TAG_formal_parameter)
17840 {
17841 struct type *arg_type;
17842
17843 /* DWARF version 2 has no clean way to discern C++
17844 static and non-static member functions. G++ helps
17845 GDB by marking the first parameter for non-static
17846 member functions (which is the this pointer) as
17847 artificial. We pass this information to
17848 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17849
17850 DWARF version 3 added DW_AT_object_pointer, which GCC
17851 4.5 does not yet generate. */
17852 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17853 if (attr)
17854 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17855 else
17856 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17857 arg_type = die_type (child_die, cu);
17858
17859 /* RealView does not mark THIS as const, which the testsuite
17860 expects. GCC marks THIS as const in method definitions,
17861 but not in the class specifications (GCC PR 43053). */
17862 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17863 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17864 {
17865 int is_this = 0;
17866 struct dwarf2_cu *arg_cu = cu;
17867 const char *name = dwarf2_name (child_die, cu);
17868
17869 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17870 if (attr)
17871 {
17872 /* If the compiler emits this, use it. */
17873 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17874 is_this = 1;
17875 }
17876 else if (name && strcmp (name, "this") == 0)
17877 /* Function definitions will have the argument names. */
17878 is_this = 1;
17879 else if (name == NULL && iparams == 0)
17880 /* Declarations may not have the names, so like
17881 elsewhere in GDB, assume an artificial first
17882 argument is "this". */
17883 is_this = 1;
17884
17885 if (is_this)
17886 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17887 arg_type, 0);
17888 }
17889
17890 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17891 iparams++;
17892 }
17893 child_die = sibling_die (child_die);
17894 }
17895 }
17896
17897 return ftype;
17898 }
17899
17900 static struct type *
17901 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17902 {
17903 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17904 const char *name = NULL;
17905 struct type *this_type, *target_type;
17906
17907 name = dwarf2_full_name (NULL, die, cu);
17908 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17909 TYPE_TARGET_STUB (this_type) = 1;
17910 set_die_type (die, this_type, cu);
17911 target_type = die_type (die, cu);
17912 if (target_type != this_type)
17913 TYPE_TARGET_TYPE (this_type) = target_type;
17914 else
17915 {
17916 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17917 spec and cause infinite loops in GDB. */
17918 complaint (&symfile_complaints,
17919 _("Self-referential DW_TAG_typedef "
17920 "- DIE at %s [in module %s]"),
17921 sect_offset_str (die->sect_off), objfile_name (objfile));
17922 TYPE_TARGET_TYPE (this_type) = NULL;
17923 }
17924 return this_type;
17925 }
17926
17927 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17928 (which may be different from NAME) to the architecture back-end to allow
17929 it to guess the correct format if necessary. */
17930
17931 static struct type *
17932 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17933 const char *name_hint)
17934 {
17935 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17936 const struct floatformat **format;
17937 struct type *type;
17938
17939 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17940 if (format)
17941 type = init_float_type (objfile, bits, name, format);
17942 else
17943 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17944
17945 return type;
17946 }
17947
17948 /* Find a representation of a given base type and install
17949 it in the TYPE field of the die. */
17950
17951 static struct type *
17952 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17953 {
17954 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17955 struct type *type;
17956 struct attribute *attr;
17957 int encoding = 0, bits = 0;
17958 const char *name;
17959
17960 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17961 if (attr)
17962 {
17963 encoding = DW_UNSND (attr);
17964 }
17965 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17966 if (attr)
17967 {
17968 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17969 }
17970 name = dwarf2_name (die, cu);
17971 if (!name)
17972 {
17973 complaint (&symfile_complaints,
17974 _("DW_AT_name missing from DW_TAG_base_type"));
17975 }
17976
17977 switch (encoding)
17978 {
17979 case DW_ATE_address:
17980 /* Turn DW_ATE_address into a void * pointer. */
17981 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17982 type = init_pointer_type (objfile, bits, name, type);
17983 break;
17984 case DW_ATE_boolean:
17985 type = init_boolean_type (objfile, bits, 1, name);
17986 break;
17987 case DW_ATE_complex_float:
17988 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17989 type = init_complex_type (objfile, name, type);
17990 break;
17991 case DW_ATE_decimal_float:
17992 type = init_decfloat_type (objfile, bits, name);
17993 break;
17994 case DW_ATE_float:
17995 type = dwarf2_init_float_type (objfile, bits, name, name);
17996 break;
17997 case DW_ATE_signed:
17998 type = init_integer_type (objfile, bits, 0, name);
17999 break;
18000 case DW_ATE_unsigned:
18001 if (cu->language == language_fortran
18002 && name
18003 && startswith (name, "character("))
18004 type = init_character_type (objfile, bits, 1, name);
18005 else
18006 type = init_integer_type (objfile, bits, 1, name);
18007 break;
18008 case DW_ATE_signed_char:
18009 if (cu->language == language_ada || cu->language == language_m2
18010 || cu->language == language_pascal
18011 || cu->language == language_fortran)
18012 type = init_character_type (objfile, bits, 0, name);
18013 else
18014 type = init_integer_type (objfile, bits, 0, name);
18015 break;
18016 case DW_ATE_unsigned_char:
18017 if (cu->language == language_ada || cu->language == language_m2
18018 || cu->language == language_pascal
18019 || cu->language == language_fortran
18020 || cu->language == language_rust)
18021 type = init_character_type (objfile, bits, 1, name);
18022 else
18023 type = init_integer_type (objfile, bits, 1, name);
18024 break;
18025 case DW_ATE_UTF:
18026 {
18027 gdbarch *arch = get_objfile_arch (objfile);
18028
18029 if (bits == 16)
18030 type = builtin_type (arch)->builtin_char16;
18031 else if (bits == 32)
18032 type = builtin_type (arch)->builtin_char32;
18033 else
18034 {
18035 complaint (&symfile_complaints,
18036 _("unsupported DW_ATE_UTF bit size: '%d'"),
18037 bits);
18038 type = init_integer_type (objfile, bits, 1, name);
18039 }
18040 return set_die_type (die, type, cu);
18041 }
18042 break;
18043
18044 default:
18045 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
18046 dwarf_type_encoding_name (encoding));
18047 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18048 break;
18049 }
18050
18051 if (name && strcmp (name, "char") == 0)
18052 TYPE_NOSIGN (type) = 1;
18053
18054 return set_die_type (die, type, cu);
18055 }
18056
18057 /* Parse dwarf attribute if it's a block, reference or constant and put the
18058 resulting value of the attribute into struct bound_prop.
18059 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
18060
18061 static int
18062 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
18063 struct dwarf2_cu *cu, struct dynamic_prop *prop)
18064 {
18065 struct dwarf2_property_baton *baton;
18066 struct obstack *obstack
18067 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
18068
18069 if (attr == NULL || prop == NULL)
18070 return 0;
18071
18072 if (attr_form_is_block (attr))
18073 {
18074 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18075 baton->referenced_type = NULL;
18076 baton->locexpr.per_cu = cu->per_cu;
18077 baton->locexpr.size = DW_BLOCK (attr)->size;
18078 baton->locexpr.data = DW_BLOCK (attr)->data;
18079 prop->data.baton = baton;
18080 prop->kind = PROP_LOCEXPR;
18081 gdb_assert (prop->data.baton != NULL);
18082 }
18083 else if (attr_form_is_ref (attr))
18084 {
18085 struct dwarf2_cu *target_cu = cu;
18086 struct die_info *target_die;
18087 struct attribute *target_attr;
18088
18089 target_die = follow_die_ref (die, attr, &target_cu);
18090 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
18091 if (target_attr == NULL)
18092 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
18093 target_cu);
18094 if (target_attr == NULL)
18095 return 0;
18096
18097 switch (target_attr->name)
18098 {
18099 case DW_AT_location:
18100 if (attr_form_is_section_offset (target_attr))
18101 {
18102 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18103 baton->referenced_type = die_type (target_die, target_cu);
18104 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
18105 prop->data.baton = baton;
18106 prop->kind = PROP_LOCLIST;
18107 gdb_assert (prop->data.baton != NULL);
18108 }
18109 else if (attr_form_is_block (target_attr))
18110 {
18111 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18112 baton->referenced_type = die_type (target_die, target_cu);
18113 baton->locexpr.per_cu = cu->per_cu;
18114 baton->locexpr.size = DW_BLOCK (target_attr)->size;
18115 baton->locexpr.data = DW_BLOCK (target_attr)->data;
18116 prop->data.baton = baton;
18117 prop->kind = PROP_LOCEXPR;
18118 gdb_assert (prop->data.baton != NULL);
18119 }
18120 else
18121 {
18122 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18123 "dynamic property");
18124 return 0;
18125 }
18126 break;
18127 case DW_AT_data_member_location:
18128 {
18129 LONGEST offset;
18130
18131 if (!handle_data_member_location (target_die, target_cu,
18132 &offset))
18133 return 0;
18134
18135 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18136 baton->referenced_type = read_type_die (target_die->parent,
18137 target_cu);
18138 baton->offset_info.offset = offset;
18139 baton->offset_info.type = die_type (target_die, target_cu);
18140 prop->data.baton = baton;
18141 prop->kind = PROP_ADDR_OFFSET;
18142 break;
18143 }
18144 }
18145 }
18146 else if (attr_form_is_constant (attr))
18147 {
18148 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
18149 prop->kind = PROP_CONST;
18150 }
18151 else
18152 {
18153 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
18154 dwarf2_name (die, cu));
18155 return 0;
18156 }
18157
18158 return 1;
18159 }
18160
18161 /* Read the given DW_AT_subrange DIE. */
18162
18163 static struct type *
18164 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18165 {
18166 struct type *base_type, *orig_base_type;
18167 struct type *range_type;
18168 struct attribute *attr;
18169 struct dynamic_prop low, high;
18170 int low_default_is_valid;
18171 int high_bound_is_count = 0;
18172 const char *name;
18173 LONGEST negative_mask;
18174
18175 orig_base_type = die_type (die, cu);
18176 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18177 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18178 creating the range type, but we use the result of check_typedef
18179 when examining properties of the type. */
18180 base_type = check_typedef (orig_base_type);
18181
18182 /* The die_type call above may have already set the type for this DIE. */
18183 range_type = get_die_type (die, cu);
18184 if (range_type)
18185 return range_type;
18186
18187 low.kind = PROP_CONST;
18188 high.kind = PROP_CONST;
18189 high.data.const_val = 0;
18190
18191 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18192 omitting DW_AT_lower_bound. */
18193 switch (cu->language)
18194 {
18195 case language_c:
18196 case language_cplus:
18197 low.data.const_val = 0;
18198 low_default_is_valid = 1;
18199 break;
18200 case language_fortran:
18201 low.data.const_val = 1;
18202 low_default_is_valid = 1;
18203 break;
18204 case language_d:
18205 case language_objc:
18206 case language_rust:
18207 low.data.const_val = 0;
18208 low_default_is_valid = (cu->header.version >= 4);
18209 break;
18210 case language_ada:
18211 case language_m2:
18212 case language_pascal:
18213 low.data.const_val = 1;
18214 low_default_is_valid = (cu->header.version >= 4);
18215 break;
18216 default:
18217 low.data.const_val = 0;
18218 low_default_is_valid = 0;
18219 break;
18220 }
18221
18222 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18223 if (attr)
18224 attr_to_dynamic_prop (attr, die, cu, &low);
18225 else if (!low_default_is_valid)
18226 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
18227 "- DIE at %s [in module %s]"),
18228 sect_offset_str (die->sect_off),
18229 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18230
18231 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
18232 if (!attr_to_dynamic_prop (attr, die, cu, &high))
18233 {
18234 attr = dwarf2_attr (die, DW_AT_count, cu);
18235 if (attr_to_dynamic_prop (attr, die, cu, &high))
18236 {
18237 /* If bounds are constant do the final calculation here. */
18238 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
18239 high.data.const_val = low.data.const_val + high.data.const_val - 1;
18240 else
18241 high_bound_is_count = 1;
18242 }
18243 }
18244
18245 /* Dwarf-2 specifications explicitly allows to create subrange types
18246 without specifying a base type.
18247 In that case, the base type must be set to the type of
18248 the lower bound, upper bound or count, in that order, if any of these
18249 three attributes references an object that has a type.
18250 If no base type is found, the Dwarf-2 specifications say that
18251 a signed integer type of size equal to the size of an address should
18252 be used.
18253 For the following C code: `extern char gdb_int [];'
18254 GCC produces an empty range DIE.
18255 FIXME: muller/2010-05-28: Possible references to object for low bound,
18256 high bound or count are not yet handled by this code. */
18257 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
18258 {
18259 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18260 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18261 int addr_size = gdbarch_addr_bit (gdbarch) /8;
18262 struct type *int_type = objfile_type (objfile)->builtin_int;
18263
18264 /* Test "int", "long int", and "long long int" objfile types,
18265 and select the first one having a size above or equal to the
18266 architecture address size. */
18267 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
18268 base_type = int_type;
18269 else
18270 {
18271 int_type = objfile_type (objfile)->builtin_long;
18272 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
18273 base_type = int_type;
18274 else
18275 {
18276 int_type = objfile_type (objfile)->builtin_long_long;
18277 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
18278 base_type = int_type;
18279 }
18280 }
18281 }
18282
18283 /* Normally, the DWARF producers are expected to use a signed
18284 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18285 But this is unfortunately not always the case, as witnessed
18286 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18287 is used instead. To work around that ambiguity, we treat
18288 the bounds as signed, and thus sign-extend their values, when
18289 the base type is signed. */
18290 negative_mask =
18291 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18292 if (low.kind == PROP_CONST
18293 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
18294 low.data.const_val |= negative_mask;
18295 if (high.kind == PROP_CONST
18296 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
18297 high.data.const_val |= negative_mask;
18298
18299 range_type = create_range_type (NULL, orig_base_type, &low, &high);
18300
18301 if (high_bound_is_count)
18302 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18303
18304 /* Ada expects an empty array on no boundary attributes. */
18305 if (attr == NULL && cu->language != language_ada)
18306 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18307
18308 name = dwarf2_name (die, cu);
18309 if (name)
18310 TYPE_NAME (range_type) = name;
18311
18312 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18313 if (attr)
18314 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18315
18316 set_die_type (die, range_type, cu);
18317
18318 /* set_die_type should be already done. */
18319 set_descriptive_type (range_type, die, cu);
18320
18321 return range_type;
18322 }
18323
18324 static struct type *
18325 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18326 {
18327 struct type *type;
18328
18329 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18330 NULL);
18331 TYPE_NAME (type) = dwarf2_name (die, cu);
18332
18333 /* In Ada, an unspecified type is typically used when the description
18334 of the type is defered to a different unit. When encountering
18335 such a type, we treat it as a stub, and try to resolve it later on,
18336 when needed. */
18337 if (cu->language == language_ada)
18338 TYPE_STUB (type) = 1;
18339
18340 return set_die_type (die, type, cu);
18341 }
18342
18343 /* Read a single die and all its descendents. Set the die's sibling
18344 field to NULL; set other fields in the die correctly, and set all
18345 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18346 location of the info_ptr after reading all of those dies. PARENT
18347 is the parent of the die in question. */
18348
18349 static struct die_info *
18350 read_die_and_children (const struct die_reader_specs *reader,
18351 const gdb_byte *info_ptr,
18352 const gdb_byte **new_info_ptr,
18353 struct die_info *parent)
18354 {
18355 struct die_info *die;
18356 const gdb_byte *cur_ptr;
18357 int has_children;
18358
18359 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18360 if (die == NULL)
18361 {
18362 *new_info_ptr = cur_ptr;
18363 return NULL;
18364 }
18365 store_in_ref_table (die, reader->cu);
18366
18367 if (has_children)
18368 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18369 else
18370 {
18371 die->child = NULL;
18372 *new_info_ptr = cur_ptr;
18373 }
18374
18375 die->sibling = NULL;
18376 die->parent = parent;
18377 return die;
18378 }
18379
18380 /* Read a die, all of its descendents, and all of its siblings; set
18381 all of the fields of all of the dies correctly. Arguments are as
18382 in read_die_and_children. */
18383
18384 static struct die_info *
18385 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18386 const gdb_byte *info_ptr,
18387 const gdb_byte **new_info_ptr,
18388 struct die_info *parent)
18389 {
18390 struct die_info *first_die, *last_sibling;
18391 const gdb_byte *cur_ptr;
18392
18393 cur_ptr = info_ptr;
18394 first_die = last_sibling = NULL;
18395
18396 while (1)
18397 {
18398 struct die_info *die
18399 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18400
18401 if (die == NULL)
18402 {
18403 *new_info_ptr = cur_ptr;
18404 return first_die;
18405 }
18406
18407 if (!first_die)
18408 first_die = die;
18409 else
18410 last_sibling->sibling = die;
18411
18412 last_sibling = die;
18413 }
18414 }
18415
18416 /* Read a die, all of its descendents, and all of its siblings; set
18417 all of the fields of all of the dies correctly. Arguments are as
18418 in read_die_and_children.
18419 This the main entry point for reading a DIE and all its children. */
18420
18421 static struct die_info *
18422 read_die_and_siblings (const struct die_reader_specs *reader,
18423 const gdb_byte *info_ptr,
18424 const gdb_byte **new_info_ptr,
18425 struct die_info *parent)
18426 {
18427 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18428 new_info_ptr, parent);
18429
18430 if (dwarf_die_debug)
18431 {
18432 fprintf_unfiltered (gdb_stdlog,
18433 "Read die from %s@0x%x of %s:\n",
18434 get_section_name (reader->die_section),
18435 (unsigned) (info_ptr - reader->die_section->buffer),
18436 bfd_get_filename (reader->abfd));
18437 dump_die (die, dwarf_die_debug);
18438 }
18439
18440 return die;
18441 }
18442
18443 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18444 attributes.
18445 The caller is responsible for filling in the extra attributes
18446 and updating (*DIEP)->num_attrs.
18447 Set DIEP to point to a newly allocated die with its information,
18448 except for its child, sibling, and parent fields.
18449 Set HAS_CHILDREN to tell whether the die has children or not. */
18450
18451 static const gdb_byte *
18452 read_full_die_1 (const struct die_reader_specs *reader,
18453 struct die_info **diep, const gdb_byte *info_ptr,
18454 int *has_children, int num_extra_attrs)
18455 {
18456 unsigned int abbrev_number, bytes_read, i;
18457 struct abbrev_info *abbrev;
18458 struct die_info *die;
18459 struct dwarf2_cu *cu = reader->cu;
18460 bfd *abfd = reader->abfd;
18461
18462 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18463 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18464 info_ptr += bytes_read;
18465 if (!abbrev_number)
18466 {
18467 *diep = NULL;
18468 *has_children = 0;
18469 return info_ptr;
18470 }
18471
18472 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18473 if (!abbrev)
18474 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18475 abbrev_number,
18476 bfd_get_filename (abfd));
18477
18478 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18479 die->sect_off = sect_off;
18480 die->tag = abbrev->tag;
18481 die->abbrev = abbrev_number;
18482
18483 /* Make the result usable.
18484 The caller needs to update num_attrs after adding the extra
18485 attributes. */
18486 die->num_attrs = abbrev->num_attrs;
18487
18488 for (i = 0; i < abbrev->num_attrs; ++i)
18489 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18490 info_ptr);
18491
18492 *diep = die;
18493 *has_children = abbrev->has_children;
18494 return info_ptr;
18495 }
18496
18497 /* Read a die and all its attributes.
18498 Set DIEP to point to a newly allocated die with its information,
18499 except for its child, sibling, and parent fields.
18500 Set HAS_CHILDREN to tell whether the die has children or not. */
18501
18502 static const gdb_byte *
18503 read_full_die (const struct die_reader_specs *reader,
18504 struct die_info **diep, const gdb_byte *info_ptr,
18505 int *has_children)
18506 {
18507 const gdb_byte *result;
18508
18509 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18510
18511 if (dwarf_die_debug)
18512 {
18513 fprintf_unfiltered (gdb_stdlog,
18514 "Read die from %s@0x%x of %s:\n",
18515 get_section_name (reader->die_section),
18516 (unsigned) (info_ptr - reader->die_section->buffer),
18517 bfd_get_filename (reader->abfd));
18518 dump_die (*diep, dwarf_die_debug);
18519 }
18520
18521 return result;
18522 }
18523 \f
18524 /* Abbreviation tables.
18525
18526 In DWARF version 2, the description of the debugging information is
18527 stored in a separate .debug_abbrev section. Before we read any
18528 dies from a section we read in all abbreviations and install them
18529 in a hash table. */
18530
18531 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18532
18533 struct abbrev_info *
18534 abbrev_table::alloc_abbrev ()
18535 {
18536 struct abbrev_info *abbrev;
18537
18538 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18539 memset (abbrev, 0, sizeof (struct abbrev_info));
18540
18541 return abbrev;
18542 }
18543
18544 /* Add an abbreviation to the table. */
18545
18546 void
18547 abbrev_table::add_abbrev (unsigned int abbrev_number,
18548 struct abbrev_info *abbrev)
18549 {
18550 unsigned int hash_number;
18551
18552 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18553 abbrev->next = m_abbrevs[hash_number];
18554 m_abbrevs[hash_number] = abbrev;
18555 }
18556
18557 /* Look up an abbrev in the table.
18558 Returns NULL if the abbrev is not found. */
18559
18560 struct abbrev_info *
18561 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18562 {
18563 unsigned int hash_number;
18564 struct abbrev_info *abbrev;
18565
18566 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18567 abbrev = m_abbrevs[hash_number];
18568
18569 while (abbrev)
18570 {
18571 if (abbrev->number == abbrev_number)
18572 return abbrev;
18573 abbrev = abbrev->next;
18574 }
18575 return NULL;
18576 }
18577
18578 /* Read in an abbrev table. */
18579
18580 static abbrev_table_up
18581 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18582 struct dwarf2_section_info *section,
18583 sect_offset sect_off)
18584 {
18585 struct objfile *objfile = dwarf2_per_objfile->objfile;
18586 bfd *abfd = get_section_bfd_owner (section);
18587 const gdb_byte *abbrev_ptr;
18588 struct abbrev_info *cur_abbrev;
18589 unsigned int abbrev_number, bytes_read, abbrev_name;
18590 unsigned int abbrev_form;
18591 struct attr_abbrev *cur_attrs;
18592 unsigned int allocated_attrs;
18593
18594 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18595
18596 dwarf2_read_section (objfile, section);
18597 abbrev_ptr = section->buffer + to_underlying (sect_off);
18598 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18599 abbrev_ptr += bytes_read;
18600
18601 allocated_attrs = ATTR_ALLOC_CHUNK;
18602 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18603
18604 /* Loop until we reach an abbrev number of 0. */
18605 while (abbrev_number)
18606 {
18607 cur_abbrev = abbrev_table->alloc_abbrev ();
18608
18609 /* read in abbrev header */
18610 cur_abbrev->number = abbrev_number;
18611 cur_abbrev->tag
18612 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18613 abbrev_ptr += bytes_read;
18614 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18615 abbrev_ptr += 1;
18616
18617 /* now read in declarations */
18618 for (;;)
18619 {
18620 LONGEST implicit_const;
18621
18622 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18623 abbrev_ptr += bytes_read;
18624 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18625 abbrev_ptr += bytes_read;
18626 if (abbrev_form == DW_FORM_implicit_const)
18627 {
18628 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18629 &bytes_read);
18630 abbrev_ptr += bytes_read;
18631 }
18632 else
18633 {
18634 /* Initialize it due to a false compiler warning. */
18635 implicit_const = -1;
18636 }
18637
18638 if (abbrev_name == 0)
18639 break;
18640
18641 if (cur_abbrev->num_attrs == allocated_attrs)
18642 {
18643 allocated_attrs += ATTR_ALLOC_CHUNK;
18644 cur_attrs
18645 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18646 }
18647
18648 cur_attrs[cur_abbrev->num_attrs].name
18649 = (enum dwarf_attribute) abbrev_name;
18650 cur_attrs[cur_abbrev->num_attrs].form
18651 = (enum dwarf_form) abbrev_form;
18652 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18653 ++cur_abbrev->num_attrs;
18654 }
18655
18656 cur_abbrev->attrs =
18657 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18658 cur_abbrev->num_attrs);
18659 memcpy (cur_abbrev->attrs, cur_attrs,
18660 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18661
18662 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18663
18664 /* Get next abbreviation.
18665 Under Irix6 the abbreviations for a compilation unit are not
18666 always properly terminated with an abbrev number of 0.
18667 Exit loop if we encounter an abbreviation which we have
18668 already read (which means we are about to read the abbreviations
18669 for the next compile unit) or if the end of the abbreviation
18670 table is reached. */
18671 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18672 break;
18673 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18674 abbrev_ptr += bytes_read;
18675 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18676 break;
18677 }
18678
18679 xfree (cur_attrs);
18680 return abbrev_table;
18681 }
18682
18683 /* Returns nonzero if TAG represents a type that we might generate a partial
18684 symbol for. */
18685
18686 static int
18687 is_type_tag_for_partial (int tag)
18688 {
18689 switch (tag)
18690 {
18691 #if 0
18692 /* Some types that would be reasonable to generate partial symbols for,
18693 that we don't at present. */
18694 case DW_TAG_array_type:
18695 case DW_TAG_file_type:
18696 case DW_TAG_ptr_to_member_type:
18697 case DW_TAG_set_type:
18698 case DW_TAG_string_type:
18699 case DW_TAG_subroutine_type:
18700 #endif
18701 case DW_TAG_base_type:
18702 case DW_TAG_class_type:
18703 case DW_TAG_interface_type:
18704 case DW_TAG_enumeration_type:
18705 case DW_TAG_structure_type:
18706 case DW_TAG_subrange_type:
18707 case DW_TAG_typedef:
18708 case DW_TAG_union_type:
18709 return 1;
18710 default:
18711 return 0;
18712 }
18713 }
18714
18715 /* Load all DIEs that are interesting for partial symbols into memory. */
18716
18717 static struct partial_die_info *
18718 load_partial_dies (const struct die_reader_specs *reader,
18719 const gdb_byte *info_ptr, int building_psymtab)
18720 {
18721 struct dwarf2_cu *cu = reader->cu;
18722 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18723 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18724 unsigned int bytes_read;
18725 unsigned int load_all = 0;
18726 int nesting_level = 1;
18727
18728 parent_die = NULL;
18729 last_die = NULL;
18730
18731 gdb_assert (cu->per_cu != NULL);
18732 if (cu->per_cu->load_all_dies)
18733 load_all = 1;
18734
18735 cu->partial_dies
18736 = htab_create_alloc_ex (cu->header.length / 12,
18737 partial_die_hash,
18738 partial_die_eq,
18739 NULL,
18740 &cu->comp_unit_obstack,
18741 hashtab_obstack_allocate,
18742 dummy_obstack_deallocate);
18743
18744 while (1)
18745 {
18746 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18747
18748 /* A NULL abbrev means the end of a series of children. */
18749 if (abbrev == NULL)
18750 {
18751 if (--nesting_level == 0)
18752 return first_die;
18753
18754 info_ptr += bytes_read;
18755 last_die = parent_die;
18756 parent_die = parent_die->die_parent;
18757 continue;
18758 }
18759
18760 /* Check for template arguments. We never save these; if
18761 they're seen, we just mark the parent, and go on our way. */
18762 if (parent_die != NULL
18763 && cu->language == language_cplus
18764 && (abbrev->tag == DW_TAG_template_type_param
18765 || abbrev->tag == DW_TAG_template_value_param))
18766 {
18767 parent_die->has_template_arguments = 1;
18768
18769 if (!load_all)
18770 {
18771 /* We don't need a partial DIE for the template argument. */
18772 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18773 continue;
18774 }
18775 }
18776
18777 /* We only recurse into c++ subprograms looking for template arguments.
18778 Skip their other children. */
18779 if (!load_all
18780 && cu->language == language_cplus
18781 && parent_die != NULL
18782 && parent_die->tag == DW_TAG_subprogram)
18783 {
18784 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18785 continue;
18786 }
18787
18788 /* Check whether this DIE is interesting enough to save. Normally
18789 we would not be interested in members here, but there may be
18790 later variables referencing them via DW_AT_specification (for
18791 static members). */
18792 if (!load_all
18793 && !is_type_tag_for_partial (abbrev->tag)
18794 && abbrev->tag != DW_TAG_constant
18795 && abbrev->tag != DW_TAG_enumerator
18796 && abbrev->tag != DW_TAG_subprogram
18797 && abbrev->tag != DW_TAG_inlined_subroutine
18798 && abbrev->tag != DW_TAG_lexical_block
18799 && abbrev->tag != DW_TAG_variable
18800 && abbrev->tag != DW_TAG_namespace
18801 && abbrev->tag != DW_TAG_module
18802 && abbrev->tag != DW_TAG_member
18803 && abbrev->tag != DW_TAG_imported_unit
18804 && abbrev->tag != DW_TAG_imported_declaration)
18805 {
18806 /* Otherwise we skip to the next sibling, if any. */
18807 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18808 continue;
18809 }
18810
18811 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18812 abbrev);
18813
18814 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18815
18816 /* This two-pass algorithm for processing partial symbols has a
18817 high cost in cache pressure. Thus, handle some simple cases
18818 here which cover the majority of C partial symbols. DIEs
18819 which neither have specification tags in them, nor could have
18820 specification tags elsewhere pointing at them, can simply be
18821 processed and discarded.
18822
18823 This segment is also optional; scan_partial_symbols and
18824 add_partial_symbol will handle these DIEs if we chain
18825 them in normally. When compilers which do not emit large
18826 quantities of duplicate debug information are more common,
18827 this code can probably be removed. */
18828
18829 /* Any complete simple types at the top level (pretty much all
18830 of them, for a language without namespaces), can be processed
18831 directly. */
18832 if (parent_die == NULL
18833 && pdi.has_specification == 0
18834 && pdi.is_declaration == 0
18835 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18836 || pdi.tag == DW_TAG_base_type
18837 || pdi.tag == DW_TAG_subrange_type))
18838 {
18839 if (building_psymtab && pdi.name != NULL)
18840 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18841 VAR_DOMAIN, LOC_TYPEDEF,
18842 &objfile->static_psymbols,
18843 0, cu->language, objfile);
18844 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18845 continue;
18846 }
18847
18848 /* The exception for DW_TAG_typedef with has_children above is
18849 a workaround of GCC PR debug/47510. In the case of this complaint
18850 type_name_no_tag_or_error will error on such types later.
18851
18852 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18853 it could not find the child DIEs referenced later, this is checked
18854 above. In correct DWARF DW_TAG_typedef should have no children. */
18855
18856 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18857 complaint (&symfile_complaints,
18858 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18859 "- DIE at %s [in module %s]"),
18860 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18861
18862 /* If we're at the second level, and we're an enumerator, and
18863 our parent has no specification (meaning possibly lives in a
18864 namespace elsewhere), then we can add the partial symbol now
18865 instead of queueing it. */
18866 if (pdi.tag == DW_TAG_enumerator
18867 && parent_die != NULL
18868 && parent_die->die_parent == NULL
18869 && parent_die->tag == DW_TAG_enumeration_type
18870 && parent_die->has_specification == 0)
18871 {
18872 if (pdi.name == NULL)
18873 complaint (&symfile_complaints,
18874 _("malformed enumerator DIE ignored"));
18875 else if (building_psymtab)
18876 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18877 VAR_DOMAIN, LOC_CONST,
18878 cu->language == language_cplus
18879 ? &objfile->global_psymbols
18880 : &objfile->static_psymbols,
18881 0, cu->language, objfile);
18882
18883 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18884 continue;
18885 }
18886
18887 struct partial_die_info *part_die
18888 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18889
18890 /* We'll save this DIE so link it in. */
18891 part_die->die_parent = parent_die;
18892 part_die->die_sibling = NULL;
18893 part_die->die_child = NULL;
18894
18895 if (last_die && last_die == parent_die)
18896 last_die->die_child = part_die;
18897 else if (last_die)
18898 last_die->die_sibling = part_die;
18899
18900 last_die = part_die;
18901
18902 if (first_die == NULL)
18903 first_die = part_die;
18904
18905 /* Maybe add the DIE to the hash table. Not all DIEs that we
18906 find interesting need to be in the hash table, because we
18907 also have the parent/sibling/child chains; only those that we
18908 might refer to by offset later during partial symbol reading.
18909
18910 For now this means things that might have be the target of a
18911 DW_AT_specification, DW_AT_abstract_origin, or
18912 DW_AT_extension. DW_AT_extension will refer only to
18913 namespaces; DW_AT_abstract_origin refers to functions (and
18914 many things under the function DIE, but we do not recurse
18915 into function DIEs during partial symbol reading) and
18916 possibly variables as well; DW_AT_specification refers to
18917 declarations. Declarations ought to have the DW_AT_declaration
18918 flag. It happens that GCC forgets to put it in sometimes, but
18919 only for functions, not for types.
18920
18921 Adding more things than necessary to the hash table is harmless
18922 except for the performance cost. Adding too few will result in
18923 wasted time in find_partial_die, when we reread the compilation
18924 unit with load_all_dies set. */
18925
18926 if (load_all
18927 || abbrev->tag == DW_TAG_constant
18928 || abbrev->tag == DW_TAG_subprogram
18929 || abbrev->tag == DW_TAG_variable
18930 || abbrev->tag == DW_TAG_namespace
18931 || part_die->is_declaration)
18932 {
18933 void **slot;
18934
18935 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18936 to_underlying (part_die->sect_off),
18937 INSERT);
18938 *slot = part_die;
18939 }
18940
18941 /* For some DIEs we want to follow their children (if any). For C
18942 we have no reason to follow the children of structures; for other
18943 languages we have to, so that we can get at method physnames
18944 to infer fully qualified class names, for DW_AT_specification,
18945 and for C++ template arguments. For C++, we also look one level
18946 inside functions to find template arguments (if the name of the
18947 function does not already contain the template arguments).
18948
18949 For Ada, we need to scan the children of subprograms and lexical
18950 blocks as well because Ada allows the definition of nested
18951 entities that could be interesting for the debugger, such as
18952 nested subprograms for instance. */
18953 if (last_die->has_children
18954 && (load_all
18955 || last_die->tag == DW_TAG_namespace
18956 || last_die->tag == DW_TAG_module
18957 || last_die->tag == DW_TAG_enumeration_type
18958 || (cu->language == language_cplus
18959 && last_die->tag == DW_TAG_subprogram
18960 && (last_die->name == NULL
18961 || strchr (last_die->name, '<') == NULL))
18962 || (cu->language != language_c
18963 && (last_die->tag == DW_TAG_class_type
18964 || last_die->tag == DW_TAG_interface_type
18965 || last_die->tag == DW_TAG_structure_type
18966 || last_die->tag == DW_TAG_union_type))
18967 || (cu->language == language_ada
18968 && (last_die->tag == DW_TAG_subprogram
18969 || last_die->tag == DW_TAG_lexical_block))))
18970 {
18971 nesting_level++;
18972 parent_die = last_die;
18973 continue;
18974 }
18975
18976 /* Otherwise we skip to the next sibling, if any. */
18977 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18978
18979 /* Back to the top, do it again. */
18980 }
18981 }
18982
18983 partial_die_info::partial_die_info (sect_offset sect_off_,
18984 struct abbrev_info *abbrev)
18985 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18986 {
18987 }
18988
18989 /* Read a minimal amount of information into the minimal die structure.
18990 INFO_PTR should point just after the initial uleb128 of a DIE. */
18991
18992 const gdb_byte *
18993 partial_die_info::read (const struct die_reader_specs *reader,
18994 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18995 {
18996 struct dwarf2_cu *cu = reader->cu;
18997 struct dwarf2_per_objfile *dwarf2_per_objfile
18998 = cu->per_cu->dwarf2_per_objfile;
18999 unsigned int i;
19000 int has_low_pc_attr = 0;
19001 int has_high_pc_attr = 0;
19002 int high_pc_relative = 0;
19003
19004 for (i = 0; i < abbrev.num_attrs; ++i)
19005 {
19006 struct attribute attr;
19007
19008 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
19009
19010 /* Store the data if it is of an attribute we want to keep in a
19011 partial symbol table. */
19012 switch (attr.name)
19013 {
19014 case DW_AT_name:
19015 switch (tag)
19016 {
19017 case DW_TAG_compile_unit:
19018 case DW_TAG_partial_unit:
19019 case DW_TAG_type_unit:
19020 /* Compilation units have a DW_AT_name that is a filename, not
19021 a source language identifier. */
19022 case DW_TAG_enumeration_type:
19023 case DW_TAG_enumerator:
19024 /* These tags always have simple identifiers already; no need
19025 to canonicalize them. */
19026 name = DW_STRING (&attr);
19027 break;
19028 default:
19029 {
19030 struct objfile *objfile = dwarf2_per_objfile->objfile;
19031
19032 name
19033 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
19034 &objfile->per_bfd->storage_obstack);
19035 }
19036 break;
19037 }
19038 break;
19039 case DW_AT_linkage_name:
19040 case DW_AT_MIPS_linkage_name:
19041 /* Note that both forms of linkage name might appear. We
19042 assume they will be the same, and we only store the last
19043 one we see. */
19044 if (cu->language == language_ada)
19045 name = DW_STRING (&attr);
19046 linkage_name = DW_STRING (&attr);
19047 break;
19048 case DW_AT_low_pc:
19049 has_low_pc_attr = 1;
19050 lowpc = attr_value_as_address (&attr);
19051 break;
19052 case DW_AT_high_pc:
19053 has_high_pc_attr = 1;
19054 highpc = attr_value_as_address (&attr);
19055 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
19056 high_pc_relative = 1;
19057 break;
19058 case DW_AT_location:
19059 /* Support the .debug_loc offsets. */
19060 if (attr_form_is_block (&attr))
19061 {
19062 d.locdesc = DW_BLOCK (&attr);
19063 }
19064 else if (attr_form_is_section_offset (&attr))
19065 {
19066 dwarf2_complex_location_expr_complaint ();
19067 }
19068 else
19069 {
19070 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
19071 "partial symbol information");
19072 }
19073 break;
19074 case DW_AT_external:
19075 is_external = DW_UNSND (&attr);
19076 break;
19077 case DW_AT_declaration:
19078 is_declaration = DW_UNSND (&attr);
19079 break;
19080 case DW_AT_type:
19081 has_type = 1;
19082 break;
19083 case DW_AT_abstract_origin:
19084 case DW_AT_specification:
19085 case DW_AT_extension:
19086 has_specification = 1;
19087 spec_offset = dwarf2_get_ref_die_offset (&attr);
19088 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19089 || cu->per_cu->is_dwz);
19090 break;
19091 case DW_AT_sibling:
19092 /* Ignore absolute siblings, they might point outside of
19093 the current compile unit. */
19094 if (attr.form == DW_FORM_ref_addr)
19095 complaint (&symfile_complaints,
19096 _("ignoring absolute DW_AT_sibling"));
19097 else
19098 {
19099 const gdb_byte *buffer = reader->buffer;
19100 sect_offset off = dwarf2_get_ref_die_offset (&attr);
19101 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
19102
19103 if (sibling_ptr < info_ptr)
19104 complaint (&symfile_complaints,
19105 _("DW_AT_sibling points backwards"));
19106 else if (sibling_ptr > reader->buffer_end)
19107 dwarf2_section_buffer_overflow_complaint (reader->die_section);
19108 else
19109 sibling = sibling_ptr;
19110 }
19111 break;
19112 case DW_AT_byte_size:
19113 has_byte_size = 1;
19114 break;
19115 case DW_AT_const_value:
19116 has_const_value = 1;
19117 break;
19118 case DW_AT_calling_convention:
19119 /* DWARF doesn't provide a way to identify a program's source-level
19120 entry point. DW_AT_calling_convention attributes are only meant
19121 to describe functions' calling conventions.
19122
19123 However, because it's a necessary piece of information in
19124 Fortran, and before DWARF 4 DW_CC_program was the only
19125 piece of debugging information whose definition refers to
19126 a 'main program' at all, several compilers marked Fortran
19127 main programs with DW_CC_program --- even when those
19128 functions use the standard calling conventions.
19129
19130 Although DWARF now specifies a way to provide this
19131 information, we support this practice for backward
19132 compatibility. */
19133 if (DW_UNSND (&attr) == DW_CC_program
19134 && cu->language == language_fortran)
19135 main_subprogram = 1;
19136 break;
19137 case DW_AT_inline:
19138 if (DW_UNSND (&attr) == DW_INL_inlined
19139 || DW_UNSND (&attr) == DW_INL_declared_inlined)
19140 may_be_inlined = 1;
19141 break;
19142
19143 case DW_AT_import:
19144 if (tag == DW_TAG_imported_unit)
19145 {
19146 d.sect_off = dwarf2_get_ref_die_offset (&attr);
19147 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19148 || cu->per_cu->is_dwz);
19149 }
19150 break;
19151
19152 case DW_AT_main_subprogram:
19153 main_subprogram = DW_UNSND (&attr);
19154 break;
19155
19156 default:
19157 break;
19158 }
19159 }
19160
19161 if (high_pc_relative)
19162 highpc += lowpc;
19163
19164 if (has_low_pc_attr && has_high_pc_attr)
19165 {
19166 /* When using the GNU linker, .gnu.linkonce. sections are used to
19167 eliminate duplicate copies of functions and vtables and such.
19168 The linker will arbitrarily choose one and discard the others.
19169 The AT_*_pc values for such functions refer to local labels in
19170 these sections. If the section from that file was discarded, the
19171 labels are not in the output, so the relocs get a value of 0.
19172 If this is a discarded function, mark the pc bounds as invalid,
19173 so that GDB will ignore it. */
19174 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
19175 {
19176 struct objfile *objfile = dwarf2_per_objfile->objfile;
19177 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19178
19179 complaint (&symfile_complaints,
19180 _("DW_AT_low_pc %s is zero "
19181 "for DIE at %s [in module %s]"),
19182 paddress (gdbarch, lowpc),
19183 sect_offset_str (sect_off),
19184 objfile_name (objfile));
19185 }
19186 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
19187 else if (lowpc >= highpc)
19188 {
19189 struct objfile *objfile = dwarf2_per_objfile->objfile;
19190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19191
19192 complaint (&symfile_complaints,
19193 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
19194 "for DIE at %s [in module %s]"),
19195 paddress (gdbarch, lowpc),
19196 paddress (gdbarch, highpc),
19197 sect_offset_str (sect_off),
19198 objfile_name (objfile));
19199 }
19200 else
19201 has_pc_info = 1;
19202 }
19203
19204 return info_ptr;
19205 }
19206
19207 /* Find a cached partial DIE at OFFSET in CU. */
19208
19209 struct partial_die_info *
19210 dwarf2_cu::find_partial_die (sect_offset sect_off)
19211 {
19212 struct partial_die_info *lookup_die = NULL;
19213 struct partial_die_info part_die (sect_off);
19214
19215 lookup_die = ((struct partial_die_info *)
19216 htab_find_with_hash (partial_dies, &part_die,
19217 to_underlying (sect_off)));
19218
19219 return lookup_die;
19220 }
19221
19222 /* Find a partial DIE at OFFSET, which may or may not be in CU,
19223 except in the case of .debug_types DIEs which do not reference
19224 outside their CU (they do however referencing other types via
19225 DW_FORM_ref_sig8). */
19226
19227 static struct partial_die_info *
19228 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19229 {
19230 struct dwarf2_per_objfile *dwarf2_per_objfile
19231 = cu->per_cu->dwarf2_per_objfile;
19232 struct objfile *objfile = dwarf2_per_objfile->objfile;
19233 struct dwarf2_per_cu_data *per_cu = NULL;
19234 struct partial_die_info *pd = NULL;
19235
19236 if (offset_in_dwz == cu->per_cu->is_dwz
19237 && offset_in_cu_p (&cu->header, sect_off))
19238 {
19239 pd = cu->find_partial_die (sect_off);
19240 if (pd != NULL)
19241 return pd;
19242 /* We missed recording what we needed.
19243 Load all dies and try again. */
19244 per_cu = cu->per_cu;
19245 }
19246 else
19247 {
19248 /* TUs don't reference other CUs/TUs (except via type signatures). */
19249 if (cu->per_cu->is_debug_types)
19250 {
19251 error (_("Dwarf Error: Type Unit at offset %s contains"
19252 " external reference to offset %s [in module %s].\n"),
19253 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19254 bfd_get_filename (objfile->obfd));
19255 }
19256 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19257 dwarf2_per_objfile);
19258
19259 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
19260 load_partial_comp_unit (per_cu);
19261
19262 per_cu->cu->last_used = 0;
19263 pd = per_cu->cu->find_partial_die (sect_off);
19264 }
19265
19266 /* If we didn't find it, and not all dies have been loaded,
19267 load them all and try again. */
19268
19269 if (pd == NULL && per_cu->load_all_dies == 0)
19270 {
19271 per_cu->load_all_dies = 1;
19272
19273 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19274 THIS_CU->cu may already be in use. So we can't just free it and
19275 replace its DIEs with the ones we read in. Instead, we leave those
19276 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19277 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19278 set. */
19279 load_partial_comp_unit (per_cu);
19280
19281 pd = per_cu->cu->find_partial_die (sect_off);
19282 }
19283
19284 if (pd == NULL)
19285 internal_error (__FILE__, __LINE__,
19286 _("could not find partial DIE %s "
19287 "in cache [from module %s]\n"),
19288 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19289 return pd;
19290 }
19291
19292 /* See if we can figure out if the class lives in a namespace. We do
19293 this by looking for a member function; its demangled name will
19294 contain namespace info, if there is any. */
19295
19296 static void
19297 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19298 struct dwarf2_cu *cu)
19299 {
19300 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19301 what template types look like, because the demangler
19302 frequently doesn't give the same name as the debug info. We
19303 could fix this by only using the demangled name to get the
19304 prefix (but see comment in read_structure_type). */
19305
19306 struct partial_die_info *real_pdi;
19307 struct partial_die_info *child_pdi;
19308
19309 /* If this DIE (this DIE's specification, if any) has a parent, then
19310 we should not do this. We'll prepend the parent's fully qualified
19311 name when we create the partial symbol. */
19312
19313 real_pdi = struct_pdi;
19314 while (real_pdi->has_specification)
19315 real_pdi = find_partial_die (real_pdi->spec_offset,
19316 real_pdi->spec_is_dwz, cu);
19317
19318 if (real_pdi->die_parent != NULL)
19319 return;
19320
19321 for (child_pdi = struct_pdi->die_child;
19322 child_pdi != NULL;
19323 child_pdi = child_pdi->die_sibling)
19324 {
19325 if (child_pdi->tag == DW_TAG_subprogram
19326 && child_pdi->linkage_name != NULL)
19327 {
19328 char *actual_class_name
19329 = language_class_name_from_physname (cu->language_defn,
19330 child_pdi->linkage_name);
19331 if (actual_class_name != NULL)
19332 {
19333 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19334 struct_pdi->name
19335 = ((const char *)
19336 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19337 actual_class_name,
19338 strlen (actual_class_name)));
19339 xfree (actual_class_name);
19340 }
19341 break;
19342 }
19343 }
19344 }
19345
19346 void
19347 partial_die_info::fixup (struct dwarf2_cu *cu)
19348 {
19349 /* Once we've fixed up a die, there's no point in doing so again.
19350 This also avoids a memory leak if we were to call
19351 guess_partial_die_structure_name multiple times. */
19352 if (fixup_called)
19353 return;
19354
19355 /* If we found a reference attribute and the DIE has no name, try
19356 to find a name in the referred to DIE. */
19357
19358 if (name == NULL && has_specification)
19359 {
19360 struct partial_die_info *spec_die;
19361
19362 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
19363
19364 spec_die->fixup (cu);
19365
19366 if (spec_die->name)
19367 {
19368 name = spec_die->name;
19369
19370 /* Copy DW_AT_external attribute if it is set. */
19371 if (spec_die->is_external)
19372 is_external = spec_die->is_external;
19373 }
19374 }
19375
19376 /* Set default names for some unnamed DIEs. */
19377
19378 if (name == NULL && tag == DW_TAG_namespace)
19379 name = CP_ANONYMOUS_NAMESPACE_STR;
19380
19381 /* If there is no parent die to provide a namespace, and there are
19382 children, see if we can determine the namespace from their linkage
19383 name. */
19384 if (cu->language == language_cplus
19385 && !VEC_empty (dwarf2_section_info_def,
19386 cu->per_cu->dwarf2_per_objfile->types)
19387 && die_parent == NULL
19388 && has_children
19389 && (tag == DW_TAG_class_type
19390 || tag == DW_TAG_structure_type
19391 || tag == DW_TAG_union_type))
19392 guess_partial_die_structure_name (this, cu);
19393
19394 /* GCC might emit a nameless struct or union that has a linkage
19395 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19396 if (name == NULL
19397 && (tag == DW_TAG_class_type
19398 || tag == DW_TAG_interface_type
19399 || tag == DW_TAG_structure_type
19400 || tag == DW_TAG_union_type)
19401 && linkage_name != NULL)
19402 {
19403 char *demangled;
19404
19405 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19406 if (demangled)
19407 {
19408 const char *base;
19409
19410 /* Strip any leading namespaces/classes, keep only the base name.
19411 DW_AT_name for named DIEs does not contain the prefixes. */
19412 base = strrchr (demangled, ':');
19413 if (base && base > demangled && base[-1] == ':')
19414 base++;
19415 else
19416 base = demangled;
19417
19418 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19419 name
19420 = ((const char *)
19421 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19422 base, strlen (base)));
19423 xfree (demangled);
19424 }
19425 }
19426
19427 fixup_called = 1;
19428 }
19429
19430 /* Read an attribute value described by an attribute form. */
19431
19432 static const gdb_byte *
19433 read_attribute_value (const struct die_reader_specs *reader,
19434 struct attribute *attr, unsigned form,
19435 LONGEST implicit_const, const gdb_byte *info_ptr)
19436 {
19437 struct dwarf2_cu *cu = reader->cu;
19438 struct dwarf2_per_objfile *dwarf2_per_objfile
19439 = cu->per_cu->dwarf2_per_objfile;
19440 struct objfile *objfile = dwarf2_per_objfile->objfile;
19441 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19442 bfd *abfd = reader->abfd;
19443 struct comp_unit_head *cu_header = &cu->header;
19444 unsigned int bytes_read;
19445 struct dwarf_block *blk;
19446
19447 attr->form = (enum dwarf_form) form;
19448 switch (form)
19449 {
19450 case DW_FORM_ref_addr:
19451 if (cu->header.version == 2)
19452 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19453 else
19454 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19455 &cu->header, &bytes_read);
19456 info_ptr += bytes_read;
19457 break;
19458 case DW_FORM_GNU_ref_alt:
19459 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19460 info_ptr += bytes_read;
19461 break;
19462 case DW_FORM_addr:
19463 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19464 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19465 info_ptr += bytes_read;
19466 break;
19467 case DW_FORM_block2:
19468 blk = dwarf_alloc_block (cu);
19469 blk->size = read_2_bytes (abfd, info_ptr);
19470 info_ptr += 2;
19471 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19472 info_ptr += blk->size;
19473 DW_BLOCK (attr) = blk;
19474 break;
19475 case DW_FORM_block4:
19476 blk = dwarf_alloc_block (cu);
19477 blk->size = read_4_bytes (abfd, info_ptr);
19478 info_ptr += 4;
19479 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19480 info_ptr += blk->size;
19481 DW_BLOCK (attr) = blk;
19482 break;
19483 case DW_FORM_data2:
19484 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19485 info_ptr += 2;
19486 break;
19487 case DW_FORM_data4:
19488 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19489 info_ptr += 4;
19490 break;
19491 case DW_FORM_data8:
19492 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19493 info_ptr += 8;
19494 break;
19495 case DW_FORM_data16:
19496 blk = dwarf_alloc_block (cu);
19497 blk->size = 16;
19498 blk->data = read_n_bytes (abfd, info_ptr, 16);
19499 info_ptr += 16;
19500 DW_BLOCK (attr) = blk;
19501 break;
19502 case DW_FORM_sec_offset:
19503 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19504 info_ptr += bytes_read;
19505 break;
19506 case DW_FORM_string:
19507 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19508 DW_STRING_IS_CANONICAL (attr) = 0;
19509 info_ptr += bytes_read;
19510 break;
19511 case DW_FORM_strp:
19512 if (!cu->per_cu->is_dwz)
19513 {
19514 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19515 abfd, info_ptr, cu_header,
19516 &bytes_read);
19517 DW_STRING_IS_CANONICAL (attr) = 0;
19518 info_ptr += bytes_read;
19519 break;
19520 }
19521 /* FALLTHROUGH */
19522 case DW_FORM_line_strp:
19523 if (!cu->per_cu->is_dwz)
19524 {
19525 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19526 abfd, info_ptr,
19527 cu_header, &bytes_read);
19528 DW_STRING_IS_CANONICAL (attr) = 0;
19529 info_ptr += bytes_read;
19530 break;
19531 }
19532 /* FALLTHROUGH */
19533 case DW_FORM_GNU_strp_alt:
19534 {
19535 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19536 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19537 &bytes_read);
19538
19539 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19540 dwz, str_offset);
19541 DW_STRING_IS_CANONICAL (attr) = 0;
19542 info_ptr += bytes_read;
19543 }
19544 break;
19545 case DW_FORM_exprloc:
19546 case DW_FORM_block:
19547 blk = dwarf_alloc_block (cu);
19548 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19549 info_ptr += bytes_read;
19550 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19551 info_ptr += blk->size;
19552 DW_BLOCK (attr) = blk;
19553 break;
19554 case DW_FORM_block1:
19555 blk = dwarf_alloc_block (cu);
19556 blk->size = read_1_byte (abfd, info_ptr);
19557 info_ptr += 1;
19558 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19559 info_ptr += blk->size;
19560 DW_BLOCK (attr) = blk;
19561 break;
19562 case DW_FORM_data1:
19563 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19564 info_ptr += 1;
19565 break;
19566 case DW_FORM_flag:
19567 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19568 info_ptr += 1;
19569 break;
19570 case DW_FORM_flag_present:
19571 DW_UNSND (attr) = 1;
19572 break;
19573 case DW_FORM_sdata:
19574 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19575 info_ptr += bytes_read;
19576 break;
19577 case DW_FORM_udata:
19578 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19579 info_ptr += bytes_read;
19580 break;
19581 case DW_FORM_ref1:
19582 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19583 + read_1_byte (abfd, info_ptr));
19584 info_ptr += 1;
19585 break;
19586 case DW_FORM_ref2:
19587 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19588 + read_2_bytes (abfd, info_ptr));
19589 info_ptr += 2;
19590 break;
19591 case DW_FORM_ref4:
19592 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19593 + read_4_bytes (abfd, info_ptr));
19594 info_ptr += 4;
19595 break;
19596 case DW_FORM_ref8:
19597 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19598 + read_8_bytes (abfd, info_ptr));
19599 info_ptr += 8;
19600 break;
19601 case DW_FORM_ref_sig8:
19602 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19603 info_ptr += 8;
19604 break;
19605 case DW_FORM_ref_udata:
19606 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19607 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19608 info_ptr += bytes_read;
19609 break;
19610 case DW_FORM_indirect:
19611 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19612 info_ptr += bytes_read;
19613 if (form == DW_FORM_implicit_const)
19614 {
19615 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19616 info_ptr += bytes_read;
19617 }
19618 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19619 info_ptr);
19620 break;
19621 case DW_FORM_implicit_const:
19622 DW_SND (attr) = implicit_const;
19623 break;
19624 case DW_FORM_GNU_addr_index:
19625 if (reader->dwo_file == NULL)
19626 {
19627 /* For now flag a hard error.
19628 Later we can turn this into a complaint. */
19629 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19630 dwarf_form_name (form),
19631 bfd_get_filename (abfd));
19632 }
19633 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19634 info_ptr += bytes_read;
19635 break;
19636 case DW_FORM_GNU_str_index:
19637 if (reader->dwo_file == NULL)
19638 {
19639 /* For now flag a hard error.
19640 Later we can turn this into a complaint if warranted. */
19641 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19642 dwarf_form_name (form),
19643 bfd_get_filename (abfd));
19644 }
19645 {
19646 ULONGEST str_index =
19647 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19648
19649 DW_STRING (attr) = read_str_index (reader, str_index);
19650 DW_STRING_IS_CANONICAL (attr) = 0;
19651 info_ptr += bytes_read;
19652 }
19653 break;
19654 default:
19655 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19656 dwarf_form_name (form),
19657 bfd_get_filename (abfd));
19658 }
19659
19660 /* Super hack. */
19661 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19662 attr->form = DW_FORM_GNU_ref_alt;
19663
19664 /* We have seen instances where the compiler tried to emit a byte
19665 size attribute of -1 which ended up being encoded as an unsigned
19666 0xffffffff. Although 0xffffffff is technically a valid size value,
19667 an object of this size seems pretty unlikely so we can relatively
19668 safely treat these cases as if the size attribute was invalid and
19669 treat them as zero by default. */
19670 if (attr->name == DW_AT_byte_size
19671 && form == DW_FORM_data4
19672 && DW_UNSND (attr) >= 0xffffffff)
19673 {
19674 complaint
19675 (&symfile_complaints,
19676 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19677 hex_string (DW_UNSND (attr)));
19678 DW_UNSND (attr) = 0;
19679 }
19680
19681 return info_ptr;
19682 }
19683
19684 /* Read an attribute described by an abbreviated attribute. */
19685
19686 static const gdb_byte *
19687 read_attribute (const struct die_reader_specs *reader,
19688 struct attribute *attr, struct attr_abbrev *abbrev,
19689 const gdb_byte *info_ptr)
19690 {
19691 attr->name = abbrev->name;
19692 return read_attribute_value (reader, attr, abbrev->form,
19693 abbrev->implicit_const, info_ptr);
19694 }
19695
19696 /* Read dwarf information from a buffer. */
19697
19698 static unsigned int
19699 read_1_byte (bfd *abfd, const gdb_byte *buf)
19700 {
19701 return bfd_get_8 (abfd, buf);
19702 }
19703
19704 static int
19705 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19706 {
19707 return bfd_get_signed_8 (abfd, buf);
19708 }
19709
19710 static unsigned int
19711 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19712 {
19713 return bfd_get_16 (abfd, buf);
19714 }
19715
19716 static int
19717 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19718 {
19719 return bfd_get_signed_16 (abfd, buf);
19720 }
19721
19722 static unsigned int
19723 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19724 {
19725 return bfd_get_32 (abfd, buf);
19726 }
19727
19728 static int
19729 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19730 {
19731 return bfd_get_signed_32 (abfd, buf);
19732 }
19733
19734 static ULONGEST
19735 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19736 {
19737 return bfd_get_64 (abfd, buf);
19738 }
19739
19740 static CORE_ADDR
19741 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19742 unsigned int *bytes_read)
19743 {
19744 struct comp_unit_head *cu_header = &cu->header;
19745 CORE_ADDR retval = 0;
19746
19747 if (cu_header->signed_addr_p)
19748 {
19749 switch (cu_header->addr_size)
19750 {
19751 case 2:
19752 retval = bfd_get_signed_16 (abfd, buf);
19753 break;
19754 case 4:
19755 retval = bfd_get_signed_32 (abfd, buf);
19756 break;
19757 case 8:
19758 retval = bfd_get_signed_64 (abfd, buf);
19759 break;
19760 default:
19761 internal_error (__FILE__, __LINE__,
19762 _("read_address: bad switch, signed [in module %s]"),
19763 bfd_get_filename (abfd));
19764 }
19765 }
19766 else
19767 {
19768 switch (cu_header->addr_size)
19769 {
19770 case 2:
19771 retval = bfd_get_16 (abfd, buf);
19772 break;
19773 case 4:
19774 retval = bfd_get_32 (abfd, buf);
19775 break;
19776 case 8:
19777 retval = bfd_get_64 (abfd, buf);
19778 break;
19779 default:
19780 internal_error (__FILE__, __LINE__,
19781 _("read_address: bad switch, "
19782 "unsigned [in module %s]"),
19783 bfd_get_filename (abfd));
19784 }
19785 }
19786
19787 *bytes_read = cu_header->addr_size;
19788 return retval;
19789 }
19790
19791 /* Read the initial length from a section. The (draft) DWARF 3
19792 specification allows the initial length to take up either 4 bytes
19793 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19794 bytes describe the length and all offsets will be 8 bytes in length
19795 instead of 4.
19796
19797 An older, non-standard 64-bit format is also handled by this
19798 function. The older format in question stores the initial length
19799 as an 8-byte quantity without an escape value. Lengths greater
19800 than 2^32 aren't very common which means that the initial 4 bytes
19801 is almost always zero. Since a length value of zero doesn't make
19802 sense for the 32-bit format, this initial zero can be considered to
19803 be an escape value which indicates the presence of the older 64-bit
19804 format. As written, the code can't detect (old format) lengths
19805 greater than 4GB. If it becomes necessary to handle lengths
19806 somewhat larger than 4GB, we could allow other small values (such
19807 as the non-sensical values of 1, 2, and 3) to also be used as
19808 escape values indicating the presence of the old format.
19809
19810 The value returned via bytes_read should be used to increment the
19811 relevant pointer after calling read_initial_length().
19812
19813 [ Note: read_initial_length() and read_offset() are based on the
19814 document entitled "DWARF Debugging Information Format", revision
19815 3, draft 8, dated November 19, 2001. This document was obtained
19816 from:
19817
19818 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19819
19820 This document is only a draft and is subject to change. (So beware.)
19821
19822 Details regarding the older, non-standard 64-bit format were
19823 determined empirically by examining 64-bit ELF files produced by
19824 the SGI toolchain on an IRIX 6.5 machine.
19825
19826 - Kevin, July 16, 2002
19827 ] */
19828
19829 static LONGEST
19830 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19831 {
19832 LONGEST length = bfd_get_32 (abfd, buf);
19833
19834 if (length == 0xffffffff)
19835 {
19836 length = bfd_get_64 (abfd, buf + 4);
19837 *bytes_read = 12;
19838 }
19839 else if (length == 0)
19840 {
19841 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19842 length = bfd_get_64 (abfd, buf);
19843 *bytes_read = 8;
19844 }
19845 else
19846 {
19847 *bytes_read = 4;
19848 }
19849
19850 return length;
19851 }
19852
19853 /* Cover function for read_initial_length.
19854 Returns the length of the object at BUF, and stores the size of the
19855 initial length in *BYTES_READ and stores the size that offsets will be in
19856 *OFFSET_SIZE.
19857 If the initial length size is not equivalent to that specified in
19858 CU_HEADER then issue a complaint.
19859 This is useful when reading non-comp-unit headers. */
19860
19861 static LONGEST
19862 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19863 const struct comp_unit_head *cu_header,
19864 unsigned int *bytes_read,
19865 unsigned int *offset_size)
19866 {
19867 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19868
19869 gdb_assert (cu_header->initial_length_size == 4
19870 || cu_header->initial_length_size == 8
19871 || cu_header->initial_length_size == 12);
19872
19873 if (cu_header->initial_length_size != *bytes_read)
19874 complaint (&symfile_complaints,
19875 _("intermixed 32-bit and 64-bit DWARF sections"));
19876
19877 *offset_size = (*bytes_read == 4) ? 4 : 8;
19878 return length;
19879 }
19880
19881 /* Read an offset from the data stream. The size of the offset is
19882 given by cu_header->offset_size. */
19883
19884 static LONGEST
19885 read_offset (bfd *abfd, const gdb_byte *buf,
19886 const struct comp_unit_head *cu_header,
19887 unsigned int *bytes_read)
19888 {
19889 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19890
19891 *bytes_read = cu_header->offset_size;
19892 return offset;
19893 }
19894
19895 /* Read an offset from the data stream. */
19896
19897 static LONGEST
19898 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19899 {
19900 LONGEST retval = 0;
19901
19902 switch (offset_size)
19903 {
19904 case 4:
19905 retval = bfd_get_32 (abfd, buf);
19906 break;
19907 case 8:
19908 retval = bfd_get_64 (abfd, buf);
19909 break;
19910 default:
19911 internal_error (__FILE__, __LINE__,
19912 _("read_offset_1: bad switch [in module %s]"),
19913 bfd_get_filename (abfd));
19914 }
19915
19916 return retval;
19917 }
19918
19919 static const gdb_byte *
19920 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19921 {
19922 /* If the size of a host char is 8 bits, we can return a pointer
19923 to the buffer, otherwise we have to copy the data to a buffer
19924 allocated on the temporary obstack. */
19925 gdb_assert (HOST_CHAR_BIT == 8);
19926 return buf;
19927 }
19928
19929 static const char *
19930 read_direct_string (bfd *abfd, const gdb_byte *buf,
19931 unsigned int *bytes_read_ptr)
19932 {
19933 /* If the size of a host char is 8 bits, we can return a pointer
19934 to the string, otherwise we have to copy the string to a buffer
19935 allocated on the temporary obstack. */
19936 gdb_assert (HOST_CHAR_BIT == 8);
19937 if (*buf == '\0')
19938 {
19939 *bytes_read_ptr = 1;
19940 return NULL;
19941 }
19942 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19943 return (const char *) buf;
19944 }
19945
19946 /* Return pointer to string at section SECT offset STR_OFFSET with error
19947 reporting strings FORM_NAME and SECT_NAME. */
19948
19949 static const char *
19950 read_indirect_string_at_offset_from (struct objfile *objfile,
19951 bfd *abfd, LONGEST str_offset,
19952 struct dwarf2_section_info *sect,
19953 const char *form_name,
19954 const char *sect_name)
19955 {
19956 dwarf2_read_section (objfile, sect);
19957 if (sect->buffer == NULL)
19958 error (_("%s used without %s section [in module %s]"),
19959 form_name, sect_name, bfd_get_filename (abfd));
19960 if (str_offset >= sect->size)
19961 error (_("%s pointing outside of %s section [in module %s]"),
19962 form_name, sect_name, bfd_get_filename (abfd));
19963 gdb_assert (HOST_CHAR_BIT == 8);
19964 if (sect->buffer[str_offset] == '\0')
19965 return NULL;
19966 return (const char *) (sect->buffer + str_offset);
19967 }
19968
19969 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19970
19971 static const char *
19972 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19973 bfd *abfd, LONGEST str_offset)
19974 {
19975 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19976 abfd, str_offset,
19977 &dwarf2_per_objfile->str,
19978 "DW_FORM_strp", ".debug_str");
19979 }
19980
19981 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19982
19983 static const char *
19984 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19985 bfd *abfd, LONGEST str_offset)
19986 {
19987 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19988 abfd, str_offset,
19989 &dwarf2_per_objfile->line_str,
19990 "DW_FORM_line_strp",
19991 ".debug_line_str");
19992 }
19993
19994 /* Read a string at offset STR_OFFSET in the .debug_str section from
19995 the .dwz file DWZ. Throw an error if the offset is too large. If
19996 the string consists of a single NUL byte, return NULL; otherwise
19997 return a pointer to the string. */
19998
19999 static const char *
20000 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
20001 LONGEST str_offset)
20002 {
20003 dwarf2_read_section (objfile, &dwz->str);
20004
20005 if (dwz->str.buffer == NULL)
20006 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
20007 "section [in module %s]"),
20008 bfd_get_filename (dwz->dwz_bfd));
20009 if (str_offset >= dwz->str.size)
20010 error (_("DW_FORM_GNU_strp_alt pointing outside of "
20011 ".debug_str section [in module %s]"),
20012 bfd_get_filename (dwz->dwz_bfd));
20013 gdb_assert (HOST_CHAR_BIT == 8);
20014 if (dwz->str.buffer[str_offset] == '\0')
20015 return NULL;
20016 return (const char *) (dwz->str.buffer + str_offset);
20017 }
20018
20019 /* Return pointer to string at .debug_str offset as read from BUF.
20020 BUF is assumed to be in a compilation unit described by CU_HEADER.
20021 Return *BYTES_READ_PTR count of bytes read from BUF. */
20022
20023 static const char *
20024 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
20025 const gdb_byte *buf,
20026 const struct comp_unit_head *cu_header,
20027 unsigned int *bytes_read_ptr)
20028 {
20029 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
20030
20031 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
20032 }
20033
20034 /* Return pointer to string at .debug_line_str offset as read from BUF.
20035 BUF is assumed to be in a compilation unit described by CU_HEADER.
20036 Return *BYTES_READ_PTR count of bytes read from BUF. */
20037
20038 static const char *
20039 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
20040 bfd *abfd, const gdb_byte *buf,
20041 const struct comp_unit_head *cu_header,
20042 unsigned int *bytes_read_ptr)
20043 {
20044 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
20045
20046 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
20047 str_offset);
20048 }
20049
20050 ULONGEST
20051 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
20052 unsigned int *bytes_read_ptr)
20053 {
20054 ULONGEST result;
20055 unsigned int num_read;
20056 int shift;
20057 unsigned char byte;
20058
20059 result = 0;
20060 shift = 0;
20061 num_read = 0;
20062 while (1)
20063 {
20064 byte = bfd_get_8 (abfd, buf);
20065 buf++;
20066 num_read++;
20067 result |= ((ULONGEST) (byte & 127) << shift);
20068 if ((byte & 128) == 0)
20069 {
20070 break;
20071 }
20072 shift += 7;
20073 }
20074 *bytes_read_ptr = num_read;
20075 return result;
20076 }
20077
20078 static LONGEST
20079 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
20080 unsigned int *bytes_read_ptr)
20081 {
20082 LONGEST result;
20083 int shift, num_read;
20084 unsigned char byte;
20085
20086 result = 0;
20087 shift = 0;
20088 num_read = 0;
20089 while (1)
20090 {
20091 byte = bfd_get_8 (abfd, buf);
20092 buf++;
20093 num_read++;
20094 result |= ((LONGEST) (byte & 127) << shift);
20095 shift += 7;
20096 if ((byte & 128) == 0)
20097 {
20098 break;
20099 }
20100 }
20101 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
20102 result |= -(((LONGEST) 1) << shift);
20103 *bytes_read_ptr = num_read;
20104 return result;
20105 }
20106
20107 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
20108 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
20109 ADDR_SIZE is the size of addresses from the CU header. */
20110
20111 static CORE_ADDR
20112 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
20113 unsigned int addr_index, ULONGEST addr_base, int addr_size)
20114 {
20115 struct objfile *objfile = dwarf2_per_objfile->objfile;
20116 bfd *abfd = objfile->obfd;
20117 const gdb_byte *info_ptr;
20118
20119 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
20120 if (dwarf2_per_objfile->addr.buffer == NULL)
20121 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
20122 objfile_name (objfile));
20123 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
20124 error (_("DW_FORM_addr_index pointing outside of "
20125 ".debug_addr section [in module %s]"),
20126 objfile_name (objfile));
20127 info_ptr = (dwarf2_per_objfile->addr.buffer
20128 + addr_base + addr_index * addr_size);
20129 if (addr_size == 4)
20130 return bfd_get_32 (abfd, info_ptr);
20131 else
20132 return bfd_get_64 (abfd, info_ptr);
20133 }
20134
20135 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
20136
20137 static CORE_ADDR
20138 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
20139 {
20140 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
20141 cu->addr_base, cu->header.addr_size);
20142 }
20143
20144 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20145
20146 static CORE_ADDR
20147 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
20148 unsigned int *bytes_read)
20149 {
20150 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
20151 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20152
20153 return read_addr_index (cu, addr_index);
20154 }
20155
20156 /* Data structure to pass results from dwarf2_read_addr_index_reader
20157 back to dwarf2_read_addr_index. */
20158
20159 struct dwarf2_read_addr_index_data
20160 {
20161 ULONGEST addr_base;
20162 int addr_size;
20163 };
20164
20165 /* die_reader_func for dwarf2_read_addr_index. */
20166
20167 static void
20168 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
20169 const gdb_byte *info_ptr,
20170 struct die_info *comp_unit_die,
20171 int has_children,
20172 void *data)
20173 {
20174 struct dwarf2_cu *cu = reader->cu;
20175 struct dwarf2_read_addr_index_data *aidata =
20176 (struct dwarf2_read_addr_index_data *) data;
20177
20178 aidata->addr_base = cu->addr_base;
20179 aidata->addr_size = cu->header.addr_size;
20180 }
20181
20182 /* Given an index in .debug_addr, fetch the value.
20183 NOTE: This can be called during dwarf expression evaluation,
20184 long after the debug information has been read, and thus per_cu->cu
20185 may no longer exist. */
20186
20187 CORE_ADDR
20188 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
20189 unsigned int addr_index)
20190 {
20191 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
20192 struct objfile *objfile = dwarf2_per_objfile->objfile;
20193 struct dwarf2_cu *cu = per_cu->cu;
20194 ULONGEST addr_base;
20195 int addr_size;
20196
20197 /* We need addr_base and addr_size.
20198 If we don't have PER_CU->cu, we have to get it.
20199 Nasty, but the alternative is storing the needed info in PER_CU,
20200 which at this point doesn't seem justified: it's not clear how frequently
20201 it would get used and it would increase the size of every PER_CU.
20202 Entry points like dwarf2_per_cu_addr_size do a similar thing
20203 so we're not in uncharted territory here.
20204 Alas we need to be a bit more complicated as addr_base is contained
20205 in the DIE.
20206
20207 We don't need to read the entire CU(/TU).
20208 We just need the header and top level die.
20209
20210 IWBN to use the aging mechanism to let us lazily later discard the CU.
20211 For now we skip this optimization. */
20212
20213 if (cu != NULL)
20214 {
20215 addr_base = cu->addr_base;
20216 addr_size = cu->header.addr_size;
20217 }
20218 else
20219 {
20220 struct dwarf2_read_addr_index_data aidata;
20221
20222 /* Note: We can't use init_cutu_and_read_dies_simple here,
20223 we need addr_base. */
20224 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
20225 dwarf2_read_addr_index_reader, &aidata);
20226 addr_base = aidata.addr_base;
20227 addr_size = aidata.addr_size;
20228 }
20229
20230 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
20231 addr_size);
20232 }
20233
20234 /* Given a DW_FORM_GNU_str_index, fetch the string.
20235 This is only used by the Fission support. */
20236
20237 static const char *
20238 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20239 {
20240 struct dwarf2_cu *cu = reader->cu;
20241 struct dwarf2_per_objfile *dwarf2_per_objfile
20242 = cu->per_cu->dwarf2_per_objfile;
20243 struct objfile *objfile = dwarf2_per_objfile->objfile;
20244 const char *objf_name = objfile_name (objfile);
20245 bfd *abfd = objfile->obfd;
20246 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20247 struct dwarf2_section_info *str_offsets_section =
20248 &reader->dwo_file->sections.str_offsets;
20249 const gdb_byte *info_ptr;
20250 ULONGEST str_offset;
20251 static const char form_name[] = "DW_FORM_GNU_str_index";
20252
20253 dwarf2_read_section (objfile, str_section);
20254 dwarf2_read_section (objfile, str_offsets_section);
20255 if (str_section->buffer == NULL)
20256 error (_("%s used without .debug_str.dwo section"
20257 " in CU at offset %s [in module %s]"),
20258 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20259 if (str_offsets_section->buffer == NULL)
20260 error (_("%s used without .debug_str_offsets.dwo section"
20261 " in CU at offset %s [in module %s]"),
20262 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20263 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20264 error (_("%s pointing outside of .debug_str_offsets.dwo"
20265 " section in CU at offset %s [in module %s]"),
20266 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20267 info_ptr = (str_offsets_section->buffer
20268 + str_index * cu->header.offset_size);
20269 if (cu->header.offset_size == 4)
20270 str_offset = bfd_get_32 (abfd, info_ptr);
20271 else
20272 str_offset = bfd_get_64 (abfd, info_ptr);
20273 if (str_offset >= str_section->size)
20274 error (_("Offset from %s pointing outside of"
20275 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20276 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20277 return (const char *) (str_section->buffer + str_offset);
20278 }
20279
20280 /* Return the length of an LEB128 number in BUF. */
20281
20282 static int
20283 leb128_size (const gdb_byte *buf)
20284 {
20285 const gdb_byte *begin = buf;
20286 gdb_byte byte;
20287
20288 while (1)
20289 {
20290 byte = *buf++;
20291 if ((byte & 128) == 0)
20292 return buf - begin;
20293 }
20294 }
20295
20296 static void
20297 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20298 {
20299 switch (lang)
20300 {
20301 case DW_LANG_C89:
20302 case DW_LANG_C99:
20303 case DW_LANG_C11:
20304 case DW_LANG_C:
20305 case DW_LANG_UPC:
20306 cu->language = language_c;
20307 break;
20308 case DW_LANG_Java:
20309 case DW_LANG_C_plus_plus:
20310 case DW_LANG_C_plus_plus_11:
20311 case DW_LANG_C_plus_plus_14:
20312 cu->language = language_cplus;
20313 break;
20314 case DW_LANG_D:
20315 cu->language = language_d;
20316 break;
20317 case DW_LANG_Fortran77:
20318 case DW_LANG_Fortran90:
20319 case DW_LANG_Fortran95:
20320 case DW_LANG_Fortran03:
20321 case DW_LANG_Fortran08:
20322 cu->language = language_fortran;
20323 break;
20324 case DW_LANG_Go:
20325 cu->language = language_go;
20326 break;
20327 case DW_LANG_Mips_Assembler:
20328 cu->language = language_asm;
20329 break;
20330 case DW_LANG_Ada83:
20331 case DW_LANG_Ada95:
20332 cu->language = language_ada;
20333 break;
20334 case DW_LANG_Modula2:
20335 cu->language = language_m2;
20336 break;
20337 case DW_LANG_Pascal83:
20338 cu->language = language_pascal;
20339 break;
20340 case DW_LANG_ObjC:
20341 cu->language = language_objc;
20342 break;
20343 case DW_LANG_Rust:
20344 case DW_LANG_Rust_old:
20345 cu->language = language_rust;
20346 break;
20347 case DW_LANG_Cobol74:
20348 case DW_LANG_Cobol85:
20349 default:
20350 cu->language = language_minimal;
20351 break;
20352 }
20353 cu->language_defn = language_def (cu->language);
20354 }
20355
20356 /* Return the named attribute or NULL if not there. */
20357
20358 static struct attribute *
20359 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20360 {
20361 for (;;)
20362 {
20363 unsigned int i;
20364 struct attribute *spec = NULL;
20365
20366 for (i = 0; i < die->num_attrs; ++i)
20367 {
20368 if (die->attrs[i].name == name)
20369 return &die->attrs[i];
20370 if (die->attrs[i].name == DW_AT_specification
20371 || die->attrs[i].name == DW_AT_abstract_origin)
20372 spec = &die->attrs[i];
20373 }
20374
20375 if (!spec)
20376 break;
20377
20378 die = follow_die_ref (die, spec, &cu);
20379 }
20380
20381 return NULL;
20382 }
20383
20384 /* Return the named attribute or NULL if not there,
20385 but do not follow DW_AT_specification, etc.
20386 This is for use in contexts where we're reading .debug_types dies.
20387 Following DW_AT_specification, DW_AT_abstract_origin will take us
20388 back up the chain, and we want to go down. */
20389
20390 static struct attribute *
20391 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20392 {
20393 unsigned int i;
20394
20395 for (i = 0; i < die->num_attrs; ++i)
20396 if (die->attrs[i].name == name)
20397 return &die->attrs[i];
20398
20399 return NULL;
20400 }
20401
20402 /* Return the string associated with a string-typed attribute, or NULL if it
20403 is either not found or is of an incorrect type. */
20404
20405 static const char *
20406 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20407 {
20408 struct attribute *attr;
20409 const char *str = NULL;
20410
20411 attr = dwarf2_attr (die, name, cu);
20412
20413 if (attr != NULL)
20414 {
20415 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20416 || attr->form == DW_FORM_string
20417 || attr->form == DW_FORM_GNU_str_index
20418 || attr->form == DW_FORM_GNU_strp_alt)
20419 str = DW_STRING (attr);
20420 else
20421 complaint (&symfile_complaints,
20422 _("string type expected for attribute %s for "
20423 "DIE at %s in module %s"),
20424 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20425 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20426 }
20427
20428 return str;
20429 }
20430
20431 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20432 and holds a non-zero value. This function should only be used for
20433 DW_FORM_flag or DW_FORM_flag_present attributes. */
20434
20435 static int
20436 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20437 {
20438 struct attribute *attr = dwarf2_attr (die, name, cu);
20439
20440 return (attr && DW_UNSND (attr));
20441 }
20442
20443 static int
20444 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20445 {
20446 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20447 which value is non-zero. However, we have to be careful with
20448 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20449 (via dwarf2_flag_true_p) follows this attribute. So we may
20450 end up accidently finding a declaration attribute that belongs
20451 to a different DIE referenced by the specification attribute,
20452 even though the given DIE does not have a declaration attribute. */
20453 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20454 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20455 }
20456
20457 /* Return the die giving the specification for DIE, if there is
20458 one. *SPEC_CU is the CU containing DIE on input, and the CU
20459 containing the return value on output. If there is no
20460 specification, but there is an abstract origin, that is
20461 returned. */
20462
20463 static struct die_info *
20464 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20465 {
20466 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20467 *spec_cu);
20468
20469 if (spec_attr == NULL)
20470 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20471
20472 if (spec_attr == NULL)
20473 return NULL;
20474 else
20475 return follow_die_ref (die, spec_attr, spec_cu);
20476 }
20477
20478 /* Stub for free_line_header to match void * callback types. */
20479
20480 static void
20481 free_line_header_voidp (void *arg)
20482 {
20483 struct line_header *lh = (struct line_header *) arg;
20484
20485 delete lh;
20486 }
20487
20488 void
20489 line_header::add_include_dir (const char *include_dir)
20490 {
20491 if (dwarf_line_debug >= 2)
20492 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20493 include_dirs.size () + 1, include_dir);
20494
20495 include_dirs.push_back (include_dir);
20496 }
20497
20498 void
20499 line_header::add_file_name (const char *name,
20500 dir_index d_index,
20501 unsigned int mod_time,
20502 unsigned int length)
20503 {
20504 if (dwarf_line_debug >= 2)
20505 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20506 (unsigned) file_names.size () + 1, name);
20507
20508 file_names.emplace_back (name, d_index, mod_time, length);
20509 }
20510
20511 /* A convenience function to find the proper .debug_line section for a CU. */
20512
20513 static struct dwarf2_section_info *
20514 get_debug_line_section (struct dwarf2_cu *cu)
20515 {
20516 struct dwarf2_section_info *section;
20517 struct dwarf2_per_objfile *dwarf2_per_objfile
20518 = cu->per_cu->dwarf2_per_objfile;
20519
20520 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20521 DWO file. */
20522 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20523 section = &cu->dwo_unit->dwo_file->sections.line;
20524 else if (cu->per_cu->is_dwz)
20525 {
20526 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20527
20528 section = &dwz->line;
20529 }
20530 else
20531 section = &dwarf2_per_objfile->line;
20532
20533 return section;
20534 }
20535
20536 /* Read directory or file name entry format, starting with byte of
20537 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20538 entries count and the entries themselves in the described entry
20539 format. */
20540
20541 static void
20542 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20543 bfd *abfd, const gdb_byte **bufp,
20544 struct line_header *lh,
20545 const struct comp_unit_head *cu_header,
20546 void (*callback) (struct line_header *lh,
20547 const char *name,
20548 dir_index d_index,
20549 unsigned int mod_time,
20550 unsigned int length))
20551 {
20552 gdb_byte format_count, formati;
20553 ULONGEST data_count, datai;
20554 const gdb_byte *buf = *bufp;
20555 const gdb_byte *format_header_data;
20556 unsigned int bytes_read;
20557
20558 format_count = read_1_byte (abfd, buf);
20559 buf += 1;
20560 format_header_data = buf;
20561 for (formati = 0; formati < format_count; formati++)
20562 {
20563 read_unsigned_leb128 (abfd, buf, &bytes_read);
20564 buf += bytes_read;
20565 read_unsigned_leb128 (abfd, buf, &bytes_read);
20566 buf += bytes_read;
20567 }
20568
20569 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20570 buf += bytes_read;
20571 for (datai = 0; datai < data_count; datai++)
20572 {
20573 const gdb_byte *format = format_header_data;
20574 struct file_entry fe;
20575
20576 for (formati = 0; formati < format_count; formati++)
20577 {
20578 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20579 format += bytes_read;
20580
20581 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20582 format += bytes_read;
20583
20584 gdb::optional<const char *> string;
20585 gdb::optional<unsigned int> uint;
20586
20587 switch (form)
20588 {
20589 case DW_FORM_string:
20590 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20591 buf += bytes_read;
20592 break;
20593
20594 case DW_FORM_line_strp:
20595 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20596 abfd, buf,
20597 cu_header,
20598 &bytes_read));
20599 buf += bytes_read;
20600 break;
20601
20602 case DW_FORM_data1:
20603 uint.emplace (read_1_byte (abfd, buf));
20604 buf += 1;
20605 break;
20606
20607 case DW_FORM_data2:
20608 uint.emplace (read_2_bytes (abfd, buf));
20609 buf += 2;
20610 break;
20611
20612 case DW_FORM_data4:
20613 uint.emplace (read_4_bytes (abfd, buf));
20614 buf += 4;
20615 break;
20616
20617 case DW_FORM_data8:
20618 uint.emplace (read_8_bytes (abfd, buf));
20619 buf += 8;
20620 break;
20621
20622 case DW_FORM_udata:
20623 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20624 buf += bytes_read;
20625 break;
20626
20627 case DW_FORM_block:
20628 /* It is valid only for DW_LNCT_timestamp which is ignored by
20629 current GDB. */
20630 break;
20631 }
20632
20633 switch (content_type)
20634 {
20635 case DW_LNCT_path:
20636 if (string.has_value ())
20637 fe.name = *string;
20638 break;
20639 case DW_LNCT_directory_index:
20640 if (uint.has_value ())
20641 fe.d_index = (dir_index) *uint;
20642 break;
20643 case DW_LNCT_timestamp:
20644 if (uint.has_value ())
20645 fe.mod_time = *uint;
20646 break;
20647 case DW_LNCT_size:
20648 if (uint.has_value ())
20649 fe.length = *uint;
20650 break;
20651 case DW_LNCT_MD5:
20652 break;
20653 default:
20654 complaint (&symfile_complaints,
20655 _("Unknown format content type %s"),
20656 pulongest (content_type));
20657 }
20658 }
20659
20660 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20661 }
20662
20663 *bufp = buf;
20664 }
20665
20666 /* Read the statement program header starting at OFFSET in
20667 .debug_line, or .debug_line.dwo. Return a pointer
20668 to a struct line_header, allocated using xmalloc.
20669 Returns NULL if there is a problem reading the header, e.g., if it
20670 has a version we don't understand.
20671
20672 NOTE: the strings in the include directory and file name tables of
20673 the returned object point into the dwarf line section buffer,
20674 and must not be freed. */
20675
20676 static line_header_up
20677 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20678 {
20679 const gdb_byte *line_ptr;
20680 unsigned int bytes_read, offset_size;
20681 int i;
20682 const char *cur_dir, *cur_file;
20683 struct dwarf2_section_info *section;
20684 bfd *abfd;
20685 struct dwarf2_per_objfile *dwarf2_per_objfile
20686 = cu->per_cu->dwarf2_per_objfile;
20687
20688 section = get_debug_line_section (cu);
20689 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20690 if (section->buffer == NULL)
20691 {
20692 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20693 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
20694 else
20695 complaint (&symfile_complaints, _("missing .debug_line section"));
20696 return 0;
20697 }
20698
20699 /* We can't do this until we know the section is non-empty.
20700 Only then do we know we have such a section. */
20701 abfd = get_section_bfd_owner (section);
20702
20703 /* Make sure that at least there's room for the total_length field.
20704 That could be 12 bytes long, but we're just going to fudge that. */
20705 if (to_underlying (sect_off) + 4 >= section->size)
20706 {
20707 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20708 return 0;
20709 }
20710
20711 line_header_up lh (new line_header ());
20712
20713 lh->sect_off = sect_off;
20714 lh->offset_in_dwz = cu->per_cu->is_dwz;
20715
20716 line_ptr = section->buffer + to_underlying (sect_off);
20717
20718 /* Read in the header. */
20719 lh->total_length =
20720 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20721 &bytes_read, &offset_size);
20722 line_ptr += bytes_read;
20723 if (line_ptr + lh->total_length > (section->buffer + section->size))
20724 {
20725 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20726 return 0;
20727 }
20728 lh->statement_program_end = line_ptr + lh->total_length;
20729 lh->version = read_2_bytes (abfd, line_ptr);
20730 line_ptr += 2;
20731 if (lh->version > 5)
20732 {
20733 /* This is a version we don't understand. The format could have
20734 changed in ways we don't handle properly so just punt. */
20735 complaint (&symfile_complaints,
20736 _("unsupported version in .debug_line section"));
20737 return NULL;
20738 }
20739 if (lh->version >= 5)
20740 {
20741 gdb_byte segment_selector_size;
20742
20743 /* Skip address size. */
20744 read_1_byte (abfd, line_ptr);
20745 line_ptr += 1;
20746
20747 segment_selector_size = read_1_byte (abfd, line_ptr);
20748 line_ptr += 1;
20749 if (segment_selector_size != 0)
20750 {
20751 complaint (&symfile_complaints,
20752 _("unsupported segment selector size %u "
20753 "in .debug_line section"),
20754 segment_selector_size);
20755 return NULL;
20756 }
20757 }
20758 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20759 line_ptr += offset_size;
20760 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20761 line_ptr += 1;
20762 if (lh->version >= 4)
20763 {
20764 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20765 line_ptr += 1;
20766 }
20767 else
20768 lh->maximum_ops_per_instruction = 1;
20769
20770 if (lh->maximum_ops_per_instruction == 0)
20771 {
20772 lh->maximum_ops_per_instruction = 1;
20773 complaint (&symfile_complaints,
20774 _("invalid maximum_ops_per_instruction "
20775 "in `.debug_line' section"));
20776 }
20777
20778 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20779 line_ptr += 1;
20780 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20781 line_ptr += 1;
20782 lh->line_range = read_1_byte (abfd, line_ptr);
20783 line_ptr += 1;
20784 lh->opcode_base = read_1_byte (abfd, line_ptr);
20785 line_ptr += 1;
20786 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20787
20788 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20789 for (i = 1; i < lh->opcode_base; ++i)
20790 {
20791 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20792 line_ptr += 1;
20793 }
20794
20795 if (lh->version >= 5)
20796 {
20797 /* Read directory table. */
20798 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20799 &cu->header,
20800 [] (struct line_header *lh, const char *name,
20801 dir_index d_index, unsigned int mod_time,
20802 unsigned int length)
20803 {
20804 lh->add_include_dir (name);
20805 });
20806
20807 /* Read file name table. */
20808 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20809 &cu->header,
20810 [] (struct line_header *lh, const char *name,
20811 dir_index d_index, unsigned int mod_time,
20812 unsigned int length)
20813 {
20814 lh->add_file_name (name, d_index, mod_time, length);
20815 });
20816 }
20817 else
20818 {
20819 /* Read directory table. */
20820 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20821 {
20822 line_ptr += bytes_read;
20823 lh->add_include_dir (cur_dir);
20824 }
20825 line_ptr += bytes_read;
20826
20827 /* Read file name table. */
20828 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20829 {
20830 unsigned int mod_time, length;
20831 dir_index d_index;
20832
20833 line_ptr += bytes_read;
20834 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20835 line_ptr += bytes_read;
20836 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20837 line_ptr += bytes_read;
20838 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20839 line_ptr += bytes_read;
20840
20841 lh->add_file_name (cur_file, d_index, mod_time, length);
20842 }
20843 line_ptr += bytes_read;
20844 }
20845 lh->statement_program_start = line_ptr;
20846
20847 if (line_ptr > (section->buffer + section->size))
20848 complaint (&symfile_complaints,
20849 _("line number info header doesn't "
20850 "fit in `.debug_line' section"));
20851
20852 return lh;
20853 }
20854
20855 /* Subroutine of dwarf_decode_lines to simplify it.
20856 Return the file name of the psymtab for included file FILE_INDEX
20857 in line header LH of PST.
20858 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20859 If space for the result is malloc'd, *NAME_HOLDER will be set.
20860 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20861
20862 static const char *
20863 psymtab_include_file_name (const struct line_header *lh, int file_index,
20864 const struct partial_symtab *pst,
20865 const char *comp_dir,
20866 gdb::unique_xmalloc_ptr<char> *name_holder)
20867 {
20868 const file_entry &fe = lh->file_names[file_index];
20869 const char *include_name = fe.name;
20870 const char *include_name_to_compare = include_name;
20871 const char *pst_filename;
20872 int file_is_pst;
20873
20874 const char *dir_name = fe.include_dir (lh);
20875
20876 gdb::unique_xmalloc_ptr<char> hold_compare;
20877 if (!IS_ABSOLUTE_PATH (include_name)
20878 && (dir_name != NULL || comp_dir != NULL))
20879 {
20880 /* Avoid creating a duplicate psymtab for PST.
20881 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20882 Before we do the comparison, however, we need to account
20883 for DIR_NAME and COMP_DIR.
20884 First prepend dir_name (if non-NULL). If we still don't
20885 have an absolute path prepend comp_dir (if non-NULL).
20886 However, the directory we record in the include-file's
20887 psymtab does not contain COMP_DIR (to match the
20888 corresponding symtab(s)).
20889
20890 Example:
20891
20892 bash$ cd /tmp
20893 bash$ gcc -g ./hello.c
20894 include_name = "hello.c"
20895 dir_name = "."
20896 DW_AT_comp_dir = comp_dir = "/tmp"
20897 DW_AT_name = "./hello.c"
20898
20899 */
20900
20901 if (dir_name != NULL)
20902 {
20903 name_holder->reset (concat (dir_name, SLASH_STRING,
20904 include_name, (char *) NULL));
20905 include_name = name_holder->get ();
20906 include_name_to_compare = include_name;
20907 }
20908 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20909 {
20910 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20911 include_name, (char *) NULL));
20912 include_name_to_compare = hold_compare.get ();
20913 }
20914 }
20915
20916 pst_filename = pst->filename;
20917 gdb::unique_xmalloc_ptr<char> copied_name;
20918 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20919 {
20920 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20921 pst_filename, (char *) NULL));
20922 pst_filename = copied_name.get ();
20923 }
20924
20925 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20926
20927 if (file_is_pst)
20928 return NULL;
20929 return include_name;
20930 }
20931
20932 /* State machine to track the state of the line number program. */
20933
20934 class lnp_state_machine
20935 {
20936 public:
20937 /* Initialize a machine state for the start of a line number
20938 program. */
20939 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
20940
20941 file_entry *current_file ()
20942 {
20943 /* lh->file_names is 0-based, but the file name numbers in the
20944 statement program are 1-based. */
20945 return m_line_header->file_name_at (m_file);
20946 }
20947
20948 /* Record the line in the state machine. END_SEQUENCE is true if
20949 we're processing the end of a sequence. */
20950 void record_line (bool end_sequence);
20951
20952 /* Check address and if invalid nop-out the rest of the lines in this
20953 sequence. */
20954 void check_line_address (struct dwarf2_cu *cu,
20955 const gdb_byte *line_ptr,
20956 CORE_ADDR lowpc, CORE_ADDR address);
20957
20958 void handle_set_discriminator (unsigned int discriminator)
20959 {
20960 m_discriminator = discriminator;
20961 m_line_has_non_zero_discriminator |= discriminator != 0;
20962 }
20963
20964 /* Handle DW_LNE_set_address. */
20965 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20966 {
20967 m_op_index = 0;
20968 address += baseaddr;
20969 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20970 }
20971
20972 /* Handle DW_LNS_advance_pc. */
20973 void handle_advance_pc (CORE_ADDR adjust);
20974
20975 /* Handle a special opcode. */
20976 void handle_special_opcode (unsigned char op_code);
20977
20978 /* Handle DW_LNS_advance_line. */
20979 void handle_advance_line (int line_delta)
20980 {
20981 advance_line (line_delta);
20982 }
20983
20984 /* Handle DW_LNS_set_file. */
20985 void handle_set_file (file_name_index file);
20986
20987 /* Handle DW_LNS_negate_stmt. */
20988 void handle_negate_stmt ()
20989 {
20990 m_is_stmt = !m_is_stmt;
20991 }
20992
20993 /* Handle DW_LNS_const_add_pc. */
20994 void handle_const_add_pc ();
20995
20996 /* Handle DW_LNS_fixed_advance_pc. */
20997 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20998 {
20999 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21000 m_op_index = 0;
21001 }
21002
21003 /* Handle DW_LNS_copy. */
21004 void handle_copy ()
21005 {
21006 record_line (false);
21007 m_discriminator = 0;
21008 }
21009
21010 /* Handle DW_LNE_end_sequence. */
21011 void handle_end_sequence ()
21012 {
21013 m_record_line_callback = ::record_line;
21014 }
21015
21016 private:
21017 /* Advance the line by LINE_DELTA. */
21018 void advance_line (int line_delta)
21019 {
21020 m_line += line_delta;
21021
21022 if (line_delta != 0)
21023 m_line_has_non_zero_discriminator = m_discriminator != 0;
21024 }
21025
21026 gdbarch *m_gdbarch;
21027
21028 /* True if we're recording lines.
21029 Otherwise we're building partial symtabs and are just interested in
21030 finding include files mentioned by the line number program. */
21031 bool m_record_lines_p;
21032
21033 /* The line number header. */
21034 line_header *m_line_header;
21035
21036 /* These are part of the standard DWARF line number state machine,
21037 and initialized according to the DWARF spec. */
21038
21039 unsigned char m_op_index = 0;
21040 /* The line table index (1-based) of the current file. */
21041 file_name_index m_file = (file_name_index) 1;
21042 unsigned int m_line = 1;
21043
21044 /* These are initialized in the constructor. */
21045
21046 CORE_ADDR m_address;
21047 bool m_is_stmt;
21048 unsigned int m_discriminator;
21049
21050 /* Additional bits of state we need to track. */
21051
21052 /* The last file that we called dwarf2_start_subfile for.
21053 This is only used for TLLs. */
21054 unsigned int m_last_file = 0;
21055 /* The last file a line number was recorded for. */
21056 struct subfile *m_last_subfile = NULL;
21057
21058 /* The function to call to record a line. */
21059 record_line_ftype *m_record_line_callback = NULL;
21060
21061 /* The last line number that was recorded, used to coalesce
21062 consecutive entries for the same line. This can happen, for
21063 example, when discriminators are present. PR 17276. */
21064 unsigned int m_last_line = 0;
21065 bool m_line_has_non_zero_discriminator = false;
21066 };
21067
21068 void
21069 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
21070 {
21071 CORE_ADDR addr_adj = (((m_op_index + adjust)
21072 / m_line_header->maximum_ops_per_instruction)
21073 * m_line_header->minimum_instruction_length);
21074 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21075 m_op_index = ((m_op_index + adjust)
21076 % m_line_header->maximum_ops_per_instruction);
21077 }
21078
21079 void
21080 lnp_state_machine::handle_special_opcode (unsigned char op_code)
21081 {
21082 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
21083 CORE_ADDR addr_adj = (((m_op_index
21084 + (adj_opcode / m_line_header->line_range))
21085 / m_line_header->maximum_ops_per_instruction)
21086 * m_line_header->minimum_instruction_length);
21087 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21088 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
21089 % m_line_header->maximum_ops_per_instruction);
21090
21091 int line_delta = (m_line_header->line_base
21092 + (adj_opcode % m_line_header->line_range));
21093 advance_line (line_delta);
21094 record_line (false);
21095 m_discriminator = 0;
21096 }
21097
21098 void
21099 lnp_state_machine::handle_set_file (file_name_index file)
21100 {
21101 m_file = file;
21102
21103 const file_entry *fe = current_file ();
21104 if (fe == NULL)
21105 dwarf2_debug_line_missing_file_complaint ();
21106 else if (m_record_lines_p)
21107 {
21108 const char *dir = fe->include_dir (m_line_header);
21109
21110 m_last_subfile = current_subfile;
21111 m_line_has_non_zero_discriminator = m_discriminator != 0;
21112 dwarf2_start_subfile (fe->name, dir);
21113 }
21114 }
21115
21116 void
21117 lnp_state_machine::handle_const_add_pc ()
21118 {
21119 CORE_ADDR adjust
21120 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
21121
21122 CORE_ADDR addr_adj
21123 = (((m_op_index + adjust)
21124 / m_line_header->maximum_ops_per_instruction)
21125 * m_line_header->minimum_instruction_length);
21126
21127 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21128 m_op_index = ((m_op_index + adjust)
21129 % m_line_header->maximum_ops_per_instruction);
21130 }
21131
21132 /* Ignore this record_line request. */
21133
21134 static void
21135 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
21136 {
21137 return;
21138 }
21139
21140 /* Return non-zero if we should add LINE to the line number table.
21141 LINE is the line to add, LAST_LINE is the last line that was added,
21142 LAST_SUBFILE is the subfile for LAST_LINE.
21143 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
21144 had a non-zero discriminator.
21145
21146 We have to be careful in the presence of discriminators.
21147 E.g., for this line:
21148
21149 for (i = 0; i < 100000; i++);
21150
21151 clang can emit four line number entries for that one line,
21152 each with a different discriminator.
21153 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
21154
21155 However, we want gdb to coalesce all four entries into one.
21156 Otherwise the user could stepi into the middle of the line and
21157 gdb would get confused about whether the pc really was in the
21158 middle of the line.
21159
21160 Things are further complicated by the fact that two consecutive
21161 line number entries for the same line is a heuristic used by gcc
21162 to denote the end of the prologue. So we can't just discard duplicate
21163 entries, we have to be selective about it. The heuristic we use is
21164 that we only collapse consecutive entries for the same line if at least
21165 one of those entries has a non-zero discriminator. PR 17276.
21166
21167 Note: Addresses in the line number state machine can never go backwards
21168 within one sequence, thus this coalescing is ok. */
21169
21170 static int
21171 dwarf_record_line_p (unsigned int line, unsigned int last_line,
21172 int line_has_non_zero_discriminator,
21173 struct subfile *last_subfile)
21174 {
21175 if (current_subfile != last_subfile)
21176 return 1;
21177 if (line != last_line)
21178 return 1;
21179 /* Same line for the same file that we've seen already.
21180 As a last check, for pr 17276, only record the line if the line
21181 has never had a non-zero discriminator. */
21182 if (!line_has_non_zero_discriminator)
21183 return 1;
21184 return 0;
21185 }
21186
21187 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
21188 in the line table of subfile SUBFILE. */
21189
21190 static void
21191 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
21192 unsigned int line, CORE_ADDR address,
21193 record_line_ftype p_record_line)
21194 {
21195 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
21196
21197 if (dwarf_line_debug)
21198 {
21199 fprintf_unfiltered (gdb_stdlog,
21200 "Recording line %u, file %s, address %s\n",
21201 line, lbasename (subfile->name),
21202 paddress (gdbarch, address));
21203 }
21204
21205 (*p_record_line) (subfile, line, addr);
21206 }
21207
21208 /* Subroutine of dwarf_decode_lines_1 to simplify it.
21209 Mark the end of a set of line number records.
21210 The arguments are the same as for dwarf_record_line_1.
21211 If SUBFILE is NULL the request is ignored. */
21212
21213 static void
21214 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
21215 CORE_ADDR address, record_line_ftype p_record_line)
21216 {
21217 if (subfile == NULL)
21218 return;
21219
21220 if (dwarf_line_debug)
21221 {
21222 fprintf_unfiltered (gdb_stdlog,
21223 "Finishing current line, file %s, address %s\n",
21224 lbasename (subfile->name),
21225 paddress (gdbarch, address));
21226 }
21227
21228 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
21229 }
21230
21231 void
21232 lnp_state_machine::record_line (bool end_sequence)
21233 {
21234 if (dwarf_line_debug)
21235 {
21236 fprintf_unfiltered (gdb_stdlog,
21237 "Processing actual line %u: file %u,"
21238 " address %s, is_stmt %u, discrim %u\n",
21239 m_line, to_underlying (m_file),
21240 paddress (m_gdbarch, m_address),
21241 m_is_stmt, m_discriminator);
21242 }
21243
21244 file_entry *fe = current_file ();
21245
21246 if (fe == NULL)
21247 dwarf2_debug_line_missing_file_complaint ();
21248 /* For now we ignore lines not starting on an instruction boundary.
21249 But not when processing end_sequence for compatibility with the
21250 previous version of the code. */
21251 else if (m_op_index == 0 || end_sequence)
21252 {
21253 fe->included_p = 1;
21254 if (m_record_lines_p && m_is_stmt)
21255 {
21256 if (m_last_subfile != current_subfile || end_sequence)
21257 {
21258 dwarf_finish_line (m_gdbarch, m_last_subfile,
21259 m_address, m_record_line_callback);
21260 }
21261
21262 if (!end_sequence)
21263 {
21264 if (dwarf_record_line_p (m_line, m_last_line,
21265 m_line_has_non_zero_discriminator,
21266 m_last_subfile))
21267 {
21268 dwarf_record_line_1 (m_gdbarch, current_subfile,
21269 m_line, m_address,
21270 m_record_line_callback);
21271 }
21272 m_last_subfile = current_subfile;
21273 m_last_line = m_line;
21274 }
21275 }
21276 }
21277 }
21278
21279 lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
21280 bool record_lines_p)
21281 {
21282 m_gdbarch = arch;
21283 m_record_lines_p = record_lines_p;
21284 m_line_header = lh;
21285
21286 m_record_line_callback = ::record_line;
21287
21288 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21289 was a line entry for it so that the backend has a chance to adjust it
21290 and also record it in case it needs it. This is currently used by MIPS
21291 code, cf. `mips_adjust_dwarf2_line'. */
21292 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21293 m_is_stmt = lh->default_is_stmt;
21294 m_discriminator = 0;
21295 }
21296
21297 void
21298 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21299 const gdb_byte *line_ptr,
21300 CORE_ADDR lowpc, CORE_ADDR address)
21301 {
21302 /* If address < lowpc then it's not a usable value, it's outside the
21303 pc range of the CU. However, we restrict the test to only address
21304 values of zero to preserve GDB's previous behaviour which is to
21305 handle the specific case of a function being GC'd by the linker. */
21306
21307 if (address == 0 && address < lowpc)
21308 {
21309 /* This line table is for a function which has been
21310 GCd by the linker. Ignore it. PR gdb/12528 */
21311
21312 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21313 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21314
21315 complaint (&symfile_complaints,
21316 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21317 line_offset, objfile_name (objfile));
21318 m_record_line_callback = noop_record_line;
21319 /* Note: record_line_callback is left as noop_record_line until
21320 we see DW_LNE_end_sequence. */
21321 }
21322 }
21323
21324 /* Subroutine of dwarf_decode_lines to simplify it.
21325 Process the line number information in LH.
21326 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21327 program in order to set included_p for every referenced header. */
21328
21329 static void
21330 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21331 const int decode_for_pst_p, CORE_ADDR lowpc)
21332 {
21333 const gdb_byte *line_ptr, *extended_end;
21334 const gdb_byte *line_end;
21335 unsigned int bytes_read, extended_len;
21336 unsigned char op_code, extended_op;
21337 CORE_ADDR baseaddr;
21338 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21339 bfd *abfd = objfile->obfd;
21340 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21341 /* True if we're recording line info (as opposed to building partial
21342 symtabs and just interested in finding include files mentioned by
21343 the line number program). */
21344 bool record_lines_p = !decode_for_pst_p;
21345
21346 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21347
21348 line_ptr = lh->statement_program_start;
21349 line_end = lh->statement_program_end;
21350
21351 /* Read the statement sequences until there's nothing left. */
21352 while (line_ptr < line_end)
21353 {
21354 /* The DWARF line number program state machine. Reset the state
21355 machine at the start of each sequence. */
21356 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
21357 bool end_sequence = false;
21358
21359 if (record_lines_p)
21360 {
21361 /* Start a subfile for the current file of the state
21362 machine. */
21363 const file_entry *fe = state_machine.current_file ();
21364
21365 if (fe != NULL)
21366 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
21367 }
21368
21369 /* Decode the table. */
21370 while (line_ptr < line_end && !end_sequence)
21371 {
21372 op_code = read_1_byte (abfd, line_ptr);
21373 line_ptr += 1;
21374
21375 if (op_code >= lh->opcode_base)
21376 {
21377 /* Special opcode. */
21378 state_machine.handle_special_opcode (op_code);
21379 }
21380 else switch (op_code)
21381 {
21382 case DW_LNS_extended_op:
21383 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21384 &bytes_read);
21385 line_ptr += bytes_read;
21386 extended_end = line_ptr + extended_len;
21387 extended_op = read_1_byte (abfd, line_ptr);
21388 line_ptr += 1;
21389 switch (extended_op)
21390 {
21391 case DW_LNE_end_sequence:
21392 state_machine.handle_end_sequence ();
21393 end_sequence = true;
21394 break;
21395 case DW_LNE_set_address:
21396 {
21397 CORE_ADDR address
21398 = read_address (abfd, line_ptr, cu, &bytes_read);
21399 line_ptr += bytes_read;
21400
21401 state_machine.check_line_address (cu, line_ptr,
21402 lowpc, address);
21403 state_machine.handle_set_address (baseaddr, address);
21404 }
21405 break;
21406 case DW_LNE_define_file:
21407 {
21408 const char *cur_file;
21409 unsigned int mod_time, length;
21410 dir_index dindex;
21411
21412 cur_file = read_direct_string (abfd, line_ptr,
21413 &bytes_read);
21414 line_ptr += bytes_read;
21415 dindex = (dir_index)
21416 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21417 line_ptr += bytes_read;
21418 mod_time =
21419 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21420 line_ptr += bytes_read;
21421 length =
21422 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21423 line_ptr += bytes_read;
21424 lh->add_file_name (cur_file, dindex, mod_time, length);
21425 }
21426 break;
21427 case DW_LNE_set_discriminator:
21428 {
21429 /* The discriminator is not interesting to the
21430 debugger; just ignore it. We still need to
21431 check its value though:
21432 if there are consecutive entries for the same
21433 (non-prologue) line we want to coalesce them.
21434 PR 17276. */
21435 unsigned int discr
21436 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21437 line_ptr += bytes_read;
21438
21439 state_machine.handle_set_discriminator (discr);
21440 }
21441 break;
21442 default:
21443 complaint (&symfile_complaints,
21444 _("mangled .debug_line section"));
21445 return;
21446 }
21447 /* Make sure that we parsed the extended op correctly. If e.g.
21448 we expected a different address size than the producer used,
21449 we may have read the wrong number of bytes. */
21450 if (line_ptr != extended_end)
21451 {
21452 complaint (&symfile_complaints,
21453 _("mangled .debug_line section"));
21454 return;
21455 }
21456 break;
21457 case DW_LNS_copy:
21458 state_machine.handle_copy ();
21459 break;
21460 case DW_LNS_advance_pc:
21461 {
21462 CORE_ADDR adjust
21463 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21464 line_ptr += bytes_read;
21465
21466 state_machine.handle_advance_pc (adjust);
21467 }
21468 break;
21469 case DW_LNS_advance_line:
21470 {
21471 int line_delta
21472 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21473 line_ptr += bytes_read;
21474
21475 state_machine.handle_advance_line (line_delta);
21476 }
21477 break;
21478 case DW_LNS_set_file:
21479 {
21480 file_name_index file
21481 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21482 &bytes_read);
21483 line_ptr += bytes_read;
21484
21485 state_machine.handle_set_file (file);
21486 }
21487 break;
21488 case DW_LNS_set_column:
21489 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21490 line_ptr += bytes_read;
21491 break;
21492 case DW_LNS_negate_stmt:
21493 state_machine.handle_negate_stmt ();
21494 break;
21495 case DW_LNS_set_basic_block:
21496 break;
21497 /* Add to the address register of the state machine the
21498 address increment value corresponding to special opcode
21499 255. I.e., this value is scaled by the minimum
21500 instruction length since special opcode 255 would have
21501 scaled the increment. */
21502 case DW_LNS_const_add_pc:
21503 state_machine.handle_const_add_pc ();
21504 break;
21505 case DW_LNS_fixed_advance_pc:
21506 {
21507 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21508 line_ptr += 2;
21509
21510 state_machine.handle_fixed_advance_pc (addr_adj);
21511 }
21512 break;
21513 default:
21514 {
21515 /* Unknown standard opcode, ignore it. */
21516 int i;
21517
21518 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21519 {
21520 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21521 line_ptr += bytes_read;
21522 }
21523 }
21524 }
21525 }
21526
21527 if (!end_sequence)
21528 dwarf2_debug_line_missing_end_sequence_complaint ();
21529
21530 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21531 in which case we still finish recording the last line). */
21532 state_machine.record_line (true);
21533 }
21534 }
21535
21536 /* Decode the Line Number Program (LNP) for the given line_header
21537 structure and CU. The actual information extracted and the type
21538 of structures created from the LNP depends on the value of PST.
21539
21540 1. If PST is NULL, then this procedure uses the data from the program
21541 to create all necessary symbol tables, and their linetables.
21542
21543 2. If PST is not NULL, this procedure reads the program to determine
21544 the list of files included by the unit represented by PST, and
21545 builds all the associated partial symbol tables.
21546
21547 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21548 It is used for relative paths in the line table.
21549 NOTE: When processing partial symtabs (pst != NULL),
21550 comp_dir == pst->dirname.
21551
21552 NOTE: It is important that psymtabs have the same file name (via strcmp)
21553 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21554 symtab we don't use it in the name of the psymtabs we create.
21555 E.g. expand_line_sal requires this when finding psymtabs to expand.
21556 A good testcase for this is mb-inline.exp.
21557
21558 LOWPC is the lowest address in CU (or 0 if not known).
21559
21560 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21561 for its PC<->lines mapping information. Otherwise only the filename
21562 table is read in. */
21563
21564 static void
21565 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21566 struct dwarf2_cu *cu, struct partial_symtab *pst,
21567 CORE_ADDR lowpc, int decode_mapping)
21568 {
21569 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21570 const int decode_for_pst_p = (pst != NULL);
21571
21572 if (decode_mapping)
21573 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21574
21575 if (decode_for_pst_p)
21576 {
21577 int file_index;
21578
21579 /* Now that we're done scanning the Line Header Program, we can
21580 create the psymtab of each included file. */
21581 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21582 if (lh->file_names[file_index].included_p == 1)
21583 {
21584 gdb::unique_xmalloc_ptr<char> name_holder;
21585 const char *include_name =
21586 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21587 &name_holder);
21588 if (include_name != NULL)
21589 dwarf2_create_include_psymtab (include_name, pst, objfile);
21590 }
21591 }
21592 else
21593 {
21594 /* Make sure a symtab is created for every file, even files
21595 which contain only variables (i.e. no code with associated
21596 line numbers). */
21597 struct compunit_symtab *cust = buildsym_compunit_symtab ();
21598 int i;
21599
21600 for (i = 0; i < lh->file_names.size (); i++)
21601 {
21602 file_entry &fe = lh->file_names[i];
21603
21604 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
21605
21606 if (current_subfile->symtab == NULL)
21607 {
21608 current_subfile->symtab
21609 = allocate_symtab (cust, current_subfile->name);
21610 }
21611 fe.symtab = current_subfile->symtab;
21612 }
21613 }
21614 }
21615
21616 /* Start a subfile for DWARF. FILENAME is the name of the file and
21617 DIRNAME the name of the source directory which contains FILENAME
21618 or NULL if not known.
21619 This routine tries to keep line numbers from identical absolute and
21620 relative file names in a common subfile.
21621
21622 Using the `list' example from the GDB testsuite, which resides in
21623 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21624 of /srcdir/list0.c yields the following debugging information for list0.c:
21625
21626 DW_AT_name: /srcdir/list0.c
21627 DW_AT_comp_dir: /compdir
21628 files.files[0].name: list0.h
21629 files.files[0].dir: /srcdir
21630 files.files[1].name: list0.c
21631 files.files[1].dir: /srcdir
21632
21633 The line number information for list0.c has to end up in a single
21634 subfile, so that `break /srcdir/list0.c:1' works as expected.
21635 start_subfile will ensure that this happens provided that we pass the
21636 concatenation of files.files[1].dir and files.files[1].name as the
21637 subfile's name. */
21638
21639 static void
21640 dwarf2_start_subfile (const char *filename, const char *dirname)
21641 {
21642 char *copy = NULL;
21643
21644 /* In order not to lose the line information directory,
21645 we concatenate it to the filename when it makes sense.
21646 Note that the Dwarf3 standard says (speaking of filenames in line
21647 information): ``The directory index is ignored for file names
21648 that represent full path names''. Thus ignoring dirname in the
21649 `else' branch below isn't an issue. */
21650
21651 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21652 {
21653 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21654 filename = copy;
21655 }
21656
21657 start_subfile (filename);
21658
21659 if (copy != NULL)
21660 xfree (copy);
21661 }
21662
21663 /* Start a symtab for DWARF.
21664 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
21665
21666 static struct compunit_symtab *
21667 dwarf2_start_symtab (struct dwarf2_cu *cu,
21668 const char *name, const char *comp_dir, CORE_ADDR low_pc)
21669 {
21670 struct compunit_symtab *cust
21671 = start_symtab (cu->per_cu->dwarf2_per_objfile->objfile, name, comp_dir,
21672 low_pc, cu->language);
21673
21674 record_debugformat ("DWARF 2");
21675 record_producer (cu->producer);
21676
21677 /* We assume that we're processing GCC output. */
21678 processing_gcc_compilation = 2;
21679
21680 cu->processing_has_namespace_info = 0;
21681
21682 return cust;
21683 }
21684
21685 static void
21686 var_decode_location (struct attribute *attr, struct symbol *sym,
21687 struct dwarf2_cu *cu)
21688 {
21689 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21690 struct comp_unit_head *cu_header = &cu->header;
21691
21692 /* NOTE drow/2003-01-30: There used to be a comment and some special
21693 code here to turn a symbol with DW_AT_external and a
21694 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21695 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21696 with some versions of binutils) where shared libraries could have
21697 relocations against symbols in their debug information - the
21698 minimal symbol would have the right address, but the debug info
21699 would not. It's no longer necessary, because we will explicitly
21700 apply relocations when we read in the debug information now. */
21701
21702 /* A DW_AT_location attribute with no contents indicates that a
21703 variable has been optimized away. */
21704 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21705 {
21706 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21707 return;
21708 }
21709
21710 /* Handle one degenerate form of location expression specially, to
21711 preserve GDB's previous behavior when section offsets are
21712 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21713 then mark this symbol as LOC_STATIC. */
21714
21715 if (attr_form_is_block (attr)
21716 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21717 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21718 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21719 && (DW_BLOCK (attr)->size
21720 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21721 {
21722 unsigned int dummy;
21723
21724 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21725 SYMBOL_VALUE_ADDRESS (sym) =
21726 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21727 else
21728 SYMBOL_VALUE_ADDRESS (sym) =
21729 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21730 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21731 fixup_symbol_section (sym, objfile);
21732 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21733 SYMBOL_SECTION (sym));
21734 return;
21735 }
21736
21737 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21738 expression evaluator, and use LOC_COMPUTED only when necessary
21739 (i.e. when the value of a register or memory location is
21740 referenced, or a thread-local block, etc.). Then again, it might
21741 not be worthwhile. I'm assuming that it isn't unless performance
21742 or memory numbers show me otherwise. */
21743
21744 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21745
21746 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21747 cu->has_loclist = 1;
21748 }
21749
21750 /* Given a pointer to a DWARF information entry, figure out if we need
21751 to make a symbol table entry for it, and if so, create a new entry
21752 and return a pointer to it.
21753 If TYPE is NULL, determine symbol type from the die, otherwise
21754 used the passed type.
21755 If SPACE is not NULL, use it to hold the new symbol. If it is
21756 NULL, allocate a new symbol on the objfile's obstack. */
21757
21758 static struct symbol *
21759 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21760 struct symbol *space)
21761 {
21762 struct dwarf2_per_objfile *dwarf2_per_objfile
21763 = cu->per_cu->dwarf2_per_objfile;
21764 struct objfile *objfile = dwarf2_per_objfile->objfile;
21765 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21766 struct symbol *sym = NULL;
21767 const char *name;
21768 struct attribute *attr = NULL;
21769 struct attribute *attr2 = NULL;
21770 CORE_ADDR baseaddr;
21771 struct pending **list_to_add = NULL;
21772
21773 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21774
21775 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21776
21777 name = dwarf2_name (die, cu);
21778 if (name)
21779 {
21780 const char *linkagename;
21781 int suppress_add = 0;
21782
21783 if (space)
21784 sym = space;
21785 else
21786 sym = allocate_symbol (objfile);
21787 OBJSTAT (objfile, n_syms++);
21788
21789 /* Cache this symbol's name and the name's demangled form (if any). */
21790 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21791 linkagename = dwarf2_physname (name, die, cu);
21792 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21793
21794 /* Fortran does not have mangling standard and the mangling does differ
21795 between gfortran, iFort etc. */
21796 if (cu->language == language_fortran
21797 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21798 symbol_set_demangled_name (&(sym->ginfo),
21799 dwarf2_full_name (name, die, cu),
21800 NULL);
21801
21802 /* Default assumptions.
21803 Use the passed type or decode it from the die. */
21804 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21805 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21806 if (type != NULL)
21807 SYMBOL_TYPE (sym) = type;
21808 else
21809 SYMBOL_TYPE (sym) = die_type (die, cu);
21810 attr = dwarf2_attr (die,
21811 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21812 cu);
21813 if (attr)
21814 {
21815 SYMBOL_LINE (sym) = DW_UNSND (attr);
21816 }
21817
21818 attr = dwarf2_attr (die,
21819 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21820 cu);
21821 if (attr)
21822 {
21823 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21824 struct file_entry *fe;
21825
21826 if (cu->line_header != NULL)
21827 fe = cu->line_header->file_name_at (file_index);
21828 else
21829 fe = NULL;
21830
21831 if (fe == NULL)
21832 complaint (&symfile_complaints,
21833 _("file index out of range"));
21834 else
21835 symbol_set_symtab (sym, fe->symtab);
21836 }
21837
21838 switch (die->tag)
21839 {
21840 case DW_TAG_label:
21841 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21842 if (attr)
21843 {
21844 CORE_ADDR addr;
21845
21846 addr = attr_value_as_address (attr);
21847 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21848 SYMBOL_VALUE_ADDRESS (sym) = addr;
21849 }
21850 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21851 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21852 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21853 add_symbol_to_list (sym, cu->list_in_scope);
21854 break;
21855 case DW_TAG_subprogram:
21856 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21857 finish_block. */
21858 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21859 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21860 if ((attr2 && (DW_UNSND (attr2) != 0))
21861 || cu->language == language_ada)
21862 {
21863 /* Subprograms marked external are stored as a global symbol.
21864 Ada subprograms, whether marked external or not, are always
21865 stored as a global symbol, because we want to be able to
21866 access them globally. For instance, we want to be able
21867 to break on a nested subprogram without having to
21868 specify the context. */
21869 list_to_add = &global_symbols;
21870 }
21871 else
21872 {
21873 list_to_add = cu->list_in_scope;
21874 }
21875 break;
21876 case DW_TAG_inlined_subroutine:
21877 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21878 finish_block. */
21879 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21880 SYMBOL_INLINED (sym) = 1;
21881 list_to_add = cu->list_in_scope;
21882 break;
21883 case DW_TAG_template_value_param:
21884 suppress_add = 1;
21885 /* Fall through. */
21886 case DW_TAG_constant:
21887 case DW_TAG_variable:
21888 case DW_TAG_member:
21889 /* Compilation with minimal debug info may result in
21890 variables with missing type entries. Change the
21891 misleading `void' type to something sensible. */
21892 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21893 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21894
21895 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21896 /* In the case of DW_TAG_member, we should only be called for
21897 static const members. */
21898 if (die->tag == DW_TAG_member)
21899 {
21900 /* dwarf2_add_field uses die_is_declaration,
21901 so we do the same. */
21902 gdb_assert (die_is_declaration (die, cu));
21903 gdb_assert (attr);
21904 }
21905 if (attr)
21906 {
21907 dwarf2_const_value (attr, sym, cu);
21908 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21909 if (!suppress_add)
21910 {
21911 if (attr2 && (DW_UNSND (attr2) != 0))
21912 list_to_add = &global_symbols;
21913 else
21914 list_to_add = cu->list_in_scope;
21915 }
21916 break;
21917 }
21918 attr = dwarf2_attr (die, DW_AT_location, cu);
21919 if (attr)
21920 {
21921 var_decode_location (attr, sym, cu);
21922 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21923
21924 /* Fortran explicitly imports any global symbols to the local
21925 scope by DW_TAG_common_block. */
21926 if (cu->language == language_fortran && die->parent
21927 && die->parent->tag == DW_TAG_common_block)
21928 attr2 = NULL;
21929
21930 if (SYMBOL_CLASS (sym) == LOC_STATIC
21931 && SYMBOL_VALUE_ADDRESS (sym) == 0
21932 && !dwarf2_per_objfile->has_section_at_zero)
21933 {
21934 /* When a static variable is eliminated by the linker,
21935 the corresponding debug information is not stripped
21936 out, but the variable address is set to null;
21937 do not add such variables into symbol table. */
21938 }
21939 else if (attr2 && (DW_UNSND (attr2) != 0))
21940 {
21941 /* Workaround gfortran PR debug/40040 - it uses
21942 DW_AT_location for variables in -fPIC libraries which may
21943 get overriden by other libraries/executable and get
21944 a different address. Resolve it by the minimal symbol
21945 which may come from inferior's executable using copy
21946 relocation. Make this workaround only for gfortran as for
21947 other compilers GDB cannot guess the minimal symbol
21948 Fortran mangling kind. */
21949 if (cu->language == language_fortran && die->parent
21950 && die->parent->tag == DW_TAG_module
21951 && cu->producer
21952 && startswith (cu->producer, "GNU Fortran"))
21953 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21954
21955 /* A variable with DW_AT_external is never static,
21956 but it may be block-scoped. */
21957 list_to_add = (cu->list_in_scope == &file_symbols
21958 ? &global_symbols : cu->list_in_scope);
21959 }
21960 else
21961 list_to_add = cu->list_in_scope;
21962 }
21963 else
21964 {
21965 /* We do not know the address of this symbol.
21966 If it is an external symbol and we have type information
21967 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21968 The address of the variable will then be determined from
21969 the minimal symbol table whenever the variable is
21970 referenced. */
21971 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21972
21973 /* Fortran explicitly imports any global symbols to the local
21974 scope by DW_TAG_common_block. */
21975 if (cu->language == language_fortran && die->parent
21976 && die->parent->tag == DW_TAG_common_block)
21977 {
21978 /* SYMBOL_CLASS doesn't matter here because
21979 read_common_block is going to reset it. */
21980 if (!suppress_add)
21981 list_to_add = cu->list_in_scope;
21982 }
21983 else if (attr2 && (DW_UNSND (attr2) != 0)
21984 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21985 {
21986 /* A variable with DW_AT_external is never static, but it
21987 may be block-scoped. */
21988 list_to_add = (cu->list_in_scope == &file_symbols
21989 ? &global_symbols : cu->list_in_scope);
21990
21991 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21992 }
21993 else if (!die_is_declaration (die, cu))
21994 {
21995 /* Use the default LOC_OPTIMIZED_OUT class. */
21996 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21997 if (!suppress_add)
21998 list_to_add = cu->list_in_scope;
21999 }
22000 }
22001 break;
22002 case DW_TAG_formal_parameter:
22003 /* If we are inside a function, mark this as an argument. If
22004 not, we might be looking at an argument to an inlined function
22005 when we do not have enough information to show inlined frames;
22006 pretend it's a local variable in that case so that the user can
22007 still see it. */
22008 if (context_stack_depth > 0
22009 && context_stack[context_stack_depth - 1].name != NULL)
22010 SYMBOL_IS_ARGUMENT (sym) = 1;
22011 attr = dwarf2_attr (die, DW_AT_location, cu);
22012 if (attr)
22013 {
22014 var_decode_location (attr, sym, cu);
22015 }
22016 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22017 if (attr)
22018 {
22019 dwarf2_const_value (attr, sym, cu);
22020 }
22021
22022 list_to_add = cu->list_in_scope;
22023 break;
22024 case DW_TAG_unspecified_parameters:
22025 /* From varargs functions; gdb doesn't seem to have any
22026 interest in this information, so just ignore it for now.
22027 (FIXME?) */
22028 break;
22029 case DW_TAG_template_type_param:
22030 suppress_add = 1;
22031 /* Fall through. */
22032 case DW_TAG_class_type:
22033 case DW_TAG_interface_type:
22034 case DW_TAG_structure_type:
22035 case DW_TAG_union_type:
22036 case DW_TAG_set_type:
22037 case DW_TAG_enumeration_type:
22038 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22039 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
22040
22041 {
22042 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
22043 really ever be static objects: otherwise, if you try
22044 to, say, break of a class's method and you're in a file
22045 which doesn't mention that class, it won't work unless
22046 the check for all static symbols in lookup_symbol_aux
22047 saves you. See the OtherFileClass tests in
22048 gdb.c++/namespace.exp. */
22049
22050 if (!suppress_add)
22051 {
22052 list_to_add = (cu->list_in_scope == &file_symbols
22053 && cu->language == language_cplus
22054 ? &global_symbols : cu->list_in_scope);
22055
22056 /* The semantics of C++ state that "struct foo {
22057 ... }" also defines a typedef for "foo". */
22058 if (cu->language == language_cplus
22059 || cu->language == language_ada
22060 || cu->language == language_d
22061 || cu->language == language_rust)
22062 {
22063 /* The symbol's name is already allocated along
22064 with this objfile, so we don't need to
22065 duplicate it for the type. */
22066 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
22067 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
22068 }
22069 }
22070 }
22071 break;
22072 case DW_TAG_typedef:
22073 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22074 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
22075 list_to_add = cu->list_in_scope;
22076 break;
22077 case DW_TAG_base_type:
22078 case DW_TAG_subrange_type:
22079 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22080 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
22081 list_to_add = cu->list_in_scope;
22082 break;
22083 case DW_TAG_enumerator:
22084 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22085 if (attr)
22086 {
22087 dwarf2_const_value (attr, sym, cu);
22088 }
22089 {
22090 /* NOTE: carlton/2003-11-10: See comment above in the
22091 DW_TAG_class_type, etc. block. */
22092
22093 list_to_add = (cu->list_in_scope == &file_symbols
22094 && cu->language == language_cplus
22095 ? &global_symbols : cu->list_in_scope);
22096 }
22097 break;
22098 case DW_TAG_imported_declaration:
22099 case DW_TAG_namespace:
22100 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22101 list_to_add = &global_symbols;
22102 break;
22103 case DW_TAG_module:
22104 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22105 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
22106 list_to_add = &global_symbols;
22107 break;
22108 case DW_TAG_common_block:
22109 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
22110 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
22111 add_symbol_to_list (sym, cu->list_in_scope);
22112 break;
22113 default:
22114 /* Not a tag we recognize. Hopefully we aren't processing
22115 trash data, but since we must specifically ignore things
22116 we don't recognize, there is nothing else we should do at
22117 this point. */
22118 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
22119 dwarf_tag_name (die->tag));
22120 break;
22121 }
22122
22123 if (suppress_add)
22124 {
22125 sym->hash_next = objfile->template_symbols;
22126 objfile->template_symbols = sym;
22127 list_to_add = NULL;
22128 }
22129
22130 if (list_to_add != NULL)
22131 add_symbol_to_list (sym, list_to_add);
22132
22133 /* For the benefit of old versions of GCC, check for anonymous
22134 namespaces based on the demangled name. */
22135 if (!cu->processing_has_namespace_info
22136 && cu->language == language_cplus)
22137 cp_scan_for_anonymous_namespaces (sym, objfile);
22138 }
22139 return (sym);
22140 }
22141
22142 /* Given an attr with a DW_FORM_dataN value in host byte order,
22143 zero-extend it as appropriate for the symbol's type. The DWARF
22144 standard (v4) is not entirely clear about the meaning of using
22145 DW_FORM_dataN for a constant with a signed type, where the type is
22146 wider than the data. The conclusion of a discussion on the DWARF
22147 list was that this is unspecified. We choose to always zero-extend
22148 because that is the interpretation long in use by GCC. */
22149
22150 static gdb_byte *
22151 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
22152 struct dwarf2_cu *cu, LONGEST *value, int bits)
22153 {
22154 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22155 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
22156 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
22157 LONGEST l = DW_UNSND (attr);
22158
22159 if (bits < sizeof (*value) * 8)
22160 {
22161 l &= ((LONGEST) 1 << bits) - 1;
22162 *value = l;
22163 }
22164 else if (bits == sizeof (*value) * 8)
22165 *value = l;
22166 else
22167 {
22168 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
22169 store_unsigned_integer (bytes, bits / 8, byte_order, l);
22170 return bytes;
22171 }
22172
22173 return NULL;
22174 }
22175
22176 /* Read a constant value from an attribute. Either set *VALUE, or if
22177 the value does not fit in *VALUE, set *BYTES - either already
22178 allocated on the objfile obstack, or newly allocated on OBSTACK,
22179 or, set *BATON, if we translated the constant to a location
22180 expression. */
22181
22182 static void
22183 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
22184 const char *name, struct obstack *obstack,
22185 struct dwarf2_cu *cu,
22186 LONGEST *value, const gdb_byte **bytes,
22187 struct dwarf2_locexpr_baton **baton)
22188 {
22189 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22190 struct comp_unit_head *cu_header = &cu->header;
22191 struct dwarf_block *blk;
22192 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22193 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22194
22195 *value = 0;
22196 *bytes = NULL;
22197 *baton = NULL;
22198
22199 switch (attr->form)
22200 {
22201 case DW_FORM_addr:
22202 case DW_FORM_GNU_addr_index:
22203 {
22204 gdb_byte *data;
22205
22206 if (TYPE_LENGTH (type) != cu_header->addr_size)
22207 dwarf2_const_value_length_mismatch_complaint (name,
22208 cu_header->addr_size,
22209 TYPE_LENGTH (type));
22210 /* Symbols of this form are reasonably rare, so we just
22211 piggyback on the existing location code rather than writing
22212 a new implementation of symbol_computed_ops. */
22213 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22214 (*baton)->per_cu = cu->per_cu;
22215 gdb_assert ((*baton)->per_cu);
22216
22217 (*baton)->size = 2 + cu_header->addr_size;
22218 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22219 (*baton)->data = data;
22220
22221 data[0] = DW_OP_addr;
22222 store_unsigned_integer (&data[1], cu_header->addr_size,
22223 byte_order, DW_ADDR (attr));
22224 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22225 }
22226 break;
22227 case DW_FORM_string:
22228 case DW_FORM_strp:
22229 case DW_FORM_GNU_str_index:
22230 case DW_FORM_GNU_strp_alt:
22231 /* DW_STRING is already allocated on the objfile obstack, point
22232 directly to it. */
22233 *bytes = (const gdb_byte *) DW_STRING (attr);
22234 break;
22235 case DW_FORM_block1:
22236 case DW_FORM_block2:
22237 case DW_FORM_block4:
22238 case DW_FORM_block:
22239 case DW_FORM_exprloc:
22240 case DW_FORM_data16:
22241 blk = DW_BLOCK (attr);
22242 if (TYPE_LENGTH (type) != blk->size)
22243 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22244 TYPE_LENGTH (type));
22245 *bytes = blk->data;
22246 break;
22247
22248 /* The DW_AT_const_value attributes are supposed to carry the
22249 symbol's value "represented as it would be on the target
22250 architecture." By the time we get here, it's already been
22251 converted to host endianness, so we just need to sign- or
22252 zero-extend it as appropriate. */
22253 case DW_FORM_data1:
22254 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22255 break;
22256 case DW_FORM_data2:
22257 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22258 break;
22259 case DW_FORM_data4:
22260 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22261 break;
22262 case DW_FORM_data8:
22263 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22264 break;
22265
22266 case DW_FORM_sdata:
22267 case DW_FORM_implicit_const:
22268 *value = DW_SND (attr);
22269 break;
22270
22271 case DW_FORM_udata:
22272 *value = DW_UNSND (attr);
22273 break;
22274
22275 default:
22276 complaint (&symfile_complaints,
22277 _("unsupported const value attribute form: '%s'"),
22278 dwarf_form_name (attr->form));
22279 *value = 0;
22280 break;
22281 }
22282 }
22283
22284
22285 /* Copy constant value from an attribute to a symbol. */
22286
22287 static void
22288 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22289 struct dwarf2_cu *cu)
22290 {
22291 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22292 LONGEST value;
22293 const gdb_byte *bytes;
22294 struct dwarf2_locexpr_baton *baton;
22295
22296 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22297 SYMBOL_PRINT_NAME (sym),
22298 &objfile->objfile_obstack, cu,
22299 &value, &bytes, &baton);
22300
22301 if (baton != NULL)
22302 {
22303 SYMBOL_LOCATION_BATON (sym) = baton;
22304 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22305 }
22306 else if (bytes != NULL)
22307 {
22308 SYMBOL_VALUE_BYTES (sym) = bytes;
22309 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22310 }
22311 else
22312 {
22313 SYMBOL_VALUE (sym) = value;
22314 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22315 }
22316 }
22317
22318 /* Return the type of the die in question using its DW_AT_type attribute. */
22319
22320 static struct type *
22321 die_type (struct die_info *die, struct dwarf2_cu *cu)
22322 {
22323 struct attribute *type_attr;
22324
22325 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22326 if (!type_attr)
22327 {
22328 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22329 /* A missing DW_AT_type represents a void type. */
22330 return objfile_type (objfile)->builtin_void;
22331 }
22332
22333 return lookup_die_type (die, type_attr, cu);
22334 }
22335
22336 /* True iff CU's producer generates GNAT Ada auxiliary information
22337 that allows to find parallel types through that information instead
22338 of having to do expensive parallel lookups by type name. */
22339
22340 static int
22341 need_gnat_info (struct dwarf2_cu *cu)
22342 {
22343 /* Assume that the Ada compiler was GNAT, which always produces
22344 the auxiliary information. */
22345 return (cu->language == language_ada);
22346 }
22347
22348 /* Return the auxiliary type of the die in question using its
22349 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22350 attribute is not present. */
22351
22352 static struct type *
22353 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22354 {
22355 struct attribute *type_attr;
22356
22357 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22358 if (!type_attr)
22359 return NULL;
22360
22361 return lookup_die_type (die, type_attr, cu);
22362 }
22363
22364 /* If DIE has a descriptive_type attribute, then set the TYPE's
22365 descriptive type accordingly. */
22366
22367 static void
22368 set_descriptive_type (struct type *type, struct die_info *die,
22369 struct dwarf2_cu *cu)
22370 {
22371 struct type *descriptive_type = die_descriptive_type (die, cu);
22372
22373 if (descriptive_type)
22374 {
22375 ALLOCATE_GNAT_AUX_TYPE (type);
22376 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22377 }
22378 }
22379
22380 /* Return the containing type of the die in question using its
22381 DW_AT_containing_type attribute. */
22382
22383 static struct type *
22384 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22385 {
22386 struct attribute *type_attr;
22387 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22388
22389 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22390 if (!type_attr)
22391 error (_("Dwarf Error: Problem turning containing type into gdb type "
22392 "[in module %s]"), objfile_name (objfile));
22393
22394 return lookup_die_type (die, type_attr, cu);
22395 }
22396
22397 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22398
22399 static struct type *
22400 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22401 {
22402 struct dwarf2_per_objfile *dwarf2_per_objfile
22403 = cu->per_cu->dwarf2_per_objfile;
22404 struct objfile *objfile = dwarf2_per_objfile->objfile;
22405 char *message, *saved;
22406
22407 message = xstrprintf (_("<unknown type in %s, CU %s, DIE %s>"),
22408 objfile_name (objfile),
22409 sect_offset_str (cu->header.sect_off),
22410 sect_offset_str (die->sect_off));
22411 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22412 message, strlen (message));
22413 xfree (message);
22414
22415 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22416 }
22417
22418 /* Look up the type of DIE in CU using its type attribute ATTR.
22419 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22420 DW_AT_containing_type.
22421 If there is no type substitute an error marker. */
22422
22423 static struct type *
22424 lookup_die_type (struct die_info *die, const struct attribute *attr,
22425 struct dwarf2_cu *cu)
22426 {
22427 struct dwarf2_per_objfile *dwarf2_per_objfile
22428 = cu->per_cu->dwarf2_per_objfile;
22429 struct objfile *objfile = dwarf2_per_objfile->objfile;
22430 struct type *this_type;
22431
22432 gdb_assert (attr->name == DW_AT_type
22433 || attr->name == DW_AT_GNAT_descriptive_type
22434 || attr->name == DW_AT_containing_type);
22435
22436 /* First see if we have it cached. */
22437
22438 if (attr->form == DW_FORM_GNU_ref_alt)
22439 {
22440 struct dwarf2_per_cu_data *per_cu;
22441 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22442
22443 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22444 dwarf2_per_objfile);
22445 this_type = get_die_type_at_offset (sect_off, per_cu);
22446 }
22447 else if (attr_form_is_ref (attr))
22448 {
22449 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22450
22451 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22452 }
22453 else if (attr->form == DW_FORM_ref_sig8)
22454 {
22455 ULONGEST signature = DW_SIGNATURE (attr);
22456
22457 return get_signatured_type (die, signature, cu);
22458 }
22459 else
22460 {
22461 complaint (&symfile_complaints,
22462 _("Dwarf Error: Bad type attribute %s in DIE"
22463 " at %s [in module %s]"),
22464 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22465 objfile_name (objfile));
22466 return build_error_marker_type (cu, die);
22467 }
22468
22469 /* If not cached we need to read it in. */
22470
22471 if (this_type == NULL)
22472 {
22473 struct die_info *type_die = NULL;
22474 struct dwarf2_cu *type_cu = cu;
22475
22476 if (attr_form_is_ref (attr))
22477 type_die = follow_die_ref (die, attr, &type_cu);
22478 if (type_die == NULL)
22479 return build_error_marker_type (cu, die);
22480 /* If we find the type now, it's probably because the type came
22481 from an inter-CU reference and the type's CU got expanded before
22482 ours. */
22483 this_type = read_type_die (type_die, type_cu);
22484 }
22485
22486 /* If we still don't have a type use an error marker. */
22487
22488 if (this_type == NULL)
22489 return build_error_marker_type (cu, die);
22490
22491 return this_type;
22492 }
22493
22494 /* Return the type in DIE, CU.
22495 Returns NULL for invalid types.
22496
22497 This first does a lookup in die_type_hash,
22498 and only reads the die in if necessary.
22499
22500 NOTE: This can be called when reading in partial or full symbols. */
22501
22502 static struct type *
22503 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22504 {
22505 struct type *this_type;
22506
22507 this_type = get_die_type (die, cu);
22508 if (this_type)
22509 return this_type;
22510
22511 return read_type_die_1 (die, cu);
22512 }
22513
22514 /* Read the type in DIE, CU.
22515 Returns NULL for invalid types. */
22516
22517 static struct type *
22518 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22519 {
22520 struct type *this_type = NULL;
22521
22522 switch (die->tag)
22523 {
22524 case DW_TAG_class_type:
22525 case DW_TAG_interface_type:
22526 case DW_TAG_structure_type:
22527 case DW_TAG_union_type:
22528 this_type = read_structure_type (die, cu);
22529 break;
22530 case DW_TAG_enumeration_type:
22531 this_type = read_enumeration_type (die, cu);
22532 break;
22533 case DW_TAG_subprogram:
22534 case DW_TAG_subroutine_type:
22535 case DW_TAG_inlined_subroutine:
22536 this_type = read_subroutine_type (die, cu);
22537 break;
22538 case DW_TAG_array_type:
22539 this_type = read_array_type (die, cu);
22540 break;
22541 case DW_TAG_set_type:
22542 this_type = read_set_type (die, cu);
22543 break;
22544 case DW_TAG_pointer_type:
22545 this_type = read_tag_pointer_type (die, cu);
22546 break;
22547 case DW_TAG_ptr_to_member_type:
22548 this_type = read_tag_ptr_to_member_type (die, cu);
22549 break;
22550 case DW_TAG_reference_type:
22551 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22552 break;
22553 case DW_TAG_rvalue_reference_type:
22554 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22555 break;
22556 case DW_TAG_const_type:
22557 this_type = read_tag_const_type (die, cu);
22558 break;
22559 case DW_TAG_volatile_type:
22560 this_type = read_tag_volatile_type (die, cu);
22561 break;
22562 case DW_TAG_restrict_type:
22563 this_type = read_tag_restrict_type (die, cu);
22564 break;
22565 case DW_TAG_string_type:
22566 this_type = read_tag_string_type (die, cu);
22567 break;
22568 case DW_TAG_typedef:
22569 this_type = read_typedef (die, cu);
22570 break;
22571 case DW_TAG_subrange_type:
22572 this_type = read_subrange_type (die, cu);
22573 break;
22574 case DW_TAG_base_type:
22575 this_type = read_base_type (die, cu);
22576 break;
22577 case DW_TAG_unspecified_type:
22578 this_type = read_unspecified_type (die, cu);
22579 break;
22580 case DW_TAG_namespace:
22581 this_type = read_namespace_type (die, cu);
22582 break;
22583 case DW_TAG_module:
22584 this_type = read_module_type (die, cu);
22585 break;
22586 case DW_TAG_atomic_type:
22587 this_type = read_tag_atomic_type (die, cu);
22588 break;
22589 default:
22590 complaint (&symfile_complaints,
22591 _("unexpected tag in read_type_die: '%s'"),
22592 dwarf_tag_name (die->tag));
22593 break;
22594 }
22595
22596 return this_type;
22597 }
22598
22599 /* See if we can figure out if the class lives in a namespace. We do
22600 this by looking for a member function; its demangled name will
22601 contain namespace info, if there is any.
22602 Return the computed name or NULL.
22603 Space for the result is allocated on the objfile's obstack.
22604 This is the full-die version of guess_partial_die_structure_name.
22605 In this case we know DIE has no useful parent. */
22606
22607 static char *
22608 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22609 {
22610 struct die_info *spec_die;
22611 struct dwarf2_cu *spec_cu;
22612 struct die_info *child;
22613 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22614
22615 spec_cu = cu;
22616 spec_die = die_specification (die, &spec_cu);
22617 if (spec_die != NULL)
22618 {
22619 die = spec_die;
22620 cu = spec_cu;
22621 }
22622
22623 for (child = die->child;
22624 child != NULL;
22625 child = child->sibling)
22626 {
22627 if (child->tag == DW_TAG_subprogram)
22628 {
22629 const char *linkage_name = dw2_linkage_name (child, cu);
22630
22631 if (linkage_name != NULL)
22632 {
22633 char *actual_name
22634 = language_class_name_from_physname (cu->language_defn,
22635 linkage_name);
22636 char *name = NULL;
22637
22638 if (actual_name != NULL)
22639 {
22640 const char *die_name = dwarf2_name (die, cu);
22641
22642 if (die_name != NULL
22643 && strcmp (die_name, actual_name) != 0)
22644 {
22645 /* Strip off the class name from the full name.
22646 We want the prefix. */
22647 int die_name_len = strlen (die_name);
22648 int actual_name_len = strlen (actual_name);
22649
22650 /* Test for '::' as a sanity check. */
22651 if (actual_name_len > die_name_len + 2
22652 && actual_name[actual_name_len
22653 - die_name_len - 1] == ':')
22654 name = (char *) obstack_copy0 (
22655 &objfile->per_bfd->storage_obstack,
22656 actual_name, actual_name_len - die_name_len - 2);
22657 }
22658 }
22659 xfree (actual_name);
22660 return name;
22661 }
22662 }
22663 }
22664
22665 return NULL;
22666 }
22667
22668 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22669 prefix part in such case. See
22670 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22671
22672 static const char *
22673 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22674 {
22675 struct attribute *attr;
22676 const char *base;
22677
22678 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22679 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22680 return NULL;
22681
22682 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22683 return NULL;
22684
22685 attr = dw2_linkage_name_attr (die, cu);
22686 if (attr == NULL || DW_STRING (attr) == NULL)
22687 return NULL;
22688
22689 /* dwarf2_name had to be already called. */
22690 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22691
22692 /* Strip the base name, keep any leading namespaces/classes. */
22693 base = strrchr (DW_STRING (attr), ':');
22694 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22695 return "";
22696
22697 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22698 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22699 DW_STRING (attr),
22700 &base[-1] - DW_STRING (attr));
22701 }
22702
22703 /* Return the name of the namespace/class that DIE is defined within,
22704 or "" if we can't tell. The caller should not xfree the result.
22705
22706 For example, if we're within the method foo() in the following
22707 code:
22708
22709 namespace N {
22710 class C {
22711 void foo () {
22712 }
22713 };
22714 }
22715
22716 then determine_prefix on foo's die will return "N::C". */
22717
22718 static const char *
22719 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22720 {
22721 struct dwarf2_per_objfile *dwarf2_per_objfile
22722 = cu->per_cu->dwarf2_per_objfile;
22723 struct die_info *parent, *spec_die;
22724 struct dwarf2_cu *spec_cu;
22725 struct type *parent_type;
22726 const char *retval;
22727
22728 if (cu->language != language_cplus
22729 && cu->language != language_fortran && cu->language != language_d
22730 && cu->language != language_rust)
22731 return "";
22732
22733 retval = anonymous_struct_prefix (die, cu);
22734 if (retval)
22735 return retval;
22736
22737 /* We have to be careful in the presence of DW_AT_specification.
22738 For example, with GCC 3.4, given the code
22739
22740 namespace N {
22741 void foo() {
22742 // Definition of N::foo.
22743 }
22744 }
22745
22746 then we'll have a tree of DIEs like this:
22747
22748 1: DW_TAG_compile_unit
22749 2: DW_TAG_namespace // N
22750 3: DW_TAG_subprogram // declaration of N::foo
22751 4: DW_TAG_subprogram // definition of N::foo
22752 DW_AT_specification // refers to die #3
22753
22754 Thus, when processing die #4, we have to pretend that we're in
22755 the context of its DW_AT_specification, namely the contex of die
22756 #3. */
22757 spec_cu = cu;
22758 spec_die = die_specification (die, &spec_cu);
22759 if (spec_die == NULL)
22760 parent = die->parent;
22761 else
22762 {
22763 parent = spec_die->parent;
22764 cu = spec_cu;
22765 }
22766
22767 if (parent == NULL)
22768 return "";
22769 else if (parent->building_fullname)
22770 {
22771 const char *name;
22772 const char *parent_name;
22773
22774 /* It has been seen on RealView 2.2 built binaries,
22775 DW_TAG_template_type_param types actually _defined_ as
22776 children of the parent class:
22777
22778 enum E {};
22779 template class <class Enum> Class{};
22780 Class<enum E> class_e;
22781
22782 1: DW_TAG_class_type (Class)
22783 2: DW_TAG_enumeration_type (E)
22784 3: DW_TAG_enumerator (enum1:0)
22785 3: DW_TAG_enumerator (enum2:1)
22786 ...
22787 2: DW_TAG_template_type_param
22788 DW_AT_type DW_FORM_ref_udata (E)
22789
22790 Besides being broken debug info, it can put GDB into an
22791 infinite loop. Consider:
22792
22793 When we're building the full name for Class<E>, we'll start
22794 at Class, and go look over its template type parameters,
22795 finding E. We'll then try to build the full name of E, and
22796 reach here. We're now trying to build the full name of E,
22797 and look over the parent DIE for containing scope. In the
22798 broken case, if we followed the parent DIE of E, we'd again
22799 find Class, and once again go look at its template type
22800 arguments, etc., etc. Simply don't consider such parent die
22801 as source-level parent of this die (it can't be, the language
22802 doesn't allow it), and break the loop here. */
22803 name = dwarf2_name (die, cu);
22804 parent_name = dwarf2_name (parent, cu);
22805 complaint (&symfile_complaints,
22806 _("template param type '%s' defined within parent '%s'"),
22807 name ? name : "<unknown>",
22808 parent_name ? parent_name : "<unknown>");
22809 return "";
22810 }
22811 else
22812 switch (parent->tag)
22813 {
22814 case DW_TAG_namespace:
22815 parent_type = read_type_die (parent, cu);
22816 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22817 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22818 Work around this problem here. */
22819 if (cu->language == language_cplus
22820 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
22821 return "";
22822 /* We give a name to even anonymous namespaces. */
22823 return TYPE_TAG_NAME (parent_type);
22824 case DW_TAG_class_type:
22825 case DW_TAG_interface_type:
22826 case DW_TAG_structure_type:
22827 case DW_TAG_union_type:
22828 case DW_TAG_module:
22829 parent_type = read_type_die (parent, cu);
22830 if (TYPE_TAG_NAME (parent_type) != NULL)
22831 return TYPE_TAG_NAME (parent_type);
22832 else
22833 /* An anonymous structure is only allowed non-static data
22834 members; no typedefs, no member functions, et cetera.
22835 So it does not need a prefix. */
22836 return "";
22837 case DW_TAG_compile_unit:
22838 case DW_TAG_partial_unit:
22839 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22840 if (cu->language == language_cplus
22841 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22842 && die->child != NULL
22843 && (die->tag == DW_TAG_class_type
22844 || die->tag == DW_TAG_structure_type
22845 || die->tag == DW_TAG_union_type))
22846 {
22847 char *name = guess_full_die_structure_name (die, cu);
22848 if (name != NULL)
22849 return name;
22850 }
22851 return "";
22852 case DW_TAG_enumeration_type:
22853 parent_type = read_type_die (parent, cu);
22854 if (TYPE_DECLARED_CLASS (parent_type))
22855 {
22856 if (TYPE_TAG_NAME (parent_type) != NULL)
22857 return TYPE_TAG_NAME (parent_type);
22858 return "";
22859 }
22860 /* Fall through. */
22861 default:
22862 return determine_prefix (parent, cu);
22863 }
22864 }
22865
22866 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22867 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22868 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22869 an obconcat, otherwise allocate storage for the result. The CU argument is
22870 used to determine the language and hence, the appropriate separator. */
22871
22872 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22873
22874 static char *
22875 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22876 int physname, struct dwarf2_cu *cu)
22877 {
22878 const char *lead = "";
22879 const char *sep;
22880
22881 if (suffix == NULL || suffix[0] == '\0'
22882 || prefix == NULL || prefix[0] == '\0')
22883 sep = "";
22884 else if (cu->language == language_d)
22885 {
22886 /* For D, the 'main' function could be defined in any module, but it
22887 should never be prefixed. */
22888 if (strcmp (suffix, "D main") == 0)
22889 {
22890 prefix = "";
22891 sep = "";
22892 }
22893 else
22894 sep = ".";
22895 }
22896 else if (cu->language == language_fortran && physname)
22897 {
22898 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22899 DW_AT_MIPS_linkage_name is preferred and used instead. */
22900
22901 lead = "__";
22902 sep = "_MOD_";
22903 }
22904 else
22905 sep = "::";
22906
22907 if (prefix == NULL)
22908 prefix = "";
22909 if (suffix == NULL)
22910 suffix = "";
22911
22912 if (obs == NULL)
22913 {
22914 char *retval
22915 = ((char *)
22916 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22917
22918 strcpy (retval, lead);
22919 strcat (retval, prefix);
22920 strcat (retval, sep);
22921 strcat (retval, suffix);
22922 return retval;
22923 }
22924 else
22925 {
22926 /* We have an obstack. */
22927 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22928 }
22929 }
22930
22931 /* Return sibling of die, NULL if no sibling. */
22932
22933 static struct die_info *
22934 sibling_die (struct die_info *die)
22935 {
22936 return die->sibling;
22937 }
22938
22939 /* Get name of a die, return NULL if not found. */
22940
22941 static const char *
22942 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22943 struct obstack *obstack)
22944 {
22945 if (name && cu->language == language_cplus)
22946 {
22947 std::string canon_name = cp_canonicalize_string (name);
22948
22949 if (!canon_name.empty ())
22950 {
22951 if (canon_name != name)
22952 name = (const char *) obstack_copy0 (obstack,
22953 canon_name.c_str (),
22954 canon_name.length ());
22955 }
22956 }
22957
22958 return name;
22959 }
22960
22961 /* Get name of a die, return NULL if not found.
22962 Anonymous namespaces are converted to their magic string. */
22963
22964 static const char *
22965 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22966 {
22967 struct attribute *attr;
22968 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22969
22970 attr = dwarf2_attr (die, DW_AT_name, cu);
22971 if ((!attr || !DW_STRING (attr))
22972 && die->tag != DW_TAG_namespace
22973 && die->tag != DW_TAG_class_type
22974 && die->tag != DW_TAG_interface_type
22975 && die->tag != DW_TAG_structure_type
22976 && die->tag != DW_TAG_union_type)
22977 return NULL;
22978
22979 switch (die->tag)
22980 {
22981 case DW_TAG_compile_unit:
22982 case DW_TAG_partial_unit:
22983 /* Compilation units have a DW_AT_name that is a filename, not
22984 a source language identifier. */
22985 case DW_TAG_enumeration_type:
22986 case DW_TAG_enumerator:
22987 /* These tags always have simple identifiers already; no need
22988 to canonicalize them. */
22989 return DW_STRING (attr);
22990
22991 case DW_TAG_namespace:
22992 if (attr != NULL && DW_STRING (attr) != NULL)
22993 return DW_STRING (attr);
22994 return CP_ANONYMOUS_NAMESPACE_STR;
22995
22996 case DW_TAG_class_type:
22997 case DW_TAG_interface_type:
22998 case DW_TAG_structure_type:
22999 case DW_TAG_union_type:
23000 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
23001 structures or unions. These were of the form "._%d" in GCC 4.1,
23002 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
23003 and GCC 4.4. We work around this problem by ignoring these. */
23004 if (attr && DW_STRING (attr)
23005 && (startswith (DW_STRING (attr), "._")
23006 || startswith (DW_STRING (attr), "<anonymous")))
23007 return NULL;
23008
23009 /* GCC might emit a nameless typedef that has a linkage name. See
23010 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
23011 if (!attr || DW_STRING (attr) == NULL)
23012 {
23013 char *demangled = NULL;
23014
23015 attr = dw2_linkage_name_attr (die, cu);
23016 if (attr == NULL || DW_STRING (attr) == NULL)
23017 return NULL;
23018
23019 /* Avoid demangling DW_STRING (attr) the second time on a second
23020 call for the same DIE. */
23021 if (!DW_STRING_IS_CANONICAL (attr))
23022 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
23023
23024 if (demangled)
23025 {
23026 const char *base;
23027
23028 /* FIXME: we already did this for the partial symbol... */
23029 DW_STRING (attr)
23030 = ((const char *)
23031 obstack_copy0 (&objfile->per_bfd->storage_obstack,
23032 demangled, strlen (demangled)));
23033 DW_STRING_IS_CANONICAL (attr) = 1;
23034 xfree (demangled);
23035
23036 /* Strip any leading namespaces/classes, keep only the base name.
23037 DW_AT_name for named DIEs does not contain the prefixes. */
23038 base = strrchr (DW_STRING (attr), ':');
23039 if (base && base > DW_STRING (attr) && base[-1] == ':')
23040 return &base[1];
23041 else
23042 return DW_STRING (attr);
23043 }
23044 }
23045 break;
23046
23047 default:
23048 break;
23049 }
23050
23051 if (!DW_STRING_IS_CANONICAL (attr))
23052 {
23053 DW_STRING (attr)
23054 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
23055 &objfile->per_bfd->storage_obstack);
23056 DW_STRING_IS_CANONICAL (attr) = 1;
23057 }
23058 return DW_STRING (attr);
23059 }
23060
23061 /* Return the die that this die in an extension of, or NULL if there
23062 is none. *EXT_CU is the CU containing DIE on input, and the CU
23063 containing the return value on output. */
23064
23065 static struct die_info *
23066 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
23067 {
23068 struct attribute *attr;
23069
23070 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
23071 if (attr == NULL)
23072 return NULL;
23073
23074 return follow_die_ref (die, attr, ext_cu);
23075 }
23076
23077 /* Convert a DIE tag into its string name. */
23078
23079 static const char *
23080 dwarf_tag_name (unsigned tag)
23081 {
23082 const char *name = get_DW_TAG_name (tag);
23083
23084 if (name == NULL)
23085 return "DW_TAG_<unknown>";
23086
23087 return name;
23088 }
23089
23090 /* Convert a DWARF attribute code into its string name. */
23091
23092 static const char *
23093 dwarf_attr_name (unsigned attr)
23094 {
23095 const char *name;
23096
23097 #ifdef MIPS /* collides with DW_AT_HP_block_index */
23098 if (attr == DW_AT_MIPS_fde)
23099 return "DW_AT_MIPS_fde";
23100 #else
23101 if (attr == DW_AT_HP_block_index)
23102 return "DW_AT_HP_block_index";
23103 #endif
23104
23105 name = get_DW_AT_name (attr);
23106
23107 if (name == NULL)
23108 return "DW_AT_<unknown>";
23109
23110 return name;
23111 }
23112
23113 /* Convert a DWARF value form code into its string name. */
23114
23115 static const char *
23116 dwarf_form_name (unsigned form)
23117 {
23118 const char *name = get_DW_FORM_name (form);
23119
23120 if (name == NULL)
23121 return "DW_FORM_<unknown>";
23122
23123 return name;
23124 }
23125
23126 static const char *
23127 dwarf_bool_name (unsigned mybool)
23128 {
23129 if (mybool)
23130 return "TRUE";
23131 else
23132 return "FALSE";
23133 }
23134
23135 /* Convert a DWARF type code into its string name. */
23136
23137 static const char *
23138 dwarf_type_encoding_name (unsigned enc)
23139 {
23140 const char *name = get_DW_ATE_name (enc);
23141
23142 if (name == NULL)
23143 return "DW_ATE_<unknown>";
23144
23145 return name;
23146 }
23147
23148 static void
23149 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
23150 {
23151 unsigned int i;
23152
23153 print_spaces (indent, f);
23154 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
23155 dwarf_tag_name (die->tag), die->abbrev,
23156 sect_offset_str (die->sect_off));
23157
23158 if (die->parent != NULL)
23159 {
23160 print_spaces (indent, f);
23161 fprintf_unfiltered (f, " parent at offset: %s\n",
23162 sect_offset_str (die->parent->sect_off));
23163 }
23164
23165 print_spaces (indent, f);
23166 fprintf_unfiltered (f, " has children: %s\n",
23167 dwarf_bool_name (die->child != NULL));
23168
23169 print_spaces (indent, f);
23170 fprintf_unfiltered (f, " attributes:\n");
23171
23172 for (i = 0; i < die->num_attrs; ++i)
23173 {
23174 print_spaces (indent, f);
23175 fprintf_unfiltered (f, " %s (%s) ",
23176 dwarf_attr_name (die->attrs[i].name),
23177 dwarf_form_name (die->attrs[i].form));
23178
23179 switch (die->attrs[i].form)
23180 {
23181 case DW_FORM_addr:
23182 case DW_FORM_GNU_addr_index:
23183 fprintf_unfiltered (f, "address: ");
23184 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
23185 break;
23186 case DW_FORM_block2:
23187 case DW_FORM_block4:
23188 case DW_FORM_block:
23189 case DW_FORM_block1:
23190 fprintf_unfiltered (f, "block: size %s",
23191 pulongest (DW_BLOCK (&die->attrs[i])->size));
23192 break;
23193 case DW_FORM_exprloc:
23194 fprintf_unfiltered (f, "expression: size %s",
23195 pulongest (DW_BLOCK (&die->attrs[i])->size));
23196 break;
23197 case DW_FORM_data16:
23198 fprintf_unfiltered (f, "constant of 16 bytes");
23199 break;
23200 case DW_FORM_ref_addr:
23201 fprintf_unfiltered (f, "ref address: ");
23202 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23203 break;
23204 case DW_FORM_GNU_ref_alt:
23205 fprintf_unfiltered (f, "alt ref address: ");
23206 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23207 break;
23208 case DW_FORM_ref1:
23209 case DW_FORM_ref2:
23210 case DW_FORM_ref4:
23211 case DW_FORM_ref8:
23212 case DW_FORM_ref_udata:
23213 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23214 (long) (DW_UNSND (&die->attrs[i])));
23215 break;
23216 case DW_FORM_data1:
23217 case DW_FORM_data2:
23218 case DW_FORM_data4:
23219 case DW_FORM_data8:
23220 case DW_FORM_udata:
23221 case DW_FORM_sdata:
23222 fprintf_unfiltered (f, "constant: %s",
23223 pulongest (DW_UNSND (&die->attrs[i])));
23224 break;
23225 case DW_FORM_sec_offset:
23226 fprintf_unfiltered (f, "section offset: %s",
23227 pulongest (DW_UNSND (&die->attrs[i])));
23228 break;
23229 case DW_FORM_ref_sig8:
23230 fprintf_unfiltered (f, "signature: %s",
23231 hex_string (DW_SIGNATURE (&die->attrs[i])));
23232 break;
23233 case DW_FORM_string:
23234 case DW_FORM_strp:
23235 case DW_FORM_line_strp:
23236 case DW_FORM_GNU_str_index:
23237 case DW_FORM_GNU_strp_alt:
23238 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23239 DW_STRING (&die->attrs[i])
23240 ? DW_STRING (&die->attrs[i]) : "",
23241 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23242 break;
23243 case DW_FORM_flag:
23244 if (DW_UNSND (&die->attrs[i]))
23245 fprintf_unfiltered (f, "flag: TRUE");
23246 else
23247 fprintf_unfiltered (f, "flag: FALSE");
23248 break;
23249 case DW_FORM_flag_present:
23250 fprintf_unfiltered (f, "flag: TRUE");
23251 break;
23252 case DW_FORM_indirect:
23253 /* The reader will have reduced the indirect form to
23254 the "base form" so this form should not occur. */
23255 fprintf_unfiltered (f,
23256 "unexpected attribute form: DW_FORM_indirect");
23257 break;
23258 case DW_FORM_implicit_const:
23259 fprintf_unfiltered (f, "constant: %s",
23260 plongest (DW_SND (&die->attrs[i])));
23261 break;
23262 default:
23263 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23264 die->attrs[i].form);
23265 break;
23266 }
23267 fprintf_unfiltered (f, "\n");
23268 }
23269 }
23270
23271 static void
23272 dump_die_for_error (struct die_info *die)
23273 {
23274 dump_die_shallow (gdb_stderr, 0, die);
23275 }
23276
23277 static void
23278 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23279 {
23280 int indent = level * 4;
23281
23282 gdb_assert (die != NULL);
23283
23284 if (level >= max_level)
23285 return;
23286
23287 dump_die_shallow (f, indent, die);
23288
23289 if (die->child != NULL)
23290 {
23291 print_spaces (indent, f);
23292 fprintf_unfiltered (f, " Children:");
23293 if (level + 1 < max_level)
23294 {
23295 fprintf_unfiltered (f, "\n");
23296 dump_die_1 (f, level + 1, max_level, die->child);
23297 }
23298 else
23299 {
23300 fprintf_unfiltered (f,
23301 " [not printed, max nesting level reached]\n");
23302 }
23303 }
23304
23305 if (die->sibling != NULL && level > 0)
23306 {
23307 dump_die_1 (f, level, max_level, die->sibling);
23308 }
23309 }
23310
23311 /* This is called from the pdie macro in gdbinit.in.
23312 It's not static so gcc will keep a copy callable from gdb. */
23313
23314 void
23315 dump_die (struct die_info *die, int max_level)
23316 {
23317 dump_die_1 (gdb_stdlog, 0, max_level, die);
23318 }
23319
23320 static void
23321 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23322 {
23323 void **slot;
23324
23325 slot = htab_find_slot_with_hash (cu->die_hash, die,
23326 to_underlying (die->sect_off),
23327 INSERT);
23328
23329 *slot = die;
23330 }
23331
23332 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23333 required kind. */
23334
23335 static sect_offset
23336 dwarf2_get_ref_die_offset (const struct attribute *attr)
23337 {
23338 if (attr_form_is_ref (attr))
23339 return (sect_offset) DW_UNSND (attr);
23340
23341 complaint (&symfile_complaints,
23342 _("unsupported die ref attribute form: '%s'"),
23343 dwarf_form_name (attr->form));
23344 return {};
23345 }
23346
23347 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23348 * the value held by the attribute is not constant. */
23349
23350 static LONGEST
23351 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23352 {
23353 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23354 return DW_SND (attr);
23355 else if (attr->form == DW_FORM_udata
23356 || attr->form == DW_FORM_data1
23357 || attr->form == DW_FORM_data2
23358 || attr->form == DW_FORM_data4
23359 || attr->form == DW_FORM_data8)
23360 return DW_UNSND (attr);
23361 else
23362 {
23363 /* For DW_FORM_data16 see attr_form_is_constant. */
23364 complaint (&symfile_complaints,
23365 _("Attribute value is not a constant (%s)"),
23366 dwarf_form_name (attr->form));
23367 return default_value;
23368 }
23369 }
23370
23371 /* Follow reference or signature attribute ATTR of SRC_DIE.
23372 On entry *REF_CU is the CU of SRC_DIE.
23373 On exit *REF_CU is the CU of the result. */
23374
23375 static struct die_info *
23376 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23377 struct dwarf2_cu **ref_cu)
23378 {
23379 struct die_info *die;
23380
23381 if (attr_form_is_ref (attr))
23382 die = follow_die_ref (src_die, attr, ref_cu);
23383 else if (attr->form == DW_FORM_ref_sig8)
23384 die = follow_die_sig (src_die, attr, ref_cu);
23385 else
23386 {
23387 dump_die_for_error (src_die);
23388 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23389 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23390 }
23391
23392 return die;
23393 }
23394
23395 /* Follow reference OFFSET.
23396 On entry *REF_CU is the CU of the source die referencing OFFSET.
23397 On exit *REF_CU is the CU of the result.
23398 Returns NULL if OFFSET is invalid. */
23399
23400 static struct die_info *
23401 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23402 struct dwarf2_cu **ref_cu)
23403 {
23404 struct die_info temp_die;
23405 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23406 struct dwarf2_per_objfile *dwarf2_per_objfile
23407 = cu->per_cu->dwarf2_per_objfile;
23408 struct objfile *objfile = dwarf2_per_objfile->objfile;
23409
23410 gdb_assert (cu->per_cu != NULL);
23411
23412 target_cu = cu;
23413
23414 if (cu->per_cu->is_debug_types)
23415 {
23416 /* .debug_types CUs cannot reference anything outside their CU.
23417 If they need to, they have to reference a signatured type via
23418 DW_FORM_ref_sig8. */
23419 if (!offset_in_cu_p (&cu->header, sect_off))
23420 return NULL;
23421 }
23422 else if (offset_in_dwz != cu->per_cu->is_dwz
23423 || !offset_in_cu_p (&cu->header, sect_off))
23424 {
23425 struct dwarf2_per_cu_data *per_cu;
23426
23427 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23428 dwarf2_per_objfile);
23429
23430 /* If necessary, add it to the queue and load its DIEs. */
23431 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23432 load_full_comp_unit (per_cu, cu->language);
23433
23434 target_cu = per_cu->cu;
23435 }
23436 else if (cu->dies == NULL)
23437 {
23438 /* We're loading full DIEs during partial symbol reading. */
23439 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23440 load_full_comp_unit (cu->per_cu, language_minimal);
23441 }
23442
23443 *ref_cu = target_cu;
23444 temp_die.sect_off = sect_off;
23445 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23446 &temp_die,
23447 to_underlying (sect_off));
23448 }
23449
23450 /* Follow reference attribute ATTR of SRC_DIE.
23451 On entry *REF_CU is the CU of SRC_DIE.
23452 On exit *REF_CU is the CU of the result. */
23453
23454 static struct die_info *
23455 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23456 struct dwarf2_cu **ref_cu)
23457 {
23458 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23459 struct dwarf2_cu *cu = *ref_cu;
23460 struct die_info *die;
23461
23462 die = follow_die_offset (sect_off,
23463 (attr->form == DW_FORM_GNU_ref_alt
23464 || cu->per_cu->is_dwz),
23465 ref_cu);
23466 if (!die)
23467 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23468 "at %s [in module %s]"),
23469 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23470 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23471
23472 return die;
23473 }
23474
23475 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23476 Returned value is intended for DW_OP_call*. Returned
23477 dwarf2_locexpr_baton->data has lifetime of
23478 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23479
23480 struct dwarf2_locexpr_baton
23481 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23482 struct dwarf2_per_cu_data *per_cu,
23483 CORE_ADDR (*get_frame_pc) (void *baton),
23484 void *baton)
23485 {
23486 struct dwarf2_cu *cu;
23487 struct die_info *die;
23488 struct attribute *attr;
23489 struct dwarf2_locexpr_baton retval;
23490 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23491 struct dwarf2_per_objfile *dwarf2_per_objfile
23492 = get_dwarf2_per_objfile (objfile);
23493
23494 if (per_cu->cu == NULL)
23495 load_cu (per_cu);
23496 cu = per_cu->cu;
23497 if (cu == NULL)
23498 {
23499 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23500 Instead just throw an error, not much else we can do. */
23501 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23502 sect_offset_str (sect_off), objfile_name (objfile));
23503 }
23504
23505 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23506 if (!die)
23507 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23508 sect_offset_str (sect_off), objfile_name (objfile));
23509
23510 attr = dwarf2_attr (die, DW_AT_location, cu);
23511 if (!attr)
23512 {
23513 /* DWARF: "If there is no such attribute, then there is no effect.".
23514 DATA is ignored if SIZE is 0. */
23515
23516 retval.data = NULL;
23517 retval.size = 0;
23518 }
23519 else if (attr_form_is_section_offset (attr))
23520 {
23521 struct dwarf2_loclist_baton loclist_baton;
23522 CORE_ADDR pc = (*get_frame_pc) (baton);
23523 size_t size;
23524
23525 fill_in_loclist_baton (cu, &loclist_baton, attr);
23526
23527 retval.data = dwarf2_find_location_expression (&loclist_baton,
23528 &size, pc);
23529 retval.size = size;
23530 }
23531 else
23532 {
23533 if (!attr_form_is_block (attr))
23534 error (_("Dwarf Error: DIE at %s referenced in module %s "
23535 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23536 sect_offset_str (sect_off), objfile_name (objfile));
23537
23538 retval.data = DW_BLOCK (attr)->data;
23539 retval.size = DW_BLOCK (attr)->size;
23540 }
23541 retval.per_cu = cu->per_cu;
23542
23543 age_cached_comp_units (dwarf2_per_objfile);
23544
23545 return retval;
23546 }
23547
23548 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23549 offset. */
23550
23551 struct dwarf2_locexpr_baton
23552 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23553 struct dwarf2_per_cu_data *per_cu,
23554 CORE_ADDR (*get_frame_pc) (void *baton),
23555 void *baton)
23556 {
23557 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23558
23559 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23560 }
23561
23562 /* Write a constant of a given type as target-ordered bytes into
23563 OBSTACK. */
23564
23565 static const gdb_byte *
23566 write_constant_as_bytes (struct obstack *obstack,
23567 enum bfd_endian byte_order,
23568 struct type *type,
23569 ULONGEST value,
23570 LONGEST *len)
23571 {
23572 gdb_byte *result;
23573
23574 *len = TYPE_LENGTH (type);
23575 result = (gdb_byte *) obstack_alloc (obstack, *len);
23576 store_unsigned_integer (result, *len, byte_order, value);
23577
23578 return result;
23579 }
23580
23581 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23582 pointer to the constant bytes and set LEN to the length of the
23583 data. If memory is needed, allocate it on OBSTACK. If the DIE
23584 does not have a DW_AT_const_value, return NULL. */
23585
23586 const gdb_byte *
23587 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23588 struct dwarf2_per_cu_data *per_cu,
23589 struct obstack *obstack,
23590 LONGEST *len)
23591 {
23592 struct dwarf2_cu *cu;
23593 struct die_info *die;
23594 struct attribute *attr;
23595 const gdb_byte *result = NULL;
23596 struct type *type;
23597 LONGEST value;
23598 enum bfd_endian byte_order;
23599 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23600
23601 if (per_cu->cu == NULL)
23602 load_cu (per_cu);
23603 cu = per_cu->cu;
23604 if (cu == NULL)
23605 {
23606 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23607 Instead just throw an error, not much else we can do. */
23608 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23609 sect_offset_str (sect_off), objfile_name (objfile));
23610 }
23611
23612 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23613 if (!die)
23614 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23615 sect_offset_str (sect_off), objfile_name (objfile));
23616
23617 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23618 if (attr == NULL)
23619 return NULL;
23620
23621 byte_order = (bfd_big_endian (objfile->obfd)
23622 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23623
23624 switch (attr->form)
23625 {
23626 case DW_FORM_addr:
23627 case DW_FORM_GNU_addr_index:
23628 {
23629 gdb_byte *tem;
23630
23631 *len = cu->header.addr_size;
23632 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23633 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23634 result = tem;
23635 }
23636 break;
23637 case DW_FORM_string:
23638 case DW_FORM_strp:
23639 case DW_FORM_GNU_str_index:
23640 case DW_FORM_GNU_strp_alt:
23641 /* DW_STRING is already allocated on the objfile obstack, point
23642 directly to it. */
23643 result = (const gdb_byte *) DW_STRING (attr);
23644 *len = strlen (DW_STRING (attr));
23645 break;
23646 case DW_FORM_block1:
23647 case DW_FORM_block2:
23648 case DW_FORM_block4:
23649 case DW_FORM_block:
23650 case DW_FORM_exprloc:
23651 case DW_FORM_data16:
23652 result = DW_BLOCK (attr)->data;
23653 *len = DW_BLOCK (attr)->size;
23654 break;
23655
23656 /* The DW_AT_const_value attributes are supposed to carry the
23657 symbol's value "represented as it would be on the target
23658 architecture." By the time we get here, it's already been
23659 converted to host endianness, so we just need to sign- or
23660 zero-extend it as appropriate. */
23661 case DW_FORM_data1:
23662 type = die_type (die, cu);
23663 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23664 if (result == NULL)
23665 result = write_constant_as_bytes (obstack, byte_order,
23666 type, value, len);
23667 break;
23668 case DW_FORM_data2:
23669 type = die_type (die, cu);
23670 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23671 if (result == NULL)
23672 result = write_constant_as_bytes (obstack, byte_order,
23673 type, value, len);
23674 break;
23675 case DW_FORM_data4:
23676 type = die_type (die, cu);
23677 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23678 if (result == NULL)
23679 result = write_constant_as_bytes (obstack, byte_order,
23680 type, value, len);
23681 break;
23682 case DW_FORM_data8:
23683 type = die_type (die, cu);
23684 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23685 if (result == NULL)
23686 result = write_constant_as_bytes (obstack, byte_order,
23687 type, value, len);
23688 break;
23689
23690 case DW_FORM_sdata:
23691 case DW_FORM_implicit_const:
23692 type = die_type (die, cu);
23693 result = write_constant_as_bytes (obstack, byte_order,
23694 type, DW_SND (attr), len);
23695 break;
23696
23697 case DW_FORM_udata:
23698 type = die_type (die, cu);
23699 result = write_constant_as_bytes (obstack, byte_order,
23700 type, DW_UNSND (attr), len);
23701 break;
23702
23703 default:
23704 complaint (&symfile_complaints,
23705 _("unsupported const value attribute form: '%s'"),
23706 dwarf_form_name (attr->form));
23707 break;
23708 }
23709
23710 return result;
23711 }
23712
23713 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23714 valid type for this die is found. */
23715
23716 struct type *
23717 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23718 struct dwarf2_per_cu_data *per_cu)
23719 {
23720 struct dwarf2_cu *cu;
23721 struct die_info *die;
23722
23723 if (per_cu->cu == NULL)
23724 load_cu (per_cu);
23725 cu = per_cu->cu;
23726 if (!cu)
23727 return NULL;
23728
23729 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23730 if (!die)
23731 return NULL;
23732
23733 return die_type (die, cu);
23734 }
23735
23736 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23737 PER_CU. */
23738
23739 struct type *
23740 dwarf2_get_die_type (cu_offset die_offset,
23741 struct dwarf2_per_cu_data *per_cu)
23742 {
23743 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23744 return get_die_type_at_offset (die_offset_sect, per_cu);
23745 }
23746
23747 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23748 On entry *REF_CU is the CU of SRC_DIE.
23749 On exit *REF_CU is the CU of the result.
23750 Returns NULL if the referenced DIE isn't found. */
23751
23752 static struct die_info *
23753 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23754 struct dwarf2_cu **ref_cu)
23755 {
23756 struct die_info temp_die;
23757 struct dwarf2_cu *sig_cu;
23758 struct die_info *die;
23759
23760 /* While it might be nice to assert sig_type->type == NULL here,
23761 we can get here for DW_AT_imported_declaration where we need
23762 the DIE not the type. */
23763
23764 /* If necessary, add it to the queue and load its DIEs. */
23765
23766 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23767 read_signatured_type (sig_type);
23768
23769 sig_cu = sig_type->per_cu.cu;
23770 gdb_assert (sig_cu != NULL);
23771 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23772 temp_die.sect_off = sig_type->type_offset_in_section;
23773 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23774 to_underlying (temp_die.sect_off));
23775 if (die)
23776 {
23777 struct dwarf2_per_objfile *dwarf2_per_objfile
23778 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23779
23780 /* For .gdb_index version 7 keep track of included TUs.
23781 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23782 if (dwarf2_per_objfile->index_table != NULL
23783 && dwarf2_per_objfile->index_table->version <= 7)
23784 {
23785 VEC_safe_push (dwarf2_per_cu_ptr,
23786 (*ref_cu)->per_cu->imported_symtabs,
23787 sig_cu->per_cu);
23788 }
23789
23790 *ref_cu = sig_cu;
23791 return die;
23792 }
23793
23794 return NULL;
23795 }
23796
23797 /* Follow signatured type referenced by ATTR in SRC_DIE.
23798 On entry *REF_CU is the CU of SRC_DIE.
23799 On exit *REF_CU is the CU of the result.
23800 The result is the DIE of the type.
23801 If the referenced type cannot be found an error is thrown. */
23802
23803 static struct die_info *
23804 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23805 struct dwarf2_cu **ref_cu)
23806 {
23807 ULONGEST signature = DW_SIGNATURE (attr);
23808 struct signatured_type *sig_type;
23809 struct die_info *die;
23810
23811 gdb_assert (attr->form == DW_FORM_ref_sig8);
23812
23813 sig_type = lookup_signatured_type (*ref_cu, signature);
23814 /* sig_type will be NULL if the signatured type is missing from
23815 the debug info. */
23816 if (sig_type == NULL)
23817 {
23818 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23819 " from DIE at %s [in module %s]"),
23820 hex_string (signature), sect_offset_str (src_die->sect_off),
23821 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23822 }
23823
23824 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23825 if (die == NULL)
23826 {
23827 dump_die_for_error (src_die);
23828 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23829 " from DIE at %s [in module %s]"),
23830 hex_string (signature), sect_offset_str (src_die->sect_off),
23831 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23832 }
23833
23834 return die;
23835 }
23836
23837 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23838 reading in and processing the type unit if necessary. */
23839
23840 static struct type *
23841 get_signatured_type (struct die_info *die, ULONGEST signature,
23842 struct dwarf2_cu *cu)
23843 {
23844 struct dwarf2_per_objfile *dwarf2_per_objfile
23845 = cu->per_cu->dwarf2_per_objfile;
23846 struct signatured_type *sig_type;
23847 struct dwarf2_cu *type_cu;
23848 struct die_info *type_die;
23849 struct type *type;
23850
23851 sig_type = lookup_signatured_type (cu, signature);
23852 /* sig_type will be NULL if the signatured type is missing from
23853 the debug info. */
23854 if (sig_type == NULL)
23855 {
23856 complaint (&symfile_complaints,
23857 _("Dwarf Error: Cannot find signatured DIE %s referenced"
23858 " from DIE at %s [in module %s]"),
23859 hex_string (signature), sect_offset_str (die->sect_off),
23860 objfile_name (dwarf2_per_objfile->objfile));
23861 return build_error_marker_type (cu, die);
23862 }
23863
23864 /* If we already know the type we're done. */
23865 if (sig_type->type != NULL)
23866 return sig_type->type;
23867
23868 type_cu = cu;
23869 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23870 if (type_die != NULL)
23871 {
23872 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23873 is created. This is important, for example, because for c++ classes
23874 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23875 type = read_type_die (type_die, type_cu);
23876 if (type == NULL)
23877 {
23878 complaint (&symfile_complaints,
23879 _("Dwarf Error: Cannot build signatured type %s"
23880 " referenced from DIE at %s [in module %s]"),
23881 hex_string (signature), sect_offset_str (die->sect_off),
23882 objfile_name (dwarf2_per_objfile->objfile));
23883 type = build_error_marker_type (cu, die);
23884 }
23885 }
23886 else
23887 {
23888 complaint (&symfile_complaints,
23889 _("Dwarf Error: Problem reading signatured DIE %s referenced"
23890 " from DIE at %s [in module %s]"),
23891 hex_string (signature), sect_offset_str (die->sect_off),
23892 objfile_name (dwarf2_per_objfile->objfile));
23893 type = build_error_marker_type (cu, die);
23894 }
23895 sig_type->type = type;
23896
23897 return type;
23898 }
23899
23900 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23901 reading in and processing the type unit if necessary. */
23902
23903 static struct type *
23904 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23905 struct dwarf2_cu *cu) /* ARI: editCase function */
23906 {
23907 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23908 if (attr_form_is_ref (attr))
23909 {
23910 struct dwarf2_cu *type_cu = cu;
23911 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23912
23913 return read_type_die (type_die, type_cu);
23914 }
23915 else if (attr->form == DW_FORM_ref_sig8)
23916 {
23917 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23918 }
23919 else
23920 {
23921 struct dwarf2_per_objfile *dwarf2_per_objfile
23922 = cu->per_cu->dwarf2_per_objfile;
23923
23924 complaint (&symfile_complaints,
23925 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23926 " at %s [in module %s]"),
23927 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23928 objfile_name (dwarf2_per_objfile->objfile));
23929 return build_error_marker_type (cu, die);
23930 }
23931 }
23932
23933 /* Load the DIEs associated with type unit PER_CU into memory. */
23934
23935 static void
23936 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23937 {
23938 struct signatured_type *sig_type;
23939
23940 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23941 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23942
23943 /* We have the per_cu, but we need the signatured_type.
23944 Fortunately this is an easy translation. */
23945 gdb_assert (per_cu->is_debug_types);
23946 sig_type = (struct signatured_type *) per_cu;
23947
23948 gdb_assert (per_cu->cu == NULL);
23949
23950 read_signatured_type (sig_type);
23951
23952 gdb_assert (per_cu->cu != NULL);
23953 }
23954
23955 /* die_reader_func for read_signatured_type.
23956 This is identical to load_full_comp_unit_reader,
23957 but is kept separate for now. */
23958
23959 static void
23960 read_signatured_type_reader (const struct die_reader_specs *reader,
23961 const gdb_byte *info_ptr,
23962 struct die_info *comp_unit_die,
23963 int has_children,
23964 void *data)
23965 {
23966 struct dwarf2_cu *cu = reader->cu;
23967
23968 gdb_assert (cu->die_hash == NULL);
23969 cu->die_hash =
23970 htab_create_alloc_ex (cu->header.length / 12,
23971 die_hash,
23972 die_eq,
23973 NULL,
23974 &cu->comp_unit_obstack,
23975 hashtab_obstack_allocate,
23976 dummy_obstack_deallocate);
23977
23978 if (has_children)
23979 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23980 &info_ptr, comp_unit_die);
23981 cu->dies = comp_unit_die;
23982 /* comp_unit_die is not stored in die_hash, no need. */
23983
23984 /* We try not to read any attributes in this function, because not
23985 all CUs needed for references have been loaded yet, and symbol
23986 table processing isn't initialized. But we have to set the CU language,
23987 or we won't be able to build types correctly.
23988 Similarly, if we do not read the producer, we can not apply
23989 producer-specific interpretation. */
23990 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23991 }
23992
23993 /* Read in a signatured type and build its CU and DIEs.
23994 If the type is a stub for the real type in a DWO file,
23995 read in the real type from the DWO file as well. */
23996
23997 static void
23998 read_signatured_type (struct signatured_type *sig_type)
23999 {
24000 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
24001
24002 gdb_assert (per_cu->is_debug_types);
24003 gdb_assert (per_cu->cu == NULL);
24004
24005 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
24006 read_signatured_type_reader, NULL);
24007 sig_type->per_cu.tu_read = 1;
24008 }
24009
24010 /* Decode simple location descriptions.
24011 Given a pointer to a dwarf block that defines a location, compute
24012 the location and return the value.
24013
24014 NOTE drow/2003-11-18: This function is called in two situations
24015 now: for the address of static or global variables (partial symbols
24016 only) and for offsets into structures which are expected to be
24017 (more or less) constant. The partial symbol case should go away,
24018 and only the constant case should remain. That will let this
24019 function complain more accurately. A few special modes are allowed
24020 without complaint for global variables (for instance, global
24021 register values and thread-local values).
24022
24023 A location description containing no operations indicates that the
24024 object is optimized out. The return value is 0 for that case.
24025 FIXME drow/2003-11-16: No callers check for this case any more; soon all
24026 callers will only want a very basic result and this can become a
24027 complaint.
24028
24029 Note that stack[0] is unused except as a default error return. */
24030
24031 static CORE_ADDR
24032 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
24033 {
24034 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
24035 size_t i;
24036 size_t size = blk->size;
24037 const gdb_byte *data = blk->data;
24038 CORE_ADDR stack[64];
24039 int stacki;
24040 unsigned int bytes_read, unsnd;
24041 gdb_byte op;
24042
24043 i = 0;
24044 stacki = 0;
24045 stack[stacki] = 0;
24046 stack[++stacki] = 0;
24047
24048 while (i < size)
24049 {
24050 op = data[i++];
24051 switch (op)
24052 {
24053 case DW_OP_lit0:
24054 case DW_OP_lit1:
24055 case DW_OP_lit2:
24056 case DW_OP_lit3:
24057 case DW_OP_lit4:
24058 case DW_OP_lit5:
24059 case DW_OP_lit6:
24060 case DW_OP_lit7:
24061 case DW_OP_lit8:
24062 case DW_OP_lit9:
24063 case DW_OP_lit10:
24064 case DW_OP_lit11:
24065 case DW_OP_lit12:
24066 case DW_OP_lit13:
24067 case DW_OP_lit14:
24068 case DW_OP_lit15:
24069 case DW_OP_lit16:
24070 case DW_OP_lit17:
24071 case DW_OP_lit18:
24072 case DW_OP_lit19:
24073 case DW_OP_lit20:
24074 case DW_OP_lit21:
24075 case DW_OP_lit22:
24076 case DW_OP_lit23:
24077 case DW_OP_lit24:
24078 case DW_OP_lit25:
24079 case DW_OP_lit26:
24080 case DW_OP_lit27:
24081 case DW_OP_lit28:
24082 case DW_OP_lit29:
24083 case DW_OP_lit30:
24084 case DW_OP_lit31:
24085 stack[++stacki] = op - DW_OP_lit0;
24086 break;
24087
24088 case DW_OP_reg0:
24089 case DW_OP_reg1:
24090 case DW_OP_reg2:
24091 case DW_OP_reg3:
24092 case DW_OP_reg4:
24093 case DW_OP_reg5:
24094 case DW_OP_reg6:
24095 case DW_OP_reg7:
24096 case DW_OP_reg8:
24097 case DW_OP_reg9:
24098 case DW_OP_reg10:
24099 case DW_OP_reg11:
24100 case DW_OP_reg12:
24101 case DW_OP_reg13:
24102 case DW_OP_reg14:
24103 case DW_OP_reg15:
24104 case DW_OP_reg16:
24105 case DW_OP_reg17:
24106 case DW_OP_reg18:
24107 case DW_OP_reg19:
24108 case DW_OP_reg20:
24109 case DW_OP_reg21:
24110 case DW_OP_reg22:
24111 case DW_OP_reg23:
24112 case DW_OP_reg24:
24113 case DW_OP_reg25:
24114 case DW_OP_reg26:
24115 case DW_OP_reg27:
24116 case DW_OP_reg28:
24117 case DW_OP_reg29:
24118 case DW_OP_reg30:
24119 case DW_OP_reg31:
24120 stack[++stacki] = op - DW_OP_reg0;
24121 if (i < size)
24122 dwarf2_complex_location_expr_complaint ();
24123 break;
24124
24125 case DW_OP_regx:
24126 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
24127 i += bytes_read;
24128 stack[++stacki] = unsnd;
24129 if (i < size)
24130 dwarf2_complex_location_expr_complaint ();
24131 break;
24132
24133 case DW_OP_addr:
24134 stack[++stacki] = read_address (objfile->obfd, &data[i],
24135 cu, &bytes_read);
24136 i += bytes_read;
24137 break;
24138
24139 case DW_OP_const1u:
24140 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24141 i += 1;
24142 break;
24143
24144 case DW_OP_const1s:
24145 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24146 i += 1;
24147 break;
24148
24149 case DW_OP_const2u:
24150 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24151 i += 2;
24152 break;
24153
24154 case DW_OP_const2s:
24155 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24156 i += 2;
24157 break;
24158
24159 case DW_OP_const4u:
24160 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24161 i += 4;
24162 break;
24163
24164 case DW_OP_const4s:
24165 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24166 i += 4;
24167 break;
24168
24169 case DW_OP_const8u:
24170 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24171 i += 8;
24172 break;
24173
24174 case DW_OP_constu:
24175 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24176 &bytes_read);
24177 i += bytes_read;
24178 break;
24179
24180 case DW_OP_consts:
24181 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24182 i += bytes_read;
24183 break;
24184
24185 case DW_OP_dup:
24186 stack[stacki + 1] = stack[stacki];
24187 stacki++;
24188 break;
24189
24190 case DW_OP_plus:
24191 stack[stacki - 1] += stack[stacki];
24192 stacki--;
24193 break;
24194
24195 case DW_OP_plus_uconst:
24196 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24197 &bytes_read);
24198 i += bytes_read;
24199 break;
24200
24201 case DW_OP_minus:
24202 stack[stacki - 1] -= stack[stacki];
24203 stacki--;
24204 break;
24205
24206 case DW_OP_deref:
24207 /* If we're not the last op, then we definitely can't encode
24208 this using GDB's address_class enum. This is valid for partial
24209 global symbols, although the variable's address will be bogus
24210 in the psymtab. */
24211 if (i < size)
24212 dwarf2_complex_location_expr_complaint ();
24213 break;
24214
24215 case DW_OP_GNU_push_tls_address:
24216 case DW_OP_form_tls_address:
24217 /* The top of the stack has the offset from the beginning
24218 of the thread control block at which the variable is located. */
24219 /* Nothing should follow this operator, so the top of stack would
24220 be returned. */
24221 /* This is valid for partial global symbols, but the variable's
24222 address will be bogus in the psymtab. Make it always at least
24223 non-zero to not look as a variable garbage collected by linker
24224 which have DW_OP_addr 0. */
24225 if (i < size)
24226 dwarf2_complex_location_expr_complaint ();
24227 stack[stacki]++;
24228 break;
24229
24230 case DW_OP_GNU_uninit:
24231 break;
24232
24233 case DW_OP_GNU_addr_index:
24234 case DW_OP_GNU_const_index:
24235 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24236 &bytes_read);
24237 i += bytes_read;
24238 break;
24239
24240 default:
24241 {
24242 const char *name = get_DW_OP_name (op);
24243
24244 if (name)
24245 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
24246 name);
24247 else
24248 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
24249 op);
24250 }
24251
24252 return (stack[stacki]);
24253 }
24254
24255 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24256 outside of the allocated space. Also enforce minimum>0. */
24257 if (stacki >= ARRAY_SIZE (stack) - 1)
24258 {
24259 complaint (&symfile_complaints,
24260 _("location description stack overflow"));
24261 return 0;
24262 }
24263
24264 if (stacki <= 0)
24265 {
24266 complaint (&symfile_complaints,
24267 _("location description stack underflow"));
24268 return 0;
24269 }
24270 }
24271 return (stack[stacki]);
24272 }
24273
24274 /* memory allocation interface */
24275
24276 static struct dwarf_block *
24277 dwarf_alloc_block (struct dwarf2_cu *cu)
24278 {
24279 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24280 }
24281
24282 static struct die_info *
24283 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24284 {
24285 struct die_info *die;
24286 size_t size = sizeof (struct die_info);
24287
24288 if (num_attrs > 1)
24289 size += (num_attrs - 1) * sizeof (struct attribute);
24290
24291 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24292 memset (die, 0, sizeof (struct die_info));
24293 return (die);
24294 }
24295
24296 \f
24297 /* Macro support. */
24298
24299 /* Return file name relative to the compilation directory of file number I in
24300 *LH's file name table. The result is allocated using xmalloc; the caller is
24301 responsible for freeing it. */
24302
24303 static char *
24304 file_file_name (int file, struct line_header *lh)
24305 {
24306 /* Is the file number a valid index into the line header's file name
24307 table? Remember that file numbers start with one, not zero. */
24308 if (1 <= file && file <= lh->file_names.size ())
24309 {
24310 const file_entry &fe = lh->file_names[file - 1];
24311
24312 if (!IS_ABSOLUTE_PATH (fe.name))
24313 {
24314 const char *dir = fe.include_dir (lh);
24315 if (dir != NULL)
24316 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24317 }
24318 return xstrdup (fe.name);
24319 }
24320 else
24321 {
24322 /* The compiler produced a bogus file number. We can at least
24323 record the macro definitions made in the file, even if we
24324 won't be able to find the file by name. */
24325 char fake_name[80];
24326
24327 xsnprintf (fake_name, sizeof (fake_name),
24328 "<bad macro file number %d>", file);
24329
24330 complaint (&symfile_complaints,
24331 _("bad file number in macro information (%d)"),
24332 file);
24333
24334 return xstrdup (fake_name);
24335 }
24336 }
24337
24338 /* Return the full name of file number I in *LH's file name table.
24339 Use COMP_DIR as the name of the current directory of the
24340 compilation. The result is allocated using xmalloc; the caller is
24341 responsible for freeing it. */
24342 static char *
24343 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24344 {
24345 /* Is the file number a valid index into the line header's file name
24346 table? Remember that file numbers start with one, not zero. */
24347 if (1 <= file && file <= lh->file_names.size ())
24348 {
24349 char *relative = file_file_name (file, lh);
24350
24351 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24352 return relative;
24353 return reconcat (relative, comp_dir, SLASH_STRING,
24354 relative, (char *) NULL);
24355 }
24356 else
24357 return file_file_name (file, lh);
24358 }
24359
24360
24361 static struct macro_source_file *
24362 macro_start_file (int file, int line,
24363 struct macro_source_file *current_file,
24364 struct line_header *lh)
24365 {
24366 /* File name relative to the compilation directory of this source file. */
24367 char *file_name = file_file_name (file, lh);
24368
24369 if (! current_file)
24370 {
24371 /* Note: We don't create a macro table for this compilation unit
24372 at all until we actually get a filename. */
24373 struct macro_table *macro_table = get_macro_table ();
24374
24375 /* If we have no current file, then this must be the start_file
24376 directive for the compilation unit's main source file. */
24377 current_file = macro_set_main (macro_table, file_name);
24378 macro_define_special (macro_table);
24379 }
24380 else
24381 current_file = macro_include (current_file, line, file_name);
24382
24383 xfree (file_name);
24384
24385 return current_file;
24386 }
24387
24388 static const char *
24389 consume_improper_spaces (const char *p, const char *body)
24390 {
24391 if (*p == ' ')
24392 {
24393 complaint (&symfile_complaints,
24394 _("macro definition contains spaces "
24395 "in formal argument list:\n`%s'"),
24396 body);
24397
24398 while (*p == ' ')
24399 p++;
24400 }
24401
24402 return p;
24403 }
24404
24405
24406 static void
24407 parse_macro_definition (struct macro_source_file *file, int line,
24408 const char *body)
24409 {
24410 const char *p;
24411
24412 /* The body string takes one of two forms. For object-like macro
24413 definitions, it should be:
24414
24415 <macro name> " " <definition>
24416
24417 For function-like macro definitions, it should be:
24418
24419 <macro name> "() " <definition>
24420 or
24421 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24422
24423 Spaces may appear only where explicitly indicated, and in the
24424 <definition>.
24425
24426 The Dwarf 2 spec says that an object-like macro's name is always
24427 followed by a space, but versions of GCC around March 2002 omit
24428 the space when the macro's definition is the empty string.
24429
24430 The Dwarf 2 spec says that there should be no spaces between the
24431 formal arguments in a function-like macro's formal argument list,
24432 but versions of GCC around March 2002 include spaces after the
24433 commas. */
24434
24435
24436 /* Find the extent of the macro name. The macro name is terminated
24437 by either a space or null character (for an object-like macro) or
24438 an opening paren (for a function-like macro). */
24439 for (p = body; *p; p++)
24440 if (*p == ' ' || *p == '(')
24441 break;
24442
24443 if (*p == ' ' || *p == '\0')
24444 {
24445 /* It's an object-like macro. */
24446 int name_len = p - body;
24447 char *name = savestring (body, name_len);
24448 const char *replacement;
24449
24450 if (*p == ' ')
24451 replacement = body + name_len + 1;
24452 else
24453 {
24454 dwarf2_macro_malformed_definition_complaint (body);
24455 replacement = body + name_len;
24456 }
24457
24458 macro_define_object (file, line, name, replacement);
24459
24460 xfree (name);
24461 }
24462 else if (*p == '(')
24463 {
24464 /* It's a function-like macro. */
24465 char *name = savestring (body, p - body);
24466 int argc = 0;
24467 int argv_size = 1;
24468 char **argv = XNEWVEC (char *, argv_size);
24469
24470 p++;
24471
24472 p = consume_improper_spaces (p, body);
24473
24474 /* Parse the formal argument list. */
24475 while (*p && *p != ')')
24476 {
24477 /* Find the extent of the current argument name. */
24478 const char *arg_start = p;
24479
24480 while (*p && *p != ',' && *p != ')' && *p != ' ')
24481 p++;
24482
24483 if (! *p || p == arg_start)
24484 dwarf2_macro_malformed_definition_complaint (body);
24485 else
24486 {
24487 /* Make sure argv has room for the new argument. */
24488 if (argc >= argv_size)
24489 {
24490 argv_size *= 2;
24491 argv = XRESIZEVEC (char *, argv, argv_size);
24492 }
24493
24494 argv[argc++] = savestring (arg_start, p - arg_start);
24495 }
24496
24497 p = consume_improper_spaces (p, body);
24498
24499 /* Consume the comma, if present. */
24500 if (*p == ',')
24501 {
24502 p++;
24503
24504 p = consume_improper_spaces (p, body);
24505 }
24506 }
24507
24508 if (*p == ')')
24509 {
24510 p++;
24511
24512 if (*p == ' ')
24513 /* Perfectly formed definition, no complaints. */
24514 macro_define_function (file, line, name,
24515 argc, (const char **) argv,
24516 p + 1);
24517 else if (*p == '\0')
24518 {
24519 /* Complain, but do define it. */
24520 dwarf2_macro_malformed_definition_complaint (body);
24521 macro_define_function (file, line, name,
24522 argc, (const char **) argv,
24523 p);
24524 }
24525 else
24526 /* Just complain. */
24527 dwarf2_macro_malformed_definition_complaint (body);
24528 }
24529 else
24530 /* Just complain. */
24531 dwarf2_macro_malformed_definition_complaint (body);
24532
24533 xfree (name);
24534 {
24535 int i;
24536
24537 for (i = 0; i < argc; i++)
24538 xfree (argv[i]);
24539 }
24540 xfree (argv);
24541 }
24542 else
24543 dwarf2_macro_malformed_definition_complaint (body);
24544 }
24545
24546 /* Skip some bytes from BYTES according to the form given in FORM.
24547 Returns the new pointer. */
24548
24549 static const gdb_byte *
24550 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24551 enum dwarf_form form,
24552 unsigned int offset_size,
24553 struct dwarf2_section_info *section)
24554 {
24555 unsigned int bytes_read;
24556
24557 switch (form)
24558 {
24559 case DW_FORM_data1:
24560 case DW_FORM_flag:
24561 ++bytes;
24562 break;
24563
24564 case DW_FORM_data2:
24565 bytes += 2;
24566 break;
24567
24568 case DW_FORM_data4:
24569 bytes += 4;
24570 break;
24571
24572 case DW_FORM_data8:
24573 bytes += 8;
24574 break;
24575
24576 case DW_FORM_data16:
24577 bytes += 16;
24578 break;
24579
24580 case DW_FORM_string:
24581 read_direct_string (abfd, bytes, &bytes_read);
24582 bytes += bytes_read;
24583 break;
24584
24585 case DW_FORM_sec_offset:
24586 case DW_FORM_strp:
24587 case DW_FORM_GNU_strp_alt:
24588 bytes += offset_size;
24589 break;
24590
24591 case DW_FORM_block:
24592 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24593 bytes += bytes_read;
24594 break;
24595
24596 case DW_FORM_block1:
24597 bytes += 1 + read_1_byte (abfd, bytes);
24598 break;
24599 case DW_FORM_block2:
24600 bytes += 2 + read_2_bytes (abfd, bytes);
24601 break;
24602 case DW_FORM_block4:
24603 bytes += 4 + read_4_bytes (abfd, bytes);
24604 break;
24605
24606 case DW_FORM_sdata:
24607 case DW_FORM_udata:
24608 case DW_FORM_GNU_addr_index:
24609 case DW_FORM_GNU_str_index:
24610 bytes = gdb_skip_leb128 (bytes, buffer_end);
24611 if (bytes == NULL)
24612 {
24613 dwarf2_section_buffer_overflow_complaint (section);
24614 return NULL;
24615 }
24616 break;
24617
24618 case DW_FORM_implicit_const:
24619 break;
24620
24621 default:
24622 {
24623 complaint (&symfile_complaints,
24624 _("invalid form 0x%x in `%s'"),
24625 form, get_section_name (section));
24626 return NULL;
24627 }
24628 }
24629
24630 return bytes;
24631 }
24632
24633 /* A helper for dwarf_decode_macros that handles skipping an unknown
24634 opcode. Returns an updated pointer to the macro data buffer; or,
24635 on error, issues a complaint and returns NULL. */
24636
24637 static const gdb_byte *
24638 skip_unknown_opcode (unsigned int opcode,
24639 const gdb_byte **opcode_definitions,
24640 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24641 bfd *abfd,
24642 unsigned int offset_size,
24643 struct dwarf2_section_info *section)
24644 {
24645 unsigned int bytes_read, i;
24646 unsigned long arg;
24647 const gdb_byte *defn;
24648
24649 if (opcode_definitions[opcode] == NULL)
24650 {
24651 complaint (&symfile_complaints,
24652 _("unrecognized DW_MACFINO opcode 0x%x"),
24653 opcode);
24654 return NULL;
24655 }
24656
24657 defn = opcode_definitions[opcode];
24658 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24659 defn += bytes_read;
24660
24661 for (i = 0; i < arg; ++i)
24662 {
24663 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24664 (enum dwarf_form) defn[i], offset_size,
24665 section);
24666 if (mac_ptr == NULL)
24667 {
24668 /* skip_form_bytes already issued the complaint. */
24669 return NULL;
24670 }
24671 }
24672
24673 return mac_ptr;
24674 }
24675
24676 /* A helper function which parses the header of a macro section.
24677 If the macro section is the extended (for now called "GNU") type,
24678 then this updates *OFFSET_SIZE. Returns a pointer to just after
24679 the header, or issues a complaint and returns NULL on error. */
24680
24681 static const gdb_byte *
24682 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24683 bfd *abfd,
24684 const gdb_byte *mac_ptr,
24685 unsigned int *offset_size,
24686 int section_is_gnu)
24687 {
24688 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24689
24690 if (section_is_gnu)
24691 {
24692 unsigned int version, flags;
24693
24694 version = read_2_bytes (abfd, mac_ptr);
24695 if (version != 4 && version != 5)
24696 {
24697 complaint (&symfile_complaints,
24698 _("unrecognized version `%d' in .debug_macro section"),
24699 version);
24700 return NULL;
24701 }
24702 mac_ptr += 2;
24703
24704 flags = read_1_byte (abfd, mac_ptr);
24705 ++mac_ptr;
24706 *offset_size = (flags & 1) ? 8 : 4;
24707
24708 if ((flags & 2) != 0)
24709 /* We don't need the line table offset. */
24710 mac_ptr += *offset_size;
24711
24712 /* Vendor opcode descriptions. */
24713 if ((flags & 4) != 0)
24714 {
24715 unsigned int i, count;
24716
24717 count = read_1_byte (abfd, mac_ptr);
24718 ++mac_ptr;
24719 for (i = 0; i < count; ++i)
24720 {
24721 unsigned int opcode, bytes_read;
24722 unsigned long arg;
24723
24724 opcode = read_1_byte (abfd, mac_ptr);
24725 ++mac_ptr;
24726 opcode_definitions[opcode] = mac_ptr;
24727 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24728 mac_ptr += bytes_read;
24729 mac_ptr += arg;
24730 }
24731 }
24732 }
24733
24734 return mac_ptr;
24735 }
24736
24737 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24738 including DW_MACRO_import. */
24739
24740 static void
24741 dwarf_decode_macro_bytes (struct dwarf2_per_objfile *dwarf2_per_objfile,
24742 bfd *abfd,
24743 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24744 struct macro_source_file *current_file,
24745 struct line_header *lh,
24746 struct dwarf2_section_info *section,
24747 int section_is_gnu, int section_is_dwz,
24748 unsigned int offset_size,
24749 htab_t include_hash)
24750 {
24751 struct objfile *objfile = dwarf2_per_objfile->objfile;
24752 enum dwarf_macro_record_type macinfo_type;
24753 int at_commandline;
24754 const gdb_byte *opcode_definitions[256];
24755
24756 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24757 &offset_size, section_is_gnu);
24758 if (mac_ptr == NULL)
24759 {
24760 /* We already issued a complaint. */
24761 return;
24762 }
24763
24764 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24765 GDB is still reading the definitions from command line. First
24766 DW_MACINFO_start_file will need to be ignored as it was already executed
24767 to create CURRENT_FILE for the main source holding also the command line
24768 definitions. On first met DW_MACINFO_start_file this flag is reset to
24769 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24770
24771 at_commandline = 1;
24772
24773 do
24774 {
24775 /* Do we at least have room for a macinfo type byte? */
24776 if (mac_ptr >= mac_end)
24777 {
24778 dwarf2_section_buffer_overflow_complaint (section);
24779 break;
24780 }
24781
24782 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24783 mac_ptr++;
24784
24785 /* Note that we rely on the fact that the corresponding GNU and
24786 DWARF constants are the same. */
24787 DIAGNOSTIC_PUSH
24788 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24789 switch (macinfo_type)
24790 {
24791 /* A zero macinfo type indicates the end of the macro
24792 information. */
24793 case 0:
24794 break;
24795
24796 case DW_MACRO_define:
24797 case DW_MACRO_undef:
24798 case DW_MACRO_define_strp:
24799 case DW_MACRO_undef_strp:
24800 case DW_MACRO_define_sup:
24801 case DW_MACRO_undef_sup:
24802 {
24803 unsigned int bytes_read;
24804 int line;
24805 const char *body;
24806 int is_define;
24807
24808 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24809 mac_ptr += bytes_read;
24810
24811 if (macinfo_type == DW_MACRO_define
24812 || macinfo_type == DW_MACRO_undef)
24813 {
24814 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24815 mac_ptr += bytes_read;
24816 }
24817 else
24818 {
24819 LONGEST str_offset;
24820
24821 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24822 mac_ptr += offset_size;
24823
24824 if (macinfo_type == DW_MACRO_define_sup
24825 || macinfo_type == DW_MACRO_undef_sup
24826 || section_is_dwz)
24827 {
24828 struct dwz_file *dwz
24829 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24830
24831 body = read_indirect_string_from_dwz (objfile,
24832 dwz, str_offset);
24833 }
24834 else
24835 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24836 abfd, str_offset);
24837 }
24838
24839 is_define = (macinfo_type == DW_MACRO_define
24840 || macinfo_type == DW_MACRO_define_strp
24841 || macinfo_type == DW_MACRO_define_sup);
24842 if (! current_file)
24843 {
24844 /* DWARF violation as no main source is present. */
24845 complaint (&symfile_complaints,
24846 _("debug info with no main source gives macro %s "
24847 "on line %d: %s"),
24848 is_define ? _("definition") : _("undefinition"),
24849 line, body);
24850 break;
24851 }
24852 if ((line == 0 && !at_commandline)
24853 || (line != 0 && at_commandline))
24854 complaint (&symfile_complaints,
24855 _("debug info gives %s macro %s with %s line %d: %s"),
24856 at_commandline ? _("command-line") : _("in-file"),
24857 is_define ? _("definition") : _("undefinition"),
24858 line == 0 ? _("zero") : _("non-zero"), line, body);
24859
24860 if (is_define)
24861 parse_macro_definition (current_file, line, body);
24862 else
24863 {
24864 gdb_assert (macinfo_type == DW_MACRO_undef
24865 || macinfo_type == DW_MACRO_undef_strp
24866 || macinfo_type == DW_MACRO_undef_sup);
24867 macro_undef (current_file, line, body);
24868 }
24869 }
24870 break;
24871
24872 case DW_MACRO_start_file:
24873 {
24874 unsigned int bytes_read;
24875 int line, file;
24876
24877 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24878 mac_ptr += bytes_read;
24879 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24880 mac_ptr += bytes_read;
24881
24882 if ((line == 0 && !at_commandline)
24883 || (line != 0 && at_commandline))
24884 complaint (&symfile_complaints,
24885 _("debug info gives source %d included "
24886 "from %s at %s line %d"),
24887 file, at_commandline ? _("command-line") : _("file"),
24888 line == 0 ? _("zero") : _("non-zero"), line);
24889
24890 if (at_commandline)
24891 {
24892 /* This DW_MACRO_start_file was executed in the
24893 pass one. */
24894 at_commandline = 0;
24895 }
24896 else
24897 current_file = macro_start_file (file, line, current_file, lh);
24898 }
24899 break;
24900
24901 case DW_MACRO_end_file:
24902 if (! current_file)
24903 complaint (&symfile_complaints,
24904 _("macro debug info has an unmatched "
24905 "`close_file' directive"));
24906 else
24907 {
24908 current_file = current_file->included_by;
24909 if (! current_file)
24910 {
24911 enum dwarf_macro_record_type next_type;
24912
24913 /* GCC circa March 2002 doesn't produce the zero
24914 type byte marking the end of the compilation
24915 unit. Complain if it's not there, but exit no
24916 matter what. */
24917
24918 /* Do we at least have room for a macinfo type byte? */
24919 if (mac_ptr >= mac_end)
24920 {
24921 dwarf2_section_buffer_overflow_complaint (section);
24922 return;
24923 }
24924
24925 /* We don't increment mac_ptr here, so this is just
24926 a look-ahead. */
24927 next_type
24928 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24929 mac_ptr);
24930 if (next_type != 0)
24931 complaint (&symfile_complaints,
24932 _("no terminating 0-type entry for "
24933 "macros in `.debug_macinfo' section"));
24934
24935 return;
24936 }
24937 }
24938 break;
24939
24940 case DW_MACRO_import:
24941 case DW_MACRO_import_sup:
24942 {
24943 LONGEST offset;
24944 void **slot;
24945 bfd *include_bfd = abfd;
24946 struct dwarf2_section_info *include_section = section;
24947 const gdb_byte *include_mac_end = mac_end;
24948 int is_dwz = section_is_dwz;
24949 const gdb_byte *new_mac_ptr;
24950
24951 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24952 mac_ptr += offset_size;
24953
24954 if (macinfo_type == DW_MACRO_import_sup)
24955 {
24956 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24957
24958 dwarf2_read_section (objfile, &dwz->macro);
24959
24960 include_section = &dwz->macro;
24961 include_bfd = get_section_bfd_owner (include_section);
24962 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24963 is_dwz = 1;
24964 }
24965
24966 new_mac_ptr = include_section->buffer + offset;
24967 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24968
24969 if (*slot != NULL)
24970 {
24971 /* This has actually happened; see
24972 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24973 complaint (&symfile_complaints,
24974 _("recursive DW_MACRO_import in "
24975 ".debug_macro section"));
24976 }
24977 else
24978 {
24979 *slot = (void *) new_mac_ptr;
24980
24981 dwarf_decode_macro_bytes (dwarf2_per_objfile,
24982 include_bfd, new_mac_ptr,
24983 include_mac_end, current_file, lh,
24984 section, section_is_gnu, is_dwz,
24985 offset_size, include_hash);
24986
24987 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24988 }
24989 }
24990 break;
24991
24992 case DW_MACINFO_vendor_ext:
24993 if (!section_is_gnu)
24994 {
24995 unsigned int bytes_read;
24996
24997 /* This reads the constant, but since we don't recognize
24998 any vendor extensions, we ignore it. */
24999 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25000 mac_ptr += bytes_read;
25001 read_direct_string (abfd, mac_ptr, &bytes_read);
25002 mac_ptr += bytes_read;
25003
25004 /* We don't recognize any vendor extensions. */
25005 break;
25006 }
25007 /* FALLTHROUGH */
25008
25009 default:
25010 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25011 mac_ptr, mac_end, abfd, offset_size,
25012 section);
25013 if (mac_ptr == NULL)
25014 return;
25015 break;
25016 }
25017 DIAGNOSTIC_POP
25018 } while (macinfo_type != 0);
25019 }
25020
25021 static void
25022 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
25023 int section_is_gnu)
25024 {
25025 struct dwarf2_per_objfile *dwarf2_per_objfile
25026 = cu->per_cu->dwarf2_per_objfile;
25027 struct objfile *objfile = dwarf2_per_objfile->objfile;
25028 struct line_header *lh = cu->line_header;
25029 bfd *abfd;
25030 const gdb_byte *mac_ptr, *mac_end;
25031 struct macro_source_file *current_file = 0;
25032 enum dwarf_macro_record_type macinfo_type;
25033 unsigned int offset_size = cu->header.offset_size;
25034 const gdb_byte *opcode_definitions[256];
25035 void **slot;
25036 struct dwarf2_section_info *section;
25037 const char *section_name;
25038
25039 if (cu->dwo_unit != NULL)
25040 {
25041 if (section_is_gnu)
25042 {
25043 section = &cu->dwo_unit->dwo_file->sections.macro;
25044 section_name = ".debug_macro.dwo";
25045 }
25046 else
25047 {
25048 section = &cu->dwo_unit->dwo_file->sections.macinfo;
25049 section_name = ".debug_macinfo.dwo";
25050 }
25051 }
25052 else
25053 {
25054 if (section_is_gnu)
25055 {
25056 section = &dwarf2_per_objfile->macro;
25057 section_name = ".debug_macro";
25058 }
25059 else
25060 {
25061 section = &dwarf2_per_objfile->macinfo;
25062 section_name = ".debug_macinfo";
25063 }
25064 }
25065
25066 dwarf2_read_section (objfile, section);
25067 if (section->buffer == NULL)
25068 {
25069 complaint (&symfile_complaints, _("missing %s section"), section_name);
25070 return;
25071 }
25072 abfd = get_section_bfd_owner (section);
25073
25074 /* First pass: Find the name of the base filename.
25075 This filename is needed in order to process all macros whose definition
25076 (or undefinition) comes from the command line. These macros are defined
25077 before the first DW_MACINFO_start_file entry, and yet still need to be
25078 associated to the base file.
25079
25080 To determine the base file name, we scan the macro definitions until we
25081 reach the first DW_MACINFO_start_file entry. We then initialize
25082 CURRENT_FILE accordingly so that any macro definition found before the
25083 first DW_MACINFO_start_file can still be associated to the base file. */
25084
25085 mac_ptr = section->buffer + offset;
25086 mac_end = section->buffer + section->size;
25087
25088 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
25089 &offset_size, section_is_gnu);
25090 if (mac_ptr == NULL)
25091 {
25092 /* We already issued a complaint. */
25093 return;
25094 }
25095
25096 do
25097 {
25098 /* Do we at least have room for a macinfo type byte? */
25099 if (mac_ptr >= mac_end)
25100 {
25101 /* Complaint is printed during the second pass as GDB will probably
25102 stop the first pass earlier upon finding
25103 DW_MACINFO_start_file. */
25104 break;
25105 }
25106
25107 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
25108 mac_ptr++;
25109
25110 /* Note that we rely on the fact that the corresponding GNU and
25111 DWARF constants are the same. */
25112 DIAGNOSTIC_PUSH
25113 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
25114 switch (macinfo_type)
25115 {
25116 /* A zero macinfo type indicates the end of the macro
25117 information. */
25118 case 0:
25119 break;
25120
25121 case DW_MACRO_define:
25122 case DW_MACRO_undef:
25123 /* Only skip the data by MAC_PTR. */
25124 {
25125 unsigned int bytes_read;
25126
25127 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25128 mac_ptr += bytes_read;
25129 read_direct_string (abfd, mac_ptr, &bytes_read);
25130 mac_ptr += bytes_read;
25131 }
25132 break;
25133
25134 case DW_MACRO_start_file:
25135 {
25136 unsigned int bytes_read;
25137 int line, file;
25138
25139 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25140 mac_ptr += bytes_read;
25141 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25142 mac_ptr += bytes_read;
25143
25144 current_file = macro_start_file (file, line, current_file, lh);
25145 }
25146 break;
25147
25148 case DW_MACRO_end_file:
25149 /* No data to skip by MAC_PTR. */
25150 break;
25151
25152 case DW_MACRO_define_strp:
25153 case DW_MACRO_undef_strp:
25154 case DW_MACRO_define_sup:
25155 case DW_MACRO_undef_sup:
25156 {
25157 unsigned int bytes_read;
25158
25159 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25160 mac_ptr += bytes_read;
25161 mac_ptr += offset_size;
25162 }
25163 break;
25164
25165 case DW_MACRO_import:
25166 case DW_MACRO_import_sup:
25167 /* Note that, according to the spec, a transparent include
25168 chain cannot call DW_MACRO_start_file. So, we can just
25169 skip this opcode. */
25170 mac_ptr += offset_size;
25171 break;
25172
25173 case DW_MACINFO_vendor_ext:
25174 /* Only skip the data by MAC_PTR. */
25175 if (!section_is_gnu)
25176 {
25177 unsigned int bytes_read;
25178
25179 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25180 mac_ptr += bytes_read;
25181 read_direct_string (abfd, mac_ptr, &bytes_read);
25182 mac_ptr += bytes_read;
25183 }
25184 /* FALLTHROUGH */
25185
25186 default:
25187 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25188 mac_ptr, mac_end, abfd, offset_size,
25189 section);
25190 if (mac_ptr == NULL)
25191 return;
25192 break;
25193 }
25194 DIAGNOSTIC_POP
25195 } while (macinfo_type != 0 && current_file == NULL);
25196
25197 /* Second pass: Process all entries.
25198
25199 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25200 command-line macro definitions/undefinitions. This flag is unset when we
25201 reach the first DW_MACINFO_start_file entry. */
25202
25203 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25204 htab_eq_pointer,
25205 NULL, xcalloc, xfree));
25206 mac_ptr = section->buffer + offset;
25207 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25208 *slot = (void *) mac_ptr;
25209 dwarf_decode_macro_bytes (dwarf2_per_objfile,
25210 abfd, mac_ptr, mac_end,
25211 current_file, lh, section,
25212 section_is_gnu, 0, offset_size,
25213 include_hash.get ());
25214 }
25215
25216 /* Check if the attribute's form is a DW_FORM_block*
25217 if so return true else false. */
25218
25219 static int
25220 attr_form_is_block (const struct attribute *attr)
25221 {
25222 return (attr == NULL ? 0 :
25223 attr->form == DW_FORM_block1
25224 || attr->form == DW_FORM_block2
25225 || attr->form == DW_FORM_block4
25226 || attr->form == DW_FORM_block
25227 || attr->form == DW_FORM_exprloc);
25228 }
25229
25230 /* Return non-zero if ATTR's value is a section offset --- classes
25231 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25232 You may use DW_UNSND (attr) to retrieve such offsets.
25233
25234 Section 7.5.4, "Attribute Encodings", explains that no attribute
25235 may have a value that belongs to more than one of these classes; it
25236 would be ambiguous if we did, because we use the same forms for all
25237 of them. */
25238
25239 static int
25240 attr_form_is_section_offset (const struct attribute *attr)
25241 {
25242 return (attr->form == DW_FORM_data4
25243 || attr->form == DW_FORM_data8
25244 || attr->form == DW_FORM_sec_offset);
25245 }
25246
25247 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25248 zero otherwise. When this function returns true, you can apply
25249 dwarf2_get_attr_constant_value to it.
25250
25251 However, note that for some attributes you must check
25252 attr_form_is_section_offset before using this test. DW_FORM_data4
25253 and DW_FORM_data8 are members of both the constant class, and of
25254 the classes that contain offsets into other debug sections
25255 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25256 that, if an attribute's can be either a constant or one of the
25257 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25258 taken as section offsets, not constants.
25259
25260 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25261 cannot handle that. */
25262
25263 static int
25264 attr_form_is_constant (const struct attribute *attr)
25265 {
25266 switch (attr->form)
25267 {
25268 case DW_FORM_sdata:
25269 case DW_FORM_udata:
25270 case DW_FORM_data1:
25271 case DW_FORM_data2:
25272 case DW_FORM_data4:
25273 case DW_FORM_data8:
25274 case DW_FORM_implicit_const:
25275 return 1;
25276 default:
25277 return 0;
25278 }
25279 }
25280
25281
25282 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25283 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25284
25285 static int
25286 attr_form_is_ref (const struct attribute *attr)
25287 {
25288 switch (attr->form)
25289 {
25290 case DW_FORM_ref_addr:
25291 case DW_FORM_ref1:
25292 case DW_FORM_ref2:
25293 case DW_FORM_ref4:
25294 case DW_FORM_ref8:
25295 case DW_FORM_ref_udata:
25296 case DW_FORM_GNU_ref_alt:
25297 return 1;
25298 default:
25299 return 0;
25300 }
25301 }
25302
25303 /* Return the .debug_loc section to use for CU.
25304 For DWO files use .debug_loc.dwo. */
25305
25306 static struct dwarf2_section_info *
25307 cu_debug_loc_section (struct dwarf2_cu *cu)
25308 {
25309 struct dwarf2_per_objfile *dwarf2_per_objfile
25310 = cu->per_cu->dwarf2_per_objfile;
25311
25312 if (cu->dwo_unit)
25313 {
25314 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25315
25316 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25317 }
25318 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25319 : &dwarf2_per_objfile->loc);
25320 }
25321
25322 /* A helper function that fills in a dwarf2_loclist_baton. */
25323
25324 static void
25325 fill_in_loclist_baton (struct dwarf2_cu *cu,
25326 struct dwarf2_loclist_baton *baton,
25327 const struct attribute *attr)
25328 {
25329 struct dwarf2_per_objfile *dwarf2_per_objfile
25330 = cu->per_cu->dwarf2_per_objfile;
25331 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25332
25333 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25334
25335 baton->per_cu = cu->per_cu;
25336 gdb_assert (baton->per_cu);
25337 /* We don't know how long the location list is, but make sure we
25338 don't run off the edge of the section. */
25339 baton->size = section->size - DW_UNSND (attr);
25340 baton->data = section->buffer + DW_UNSND (attr);
25341 baton->base_address = cu->base_address;
25342 baton->from_dwo = cu->dwo_unit != NULL;
25343 }
25344
25345 static void
25346 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25347 struct dwarf2_cu *cu, int is_block)
25348 {
25349 struct dwarf2_per_objfile *dwarf2_per_objfile
25350 = cu->per_cu->dwarf2_per_objfile;
25351 struct objfile *objfile = dwarf2_per_objfile->objfile;
25352 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25353
25354 if (attr_form_is_section_offset (attr)
25355 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25356 the section. If so, fall through to the complaint in the
25357 other branch. */
25358 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25359 {
25360 struct dwarf2_loclist_baton *baton;
25361
25362 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25363
25364 fill_in_loclist_baton (cu, baton, attr);
25365
25366 if (cu->base_known == 0)
25367 complaint (&symfile_complaints,
25368 _("Location list used without "
25369 "specifying the CU base address."));
25370
25371 SYMBOL_ACLASS_INDEX (sym) = (is_block
25372 ? dwarf2_loclist_block_index
25373 : dwarf2_loclist_index);
25374 SYMBOL_LOCATION_BATON (sym) = baton;
25375 }
25376 else
25377 {
25378 struct dwarf2_locexpr_baton *baton;
25379
25380 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25381 baton->per_cu = cu->per_cu;
25382 gdb_assert (baton->per_cu);
25383
25384 if (attr_form_is_block (attr))
25385 {
25386 /* Note that we're just copying the block's data pointer
25387 here, not the actual data. We're still pointing into the
25388 info_buffer for SYM's objfile; right now we never release
25389 that buffer, but when we do clean up properly this may
25390 need to change. */
25391 baton->size = DW_BLOCK (attr)->size;
25392 baton->data = DW_BLOCK (attr)->data;
25393 }
25394 else
25395 {
25396 dwarf2_invalid_attrib_class_complaint ("location description",
25397 SYMBOL_NATURAL_NAME (sym));
25398 baton->size = 0;
25399 }
25400
25401 SYMBOL_ACLASS_INDEX (sym) = (is_block
25402 ? dwarf2_locexpr_block_index
25403 : dwarf2_locexpr_index);
25404 SYMBOL_LOCATION_BATON (sym) = baton;
25405 }
25406 }
25407
25408 /* Return the OBJFILE associated with the compilation unit CU. If CU
25409 came from a separate debuginfo file, then the master objfile is
25410 returned. */
25411
25412 struct objfile *
25413 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25414 {
25415 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25416
25417 /* Return the master objfile, so that we can report and look up the
25418 correct file containing this variable. */
25419 if (objfile->separate_debug_objfile_backlink)
25420 objfile = objfile->separate_debug_objfile_backlink;
25421
25422 return objfile;
25423 }
25424
25425 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25426 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25427 CU_HEADERP first. */
25428
25429 static const struct comp_unit_head *
25430 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25431 struct dwarf2_per_cu_data *per_cu)
25432 {
25433 const gdb_byte *info_ptr;
25434
25435 if (per_cu->cu)
25436 return &per_cu->cu->header;
25437
25438 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25439
25440 memset (cu_headerp, 0, sizeof (*cu_headerp));
25441 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25442 rcuh_kind::COMPILE);
25443
25444 return cu_headerp;
25445 }
25446
25447 /* Return the address size given in the compilation unit header for CU. */
25448
25449 int
25450 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25451 {
25452 struct comp_unit_head cu_header_local;
25453 const struct comp_unit_head *cu_headerp;
25454
25455 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25456
25457 return cu_headerp->addr_size;
25458 }
25459
25460 /* Return the offset size given in the compilation unit header for CU. */
25461
25462 int
25463 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25464 {
25465 struct comp_unit_head cu_header_local;
25466 const struct comp_unit_head *cu_headerp;
25467
25468 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25469
25470 return cu_headerp->offset_size;
25471 }
25472
25473 /* See its dwarf2loc.h declaration. */
25474
25475 int
25476 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25477 {
25478 struct comp_unit_head cu_header_local;
25479 const struct comp_unit_head *cu_headerp;
25480
25481 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25482
25483 if (cu_headerp->version == 2)
25484 return cu_headerp->addr_size;
25485 else
25486 return cu_headerp->offset_size;
25487 }
25488
25489 /* Return the text offset of the CU. The returned offset comes from
25490 this CU's objfile. If this objfile came from a separate debuginfo
25491 file, then the offset may be different from the corresponding
25492 offset in the parent objfile. */
25493
25494 CORE_ADDR
25495 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25496 {
25497 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25498
25499 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25500 }
25501
25502 /* Return DWARF version number of PER_CU. */
25503
25504 short
25505 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25506 {
25507 return per_cu->dwarf_version;
25508 }
25509
25510 /* Locate the .debug_info compilation unit from CU's objfile which contains
25511 the DIE at OFFSET. Raises an error on failure. */
25512
25513 static struct dwarf2_per_cu_data *
25514 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25515 unsigned int offset_in_dwz,
25516 struct dwarf2_per_objfile *dwarf2_per_objfile)
25517 {
25518 struct dwarf2_per_cu_data *this_cu;
25519 int low, high;
25520 const sect_offset *cu_off;
25521
25522 low = 0;
25523 high = dwarf2_per_objfile->n_comp_units - 1;
25524 while (high > low)
25525 {
25526 struct dwarf2_per_cu_data *mid_cu;
25527 int mid = low + (high - low) / 2;
25528
25529 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25530 cu_off = &mid_cu->sect_off;
25531 if (mid_cu->is_dwz > offset_in_dwz
25532 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
25533 high = mid;
25534 else
25535 low = mid + 1;
25536 }
25537 gdb_assert (low == high);
25538 this_cu = dwarf2_per_objfile->all_comp_units[low];
25539 cu_off = &this_cu->sect_off;
25540 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
25541 {
25542 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25543 error (_("Dwarf Error: could not find partial DIE containing "
25544 "offset %s [in module %s]"),
25545 sect_offset_str (sect_off),
25546 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25547
25548 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25549 <= sect_off);
25550 return dwarf2_per_objfile->all_comp_units[low-1];
25551 }
25552 else
25553 {
25554 this_cu = dwarf2_per_objfile->all_comp_units[low];
25555 if (low == dwarf2_per_objfile->n_comp_units - 1
25556 && sect_off >= this_cu->sect_off + this_cu->length)
25557 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25558 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25559 return this_cu;
25560 }
25561 }
25562
25563 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25564
25565 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25566 : per_cu (per_cu_),
25567 mark (0),
25568 has_loclist (0),
25569 checked_producer (0),
25570 producer_is_gxx_lt_4_6 (0),
25571 producer_is_gcc_lt_4_3 (0),
25572 producer_is_icc_lt_14 (0),
25573 processing_has_namespace_info (0)
25574 {
25575 per_cu->cu = this;
25576 }
25577
25578 /* Destroy a dwarf2_cu. */
25579
25580 dwarf2_cu::~dwarf2_cu ()
25581 {
25582 per_cu->cu = NULL;
25583 }
25584
25585 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25586
25587 static void
25588 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25589 enum language pretend_language)
25590 {
25591 struct attribute *attr;
25592
25593 /* Set the language we're debugging. */
25594 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25595 if (attr)
25596 set_cu_language (DW_UNSND (attr), cu);
25597 else
25598 {
25599 cu->language = pretend_language;
25600 cu->language_defn = language_def (cu->language);
25601 }
25602
25603 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25604 }
25605
25606 /* Free all cached compilation units. */
25607
25608 static void
25609 free_cached_comp_units (void *data)
25610 {
25611 struct dwarf2_per_objfile *dwarf2_per_objfile
25612 = (struct dwarf2_per_objfile *) data;
25613
25614 dwarf2_per_objfile->free_cached_comp_units ();
25615 }
25616
25617 /* Increase the age counter on each cached compilation unit, and free
25618 any that are too old. */
25619
25620 static void
25621 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25622 {
25623 struct dwarf2_per_cu_data *per_cu, **last_chain;
25624
25625 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25626 per_cu = dwarf2_per_objfile->read_in_chain;
25627 while (per_cu != NULL)
25628 {
25629 per_cu->cu->last_used ++;
25630 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25631 dwarf2_mark (per_cu->cu);
25632 per_cu = per_cu->cu->read_in_chain;
25633 }
25634
25635 per_cu = dwarf2_per_objfile->read_in_chain;
25636 last_chain = &dwarf2_per_objfile->read_in_chain;
25637 while (per_cu != NULL)
25638 {
25639 struct dwarf2_per_cu_data *next_cu;
25640
25641 next_cu = per_cu->cu->read_in_chain;
25642
25643 if (!per_cu->cu->mark)
25644 {
25645 delete per_cu->cu;
25646 *last_chain = next_cu;
25647 }
25648 else
25649 last_chain = &per_cu->cu->read_in_chain;
25650
25651 per_cu = next_cu;
25652 }
25653 }
25654
25655 /* Remove a single compilation unit from the cache. */
25656
25657 static void
25658 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25659 {
25660 struct dwarf2_per_cu_data *per_cu, **last_chain;
25661 struct dwarf2_per_objfile *dwarf2_per_objfile
25662 = target_per_cu->dwarf2_per_objfile;
25663
25664 per_cu = dwarf2_per_objfile->read_in_chain;
25665 last_chain = &dwarf2_per_objfile->read_in_chain;
25666 while (per_cu != NULL)
25667 {
25668 struct dwarf2_per_cu_data *next_cu;
25669
25670 next_cu = per_cu->cu->read_in_chain;
25671
25672 if (per_cu == target_per_cu)
25673 {
25674 delete per_cu->cu;
25675 per_cu->cu = NULL;
25676 *last_chain = next_cu;
25677 break;
25678 }
25679 else
25680 last_chain = &per_cu->cu->read_in_chain;
25681
25682 per_cu = next_cu;
25683 }
25684 }
25685
25686 /* Release all extra memory associated with OBJFILE. */
25687
25688 void
25689 dwarf2_free_objfile (struct objfile *objfile)
25690 {
25691 struct dwarf2_per_objfile *dwarf2_per_objfile
25692 = get_dwarf2_per_objfile (objfile);
25693
25694 delete dwarf2_per_objfile;
25695 }
25696
25697 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25698 We store these in a hash table separate from the DIEs, and preserve them
25699 when the DIEs are flushed out of cache.
25700
25701 The CU "per_cu" pointer is needed because offset alone is not enough to
25702 uniquely identify the type. A file may have multiple .debug_types sections,
25703 or the type may come from a DWO file. Furthermore, while it's more logical
25704 to use per_cu->section+offset, with Fission the section with the data is in
25705 the DWO file but we don't know that section at the point we need it.
25706 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25707 because we can enter the lookup routine, get_die_type_at_offset, from
25708 outside this file, and thus won't necessarily have PER_CU->cu.
25709 Fortunately, PER_CU is stable for the life of the objfile. */
25710
25711 struct dwarf2_per_cu_offset_and_type
25712 {
25713 const struct dwarf2_per_cu_data *per_cu;
25714 sect_offset sect_off;
25715 struct type *type;
25716 };
25717
25718 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25719
25720 static hashval_t
25721 per_cu_offset_and_type_hash (const void *item)
25722 {
25723 const struct dwarf2_per_cu_offset_and_type *ofs
25724 = (const struct dwarf2_per_cu_offset_and_type *) item;
25725
25726 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25727 }
25728
25729 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25730
25731 static int
25732 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25733 {
25734 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25735 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25736 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25737 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25738
25739 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25740 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25741 }
25742
25743 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25744 table if necessary. For convenience, return TYPE.
25745
25746 The DIEs reading must have careful ordering to:
25747 * Not cause infite loops trying to read in DIEs as a prerequisite for
25748 reading current DIE.
25749 * Not trying to dereference contents of still incompletely read in types
25750 while reading in other DIEs.
25751 * Enable referencing still incompletely read in types just by a pointer to
25752 the type without accessing its fields.
25753
25754 Therefore caller should follow these rules:
25755 * Try to fetch any prerequisite types we may need to build this DIE type
25756 before building the type and calling set_die_type.
25757 * After building type call set_die_type for current DIE as soon as
25758 possible before fetching more types to complete the current type.
25759 * Make the type as complete as possible before fetching more types. */
25760
25761 static struct type *
25762 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25763 {
25764 struct dwarf2_per_objfile *dwarf2_per_objfile
25765 = cu->per_cu->dwarf2_per_objfile;
25766 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25767 struct objfile *objfile = dwarf2_per_objfile->objfile;
25768 struct attribute *attr;
25769 struct dynamic_prop prop;
25770
25771 /* For Ada types, make sure that the gnat-specific data is always
25772 initialized (if not already set). There are a few types where
25773 we should not be doing so, because the type-specific area is
25774 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25775 where the type-specific area is used to store the floatformat).
25776 But this is not a problem, because the gnat-specific information
25777 is actually not needed for these types. */
25778 if (need_gnat_info (cu)
25779 && TYPE_CODE (type) != TYPE_CODE_FUNC
25780 && TYPE_CODE (type) != TYPE_CODE_FLT
25781 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25782 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25783 && TYPE_CODE (type) != TYPE_CODE_METHOD
25784 && !HAVE_GNAT_AUX_INFO (type))
25785 INIT_GNAT_SPECIFIC (type);
25786
25787 /* Read DW_AT_allocated and set in type. */
25788 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25789 if (attr_form_is_block (attr))
25790 {
25791 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25792 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25793 }
25794 else if (attr != NULL)
25795 {
25796 complaint (&symfile_complaints,
25797 _("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25798 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25799 sect_offset_str (die->sect_off));
25800 }
25801
25802 /* Read DW_AT_associated and set in type. */
25803 attr = dwarf2_attr (die, DW_AT_associated, cu);
25804 if (attr_form_is_block (attr))
25805 {
25806 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25807 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25808 }
25809 else if (attr != NULL)
25810 {
25811 complaint (&symfile_complaints,
25812 _("DW_AT_associated has the wrong form (%s) at DIE %s"),
25813 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25814 sect_offset_str (die->sect_off));
25815 }
25816
25817 /* Read DW_AT_data_location and set in type. */
25818 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25819 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25820 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25821
25822 if (dwarf2_per_objfile->die_type_hash == NULL)
25823 {
25824 dwarf2_per_objfile->die_type_hash =
25825 htab_create_alloc_ex (127,
25826 per_cu_offset_and_type_hash,
25827 per_cu_offset_and_type_eq,
25828 NULL,
25829 &objfile->objfile_obstack,
25830 hashtab_obstack_allocate,
25831 dummy_obstack_deallocate);
25832 }
25833
25834 ofs.per_cu = cu->per_cu;
25835 ofs.sect_off = die->sect_off;
25836 ofs.type = type;
25837 slot = (struct dwarf2_per_cu_offset_and_type **)
25838 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25839 if (*slot)
25840 complaint (&symfile_complaints,
25841 _("A problem internal to GDB: DIE %s has type already set"),
25842 sect_offset_str (die->sect_off));
25843 *slot = XOBNEW (&objfile->objfile_obstack,
25844 struct dwarf2_per_cu_offset_and_type);
25845 **slot = ofs;
25846 return type;
25847 }
25848
25849 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25850 or return NULL if the die does not have a saved type. */
25851
25852 static struct type *
25853 get_die_type_at_offset (sect_offset sect_off,
25854 struct dwarf2_per_cu_data *per_cu)
25855 {
25856 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25857 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25858
25859 if (dwarf2_per_objfile->die_type_hash == NULL)
25860 return NULL;
25861
25862 ofs.per_cu = per_cu;
25863 ofs.sect_off = sect_off;
25864 slot = ((struct dwarf2_per_cu_offset_and_type *)
25865 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25866 if (slot)
25867 return slot->type;
25868 else
25869 return NULL;
25870 }
25871
25872 /* Look up the type for DIE in CU in die_type_hash,
25873 or return NULL if DIE does not have a saved type. */
25874
25875 static struct type *
25876 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25877 {
25878 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25879 }
25880
25881 /* Add a dependence relationship from CU to REF_PER_CU. */
25882
25883 static void
25884 dwarf2_add_dependence (struct dwarf2_cu *cu,
25885 struct dwarf2_per_cu_data *ref_per_cu)
25886 {
25887 void **slot;
25888
25889 if (cu->dependencies == NULL)
25890 cu->dependencies
25891 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25892 NULL, &cu->comp_unit_obstack,
25893 hashtab_obstack_allocate,
25894 dummy_obstack_deallocate);
25895
25896 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25897 if (*slot == NULL)
25898 *slot = ref_per_cu;
25899 }
25900
25901 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25902 Set the mark field in every compilation unit in the
25903 cache that we must keep because we are keeping CU. */
25904
25905 static int
25906 dwarf2_mark_helper (void **slot, void *data)
25907 {
25908 struct dwarf2_per_cu_data *per_cu;
25909
25910 per_cu = (struct dwarf2_per_cu_data *) *slot;
25911
25912 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25913 reading of the chain. As such dependencies remain valid it is not much
25914 useful to track and undo them during QUIT cleanups. */
25915 if (per_cu->cu == NULL)
25916 return 1;
25917
25918 if (per_cu->cu->mark)
25919 return 1;
25920 per_cu->cu->mark = 1;
25921
25922 if (per_cu->cu->dependencies != NULL)
25923 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25924
25925 return 1;
25926 }
25927
25928 /* Set the mark field in CU and in every other compilation unit in the
25929 cache that we must keep because we are keeping CU. */
25930
25931 static void
25932 dwarf2_mark (struct dwarf2_cu *cu)
25933 {
25934 if (cu->mark)
25935 return;
25936 cu->mark = 1;
25937 if (cu->dependencies != NULL)
25938 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25939 }
25940
25941 static void
25942 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25943 {
25944 while (per_cu)
25945 {
25946 per_cu->cu->mark = 0;
25947 per_cu = per_cu->cu->read_in_chain;
25948 }
25949 }
25950
25951 /* Trivial hash function for partial_die_info: the hash value of a DIE
25952 is its offset in .debug_info for this objfile. */
25953
25954 static hashval_t
25955 partial_die_hash (const void *item)
25956 {
25957 const struct partial_die_info *part_die
25958 = (const struct partial_die_info *) item;
25959
25960 return to_underlying (part_die->sect_off);
25961 }
25962
25963 /* Trivial comparison function for partial_die_info structures: two DIEs
25964 are equal if they have the same offset. */
25965
25966 static int
25967 partial_die_eq (const void *item_lhs, const void *item_rhs)
25968 {
25969 const struct partial_die_info *part_die_lhs
25970 = (const struct partial_die_info *) item_lhs;
25971 const struct partial_die_info *part_die_rhs
25972 = (const struct partial_die_info *) item_rhs;
25973
25974 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25975 }
25976
25977 static struct cmd_list_element *set_dwarf_cmdlist;
25978 static struct cmd_list_element *show_dwarf_cmdlist;
25979
25980 static void
25981 set_dwarf_cmd (const char *args, int from_tty)
25982 {
25983 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25984 gdb_stdout);
25985 }
25986
25987 static void
25988 show_dwarf_cmd (const char *args, int from_tty)
25989 {
25990 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25991 }
25992
25993 /* The "save gdb-index" command. */
25994
25995 /* Write SIZE bytes from the buffer pointed to by DATA to FILE, with
25996 error checking. */
25997
25998 static void
25999 file_write (FILE *file, const void *data, size_t size)
26000 {
26001 if (fwrite (data, 1, size, file) != size)
26002 error (_("couldn't data write to file"));
26003 }
26004
26005 /* Write the contents of VEC to FILE, with error checking. */
26006
26007 template<typename Elem, typename Alloc>
26008 static void
26009 file_write (FILE *file, const std::vector<Elem, Alloc> &vec)
26010 {
26011 file_write (file, vec.data (), vec.size () * sizeof (vec[0]));
26012 }
26013
26014 /* In-memory buffer to prepare data to be written later to a file. */
26015 class data_buf
26016 {
26017 public:
26018 /* Copy DATA to the end of the buffer. */
26019 template<typename T>
26020 void append_data (const T &data)
26021 {
26022 std::copy (reinterpret_cast<const gdb_byte *> (&data),
26023 reinterpret_cast<const gdb_byte *> (&data + 1),
26024 grow (sizeof (data)));
26025 }
26026
26027 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
26028 terminating zero is appended too. */
26029 void append_cstr0 (const char *cstr)
26030 {
26031 const size_t size = strlen (cstr) + 1;
26032 std::copy (cstr, cstr + size, grow (size));
26033 }
26034
26035 /* Store INPUT as ULEB128 to the end of buffer. */
26036 void append_unsigned_leb128 (ULONGEST input)
26037 {
26038 for (;;)
26039 {
26040 gdb_byte output = input & 0x7f;
26041 input >>= 7;
26042 if (input)
26043 output |= 0x80;
26044 append_data (output);
26045 if (input == 0)
26046 break;
26047 }
26048 }
26049
26050 /* Accept a host-format integer in VAL and append it to the buffer
26051 as a target-format integer which is LEN bytes long. */
26052 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
26053 {
26054 ::store_unsigned_integer (grow (len), len, byte_order, val);
26055 }
26056
26057 /* Return the size of the buffer. */
26058 size_t size () const
26059 {
26060 return m_vec.size ();
26061 }
26062
26063 /* Return true iff the buffer is empty. */
26064 bool empty () const
26065 {
26066 return m_vec.empty ();
26067 }
26068
26069 /* Write the buffer to FILE. */
26070 void file_write (FILE *file) const
26071 {
26072 ::file_write (file, m_vec);
26073 }
26074
26075 private:
26076 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
26077 the start of the new block. */
26078 gdb_byte *grow (size_t size)
26079 {
26080 m_vec.resize (m_vec.size () + size);
26081 return &*m_vec.end () - size;
26082 }
26083
26084 gdb::byte_vector m_vec;
26085 };
26086
26087 /* An entry in the symbol table. */
26088 struct symtab_index_entry
26089 {
26090 /* The name of the symbol. */
26091 const char *name;
26092 /* The offset of the name in the constant pool. */
26093 offset_type index_offset;
26094 /* A sorted vector of the indices of all the CUs that hold an object
26095 of this name. */
26096 std::vector<offset_type> cu_indices;
26097 };
26098
26099 /* The symbol table. This is a power-of-2-sized hash table. */
26100 struct mapped_symtab
26101 {
26102 mapped_symtab ()
26103 {
26104 data.resize (1024);
26105 }
26106
26107 offset_type n_elements = 0;
26108 std::vector<symtab_index_entry> data;
26109 };
26110
26111 /* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
26112 the slot.
26113
26114 Function is used only during write_hash_table so no index format backward
26115 compatibility is needed. */
26116
26117 static symtab_index_entry &
26118 find_slot (struct mapped_symtab *symtab, const char *name)
26119 {
26120 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
26121
26122 index = hash & (symtab->data.size () - 1);
26123 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
26124
26125 for (;;)
26126 {
26127 if (symtab->data[index].name == NULL
26128 || strcmp (name, symtab->data[index].name) == 0)
26129 return symtab->data[index];
26130 index = (index + step) & (symtab->data.size () - 1);
26131 }
26132 }
26133
26134 /* Expand SYMTAB's hash table. */
26135
26136 static void
26137 hash_expand (struct mapped_symtab *symtab)
26138 {
26139 auto old_entries = std::move (symtab->data);
26140
26141 symtab->data.clear ();
26142 symtab->data.resize (old_entries.size () * 2);
26143
26144 for (auto &it : old_entries)
26145 if (it.name != NULL)
26146 {
26147 auto &ref = find_slot (symtab, it.name);
26148 ref = std::move (it);
26149 }
26150 }
26151
26152 /* Add an entry to SYMTAB. NAME is the name of the symbol.
26153 CU_INDEX is the index of the CU in which the symbol appears.
26154 IS_STATIC is one if the symbol is static, otherwise zero (global). */
26155
26156 static void
26157 add_index_entry (struct mapped_symtab *symtab, const char *name,
26158 int is_static, gdb_index_symbol_kind kind,
26159 offset_type cu_index)
26160 {
26161 offset_type cu_index_and_attrs;
26162
26163 ++symtab->n_elements;
26164 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
26165 hash_expand (symtab);
26166
26167 symtab_index_entry &slot = find_slot (symtab, name);
26168 if (slot.name == NULL)
26169 {
26170 slot.name = name;
26171 /* index_offset is set later. */
26172 }
26173
26174 cu_index_and_attrs = 0;
26175 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
26176 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
26177 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
26178
26179 /* We don't want to record an index value twice as we want to avoid the
26180 duplication.
26181 We process all global symbols and then all static symbols
26182 (which would allow us to avoid the duplication by only having to check
26183 the last entry pushed), but a symbol could have multiple kinds in one CU.
26184 To keep things simple we don't worry about the duplication here and
26185 sort and uniqufy the list after we've processed all symbols. */
26186 slot.cu_indices.push_back (cu_index_and_attrs);
26187 }
26188
26189 /* Sort and remove duplicates of all symbols' cu_indices lists. */
26190
26191 static void
26192 uniquify_cu_indices (struct mapped_symtab *symtab)
26193 {
26194 for (auto &entry : symtab->data)
26195 {
26196 if (entry.name != NULL && !entry.cu_indices.empty ())
26197 {
26198 auto &cu_indices = entry.cu_indices;
26199 std::sort (cu_indices.begin (), cu_indices.end ());
26200 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
26201 cu_indices.erase (from, cu_indices.end ());
26202 }
26203 }
26204 }
26205
26206 /* A form of 'const char *' suitable for container keys. Only the
26207 pointer is stored. The strings themselves are compared, not the
26208 pointers. */
26209 class c_str_view
26210 {
26211 public:
26212 c_str_view (const char *cstr)
26213 : m_cstr (cstr)
26214 {}
26215
26216 bool operator== (const c_str_view &other) const
26217 {
26218 return strcmp (m_cstr, other.m_cstr) == 0;
26219 }
26220
26221 /* Return the underlying C string. Note, the returned string is
26222 only a reference with lifetime of this object. */
26223 const char *c_str () const
26224 {
26225 return m_cstr;
26226 }
26227
26228 private:
26229 friend class c_str_view_hasher;
26230 const char *const m_cstr;
26231 };
26232
26233 /* A std::unordered_map::hasher for c_str_view that uses the right
26234 hash function for strings in a mapped index. */
26235 class c_str_view_hasher
26236 {
26237 public:
26238 size_t operator () (const c_str_view &x) const
26239 {
26240 return mapped_index_string_hash (INT_MAX, x.m_cstr);
26241 }
26242 };
26243
26244 /* A std::unordered_map::hasher for std::vector<>. */
26245 template<typename T>
26246 class vector_hasher
26247 {
26248 public:
26249 size_t operator () (const std::vector<T> &key) const
26250 {
26251 return iterative_hash (key.data (),
26252 sizeof (key.front ()) * key.size (), 0);
26253 }
26254 };
26255
26256 /* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
26257 constant pool entries going into the data buffer CPOOL. */
26258
26259 static void
26260 write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
26261 {
26262 {
26263 /* Elements are sorted vectors of the indices of all the CUs that
26264 hold an object of this name. */
26265 std::unordered_map<std::vector<offset_type>, offset_type,
26266 vector_hasher<offset_type>>
26267 symbol_hash_table;
26268
26269 /* We add all the index vectors to the constant pool first, to
26270 ensure alignment is ok. */
26271 for (symtab_index_entry &entry : symtab->data)
26272 {
26273 if (entry.name == NULL)
26274 continue;
26275 gdb_assert (entry.index_offset == 0);
26276
26277 /* Finding before inserting is faster than always trying to
26278 insert, because inserting always allocates a node, does the
26279 lookup, and then destroys the new node if another node
26280 already had the same key. C++17 try_emplace will avoid
26281 this. */
26282 const auto found
26283 = symbol_hash_table.find (entry.cu_indices);
26284 if (found != symbol_hash_table.end ())
26285 {
26286 entry.index_offset = found->second;
26287 continue;
26288 }
26289
26290 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
26291 entry.index_offset = cpool.size ();
26292 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
26293 for (const auto index : entry.cu_indices)
26294 cpool.append_data (MAYBE_SWAP (index));
26295 }
26296 }
26297
26298 /* Now write out the hash table. */
26299 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
26300 for (const auto &entry : symtab->data)
26301 {
26302 offset_type str_off, vec_off;
26303
26304 if (entry.name != NULL)
26305 {
26306 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
26307 if (insertpair.second)
26308 cpool.append_cstr0 (entry.name);
26309 str_off = insertpair.first->second;
26310 vec_off = entry.index_offset;
26311 }
26312 else
26313 {
26314 /* While 0 is a valid constant pool index, it is not valid
26315 to have 0 for both offsets. */
26316 str_off = 0;
26317 vec_off = 0;
26318 }
26319
26320 output.append_data (MAYBE_SWAP (str_off));
26321 output.append_data (MAYBE_SWAP (vec_off));
26322 }
26323 }
26324
26325 typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
26326
26327 /* Helper struct for building the address table. */
26328 struct addrmap_index_data
26329 {
26330 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
26331 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
26332 {}
26333
26334 struct objfile *objfile;
26335 data_buf &addr_vec;
26336 psym_index_map &cu_index_htab;
26337
26338 /* Non-zero if the previous_* fields are valid.
26339 We can't write an entry until we see the next entry (since it is only then
26340 that we know the end of the entry). */
26341 int previous_valid;
26342 /* Index of the CU in the table of all CUs in the index file. */
26343 unsigned int previous_cu_index;
26344 /* Start address of the CU. */
26345 CORE_ADDR previous_cu_start;
26346 };
26347
26348 /* Write an address entry to ADDR_VEC. */
26349
26350 static void
26351 add_address_entry (struct objfile *objfile, data_buf &addr_vec,
26352 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
26353 {
26354 CORE_ADDR baseaddr;
26355
26356 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
26357
26358 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
26359 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
26360 addr_vec.append_data (MAYBE_SWAP (cu_index));
26361 }
26362
26363 /* Worker function for traversing an addrmap to build the address table. */
26364
26365 static int
26366 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
26367 {
26368 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
26369 struct partial_symtab *pst = (struct partial_symtab *) obj;
26370
26371 if (data->previous_valid)
26372 add_address_entry (data->objfile, data->addr_vec,
26373 data->previous_cu_start, start_addr,
26374 data->previous_cu_index);
26375
26376 data->previous_cu_start = start_addr;
26377 if (pst != NULL)
26378 {
26379 const auto it = data->cu_index_htab.find (pst);
26380 gdb_assert (it != data->cu_index_htab.cend ());
26381 data->previous_cu_index = it->second;
26382 data->previous_valid = 1;
26383 }
26384 else
26385 data->previous_valid = 0;
26386
26387 return 0;
26388 }
26389
26390 /* Write OBJFILE's address map to ADDR_VEC.
26391 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
26392 in the index file. */
26393
26394 static void
26395 write_address_map (struct objfile *objfile, data_buf &addr_vec,
26396 psym_index_map &cu_index_htab)
26397 {
26398 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
26399
26400 /* When writing the address table, we have to cope with the fact that
26401 the addrmap iterator only provides the start of a region; we have to
26402 wait until the next invocation to get the start of the next region. */
26403
26404 addrmap_index_data.objfile = objfile;
26405 addrmap_index_data.previous_valid = 0;
26406
26407 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
26408 &addrmap_index_data);
26409
26410 /* It's highly unlikely the last entry (end address = 0xff...ff)
26411 is valid, but we should still handle it.
26412 The end address is recorded as the start of the next region, but that
26413 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
26414 anyway. */
26415 if (addrmap_index_data.previous_valid)
26416 add_address_entry (objfile, addr_vec,
26417 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
26418 addrmap_index_data.previous_cu_index);
26419 }
26420
26421 /* Return the symbol kind of PSYM. */
26422
26423 static gdb_index_symbol_kind
26424 symbol_kind (struct partial_symbol *psym)
26425 {
26426 domain_enum domain = PSYMBOL_DOMAIN (psym);
26427 enum address_class aclass = PSYMBOL_CLASS (psym);
26428
26429 switch (domain)
26430 {
26431 case VAR_DOMAIN:
26432 switch (aclass)
26433 {
26434 case LOC_BLOCK:
26435 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
26436 case LOC_TYPEDEF:
26437 return GDB_INDEX_SYMBOL_KIND_TYPE;
26438 case LOC_COMPUTED:
26439 case LOC_CONST_BYTES:
26440 case LOC_OPTIMIZED_OUT:
26441 case LOC_STATIC:
26442 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
26443 case LOC_CONST:
26444 /* Note: It's currently impossible to recognize psyms as enum values
26445 short of reading the type info. For now punt. */
26446 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
26447 default:
26448 /* There are other LOC_FOO values that one might want to classify
26449 as variables, but dwarf2read.c doesn't currently use them. */
26450 return GDB_INDEX_SYMBOL_KIND_OTHER;
26451 }
26452 case STRUCT_DOMAIN:
26453 return GDB_INDEX_SYMBOL_KIND_TYPE;
26454 default:
26455 return GDB_INDEX_SYMBOL_KIND_OTHER;
26456 }
26457 }
26458
26459 /* Add a list of partial symbols to SYMTAB. */
26460
26461 static void
26462 write_psymbols (struct mapped_symtab *symtab,
26463 std::unordered_set<partial_symbol *> &psyms_seen,
26464 struct partial_symbol **psymp,
26465 int count,
26466 offset_type cu_index,
26467 int is_static)
26468 {
26469 for (; count-- > 0; ++psymp)
26470 {
26471 struct partial_symbol *psym = *psymp;
26472
26473 if (SYMBOL_LANGUAGE (psym) == language_ada)
26474 error (_("Ada is not currently supported by the index"));
26475
26476 /* Only add a given psymbol once. */
26477 if (psyms_seen.insert (psym).second)
26478 {
26479 gdb_index_symbol_kind kind = symbol_kind (psym);
26480
26481 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
26482 is_static, kind, cu_index);
26483 }
26484 }
26485 }
26486
26487 /* A helper struct used when iterating over debug_types. */
26488 struct signatured_type_index_data
26489 {
26490 signatured_type_index_data (data_buf &types_list_,
26491 std::unordered_set<partial_symbol *> &psyms_seen_)
26492 : types_list (types_list_), psyms_seen (psyms_seen_)
26493 {}
26494
26495 struct objfile *objfile;
26496 struct mapped_symtab *symtab;
26497 data_buf &types_list;
26498 std::unordered_set<partial_symbol *> &psyms_seen;
26499 int cu_index;
26500 };
26501
26502 /* A helper function that writes a single signatured_type to an
26503 obstack. */
26504
26505 static int
26506 write_one_signatured_type (void **slot, void *d)
26507 {
26508 struct signatured_type_index_data *info
26509 = (struct signatured_type_index_data *) d;
26510 struct signatured_type *entry = (struct signatured_type *) *slot;
26511 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
26512
26513 write_psymbols (info->symtab,
26514 info->psyms_seen,
26515 &info->objfile->global_psymbols[psymtab->globals_offset],
26516 psymtab->n_global_syms, info->cu_index,
26517 0);
26518 write_psymbols (info->symtab,
26519 info->psyms_seen,
26520 &info->objfile->static_psymbols[psymtab->statics_offset],
26521 psymtab->n_static_syms, info->cu_index,
26522 1);
26523
26524 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26525 to_underlying (entry->per_cu.sect_off));
26526 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
26527 to_underlying (entry->type_offset_in_tu));
26528 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
26529
26530 ++info->cu_index;
26531
26532 return 1;
26533 }
26534
26535 /* Recurse into all "included" dependencies and count their symbols as
26536 if they appeared in this psymtab. */
26537
26538 static void
26539 recursively_count_psymbols (struct partial_symtab *psymtab,
26540 size_t &psyms_seen)
26541 {
26542 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26543 if (psymtab->dependencies[i]->user != NULL)
26544 recursively_count_psymbols (psymtab->dependencies[i],
26545 psyms_seen);
26546
26547 psyms_seen += psymtab->n_global_syms;
26548 psyms_seen += psymtab->n_static_syms;
26549 }
26550
26551 /* Recurse into all "included" dependencies and write their symbols as
26552 if they appeared in this psymtab. */
26553
26554 static void
26555 recursively_write_psymbols (struct objfile *objfile,
26556 struct partial_symtab *psymtab,
26557 struct mapped_symtab *symtab,
26558 std::unordered_set<partial_symbol *> &psyms_seen,
26559 offset_type cu_index)
26560 {
26561 int i;
26562
26563 for (i = 0; i < psymtab->number_of_dependencies; ++i)
26564 if (psymtab->dependencies[i]->user != NULL)
26565 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26566 symtab, psyms_seen, cu_index);
26567
26568 write_psymbols (symtab,
26569 psyms_seen,
26570 &objfile->global_psymbols[psymtab->globals_offset],
26571 psymtab->n_global_syms, cu_index,
26572 0);
26573 write_psymbols (symtab,
26574 psyms_seen,
26575 &objfile->static_psymbols[psymtab->statics_offset],
26576 psymtab->n_static_syms, cu_index,
26577 1);
26578 }
26579
26580 /* DWARF-5 .debug_names builder. */
26581 class debug_names
26582 {
26583 public:
26584 debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile, bool is_dwarf64,
26585 bfd_endian dwarf5_byte_order)
26586 : m_dwarf5_byte_order (dwarf5_byte_order),
26587 m_dwarf32 (dwarf5_byte_order),
26588 m_dwarf64 (dwarf5_byte_order),
26589 m_dwarf (is_dwarf64
26590 ? static_cast<dwarf &> (m_dwarf64)
26591 : static_cast<dwarf &> (m_dwarf32)),
26592 m_name_table_string_offs (m_dwarf.name_table_string_offs),
26593 m_name_table_entry_offs (m_dwarf.name_table_entry_offs),
26594 m_debugstrlookup (dwarf2_per_objfile)
26595 {}
26596
26597 int dwarf5_offset_size () const
26598 {
26599 const bool dwarf5_is_dwarf64 = &m_dwarf == &m_dwarf64;
26600 return dwarf5_is_dwarf64 ? 8 : 4;
26601 }
26602
26603 /* Is this symbol from DW_TAG_compile_unit or DW_TAG_type_unit? */
26604 enum class unit_kind { cu, tu };
26605
26606 /* Insert one symbol. */
26607 void insert (const partial_symbol *psym, int cu_index, bool is_static,
26608 unit_kind kind)
26609 {
26610 const int dwarf_tag = psymbol_tag (psym);
26611 if (dwarf_tag == 0)
26612 return;
26613 const char *const name = SYMBOL_SEARCH_NAME (psym);
26614 const auto insertpair
26615 = m_name_to_value_set.emplace (c_str_view (name),
26616 std::set<symbol_value> ());
26617 std::set<symbol_value> &value_set = insertpair.first->second;
26618 value_set.emplace (symbol_value (dwarf_tag, cu_index, is_static, kind));
26619 }
26620
26621 /* Build all the tables. All symbols must be already inserted.
26622 This function does not call file_write, caller has to do it
26623 afterwards. */
26624 void build ()
26625 {
26626 /* Verify the build method has not be called twice. */
26627 gdb_assert (m_abbrev_table.empty ());
26628 const size_t name_count = m_name_to_value_set.size ();
26629 m_bucket_table.resize
26630 (std::pow (2, std::ceil (std::log2 (name_count * 4 / 3))));
26631 m_hash_table.reserve (name_count);
26632 m_name_table_string_offs.reserve (name_count);
26633 m_name_table_entry_offs.reserve (name_count);
26634
26635 /* Map each hash of symbol to its name and value. */
26636 struct hash_it_pair
26637 {
26638 uint32_t hash;
26639 decltype (m_name_to_value_set)::const_iterator it;
26640 };
26641 std::vector<std::forward_list<hash_it_pair>> bucket_hash;
26642 bucket_hash.resize (m_bucket_table.size ());
26643 for (decltype (m_name_to_value_set)::const_iterator it
26644 = m_name_to_value_set.cbegin ();
26645 it != m_name_to_value_set.cend ();
26646 ++it)
26647 {
26648 const char *const name = it->first.c_str ();
26649 const uint32_t hash = dwarf5_djb_hash (name);
26650 hash_it_pair hashitpair;
26651 hashitpair.hash = hash;
26652 hashitpair.it = it;
26653 auto &slot = bucket_hash[hash % bucket_hash.size()];
26654 slot.push_front (std::move (hashitpair));
26655 }
26656 for (size_t bucket_ix = 0; bucket_ix < bucket_hash.size (); ++bucket_ix)
26657 {
26658 const std::forward_list<hash_it_pair> &hashitlist
26659 = bucket_hash[bucket_ix];
26660 if (hashitlist.empty ())
26661 continue;
26662 uint32_t &bucket_slot = m_bucket_table[bucket_ix];
26663 /* The hashes array is indexed starting at 1. */
26664 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&bucket_slot),
26665 sizeof (bucket_slot), m_dwarf5_byte_order,
26666 m_hash_table.size () + 1);
26667 for (const hash_it_pair &hashitpair : hashitlist)
26668 {
26669 m_hash_table.push_back (0);
26670 store_unsigned_integer (reinterpret_cast<gdb_byte *>
26671 (&m_hash_table.back ()),
26672 sizeof (m_hash_table.back ()),
26673 m_dwarf5_byte_order, hashitpair.hash);
26674 const c_str_view &name = hashitpair.it->first;
26675 const std::set<symbol_value> &value_set = hashitpair.it->second;
26676 m_name_table_string_offs.push_back_reorder
26677 (m_debugstrlookup.lookup (name.c_str ()));
26678 m_name_table_entry_offs.push_back_reorder (m_entry_pool.size ());
26679 gdb_assert (!value_set.empty ());
26680 for (const symbol_value &value : value_set)
26681 {
26682 int &idx = m_indexkey_to_idx[index_key (value.dwarf_tag,
26683 value.is_static,
26684 value.kind)];
26685 if (idx == 0)
26686 {
26687 idx = m_idx_next++;
26688 m_abbrev_table.append_unsigned_leb128 (idx);
26689 m_abbrev_table.append_unsigned_leb128 (value.dwarf_tag);
26690 m_abbrev_table.append_unsigned_leb128
26691 (value.kind == unit_kind::cu ? DW_IDX_compile_unit
26692 : DW_IDX_type_unit);
26693 m_abbrev_table.append_unsigned_leb128 (DW_FORM_udata);
26694 m_abbrev_table.append_unsigned_leb128 (value.is_static
26695 ? DW_IDX_GNU_internal
26696 : DW_IDX_GNU_external);
26697 m_abbrev_table.append_unsigned_leb128 (DW_FORM_flag_present);
26698
26699 /* Terminate attributes list. */
26700 m_abbrev_table.append_unsigned_leb128 (0);
26701 m_abbrev_table.append_unsigned_leb128 (0);
26702 }
26703
26704 m_entry_pool.append_unsigned_leb128 (idx);
26705 m_entry_pool.append_unsigned_leb128 (value.cu_index);
26706 }
26707
26708 /* Terminate the list of CUs. */
26709 m_entry_pool.append_unsigned_leb128 (0);
26710 }
26711 }
26712 gdb_assert (m_hash_table.size () == name_count);
26713
26714 /* Terminate tags list. */
26715 m_abbrev_table.append_unsigned_leb128 (0);
26716 }
26717
26718 /* Return .debug_names bucket count. This must be called only after
26719 calling the build method. */
26720 uint32_t bucket_count () const
26721 {
26722 /* Verify the build method has been already called. */
26723 gdb_assert (!m_abbrev_table.empty ());
26724 const uint32_t retval = m_bucket_table.size ();
26725
26726 /* Check for overflow. */
26727 gdb_assert (retval == m_bucket_table.size ());
26728 return retval;
26729 }
26730
26731 /* Return .debug_names names count. This must be called only after
26732 calling the build method. */
26733 uint32_t name_count () const
26734 {
26735 /* Verify the build method has been already called. */
26736 gdb_assert (!m_abbrev_table.empty ());
26737 const uint32_t retval = m_hash_table.size ();
26738
26739 /* Check for overflow. */
26740 gdb_assert (retval == m_hash_table.size ());
26741 return retval;
26742 }
26743
26744 /* Return number of bytes of .debug_names abbreviation table. This
26745 must be called only after calling the build method. */
26746 uint32_t abbrev_table_bytes () const
26747 {
26748 gdb_assert (!m_abbrev_table.empty ());
26749 return m_abbrev_table.size ();
26750 }
26751
26752 /* Recurse into all "included" dependencies and store their symbols
26753 as if they appeared in this psymtab. */
26754 void recursively_write_psymbols
26755 (struct objfile *objfile,
26756 struct partial_symtab *psymtab,
26757 std::unordered_set<partial_symbol *> &psyms_seen,
26758 int cu_index)
26759 {
26760 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
26761 if (psymtab->dependencies[i]->user != NULL)
26762 recursively_write_psymbols (objfile, psymtab->dependencies[i],
26763 psyms_seen, cu_index);
26764
26765 write_psymbols (psyms_seen,
26766 &objfile->global_psymbols[psymtab->globals_offset],
26767 psymtab->n_global_syms, cu_index, false, unit_kind::cu);
26768 write_psymbols (psyms_seen,
26769 &objfile->static_psymbols[psymtab->statics_offset],
26770 psymtab->n_static_syms, cu_index, true, unit_kind::cu);
26771 }
26772
26773 /* Return number of bytes the .debug_names section will have. This
26774 must be called only after calling the build method. */
26775 size_t bytes () const
26776 {
26777 /* Verify the build method has been already called. */
26778 gdb_assert (!m_abbrev_table.empty ());
26779 size_t expected_bytes = 0;
26780 expected_bytes += m_bucket_table.size () * sizeof (m_bucket_table[0]);
26781 expected_bytes += m_hash_table.size () * sizeof (m_hash_table[0]);
26782 expected_bytes += m_name_table_string_offs.bytes ();
26783 expected_bytes += m_name_table_entry_offs.bytes ();
26784 expected_bytes += m_abbrev_table.size ();
26785 expected_bytes += m_entry_pool.size ();
26786 return expected_bytes;
26787 }
26788
26789 /* Write .debug_names to FILE_NAMES and .debug_str addition to
26790 FILE_STR. This must be called only after calling the build
26791 method. */
26792 void file_write (FILE *file_names, FILE *file_str) const
26793 {
26794 /* Verify the build method has been already called. */
26795 gdb_assert (!m_abbrev_table.empty ());
26796 ::file_write (file_names, m_bucket_table);
26797 ::file_write (file_names, m_hash_table);
26798 m_name_table_string_offs.file_write (file_names);
26799 m_name_table_entry_offs.file_write (file_names);
26800 m_abbrev_table.file_write (file_names);
26801 m_entry_pool.file_write (file_names);
26802 m_debugstrlookup.file_write (file_str);
26803 }
26804
26805 /* A helper user data for write_one_signatured_type. */
26806 class write_one_signatured_type_data
26807 {
26808 public:
26809 write_one_signatured_type_data (debug_names &nametable_,
26810 signatured_type_index_data &&info_)
26811 : nametable (nametable_), info (std::move (info_))
26812 {}
26813 debug_names &nametable;
26814 struct signatured_type_index_data info;
26815 };
26816
26817 /* A helper function to pass write_one_signatured_type to
26818 htab_traverse_noresize. */
26819 static int
26820 write_one_signatured_type (void **slot, void *d)
26821 {
26822 write_one_signatured_type_data *data = (write_one_signatured_type_data *) d;
26823 struct signatured_type_index_data *info = &data->info;
26824 struct signatured_type *entry = (struct signatured_type *) *slot;
26825
26826 data->nametable.write_one_signatured_type (entry, info);
26827
26828 return 1;
26829 }
26830
26831 private:
26832
26833 /* Storage for symbol names mapping them to their .debug_str section
26834 offsets. */
26835 class debug_str_lookup
26836 {
26837 public:
26838
26839 /* Object costructor to be called for current DWARF2_PER_OBJFILE.
26840 All .debug_str section strings are automatically stored. */
26841 debug_str_lookup (struct dwarf2_per_objfile *dwarf2_per_objfile)
26842 : m_abfd (dwarf2_per_objfile->objfile->obfd),
26843 m_dwarf2_per_objfile (dwarf2_per_objfile)
26844 {
26845 dwarf2_read_section (dwarf2_per_objfile->objfile,
26846 &dwarf2_per_objfile->str);
26847 if (dwarf2_per_objfile->str.buffer == NULL)
26848 return;
26849 for (const gdb_byte *data = dwarf2_per_objfile->str.buffer;
26850 data < (dwarf2_per_objfile->str.buffer
26851 + dwarf2_per_objfile->str.size);)
26852 {
26853 const char *const s = reinterpret_cast<const char *> (data);
26854 const auto insertpair
26855 = m_str_table.emplace (c_str_view (s),
26856 data - dwarf2_per_objfile->str.buffer);
26857 if (!insertpair.second)
26858 complaint (&symfile_complaints,
26859 _("Duplicate string \"%s\" in "
26860 ".debug_str section [in module %s]"),
26861 s, bfd_get_filename (m_abfd));
26862 data += strlen (s) + 1;
26863 }
26864 }
26865
26866 /* Return offset of symbol name S in the .debug_str section. Add
26867 such symbol to the section's end if it does not exist there
26868 yet. */
26869 size_t lookup (const char *s)
26870 {
26871 const auto it = m_str_table.find (c_str_view (s));
26872 if (it != m_str_table.end ())
26873 return it->second;
26874 const size_t offset = (m_dwarf2_per_objfile->str.size
26875 + m_str_add_buf.size ());
26876 m_str_table.emplace (c_str_view (s), offset);
26877 m_str_add_buf.append_cstr0 (s);
26878 return offset;
26879 }
26880
26881 /* Append the end of the .debug_str section to FILE. */
26882 void file_write (FILE *file) const
26883 {
26884 m_str_add_buf.file_write (file);
26885 }
26886
26887 private:
26888 std::unordered_map<c_str_view, size_t, c_str_view_hasher> m_str_table;
26889 bfd *const m_abfd;
26890 struct dwarf2_per_objfile *m_dwarf2_per_objfile;
26891
26892 /* Data to add at the end of .debug_str for new needed symbol names. */
26893 data_buf m_str_add_buf;
26894 };
26895
26896 /* Container to map used DWARF tags to their .debug_names abbreviation
26897 tags. */
26898 class index_key
26899 {
26900 public:
26901 index_key (int dwarf_tag_, bool is_static_, unit_kind kind_)
26902 : dwarf_tag (dwarf_tag_), is_static (is_static_), kind (kind_)
26903 {
26904 }
26905
26906 bool
26907 operator== (const index_key &other) const
26908 {
26909 return (dwarf_tag == other.dwarf_tag && is_static == other.is_static
26910 && kind == other.kind);
26911 }
26912
26913 const int dwarf_tag;
26914 const bool is_static;
26915 const unit_kind kind;
26916 };
26917
26918 /* Provide std::unordered_map::hasher for index_key. */
26919 class index_key_hasher
26920 {
26921 public:
26922 size_t
26923 operator () (const index_key &key) const
26924 {
26925 return (std::hash<int>() (key.dwarf_tag) << 1) | key.is_static;
26926 }
26927 };
26928
26929 /* Parameters of one symbol entry. */
26930 class symbol_value
26931 {
26932 public:
26933 const int dwarf_tag, cu_index;
26934 const bool is_static;
26935 const unit_kind kind;
26936
26937 symbol_value (int dwarf_tag_, int cu_index_, bool is_static_,
26938 unit_kind kind_)
26939 : dwarf_tag (dwarf_tag_), cu_index (cu_index_), is_static (is_static_),
26940 kind (kind_)
26941 {}
26942
26943 bool
26944 operator< (const symbol_value &other) const
26945 {
26946 #define X(n) \
26947 do \
26948 { \
26949 if (n < other.n) \
26950 return true; \
26951 if (n > other.n) \
26952 return false; \
26953 } \
26954 while (0)
26955 X (dwarf_tag);
26956 X (is_static);
26957 X (kind);
26958 X (cu_index);
26959 #undef X
26960 return false;
26961 }
26962 };
26963
26964 /* Abstract base class to unify DWARF-32 and DWARF-64 name table
26965 output. */
26966 class offset_vec
26967 {
26968 protected:
26969 const bfd_endian dwarf5_byte_order;
26970 public:
26971 explicit offset_vec (bfd_endian dwarf5_byte_order_)
26972 : dwarf5_byte_order (dwarf5_byte_order_)
26973 {}
26974
26975 /* Call std::vector::reserve for NELEM elements. */
26976 virtual void reserve (size_t nelem) = 0;
26977
26978 /* Call std::vector::push_back with store_unsigned_integer byte
26979 reordering for ELEM. */
26980 virtual void push_back_reorder (size_t elem) = 0;
26981
26982 /* Return expected output size in bytes. */
26983 virtual size_t bytes () const = 0;
26984
26985 /* Write name table to FILE. */
26986 virtual void file_write (FILE *file) const = 0;
26987 };
26988
26989 /* Template to unify DWARF-32 and DWARF-64 output. */
26990 template<typename OffsetSize>
26991 class offset_vec_tmpl : public offset_vec
26992 {
26993 public:
26994 explicit offset_vec_tmpl (bfd_endian dwarf5_byte_order_)
26995 : offset_vec (dwarf5_byte_order_)
26996 {}
26997
26998 /* Implement offset_vec::reserve. */
26999 void reserve (size_t nelem) override
27000 {
27001 m_vec.reserve (nelem);
27002 }
27003
27004 /* Implement offset_vec::push_back_reorder. */
27005 void push_back_reorder (size_t elem) override
27006 {
27007 m_vec.push_back (elem);
27008 /* Check for overflow. */
27009 gdb_assert (m_vec.back () == elem);
27010 store_unsigned_integer (reinterpret_cast<gdb_byte *> (&m_vec.back ()),
27011 sizeof (m_vec.back ()), dwarf5_byte_order, elem);
27012 }
27013
27014 /* Implement offset_vec::bytes. */
27015 size_t bytes () const override
27016 {
27017 return m_vec.size () * sizeof (m_vec[0]);
27018 }
27019
27020 /* Implement offset_vec::file_write. */
27021 void file_write (FILE *file) const override
27022 {
27023 ::file_write (file, m_vec);
27024 }
27025
27026 private:
27027 std::vector<OffsetSize> m_vec;
27028 };
27029
27030 /* Base class to unify DWARF-32 and DWARF-64 .debug_names output
27031 respecting name table width. */
27032 class dwarf
27033 {
27034 public:
27035 offset_vec &name_table_string_offs, &name_table_entry_offs;
27036
27037 dwarf (offset_vec &name_table_string_offs_,
27038 offset_vec &name_table_entry_offs_)
27039 : name_table_string_offs (name_table_string_offs_),
27040 name_table_entry_offs (name_table_entry_offs_)
27041 {
27042 }
27043 };
27044
27045 /* Template to unify DWARF-32 and DWARF-64 .debug_names output
27046 respecting name table width. */
27047 template<typename OffsetSize>
27048 class dwarf_tmpl : public dwarf
27049 {
27050 public:
27051 explicit dwarf_tmpl (bfd_endian dwarf5_byte_order_)
27052 : dwarf (m_name_table_string_offs, m_name_table_entry_offs),
27053 m_name_table_string_offs (dwarf5_byte_order_),
27054 m_name_table_entry_offs (dwarf5_byte_order_)
27055 {}
27056
27057 private:
27058 offset_vec_tmpl<OffsetSize> m_name_table_string_offs;
27059 offset_vec_tmpl<OffsetSize> m_name_table_entry_offs;
27060 };
27061
27062 /* Try to reconstruct original DWARF tag for given partial_symbol.
27063 This function is not DWARF-5 compliant but it is sufficient for
27064 GDB as a DWARF-5 index consumer. */
27065 static int psymbol_tag (const struct partial_symbol *psym)
27066 {
27067 domain_enum domain = PSYMBOL_DOMAIN (psym);
27068 enum address_class aclass = PSYMBOL_CLASS (psym);
27069
27070 switch (domain)
27071 {
27072 case VAR_DOMAIN:
27073 switch (aclass)
27074 {
27075 case LOC_BLOCK:
27076 return DW_TAG_subprogram;
27077 case LOC_TYPEDEF:
27078 return DW_TAG_typedef;
27079 case LOC_COMPUTED:
27080 case LOC_CONST_BYTES:
27081 case LOC_OPTIMIZED_OUT:
27082 case LOC_STATIC:
27083 return DW_TAG_variable;
27084 case LOC_CONST:
27085 /* Note: It's currently impossible to recognize psyms as enum values
27086 short of reading the type info. For now punt. */
27087 return DW_TAG_variable;
27088 default:
27089 /* There are other LOC_FOO values that one might want to classify
27090 as variables, but dwarf2read.c doesn't currently use them. */
27091 return DW_TAG_variable;
27092 }
27093 case STRUCT_DOMAIN:
27094 return DW_TAG_structure_type;
27095 default:
27096 return 0;
27097 }
27098 }
27099
27100 /* Call insert for all partial symbols and mark them in PSYMS_SEEN. */
27101 void write_psymbols (std::unordered_set<partial_symbol *> &psyms_seen,
27102 struct partial_symbol **psymp, int count, int cu_index,
27103 bool is_static, unit_kind kind)
27104 {
27105 for (; count-- > 0; ++psymp)
27106 {
27107 struct partial_symbol *psym = *psymp;
27108
27109 if (SYMBOL_LANGUAGE (psym) == language_ada)
27110 error (_("Ada is not currently supported by the index"));
27111
27112 /* Only add a given psymbol once. */
27113 if (psyms_seen.insert (psym).second)
27114 insert (psym, cu_index, is_static, kind);
27115 }
27116 }
27117
27118 /* A helper function that writes a single signatured_type
27119 to a debug_names. */
27120 void
27121 write_one_signatured_type (struct signatured_type *entry,
27122 struct signatured_type_index_data *info)
27123 {
27124 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
27125
27126 write_psymbols (info->psyms_seen,
27127 &info->objfile->global_psymbols[psymtab->globals_offset],
27128 psymtab->n_global_syms, info->cu_index, false,
27129 unit_kind::tu);
27130 write_psymbols (info->psyms_seen,
27131 &info->objfile->static_psymbols[psymtab->statics_offset],
27132 psymtab->n_static_syms, info->cu_index, true,
27133 unit_kind::tu);
27134
27135 info->types_list.append_uint (dwarf5_offset_size (), m_dwarf5_byte_order,
27136 to_underlying (entry->per_cu.sect_off));
27137
27138 ++info->cu_index;
27139 }
27140
27141 /* Store value of each symbol. */
27142 std::unordered_map<c_str_view, std::set<symbol_value>, c_str_view_hasher>
27143 m_name_to_value_set;
27144
27145 /* Tables of DWARF-5 .debug_names. They are in object file byte
27146 order. */
27147 std::vector<uint32_t> m_bucket_table;
27148 std::vector<uint32_t> m_hash_table;
27149
27150 const bfd_endian m_dwarf5_byte_order;
27151 dwarf_tmpl<uint32_t> m_dwarf32;
27152 dwarf_tmpl<uint64_t> m_dwarf64;
27153 dwarf &m_dwarf;
27154 offset_vec &m_name_table_string_offs, &m_name_table_entry_offs;
27155 debug_str_lookup m_debugstrlookup;
27156
27157 /* Map each used .debug_names abbreviation tag parameter to its
27158 index value. */
27159 std::unordered_map<index_key, int, index_key_hasher> m_indexkey_to_idx;
27160
27161 /* Next unused .debug_names abbreviation tag for
27162 m_indexkey_to_idx. */
27163 int m_idx_next = 1;
27164
27165 /* .debug_names abbreviation table. */
27166 data_buf m_abbrev_table;
27167
27168 /* .debug_names entry pool. */
27169 data_buf m_entry_pool;
27170 };
27171
27172 /* Return iff any of the needed offsets does not fit into 32-bit
27173 .debug_names section. */
27174
27175 static bool
27176 check_dwarf64_offsets (struct dwarf2_per_objfile *dwarf2_per_objfile)
27177 {
27178 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27179 {
27180 const dwarf2_per_cu_data &per_cu = *dwarf2_per_objfile->all_comp_units[i];
27181
27182 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
27183 return true;
27184 }
27185 for (int i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
27186 {
27187 const signatured_type &sigtype = *dwarf2_per_objfile->all_type_units[i];
27188 const dwarf2_per_cu_data &per_cu = sigtype.per_cu;
27189
27190 if (to_underlying (per_cu.sect_off) >= (static_cast<uint64_t> (1) << 32))
27191 return true;
27192 }
27193 return false;
27194 }
27195
27196 /* The psyms_seen set is potentially going to be largish (~40k
27197 elements when indexing a -g3 build of GDB itself). Estimate the
27198 number of elements in order to avoid too many rehashes, which
27199 require rebuilding buckets and thus many trips to
27200 malloc/free. */
27201
27202 static size_t
27203 psyms_seen_size (struct dwarf2_per_objfile *dwarf2_per_objfile)
27204 {
27205 size_t psyms_count = 0;
27206 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27207 {
27208 struct dwarf2_per_cu_data *per_cu
27209 = dwarf2_per_objfile->all_comp_units[i];
27210 struct partial_symtab *psymtab = per_cu->v.psymtab;
27211
27212 if (psymtab != NULL && psymtab->user == NULL)
27213 recursively_count_psymbols (psymtab, psyms_count);
27214 }
27215 /* Generating an index for gdb itself shows a ratio of
27216 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
27217 return psyms_count / 4;
27218 }
27219
27220 /* Write new .gdb_index section for OBJFILE into OUT_FILE.
27221 Return how many bytes were expected to be written into OUT_FILE. */
27222
27223 static size_t
27224 write_gdbindex (struct dwarf2_per_objfile *dwarf2_per_objfile, FILE *out_file)
27225 {
27226 struct objfile *objfile = dwarf2_per_objfile->objfile;
27227 mapped_symtab symtab;
27228 data_buf cu_list;
27229
27230 /* While we're scanning CU's create a table that maps a psymtab pointer
27231 (which is what addrmap records) to its index (which is what is recorded
27232 in the index file). This will later be needed to write the address
27233 table. */
27234 psym_index_map cu_index_htab;
27235 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
27236
27237 /* The CU list is already sorted, so we don't need to do additional
27238 work here. Also, the debug_types entries do not appear in
27239 all_comp_units, but only in their own hash table. */
27240
27241 std::unordered_set<partial_symbol *> psyms_seen
27242 (psyms_seen_size (dwarf2_per_objfile));
27243 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27244 {
27245 struct dwarf2_per_cu_data *per_cu
27246 = dwarf2_per_objfile->all_comp_units[i];
27247 struct partial_symtab *psymtab = per_cu->v.psymtab;
27248
27249 /* CU of a shared file from 'dwz -m' may be unused by this main file.
27250 It may be referenced from a local scope but in such case it does not
27251 need to be present in .gdb_index. */
27252 if (psymtab == NULL)
27253 continue;
27254
27255 if (psymtab->user == NULL)
27256 recursively_write_psymbols (objfile, psymtab, &symtab,
27257 psyms_seen, i);
27258
27259 const auto insertpair = cu_index_htab.emplace (psymtab, i);
27260 gdb_assert (insertpair.second);
27261
27262 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
27263 to_underlying (per_cu->sect_off));
27264 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
27265 }
27266
27267 /* Dump the address map. */
27268 data_buf addr_vec;
27269 write_address_map (objfile, addr_vec, cu_index_htab);
27270
27271 /* Write out the .debug_type entries, if any. */
27272 data_buf types_cu_list;
27273 if (dwarf2_per_objfile->signatured_types)
27274 {
27275 signatured_type_index_data sig_data (types_cu_list,
27276 psyms_seen);
27277
27278 sig_data.objfile = objfile;
27279 sig_data.symtab = &symtab;
27280 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
27281 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
27282 write_one_signatured_type, &sig_data);
27283 }
27284
27285 /* Now that we've processed all symbols we can shrink their cu_indices
27286 lists. */
27287 uniquify_cu_indices (&symtab);
27288
27289 data_buf symtab_vec, constant_pool;
27290 write_hash_table (&symtab, symtab_vec, constant_pool);
27291
27292 data_buf contents;
27293 const offset_type size_of_contents = 6 * sizeof (offset_type);
27294 offset_type total_len = size_of_contents;
27295
27296 /* The version number. */
27297 contents.append_data (MAYBE_SWAP (8));
27298
27299 /* The offset of the CU list from the start of the file. */
27300 contents.append_data (MAYBE_SWAP (total_len));
27301 total_len += cu_list.size ();
27302
27303 /* The offset of the types CU list from the start of the file. */
27304 contents.append_data (MAYBE_SWAP (total_len));
27305 total_len += types_cu_list.size ();
27306
27307 /* The offset of the address table from the start of the file. */
27308 contents.append_data (MAYBE_SWAP (total_len));
27309 total_len += addr_vec.size ();
27310
27311 /* The offset of the symbol table from the start of the file. */
27312 contents.append_data (MAYBE_SWAP (total_len));
27313 total_len += symtab_vec.size ();
27314
27315 /* The offset of the constant pool from the start of the file. */
27316 contents.append_data (MAYBE_SWAP (total_len));
27317 total_len += constant_pool.size ();
27318
27319 gdb_assert (contents.size () == size_of_contents);
27320
27321 contents.file_write (out_file);
27322 cu_list.file_write (out_file);
27323 types_cu_list.file_write (out_file);
27324 addr_vec.file_write (out_file);
27325 symtab_vec.file_write (out_file);
27326 constant_pool.file_write (out_file);
27327
27328 return total_len;
27329 }
27330
27331 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
27332 static const gdb_byte dwarf5_gdb_augmentation[] = { 'G', 'D', 'B', 0 };
27333
27334 /* Write a new .debug_names section for OBJFILE into OUT_FILE, write
27335 needed addition to .debug_str section to OUT_FILE_STR. Return how
27336 many bytes were expected to be written into OUT_FILE. */
27337
27338 static size_t
27339 write_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
27340 FILE *out_file, FILE *out_file_str)
27341 {
27342 const bool dwarf5_is_dwarf64 = check_dwarf64_offsets (dwarf2_per_objfile);
27343 struct objfile *objfile = dwarf2_per_objfile->objfile;
27344 const enum bfd_endian dwarf5_byte_order
27345 = gdbarch_byte_order (get_objfile_arch (objfile));
27346
27347 /* The CU list is already sorted, so we don't need to do additional
27348 work here. Also, the debug_types entries do not appear in
27349 all_comp_units, but only in their own hash table. */
27350 data_buf cu_list;
27351 debug_names nametable (dwarf2_per_objfile, dwarf5_is_dwarf64,
27352 dwarf5_byte_order);
27353 std::unordered_set<partial_symbol *>
27354 psyms_seen (psyms_seen_size (dwarf2_per_objfile));
27355 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
27356 {
27357 const dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->all_comp_units[i];
27358 partial_symtab *psymtab = per_cu->v.psymtab;
27359
27360 /* CU of a shared file from 'dwz -m' may be unused by this main
27361 file. It may be referenced from a local scope but in such
27362 case it does not need to be present in .debug_names. */
27363 if (psymtab == NULL)
27364 continue;
27365
27366 if (psymtab->user == NULL)
27367 nametable.recursively_write_psymbols (objfile, psymtab, psyms_seen, i);
27368
27369 cu_list.append_uint (nametable.dwarf5_offset_size (), dwarf5_byte_order,
27370 to_underlying (per_cu->sect_off));
27371 }
27372
27373 /* Write out the .debug_type entries, if any. */
27374 data_buf types_cu_list;
27375 if (dwarf2_per_objfile->signatured_types)
27376 {
27377 debug_names::write_one_signatured_type_data sig_data (nametable,
27378 signatured_type_index_data (types_cu_list, psyms_seen));
27379
27380 sig_data.info.objfile = objfile;
27381 /* It is used only for gdb_index. */
27382 sig_data.info.symtab = nullptr;
27383 sig_data.info.cu_index = 0;
27384 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
27385 debug_names::write_one_signatured_type,
27386 &sig_data);
27387 }
27388
27389 nametable.build ();
27390
27391 /* No addr_vec - DWARF-5 uses .debug_aranges generated by GCC. */
27392
27393 const offset_type bytes_of_header
27394 = ((dwarf5_is_dwarf64 ? 12 : 4)
27395 + 2 + 2 + 7 * 4
27396 + sizeof (dwarf5_gdb_augmentation));
27397 size_t expected_bytes = 0;
27398 expected_bytes += bytes_of_header;
27399 expected_bytes += cu_list.size ();
27400 expected_bytes += types_cu_list.size ();
27401 expected_bytes += nametable.bytes ();
27402 data_buf header;
27403
27404 if (!dwarf5_is_dwarf64)
27405 {
27406 const uint64_t size64 = expected_bytes - 4;
27407 gdb_assert (size64 < 0xfffffff0);
27408 header.append_uint (4, dwarf5_byte_order, size64);
27409 }
27410 else
27411 {
27412 header.append_uint (4, dwarf5_byte_order, 0xffffffff);
27413 header.append_uint (8, dwarf5_byte_order, expected_bytes - 12);
27414 }
27415
27416 /* The version number. */
27417 header.append_uint (2, dwarf5_byte_order, 5);
27418
27419 /* Padding. */
27420 header.append_uint (2, dwarf5_byte_order, 0);
27421
27422 /* comp_unit_count - The number of CUs in the CU list. */
27423 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_comp_units);
27424
27425 /* local_type_unit_count - The number of TUs in the local TU
27426 list. */
27427 header.append_uint (4, dwarf5_byte_order, dwarf2_per_objfile->n_type_units);
27428
27429 /* foreign_type_unit_count - The number of TUs in the foreign TU
27430 list. */
27431 header.append_uint (4, dwarf5_byte_order, 0);
27432
27433 /* bucket_count - The number of hash buckets in the hash lookup
27434 table. */
27435 header.append_uint (4, dwarf5_byte_order, nametable.bucket_count ());
27436
27437 /* name_count - The number of unique names in the index. */
27438 header.append_uint (4, dwarf5_byte_order, nametable.name_count ());
27439
27440 /* abbrev_table_size - The size in bytes of the abbreviations
27441 table. */
27442 header.append_uint (4, dwarf5_byte_order, nametable.abbrev_table_bytes ());
27443
27444 /* augmentation_string_size - The size in bytes of the augmentation
27445 string. This value is rounded up to a multiple of 4. */
27446 static_assert (sizeof (dwarf5_gdb_augmentation) % 4 == 0, "");
27447 header.append_uint (4, dwarf5_byte_order, sizeof (dwarf5_gdb_augmentation));
27448 header.append_data (dwarf5_gdb_augmentation);
27449
27450 gdb_assert (header.size () == bytes_of_header);
27451
27452 header.file_write (out_file);
27453 cu_list.file_write (out_file);
27454 types_cu_list.file_write (out_file);
27455 nametable.file_write (out_file, out_file_str);
27456
27457 return expected_bytes;
27458 }
27459
27460 /* Assert that FILE's size is EXPECTED_SIZE. Assumes file's seek
27461 position is at the end of the file. */
27462
27463 static void
27464 assert_file_size (FILE *file, const char *filename, size_t expected_size)
27465 {
27466 const auto file_size = ftell (file);
27467 if (file_size == -1)
27468 error (_("Can't get `%s' size"), filename);
27469 gdb_assert (file_size == expected_size);
27470 }
27471
27472 /* Create an index file for OBJFILE in the directory DIR. */
27473
27474 static void
27475 write_psymtabs_to_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
27476 const char *dir,
27477 dw_index_kind index_kind)
27478 {
27479 struct objfile *objfile = dwarf2_per_objfile->objfile;
27480
27481 if (dwarf2_per_objfile->using_index)
27482 error (_("Cannot use an index to create the index"));
27483
27484 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
27485 error (_("Cannot make an index when the file has multiple .debug_types sections"));
27486
27487 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
27488 return;
27489
27490 struct stat st;
27491 if (stat (objfile_name (objfile), &st) < 0)
27492 perror_with_name (objfile_name (objfile));
27493
27494 std::string filename (std::string (dir) + SLASH_STRING
27495 + lbasename (objfile_name (objfile))
27496 + (index_kind == dw_index_kind::DEBUG_NAMES
27497 ? INDEX5_SUFFIX : INDEX4_SUFFIX));
27498
27499 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
27500 if (!out_file)
27501 error (_("Can't open `%s' for writing"), filename.c_str ());
27502
27503 /* Order matters here; we want FILE to be closed before FILENAME is
27504 unlinked, because on MS-Windows one cannot delete a file that is
27505 still open. (Don't call anything here that might throw until
27506 file_closer is created.) */
27507 gdb::unlinker unlink_file (filename.c_str ());
27508 gdb_file_up close_out_file (out_file);
27509
27510 if (index_kind == dw_index_kind::DEBUG_NAMES)
27511 {
27512 std::string filename_str (std::string (dir) + SLASH_STRING
27513 + lbasename (objfile_name (objfile))
27514 + DEBUG_STR_SUFFIX);
27515 FILE *out_file_str
27516 = gdb_fopen_cloexec (filename_str.c_str (), "wb").release ();
27517 if (!out_file_str)
27518 error (_("Can't open `%s' for writing"), filename_str.c_str ());
27519 gdb::unlinker unlink_file_str (filename_str.c_str ());
27520 gdb_file_up close_out_file_str (out_file_str);
27521
27522 const size_t total_len
27523 = write_debug_names (dwarf2_per_objfile, out_file, out_file_str);
27524 assert_file_size (out_file, filename.c_str (), total_len);
27525
27526 /* We want to keep the file .debug_str file too. */
27527 unlink_file_str.keep ();
27528 }
27529 else
27530 {
27531 const size_t total_len
27532 = write_gdbindex (dwarf2_per_objfile, out_file);
27533 assert_file_size (out_file, filename.c_str (), total_len);
27534 }
27535
27536 /* We want to keep the file. */
27537 unlink_file.keep ();
27538 }
27539
27540 /* Implementation of the `save gdb-index' command.
27541
27542 Note that the .gdb_index file format used by this command is
27543 documented in the GDB manual. Any changes here must be documented
27544 there. */
27545
27546 static void
27547 save_gdb_index_command (const char *arg, int from_tty)
27548 {
27549 struct objfile *objfile;
27550 const char dwarf5space[] = "-dwarf-5 ";
27551 dw_index_kind index_kind = dw_index_kind::GDB_INDEX;
27552
27553 if (!arg)
27554 arg = "";
27555
27556 arg = skip_spaces (arg);
27557 if (strncmp (arg, dwarf5space, strlen (dwarf5space)) == 0)
27558 {
27559 index_kind = dw_index_kind::DEBUG_NAMES;
27560 arg += strlen (dwarf5space);
27561 arg = skip_spaces (arg);
27562 }
27563
27564 if (!*arg)
27565 error (_("usage: save gdb-index [-dwarf-5] DIRECTORY"));
27566
27567 ALL_OBJFILES (objfile)
27568 {
27569 struct stat st;
27570
27571 /* If the objfile does not correspond to an actual file, skip it. */
27572 if (stat (objfile_name (objfile), &st) < 0)
27573 continue;
27574
27575 struct dwarf2_per_objfile *dwarf2_per_objfile
27576 = get_dwarf2_per_objfile (objfile);
27577
27578 if (dwarf2_per_objfile != NULL)
27579 {
27580 TRY
27581 {
27582 write_psymtabs_to_index (dwarf2_per_objfile, arg, index_kind);
27583 }
27584 CATCH (except, RETURN_MASK_ERROR)
27585 {
27586 exception_fprintf (gdb_stderr, except,
27587 _("Error while writing index for `%s': "),
27588 objfile_name (objfile));
27589 }
27590 END_CATCH
27591 }
27592
27593 }
27594 }
27595
27596 \f
27597
27598 int dwarf_always_disassemble;
27599
27600 static void
27601 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
27602 struct cmd_list_element *c, const char *value)
27603 {
27604 fprintf_filtered (file,
27605 _("Whether to always disassemble "
27606 "DWARF expressions is %s.\n"),
27607 value);
27608 }
27609
27610 static void
27611 show_check_physname (struct ui_file *file, int from_tty,
27612 struct cmd_list_element *c, const char *value)
27613 {
27614 fprintf_filtered (file,
27615 _("Whether to check \"physname\" is %s.\n"),
27616 value);
27617 }
27618
27619 void
27620 _initialize_dwarf2_read (void)
27621 {
27622 struct cmd_list_element *c;
27623
27624 dwarf2_objfile_data_key = register_objfile_data ();
27625
27626 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
27627 Set DWARF specific variables.\n\
27628 Configure DWARF variables such as the cache size"),
27629 &set_dwarf_cmdlist, "maintenance set dwarf ",
27630 0/*allow-unknown*/, &maintenance_set_cmdlist);
27631
27632 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
27633 Show DWARF specific variables\n\
27634 Show DWARF variables such as the cache size"),
27635 &show_dwarf_cmdlist, "maintenance show dwarf ",
27636 0/*allow-unknown*/, &maintenance_show_cmdlist);
27637
27638 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
27639 &dwarf_max_cache_age, _("\
27640 Set the upper bound on the age of cached DWARF compilation units."), _("\
27641 Show the upper bound on the age of cached DWARF compilation units."), _("\
27642 A higher limit means that cached compilation units will be stored\n\
27643 in memory longer, and more total memory will be used. Zero disables\n\
27644 caching, which can slow down startup."),
27645 NULL,
27646 show_dwarf_max_cache_age,
27647 &set_dwarf_cmdlist,
27648 &show_dwarf_cmdlist);
27649
27650 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
27651 &dwarf_always_disassemble, _("\
27652 Set whether `info address' always disassembles DWARF expressions."), _("\
27653 Show whether `info address' always disassembles DWARF expressions."), _("\
27654 When enabled, DWARF expressions are always printed in an assembly-like\n\
27655 syntax. When disabled, expressions will be printed in a more\n\
27656 conversational style, when possible."),
27657 NULL,
27658 show_dwarf_always_disassemble,
27659 &set_dwarf_cmdlist,
27660 &show_dwarf_cmdlist);
27661
27662 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
27663 Set debugging of the DWARF reader."), _("\
27664 Show debugging of the DWARF reader."), _("\
27665 When enabled (non-zero), debugging messages are printed during DWARF\n\
27666 reading and symtab expansion. A value of 1 (one) provides basic\n\
27667 information. A value greater than 1 provides more verbose information."),
27668 NULL,
27669 NULL,
27670 &setdebuglist, &showdebuglist);
27671
27672 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
27673 Set debugging of the DWARF DIE reader."), _("\
27674 Show debugging of the DWARF DIE reader."), _("\
27675 When enabled (non-zero), DIEs are dumped after they are read in.\n\
27676 The value is the maximum depth to print."),
27677 NULL,
27678 NULL,
27679 &setdebuglist, &showdebuglist);
27680
27681 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
27682 Set debugging of the dwarf line reader."), _("\
27683 Show debugging of the dwarf line reader."), _("\
27684 When enabled (non-zero), line number entries are dumped as they are read in.\n\
27685 A value of 1 (one) provides basic information.\n\
27686 A value greater than 1 provides more verbose information."),
27687 NULL,
27688 NULL,
27689 &setdebuglist, &showdebuglist);
27690
27691 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
27692 Set cross-checking of \"physname\" code against demangler."), _("\
27693 Show cross-checking of \"physname\" code against demangler."), _("\
27694 When enabled, GDB's internal \"physname\" code is checked against\n\
27695 the demangler."),
27696 NULL, show_check_physname,
27697 &setdebuglist, &showdebuglist);
27698
27699 add_setshow_boolean_cmd ("use-deprecated-index-sections",
27700 no_class, &use_deprecated_index_sections, _("\
27701 Set whether to use deprecated gdb_index sections."), _("\
27702 Show whether to use deprecated gdb_index sections."), _("\
27703 When enabled, deprecated .gdb_index sections are used anyway.\n\
27704 Normally they are ignored either because of a missing feature or\n\
27705 performance issue.\n\
27706 Warning: This option must be enabled before gdb reads the file."),
27707 NULL,
27708 NULL,
27709 &setlist, &showlist);
27710
27711 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
27712 _("\
27713 Save a gdb-index file.\n\
27714 Usage: save gdb-index [-dwarf-5] DIRECTORY\n\
27715 \n\
27716 No options create one file with .gdb-index extension for pre-DWARF-5\n\
27717 compatible .gdb_index section. With -dwarf-5 creates two files with\n\
27718 extension .debug_names and .debug_str for DWARF-5 .debug_names section."),
27719 &save_cmdlist);
27720 set_cmd_completer (c, filename_completer);
27721
27722 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
27723 &dwarf2_locexpr_funcs);
27724 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
27725 &dwarf2_loclist_funcs);
27726
27727 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
27728 &dwarf2_block_frame_base_locexpr_funcs);
27729 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
27730 &dwarf2_block_frame_base_loclist_funcs);
27731
27732 #if GDB_SELF_TEST
27733 selftests::register_test ("dw2_expand_symtabs_matching",
27734 selftests::dw2_expand_symtabs_matching::run_test);
27735 #endif
27736 }
This page took 0.61229 seconds and 4 git commands to generate.