dwarf2read: Get rid of VEC (dwarf2_section_info_def)
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "dwarf2expr.h"
50 #include "dwarf2loc.h"
51 #include "cp-support.h"
52 #include "hashtab.h"
53 #include "command.h"
54 #include "gdbcmd.h"
55 #include "block.h"
56 #include "addrmap.h"
57 #include "typeprint.h"
58 #include "psympriv.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "common/vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "common/filestuff.h"
72 #include "build-id.h"
73 #include "namespace.h"
74 #include "common/gdb_unlinker.h"
75 #include "common/function-view.h"
76 #include "common/gdb_optional.h"
77 #include "common/underlying.h"
78 #include "common/byte-vector.h"
79 #include "common/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <sys/types.h>
84 #include <algorithm>
85 #include <unordered_set>
86 #include <unordered_map>
87 #include "common/selftest.h"
88 #include <cmath>
89 #include <set>
90 #include <forward_list>
91 #include "rust-lang.h"
92 #include "common/pathstuff.h"
93
94 /* When == 1, print basic high level tracing messages.
95 When > 1, be more verbose.
96 This is in contrast to the low level DIE reading of dwarf_die_debug. */
97 static unsigned int dwarf_read_debug = 0;
98
99 /* When non-zero, dump DIEs after they are read in. */
100 static unsigned int dwarf_die_debug = 0;
101
102 /* When non-zero, dump line number entries as they are read in. */
103 static unsigned int dwarf_line_debug = 0;
104
105 /* When non-zero, cross-check physname against demangler. */
106 static int check_physname = 0;
107
108 /* When non-zero, do not reject deprecated .gdb_index sections. */
109 static int use_deprecated_index_sections = 0;
110
111 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
112
113 /* The "aclass" indices for various kinds of computed DWARF symbols. */
114
115 static int dwarf2_locexpr_index;
116 static int dwarf2_loclist_index;
117 static int dwarf2_locexpr_block_index;
118 static int dwarf2_loclist_block_index;
119
120 /* An index into a (C++) symbol name component in a symbol name as
121 recorded in the mapped_index's symbol table. For each C++ symbol
122 in the symbol table, we record one entry for the start of each
123 component in the symbol in a table of name components, and then
124 sort the table, in order to be able to binary search symbol names,
125 ignoring leading namespaces, both completion and regular look up.
126 For example, for symbol "A::B::C", we'll have an entry that points
127 to "A::B::C", another that points to "B::C", and another for "C".
128 Note that function symbols in GDB index have no parameter
129 information, just the function/method names. You can convert a
130 name_component to a "const char *" using the
131 'mapped_index::symbol_name_at(offset_type)' method. */
132
133 struct name_component
134 {
135 /* Offset in the symbol name where the component starts. Stored as
136 a (32-bit) offset instead of a pointer to save memory and improve
137 locality on 64-bit architectures. */
138 offset_type name_offset;
139
140 /* The symbol's index in the symbol and constant pool tables of a
141 mapped_index. */
142 offset_type idx;
143 };
144
145 /* Base class containing bits shared by both .gdb_index and
146 .debug_name indexes. */
147
148 struct mapped_index_base
149 {
150 mapped_index_base () = default;
151 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
152
153 /* The name_component table (a sorted vector). See name_component's
154 description above. */
155 std::vector<name_component> name_components;
156
157 /* How NAME_COMPONENTS is sorted. */
158 enum case_sensitivity name_components_casing;
159
160 /* Return the number of names in the symbol table. */
161 virtual size_t symbol_name_count () const = 0;
162
163 /* Get the name of the symbol at IDX in the symbol table. */
164 virtual const char *symbol_name_at (offset_type idx) const = 0;
165
166 /* Return whether the name at IDX in the symbol table should be
167 ignored. */
168 virtual bool symbol_name_slot_invalid (offset_type idx) const
169 {
170 return false;
171 }
172
173 /* Build the symbol name component sorted vector, if we haven't
174 yet. */
175 void build_name_components ();
176
177 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
178 possible matches for LN_NO_PARAMS in the name component
179 vector. */
180 std::pair<std::vector<name_component>::const_iterator,
181 std::vector<name_component>::const_iterator>
182 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
183
184 /* Prevent deleting/destroying via a base class pointer. */
185 protected:
186 ~mapped_index_base() = default;
187 };
188
189 /* A description of the mapped index. The file format is described in
190 a comment by the code that writes the index. */
191 struct mapped_index final : public mapped_index_base
192 {
193 /* A slot/bucket in the symbol table hash. */
194 struct symbol_table_slot
195 {
196 const offset_type name;
197 const offset_type vec;
198 };
199
200 /* Index data format version. */
201 int version = 0;
202
203 /* The address table data. */
204 gdb::array_view<const gdb_byte> address_table;
205
206 /* The symbol table, implemented as a hash table. */
207 gdb::array_view<symbol_table_slot> symbol_table;
208
209 /* A pointer to the constant pool. */
210 const char *constant_pool = nullptr;
211
212 bool symbol_name_slot_invalid (offset_type idx) const override
213 {
214 const auto &bucket = this->symbol_table[idx];
215 return bucket.name == 0 && bucket.vec == 0;
216 }
217
218 /* Convenience method to get at the name of the symbol at IDX in the
219 symbol table. */
220 const char *symbol_name_at (offset_type idx) const override
221 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
222
223 size_t symbol_name_count () const override
224 { return this->symbol_table.size (); }
225 };
226
227 /* A description of the mapped .debug_names.
228 Uninitialized map has CU_COUNT 0. */
229 struct mapped_debug_names final : public mapped_index_base
230 {
231 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
232 : dwarf2_per_objfile (dwarf2_per_objfile_)
233 {}
234
235 struct dwarf2_per_objfile *dwarf2_per_objfile;
236 bfd_endian dwarf5_byte_order;
237 bool dwarf5_is_dwarf64;
238 bool augmentation_is_gdb;
239 uint8_t offset_size;
240 uint32_t cu_count = 0;
241 uint32_t tu_count, bucket_count, name_count;
242 const gdb_byte *cu_table_reordered, *tu_table_reordered;
243 const uint32_t *bucket_table_reordered, *hash_table_reordered;
244 const gdb_byte *name_table_string_offs_reordered;
245 const gdb_byte *name_table_entry_offs_reordered;
246 const gdb_byte *entry_pool;
247
248 struct index_val
249 {
250 ULONGEST dwarf_tag;
251 struct attr
252 {
253 /* Attribute name DW_IDX_*. */
254 ULONGEST dw_idx;
255
256 /* Attribute form DW_FORM_*. */
257 ULONGEST form;
258
259 /* Value if FORM is DW_FORM_implicit_const. */
260 LONGEST implicit_const;
261 };
262 std::vector<attr> attr_vec;
263 };
264
265 std::unordered_map<ULONGEST, index_val> abbrev_map;
266
267 const char *namei_to_name (uint32_t namei) const;
268
269 /* Implementation of the mapped_index_base virtual interface, for
270 the name_components cache. */
271
272 const char *symbol_name_at (offset_type idx) const override
273 { return namei_to_name (idx); }
274
275 size_t symbol_name_count () const override
276 { return this->name_count; }
277 };
278
279 /* See dwarf2read.h. */
280
281 dwarf2_per_objfile *
282 get_dwarf2_per_objfile (struct objfile *objfile)
283 {
284 return dwarf2_objfile_data_key.get (objfile);
285 }
286
287 /* Default names of the debugging sections. */
288
289 /* Note that if the debugging section has been compressed, it might
290 have a name like .zdebug_info. */
291
292 static const struct dwarf2_debug_sections dwarf2_elf_names =
293 {
294 { ".debug_info", ".zdebug_info" },
295 { ".debug_abbrev", ".zdebug_abbrev" },
296 { ".debug_line", ".zdebug_line" },
297 { ".debug_loc", ".zdebug_loc" },
298 { ".debug_loclists", ".zdebug_loclists" },
299 { ".debug_macinfo", ".zdebug_macinfo" },
300 { ".debug_macro", ".zdebug_macro" },
301 { ".debug_str", ".zdebug_str" },
302 { ".debug_line_str", ".zdebug_line_str" },
303 { ".debug_ranges", ".zdebug_ranges" },
304 { ".debug_rnglists", ".zdebug_rnglists" },
305 { ".debug_types", ".zdebug_types" },
306 { ".debug_addr", ".zdebug_addr" },
307 { ".debug_frame", ".zdebug_frame" },
308 { ".eh_frame", NULL },
309 { ".gdb_index", ".zgdb_index" },
310 { ".debug_names", ".zdebug_names" },
311 { ".debug_aranges", ".zdebug_aranges" },
312 23
313 };
314
315 /* List of DWO/DWP sections. */
316
317 static const struct dwop_section_names
318 {
319 struct dwarf2_section_names abbrev_dwo;
320 struct dwarf2_section_names info_dwo;
321 struct dwarf2_section_names line_dwo;
322 struct dwarf2_section_names loc_dwo;
323 struct dwarf2_section_names loclists_dwo;
324 struct dwarf2_section_names macinfo_dwo;
325 struct dwarf2_section_names macro_dwo;
326 struct dwarf2_section_names str_dwo;
327 struct dwarf2_section_names str_offsets_dwo;
328 struct dwarf2_section_names types_dwo;
329 struct dwarf2_section_names cu_index;
330 struct dwarf2_section_names tu_index;
331 }
332 dwop_section_names =
333 {
334 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
335 { ".debug_info.dwo", ".zdebug_info.dwo" },
336 { ".debug_line.dwo", ".zdebug_line.dwo" },
337 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
338 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
339 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
340 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
341 { ".debug_str.dwo", ".zdebug_str.dwo" },
342 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
343 { ".debug_types.dwo", ".zdebug_types.dwo" },
344 { ".debug_cu_index", ".zdebug_cu_index" },
345 { ".debug_tu_index", ".zdebug_tu_index" },
346 };
347
348 /* local data types */
349
350 /* The data in a compilation unit header, after target2host
351 translation, looks like this. */
352 struct comp_unit_head
353 {
354 unsigned int length;
355 short version;
356 unsigned char addr_size;
357 unsigned char signed_addr_p;
358 sect_offset abbrev_sect_off;
359
360 /* Size of file offsets; either 4 or 8. */
361 unsigned int offset_size;
362
363 /* Size of the length field; either 4 or 12. */
364 unsigned int initial_length_size;
365
366 enum dwarf_unit_type unit_type;
367
368 /* Offset to the first byte of this compilation unit header in the
369 .debug_info section, for resolving relative reference dies. */
370 sect_offset sect_off;
371
372 /* Offset to first die in this cu from the start of the cu.
373 This will be the first byte following the compilation unit header. */
374 cu_offset first_die_cu_offset;
375
376 /* 64-bit signature of this type unit - it is valid only for
377 UNIT_TYPE DW_UT_type. */
378 ULONGEST signature;
379
380 /* For types, offset in the type's DIE of the type defined by this TU. */
381 cu_offset type_cu_offset_in_tu;
382 };
383
384 /* Type used for delaying computation of method physnames.
385 See comments for compute_delayed_physnames. */
386 struct delayed_method_info
387 {
388 /* The type to which the method is attached, i.e., its parent class. */
389 struct type *type;
390
391 /* The index of the method in the type's function fieldlists. */
392 int fnfield_index;
393
394 /* The index of the method in the fieldlist. */
395 int index;
396
397 /* The name of the DIE. */
398 const char *name;
399
400 /* The DIE associated with this method. */
401 struct die_info *die;
402 };
403
404 /* Internal state when decoding a particular compilation unit. */
405 struct dwarf2_cu
406 {
407 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
408 ~dwarf2_cu ();
409
410 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
411
412 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
413 Create the set of symtabs used by this TU, or if this TU is sharing
414 symtabs with another TU and the symtabs have already been created
415 then restore those symtabs in the line header.
416 We don't need the pc/line-number mapping for type units. */
417 void setup_type_unit_groups (struct die_info *die);
418
419 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
420 buildsym_compunit constructor. */
421 struct compunit_symtab *start_symtab (const char *name,
422 const char *comp_dir,
423 CORE_ADDR low_pc);
424
425 /* Reset the builder. */
426 void reset_builder () { m_builder.reset (); }
427
428 /* The header of the compilation unit. */
429 struct comp_unit_head header {};
430
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address = 0;
433
434 /* Non-zero if base_address has been set. */
435 int base_known = 0;
436
437 /* The language we are debugging. */
438 enum language language = language_unknown;
439 const struct language_defn *language_defn = nullptr;
440
441 const char *producer = nullptr;
442
443 private:
444 /* The symtab builder for this CU. This is only non-NULL when full
445 symbols are being read. */
446 std::unique_ptr<buildsym_compunit> m_builder;
447
448 public:
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope = nullptr;
459
460 /* Hash table holding all the loaded partial DIEs
461 with partial_die->offset.SECT_OFF as hash. */
462 htab_t partial_dies = nullptr;
463
464 /* Storage for things with the same lifetime as this read-in compilation
465 unit, including partial DIEs. */
466 auto_obstack comp_unit_obstack;
467
468 /* When multiple dwarf2_cu structures are living in memory, this field
469 chains them all together, so that they can be released efficiently.
470 We will probably also want a generation counter so that most-recently-used
471 compilation units are cached... */
472 struct dwarf2_per_cu_data *read_in_chain = nullptr;
473
474 /* Backlink to our per_cu entry. */
475 struct dwarf2_per_cu_data *per_cu;
476
477 /* How many compilation units ago was this CU last referenced? */
478 int last_used = 0;
479
480 /* A hash table of DIE cu_offset for following references with
481 die_info->offset.sect_off as hash. */
482 htab_t die_hash = nullptr;
483
484 /* Full DIEs if read in. */
485 struct die_info *dies = nullptr;
486
487 /* A set of pointers to dwarf2_per_cu_data objects for compilation
488 units referenced by this one. Only set during full symbol processing;
489 partial symbol tables do not have dependencies. */
490 htab_t dependencies = nullptr;
491
492 /* Header data from the line table, during full symbol processing. */
493 struct line_header *line_header = nullptr;
494 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
495 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
496 this is the DW_TAG_compile_unit die for this CU. We'll hold on
497 to the line header as long as this DIE is being processed. See
498 process_die_scope. */
499 die_info *line_header_die_owner = nullptr;
500
501 /* A list of methods which need to have physnames computed
502 after all type information has been read. */
503 std::vector<delayed_method_info> method_list;
504
505 /* To be copied to symtab->call_site_htab. */
506 htab_t call_site_htab = nullptr;
507
508 /* Non-NULL if this CU came from a DWO file.
509 There is an invariant here that is important to remember:
510 Except for attributes copied from the top level DIE in the "main"
511 (or "stub") file in preparation for reading the DWO file
512 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
513 Either there isn't a DWO file (in which case this is NULL and the point
514 is moot), or there is and either we're not going to read it (in which
515 case this is NULL) or there is and we are reading it (in which case this
516 is non-NULL). */
517 struct dwo_unit *dwo_unit = nullptr;
518
519 /* The DW_AT_addr_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE. */
522 ULONGEST addr_base = 0;
523
524 /* The DW_AT_ranges_base attribute if present, zero otherwise
525 (zero is a valid value though).
526 Note this value comes from the Fission stub CU/TU's DIE.
527 Also note that the value is zero in the non-DWO case so this value can
528 be used without needing to know whether DWO files are in use or not.
529 N.B. This does not apply to DW_AT_ranges appearing in
530 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
531 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
532 DW_AT_ranges_base *would* have to be applied, and we'd have to care
533 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
534 ULONGEST ranges_base = 0;
535
536 /* When reading debug info generated by older versions of rustc, we
537 have to rewrite some union types to be struct types with a
538 variant part. This rewriting must be done after the CU is fully
539 read in, because otherwise at the point of rewriting some struct
540 type might not have been fully processed. So, we keep a list of
541 all such types here and process them after expansion. */
542 std::vector<struct type *> rust_unions;
543
544 /* Mark used when releasing cached dies. */
545 bool mark : 1;
546
547 /* This CU references .debug_loc. See the symtab->locations_valid field.
548 This test is imperfect as there may exist optimized debug code not using
549 any location list and still facing inlining issues if handled as
550 unoptimized code. For a future better test see GCC PR other/32998. */
551 bool has_loclist : 1;
552
553 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
554 if all the producer_is_* fields are valid. This information is cached
555 because profiling CU expansion showed excessive time spent in
556 producer_is_gxx_lt_4_6. */
557 bool checked_producer : 1;
558 bool producer_is_gxx_lt_4_6 : 1;
559 bool producer_is_gcc_lt_4_3 : 1;
560 bool producer_is_icc : 1;
561 bool producer_is_icc_lt_14 : 1;
562 bool producer_is_codewarrior : 1;
563
564 /* When true, the file that we're processing is known to have
565 debugging info for C++ namespaces. GCC 3.3.x did not produce
566 this information, but later versions do. */
567
568 bool processing_has_namespace_info : 1;
569
570 struct partial_die_info *find_partial_die (sect_offset sect_off);
571
572 /* If this CU was inherited by another CU (via specification,
573 abstract_origin, etc), this is the ancestor CU. */
574 dwarf2_cu *ancestor;
575
576 /* Get the buildsym_compunit for this CU. */
577 buildsym_compunit *get_builder ()
578 {
579 /* If this CU has a builder associated with it, use that. */
580 if (m_builder != nullptr)
581 return m_builder.get ();
582
583 /* Otherwise, search ancestors for a valid builder. */
584 if (ancestor != nullptr)
585 return ancestor->get_builder ();
586
587 return nullptr;
588 }
589 };
590
591 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
592 This includes type_unit_group and quick_file_names. */
593
594 struct stmt_list_hash
595 {
596 /* The DWO unit this table is from or NULL if there is none. */
597 struct dwo_unit *dwo_unit;
598
599 /* Offset in .debug_line or .debug_line.dwo. */
600 sect_offset line_sect_off;
601 };
602
603 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
604 an object of this type. */
605
606 struct type_unit_group
607 {
608 /* dwarf2read.c's main "handle" on a TU symtab.
609 To simplify things we create an artificial CU that "includes" all the
610 type units using this stmt_list so that the rest of the code still has
611 a "per_cu" handle on the symtab.
612 This PER_CU is recognized by having no section. */
613 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
614 struct dwarf2_per_cu_data per_cu;
615
616 /* The TUs that share this DW_AT_stmt_list entry.
617 This is added to while parsing type units to build partial symtabs,
618 and is deleted afterwards and not used again. */
619 VEC (sig_type_ptr) *tus;
620
621 /* The compunit symtab.
622 Type units in a group needn't all be defined in the same source file,
623 so we create an essentially anonymous symtab as the compunit symtab. */
624 struct compunit_symtab *compunit_symtab;
625
626 /* The data used to construct the hash key. */
627 struct stmt_list_hash hash;
628
629 /* The number of symtabs from the line header.
630 The value here must match line_header.num_file_names. */
631 unsigned int num_symtabs;
632
633 /* The symbol tables for this TU (obtained from the files listed in
634 DW_AT_stmt_list).
635 WARNING: The order of entries here must match the order of entries
636 in the line header. After the first TU using this type_unit_group, the
637 line header for the subsequent TUs is recreated from this. This is done
638 because we need to use the same symtabs for each TU using the same
639 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
640 there's no guarantee the line header doesn't have duplicate entries. */
641 struct symtab **symtabs;
642 };
643
644 /* These sections are what may appear in a (real or virtual) DWO file. */
645
646 struct dwo_sections
647 {
648 struct dwarf2_section_info abbrev;
649 struct dwarf2_section_info line;
650 struct dwarf2_section_info loc;
651 struct dwarf2_section_info loclists;
652 struct dwarf2_section_info macinfo;
653 struct dwarf2_section_info macro;
654 struct dwarf2_section_info str;
655 struct dwarf2_section_info str_offsets;
656 /* In the case of a virtual DWO file, these two are unused. */
657 struct dwarf2_section_info info;
658 std::vector<dwarf2_section_info> types;
659 };
660
661 /* CUs/TUs in DWP/DWO files. */
662
663 struct dwo_unit
664 {
665 /* Backlink to the containing struct dwo_file. */
666 struct dwo_file *dwo_file;
667
668 /* The "id" that distinguishes this CU/TU.
669 .debug_info calls this "dwo_id", .debug_types calls this "signature".
670 Since signatures came first, we stick with it for consistency. */
671 ULONGEST signature;
672
673 /* The section this CU/TU lives in, in the DWO file. */
674 struct dwarf2_section_info *section;
675
676 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
677 sect_offset sect_off;
678 unsigned int length;
679
680 /* For types, offset in the type's DIE of the type defined by this TU. */
681 cu_offset type_offset_in_tu;
682 };
683
684 /* include/dwarf2.h defines the DWP section codes.
685 It defines a max value but it doesn't define a min value, which we
686 use for error checking, so provide one. */
687
688 enum dwp_v2_section_ids
689 {
690 DW_SECT_MIN = 1
691 };
692
693 /* Data for one DWO file.
694
695 This includes virtual DWO files (a virtual DWO file is a DWO file as it
696 appears in a DWP file). DWP files don't really have DWO files per se -
697 comdat folding of types "loses" the DWO file they came from, and from
698 a high level view DWP files appear to contain a mass of random types.
699 However, to maintain consistency with the non-DWP case we pretend DWP
700 files contain virtual DWO files, and we assign each TU with one virtual
701 DWO file (generally based on the line and abbrev section offsets -
702 a heuristic that seems to work in practice). */
703
704 struct dwo_file
705 {
706 dwo_file () = default;
707 DISABLE_COPY_AND_ASSIGN (dwo_file);
708
709 /* The DW_AT_GNU_dwo_name attribute.
710 For virtual DWO files the name is constructed from the section offsets
711 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
712 from related CU+TUs. */
713 const char *dwo_name = nullptr;
714
715 /* The DW_AT_comp_dir attribute. */
716 const char *comp_dir = nullptr;
717
718 /* The bfd, when the file is open. Otherwise this is NULL.
719 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
720 gdb_bfd_ref_ptr dbfd;
721
722 /* The sections that make up this DWO file.
723 Remember that for virtual DWO files in DWP V2, these are virtual
724 sections (for lack of a better name). */
725 struct dwo_sections sections {};
726
727 /* The CUs in the file.
728 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
729 an extension to handle LLVM's Link Time Optimization output (where
730 multiple source files may be compiled into a single object/dwo pair). */
731 htab_t cus {};
732
733 /* Table of TUs in the file.
734 Each element is a struct dwo_unit. */
735 htab_t tus {};
736 };
737
738 /* These sections are what may appear in a DWP file. */
739
740 struct dwp_sections
741 {
742 /* These are used by both DWP version 1 and 2. */
743 struct dwarf2_section_info str;
744 struct dwarf2_section_info cu_index;
745 struct dwarf2_section_info tu_index;
746
747 /* These are only used by DWP version 2 files.
748 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
749 sections are referenced by section number, and are not recorded here.
750 In DWP version 2 there is at most one copy of all these sections, each
751 section being (effectively) comprised of the concatenation of all of the
752 individual sections that exist in the version 1 format.
753 To keep the code simple we treat each of these concatenated pieces as a
754 section itself (a virtual section?). */
755 struct dwarf2_section_info abbrev;
756 struct dwarf2_section_info info;
757 struct dwarf2_section_info line;
758 struct dwarf2_section_info loc;
759 struct dwarf2_section_info macinfo;
760 struct dwarf2_section_info macro;
761 struct dwarf2_section_info str_offsets;
762 struct dwarf2_section_info types;
763 };
764
765 /* These sections are what may appear in a virtual DWO file in DWP version 1.
766 A virtual DWO file is a DWO file as it appears in a DWP file. */
767
768 struct virtual_v1_dwo_sections
769 {
770 struct dwarf2_section_info abbrev;
771 struct dwarf2_section_info line;
772 struct dwarf2_section_info loc;
773 struct dwarf2_section_info macinfo;
774 struct dwarf2_section_info macro;
775 struct dwarf2_section_info str_offsets;
776 /* Each DWP hash table entry records one CU or one TU.
777 That is recorded here, and copied to dwo_unit.section. */
778 struct dwarf2_section_info info_or_types;
779 };
780
781 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
782 In version 2, the sections of the DWO files are concatenated together
783 and stored in one section of that name. Thus each ELF section contains
784 several "virtual" sections. */
785
786 struct virtual_v2_dwo_sections
787 {
788 bfd_size_type abbrev_offset;
789 bfd_size_type abbrev_size;
790
791 bfd_size_type line_offset;
792 bfd_size_type line_size;
793
794 bfd_size_type loc_offset;
795 bfd_size_type loc_size;
796
797 bfd_size_type macinfo_offset;
798 bfd_size_type macinfo_size;
799
800 bfd_size_type macro_offset;
801 bfd_size_type macro_size;
802
803 bfd_size_type str_offsets_offset;
804 bfd_size_type str_offsets_size;
805
806 /* Each DWP hash table entry records one CU or one TU.
807 That is recorded here, and copied to dwo_unit.section. */
808 bfd_size_type info_or_types_offset;
809 bfd_size_type info_or_types_size;
810 };
811
812 /* Contents of DWP hash tables. */
813
814 struct dwp_hash_table
815 {
816 uint32_t version, nr_columns;
817 uint32_t nr_units, nr_slots;
818 const gdb_byte *hash_table, *unit_table;
819 union
820 {
821 struct
822 {
823 const gdb_byte *indices;
824 } v1;
825 struct
826 {
827 /* This is indexed by column number and gives the id of the section
828 in that column. */
829 #define MAX_NR_V2_DWO_SECTIONS \
830 (1 /* .debug_info or .debug_types */ \
831 + 1 /* .debug_abbrev */ \
832 + 1 /* .debug_line */ \
833 + 1 /* .debug_loc */ \
834 + 1 /* .debug_str_offsets */ \
835 + 1 /* .debug_macro or .debug_macinfo */)
836 int section_ids[MAX_NR_V2_DWO_SECTIONS];
837 const gdb_byte *offsets;
838 const gdb_byte *sizes;
839 } v2;
840 } section_pool;
841 };
842
843 /* Data for one DWP file. */
844
845 struct dwp_file
846 {
847 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 : name (name_),
849 dbfd (std::move (abfd))
850 {
851 }
852
853 /* Name of the file. */
854 const char *name;
855
856 /* File format version. */
857 int version = 0;
858
859 /* The bfd. */
860 gdb_bfd_ref_ptr dbfd;
861
862 /* Section info for this file. */
863 struct dwp_sections sections {};
864
865 /* Table of CUs in the file. */
866 const struct dwp_hash_table *cus = nullptr;
867
868 /* Table of TUs in the file. */
869 const struct dwp_hash_table *tus = nullptr;
870
871 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
872 htab_t loaded_cus {};
873 htab_t loaded_tus {};
874
875 /* Table to map ELF section numbers to their sections.
876 This is only needed for the DWP V1 file format. */
877 unsigned int num_sections = 0;
878 asection **elf_sections = nullptr;
879 };
880
881 /* Struct used to pass misc. parameters to read_die_and_children, et
882 al. which are used for both .debug_info and .debug_types dies.
883 All parameters here are unchanging for the life of the call. This
884 struct exists to abstract away the constant parameters of die reading. */
885
886 struct die_reader_specs
887 {
888 /* The bfd of die_section. */
889 bfd* abfd;
890
891 /* The CU of the DIE we are parsing. */
892 struct dwarf2_cu *cu;
893
894 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
895 struct dwo_file *dwo_file;
896
897 /* The section the die comes from.
898 This is either .debug_info or .debug_types, or the .dwo variants. */
899 struct dwarf2_section_info *die_section;
900
901 /* die_section->buffer. */
902 const gdb_byte *buffer;
903
904 /* The end of the buffer. */
905 const gdb_byte *buffer_end;
906
907 /* The value of the DW_AT_comp_dir attribute. */
908 const char *comp_dir;
909
910 /* The abbreviation table to use when reading the DIEs. */
911 struct abbrev_table *abbrev_table;
912 };
913
914 /* Type of function passed to init_cutu_and_read_dies, et.al. */
915 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
916 const gdb_byte *info_ptr,
917 struct die_info *comp_unit_die,
918 int has_children,
919 void *data);
920
921 /* A 1-based directory index. This is a strong typedef to prevent
922 accidentally using a directory index as a 0-based index into an
923 array/vector. */
924 enum class dir_index : unsigned int {};
925
926 /* Likewise, a 1-based file name index. */
927 enum class file_name_index : unsigned int {};
928
929 struct file_entry
930 {
931 file_entry () = default;
932
933 file_entry (const char *name_, dir_index d_index_,
934 unsigned int mod_time_, unsigned int length_)
935 : name (name_),
936 d_index (d_index_),
937 mod_time (mod_time_),
938 length (length_)
939 {}
940
941 /* Return the include directory at D_INDEX stored in LH. Returns
942 NULL if D_INDEX is out of bounds. */
943 const char *include_dir (const line_header *lh) const;
944
945 /* The file name. Note this is an observing pointer. The memory is
946 owned by debug_line_buffer. */
947 const char *name {};
948
949 /* The directory index (1-based). */
950 dir_index d_index {};
951
952 unsigned int mod_time {};
953
954 unsigned int length {};
955
956 /* True if referenced by the Line Number Program. */
957 bool included_p {};
958
959 /* The associated symbol table, if any. */
960 struct symtab *symtab {};
961 };
962
963 /* The line number information for a compilation unit (found in the
964 .debug_line section) begins with a "statement program header",
965 which contains the following information. */
966 struct line_header
967 {
968 line_header ()
969 : offset_in_dwz {}
970 {}
971
972 /* Add an entry to the include directory table. */
973 void add_include_dir (const char *include_dir);
974
975 /* Add an entry to the file name table. */
976 void add_file_name (const char *name, dir_index d_index,
977 unsigned int mod_time, unsigned int length);
978
979 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
980 is out of bounds. */
981 const char *include_dir_at (dir_index index) const
982 {
983 /* Convert directory index number (1-based) to vector index
984 (0-based). */
985 size_t vec_index = to_underlying (index) - 1;
986
987 if (vec_index >= include_dirs.size ())
988 return NULL;
989 return include_dirs[vec_index];
990 }
991
992 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
993 is out of bounds. */
994 file_entry *file_name_at (file_name_index index)
995 {
996 /* Convert file name index number (1-based) to vector index
997 (0-based). */
998 size_t vec_index = to_underlying (index) - 1;
999
1000 if (vec_index >= file_names.size ())
1001 return NULL;
1002 return &file_names[vec_index];
1003 }
1004
1005 /* Offset of line number information in .debug_line section. */
1006 sect_offset sect_off {};
1007
1008 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1009 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1010
1011 unsigned int total_length {};
1012 unsigned short version {};
1013 unsigned int header_length {};
1014 unsigned char minimum_instruction_length {};
1015 unsigned char maximum_ops_per_instruction {};
1016 unsigned char default_is_stmt {};
1017 int line_base {};
1018 unsigned char line_range {};
1019 unsigned char opcode_base {};
1020
1021 /* standard_opcode_lengths[i] is the number of operands for the
1022 standard opcode whose value is i. This means that
1023 standard_opcode_lengths[0] is unused, and the last meaningful
1024 element is standard_opcode_lengths[opcode_base - 1]. */
1025 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1026
1027 /* The include_directories table. Note these are observing
1028 pointers. The memory is owned by debug_line_buffer. */
1029 std::vector<const char *> include_dirs;
1030
1031 /* The file_names table. */
1032 std::vector<file_entry> file_names;
1033
1034 /* The start and end of the statement program following this
1035 header. These point into dwarf2_per_objfile->line_buffer. */
1036 const gdb_byte *statement_program_start {}, *statement_program_end {};
1037 };
1038
1039 typedef std::unique_ptr<line_header> line_header_up;
1040
1041 const char *
1042 file_entry::include_dir (const line_header *lh) const
1043 {
1044 return lh->include_dir_at (d_index);
1045 }
1046
1047 /* When we construct a partial symbol table entry we only
1048 need this much information. */
1049 struct partial_die_info : public allocate_on_obstack
1050 {
1051 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1052
1053 /* Disable assign but still keep copy ctor, which is needed
1054 load_partial_dies. */
1055 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1056
1057 /* Adjust the partial die before generating a symbol for it. This
1058 function may set the is_external flag or change the DIE's
1059 name. */
1060 void fixup (struct dwarf2_cu *cu);
1061
1062 /* Read a minimal amount of information into the minimal die
1063 structure. */
1064 const gdb_byte *read (const struct die_reader_specs *reader,
1065 const struct abbrev_info &abbrev,
1066 const gdb_byte *info_ptr);
1067
1068 /* Offset of this DIE. */
1069 const sect_offset sect_off;
1070
1071 /* DWARF-2 tag for this DIE. */
1072 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1073
1074 /* Assorted flags describing the data found in this DIE. */
1075 const unsigned int has_children : 1;
1076
1077 unsigned int is_external : 1;
1078 unsigned int is_declaration : 1;
1079 unsigned int has_type : 1;
1080 unsigned int has_specification : 1;
1081 unsigned int has_pc_info : 1;
1082 unsigned int may_be_inlined : 1;
1083
1084 /* This DIE has been marked DW_AT_main_subprogram. */
1085 unsigned int main_subprogram : 1;
1086
1087 /* Flag set if the SCOPE field of this structure has been
1088 computed. */
1089 unsigned int scope_set : 1;
1090
1091 /* Flag set if the DIE has a byte_size attribute. */
1092 unsigned int has_byte_size : 1;
1093
1094 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1095 unsigned int has_const_value : 1;
1096
1097 /* Flag set if any of the DIE's children are template arguments. */
1098 unsigned int has_template_arguments : 1;
1099
1100 /* Flag set if fixup has been called on this die. */
1101 unsigned int fixup_called : 1;
1102
1103 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1104 unsigned int is_dwz : 1;
1105
1106 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1107 unsigned int spec_is_dwz : 1;
1108
1109 /* The name of this DIE. Normally the value of DW_AT_name, but
1110 sometimes a default name for unnamed DIEs. */
1111 const char *name = nullptr;
1112
1113 /* The linkage name, if present. */
1114 const char *linkage_name = nullptr;
1115
1116 /* The scope to prepend to our children. This is generally
1117 allocated on the comp_unit_obstack, so will disappear
1118 when this compilation unit leaves the cache. */
1119 const char *scope = nullptr;
1120
1121 /* Some data associated with the partial DIE. The tag determines
1122 which field is live. */
1123 union
1124 {
1125 /* The location description associated with this DIE, if any. */
1126 struct dwarf_block *locdesc;
1127 /* The offset of an import, for DW_TAG_imported_unit. */
1128 sect_offset sect_off;
1129 } d {};
1130
1131 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1132 CORE_ADDR lowpc = 0;
1133 CORE_ADDR highpc = 0;
1134
1135 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1136 DW_AT_sibling, if any. */
1137 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1138 could return DW_AT_sibling values to its caller load_partial_dies. */
1139 const gdb_byte *sibling = nullptr;
1140
1141 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1142 DW_AT_specification (or DW_AT_abstract_origin or
1143 DW_AT_extension). */
1144 sect_offset spec_offset {};
1145
1146 /* Pointers to this DIE's parent, first child, and next sibling,
1147 if any. */
1148 struct partial_die_info *die_parent = nullptr;
1149 struct partial_die_info *die_child = nullptr;
1150 struct partial_die_info *die_sibling = nullptr;
1151
1152 friend struct partial_die_info *
1153 dwarf2_cu::find_partial_die (sect_offset sect_off);
1154
1155 private:
1156 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1157 partial_die_info (sect_offset sect_off)
1158 : partial_die_info (sect_off, DW_TAG_padding, 0)
1159 {
1160 }
1161
1162 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1163 int has_children_)
1164 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1165 {
1166 is_external = 0;
1167 is_declaration = 0;
1168 has_type = 0;
1169 has_specification = 0;
1170 has_pc_info = 0;
1171 may_be_inlined = 0;
1172 main_subprogram = 0;
1173 scope_set = 0;
1174 has_byte_size = 0;
1175 has_const_value = 0;
1176 has_template_arguments = 0;
1177 fixup_called = 0;
1178 is_dwz = 0;
1179 spec_is_dwz = 0;
1180 }
1181 };
1182
1183 /* This data structure holds the information of an abbrev. */
1184 struct abbrev_info
1185 {
1186 unsigned int number; /* number identifying abbrev */
1187 enum dwarf_tag tag; /* dwarf tag */
1188 unsigned short has_children; /* boolean */
1189 unsigned short num_attrs; /* number of attributes */
1190 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1191 struct abbrev_info *next; /* next in chain */
1192 };
1193
1194 struct attr_abbrev
1195 {
1196 ENUM_BITFIELD(dwarf_attribute) name : 16;
1197 ENUM_BITFIELD(dwarf_form) form : 16;
1198
1199 /* It is valid only if FORM is DW_FORM_implicit_const. */
1200 LONGEST implicit_const;
1201 };
1202
1203 /* Size of abbrev_table.abbrev_hash_table. */
1204 #define ABBREV_HASH_SIZE 121
1205
1206 /* Top level data structure to contain an abbreviation table. */
1207
1208 struct abbrev_table
1209 {
1210 explicit abbrev_table (sect_offset off)
1211 : sect_off (off)
1212 {
1213 m_abbrevs =
1214 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1215 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1216 }
1217
1218 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1219
1220 /* Allocate space for a struct abbrev_info object in
1221 ABBREV_TABLE. */
1222 struct abbrev_info *alloc_abbrev ();
1223
1224 /* Add an abbreviation to the table. */
1225 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1226
1227 /* Look up an abbrev in the table.
1228 Returns NULL if the abbrev is not found. */
1229
1230 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1231
1232
1233 /* Where the abbrev table came from.
1234 This is used as a sanity check when the table is used. */
1235 const sect_offset sect_off;
1236
1237 /* Storage for the abbrev table. */
1238 auto_obstack abbrev_obstack;
1239
1240 private:
1241
1242 /* Hash table of abbrevs.
1243 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1244 It could be statically allocated, but the previous code didn't so we
1245 don't either. */
1246 struct abbrev_info **m_abbrevs;
1247 };
1248
1249 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1250
1251 /* Attributes have a name and a value. */
1252 struct attribute
1253 {
1254 ENUM_BITFIELD(dwarf_attribute) name : 16;
1255 ENUM_BITFIELD(dwarf_form) form : 15;
1256
1257 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1258 field should be in u.str (existing only for DW_STRING) but it is kept
1259 here for better struct attribute alignment. */
1260 unsigned int string_is_canonical : 1;
1261
1262 union
1263 {
1264 const char *str;
1265 struct dwarf_block *blk;
1266 ULONGEST unsnd;
1267 LONGEST snd;
1268 CORE_ADDR addr;
1269 ULONGEST signature;
1270 }
1271 u;
1272 };
1273
1274 /* This data structure holds a complete die structure. */
1275 struct die_info
1276 {
1277 /* DWARF-2 tag for this DIE. */
1278 ENUM_BITFIELD(dwarf_tag) tag : 16;
1279
1280 /* Number of attributes */
1281 unsigned char num_attrs;
1282
1283 /* True if we're presently building the full type name for the
1284 type derived from this DIE. */
1285 unsigned char building_fullname : 1;
1286
1287 /* True if this die is in process. PR 16581. */
1288 unsigned char in_process : 1;
1289
1290 /* Abbrev number */
1291 unsigned int abbrev;
1292
1293 /* Offset in .debug_info or .debug_types section. */
1294 sect_offset sect_off;
1295
1296 /* The dies in a compilation unit form an n-ary tree. PARENT
1297 points to this die's parent; CHILD points to the first child of
1298 this node; and all the children of a given node are chained
1299 together via their SIBLING fields. */
1300 struct die_info *child; /* Its first child, if any. */
1301 struct die_info *sibling; /* Its next sibling, if any. */
1302 struct die_info *parent; /* Its parent, if any. */
1303
1304 /* An array of attributes, with NUM_ATTRS elements. There may be
1305 zero, but it's not common and zero-sized arrays are not
1306 sufficiently portable C. */
1307 struct attribute attrs[1];
1308 };
1309
1310 /* Get at parts of an attribute structure. */
1311
1312 #define DW_STRING(attr) ((attr)->u.str)
1313 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1314 #define DW_UNSND(attr) ((attr)->u.unsnd)
1315 #define DW_BLOCK(attr) ((attr)->u.blk)
1316 #define DW_SND(attr) ((attr)->u.snd)
1317 #define DW_ADDR(attr) ((attr)->u.addr)
1318 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1319
1320 /* Blocks are a bunch of untyped bytes. */
1321 struct dwarf_block
1322 {
1323 size_t size;
1324
1325 /* Valid only if SIZE is not zero. */
1326 const gdb_byte *data;
1327 };
1328
1329 #ifndef ATTR_ALLOC_CHUNK
1330 #define ATTR_ALLOC_CHUNK 4
1331 #endif
1332
1333 /* Allocate fields for structs, unions and enums in this size. */
1334 #ifndef DW_FIELD_ALLOC_CHUNK
1335 #define DW_FIELD_ALLOC_CHUNK 4
1336 #endif
1337
1338 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1339 but this would require a corresponding change in unpack_field_as_long
1340 and friends. */
1341 static int bits_per_byte = 8;
1342
1343 /* When reading a variant or variant part, we track a bit more
1344 information about the field, and store it in an object of this
1345 type. */
1346
1347 struct variant_field
1348 {
1349 /* If we see a DW_TAG_variant, then this will be the discriminant
1350 value. */
1351 ULONGEST discriminant_value;
1352 /* If we see a DW_TAG_variant, then this will be set if this is the
1353 default branch. */
1354 bool default_branch;
1355 /* While reading a DW_TAG_variant_part, this will be set if this
1356 field is the discriminant. */
1357 bool is_discriminant;
1358 };
1359
1360 struct nextfield
1361 {
1362 int accessibility = 0;
1363 int virtuality = 0;
1364 /* Extra information to describe a variant or variant part. */
1365 struct variant_field variant {};
1366 struct field field {};
1367 };
1368
1369 struct fnfieldlist
1370 {
1371 const char *name = nullptr;
1372 std::vector<struct fn_field> fnfields;
1373 };
1374
1375 /* The routines that read and process dies for a C struct or C++ class
1376 pass lists of data member fields and lists of member function fields
1377 in an instance of a field_info structure, as defined below. */
1378 struct field_info
1379 {
1380 /* List of data member and baseclasses fields. */
1381 std::vector<struct nextfield> fields;
1382 std::vector<struct nextfield> baseclasses;
1383
1384 /* Number of fields (including baseclasses). */
1385 int nfields = 0;
1386
1387 /* Set if the accesibility of one of the fields is not public. */
1388 int non_public_fields = 0;
1389
1390 /* Member function fieldlist array, contains name of possibly overloaded
1391 member function, number of overloaded member functions and a pointer
1392 to the head of the member function field chain. */
1393 std::vector<struct fnfieldlist> fnfieldlists;
1394
1395 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1396 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1397 std::vector<struct decl_field> typedef_field_list;
1398
1399 /* Nested types defined by this class and the number of elements in this
1400 list. */
1401 std::vector<struct decl_field> nested_types_list;
1402 };
1403
1404 /* One item on the queue of compilation units to read in full symbols
1405 for. */
1406 struct dwarf2_queue_item
1407 {
1408 struct dwarf2_per_cu_data *per_cu;
1409 enum language pretend_language;
1410 struct dwarf2_queue_item *next;
1411 };
1412
1413 /* The current queue. */
1414 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1415
1416 /* Loaded secondary compilation units are kept in memory until they
1417 have not been referenced for the processing of this many
1418 compilation units. Set this to zero to disable caching. Cache
1419 sizes of up to at least twenty will improve startup time for
1420 typical inter-CU-reference binaries, at an obvious memory cost. */
1421 static int dwarf_max_cache_age = 5;
1422 static void
1423 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1424 struct cmd_list_element *c, const char *value)
1425 {
1426 fprintf_filtered (file, _("The upper bound on the age of cached "
1427 "DWARF compilation units is %s.\n"),
1428 value);
1429 }
1430 \f
1431 /* local function prototypes */
1432
1433 static const char *get_section_name (const struct dwarf2_section_info *);
1434
1435 static const char *get_section_file_name (const struct dwarf2_section_info *);
1436
1437 static void dwarf2_find_base_address (struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static struct partial_symtab *create_partial_symtab
1441 (struct dwarf2_per_cu_data *per_cu, const char *name);
1442
1443 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 struct die_info *type_unit_die,
1446 int has_children, void *data);
1447
1448 static void dwarf2_build_psymtabs_hard
1449 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1450
1451 static void scan_partial_symbols (struct partial_die_info *,
1452 CORE_ADDR *, CORE_ADDR *,
1453 int, struct dwarf2_cu *);
1454
1455 static void add_partial_symbol (struct partial_die_info *,
1456 struct dwarf2_cu *);
1457
1458 static void add_partial_namespace (struct partial_die_info *pdi,
1459 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1460 int set_addrmap, struct dwarf2_cu *cu);
1461
1462 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1463 CORE_ADDR *highpc, int set_addrmap,
1464 struct dwarf2_cu *cu);
1465
1466 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1467 struct dwarf2_cu *cu);
1468
1469 static void add_partial_subprogram (struct partial_die_info *pdi,
1470 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1471 int need_pc, struct dwarf2_cu *cu);
1472
1473 static void dwarf2_read_symtab (struct partial_symtab *,
1474 struct objfile *);
1475
1476 static void psymtab_to_symtab_1 (struct partial_symtab *);
1477
1478 static abbrev_table_up abbrev_table_read_table
1479 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1480 sect_offset);
1481
1482 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1483
1484 static struct partial_die_info *load_partial_dies
1485 (const struct die_reader_specs *, const gdb_byte *, int);
1486
1487 /* A pair of partial_die_info and compilation unit. */
1488 struct cu_partial_die_info
1489 {
1490 /* The compilation unit of the partial_die_info. */
1491 struct dwarf2_cu *cu;
1492 /* A partial_die_info. */
1493 struct partial_die_info *pdi;
1494
1495 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1496 : cu (cu),
1497 pdi (pdi)
1498 { /* Nothhing. */ }
1499
1500 private:
1501 cu_partial_die_info () = delete;
1502 };
1503
1504 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1505 struct dwarf2_cu *);
1506
1507 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1508 struct attribute *, struct attr_abbrev *,
1509 const gdb_byte *);
1510
1511 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1512
1513 static int read_1_signed_byte (bfd *, const gdb_byte *);
1514
1515 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1516
1517 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1518 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1519
1520 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1521
1522 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1523
1524 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1525 unsigned int *);
1526
1527 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1528
1529 static LONGEST read_checked_initial_length_and_offset
1530 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1531 unsigned int *, unsigned int *);
1532
1533 static LONGEST read_offset (bfd *, const gdb_byte *,
1534 const struct comp_unit_head *,
1535 unsigned int *);
1536
1537 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1538
1539 static sect_offset read_abbrev_offset
1540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1541 struct dwarf2_section_info *, sect_offset);
1542
1543 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1544
1545 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1546
1547 static const char *read_indirect_string
1548 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1549 const struct comp_unit_head *, unsigned int *);
1550
1551 static const char *read_indirect_line_string
1552 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1553 const struct comp_unit_head *, unsigned int *);
1554
1555 static const char *read_indirect_string_at_offset
1556 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1557 LONGEST str_offset);
1558
1559 static const char *read_indirect_string_from_dwz
1560 (struct objfile *objfile, struct dwz_file *, LONGEST);
1561
1562 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1563
1564 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1565 const gdb_byte *,
1566 unsigned int *);
1567
1568 static const char *read_str_index (const struct die_reader_specs *reader,
1569 ULONGEST str_index);
1570
1571 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1572
1573 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1574 struct dwarf2_cu *);
1575
1576 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1577 unsigned int);
1578
1579 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1580 struct dwarf2_cu *cu);
1581
1582 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1583 struct dwarf2_cu *cu);
1584
1585 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1586
1587 static struct die_info *die_specification (struct die_info *die,
1588 struct dwarf2_cu **);
1589
1590 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1591 struct dwarf2_cu *cu);
1592
1593 static void dwarf_decode_lines (struct line_header *, const char *,
1594 struct dwarf2_cu *, struct partial_symtab *,
1595 CORE_ADDR, int decode_mapping);
1596
1597 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1598 const char *);
1599
1600 static struct symbol *new_symbol (struct die_info *, struct type *,
1601 struct dwarf2_cu *, struct symbol * = NULL);
1602
1603 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1604 struct dwarf2_cu *);
1605
1606 static void dwarf2_const_value_attr (const struct attribute *attr,
1607 struct type *type,
1608 const char *name,
1609 struct obstack *obstack,
1610 struct dwarf2_cu *cu, LONGEST *value,
1611 const gdb_byte **bytes,
1612 struct dwarf2_locexpr_baton **baton);
1613
1614 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1615
1616 static int need_gnat_info (struct dwarf2_cu *);
1617
1618 static struct type *die_descriptive_type (struct die_info *,
1619 struct dwarf2_cu *);
1620
1621 static void set_descriptive_type (struct type *, struct die_info *,
1622 struct dwarf2_cu *);
1623
1624 static struct type *die_containing_type (struct die_info *,
1625 struct dwarf2_cu *);
1626
1627 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1628 struct dwarf2_cu *);
1629
1630 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1631
1632 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1633
1634 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1635
1636 static char *typename_concat (struct obstack *obs, const char *prefix,
1637 const char *suffix, int physname,
1638 struct dwarf2_cu *cu);
1639
1640 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1641
1642 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1647
1648 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1649
1650 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1651
1652 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1653 struct dwarf2_cu *, struct partial_symtab *);
1654
1655 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1656 values. Keep the items ordered with increasing constraints compliance. */
1657 enum pc_bounds_kind
1658 {
1659 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1660 PC_BOUNDS_NOT_PRESENT,
1661
1662 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1663 were present but they do not form a valid range of PC addresses. */
1664 PC_BOUNDS_INVALID,
1665
1666 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1667 PC_BOUNDS_RANGES,
1668
1669 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1670 PC_BOUNDS_HIGH_LOW,
1671 };
1672
1673 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1674 CORE_ADDR *, CORE_ADDR *,
1675 struct dwarf2_cu *,
1676 struct partial_symtab *);
1677
1678 static void get_scope_pc_bounds (struct die_info *,
1679 CORE_ADDR *, CORE_ADDR *,
1680 struct dwarf2_cu *);
1681
1682 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1683 CORE_ADDR, struct dwarf2_cu *);
1684
1685 static void dwarf2_add_field (struct field_info *, struct die_info *,
1686 struct dwarf2_cu *);
1687
1688 static void dwarf2_attach_fields_to_type (struct field_info *,
1689 struct type *, struct dwarf2_cu *);
1690
1691 static void dwarf2_add_member_fn (struct field_info *,
1692 struct die_info *, struct type *,
1693 struct dwarf2_cu *);
1694
1695 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1696 struct type *,
1697 struct dwarf2_cu *);
1698
1699 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1700
1701 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1702
1703 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1704
1705 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1706
1707 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1708
1709 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1710
1711 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1712
1713 static struct type *read_module_type (struct die_info *die,
1714 struct dwarf2_cu *cu);
1715
1716 static const char *namespace_name (struct die_info *die,
1717 int *is_anonymous, struct dwarf2_cu *);
1718
1719 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1720
1721 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1722
1723 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1724 struct dwarf2_cu *);
1725
1726 static struct die_info *read_die_and_siblings_1
1727 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1728 struct die_info *);
1729
1730 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1731 const gdb_byte *info_ptr,
1732 const gdb_byte **new_info_ptr,
1733 struct die_info *parent);
1734
1735 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1736 struct die_info **, const gdb_byte *,
1737 int *, int);
1738
1739 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1740 struct die_info **, const gdb_byte *,
1741 int *);
1742
1743 static void process_die (struct die_info *, struct dwarf2_cu *);
1744
1745 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1746 struct obstack *);
1747
1748 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1749
1750 static const char *dwarf2_full_name (const char *name,
1751 struct die_info *die,
1752 struct dwarf2_cu *cu);
1753
1754 static const char *dwarf2_physname (const char *name, struct die_info *die,
1755 struct dwarf2_cu *cu);
1756
1757 static struct die_info *dwarf2_extension (struct die_info *die,
1758 struct dwarf2_cu **);
1759
1760 static const char *dwarf_tag_name (unsigned int);
1761
1762 static const char *dwarf_attr_name (unsigned int);
1763
1764 static const char *dwarf_form_name (unsigned int);
1765
1766 static const char *dwarf_bool_name (unsigned int);
1767
1768 static const char *dwarf_type_encoding_name (unsigned int);
1769
1770 static struct die_info *sibling_die (struct die_info *);
1771
1772 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1773
1774 static void dump_die_for_error (struct die_info *);
1775
1776 static void dump_die_1 (struct ui_file *, int level, int max_level,
1777 struct die_info *);
1778
1779 /*static*/ void dump_die (struct die_info *, int max_level);
1780
1781 static void store_in_ref_table (struct die_info *,
1782 struct dwarf2_cu *);
1783
1784 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1785
1786 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1787
1788 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1789 const struct attribute *,
1790 struct dwarf2_cu **);
1791
1792 static struct die_info *follow_die_ref (struct die_info *,
1793 const struct attribute *,
1794 struct dwarf2_cu **);
1795
1796 static struct die_info *follow_die_sig (struct die_info *,
1797 const struct attribute *,
1798 struct dwarf2_cu **);
1799
1800 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1801 struct dwarf2_cu *);
1802
1803 static struct type *get_DW_AT_signature_type (struct die_info *,
1804 const struct attribute *,
1805 struct dwarf2_cu *);
1806
1807 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1808
1809 static void read_signatured_type (struct signatured_type *);
1810
1811 static int attr_to_dynamic_prop (const struct attribute *attr,
1812 struct die_info *die, struct dwarf2_cu *cu,
1813 struct dynamic_prop *prop);
1814
1815 /* memory allocation interface */
1816
1817 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1818
1819 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1820
1821 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1822
1823 static int attr_form_is_block (const struct attribute *);
1824
1825 static int attr_form_is_section_offset (const struct attribute *);
1826
1827 static int attr_form_is_constant (const struct attribute *);
1828
1829 static int attr_form_is_ref (const struct attribute *);
1830
1831 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1832 struct dwarf2_loclist_baton *baton,
1833 const struct attribute *attr);
1834
1835 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1836 struct symbol *sym,
1837 struct dwarf2_cu *cu,
1838 int is_block);
1839
1840 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1841 const gdb_byte *info_ptr,
1842 struct abbrev_info *abbrev);
1843
1844 static hashval_t partial_die_hash (const void *item);
1845
1846 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1847
1848 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1849 (sect_offset sect_off, unsigned int offset_in_dwz,
1850 struct dwarf2_per_objfile *dwarf2_per_objfile);
1851
1852 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1853 struct die_info *comp_unit_die,
1854 enum language pretend_language);
1855
1856 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1857
1858 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1859
1860 static struct type *set_die_type (struct die_info *, struct type *,
1861 struct dwarf2_cu *);
1862
1863 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1864
1865 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1866
1867 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1868 enum language);
1869
1870 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1871 enum language);
1872
1873 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1874 enum language);
1875
1876 static void dwarf2_add_dependence (struct dwarf2_cu *,
1877 struct dwarf2_per_cu_data *);
1878
1879 static void dwarf2_mark (struct dwarf2_cu *);
1880
1881 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1882
1883 static struct type *get_die_type_at_offset (sect_offset,
1884 struct dwarf2_per_cu_data *);
1885
1886 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1887
1888 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1889 enum language pretend_language);
1890
1891 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892
1893 /* Class, the destructor of which frees all allocated queue entries. This
1894 will only have work to do if an error was thrown while processing the
1895 dwarf. If no error was thrown then the queue entries should have all
1896 been processed, and freed, as we went along. */
1897
1898 class dwarf2_queue_guard
1899 {
1900 public:
1901 dwarf2_queue_guard () = default;
1902
1903 /* Free any entries remaining on the queue. There should only be
1904 entries left if we hit an error while processing the dwarf. */
1905 ~dwarf2_queue_guard ()
1906 {
1907 struct dwarf2_queue_item *item, *last;
1908
1909 item = dwarf2_queue;
1910 while (item)
1911 {
1912 /* Anything still marked queued is likely to be in an
1913 inconsistent state, so discard it. */
1914 if (item->per_cu->queued)
1915 {
1916 if (item->per_cu->cu != NULL)
1917 free_one_cached_comp_unit (item->per_cu);
1918 item->per_cu->queued = 0;
1919 }
1920
1921 last = item;
1922 item = item->next;
1923 xfree (last);
1924 }
1925
1926 dwarf2_queue = dwarf2_queue_tail = NULL;
1927 }
1928 };
1929
1930 /* The return type of find_file_and_directory. Note, the enclosed
1931 string pointers are only valid while this object is valid. */
1932
1933 struct file_and_directory
1934 {
1935 /* The filename. This is never NULL. */
1936 const char *name;
1937
1938 /* The compilation directory. NULL if not known. If we needed to
1939 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1940 points directly to the DW_AT_comp_dir string attribute owned by
1941 the obstack that owns the DIE. */
1942 const char *comp_dir;
1943
1944 /* If we needed to build a new string for comp_dir, this is what
1945 owns the storage. */
1946 std::string comp_dir_storage;
1947 };
1948
1949 static file_and_directory find_file_and_directory (struct die_info *die,
1950 struct dwarf2_cu *cu);
1951
1952 static char *file_full_name (int file, struct line_header *lh,
1953 const char *comp_dir);
1954
1955 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1956 enum class rcuh_kind { COMPILE, TYPE };
1957
1958 static const gdb_byte *read_and_check_comp_unit_head
1959 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1960 struct comp_unit_head *header,
1961 struct dwarf2_section_info *section,
1962 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1963 rcuh_kind section_kind);
1964
1965 static void init_cutu_and_read_dies
1966 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1967 int use_existing_cu, int keep, bool skip_partial,
1968 die_reader_func_ftype *die_reader_func, void *data);
1969
1970 static void init_cutu_and_read_dies_simple
1971 (struct dwarf2_per_cu_data *this_cu,
1972 die_reader_func_ftype *die_reader_func, void *data);
1973
1974 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1975
1976 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1977
1978 static struct dwo_unit *lookup_dwo_unit_in_dwp
1979 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1980 struct dwp_file *dwp_file, const char *comp_dir,
1981 ULONGEST signature, int is_debug_types);
1982
1983 static struct dwp_file *get_dwp_file
1984 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1985
1986 static struct dwo_unit *lookup_dwo_comp_unit
1987 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1988
1989 static struct dwo_unit *lookup_dwo_type_unit
1990 (struct signatured_type *, const char *, const char *);
1991
1992 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1993
1994 /* A unique pointer to a dwo_file. */
1995
1996 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1997
1998 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1999
2000 static void check_producer (struct dwarf2_cu *cu);
2001
2002 static void free_line_header_voidp (void *arg);
2003 \f
2004 /* Various complaints about symbol reading that don't abort the process. */
2005
2006 static void
2007 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2008 {
2009 complaint (_("statement list doesn't fit in .debug_line section"));
2010 }
2011
2012 static void
2013 dwarf2_debug_line_missing_file_complaint (void)
2014 {
2015 complaint (_(".debug_line section has line data without a file"));
2016 }
2017
2018 static void
2019 dwarf2_debug_line_missing_end_sequence_complaint (void)
2020 {
2021 complaint (_(".debug_line section has line "
2022 "program sequence without an end"));
2023 }
2024
2025 static void
2026 dwarf2_complex_location_expr_complaint (void)
2027 {
2028 complaint (_("location expression too complex"));
2029 }
2030
2031 static void
2032 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2033 int arg3)
2034 {
2035 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2036 arg1, arg2, arg3);
2037 }
2038
2039 static void
2040 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2041 {
2042 complaint (_("debug info runs off end of %s section"
2043 " [in module %s]"),
2044 get_section_name (section),
2045 get_section_file_name (section));
2046 }
2047
2048 static void
2049 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2050 {
2051 complaint (_("macro debug info contains a "
2052 "malformed macro definition:\n`%s'"),
2053 arg1);
2054 }
2055
2056 static void
2057 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2058 {
2059 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2060 arg1, arg2);
2061 }
2062
2063 /* Hash function for line_header_hash. */
2064
2065 static hashval_t
2066 line_header_hash (const struct line_header *ofs)
2067 {
2068 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2069 }
2070
2071 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2072
2073 static hashval_t
2074 line_header_hash_voidp (const void *item)
2075 {
2076 const struct line_header *ofs = (const struct line_header *) item;
2077
2078 return line_header_hash (ofs);
2079 }
2080
2081 /* Equality function for line_header_hash. */
2082
2083 static int
2084 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2085 {
2086 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2087 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2088
2089 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2090 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2091 }
2092
2093 \f
2094
2095 /* Read the given attribute value as an address, taking the attribute's
2096 form into account. */
2097
2098 static CORE_ADDR
2099 attr_value_as_address (struct attribute *attr)
2100 {
2101 CORE_ADDR addr;
2102
2103 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2104 && attr->form != DW_FORM_GNU_addr_index)
2105 {
2106 /* Aside from a few clearly defined exceptions, attributes that
2107 contain an address must always be in DW_FORM_addr form.
2108 Unfortunately, some compilers happen to be violating this
2109 requirement by encoding addresses using other forms, such
2110 as DW_FORM_data4 for example. For those broken compilers,
2111 we try to do our best, without any guarantee of success,
2112 to interpret the address correctly. It would also be nice
2113 to generate a complaint, but that would require us to maintain
2114 a list of legitimate cases where a non-address form is allowed,
2115 as well as update callers to pass in at least the CU's DWARF
2116 version. This is more overhead than what we're willing to
2117 expand for a pretty rare case. */
2118 addr = DW_UNSND (attr);
2119 }
2120 else
2121 addr = DW_ADDR (attr);
2122
2123 return addr;
2124 }
2125
2126 /* See declaration. */
2127
2128 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2129 const dwarf2_debug_sections *names)
2130 : objfile (objfile_)
2131 {
2132 if (names == NULL)
2133 names = &dwarf2_elf_names;
2134
2135 bfd *obfd = objfile->obfd;
2136
2137 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2138 locate_sections (obfd, sec, *names);
2139 }
2140
2141 dwarf2_per_objfile::~dwarf2_per_objfile ()
2142 {
2143 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2144 free_cached_comp_units ();
2145
2146 if (quick_file_names_table)
2147 htab_delete (quick_file_names_table);
2148
2149 if (line_header_hash)
2150 htab_delete (line_header_hash);
2151
2152 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2153 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2154
2155 for (signatured_type *sig_type : all_type_units)
2156 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2157
2158 /* Everything else should be on the objfile obstack. */
2159 }
2160
2161 /* See declaration. */
2162
2163 void
2164 dwarf2_per_objfile::free_cached_comp_units ()
2165 {
2166 dwarf2_per_cu_data *per_cu = read_in_chain;
2167 dwarf2_per_cu_data **last_chain = &read_in_chain;
2168 while (per_cu != NULL)
2169 {
2170 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2171
2172 delete per_cu->cu;
2173 *last_chain = next_cu;
2174 per_cu = next_cu;
2175 }
2176 }
2177
2178 /* A helper class that calls free_cached_comp_units on
2179 destruction. */
2180
2181 class free_cached_comp_units
2182 {
2183 public:
2184
2185 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2186 : m_per_objfile (per_objfile)
2187 {
2188 }
2189
2190 ~free_cached_comp_units ()
2191 {
2192 m_per_objfile->free_cached_comp_units ();
2193 }
2194
2195 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2196
2197 private:
2198
2199 dwarf2_per_objfile *m_per_objfile;
2200 };
2201
2202 /* Try to locate the sections we need for DWARF 2 debugging
2203 information and return true if we have enough to do something.
2204 NAMES points to the dwarf2 section names, or is NULL if the standard
2205 ELF names are used. */
2206
2207 int
2208 dwarf2_has_info (struct objfile *objfile,
2209 const struct dwarf2_debug_sections *names)
2210 {
2211 if (objfile->flags & OBJF_READNEVER)
2212 return 0;
2213
2214 struct dwarf2_per_objfile *dwarf2_per_objfile
2215 = get_dwarf2_per_objfile (objfile);
2216
2217 if (dwarf2_per_objfile == NULL)
2218 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2219 names);
2220
2221 return (!dwarf2_per_objfile->info.is_virtual
2222 && dwarf2_per_objfile->info.s.section != NULL
2223 && !dwarf2_per_objfile->abbrev.is_virtual
2224 && dwarf2_per_objfile->abbrev.s.section != NULL);
2225 }
2226
2227 /* Return the containing section of virtual section SECTION. */
2228
2229 static struct dwarf2_section_info *
2230 get_containing_section (const struct dwarf2_section_info *section)
2231 {
2232 gdb_assert (section->is_virtual);
2233 return section->s.containing_section;
2234 }
2235
2236 /* Return the bfd owner of SECTION. */
2237
2238 static struct bfd *
2239 get_section_bfd_owner (const struct dwarf2_section_info *section)
2240 {
2241 if (section->is_virtual)
2242 {
2243 section = get_containing_section (section);
2244 gdb_assert (!section->is_virtual);
2245 }
2246 return section->s.section->owner;
2247 }
2248
2249 /* Return the bfd section of SECTION.
2250 Returns NULL if the section is not present. */
2251
2252 static asection *
2253 get_section_bfd_section (const struct dwarf2_section_info *section)
2254 {
2255 if (section->is_virtual)
2256 {
2257 section = get_containing_section (section);
2258 gdb_assert (!section->is_virtual);
2259 }
2260 return section->s.section;
2261 }
2262
2263 /* Return the name of SECTION. */
2264
2265 static const char *
2266 get_section_name (const struct dwarf2_section_info *section)
2267 {
2268 asection *sectp = get_section_bfd_section (section);
2269
2270 gdb_assert (sectp != NULL);
2271 return bfd_section_name (get_section_bfd_owner (section), sectp);
2272 }
2273
2274 /* Return the name of the file SECTION is in. */
2275
2276 static const char *
2277 get_section_file_name (const struct dwarf2_section_info *section)
2278 {
2279 bfd *abfd = get_section_bfd_owner (section);
2280
2281 return bfd_get_filename (abfd);
2282 }
2283
2284 /* Return the id of SECTION.
2285 Returns 0 if SECTION doesn't exist. */
2286
2287 static int
2288 get_section_id (const struct dwarf2_section_info *section)
2289 {
2290 asection *sectp = get_section_bfd_section (section);
2291
2292 if (sectp == NULL)
2293 return 0;
2294 return sectp->id;
2295 }
2296
2297 /* Return the flags of SECTION.
2298 SECTION (or containing section if this is a virtual section) must exist. */
2299
2300 static int
2301 get_section_flags (const struct dwarf2_section_info *section)
2302 {
2303 asection *sectp = get_section_bfd_section (section);
2304
2305 gdb_assert (sectp != NULL);
2306 return bfd_get_section_flags (sectp->owner, sectp);
2307 }
2308
2309 /* When loading sections, we look either for uncompressed section or for
2310 compressed section names. */
2311
2312 static int
2313 section_is_p (const char *section_name,
2314 const struct dwarf2_section_names *names)
2315 {
2316 if (names->normal != NULL
2317 && strcmp (section_name, names->normal) == 0)
2318 return 1;
2319 if (names->compressed != NULL
2320 && strcmp (section_name, names->compressed) == 0)
2321 return 1;
2322 return 0;
2323 }
2324
2325 /* See declaration. */
2326
2327 void
2328 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2329 const dwarf2_debug_sections &names)
2330 {
2331 flagword aflag = bfd_get_section_flags (abfd, sectp);
2332
2333 if ((aflag & SEC_HAS_CONTENTS) == 0)
2334 {
2335 }
2336 else if (section_is_p (sectp->name, &names.info))
2337 {
2338 this->info.s.section = sectp;
2339 this->info.size = bfd_get_section_size (sectp);
2340 }
2341 else if (section_is_p (sectp->name, &names.abbrev))
2342 {
2343 this->abbrev.s.section = sectp;
2344 this->abbrev.size = bfd_get_section_size (sectp);
2345 }
2346 else if (section_is_p (sectp->name, &names.line))
2347 {
2348 this->line.s.section = sectp;
2349 this->line.size = bfd_get_section_size (sectp);
2350 }
2351 else if (section_is_p (sectp->name, &names.loc))
2352 {
2353 this->loc.s.section = sectp;
2354 this->loc.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &names.loclists))
2357 {
2358 this->loclists.s.section = sectp;
2359 this->loclists.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &names.macinfo))
2362 {
2363 this->macinfo.s.section = sectp;
2364 this->macinfo.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &names.macro))
2367 {
2368 this->macro.s.section = sectp;
2369 this->macro.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &names.str))
2372 {
2373 this->str.s.section = sectp;
2374 this->str.size = bfd_get_section_size (sectp);
2375 }
2376 else if (section_is_p (sectp->name, &names.line_str))
2377 {
2378 this->line_str.s.section = sectp;
2379 this->line_str.size = bfd_get_section_size (sectp);
2380 }
2381 else if (section_is_p (sectp->name, &names.addr))
2382 {
2383 this->addr.s.section = sectp;
2384 this->addr.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.frame))
2387 {
2388 this->frame.s.section = sectp;
2389 this->frame.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.eh_frame))
2392 {
2393 this->eh_frame.s.section = sectp;
2394 this->eh_frame.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.ranges))
2397 {
2398 this->ranges.s.section = sectp;
2399 this->ranges.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.rnglists))
2402 {
2403 this->rnglists.s.section = sectp;
2404 this->rnglists.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.types))
2407 {
2408 struct dwarf2_section_info type_section;
2409
2410 memset (&type_section, 0, sizeof (type_section));
2411 type_section.s.section = sectp;
2412 type_section.size = bfd_get_section_size (sectp);
2413
2414 this->types.push_back (type_section);
2415 }
2416 else if (section_is_p (sectp->name, &names.gdb_index))
2417 {
2418 this->gdb_index.s.section = sectp;
2419 this->gdb_index.size = bfd_get_section_size (sectp);
2420 }
2421 else if (section_is_p (sectp->name, &names.debug_names))
2422 {
2423 this->debug_names.s.section = sectp;
2424 this->debug_names.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &names.debug_aranges))
2427 {
2428 this->debug_aranges.s.section = sectp;
2429 this->debug_aranges.size = bfd_get_section_size (sectp);
2430 }
2431
2432 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2433 && bfd_section_vma (abfd, sectp) == 0)
2434 this->has_section_at_zero = true;
2435 }
2436
2437 /* A helper function that decides whether a section is empty,
2438 or not present. */
2439
2440 static int
2441 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2442 {
2443 if (section->is_virtual)
2444 return section->size == 0;
2445 return section->s.section == NULL || section->size == 0;
2446 }
2447
2448 /* See dwarf2read.h. */
2449
2450 void
2451 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2452 {
2453 asection *sectp;
2454 bfd *abfd;
2455 gdb_byte *buf, *retbuf;
2456
2457 if (info->readin)
2458 return;
2459 info->buffer = NULL;
2460 info->readin = true;
2461
2462 if (dwarf2_section_empty_p (info))
2463 return;
2464
2465 sectp = get_section_bfd_section (info);
2466
2467 /* If this is a virtual section we need to read in the real one first. */
2468 if (info->is_virtual)
2469 {
2470 struct dwarf2_section_info *containing_section =
2471 get_containing_section (info);
2472
2473 gdb_assert (sectp != NULL);
2474 if ((sectp->flags & SEC_RELOC) != 0)
2475 {
2476 error (_("Dwarf Error: DWP format V2 with relocations is not"
2477 " supported in section %s [in module %s]"),
2478 get_section_name (info), get_section_file_name (info));
2479 }
2480 dwarf2_read_section (objfile, containing_section);
2481 /* Other code should have already caught virtual sections that don't
2482 fit. */
2483 gdb_assert (info->virtual_offset + info->size
2484 <= containing_section->size);
2485 /* If the real section is empty or there was a problem reading the
2486 section we shouldn't get here. */
2487 gdb_assert (containing_section->buffer != NULL);
2488 info->buffer = containing_section->buffer + info->virtual_offset;
2489 return;
2490 }
2491
2492 /* If the section has relocations, we must read it ourselves.
2493 Otherwise we attach it to the BFD. */
2494 if ((sectp->flags & SEC_RELOC) == 0)
2495 {
2496 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2497 return;
2498 }
2499
2500 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2501 info->buffer = buf;
2502
2503 /* When debugging .o files, we may need to apply relocations; see
2504 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2505 We never compress sections in .o files, so we only need to
2506 try this when the section is not compressed. */
2507 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2508 if (retbuf != NULL)
2509 {
2510 info->buffer = retbuf;
2511 return;
2512 }
2513
2514 abfd = get_section_bfd_owner (info);
2515 gdb_assert (abfd != NULL);
2516
2517 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2518 || bfd_bread (buf, info->size, abfd) != info->size)
2519 {
2520 error (_("Dwarf Error: Can't read DWARF data"
2521 " in section %s [in module %s]"),
2522 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2523 }
2524 }
2525
2526 /* A helper function that returns the size of a section in a safe way.
2527 If you are positive that the section has been read before using the
2528 size, then it is safe to refer to the dwarf2_section_info object's
2529 "size" field directly. In other cases, you must call this
2530 function, because for compressed sections the size field is not set
2531 correctly until the section has been read. */
2532
2533 static bfd_size_type
2534 dwarf2_section_size (struct objfile *objfile,
2535 struct dwarf2_section_info *info)
2536 {
2537 if (!info->readin)
2538 dwarf2_read_section (objfile, info);
2539 return info->size;
2540 }
2541
2542 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2543 SECTION_NAME. */
2544
2545 void
2546 dwarf2_get_section_info (struct objfile *objfile,
2547 enum dwarf2_section_enum sect,
2548 asection **sectp, const gdb_byte **bufp,
2549 bfd_size_type *sizep)
2550 {
2551 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2552 struct dwarf2_section_info *info;
2553
2554 /* We may see an objfile without any DWARF, in which case we just
2555 return nothing. */
2556 if (data == NULL)
2557 {
2558 *sectp = NULL;
2559 *bufp = NULL;
2560 *sizep = 0;
2561 return;
2562 }
2563 switch (sect)
2564 {
2565 case DWARF2_DEBUG_FRAME:
2566 info = &data->frame;
2567 break;
2568 case DWARF2_EH_FRAME:
2569 info = &data->eh_frame;
2570 break;
2571 default:
2572 gdb_assert_not_reached ("unexpected section");
2573 }
2574
2575 dwarf2_read_section (objfile, info);
2576
2577 *sectp = get_section_bfd_section (info);
2578 *bufp = info->buffer;
2579 *sizep = info->size;
2580 }
2581
2582 /* A helper function to find the sections for a .dwz file. */
2583
2584 static void
2585 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2586 {
2587 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2588
2589 /* Note that we only support the standard ELF names, because .dwz
2590 is ELF-only (at the time of writing). */
2591 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2592 {
2593 dwz_file->abbrev.s.section = sectp;
2594 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2595 }
2596 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2597 {
2598 dwz_file->info.s.section = sectp;
2599 dwz_file->info.size = bfd_get_section_size (sectp);
2600 }
2601 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2602 {
2603 dwz_file->str.s.section = sectp;
2604 dwz_file->str.size = bfd_get_section_size (sectp);
2605 }
2606 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2607 {
2608 dwz_file->line.s.section = sectp;
2609 dwz_file->line.size = bfd_get_section_size (sectp);
2610 }
2611 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2612 {
2613 dwz_file->macro.s.section = sectp;
2614 dwz_file->macro.size = bfd_get_section_size (sectp);
2615 }
2616 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2617 {
2618 dwz_file->gdb_index.s.section = sectp;
2619 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2620 }
2621 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2622 {
2623 dwz_file->debug_names.s.section = sectp;
2624 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2625 }
2626 }
2627
2628 /* See dwarf2read.h. */
2629
2630 struct dwz_file *
2631 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2632 {
2633 const char *filename;
2634 bfd_size_type buildid_len_arg;
2635 size_t buildid_len;
2636 bfd_byte *buildid;
2637
2638 if (dwarf2_per_objfile->dwz_file != NULL)
2639 return dwarf2_per_objfile->dwz_file.get ();
2640
2641 bfd_set_error (bfd_error_no_error);
2642 gdb::unique_xmalloc_ptr<char> data
2643 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2644 &buildid_len_arg, &buildid));
2645 if (data == NULL)
2646 {
2647 if (bfd_get_error () == bfd_error_no_error)
2648 return NULL;
2649 error (_("could not read '.gnu_debugaltlink' section: %s"),
2650 bfd_errmsg (bfd_get_error ()));
2651 }
2652
2653 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2654
2655 buildid_len = (size_t) buildid_len_arg;
2656
2657 filename = data.get ();
2658
2659 std::string abs_storage;
2660 if (!IS_ABSOLUTE_PATH (filename))
2661 {
2662 gdb::unique_xmalloc_ptr<char> abs
2663 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2664
2665 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2666 filename = abs_storage.c_str ();
2667 }
2668
2669 /* First try the file name given in the section. If that doesn't
2670 work, try to use the build-id instead. */
2671 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2672 if (dwz_bfd != NULL)
2673 {
2674 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2675 dwz_bfd.reset (nullptr);
2676 }
2677
2678 if (dwz_bfd == NULL)
2679 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2680
2681 if (dwz_bfd == NULL)
2682 error (_("could not find '.gnu_debugaltlink' file for %s"),
2683 objfile_name (dwarf2_per_objfile->objfile));
2684
2685 std::unique_ptr<struct dwz_file> result
2686 (new struct dwz_file (std::move (dwz_bfd)));
2687
2688 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2689 result.get ());
2690
2691 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2692 result->dwz_bfd.get ());
2693 dwarf2_per_objfile->dwz_file = std::move (result);
2694 return dwarf2_per_objfile->dwz_file.get ();
2695 }
2696 \f
2697 /* DWARF quick_symbols_functions support. */
2698
2699 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2700 unique line tables, so we maintain a separate table of all .debug_line
2701 derived entries to support the sharing.
2702 All the quick functions need is the list of file names. We discard the
2703 line_header when we're done and don't need to record it here. */
2704 struct quick_file_names
2705 {
2706 /* The data used to construct the hash key. */
2707 struct stmt_list_hash hash;
2708
2709 /* The number of entries in file_names, real_names. */
2710 unsigned int num_file_names;
2711
2712 /* The file names from the line table, after being run through
2713 file_full_name. */
2714 const char **file_names;
2715
2716 /* The file names from the line table after being run through
2717 gdb_realpath. These are computed lazily. */
2718 const char **real_names;
2719 };
2720
2721 /* When using the index (and thus not using psymtabs), each CU has an
2722 object of this type. This is used to hold information needed by
2723 the various "quick" methods. */
2724 struct dwarf2_per_cu_quick_data
2725 {
2726 /* The file table. This can be NULL if there was no file table
2727 or it's currently not read in.
2728 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2729 struct quick_file_names *file_names;
2730
2731 /* The corresponding symbol table. This is NULL if symbols for this
2732 CU have not yet been read. */
2733 struct compunit_symtab *compunit_symtab;
2734
2735 /* A temporary mark bit used when iterating over all CUs in
2736 expand_symtabs_matching. */
2737 unsigned int mark : 1;
2738
2739 /* True if we've tried to read the file table and found there isn't one.
2740 There will be no point in trying to read it again next time. */
2741 unsigned int no_file_data : 1;
2742 };
2743
2744 /* Utility hash function for a stmt_list_hash. */
2745
2746 static hashval_t
2747 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2748 {
2749 hashval_t v = 0;
2750
2751 if (stmt_list_hash->dwo_unit != NULL)
2752 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2753 v += to_underlying (stmt_list_hash->line_sect_off);
2754 return v;
2755 }
2756
2757 /* Utility equality function for a stmt_list_hash. */
2758
2759 static int
2760 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2761 const struct stmt_list_hash *rhs)
2762 {
2763 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2764 return 0;
2765 if (lhs->dwo_unit != NULL
2766 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2767 return 0;
2768
2769 return lhs->line_sect_off == rhs->line_sect_off;
2770 }
2771
2772 /* Hash function for a quick_file_names. */
2773
2774 static hashval_t
2775 hash_file_name_entry (const void *e)
2776 {
2777 const struct quick_file_names *file_data
2778 = (const struct quick_file_names *) e;
2779
2780 return hash_stmt_list_entry (&file_data->hash);
2781 }
2782
2783 /* Equality function for a quick_file_names. */
2784
2785 static int
2786 eq_file_name_entry (const void *a, const void *b)
2787 {
2788 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2789 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2790
2791 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2792 }
2793
2794 /* Delete function for a quick_file_names. */
2795
2796 static void
2797 delete_file_name_entry (void *e)
2798 {
2799 struct quick_file_names *file_data = (struct quick_file_names *) e;
2800 int i;
2801
2802 for (i = 0; i < file_data->num_file_names; ++i)
2803 {
2804 xfree ((void*) file_data->file_names[i]);
2805 if (file_data->real_names)
2806 xfree ((void*) file_data->real_names[i]);
2807 }
2808
2809 /* The space for the struct itself lives on objfile_obstack,
2810 so we don't free it here. */
2811 }
2812
2813 /* Create a quick_file_names hash table. */
2814
2815 static htab_t
2816 create_quick_file_names_table (unsigned int nr_initial_entries)
2817 {
2818 return htab_create_alloc (nr_initial_entries,
2819 hash_file_name_entry, eq_file_name_entry,
2820 delete_file_name_entry, xcalloc, xfree);
2821 }
2822
2823 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2824 have to be created afterwards. You should call age_cached_comp_units after
2825 processing PER_CU->CU. dw2_setup must have been already called. */
2826
2827 static void
2828 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2829 {
2830 if (per_cu->is_debug_types)
2831 load_full_type_unit (per_cu);
2832 else
2833 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2834
2835 if (per_cu->cu == NULL)
2836 return; /* Dummy CU. */
2837
2838 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2839 }
2840
2841 /* Read in the symbols for PER_CU. */
2842
2843 static void
2844 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2845 {
2846 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2847
2848 /* Skip type_unit_groups, reading the type units they contain
2849 is handled elsewhere. */
2850 if (IS_TYPE_UNIT_GROUP (per_cu))
2851 return;
2852
2853 /* The destructor of dwarf2_queue_guard frees any entries left on
2854 the queue. After this point we're guaranteed to leave this function
2855 with the dwarf queue empty. */
2856 dwarf2_queue_guard q_guard;
2857
2858 if (dwarf2_per_objfile->using_index
2859 ? per_cu->v.quick->compunit_symtab == NULL
2860 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2861 {
2862 queue_comp_unit (per_cu, language_minimal);
2863 load_cu (per_cu, skip_partial);
2864
2865 /* If we just loaded a CU from a DWO, and we're working with an index
2866 that may badly handle TUs, load all the TUs in that DWO as well.
2867 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2868 if (!per_cu->is_debug_types
2869 && per_cu->cu != NULL
2870 && per_cu->cu->dwo_unit != NULL
2871 && dwarf2_per_objfile->index_table != NULL
2872 && dwarf2_per_objfile->index_table->version <= 7
2873 /* DWP files aren't supported yet. */
2874 && get_dwp_file (dwarf2_per_objfile) == NULL)
2875 queue_and_load_all_dwo_tus (per_cu);
2876 }
2877
2878 process_queue (dwarf2_per_objfile);
2879
2880 /* Age the cache, releasing compilation units that have not
2881 been used recently. */
2882 age_cached_comp_units (dwarf2_per_objfile);
2883 }
2884
2885 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2886 the objfile from which this CU came. Returns the resulting symbol
2887 table. */
2888
2889 static struct compunit_symtab *
2890 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2891 {
2892 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2893
2894 gdb_assert (dwarf2_per_objfile->using_index);
2895 if (!per_cu->v.quick->compunit_symtab)
2896 {
2897 free_cached_comp_units freer (dwarf2_per_objfile);
2898 scoped_restore decrementer = increment_reading_symtab ();
2899 dw2_do_instantiate_symtab (per_cu, skip_partial);
2900 process_cu_includes (dwarf2_per_objfile);
2901 }
2902
2903 return per_cu->v.quick->compunit_symtab;
2904 }
2905
2906 /* See declaration. */
2907
2908 dwarf2_per_cu_data *
2909 dwarf2_per_objfile::get_cutu (int index)
2910 {
2911 if (index >= this->all_comp_units.size ())
2912 {
2913 index -= this->all_comp_units.size ();
2914 gdb_assert (index < this->all_type_units.size ());
2915 return &this->all_type_units[index]->per_cu;
2916 }
2917
2918 return this->all_comp_units[index];
2919 }
2920
2921 /* See declaration. */
2922
2923 dwarf2_per_cu_data *
2924 dwarf2_per_objfile::get_cu (int index)
2925 {
2926 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2927
2928 return this->all_comp_units[index];
2929 }
2930
2931 /* See declaration. */
2932
2933 signatured_type *
2934 dwarf2_per_objfile::get_tu (int index)
2935 {
2936 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2937
2938 return this->all_type_units[index];
2939 }
2940
2941 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2942 objfile_obstack, and constructed with the specified field
2943 values. */
2944
2945 static dwarf2_per_cu_data *
2946 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2947 struct dwarf2_section_info *section,
2948 int is_dwz,
2949 sect_offset sect_off, ULONGEST length)
2950 {
2951 struct objfile *objfile = dwarf2_per_objfile->objfile;
2952 dwarf2_per_cu_data *the_cu
2953 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2954 struct dwarf2_per_cu_data);
2955 the_cu->sect_off = sect_off;
2956 the_cu->length = length;
2957 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2958 the_cu->section = section;
2959 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2960 struct dwarf2_per_cu_quick_data);
2961 the_cu->is_dwz = is_dwz;
2962 return the_cu;
2963 }
2964
2965 /* A helper for create_cus_from_index that handles a given list of
2966 CUs. */
2967
2968 static void
2969 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2970 const gdb_byte *cu_list, offset_type n_elements,
2971 struct dwarf2_section_info *section,
2972 int is_dwz)
2973 {
2974 for (offset_type i = 0; i < n_elements; i += 2)
2975 {
2976 gdb_static_assert (sizeof (ULONGEST) >= 8);
2977
2978 sect_offset sect_off
2979 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2980 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2981 cu_list += 2 * 8;
2982
2983 dwarf2_per_cu_data *per_cu
2984 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2985 sect_off, length);
2986 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2987 }
2988 }
2989
2990 /* Read the CU list from the mapped index, and use it to create all
2991 the CU objects for this objfile. */
2992
2993 static void
2994 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2995 const gdb_byte *cu_list, offset_type cu_list_elements,
2996 const gdb_byte *dwz_list, offset_type dwz_elements)
2997 {
2998 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2999 dwarf2_per_objfile->all_comp_units.reserve
3000 ((cu_list_elements + dwz_elements) / 2);
3001
3002 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3003 &dwarf2_per_objfile->info, 0);
3004
3005 if (dwz_elements == 0)
3006 return;
3007
3008 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3009 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3010 &dwz->info, 1);
3011 }
3012
3013 /* Create the signatured type hash table from the index. */
3014
3015 static void
3016 create_signatured_type_table_from_index
3017 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3018 struct dwarf2_section_info *section,
3019 const gdb_byte *bytes,
3020 offset_type elements)
3021 {
3022 struct objfile *objfile = dwarf2_per_objfile->objfile;
3023
3024 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3025 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3026
3027 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3028
3029 for (offset_type i = 0; i < elements; i += 3)
3030 {
3031 struct signatured_type *sig_type;
3032 ULONGEST signature;
3033 void **slot;
3034 cu_offset type_offset_in_tu;
3035
3036 gdb_static_assert (sizeof (ULONGEST) >= 8);
3037 sect_offset sect_off
3038 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3039 type_offset_in_tu
3040 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3041 BFD_ENDIAN_LITTLE);
3042 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3043 bytes += 3 * 8;
3044
3045 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3046 struct signatured_type);
3047 sig_type->signature = signature;
3048 sig_type->type_offset_in_tu = type_offset_in_tu;
3049 sig_type->per_cu.is_debug_types = 1;
3050 sig_type->per_cu.section = section;
3051 sig_type->per_cu.sect_off = sect_off;
3052 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3053 sig_type->per_cu.v.quick
3054 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3055 struct dwarf2_per_cu_quick_data);
3056
3057 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3058 *slot = sig_type;
3059
3060 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3061 }
3062
3063 dwarf2_per_objfile->signatured_types = sig_types_hash;
3064 }
3065
3066 /* Create the signatured type hash table from .debug_names. */
3067
3068 static void
3069 create_signatured_type_table_from_debug_names
3070 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3071 const mapped_debug_names &map,
3072 struct dwarf2_section_info *section,
3073 struct dwarf2_section_info *abbrev_section)
3074 {
3075 struct objfile *objfile = dwarf2_per_objfile->objfile;
3076
3077 dwarf2_read_section (objfile, section);
3078 dwarf2_read_section (objfile, abbrev_section);
3079
3080 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3081 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3082
3083 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3084
3085 for (uint32_t i = 0; i < map.tu_count; ++i)
3086 {
3087 struct signatured_type *sig_type;
3088 void **slot;
3089
3090 sect_offset sect_off
3091 = (sect_offset) (extract_unsigned_integer
3092 (map.tu_table_reordered + i * map.offset_size,
3093 map.offset_size,
3094 map.dwarf5_byte_order));
3095
3096 comp_unit_head cu_header;
3097 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3098 abbrev_section,
3099 section->buffer + to_underlying (sect_off),
3100 rcuh_kind::TYPE);
3101
3102 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3103 struct signatured_type);
3104 sig_type->signature = cu_header.signature;
3105 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3106 sig_type->per_cu.is_debug_types = 1;
3107 sig_type->per_cu.section = section;
3108 sig_type->per_cu.sect_off = sect_off;
3109 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3110 sig_type->per_cu.v.quick
3111 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3112 struct dwarf2_per_cu_quick_data);
3113
3114 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3115 *slot = sig_type;
3116
3117 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3118 }
3119
3120 dwarf2_per_objfile->signatured_types = sig_types_hash;
3121 }
3122
3123 /* Read the address map data from the mapped index, and use it to
3124 populate the objfile's psymtabs_addrmap. */
3125
3126 static void
3127 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3128 struct mapped_index *index)
3129 {
3130 struct objfile *objfile = dwarf2_per_objfile->objfile;
3131 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3132 const gdb_byte *iter, *end;
3133 struct addrmap *mutable_map;
3134 CORE_ADDR baseaddr;
3135
3136 auto_obstack temp_obstack;
3137
3138 mutable_map = addrmap_create_mutable (&temp_obstack);
3139
3140 iter = index->address_table.data ();
3141 end = iter + index->address_table.size ();
3142
3143 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3144
3145 while (iter < end)
3146 {
3147 ULONGEST hi, lo, cu_index;
3148 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3149 iter += 8;
3150 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3151 iter += 8;
3152 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3153 iter += 4;
3154
3155 if (lo > hi)
3156 {
3157 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3158 hex_string (lo), hex_string (hi));
3159 continue;
3160 }
3161
3162 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3163 {
3164 complaint (_(".gdb_index address table has invalid CU number %u"),
3165 (unsigned) cu_index);
3166 continue;
3167 }
3168
3169 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3170 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3171 addrmap_set_empty (mutable_map, lo, hi - 1,
3172 dwarf2_per_objfile->get_cu (cu_index));
3173 }
3174
3175 objfile->partial_symtabs->psymtabs_addrmap
3176 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3177 }
3178
3179 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3180 populate the objfile's psymtabs_addrmap. */
3181
3182 static void
3183 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3184 struct dwarf2_section_info *section)
3185 {
3186 struct objfile *objfile = dwarf2_per_objfile->objfile;
3187 bfd *abfd = objfile->obfd;
3188 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3189 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3190 SECT_OFF_TEXT (objfile));
3191
3192 auto_obstack temp_obstack;
3193 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3194
3195 std::unordered_map<sect_offset,
3196 dwarf2_per_cu_data *,
3197 gdb::hash_enum<sect_offset>>
3198 debug_info_offset_to_per_cu;
3199 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3200 {
3201 const auto insertpair
3202 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3203 if (!insertpair.second)
3204 {
3205 warning (_("Section .debug_aranges in %s has duplicate "
3206 "debug_info_offset %s, ignoring .debug_aranges."),
3207 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3208 return;
3209 }
3210 }
3211
3212 dwarf2_read_section (objfile, section);
3213
3214 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3215
3216 const gdb_byte *addr = section->buffer;
3217
3218 while (addr < section->buffer + section->size)
3219 {
3220 const gdb_byte *const entry_addr = addr;
3221 unsigned int bytes_read;
3222
3223 const LONGEST entry_length = read_initial_length (abfd, addr,
3224 &bytes_read);
3225 addr += bytes_read;
3226
3227 const gdb_byte *const entry_end = addr + entry_length;
3228 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3229 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3230 if (addr + entry_length > section->buffer + section->size)
3231 {
3232 warning (_("Section .debug_aranges in %s entry at offset %zu "
3233 "length %s exceeds section length %s, "
3234 "ignoring .debug_aranges."),
3235 objfile_name (objfile), entry_addr - section->buffer,
3236 plongest (bytes_read + entry_length),
3237 pulongest (section->size));
3238 return;
3239 }
3240
3241 /* The version number. */
3242 const uint16_t version = read_2_bytes (abfd, addr);
3243 addr += 2;
3244 if (version != 2)
3245 {
3246 warning (_("Section .debug_aranges in %s entry at offset %zu "
3247 "has unsupported version %d, ignoring .debug_aranges."),
3248 objfile_name (objfile), entry_addr - section->buffer,
3249 version);
3250 return;
3251 }
3252
3253 const uint64_t debug_info_offset
3254 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3255 addr += offset_size;
3256 const auto per_cu_it
3257 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3258 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3259 {
3260 warning (_("Section .debug_aranges in %s entry at offset %zu "
3261 "debug_info_offset %s does not exists, "
3262 "ignoring .debug_aranges."),
3263 objfile_name (objfile), entry_addr - section->buffer,
3264 pulongest (debug_info_offset));
3265 return;
3266 }
3267 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3268
3269 const uint8_t address_size = *addr++;
3270 if (address_size < 1 || address_size > 8)
3271 {
3272 warning (_("Section .debug_aranges in %s entry at offset %zu "
3273 "address_size %u is invalid, ignoring .debug_aranges."),
3274 objfile_name (objfile), entry_addr - section->buffer,
3275 address_size);
3276 return;
3277 }
3278
3279 const uint8_t segment_selector_size = *addr++;
3280 if (segment_selector_size != 0)
3281 {
3282 warning (_("Section .debug_aranges in %s entry at offset %zu "
3283 "segment_selector_size %u is not supported, "
3284 "ignoring .debug_aranges."),
3285 objfile_name (objfile), entry_addr - section->buffer,
3286 segment_selector_size);
3287 return;
3288 }
3289
3290 /* Must pad to an alignment boundary that is twice the address
3291 size. It is undocumented by the DWARF standard but GCC does
3292 use it. */
3293 for (size_t padding = ((-(addr - section->buffer))
3294 & (2 * address_size - 1));
3295 padding > 0; padding--)
3296 if (*addr++ != 0)
3297 {
3298 warning (_("Section .debug_aranges in %s entry at offset %zu "
3299 "padding is not zero, ignoring .debug_aranges."),
3300 objfile_name (objfile), entry_addr - section->buffer);
3301 return;
3302 }
3303
3304 for (;;)
3305 {
3306 if (addr + 2 * address_size > entry_end)
3307 {
3308 warning (_("Section .debug_aranges in %s entry at offset %zu "
3309 "address list is not properly terminated, "
3310 "ignoring .debug_aranges."),
3311 objfile_name (objfile), entry_addr - section->buffer);
3312 return;
3313 }
3314 ULONGEST start = extract_unsigned_integer (addr, address_size,
3315 dwarf5_byte_order);
3316 addr += address_size;
3317 ULONGEST length = extract_unsigned_integer (addr, address_size,
3318 dwarf5_byte_order);
3319 addr += address_size;
3320 if (start == 0 && length == 0)
3321 break;
3322 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3323 {
3324 /* Symbol was eliminated due to a COMDAT group. */
3325 continue;
3326 }
3327 ULONGEST end = start + length;
3328 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3329 - baseaddr);
3330 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3331 - baseaddr);
3332 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3333 }
3334 }
3335
3336 objfile->partial_symtabs->psymtabs_addrmap
3337 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3338 }
3339
3340 /* Find a slot in the mapped index INDEX for the object named NAME.
3341 If NAME is found, set *VEC_OUT to point to the CU vector in the
3342 constant pool and return true. If NAME cannot be found, return
3343 false. */
3344
3345 static bool
3346 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3347 offset_type **vec_out)
3348 {
3349 offset_type hash;
3350 offset_type slot, step;
3351 int (*cmp) (const char *, const char *);
3352
3353 gdb::unique_xmalloc_ptr<char> without_params;
3354 if (current_language->la_language == language_cplus
3355 || current_language->la_language == language_fortran
3356 || current_language->la_language == language_d)
3357 {
3358 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3359 not contain any. */
3360
3361 if (strchr (name, '(') != NULL)
3362 {
3363 without_params = cp_remove_params (name);
3364
3365 if (without_params != NULL)
3366 name = without_params.get ();
3367 }
3368 }
3369
3370 /* Index version 4 did not support case insensitive searches. But the
3371 indices for case insensitive languages are built in lowercase, therefore
3372 simulate our NAME being searched is also lowercased. */
3373 hash = mapped_index_string_hash ((index->version == 4
3374 && case_sensitivity == case_sensitive_off
3375 ? 5 : index->version),
3376 name);
3377
3378 slot = hash & (index->symbol_table.size () - 1);
3379 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3380 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3381
3382 for (;;)
3383 {
3384 const char *str;
3385
3386 const auto &bucket = index->symbol_table[slot];
3387 if (bucket.name == 0 && bucket.vec == 0)
3388 return false;
3389
3390 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3391 if (!cmp (name, str))
3392 {
3393 *vec_out = (offset_type *) (index->constant_pool
3394 + MAYBE_SWAP (bucket.vec));
3395 return true;
3396 }
3397
3398 slot = (slot + step) & (index->symbol_table.size () - 1);
3399 }
3400 }
3401
3402 /* A helper function that reads the .gdb_index from BUFFER and fills
3403 in MAP. FILENAME is the name of the file containing the data;
3404 it is used for error reporting. DEPRECATED_OK is true if it is
3405 ok to use deprecated sections.
3406
3407 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3408 out parameters that are filled in with information about the CU and
3409 TU lists in the section.
3410
3411 Returns true if all went well, false otherwise. */
3412
3413 static bool
3414 read_gdb_index_from_buffer (struct objfile *objfile,
3415 const char *filename,
3416 bool deprecated_ok,
3417 gdb::array_view<const gdb_byte> buffer,
3418 struct mapped_index *map,
3419 const gdb_byte **cu_list,
3420 offset_type *cu_list_elements,
3421 const gdb_byte **types_list,
3422 offset_type *types_list_elements)
3423 {
3424 const gdb_byte *addr = &buffer[0];
3425
3426 /* Version check. */
3427 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3428 /* Versions earlier than 3 emitted every copy of a psymbol. This
3429 causes the index to behave very poorly for certain requests. Version 3
3430 contained incomplete addrmap. So, it seems better to just ignore such
3431 indices. */
3432 if (version < 4)
3433 {
3434 static int warning_printed = 0;
3435 if (!warning_printed)
3436 {
3437 warning (_("Skipping obsolete .gdb_index section in %s."),
3438 filename);
3439 warning_printed = 1;
3440 }
3441 return 0;
3442 }
3443 /* Index version 4 uses a different hash function than index version
3444 5 and later.
3445
3446 Versions earlier than 6 did not emit psymbols for inlined
3447 functions. Using these files will cause GDB not to be able to
3448 set breakpoints on inlined functions by name, so we ignore these
3449 indices unless the user has done
3450 "set use-deprecated-index-sections on". */
3451 if (version < 6 && !deprecated_ok)
3452 {
3453 static int warning_printed = 0;
3454 if (!warning_printed)
3455 {
3456 warning (_("\
3457 Skipping deprecated .gdb_index section in %s.\n\
3458 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3459 to use the section anyway."),
3460 filename);
3461 warning_printed = 1;
3462 }
3463 return 0;
3464 }
3465 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3466 of the TU (for symbols coming from TUs),
3467 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3468 Plus gold-generated indices can have duplicate entries for global symbols,
3469 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3470 These are just performance bugs, and we can't distinguish gdb-generated
3471 indices from gold-generated ones, so issue no warning here. */
3472
3473 /* Indexes with higher version than the one supported by GDB may be no
3474 longer backward compatible. */
3475 if (version > 8)
3476 return 0;
3477
3478 map->version = version;
3479
3480 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3481
3482 int i = 0;
3483 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3484 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3485 / 8);
3486 ++i;
3487
3488 *types_list = addr + MAYBE_SWAP (metadata[i]);
3489 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3490 - MAYBE_SWAP (metadata[i]))
3491 / 8);
3492 ++i;
3493
3494 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3495 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3496 map->address_table
3497 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3498 ++i;
3499
3500 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3501 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3502 map->symbol_table
3503 = gdb::array_view<mapped_index::symbol_table_slot>
3504 ((mapped_index::symbol_table_slot *) symbol_table,
3505 (mapped_index::symbol_table_slot *) symbol_table_end);
3506
3507 ++i;
3508 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3509
3510 return 1;
3511 }
3512
3513 /* Callback types for dwarf2_read_gdb_index. */
3514
3515 typedef gdb::function_view
3516 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3517 get_gdb_index_contents_ftype;
3518 typedef gdb::function_view
3519 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3520 get_gdb_index_contents_dwz_ftype;
3521
3522 /* Read .gdb_index. If everything went ok, initialize the "quick"
3523 elements of all the CUs and return 1. Otherwise, return 0. */
3524
3525 static int
3526 dwarf2_read_gdb_index
3527 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3528 get_gdb_index_contents_ftype get_gdb_index_contents,
3529 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3530 {
3531 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3532 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3533 struct dwz_file *dwz;
3534 struct objfile *objfile = dwarf2_per_objfile->objfile;
3535
3536 gdb::array_view<const gdb_byte> main_index_contents
3537 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3538
3539 if (main_index_contents.empty ())
3540 return 0;
3541
3542 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3543 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3544 use_deprecated_index_sections,
3545 main_index_contents, map.get (), &cu_list,
3546 &cu_list_elements, &types_list,
3547 &types_list_elements))
3548 return 0;
3549
3550 /* Don't use the index if it's empty. */
3551 if (map->symbol_table.empty ())
3552 return 0;
3553
3554 /* If there is a .dwz file, read it so we can get its CU list as
3555 well. */
3556 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3557 if (dwz != NULL)
3558 {
3559 struct mapped_index dwz_map;
3560 const gdb_byte *dwz_types_ignore;
3561 offset_type dwz_types_elements_ignore;
3562
3563 gdb::array_view<const gdb_byte> dwz_index_content
3564 = get_gdb_index_contents_dwz (objfile, dwz);
3565
3566 if (dwz_index_content.empty ())
3567 return 0;
3568
3569 if (!read_gdb_index_from_buffer (objfile,
3570 bfd_get_filename (dwz->dwz_bfd), 1,
3571 dwz_index_content, &dwz_map,
3572 &dwz_list, &dwz_list_elements,
3573 &dwz_types_ignore,
3574 &dwz_types_elements_ignore))
3575 {
3576 warning (_("could not read '.gdb_index' section from %s; skipping"),
3577 bfd_get_filename (dwz->dwz_bfd));
3578 return 0;
3579 }
3580 }
3581
3582 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3583 dwz_list, dwz_list_elements);
3584
3585 if (types_list_elements)
3586 {
3587 /* We can only handle a single .debug_types when we have an
3588 index. */
3589 if (dwarf2_per_objfile->types.size () != 1)
3590 return 0;
3591
3592 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3593
3594 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3595 types_list, types_list_elements);
3596 }
3597
3598 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3599
3600 dwarf2_per_objfile->index_table = std::move (map);
3601 dwarf2_per_objfile->using_index = 1;
3602 dwarf2_per_objfile->quick_file_names_table =
3603 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3604
3605 return 1;
3606 }
3607
3608 /* die_reader_func for dw2_get_file_names. */
3609
3610 static void
3611 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3612 const gdb_byte *info_ptr,
3613 struct die_info *comp_unit_die,
3614 int has_children,
3615 void *data)
3616 {
3617 struct dwarf2_cu *cu = reader->cu;
3618 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3619 struct dwarf2_per_objfile *dwarf2_per_objfile
3620 = cu->per_cu->dwarf2_per_objfile;
3621 struct objfile *objfile = dwarf2_per_objfile->objfile;
3622 struct dwarf2_per_cu_data *lh_cu;
3623 struct attribute *attr;
3624 int i;
3625 void **slot;
3626 struct quick_file_names *qfn;
3627
3628 gdb_assert (! this_cu->is_debug_types);
3629
3630 /* Our callers never want to match partial units -- instead they
3631 will match the enclosing full CU. */
3632 if (comp_unit_die->tag == DW_TAG_partial_unit)
3633 {
3634 this_cu->v.quick->no_file_data = 1;
3635 return;
3636 }
3637
3638 lh_cu = this_cu;
3639 slot = NULL;
3640
3641 line_header_up lh;
3642 sect_offset line_offset {};
3643
3644 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3645 if (attr)
3646 {
3647 struct quick_file_names find_entry;
3648
3649 line_offset = (sect_offset) DW_UNSND (attr);
3650
3651 /* We may have already read in this line header (TU line header sharing).
3652 If we have we're done. */
3653 find_entry.hash.dwo_unit = cu->dwo_unit;
3654 find_entry.hash.line_sect_off = line_offset;
3655 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3656 &find_entry, INSERT);
3657 if (*slot != NULL)
3658 {
3659 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3660 return;
3661 }
3662
3663 lh = dwarf_decode_line_header (line_offset, cu);
3664 }
3665 if (lh == NULL)
3666 {
3667 lh_cu->v.quick->no_file_data = 1;
3668 return;
3669 }
3670
3671 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3672 qfn->hash.dwo_unit = cu->dwo_unit;
3673 qfn->hash.line_sect_off = line_offset;
3674 gdb_assert (slot != NULL);
3675 *slot = qfn;
3676
3677 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3678
3679 qfn->num_file_names = lh->file_names.size ();
3680 qfn->file_names =
3681 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3682 for (i = 0; i < lh->file_names.size (); ++i)
3683 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3684 qfn->real_names = NULL;
3685
3686 lh_cu->v.quick->file_names = qfn;
3687 }
3688
3689 /* A helper for the "quick" functions which attempts to read the line
3690 table for THIS_CU. */
3691
3692 static struct quick_file_names *
3693 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3694 {
3695 /* This should never be called for TUs. */
3696 gdb_assert (! this_cu->is_debug_types);
3697 /* Nor type unit groups. */
3698 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3699
3700 if (this_cu->v.quick->file_names != NULL)
3701 return this_cu->v.quick->file_names;
3702 /* If we know there is no line data, no point in looking again. */
3703 if (this_cu->v.quick->no_file_data)
3704 return NULL;
3705
3706 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3707
3708 if (this_cu->v.quick->no_file_data)
3709 return NULL;
3710 return this_cu->v.quick->file_names;
3711 }
3712
3713 /* A helper for the "quick" functions which computes and caches the
3714 real path for a given file name from the line table. */
3715
3716 static const char *
3717 dw2_get_real_path (struct objfile *objfile,
3718 struct quick_file_names *qfn, int index)
3719 {
3720 if (qfn->real_names == NULL)
3721 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3722 qfn->num_file_names, const char *);
3723
3724 if (qfn->real_names[index] == NULL)
3725 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3726
3727 return qfn->real_names[index];
3728 }
3729
3730 static struct symtab *
3731 dw2_find_last_source_symtab (struct objfile *objfile)
3732 {
3733 struct dwarf2_per_objfile *dwarf2_per_objfile
3734 = get_dwarf2_per_objfile (objfile);
3735 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3736 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3737
3738 if (cust == NULL)
3739 return NULL;
3740
3741 return compunit_primary_filetab (cust);
3742 }
3743
3744 /* Traversal function for dw2_forget_cached_source_info. */
3745
3746 static int
3747 dw2_free_cached_file_names (void **slot, void *info)
3748 {
3749 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3750
3751 if (file_data->real_names)
3752 {
3753 int i;
3754
3755 for (i = 0; i < file_data->num_file_names; ++i)
3756 {
3757 xfree ((void*) file_data->real_names[i]);
3758 file_data->real_names[i] = NULL;
3759 }
3760 }
3761
3762 return 1;
3763 }
3764
3765 static void
3766 dw2_forget_cached_source_info (struct objfile *objfile)
3767 {
3768 struct dwarf2_per_objfile *dwarf2_per_objfile
3769 = get_dwarf2_per_objfile (objfile);
3770
3771 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3772 dw2_free_cached_file_names, NULL);
3773 }
3774
3775 /* Helper function for dw2_map_symtabs_matching_filename that expands
3776 the symtabs and calls the iterator. */
3777
3778 static int
3779 dw2_map_expand_apply (struct objfile *objfile,
3780 struct dwarf2_per_cu_data *per_cu,
3781 const char *name, const char *real_path,
3782 gdb::function_view<bool (symtab *)> callback)
3783 {
3784 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3785
3786 /* Don't visit already-expanded CUs. */
3787 if (per_cu->v.quick->compunit_symtab)
3788 return 0;
3789
3790 /* This may expand more than one symtab, and we want to iterate over
3791 all of them. */
3792 dw2_instantiate_symtab (per_cu, false);
3793
3794 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3795 last_made, callback);
3796 }
3797
3798 /* Implementation of the map_symtabs_matching_filename method. */
3799
3800 static bool
3801 dw2_map_symtabs_matching_filename
3802 (struct objfile *objfile, const char *name, const char *real_path,
3803 gdb::function_view<bool (symtab *)> callback)
3804 {
3805 const char *name_basename = lbasename (name);
3806 struct dwarf2_per_objfile *dwarf2_per_objfile
3807 = get_dwarf2_per_objfile (objfile);
3808
3809 /* The rule is CUs specify all the files, including those used by
3810 any TU, so there's no need to scan TUs here. */
3811
3812 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3813 {
3814 /* We only need to look at symtabs not already expanded. */
3815 if (per_cu->v.quick->compunit_symtab)
3816 continue;
3817
3818 quick_file_names *file_data = dw2_get_file_names (per_cu);
3819 if (file_data == NULL)
3820 continue;
3821
3822 for (int j = 0; j < file_data->num_file_names; ++j)
3823 {
3824 const char *this_name = file_data->file_names[j];
3825 const char *this_real_name;
3826
3827 if (compare_filenames_for_search (this_name, name))
3828 {
3829 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3830 callback))
3831 return true;
3832 continue;
3833 }
3834
3835 /* Before we invoke realpath, which can get expensive when many
3836 files are involved, do a quick comparison of the basenames. */
3837 if (! basenames_may_differ
3838 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3839 continue;
3840
3841 this_real_name = dw2_get_real_path (objfile, file_data, j);
3842 if (compare_filenames_for_search (this_real_name, name))
3843 {
3844 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3845 callback))
3846 return true;
3847 continue;
3848 }
3849
3850 if (real_path != NULL)
3851 {
3852 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3853 gdb_assert (IS_ABSOLUTE_PATH (name));
3854 if (this_real_name != NULL
3855 && FILENAME_CMP (real_path, this_real_name) == 0)
3856 {
3857 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3858 callback))
3859 return true;
3860 continue;
3861 }
3862 }
3863 }
3864 }
3865
3866 return false;
3867 }
3868
3869 /* Struct used to manage iterating over all CUs looking for a symbol. */
3870
3871 struct dw2_symtab_iterator
3872 {
3873 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3874 struct dwarf2_per_objfile *dwarf2_per_objfile;
3875 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3876 int want_specific_block;
3877 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3878 Unused if !WANT_SPECIFIC_BLOCK. */
3879 int block_index;
3880 /* The kind of symbol we're looking for. */
3881 domain_enum domain;
3882 /* The list of CUs from the index entry of the symbol,
3883 or NULL if not found. */
3884 offset_type *vec;
3885 /* The next element in VEC to look at. */
3886 int next;
3887 /* The number of elements in VEC, or zero if there is no match. */
3888 int length;
3889 /* Have we seen a global version of the symbol?
3890 If so we can ignore all further global instances.
3891 This is to work around gold/15646, inefficient gold-generated
3892 indices. */
3893 int global_seen;
3894 };
3895
3896 /* Initialize the index symtab iterator ITER.
3897 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3898 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3899
3900 static void
3901 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3902 struct dwarf2_per_objfile *dwarf2_per_objfile,
3903 int want_specific_block,
3904 int block_index,
3905 domain_enum domain,
3906 const char *name)
3907 {
3908 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3909 iter->want_specific_block = want_specific_block;
3910 iter->block_index = block_index;
3911 iter->domain = domain;
3912 iter->next = 0;
3913 iter->global_seen = 0;
3914
3915 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3916
3917 /* index is NULL if OBJF_READNOW. */
3918 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3919 iter->length = MAYBE_SWAP (*iter->vec);
3920 else
3921 {
3922 iter->vec = NULL;
3923 iter->length = 0;
3924 }
3925 }
3926
3927 /* Return the next matching CU or NULL if there are no more. */
3928
3929 static struct dwarf2_per_cu_data *
3930 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3931 {
3932 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3933
3934 for ( ; iter->next < iter->length; ++iter->next)
3935 {
3936 offset_type cu_index_and_attrs =
3937 MAYBE_SWAP (iter->vec[iter->next + 1]);
3938 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3939 int want_static = iter->block_index != GLOBAL_BLOCK;
3940 /* This value is only valid for index versions >= 7. */
3941 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3942 gdb_index_symbol_kind symbol_kind =
3943 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3944 /* Only check the symbol attributes if they're present.
3945 Indices prior to version 7 don't record them,
3946 and indices >= 7 may elide them for certain symbols
3947 (gold does this). */
3948 int attrs_valid =
3949 (dwarf2_per_objfile->index_table->version >= 7
3950 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3951
3952 /* Don't crash on bad data. */
3953 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3954 + dwarf2_per_objfile->all_type_units.size ()))
3955 {
3956 complaint (_(".gdb_index entry has bad CU index"
3957 " [in module %s]"),
3958 objfile_name (dwarf2_per_objfile->objfile));
3959 continue;
3960 }
3961
3962 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3963
3964 /* Skip if already read in. */
3965 if (per_cu->v.quick->compunit_symtab)
3966 continue;
3967
3968 /* Check static vs global. */
3969 if (attrs_valid)
3970 {
3971 if (iter->want_specific_block
3972 && want_static != is_static)
3973 continue;
3974 /* Work around gold/15646. */
3975 if (!is_static && iter->global_seen)
3976 continue;
3977 if (!is_static)
3978 iter->global_seen = 1;
3979 }
3980
3981 /* Only check the symbol's kind if it has one. */
3982 if (attrs_valid)
3983 {
3984 switch (iter->domain)
3985 {
3986 case VAR_DOMAIN:
3987 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3988 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3989 /* Some types are also in VAR_DOMAIN. */
3990 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3991 continue;
3992 break;
3993 case STRUCT_DOMAIN:
3994 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3995 continue;
3996 break;
3997 case LABEL_DOMAIN:
3998 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3999 continue;
4000 break;
4001 default:
4002 break;
4003 }
4004 }
4005
4006 ++iter->next;
4007 return per_cu;
4008 }
4009
4010 return NULL;
4011 }
4012
4013 static struct compunit_symtab *
4014 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4015 const char *name, domain_enum domain)
4016 {
4017 struct compunit_symtab *stab_best = NULL;
4018 struct dwarf2_per_objfile *dwarf2_per_objfile
4019 = get_dwarf2_per_objfile (objfile);
4020
4021 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4022
4023 struct dw2_symtab_iterator iter;
4024 struct dwarf2_per_cu_data *per_cu;
4025
4026 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4027
4028 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4029 {
4030 struct symbol *sym, *with_opaque = NULL;
4031 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4032 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4033 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4034
4035 sym = block_find_symbol (block, name, domain,
4036 block_find_non_opaque_type_preferred,
4037 &with_opaque);
4038
4039 /* Some caution must be observed with overloaded functions
4040 and methods, since the index will not contain any overload
4041 information (but NAME might contain it). */
4042
4043 if (sym != NULL
4044 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4045 return stab;
4046 if (with_opaque != NULL
4047 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4048 stab_best = stab;
4049
4050 /* Keep looking through other CUs. */
4051 }
4052
4053 return stab_best;
4054 }
4055
4056 static void
4057 dw2_print_stats (struct objfile *objfile)
4058 {
4059 struct dwarf2_per_objfile *dwarf2_per_objfile
4060 = get_dwarf2_per_objfile (objfile);
4061 int total = (dwarf2_per_objfile->all_comp_units.size ()
4062 + dwarf2_per_objfile->all_type_units.size ());
4063 int count = 0;
4064
4065 for (int i = 0; i < total; ++i)
4066 {
4067 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4068
4069 if (!per_cu->v.quick->compunit_symtab)
4070 ++count;
4071 }
4072 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4073 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4074 }
4075
4076 /* This dumps minimal information about the index.
4077 It is called via "mt print objfiles".
4078 One use is to verify .gdb_index has been loaded by the
4079 gdb.dwarf2/gdb-index.exp testcase. */
4080
4081 static void
4082 dw2_dump (struct objfile *objfile)
4083 {
4084 struct dwarf2_per_objfile *dwarf2_per_objfile
4085 = get_dwarf2_per_objfile (objfile);
4086
4087 gdb_assert (dwarf2_per_objfile->using_index);
4088 printf_filtered (".gdb_index:");
4089 if (dwarf2_per_objfile->index_table != NULL)
4090 {
4091 printf_filtered (" version %d\n",
4092 dwarf2_per_objfile->index_table->version);
4093 }
4094 else
4095 printf_filtered (" faked for \"readnow\"\n");
4096 printf_filtered ("\n");
4097 }
4098
4099 static void
4100 dw2_expand_symtabs_for_function (struct objfile *objfile,
4101 const char *func_name)
4102 {
4103 struct dwarf2_per_objfile *dwarf2_per_objfile
4104 = get_dwarf2_per_objfile (objfile);
4105
4106 struct dw2_symtab_iterator iter;
4107 struct dwarf2_per_cu_data *per_cu;
4108
4109 /* Note: It doesn't matter what we pass for block_index here. */
4110 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4111 func_name);
4112
4113 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4114 dw2_instantiate_symtab (per_cu, false);
4115
4116 }
4117
4118 static void
4119 dw2_expand_all_symtabs (struct objfile *objfile)
4120 {
4121 struct dwarf2_per_objfile *dwarf2_per_objfile
4122 = get_dwarf2_per_objfile (objfile);
4123 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4124 + dwarf2_per_objfile->all_type_units.size ());
4125
4126 for (int i = 0; i < total_units; ++i)
4127 {
4128 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4129
4130 /* We don't want to directly expand a partial CU, because if we
4131 read it with the wrong language, then assertion failures can
4132 be triggered later on. See PR symtab/23010. So, tell
4133 dw2_instantiate_symtab to skip partial CUs -- any important
4134 partial CU will be read via DW_TAG_imported_unit anyway. */
4135 dw2_instantiate_symtab (per_cu, true);
4136 }
4137 }
4138
4139 static void
4140 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4141 const char *fullname)
4142 {
4143 struct dwarf2_per_objfile *dwarf2_per_objfile
4144 = get_dwarf2_per_objfile (objfile);
4145
4146 /* We don't need to consider type units here.
4147 This is only called for examining code, e.g. expand_line_sal.
4148 There can be an order of magnitude (or more) more type units
4149 than comp units, and we avoid them if we can. */
4150
4151 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4152 {
4153 /* We only need to look at symtabs not already expanded. */
4154 if (per_cu->v.quick->compunit_symtab)
4155 continue;
4156
4157 quick_file_names *file_data = dw2_get_file_names (per_cu);
4158 if (file_data == NULL)
4159 continue;
4160
4161 for (int j = 0; j < file_data->num_file_names; ++j)
4162 {
4163 const char *this_fullname = file_data->file_names[j];
4164
4165 if (filename_cmp (this_fullname, fullname) == 0)
4166 {
4167 dw2_instantiate_symtab (per_cu, false);
4168 break;
4169 }
4170 }
4171 }
4172 }
4173
4174 static void
4175 dw2_map_matching_symbols (struct objfile *objfile,
4176 const char * name, domain_enum domain,
4177 int global,
4178 int (*callback) (const struct block *,
4179 struct symbol *, void *),
4180 void *data, symbol_name_match_type match,
4181 symbol_compare_ftype *ordered_compare)
4182 {
4183 /* Currently unimplemented; used for Ada. The function can be called if the
4184 current language is Ada for a non-Ada objfile using GNU index. As Ada
4185 does not look for non-Ada symbols this function should just return. */
4186 }
4187
4188 /* Symbol name matcher for .gdb_index names.
4189
4190 Symbol names in .gdb_index have a few particularities:
4191
4192 - There's no indication of which is the language of each symbol.
4193
4194 Since each language has its own symbol name matching algorithm,
4195 and we don't know which language is the right one, we must match
4196 each symbol against all languages. This would be a potential
4197 performance problem if it were not mitigated by the
4198 mapped_index::name_components lookup table, which significantly
4199 reduces the number of times we need to call into this matcher,
4200 making it a non-issue.
4201
4202 - Symbol names in the index have no overload (parameter)
4203 information. I.e., in C++, "foo(int)" and "foo(long)" both
4204 appear as "foo" in the index, for example.
4205
4206 This means that the lookup names passed to the symbol name
4207 matcher functions must have no parameter information either
4208 because (e.g.) symbol search name "foo" does not match
4209 lookup-name "foo(int)" [while swapping search name for lookup
4210 name would match].
4211 */
4212 class gdb_index_symbol_name_matcher
4213 {
4214 public:
4215 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4216 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4217
4218 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4219 Returns true if any matcher matches. */
4220 bool matches (const char *symbol_name);
4221
4222 private:
4223 /* A reference to the lookup name we're matching against. */
4224 const lookup_name_info &m_lookup_name;
4225
4226 /* A vector holding all the different symbol name matchers, for all
4227 languages. */
4228 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4229 };
4230
4231 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4232 (const lookup_name_info &lookup_name)
4233 : m_lookup_name (lookup_name)
4234 {
4235 /* Prepare the vector of comparison functions upfront, to avoid
4236 doing the same work for each symbol. Care is taken to avoid
4237 matching with the same matcher more than once if/when multiple
4238 languages use the same matcher function. */
4239 auto &matchers = m_symbol_name_matcher_funcs;
4240 matchers.reserve (nr_languages);
4241
4242 matchers.push_back (default_symbol_name_matcher);
4243
4244 for (int i = 0; i < nr_languages; i++)
4245 {
4246 const language_defn *lang = language_def ((enum language) i);
4247 symbol_name_matcher_ftype *name_matcher
4248 = get_symbol_name_matcher (lang, m_lookup_name);
4249
4250 /* Don't insert the same comparison routine more than once.
4251 Note that we do this linear walk instead of a seemingly
4252 cheaper sorted insert, or use a std::set or something like
4253 that, because relative order of function addresses is not
4254 stable. This is not a problem in practice because the number
4255 of supported languages is low, and the cost here is tiny
4256 compared to the number of searches we'll do afterwards using
4257 this object. */
4258 if (name_matcher != default_symbol_name_matcher
4259 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4260 == matchers.end ()))
4261 matchers.push_back (name_matcher);
4262 }
4263 }
4264
4265 bool
4266 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4267 {
4268 for (auto matches_name : m_symbol_name_matcher_funcs)
4269 if (matches_name (symbol_name, m_lookup_name, NULL))
4270 return true;
4271
4272 return false;
4273 }
4274
4275 /* Starting from a search name, return the string that finds the upper
4276 bound of all strings that start with SEARCH_NAME in a sorted name
4277 list. Returns the empty string to indicate that the upper bound is
4278 the end of the list. */
4279
4280 static std::string
4281 make_sort_after_prefix_name (const char *search_name)
4282 {
4283 /* When looking to complete "func", we find the upper bound of all
4284 symbols that start with "func" by looking for where we'd insert
4285 the closest string that would follow "func" in lexicographical
4286 order. Usually, that's "func"-with-last-character-incremented,
4287 i.e. "fund". Mind non-ASCII characters, though. Usually those
4288 will be UTF-8 multi-byte sequences, but we can't be certain.
4289 Especially mind the 0xff character, which is a valid character in
4290 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4291 rule out compilers allowing it in identifiers. Note that
4292 conveniently, strcmp/strcasecmp are specified to compare
4293 characters interpreted as unsigned char. So what we do is treat
4294 the whole string as a base 256 number composed of a sequence of
4295 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4296 to 0, and carries 1 to the following more-significant position.
4297 If the very first character in SEARCH_NAME ends up incremented
4298 and carries/overflows, then the upper bound is the end of the
4299 list. The string after the empty string is also the empty
4300 string.
4301
4302 Some examples of this operation:
4303
4304 SEARCH_NAME => "+1" RESULT
4305
4306 "abc" => "abd"
4307 "ab\xff" => "ac"
4308 "\xff" "a" "\xff" => "\xff" "b"
4309 "\xff" => ""
4310 "\xff\xff" => ""
4311 "" => ""
4312
4313 Then, with these symbols for example:
4314
4315 func
4316 func1
4317 fund
4318
4319 completing "func" looks for symbols between "func" and
4320 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4321 which finds "func" and "func1", but not "fund".
4322
4323 And with:
4324
4325 funcÿ (Latin1 'ÿ' [0xff])
4326 funcÿ1
4327 fund
4328
4329 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4330 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4331
4332 And with:
4333
4334 ÿÿ (Latin1 'ÿ' [0xff])
4335 ÿÿ1
4336
4337 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4338 the end of the list.
4339 */
4340 std::string after = search_name;
4341 while (!after.empty () && (unsigned char) after.back () == 0xff)
4342 after.pop_back ();
4343 if (!after.empty ())
4344 after.back () = (unsigned char) after.back () + 1;
4345 return after;
4346 }
4347
4348 /* See declaration. */
4349
4350 std::pair<std::vector<name_component>::const_iterator,
4351 std::vector<name_component>::const_iterator>
4352 mapped_index_base::find_name_components_bounds
4353 (const lookup_name_info &lookup_name_without_params) const
4354 {
4355 auto *name_cmp
4356 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4357
4358 const char *cplus
4359 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4360
4361 /* Comparison function object for lower_bound that matches against a
4362 given symbol name. */
4363 auto lookup_compare_lower = [&] (const name_component &elem,
4364 const char *name)
4365 {
4366 const char *elem_qualified = this->symbol_name_at (elem.idx);
4367 const char *elem_name = elem_qualified + elem.name_offset;
4368 return name_cmp (elem_name, name) < 0;
4369 };
4370
4371 /* Comparison function object for upper_bound that matches against a
4372 given symbol name. */
4373 auto lookup_compare_upper = [&] (const char *name,
4374 const name_component &elem)
4375 {
4376 const char *elem_qualified = this->symbol_name_at (elem.idx);
4377 const char *elem_name = elem_qualified + elem.name_offset;
4378 return name_cmp (name, elem_name) < 0;
4379 };
4380
4381 auto begin = this->name_components.begin ();
4382 auto end = this->name_components.end ();
4383
4384 /* Find the lower bound. */
4385 auto lower = [&] ()
4386 {
4387 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4388 return begin;
4389 else
4390 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4391 } ();
4392
4393 /* Find the upper bound. */
4394 auto upper = [&] ()
4395 {
4396 if (lookup_name_without_params.completion_mode ())
4397 {
4398 /* In completion mode, we want UPPER to point past all
4399 symbols names that have the same prefix. I.e., with
4400 these symbols, and completing "func":
4401
4402 function << lower bound
4403 function1
4404 other_function << upper bound
4405
4406 We find the upper bound by looking for the insertion
4407 point of "func"-with-last-character-incremented,
4408 i.e. "fund". */
4409 std::string after = make_sort_after_prefix_name (cplus);
4410 if (after.empty ())
4411 return end;
4412 return std::lower_bound (lower, end, after.c_str (),
4413 lookup_compare_lower);
4414 }
4415 else
4416 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4417 } ();
4418
4419 return {lower, upper};
4420 }
4421
4422 /* See declaration. */
4423
4424 void
4425 mapped_index_base::build_name_components ()
4426 {
4427 if (!this->name_components.empty ())
4428 return;
4429
4430 this->name_components_casing = case_sensitivity;
4431 auto *name_cmp
4432 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4433
4434 /* The code below only knows how to break apart components of C++
4435 symbol names (and other languages that use '::' as
4436 namespace/module separator). If we add support for wild matching
4437 to some language that uses some other operator (E.g., Ada, Go and
4438 D use '.'), then we'll need to try splitting the symbol name
4439 according to that language too. Note that Ada does support wild
4440 matching, but doesn't currently support .gdb_index. */
4441 auto count = this->symbol_name_count ();
4442 for (offset_type idx = 0; idx < count; idx++)
4443 {
4444 if (this->symbol_name_slot_invalid (idx))
4445 continue;
4446
4447 const char *name = this->symbol_name_at (idx);
4448
4449 /* Add each name component to the name component table. */
4450 unsigned int previous_len = 0;
4451 for (unsigned int current_len = cp_find_first_component (name);
4452 name[current_len] != '\0';
4453 current_len += cp_find_first_component (name + current_len))
4454 {
4455 gdb_assert (name[current_len] == ':');
4456 this->name_components.push_back ({previous_len, idx});
4457 /* Skip the '::'. */
4458 current_len += 2;
4459 previous_len = current_len;
4460 }
4461 this->name_components.push_back ({previous_len, idx});
4462 }
4463
4464 /* Sort name_components elements by name. */
4465 auto name_comp_compare = [&] (const name_component &left,
4466 const name_component &right)
4467 {
4468 const char *left_qualified = this->symbol_name_at (left.idx);
4469 const char *right_qualified = this->symbol_name_at (right.idx);
4470
4471 const char *left_name = left_qualified + left.name_offset;
4472 const char *right_name = right_qualified + right.name_offset;
4473
4474 return name_cmp (left_name, right_name) < 0;
4475 };
4476
4477 std::sort (this->name_components.begin (),
4478 this->name_components.end (),
4479 name_comp_compare);
4480 }
4481
4482 /* Helper for dw2_expand_symtabs_matching that works with a
4483 mapped_index_base instead of the containing objfile. This is split
4484 to a separate function in order to be able to unit test the
4485 name_components matching using a mock mapped_index_base. For each
4486 symbol name that matches, calls MATCH_CALLBACK, passing it the
4487 symbol's index in the mapped_index_base symbol table. */
4488
4489 static void
4490 dw2_expand_symtabs_matching_symbol
4491 (mapped_index_base &index,
4492 const lookup_name_info &lookup_name_in,
4493 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4494 enum search_domain kind,
4495 gdb::function_view<void (offset_type)> match_callback)
4496 {
4497 lookup_name_info lookup_name_without_params
4498 = lookup_name_in.make_ignore_params ();
4499 gdb_index_symbol_name_matcher lookup_name_matcher
4500 (lookup_name_without_params);
4501
4502 /* Build the symbol name component sorted vector, if we haven't
4503 yet. */
4504 index.build_name_components ();
4505
4506 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4507
4508 /* Now for each symbol name in range, check to see if we have a name
4509 match, and if so, call the MATCH_CALLBACK callback. */
4510
4511 /* The same symbol may appear more than once in the range though.
4512 E.g., if we're looking for symbols that complete "w", and we have
4513 a symbol named "w1::w2", we'll find the two name components for
4514 that same symbol in the range. To be sure we only call the
4515 callback once per symbol, we first collect the symbol name
4516 indexes that matched in a temporary vector and ignore
4517 duplicates. */
4518 std::vector<offset_type> matches;
4519 matches.reserve (std::distance (bounds.first, bounds.second));
4520
4521 for (; bounds.first != bounds.second; ++bounds.first)
4522 {
4523 const char *qualified = index.symbol_name_at (bounds.first->idx);
4524
4525 if (!lookup_name_matcher.matches (qualified)
4526 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4527 continue;
4528
4529 matches.push_back (bounds.first->idx);
4530 }
4531
4532 std::sort (matches.begin (), matches.end ());
4533
4534 /* Finally call the callback, once per match. */
4535 ULONGEST prev = -1;
4536 for (offset_type idx : matches)
4537 {
4538 if (prev != idx)
4539 {
4540 match_callback (idx);
4541 prev = idx;
4542 }
4543 }
4544
4545 /* Above we use a type wider than idx's for 'prev', since 0 and
4546 (offset_type)-1 are both possible values. */
4547 static_assert (sizeof (prev) > sizeof (offset_type), "");
4548 }
4549
4550 #if GDB_SELF_TEST
4551
4552 namespace selftests { namespace dw2_expand_symtabs_matching {
4553
4554 /* A mock .gdb_index/.debug_names-like name index table, enough to
4555 exercise dw2_expand_symtabs_matching_symbol, which works with the
4556 mapped_index_base interface. Builds an index from the symbol list
4557 passed as parameter to the constructor. */
4558 class mock_mapped_index : public mapped_index_base
4559 {
4560 public:
4561 mock_mapped_index (gdb::array_view<const char *> symbols)
4562 : m_symbol_table (symbols)
4563 {}
4564
4565 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4566
4567 /* Return the number of names in the symbol table. */
4568 size_t symbol_name_count () const override
4569 {
4570 return m_symbol_table.size ();
4571 }
4572
4573 /* Get the name of the symbol at IDX in the symbol table. */
4574 const char *symbol_name_at (offset_type idx) const override
4575 {
4576 return m_symbol_table[idx];
4577 }
4578
4579 private:
4580 gdb::array_view<const char *> m_symbol_table;
4581 };
4582
4583 /* Convenience function that converts a NULL pointer to a "<null>"
4584 string, to pass to print routines. */
4585
4586 static const char *
4587 string_or_null (const char *str)
4588 {
4589 return str != NULL ? str : "<null>";
4590 }
4591
4592 /* Check if a lookup_name_info built from
4593 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4594 index. EXPECTED_LIST is the list of expected matches, in expected
4595 matching order. If no match expected, then an empty list is
4596 specified. Returns true on success. On failure prints a warning
4597 indicating the file:line that failed, and returns false. */
4598
4599 static bool
4600 check_match (const char *file, int line,
4601 mock_mapped_index &mock_index,
4602 const char *name, symbol_name_match_type match_type,
4603 bool completion_mode,
4604 std::initializer_list<const char *> expected_list)
4605 {
4606 lookup_name_info lookup_name (name, match_type, completion_mode);
4607
4608 bool matched = true;
4609
4610 auto mismatch = [&] (const char *expected_str,
4611 const char *got)
4612 {
4613 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4614 "expected=\"%s\", got=\"%s\"\n"),
4615 file, line,
4616 (match_type == symbol_name_match_type::FULL
4617 ? "FULL" : "WILD"),
4618 name, string_or_null (expected_str), string_or_null (got));
4619 matched = false;
4620 };
4621
4622 auto expected_it = expected_list.begin ();
4623 auto expected_end = expected_list.end ();
4624
4625 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4626 NULL, ALL_DOMAIN,
4627 [&] (offset_type idx)
4628 {
4629 const char *matched_name = mock_index.symbol_name_at (idx);
4630 const char *expected_str
4631 = expected_it == expected_end ? NULL : *expected_it++;
4632
4633 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4634 mismatch (expected_str, matched_name);
4635 });
4636
4637 const char *expected_str
4638 = expected_it == expected_end ? NULL : *expected_it++;
4639 if (expected_str != NULL)
4640 mismatch (expected_str, NULL);
4641
4642 return matched;
4643 }
4644
4645 /* The symbols added to the mock mapped_index for testing (in
4646 canonical form). */
4647 static const char *test_symbols[] = {
4648 "function",
4649 "std::bar",
4650 "std::zfunction",
4651 "std::zfunction2",
4652 "w1::w2",
4653 "ns::foo<char*>",
4654 "ns::foo<int>",
4655 "ns::foo<long>",
4656 "ns2::tmpl<int>::foo2",
4657 "(anonymous namespace)::A::B::C",
4658
4659 /* These are used to check that the increment-last-char in the
4660 matching algorithm for completion doesn't match "t1_fund" when
4661 completing "t1_func". */
4662 "t1_func",
4663 "t1_func1",
4664 "t1_fund",
4665 "t1_fund1",
4666
4667 /* A UTF-8 name with multi-byte sequences to make sure that
4668 cp-name-parser understands this as a single identifier ("função"
4669 is "function" in PT). */
4670 u8"u8função",
4671
4672 /* \377 (0xff) is Latin1 'ÿ'. */
4673 "yfunc\377",
4674
4675 /* \377 (0xff) is Latin1 'ÿ'. */
4676 "\377",
4677 "\377\377123",
4678
4679 /* A name with all sorts of complications. Starts with "z" to make
4680 it easier for the completion tests below. */
4681 #define Z_SYM_NAME \
4682 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4683 "::tuple<(anonymous namespace)::ui*, " \
4684 "std::default_delete<(anonymous namespace)::ui>, void>"
4685
4686 Z_SYM_NAME
4687 };
4688
4689 /* Returns true if the mapped_index_base::find_name_component_bounds
4690 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4691 in completion mode. */
4692
4693 static bool
4694 check_find_bounds_finds (mapped_index_base &index,
4695 const char *search_name,
4696 gdb::array_view<const char *> expected_syms)
4697 {
4698 lookup_name_info lookup_name (search_name,
4699 symbol_name_match_type::FULL, true);
4700
4701 auto bounds = index.find_name_components_bounds (lookup_name);
4702
4703 size_t distance = std::distance (bounds.first, bounds.second);
4704 if (distance != expected_syms.size ())
4705 return false;
4706
4707 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4708 {
4709 auto nc_elem = bounds.first + exp_elem;
4710 const char *qualified = index.symbol_name_at (nc_elem->idx);
4711 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4712 return false;
4713 }
4714
4715 return true;
4716 }
4717
4718 /* Test the lower-level mapped_index::find_name_component_bounds
4719 method. */
4720
4721 static void
4722 test_mapped_index_find_name_component_bounds ()
4723 {
4724 mock_mapped_index mock_index (test_symbols);
4725
4726 mock_index.build_name_components ();
4727
4728 /* Test the lower-level mapped_index::find_name_component_bounds
4729 method in completion mode. */
4730 {
4731 static const char *expected_syms[] = {
4732 "t1_func",
4733 "t1_func1",
4734 };
4735
4736 SELF_CHECK (check_find_bounds_finds (mock_index,
4737 "t1_func", expected_syms));
4738 }
4739
4740 /* Check that the increment-last-char in the name matching algorithm
4741 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4742 {
4743 static const char *expected_syms1[] = {
4744 "\377",
4745 "\377\377123",
4746 };
4747 SELF_CHECK (check_find_bounds_finds (mock_index,
4748 "\377", expected_syms1));
4749
4750 static const char *expected_syms2[] = {
4751 "\377\377123",
4752 };
4753 SELF_CHECK (check_find_bounds_finds (mock_index,
4754 "\377\377", expected_syms2));
4755 }
4756 }
4757
4758 /* Test dw2_expand_symtabs_matching_symbol. */
4759
4760 static void
4761 test_dw2_expand_symtabs_matching_symbol ()
4762 {
4763 mock_mapped_index mock_index (test_symbols);
4764
4765 /* We let all tests run until the end even if some fails, for debug
4766 convenience. */
4767 bool any_mismatch = false;
4768
4769 /* Create the expected symbols list (an initializer_list). Needed
4770 because lists have commas, and we need to pass them to CHECK,
4771 which is a macro. */
4772 #define EXPECT(...) { __VA_ARGS__ }
4773
4774 /* Wrapper for check_match that passes down the current
4775 __FILE__/__LINE__. */
4776 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4777 any_mismatch |= !check_match (__FILE__, __LINE__, \
4778 mock_index, \
4779 NAME, MATCH_TYPE, COMPLETION_MODE, \
4780 EXPECTED_LIST)
4781
4782 /* Identity checks. */
4783 for (const char *sym : test_symbols)
4784 {
4785 /* Should be able to match all existing symbols. */
4786 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4787 EXPECT (sym));
4788
4789 /* Should be able to match all existing symbols with
4790 parameters. */
4791 std::string with_params = std::string (sym) + "(int)";
4792 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4793 EXPECT (sym));
4794
4795 /* Should be able to match all existing symbols with
4796 parameters and qualifiers. */
4797 with_params = std::string (sym) + " ( int ) const";
4798 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4799 EXPECT (sym));
4800
4801 /* This should really find sym, but cp-name-parser.y doesn't
4802 know about lvalue/rvalue qualifiers yet. */
4803 with_params = std::string (sym) + " ( int ) &&";
4804 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4805 {});
4806 }
4807
4808 /* Check that the name matching algorithm for completion doesn't get
4809 confused with Latin1 'ÿ' / 0xff. */
4810 {
4811 static const char str[] = "\377";
4812 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4813 EXPECT ("\377", "\377\377123"));
4814 }
4815
4816 /* Check that the increment-last-char in the matching algorithm for
4817 completion doesn't match "t1_fund" when completing "t1_func". */
4818 {
4819 static const char str[] = "t1_func";
4820 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4821 EXPECT ("t1_func", "t1_func1"));
4822 }
4823
4824 /* Check that completion mode works at each prefix of the expected
4825 symbol name. */
4826 {
4827 static const char str[] = "function(int)";
4828 size_t len = strlen (str);
4829 std::string lookup;
4830
4831 for (size_t i = 1; i < len; i++)
4832 {
4833 lookup.assign (str, i);
4834 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4835 EXPECT ("function"));
4836 }
4837 }
4838
4839 /* While "w" is a prefix of both components, the match function
4840 should still only be called once. */
4841 {
4842 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4843 EXPECT ("w1::w2"));
4844 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4845 EXPECT ("w1::w2"));
4846 }
4847
4848 /* Same, with a "complicated" symbol. */
4849 {
4850 static const char str[] = Z_SYM_NAME;
4851 size_t len = strlen (str);
4852 std::string lookup;
4853
4854 for (size_t i = 1; i < len; i++)
4855 {
4856 lookup.assign (str, i);
4857 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4858 EXPECT (Z_SYM_NAME));
4859 }
4860 }
4861
4862 /* In FULL mode, an incomplete symbol doesn't match. */
4863 {
4864 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4865 {});
4866 }
4867
4868 /* A complete symbol with parameters matches any overload, since the
4869 index has no overload info. */
4870 {
4871 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4872 EXPECT ("std::zfunction", "std::zfunction2"));
4873 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4874 EXPECT ("std::zfunction", "std::zfunction2"));
4875 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4876 EXPECT ("std::zfunction", "std::zfunction2"));
4877 }
4878
4879 /* Check that whitespace is ignored appropriately. A symbol with a
4880 template argument list. */
4881 {
4882 static const char expected[] = "ns::foo<int>";
4883 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4884 EXPECT (expected));
4885 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4886 EXPECT (expected));
4887 }
4888
4889 /* Check that whitespace is ignored appropriately. A symbol with a
4890 template argument list that includes a pointer. */
4891 {
4892 static const char expected[] = "ns::foo<char*>";
4893 /* Try both completion and non-completion modes. */
4894 static const bool completion_mode[2] = {false, true};
4895 for (size_t i = 0; i < 2; i++)
4896 {
4897 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4898 completion_mode[i], EXPECT (expected));
4899 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4900 completion_mode[i], EXPECT (expected));
4901
4902 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4903 completion_mode[i], EXPECT (expected));
4904 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4905 completion_mode[i], EXPECT (expected));
4906 }
4907 }
4908
4909 {
4910 /* Check method qualifiers are ignored. */
4911 static const char expected[] = "ns::foo<char*>";
4912 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4913 symbol_name_match_type::FULL, true, EXPECT (expected));
4914 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4915 symbol_name_match_type::FULL, true, EXPECT (expected));
4916 CHECK_MATCH ("foo < char * > ( int ) const",
4917 symbol_name_match_type::WILD, true, EXPECT (expected));
4918 CHECK_MATCH ("foo < char * > ( int ) &&",
4919 symbol_name_match_type::WILD, true, EXPECT (expected));
4920 }
4921
4922 /* Test lookup names that don't match anything. */
4923 {
4924 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4925 {});
4926
4927 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4928 {});
4929 }
4930
4931 /* Some wild matching tests, exercising "(anonymous namespace)",
4932 which should not be confused with a parameter list. */
4933 {
4934 static const char *syms[] = {
4935 "A::B::C",
4936 "B::C",
4937 "C",
4938 "A :: B :: C ( int )",
4939 "B :: C ( int )",
4940 "C ( int )",
4941 };
4942
4943 for (const char *s : syms)
4944 {
4945 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4946 EXPECT ("(anonymous namespace)::A::B::C"));
4947 }
4948 }
4949
4950 {
4951 static const char expected[] = "ns2::tmpl<int>::foo2";
4952 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4953 EXPECT (expected));
4954 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4955 EXPECT (expected));
4956 }
4957
4958 SELF_CHECK (!any_mismatch);
4959
4960 #undef EXPECT
4961 #undef CHECK_MATCH
4962 }
4963
4964 static void
4965 run_test ()
4966 {
4967 test_mapped_index_find_name_component_bounds ();
4968 test_dw2_expand_symtabs_matching_symbol ();
4969 }
4970
4971 }} // namespace selftests::dw2_expand_symtabs_matching
4972
4973 #endif /* GDB_SELF_TEST */
4974
4975 /* If FILE_MATCHER is NULL or if PER_CU has
4976 dwarf2_per_cu_quick_data::MARK set (see
4977 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4978 EXPANSION_NOTIFY on it. */
4979
4980 static void
4981 dw2_expand_symtabs_matching_one
4982 (struct dwarf2_per_cu_data *per_cu,
4983 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4984 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4985 {
4986 if (file_matcher == NULL || per_cu->v.quick->mark)
4987 {
4988 bool symtab_was_null
4989 = (per_cu->v.quick->compunit_symtab == NULL);
4990
4991 dw2_instantiate_symtab (per_cu, false);
4992
4993 if (expansion_notify != NULL
4994 && symtab_was_null
4995 && per_cu->v.quick->compunit_symtab != NULL)
4996 expansion_notify (per_cu->v.quick->compunit_symtab);
4997 }
4998 }
4999
5000 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5001 matched, to expand corresponding CUs that were marked. IDX is the
5002 index of the symbol name that matched. */
5003
5004 static void
5005 dw2_expand_marked_cus
5006 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5007 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5008 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5009 search_domain kind)
5010 {
5011 offset_type *vec, vec_len, vec_idx;
5012 bool global_seen = false;
5013 mapped_index &index = *dwarf2_per_objfile->index_table;
5014
5015 vec = (offset_type *) (index.constant_pool
5016 + MAYBE_SWAP (index.symbol_table[idx].vec));
5017 vec_len = MAYBE_SWAP (vec[0]);
5018 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5019 {
5020 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5021 /* This value is only valid for index versions >= 7. */
5022 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5023 gdb_index_symbol_kind symbol_kind =
5024 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5025 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5026 /* Only check the symbol attributes if they're present.
5027 Indices prior to version 7 don't record them,
5028 and indices >= 7 may elide them for certain symbols
5029 (gold does this). */
5030 int attrs_valid =
5031 (index.version >= 7
5032 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5033
5034 /* Work around gold/15646. */
5035 if (attrs_valid)
5036 {
5037 if (!is_static && global_seen)
5038 continue;
5039 if (!is_static)
5040 global_seen = true;
5041 }
5042
5043 /* Only check the symbol's kind if it has one. */
5044 if (attrs_valid)
5045 {
5046 switch (kind)
5047 {
5048 case VARIABLES_DOMAIN:
5049 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5050 continue;
5051 break;
5052 case FUNCTIONS_DOMAIN:
5053 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5054 continue;
5055 break;
5056 case TYPES_DOMAIN:
5057 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5058 continue;
5059 break;
5060 default:
5061 break;
5062 }
5063 }
5064
5065 /* Don't crash on bad data. */
5066 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5067 + dwarf2_per_objfile->all_type_units.size ()))
5068 {
5069 complaint (_(".gdb_index entry has bad CU index"
5070 " [in module %s]"),
5071 objfile_name (dwarf2_per_objfile->objfile));
5072 continue;
5073 }
5074
5075 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5076 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5077 expansion_notify);
5078 }
5079 }
5080
5081 /* If FILE_MATCHER is non-NULL, set all the
5082 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5083 that match FILE_MATCHER. */
5084
5085 static void
5086 dw_expand_symtabs_matching_file_matcher
5087 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5088 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5089 {
5090 if (file_matcher == NULL)
5091 return;
5092
5093 objfile *const objfile = dwarf2_per_objfile->objfile;
5094
5095 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5096 htab_eq_pointer,
5097 NULL, xcalloc, xfree));
5098 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5099 htab_eq_pointer,
5100 NULL, xcalloc, xfree));
5101
5102 /* The rule is CUs specify all the files, including those used by
5103 any TU, so there's no need to scan TUs here. */
5104
5105 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5106 {
5107 QUIT;
5108
5109 per_cu->v.quick->mark = 0;
5110
5111 /* We only need to look at symtabs not already expanded. */
5112 if (per_cu->v.quick->compunit_symtab)
5113 continue;
5114
5115 quick_file_names *file_data = dw2_get_file_names (per_cu);
5116 if (file_data == NULL)
5117 continue;
5118
5119 if (htab_find (visited_not_found.get (), file_data) != NULL)
5120 continue;
5121 else if (htab_find (visited_found.get (), file_data) != NULL)
5122 {
5123 per_cu->v.quick->mark = 1;
5124 continue;
5125 }
5126
5127 for (int j = 0; j < file_data->num_file_names; ++j)
5128 {
5129 const char *this_real_name;
5130
5131 if (file_matcher (file_data->file_names[j], false))
5132 {
5133 per_cu->v.quick->mark = 1;
5134 break;
5135 }
5136
5137 /* Before we invoke realpath, which can get expensive when many
5138 files are involved, do a quick comparison of the basenames. */
5139 if (!basenames_may_differ
5140 && !file_matcher (lbasename (file_data->file_names[j]),
5141 true))
5142 continue;
5143
5144 this_real_name = dw2_get_real_path (objfile, file_data, j);
5145 if (file_matcher (this_real_name, false))
5146 {
5147 per_cu->v.quick->mark = 1;
5148 break;
5149 }
5150 }
5151
5152 void **slot = htab_find_slot (per_cu->v.quick->mark
5153 ? visited_found.get ()
5154 : visited_not_found.get (),
5155 file_data, INSERT);
5156 *slot = file_data;
5157 }
5158 }
5159
5160 static void
5161 dw2_expand_symtabs_matching
5162 (struct objfile *objfile,
5163 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5164 const lookup_name_info &lookup_name,
5165 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5166 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5167 enum search_domain kind)
5168 {
5169 struct dwarf2_per_objfile *dwarf2_per_objfile
5170 = get_dwarf2_per_objfile (objfile);
5171
5172 /* index_table is NULL if OBJF_READNOW. */
5173 if (!dwarf2_per_objfile->index_table)
5174 return;
5175
5176 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5177
5178 mapped_index &index = *dwarf2_per_objfile->index_table;
5179
5180 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5181 symbol_matcher,
5182 kind, [&] (offset_type idx)
5183 {
5184 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5185 expansion_notify, kind);
5186 });
5187 }
5188
5189 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5190 symtab. */
5191
5192 static struct compunit_symtab *
5193 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5194 CORE_ADDR pc)
5195 {
5196 int i;
5197
5198 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5199 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5200 return cust;
5201
5202 if (cust->includes == NULL)
5203 return NULL;
5204
5205 for (i = 0; cust->includes[i]; ++i)
5206 {
5207 struct compunit_symtab *s = cust->includes[i];
5208
5209 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5210 if (s != NULL)
5211 return s;
5212 }
5213
5214 return NULL;
5215 }
5216
5217 static struct compunit_symtab *
5218 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5219 struct bound_minimal_symbol msymbol,
5220 CORE_ADDR pc,
5221 struct obj_section *section,
5222 int warn_if_readin)
5223 {
5224 struct dwarf2_per_cu_data *data;
5225 struct compunit_symtab *result;
5226
5227 if (!objfile->partial_symtabs->psymtabs_addrmap)
5228 return NULL;
5229
5230 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5231 SECT_OFF_TEXT (objfile));
5232 data = (struct dwarf2_per_cu_data *) addrmap_find
5233 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5234 if (!data)
5235 return NULL;
5236
5237 if (warn_if_readin && data->v.quick->compunit_symtab)
5238 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5239 paddress (get_objfile_arch (objfile), pc));
5240
5241 result
5242 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5243 false),
5244 pc);
5245 gdb_assert (result != NULL);
5246 return result;
5247 }
5248
5249 static void
5250 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5251 void *data, int need_fullname)
5252 {
5253 struct dwarf2_per_objfile *dwarf2_per_objfile
5254 = get_dwarf2_per_objfile (objfile);
5255
5256 if (!dwarf2_per_objfile->filenames_cache)
5257 {
5258 dwarf2_per_objfile->filenames_cache.emplace ();
5259
5260 htab_up visited (htab_create_alloc (10,
5261 htab_hash_pointer, htab_eq_pointer,
5262 NULL, xcalloc, xfree));
5263
5264 /* The rule is CUs specify all the files, including those used
5265 by any TU, so there's no need to scan TUs here. We can
5266 ignore file names coming from already-expanded CUs. */
5267
5268 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5269 {
5270 if (per_cu->v.quick->compunit_symtab)
5271 {
5272 void **slot = htab_find_slot (visited.get (),
5273 per_cu->v.quick->file_names,
5274 INSERT);
5275
5276 *slot = per_cu->v.quick->file_names;
5277 }
5278 }
5279
5280 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5281 {
5282 /* We only need to look at symtabs not already expanded. */
5283 if (per_cu->v.quick->compunit_symtab)
5284 continue;
5285
5286 quick_file_names *file_data = dw2_get_file_names (per_cu);
5287 if (file_data == NULL)
5288 continue;
5289
5290 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5291 if (*slot)
5292 {
5293 /* Already visited. */
5294 continue;
5295 }
5296 *slot = file_data;
5297
5298 for (int j = 0; j < file_data->num_file_names; ++j)
5299 {
5300 const char *filename = file_data->file_names[j];
5301 dwarf2_per_objfile->filenames_cache->seen (filename);
5302 }
5303 }
5304 }
5305
5306 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5307 {
5308 gdb::unique_xmalloc_ptr<char> this_real_name;
5309
5310 if (need_fullname)
5311 this_real_name = gdb_realpath (filename);
5312 (*fun) (filename, this_real_name.get (), data);
5313 });
5314 }
5315
5316 static int
5317 dw2_has_symbols (struct objfile *objfile)
5318 {
5319 return 1;
5320 }
5321
5322 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5323 {
5324 dw2_has_symbols,
5325 dw2_find_last_source_symtab,
5326 dw2_forget_cached_source_info,
5327 dw2_map_symtabs_matching_filename,
5328 dw2_lookup_symbol,
5329 dw2_print_stats,
5330 dw2_dump,
5331 dw2_expand_symtabs_for_function,
5332 dw2_expand_all_symtabs,
5333 dw2_expand_symtabs_with_fullname,
5334 dw2_map_matching_symbols,
5335 dw2_expand_symtabs_matching,
5336 dw2_find_pc_sect_compunit_symtab,
5337 NULL,
5338 dw2_map_symbol_filenames
5339 };
5340
5341 /* DWARF-5 debug_names reader. */
5342
5343 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5344 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5345
5346 /* A helper function that reads the .debug_names section in SECTION
5347 and fills in MAP. FILENAME is the name of the file containing the
5348 section; it is used for error reporting.
5349
5350 Returns true if all went well, false otherwise. */
5351
5352 static bool
5353 read_debug_names_from_section (struct objfile *objfile,
5354 const char *filename,
5355 struct dwarf2_section_info *section,
5356 mapped_debug_names &map)
5357 {
5358 if (dwarf2_section_empty_p (section))
5359 return false;
5360
5361 /* Older elfutils strip versions could keep the section in the main
5362 executable while splitting it for the separate debug info file. */
5363 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5364 return false;
5365
5366 dwarf2_read_section (objfile, section);
5367
5368 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5369
5370 const gdb_byte *addr = section->buffer;
5371
5372 bfd *const abfd = get_section_bfd_owner (section);
5373
5374 unsigned int bytes_read;
5375 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5376 addr += bytes_read;
5377
5378 map.dwarf5_is_dwarf64 = bytes_read != 4;
5379 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5380 if (bytes_read + length != section->size)
5381 {
5382 /* There may be multiple per-CU indices. */
5383 warning (_("Section .debug_names in %s length %s does not match "
5384 "section length %s, ignoring .debug_names."),
5385 filename, plongest (bytes_read + length),
5386 pulongest (section->size));
5387 return false;
5388 }
5389
5390 /* The version number. */
5391 uint16_t version = read_2_bytes (abfd, addr);
5392 addr += 2;
5393 if (version != 5)
5394 {
5395 warning (_("Section .debug_names in %s has unsupported version %d, "
5396 "ignoring .debug_names."),
5397 filename, version);
5398 return false;
5399 }
5400
5401 /* Padding. */
5402 uint16_t padding = read_2_bytes (abfd, addr);
5403 addr += 2;
5404 if (padding != 0)
5405 {
5406 warning (_("Section .debug_names in %s has unsupported padding %d, "
5407 "ignoring .debug_names."),
5408 filename, padding);
5409 return false;
5410 }
5411
5412 /* comp_unit_count - The number of CUs in the CU list. */
5413 map.cu_count = read_4_bytes (abfd, addr);
5414 addr += 4;
5415
5416 /* local_type_unit_count - The number of TUs in the local TU
5417 list. */
5418 map.tu_count = read_4_bytes (abfd, addr);
5419 addr += 4;
5420
5421 /* foreign_type_unit_count - The number of TUs in the foreign TU
5422 list. */
5423 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5424 addr += 4;
5425 if (foreign_tu_count != 0)
5426 {
5427 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5428 "ignoring .debug_names."),
5429 filename, static_cast<unsigned long> (foreign_tu_count));
5430 return false;
5431 }
5432
5433 /* bucket_count - The number of hash buckets in the hash lookup
5434 table. */
5435 map.bucket_count = read_4_bytes (abfd, addr);
5436 addr += 4;
5437
5438 /* name_count - The number of unique names in the index. */
5439 map.name_count = read_4_bytes (abfd, addr);
5440 addr += 4;
5441
5442 /* abbrev_table_size - The size in bytes of the abbreviations
5443 table. */
5444 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5445 addr += 4;
5446
5447 /* augmentation_string_size - The size in bytes of the augmentation
5448 string. This value is rounded up to a multiple of 4. */
5449 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5450 addr += 4;
5451 map.augmentation_is_gdb = ((augmentation_string_size
5452 == sizeof (dwarf5_augmentation))
5453 && memcmp (addr, dwarf5_augmentation,
5454 sizeof (dwarf5_augmentation)) == 0);
5455 augmentation_string_size += (-augmentation_string_size) & 3;
5456 addr += augmentation_string_size;
5457
5458 /* List of CUs */
5459 map.cu_table_reordered = addr;
5460 addr += map.cu_count * map.offset_size;
5461
5462 /* List of Local TUs */
5463 map.tu_table_reordered = addr;
5464 addr += map.tu_count * map.offset_size;
5465
5466 /* Hash Lookup Table */
5467 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5468 addr += map.bucket_count * 4;
5469 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5470 addr += map.name_count * 4;
5471
5472 /* Name Table */
5473 map.name_table_string_offs_reordered = addr;
5474 addr += map.name_count * map.offset_size;
5475 map.name_table_entry_offs_reordered = addr;
5476 addr += map.name_count * map.offset_size;
5477
5478 const gdb_byte *abbrev_table_start = addr;
5479 for (;;)
5480 {
5481 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5482 addr += bytes_read;
5483 if (index_num == 0)
5484 break;
5485
5486 const auto insertpair
5487 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5488 if (!insertpair.second)
5489 {
5490 warning (_("Section .debug_names in %s has duplicate index %s, "
5491 "ignoring .debug_names."),
5492 filename, pulongest (index_num));
5493 return false;
5494 }
5495 mapped_debug_names::index_val &indexval = insertpair.first->second;
5496 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5497 addr += bytes_read;
5498
5499 for (;;)
5500 {
5501 mapped_debug_names::index_val::attr attr;
5502 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5503 addr += bytes_read;
5504 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5505 addr += bytes_read;
5506 if (attr.form == DW_FORM_implicit_const)
5507 {
5508 attr.implicit_const = read_signed_leb128 (abfd, addr,
5509 &bytes_read);
5510 addr += bytes_read;
5511 }
5512 if (attr.dw_idx == 0 && attr.form == 0)
5513 break;
5514 indexval.attr_vec.push_back (std::move (attr));
5515 }
5516 }
5517 if (addr != abbrev_table_start + abbrev_table_size)
5518 {
5519 warning (_("Section .debug_names in %s has abbreviation_table "
5520 "of size %zu vs. written as %u, ignoring .debug_names."),
5521 filename, addr - abbrev_table_start, abbrev_table_size);
5522 return false;
5523 }
5524 map.entry_pool = addr;
5525
5526 return true;
5527 }
5528
5529 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5530 list. */
5531
5532 static void
5533 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5534 const mapped_debug_names &map,
5535 dwarf2_section_info &section,
5536 bool is_dwz)
5537 {
5538 sect_offset sect_off_prev;
5539 for (uint32_t i = 0; i <= map.cu_count; ++i)
5540 {
5541 sect_offset sect_off_next;
5542 if (i < map.cu_count)
5543 {
5544 sect_off_next
5545 = (sect_offset) (extract_unsigned_integer
5546 (map.cu_table_reordered + i * map.offset_size,
5547 map.offset_size,
5548 map.dwarf5_byte_order));
5549 }
5550 else
5551 sect_off_next = (sect_offset) section.size;
5552 if (i >= 1)
5553 {
5554 const ULONGEST length = sect_off_next - sect_off_prev;
5555 dwarf2_per_cu_data *per_cu
5556 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5557 sect_off_prev, length);
5558 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5559 }
5560 sect_off_prev = sect_off_next;
5561 }
5562 }
5563
5564 /* Read the CU list from the mapped index, and use it to create all
5565 the CU objects for this dwarf2_per_objfile. */
5566
5567 static void
5568 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5569 const mapped_debug_names &map,
5570 const mapped_debug_names &dwz_map)
5571 {
5572 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5573 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5574
5575 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5576 dwarf2_per_objfile->info,
5577 false /* is_dwz */);
5578
5579 if (dwz_map.cu_count == 0)
5580 return;
5581
5582 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5583 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5584 true /* is_dwz */);
5585 }
5586
5587 /* Read .debug_names. If everything went ok, initialize the "quick"
5588 elements of all the CUs and return true. Otherwise, return false. */
5589
5590 static bool
5591 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5592 {
5593 std::unique_ptr<mapped_debug_names> map
5594 (new mapped_debug_names (dwarf2_per_objfile));
5595 mapped_debug_names dwz_map (dwarf2_per_objfile);
5596 struct objfile *objfile = dwarf2_per_objfile->objfile;
5597
5598 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5599 &dwarf2_per_objfile->debug_names,
5600 *map))
5601 return false;
5602
5603 /* Don't use the index if it's empty. */
5604 if (map->name_count == 0)
5605 return false;
5606
5607 /* If there is a .dwz file, read it so we can get its CU list as
5608 well. */
5609 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5610 if (dwz != NULL)
5611 {
5612 if (!read_debug_names_from_section (objfile,
5613 bfd_get_filename (dwz->dwz_bfd),
5614 &dwz->debug_names, dwz_map))
5615 {
5616 warning (_("could not read '.debug_names' section from %s; skipping"),
5617 bfd_get_filename (dwz->dwz_bfd));
5618 return false;
5619 }
5620 }
5621
5622 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5623
5624 if (map->tu_count != 0)
5625 {
5626 /* We can only handle a single .debug_types when we have an
5627 index. */
5628 if (dwarf2_per_objfile->types.size () != 1)
5629 return false;
5630
5631 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5632
5633 create_signatured_type_table_from_debug_names
5634 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5635 }
5636
5637 create_addrmap_from_aranges (dwarf2_per_objfile,
5638 &dwarf2_per_objfile->debug_aranges);
5639
5640 dwarf2_per_objfile->debug_names_table = std::move (map);
5641 dwarf2_per_objfile->using_index = 1;
5642 dwarf2_per_objfile->quick_file_names_table =
5643 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5644
5645 return true;
5646 }
5647
5648 /* Type used to manage iterating over all CUs looking for a symbol for
5649 .debug_names. */
5650
5651 class dw2_debug_names_iterator
5652 {
5653 public:
5654 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5655 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5656 dw2_debug_names_iterator (const mapped_debug_names &map,
5657 bool want_specific_block,
5658 block_enum block_index, domain_enum domain,
5659 const char *name)
5660 : m_map (map), m_want_specific_block (want_specific_block),
5661 m_block_index (block_index), m_domain (domain),
5662 m_addr (find_vec_in_debug_names (map, name))
5663 {}
5664
5665 dw2_debug_names_iterator (const mapped_debug_names &map,
5666 search_domain search, uint32_t namei)
5667 : m_map (map),
5668 m_search (search),
5669 m_addr (find_vec_in_debug_names (map, namei))
5670 {}
5671
5672 /* Return the next matching CU or NULL if there are no more. */
5673 dwarf2_per_cu_data *next ();
5674
5675 private:
5676 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5677 const char *name);
5678 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5679 uint32_t namei);
5680
5681 /* The internalized form of .debug_names. */
5682 const mapped_debug_names &m_map;
5683
5684 /* If true, only look for symbols that match BLOCK_INDEX. */
5685 const bool m_want_specific_block = false;
5686
5687 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5688 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5689 value. */
5690 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5691
5692 /* The kind of symbol we're looking for. */
5693 const domain_enum m_domain = UNDEF_DOMAIN;
5694 const search_domain m_search = ALL_DOMAIN;
5695
5696 /* The list of CUs from the index entry of the symbol, or NULL if
5697 not found. */
5698 const gdb_byte *m_addr;
5699 };
5700
5701 const char *
5702 mapped_debug_names::namei_to_name (uint32_t namei) const
5703 {
5704 const ULONGEST namei_string_offs
5705 = extract_unsigned_integer ((name_table_string_offs_reordered
5706 + namei * offset_size),
5707 offset_size,
5708 dwarf5_byte_order);
5709 return read_indirect_string_at_offset
5710 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5711 }
5712
5713 /* Find a slot in .debug_names for the object named NAME. If NAME is
5714 found, return pointer to its pool data. If NAME cannot be found,
5715 return NULL. */
5716
5717 const gdb_byte *
5718 dw2_debug_names_iterator::find_vec_in_debug_names
5719 (const mapped_debug_names &map, const char *name)
5720 {
5721 int (*cmp) (const char *, const char *);
5722
5723 if (current_language->la_language == language_cplus
5724 || current_language->la_language == language_fortran
5725 || current_language->la_language == language_d)
5726 {
5727 /* NAME is already canonical. Drop any qualifiers as
5728 .debug_names does not contain any. */
5729
5730 if (strchr (name, '(') != NULL)
5731 {
5732 gdb::unique_xmalloc_ptr<char> without_params
5733 = cp_remove_params (name);
5734
5735 if (without_params != NULL)
5736 {
5737 name = without_params.get();
5738 }
5739 }
5740 }
5741
5742 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5743
5744 const uint32_t full_hash = dwarf5_djb_hash (name);
5745 uint32_t namei
5746 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5747 (map.bucket_table_reordered
5748 + (full_hash % map.bucket_count)), 4,
5749 map.dwarf5_byte_order);
5750 if (namei == 0)
5751 return NULL;
5752 --namei;
5753 if (namei >= map.name_count)
5754 {
5755 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5756 "[in module %s]"),
5757 namei, map.name_count,
5758 objfile_name (map.dwarf2_per_objfile->objfile));
5759 return NULL;
5760 }
5761
5762 for (;;)
5763 {
5764 const uint32_t namei_full_hash
5765 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5766 (map.hash_table_reordered + namei), 4,
5767 map.dwarf5_byte_order);
5768 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5769 return NULL;
5770
5771 if (full_hash == namei_full_hash)
5772 {
5773 const char *const namei_string = map.namei_to_name (namei);
5774
5775 #if 0 /* An expensive sanity check. */
5776 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5777 {
5778 complaint (_("Wrong .debug_names hash for string at index %u "
5779 "[in module %s]"),
5780 namei, objfile_name (dwarf2_per_objfile->objfile));
5781 return NULL;
5782 }
5783 #endif
5784
5785 if (cmp (namei_string, name) == 0)
5786 {
5787 const ULONGEST namei_entry_offs
5788 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5789 + namei * map.offset_size),
5790 map.offset_size, map.dwarf5_byte_order);
5791 return map.entry_pool + namei_entry_offs;
5792 }
5793 }
5794
5795 ++namei;
5796 if (namei >= map.name_count)
5797 return NULL;
5798 }
5799 }
5800
5801 const gdb_byte *
5802 dw2_debug_names_iterator::find_vec_in_debug_names
5803 (const mapped_debug_names &map, uint32_t namei)
5804 {
5805 if (namei >= map.name_count)
5806 {
5807 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5808 "[in module %s]"),
5809 namei, map.name_count,
5810 objfile_name (map.dwarf2_per_objfile->objfile));
5811 return NULL;
5812 }
5813
5814 const ULONGEST namei_entry_offs
5815 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5816 + namei * map.offset_size),
5817 map.offset_size, map.dwarf5_byte_order);
5818 return map.entry_pool + namei_entry_offs;
5819 }
5820
5821 /* See dw2_debug_names_iterator. */
5822
5823 dwarf2_per_cu_data *
5824 dw2_debug_names_iterator::next ()
5825 {
5826 if (m_addr == NULL)
5827 return NULL;
5828
5829 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5830 struct objfile *objfile = dwarf2_per_objfile->objfile;
5831 bfd *const abfd = objfile->obfd;
5832
5833 again:
5834
5835 unsigned int bytes_read;
5836 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5837 m_addr += bytes_read;
5838 if (abbrev == 0)
5839 return NULL;
5840
5841 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5842 if (indexval_it == m_map.abbrev_map.cend ())
5843 {
5844 complaint (_("Wrong .debug_names undefined abbrev code %s "
5845 "[in module %s]"),
5846 pulongest (abbrev), objfile_name (objfile));
5847 return NULL;
5848 }
5849 const mapped_debug_names::index_val &indexval = indexval_it->second;
5850 bool have_is_static = false;
5851 bool is_static;
5852 dwarf2_per_cu_data *per_cu = NULL;
5853 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5854 {
5855 ULONGEST ull;
5856 switch (attr.form)
5857 {
5858 case DW_FORM_implicit_const:
5859 ull = attr.implicit_const;
5860 break;
5861 case DW_FORM_flag_present:
5862 ull = 1;
5863 break;
5864 case DW_FORM_udata:
5865 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5866 m_addr += bytes_read;
5867 break;
5868 default:
5869 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5870 dwarf_form_name (attr.form),
5871 objfile_name (objfile));
5872 return NULL;
5873 }
5874 switch (attr.dw_idx)
5875 {
5876 case DW_IDX_compile_unit:
5877 /* Don't crash on bad data. */
5878 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5879 {
5880 complaint (_(".debug_names entry has bad CU index %s"
5881 " [in module %s]"),
5882 pulongest (ull),
5883 objfile_name (dwarf2_per_objfile->objfile));
5884 continue;
5885 }
5886 per_cu = dwarf2_per_objfile->get_cutu (ull);
5887 break;
5888 case DW_IDX_type_unit:
5889 /* Don't crash on bad data. */
5890 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5891 {
5892 complaint (_(".debug_names entry has bad TU index %s"
5893 " [in module %s]"),
5894 pulongest (ull),
5895 objfile_name (dwarf2_per_objfile->objfile));
5896 continue;
5897 }
5898 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5899 break;
5900 case DW_IDX_GNU_internal:
5901 if (!m_map.augmentation_is_gdb)
5902 break;
5903 have_is_static = true;
5904 is_static = true;
5905 break;
5906 case DW_IDX_GNU_external:
5907 if (!m_map.augmentation_is_gdb)
5908 break;
5909 have_is_static = true;
5910 is_static = false;
5911 break;
5912 }
5913 }
5914
5915 /* Skip if already read in. */
5916 if (per_cu->v.quick->compunit_symtab)
5917 goto again;
5918
5919 /* Check static vs global. */
5920 if (have_is_static)
5921 {
5922 const bool want_static = m_block_index != GLOBAL_BLOCK;
5923 if (m_want_specific_block && want_static != is_static)
5924 goto again;
5925 }
5926
5927 /* Match dw2_symtab_iter_next, symbol_kind
5928 and debug_names::psymbol_tag. */
5929 switch (m_domain)
5930 {
5931 case VAR_DOMAIN:
5932 switch (indexval.dwarf_tag)
5933 {
5934 case DW_TAG_variable:
5935 case DW_TAG_subprogram:
5936 /* Some types are also in VAR_DOMAIN. */
5937 case DW_TAG_typedef:
5938 case DW_TAG_structure_type:
5939 break;
5940 default:
5941 goto again;
5942 }
5943 break;
5944 case STRUCT_DOMAIN:
5945 switch (indexval.dwarf_tag)
5946 {
5947 case DW_TAG_typedef:
5948 case DW_TAG_structure_type:
5949 break;
5950 default:
5951 goto again;
5952 }
5953 break;
5954 case LABEL_DOMAIN:
5955 switch (indexval.dwarf_tag)
5956 {
5957 case 0:
5958 case DW_TAG_variable:
5959 break;
5960 default:
5961 goto again;
5962 }
5963 break;
5964 default:
5965 break;
5966 }
5967
5968 /* Match dw2_expand_symtabs_matching, symbol_kind and
5969 debug_names::psymbol_tag. */
5970 switch (m_search)
5971 {
5972 case VARIABLES_DOMAIN:
5973 switch (indexval.dwarf_tag)
5974 {
5975 case DW_TAG_variable:
5976 break;
5977 default:
5978 goto again;
5979 }
5980 break;
5981 case FUNCTIONS_DOMAIN:
5982 switch (indexval.dwarf_tag)
5983 {
5984 case DW_TAG_subprogram:
5985 break;
5986 default:
5987 goto again;
5988 }
5989 break;
5990 case TYPES_DOMAIN:
5991 switch (indexval.dwarf_tag)
5992 {
5993 case DW_TAG_typedef:
5994 case DW_TAG_structure_type:
5995 break;
5996 default:
5997 goto again;
5998 }
5999 break;
6000 default:
6001 break;
6002 }
6003
6004 return per_cu;
6005 }
6006
6007 static struct compunit_symtab *
6008 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6009 const char *name, domain_enum domain)
6010 {
6011 const block_enum block_index = static_cast<block_enum> (block_index_int);
6012 struct dwarf2_per_objfile *dwarf2_per_objfile
6013 = get_dwarf2_per_objfile (objfile);
6014
6015 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6016 if (!mapp)
6017 {
6018 /* index is NULL if OBJF_READNOW. */
6019 return NULL;
6020 }
6021 const auto &map = *mapp;
6022
6023 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6024 block_index, domain, name);
6025
6026 struct compunit_symtab *stab_best = NULL;
6027 struct dwarf2_per_cu_data *per_cu;
6028 while ((per_cu = iter.next ()) != NULL)
6029 {
6030 struct symbol *sym, *with_opaque = NULL;
6031 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6032 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6033 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6034
6035 sym = block_find_symbol (block, name, domain,
6036 block_find_non_opaque_type_preferred,
6037 &with_opaque);
6038
6039 /* Some caution must be observed with overloaded functions and
6040 methods, since the index will not contain any overload
6041 information (but NAME might contain it). */
6042
6043 if (sym != NULL
6044 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6045 return stab;
6046 if (with_opaque != NULL
6047 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6048 stab_best = stab;
6049
6050 /* Keep looking through other CUs. */
6051 }
6052
6053 return stab_best;
6054 }
6055
6056 /* This dumps minimal information about .debug_names. It is called
6057 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6058 uses this to verify that .debug_names has been loaded. */
6059
6060 static void
6061 dw2_debug_names_dump (struct objfile *objfile)
6062 {
6063 struct dwarf2_per_objfile *dwarf2_per_objfile
6064 = get_dwarf2_per_objfile (objfile);
6065
6066 gdb_assert (dwarf2_per_objfile->using_index);
6067 printf_filtered (".debug_names:");
6068 if (dwarf2_per_objfile->debug_names_table)
6069 printf_filtered (" exists\n");
6070 else
6071 printf_filtered (" faked for \"readnow\"\n");
6072 printf_filtered ("\n");
6073 }
6074
6075 static void
6076 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6077 const char *func_name)
6078 {
6079 struct dwarf2_per_objfile *dwarf2_per_objfile
6080 = get_dwarf2_per_objfile (objfile);
6081
6082 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6083 if (dwarf2_per_objfile->debug_names_table)
6084 {
6085 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6086
6087 /* Note: It doesn't matter what we pass for block_index here. */
6088 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6089 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6090
6091 struct dwarf2_per_cu_data *per_cu;
6092 while ((per_cu = iter.next ()) != NULL)
6093 dw2_instantiate_symtab (per_cu, false);
6094 }
6095 }
6096
6097 static void
6098 dw2_debug_names_expand_symtabs_matching
6099 (struct objfile *objfile,
6100 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6101 const lookup_name_info &lookup_name,
6102 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6103 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6104 enum search_domain kind)
6105 {
6106 struct dwarf2_per_objfile *dwarf2_per_objfile
6107 = get_dwarf2_per_objfile (objfile);
6108
6109 /* debug_names_table is NULL if OBJF_READNOW. */
6110 if (!dwarf2_per_objfile->debug_names_table)
6111 return;
6112
6113 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6114
6115 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6116
6117 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6118 symbol_matcher,
6119 kind, [&] (offset_type namei)
6120 {
6121 /* The name was matched, now expand corresponding CUs that were
6122 marked. */
6123 dw2_debug_names_iterator iter (map, kind, namei);
6124
6125 struct dwarf2_per_cu_data *per_cu;
6126 while ((per_cu = iter.next ()) != NULL)
6127 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6128 expansion_notify);
6129 });
6130 }
6131
6132 const struct quick_symbol_functions dwarf2_debug_names_functions =
6133 {
6134 dw2_has_symbols,
6135 dw2_find_last_source_symtab,
6136 dw2_forget_cached_source_info,
6137 dw2_map_symtabs_matching_filename,
6138 dw2_debug_names_lookup_symbol,
6139 dw2_print_stats,
6140 dw2_debug_names_dump,
6141 dw2_debug_names_expand_symtabs_for_function,
6142 dw2_expand_all_symtabs,
6143 dw2_expand_symtabs_with_fullname,
6144 dw2_map_matching_symbols,
6145 dw2_debug_names_expand_symtabs_matching,
6146 dw2_find_pc_sect_compunit_symtab,
6147 NULL,
6148 dw2_map_symbol_filenames
6149 };
6150
6151 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6152 to either a dwarf2_per_objfile or dwz_file object. */
6153
6154 template <typename T>
6155 static gdb::array_view<const gdb_byte>
6156 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6157 {
6158 dwarf2_section_info *section = &section_owner->gdb_index;
6159
6160 if (dwarf2_section_empty_p (section))
6161 return {};
6162
6163 /* Older elfutils strip versions could keep the section in the main
6164 executable while splitting it for the separate debug info file. */
6165 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6166 return {};
6167
6168 dwarf2_read_section (obj, section);
6169
6170 /* dwarf2_section_info::size is a bfd_size_type, while
6171 gdb::array_view works with size_t. On 32-bit hosts, with
6172 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6173 is 32-bit. So we need an explicit narrowing conversion here.
6174 This is fine, because it's impossible to allocate or mmap an
6175 array/buffer larger than what size_t can represent. */
6176 return gdb::make_array_view (section->buffer, section->size);
6177 }
6178
6179 /* Lookup the index cache for the contents of the index associated to
6180 DWARF2_OBJ. */
6181
6182 static gdb::array_view<const gdb_byte>
6183 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6184 {
6185 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6186 if (build_id == nullptr)
6187 return {};
6188
6189 return global_index_cache.lookup_gdb_index (build_id,
6190 &dwarf2_obj->index_cache_res);
6191 }
6192
6193 /* Same as the above, but for DWZ. */
6194
6195 static gdb::array_view<const gdb_byte>
6196 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6197 {
6198 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6199 if (build_id == nullptr)
6200 return {};
6201
6202 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6203 }
6204
6205 /* See symfile.h. */
6206
6207 bool
6208 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6209 {
6210 struct dwarf2_per_objfile *dwarf2_per_objfile
6211 = get_dwarf2_per_objfile (objfile);
6212
6213 /* If we're about to read full symbols, don't bother with the
6214 indices. In this case we also don't care if some other debug
6215 format is making psymtabs, because they are all about to be
6216 expanded anyway. */
6217 if ((objfile->flags & OBJF_READNOW))
6218 {
6219 dwarf2_per_objfile->using_index = 1;
6220 create_all_comp_units (dwarf2_per_objfile);
6221 create_all_type_units (dwarf2_per_objfile);
6222 dwarf2_per_objfile->quick_file_names_table
6223 = create_quick_file_names_table
6224 (dwarf2_per_objfile->all_comp_units.size ());
6225
6226 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6227 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6228 {
6229 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6230
6231 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6232 struct dwarf2_per_cu_quick_data);
6233 }
6234
6235 /* Return 1 so that gdb sees the "quick" functions. However,
6236 these functions will be no-ops because we will have expanded
6237 all symtabs. */
6238 *index_kind = dw_index_kind::GDB_INDEX;
6239 return true;
6240 }
6241
6242 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6243 {
6244 *index_kind = dw_index_kind::DEBUG_NAMES;
6245 return true;
6246 }
6247
6248 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6249 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6250 get_gdb_index_contents_from_section<dwz_file>))
6251 {
6252 *index_kind = dw_index_kind::GDB_INDEX;
6253 return true;
6254 }
6255
6256 /* ... otherwise, try to find the index in the index cache. */
6257 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6258 get_gdb_index_contents_from_cache,
6259 get_gdb_index_contents_from_cache_dwz))
6260 {
6261 global_index_cache.hit ();
6262 *index_kind = dw_index_kind::GDB_INDEX;
6263 return true;
6264 }
6265
6266 global_index_cache.miss ();
6267 return false;
6268 }
6269
6270 \f
6271
6272 /* Build a partial symbol table. */
6273
6274 void
6275 dwarf2_build_psymtabs (struct objfile *objfile)
6276 {
6277 struct dwarf2_per_objfile *dwarf2_per_objfile
6278 = get_dwarf2_per_objfile (objfile);
6279
6280 init_psymbol_list (objfile, 1024);
6281
6282 try
6283 {
6284 /* This isn't really ideal: all the data we allocate on the
6285 objfile's obstack is still uselessly kept around. However,
6286 freeing it seems unsafe. */
6287 psymtab_discarder psymtabs (objfile);
6288 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6289 psymtabs.keep ();
6290
6291 /* (maybe) store an index in the cache. */
6292 global_index_cache.store (dwarf2_per_objfile);
6293 }
6294 catch (const gdb_exception_error &except)
6295 {
6296 exception_print (gdb_stderr, except);
6297 }
6298 }
6299
6300 /* Return the total length of the CU described by HEADER. */
6301
6302 static unsigned int
6303 get_cu_length (const struct comp_unit_head *header)
6304 {
6305 return header->initial_length_size + header->length;
6306 }
6307
6308 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6309
6310 static inline bool
6311 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6312 {
6313 sect_offset bottom = cu_header->sect_off;
6314 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6315
6316 return sect_off >= bottom && sect_off < top;
6317 }
6318
6319 /* Find the base address of the compilation unit for range lists and
6320 location lists. It will normally be specified by DW_AT_low_pc.
6321 In DWARF-3 draft 4, the base address could be overridden by
6322 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6323 compilation units with discontinuous ranges. */
6324
6325 static void
6326 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6327 {
6328 struct attribute *attr;
6329
6330 cu->base_known = 0;
6331 cu->base_address = 0;
6332
6333 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6334 if (attr)
6335 {
6336 cu->base_address = attr_value_as_address (attr);
6337 cu->base_known = 1;
6338 }
6339 else
6340 {
6341 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6342 if (attr)
6343 {
6344 cu->base_address = attr_value_as_address (attr);
6345 cu->base_known = 1;
6346 }
6347 }
6348 }
6349
6350 /* Read in the comp unit header information from the debug_info at info_ptr.
6351 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6352 NOTE: This leaves members offset, first_die_offset to be filled in
6353 by the caller. */
6354
6355 static const gdb_byte *
6356 read_comp_unit_head (struct comp_unit_head *cu_header,
6357 const gdb_byte *info_ptr,
6358 struct dwarf2_section_info *section,
6359 rcuh_kind section_kind)
6360 {
6361 int signed_addr;
6362 unsigned int bytes_read;
6363 const char *filename = get_section_file_name (section);
6364 bfd *abfd = get_section_bfd_owner (section);
6365
6366 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6367 cu_header->initial_length_size = bytes_read;
6368 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6369 info_ptr += bytes_read;
6370 cu_header->version = read_2_bytes (abfd, info_ptr);
6371 if (cu_header->version < 2 || cu_header->version > 5)
6372 error (_("Dwarf Error: wrong version in compilation unit header "
6373 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6374 cu_header->version, filename);
6375 info_ptr += 2;
6376 if (cu_header->version < 5)
6377 switch (section_kind)
6378 {
6379 case rcuh_kind::COMPILE:
6380 cu_header->unit_type = DW_UT_compile;
6381 break;
6382 case rcuh_kind::TYPE:
6383 cu_header->unit_type = DW_UT_type;
6384 break;
6385 default:
6386 internal_error (__FILE__, __LINE__,
6387 _("read_comp_unit_head: invalid section_kind"));
6388 }
6389 else
6390 {
6391 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6392 (read_1_byte (abfd, info_ptr));
6393 info_ptr += 1;
6394 switch (cu_header->unit_type)
6395 {
6396 case DW_UT_compile:
6397 if (section_kind != rcuh_kind::COMPILE)
6398 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6399 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6400 filename);
6401 break;
6402 case DW_UT_type:
6403 section_kind = rcuh_kind::TYPE;
6404 break;
6405 default:
6406 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6407 "(is %d, should be %d or %d) [in module %s]"),
6408 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6409 }
6410
6411 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6412 info_ptr += 1;
6413 }
6414 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6415 cu_header,
6416 &bytes_read);
6417 info_ptr += bytes_read;
6418 if (cu_header->version < 5)
6419 {
6420 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6421 info_ptr += 1;
6422 }
6423 signed_addr = bfd_get_sign_extend_vma (abfd);
6424 if (signed_addr < 0)
6425 internal_error (__FILE__, __LINE__,
6426 _("read_comp_unit_head: dwarf from non elf file"));
6427 cu_header->signed_addr_p = signed_addr;
6428
6429 if (section_kind == rcuh_kind::TYPE)
6430 {
6431 LONGEST type_offset;
6432
6433 cu_header->signature = read_8_bytes (abfd, info_ptr);
6434 info_ptr += 8;
6435
6436 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6437 info_ptr += bytes_read;
6438 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6439 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6440 error (_("Dwarf Error: Too big type_offset in compilation unit "
6441 "header (is %s) [in module %s]"), plongest (type_offset),
6442 filename);
6443 }
6444
6445 return info_ptr;
6446 }
6447
6448 /* Helper function that returns the proper abbrev section for
6449 THIS_CU. */
6450
6451 static struct dwarf2_section_info *
6452 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6453 {
6454 struct dwarf2_section_info *abbrev;
6455 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6456
6457 if (this_cu->is_dwz)
6458 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6459 else
6460 abbrev = &dwarf2_per_objfile->abbrev;
6461
6462 return abbrev;
6463 }
6464
6465 /* Subroutine of read_and_check_comp_unit_head and
6466 read_and_check_type_unit_head to simplify them.
6467 Perform various error checking on the header. */
6468
6469 static void
6470 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6471 struct comp_unit_head *header,
6472 struct dwarf2_section_info *section,
6473 struct dwarf2_section_info *abbrev_section)
6474 {
6475 const char *filename = get_section_file_name (section);
6476
6477 if (to_underlying (header->abbrev_sect_off)
6478 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6479 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6480 "(offset %s + 6) [in module %s]"),
6481 sect_offset_str (header->abbrev_sect_off),
6482 sect_offset_str (header->sect_off),
6483 filename);
6484
6485 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6486 avoid potential 32-bit overflow. */
6487 if (((ULONGEST) header->sect_off + get_cu_length (header))
6488 > section->size)
6489 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6490 "(offset %s + 0) [in module %s]"),
6491 header->length, sect_offset_str (header->sect_off),
6492 filename);
6493 }
6494
6495 /* Read in a CU/TU header and perform some basic error checking.
6496 The contents of the header are stored in HEADER.
6497 The result is a pointer to the start of the first DIE. */
6498
6499 static const gdb_byte *
6500 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6501 struct comp_unit_head *header,
6502 struct dwarf2_section_info *section,
6503 struct dwarf2_section_info *abbrev_section,
6504 const gdb_byte *info_ptr,
6505 rcuh_kind section_kind)
6506 {
6507 const gdb_byte *beg_of_comp_unit = info_ptr;
6508
6509 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6510
6511 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6512
6513 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6514
6515 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6516 abbrev_section);
6517
6518 return info_ptr;
6519 }
6520
6521 /* Fetch the abbreviation table offset from a comp or type unit header. */
6522
6523 static sect_offset
6524 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6525 struct dwarf2_section_info *section,
6526 sect_offset sect_off)
6527 {
6528 bfd *abfd = get_section_bfd_owner (section);
6529 const gdb_byte *info_ptr;
6530 unsigned int initial_length_size, offset_size;
6531 uint16_t version;
6532
6533 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6534 info_ptr = section->buffer + to_underlying (sect_off);
6535 read_initial_length (abfd, info_ptr, &initial_length_size);
6536 offset_size = initial_length_size == 4 ? 4 : 8;
6537 info_ptr += initial_length_size;
6538
6539 version = read_2_bytes (abfd, info_ptr);
6540 info_ptr += 2;
6541 if (version >= 5)
6542 {
6543 /* Skip unit type and address size. */
6544 info_ptr += 2;
6545 }
6546
6547 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6548 }
6549
6550 /* Allocate a new partial symtab for file named NAME and mark this new
6551 partial symtab as being an include of PST. */
6552
6553 static void
6554 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6555 struct objfile *objfile)
6556 {
6557 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6558
6559 if (!IS_ABSOLUTE_PATH (subpst->filename))
6560 {
6561 /* It shares objfile->objfile_obstack. */
6562 subpst->dirname = pst->dirname;
6563 }
6564
6565 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6566 subpst->dependencies[0] = pst;
6567 subpst->number_of_dependencies = 1;
6568
6569 subpst->read_symtab = pst->read_symtab;
6570
6571 /* No private part is necessary for include psymtabs. This property
6572 can be used to differentiate between such include psymtabs and
6573 the regular ones. */
6574 subpst->read_symtab_private = NULL;
6575 }
6576
6577 /* Read the Line Number Program data and extract the list of files
6578 included by the source file represented by PST. Build an include
6579 partial symtab for each of these included files. */
6580
6581 static void
6582 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6583 struct die_info *die,
6584 struct partial_symtab *pst)
6585 {
6586 line_header_up lh;
6587 struct attribute *attr;
6588
6589 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6590 if (attr)
6591 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6592 if (lh == NULL)
6593 return; /* No linetable, so no includes. */
6594
6595 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6596 that we pass in the raw text_low here; that is ok because we're
6597 only decoding the line table to make include partial symtabs, and
6598 so the addresses aren't really used. */
6599 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6600 pst->raw_text_low (), 1);
6601 }
6602
6603 static hashval_t
6604 hash_signatured_type (const void *item)
6605 {
6606 const struct signatured_type *sig_type
6607 = (const struct signatured_type *) item;
6608
6609 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6610 return sig_type->signature;
6611 }
6612
6613 static int
6614 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6615 {
6616 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6617 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6618
6619 return lhs->signature == rhs->signature;
6620 }
6621
6622 /* Allocate a hash table for signatured types. */
6623
6624 static htab_t
6625 allocate_signatured_type_table (struct objfile *objfile)
6626 {
6627 return htab_create_alloc_ex (41,
6628 hash_signatured_type,
6629 eq_signatured_type,
6630 NULL,
6631 &objfile->objfile_obstack,
6632 hashtab_obstack_allocate,
6633 dummy_obstack_deallocate);
6634 }
6635
6636 /* A helper function to add a signatured type CU to a table. */
6637
6638 static int
6639 add_signatured_type_cu_to_table (void **slot, void *datum)
6640 {
6641 struct signatured_type *sigt = (struct signatured_type *) *slot;
6642 std::vector<signatured_type *> *all_type_units
6643 = (std::vector<signatured_type *> *) datum;
6644
6645 all_type_units->push_back (sigt);
6646
6647 return 1;
6648 }
6649
6650 /* A helper for create_debug_types_hash_table. Read types from SECTION
6651 and fill them into TYPES_HTAB. It will process only type units,
6652 therefore DW_UT_type. */
6653
6654 static void
6655 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6656 struct dwo_file *dwo_file,
6657 dwarf2_section_info *section, htab_t &types_htab,
6658 rcuh_kind section_kind)
6659 {
6660 struct objfile *objfile = dwarf2_per_objfile->objfile;
6661 struct dwarf2_section_info *abbrev_section;
6662 bfd *abfd;
6663 const gdb_byte *info_ptr, *end_ptr;
6664
6665 abbrev_section = (dwo_file != NULL
6666 ? &dwo_file->sections.abbrev
6667 : &dwarf2_per_objfile->abbrev);
6668
6669 if (dwarf_read_debug)
6670 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6671 get_section_name (section),
6672 get_section_file_name (abbrev_section));
6673
6674 dwarf2_read_section (objfile, section);
6675 info_ptr = section->buffer;
6676
6677 if (info_ptr == NULL)
6678 return;
6679
6680 /* We can't set abfd until now because the section may be empty or
6681 not present, in which case the bfd is unknown. */
6682 abfd = get_section_bfd_owner (section);
6683
6684 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6685 because we don't need to read any dies: the signature is in the
6686 header. */
6687
6688 end_ptr = info_ptr + section->size;
6689 while (info_ptr < end_ptr)
6690 {
6691 struct signatured_type *sig_type;
6692 struct dwo_unit *dwo_tu;
6693 void **slot;
6694 const gdb_byte *ptr = info_ptr;
6695 struct comp_unit_head header;
6696 unsigned int length;
6697
6698 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6699
6700 /* Initialize it due to a false compiler warning. */
6701 header.signature = -1;
6702 header.type_cu_offset_in_tu = (cu_offset) -1;
6703
6704 /* We need to read the type's signature in order to build the hash
6705 table, but we don't need anything else just yet. */
6706
6707 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6708 abbrev_section, ptr, section_kind);
6709
6710 length = get_cu_length (&header);
6711
6712 /* Skip dummy type units. */
6713 if (ptr >= info_ptr + length
6714 || peek_abbrev_code (abfd, ptr) == 0
6715 || header.unit_type != DW_UT_type)
6716 {
6717 info_ptr += length;
6718 continue;
6719 }
6720
6721 if (types_htab == NULL)
6722 {
6723 if (dwo_file)
6724 types_htab = allocate_dwo_unit_table (objfile);
6725 else
6726 types_htab = allocate_signatured_type_table (objfile);
6727 }
6728
6729 if (dwo_file)
6730 {
6731 sig_type = NULL;
6732 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6733 struct dwo_unit);
6734 dwo_tu->dwo_file = dwo_file;
6735 dwo_tu->signature = header.signature;
6736 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6737 dwo_tu->section = section;
6738 dwo_tu->sect_off = sect_off;
6739 dwo_tu->length = length;
6740 }
6741 else
6742 {
6743 /* N.B.: type_offset is not usable if this type uses a DWO file.
6744 The real type_offset is in the DWO file. */
6745 dwo_tu = NULL;
6746 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6747 struct signatured_type);
6748 sig_type->signature = header.signature;
6749 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6750 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6751 sig_type->per_cu.is_debug_types = 1;
6752 sig_type->per_cu.section = section;
6753 sig_type->per_cu.sect_off = sect_off;
6754 sig_type->per_cu.length = length;
6755 }
6756
6757 slot = htab_find_slot (types_htab,
6758 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6759 INSERT);
6760 gdb_assert (slot != NULL);
6761 if (*slot != NULL)
6762 {
6763 sect_offset dup_sect_off;
6764
6765 if (dwo_file)
6766 {
6767 const struct dwo_unit *dup_tu
6768 = (const struct dwo_unit *) *slot;
6769
6770 dup_sect_off = dup_tu->sect_off;
6771 }
6772 else
6773 {
6774 const struct signatured_type *dup_tu
6775 = (const struct signatured_type *) *slot;
6776
6777 dup_sect_off = dup_tu->per_cu.sect_off;
6778 }
6779
6780 complaint (_("debug type entry at offset %s is duplicate to"
6781 " the entry at offset %s, signature %s"),
6782 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6783 hex_string (header.signature));
6784 }
6785 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6786
6787 if (dwarf_read_debug > 1)
6788 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6789 sect_offset_str (sect_off),
6790 hex_string (header.signature));
6791
6792 info_ptr += length;
6793 }
6794 }
6795
6796 /* Create the hash table of all entries in the .debug_types
6797 (or .debug_types.dwo) section(s).
6798 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6799 otherwise it is NULL.
6800
6801 The result is a pointer to the hash table or NULL if there are no types.
6802
6803 Note: This function processes DWO files only, not DWP files. */
6804
6805 static void
6806 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6807 struct dwo_file *dwo_file,
6808 gdb::array_view<dwarf2_section_info> type_sections,
6809 htab_t &types_htab)
6810 {
6811 for (dwarf2_section_info &section : type_sections)
6812 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6813 types_htab, rcuh_kind::TYPE);
6814 }
6815
6816 /* Create the hash table of all entries in the .debug_types section,
6817 and initialize all_type_units.
6818 The result is zero if there is an error (e.g. missing .debug_types section),
6819 otherwise non-zero. */
6820
6821 static int
6822 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6823 {
6824 htab_t types_htab = NULL;
6825
6826 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6827 &dwarf2_per_objfile->info, types_htab,
6828 rcuh_kind::COMPILE);
6829 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6830 dwarf2_per_objfile->types, types_htab);
6831 if (types_htab == NULL)
6832 {
6833 dwarf2_per_objfile->signatured_types = NULL;
6834 return 0;
6835 }
6836
6837 dwarf2_per_objfile->signatured_types = types_htab;
6838
6839 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6840 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6841
6842 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6843 &dwarf2_per_objfile->all_type_units);
6844
6845 return 1;
6846 }
6847
6848 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6849 If SLOT is non-NULL, it is the entry to use in the hash table.
6850 Otherwise we find one. */
6851
6852 static struct signatured_type *
6853 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6854 void **slot)
6855 {
6856 struct objfile *objfile = dwarf2_per_objfile->objfile;
6857
6858 if (dwarf2_per_objfile->all_type_units.size ()
6859 == dwarf2_per_objfile->all_type_units.capacity ())
6860 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6861
6862 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6863 struct signatured_type);
6864
6865 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6866 sig_type->signature = sig;
6867 sig_type->per_cu.is_debug_types = 1;
6868 if (dwarf2_per_objfile->using_index)
6869 {
6870 sig_type->per_cu.v.quick =
6871 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6872 struct dwarf2_per_cu_quick_data);
6873 }
6874
6875 if (slot == NULL)
6876 {
6877 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6878 sig_type, INSERT);
6879 }
6880 gdb_assert (*slot == NULL);
6881 *slot = sig_type;
6882 /* The rest of sig_type must be filled in by the caller. */
6883 return sig_type;
6884 }
6885
6886 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6887 Fill in SIG_ENTRY with DWO_ENTRY. */
6888
6889 static void
6890 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6891 struct signatured_type *sig_entry,
6892 struct dwo_unit *dwo_entry)
6893 {
6894 /* Make sure we're not clobbering something we don't expect to. */
6895 gdb_assert (! sig_entry->per_cu.queued);
6896 gdb_assert (sig_entry->per_cu.cu == NULL);
6897 if (dwarf2_per_objfile->using_index)
6898 {
6899 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6900 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6901 }
6902 else
6903 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6904 gdb_assert (sig_entry->signature == dwo_entry->signature);
6905 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6906 gdb_assert (sig_entry->type_unit_group == NULL);
6907 gdb_assert (sig_entry->dwo_unit == NULL);
6908
6909 sig_entry->per_cu.section = dwo_entry->section;
6910 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6911 sig_entry->per_cu.length = dwo_entry->length;
6912 sig_entry->per_cu.reading_dwo_directly = 1;
6913 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6914 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6915 sig_entry->dwo_unit = dwo_entry;
6916 }
6917
6918 /* Subroutine of lookup_signatured_type.
6919 If we haven't read the TU yet, create the signatured_type data structure
6920 for a TU to be read in directly from a DWO file, bypassing the stub.
6921 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6922 using .gdb_index, then when reading a CU we want to stay in the DWO file
6923 containing that CU. Otherwise we could end up reading several other DWO
6924 files (due to comdat folding) to process the transitive closure of all the
6925 mentioned TUs, and that can be slow. The current DWO file will have every
6926 type signature that it needs.
6927 We only do this for .gdb_index because in the psymtab case we already have
6928 to read all the DWOs to build the type unit groups. */
6929
6930 static struct signatured_type *
6931 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6932 {
6933 struct dwarf2_per_objfile *dwarf2_per_objfile
6934 = cu->per_cu->dwarf2_per_objfile;
6935 struct objfile *objfile = dwarf2_per_objfile->objfile;
6936 struct dwo_file *dwo_file;
6937 struct dwo_unit find_dwo_entry, *dwo_entry;
6938 struct signatured_type find_sig_entry, *sig_entry;
6939 void **slot;
6940
6941 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6942
6943 /* If TU skeletons have been removed then we may not have read in any
6944 TUs yet. */
6945 if (dwarf2_per_objfile->signatured_types == NULL)
6946 {
6947 dwarf2_per_objfile->signatured_types
6948 = allocate_signatured_type_table (objfile);
6949 }
6950
6951 /* We only ever need to read in one copy of a signatured type.
6952 Use the global signatured_types array to do our own comdat-folding
6953 of types. If this is the first time we're reading this TU, and
6954 the TU has an entry in .gdb_index, replace the recorded data from
6955 .gdb_index with this TU. */
6956
6957 find_sig_entry.signature = sig;
6958 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6959 &find_sig_entry, INSERT);
6960 sig_entry = (struct signatured_type *) *slot;
6961
6962 /* We can get here with the TU already read, *or* in the process of being
6963 read. Don't reassign the global entry to point to this DWO if that's
6964 the case. Also note that if the TU is already being read, it may not
6965 have come from a DWO, the program may be a mix of Fission-compiled
6966 code and non-Fission-compiled code. */
6967
6968 /* Have we already tried to read this TU?
6969 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6970 needn't exist in the global table yet). */
6971 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6972 return sig_entry;
6973
6974 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6975 dwo_unit of the TU itself. */
6976 dwo_file = cu->dwo_unit->dwo_file;
6977
6978 /* Ok, this is the first time we're reading this TU. */
6979 if (dwo_file->tus == NULL)
6980 return NULL;
6981 find_dwo_entry.signature = sig;
6982 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
6983 if (dwo_entry == NULL)
6984 return NULL;
6985
6986 /* If the global table doesn't have an entry for this TU, add one. */
6987 if (sig_entry == NULL)
6988 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6989
6990 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6991 sig_entry->per_cu.tu_read = 1;
6992 return sig_entry;
6993 }
6994
6995 /* Subroutine of lookup_signatured_type.
6996 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6997 then try the DWP file. If the TU stub (skeleton) has been removed then
6998 it won't be in .gdb_index. */
6999
7000 static struct signatured_type *
7001 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7002 {
7003 struct dwarf2_per_objfile *dwarf2_per_objfile
7004 = cu->per_cu->dwarf2_per_objfile;
7005 struct objfile *objfile = dwarf2_per_objfile->objfile;
7006 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7007 struct dwo_unit *dwo_entry;
7008 struct signatured_type find_sig_entry, *sig_entry;
7009 void **slot;
7010
7011 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7012 gdb_assert (dwp_file != NULL);
7013
7014 /* If TU skeletons have been removed then we may not have read in any
7015 TUs yet. */
7016 if (dwarf2_per_objfile->signatured_types == NULL)
7017 {
7018 dwarf2_per_objfile->signatured_types
7019 = allocate_signatured_type_table (objfile);
7020 }
7021
7022 find_sig_entry.signature = sig;
7023 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7024 &find_sig_entry, INSERT);
7025 sig_entry = (struct signatured_type *) *slot;
7026
7027 /* Have we already tried to read this TU?
7028 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7029 needn't exist in the global table yet). */
7030 if (sig_entry != NULL)
7031 return sig_entry;
7032
7033 if (dwp_file->tus == NULL)
7034 return NULL;
7035 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7036 sig, 1 /* is_debug_types */);
7037 if (dwo_entry == NULL)
7038 return NULL;
7039
7040 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7041 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7042
7043 return sig_entry;
7044 }
7045
7046 /* Lookup a signature based type for DW_FORM_ref_sig8.
7047 Returns NULL if signature SIG is not present in the table.
7048 It is up to the caller to complain about this. */
7049
7050 static struct signatured_type *
7051 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7052 {
7053 struct dwarf2_per_objfile *dwarf2_per_objfile
7054 = cu->per_cu->dwarf2_per_objfile;
7055
7056 if (cu->dwo_unit
7057 && dwarf2_per_objfile->using_index)
7058 {
7059 /* We're in a DWO/DWP file, and we're using .gdb_index.
7060 These cases require special processing. */
7061 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7062 return lookup_dwo_signatured_type (cu, sig);
7063 else
7064 return lookup_dwp_signatured_type (cu, sig);
7065 }
7066 else
7067 {
7068 struct signatured_type find_entry, *entry;
7069
7070 if (dwarf2_per_objfile->signatured_types == NULL)
7071 return NULL;
7072 find_entry.signature = sig;
7073 entry = ((struct signatured_type *)
7074 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7075 return entry;
7076 }
7077 }
7078 \f
7079 /* Low level DIE reading support. */
7080
7081 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7082
7083 static void
7084 init_cu_die_reader (struct die_reader_specs *reader,
7085 struct dwarf2_cu *cu,
7086 struct dwarf2_section_info *section,
7087 struct dwo_file *dwo_file,
7088 struct abbrev_table *abbrev_table)
7089 {
7090 gdb_assert (section->readin && section->buffer != NULL);
7091 reader->abfd = get_section_bfd_owner (section);
7092 reader->cu = cu;
7093 reader->dwo_file = dwo_file;
7094 reader->die_section = section;
7095 reader->buffer = section->buffer;
7096 reader->buffer_end = section->buffer + section->size;
7097 reader->comp_dir = NULL;
7098 reader->abbrev_table = abbrev_table;
7099 }
7100
7101 /* Subroutine of init_cutu_and_read_dies to simplify it.
7102 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7103 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7104 already.
7105
7106 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7107 from it to the DIE in the DWO. If NULL we are skipping the stub.
7108 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7109 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7110 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7111 STUB_COMP_DIR may be non-NULL.
7112 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7113 are filled in with the info of the DIE from the DWO file.
7114 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7115 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7116 kept around for at least as long as *RESULT_READER.
7117
7118 The result is non-zero if a valid (non-dummy) DIE was found. */
7119
7120 static int
7121 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7122 struct dwo_unit *dwo_unit,
7123 struct die_info *stub_comp_unit_die,
7124 const char *stub_comp_dir,
7125 struct die_reader_specs *result_reader,
7126 const gdb_byte **result_info_ptr,
7127 struct die_info **result_comp_unit_die,
7128 int *result_has_children,
7129 abbrev_table_up *result_dwo_abbrev_table)
7130 {
7131 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7132 struct objfile *objfile = dwarf2_per_objfile->objfile;
7133 struct dwarf2_cu *cu = this_cu->cu;
7134 bfd *abfd;
7135 const gdb_byte *begin_info_ptr, *info_ptr;
7136 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7137 int i,num_extra_attrs;
7138 struct dwarf2_section_info *dwo_abbrev_section;
7139 struct attribute *attr;
7140 struct die_info *comp_unit_die;
7141
7142 /* At most one of these may be provided. */
7143 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7144
7145 /* These attributes aren't processed until later:
7146 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7147 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7148 referenced later. However, these attributes are found in the stub
7149 which we won't have later. In order to not impose this complication
7150 on the rest of the code, we read them here and copy them to the
7151 DWO CU/TU die. */
7152
7153 stmt_list = NULL;
7154 low_pc = NULL;
7155 high_pc = NULL;
7156 ranges = NULL;
7157 comp_dir = NULL;
7158
7159 if (stub_comp_unit_die != NULL)
7160 {
7161 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7162 DWO file. */
7163 if (! this_cu->is_debug_types)
7164 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7165 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7166 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7167 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7168 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7169
7170 /* There should be a DW_AT_addr_base attribute here (if needed).
7171 We need the value before we can process DW_FORM_GNU_addr_index
7172 or DW_FORM_addrx. */
7173 cu->addr_base = 0;
7174 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7175 if (attr)
7176 cu->addr_base = DW_UNSND (attr);
7177
7178 /* There should be a DW_AT_ranges_base attribute here (if needed).
7179 We need the value before we can process DW_AT_ranges. */
7180 cu->ranges_base = 0;
7181 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7182 if (attr)
7183 cu->ranges_base = DW_UNSND (attr);
7184 }
7185 else if (stub_comp_dir != NULL)
7186 {
7187 /* Reconstruct the comp_dir attribute to simplify the code below. */
7188 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7189 comp_dir->name = DW_AT_comp_dir;
7190 comp_dir->form = DW_FORM_string;
7191 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7192 DW_STRING (comp_dir) = stub_comp_dir;
7193 }
7194
7195 /* Set up for reading the DWO CU/TU. */
7196 cu->dwo_unit = dwo_unit;
7197 dwarf2_section_info *section = dwo_unit->section;
7198 dwarf2_read_section (objfile, section);
7199 abfd = get_section_bfd_owner (section);
7200 begin_info_ptr = info_ptr = (section->buffer
7201 + to_underlying (dwo_unit->sect_off));
7202 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7203
7204 if (this_cu->is_debug_types)
7205 {
7206 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7207
7208 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7209 &cu->header, section,
7210 dwo_abbrev_section,
7211 info_ptr, rcuh_kind::TYPE);
7212 /* This is not an assert because it can be caused by bad debug info. */
7213 if (sig_type->signature != cu->header.signature)
7214 {
7215 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7216 " TU at offset %s [in module %s]"),
7217 hex_string (sig_type->signature),
7218 hex_string (cu->header.signature),
7219 sect_offset_str (dwo_unit->sect_off),
7220 bfd_get_filename (abfd));
7221 }
7222 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7223 /* For DWOs coming from DWP files, we don't know the CU length
7224 nor the type's offset in the TU until now. */
7225 dwo_unit->length = get_cu_length (&cu->header);
7226 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7227
7228 /* Establish the type offset that can be used to lookup the type.
7229 For DWO files, we don't know it until now. */
7230 sig_type->type_offset_in_section
7231 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7232 }
7233 else
7234 {
7235 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7236 &cu->header, section,
7237 dwo_abbrev_section,
7238 info_ptr, rcuh_kind::COMPILE);
7239 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7240 /* For DWOs coming from DWP files, we don't know the CU length
7241 until now. */
7242 dwo_unit->length = get_cu_length (&cu->header);
7243 }
7244
7245 *result_dwo_abbrev_table
7246 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7247 cu->header.abbrev_sect_off);
7248 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7249 result_dwo_abbrev_table->get ());
7250
7251 /* Read in the die, but leave space to copy over the attributes
7252 from the stub. This has the benefit of simplifying the rest of
7253 the code - all the work to maintain the illusion of a single
7254 DW_TAG_{compile,type}_unit DIE is done here. */
7255 num_extra_attrs = ((stmt_list != NULL)
7256 + (low_pc != NULL)
7257 + (high_pc != NULL)
7258 + (ranges != NULL)
7259 + (comp_dir != NULL));
7260 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7261 result_has_children, num_extra_attrs);
7262
7263 /* Copy over the attributes from the stub to the DIE we just read in. */
7264 comp_unit_die = *result_comp_unit_die;
7265 i = comp_unit_die->num_attrs;
7266 if (stmt_list != NULL)
7267 comp_unit_die->attrs[i++] = *stmt_list;
7268 if (low_pc != NULL)
7269 comp_unit_die->attrs[i++] = *low_pc;
7270 if (high_pc != NULL)
7271 comp_unit_die->attrs[i++] = *high_pc;
7272 if (ranges != NULL)
7273 comp_unit_die->attrs[i++] = *ranges;
7274 if (comp_dir != NULL)
7275 comp_unit_die->attrs[i++] = *comp_dir;
7276 comp_unit_die->num_attrs += num_extra_attrs;
7277
7278 if (dwarf_die_debug)
7279 {
7280 fprintf_unfiltered (gdb_stdlog,
7281 "Read die from %s@0x%x of %s:\n",
7282 get_section_name (section),
7283 (unsigned) (begin_info_ptr - section->buffer),
7284 bfd_get_filename (abfd));
7285 dump_die (comp_unit_die, dwarf_die_debug);
7286 }
7287
7288 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7289 TUs by skipping the stub and going directly to the entry in the DWO file.
7290 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7291 to get it via circuitous means. Blech. */
7292 if (comp_dir != NULL)
7293 result_reader->comp_dir = DW_STRING (comp_dir);
7294
7295 /* Skip dummy compilation units. */
7296 if (info_ptr >= begin_info_ptr + dwo_unit->length
7297 || peek_abbrev_code (abfd, info_ptr) == 0)
7298 return 0;
7299
7300 *result_info_ptr = info_ptr;
7301 return 1;
7302 }
7303
7304 /* Subroutine of init_cutu_and_read_dies to simplify it.
7305 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7306 Returns NULL if the specified DWO unit cannot be found. */
7307
7308 static struct dwo_unit *
7309 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7310 struct die_info *comp_unit_die)
7311 {
7312 struct dwarf2_cu *cu = this_cu->cu;
7313 ULONGEST signature;
7314 struct dwo_unit *dwo_unit;
7315 const char *comp_dir, *dwo_name;
7316
7317 gdb_assert (cu != NULL);
7318
7319 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7320 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7321 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7322
7323 if (this_cu->is_debug_types)
7324 {
7325 struct signatured_type *sig_type;
7326
7327 /* Since this_cu is the first member of struct signatured_type,
7328 we can go from a pointer to one to a pointer to the other. */
7329 sig_type = (struct signatured_type *) this_cu;
7330 signature = sig_type->signature;
7331 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7332 }
7333 else
7334 {
7335 struct attribute *attr;
7336
7337 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7338 if (! attr)
7339 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7340 " [in module %s]"),
7341 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7342 signature = DW_UNSND (attr);
7343 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7344 signature);
7345 }
7346
7347 return dwo_unit;
7348 }
7349
7350 /* Subroutine of init_cutu_and_read_dies to simplify it.
7351 See it for a description of the parameters.
7352 Read a TU directly from a DWO file, bypassing the stub. */
7353
7354 static void
7355 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7356 int use_existing_cu, int keep,
7357 die_reader_func_ftype *die_reader_func,
7358 void *data)
7359 {
7360 std::unique_ptr<dwarf2_cu> new_cu;
7361 struct signatured_type *sig_type;
7362 struct die_reader_specs reader;
7363 const gdb_byte *info_ptr;
7364 struct die_info *comp_unit_die;
7365 int has_children;
7366 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7367
7368 /* Verify we can do the following downcast, and that we have the
7369 data we need. */
7370 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7371 sig_type = (struct signatured_type *) this_cu;
7372 gdb_assert (sig_type->dwo_unit != NULL);
7373
7374 if (use_existing_cu && this_cu->cu != NULL)
7375 {
7376 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7377 /* There's no need to do the rereading_dwo_cu handling that
7378 init_cutu_and_read_dies does since we don't read the stub. */
7379 }
7380 else
7381 {
7382 /* If !use_existing_cu, this_cu->cu must be NULL. */
7383 gdb_assert (this_cu->cu == NULL);
7384 new_cu.reset (new dwarf2_cu (this_cu));
7385 }
7386
7387 /* A future optimization, if needed, would be to use an existing
7388 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7389 could share abbrev tables. */
7390
7391 /* The abbreviation table used by READER, this must live at least as long as
7392 READER. */
7393 abbrev_table_up dwo_abbrev_table;
7394
7395 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7396 NULL /* stub_comp_unit_die */,
7397 sig_type->dwo_unit->dwo_file->comp_dir,
7398 &reader, &info_ptr,
7399 &comp_unit_die, &has_children,
7400 &dwo_abbrev_table) == 0)
7401 {
7402 /* Dummy die. */
7403 return;
7404 }
7405
7406 /* All the "real" work is done here. */
7407 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7408
7409 /* This duplicates the code in init_cutu_and_read_dies,
7410 but the alternative is making the latter more complex.
7411 This function is only for the special case of using DWO files directly:
7412 no point in overly complicating the general case just to handle this. */
7413 if (new_cu != NULL && keep)
7414 {
7415 /* Link this CU into read_in_chain. */
7416 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7417 dwarf2_per_objfile->read_in_chain = this_cu;
7418 /* The chain owns it now. */
7419 new_cu.release ();
7420 }
7421 }
7422
7423 /* Initialize a CU (or TU) and read its DIEs.
7424 If the CU defers to a DWO file, read the DWO file as well.
7425
7426 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7427 Otherwise the table specified in the comp unit header is read in and used.
7428 This is an optimization for when we already have the abbrev table.
7429
7430 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7431 Otherwise, a new CU is allocated with xmalloc.
7432
7433 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7434 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7435
7436 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7437 linker) then DIE_READER_FUNC will not get called. */
7438
7439 static void
7440 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7441 struct abbrev_table *abbrev_table,
7442 int use_existing_cu, int keep,
7443 bool skip_partial,
7444 die_reader_func_ftype *die_reader_func,
7445 void *data)
7446 {
7447 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7448 struct objfile *objfile = dwarf2_per_objfile->objfile;
7449 struct dwarf2_section_info *section = this_cu->section;
7450 bfd *abfd = get_section_bfd_owner (section);
7451 struct dwarf2_cu *cu;
7452 const gdb_byte *begin_info_ptr, *info_ptr;
7453 struct die_reader_specs reader;
7454 struct die_info *comp_unit_die;
7455 int has_children;
7456 struct attribute *attr;
7457 struct signatured_type *sig_type = NULL;
7458 struct dwarf2_section_info *abbrev_section;
7459 /* Non-zero if CU currently points to a DWO file and we need to
7460 reread it. When this happens we need to reread the skeleton die
7461 before we can reread the DWO file (this only applies to CUs, not TUs). */
7462 int rereading_dwo_cu = 0;
7463
7464 if (dwarf_die_debug)
7465 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7466 this_cu->is_debug_types ? "type" : "comp",
7467 sect_offset_str (this_cu->sect_off));
7468
7469 if (use_existing_cu)
7470 gdb_assert (keep);
7471
7472 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7473 file (instead of going through the stub), short-circuit all of this. */
7474 if (this_cu->reading_dwo_directly)
7475 {
7476 /* Narrow down the scope of possibilities to have to understand. */
7477 gdb_assert (this_cu->is_debug_types);
7478 gdb_assert (abbrev_table == NULL);
7479 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7480 die_reader_func, data);
7481 return;
7482 }
7483
7484 /* This is cheap if the section is already read in. */
7485 dwarf2_read_section (objfile, section);
7486
7487 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7488
7489 abbrev_section = get_abbrev_section_for_cu (this_cu);
7490
7491 std::unique_ptr<dwarf2_cu> new_cu;
7492 if (use_existing_cu && this_cu->cu != NULL)
7493 {
7494 cu = this_cu->cu;
7495 /* If this CU is from a DWO file we need to start over, we need to
7496 refetch the attributes from the skeleton CU.
7497 This could be optimized by retrieving those attributes from when we
7498 were here the first time: the previous comp_unit_die was stored in
7499 comp_unit_obstack. But there's no data yet that we need this
7500 optimization. */
7501 if (cu->dwo_unit != NULL)
7502 rereading_dwo_cu = 1;
7503 }
7504 else
7505 {
7506 /* If !use_existing_cu, this_cu->cu must be NULL. */
7507 gdb_assert (this_cu->cu == NULL);
7508 new_cu.reset (new dwarf2_cu (this_cu));
7509 cu = new_cu.get ();
7510 }
7511
7512 /* Get the header. */
7513 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7514 {
7515 /* We already have the header, there's no need to read it in again. */
7516 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7517 }
7518 else
7519 {
7520 if (this_cu->is_debug_types)
7521 {
7522 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7523 &cu->header, section,
7524 abbrev_section, info_ptr,
7525 rcuh_kind::TYPE);
7526
7527 /* Since per_cu is the first member of struct signatured_type,
7528 we can go from a pointer to one to a pointer to the other. */
7529 sig_type = (struct signatured_type *) this_cu;
7530 gdb_assert (sig_type->signature == cu->header.signature);
7531 gdb_assert (sig_type->type_offset_in_tu
7532 == cu->header.type_cu_offset_in_tu);
7533 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7534
7535 /* LENGTH has not been set yet for type units if we're
7536 using .gdb_index. */
7537 this_cu->length = get_cu_length (&cu->header);
7538
7539 /* Establish the type offset that can be used to lookup the type. */
7540 sig_type->type_offset_in_section =
7541 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7542
7543 this_cu->dwarf_version = cu->header.version;
7544 }
7545 else
7546 {
7547 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7548 &cu->header, section,
7549 abbrev_section,
7550 info_ptr,
7551 rcuh_kind::COMPILE);
7552
7553 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7554 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7555 this_cu->dwarf_version = cu->header.version;
7556 }
7557 }
7558
7559 /* Skip dummy compilation units. */
7560 if (info_ptr >= begin_info_ptr + this_cu->length
7561 || peek_abbrev_code (abfd, info_ptr) == 0)
7562 return;
7563
7564 /* If we don't have them yet, read the abbrevs for this compilation unit.
7565 And if we need to read them now, make sure they're freed when we're
7566 done (own the table through ABBREV_TABLE_HOLDER). */
7567 abbrev_table_up abbrev_table_holder;
7568 if (abbrev_table != NULL)
7569 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7570 else
7571 {
7572 abbrev_table_holder
7573 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7574 cu->header.abbrev_sect_off);
7575 abbrev_table = abbrev_table_holder.get ();
7576 }
7577
7578 /* Read the top level CU/TU die. */
7579 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7580 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7581
7582 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7583 return;
7584
7585 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7586 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7587 table from the DWO file and pass the ownership over to us. It will be
7588 referenced from READER, so we must make sure to free it after we're done
7589 with READER.
7590
7591 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7592 DWO CU, that this test will fail (the attribute will not be present). */
7593 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7594 abbrev_table_up dwo_abbrev_table;
7595 if (attr)
7596 {
7597 struct dwo_unit *dwo_unit;
7598 struct die_info *dwo_comp_unit_die;
7599
7600 if (has_children)
7601 {
7602 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7603 " has children (offset %s) [in module %s]"),
7604 sect_offset_str (this_cu->sect_off),
7605 bfd_get_filename (abfd));
7606 }
7607 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7608 if (dwo_unit != NULL)
7609 {
7610 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7611 comp_unit_die, NULL,
7612 &reader, &info_ptr,
7613 &dwo_comp_unit_die, &has_children,
7614 &dwo_abbrev_table) == 0)
7615 {
7616 /* Dummy die. */
7617 return;
7618 }
7619 comp_unit_die = dwo_comp_unit_die;
7620 }
7621 else
7622 {
7623 /* Yikes, we couldn't find the rest of the DIE, we only have
7624 the stub. A complaint has already been logged. There's
7625 not much more we can do except pass on the stub DIE to
7626 die_reader_func. We don't want to throw an error on bad
7627 debug info. */
7628 }
7629 }
7630
7631 /* All of the above is setup for this call. Yikes. */
7632 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7633
7634 /* Done, clean up. */
7635 if (new_cu != NULL && keep)
7636 {
7637 /* Link this CU into read_in_chain. */
7638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7639 dwarf2_per_objfile->read_in_chain = this_cu;
7640 /* The chain owns it now. */
7641 new_cu.release ();
7642 }
7643 }
7644
7645 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7646 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7647 to have already done the lookup to find the DWO file).
7648
7649 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7650 THIS_CU->is_debug_types, but nothing else.
7651
7652 We fill in THIS_CU->length.
7653
7654 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7655 linker) then DIE_READER_FUNC will not get called.
7656
7657 THIS_CU->cu is always freed when done.
7658 This is done in order to not leave THIS_CU->cu in a state where we have
7659 to care whether it refers to the "main" CU or the DWO CU. */
7660
7661 static void
7662 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7663 struct dwo_file *dwo_file,
7664 die_reader_func_ftype *die_reader_func,
7665 void *data)
7666 {
7667 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7668 struct objfile *objfile = dwarf2_per_objfile->objfile;
7669 struct dwarf2_section_info *section = this_cu->section;
7670 bfd *abfd = get_section_bfd_owner (section);
7671 struct dwarf2_section_info *abbrev_section;
7672 const gdb_byte *begin_info_ptr, *info_ptr;
7673 struct die_reader_specs reader;
7674 struct die_info *comp_unit_die;
7675 int has_children;
7676
7677 if (dwarf_die_debug)
7678 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7679 this_cu->is_debug_types ? "type" : "comp",
7680 sect_offset_str (this_cu->sect_off));
7681
7682 gdb_assert (this_cu->cu == NULL);
7683
7684 abbrev_section = (dwo_file != NULL
7685 ? &dwo_file->sections.abbrev
7686 : get_abbrev_section_for_cu (this_cu));
7687
7688 /* This is cheap if the section is already read in. */
7689 dwarf2_read_section (objfile, section);
7690
7691 struct dwarf2_cu cu (this_cu);
7692
7693 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7694 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7695 &cu.header, section,
7696 abbrev_section, info_ptr,
7697 (this_cu->is_debug_types
7698 ? rcuh_kind::TYPE
7699 : rcuh_kind::COMPILE));
7700
7701 this_cu->length = get_cu_length (&cu.header);
7702
7703 /* Skip dummy compilation units. */
7704 if (info_ptr >= begin_info_ptr + this_cu->length
7705 || peek_abbrev_code (abfd, info_ptr) == 0)
7706 return;
7707
7708 abbrev_table_up abbrev_table
7709 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7710 cu.header.abbrev_sect_off);
7711
7712 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7713 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7714
7715 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7716 }
7717
7718 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7719 does not lookup the specified DWO file.
7720 This cannot be used to read DWO files.
7721
7722 THIS_CU->cu is always freed when done.
7723 This is done in order to not leave THIS_CU->cu in a state where we have
7724 to care whether it refers to the "main" CU or the DWO CU.
7725 We can revisit this if the data shows there's a performance issue. */
7726
7727 static void
7728 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7729 die_reader_func_ftype *die_reader_func,
7730 void *data)
7731 {
7732 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7733 }
7734 \f
7735 /* Type Unit Groups.
7736
7737 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7738 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7739 so that all types coming from the same compilation (.o file) are grouped
7740 together. A future step could be to put the types in the same symtab as
7741 the CU the types ultimately came from. */
7742
7743 static hashval_t
7744 hash_type_unit_group (const void *item)
7745 {
7746 const struct type_unit_group *tu_group
7747 = (const struct type_unit_group *) item;
7748
7749 return hash_stmt_list_entry (&tu_group->hash);
7750 }
7751
7752 static int
7753 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7754 {
7755 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7756 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7757
7758 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7759 }
7760
7761 /* Allocate a hash table for type unit groups. */
7762
7763 static htab_t
7764 allocate_type_unit_groups_table (struct objfile *objfile)
7765 {
7766 return htab_create_alloc_ex (3,
7767 hash_type_unit_group,
7768 eq_type_unit_group,
7769 NULL,
7770 &objfile->objfile_obstack,
7771 hashtab_obstack_allocate,
7772 dummy_obstack_deallocate);
7773 }
7774
7775 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7776 partial symtabs. We combine several TUs per psymtab to not let the size
7777 of any one psymtab grow too big. */
7778 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7779 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7780
7781 /* Helper routine for get_type_unit_group.
7782 Create the type_unit_group object used to hold one or more TUs. */
7783
7784 static struct type_unit_group *
7785 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7786 {
7787 struct dwarf2_per_objfile *dwarf2_per_objfile
7788 = cu->per_cu->dwarf2_per_objfile;
7789 struct objfile *objfile = dwarf2_per_objfile->objfile;
7790 struct dwarf2_per_cu_data *per_cu;
7791 struct type_unit_group *tu_group;
7792
7793 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7794 struct type_unit_group);
7795 per_cu = &tu_group->per_cu;
7796 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7797
7798 if (dwarf2_per_objfile->using_index)
7799 {
7800 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7801 struct dwarf2_per_cu_quick_data);
7802 }
7803 else
7804 {
7805 unsigned int line_offset = to_underlying (line_offset_struct);
7806 struct partial_symtab *pst;
7807 std::string name;
7808
7809 /* Give the symtab a useful name for debug purposes. */
7810 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7811 name = string_printf ("<type_units_%d>",
7812 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7813 else
7814 name = string_printf ("<type_units_at_0x%x>", line_offset);
7815
7816 pst = create_partial_symtab (per_cu, name.c_str ());
7817 pst->anonymous = 1;
7818 }
7819
7820 tu_group->hash.dwo_unit = cu->dwo_unit;
7821 tu_group->hash.line_sect_off = line_offset_struct;
7822
7823 return tu_group;
7824 }
7825
7826 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7827 STMT_LIST is a DW_AT_stmt_list attribute. */
7828
7829 static struct type_unit_group *
7830 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7831 {
7832 struct dwarf2_per_objfile *dwarf2_per_objfile
7833 = cu->per_cu->dwarf2_per_objfile;
7834 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7835 struct type_unit_group *tu_group;
7836 void **slot;
7837 unsigned int line_offset;
7838 struct type_unit_group type_unit_group_for_lookup;
7839
7840 if (dwarf2_per_objfile->type_unit_groups == NULL)
7841 {
7842 dwarf2_per_objfile->type_unit_groups =
7843 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7844 }
7845
7846 /* Do we need to create a new group, or can we use an existing one? */
7847
7848 if (stmt_list)
7849 {
7850 line_offset = DW_UNSND (stmt_list);
7851 ++tu_stats->nr_symtab_sharers;
7852 }
7853 else
7854 {
7855 /* Ugh, no stmt_list. Rare, but we have to handle it.
7856 We can do various things here like create one group per TU or
7857 spread them over multiple groups to split up the expansion work.
7858 To avoid worst case scenarios (too many groups or too large groups)
7859 we, umm, group them in bunches. */
7860 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7861 | (tu_stats->nr_stmt_less_type_units
7862 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7863 ++tu_stats->nr_stmt_less_type_units;
7864 }
7865
7866 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7867 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7868 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7869 &type_unit_group_for_lookup, INSERT);
7870 if (*slot != NULL)
7871 {
7872 tu_group = (struct type_unit_group *) *slot;
7873 gdb_assert (tu_group != NULL);
7874 }
7875 else
7876 {
7877 sect_offset line_offset_struct = (sect_offset) line_offset;
7878 tu_group = create_type_unit_group (cu, line_offset_struct);
7879 *slot = tu_group;
7880 ++tu_stats->nr_symtabs;
7881 }
7882
7883 return tu_group;
7884 }
7885 \f
7886 /* Partial symbol tables. */
7887
7888 /* Create a psymtab named NAME and assign it to PER_CU.
7889
7890 The caller must fill in the following details:
7891 dirname, textlow, texthigh. */
7892
7893 static struct partial_symtab *
7894 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7895 {
7896 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7897 struct partial_symtab *pst;
7898
7899 pst = start_psymtab_common (objfile, name, 0);
7900
7901 pst->psymtabs_addrmap_supported = 1;
7902
7903 /* This is the glue that links PST into GDB's symbol API. */
7904 pst->read_symtab_private = per_cu;
7905 pst->read_symtab = dwarf2_read_symtab;
7906 per_cu->v.psymtab = pst;
7907
7908 return pst;
7909 }
7910
7911 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7912 type. */
7913
7914 struct process_psymtab_comp_unit_data
7915 {
7916 /* True if we are reading a DW_TAG_partial_unit. */
7917
7918 int want_partial_unit;
7919
7920 /* The "pretend" language that is used if the CU doesn't declare a
7921 language. */
7922
7923 enum language pretend_language;
7924 };
7925
7926 /* die_reader_func for process_psymtab_comp_unit. */
7927
7928 static void
7929 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7930 const gdb_byte *info_ptr,
7931 struct die_info *comp_unit_die,
7932 int has_children,
7933 void *data)
7934 {
7935 struct dwarf2_cu *cu = reader->cu;
7936 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7937 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7938 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7939 CORE_ADDR baseaddr;
7940 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7941 struct partial_symtab *pst;
7942 enum pc_bounds_kind cu_bounds_kind;
7943 const char *filename;
7944 struct process_psymtab_comp_unit_data *info
7945 = (struct process_psymtab_comp_unit_data *) data;
7946
7947 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
7948 return;
7949
7950 gdb_assert (! per_cu->is_debug_types);
7951
7952 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
7953
7954 /* Allocate a new partial symbol table structure. */
7955 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7956 if (filename == NULL)
7957 filename = "";
7958
7959 pst = create_partial_symtab (per_cu, filename);
7960
7961 /* This must be done before calling dwarf2_build_include_psymtabs. */
7962 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7963
7964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7965
7966 dwarf2_find_base_address (comp_unit_die, cu);
7967
7968 /* Possibly set the default values of LOWPC and HIGHPC from
7969 `DW_AT_ranges'. */
7970 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7971 &best_highpc, cu, pst);
7972 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7973 {
7974 CORE_ADDR low
7975 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7976 - baseaddr);
7977 CORE_ADDR high
7978 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7979 - baseaddr - 1);
7980 /* Store the contiguous range if it is not empty; it can be
7981 empty for CUs with no code. */
7982 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7983 low, high, pst);
7984 }
7985
7986 /* Check if comp unit has_children.
7987 If so, read the rest of the partial symbols from this comp unit.
7988 If not, there's no more debug_info for this comp unit. */
7989 if (has_children)
7990 {
7991 struct partial_die_info *first_die;
7992 CORE_ADDR lowpc, highpc;
7993
7994 lowpc = ((CORE_ADDR) -1);
7995 highpc = ((CORE_ADDR) 0);
7996
7997 first_die = load_partial_dies (reader, info_ptr, 1);
7998
7999 scan_partial_symbols (first_die, &lowpc, &highpc,
8000 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8001
8002 /* If we didn't find a lowpc, set it to highpc to avoid
8003 complaints from `maint check'. */
8004 if (lowpc == ((CORE_ADDR) -1))
8005 lowpc = highpc;
8006
8007 /* If the compilation unit didn't have an explicit address range,
8008 then use the information extracted from its child dies. */
8009 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8010 {
8011 best_lowpc = lowpc;
8012 best_highpc = highpc;
8013 }
8014 }
8015 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8016 best_lowpc + baseaddr)
8017 - baseaddr);
8018 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8019 best_highpc + baseaddr)
8020 - baseaddr);
8021
8022 end_psymtab_common (objfile, pst);
8023
8024 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8025 {
8026 int i;
8027 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8028 struct dwarf2_per_cu_data *iter;
8029
8030 /* Fill in 'dependencies' here; we fill in 'users' in a
8031 post-pass. */
8032 pst->number_of_dependencies = len;
8033 pst->dependencies
8034 = objfile->partial_symtabs->allocate_dependencies (len);
8035 for (i = 0;
8036 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8037 i, iter);
8038 ++i)
8039 pst->dependencies[i] = iter->v.psymtab;
8040
8041 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8042 }
8043
8044 /* Get the list of files included in the current compilation unit,
8045 and build a psymtab for each of them. */
8046 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8047
8048 if (dwarf_read_debug)
8049 fprintf_unfiltered (gdb_stdlog,
8050 "Psymtab for %s unit @%s: %s - %s"
8051 ", %d global, %d static syms\n",
8052 per_cu->is_debug_types ? "type" : "comp",
8053 sect_offset_str (per_cu->sect_off),
8054 paddress (gdbarch, pst->text_low (objfile)),
8055 paddress (gdbarch, pst->text_high (objfile)),
8056 pst->n_global_syms, pst->n_static_syms);
8057 }
8058
8059 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8060 Process compilation unit THIS_CU for a psymtab. */
8061
8062 static void
8063 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8064 int want_partial_unit,
8065 enum language pretend_language)
8066 {
8067 /* If this compilation unit was already read in, free the
8068 cached copy in order to read it in again. This is
8069 necessary because we skipped some symbols when we first
8070 read in the compilation unit (see load_partial_dies).
8071 This problem could be avoided, but the benefit is unclear. */
8072 if (this_cu->cu != NULL)
8073 free_one_cached_comp_unit (this_cu);
8074
8075 if (this_cu->is_debug_types)
8076 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8077 build_type_psymtabs_reader, NULL);
8078 else
8079 {
8080 process_psymtab_comp_unit_data info;
8081 info.want_partial_unit = want_partial_unit;
8082 info.pretend_language = pretend_language;
8083 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8084 process_psymtab_comp_unit_reader, &info);
8085 }
8086
8087 /* Age out any secondary CUs. */
8088 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8089 }
8090
8091 /* Reader function for build_type_psymtabs. */
8092
8093 static void
8094 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8095 const gdb_byte *info_ptr,
8096 struct die_info *type_unit_die,
8097 int has_children,
8098 void *data)
8099 {
8100 struct dwarf2_per_objfile *dwarf2_per_objfile
8101 = reader->cu->per_cu->dwarf2_per_objfile;
8102 struct objfile *objfile = dwarf2_per_objfile->objfile;
8103 struct dwarf2_cu *cu = reader->cu;
8104 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8105 struct signatured_type *sig_type;
8106 struct type_unit_group *tu_group;
8107 struct attribute *attr;
8108 struct partial_die_info *first_die;
8109 CORE_ADDR lowpc, highpc;
8110 struct partial_symtab *pst;
8111
8112 gdb_assert (data == NULL);
8113 gdb_assert (per_cu->is_debug_types);
8114 sig_type = (struct signatured_type *) per_cu;
8115
8116 if (! has_children)
8117 return;
8118
8119 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8120 tu_group = get_type_unit_group (cu, attr);
8121
8122 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8123
8124 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8125 pst = create_partial_symtab (per_cu, "");
8126 pst->anonymous = 1;
8127
8128 first_die = load_partial_dies (reader, info_ptr, 1);
8129
8130 lowpc = (CORE_ADDR) -1;
8131 highpc = (CORE_ADDR) 0;
8132 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8133
8134 end_psymtab_common (objfile, pst);
8135 }
8136
8137 /* Struct used to sort TUs by their abbreviation table offset. */
8138
8139 struct tu_abbrev_offset
8140 {
8141 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8142 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8143 {}
8144
8145 signatured_type *sig_type;
8146 sect_offset abbrev_offset;
8147 };
8148
8149 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8150
8151 static bool
8152 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8153 const struct tu_abbrev_offset &b)
8154 {
8155 return a.abbrev_offset < b.abbrev_offset;
8156 }
8157
8158 /* Efficiently read all the type units.
8159 This does the bulk of the work for build_type_psymtabs.
8160
8161 The efficiency is because we sort TUs by the abbrev table they use and
8162 only read each abbrev table once. In one program there are 200K TUs
8163 sharing 8K abbrev tables.
8164
8165 The main purpose of this function is to support building the
8166 dwarf2_per_objfile->type_unit_groups table.
8167 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8168 can collapse the search space by grouping them by stmt_list.
8169 The savings can be significant, in the same program from above the 200K TUs
8170 share 8K stmt_list tables.
8171
8172 FUNC is expected to call get_type_unit_group, which will create the
8173 struct type_unit_group if necessary and add it to
8174 dwarf2_per_objfile->type_unit_groups. */
8175
8176 static void
8177 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8178 {
8179 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8180 abbrev_table_up abbrev_table;
8181 sect_offset abbrev_offset;
8182
8183 /* It's up to the caller to not call us multiple times. */
8184 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8185
8186 if (dwarf2_per_objfile->all_type_units.empty ())
8187 return;
8188
8189 /* TUs typically share abbrev tables, and there can be way more TUs than
8190 abbrev tables. Sort by abbrev table to reduce the number of times we
8191 read each abbrev table in.
8192 Alternatives are to punt or to maintain a cache of abbrev tables.
8193 This is simpler and efficient enough for now.
8194
8195 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8196 symtab to use). Typically TUs with the same abbrev offset have the same
8197 stmt_list value too so in practice this should work well.
8198
8199 The basic algorithm here is:
8200
8201 sort TUs by abbrev table
8202 for each TU with same abbrev table:
8203 read abbrev table if first user
8204 read TU top level DIE
8205 [IWBN if DWO skeletons had DW_AT_stmt_list]
8206 call FUNC */
8207
8208 if (dwarf_read_debug)
8209 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8210
8211 /* Sort in a separate table to maintain the order of all_type_units
8212 for .gdb_index: TU indices directly index all_type_units. */
8213 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8214 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8215
8216 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8217 sorted_by_abbrev.emplace_back
8218 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8219 sig_type->per_cu.section,
8220 sig_type->per_cu.sect_off));
8221
8222 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8223 sort_tu_by_abbrev_offset);
8224
8225 abbrev_offset = (sect_offset) ~(unsigned) 0;
8226
8227 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8228 {
8229 /* Switch to the next abbrev table if necessary. */
8230 if (abbrev_table == NULL
8231 || tu.abbrev_offset != abbrev_offset)
8232 {
8233 abbrev_offset = tu.abbrev_offset;
8234 abbrev_table =
8235 abbrev_table_read_table (dwarf2_per_objfile,
8236 &dwarf2_per_objfile->abbrev,
8237 abbrev_offset);
8238 ++tu_stats->nr_uniq_abbrev_tables;
8239 }
8240
8241 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8242 0, 0, false, build_type_psymtabs_reader, NULL);
8243 }
8244 }
8245
8246 /* Print collected type unit statistics. */
8247
8248 static void
8249 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8250 {
8251 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8252
8253 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8254 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8255 dwarf2_per_objfile->all_type_units.size ());
8256 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8257 tu_stats->nr_uniq_abbrev_tables);
8258 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8259 tu_stats->nr_symtabs);
8260 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8261 tu_stats->nr_symtab_sharers);
8262 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8263 tu_stats->nr_stmt_less_type_units);
8264 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8265 tu_stats->nr_all_type_units_reallocs);
8266 }
8267
8268 /* Traversal function for build_type_psymtabs. */
8269
8270 static int
8271 build_type_psymtab_dependencies (void **slot, void *info)
8272 {
8273 struct dwarf2_per_objfile *dwarf2_per_objfile
8274 = (struct dwarf2_per_objfile *) info;
8275 struct objfile *objfile = dwarf2_per_objfile->objfile;
8276 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8277 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8278 struct partial_symtab *pst = per_cu->v.psymtab;
8279 int len = VEC_length (sig_type_ptr, tu_group->tus);
8280 struct signatured_type *iter;
8281 int i;
8282
8283 gdb_assert (len > 0);
8284 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8285
8286 pst->number_of_dependencies = len;
8287 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8288 for (i = 0;
8289 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8290 ++i)
8291 {
8292 gdb_assert (iter->per_cu.is_debug_types);
8293 pst->dependencies[i] = iter->per_cu.v.psymtab;
8294 iter->type_unit_group = tu_group;
8295 }
8296
8297 VEC_free (sig_type_ptr, tu_group->tus);
8298
8299 return 1;
8300 }
8301
8302 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8303 Build partial symbol tables for the .debug_types comp-units. */
8304
8305 static void
8306 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8307 {
8308 if (! create_all_type_units (dwarf2_per_objfile))
8309 return;
8310
8311 build_type_psymtabs_1 (dwarf2_per_objfile);
8312 }
8313
8314 /* Traversal function for process_skeletonless_type_unit.
8315 Read a TU in a DWO file and build partial symbols for it. */
8316
8317 static int
8318 process_skeletonless_type_unit (void **slot, void *info)
8319 {
8320 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8321 struct dwarf2_per_objfile *dwarf2_per_objfile
8322 = (struct dwarf2_per_objfile *) info;
8323 struct signatured_type find_entry, *entry;
8324
8325 /* If this TU doesn't exist in the global table, add it and read it in. */
8326
8327 if (dwarf2_per_objfile->signatured_types == NULL)
8328 {
8329 dwarf2_per_objfile->signatured_types
8330 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8331 }
8332
8333 find_entry.signature = dwo_unit->signature;
8334 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8335 INSERT);
8336 /* If we've already seen this type there's nothing to do. What's happening
8337 is we're doing our own version of comdat-folding here. */
8338 if (*slot != NULL)
8339 return 1;
8340
8341 /* This does the job that create_all_type_units would have done for
8342 this TU. */
8343 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8344 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8345 *slot = entry;
8346
8347 /* This does the job that build_type_psymtabs_1 would have done. */
8348 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8349 build_type_psymtabs_reader, NULL);
8350
8351 return 1;
8352 }
8353
8354 /* Traversal function for process_skeletonless_type_units. */
8355
8356 static int
8357 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8358 {
8359 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8360
8361 if (dwo_file->tus != NULL)
8362 {
8363 htab_traverse_noresize (dwo_file->tus,
8364 process_skeletonless_type_unit, info);
8365 }
8366
8367 return 1;
8368 }
8369
8370 /* Scan all TUs of DWO files, verifying we've processed them.
8371 This is needed in case a TU was emitted without its skeleton.
8372 Note: This can't be done until we know what all the DWO files are. */
8373
8374 static void
8375 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8376 {
8377 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8378 if (get_dwp_file (dwarf2_per_objfile) == NULL
8379 && dwarf2_per_objfile->dwo_files != NULL)
8380 {
8381 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8382 process_dwo_file_for_skeletonless_type_units,
8383 dwarf2_per_objfile);
8384 }
8385 }
8386
8387 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8388
8389 static void
8390 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8391 {
8392 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8393 {
8394 struct partial_symtab *pst = per_cu->v.psymtab;
8395
8396 if (pst == NULL)
8397 continue;
8398
8399 for (int j = 0; j < pst->number_of_dependencies; ++j)
8400 {
8401 /* Set the 'user' field only if it is not already set. */
8402 if (pst->dependencies[j]->user == NULL)
8403 pst->dependencies[j]->user = pst;
8404 }
8405 }
8406 }
8407
8408 /* Build the partial symbol table by doing a quick pass through the
8409 .debug_info and .debug_abbrev sections. */
8410
8411 static void
8412 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8413 {
8414 struct objfile *objfile = dwarf2_per_objfile->objfile;
8415
8416 if (dwarf_read_debug)
8417 {
8418 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8419 objfile_name (objfile));
8420 }
8421
8422 dwarf2_per_objfile->reading_partial_symbols = 1;
8423
8424 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8425
8426 /* Any cached compilation units will be linked by the per-objfile
8427 read_in_chain. Make sure to free them when we're done. */
8428 free_cached_comp_units freer (dwarf2_per_objfile);
8429
8430 build_type_psymtabs (dwarf2_per_objfile);
8431
8432 create_all_comp_units (dwarf2_per_objfile);
8433
8434 /* Create a temporary address map on a temporary obstack. We later
8435 copy this to the final obstack. */
8436 auto_obstack temp_obstack;
8437
8438 scoped_restore save_psymtabs_addrmap
8439 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8440 addrmap_create_mutable (&temp_obstack));
8441
8442 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8443 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8444
8445 /* This has to wait until we read the CUs, we need the list of DWOs. */
8446 process_skeletonless_type_units (dwarf2_per_objfile);
8447
8448 /* Now that all TUs have been processed we can fill in the dependencies. */
8449 if (dwarf2_per_objfile->type_unit_groups != NULL)
8450 {
8451 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8452 build_type_psymtab_dependencies, dwarf2_per_objfile);
8453 }
8454
8455 if (dwarf_read_debug)
8456 print_tu_stats (dwarf2_per_objfile);
8457
8458 set_partial_user (dwarf2_per_objfile);
8459
8460 objfile->partial_symtabs->psymtabs_addrmap
8461 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8462 objfile->partial_symtabs->obstack ());
8463 /* At this point we want to keep the address map. */
8464 save_psymtabs_addrmap.release ();
8465
8466 if (dwarf_read_debug)
8467 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8468 objfile_name (objfile));
8469 }
8470
8471 /* die_reader_func for load_partial_comp_unit. */
8472
8473 static void
8474 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8475 const gdb_byte *info_ptr,
8476 struct die_info *comp_unit_die,
8477 int has_children,
8478 void *data)
8479 {
8480 struct dwarf2_cu *cu = reader->cu;
8481
8482 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8483
8484 /* Check if comp unit has_children.
8485 If so, read the rest of the partial symbols from this comp unit.
8486 If not, there's no more debug_info for this comp unit. */
8487 if (has_children)
8488 load_partial_dies (reader, info_ptr, 0);
8489 }
8490
8491 /* Load the partial DIEs for a secondary CU into memory.
8492 This is also used when rereading a primary CU with load_all_dies. */
8493
8494 static void
8495 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8496 {
8497 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8498 load_partial_comp_unit_reader, NULL);
8499 }
8500
8501 static void
8502 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8503 struct dwarf2_section_info *section,
8504 struct dwarf2_section_info *abbrev_section,
8505 unsigned int is_dwz)
8506 {
8507 const gdb_byte *info_ptr;
8508 struct objfile *objfile = dwarf2_per_objfile->objfile;
8509
8510 if (dwarf_read_debug)
8511 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8512 get_section_name (section),
8513 get_section_file_name (section));
8514
8515 dwarf2_read_section (objfile, section);
8516
8517 info_ptr = section->buffer;
8518
8519 while (info_ptr < section->buffer + section->size)
8520 {
8521 struct dwarf2_per_cu_data *this_cu;
8522
8523 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8524
8525 comp_unit_head cu_header;
8526 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8527 abbrev_section, info_ptr,
8528 rcuh_kind::COMPILE);
8529
8530 /* Save the compilation unit for later lookup. */
8531 if (cu_header.unit_type != DW_UT_type)
8532 {
8533 this_cu = XOBNEW (&objfile->objfile_obstack,
8534 struct dwarf2_per_cu_data);
8535 memset (this_cu, 0, sizeof (*this_cu));
8536 }
8537 else
8538 {
8539 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8540 struct signatured_type);
8541 memset (sig_type, 0, sizeof (*sig_type));
8542 sig_type->signature = cu_header.signature;
8543 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8544 this_cu = &sig_type->per_cu;
8545 }
8546 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8547 this_cu->sect_off = sect_off;
8548 this_cu->length = cu_header.length + cu_header.initial_length_size;
8549 this_cu->is_dwz = is_dwz;
8550 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8551 this_cu->section = section;
8552
8553 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8554
8555 info_ptr = info_ptr + this_cu->length;
8556 }
8557 }
8558
8559 /* Create a list of all compilation units in OBJFILE.
8560 This is only done for -readnow and building partial symtabs. */
8561
8562 static void
8563 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8564 {
8565 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8566 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8567 &dwarf2_per_objfile->abbrev, 0);
8568
8569 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8570 if (dwz != NULL)
8571 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8572 1);
8573 }
8574
8575 /* Process all loaded DIEs for compilation unit CU, starting at
8576 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8577 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8578 DW_AT_ranges). See the comments of add_partial_subprogram on how
8579 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8580
8581 static void
8582 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8583 CORE_ADDR *highpc, int set_addrmap,
8584 struct dwarf2_cu *cu)
8585 {
8586 struct partial_die_info *pdi;
8587
8588 /* Now, march along the PDI's, descending into ones which have
8589 interesting children but skipping the children of the other ones,
8590 until we reach the end of the compilation unit. */
8591
8592 pdi = first_die;
8593
8594 while (pdi != NULL)
8595 {
8596 pdi->fixup (cu);
8597
8598 /* Anonymous namespaces or modules have no name but have interesting
8599 children, so we need to look at them. Ditto for anonymous
8600 enums. */
8601
8602 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8603 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8604 || pdi->tag == DW_TAG_imported_unit
8605 || pdi->tag == DW_TAG_inlined_subroutine)
8606 {
8607 switch (pdi->tag)
8608 {
8609 case DW_TAG_subprogram:
8610 case DW_TAG_inlined_subroutine:
8611 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8612 break;
8613 case DW_TAG_constant:
8614 case DW_TAG_variable:
8615 case DW_TAG_typedef:
8616 case DW_TAG_union_type:
8617 if (!pdi->is_declaration)
8618 {
8619 add_partial_symbol (pdi, cu);
8620 }
8621 break;
8622 case DW_TAG_class_type:
8623 case DW_TAG_interface_type:
8624 case DW_TAG_structure_type:
8625 if (!pdi->is_declaration)
8626 {
8627 add_partial_symbol (pdi, cu);
8628 }
8629 if ((cu->language == language_rust
8630 || cu->language == language_cplus) && pdi->has_children)
8631 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8632 set_addrmap, cu);
8633 break;
8634 case DW_TAG_enumeration_type:
8635 if (!pdi->is_declaration)
8636 add_partial_enumeration (pdi, cu);
8637 break;
8638 case DW_TAG_base_type:
8639 case DW_TAG_subrange_type:
8640 /* File scope base type definitions are added to the partial
8641 symbol table. */
8642 add_partial_symbol (pdi, cu);
8643 break;
8644 case DW_TAG_namespace:
8645 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8646 break;
8647 case DW_TAG_module:
8648 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8649 break;
8650 case DW_TAG_imported_unit:
8651 {
8652 struct dwarf2_per_cu_data *per_cu;
8653
8654 /* For now we don't handle imported units in type units. */
8655 if (cu->per_cu->is_debug_types)
8656 {
8657 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8658 " supported in type units [in module %s]"),
8659 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8660 }
8661
8662 per_cu = dwarf2_find_containing_comp_unit
8663 (pdi->d.sect_off, pdi->is_dwz,
8664 cu->per_cu->dwarf2_per_objfile);
8665
8666 /* Go read the partial unit, if needed. */
8667 if (per_cu->v.psymtab == NULL)
8668 process_psymtab_comp_unit (per_cu, 1, cu->language);
8669
8670 VEC_safe_push (dwarf2_per_cu_ptr,
8671 cu->per_cu->imported_symtabs, per_cu);
8672 }
8673 break;
8674 case DW_TAG_imported_declaration:
8675 add_partial_symbol (pdi, cu);
8676 break;
8677 default:
8678 break;
8679 }
8680 }
8681
8682 /* If the die has a sibling, skip to the sibling. */
8683
8684 pdi = pdi->die_sibling;
8685 }
8686 }
8687
8688 /* Functions used to compute the fully scoped name of a partial DIE.
8689
8690 Normally, this is simple. For C++, the parent DIE's fully scoped
8691 name is concatenated with "::" and the partial DIE's name.
8692 Enumerators are an exception; they use the scope of their parent
8693 enumeration type, i.e. the name of the enumeration type is not
8694 prepended to the enumerator.
8695
8696 There are two complexities. One is DW_AT_specification; in this
8697 case "parent" means the parent of the target of the specification,
8698 instead of the direct parent of the DIE. The other is compilers
8699 which do not emit DW_TAG_namespace; in this case we try to guess
8700 the fully qualified name of structure types from their members'
8701 linkage names. This must be done using the DIE's children rather
8702 than the children of any DW_AT_specification target. We only need
8703 to do this for structures at the top level, i.e. if the target of
8704 any DW_AT_specification (if any; otherwise the DIE itself) does not
8705 have a parent. */
8706
8707 /* Compute the scope prefix associated with PDI's parent, in
8708 compilation unit CU. The result will be allocated on CU's
8709 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8710 field. NULL is returned if no prefix is necessary. */
8711 static const char *
8712 partial_die_parent_scope (struct partial_die_info *pdi,
8713 struct dwarf2_cu *cu)
8714 {
8715 const char *grandparent_scope;
8716 struct partial_die_info *parent, *real_pdi;
8717
8718 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8719 then this means the parent of the specification DIE. */
8720
8721 real_pdi = pdi;
8722 while (real_pdi->has_specification)
8723 {
8724 auto res = find_partial_die (real_pdi->spec_offset,
8725 real_pdi->spec_is_dwz, cu);
8726 real_pdi = res.pdi;
8727 cu = res.cu;
8728 }
8729
8730 parent = real_pdi->die_parent;
8731 if (parent == NULL)
8732 return NULL;
8733
8734 if (parent->scope_set)
8735 return parent->scope;
8736
8737 parent->fixup (cu);
8738
8739 grandparent_scope = partial_die_parent_scope (parent, cu);
8740
8741 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8742 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8743 Work around this problem here. */
8744 if (cu->language == language_cplus
8745 && parent->tag == DW_TAG_namespace
8746 && strcmp (parent->name, "::") == 0
8747 && grandparent_scope == NULL)
8748 {
8749 parent->scope = NULL;
8750 parent->scope_set = 1;
8751 return NULL;
8752 }
8753
8754 if (pdi->tag == DW_TAG_enumerator)
8755 /* Enumerators should not get the name of the enumeration as a prefix. */
8756 parent->scope = grandparent_scope;
8757 else if (parent->tag == DW_TAG_namespace
8758 || parent->tag == DW_TAG_module
8759 || parent->tag == DW_TAG_structure_type
8760 || parent->tag == DW_TAG_class_type
8761 || parent->tag == DW_TAG_interface_type
8762 || parent->tag == DW_TAG_union_type
8763 || parent->tag == DW_TAG_enumeration_type)
8764 {
8765 if (grandparent_scope == NULL)
8766 parent->scope = parent->name;
8767 else
8768 parent->scope = typename_concat (&cu->comp_unit_obstack,
8769 grandparent_scope,
8770 parent->name, 0, cu);
8771 }
8772 else
8773 {
8774 /* FIXME drow/2004-04-01: What should we be doing with
8775 function-local names? For partial symbols, we should probably be
8776 ignoring them. */
8777 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8778 dwarf_tag_name (parent->tag),
8779 sect_offset_str (pdi->sect_off));
8780 parent->scope = grandparent_scope;
8781 }
8782
8783 parent->scope_set = 1;
8784 return parent->scope;
8785 }
8786
8787 /* Return the fully scoped name associated with PDI, from compilation unit
8788 CU. The result will be allocated with malloc. */
8789
8790 static char *
8791 partial_die_full_name (struct partial_die_info *pdi,
8792 struct dwarf2_cu *cu)
8793 {
8794 const char *parent_scope;
8795
8796 /* If this is a template instantiation, we can not work out the
8797 template arguments from partial DIEs. So, unfortunately, we have
8798 to go through the full DIEs. At least any work we do building
8799 types here will be reused if full symbols are loaded later. */
8800 if (pdi->has_template_arguments)
8801 {
8802 pdi->fixup (cu);
8803
8804 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8805 {
8806 struct die_info *die;
8807 struct attribute attr;
8808 struct dwarf2_cu *ref_cu = cu;
8809
8810 /* DW_FORM_ref_addr is using section offset. */
8811 attr.name = (enum dwarf_attribute) 0;
8812 attr.form = DW_FORM_ref_addr;
8813 attr.u.unsnd = to_underlying (pdi->sect_off);
8814 die = follow_die_ref (NULL, &attr, &ref_cu);
8815
8816 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8817 }
8818 }
8819
8820 parent_scope = partial_die_parent_scope (pdi, cu);
8821 if (parent_scope == NULL)
8822 return NULL;
8823 else
8824 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8825 }
8826
8827 static void
8828 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8829 {
8830 struct dwarf2_per_objfile *dwarf2_per_objfile
8831 = cu->per_cu->dwarf2_per_objfile;
8832 struct objfile *objfile = dwarf2_per_objfile->objfile;
8833 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8834 CORE_ADDR addr = 0;
8835 const char *actual_name = NULL;
8836 CORE_ADDR baseaddr;
8837 char *built_actual_name;
8838
8839 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8840
8841 built_actual_name = partial_die_full_name (pdi, cu);
8842 if (built_actual_name != NULL)
8843 actual_name = built_actual_name;
8844
8845 if (actual_name == NULL)
8846 actual_name = pdi->name;
8847
8848 switch (pdi->tag)
8849 {
8850 case DW_TAG_inlined_subroutine:
8851 case DW_TAG_subprogram:
8852 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8853 - baseaddr);
8854 if (pdi->is_external || cu->language == language_ada)
8855 {
8856 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8857 of the global scope. But in Ada, we want to be able to access
8858 nested procedures globally. So all Ada subprograms are stored
8859 in the global scope. */
8860 add_psymbol_to_list (actual_name, strlen (actual_name),
8861 built_actual_name != NULL,
8862 VAR_DOMAIN, LOC_BLOCK,
8863 SECT_OFF_TEXT (objfile),
8864 psymbol_placement::GLOBAL,
8865 addr,
8866 cu->language, objfile);
8867 }
8868 else
8869 {
8870 add_psymbol_to_list (actual_name, strlen (actual_name),
8871 built_actual_name != NULL,
8872 VAR_DOMAIN, LOC_BLOCK,
8873 SECT_OFF_TEXT (objfile),
8874 psymbol_placement::STATIC,
8875 addr, cu->language, objfile);
8876 }
8877
8878 if (pdi->main_subprogram && actual_name != NULL)
8879 set_objfile_main_name (objfile, actual_name, cu->language);
8880 break;
8881 case DW_TAG_constant:
8882 add_psymbol_to_list (actual_name, strlen (actual_name),
8883 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8884 -1, (pdi->is_external
8885 ? psymbol_placement::GLOBAL
8886 : psymbol_placement::STATIC),
8887 0, cu->language, objfile);
8888 break;
8889 case DW_TAG_variable:
8890 if (pdi->d.locdesc)
8891 addr = decode_locdesc (pdi->d.locdesc, cu);
8892
8893 if (pdi->d.locdesc
8894 && addr == 0
8895 && !dwarf2_per_objfile->has_section_at_zero)
8896 {
8897 /* A global or static variable may also have been stripped
8898 out by the linker if unused, in which case its address
8899 will be nullified; do not add such variables into partial
8900 symbol table then. */
8901 }
8902 else if (pdi->is_external)
8903 {
8904 /* Global Variable.
8905 Don't enter into the minimal symbol tables as there is
8906 a minimal symbol table entry from the ELF symbols already.
8907 Enter into partial symbol table if it has a location
8908 descriptor or a type.
8909 If the location descriptor is missing, new_symbol will create
8910 a LOC_UNRESOLVED symbol, the address of the variable will then
8911 be determined from the minimal symbol table whenever the variable
8912 is referenced.
8913 The address for the partial symbol table entry is not
8914 used by GDB, but it comes in handy for debugging partial symbol
8915 table building. */
8916
8917 if (pdi->d.locdesc || pdi->has_type)
8918 add_psymbol_to_list (actual_name, strlen (actual_name),
8919 built_actual_name != NULL,
8920 VAR_DOMAIN, LOC_STATIC,
8921 SECT_OFF_TEXT (objfile),
8922 psymbol_placement::GLOBAL,
8923 addr, cu->language, objfile);
8924 }
8925 else
8926 {
8927 int has_loc = pdi->d.locdesc != NULL;
8928
8929 /* Static Variable. Skip symbols whose value we cannot know (those
8930 without location descriptors or constant values). */
8931 if (!has_loc && !pdi->has_const_value)
8932 {
8933 xfree (built_actual_name);
8934 return;
8935 }
8936
8937 add_psymbol_to_list (actual_name, strlen (actual_name),
8938 built_actual_name != NULL,
8939 VAR_DOMAIN, LOC_STATIC,
8940 SECT_OFF_TEXT (objfile),
8941 psymbol_placement::STATIC,
8942 has_loc ? addr : 0,
8943 cu->language, objfile);
8944 }
8945 break;
8946 case DW_TAG_typedef:
8947 case DW_TAG_base_type:
8948 case DW_TAG_subrange_type:
8949 add_psymbol_to_list (actual_name, strlen (actual_name),
8950 built_actual_name != NULL,
8951 VAR_DOMAIN, LOC_TYPEDEF, -1,
8952 psymbol_placement::STATIC,
8953 0, cu->language, objfile);
8954 break;
8955 case DW_TAG_imported_declaration:
8956 case DW_TAG_namespace:
8957 add_psymbol_to_list (actual_name, strlen (actual_name),
8958 built_actual_name != NULL,
8959 VAR_DOMAIN, LOC_TYPEDEF, -1,
8960 psymbol_placement::GLOBAL,
8961 0, cu->language, objfile);
8962 break;
8963 case DW_TAG_module:
8964 /* With Fortran 77 there might be a "BLOCK DATA" module
8965 available without any name. If so, we skip the module as it
8966 doesn't bring any value. */
8967 if (actual_name != nullptr)
8968 add_psymbol_to_list (actual_name, strlen (actual_name),
8969 built_actual_name != NULL,
8970 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8971 psymbol_placement::GLOBAL,
8972 0, cu->language, objfile);
8973 break;
8974 case DW_TAG_class_type:
8975 case DW_TAG_interface_type:
8976 case DW_TAG_structure_type:
8977 case DW_TAG_union_type:
8978 case DW_TAG_enumeration_type:
8979 /* Skip external references. The DWARF standard says in the section
8980 about "Structure, Union, and Class Type Entries": "An incomplete
8981 structure, union or class type is represented by a structure,
8982 union or class entry that does not have a byte size attribute
8983 and that has a DW_AT_declaration attribute." */
8984 if (!pdi->has_byte_size && pdi->is_declaration)
8985 {
8986 xfree (built_actual_name);
8987 return;
8988 }
8989
8990 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8991 static vs. global. */
8992 add_psymbol_to_list (actual_name, strlen (actual_name),
8993 built_actual_name != NULL,
8994 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8995 cu->language == language_cplus
8996 ? psymbol_placement::GLOBAL
8997 : psymbol_placement::STATIC,
8998 0, cu->language, objfile);
8999
9000 break;
9001 case DW_TAG_enumerator:
9002 add_psymbol_to_list (actual_name, strlen (actual_name),
9003 built_actual_name != NULL,
9004 VAR_DOMAIN, LOC_CONST, -1,
9005 cu->language == language_cplus
9006 ? psymbol_placement::GLOBAL
9007 : psymbol_placement::STATIC,
9008 0, cu->language, objfile);
9009 break;
9010 default:
9011 break;
9012 }
9013
9014 xfree (built_actual_name);
9015 }
9016
9017 /* Read a partial die corresponding to a namespace; also, add a symbol
9018 corresponding to that namespace to the symbol table. NAMESPACE is
9019 the name of the enclosing namespace. */
9020
9021 static void
9022 add_partial_namespace (struct partial_die_info *pdi,
9023 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9024 int set_addrmap, struct dwarf2_cu *cu)
9025 {
9026 /* Add a symbol for the namespace. */
9027
9028 add_partial_symbol (pdi, cu);
9029
9030 /* Now scan partial symbols in that namespace. */
9031
9032 if (pdi->has_children)
9033 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9034 }
9035
9036 /* Read a partial die corresponding to a Fortran module. */
9037
9038 static void
9039 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9040 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9041 {
9042 /* Add a symbol for the namespace. */
9043
9044 add_partial_symbol (pdi, cu);
9045
9046 /* Now scan partial symbols in that module. */
9047
9048 if (pdi->has_children)
9049 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9050 }
9051
9052 /* Read a partial die corresponding to a subprogram or an inlined
9053 subprogram and create a partial symbol for that subprogram.
9054 When the CU language allows it, this routine also defines a partial
9055 symbol for each nested subprogram that this subprogram contains.
9056 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9057 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9058
9059 PDI may also be a lexical block, in which case we simply search
9060 recursively for subprograms defined inside that lexical block.
9061 Again, this is only performed when the CU language allows this
9062 type of definitions. */
9063
9064 static void
9065 add_partial_subprogram (struct partial_die_info *pdi,
9066 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9067 int set_addrmap, struct dwarf2_cu *cu)
9068 {
9069 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9070 {
9071 if (pdi->has_pc_info)
9072 {
9073 if (pdi->lowpc < *lowpc)
9074 *lowpc = pdi->lowpc;
9075 if (pdi->highpc > *highpc)
9076 *highpc = pdi->highpc;
9077 if (set_addrmap)
9078 {
9079 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9080 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9081 CORE_ADDR baseaddr;
9082 CORE_ADDR this_highpc;
9083 CORE_ADDR this_lowpc;
9084
9085 baseaddr = ANOFFSET (objfile->section_offsets,
9086 SECT_OFF_TEXT (objfile));
9087 this_lowpc
9088 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9089 pdi->lowpc + baseaddr)
9090 - baseaddr);
9091 this_highpc
9092 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9093 pdi->highpc + baseaddr)
9094 - baseaddr);
9095 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9096 this_lowpc, this_highpc - 1,
9097 cu->per_cu->v.psymtab);
9098 }
9099 }
9100
9101 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9102 {
9103 if (!pdi->is_declaration)
9104 /* Ignore subprogram DIEs that do not have a name, they are
9105 illegal. Do not emit a complaint at this point, we will
9106 do so when we convert this psymtab into a symtab. */
9107 if (pdi->name)
9108 add_partial_symbol (pdi, cu);
9109 }
9110 }
9111
9112 if (! pdi->has_children)
9113 return;
9114
9115 if (cu->language == language_ada)
9116 {
9117 pdi = pdi->die_child;
9118 while (pdi != NULL)
9119 {
9120 pdi->fixup (cu);
9121 if (pdi->tag == DW_TAG_subprogram
9122 || pdi->tag == DW_TAG_inlined_subroutine
9123 || pdi->tag == DW_TAG_lexical_block)
9124 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9125 pdi = pdi->die_sibling;
9126 }
9127 }
9128 }
9129
9130 /* Read a partial die corresponding to an enumeration type. */
9131
9132 static void
9133 add_partial_enumeration (struct partial_die_info *enum_pdi,
9134 struct dwarf2_cu *cu)
9135 {
9136 struct partial_die_info *pdi;
9137
9138 if (enum_pdi->name != NULL)
9139 add_partial_symbol (enum_pdi, cu);
9140
9141 pdi = enum_pdi->die_child;
9142 while (pdi)
9143 {
9144 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9145 complaint (_("malformed enumerator DIE ignored"));
9146 else
9147 add_partial_symbol (pdi, cu);
9148 pdi = pdi->die_sibling;
9149 }
9150 }
9151
9152 /* Return the initial uleb128 in the die at INFO_PTR. */
9153
9154 static unsigned int
9155 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9156 {
9157 unsigned int bytes_read;
9158
9159 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9160 }
9161
9162 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9163 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9164
9165 Return the corresponding abbrev, or NULL if the number is zero (indicating
9166 an empty DIE). In either case *BYTES_READ will be set to the length of
9167 the initial number. */
9168
9169 static struct abbrev_info *
9170 peek_die_abbrev (const die_reader_specs &reader,
9171 const gdb_byte *info_ptr, unsigned int *bytes_read)
9172 {
9173 dwarf2_cu *cu = reader.cu;
9174 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9175 unsigned int abbrev_number
9176 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9177
9178 if (abbrev_number == 0)
9179 return NULL;
9180
9181 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9182 if (!abbrev)
9183 {
9184 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9185 " at offset %s [in module %s]"),
9186 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9187 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9188 }
9189
9190 return abbrev;
9191 }
9192
9193 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9194 Returns a pointer to the end of a series of DIEs, terminated by an empty
9195 DIE. Any children of the skipped DIEs will also be skipped. */
9196
9197 static const gdb_byte *
9198 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9199 {
9200 while (1)
9201 {
9202 unsigned int bytes_read;
9203 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9204
9205 if (abbrev == NULL)
9206 return info_ptr + bytes_read;
9207 else
9208 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9209 }
9210 }
9211
9212 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9213 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9214 abbrev corresponding to that skipped uleb128 should be passed in
9215 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9216 children. */
9217
9218 static const gdb_byte *
9219 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9220 struct abbrev_info *abbrev)
9221 {
9222 unsigned int bytes_read;
9223 struct attribute attr;
9224 bfd *abfd = reader->abfd;
9225 struct dwarf2_cu *cu = reader->cu;
9226 const gdb_byte *buffer = reader->buffer;
9227 const gdb_byte *buffer_end = reader->buffer_end;
9228 unsigned int form, i;
9229
9230 for (i = 0; i < abbrev->num_attrs; i++)
9231 {
9232 /* The only abbrev we care about is DW_AT_sibling. */
9233 if (abbrev->attrs[i].name == DW_AT_sibling)
9234 {
9235 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9236 if (attr.form == DW_FORM_ref_addr)
9237 complaint (_("ignoring absolute DW_AT_sibling"));
9238 else
9239 {
9240 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9241 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9242
9243 if (sibling_ptr < info_ptr)
9244 complaint (_("DW_AT_sibling points backwards"));
9245 else if (sibling_ptr > reader->buffer_end)
9246 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9247 else
9248 return sibling_ptr;
9249 }
9250 }
9251
9252 /* If it isn't DW_AT_sibling, skip this attribute. */
9253 form = abbrev->attrs[i].form;
9254 skip_attribute:
9255 switch (form)
9256 {
9257 case DW_FORM_ref_addr:
9258 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9259 and later it is offset sized. */
9260 if (cu->header.version == 2)
9261 info_ptr += cu->header.addr_size;
9262 else
9263 info_ptr += cu->header.offset_size;
9264 break;
9265 case DW_FORM_GNU_ref_alt:
9266 info_ptr += cu->header.offset_size;
9267 break;
9268 case DW_FORM_addr:
9269 info_ptr += cu->header.addr_size;
9270 break;
9271 case DW_FORM_data1:
9272 case DW_FORM_ref1:
9273 case DW_FORM_flag:
9274 info_ptr += 1;
9275 break;
9276 case DW_FORM_flag_present:
9277 case DW_FORM_implicit_const:
9278 break;
9279 case DW_FORM_data2:
9280 case DW_FORM_ref2:
9281 info_ptr += 2;
9282 break;
9283 case DW_FORM_data4:
9284 case DW_FORM_ref4:
9285 info_ptr += 4;
9286 break;
9287 case DW_FORM_data8:
9288 case DW_FORM_ref8:
9289 case DW_FORM_ref_sig8:
9290 info_ptr += 8;
9291 break;
9292 case DW_FORM_data16:
9293 info_ptr += 16;
9294 break;
9295 case DW_FORM_string:
9296 read_direct_string (abfd, info_ptr, &bytes_read);
9297 info_ptr += bytes_read;
9298 break;
9299 case DW_FORM_sec_offset:
9300 case DW_FORM_strp:
9301 case DW_FORM_GNU_strp_alt:
9302 info_ptr += cu->header.offset_size;
9303 break;
9304 case DW_FORM_exprloc:
9305 case DW_FORM_block:
9306 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9307 info_ptr += bytes_read;
9308 break;
9309 case DW_FORM_block1:
9310 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9311 break;
9312 case DW_FORM_block2:
9313 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9314 break;
9315 case DW_FORM_block4:
9316 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9317 break;
9318 case DW_FORM_addrx:
9319 case DW_FORM_strx:
9320 case DW_FORM_sdata:
9321 case DW_FORM_udata:
9322 case DW_FORM_ref_udata:
9323 case DW_FORM_GNU_addr_index:
9324 case DW_FORM_GNU_str_index:
9325 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9326 break;
9327 case DW_FORM_indirect:
9328 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9329 info_ptr += bytes_read;
9330 /* We need to continue parsing from here, so just go back to
9331 the top. */
9332 goto skip_attribute;
9333
9334 default:
9335 error (_("Dwarf Error: Cannot handle %s "
9336 "in DWARF reader [in module %s]"),
9337 dwarf_form_name (form),
9338 bfd_get_filename (abfd));
9339 }
9340 }
9341
9342 if (abbrev->has_children)
9343 return skip_children (reader, info_ptr);
9344 else
9345 return info_ptr;
9346 }
9347
9348 /* Locate ORIG_PDI's sibling.
9349 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9350
9351 static const gdb_byte *
9352 locate_pdi_sibling (const struct die_reader_specs *reader,
9353 struct partial_die_info *orig_pdi,
9354 const gdb_byte *info_ptr)
9355 {
9356 /* Do we know the sibling already? */
9357
9358 if (orig_pdi->sibling)
9359 return orig_pdi->sibling;
9360
9361 /* Are there any children to deal with? */
9362
9363 if (!orig_pdi->has_children)
9364 return info_ptr;
9365
9366 /* Skip the children the long way. */
9367
9368 return skip_children (reader, info_ptr);
9369 }
9370
9371 /* Expand this partial symbol table into a full symbol table. SELF is
9372 not NULL. */
9373
9374 static void
9375 dwarf2_read_symtab (struct partial_symtab *self,
9376 struct objfile *objfile)
9377 {
9378 struct dwarf2_per_objfile *dwarf2_per_objfile
9379 = get_dwarf2_per_objfile (objfile);
9380
9381 if (self->readin)
9382 {
9383 warning (_("bug: psymtab for %s is already read in."),
9384 self->filename);
9385 }
9386 else
9387 {
9388 if (info_verbose)
9389 {
9390 printf_filtered (_("Reading in symbols for %s..."),
9391 self->filename);
9392 gdb_flush (gdb_stdout);
9393 }
9394
9395 /* If this psymtab is constructed from a debug-only objfile, the
9396 has_section_at_zero flag will not necessarily be correct. We
9397 can get the correct value for this flag by looking at the data
9398 associated with the (presumably stripped) associated objfile. */
9399 if (objfile->separate_debug_objfile_backlink)
9400 {
9401 struct dwarf2_per_objfile *dpo_backlink
9402 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9403
9404 dwarf2_per_objfile->has_section_at_zero
9405 = dpo_backlink->has_section_at_zero;
9406 }
9407
9408 dwarf2_per_objfile->reading_partial_symbols = 0;
9409
9410 psymtab_to_symtab_1 (self);
9411
9412 /* Finish up the debug error message. */
9413 if (info_verbose)
9414 printf_filtered (_("done.\n"));
9415 }
9416
9417 process_cu_includes (dwarf2_per_objfile);
9418 }
9419 \f
9420 /* Reading in full CUs. */
9421
9422 /* Add PER_CU to the queue. */
9423
9424 static void
9425 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9426 enum language pretend_language)
9427 {
9428 struct dwarf2_queue_item *item;
9429
9430 per_cu->queued = 1;
9431 item = XNEW (struct dwarf2_queue_item);
9432 item->per_cu = per_cu;
9433 item->pretend_language = pretend_language;
9434 item->next = NULL;
9435
9436 if (dwarf2_queue == NULL)
9437 dwarf2_queue = item;
9438 else
9439 dwarf2_queue_tail->next = item;
9440
9441 dwarf2_queue_tail = item;
9442 }
9443
9444 /* If PER_CU is not yet queued, add it to the queue.
9445 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9446 dependency.
9447 The result is non-zero if PER_CU was queued, otherwise the result is zero
9448 meaning either PER_CU is already queued or it is already loaded.
9449
9450 N.B. There is an invariant here that if a CU is queued then it is loaded.
9451 The caller is required to load PER_CU if we return non-zero. */
9452
9453 static int
9454 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9455 struct dwarf2_per_cu_data *per_cu,
9456 enum language pretend_language)
9457 {
9458 /* We may arrive here during partial symbol reading, if we need full
9459 DIEs to process an unusual case (e.g. template arguments). Do
9460 not queue PER_CU, just tell our caller to load its DIEs. */
9461 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9462 {
9463 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9464 return 1;
9465 return 0;
9466 }
9467
9468 /* Mark the dependence relation so that we don't flush PER_CU
9469 too early. */
9470 if (dependent_cu != NULL)
9471 dwarf2_add_dependence (dependent_cu, per_cu);
9472
9473 /* If it's already on the queue, we have nothing to do. */
9474 if (per_cu->queued)
9475 return 0;
9476
9477 /* If the compilation unit is already loaded, just mark it as
9478 used. */
9479 if (per_cu->cu != NULL)
9480 {
9481 per_cu->cu->last_used = 0;
9482 return 0;
9483 }
9484
9485 /* Add it to the queue. */
9486 queue_comp_unit (per_cu, pretend_language);
9487
9488 return 1;
9489 }
9490
9491 /* Process the queue. */
9492
9493 static void
9494 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9495 {
9496 struct dwarf2_queue_item *item, *next_item;
9497
9498 if (dwarf_read_debug)
9499 {
9500 fprintf_unfiltered (gdb_stdlog,
9501 "Expanding one or more symtabs of objfile %s ...\n",
9502 objfile_name (dwarf2_per_objfile->objfile));
9503 }
9504
9505 /* The queue starts out with one item, but following a DIE reference
9506 may load a new CU, adding it to the end of the queue. */
9507 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9508 {
9509 if ((dwarf2_per_objfile->using_index
9510 ? !item->per_cu->v.quick->compunit_symtab
9511 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9512 /* Skip dummy CUs. */
9513 && item->per_cu->cu != NULL)
9514 {
9515 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9516 unsigned int debug_print_threshold;
9517 char buf[100];
9518
9519 if (per_cu->is_debug_types)
9520 {
9521 struct signatured_type *sig_type =
9522 (struct signatured_type *) per_cu;
9523
9524 sprintf (buf, "TU %s at offset %s",
9525 hex_string (sig_type->signature),
9526 sect_offset_str (per_cu->sect_off));
9527 /* There can be 100s of TUs.
9528 Only print them in verbose mode. */
9529 debug_print_threshold = 2;
9530 }
9531 else
9532 {
9533 sprintf (buf, "CU at offset %s",
9534 sect_offset_str (per_cu->sect_off));
9535 debug_print_threshold = 1;
9536 }
9537
9538 if (dwarf_read_debug >= debug_print_threshold)
9539 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9540
9541 if (per_cu->is_debug_types)
9542 process_full_type_unit (per_cu, item->pretend_language);
9543 else
9544 process_full_comp_unit (per_cu, item->pretend_language);
9545
9546 if (dwarf_read_debug >= debug_print_threshold)
9547 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9548 }
9549
9550 item->per_cu->queued = 0;
9551 next_item = item->next;
9552 xfree (item);
9553 }
9554
9555 dwarf2_queue_tail = NULL;
9556
9557 if (dwarf_read_debug)
9558 {
9559 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9560 objfile_name (dwarf2_per_objfile->objfile));
9561 }
9562 }
9563
9564 /* Read in full symbols for PST, and anything it depends on. */
9565
9566 static void
9567 psymtab_to_symtab_1 (struct partial_symtab *pst)
9568 {
9569 struct dwarf2_per_cu_data *per_cu;
9570 int i;
9571
9572 if (pst->readin)
9573 return;
9574
9575 for (i = 0; i < pst->number_of_dependencies; i++)
9576 if (!pst->dependencies[i]->readin
9577 && pst->dependencies[i]->user == NULL)
9578 {
9579 /* Inform about additional files that need to be read in. */
9580 if (info_verbose)
9581 {
9582 /* FIXME: i18n: Need to make this a single string. */
9583 fputs_filtered (" ", gdb_stdout);
9584 wrap_here ("");
9585 fputs_filtered ("and ", gdb_stdout);
9586 wrap_here ("");
9587 printf_filtered ("%s...", pst->dependencies[i]->filename);
9588 wrap_here (""); /* Flush output. */
9589 gdb_flush (gdb_stdout);
9590 }
9591 psymtab_to_symtab_1 (pst->dependencies[i]);
9592 }
9593
9594 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9595
9596 if (per_cu == NULL)
9597 {
9598 /* It's an include file, no symbols to read for it.
9599 Everything is in the parent symtab. */
9600 pst->readin = 1;
9601 return;
9602 }
9603
9604 dw2_do_instantiate_symtab (per_cu, false);
9605 }
9606
9607 /* Trivial hash function for die_info: the hash value of a DIE
9608 is its offset in .debug_info for this objfile. */
9609
9610 static hashval_t
9611 die_hash (const void *item)
9612 {
9613 const struct die_info *die = (const struct die_info *) item;
9614
9615 return to_underlying (die->sect_off);
9616 }
9617
9618 /* Trivial comparison function for die_info structures: two DIEs
9619 are equal if they have the same offset. */
9620
9621 static int
9622 die_eq (const void *item_lhs, const void *item_rhs)
9623 {
9624 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9625 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9626
9627 return die_lhs->sect_off == die_rhs->sect_off;
9628 }
9629
9630 /* die_reader_func for load_full_comp_unit.
9631 This is identical to read_signatured_type_reader,
9632 but is kept separate for now. */
9633
9634 static void
9635 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9636 const gdb_byte *info_ptr,
9637 struct die_info *comp_unit_die,
9638 int has_children,
9639 void *data)
9640 {
9641 struct dwarf2_cu *cu = reader->cu;
9642 enum language *language_ptr = (enum language *) data;
9643
9644 gdb_assert (cu->die_hash == NULL);
9645 cu->die_hash =
9646 htab_create_alloc_ex (cu->header.length / 12,
9647 die_hash,
9648 die_eq,
9649 NULL,
9650 &cu->comp_unit_obstack,
9651 hashtab_obstack_allocate,
9652 dummy_obstack_deallocate);
9653
9654 if (has_children)
9655 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9656 &info_ptr, comp_unit_die);
9657 cu->dies = comp_unit_die;
9658 /* comp_unit_die is not stored in die_hash, no need. */
9659
9660 /* We try not to read any attributes in this function, because not
9661 all CUs needed for references have been loaded yet, and symbol
9662 table processing isn't initialized. But we have to set the CU language,
9663 or we won't be able to build types correctly.
9664 Similarly, if we do not read the producer, we can not apply
9665 producer-specific interpretation. */
9666 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9667 }
9668
9669 /* Load the DIEs associated with PER_CU into memory. */
9670
9671 static void
9672 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9673 bool skip_partial,
9674 enum language pretend_language)
9675 {
9676 gdb_assert (! this_cu->is_debug_types);
9677
9678 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9679 load_full_comp_unit_reader, &pretend_language);
9680 }
9681
9682 /* Add a DIE to the delayed physname list. */
9683
9684 static void
9685 add_to_method_list (struct type *type, int fnfield_index, int index,
9686 const char *name, struct die_info *die,
9687 struct dwarf2_cu *cu)
9688 {
9689 struct delayed_method_info mi;
9690 mi.type = type;
9691 mi.fnfield_index = fnfield_index;
9692 mi.index = index;
9693 mi.name = name;
9694 mi.die = die;
9695 cu->method_list.push_back (mi);
9696 }
9697
9698 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9699 "const" / "volatile". If so, decrements LEN by the length of the
9700 modifier and return true. Otherwise return false. */
9701
9702 template<size_t N>
9703 static bool
9704 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9705 {
9706 size_t mod_len = sizeof (mod) - 1;
9707 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9708 {
9709 len -= mod_len;
9710 return true;
9711 }
9712 return false;
9713 }
9714
9715 /* Compute the physnames of any methods on the CU's method list.
9716
9717 The computation of method physnames is delayed in order to avoid the
9718 (bad) condition that one of the method's formal parameters is of an as yet
9719 incomplete type. */
9720
9721 static void
9722 compute_delayed_physnames (struct dwarf2_cu *cu)
9723 {
9724 /* Only C++ delays computing physnames. */
9725 if (cu->method_list.empty ())
9726 return;
9727 gdb_assert (cu->language == language_cplus);
9728
9729 for (const delayed_method_info &mi : cu->method_list)
9730 {
9731 const char *physname;
9732 struct fn_fieldlist *fn_flp
9733 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9734 physname = dwarf2_physname (mi.name, mi.die, cu);
9735 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9736 = physname ? physname : "";
9737
9738 /* Since there's no tag to indicate whether a method is a
9739 const/volatile overload, extract that information out of the
9740 demangled name. */
9741 if (physname != NULL)
9742 {
9743 size_t len = strlen (physname);
9744
9745 while (1)
9746 {
9747 if (physname[len] == ')') /* shortcut */
9748 break;
9749 else if (check_modifier (physname, len, " const"))
9750 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9751 else if (check_modifier (physname, len, " volatile"))
9752 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9753 else
9754 break;
9755 }
9756 }
9757 }
9758
9759 /* The list is no longer needed. */
9760 cu->method_list.clear ();
9761 }
9762
9763 /* Go objects should be embedded in a DW_TAG_module DIE,
9764 and it's not clear if/how imported objects will appear.
9765 To keep Go support simple until that's worked out,
9766 go back through what we've read and create something usable.
9767 We could do this while processing each DIE, and feels kinda cleaner,
9768 but that way is more invasive.
9769 This is to, for example, allow the user to type "p var" or "b main"
9770 without having to specify the package name, and allow lookups
9771 of module.object to work in contexts that use the expression
9772 parser. */
9773
9774 static void
9775 fixup_go_packaging (struct dwarf2_cu *cu)
9776 {
9777 char *package_name = NULL;
9778 struct pending *list;
9779 int i;
9780
9781 for (list = *cu->get_builder ()->get_global_symbols ();
9782 list != NULL;
9783 list = list->next)
9784 {
9785 for (i = 0; i < list->nsyms; ++i)
9786 {
9787 struct symbol *sym = list->symbol[i];
9788
9789 if (SYMBOL_LANGUAGE (sym) == language_go
9790 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9791 {
9792 char *this_package_name = go_symbol_package_name (sym);
9793
9794 if (this_package_name == NULL)
9795 continue;
9796 if (package_name == NULL)
9797 package_name = this_package_name;
9798 else
9799 {
9800 struct objfile *objfile
9801 = cu->per_cu->dwarf2_per_objfile->objfile;
9802 if (strcmp (package_name, this_package_name) != 0)
9803 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9804 (symbol_symtab (sym) != NULL
9805 ? symtab_to_filename_for_display
9806 (symbol_symtab (sym))
9807 : objfile_name (objfile)),
9808 this_package_name, package_name);
9809 xfree (this_package_name);
9810 }
9811 }
9812 }
9813 }
9814
9815 if (package_name != NULL)
9816 {
9817 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9818 const char *saved_package_name
9819 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9820 package_name,
9821 strlen (package_name));
9822 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9823 saved_package_name);
9824 struct symbol *sym;
9825
9826 sym = allocate_symbol (objfile);
9827 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9828 SYMBOL_SET_NAMES (sym, saved_package_name,
9829 strlen (saved_package_name), 0, objfile);
9830 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9831 e.g., "main" finds the "main" module and not C's main(). */
9832 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9833 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9834 SYMBOL_TYPE (sym) = type;
9835
9836 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9837
9838 xfree (package_name);
9839 }
9840 }
9841
9842 /* Allocate a fully-qualified name consisting of the two parts on the
9843 obstack. */
9844
9845 static const char *
9846 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9847 {
9848 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9849 }
9850
9851 /* A helper that allocates a struct discriminant_info to attach to a
9852 union type. */
9853
9854 static struct discriminant_info *
9855 alloc_discriminant_info (struct type *type, int discriminant_index,
9856 int default_index)
9857 {
9858 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9859 gdb_assert (discriminant_index == -1
9860 || (discriminant_index >= 0
9861 && discriminant_index < TYPE_NFIELDS (type)));
9862 gdb_assert (default_index == -1
9863 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9864
9865 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9866
9867 struct discriminant_info *disc
9868 = ((struct discriminant_info *)
9869 TYPE_ZALLOC (type,
9870 offsetof (struct discriminant_info, discriminants)
9871 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9872 disc->default_index = default_index;
9873 disc->discriminant_index = discriminant_index;
9874
9875 struct dynamic_prop prop;
9876 prop.kind = PROP_UNDEFINED;
9877 prop.data.baton = disc;
9878
9879 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9880
9881 return disc;
9882 }
9883
9884 /* Some versions of rustc emitted enums in an unusual way.
9885
9886 Ordinary enums were emitted as unions. The first element of each
9887 structure in the union was named "RUST$ENUM$DISR". This element
9888 held the discriminant.
9889
9890 These versions of Rust also implemented the "non-zero"
9891 optimization. When the enum had two values, and one is empty and
9892 the other holds a pointer that cannot be zero, the pointer is used
9893 as the discriminant, with a zero value meaning the empty variant.
9894 Here, the union's first member is of the form
9895 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9896 where the fieldnos are the indices of the fields that should be
9897 traversed in order to find the field (which may be several fields deep)
9898 and the variantname is the name of the variant of the case when the
9899 field is zero.
9900
9901 This function recognizes whether TYPE is of one of these forms,
9902 and, if so, smashes it to be a variant type. */
9903
9904 static void
9905 quirk_rust_enum (struct type *type, struct objfile *objfile)
9906 {
9907 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9908
9909 /* We don't need to deal with empty enums. */
9910 if (TYPE_NFIELDS (type) == 0)
9911 return;
9912
9913 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9914 if (TYPE_NFIELDS (type) == 1
9915 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9916 {
9917 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9918
9919 /* Decode the field name to find the offset of the
9920 discriminant. */
9921 ULONGEST bit_offset = 0;
9922 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9923 while (name[0] >= '0' && name[0] <= '9')
9924 {
9925 char *tail;
9926 unsigned long index = strtoul (name, &tail, 10);
9927 name = tail;
9928 if (*name != '$'
9929 || index >= TYPE_NFIELDS (field_type)
9930 || (TYPE_FIELD_LOC_KIND (field_type, index)
9931 != FIELD_LOC_KIND_BITPOS))
9932 {
9933 complaint (_("Could not parse Rust enum encoding string \"%s\""
9934 "[in module %s]"),
9935 TYPE_FIELD_NAME (type, 0),
9936 objfile_name (objfile));
9937 return;
9938 }
9939 ++name;
9940
9941 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9942 field_type = TYPE_FIELD_TYPE (field_type, index);
9943 }
9944
9945 /* Make a union to hold the variants. */
9946 struct type *union_type = alloc_type (objfile);
9947 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9948 TYPE_NFIELDS (union_type) = 3;
9949 TYPE_FIELDS (union_type)
9950 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9951 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9952 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9953
9954 /* Put the discriminant must at index 0. */
9955 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9956 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9957 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9958 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9959
9960 /* The order of fields doesn't really matter, so put the real
9961 field at index 1 and the data-less field at index 2. */
9962 struct discriminant_info *disc
9963 = alloc_discriminant_info (union_type, 0, 1);
9964 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9965 TYPE_FIELD_NAME (union_type, 1)
9966 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9967 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9968 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9969 TYPE_FIELD_NAME (union_type, 1));
9970
9971 const char *dataless_name
9972 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9973 name);
9974 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9975 dataless_name);
9976 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9977 /* NAME points into the original discriminant name, which
9978 already has the correct lifetime. */
9979 TYPE_FIELD_NAME (union_type, 2) = name;
9980 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9981 disc->discriminants[2] = 0;
9982
9983 /* Smash this type to be a structure type. We have to do this
9984 because the type has already been recorded. */
9985 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9986 TYPE_NFIELDS (type) = 1;
9987 TYPE_FIELDS (type)
9988 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9989
9990 /* Install the variant part. */
9991 TYPE_FIELD_TYPE (type, 0) = union_type;
9992 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9993 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9994 }
9995 else if (TYPE_NFIELDS (type) == 1)
9996 {
9997 /* We assume that a union with a single field is a univariant
9998 enum. */
9999 /* Smash this type to be a structure type. We have to do this
10000 because the type has already been recorded. */
10001 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10002
10003 /* Make a union to hold the variants. */
10004 struct type *union_type = alloc_type (objfile);
10005 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10006 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10007 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10008 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10009 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10010
10011 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10012 const char *variant_name
10013 = rust_last_path_segment (TYPE_NAME (field_type));
10014 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10015 TYPE_NAME (field_type)
10016 = rust_fully_qualify (&objfile->objfile_obstack,
10017 TYPE_NAME (type), variant_name);
10018
10019 /* Install the union in the outer struct type. */
10020 TYPE_NFIELDS (type) = 1;
10021 TYPE_FIELDS (type)
10022 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10023 TYPE_FIELD_TYPE (type, 0) = union_type;
10024 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10025 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10026
10027 alloc_discriminant_info (union_type, -1, 0);
10028 }
10029 else
10030 {
10031 struct type *disr_type = nullptr;
10032 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10033 {
10034 disr_type = TYPE_FIELD_TYPE (type, i);
10035
10036 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10037 {
10038 /* All fields of a true enum will be structs. */
10039 return;
10040 }
10041 else if (TYPE_NFIELDS (disr_type) == 0)
10042 {
10043 /* Could be data-less variant, so keep going. */
10044 disr_type = nullptr;
10045 }
10046 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10047 "RUST$ENUM$DISR") != 0)
10048 {
10049 /* Not a Rust enum. */
10050 return;
10051 }
10052 else
10053 {
10054 /* Found one. */
10055 break;
10056 }
10057 }
10058
10059 /* If we got here without a discriminant, then it's probably
10060 just a union. */
10061 if (disr_type == nullptr)
10062 return;
10063
10064 /* Smash this type to be a structure type. We have to do this
10065 because the type has already been recorded. */
10066 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10067
10068 /* Make a union to hold the variants. */
10069 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10070 struct type *union_type = alloc_type (objfile);
10071 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10072 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10073 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10074 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10075 TYPE_FIELDS (union_type)
10076 = (struct field *) TYPE_ZALLOC (union_type,
10077 (TYPE_NFIELDS (union_type)
10078 * sizeof (struct field)));
10079
10080 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10081 TYPE_NFIELDS (type) * sizeof (struct field));
10082
10083 /* Install the discriminant at index 0 in the union. */
10084 TYPE_FIELD (union_type, 0) = *disr_field;
10085 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10086 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10087
10088 /* Install the union in the outer struct type. */
10089 TYPE_FIELD_TYPE (type, 0) = union_type;
10090 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10091 TYPE_NFIELDS (type) = 1;
10092
10093 /* Set the size and offset of the union type. */
10094 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10095
10096 /* We need a way to find the correct discriminant given a
10097 variant name. For convenience we build a map here. */
10098 struct type *enum_type = FIELD_TYPE (*disr_field);
10099 std::unordered_map<std::string, ULONGEST> discriminant_map;
10100 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10101 {
10102 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10103 {
10104 const char *name
10105 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10106 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10107 }
10108 }
10109
10110 int n_fields = TYPE_NFIELDS (union_type);
10111 struct discriminant_info *disc
10112 = alloc_discriminant_info (union_type, 0, -1);
10113 /* Skip the discriminant here. */
10114 for (int i = 1; i < n_fields; ++i)
10115 {
10116 /* Find the final word in the name of this variant's type.
10117 That name can be used to look up the correct
10118 discriminant. */
10119 const char *variant_name
10120 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10121 i)));
10122
10123 auto iter = discriminant_map.find (variant_name);
10124 if (iter != discriminant_map.end ())
10125 disc->discriminants[i] = iter->second;
10126
10127 /* Remove the discriminant field, if it exists. */
10128 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10129 if (TYPE_NFIELDS (sub_type) > 0)
10130 {
10131 --TYPE_NFIELDS (sub_type);
10132 ++TYPE_FIELDS (sub_type);
10133 }
10134 TYPE_FIELD_NAME (union_type, i) = variant_name;
10135 TYPE_NAME (sub_type)
10136 = rust_fully_qualify (&objfile->objfile_obstack,
10137 TYPE_NAME (type), variant_name);
10138 }
10139 }
10140 }
10141
10142 /* Rewrite some Rust unions to be structures with variants parts. */
10143
10144 static void
10145 rust_union_quirks (struct dwarf2_cu *cu)
10146 {
10147 gdb_assert (cu->language == language_rust);
10148 for (type *type_ : cu->rust_unions)
10149 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10150 /* We don't need this any more. */
10151 cu->rust_unions.clear ();
10152 }
10153
10154 /* Return the symtab for PER_CU. This works properly regardless of
10155 whether we're using the index or psymtabs. */
10156
10157 static struct compunit_symtab *
10158 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10159 {
10160 return (per_cu->dwarf2_per_objfile->using_index
10161 ? per_cu->v.quick->compunit_symtab
10162 : per_cu->v.psymtab->compunit_symtab);
10163 }
10164
10165 /* A helper function for computing the list of all symbol tables
10166 included by PER_CU. */
10167
10168 static void
10169 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10170 htab_t all_children, htab_t all_type_symtabs,
10171 struct dwarf2_per_cu_data *per_cu,
10172 struct compunit_symtab *immediate_parent)
10173 {
10174 void **slot;
10175 int ix;
10176 struct compunit_symtab *cust;
10177 struct dwarf2_per_cu_data *iter;
10178
10179 slot = htab_find_slot (all_children, per_cu, INSERT);
10180 if (*slot != NULL)
10181 {
10182 /* This inclusion and its children have been processed. */
10183 return;
10184 }
10185
10186 *slot = per_cu;
10187 /* Only add a CU if it has a symbol table. */
10188 cust = get_compunit_symtab (per_cu);
10189 if (cust != NULL)
10190 {
10191 /* If this is a type unit only add its symbol table if we haven't
10192 seen it yet (type unit per_cu's can share symtabs). */
10193 if (per_cu->is_debug_types)
10194 {
10195 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10196 if (*slot == NULL)
10197 {
10198 *slot = cust;
10199 result->push_back (cust);
10200 if (cust->user == NULL)
10201 cust->user = immediate_parent;
10202 }
10203 }
10204 else
10205 {
10206 result->push_back (cust);
10207 if (cust->user == NULL)
10208 cust->user = immediate_parent;
10209 }
10210 }
10211
10212 for (ix = 0;
10213 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10214 ++ix)
10215 {
10216 recursively_compute_inclusions (result, all_children,
10217 all_type_symtabs, iter, cust);
10218 }
10219 }
10220
10221 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10222 PER_CU. */
10223
10224 static void
10225 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10226 {
10227 gdb_assert (! per_cu->is_debug_types);
10228
10229 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10230 {
10231 int ix, len;
10232 struct dwarf2_per_cu_data *per_cu_iter;
10233 std::vector<compunit_symtab *> result_symtabs;
10234 htab_t all_children, all_type_symtabs;
10235 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10236
10237 /* If we don't have a symtab, we can just skip this case. */
10238 if (cust == NULL)
10239 return;
10240
10241 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10242 NULL, xcalloc, xfree);
10243 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10244 NULL, xcalloc, xfree);
10245
10246 for (ix = 0;
10247 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10248 ix, per_cu_iter);
10249 ++ix)
10250 {
10251 recursively_compute_inclusions (&result_symtabs, all_children,
10252 all_type_symtabs, per_cu_iter,
10253 cust);
10254 }
10255
10256 /* Now we have a transitive closure of all the included symtabs. */
10257 len = result_symtabs.size ();
10258 cust->includes
10259 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10260 struct compunit_symtab *, len + 1);
10261 memcpy (cust->includes, result_symtabs.data (),
10262 len * sizeof (compunit_symtab *));
10263 cust->includes[len] = NULL;
10264
10265 htab_delete (all_children);
10266 htab_delete (all_type_symtabs);
10267 }
10268 }
10269
10270 /* Compute the 'includes' field for the symtabs of all the CUs we just
10271 read. */
10272
10273 static void
10274 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10275 {
10276 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10277 {
10278 if (! iter->is_debug_types)
10279 compute_compunit_symtab_includes (iter);
10280 }
10281
10282 dwarf2_per_objfile->just_read_cus.clear ();
10283 }
10284
10285 /* Generate full symbol information for PER_CU, whose DIEs have
10286 already been loaded into memory. */
10287
10288 static void
10289 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10290 enum language pretend_language)
10291 {
10292 struct dwarf2_cu *cu = per_cu->cu;
10293 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10294 struct objfile *objfile = dwarf2_per_objfile->objfile;
10295 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10296 CORE_ADDR lowpc, highpc;
10297 struct compunit_symtab *cust;
10298 CORE_ADDR baseaddr;
10299 struct block *static_block;
10300 CORE_ADDR addr;
10301
10302 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10303
10304 /* Clear the list here in case something was left over. */
10305 cu->method_list.clear ();
10306
10307 cu->language = pretend_language;
10308 cu->language_defn = language_def (cu->language);
10309
10310 /* Do line number decoding in read_file_scope () */
10311 process_die (cu->dies, cu);
10312
10313 /* For now fudge the Go package. */
10314 if (cu->language == language_go)
10315 fixup_go_packaging (cu);
10316
10317 /* Now that we have processed all the DIEs in the CU, all the types
10318 should be complete, and it should now be safe to compute all of the
10319 physnames. */
10320 compute_delayed_physnames (cu);
10321
10322 if (cu->language == language_rust)
10323 rust_union_quirks (cu);
10324
10325 /* Some compilers don't define a DW_AT_high_pc attribute for the
10326 compilation unit. If the DW_AT_high_pc is missing, synthesize
10327 it, by scanning the DIE's below the compilation unit. */
10328 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10329
10330 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10331 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10332
10333 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10334 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10335 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10336 addrmap to help ensure it has an accurate map of pc values belonging to
10337 this comp unit. */
10338 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10339
10340 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10341 SECT_OFF_TEXT (objfile),
10342 0);
10343
10344 if (cust != NULL)
10345 {
10346 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10347
10348 /* Set symtab language to language from DW_AT_language. If the
10349 compilation is from a C file generated by language preprocessors, do
10350 not set the language if it was already deduced by start_subfile. */
10351 if (!(cu->language == language_c
10352 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10353 COMPUNIT_FILETABS (cust)->language = cu->language;
10354
10355 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10356 produce DW_AT_location with location lists but it can be possibly
10357 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10358 there were bugs in prologue debug info, fixed later in GCC-4.5
10359 by "unwind info for epilogues" patch (which is not directly related).
10360
10361 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10362 needed, it would be wrong due to missing DW_AT_producer there.
10363
10364 Still one can confuse GDB by using non-standard GCC compilation
10365 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10366 */
10367 if (cu->has_loclist && gcc_4_minor >= 5)
10368 cust->locations_valid = 1;
10369
10370 if (gcc_4_minor >= 5)
10371 cust->epilogue_unwind_valid = 1;
10372
10373 cust->call_site_htab = cu->call_site_htab;
10374 }
10375
10376 if (dwarf2_per_objfile->using_index)
10377 per_cu->v.quick->compunit_symtab = cust;
10378 else
10379 {
10380 struct partial_symtab *pst = per_cu->v.psymtab;
10381 pst->compunit_symtab = cust;
10382 pst->readin = 1;
10383 }
10384
10385 /* Push it for inclusion processing later. */
10386 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10387
10388 /* Not needed any more. */
10389 cu->reset_builder ();
10390 }
10391
10392 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10393 already been loaded into memory. */
10394
10395 static void
10396 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10397 enum language pretend_language)
10398 {
10399 struct dwarf2_cu *cu = per_cu->cu;
10400 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10401 struct objfile *objfile = dwarf2_per_objfile->objfile;
10402 struct compunit_symtab *cust;
10403 struct signatured_type *sig_type;
10404
10405 gdb_assert (per_cu->is_debug_types);
10406 sig_type = (struct signatured_type *) per_cu;
10407
10408 /* Clear the list here in case something was left over. */
10409 cu->method_list.clear ();
10410
10411 cu->language = pretend_language;
10412 cu->language_defn = language_def (cu->language);
10413
10414 /* The symbol tables are set up in read_type_unit_scope. */
10415 process_die (cu->dies, cu);
10416
10417 /* For now fudge the Go package. */
10418 if (cu->language == language_go)
10419 fixup_go_packaging (cu);
10420
10421 /* Now that we have processed all the DIEs in the CU, all the types
10422 should be complete, and it should now be safe to compute all of the
10423 physnames. */
10424 compute_delayed_physnames (cu);
10425
10426 if (cu->language == language_rust)
10427 rust_union_quirks (cu);
10428
10429 /* TUs share symbol tables.
10430 If this is the first TU to use this symtab, complete the construction
10431 of it with end_expandable_symtab. Otherwise, complete the addition of
10432 this TU's symbols to the existing symtab. */
10433 if (sig_type->type_unit_group->compunit_symtab == NULL)
10434 {
10435 buildsym_compunit *builder = cu->get_builder ();
10436 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10437 sig_type->type_unit_group->compunit_symtab = cust;
10438
10439 if (cust != NULL)
10440 {
10441 /* Set symtab language to language from DW_AT_language. If the
10442 compilation is from a C file generated by language preprocessors,
10443 do not set the language if it was already deduced by
10444 start_subfile. */
10445 if (!(cu->language == language_c
10446 && COMPUNIT_FILETABS (cust)->language != language_c))
10447 COMPUNIT_FILETABS (cust)->language = cu->language;
10448 }
10449 }
10450 else
10451 {
10452 cu->get_builder ()->augment_type_symtab ();
10453 cust = sig_type->type_unit_group->compunit_symtab;
10454 }
10455
10456 if (dwarf2_per_objfile->using_index)
10457 per_cu->v.quick->compunit_symtab = cust;
10458 else
10459 {
10460 struct partial_symtab *pst = per_cu->v.psymtab;
10461 pst->compunit_symtab = cust;
10462 pst->readin = 1;
10463 }
10464
10465 /* Not needed any more. */
10466 cu->reset_builder ();
10467 }
10468
10469 /* Process an imported unit DIE. */
10470
10471 static void
10472 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10473 {
10474 struct attribute *attr;
10475
10476 /* For now we don't handle imported units in type units. */
10477 if (cu->per_cu->is_debug_types)
10478 {
10479 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10480 " supported in type units [in module %s]"),
10481 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10482 }
10483
10484 attr = dwarf2_attr (die, DW_AT_import, cu);
10485 if (attr != NULL)
10486 {
10487 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10488 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10489 dwarf2_per_cu_data *per_cu
10490 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10491 cu->per_cu->dwarf2_per_objfile);
10492
10493 /* If necessary, add it to the queue and load its DIEs. */
10494 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10495 load_full_comp_unit (per_cu, false, cu->language);
10496
10497 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10498 per_cu);
10499 }
10500 }
10501
10502 /* RAII object that represents a process_die scope: i.e.,
10503 starts/finishes processing a DIE. */
10504 class process_die_scope
10505 {
10506 public:
10507 process_die_scope (die_info *die, dwarf2_cu *cu)
10508 : m_die (die), m_cu (cu)
10509 {
10510 /* We should only be processing DIEs not already in process. */
10511 gdb_assert (!m_die->in_process);
10512 m_die->in_process = true;
10513 }
10514
10515 ~process_die_scope ()
10516 {
10517 m_die->in_process = false;
10518
10519 /* If we're done processing the DIE for the CU that owns the line
10520 header, we don't need the line header anymore. */
10521 if (m_cu->line_header_die_owner == m_die)
10522 {
10523 delete m_cu->line_header;
10524 m_cu->line_header = NULL;
10525 m_cu->line_header_die_owner = NULL;
10526 }
10527 }
10528
10529 private:
10530 die_info *m_die;
10531 dwarf2_cu *m_cu;
10532 };
10533
10534 /* Process a die and its children. */
10535
10536 static void
10537 process_die (struct die_info *die, struct dwarf2_cu *cu)
10538 {
10539 process_die_scope scope (die, cu);
10540
10541 switch (die->tag)
10542 {
10543 case DW_TAG_padding:
10544 break;
10545 case DW_TAG_compile_unit:
10546 case DW_TAG_partial_unit:
10547 read_file_scope (die, cu);
10548 break;
10549 case DW_TAG_type_unit:
10550 read_type_unit_scope (die, cu);
10551 break;
10552 case DW_TAG_subprogram:
10553 case DW_TAG_inlined_subroutine:
10554 read_func_scope (die, cu);
10555 break;
10556 case DW_TAG_lexical_block:
10557 case DW_TAG_try_block:
10558 case DW_TAG_catch_block:
10559 read_lexical_block_scope (die, cu);
10560 break;
10561 case DW_TAG_call_site:
10562 case DW_TAG_GNU_call_site:
10563 read_call_site_scope (die, cu);
10564 break;
10565 case DW_TAG_class_type:
10566 case DW_TAG_interface_type:
10567 case DW_TAG_structure_type:
10568 case DW_TAG_union_type:
10569 process_structure_scope (die, cu);
10570 break;
10571 case DW_TAG_enumeration_type:
10572 process_enumeration_scope (die, cu);
10573 break;
10574
10575 /* These dies have a type, but processing them does not create
10576 a symbol or recurse to process the children. Therefore we can
10577 read them on-demand through read_type_die. */
10578 case DW_TAG_subroutine_type:
10579 case DW_TAG_set_type:
10580 case DW_TAG_array_type:
10581 case DW_TAG_pointer_type:
10582 case DW_TAG_ptr_to_member_type:
10583 case DW_TAG_reference_type:
10584 case DW_TAG_rvalue_reference_type:
10585 case DW_TAG_string_type:
10586 break;
10587
10588 case DW_TAG_base_type:
10589 case DW_TAG_subrange_type:
10590 case DW_TAG_typedef:
10591 /* Add a typedef symbol for the type definition, if it has a
10592 DW_AT_name. */
10593 new_symbol (die, read_type_die (die, cu), cu);
10594 break;
10595 case DW_TAG_common_block:
10596 read_common_block (die, cu);
10597 break;
10598 case DW_TAG_common_inclusion:
10599 break;
10600 case DW_TAG_namespace:
10601 cu->processing_has_namespace_info = true;
10602 read_namespace (die, cu);
10603 break;
10604 case DW_TAG_module:
10605 cu->processing_has_namespace_info = true;
10606 read_module (die, cu);
10607 break;
10608 case DW_TAG_imported_declaration:
10609 cu->processing_has_namespace_info = true;
10610 if (read_namespace_alias (die, cu))
10611 break;
10612 /* The declaration is not a global namespace alias. */
10613 /* Fall through. */
10614 case DW_TAG_imported_module:
10615 cu->processing_has_namespace_info = true;
10616 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10617 || cu->language != language_fortran))
10618 complaint (_("Tag '%s' has unexpected children"),
10619 dwarf_tag_name (die->tag));
10620 read_import_statement (die, cu);
10621 break;
10622
10623 case DW_TAG_imported_unit:
10624 process_imported_unit_die (die, cu);
10625 break;
10626
10627 case DW_TAG_variable:
10628 read_variable (die, cu);
10629 break;
10630
10631 default:
10632 new_symbol (die, NULL, cu);
10633 break;
10634 }
10635 }
10636 \f
10637 /* DWARF name computation. */
10638
10639 /* A helper function for dwarf2_compute_name which determines whether DIE
10640 needs to have the name of the scope prepended to the name listed in the
10641 die. */
10642
10643 static int
10644 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10645 {
10646 struct attribute *attr;
10647
10648 switch (die->tag)
10649 {
10650 case DW_TAG_namespace:
10651 case DW_TAG_typedef:
10652 case DW_TAG_class_type:
10653 case DW_TAG_interface_type:
10654 case DW_TAG_structure_type:
10655 case DW_TAG_union_type:
10656 case DW_TAG_enumeration_type:
10657 case DW_TAG_enumerator:
10658 case DW_TAG_subprogram:
10659 case DW_TAG_inlined_subroutine:
10660 case DW_TAG_member:
10661 case DW_TAG_imported_declaration:
10662 return 1;
10663
10664 case DW_TAG_variable:
10665 case DW_TAG_constant:
10666 /* We only need to prefix "globally" visible variables. These include
10667 any variable marked with DW_AT_external or any variable that
10668 lives in a namespace. [Variables in anonymous namespaces
10669 require prefixing, but they are not DW_AT_external.] */
10670
10671 if (dwarf2_attr (die, DW_AT_specification, cu))
10672 {
10673 struct dwarf2_cu *spec_cu = cu;
10674
10675 return die_needs_namespace (die_specification (die, &spec_cu),
10676 spec_cu);
10677 }
10678
10679 attr = dwarf2_attr (die, DW_AT_external, cu);
10680 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10681 && die->parent->tag != DW_TAG_module)
10682 return 0;
10683 /* A variable in a lexical block of some kind does not need a
10684 namespace, even though in C++ such variables may be external
10685 and have a mangled name. */
10686 if (die->parent->tag == DW_TAG_lexical_block
10687 || die->parent->tag == DW_TAG_try_block
10688 || die->parent->tag == DW_TAG_catch_block
10689 || die->parent->tag == DW_TAG_subprogram)
10690 return 0;
10691 return 1;
10692
10693 default:
10694 return 0;
10695 }
10696 }
10697
10698 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10699 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10700 defined for the given DIE. */
10701
10702 static struct attribute *
10703 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10704 {
10705 struct attribute *attr;
10706
10707 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10708 if (attr == NULL)
10709 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10710
10711 return attr;
10712 }
10713
10714 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10715 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10716 defined for the given DIE. */
10717
10718 static const char *
10719 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10720 {
10721 const char *linkage_name;
10722
10723 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10724 if (linkage_name == NULL)
10725 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10726
10727 return linkage_name;
10728 }
10729
10730 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10731 compute the physname for the object, which include a method's:
10732 - formal parameters (C++),
10733 - receiver type (Go),
10734
10735 The term "physname" is a bit confusing.
10736 For C++, for example, it is the demangled name.
10737 For Go, for example, it's the mangled name.
10738
10739 For Ada, return the DIE's linkage name rather than the fully qualified
10740 name. PHYSNAME is ignored..
10741
10742 The result is allocated on the objfile_obstack and canonicalized. */
10743
10744 static const char *
10745 dwarf2_compute_name (const char *name,
10746 struct die_info *die, struct dwarf2_cu *cu,
10747 int physname)
10748 {
10749 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10750
10751 if (name == NULL)
10752 name = dwarf2_name (die, cu);
10753
10754 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10755 but otherwise compute it by typename_concat inside GDB.
10756 FIXME: Actually this is not really true, or at least not always true.
10757 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10758 Fortran names because there is no mangling standard. So new_symbol
10759 will set the demangled name to the result of dwarf2_full_name, and it is
10760 the demangled name that GDB uses if it exists. */
10761 if (cu->language == language_ada
10762 || (cu->language == language_fortran && physname))
10763 {
10764 /* For Ada unit, we prefer the linkage name over the name, as
10765 the former contains the exported name, which the user expects
10766 to be able to reference. Ideally, we want the user to be able
10767 to reference this entity using either natural or linkage name,
10768 but we haven't started looking at this enhancement yet. */
10769 const char *linkage_name = dw2_linkage_name (die, cu);
10770
10771 if (linkage_name != NULL)
10772 return linkage_name;
10773 }
10774
10775 /* These are the only languages we know how to qualify names in. */
10776 if (name != NULL
10777 && (cu->language == language_cplus
10778 || cu->language == language_fortran || cu->language == language_d
10779 || cu->language == language_rust))
10780 {
10781 if (die_needs_namespace (die, cu))
10782 {
10783 const char *prefix;
10784 const char *canonical_name = NULL;
10785
10786 string_file buf;
10787
10788 prefix = determine_prefix (die, cu);
10789 if (*prefix != '\0')
10790 {
10791 char *prefixed_name = typename_concat (NULL, prefix, name,
10792 physname, cu);
10793
10794 buf.puts (prefixed_name);
10795 xfree (prefixed_name);
10796 }
10797 else
10798 buf.puts (name);
10799
10800 /* Template parameters may be specified in the DIE's DW_AT_name, or
10801 as children with DW_TAG_template_type_param or
10802 DW_TAG_value_type_param. If the latter, add them to the name
10803 here. If the name already has template parameters, then
10804 skip this step; some versions of GCC emit both, and
10805 it is more efficient to use the pre-computed name.
10806
10807 Something to keep in mind about this process: it is very
10808 unlikely, or in some cases downright impossible, to produce
10809 something that will match the mangled name of a function.
10810 If the definition of the function has the same debug info,
10811 we should be able to match up with it anyway. But fallbacks
10812 using the minimal symbol, for instance to find a method
10813 implemented in a stripped copy of libstdc++, will not work.
10814 If we do not have debug info for the definition, we will have to
10815 match them up some other way.
10816
10817 When we do name matching there is a related problem with function
10818 templates; two instantiated function templates are allowed to
10819 differ only by their return types, which we do not add here. */
10820
10821 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10822 {
10823 struct attribute *attr;
10824 struct die_info *child;
10825 int first = 1;
10826
10827 die->building_fullname = 1;
10828
10829 for (child = die->child; child != NULL; child = child->sibling)
10830 {
10831 struct type *type;
10832 LONGEST value;
10833 const gdb_byte *bytes;
10834 struct dwarf2_locexpr_baton *baton;
10835 struct value *v;
10836
10837 if (child->tag != DW_TAG_template_type_param
10838 && child->tag != DW_TAG_template_value_param)
10839 continue;
10840
10841 if (first)
10842 {
10843 buf.puts ("<");
10844 first = 0;
10845 }
10846 else
10847 buf.puts (", ");
10848
10849 attr = dwarf2_attr (child, DW_AT_type, cu);
10850 if (attr == NULL)
10851 {
10852 complaint (_("template parameter missing DW_AT_type"));
10853 buf.puts ("UNKNOWN_TYPE");
10854 continue;
10855 }
10856 type = die_type (child, cu);
10857
10858 if (child->tag == DW_TAG_template_type_param)
10859 {
10860 c_print_type (type, "", &buf, -1, 0, cu->language,
10861 &type_print_raw_options);
10862 continue;
10863 }
10864
10865 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10866 if (attr == NULL)
10867 {
10868 complaint (_("template parameter missing "
10869 "DW_AT_const_value"));
10870 buf.puts ("UNKNOWN_VALUE");
10871 continue;
10872 }
10873
10874 dwarf2_const_value_attr (attr, type, name,
10875 &cu->comp_unit_obstack, cu,
10876 &value, &bytes, &baton);
10877
10878 if (TYPE_NOSIGN (type))
10879 /* GDB prints characters as NUMBER 'CHAR'. If that's
10880 changed, this can use value_print instead. */
10881 c_printchar (value, type, &buf);
10882 else
10883 {
10884 struct value_print_options opts;
10885
10886 if (baton != NULL)
10887 v = dwarf2_evaluate_loc_desc (type, NULL,
10888 baton->data,
10889 baton->size,
10890 baton->per_cu);
10891 else if (bytes != NULL)
10892 {
10893 v = allocate_value (type);
10894 memcpy (value_contents_writeable (v), bytes,
10895 TYPE_LENGTH (type));
10896 }
10897 else
10898 v = value_from_longest (type, value);
10899
10900 /* Specify decimal so that we do not depend on
10901 the radix. */
10902 get_formatted_print_options (&opts, 'd');
10903 opts.raw = 1;
10904 value_print (v, &buf, &opts);
10905 release_value (v);
10906 }
10907 }
10908
10909 die->building_fullname = 0;
10910
10911 if (!first)
10912 {
10913 /* Close the argument list, with a space if necessary
10914 (nested templates). */
10915 if (!buf.empty () && buf.string ().back () == '>')
10916 buf.puts (" >");
10917 else
10918 buf.puts (">");
10919 }
10920 }
10921
10922 /* For C++ methods, append formal parameter type
10923 information, if PHYSNAME. */
10924
10925 if (physname && die->tag == DW_TAG_subprogram
10926 && cu->language == language_cplus)
10927 {
10928 struct type *type = read_type_die (die, cu);
10929
10930 c_type_print_args (type, &buf, 1, cu->language,
10931 &type_print_raw_options);
10932
10933 if (cu->language == language_cplus)
10934 {
10935 /* Assume that an artificial first parameter is
10936 "this", but do not crash if it is not. RealView
10937 marks unnamed (and thus unused) parameters as
10938 artificial; there is no way to differentiate
10939 the two cases. */
10940 if (TYPE_NFIELDS (type) > 0
10941 && TYPE_FIELD_ARTIFICIAL (type, 0)
10942 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10943 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10944 0))))
10945 buf.puts (" const");
10946 }
10947 }
10948
10949 const std::string &intermediate_name = buf.string ();
10950
10951 if (cu->language == language_cplus)
10952 canonical_name
10953 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10954 &objfile->per_bfd->storage_obstack);
10955
10956 /* If we only computed INTERMEDIATE_NAME, or if
10957 INTERMEDIATE_NAME is already canonical, then we need to
10958 copy it to the appropriate obstack. */
10959 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10960 name = ((const char *)
10961 obstack_copy0 (&objfile->per_bfd->storage_obstack,
10962 intermediate_name.c_str (),
10963 intermediate_name.length ()));
10964 else
10965 name = canonical_name;
10966 }
10967 }
10968
10969 return name;
10970 }
10971
10972 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10973 If scope qualifiers are appropriate they will be added. The result
10974 will be allocated on the storage_obstack, or NULL if the DIE does
10975 not have a name. NAME may either be from a previous call to
10976 dwarf2_name or NULL.
10977
10978 The output string will be canonicalized (if C++). */
10979
10980 static const char *
10981 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10982 {
10983 return dwarf2_compute_name (name, die, cu, 0);
10984 }
10985
10986 /* Construct a physname for the given DIE in CU. NAME may either be
10987 from a previous call to dwarf2_name or NULL. The result will be
10988 allocated on the objfile_objstack or NULL if the DIE does not have a
10989 name.
10990
10991 The output string will be canonicalized (if C++). */
10992
10993 static const char *
10994 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10995 {
10996 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10997 const char *retval, *mangled = NULL, *canon = NULL;
10998 int need_copy = 1;
10999
11000 /* In this case dwarf2_compute_name is just a shortcut not building anything
11001 on its own. */
11002 if (!die_needs_namespace (die, cu))
11003 return dwarf2_compute_name (name, die, cu, 1);
11004
11005 mangled = dw2_linkage_name (die, cu);
11006
11007 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11008 See https://github.com/rust-lang/rust/issues/32925. */
11009 if (cu->language == language_rust && mangled != NULL
11010 && strchr (mangled, '{') != NULL)
11011 mangled = NULL;
11012
11013 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11014 has computed. */
11015 gdb::unique_xmalloc_ptr<char> demangled;
11016 if (mangled != NULL)
11017 {
11018
11019 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11020 {
11021 /* Do nothing (do not demangle the symbol name). */
11022 }
11023 else if (cu->language == language_go)
11024 {
11025 /* This is a lie, but we already lie to the caller new_symbol.
11026 new_symbol assumes we return the mangled name.
11027 This just undoes that lie until things are cleaned up. */
11028 }
11029 else
11030 {
11031 /* Use DMGL_RET_DROP for C++ template functions to suppress
11032 their return type. It is easier for GDB users to search
11033 for such functions as `name(params)' than `long name(params)'.
11034 In such case the minimal symbol names do not match the full
11035 symbol names but for template functions there is never a need
11036 to look up their definition from their declaration so
11037 the only disadvantage remains the minimal symbol variant
11038 `long name(params)' does not have the proper inferior type. */
11039 demangled.reset (gdb_demangle (mangled,
11040 (DMGL_PARAMS | DMGL_ANSI
11041 | DMGL_RET_DROP)));
11042 }
11043 if (demangled)
11044 canon = demangled.get ();
11045 else
11046 {
11047 canon = mangled;
11048 need_copy = 0;
11049 }
11050 }
11051
11052 if (canon == NULL || check_physname)
11053 {
11054 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11055
11056 if (canon != NULL && strcmp (physname, canon) != 0)
11057 {
11058 /* It may not mean a bug in GDB. The compiler could also
11059 compute DW_AT_linkage_name incorrectly. But in such case
11060 GDB would need to be bug-to-bug compatible. */
11061
11062 complaint (_("Computed physname <%s> does not match demangled <%s> "
11063 "(from linkage <%s>) - DIE at %s [in module %s]"),
11064 physname, canon, mangled, sect_offset_str (die->sect_off),
11065 objfile_name (objfile));
11066
11067 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11068 is available here - over computed PHYSNAME. It is safer
11069 against both buggy GDB and buggy compilers. */
11070
11071 retval = canon;
11072 }
11073 else
11074 {
11075 retval = physname;
11076 need_copy = 0;
11077 }
11078 }
11079 else
11080 retval = canon;
11081
11082 if (need_copy)
11083 retval = ((const char *)
11084 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11085 retval, strlen (retval)));
11086
11087 return retval;
11088 }
11089
11090 /* Inspect DIE in CU for a namespace alias. If one exists, record
11091 a new symbol for it.
11092
11093 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11094
11095 static int
11096 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11097 {
11098 struct attribute *attr;
11099
11100 /* If the die does not have a name, this is not a namespace
11101 alias. */
11102 attr = dwarf2_attr (die, DW_AT_name, cu);
11103 if (attr != NULL)
11104 {
11105 int num;
11106 struct die_info *d = die;
11107 struct dwarf2_cu *imported_cu = cu;
11108
11109 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11110 keep inspecting DIEs until we hit the underlying import. */
11111 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11112 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11113 {
11114 attr = dwarf2_attr (d, DW_AT_import, cu);
11115 if (attr == NULL)
11116 break;
11117
11118 d = follow_die_ref (d, attr, &imported_cu);
11119 if (d->tag != DW_TAG_imported_declaration)
11120 break;
11121 }
11122
11123 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11124 {
11125 complaint (_("DIE at %s has too many recursively imported "
11126 "declarations"), sect_offset_str (d->sect_off));
11127 return 0;
11128 }
11129
11130 if (attr != NULL)
11131 {
11132 struct type *type;
11133 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11134
11135 type = get_die_type_at_offset (sect_off, cu->per_cu);
11136 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11137 {
11138 /* This declaration is a global namespace alias. Add
11139 a symbol for it whose type is the aliased namespace. */
11140 new_symbol (die, type, cu);
11141 return 1;
11142 }
11143 }
11144 }
11145
11146 return 0;
11147 }
11148
11149 /* Return the using directives repository (global or local?) to use in the
11150 current context for CU.
11151
11152 For Ada, imported declarations can materialize renamings, which *may* be
11153 global. However it is impossible (for now?) in DWARF to distinguish
11154 "external" imported declarations and "static" ones. As all imported
11155 declarations seem to be static in all other languages, make them all CU-wide
11156 global only in Ada. */
11157
11158 static struct using_direct **
11159 using_directives (struct dwarf2_cu *cu)
11160 {
11161 if (cu->language == language_ada
11162 && cu->get_builder ()->outermost_context_p ())
11163 return cu->get_builder ()->get_global_using_directives ();
11164 else
11165 return cu->get_builder ()->get_local_using_directives ();
11166 }
11167
11168 /* Read the import statement specified by the given die and record it. */
11169
11170 static void
11171 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11172 {
11173 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11174 struct attribute *import_attr;
11175 struct die_info *imported_die, *child_die;
11176 struct dwarf2_cu *imported_cu;
11177 const char *imported_name;
11178 const char *imported_name_prefix;
11179 const char *canonical_name;
11180 const char *import_alias;
11181 const char *imported_declaration = NULL;
11182 const char *import_prefix;
11183 std::vector<const char *> excludes;
11184
11185 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11186 if (import_attr == NULL)
11187 {
11188 complaint (_("Tag '%s' has no DW_AT_import"),
11189 dwarf_tag_name (die->tag));
11190 return;
11191 }
11192
11193 imported_cu = cu;
11194 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11195 imported_name = dwarf2_name (imported_die, imported_cu);
11196 if (imported_name == NULL)
11197 {
11198 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11199
11200 The import in the following code:
11201 namespace A
11202 {
11203 typedef int B;
11204 }
11205
11206 int main ()
11207 {
11208 using A::B;
11209 B b;
11210 return b;
11211 }
11212
11213 ...
11214 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11215 <52> DW_AT_decl_file : 1
11216 <53> DW_AT_decl_line : 6
11217 <54> DW_AT_import : <0x75>
11218 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11219 <59> DW_AT_name : B
11220 <5b> DW_AT_decl_file : 1
11221 <5c> DW_AT_decl_line : 2
11222 <5d> DW_AT_type : <0x6e>
11223 ...
11224 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11225 <76> DW_AT_byte_size : 4
11226 <77> DW_AT_encoding : 5 (signed)
11227
11228 imports the wrong die ( 0x75 instead of 0x58 ).
11229 This case will be ignored until the gcc bug is fixed. */
11230 return;
11231 }
11232
11233 /* Figure out the local name after import. */
11234 import_alias = dwarf2_name (die, cu);
11235
11236 /* Figure out where the statement is being imported to. */
11237 import_prefix = determine_prefix (die, cu);
11238
11239 /* Figure out what the scope of the imported die is and prepend it
11240 to the name of the imported die. */
11241 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11242
11243 if (imported_die->tag != DW_TAG_namespace
11244 && imported_die->tag != DW_TAG_module)
11245 {
11246 imported_declaration = imported_name;
11247 canonical_name = imported_name_prefix;
11248 }
11249 else if (strlen (imported_name_prefix) > 0)
11250 canonical_name = obconcat (&objfile->objfile_obstack,
11251 imported_name_prefix,
11252 (cu->language == language_d ? "." : "::"),
11253 imported_name, (char *) NULL);
11254 else
11255 canonical_name = imported_name;
11256
11257 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11258 for (child_die = die->child; child_die && child_die->tag;
11259 child_die = sibling_die (child_die))
11260 {
11261 /* DWARF-4: A Fortran use statement with a “rename list” may be
11262 represented by an imported module entry with an import attribute
11263 referring to the module and owned entries corresponding to those
11264 entities that are renamed as part of being imported. */
11265
11266 if (child_die->tag != DW_TAG_imported_declaration)
11267 {
11268 complaint (_("child DW_TAG_imported_declaration expected "
11269 "- DIE at %s [in module %s]"),
11270 sect_offset_str (child_die->sect_off),
11271 objfile_name (objfile));
11272 continue;
11273 }
11274
11275 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11276 if (import_attr == NULL)
11277 {
11278 complaint (_("Tag '%s' has no DW_AT_import"),
11279 dwarf_tag_name (child_die->tag));
11280 continue;
11281 }
11282
11283 imported_cu = cu;
11284 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11285 &imported_cu);
11286 imported_name = dwarf2_name (imported_die, imported_cu);
11287 if (imported_name == NULL)
11288 {
11289 complaint (_("child DW_TAG_imported_declaration has unknown "
11290 "imported name - DIE at %s [in module %s]"),
11291 sect_offset_str (child_die->sect_off),
11292 objfile_name (objfile));
11293 continue;
11294 }
11295
11296 excludes.push_back (imported_name);
11297
11298 process_die (child_die, cu);
11299 }
11300
11301 add_using_directive (using_directives (cu),
11302 import_prefix,
11303 canonical_name,
11304 import_alias,
11305 imported_declaration,
11306 excludes,
11307 0,
11308 &objfile->objfile_obstack);
11309 }
11310
11311 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11312 types, but gives them a size of zero. Starting with version 14,
11313 ICC is compatible with GCC. */
11314
11315 static bool
11316 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11317 {
11318 if (!cu->checked_producer)
11319 check_producer (cu);
11320
11321 return cu->producer_is_icc_lt_14;
11322 }
11323
11324 /* ICC generates a DW_AT_type for C void functions. This was observed on
11325 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11326 which says that void functions should not have a DW_AT_type. */
11327
11328 static bool
11329 producer_is_icc (struct dwarf2_cu *cu)
11330 {
11331 if (!cu->checked_producer)
11332 check_producer (cu);
11333
11334 return cu->producer_is_icc;
11335 }
11336
11337 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11338 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11339 this, it was first present in GCC release 4.3.0. */
11340
11341 static bool
11342 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11343 {
11344 if (!cu->checked_producer)
11345 check_producer (cu);
11346
11347 return cu->producer_is_gcc_lt_4_3;
11348 }
11349
11350 static file_and_directory
11351 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11352 {
11353 file_and_directory res;
11354
11355 /* Find the filename. Do not use dwarf2_name here, since the filename
11356 is not a source language identifier. */
11357 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11358 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11359
11360 if (res.comp_dir == NULL
11361 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11362 && IS_ABSOLUTE_PATH (res.name))
11363 {
11364 res.comp_dir_storage = ldirname (res.name);
11365 if (!res.comp_dir_storage.empty ())
11366 res.comp_dir = res.comp_dir_storage.c_str ();
11367 }
11368 if (res.comp_dir != NULL)
11369 {
11370 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11371 directory, get rid of it. */
11372 const char *cp = strchr (res.comp_dir, ':');
11373
11374 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11375 res.comp_dir = cp + 1;
11376 }
11377
11378 if (res.name == NULL)
11379 res.name = "<unknown>";
11380
11381 return res;
11382 }
11383
11384 /* Handle DW_AT_stmt_list for a compilation unit.
11385 DIE is the DW_TAG_compile_unit die for CU.
11386 COMP_DIR is the compilation directory. LOWPC is passed to
11387 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11388
11389 static void
11390 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11391 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11392 {
11393 struct dwarf2_per_objfile *dwarf2_per_objfile
11394 = cu->per_cu->dwarf2_per_objfile;
11395 struct objfile *objfile = dwarf2_per_objfile->objfile;
11396 struct attribute *attr;
11397 struct line_header line_header_local;
11398 hashval_t line_header_local_hash;
11399 void **slot;
11400 int decode_mapping;
11401
11402 gdb_assert (! cu->per_cu->is_debug_types);
11403
11404 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11405 if (attr == NULL)
11406 return;
11407
11408 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11409
11410 /* The line header hash table is only created if needed (it exists to
11411 prevent redundant reading of the line table for partial_units).
11412 If we're given a partial_unit, we'll need it. If we're given a
11413 compile_unit, then use the line header hash table if it's already
11414 created, but don't create one just yet. */
11415
11416 if (dwarf2_per_objfile->line_header_hash == NULL
11417 && die->tag == DW_TAG_partial_unit)
11418 {
11419 dwarf2_per_objfile->line_header_hash
11420 = htab_create_alloc_ex (127, line_header_hash_voidp,
11421 line_header_eq_voidp,
11422 free_line_header_voidp,
11423 &objfile->objfile_obstack,
11424 hashtab_obstack_allocate,
11425 dummy_obstack_deallocate);
11426 }
11427
11428 line_header_local.sect_off = line_offset;
11429 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11430 line_header_local_hash = line_header_hash (&line_header_local);
11431 if (dwarf2_per_objfile->line_header_hash != NULL)
11432 {
11433 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11434 &line_header_local,
11435 line_header_local_hash, NO_INSERT);
11436
11437 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11438 is not present in *SLOT (since if there is something in *SLOT then
11439 it will be for a partial_unit). */
11440 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11441 {
11442 gdb_assert (*slot != NULL);
11443 cu->line_header = (struct line_header *) *slot;
11444 return;
11445 }
11446 }
11447
11448 /* dwarf_decode_line_header does not yet provide sufficient information.
11449 We always have to call also dwarf_decode_lines for it. */
11450 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11451 if (lh == NULL)
11452 return;
11453
11454 cu->line_header = lh.release ();
11455 cu->line_header_die_owner = die;
11456
11457 if (dwarf2_per_objfile->line_header_hash == NULL)
11458 slot = NULL;
11459 else
11460 {
11461 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11462 &line_header_local,
11463 line_header_local_hash, INSERT);
11464 gdb_assert (slot != NULL);
11465 }
11466 if (slot != NULL && *slot == NULL)
11467 {
11468 /* This newly decoded line number information unit will be owned
11469 by line_header_hash hash table. */
11470 *slot = cu->line_header;
11471 cu->line_header_die_owner = NULL;
11472 }
11473 else
11474 {
11475 /* We cannot free any current entry in (*slot) as that struct line_header
11476 may be already used by multiple CUs. Create only temporary decoded
11477 line_header for this CU - it may happen at most once for each line
11478 number information unit. And if we're not using line_header_hash
11479 then this is what we want as well. */
11480 gdb_assert (die->tag != DW_TAG_partial_unit);
11481 }
11482 decode_mapping = (die->tag != DW_TAG_partial_unit);
11483 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11484 decode_mapping);
11485
11486 }
11487
11488 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11489
11490 static void
11491 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11492 {
11493 struct dwarf2_per_objfile *dwarf2_per_objfile
11494 = cu->per_cu->dwarf2_per_objfile;
11495 struct objfile *objfile = dwarf2_per_objfile->objfile;
11496 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11497 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11498 CORE_ADDR highpc = ((CORE_ADDR) 0);
11499 struct attribute *attr;
11500 struct die_info *child_die;
11501 CORE_ADDR baseaddr;
11502
11503 prepare_one_comp_unit (cu, die, cu->language);
11504 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11505
11506 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11507
11508 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11509 from finish_block. */
11510 if (lowpc == ((CORE_ADDR) -1))
11511 lowpc = highpc;
11512 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11513
11514 file_and_directory fnd = find_file_and_directory (die, cu);
11515
11516 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11517 standardised yet. As a workaround for the language detection we fall
11518 back to the DW_AT_producer string. */
11519 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11520 cu->language = language_opencl;
11521
11522 /* Similar hack for Go. */
11523 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11524 set_cu_language (DW_LANG_Go, cu);
11525
11526 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11527
11528 /* Decode line number information if present. We do this before
11529 processing child DIEs, so that the line header table is available
11530 for DW_AT_decl_file. */
11531 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11532
11533 /* Process all dies in compilation unit. */
11534 if (die->child != NULL)
11535 {
11536 child_die = die->child;
11537 while (child_die && child_die->tag)
11538 {
11539 process_die (child_die, cu);
11540 child_die = sibling_die (child_die);
11541 }
11542 }
11543
11544 /* Decode macro information, if present. Dwarf 2 macro information
11545 refers to information in the line number info statement program
11546 header, so we can only read it if we've read the header
11547 successfully. */
11548 attr = dwarf2_attr (die, DW_AT_macros, cu);
11549 if (attr == NULL)
11550 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11551 if (attr && cu->line_header)
11552 {
11553 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11554 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11555
11556 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11557 }
11558 else
11559 {
11560 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11561 if (attr && cu->line_header)
11562 {
11563 unsigned int macro_offset = DW_UNSND (attr);
11564
11565 dwarf_decode_macros (cu, macro_offset, 0);
11566 }
11567 }
11568 }
11569
11570 void
11571 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11572 {
11573 struct type_unit_group *tu_group;
11574 int first_time;
11575 struct attribute *attr;
11576 unsigned int i;
11577 struct signatured_type *sig_type;
11578
11579 gdb_assert (per_cu->is_debug_types);
11580 sig_type = (struct signatured_type *) per_cu;
11581
11582 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11583
11584 /* If we're using .gdb_index (includes -readnow) then
11585 per_cu->type_unit_group may not have been set up yet. */
11586 if (sig_type->type_unit_group == NULL)
11587 sig_type->type_unit_group = get_type_unit_group (this, attr);
11588 tu_group = sig_type->type_unit_group;
11589
11590 /* If we've already processed this stmt_list there's no real need to
11591 do it again, we could fake it and just recreate the part we need
11592 (file name,index -> symtab mapping). If data shows this optimization
11593 is useful we can do it then. */
11594 first_time = tu_group->compunit_symtab == NULL;
11595
11596 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11597 debug info. */
11598 line_header_up lh;
11599 if (attr != NULL)
11600 {
11601 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11602 lh = dwarf_decode_line_header (line_offset, this);
11603 }
11604 if (lh == NULL)
11605 {
11606 if (first_time)
11607 start_symtab ("", NULL, 0);
11608 else
11609 {
11610 gdb_assert (tu_group->symtabs == NULL);
11611 gdb_assert (m_builder == nullptr);
11612 struct compunit_symtab *cust = tu_group->compunit_symtab;
11613 m_builder.reset (new struct buildsym_compunit
11614 (COMPUNIT_OBJFILE (cust), "",
11615 COMPUNIT_DIRNAME (cust),
11616 compunit_language (cust),
11617 0, cust));
11618 }
11619 return;
11620 }
11621
11622 line_header = lh.release ();
11623 line_header_die_owner = die;
11624
11625 if (first_time)
11626 {
11627 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11628
11629 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11630 still initializing it, and our caller (a few levels up)
11631 process_full_type_unit still needs to know if this is the first
11632 time. */
11633
11634 tu_group->num_symtabs = line_header->file_names.size ();
11635 tu_group->symtabs = XNEWVEC (struct symtab *,
11636 line_header->file_names.size ());
11637
11638 for (i = 0; i < line_header->file_names.size (); ++i)
11639 {
11640 file_entry &fe = line_header->file_names[i];
11641
11642 dwarf2_start_subfile (this, fe.name,
11643 fe.include_dir (line_header));
11644 buildsym_compunit *b = get_builder ();
11645 if (b->get_current_subfile ()->symtab == NULL)
11646 {
11647 /* NOTE: start_subfile will recognize when it's been
11648 passed a file it has already seen. So we can't
11649 assume there's a simple mapping from
11650 cu->line_header->file_names to subfiles, plus
11651 cu->line_header->file_names may contain dups. */
11652 b->get_current_subfile ()->symtab
11653 = allocate_symtab (cust, b->get_current_subfile ()->name);
11654 }
11655
11656 fe.symtab = b->get_current_subfile ()->symtab;
11657 tu_group->symtabs[i] = fe.symtab;
11658 }
11659 }
11660 else
11661 {
11662 gdb_assert (m_builder == nullptr);
11663 struct compunit_symtab *cust = tu_group->compunit_symtab;
11664 m_builder.reset (new struct buildsym_compunit
11665 (COMPUNIT_OBJFILE (cust), "",
11666 COMPUNIT_DIRNAME (cust),
11667 compunit_language (cust),
11668 0, cust));
11669
11670 for (i = 0; i < line_header->file_names.size (); ++i)
11671 {
11672 file_entry &fe = line_header->file_names[i];
11673
11674 fe.symtab = tu_group->symtabs[i];
11675 }
11676 }
11677
11678 /* The main symtab is allocated last. Type units don't have DW_AT_name
11679 so they don't have a "real" (so to speak) symtab anyway.
11680 There is later code that will assign the main symtab to all symbols
11681 that don't have one. We need to handle the case of a symbol with a
11682 missing symtab (DW_AT_decl_file) anyway. */
11683 }
11684
11685 /* Process DW_TAG_type_unit.
11686 For TUs we want to skip the first top level sibling if it's not the
11687 actual type being defined by this TU. In this case the first top
11688 level sibling is there to provide context only. */
11689
11690 static void
11691 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11692 {
11693 struct die_info *child_die;
11694
11695 prepare_one_comp_unit (cu, die, language_minimal);
11696
11697 /* Initialize (or reinitialize) the machinery for building symtabs.
11698 We do this before processing child DIEs, so that the line header table
11699 is available for DW_AT_decl_file. */
11700 cu->setup_type_unit_groups (die);
11701
11702 if (die->child != NULL)
11703 {
11704 child_die = die->child;
11705 while (child_die && child_die->tag)
11706 {
11707 process_die (child_die, cu);
11708 child_die = sibling_die (child_die);
11709 }
11710 }
11711 }
11712 \f
11713 /* DWO/DWP files.
11714
11715 http://gcc.gnu.org/wiki/DebugFission
11716 http://gcc.gnu.org/wiki/DebugFissionDWP
11717
11718 To simplify handling of both DWO files ("object" files with the DWARF info)
11719 and DWP files (a file with the DWOs packaged up into one file), we treat
11720 DWP files as having a collection of virtual DWO files. */
11721
11722 static hashval_t
11723 hash_dwo_file (const void *item)
11724 {
11725 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11726 hashval_t hash;
11727
11728 hash = htab_hash_string (dwo_file->dwo_name);
11729 if (dwo_file->comp_dir != NULL)
11730 hash += htab_hash_string (dwo_file->comp_dir);
11731 return hash;
11732 }
11733
11734 static int
11735 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11736 {
11737 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11738 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11739
11740 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11741 return 0;
11742 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11743 return lhs->comp_dir == rhs->comp_dir;
11744 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11745 }
11746
11747 /* Allocate a hash table for DWO files. */
11748
11749 static htab_up
11750 allocate_dwo_file_hash_table (struct objfile *objfile)
11751 {
11752 auto delete_dwo_file = [] (void *item)
11753 {
11754 struct dwo_file *dwo_file = (struct dwo_file *) item;
11755
11756 delete dwo_file;
11757 };
11758
11759 return htab_up (htab_create_alloc_ex (41,
11760 hash_dwo_file,
11761 eq_dwo_file,
11762 delete_dwo_file,
11763 &objfile->objfile_obstack,
11764 hashtab_obstack_allocate,
11765 dummy_obstack_deallocate));
11766 }
11767
11768 /* Lookup DWO file DWO_NAME. */
11769
11770 static void **
11771 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11772 const char *dwo_name,
11773 const char *comp_dir)
11774 {
11775 struct dwo_file find_entry;
11776 void **slot;
11777
11778 if (dwarf2_per_objfile->dwo_files == NULL)
11779 dwarf2_per_objfile->dwo_files
11780 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11781
11782 find_entry.dwo_name = dwo_name;
11783 find_entry.comp_dir = comp_dir;
11784 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11785 INSERT);
11786
11787 return slot;
11788 }
11789
11790 static hashval_t
11791 hash_dwo_unit (const void *item)
11792 {
11793 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11794
11795 /* This drops the top 32 bits of the id, but is ok for a hash. */
11796 return dwo_unit->signature;
11797 }
11798
11799 static int
11800 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11801 {
11802 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11803 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11804
11805 /* The signature is assumed to be unique within the DWO file.
11806 So while object file CU dwo_id's always have the value zero,
11807 that's OK, assuming each object file DWO file has only one CU,
11808 and that's the rule for now. */
11809 return lhs->signature == rhs->signature;
11810 }
11811
11812 /* Allocate a hash table for DWO CUs,TUs.
11813 There is one of these tables for each of CUs,TUs for each DWO file. */
11814
11815 static htab_t
11816 allocate_dwo_unit_table (struct objfile *objfile)
11817 {
11818 /* Start out with a pretty small number.
11819 Generally DWO files contain only one CU and maybe some TUs. */
11820 return htab_create_alloc_ex (3,
11821 hash_dwo_unit,
11822 eq_dwo_unit,
11823 NULL,
11824 &objfile->objfile_obstack,
11825 hashtab_obstack_allocate,
11826 dummy_obstack_deallocate);
11827 }
11828
11829 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11830
11831 struct create_dwo_cu_data
11832 {
11833 struct dwo_file *dwo_file;
11834 struct dwo_unit dwo_unit;
11835 };
11836
11837 /* die_reader_func for create_dwo_cu. */
11838
11839 static void
11840 create_dwo_cu_reader (const struct die_reader_specs *reader,
11841 const gdb_byte *info_ptr,
11842 struct die_info *comp_unit_die,
11843 int has_children,
11844 void *datap)
11845 {
11846 struct dwarf2_cu *cu = reader->cu;
11847 sect_offset sect_off = cu->per_cu->sect_off;
11848 struct dwarf2_section_info *section = cu->per_cu->section;
11849 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11850 struct dwo_file *dwo_file = data->dwo_file;
11851 struct dwo_unit *dwo_unit = &data->dwo_unit;
11852 struct attribute *attr;
11853
11854 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11855 if (attr == NULL)
11856 {
11857 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11858 " its dwo_id [in module %s]"),
11859 sect_offset_str (sect_off), dwo_file->dwo_name);
11860 return;
11861 }
11862
11863 dwo_unit->dwo_file = dwo_file;
11864 dwo_unit->signature = DW_UNSND (attr);
11865 dwo_unit->section = section;
11866 dwo_unit->sect_off = sect_off;
11867 dwo_unit->length = cu->per_cu->length;
11868
11869 if (dwarf_read_debug)
11870 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11871 sect_offset_str (sect_off),
11872 hex_string (dwo_unit->signature));
11873 }
11874
11875 /* Create the dwo_units for the CUs in a DWO_FILE.
11876 Note: This function processes DWO files only, not DWP files. */
11877
11878 static void
11879 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11880 struct dwo_file &dwo_file, dwarf2_section_info &section,
11881 htab_t &cus_htab)
11882 {
11883 struct objfile *objfile = dwarf2_per_objfile->objfile;
11884 const gdb_byte *info_ptr, *end_ptr;
11885
11886 dwarf2_read_section (objfile, &section);
11887 info_ptr = section.buffer;
11888
11889 if (info_ptr == NULL)
11890 return;
11891
11892 if (dwarf_read_debug)
11893 {
11894 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11895 get_section_name (&section),
11896 get_section_file_name (&section));
11897 }
11898
11899 end_ptr = info_ptr + section.size;
11900 while (info_ptr < end_ptr)
11901 {
11902 struct dwarf2_per_cu_data per_cu;
11903 struct create_dwo_cu_data create_dwo_cu_data;
11904 struct dwo_unit *dwo_unit;
11905 void **slot;
11906 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11907
11908 memset (&create_dwo_cu_data.dwo_unit, 0,
11909 sizeof (create_dwo_cu_data.dwo_unit));
11910 memset (&per_cu, 0, sizeof (per_cu));
11911 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11912 per_cu.is_debug_types = 0;
11913 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11914 per_cu.section = &section;
11915 create_dwo_cu_data.dwo_file = &dwo_file;
11916
11917 init_cutu_and_read_dies_no_follow (
11918 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11919 info_ptr += per_cu.length;
11920
11921 // If the unit could not be parsed, skip it.
11922 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11923 continue;
11924
11925 if (cus_htab == NULL)
11926 cus_htab = allocate_dwo_unit_table (objfile);
11927
11928 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11929 *dwo_unit = create_dwo_cu_data.dwo_unit;
11930 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11931 gdb_assert (slot != NULL);
11932 if (*slot != NULL)
11933 {
11934 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11935 sect_offset dup_sect_off = dup_cu->sect_off;
11936
11937 complaint (_("debug cu entry at offset %s is duplicate to"
11938 " the entry at offset %s, signature %s"),
11939 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11940 hex_string (dwo_unit->signature));
11941 }
11942 *slot = (void *)dwo_unit;
11943 }
11944 }
11945
11946 /* DWP file .debug_{cu,tu}_index section format:
11947 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11948
11949 DWP Version 1:
11950
11951 Both index sections have the same format, and serve to map a 64-bit
11952 signature to a set of section numbers. Each section begins with a header,
11953 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11954 indexes, and a pool of 32-bit section numbers. The index sections will be
11955 aligned at 8-byte boundaries in the file.
11956
11957 The index section header consists of:
11958
11959 V, 32 bit version number
11960 -, 32 bits unused
11961 N, 32 bit number of compilation units or type units in the index
11962 M, 32 bit number of slots in the hash table
11963
11964 Numbers are recorded using the byte order of the application binary.
11965
11966 The hash table begins at offset 16 in the section, and consists of an array
11967 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11968 order of the application binary). Unused slots in the hash table are 0.
11969 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11970
11971 The parallel table begins immediately after the hash table
11972 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11973 array of 32-bit indexes (using the byte order of the application binary),
11974 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11975 table contains a 32-bit index into the pool of section numbers. For unused
11976 hash table slots, the corresponding entry in the parallel table will be 0.
11977
11978 The pool of section numbers begins immediately following the hash table
11979 (at offset 16 + 12 * M from the beginning of the section). The pool of
11980 section numbers consists of an array of 32-bit words (using the byte order
11981 of the application binary). Each item in the array is indexed starting
11982 from 0. The hash table entry provides the index of the first section
11983 number in the set. Additional section numbers in the set follow, and the
11984 set is terminated by a 0 entry (section number 0 is not used in ELF).
11985
11986 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11987 section must be the first entry in the set, and the .debug_abbrev.dwo must
11988 be the second entry. Other members of the set may follow in any order.
11989
11990 ---
11991
11992 DWP Version 2:
11993
11994 DWP Version 2 combines all the .debug_info, etc. sections into one,
11995 and the entries in the index tables are now offsets into these sections.
11996 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11997 section.
11998
11999 Index Section Contents:
12000 Header
12001 Hash Table of Signatures dwp_hash_table.hash_table
12002 Parallel Table of Indices dwp_hash_table.unit_table
12003 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12004 Table of Section Sizes dwp_hash_table.v2.sizes
12005
12006 The index section header consists of:
12007
12008 V, 32 bit version number
12009 L, 32 bit number of columns in the table of section offsets
12010 N, 32 bit number of compilation units or type units in the index
12011 M, 32 bit number of slots in the hash table
12012
12013 Numbers are recorded using the byte order of the application binary.
12014
12015 The hash table has the same format as version 1.
12016 The parallel table of indices has the same format as version 1,
12017 except that the entries are origin-1 indices into the table of sections
12018 offsets and the table of section sizes.
12019
12020 The table of offsets begins immediately following the parallel table
12021 (at offset 16 + 12 * M from the beginning of the section). The table is
12022 a two-dimensional array of 32-bit words (using the byte order of the
12023 application binary), with L columns and N+1 rows, in row-major order.
12024 Each row in the array is indexed starting from 0. The first row provides
12025 a key to the remaining rows: each column in this row provides an identifier
12026 for a debug section, and the offsets in the same column of subsequent rows
12027 refer to that section. The section identifiers are:
12028
12029 DW_SECT_INFO 1 .debug_info.dwo
12030 DW_SECT_TYPES 2 .debug_types.dwo
12031 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12032 DW_SECT_LINE 4 .debug_line.dwo
12033 DW_SECT_LOC 5 .debug_loc.dwo
12034 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12035 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12036 DW_SECT_MACRO 8 .debug_macro.dwo
12037
12038 The offsets provided by the CU and TU index sections are the base offsets
12039 for the contributions made by each CU or TU to the corresponding section
12040 in the package file. Each CU and TU header contains an abbrev_offset
12041 field, used to find the abbreviations table for that CU or TU within the
12042 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12043 be interpreted as relative to the base offset given in the index section.
12044 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12045 should be interpreted as relative to the base offset for .debug_line.dwo,
12046 and offsets into other debug sections obtained from DWARF attributes should
12047 also be interpreted as relative to the corresponding base offset.
12048
12049 The table of sizes begins immediately following the table of offsets.
12050 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12051 with L columns and N rows, in row-major order. Each row in the array is
12052 indexed starting from 1 (row 0 is shared by the two tables).
12053
12054 ---
12055
12056 Hash table lookup is handled the same in version 1 and 2:
12057
12058 We assume that N and M will not exceed 2^32 - 1.
12059 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12060
12061 Given a 64-bit compilation unit signature or a type signature S, an entry
12062 in the hash table is located as follows:
12063
12064 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12065 the low-order k bits all set to 1.
12066
12067 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12068
12069 3) If the hash table entry at index H matches the signature, use that
12070 entry. If the hash table entry at index H is unused (all zeroes),
12071 terminate the search: the signature is not present in the table.
12072
12073 4) Let H = (H + H') modulo M. Repeat at Step 3.
12074
12075 Because M > N and H' and M are relatively prime, the search is guaranteed
12076 to stop at an unused slot or find the match. */
12077
12078 /* Create a hash table to map DWO IDs to their CU/TU entry in
12079 .debug_{info,types}.dwo in DWP_FILE.
12080 Returns NULL if there isn't one.
12081 Note: This function processes DWP files only, not DWO files. */
12082
12083 static struct dwp_hash_table *
12084 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12085 struct dwp_file *dwp_file, int is_debug_types)
12086 {
12087 struct objfile *objfile = dwarf2_per_objfile->objfile;
12088 bfd *dbfd = dwp_file->dbfd.get ();
12089 const gdb_byte *index_ptr, *index_end;
12090 struct dwarf2_section_info *index;
12091 uint32_t version, nr_columns, nr_units, nr_slots;
12092 struct dwp_hash_table *htab;
12093
12094 if (is_debug_types)
12095 index = &dwp_file->sections.tu_index;
12096 else
12097 index = &dwp_file->sections.cu_index;
12098
12099 if (dwarf2_section_empty_p (index))
12100 return NULL;
12101 dwarf2_read_section (objfile, index);
12102
12103 index_ptr = index->buffer;
12104 index_end = index_ptr + index->size;
12105
12106 version = read_4_bytes (dbfd, index_ptr);
12107 index_ptr += 4;
12108 if (version == 2)
12109 nr_columns = read_4_bytes (dbfd, index_ptr);
12110 else
12111 nr_columns = 0;
12112 index_ptr += 4;
12113 nr_units = read_4_bytes (dbfd, index_ptr);
12114 index_ptr += 4;
12115 nr_slots = read_4_bytes (dbfd, index_ptr);
12116 index_ptr += 4;
12117
12118 if (version != 1 && version != 2)
12119 {
12120 error (_("Dwarf Error: unsupported DWP file version (%s)"
12121 " [in module %s]"),
12122 pulongest (version), dwp_file->name);
12123 }
12124 if (nr_slots != (nr_slots & -nr_slots))
12125 {
12126 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12127 " is not power of 2 [in module %s]"),
12128 pulongest (nr_slots), dwp_file->name);
12129 }
12130
12131 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12132 htab->version = version;
12133 htab->nr_columns = nr_columns;
12134 htab->nr_units = nr_units;
12135 htab->nr_slots = nr_slots;
12136 htab->hash_table = index_ptr;
12137 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12138
12139 /* Exit early if the table is empty. */
12140 if (nr_slots == 0 || nr_units == 0
12141 || (version == 2 && nr_columns == 0))
12142 {
12143 /* All must be zero. */
12144 if (nr_slots != 0 || nr_units != 0
12145 || (version == 2 && nr_columns != 0))
12146 {
12147 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12148 " all zero [in modules %s]"),
12149 dwp_file->name);
12150 }
12151 return htab;
12152 }
12153
12154 if (version == 1)
12155 {
12156 htab->section_pool.v1.indices =
12157 htab->unit_table + sizeof (uint32_t) * nr_slots;
12158 /* It's harder to decide whether the section is too small in v1.
12159 V1 is deprecated anyway so we punt. */
12160 }
12161 else
12162 {
12163 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12164 int *ids = htab->section_pool.v2.section_ids;
12165 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12166 /* Reverse map for error checking. */
12167 int ids_seen[DW_SECT_MAX + 1];
12168 int i;
12169
12170 if (nr_columns < 2)
12171 {
12172 error (_("Dwarf Error: bad DWP hash table, too few columns"
12173 " in section table [in module %s]"),
12174 dwp_file->name);
12175 }
12176 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12177 {
12178 error (_("Dwarf Error: bad DWP hash table, too many columns"
12179 " in section table [in module %s]"),
12180 dwp_file->name);
12181 }
12182 memset (ids, 255, sizeof_ids);
12183 memset (ids_seen, 255, sizeof (ids_seen));
12184 for (i = 0; i < nr_columns; ++i)
12185 {
12186 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12187
12188 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12189 {
12190 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12191 " in section table [in module %s]"),
12192 id, dwp_file->name);
12193 }
12194 if (ids_seen[id] != -1)
12195 {
12196 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12197 " id %d in section table [in module %s]"),
12198 id, dwp_file->name);
12199 }
12200 ids_seen[id] = i;
12201 ids[i] = id;
12202 }
12203 /* Must have exactly one info or types section. */
12204 if (((ids_seen[DW_SECT_INFO] != -1)
12205 + (ids_seen[DW_SECT_TYPES] != -1))
12206 != 1)
12207 {
12208 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12209 " DWO info/types section [in module %s]"),
12210 dwp_file->name);
12211 }
12212 /* Must have an abbrev section. */
12213 if (ids_seen[DW_SECT_ABBREV] == -1)
12214 {
12215 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12216 " section [in module %s]"),
12217 dwp_file->name);
12218 }
12219 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12220 htab->section_pool.v2.sizes =
12221 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12222 * nr_units * nr_columns);
12223 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12224 * nr_units * nr_columns))
12225 > index_end)
12226 {
12227 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12228 " [in module %s]"),
12229 dwp_file->name);
12230 }
12231 }
12232
12233 return htab;
12234 }
12235
12236 /* Update SECTIONS with the data from SECTP.
12237
12238 This function is like the other "locate" section routines that are
12239 passed to bfd_map_over_sections, but in this context the sections to
12240 read comes from the DWP V1 hash table, not the full ELF section table.
12241
12242 The result is non-zero for success, or zero if an error was found. */
12243
12244 static int
12245 locate_v1_virtual_dwo_sections (asection *sectp,
12246 struct virtual_v1_dwo_sections *sections)
12247 {
12248 const struct dwop_section_names *names = &dwop_section_names;
12249
12250 if (section_is_p (sectp->name, &names->abbrev_dwo))
12251 {
12252 /* There can be only one. */
12253 if (sections->abbrev.s.section != NULL)
12254 return 0;
12255 sections->abbrev.s.section = sectp;
12256 sections->abbrev.size = bfd_get_section_size (sectp);
12257 }
12258 else if (section_is_p (sectp->name, &names->info_dwo)
12259 || section_is_p (sectp->name, &names->types_dwo))
12260 {
12261 /* There can be only one. */
12262 if (sections->info_or_types.s.section != NULL)
12263 return 0;
12264 sections->info_or_types.s.section = sectp;
12265 sections->info_or_types.size = bfd_get_section_size (sectp);
12266 }
12267 else if (section_is_p (sectp->name, &names->line_dwo))
12268 {
12269 /* There can be only one. */
12270 if (sections->line.s.section != NULL)
12271 return 0;
12272 sections->line.s.section = sectp;
12273 sections->line.size = bfd_get_section_size (sectp);
12274 }
12275 else if (section_is_p (sectp->name, &names->loc_dwo))
12276 {
12277 /* There can be only one. */
12278 if (sections->loc.s.section != NULL)
12279 return 0;
12280 sections->loc.s.section = sectp;
12281 sections->loc.size = bfd_get_section_size (sectp);
12282 }
12283 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12284 {
12285 /* There can be only one. */
12286 if (sections->macinfo.s.section != NULL)
12287 return 0;
12288 sections->macinfo.s.section = sectp;
12289 sections->macinfo.size = bfd_get_section_size (sectp);
12290 }
12291 else if (section_is_p (sectp->name, &names->macro_dwo))
12292 {
12293 /* There can be only one. */
12294 if (sections->macro.s.section != NULL)
12295 return 0;
12296 sections->macro.s.section = sectp;
12297 sections->macro.size = bfd_get_section_size (sectp);
12298 }
12299 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12300 {
12301 /* There can be only one. */
12302 if (sections->str_offsets.s.section != NULL)
12303 return 0;
12304 sections->str_offsets.s.section = sectp;
12305 sections->str_offsets.size = bfd_get_section_size (sectp);
12306 }
12307 else
12308 {
12309 /* No other kind of section is valid. */
12310 return 0;
12311 }
12312
12313 return 1;
12314 }
12315
12316 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12317 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12318 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12319 This is for DWP version 1 files. */
12320
12321 static struct dwo_unit *
12322 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12323 struct dwp_file *dwp_file,
12324 uint32_t unit_index,
12325 const char *comp_dir,
12326 ULONGEST signature, int is_debug_types)
12327 {
12328 struct objfile *objfile = dwarf2_per_objfile->objfile;
12329 const struct dwp_hash_table *dwp_htab =
12330 is_debug_types ? dwp_file->tus : dwp_file->cus;
12331 bfd *dbfd = dwp_file->dbfd.get ();
12332 const char *kind = is_debug_types ? "TU" : "CU";
12333 struct dwo_file *dwo_file;
12334 struct dwo_unit *dwo_unit;
12335 struct virtual_v1_dwo_sections sections;
12336 void **dwo_file_slot;
12337 int i;
12338
12339 gdb_assert (dwp_file->version == 1);
12340
12341 if (dwarf_read_debug)
12342 {
12343 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12344 kind,
12345 pulongest (unit_index), hex_string (signature),
12346 dwp_file->name);
12347 }
12348
12349 /* Fetch the sections of this DWO unit.
12350 Put a limit on the number of sections we look for so that bad data
12351 doesn't cause us to loop forever. */
12352
12353 #define MAX_NR_V1_DWO_SECTIONS \
12354 (1 /* .debug_info or .debug_types */ \
12355 + 1 /* .debug_abbrev */ \
12356 + 1 /* .debug_line */ \
12357 + 1 /* .debug_loc */ \
12358 + 1 /* .debug_str_offsets */ \
12359 + 1 /* .debug_macro or .debug_macinfo */ \
12360 + 1 /* trailing zero */)
12361
12362 memset (&sections, 0, sizeof (sections));
12363
12364 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12365 {
12366 asection *sectp;
12367 uint32_t section_nr =
12368 read_4_bytes (dbfd,
12369 dwp_htab->section_pool.v1.indices
12370 + (unit_index + i) * sizeof (uint32_t));
12371
12372 if (section_nr == 0)
12373 break;
12374 if (section_nr >= dwp_file->num_sections)
12375 {
12376 error (_("Dwarf Error: bad DWP hash table, section number too large"
12377 " [in module %s]"),
12378 dwp_file->name);
12379 }
12380
12381 sectp = dwp_file->elf_sections[section_nr];
12382 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12383 {
12384 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12385 " [in module %s]"),
12386 dwp_file->name);
12387 }
12388 }
12389
12390 if (i < 2
12391 || dwarf2_section_empty_p (&sections.info_or_types)
12392 || dwarf2_section_empty_p (&sections.abbrev))
12393 {
12394 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12395 " [in module %s]"),
12396 dwp_file->name);
12397 }
12398 if (i == MAX_NR_V1_DWO_SECTIONS)
12399 {
12400 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12401 " [in module %s]"),
12402 dwp_file->name);
12403 }
12404
12405 /* It's easier for the rest of the code if we fake a struct dwo_file and
12406 have dwo_unit "live" in that. At least for now.
12407
12408 The DWP file can be made up of a random collection of CUs and TUs.
12409 However, for each CU + set of TUs that came from the same original DWO
12410 file, we can combine them back into a virtual DWO file to save space
12411 (fewer struct dwo_file objects to allocate). Remember that for really
12412 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12413
12414 std::string virtual_dwo_name =
12415 string_printf ("virtual-dwo/%d-%d-%d-%d",
12416 get_section_id (&sections.abbrev),
12417 get_section_id (&sections.line),
12418 get_section_id (&sections.loc),
12419 get_section_id (&sections.str_offsets));
12420 /* Can we use an existing virtual DWO file? */
12421 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12422 virtual_dwo_name.c_str (),
12423 comp_dir);
12424 /* Create one if necessary. */
12425 if (*dwo_file_slot == NULL)
12426 {
12427 if (dwarf_read_debug)
12428 {
12429 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12430 virtual_dwo_name.c_str ());
12431 }
12432 dwo_file = new struct dwo_file;
12433 dwo_file->dwo_name
12434 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12435 virtual_dwo_name.c_str (),
12436 virtual_dwo_name.size ());
12437 dwo_file->comp_dir = comp_dir;
12438 dwo_file->sections.abbrev = sections.abbrev;
12439 dwo_file->sections.line = sections.line;
12440 dwo_file->sections.loc = sections.loc;
12441 dwo_file->sections.macinfo = sections.macinfo;
12442 dwo_file->sections.macro = sections.macro;
12443 dwo_file->sections.str_offsets = sections.str_offsets;
12444 /* The "str" section is global to the entire DWP file. */
12445 dwo_file->sections.str = dwp_file->sections.str;
12446 /* The info or types section is assigned below to dwo_unit,
12447 there's no need to record it in dwo_file.
12448 Also, we can't simply record type sections in dwo_file because
12449 we record a pointer into the vector in dwo_unit. As we collect more
12450 types we'll grow the vector and eventually have to reallocate space
12451 for it, invalidating all copies of pointers into the previous
12452 contents. */
12453 *dwo_file_slot = dwo_file;
12454 }
12455 else
12456 {
12457 if (dwarf_read_debug)
12458 {
12459 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12460 virtual_dwo_name.c_str ());
12461 }
12462 dwo_file = (struct dwo_file *) *dwo_file_slot;
12463 }
12464
12465 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12466 dwo_unit->dwo_file = dwo_file;
12467 dwo_unit->signature = signature;
12468 dwo_unit->section =
12469 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12470 *dwo_unit->section = sections.info_or_types;
12471 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12472
12473 return dwo_unit;
12474 }
12475
12476 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12477 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12478 piece within that section used by a TU/CU, return a virtual section
12479 of just that piece. */
12480
12481 static struct dwarf2_section_info
12482 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12483 struct dwarf2_section_info *section,
12484 bfd_size_type offset, bfd_size_type size)
12485 {
12486 struct dwarf2_section_info result;
12487 asection *sectp;
12488
12489 gdb_assert (section != NULL);
12490 gdb_assert (!section->is_virtual);
12491
12492 memset (&result, 0, sizeof (result));
12493 result.s.containing_section = section;
12494 result.is_virtual = true;
12495
12496 if (size == 0)
12497 return result;
12498
12499 sectp = get_section_bfd_section (section);
12500
12501 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12502 bounds of the real section. This is a pretty-rare event, so just
12503 flag an error (easier) instead of a warning and trying to cope. */
12504 if (sectp == NULL
12505 || offset + size > bfd_get_section_size (sectp))
12506 {
12507 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12508 " in section %s [in module %s]"),
12509 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12510 objfile_name (dwarf2_per_objfile->objfile));
12511 }
12512
12513 result.virtual_offset = offset;
12514 result.size = size;
12515 return result;
12516 }
12517
12518 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12519 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12520 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12521 This is for DWP version 2 files. */
12522
12523 static struct dwo_unit *
12524 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12525 struct dwp_file *dwp_file,
12526 uint32_t unit_index,
12527 const char *comp_dir,
12528 ULONGEST signature, int is_debug_types)
12529 {
12530 struct objfile *objfile = dwarf2_per_objfile->objfile;
12531 const struct dwp_hash_table *dwp_htab =
12532 is_debug_types ? dwp_file->tus : dwp_file->cus;
12533 bfd *dbfd = dwp_file->dbfd.get ();
12534 const char *kind = is_debug_types ? "TU" : "CU";
12535 struct dwo_file *dwo_file;
12536 struct dwo_unit *dwo_unit;
12537 struct virtual_v2_dwo_sections sections;
12538 void **dwo_file_slot;
12539 int i;
12540
12541 gdb_assert (dwp_file->version == 2);
12542
12543 if (dwarf_read_debug)
12544 {
12545 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12546 kind,
12547 pulongest (unit_index), hex_string (signature),
12548 dwp_file->name);
12549 }
12550
12551 /* Fetch the section offsets of this DWO unit. */
12552
12553 memset (&sections, 0, sizeof (sections));
12554
12555 for (i = 0; i < dwp_htab->nr_columns; ++i)
12556 {
12557 uint32_t offset = read_4_bytes (dbfd,
12558 dwp_htab->section_pool.v2.offsets
12559 + (((unit_index - 1) * dwp_htab->nr_columns
12560 + i)
12561 * sizeof (uint32_t)));
12562 uint32_t size = read_4_bytes (dbfd,
12563 dwp_htab->section_pool.v2.sizes
12564 + (((unit_index - 1) * dwp_htab->nr_columns
12565 + i)
12566 * sizeof (uint32_t)));
12567
12568 switch (dwp_htab->section_pool.v2.section_ids[i])
12569 {
12570 case DW_SECT_INFO:
12571 case DW_SECT_TYPES:
12572 sections.info_or_types_offset = offset;
12573 sections.info_or_types_size = size;
12574 break;
12575 case DW_SECT_ABBREV:
12576 sections.abbrev_offset = offset;
12577 sections.abbrev_size = size;
12578 break;
12579 case DW_SECT_LINE:
12580 sections.line_offset = offset;
12581 sections.line_size = size;
12582 break;
12583 case DW_SECT_LOC:
12584 sections.loc_offset = offset;
12585 sections.loc_size = size;
12586 break;
12587 case DW_SECT_STR_OFFSETS:
12588 sections.str_offsets_offset = offset;
12589 sections.str_offsets_size = size;
12590 break;
12591 case DW_SECT_MACINFO:
12592 sections.macinfo_offset = offset;
12593 sections.macinfo_size = size;
12594 break;
12595 case DW_SECT_MACRO:
12596 sections.macro_offset = offset;
12597 sections.macro_size = size;
12598 break;
12599 }
12600 }
12601
12602 /* It's easier for the rest of the code if we fake a struct dwo_file and
12603 have dwo_unit "live" in that. At least for now.
12604
12605 The DWP file can be made up of a random collection of CUs and TUs.
12606 However, for each CU + set of TUs that came from the same original DWO
12607 file, we can combine them back into a virtual DWO file to save space
12608 (fewer struct dwo_file objects to allocate). Remember that for really
12609 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12610
12611 std::string virtual_dwo_name =
12612 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12613 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12614 (long) (sections.line_size ? sections.line_offset : 0),
12615 (long) (sections.loc_size ? sections.loc_offset : 0),
12616 (long) (sections.str_offsets_size
12617 ? sections.str_offsets_offset : 0));
12618 /* Can we use an existing virtual DWO file? */
12619 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12620 virtual_dwo_name.c_str (),
12621 comp_dir);
12622 /* Create one if necessary. */
12623 if (*dwo_file_slot == NULL)
12624 {
12625 if (dwarf_read_debug)
12626 {
12627 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12628 virtual_dwo_name.c_str ());
12629 }
12630 dwo_file = new struct dwo_file;
12631 dwo_file->dwo_name
12632 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12633 virtual_dwo_name.c_str (),
12634 virtual_dwo_name.size ());
12635 dwo_file->comp_dir = comp_dir;
12636 dwo_file->sections.abbrev =
12637 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12638 sections.abbrev_offset, sections.abbrev_size);
12639 dwo_file->sections.line =
12640 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12641 sections.line_offset, sections.line_size);
12642 dwo_file->sections.loc =
12643 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12644 sections.loc_offset, sections.loc_size);
12645 dwo_file->sections.macinfo =
12646 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12647 sections.macinfo_offset, sections.macinfo_size);
12648 dwo_file->sections.macro =
12649 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12650 sections.macro_offset, sections.macro_size);
12651 dwo_file->sections.str_offsets =
12652 create_dwp_v2_section (dwarf2_per_objfile,
12653 &dwp_file->sections.str_offsets,
12654 sections.str_offsets_offset,
12655 sections.str_offsets_size);
12656 /* The "str" section is global to the entire DWP file. */
12657 dwo_file->sections.str = dwp_file->sections.str;
12658 /* The info or types section is assigned below to dwo_unit,
12659 there's no need to record it in dwo_file.
12660 Also, we can't simply record type sections in dwo_file because
12661 we record a pointer into the vector in dwo_unit. As we collect more
12662 types we'll grow the vector and eventually have to reallocate space
12663 for it, invalidating all copies of pointers into the previous
12664 contents. */
12665 *dwo_file_slot = dwo_file;
12666 }
12667 else
12668 {
12669 if (dwarf_read_debug)
12670 {
12671 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12672 virtual_dwo_name.c_str ());
12673 }
12674 dwo_file = (struct dwo_file *) *dwo_file_slot;
12675 }
12676
12677 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12678 dwo_unit->dwo_file = dwo_file;
12679 dwo_unit->signature = signature;
12680 dwo_unit->section =
12681 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12682 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12683 is_debug_types
12684 ? &dwp_file->sections.types
12685 : &dwp_file->sections.info,
12686 sections.info_or_types_offset,
12687 sections.info_or_types_size);
12688 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12689
12690 return dwo_unit;
12691 }
12692
12693 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12694 Returns NULL if the signature isn't found. */
12695
12696 static struct dwo_unit *
12697 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12698 struct dwp_file *dwp_file, const char *comp_dir,
12699 ULONGEST signature, int is_debug_types)
12700 {
12701 const struct dwp_hash_table *dwp_htab =
12702 is_debug_types ? dwp_file->tus : dwp_file->cus;
12703 bfd *dbfd = dwp_file->dbfd.get ();
12704 uint32_t mask = dwp_htab->nr_slots - 1;
12705 uint32_t hash = signature & mask;
12706 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12707 unsigned int i;
12708 void **slot;
12709 struct dwo_unit find_dwo_cu;
12710
12711 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12712 find_dwo_cu.signature = signature;
12713 slot = htab_find_slot (is_debug_types
12714 ? dwp_file->loaded_tus
12715 : dwp_file->loaded_cus,
12716 &find_dwo_cu, INSERT);
12717
12718 if (*slot != NULL)
12719 return (struct dwo_unit *) *slot;
12720
12721 /* Use a for loop so that we don't loop forever on bad debug info. */
12722 for (i = 0; i < dwp_htab->nr_slots; ++i)
12723 {
12724 ULONGEST signature_in_table;
12725
12726 signature_in_table =
12727 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12728 if (signature_in_table == signature)
12729 {
12730 uint32_t unit_index =
12731 read_4_bytes (dbfd,
12732 dwp_htab->unit_table + hash * sizeof (uint32_t));
12733
12734 if (dwp_file->version == 1)
12735 {
12736 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12737 dwp_file, unit_index,
12738 comp_dir, signature,
12739 is_debug_types);
12740 }
12741 else
12742 {
12743 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12744 dwp_file, unit_index,
12745 comp_dir, signature,
12746 is_debug_types);
12747 }
12748 return (struct dwo_unit *) *slot;
12749 }
12750 if (signature_in_table == 0)
12751 return NULL;
12752 hash = (hash + hash2) & mask;
12753 }
12754
12755 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12756 " [in module %s]"),
12757 dwp_file->name);
12758 }
12759
12760 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12761 Open the file specified by FILE_NAME and hand it off to BFD for
12762 preliminary analysis. Return a newly initialized bfd *, which
12763 includes a canonicalized copy of FILE_NAME.
12764 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12765 SEARCH_CWD is true if the current directory is to be searched.
12766 It will be searched before debug-file-directory.
12767 If successful, the file is added to the bfd include table of the
12768 objfile's bfd (see gdb_bfd_record_inclusion).
12769 If unable to find/open the file, return NULL.
12770 NOTE: This function is derived from symfile_bfd_open. */
12771
12772 static gdb_bfd_ref_ptr
12773 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12774 const char *file_name, int is_dwp, int search_cwd)
12775 {
12776 int desc;
12777 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12778 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12779 to debug_file_directory. */
12780 const char *search_path;
12781 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12782
12783 gdb::unique_xmalloc_ptr<char> search_path_holder;
12784 if (search_cwd)
12785 {
12786 if (*debug_file_directory != '\0')
12787 {
12788 search_path_holder.reset (concat (".", dirname_separator_string,
12789 debug_file_directory,
12790 (char *) NULL));
12791 search_path = search_path_holder.get ();
12792 }
12793 else
12794 search_path = ".";
12795 }
12796 else
12797 search_path = debug_file_directory;
12798
12799 openp_flags flags = OPF_RETURN_REALPATH;
12800 if (is_dwp)
12801 flags |= OPF_SEARCH_IN_PATH;
12802
12803 gdb::unique_xmalloc_ptr<char> absolute_name;
12804 desc = openp (search_path, flags, file_name,
12805 O_RDONLY | O_BINARY, &absolute_name);
12806 if (desc < 0)
12807 return NULL;
12808
12809 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12810 gnutarget, desc));
12811 if (sym_bfd == NULL)
12812 return NULL;
12813 bfd_set_cacheable (sym_bfd.get (), 1);
12814
12815 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12816 return NULL;
12817
12818 /* Success. Record the bfd as having been included by the objfile's bfd.
12819 This is important because things like demangled_names_hash lives in the
12820 objfile's per_bfd space and may have references to things like symbol
12821 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12822 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12823
12824 return sym_bfd;
12825 }
12826
12827 /* Try to open DWO file FILE_NAME.
12828 COMP_DIR is the DW_AT_comp_dir attribute.
12829 The result is the bfd handle of the file.
12830 If there is a problem finding or opening the file, return NULL.
12831 Upon success, the canonicalized path of the file is stored in the bfd,
12832 same as symfile_bfd_open. */
12833
12834 static gdb_bfd_ref_ptr
12835 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12836 const char *file_name, const char *comp_dir)
12837 {
12838 if (IS_ABSOLUTE_PATH (file_name))
12839 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12840 0 /*is_dwp*/, 0 /*search_cwd*/);
12841
12842 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12843
12844 if (comp_dir != NULL)
12845 {
12846 char *path_to_try = concat (comp_dir, SLASH_STRING,
12847 file_name, (char *) NULL);
12848
12849 /* NOTE: If comp_dir is a relative path, this will also try the
12850 search path, which seems useful. */
12851 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12852 path_to_try,
12853 0 /*is_dwp*/,
12854 1 /*search_cwd*/));
12855 xfree (path_to_try);
12856 if (abfd != NULL)
12857 return abfd;
12858 }
12859
12860 /* That didn't work, try debug-file-directory, which, despite its name,
12861 is a list of paths. */
12862
12863 if (*debug_file_directory == '\0')
12864 return NULL;
12865
12866 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12867 0 /*is_dwp*/, 1 /*search_cwd*/);
12868 }
12869
12870 /* This function is mapped across the sections and remembers the offset and
12871 size of each of the DWO debugging sections we are interested in. */
12872
12873 static void
12874 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12875 {
12876 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12877 const struct dwop_section_names *names = &dwop_section_names;
12878
12879 if (section_is_p (sectp->name, &names->abbrev_dwo))
12880 {
12881 dwo_sections->abbrev.s.section = sectp;
12882 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12883 }
12884 else if (section_is_p (sectp->name, &names->info_dwo))
12885 {
12886 dwo_sections->info.s.section = sectp;
12887 dwo_sections->info.size = bfd_get_section_size (sectp);
12888 }
12889 else if (section_is_p (sectp->name, &names->line_dwo))
12890 {
12891 dwo_sections->line.s.section = sectp;
12892 dwo_sections->line.size = bfd_get_section_size (sectp);
12893 }
12894 else if (section_is_p (sectp->name, &names->loc_dwo))
12895 {
12896 dwo_sections->loc.s.section = sectp;
12897 dwo_sections->loc.size = bfd_get_section_size (sectp);
12898 }
12899 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12900 {
12901 dwo_sections->macinfo.s.section = sectp;
12902 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12903 }
12904 else if (section_is_p (sectp->name, &names->macro_dwo))
12905 {
12906 dwo_sections->macro.s.section = sectp;
12907 dwo_sections->macro.size = bfd_get_section_size (sectp);
12908 }
12909 else if (section_is_p (sectp->name, &names->str_dwo))
12910 {
12911 dwo_sections->str.s.section = sectp;
12912 dwo_sections->str.size = bfd_get_section_size (sectp);
12913 }
12914 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12915 {
12916 dwo_sections->str_offsets.s.section = sectp;
12917 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12918 }
12919 else if (section_is_p (sectp->name, &names->types_dwo))
12920 {
12921 struct dwarf2_section_info type_section;
12922
12923 memset (&type_section, 0, sizeof (type_section));
12924 type_section.s.section = sectp;
12925 type_section.size = bfd_get_section_size (sectp);
12926 dwo_sections->types.push_back (type_section);
12927 }
12928 }
12929
12930 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12931 by PER_CU. This is for the non-DWP case.
12932 The result is NULL if DWO_NAME can't be found. */
12933
12934 static struct dwo_file *
12935 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12936 const char *dwo_name, const char *comp_dir)
12937 {
12938 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12939
12940 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12941 if (dbfd == NULL)
12942 {
12943 if (dwarf_read_debug)
12944 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12945 return NULL;
12946 }
12947
12948 dwo_file_up dwo_file (new struct dwo_file);
12949 dwo_file->dwo_name = dwo_name;
12950 dwo_file->comp_dir = comp_dir;
12951 dwo_file->dbfd = std::move (dbfd);
12952
12953 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12954 &dwo_file->sections);
12955
12956 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
12957 dwo_file->cus);
12958
12959 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12960 dwo_file->sections.types, dwo_file->tus);
12961
12962 if (dwarf_read_debug)
12963 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12964
12965 return dwo_file.release ();
12966 }
12967
12968 /* This function is mapped across the sections and remembers the offset and
12969 size of each of the DWP debugging sections common to version 1 and 2 that
12970 we are interested in. */
12971
12972 static void
12973 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12974 void *dwp_file_ptr)
12975 {
12976 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12977 const struct dwop_section_names *names = &dwop_section_names;
12978 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12979
12980 /* Record the ELF section number for later lookup: this is what the
12981 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12982 gdb_assert (elf_section_nr < dwp_file->num_sections);
12983 dwp_file->elf_sections[elf_section_nr] = sectp;
12984
12985 /* Look for specific sections that we need. */
12986 if (section_is_p (sectp->name, &names->str_dwo))
12987 {
12988 dwp_file->sections.str.s.section = sectp;
12989 dwp_file->sections.str.size = bfd_get_section_size (sectp);
12990 }
12991 else if (section_is_p (sectp->name, &names->cu_index))
12992 {
12993 dwp_file->sections.cu_index.s.section = sectp;
12994 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
12995 }
12996 else if (section_is_p (sectp->name, &names->tu_index))
12997 {
12998 dwp_file->sections.tu_index.s.section = sectp;
12999 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13000 }
13001 }
13002
13003 /* This function is mapped across the sections and remembers the offset and
13004 size of each of the DWP version 2 debugging sections that we are interested
13005 in. This is split into a separate function because we don't know if we
13006 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13007
13008 static void
13009 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13010 {
13011 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13012 const struct dwop_section_names *names = &dwop_section_names;
13013 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13014
13015 /* Record the ELF section number for later lookup: this is what the
13016 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13017 gdb_assert (elf_section_nr < dwp_file->num_sections);
13018 dwp_file->elf_sections[elf_section_nr] = sectp;
13019
13020 /* Look for specific sections that we need. */
13021 if (section_is_p (sectp->name, &names->abbrev_dwo))
13022 {
13023 dwp_file->sections.abbrev.s.section = sectp;
13024 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13025 }
13026 else if (section_is_p (sectp->name, &names->info_dwo))
13027 {
13028 dwp_file->sections.info.s.section = sectp;
13029 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13030 }
13031 else if (section_is_p (sectp->name, &names->line_dwo))
13032 {
13033 dwp_file->sections.line.s.section = sectp;
13034 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13035 }
13036 else if (section_is_p (sectp->name, &names->loc_dwo))
13037 {
13038 dwp_file->sections.loc.s.section = sectp;
13039 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13040 }
13041 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13042 {
13043 dwp_file->sections.macinfo.s.section = sectp;
13044 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13045 }
13046 else if (section_is_p (sectp->name, &names->macro_dwo))
13047 {
13048 dwp_file->sections.macro.s.section = sectp;
13049 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13050 }
13051 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13052 {
13053 dwp_file->sections.str_offsets.s.section = sectp;
13054 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13055 }
13056 else if (section_is_p (sectp->name, &names->types_dwo))
13057 {
13058 dwp_file->sections.types.s.section = sectp;
13059 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13060 }
13061 }
13062
13063 /* Hash function for dwp_file loaded CUs/TUs. */
13064
13065 static hashval_t
13066 hash_dwp_loaded_cutus (const void *item)
13067 {
13068 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13069
13070 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13071 return dwo_unit->signature;
13072 }
13073
13074 /* Equality function for dwp_file loaded CUs/TUs. */
13075
13076 static int
13077 eq_dwp_loaded_cutus (const void *a, const void *b)
13078 {
13079 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13080 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13081
13082 return dua->signature == dub->signature;
13083 }
13084
13085 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13086
13087 static htab_t
13088 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13089 {
13090 return htab_create_alloc_ex (3,
13091 hash_dwp_loaded_cutus,
13092 eq_dwp_loaded_cutus,
13093 NULL,
13094 &objfile->objfile_obstack,
13095 hashtab_obstack_allocate,
13096 dummy_obstack_deallocate);
13097 }
13098
13099 /* Try to open DWP file FILE_NAME.
13100 The result is the bfd handle of the file.
13101 If there is a problem finding or opening the file, return NULL.
13102 Upon success, the canonicalized path of the file is stored in the bfd,
13103 same as symfile_bfd_open. */
13104
13105 static gdb_bfd_ref_ptr
13106 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13107 const char *file_name)
13108 {
13109 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13110 1 /*is_dwp*/,
13111 1 /*search_cwd*/));
13112 if (abfd != NULL)
13113 return abfd;
13114
13115 /* Work around upstream bug 15652.
13116 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13117 [Whether that's a "bug" is debatable, but it is getting in our way.]
13118 We have no real idea where the dwp file is, because gdb's realpath-ing
13119 of the executable's path may have discarded the needed info.
13120 [IWBN if the dwp file name was recorded in the executable, akin to
13121 .gnu_debuglink, but that doesn't exist yet.]
13122 Strip the directory from FILE_NAME and search again. */
13123 if (*debug_file_directory != '\0')
13124 {
13125 /* Don't implicitly search the current directory here.
13126 If the user wants to search "." to handle this case,
13127 it must be added to debug-file-directory. */
13128 return try_open_dwop_file (dwarf2_per_objfile,
13129 lbasename (file_name), 1 /*is_dwp*/,
13130 0 /*search_cwd*/);
13131 }
13132
13133 return NULL;
13134 }
13135
13136 /* Initialize the use of the DWP file for the current objfile.
13137 By convention the name of the DWP file is ${objfile}.dwp.
13138 The result is NULL if it can't be found. */
13139
13140 static std::unique_ptr<struct dwp_file>
13141 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13142 {
13143 struct objfile *objfile = dwarf2_per_objfile->objfile;
13144
13145 /* Try to find first .dwp for the binary file before any symbolic links
13146 resolving. */
13147
13148 /* If the objfile is a debug file, find the name of the real binary
13149 file and get the name of dwp file from there. */
13150 std::string dwp_name;
13151 if (objfile->separate_debug_objfile_backlink != NULL)
13152 {
13153 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13154 const char *backlink_basename = lbasename (backlink->original_name);
13155
13156 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13157 }
13158 else
13159 dwp_name = objfile->original_name;
13160
13161 dwp_name += ".dwp";
13162
13163 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13164 if (dbfd == NULL
13165 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13166 {
13167 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13168 dwp_name = objfile_name (objfile);
13169 dwp_name += ".dwp";
13170 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13171 }
13172
13173 if (dbfd == NULL)
13174 {
13175 if (dwarf_read_debug)
13176 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13177 return std::unique_ptr<dwp_file> ();
13178 }
13179
13180 const char *name = bfd_get_filename (dbfd.get ());
13181 std::unique_ptr<struct dwp_file> dwp_file
13182 (new struct dwp_file (name, std::move (dbfd)));
13183
13184 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13185 dwp_file->elf_sections =
13186 OBSTACK_CALLOC (&objfile->objfile_obstack,
13187 dwp_file->num_sections, asection *);
13188
13189 bfd_map_over_sections (dwp_file->dbfd.get (),
13190 dwarf2_locate_common_dwp_sections,
13191 dwp_file.get ());
13192
13193 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13194 0);
13195
13196 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13197 1);
13198
13199 /* The DWP file version is stored in the hash table. Oh well. */
13200 if (dwp_file->cus && dwp_file->tus
13201 && dwp_file->cus->version != dwp_file->tus->version)
13202 {
13203 /* Technically speaking, we should try to limp along, but this is
13204 pretty bizarre. We use pulongest here because that's the established
13205 portability solution (e.g, we cannot use %u for uint32_t). */
13206 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13207 " TU version %s [in DWP file %s]"),
13208 pulongest (dwp_file->cus->version),
13209 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13210 }
13211
13212 if (dwp_file->cus)
13213 dwp_file->version = dwp_file->cus->version;
13214 else if (dwp_file->tus)
13215 dwp_file->version = dwp_file->tus->version;
13216 else
13217 dwp_file->version = 2;
13218
13219 if (dwp_file->version == 2)
13220 bfd_map_over_sections (dwp_file->dbfd.get (),
13221 dwarf2_locate_v2_dwp_sections,
13222 dwp_file.get ());
13223
13224 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13225 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13226
13227 if (dwarf_read_debug)
13228 {
13229 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13230 fprintf_unfiltered (gdb_stdlog,
13231 " %s CUs, %s TUs\n",
13232 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13233 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13234 }
13235
13236 return dwp_file;
13237 }
13238
13239 /* Wrapper around open_and_init_dwp_file, only open it once. */
13240
13241 static struct dwp_file *
13242 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13243 {
13244 if (! dwarf2_per_objfile->dwp_checked)
13245 {
13246 dwarf2_per_objfile->dwp_file
13247 = open_and_init_dwp_file (dwarf2_per_objfile);
13248 dwarf2_per_objfile->dwp_checked = 1;
13249 }
13250 return dwarf2_per_objfile->dwp_file.get ();
13251 }
13252
13253 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13254 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13255 or in the DWP file for the objfile, referenced by THIS_UNIT.
13256 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13257 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13258
13259 This is called, for example, when wanting to read a variable with a
13260 complex location. Therefore we don't want to do file i/o for every call.
13261 Therefore we don't want to look for a DWO file on every call.
13262 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13263 then we check if we've already seen DWO_NAME, and only THEN do we check
13264 for a DWO file.
13265
13266 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13267 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13268
13269 static struct dwo_unit *
13270 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13271 const char *dwo_name, const char *comp_dir,
13272 ULONGEST signature, int is_debug_types)
13273 {
13274 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13275 struct objfile *objfile = dwarf2_per_objfile->objfile;
13276 const char *kind = is_debug_types ? "TU" : "CU";
13277 void **dwo_file_slot;
13278 struct dwo_file *dwo_file;
13279 struct dwp_file *dwp_file;
13280
13281 /* First see if there's a DWP file.
13282 If we have a DWP file but didn't find the DWO inside it, don't
13283 look for the original DWO file. It makes gdb behave differently
13284 depending on whether one is debugging in the build tree. */
13285
13286 dwp_file = get_dwp_file (dwarf2_per_objfile);
13287 if (dwp_file != NULL)
13288 {
13289 const struct dwp_hash_table *dwp_htab =
13290 is_debug_types ? dwp_file->tus : dwp_file->cus;
13291
13292 if (dwp_htab != NULL)
13293 {
13294 struct dwo_unit *dwo_cutu =
13295 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13296 signature, is_debug_types);
13297
13298 if (dwo_cutu != NULL)
13299 {
13300 if (dwarf_read_debug)
13301 {
13302 fprintf_unfiltered (gdb_stdlog,
13303 "Virtual DWO %s %s found: @%s\n",
13304 kind, hex_string (signature),
13305 host_address_to_string (dwo_cutu));
13306 }
13307 return dwo_cutu;
13308 }
13309 }
13310 }
13311 else
13312 {
13313 /* No DWP file, look for the DWO file. */
13314
13315 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13316 dwo_name, comp_dir);
13317 if (*dwo_file_slot == NULL)
13318 {
13319 /* Read in the file and build a table of the CUs/TUs it contains. */
13320 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13321 }
13322 /* NOTE: This will be NULL if unable to open the file. */
13323 dwo_file = (struct dwo_file *) *dwo_file_slot;
13324
13325 if (dwo_file != NULL)
13326 {
13327 struct dwo_unit *dwo_cutu = NULL;
13328
13329 if (is_debug_types && dwo_file->tus)
13330 {
13331 struct dwo_unit find_dwo_cutu;
13332
13333 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13334 find_dwo_cutu.signature = signature;
13335 dwo_cutu
13336 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13337 }
13338 else if (!is_debug_types && dwo_file->cus)
13339 {
13340 struct dwo_unit find_dwo_cutu;
13341
13342 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13343 find_dwo_cutu.signature = signature;
13344 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13345 &find_dwo_cutu);
13346 }
13347
13348 if (dwo_cutu != NULL)
13349 {
13350 if (dwarf_read_debug)
13351 {
13352 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13353 kind, dwo_name, hex_string (signature),
13354 host_address_to_string (dwo_cutu));
13355 }
13356 return dwo_cutu;
13357 }
13358 }
13359 }
13360
13361 /* We didn't find it. This could mean a dwo_id mismatch, or
13362 someone deleted the DWO/DWP file, or the search path isn't set up
13363 correctly to find the file. */
13364
13365 if (dwarf_read_debug)
13366 {
13367 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13368 kind, dwo_name, hex_string (signature));
13369 }
13370
13371 /* This is a warning and not a complaint because it can be caused by
13372 pilot error (e.g., user accidentally deleting the DWO). */
13373 {
13374 /* Print the name of the DWP file if we looked there, helps the user
13375 better diagnose the problem. */
13376 std::string dwp_text;
13377
13378 if (dwp_file != NULL)
13379 dwp_text = string_printf (" [in DWP file %s]",
13380 lbasename (dwp_file->name));
13381
13382 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13383 " [in module %s]"),
13384 kind, dwo_name, hex_string (signature),
13385 dwp_text.c_str (),
13386 this_unit->is_debug_types ? "TU" : "CU",
13387 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13388 }
13389 return NULL;
13390 }
13391
13392 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13393 See lookup_dwo_cutu_unit for details. */
13394
13395 static struct dwo_unit *
13396 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13397 const char *dwo_name, const char *comp_dir,
13398 ULONGEST signature)
13399 {
13400 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13401 }
13402
13403 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13404 See lookup_dwo_cutu_unit for details. */
13405
13406 static struct dwo_unit *
13407 lookup_dwo_type_unit (struct signatured_type *this_tu,
13408 const char *dwo_name, const char *comp_dir)
13409 {
13410 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13411 }
13412
13413 /* Traversal function for queue_and_load_all_dwo_tus. */
13414
13415 static int
13416 queue_and_load_dwo_tu (void **slot, void *info)
13417 {
13418 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13419 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13420 ULONGEST signature = dwo_unit->signature;
13421 struct signatured_type *sig_type =
13422 lookup_dwo_signatured_type (per_cu->cu, signature);
13423
13424 if (sig_type != NULL)
13425 {
13426 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13427
13428 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13429 a real dependency of PER_CU on SIG_TYPE. That is detected later
13430 while processing PER_CU. */
13431 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13432 load_full_type_unit (sig_cu);
13433 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13434 }
13435
13436 return 1;
13437 }
13438
13439 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13440 The DWO may have the only definition of the type, though it may not be
13441 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13442 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13443
13444 static void
13445 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13446 {
13447 struct dwo_unit *dwo_unit;
13448 struct dwo_file *dwo_file;
13449
13450 gdb_assert (!per_cu->is_debug_types);
13451 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13452 gdb_assert (per_cu->cu != NULL);
13453
13454 dwo_unit = per_cu->cu->dwo_unit;
13455 gdb_assert (dwo_unit != NULL);
13456
13457 dwo_file = dwo_unit->dwo_file;
13458 if (dwo_file->tus != NULL)
13459 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13460 }
13461
13462 /* Read in various DIEs. */
13463
13464 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13465 Inherit only the children of the DW_AT_abstract_origin DIE not being
13466 already referenced by DW_AT_abstract_origin from the children of the
13467 current DIE. */
13468
13469 static void
13470 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13471 {
13472 struct die_info *child_die;
13473 sect_offset *offsetp;
13474 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13475 struct die_info *origin_die;
13476 /* Iterator of the ORIGIN_DIE children. */
13477 struct die_info *origin_child_die;
13478 struct attribute *attr;
13479 struct dwarf2_cu *origin_cu;
13480 struct pending **origin_previous_list_in_scope;
13481
13482 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13483 if (!attr)
13484 return;
13485
13486 /* Note that following die references may follow to a die in a
13487 different cu. */
13488
13489 origin_cu = cu;
13490 origin_die = follow_die_ref (die, attr, &origin_cu);
13491
13492 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13493 symbols in. */
13494 origin_previous_list_in_scope = origin_cu->list_in_scope;
13495 origin_cu->list_in_scope = cu->list_in_scope;
13496
13497 if (die->tag != origin_die->tag
13498 && !(die->tag == DW_TAG_inlined_subroutine
13499 && origin_die->tag == DW_TAG_subprogram))
13500 complaint (_("DIE %s and its abstract origin %s have different tags"),
13501 sect_offset_str (die->sect_off),
13502 sect_offset_str (origin_die->sect_off));
13503
13504 std::vector<sect_offset> offsets;
13505
13506 for (child_die = die->child;
13507 child_die && child_die->tag;
13508 child_die = sibling_die (child_die))
13509 {
13510 struct die_info *child_origin_die;
13511 struct dwarf2_cu *child_origin_cu;
13512
13513 /* We are trying to process concrete instance entries:
13514 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13515 it's not relevant to our analysis here. i.e. detecting DIEs that are
13516 present in the abstract instance but not referenced in the concrete
13517 one. */
13518 if (child_die->tag == DW_TAG_call_site
13519 || child_die->tag == DW_TAG_GNU_call_site)
13520 continue;
13521
13522 /* For each CHILD_DIE, find the corresponding child of
13523 ORIGIN_DIE. If there is more than one layer of
13524 DW_AT_abstract_origin, follow them all; there shouldn't be,
13525 but GCC versions at least through 4.4 generate this (GCC PR
13526 40573). */
13527 child_origin_die = child_die;
13528 child_origin_cu = cu;
13529 while (1)
13530 {
13531 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13532 child_origin_cu);
13533 if (attr == NULL)
13534 break;
13535 child_origin_die = follow_die_ref (child_origin_die, attr,
13536 &child_origin_cu);
13537 }
13538
13539 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13540 counterpart may exist. */
13541 if (child_origin_die != child_die)
13542 {
13543 if (child_die->tag != child_origin_die->tag
13544 && !(child_die->tag == DW_TAG_inlined_subroutine
13545 && child_origin_die->tag == DW_TAG_subprogram))
13546 complaint (_("Child DIE %s and its abstract origin %s have "
13547 "different tags"),
13548 sect_offset_str (child_die->sect_off),
13549 sect_offset_str (child_origin_die->sect_off));
13550 if (child_origin_die->parent != origin_die)
13551 complaint (_("Child DIE %s and its abstract origin %s have "
13552 "different parents"),
13553 sect_offset_str (child_die->sect_off),
13554 sect_offset_str (child_origin_die->sect_off));
13555 else
13556 offsets.push_back (child_origin_die->sect_off);
13557 }
13558 }
13559 std::sort (offsets.begin (), offsets.end ());
13560 sect_offset *offsets_end = offsets.data () + offsets.size ();
13561 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13562 if (offsetp[-1] == *offsetp)
13563 complaint (_("Multiple children of DIE %s refer "
13564 "to DIE %s as their abstract origin"),
13565 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13566
13567 offsetp = offsets.data ();
13568 origin_child_die = origin_die->child;
13569 while (origin_child_die && origin_child_die->tag)
13570 {
13571 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13572 while (offsetp < offsets_end
13573 && *offsetp < origin_child_die->sect_off)
13574 offsetp++;
13575 if (offsetp >= offsets_end
13576 || *offsetp > origin_child_die->sect_off)
13577 {
13578 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13579 Check whether we're already processing ORIGIN_CHILD_DIE.
13580 This can happen with mutually referenced abstract_origins.
13581 PR 16581. */
13582 if (!origin_child_die->in_process)
13583 process_die (origin_child_die, origin_cu);
13584 }
13585 origin_child_die = sibling_die (origin_child_die);
13586 }
13587 origin_cu->list_in_scope = origin_previous_list_in_scope;
13588 }
13589
13590 static void
13591 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13592 {
13593 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13595 struct context_stack *newobj;
13596 CORE_ADDR lowpc;
13597 CORE_ADDR highpc;
13598 struct die_info *child_die;
13599 struct attribute *attr, *call_line, *call_file;
13600 const char *name;
13601 CORE_ADDR baseaddr;
13602 struct block *block;
13603 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13604 std::vector<struct symbol *> template_args;
13605 struct template_symbol *templ_func = NULL;
13606
13607 if (inlined_func)
13608 {
13609 /* If we do not have call site information, we can't show the
13610 caller of this inlined function. That's too confusing, so
13611 only use the scope for local variables. */
13612 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13613 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13614 if (call_line == NULL || call_file == NULL)
13615 {
13616 read_lexical_block_scope (die, cu);
13617 return;
13618 }
13619 }
13620
13621 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13622
13623 name = dwarf2_name (die, cu);
13624
13625 /* Ignore functions with missing or empty names. These are actually
13626 illegal according to the DWARF standard. */
13627 if (name == NULL)
13628 {
13629 complaint (_("missing name for subprogram DIE at %s"),
13630 sect_offset_str (die->sect_off));
13631 return;
13632 }
13633
13634 /* Ignore functions with missing or invalid low and high pc attributes. */
13635 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13636 <= PC_BOUNDS_INVALID)
13637 {
13638 attr = dwarf2_attr (die, DW_AT_external, cu);
13639 if (!attr || !DW_UNSND (attr))
13640 complaint (_("cannot get low and high bounds "
13641 "for subprogram DIE at %s"),
13642 sect_offset_str (die->sect_off));
13643 return;
13644 }
13645
13646 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13647 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13648
13649 /* If we have any template arguments, then we must allocate a
13650 different sort of symbol. */
13651 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13652 {
13653 if (child_die->tag == DW_TAG_template_type_param
13654 || child_die->tag == DW_TAG_template_value_param)
13655 {
13656 templ_func = allocate_template_symbol (objfile);
13657 templ_func->subclass = SYMBOL_TEMPLATE;
13658 break;
13659 }
13660 }
13661
13662 newobj = cu->get_builder ()->push_context (0, lowpc);
13663 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13664 (struct symbol *) templ_func);
13665
13666 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13667 set_objfile_main_name (objfile, SYMBOL_LINKAGE_NAME (newobj->name),
13668 cu->language);
13669
13670 /* If there is a location expression for DW_AT_frame_base, record
13671 it. */
13672 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13673 if (attr)
13674 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13675
13676 /* If there is a location for the static link, record it. */
13677 newobj->static_link = NULL;
13678 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13679 if (attr)
13680 {
13681 newobj->static_link
13682 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13683 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13684 }
13685
13686 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13687
13688 if (die->child != NULL)
13689 {
13690 child_die = die->child;
13691 while (child_die && child_die->tag)
13692 {
13693 if (child_die->tag == DW_TAG_template_type_param
13694 || child_die->tag == DW_TAG_template_value_param)
13695 {
13696 struct symbol *arg = new_symbol (child_die, NULL, cu);
13697
13698 if (arg != NULL)
13699 template_args.push_back (arg);
13700 }
13701 else
13702 process_die (child_die, cu);
13703 child_die = sibling_die (child_die);
13704 }
13705 }
13706
13707 inherit_abstract_dies (die, cu);
13708
13709 /* If we have a DW_AT_specification, we might need to import using
13710 directives from the context of the specification DIE. See the
13711 comment in determine_prefix. */
13712 if (cu->language == language_cplus
13713 && dwarf2_attr (die, DW_AT_specification, cu))
13714 {
13715 struct dwarf2_cu *spec_cu = cu;
13716 struct die_info *spec_die = die_specification (die, &spec_cu);
13717
13718 while (spec_die)
13719 {
13720 child_die = spec_die->child;
13721 while (child_die && child_die->tag)
13722 {
13723 if (child_die->tag == DW_TAG_imported_module)
13724 process_die (child_die, spec_cu);
13725 child_die = sibling_die (child_die);
13726 }
13727
13728 /* In some cases, GCC generates specification DIEs that
13729 themselves contain DW_AT_specification attributes. */
13730 spec_die = die_specification (spec_die, &spec_cu);
13731 }
13732 }
13733
13734 struct context_stack cstk = cu->get_builder ()->pop_context ();
13735 /* Make a block for the local symbols within. */
13736 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13737 cstk.static_link, lowpc, highpc);
13738
13739 /* For C++, set the block's scope. */
13740 if ((cu->language == language_cplus
13741 || cu->language == language_fortran
13742 || cu->language == language_d
13743 || cu->language == language_rust)
13744 && cu->processing_has_namespace_info)
13745 block_set_scope (block, determine_prefix (die, cu),
13746 &objfile->objfile_obstack);
13747
13748 /* If we have address ranges, record them. */
13749 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13750
13751 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13752
13753 /* Attach template arguments to function. */
13754 if (!template_args.empty ())
13755 {
13756 gdb_assert (templ_func != NULL);
13757
13758 templ_func->n_template_arguments = template_args.size ();
13759 templ_func->template_arguments
13760 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13761 templ_func->n_template_arguments);
13762 memcpy (templ_func->template_arguments,
13763 template_args.data (),
13764 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13765
13766 /* Make sure that the symtab is set on the new symbols. Even
13767 though they don't appear in this symtab directly, other parts
13768 of gdb assume that symbols do, and this is reasonably
13769 true. */
13770 for (symbol *sym : template_args)
13771 symbol_set_symtab (sym, symbol_symtab (templ_func));
13772 }
13773
13774 /* In C++, we can have functions nested inside functions (e.g., when
13775 a function declares a class that has methods). This means that
13776 when we finish processing a function scope, we may need to go
13777 back to building a containing block's symbol lists. */
13778 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13779 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13780
13781 /* If we've finished processing a top-level function, subsequent
13782 symbols go in the file symbol list. */
13783 if (cu->get_builder ()->outermost_context_p ())
13784 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13785 }
13786
13787 /* Process all the DIES contained within a lexical block scope. Start
13788 a new scope, process the dies, and then close the scope. */
13789
13790 static void
13791 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13792 {
13793 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13794 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13795 CORE_ADDR lowpc, highpc;
13796 struct die_info *child_die;
13797 CORE_ADDR baseaddr;
13798
13799 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13800
13801 /* Ignore blocks with missing or invalid low and high pc attributes. */
13802 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13803 as multiple lexical blocks? Handling children in a sane way would
13804 be nasty. Might be easier to properly extend generic blocks to
13805 describe ranges. */
13806 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13807 {
13808 case PC_BOUNDS_NOT_PRESENT:
13809 /* DW_TAG_lexical_block has no attributes, process its children as if
13810 there was no wrapping by that DW_TAG_lexical_block.
13811 GCC does no longer produces such DWARF since GCC r224161. */
13812 for (child_die = die->child;
13813 child_die != NULL && child_die->tag;
13814 child_die = sibling_die (child_die))
13815 process_die (child_die, cu);
13816 return;
13817 case PC_BOUNDS_INVALID:
13818 return;
13819 }
13820 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13821 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13822
13823 cu->get_builder ()->push_context (0, lowpc);
13824 if (die->child != NULL)
13825 {
13826 child_die = die->child;
13827 while (child_die && child_die->tag)
13828 {
13829 process_die (child_die, cu);
13830 child_die = sibling_die (child_die);
13831 }
13832 }
13833 inherit_abstract_dies (die, cu);
13834 struct context_stack cstk = cu->get_builder ()->pop_context ();
13835
13836 if (*cu->get_builder ()->get_local_symbols () != NULL
13837 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13838 {
13839 struct block *block
13840 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13841 cstk.start_addr, highpc);
13842
13843 /* Note that recording ranges after traversing children, as we
13844 do here, means that recording a parent's ranges entails
13845 walking across all its children's ranges as they appear in
13846 the address map, which is quadratic behavior.
13847
13848 It would be nicer to record the parent's ranges before
13849 traversing its children, simply overriding whatever you find
13850 there. But since we don't even decide whether to create a
13851 block until after we've traversed its children, that's hard
13852 to do. */
13853 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13854 }
13855 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13856 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13857 }
13858
13859 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13860
13861 static void
13862 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13863 {
13864 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13866 CORE_ADDR pc, baseaddr;
13867 struct attribute *attr;
13868 struct call_site *call_site, call_site_local;
13869 void **slot;
13870 int nparams;
13871 struct die_info *child_die;
13872
13873 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13874
13875 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13876 if (attr == NULL)
13877 {
13878 /* This was a pre-DWARF-5 GNU extension alias
13879 for DW_AT_call_return_pc. */
13880 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13881 }
13882 if (!attr)
13883 {
13884 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13885 "DIE %s [in module %s]"),
13886 sect_offset_str (die->sect_off), objfile_name (objfile));
13887 return;
13888 }
13889 pc = attr_value_as_address (attr) + baseaddr;
13890 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13891
13892 if (cu->call_site_htab == NULL)
13893 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13894 NULL, &objfile->objfile_obstack,
13895 hashtab_obstack_allocate, NULL);
13896 call_site_local.pc = pc;
13897 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13898 if (*slot != NULL)
13899 {
13900 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13901 "DIE %s [in module %s]"),
13902 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13903 objfile_name (objfile));
13904 return;
13905 }
13906
13907 /* Count parameters at the caller. */
13908
13909 nparams = 0;
13910 for (child_die = die->child; child_die && child_die->tag;
13911 child_die = sibling_die (child_die))
13912 {
13913 if (child_die->tag != DW_TAG_call_site_parameter
13914 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13915 {
13916 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13917 "DW_TAG_call_site child DIE %s [in module %s]"),
13918 child_die->tag, sect_offset_str (child_die->sect_off),
13919 objfile_name (objfile));
13920 continue;
13921 }
13922
13923 nparams++;
13924 }
13925
13926 call_site
13927 = ((struct call_site *)
13928 obstack_alloc (&objfile->objfile_obstack,
13929 sizeof (*call_site)
13930 + (sizeof (*call_site->parameter) * (nparams - 1))));
13931 *slot = call_site;
13932 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13933 call_site->pc = pc;
13934
13935 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13936 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13937 {
13938 struct die_info *func_die;
13939
13940 /* Skip also over DW_TAG_inlined_subroutine. */
13941 for (func_die = die->parent;
13942 func_die && func_die->tag != DW_TAG_subprogram
13943 && func_die->tag != DW_TAG_subroutine_type;
13944 func_die = func_die->parent);
13945
13946 /* DW_AT_call_all_calls is a superset
13947 of DW_AT_call_all_tail_calls. */
13948 if (func_die
13949 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13950 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13951 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13952 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13953 {
13954 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13955 not complete. But keep CALL_SITE for look ups via call_site_htab,
13956 both the initial caller containing the real return address PC and
13957 the final callee containing the current PC of a chain of tail
13958 calls do not need to have the tail call list complete. But any
13959 function candidate for a virtual tail call frame searched via
13960 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13961 determined unambiguously. */
13962 }
13963 else
13964 {
13965 struct type *func_type = NULL;
13966
13967 if (func_die)
13968 func_type = get_die_type (func_die, cu);
13969 if (func_type != NULL)
13970 {
13971 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13972
13973 /* Enlist this call site to the function. */
13974 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13975 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13976 }
13977 else
13978 complaint (_("Cannot find function owning DW_TAG_call_site "
13979 "DIE %s [in module %s]"),
13980 sect_offset_str (die->sect_off), objfile_name (objfile));
13981 }
13982 }
13983
13984 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13985 if (attr == NULL)
13986 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13987 if (attr == NULL)
13988 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13989 if (attr == NULL)
13990 {
13991 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13992 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13993 }
13994 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13995 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
13996 /* Keep NULL DWARF_BLOCK. */;
13997 else if (attr_form_is_block (attr))
13998 {
13999 struct dwarf2_locexpr_baton *dlbaton;
14000
14001 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14002 dlbaton->data = DW_BLOCK (attr)->data;
14003 dlbaton->size = DW_BLOCK (attr)->size;
14004 dlbaton->per_cu = cu->per_cu;
14005
14006 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14007 }
14008 else if (attr_form_is_ref (attr))
14009 {
14010 struct dwarf2_cu *target_cu = cu;
14011 struct die_info *target_die;
14012
14013 target_die = follow_die_ref (die, attr, &target_cu);
14014 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14015 if (die_is_declaration (target_die, target_cu))
14016 {
14017 const char *target_physname;
14018
14019 /* Prefer the mangled name; otherwise compute the demangled one. */
14020 target_physname = dw2_linkage_name (target_die, target_cu);
14021 if (target_physname == NULL)
14022 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14023 if (target_physname == NULL)
14024 complaint (_("DW_AT_call_target target DIE has invalid "
14025 "physname, for referencing DIE %s [in module %s]"),
14026 sect_offset_str (die->sect_off), objfile_name (objfile));
14027 else
14028 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14029 }
14030 else
14031 {
14032 CORE_ADDR lowpc;
14033
14034 /* DW_AT_entry_pc should be preferred. */
14035 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14036 <= PC_BOUNDS_INVALID)
14037 complaint (_("DW_AT_call_target target DIE has invalid "
14038 "low pc, for referencing DIE %s [in module %s]"),
14039 sect_offset_str (die->sect_off), objfile_name (objfile));
14040 else
14041 {
14042 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14043 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14044 }
14045 }
14046 }
14047 else
14048 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14049 "block nor reference, for DIE %s [in module %s]"),
14050 sect_offset_str (die->sect_off), objfile_name (objfile));
14051
14052 call_site->per_cu = cu->per_cu;
14053
14054 for (child_die = die->child;
14055 child_die && child_die->tag;
14056 child_die = sibling_die (child_die))
14057 {
14058 struct call_site_parameter *parameter;
14059 struct attribute *loc, *origin;
14060
14061 if (child_die->tag != DW_TAG_call_site_parameter
14062 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14063 {
14064 /* Already printed the complaint above. */
14065 continue;
14066 }
14067
14068 gdb_assert (call_site->parameter_count < nparams);
14069 parameter = &call_site->parameter[call_site->parameter_count];
14070
14071 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14072 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14073 register is contained in DW_AT_call_value. */
14074
14075 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14076 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14077 if (origin == NULL)
14078 {
14079 /* This was a pre-DWARF-5 GNU extension alias
14080 for DW_AT_call_parameter. */
14081 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14082 }
14083 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14084 {
14085 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14086
14087 sect_offset sect_off
14088 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14089 if (!offset_in_cu_p (&cu->header, sect_off))
14090 {
14091 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14092 binding can be done only inside one CU. Such referenced DIE
14093 therefore cannot be even moved to DW_TAG_partial_unit. */
14094 complaint (_("DW_AT_call_parameter offset is not in CU for "
14095 "DW_TAG_call_site child DIE %s [in module %s]"),
14096 sect_offset_str (child_die->sect_off),
14097 objfile_name (objfile));
14098 continue;
14099 }
14100 parameter->u.param_cu_off
14101 = (cu_offset) (sect_off - cu->header.sect_off);
14102 }
14103 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14104 {
14105 complaint (_("No DW_FORM_block* DW_AT_location for "
14106 "DW_TAG_call_site child DIE %s [in module %s]"),
14107 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14108 continue;
14109 }
14110 else
14111 {
14112 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14113 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14114 if (parameter->u.dwarf_reg != -1)
14115 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14116 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14117 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14118 &parameter->u.fb_offset))
14119 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14120 else
14121 {
14122 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14123 "for DW_FORM_block* DW_AT_location is supported for "
14124 "DW_TAG_call_site child DIE %s "
14125 "[in module %s]"),
14126 sect_offset_str (child_die->sect_off),
14127 objfile_name (objfile));
14128 continue;
14129 }
14130 }
14131
14132 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14133 if (attr == NULL)
14134 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14135 if (!attr_form_is_block (attr))
14136 {
14137 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14138 "DW_TAG_call_site child DIE %s [in module %s]"),
14139 sect_offset_str (child_die->sect_off),
14140 objfile_name (objfile));
14141 continue;
14142 }
14143 parameter->value = DW_BLOCK (attr)->data;
14144 parameter->value_size = DW_BLOCK (attr)->size;
14145
14146 /* Parameters are not pre-cleared by memset above. */
14147 parameter->data_value = NULL;
14148 parameter->data_value_size = 0;
14149 call_site->parameter_count++;
14150
14151 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14152 if (attr == NULL)
14153 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14154 if (attr)
14155 {
14156 if (!attr_form_is_block (attr))
14157 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14158 "DW_TAG_call_site child DIE %s [in module %s]"),
14159 sect_offset_str (child_die->sect_off),
14160 objfile_name (objfile));
14161 else
14162 {
14163 parameter->data_value = DW_BLOCK (attr)->data;
14164 parameter->data_value_size = DW_BLOCK (attr)->size;
14165 }
14166 }
14167 }
14168 }
14169
14170 /* Helper function for read_variable. If DIE represents a virtual
14171 table, then return the type of the concrete object that is
14172 associated with the virtual table. Otherwise, return NULL. */
14173
14174 static struct type *
14175 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14176 {
14177 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14178 if (attr == NULL)
14179 return NULL;
14180
14181 /* Find the type DIE. */
14182 struct die_info *type_die = NULL;
14183 struct dwarf2_cu *type_cu = cu;
14184
14185 if (attr_form_is_ref (attr))
14186 type_die = follow_die_ref (die, attr, &type_cu);
14187 if (type_die == NULL)
14188 return NULL;
14189
14190 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14191 return NULL;
14192 return die_containing_type (type_die, type_cu);
14193 }
14194
14195 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14196
14197 static void
14198 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14199 {
14200 struct rust_vtable_symbol *storage = NULL;
14201
14202 if (cu->language == language_rust)
14203 {
14204 struct type *containing_type = rust_containing_type (die, cu);
14205
14206 if (containing_type != NULL)
14207 {
14208 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14209
14210 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14211 struct rust_vtable_symbol);
14212 initialize_objfile_symbol (storage);
14213 storage->concrete_type = containing_type;
14214 storage->subclass = SYMBOL_RUST_VTABLE;
14215 }
14216 }
14217
14218 struct symbol *res = new_symbol (die, NULL, cu, storage);
14219 struct attribute *abstract_origin
14220 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14221 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14222 if (res == NULL && loc && abstract_origin)
14223 {
14224 /* We have a variable without a name, but with a location and an abstract
14225 origin. This may be a concrete instance of an abstract variable
14226 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14227 later. */
14228 struct dwarf2_cu *origin_cu = cu;
14229 struct die_info *origin_die
14230 = follow_die_ref (die, abstract_origin, &origin_cu);
14231 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14232 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14233 }
14234 }
14235
14236 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14237 reading .debug_rnglists.
14238 Callback's type should be:
14239 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14240 Return true if the attributes are present and valid, otherwise,
14241 return false. */
14242
14243 template <typename Callback>
14244 static bool
14245 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14246 Callback &&callback)
14247 {
14248 struct dwarf2_per_objfile *dwarf2_per_objfile
14249 = cu->per_cu->dwarf2_per_objfile;
14250 struct objfile *objfile = dwarf2_per_objfile->objfile;
14251 bfd *obfd = objfile->obfd;
14252 /* Base address selection entry. */
14253 CORE_ADDR base;
14254 int found_base;
14255 const gdb_byte *buffer;
14256 CORE_ADDR baseaddr;
14257 bool overflow = false;
14258
14259 found_base = cu->base_known;
14260 base = cu->base_address;
14261
14262 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14263 if (offset >= dwarf2_per_objfile->rnglists.size)
14264 {
14265 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14266 offset);
14267 return false;
14268 }
14269 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14270
14271 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14272
14273 while (1)
14274 {
14275 /* Initialize it due to a false compiler warning. */
14276 CORE_ADDR range_beginning = 0, range_end = 0;
14277 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14278 + dwarf2_per_objfile->rnglists.size);
14279 unsigned int bytes_read;
14280
14281 if (buffer == buf_end)
14282 {
14283 overflow = true;
14284 break;
14285 }
14286 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14287 switch (rlet)
14288 {
14289 case DW_RLE_end_of_list:
14290 break;
14291 case DW_RLE_base_address:
14292 if (buffer + cu->header.addr_size > buf_end)
14293 {
14294 overflow = true;
14295 break;
14296 }
14297 base = read_address (obfd, buffer, cu, &bytes_read);
14298 found_base = 1;
14299 buffer += bytes_read;
14300 break;
14301 case DW_RLE_start_length:
14302 if (buffer + cu->header.addr_size > buf_end)
14303 {
14304 overflow = true;
14305 break;
14306 }
14307 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14308 buffer += bytes_read;
14309 range_end = (range_beginning
14310 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14311 buffer += bytes_read;
14312 if (buffer > buf_end)
14313 {
14314 overflow = true;
14315 break;
14316 }
14317 break;
14318 case DW_RLE_offset_pair:
14319 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14320 buffer += bytes_read;
14321 if (buffer > buf_end)
14322 {
14323 overflow = true;
14324 break;
14325 }
14326 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14327 buffer += bytes_read;
14328 if (buffer > buf_end)
14329 {
14330 overflow = true;
14331 break;
14332 }
14333 break;
14334 case DW_RLE_start_end:
14335 if (buffer + 2 * cu->header.addr_size > buf_end)
14336 {
14337 overflow = true;
14338 break;
14339 }
14340 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14341 buffer += bytes_read;
14342 range_end = read_address (obfd, buffer, cu, &bytes_read);
14343 buffer += bytes_read;
14344 break;
14345 default:
14346 complaint (_("Invalid .debug_rnglists data (no base address)"));
14347 return false;
14348 }
14349 if (rlet == DW_RLE_end_of_list || overflow)
14350 break;
14351 if (rlet == DW_RLE_base_address)
14352 continue;
14353
14354 if (!found_base)
14355 {
14356 /* We have no valid base address for the ranges
14357 data. */
14358 complaint (_("Invalid .debug_rnglists data (no base address)"));
14359 return false;
14360 }
14361
14362 if (range_beginning > range_end)
14363 {
14364 /* Inverted range entries are invalid. */
14365 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14366 return false;
14367 }
14368
14369 /* Empty range entries have no effect. */
14370 if (range_beginning == range_end)
14371 continue;
14372
14373 range_beginning += base;
14374 range_end += base;
14375
14376 /* A not-uncommon case of bad debug info.
14377 Don't pollute the addrmap with bad data. */
14378 if (range_beginning + baseaddr == 0
14379 && !dwarf2_per_objfile->has_section_at_zero)
14380 {
14381 complaint (_(".debug_rnglists entry has start address of zero"
14382 " [in module %s]"), objfile_name (objfile));
14383 continue;
14384 }
14385
14386 callback (range_beginning, range_end);
14387 }
14388
14389 if (overflow)
14390 {
14391 complaint (_("Offset %d is not terminated "
14392 "for DW_AT_ranges attribute"),
14393 offset);
14394 return false;
14395 }
14396
14397 return true;
14398 }
14399
14400 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14401 Callback's type should be:
14402 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14403 Return 1 if the attributes are present and valid, otherwise, return 0. */
14404
14405 template <typename Callback>
14406 static int
14407 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14408 Callback &&callback)
14409 {
14410 struct dwarf2_per_objfile *dwarf2_per_objfile
14411 = cu->per_cu->dwarf2_per_objfile;
14412 struct objfile *objfile = dwarf2_per_objfile->objfile;
14413 struct comp_unit_head *cu_header = &cu->header;
14414 bfd *obfd = objfile->obfd;
14415 unsigned int addr_size = cu_header->addr_size;
14416 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14417 /* Base address selection entry. */
14418 CORE_ADDR base;
14419 int found_base;
14420 unsigned int dummy;
14421 const gdb_byte *buffer;
14422 CORE_ADDR baseaddr;
14423
14424 if (cu_header->version >= 5)
14425 return dwarf2_rnglists_process (offset, cu, callback);
14426
14427 found_base = cu->base_known;
14428 base = cu->base_address;
14429
14430 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14431 if (offset >= dwarf2_per_objfile->ranges.size)
14432 {
14433 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14434 offset);
14435 return 0;
14436 }
14437 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14438
14439 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14440
14441 while (1)
14442 {
14443 CORE_ADDR range_beginning, range_end;
14444
14445 range_beginning = read_address (obfd, buffer, cu, &dummy);
14446 buffer += addr_size;
14447 range_end = read_address (obfd, buffer, cu, &dummy);
14448 buffer += addr_size;
14449 offset += 2 * addr_size;
14450
14451 /* An end of list marker is a pair of zero addresses. */
14452 if (range_beginning == 0 && range_end == 0)
14453 /* Found the end of list entry. */
14454 break;
14455
14456 /* Each base address selection entry is a pair of 2 values.
14457 The first is the largest possible address, the second is
14458 the base address. Check for a base address here. */
14459 if ((range_beginning & mask) == mask)
14460 {
14461 /* If we found the largest possible address, then we already
14462 have the base address in range_end. */
14463 base = range_end;
14464 found_base = 1;
14465 continue;
14466 }
14467
14468 if (!found_base)
14469 {
14470 /* We have no valid base address for the ranges
14471 data. */
14472 complaint (_("Invalid .debug_ranges data (no base address)"));
14473 return 0;
14474 }
14475
14476 if (range_beginning > range_end)
14477 {
14478 /* Inverted range entries are invalid. */
14479 complaint (_("Invalid .debug_ranges data (inverted range)"));
14480 return 0;
14481 }
14482
14483 /* Empty range entries have no effect. */
14484 if (range_beginning == range_end)
14485 continue;
14486
14487 range_beginning += base;
14488 range_end += base;
14489
14490 /* A not-uncommon case of bad debug info.
14491 Don't pollute the addrmap with bad data. */
14492 if (range_beginning + baseaddr == 0
14493 && !dwarf2_per_objfile->has_section_at_zero)
14494 {
14495 complaint (_(".debug_ranges entry has start address of zero"
14496 " [in module %s]"), objfile_name (objfile));
14497 continue;
14498 }
14499
14500 callback (range_beginning, range_end);
14501 }
14502
14503 return 1;
14504 }
14505
14506 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14507 Return 1 if the attributes are present and valid, otherwise, return 0.
14508 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14509
14510 static int
14511 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14512 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14513 struct partial_symtab *ranges_pst)
14514 {
14515 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14516 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14517 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14518 SECT_OFF_TEXT (objfile));
14519 int low_set = 0;
14520 CORE_ADDR low = 0;
14521 CORE_ADDR high = 0;
14522 int retval;
14523
14524 retval = dwarf2_ranges_process (offset, cu,
14525 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14526 {
14527 if (ranges_pst != NULL)
14528 {
14529 CORE_ADDR lowpc;
14530 CORE_ADDR highpc;
14531
14532 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14533 range_beginning + baseaddr)
14534 - baseaddr);
14535 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14536 range_end + baseaddr)
14537 - baseaddr);
14538 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14539 lowpc, highpc - 1, ranges_pst);
14540 }
14541
14542 /* FIXME: This is recording everything as a low-high
14543 segment of consecutive addresses. We should have a
14544 data structure for discontiguous block ranges
14545 instead. */
14546 if (! low_set)
14547 {
14548 low = range_beginning;
14549 high = range_end;
14550 low_set = 1;
14551 }
14552 else
14553 {
14554 if (range_beginning < low)
14555 low = range_beginning;
14556 if (range_end > high)
14557 high = range_end;
14558 }
14559 });
14560 if (!retval)
14561 return 0;
14562
14563 if (! low_set)
14564 /* If the first entry is an end-of-list marker, the range
14565 describes an empty scope, i.e. no instructions. */
14566 return 0;
14567
14568 if (low_return)
14569 *low_return = low;
14570 if (high_return)
14571 *high_return = high;
14572 return 1;
14573 }
14574
14575 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14576 definition for the return value. *LOWPC and *HIGHPC are set iff
14577 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14578
14579 static enum pc_bounds_kind
14580 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14581 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14582 struct partial_symtab *pst)
14583 {
14584 struct dwarf2_per_objfile *dwarf2_per_objfile
14585 = cu->per_cu->dwarf2_per_objfile;
14586 struct attribute *attr;
14587 struct attribute *attr_high;
14588 CORE_ADDR low = 0;
14589 CORE_ADDR high = 0;
14590 enum pc_bounds_kind ret;
14591
14592 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14593 if (attr_high)
14594 {
14595 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14596 if (attr)
14597 {
14598 low = attr_value_as_address (attr);
14599 high = attr_value_as_address (attr_high);
14600 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14601 high += low;
14602 }
14603 else
14604 /* Found high w/o low attribute. */
14605 return PC_BOUNDS_INVALID;
14606
14607 /* Found consecutive range of addresses. */
14608 ret = PC_BOUNDS_HIGH_LOW;
14609 }
14610 else
14611 {
14612 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14613 if (attr != NULL)
14614 {
14615 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14616 We take advantage of the fact that DW_AT_ranges does not appear
14617 in DW_TAG_compile_unit of DWO files. */
14618 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14619 unsigned int ranges_offset = (DW_UNSND (attr)
14620 + (need_ranges_base
14621 ? cu->ranges_base
14622 : 0));
14623
14624 /* Value of the DW_AT_ranges attribute is the offset in the
14625 .debug_ranges section. */
14626 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14627 return PC_BOUNDS_INVALID;
14628 /* Found discontinuous range of addresses. */
14629 ret = PC_BOUNDS_RANGES;
14630 }
14631 else
14632 return PC_BOUNDS_NOT_PRESENT;
14633 }
14634
14635 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14636 if (high <= low)
14637 return PC_BOUNDS_INVALID;
14638
14639 /* When using the GNU linker, .gnu.linkonce. sections are used to
14640 eliminate duplicate copies of functions and vtables and such.
14641 The linker will arbitrarily choose one and discard the others.
14642 The AT_*_pc values for such functions refer to local labels in
14643 these sections. If the section from that file was discarded, the
14644 labels are not in the output, so the relocs get a value of 0.
14645 If this is a discarded function, mark the pc bounds as invalid,
14646 so that GDB will ignore it. */
14647 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14648 return PC_BOUNDS_INVALID;
14649
14650 *lowpc = low;
14651 if (highpc)
14652 *highpc = high;
14653 return ret;
14654 }
14655
14656 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14657 its low and high PC addresses. Do nothing if these addresses could not
14658 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14659 and HIGHPC to the high address if greater than HIGHPC. */
14660
14661 static void
14662 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14663 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14664 struct dwarf2_cu *cu)
14665 {
14666 CORE_ADDR low, high;
14667 struct die_info *child = die->child;
14668
14669 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14670 {
14671 *lowpc = std::min (*lowpc, low);
14672 *highpc = std::max (*highpc, high);
14673 }
14674
14675 /* If the language does not allow nested subprograms (either inside
14676 subprograms or lexical blocks), we're done. */
14677 if (cu->language != language_ada)
14678 return;
14679
14680 /* Check all the children of the given DIE. If it contains nested
14681 subprograms, then check their pc bounds. Likewise, we need to
14682 check lexical blocks as well, as they may also contain subprogram
14683 definitions. */
14684 while (child && child->tag)
14685 {
14686 if (child->tag == DW_TAG_subprogram
14687 || child->tag == DW_TAG_lexical_block)
14688 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14689 child = sibling_die (child);
14690 }
14691 }
14692
14693 /* Get the low and high pc's represented by the scope DIE, and store
14694 them in *LOWPC and *HIGHPC. If the correct values can't be
14695 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14696
14697 static void
14698 get_scope_pc_bounds (struct die_info *die,
14699 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14700 struct dwarf2_cu *cu)
14701 {
14702 CORE_ADDR best_low = (CORE_ADDR) -1;
14703 CORE_ADDR best_high = (CORE_ADDR) 0;
14704 CORE_ADDR current_low, current_high;
14705
14706 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14707 >= PC_BOUNDS_RANGES)
14708 {
14709 best_low = current_low;
14710 best_high = current_high;
14711 }
14712 else
14713 {
14714 struct die_info *child = die->child;
14715
14716 while (child && child->tag)
14717 {
14718 switch (child->tag) {
14719 case DW_TAG_subprogram:
14720 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14721 break;
14722 case DW_TAG_namespace:
14723 case DW_TAG_module:
14724 /* FIXME: carlton/2004-01-16: Should we do this for
14725 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14726 that current GCC's always emit the DIEs corresponding
14727 to definitions of methods of classes as children of a
14728 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14729 the DIEs giving the declarations, which could be
14730 anywhere). But I don't see any reason why the
14731 standards says that they have to be there. */
14732 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14733
14734 if (current_low != ((CORE_ADDR) -1))
14735 {
14736 best_low = std::min (best_low, current_low);
14737 best_high = std::max (best_high, current_high);
14738 }
14739 break;
14740 default:
14741 /* Ignore. */
14742 break;
14743 }
14744
14745 child = sibling_die (child);
14746 }
14747 }
14748
14749 *lowpc = best_low;
14750 *highpc = best_high;
14751 }
14752
14753 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14754 in DIE. */
14755
14756 static void
14757 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14758 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14759 {
14760 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14761 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14762 struct attribute *attr;
14763 struct attribute *attr_high;
14764
14765 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14766 if (attr_high)
14767 {
14768 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14769 if (attr)
14770 {
14771 CORE_ADDR low = attr_value_as_address (attr);
14772 CORE_ADDR high = attr_value_as_address (attr_high);
14773
14774 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14775 high += low;
14776
14777 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14778 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14779 cu->get_builder ()->record_block_range (block, low, high - 1);
14780 }
14781 }
14782
14783 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14784 if (attr)
14785 {
14786 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14787 We take advantage of the fact that DW_AT_ranges does not appear
14788 in DW_TAG_compile_unit of DWO files. */
14789 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14790
14791 /* The value of the DW_AT_ranges attribute is the offset of the
14792 address range list in the .debug_ranges section. */
14793 unsigned long offset = (DW_UNSND (attr)
14794 + (need_ranges_base ? cu->ranges_base : 0));
14795
14796 std::vector<blockrange> blockvec;
14797 dwarf2_ranges_process (offset, cu,
14798 [&] (CORE_ADDR start, CORE_ADDR end)
14799 {
14800 start += baseaddr;
14801 end += baseaddr;
14802 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14803 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14804 cu->get_builder ()->record_block_range (block, start, end - 1);
14805 blockvec.emplace_back (start, end);
14806 });
14807
14808 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14809 }
14810 }
14811
14812 /* Check whether the producer field indicates either of GCC < 4.6, or the
14813 Intel C/C++ compiler, and cache the result in CU. */
14814
14815 static void
14816 check_producer (struct dwarf2_cu *cu)
14817 {
14818 int major, minor;
14819
14820 if (cu->producer == NULL)
14821 {
14822 /* For unknown compilers expect their behavior is DWARF version
14823 compliant.
14824
14825 GCC started to support .debug_types sections by -gdwarf-4 since
14826 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14827 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14828 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14829 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14830 }
14831 else if (producer_is_gcc (cu->producer, &major, &minor))
14832 {
14833 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14834 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14835 }
14836 else if (producer_is_icc (cu->producer, &major, &minor))
14837 {
14838 cu->producer_is_icc = true;
14839 cu->producer_is_icc_lt_14 = major < 14;
14840 }
14841 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14842 cu->producer_is_codewarrior = true;
14843 else
14844 {
14845 /* For other non-GCC compilers, expect their behavior is DWARF version
14846 compliant. */
14847 }
14848
14849 cu->checked_producer = true;
14850 }
14851
14852 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14853 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14854 during 4.6.0 experimental. */
14855
14856 static bool
14857 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14858 {
14859 if (!cu->checked_producer)
14860 check_producer (cu);
14861
14862 return cu->producer_is_gxx_lt_4_6;
14863 }
14864
14865
14866 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14867 with incorrect is_stmt attributes. */
14868
14869 static bool
14870 producer_is_codewarrior (struct dwarf2_cu *cu)
14871 {
14872 if (!cu->checked_producer)
14873 check_producer (cu);
14874
14875 return cu->producer_is_codewarrior;
14876 }
14877
14878 /* Return the default accessibility type if it is not overriden by
14879 DW_AT_accessibility. */
14880
14881 static enum dwarf_access_attribute
14882 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14883 {
14884 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14885 {
14886 /* The default DWARF 2 accessibility for members is public, the default
14887 accessibility for inheritance is private. */
14888
14889 if (die->tag != DW_TAG_inheritance)
14890 return DW_ACCESS_public;
14891 else
14892 return DW_ACCESS_private;
14893 }
14894 else
14895 {
14896 /* DWARF 3+ defines the default accessibility a different way. The same
14897 rules apply now for DW_TAG_inheritance as for the members and it only
14898 depends on the container kind. */
14899
14900 if (die->parent->tag == DW_TAG_class_type)
14901 return DW_ACCESS_private;
14902 else
14903 return DW_ACCESS_public;
14904 }
14905 }
14906
14907 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14908 offset. If the attribute was not found return 0, otherwise return
14909 1. If it was found but could not properly be handled, set *OFFSET
14910 to 0. */
14911
14912 static int
14913 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14914 LONGEST *offset)
14915 {
14916 struct attribute *attr;
14917
14918 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14919 if (attr != NULL)
14920 {
14921 *offset = 0;
14922
14923 /* Note that we do not check for a section offset first here.
14924 This is because DW_AT_data_member_location is new in DWARF 4,
14925 so if we see it, we can assume that a constant form is really
14926 a constant and not a section offset. */
14927 if (attr_form_is_constant (attr))
14928 *offset = dwarf2_get_attr_constant_value (attr, 0);
14929 else if (attr_form_is_section_offset (attr))
14930 dwarf2_complex_location_expr_complaint ();
14931 else if (attr_form_is_block (attr))
14932 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14933 else
14934 dwarf2_complex_location_expr_complaint ();
14935
14936 return 1;
14937 }
14938
14939 return 0;
14940 }
14941
14942 /* Add an aggregate field to the field list. */
14943
14944 static void
14945 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14946 struct dwarf2_cu *cu)
14947 {
14948 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14949 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14950 struct nextfield *new_field;
14951 struct attribute *attr;
14952 struct field *fp;
14953 const char *fieldname = "";
14954
14955 if (die->tag == DW_TAG_inheritance)
14956 {
14957 fip->baseclasses.emplace_back ();
14958 new_field = &fip->baseclasses.back ();
14959 }
14960 else
14961 {
14962 fip->fields.emplace_back ();
14963 new_field = &fip->fields.back ();
14964 }
14965
14966 fip->nfields++;
14967
14968 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14969 if (attr)
14970 new_field->accessibility = DW_UNSND (attr);
14971 else
14972 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14973 if (new_field->accessibility != DW_ACCESS_public)
14974 fip->non_public_fields = 1;
14975
14976 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14977 if (attr)
14978 new_field->virtuality = DW_UNSND (attr);
14979 else
14980 new_field->virtuality = DW_VIRTUALITY_none;
14981
14982 fp = &new_field->field;
14983
14984 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14985 {
14986 LONGEST offset;
14987
14988 /* Data member other than a C++ static data member. */
14989
14990 /* Get type of field. */
14991 fp->type = die_type (die, cu);
14992
14993 SET_FIELD_BITPOS (*fp, 0);
14994
14995 /* Get bit size of field (zero if none). */
14996 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14997 if (attr)
14998 {
14999 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15000 }
15001 else
15002 {
15003 FIELD_BITSIZE (*fp) = 0;
15004 }
15005
15006 /* Get bit offset of field. */
15007 if (handle_data_member_location (die, cu, &offset))
15008 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15009 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15010 if (attr)
15011 {
15012 if (gdbarch_bits_big_endian (gdbarch))
15013 {
15014 /* For big endian bits, the DW_AT_bit_offset gives the
15015 additional bit offset from the MSB of the containing
15016 anonymous object to the MSB of the field. We don't
15017 have to do anything special since we don't need to
15018 know the size of the anonymous object. */
15019 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15020 }
15021 else
15022 {
15023 /* For little endian bits, compute the bit offset to the
15024 MSB of the anonymous object, subtract off the number of
15025 bits from the MSB of the field to the MSB of the
15026 object, and then subtract off the number of bits of
15027 the field itself. The result is the bit offset of
15028 the LSB of the field. */
15029 int anonymous_size;
15030 int bit_offset = DW_UNSND (attr);
15031
15032 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15033 if (attr)
15034 {
15035 /* The size of the anonymous object containing
15036 the bit field is explicit, so use the
15037 indicated size (in bytes). */
15038 anonymous_size = DW_UNSND (attr);
15039 }
15040 else
15041 {
15042 /* The size of the anonymous object containing
15043 the bit field must be inferred from the type
15044 attribute of the data member containing the
15045 bit field. */
15046 anonymous_size = TYPE_LENGTH (fp->type);
15047 }
15048 SET_FIELD_BITPOS (*fp,
15049 (FIELD_BITPOS (*fp)
15050 + anonymous_size * bits_per_byte
15051 - bit_offset - FIELD_BITSIZE (*fp)));
15052 }
15053 }
15054 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15055 if (attr != NULL)
15056 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15057 + dwarf2_get_attr_constant_value (attr, 0)));
15058
15059 /* Get name of field. */
15060 fieldname = dwarf2_name (die, cu);
15061 if (fieldname == NULL)
15062 fieldname = "";
15063
15064 /* The name is already allocated along with this objfile, so we don't
15065 need to duplicate it for the type. */
15066 fp->name = fieldname;
15067
15068 /* Change accessibility for artificial fields (e.g. virtual table
15069 pointer or virtual base class pointer) to private. */
15070 if (dwarf2_attr (die, DW_AT_artificial, cu))
15071 {
15072 FIELD_ARTIFICIAL (*fp) = 1;
15073 new_field->accessibility = DW_ACCESS_private;
15074 fip->non_public_fields = 1;
15075 }
15076 }
15077 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15078 {
15079 /* C++ static member. */
15080
15081 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15082 is a declaration, but all versions of G++ as of this writing
15083 (so through at least 3.2.1) incorrectly generate
15084 DW_TAG_variable tags. */
15085
15086 const char *physname;
15087
15088 /* Get name of field. */
15089 fieldname = dwarf2_name (die, cu);
15090 if (fieldname == NULL)
15091 return;
15092
15093 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15094 if (attr
15095 /* Only create a symbol if this is an external value.
15096 new_symbol checks this and puts the value in the global symbol
15097 table, which we want. If it is not external, new_symbol
15098 will try to put the value in cu->list_in_scope which is wrong. */
15099 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15100 {
15101 /* A static const member, not much different than an enum as far as
15102 we're concerned, except that we can support more types. */
15103 new_symbol (die, NULL, cu);
15104 }
15105
15106 /* Get physical name. */
15107 physname = dwarf2_physname (fieldname, die, cu);
15108
15109 /* The name is already allocated along with this objfile, so we don't
15110 need to duplicate it for the type. */
15111 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15112 FIELD_TYPE (*fp) = die_type (die, cu);
15113 FIELD_NAME (*fp) = fieldname;
15114 }
15115 else if (die->tag == DW_TAG_inheritance)
15116 {
15117 LONGEST offset;
15118
15119 /* C++ base class field. */
15120 if (handle_data_member_location (die, cu, &offset))
15121 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15122 FIELD_BITSIZE (*fp) = 0;
15123 FIELD_TYPE (*fp) = die_type (die, cu);
15124 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15125 }
15126 else if (die->tag == DW_TAG_variant_part)
15127 {
15128 /* process_structure_scope will treat this DIE as a union. */
15129 process_structure_scope (die, cu);
15130
15131 /* The variant part is relative to the start of the enclosing
15132 structure. */
15133 SET_FIELD_BITPOS (*fp, 0);
15134 fp->type = get_die_type (die, cu);
15135 fp->artificial = 1;
15136 fp->name = "<<variant>>";
15137
15138 /* Normally a DW_TAG_variant_part won't have a size, but our
15139 representation requires one, so set it to the maximum of the
15140 child sizes. */
15141 if (TYPE_LENGTH (fp->type) == 0)
15142 {
15143 unsigned max = 0;
15144 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15145 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15146 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15147 TYPE_LENGTH (fp->type) = max;
15148 }
15149 }
15150 else
15151 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15152 }
15153
15154 /* Can the type given by DIE define another type? */
15155
15156 static bool
15157 type_can_define_types (const struct die_info *die)
15158 {
15159 switch (die->tag)
15160 {
15161 case DW_TAG_typedef:
15162 case DW_TAG_class_type:
15163 case DW_TAG_structure_type:
15164 case DW_TAG_union_type:
15165 case DW_TAG_enumeration_type:
15166 return true;
15167
15168 default:
15169 return false;
15170 }
15171 }
15172
15173 /* Add a type definition defined in the scope of the FIP's class. */
15174
15175 static void
15176 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15177 struct dwarf2_cu *cu)
15178 {
15179 struct decl_field fp;
15180 memset (&fp, 0, sizeof (fp));
15181
15182 gdb_assert (type_can_define_types (die));
15183
15184 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15185 fp.name = dwarf2_name (die, cu);
15186 fp.type = read_type_die (die, cu);
15187
15188 /* Save accessibility. */
15189 enum dwarf_access_attribute accessibility;
15190 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15191 if (attr != NULL)
15192 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15193 else
15194 accessibility = dwarf2_default_access_attribute (die, cu);
15195 switch (accessibility)
15196 {
15197 case DW_ACCESS_public:
15198 /* The assumed value if neither private nor protected. */
15199 break;
15200 case DW_ACCESS_private:
15201 fp.is_private = 1;
15202 break;
15203 case DW_ACCESS_protected:
15204 fp.is_protected = 1;
15205 break;
15206 default:
15207 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15208 }
15209
15210 if (die->tag == DW_TAG_typedef)
15211 fip->typedef_field_list.push_back (fp);
15212 else
15213 fip->nested_types_list.push_back (fp);
15214 }
15215
15216 /* Create the vector of fields, and attach it to the type. */
15217
15218 static void
15219 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15220 struct dwarf2_cu *cu)
15221 {
15222 int nfields = fip->nfields;
15223
15224 /* Record the field count, allocate space for the array of fields,
15225 and create blank accessibility bitfields if necessary. */
15226 TYPE_NFIELDS (type) = nfields;
15227 TYPE_FIELDS (type) = (struct field *)
15228 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15229
15230 if (fip->non_public_fields && cu->language != language_ada)
15231 {
15232 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15233
15234 TYPE_FIELD_PRIVATE_BITS (type) =
15235 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15236 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15237
15238 TYPE_FIELD_PROTECTED_BITS (type) =
15239 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15240 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15241
15242 TYPE_FIELD_IGNORE_BITS (type) =
15243 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15244 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15245 }
15246
15247 /* If the type has baseclasses, allocate and clear a bit vector for
15248 TYPE_FIELD_VIRTUAL_BITS. */
15249 if (!fip->baseclasses.empty () && cu->language != language_ada)
15250 {
15251 int num_bytes = B_BYTES (fip->baseclasses.size ());
15252 unsigned char *pointer;
15253
15254 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15255 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15256 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15257 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15258 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15259 }
15260
15261 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15262 {
15263 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15264
15265 for (int index = 0; index < nfields; ++index)
15266 {
15267 struct nextfield &field = fip->fields[index];
15268
15269 if (field.variant.is_discriminant)
15270 di->discriminant_index = index;
15271 else if (field.variant.default_branch)
15272 di->default_index = index;
15273 else
15274 di->discriminants[index] = field.variant.discriminant_value;
15275 }
15276 }
15277
15278 /* Copy the saved-up fields into the field vector. */
15279 for (int i = 0; i < nfields; ++i)
15280 {
15281 struct nextfield &field
15282 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15283 : fip->fields[i - fip->baseclasses.size ()]);
15284
15285 TYPE_FIELD (type, i) = field.field;
15286 switch (field.accessibility)
15287 {
15288 case DW_ACCESS_private:
15289 if (cu->language != language_ada)
15290 SET_TYPE_FIELD_PRIVATE (type, i);
15291 break;
15292
15293 case DW_ACCESS_protected:
15294 if (cu->language != language_ada)
15295 SET_TYPE_FIELD_PROTECTED (type, i);
15296 break;
15297
15298 case DW_ACCESS_public:
15299 break;
15300
15301 default:
15302 /* Unknown accessibility. Complain and treat it as public. */
15303 {
15304 complaint (_("unsupported accessibility %d"),
15305 field.accessibility);
15306 }
15307 break;
15308 }
15309 if (i < fip->baseclasses.size ())
15310 {
15311 switch (field.virtuality)
15312 {
15313 case DW_VIRTUALITY_virtual:
15314 case DW_VIRTUALITY_pure_virtual:
15315 if (cu->language == language_ada)
15316 error (_("unexpected virtuality in component of Ada type"));
15317 SET_TYPE_FIELD_VIRTUAL (type, i);
15318 break;
15319 }
15320 }
15321 }
15322 }
15323
15324 /* Return true if this member function is a constructor, false
15325 otherwise. */
15326
15327 static int
15328 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15329 {
15330 const char *fieldname;
15331 const char *type_name;
15332 int len;
15333
15334 if (die->parent == NULL)
15335 return 0;
15336
15337 if (die->parent->tag != DW_TAG_structure_type
15338 && die->parent->tag != DW_TAG_union_type
15339 && die->parent->tag != DW_TAG_class_type)
15340 return 0;
15341
15342 fieldname = dwarf2_name (die, cu);
15343 type_name = dwarf2_name (die->parent, cu);
15344 if (fieldname == NULL || type_name == NULL)
15345 return 0;
15346
15347 len = strlen (fieldname);
15348 return (strncmp (fieldname, type_name, len) == 0
15349 && (type_name[len] == '\0' || type_name[len] == '<'));
15350 }
15351
15352 /* Add a member function to the proper fieldlist. */
15353
15354 static void
15355 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15356 struct type *type, struct dwarf2_cu *cu)
15357 {
15358 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15359 struct attribute *attr;
15360 int i;
15361 struct fnfieldlist *flp = nullptr;
15362 struct fn_field *fnp;
15363 const char *fieldname;
15364 struct type *this_type;
15365 enum dwarf_access_attribute accessibility;
15366
15367 if (cu->language == language_ada)
15368 error (_("unexpected member function in Ada type"));
15369
15370 /* Get name of member function. */
15371 fieldname = dwarf2_name (die, cu);
15372 if (fieldname == NULL)
15373 return;
15374
15375 /* Look up member function name in fieldlist. */
15376 for (i = 0; i < fip->fnfieldlists.size (); i++)
15377 {
15378 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15379 {
15380 flp = &fip->fnfieldlists[i];
15381 break;
15382 }
15383 }
15384
15385 /* Create a new fnfieldlist if necessary. */
15386 if (flp == nullptr)
15387 {
15388 fip->fnfieldlists.emplace_back ();
15389 flp = &fip->fnfieldlists.back ();
15390 flp->name = fieldname;
15391 i = fip->fnfieldlists.size () - 1;
15392 }
15393
15394 /* Create a new member function field and add it to the vector of
15395 fnfieldlists. */
15396 flp->fnfields.emplace_back ();
15397 fnp = &flp->fnfields.back ();
15398
15399 /* Delay processing of the physname until later. */
15400 if (cu->language == language_cplus)
15401 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15402 die, cu);
15403 else
15404 {
15405 const char *physname = dwarf2_physname (fieldname, die, cu);
15406 fnp->physname = physname ? physname : "";
15407 }
15408
15409 fnp->type = alloc_type (objfile);
15410 this_type = read_type_die (die, cu);
15411 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15412 {
15413 int nparams = TYPE_NFIELDS (this_type);
15414
15415 /* TYPE is the domain of this method, and THIS_TYPE is the type
15416 of the method itself (TYPE_CODE_METHOD). */
15417 smash_to_method_type (fnp->type, type,
15418 TYPE_TARGET_TYPE (this_type),
15419 TYPE_FIELDS (this_type),
15420 TYPE_NFIELDS (this_type),
15421 TYPE_VARARGS (this_type));
15422
15423 /* Handle static member functions.
15424 Dwarf2 has no clean way to discern C++ static and non-static
15425 member functions. G++ helps GDB by marking the first
15426 parameter for non-static member functions (which is the this
15427 pointer) as artificial. We obtain this information from
15428 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15429 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15430 fnp->voffset = VOFFSET_STATIC;
15431 }
15432 else
15433 complaint (_("member function type missing for '%s'"),
15434 dwarf2_full_name (fieldname, die, cu));
15435
15436 /* Get fcontext from DW_AT_containing_type if present. */
15437 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15438 fnp->fcontext = die_containing_type (die, cu);
15439
15440 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15441 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15442
15443 /* Get accessibility. */
15444 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15445 if (attr)
15446 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15447 else
15448 accessibility = dwarf2_default_access_attribute (die, cu);
15449 switch (accessibility)
15450 {
15451 case DW_ACCESS_private:
15452 fnp->is_private = 1;
15453 break;
15454 case DW_ACCESS_protected:
15455 fnp->is_protected = 1;
15456 break;
15457 }
15458
15459 /* Check for artificial methods. */
15460 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15461 if (attr && DW_UNSND (attr) != 0)
15462 fnp->is_artificial = 1;
15463
15464 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15465
15466 /* Get index in virtual function table if it is a virtual member
15467 function. For older versions of GCC, this is an offset in the
15468 appropriate virtual table, as specified by DW_AT_containing_type.
15469 For everyone else, it is an expression to be evaluated relative
15470 to the object address. */
15471
15472 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15473 if (attr)
15474 {
15475 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15476 {
15477 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15478 {
15479 /* Old-style GCC. */
15480 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15481 }
15482 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15483 || (DW_BLOCK (attr)->size > 1
15484 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15485 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15486 {
15487 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15488 if ((fnp->voffset % cu->header.addr_size) != 0)
15489 dwarf2_complex_location_expr_complaint ();
15490 else
15491 fnp->voffset /= cu->header.addr_size;
15492 fnp->voffset += 2;
15493 }
15494 else
15495 dwarf2_complex_location_expr_complaint ();
15496
15497 if (!fnp->fcontext)
15498 {
15499 /* If there is no `this' field and no DW_AT_containing_type,
15500 we cannot actually find a base class context for the
15501 vtable! */
15502 if (TYPE_NFIELDS (this_type) == 0
15503 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15504 {
15505 complaint (_("cannot determine context for virtual member "
15506 "function \"%s\" (offset %s)"),
15507 fieldname, sect_offset_str (die->sect_off));
15508 }
15509 else
15510 {
15511 fnp->fcontext
15512 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15513 }
15514 }
15515 }
15516 else if (attr_form_is_section_offset (attr))
15517 {
15518 dwarf2_complex_location_expr_complaint ();
15519 }
15520 else
15521 {
15522 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15523 fieldname);
15524 }
15525 }
15526 else
15527 {
15528 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15529 if (attr && DW_UNSND (attr))
15530 {
15531 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15532 complaint (_("Member function \"%s\" (offset %s) is virtual "
15533 "but the vtable offset is not specified"),
15534 fieldname, sect_offset_str (die->sect_off));
15535 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15536 TYPE_CPLUS_DYNAMIC (type) = 1;
15537 }
15538 }
15539 }
15540
15541 /* Create the vector of member function fields, and attach it to the type. */
15542
15543 static void
15544 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15545 struct dwarf2_cu *cu)
15546 {
15547 if (cu->language == language_ada)
15548 error (_("unexpected member functions in Ada type"));
15549
15550 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15551 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15552 TYPE_ALLOC (type,
15553 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15554
15555 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15556 {
15557 struct fnfieldlist &nf = fip->fnfieldlists[i];
15558 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15559
15560 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15561 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15562 fn_flp->fn_fields = (struct fn_field *)
15563 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15564
15565 for (int k = 0; k < nf.fnfields.size (); ++k)
15566 fn_flp->fn_fields[k] = nf.fnfields[k];
15567 }
15568
15569 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15570 }
15571
15572 /* Returns non-zero if NAME is the name of a vtable member in CU's
15573 language, zero otherwise. */
15574 static int
15575 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15576 {
15577 static const char vptr[] = "_vptr";
15578
15579 /* Look for the C++ form of the vtable. */
15580 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15581 return 1;
15582
15583 return 0;
15584 }
15585
15586 /* GCC outputs unnamed structures that are really pointers to member
15587 functions, with the ABI-specified layout. If TYPE describes
15588 such a structure, smash it into a member function type.
15589
15590 GCC shouldn't do this; it should just output pointer to member DIEs.
15591 This is GCC PR debug/28767. */
15592
15593 static void
15594 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15595 {
15596 struct type *pfn_type, *self_type, *new_type;
15597
15598 /* Check for a structure with no name and two children. */
15599 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15600 return;
15601
15602 /* Check for __pfn and __delta members. */
15603 if (TYPE_FIELD_NAME (type, 0) == NULL
15604 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15605 || TYPE_FIELD_NAME (type, 1) == NULL
15606 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15607 return;
15608
15609 /* Find the type of the method. */
15610 pfn_type = TYPE_FIELD_TYPE (type, 0);
15611 if (pfn_type == NULL
15612 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15613 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15614 return;
15615
15616 /* Look for the "this" argument. */
15617 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15618 if (TYPE_NFIELDS (pfn_type) == 0
15619 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15620 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15621 return;
15622
15623 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15624 new_type = alloc_type (objfile);
15625 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15626 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15627 TYPE_VARARGS (pfn_type));
15628 smash_to_methodptr_type (type, new_type);
15629 }
15630
15631 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15632 appropriate error checking and issuing complaints if there is a
15633 problem. */
15634
15635 static ULONGEST
15636 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15637 {
15638 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15639
15640 if (attr == nullptr)
15641 return 0;
15642
15643 if (!attr_form_is_constant (attr))
15644 {
15645 complaint (_("DW_AT_alignment must have constant form"
15646 " - DIE at %s [in module %s]"),
15647 sect_offset_str (die->sect_off),
15648 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15649 return 0;
15650 }
15651
15652 ULONGEST align;
15653 if (attr->form == DW_FORM_sdata)
15654 {
15655 LONGEST val = DW_SND (attr);
15656 if (val < 0)
15657 {
15658 complaint (_("DW_AT_alignment value must not be negative"
15659 " - DIE at %s [in module %s]"),
15660 sect_offset_str (die->sect_off),
15661 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15662 return 0;
15663 }
15664 align = val;
15665 }
15666 else
15667 align = DW_UNSND (attr);
15668
15669 if (align == 0)
15670 {
15671 complaint (_("DW_AT_alignment value must not be zero"
15672 " - DIE at %s [in module %s]"),
15673 sect_offset_str (die->sect_off),
15674 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15675 return 0;
15676 }
15677 if ((align & (align - 1)) != 0)
15678 {
15679 complaint (_("DW_AT_alignment value must be a power of 2"
15680 " - DIE at %s [in module %s]"),
15681 sect_offset_str (die->sect_off),
15682 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15683 return 0;
15684 }
15685
15686 return align;
15687 }
15688
15689 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15690 the alignment for TYPE. */
15691
15692 static void
15693 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15694 struct type *type)
15695 {
15696 if (!set_type_align (type, get_alignment (cu, die)))
15697 complaint (_("DW_AT_alignment value too large"
15698 " - DIE at %s [in module %s]"),
15699 sect_offset_str (die->sect_off),
15700 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15701 }
15702
15703 /* Called when we find the DIE that starts a structure or union scope
15704 (definition) to create a type for the structure or union. Fill in
15705 the type's name and general properties; the members will not be
15706 processed until process_structure_scope. A symbol table entry for
15707 the type will also not be done until process_structure_scope (assuming
15708 the type has a name).
15709
15710 NOTE: we need to call these functions regardless of whether or not the
15711 DIE has a DW_AT_name attribute, since it might be an anonymous
15712 structure or union. This gets the type entered into our set of
15713 user defined types. */
15714
15715 static struct type *
15716 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15717 {
15718 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15719 struct type *type;
15720 struct attribute *attr;
15721 const char *name;
15722
15723 /* If the definition of this type lives in .debug_types, read that type.
15724 Don't follow DW_AT_specification though, that will take us back up
15725 the chain and we want to go down. */
15726 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15727 if (attr)
15728 {
15729 type = get_DW_AT_signature_type (die, attr, cu);
15730
15731 /* The type's CU may not be the same as CU.
15732 Ensure TYPE is recorded with CU in die_type_hash. */
15733 return set_die_type (die, type, cu);
15734 }
15735
15736 type = alloc_type (objfile);
15737 INIT_CPLUS_SPECIFIC (type);
15738
15739 name = dwarf2_name (die, cu);
15740 if (name != NULL)
15741 {
15742 if (cu->language == language_cplus
15743 || cu->language == language_d
15744 || cu->language == language_rust)
15745 {
15746 const char *full_name = dwarf2_full_name (name, die, cu);
15747
15748 /* dwarf2_full_name might have already finished building the DIE's
15749 type. If so, there is no need to continue. */
15750 if (get_die_type (die, cu) != NULL)
15751 return get_die_type (die, cu);
15752
15753 TYPE_NAME (type) = full_name;
15754 }
15755 else
15756 {
15757 /* The name is already allocated along with this objfile, so
15758 we don't need to duplicate it for the type. */
15759 TYPE_NAME (type) = name;
15760 }
15761 }
15762
15763 if (die->tag == DW_TAG_structure_type)
15764 {
15765 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15766 }
15767 else if (die->tag == DW_TAG_union_type)
15768 {
15769 TYPE_CODE (type) = TYPE_CODE_UNION;
15770 }
15771 else if (die->tag == DW_TAG_variant_part)
15772 {
15773 TYPE_CODE (type) = TYPE_CODE_UNION;
15774 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15775 }
15776 else
15777 {
15778 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15779 }
15780
15781 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15782 TYPE_DECLARED_CLASS (type) = 1;
15783
15784 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15785 if (attr)
15786 {
15787 if (attr_form_is_constant (attr))
15788 TYPE_LENGTH (type) = DW_UNSND (attr);
15789 else
15790 {
15791 /* For the moment, dynamic type sizes are not supported
15792 by GDB's struct type. The actual size is determined
15793 on-demand when resolving the type of a given object,
15794 so set the type's length to zero for now. Otherwise,
15795 we record an expression as the length, and that expression
15796 could lead to a very large value, which could eventually
15797 lead to us trying to allocate that much memory when creating
15798 a value of that type. */
15799 TYPE_LENGTH (type) = 0;
15800 }
15801 }
15802 else
15803 {
15804 TYPE_LENGTH (type) = 0;
15805 }
15806
15807 maybe_set_alignment (cu, die, type);
15808
15809 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15810 {
15811 /* ICC<14 does not output the required DW_AT_declaration on
15812 incomplete types, but gives them a size of zero. */
15813 TYPE_STUB (type) = 1;
15814 }
15815 else
15816 TYPE_STUB_SUPPORTED (type) = 1;
15817
15818 if (die_is_declaration (die, cu))
15819 TYPE_STUB (type) = 1;
15820 else if (attr == NULL && die->child == NULL
15821 && producer_is_realview (cu->producer))
15822 /* RealView does not output the required DW_AT_declaration
15823 on incomplete types. */
15824 TYPE_STUB (type) = 1;
15825
15826 /* We need to add the type field to the die immediately so we don't
15827 infinitely recurse when dealing with pointers to the structure
15828 type within the structure itself. */
15829 set_die_type (die, type, cu);
15830
15831 /* set_die_type should be already done. */
15832 set_descriptive_type (type, die, cu);
15833
15834 return type;
15835 }
15836
15837 /* A helper for process_structure_scope that handles a single member
15838 DIE. */
15839
15840 static void
15841 handle_struct_member_die (struct die_info *child_die, struct type *type,
15842 struct field_info *fi,
15843 std::vector<struct symbol *> *template_args,
15844 struct dwarf2_cu *cu)
15845 {
15846 if (child_die->tag == DW_TAG_member
15847 || child_die->tag == DW_TAG_variable
15848 || child_die->tag == DW_TAG_variant_part)
15849 {
15850 /* NOTE: carlton/2002-11-05: A C++ static data member
15851 should be a DW_TAG_member that is a declaration, but
15852 all versions of G++ as of this writing (so through at
15853 least 3.2.1) incorrectly generate DW_TAG_variable
15854 tags for them instead. */
15855 dwarf2_add_field (fi, child_die, cu);
15856 }
15857 else if (child_die->tag == DW_TAG_subprogram)
15858 {
15859 /* Rust doesn't have member functions in the C++ sense.
15860 However, it does emit ordinary functions as children
15861 of a struct DIE. */
15862 if (cu->language == language_rust)
15863 read_func_scope (child_die, cu);
15864 else
15865 {
15866 /* C++ member function. */
15867 dwarf2_add_member_fn (fi, child_die, type, cu);
15868 }
15869 }
15870 else if (child_die->tag == DW_TAG_inheritance)
15871 {
15872 /* C++ base class field. */
15873 dwarf2_add_field (fi, child_die, cu);
15874 }
15875 else if (type_can_define_types (child_die))
15876 dwarf2_add_type_defn (fi, child_die, cu);
15877 else if (child_die->tag == DW_TAG_template_type_param
15878 || child_die->tag == DW_TAG_template_value_param)
15879 {
15880 struct symbol *arg = new_symbol (child_die, NULL, cu);
15881
15882 if (arg != NULL)
15883 template_args->push_back (arg);
15884 }
15885 else if (child_die->tag == DW_TAG_variant)
15886 {
15887 /* In a variant we want to get the discriminant and also add a
15888 field for our sole member child. */
15889 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15890
15891 for (die_info *variant_child = child_die->child;
15892 variant_child != NULL;
15893 variant_child = sibling_die (variant_child))
15894 {
15895 if (variant_child->tag == DW_TAG_member)
15896 {
15897 handle_struct_member_die (variant_child, type, fi,
15898 template_args, cu);
15899 /* Only handle the one. */
15900 break;
15901 }
15902 }
15903
15904 /* We don't handle this but we might as well report it if we see
15905 it. */
15906 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15907 complaint (_("DW_AT_discr_list is not supported yet"
15908 " - DIE at %s [in module %s]"),
15909 sect_offset_str (child_die->sect_off),
15910 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15911
15912 /* The first field was just added, so we can stash the
15913 discriminant there. */
15914 gdb_assert (!fi->fields.empty ());
15915 if (discr == NULL)
15916 fi->fields.back ().variant.default_branch = true;
15917 else
15918 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15919 }
15920 }
15921
15922 /* Finish creating a structure or union type, including filling in
15923 its members and creating a symbol for it. */
15924
15925 static void
15926 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15927 {
15928 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15929 struct die_info *child_die;
15930 struct type *type;
15931
15932 type = get_die_type (die, cu);
15933 if (type == NULL)
15934 type = read_structure_type (die, cu);
15935
15936 /* When reading a DW_TAG_variant_part, we need to notice when we
15937 read the discriminant member, so we can record it later in the
15938 discriminant_info. */
15939 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15940 sect_offset discr_offset;
15941 bool has_template_parameters = false;
15942
15943 if (is_variant_part)
15944 {
15945 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15946 if (discr == NULL)
15947 {
15948 /* Maybe it's a univariant form, an extension we support.
15949 In this case arrange not to check the offset. */
15950 is_variant_part = false;
15951 }
15952 else if (attr_form_is_ref (discr))
15953 {
15954 struct dwarf2_cu *target_cu = cu;
15955 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15956
15957 discr_offset = target_die->sect_off;
15958 }
15959 else
15960 {
15961 complaint (_("DW_AT_discr does not have DIE reference form"
15962 " - DIE at %s [in module %s]"),
15963 sect_offset_str (die->sect_off),
15964 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15965 is_variant_part = false;
15966 }
15967 }
15968
15969 if (die->child != NULL && ! die_is_declaration (die, cu))
15970 {
15971 struct field_info fi;
15972 std::vector<struct symbol *> template_args;
15973
15974 child_die = die->child;
15975
15976 while (child_die && child_die->tag)
15977 {
15978 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15979
15980 if (is_variant_part && discr_offset == child_die->sect_off)
15981 fi.fields.back ().variant.is_discriminant = true;
15982
15983 child_die = sibling_die (child_die);
15984 }
15985
15986 /* Attach template arguments to type. */
15987 if (!template_args.empty ())
15988 {
15989 has_template_parameters = true;
15990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15991 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15992 TYPE_TEMPLATE_ARGUMENTS (type)
15993 = XOBNEWVEC (&objfile->objfile_obstack,
15994 struct symbol *,
15995 TYPE_N_TEMPLATE_ARGUMENTS (type));
15996 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15997 template_args.data (),
15998 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15999 * sizeof (struct symbol *)));
16000 }
16001
16002 /* Attach fields and member functions to the type. */
16003 if (fi.nfields)
16004 dwarf2_attach_fields_to_type (&fi, type, cu);
16005 if (!fi.fnfieldlists.empty ())
16006 {
16007 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16008
16009 /* Get the type which refers to the base class (possibly this
16010 class itself) which contains the vtable pointer for the current
16011 class from the DW_AT_containing_type attribute. This use of
16012 DW_AT_containing_type is a GNU extension. */
16013
16014 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16015 {
16016 struct type *t = die_containing_type (die, cu);
16017
16018 set_type_vptr_basetype (type, t);
16019 if (type == t)
16020 {
16021 int i;
16022
16023 /* Our own class provides vtbl ptr. */
16024 for (i = TYPE_NFIELDS (t) - 1;
16025 i >= TYPE_N_BASECLASSES (t);
16026 --i)
16027 {
16028 const char *fieldname = TYPE_FIELD_NAME (t, i);
16029
16030 if (is_vtable_name (fieldname, cu))
16031 {
16032 set_type_vptr_fieldno (type, i);
16033 break;
16034 }
16035 }
16036
16037 /* Complain if virtual function table field not found. */
16038 if (i < TYPE_N_BASECLASSES (t))
16039 complaint (_("virtual function table pointer "
16040 "not found when defining class '%s'"),
16041 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16042 }
16043 else
16044 {
16045 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16046 }
16047 }
16048 else if (cu->producer
16049 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16050 {
16051 /* The IBM XLC compiler does not provide direct indication
16052 of the containing type, but the vtable pointer is
16053 always named __vfp. */
16054
16055 int i;
16056
16057 for (i = TYPE_NFIELDS (type) - 1;
16058 i >= TYPE_N_BASECLASSES (type);
16059 --i)
16060 {
16061 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16062 {
16063 set_type_vptr_fieldno (type, i);
16064 set_type_vptr_basetype (type, type);
16065 break;
16066 }
16067 }
16068 }
16069 }
16070
16071 /* Copy fi.typedef_field_list linked list elements content into the
16072 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16073 if (!fi.typedef_field_list.empty ())
16074 {
16075 int count = fi.typedef_field_list.size ();
16076
16077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16078 TYPE_TYPEDEF_FIELD_ARRAY (type)
16079 = ((struct decl_field *)
16080 TYPE_ALLOC (type,
16081 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16082 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16083
16084 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16085 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16086 }
16087
16088 /* Copy fi.nested_types_list linked list elements content into the
16089 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16090 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16091 {
16092 int count = fi.nested_types_list.size ();
16093
16094 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16095 TYPE_NESTED_TYPES_ARRAY (type)
16096 = ((struct decl_field *)
16097 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16098 TYPE_NESTED_TYPES_COUNT (type) = count;
16099
16100 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16101 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16102 }
16103 }
16104
16105 quirk_gcc_member_function_pointer (type, objfile);
16106 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16107 cu->rust_unions.push_back (type);
16108
16109 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16110 snapshots) has been known to create a die giving a declaration
16111 for a class that has, as a child, a die giving a definition for a
16112 nested class. So we have to process our children even if the
16113 current die is a declaration. Normally, of course, a declaration
16114 won't have any children at all. */
16115
16116 child_die = die->child;
16117
16118 while (child_die != NULL && child_die->tag)
16119 {
16120 if (child_die->tag == DW_TAG_member
16121 || child_die->tag == DW_TAG_variable
16122 || child_die->tag == DW_TAG_inheritance
16123 || child_die->tag == DW_TAG_template_value_param
16124 || child_die->tag == DW_TAG_template_type_param)
16125 {
16126 /* Do nothing. */
16127 }
16128 else
16129 process_die (child_die, cu);
16130
16131 child_die = sibling_die (child_die);
16132 }
16133
16134 /* Do not consider external references. According to the DWARF standard,
16135 these DIEs are identified by the fact that they have no byte_size
16136 attribute, and a declaration attribute. */
16137 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16138 || !die_is_declaration (die, cu))
16139 {
16140 struct symbol *sym = new_symbol (die, type, cu);
16141
16142 if (has_template_parameters)
16143 {
16144 struct symtab *symtab;
16145 if (sym != nullptr)
16146 symtab = symbol_symtab (sym);
16147 else if (cu->line_header != nullptr)
16148 {
16149 /* Any related symtab will do. */
16150 symtab
16151 = cu->line_header->file_name_at (file_name_index (1))->symtab;
16152 }
16153 else
16154 {
16155 symtab = nullptr;
16156 complaint (_("could not find suitable "
16157 "symtab for template parameter"
16158 " - DIE at %s [in module %s]"),
16159 sect_offset_str (die->sect_off),
16160 objfile_name (objfile));
16161 }
16162
16163 if (symtab != nullptr)
16164 {
16165 /* Make sure that the symtab is set on the new symbols.
16166 Even though they don't appear in this symtab directly,
16167 other parts of gdb assume that symbols do, and this is
16168 reasonably true. */
16169 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16170 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16171 }
16172 }
16173 }
16174 }
16175
16176 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16177 update TYPE using some information only available in DIE's children. */
16178
16179 static void
16180 update_enumeration_type_from_children (struct die_info *die,
16181 struct type *type,
16182 struct dwarf2_cu *cu)
16183 {
16184 struct die_info *child_die;
16185 int unsigned_enum = 1;
16186 int flag_enum = 1;
16187 ULONGEST mask = 0;
16188
16189 auto_obstack obstack;
16190
16191 for (child_die = die->child;
16192 child_die != NULL && child_die->tag;
16193 child_die = sibling_die (child_die))
16194 {
16195 struct attribute *attr;
16196 LONGEST value;
16197 const gdb_byte *bytes;
16198 struct dwarf2_locexpr_baton *baton;
16199 const char *name;
16200
16201 if (child_die->tag != DW_TAG_enumerator)
16202 continue;
16203
16204 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16205 if (attr == NULL)
16206 continue;
16207
16208 name = dwarf2_name (child_die, cu);
16209 if (name == NULL)
16210 name = "<anonymous enumerator>";
16211
16212 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16213 &value, &bytes, &baton);
16214 if (value < 0)
16215 {
16216 unsigned_enum = 0;
16217 flag_enum = 0;
16218 }
16219 else if ((mask & value) != 0)
16220 flag_enum = 0;
16221 else
16222 mask |= value;
16223
16224 /* If we already know that the enum type is neither unsigned, nor
16225 a flag type, no need to look at the rest of the enumerates. */
16226 if (!unsigned_enum && !flag_enum)
16227 break;
16228 }
16229
16230 if (unsigned_enum)
16231 TYPE_UNSIGNED (type) = 1;
16232 if (flag_enum)
16233 TYPE_FLAG_ENUM (type) = 1;
16234 }
16235
16236 /* Given a DW_AT_enumeration_type die, set its type. We do not
16237 complete the type's fields yet, or create any symbols. */
16238
16239 static struct type *
16240 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16241 {
16242 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16243 struct type *type;
16244 struct attribute *attr;
16245 const char *name;
16246
16247 /* If the definition of this type lives in .debug_types, read that type.
16248 Don't follow DW_AT_specification though, that will take us back up
16249 the chain and we want to go down. */
16250 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16251 if (attr)
16252 {
16253 type = get_DW_AT_signature_type (die, attr, cu);
16254
16255 /* The type's CU may not be the same as CU.
16256 Ensure TYPE is recorded with CU in die_type_hash. */
16257 return set_die_type (die, type, cu);
16258 }
16259
16260 type = alloc_type (objfile);
16261
16262 TYPE_CODE (type) = TYPE_CODE_ENUM;
16263 name = dwarf2_full_name (NULL, die, cu);
16264 if (name != NULL)
16265 TYPE_NAME (type) = name;
16266
16267 attr = dwarf2_attr (die, DW_AT_type, cu);
16268 if (attr != NULL)
16269 {
16270 struct type *underlying_type = die_type (die, cu);
16271
16272 TYPE_TARGET_TYPE (type) = underlying_type;
16273 }
16274
16275 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16276 if (attr)
16277 {
16278 TYPE_LENGTH (type) = DW_UNSND (attr);
16279 }
16280 else
16281 {
16282 TYPE_LENGTH (type) = 0;
16283 }
16284
16285 maybe_set_alignment (cu, die, type);
16286
16287 /* The enumeration DIE can be incomplete. In Ada, any type can be
16288 declared as private in the package spec, and then defined only
16289 inside the package body. Such types are known as Taft Amendment
16290 Types. When another package uses such a type, an incomplete DIE
16291 may be generated by the compiler. */
16292 if (die_is_declaration (die, cu))
16293 TYPE_STUB (type) = 1;
16294
16295 /* Finish the creation of this type by using the enum's children.
16296 We must call this even when the underlying type has been provided
16297 so that we can determine if we're looking at a "flag" enum. */
16298 update_enumeration_type_from_children (die, type, cu);
16299
16300 /* If this type has an underlying type that is not a stub, then we
16301 may use its attributes. We always use the "unsigned" attribute
16302 in this situation, because ordinarily we guess whether the type
16303 is unsigned -- but the guess can be wrong and the underlying type
16304 can tell us the reality. However, we defer to a local size
16305 attribute if one exists, because this lets the compiler override
16306 the underlying type if needed. */
16307 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16308 {
16309 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16310 if (TYPE_LENGTH (type) == 0)
16311 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16312 if (TYPE_RAW_ALIGN (type) == 0
16313 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16314 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16315 }
16316
16317 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16318
16319 return set_die_type (die, type, cu);
16320 }
16321
16322 /* Given a pointer to a die which begins an enumeration, process all
16323 the dies that define the members of the enumeration, and create the
16324 symbol for the enumeration type.
16325
16326 NOTE: We reverse the order of the element list. */
16327
16328 static void
16329 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16330 {
16331 struct type *this_type;
16332
16333 this_type = get_die_type (die, cu);
16334 if (this_type == NULL)
16335 this_type = read_enumeration_type (die, cu);
16336
16337 if (die->child != NULL)
16338 {
16339 struct die_info *child_die;
16340 struct symbol *sym;
16341 struct field *fields = NULL;
16342 int num_fields = 0;
16343 const char *name;
16344
16345 child_die = die->child;
16346 while (child_die && child_die->tag)
16347 {
16348 if (child_die->tag != DW_TAG_enumerator)
16349 {
16350 process_die (child_die, cu);
16351 }
16352 else
16353 {
16354 name = dwarf2_name (child_die, cu);
16355 if (name)
16356 {
16357 sym = new_symbol (child_die, this_type, cu);
16358
16359 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16360 {
16361 fields = (struct field *)
16362 xrealloc (fields,
16363 (num_fields + DW_FIELD_ALLOC_CHUNK)
16364 * sizeof (struct field));
16365 }
16366
16367 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16368 FIELD_TYPE (fields[num_fields]) = NULL;
16369 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16370 FIELD_BITSIZE (fields[num_fields]) = 0;
16371
16372 num_fields++;
16373 }
16374 }
16375
16376 child_die = sibling_die (child_die);
16377 }
16378
16379 if (num_fields)
16380 {
16381 TYPE_NFIELDS (this_type) = num_fields;
16382 TYPE_FIELDS (this_type) = (struct field *)
16383 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16384 memcpy (TYPE_FIELDS (this_type), fields,
16385 sizeof (struct field) * num_fields);
16386 xfree (fields);
16387 }
16388 }
16389
16390 /* If we are reading an enum from a .debug_types unit, and the enum
16391 is a declaration, and the enum is not the signatured type in the
16392 unit, then we do not want to add a symbol for it. Adding a
16393 symbol would in some cases obscure the true definition of the
16394 enum, giving users an incomplete type when the definition is
16395 actually available. Note that we do not want to do this for all
16396 enums which are just declarations, because C++0x allows forward
16397 enum declarations. */
16398 if (cu->per_cu->is_debug_types
16399 && die_is_declaration (die, cu))
16400 {
16401 struct signatured_type *sig_type;
16402
16403 sig_type = (struct signatured_type *) cu->per_cu;
16404 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16405 if (sig_type->type_offset_in_section != die->sect_off)
16406 return;
16407 }
16408
16409 new_symbol (die, this_type, cu);
16410 }
16411
16412 /* Extract all information from a DW_TAG_array_type DIE and put it in
16413 the DIE's type field. For now, this only handles one dimensional
16414 arrays. */
16415
16416 static struct type *
16417 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16418 {
16419 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16420 struct die_info *child_die;
16421 struct type *type;
16422 struct type *element_type, *range_type, *index_type;
16423 struct attribute *attr;
16424 const char *name;
16425 struct dynamic_prop *byte_stride_prop = NULL;
16426 unsigned int bit_stride = 0;
16427
16428 element_type = die_type (die, cu);
16429
16430 /* The die_type call above may have already set the type for this DIE. */
16431 type = get_die_type (die, cu);
16432 if (type)
16433 return type;
16434
16435 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16436 if (attr != NULL)
16437 {
16438 int stride_ok;
16439
16440 byte_stride_prop
16441 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16442 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16443 if (!stride_ok)
16444 {
16445 complaint (_("unable to read array DW_AT_byte_stride "
16446 " - DIE at %s [in module %s]"),
16447 sect_offset_str (die->sect_off),
16448 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16449 /* Ignore this attribute. We will likely not be able to print
16450 arrays of this type correctly, but there is little we can do
16451 to help if we cannot read the attribute's value. */
16452 byte_stride_prop = NULL;
16453 }
16454 }
16455
16456 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16457 if (attr != NULL)
16458 bit_stride = DW_UNSND (attr);
16459
16460 /* Irix 6.2 native cc creates array types without children for
16461 arrays with unspecified length. */
16462 if (die->child == NULL)
16463 {
16464 index_type = objfile_type (objfile)->builtin_int;
16465 range_type = create_static_range_type (NULL, index_type, 0, -1);
16466 type = create_array_type_with_stride (NULL, element_type, range_type,
16467 byte_stride_prop, bit_stride);
16468 return set_die_type (die, type, cu);
16469 }
16470
16471 std::vector<struct type *> range_types;
16472 child_die = die->child;
16473 while (child_die && child_die->tag)
16474 {
16475 if (child_die->tag == DW_TAG_subrange_type)
16476 {
16477 struct type *child_type = read_type_die (child_die, cu);
16478
16479 if (child_type != NULL)
16480 {
16481 /* The range type was succesfully read. Save it for the
16482 array type creation. */
16483 range_types.push_back (child_type);
16484 }
16485 }
16486 child_die = sibling_die (child_die);
16487 }
16488
16489 /* Dwarf2 dimensions are output from left to right, create the
16490 necessary array types in backwards order. */
16491
16492 type = element_type;
16493
16494 if (read_array_order (die, cu) == DW_ORD_col_major)
16495 {
16496 int i = 0;
16497
16498 while (i < range_types.size ())
16499 type = create_array_type_with_stride (NULL, type, range_types[i++],
16500 byte_stride_prop, bit_stride);
16501 }
16502 else
16503 {
16504 size_t ndim = range_types.size ();
16505 while (ndim-- > 0)
16506 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16507 byte_stride_prop, bit_stride);
16508 }
16509
16510 /* Understand Dwarf2 support for vector types (like they occur on
16511 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16512 array type. This is not part of the Dwarf2/3 standard yet, but a
16513 custom vendor extension. The main difference between a regular
16514 array and the vector variant is that vectors are passed by value
16515 to functions. */
16516 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16517 if (attr)
16518 make_vector_type (type);
16519
16520 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16521 implementation may choose to implement triple vectors using this
16522 attribute. */
16523 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16524 if (attr)
16525 {
16526 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16527 TYPE_LENGTH (type) = DW_UNSND (attr);
16528 else
16529 complaint (_("DW_AT_byte_size for array type smaller "
16530 "than the total size of elements"));
16531 }
16532
16533 name = dwarf2_name (die, cu);
16534 if (name)
16535 TYPE_NAME (type) = name;
16536
16537 maybe_set_alignment (cu, die, type);
16538
16539 /* Install the type in the die. */
16540 set_die_type (die, type, cu);
16541
16542 /* set_die_type should be already done. */
16543 set_descriptive_type (type, die, cu);
16544
16545 return type;
16546 }
16547
16548 static enum dwarf_array_dim_ordering
16549 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16550 {
16551 struct attribute *attr;
16552
16553 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16554
16555 if (attr)
16556 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16557
16558 /* GNU F77 is a special case, as at 08/2004 array type info is the
16559 opposite order to the dwarf2 specification, but data is still
16560 laid out as per normal fortran.
16561
16562 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16563 version checking. */
16564
16565 if (cu->language == language_fortran
16566 && cu->producer && strstr (cu->producer, "GNU F77"))
16567 {
16568 return DW_ORD_row_major;
16569 }
16570
16571 switch (cu->language_defn->la_array_ordering)
16572 {
16573 case array_column_major:
16574 return DW_ORD_col_major;
16575 case array_row_major:
16576 default:
16577 return DW_ORD_row_major;
16578 };
16579 }
16580
16581 /* Extract all information from a DW_TAG_set_type DIE and put it in
16582 the DIE's type field. */
16583
16584 static struct type *
16585 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16586 {
16587 struct type *domain_type, *set_type;
16588 struct attribute *attr;
16589
16590 domain_type = die_type (die, cu);
16591
16592 /* The die_type call above may have already set the type for this DIE. */
16593 set_type = get_die_type (die, cu);
16594 if (set_type)
16595 return set_type;
16596
16597 set_type = create_set_type (NULL, domain_type);
16598
16599 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16600 if (attr)
16601 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16602
16603 maybe_set_alignment (cu, die, set_type);
16604
16605 return set_die_type (die, set_type, cu);
16606 }
16607
16608 /* A helper for read_common_block that creates a locexpr baton.
16609 SYM is the symbol which we are marking as computed.
16610 COMMON_DIE is the DIE for the common block.
16611 COMMON_LOC is the location expression attribute for the common
16612 block itself.
16613 MEMBER_LOC is the location expression attribute for the particular
16614 member of the common block that we are processing.
16615 CU is the CU from which the above come. */
16616
16617 static void
16618 mark_common_block_symbol_computed (struct symbol *sym,
16619 struct die_info *common_die,
16620 struct attribute *common_loc,
16621 struct attribute *member_loc,
16622 struct dwarf2_cu *cu)
16623 {
16624 struct dwarf2_per_objfile *dwarf2_per_objfile
16625 = cu->per_cu->dwarf2_per_objfile;
16626 struct objfile *objfile = dwarf2_per_objfile->objfile;
16627 struct dwarf2_locexpr_baton *baton;
16628 gdb_byte *ptr;
16629 unsigned int cu_off;
16630 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16631 LONGEST offset = 0;
16632
16633 gdb_assert (common_loc && member_loc);
16634 gdb_assert (attr_form_is_block (common_loc));
16635 gdb_assert (attr_form_is_block (member_loc)
16636 || attr_form_is_constant (member_loc));
16637
16638 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16639 baton->per_cu = cu->per_cu;
16640 gdb_assert (baton->per_cu);
16641
16642 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16643
16644 if (attr_form_is_constant (member_loc))
16645 {
16646 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16647 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16648 }
16649 else
16650 baton->size += DW_BLOCK (member_loc)->size;
16651
16652 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16653 baton->data = ptr;
16654
16655 *ptr++ = DW_OP_call4;
16656 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16657 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16658 ptr += 4;
16659
16660 if (attr_form_is_constant (member_loc))
16661 {
16662 *ptr++ = DW_OP_addr;
16663 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16664 ptr += cu->header.addr_size;
16665 }
16666 else
16667 {
16668 /* We have to copy the data here, because DW_OP_call4 will only
16669 use a DW_AT_location attribute. */
16670 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16671 ptr += DW_BLOCK (member_loc)->size;
16672 }
16673
16674 *ptr++ = DW_OP_plus;
16675 gdb_assert (ptr - baton->data == baton->size);
16676
16677 SYMBOL_LOCATION_BATON (sym) = baton;
16678 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16679 }
16680
16681 /* Create appropriate locally-scoped variables for all the
16682 DW_TAG_common_block entries. Also create a struct common_block
16683 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16684 is used to sepate the common blocks name namespace from regular
16685 variable names. */
16686
16687 static void
16688 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16689 {
16690 struct attribute *attr;
16691
16692 attr = dwarf2_attr (die, DW_AT_location, cu);
16693 if (attr)
16694 {
16695 /* Support the .debug_loc offsets. */
16696 if (attr_form_is_block (attr))
16697 {
16698 /* Ok. */
16699 }
16700 else if (attr_form_is_section_offset (attr))
16701 {
16702 dwarf2_complex_location_expr_complaint ();
16703 attr = NULL;
16704 }
16705 else
16706 {
16707 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16708 "common block member");
16709 attr = NULL;
16710 }
16711 }
16712
16713 if (die->child != NULL)
16714 {
16715 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16716 struct die_info *child_die;
16717 size_t n_entries = 0, size;
16718 struct common_block *common_block;
16719 struct symbol *sym;
16720
16721 for (child_die = die->child;
16722 child_die && child_die->tag;
16723 child_die = sibling_die (child_die))
16724 ++n_entries;
16725
16726 size = (sizeof (struct common_block)
16727 + (n_entries - 1) * sizeof (struct symbol *));
16728 common_block
16729 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16730 size);
16731 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16732 common_block->n_entries = 0;
16733
16734 for (child_die = die->child;
16735 child_die && child_die->tag;
16736 child_die = sibling_die (child_die))
16737 {
16738 /* Create the symbol in the DW_TAG_common_block block in the current
16739 symbol scope. */
16740 sym = new_symbol (child_die, NULL, cu);
16741 if (sym != NULL)
16742 {
16743 struct attribute *member_loc;
16744
16745 common_block->contents[common_block->n_entries++] = sym;
16746
16747 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16748 cu);
16749 if (member_loc)
16750 {
16751 /* GDB has handled this for a long time, but it is
16752 not specified by DWARF. It seems to have been
16753 emitted by gfortran at least as recently as:
16754 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16755 complaint (_("Variable in common block has "
16756 "DW_AT_data_member_location "
16757 "- DIE at %s [in module %s]"),
16758 sect_offset_str (child_die->sect_off),
16759 objfile_name (objfile));
16760
16761 if (attr_form_is_section_offset (member_loc))
16762 dwarf2_complex_location_expr_complaint ();
16763 else if (attr_form_is_constant (member_loc)
16764 || attr_form_is_block (member_loc))
16765 {
16766 if (attr)
16767 mark_common_block_symbol_computed (sym, die, attr,
16768 member_loc, cu);
16769 }
16770 else
16771 dwarf2_complex_location_expr_complaint ();
16772 }
16773 }
16774 }
16775
16776 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16777 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16778 }
16779 }
16780
16781 /* Create a type for a C++ namespace. */
16782
16783 static struct type *
16784 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16785 {
16786 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16787 const char *previous_prefix, *name;
16788 int is_anonymous;
16789 struct type *type;
16790
16791 /* For extensions, reuse the type of the original namespace. */
16792 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16793 {
16794 struct die_info *ext_die;
16795 struct dwarf2_cu *ext_cu = cu;
16796
16797 ext_die = dwarf2_extension (die, &ext_cu);
16798 type = read_type_die (ext_die, ext_cu);
16799
16800 /* EXT_CU may not be the same as CU.
16801 Ensure TYPE is recorded with CU in die_type_hash. */
16802 return set_die_type (die, type, cu);
16803 }
16804
16805 name = namespace_name (die, &is_anonymous, cu);
16806
16807 /* Now build the name of the current namespace. */
16808
16809 previous_prefix = determine_prefix (die, cu);
16810 if (previous_prefix[0] != '\0')
16811 name = typename_concat (&objfile->objfile_obstack,
16812 previous_prefix, name, 0, cu);
16813
16814 /* Create the type. */
16815 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16816
16817 return set_die_type (die, type, cu);
16818 }
16819
16820 /* Read a namespace scope. */
16821
16822 static void
16823 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16824 {
16825 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16826 int is_anonymous;
16827
16828 /* Add a symbol associated to this if we haven't seen the namespace
16829 before. Also, add a using directive if it's an anonymous
16830 namespace. */
16831
16832 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16833 {
16834 struct type *type;
16835
16836 type = read_type_die (die, cu);
16837 new_symbol (die, type, cu);
16838
16839 namespace_name (die, &is_anonymous, cu);
16840 if (is_anonymous)
16841 {
16842 const char *previous_prefix = determine_prefix (die, cu);
16843
16844 std::vector<const char *> excludes;
16845 add_using_directive (using_directives (cu),
16846 previous_prefix, TYPE_NAME (type), NULL,
16847 NULL, excludes, 0, &objfile->objfile_obstack);
16848 }
16849 }
16850
16851 if (die->child != NULL)
16852 {
16853 struct die_info *child_die = die->child;
16854
16855 while (child_die && child_die->tag)
16856 {
16857 process_die (child_die, cu);
16858 child_die = sibling_die (child_die);
16859 }
16860 }
16861 }
16862
16863 /* Read a Fortran module as type. This DIE can be only a declaration used for
16864 imported module. Still we need that type as local Fortran "use ... only"
16865 declaration imports depend on the created type in determine_prefix. */
16866
16867 static struct type *
16868 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16869 {
16870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16871 const char *module_name;
16872 struct type *type;
16873
16874 module_name = dwarf2_name (die, cu);
16875 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16876
16877 return set_die_type (die, type, cu);
16878 }
16879
16880 /* Read a Fortran module. */
16881
16882 static void
16883 read_module (struct die_info *die, struct dwarf2_cu *cu)
16884 {
16885 struct die_info *child_die = die->child;
16886 struct type *type;
16887
16888 type = read_type_die (die, cu);
16889 new_symbol (die, type, cu);
16890
16891 while (child_die && child_die->tag)
16892 {
16893 process_die (child_die, cu);
16894 child_die = sibling_die (child_die);
16895 }
16896 }
16897
16898 /* Return the name of the namespace represented by DIE. Set
16899 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16900 namespace. */
16901
16902 static const char *
16903 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16904 {
16905 struct die_info *current_die;
16906 const char *name = NULL;
16907
16908 /* Loop through the extensions until we find a name. */
16909
16910 for (current_die = die;
16911 current_die != NULL;
16912 current_die = dwarf2_extension (die, &cu))
16913 {
16914 /* We don't use dwarf2_name here so that we can detect the absence
16915 of a name -> anonymous namespace. */
16916 name = dwarf2_string_attr (die, DW_AT_name, cu);
16917
16918 if (name != NULL)
16919 break;
16920 }
16921
16922 /* Is it an anonymous namespace? */
16923
16924 *is_anonymous = (name == NULL);
16925 if (*is_anonymous)
16926 name = CP_ANONYMOUS_NAMESPACE_STR;
16927
16928 return name;
16929 }
16930
16931 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16932 the user defined type vector. */
16933
16934 static struct type *
16935 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16936 {
16937 struct gdbarch *gdbarch
16938 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16939 struct comp_unit_head *cu_header = &cu->header;
16940 struct type *type;
16941 struct attribute *attr_byte_size;
16942 struct attribute *attr_address_class;
16943 int byte_size, addr_class;
16944 struct type *target_type;
16945
16946 target_type = die_type (die, cu);
16947
16948 /* The die_type call above may have already set the type for this DIE. */
16949 type = get_die_type (die, cu);
16950 if (type)
16951 return type;
16952
16953 type = lookup_pointer_type (target_type);
16954
16955 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16956 if (attr_byte_size)
16957 byte_size = DW_UNSND (attr_byte_size);
16958 else
16959 byte_size = cu_header->addr_size;
16960
16961 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16962 if (attr_address_class)
16963 addr_class = DW_UNSND (attr_address_class);
16964 else
16965 addr_class = DW_ADDR_none;
16966
16967 ULONGEST alignment = get_alignment (cu, die);
16968
16969 /* If the pointer size, alignment, or address class is different
16970 than the default, create a type variant marked as such and set
16971 the length accordingly. */
16972 if (TYPE_LENGTH (type) != byte_size
16973 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16974 && alignment != TYPE_RAW_ALIGN (type))
16975 || addr_class != DW_ADDR_none)
16976 {
16977 if (gdbarch_address_class_type_flags_p (gdbarch))
16978 {
16979 int type_flags;
16980
16981 type_flags = gdbarch_address_class_type_flags
16982 (gdbarch, byte_size, addr_class);
16983 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16984 == 0);
16985 type = make_type_with_address_space (type, type_flags);
16986 }
16987 else if (TYPE_LENGTH (type) != byte_size)
16988 {
16989 complaint (_("invalid pointer size %d"), byte_size);
16990 }
16991 else if (TYPE_RAW_ALIGN (type) != alignment)
16992 {
16993 complaint (_("Invalid DW_AT_alignment"
16994 " - DIE at %s [in module %s]"),
16995 sect_offset_str (die->sect_off),
16996 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16997 }
16998 else
16999 {
17000 /* Should we also complain about unhandled address classes? */
17001 }
17002 }
17003
17004 TYPE_LENGTH (type) = byte_size;
17005 set_type_align (type, alignment);
17006 return set_die_type (die, type, cu);
17007 }
17008
17009 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17010 the user defined type vector. */
17011
17012 static struct type *
17013 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17014 {
17015 struct type *type;
17016 struct type *to_type;
17017 struct type *domain;
17018
17019 to_type = die_type (die, cu);
17020 domain = die_containing_type (die, cu);
17021
17022 /* The calls above may have already set the type for this DIE. */
17023 type = get_die_type (die, cu);
17024 if (type)
17025 return type;
17026
17027 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17028 type = lookup_methodptr_type (to_type);
17029 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17030 {
17031 struct type *new_type
17032 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17033
17034 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17035 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17036 TYPE_VARARGS (to_type));
17037 type = lookup_methodptr_type (new_type);
17038 }
17039 else
17040 type = lookup_memberptr_type (to_type, domain);
17041
17042 return set_die_type (die, type, cu);
17043 }
17044
17045 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17046 the user defined type vector. */
17047
17048 static struct type *
17049 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17050 enum type_code refcode)
17051 {
17052 struct comp_unit_head *cu_header = &cu->header;
17053 struct type *type, *target_type;
17054 struct attribute *attr;
17055
17056 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17057
17058 target_type = die_type (die, cu);
17059
17060 /* The die_type call above may have already set the type for this DIE. */
17061 type = get_die_type (die, cu);
17062 if (type)
17063 return type;
17064
17065 type = lookup_reference_type (target_type, refcode);
17066 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17067 if (attr)
17068 {
17069 TYPE_LENGTH (type) = DW_UNSND (attr);
17070 }
17071 else
17072 {
17073 TYPE_LENGTH (type) = cu_header->addr_size;
17074 }
17075 maybe_set_alignment (cu, die, type);
17076 return set_die_type (die, type, cu);
17077 }
17078
17079 /* Add the given cv-qualifiers to the element type of the array. GCC
17080 outputs DWARF type qualifiers that apply to an array, not the
17081 element type. But GDB relies on the array element type to carry
17082 the cv-qualifiers. This mimics section 6.7.3 of the C99
17083 specification. */
17084
17085 static struct type *
17086 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17087 struct type *base_type, int cnst, int voltl)
17088 {
17089 struct type *el_type, *inner_array;
17090
17091 base_type = copy_type (base_type);
17092 inner_array = base_type;
17093
17094 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17095 {
17096 TYPE_TARGET_TYPE (inner_array) =
17097 copy_type (TYPE_TARGET_TYPE (inner_array));
17098 inner_array = TYPE_TARGET_TYPE (inner_array);
17099 }
17100
17101 el_type = TYPE_TARGET_TYPE (inner_array);
17102 cnst |= TYPE_CONST (el_type);
17103 voltl |= TYPE_VOLATILE (el_type);
17104 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17105
17106 return set_die_type (die, base_type, cu);
17107 }
17108
17109 static struct type *
17110 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17111 {
17112 struct type *base_type, *cv_type;
17113
17114 base_type = die_type (die, cu);
17115
17116 /* The die_type call above may have already set the type for this DIE. */
17117 cv_type = get_die_type (die, cu);
17118 if (cv_type)
17119 return cv_type;
17120
17121 /* In case the const qualifier is applied to an array type, the element type
17122 is so qualified, not the array type (section 6.7.3 of C99). */
17123 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17124 return add_array_cv_type (die, cu, base_type, 1, 0);
17125
17126 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17127 return set_die_type (die, cv_type, cu);
17128 }
17129
17130 static struct type *
17131 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17132 {
17133 struct type *base_type, *cv_type;
17134
17135 base_type = die_type (die, cu);
17136
17137 /* The die_type call above may have already set the type for this DIE. */
17138 cv_type = get_die_type (die, cu);
17139 if (cv_type)
17140 return cv_type;
17141
17142 /* In case the volatile qualifier is applied to an array type, the
17143 element type is so qualified, not the array type (section 6.7.3
17144 of C99). */
17145 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17146 return add_array_cv_type (die, cu, base_type, 0, 1);
17147
17148 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17149 return set_die_type (die, cv_type, cu);
17150 }
17151
17152 /* Handle DW_TAG_restrict_type. */
17153
17154 static struct type *
17155 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17156 {
17157 struct type *base_type, *cv_type;
17158
17159 base_type = die_type (die, cu);
17160
17161 /* The die_type call above may have already set the type for this DIE. */
17162 cv_type = get_die_type (die, cu);
17163 if (cv_type)
17164 return cv_type;
17165
17166 cv_type = make_restrict_type (base_type);
17167 return set_die_type (die, cv_type, cu);
17168 }
17169
17170 /* Handle DW_TAG_atomic_type. */
17171
17172 static struct type *
17173 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17174 {
17175 struct type *base_type, *cv_type;
17176
17177 base_type = die_type (die, cu);
17178
17179 /* The die_type call above may have already set the type for this DIE. */
17180 cv_type = get_die_type (die, cu);
17181 if (cv_type)
17182 return cv_type;
17183
17184 cv_type = make_atomic_type (base_type);
17185 return set_die_type (die, cv_type, cu);
17186 }
17187
17188 /* Extract all information from a DW_TAG_string_type DIE and add to
17189 the user defined type vector. It isn't really a user defined type,
17190 but it behaves like one, with other DIE's using an AT_user_def_type
17191 attribute to reference it. */
17192
17193 static struct type *
17194 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17195 {
17196 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17197 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17198 struct type *type, *range_type, *index_type, *char_type;
17199 struct attribute *attr;
17200 unsigned int length;
17201
17202 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17203 if (attr)
17204 {
17205 length = DW_UNSND (attr);
17206 }
17207 else
17208 {
17209 /* Check for the DW_AT_byte_size attribute. */
17210 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17211 if (attr)
17212 {
17213 length = DW_UNSND (attr);
17214 }
17215 else
17216 {
17217 length = 1;
17218 }
17219 }
17220
17221 index_type = objfile_type (objfile)->builtin_int;
17222 range_type = create_static_range_type (NULL, index_type, 1, length);
17223 char_type = language_string_char_type (cu->language_defn, gdbarch);
17224 type = create_string_type (NULL, char_type, range_type);
17225
17226 return set_die_type (die, type, cu);
17227 }
17228
17229 /* Assuming that DIE corresponds to a function, returns nonzero
17230 if the function is prototyped. */
17231
17232 static int
17233 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17234 {
17235 struct attribute *attr;
17236
17237 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17238 if (attr && (DW_UNSND (attr) != 0))
17239 return 1;
17240
17241 /* The DWARF standard implies that the DW_AT_prototyped attribute
17242 is only meaninful for C, but the concept also extends to other
17243 languages that allow unprototyped functions (Eg: Objective C).
17244 For all other languages, assume that functions are always
17245 prototyped. */
17246 if (cu->language != language_c
17247 && cu->language != language_objc
17248 && cu->language != language_opencl)
17249 return 1;
17250
17251 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17252 prototyped and unprototyped functions; default to prototyped,
17253 since that is more common in modern code (and RealView warns
17254 about unprototyped functions). */
17255 if (producer_is_realview (cu->producer))
17256 return 1;
17257
17258 return 0;
17259 }
17260
17261 /* Handle DIES due to C code like:
17262
17263 struct foo
17264 {
17265 int (*funcp)(int a, long l);
17266 int b;
17267 };
17268
17269 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17270
17271 static struct type *
17272 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17273 {
17274 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17275 struct type *type; /* Type that this function returns. */
17276 struct type *ftype; /* Function that returns above type. */
17277 struct attribute *attr;
17278
17279 type = die_type (die, cu);
17280
17281 /* The die_type call above may have already set the type for this DIE. */
17282 ftype = get_die_type (die, cu);
17283 if (ftype)
17284 return ftype;
17285
17286 ftype = lookup_function_type (type);
17287
17288 if (prototyped_function_p (die, cu))
17289 TYPE_PROTOTYPED (ftype) = 1;
17290
17291 /* Store the calling convention in the type if it's available in
17292 the subroutine die. Otherwise set the calling convention to
17293 the default value DW_CC_normal. */
17294 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17295 if (attr)
17296 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17297 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17298 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17299 else
17300 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17301
17302 /* Record whether the function returns normally to its caller or not
17303 if the DWARF producer set that information. */
17304 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17305 if (attr && (DW_UNSND (attr) != 0))
17306 TYPE_NO_RETURN (ftype) = 1;
17307
17308 /* We need to add the subroutine type to the die immediately so
17309 we don't infinitely recurse when dealing with parameters
17310 declared as the same subroutine type. */
17311 set_die_type (die, ftype, cu);
17312
17313 if (die->child != NULL)
17314 {
17315 struct type *void_type = objfile_type (objfile)->builtin_void;
17316 struct die_info *child_die;
17317 int nparams, iparams;
17318
17319 /* Count the number of parameters.
17320 FIXME: GDB currently ignores vararg functions, but knows about
17321 vararg member functions. */
17322 nparams = 0;
17323 child_die = die->child;
17324 while (child_die && child_die->tag)
17325 {
17326 if (child_die->tag == DW_TAG_formal_parameter)
17327 nparams++;
17328 else if (child_die->tag == DW_TAG_unspecified_parameters)
17329 TYPE_VARARGS (ftype) = 1;
17330 child_die = sibling_die (child_die);
17331 }
17332
17333 /* Allocate storage for parameters and fill them in. */
17334 TYPE_NFIELDS (ftype) = nparams;
17335 TYPE_FIELDS (ftype) = (struct field *)
17336 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17337
17338 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17339 even if we error out during the parameters reading below. */
17340 for (iparams = 0; iparams < nparams; iparams++)
17341 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17342
17343 iparams = 0;
17344 child_die = die->child;
17345 while (child_die && child_die->tag)
17346 {
17347 if (child_die->tag == DW_TAG_formal_parameter)
17348 {
17349 struct type *arg_type;
17350
17351 /* DWARF version 2 has no clean way to discern C++
17352 static and non-static member functions. G++ helps
17353 GDB by marking the first parameter for non-static
17354 member functions (which is the this pointer) as
17355 artificial. We pass this information to
17356 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17357
17358 DWARF version 3 added DW_AT_object_pointer, which GCC
17359 4.5 does not yet generate. */
17360 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17361 if (attr)
17362 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17363 else
17364 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17365 arg_type = die_type (child_die, cu);
17366
17367 /* RealView does not mark THIS as const, which the testsuite
17368 expects. GCC marks THIS as const in method definitions,
17369 but not in the class specifications (GCC PR 43053). */
17370 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17371 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17372 {
17373 int is_this = 0;
17374 struct dwarf2_cu *arg_cu = cu;
17375 const char *name = dwarf2_name (child_die, cu);
17376
17377 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17378 if (attr)
17379 {
17380 /* If the compiler emits this, use it. */
17381 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17382 is_this = 1;
17383 }
17384 else if (name && strcmp (name, "this") == 0)
17385 /* Function definitions will have the argument names. */
17386 is_this = 1;
17387 else if (name == NULL && iparams == 0)
17388 /* Declarations may not have the names, so like
17389 elsewhere in GDB, assume an artificial first
17390 argument is "this". */
17391 is_this = 1;
17392
17393 if (is_this)
17394 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17395 arg_type, 0);
17396 }
17397
17398 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17399 iparams++;
17400 }
17401 child_die = sibling_die (child_die);
17402 }
17403 }
17404
17405 return ftype;
17406 }
17407
17408 static struct type *
17409 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17410 {
17411 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17412 const char *name = NULL;
17413 struct type *this_type, *target_type;
17414
17415 name = dwarf2_full_name (NULL, die, cu);
17416 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17417 TYPE_TARGET_STUB (this_type) = 1;
17418 set_die_type (die, this_type, cu);
17419 target_type = die_type (die, cu);
17420 if (target_type != this_type)
17421 TYPE_TARGET_TYPE (this_type) = target_type;
17422 else
17423 {
17424 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17425 spec and cause infinite loops in GDB. */
17426 complaint (_("Self-referential DW_TAG_typedef "
17427 "- DIE at %s [in module %s]"),
17428 sect_offset_str (die->sect_off), objfile_name (objfile));
17429 TYPE_TARGET_TYPE (this_type) = NULL;
17430 }
17431 return this_type;
17432 }
17433
17434 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17435 (which may be different from NAME) to the architecture back-end to allow
17436 it to guess the correct format if necessary. */
17437
17438 static struct type *
17439 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17440 const char *name_hint)
17441 {
17442 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17443 const struct floatformat **format;
17444 struct type *type;
17445
17446 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17447 if (format)
17448 type = init_float_type (objfile, bits, name, format);
17449 else
17450 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17451
17452 return type;
17453 }
17454
17455 /* Allocate an integer type of size BITS and name NAME. */
17456
17457 static struct type *
17458 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17459 int bits, int unsigned_p, const char *name)
17460 {
17461 struct type *type;
17462
17463 /* Versions of Intel's C Compiler generate an integer type called "void"
17464 instead of using DW_TAG_unspecified_type. This has been seen on
17465 at least versions 14, 17, and 18. */
17466 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17467 && strcmp (name, "void") == 0)
17468 type = objfile_type (objfile)->builtin_void;
17469 else
17470 type = init_integer_type (objfile, bits, unsigned_p, name);
17471
17472 return type;
17473 }
17474
17475 /* Initialise and return a floating point type of size BITS suitable for
17476 use as a component of a complex number. The NAME_HINT is passed through
17477 when initialising the floating point type and is the name of the complex
17478 type.
17479
17480 As DWARF doesn't currently provide an explicit name for the components
17481 of a complex number, but it can be helpful to have these components
17482 named, we try to select a suitable name based on the size of the
17483 component. */
17484 static struct type *
17485 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17486 struct objfile *objfile,
17487 int bits, const char *name_hint)
17488 {
17489 gdbarch *gdbarch = get_objfile_arch (objfile);
17490 struct type *tt = nullptr;
17491
17492 /* Try to find a suitable floating point builtin type of size BITS.
17493 We're going to use the name of this type as the name for the complex
17494 target type that we are about to create. */
17495 switch (cu->language)
17496 {
17497 case language_fortran:
17498 switch (bits)
17499 {
17500 case 32:
17501 tt = builtin_f_type (gdbarch)->builtin_real;
17502 break;
17503 case 64:
17504 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17505 break;
17506 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17507 case 128:
17508 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17509 break;
17510 }
17511 break;
17512 default:
17513 switch (bits)
17514 {
17515 case 32:
17516 tt = builtin_type (gdbarch)->builtin_float;
17517 break;
17518 case 64:
17519 tt = builtin_type (gdbarch)->builtin_double;
17520 break;
17521 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17522 case 128:
17523 tt = builtin_type (gdbarch)->builtin_long_double;
17524 break;
17525 }
17526 break;
17527 }
17528
17529 /* If the type we found doesn't match the size we were looking for, then
17530 pretend we didn't find a type at all, the complex target type we
17531 create will then be nameless. */
17532 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17533 tt = nullptr;
17534
17535 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17536 return dwarf2_init_float_type (objfile, bits, name, name_hint);
17537 }
17538
17539 /* Find a representation of a given base type and install
17540 it in the TYPE field of the die. */
17541
17542 static struct type *
17543 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17544 {
17545 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17546 struct type *type;
17547 struct attribute *attr;
17548 int encoding = 0, bits = 0;
17549 const char *name;
17550
17551 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17552 if (attr)
17553 {
17554 encoding = DW_UNSND (attr);
17555 }
17556 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17557 if (attr)
17558 {
17559 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17560 }
17561 name = dwarf2_name (die, cu);
17562 if (!name)
17563 {
17564 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17565 }
17566
17567 switch (encoding)
17568 {
17569 case DW_ATE_address:
17570 /* Turn DW_ATE_address into a void * pointer. */
17571 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17572 type = init_pointer_type (objfile, bits, name, type);
17573 break;
17574 case DW_ATE_boolean:
17575 type = init_boolean_type (objfile, bits, 1, name);
17576 break;
17577 case DW_ATE_complex_float:
17578 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name);
17579 type = init_complex_type (objfile, name, type);
17580 break;
17581 case DW_ATE_decimal_float:
17582 type = init_decfloat_type (objfile, bits, name);
17583 break;
17584 case DW_ATE_float:
17585 type = dwarf2_init_float_type (objfile, bits, name, name);
17586 break;
17587 case DW_ATE_signed:
17588 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17589 break;
17590 case DW_ATE_unsigned:
17591 if (cu->language == language_fortran
17592 && name
17593 && startswith (name, "character("))
17594 type = init_character_type (objfile, bits, 1, name);
17595 else
17596 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17597 break;
17598 case DW_ATE_signed_char:
17599 if (cu->language == language_ada || cu->language == language_m2
17600 || cu->language == language_pascal
17601 || cu->language == language_fortran)
17602 type = init_character_type (objfile, bits, 0, name);
17603 else
17604 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17605 break;
17606 case DW_ATE_unsigned_char:
17607 if (cu->language == language_ada || cu->language == language_m2
17608 || cu->language == language_pascal
17609 || cu->language == language_fortran
17610 || cu->language == language_rust)
17611 type = init_character_type (objfile, bits, 1, name);
17612 else
17613 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17614 break;
17615 case DW_ATE_UTF:
17616 {
17617 gdbarch *arch = get_objfile_arch (objfile);
17618
17619 if (bits == 16)
17620 type = builtin_type (arch)->builtin_char16;
17621 else if (bits == 32)
17622 type = builtin_type (arch)->builtin_char32;
17623 else
17624 {
17625 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17626 bits);
17627 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17628 }
17629 return set_die_type (die, type, cu);
17630 }
17631 break;
17632
17633 default:
17634 complaint (_("unsupported DW_AT_encoding: '%s'"),
17635 dwarf_type_encoding_name (encoding));
17636 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17637 break;
17638 }
17639
17640 if (name && strcmp (name, "char") == 0)
17641 TYPE_NOSIGN (type) = 1;
17642
17643 maybe_set_alignment (cu, die, type);
17644
17645 return set_die_type (die, type, cu);
17646 }
17647
17648 /* Parse dwarf attribute if it's a block, reference or constant and put the
17649 resulting value of the attribute into struct bound_prop.
17650 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17651
17652 static int
17653 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17654 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17655 {
17656 struct dwarf2_property_baton *baton;
17657 struct obstack *obstack
17658 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17659
17660 if (attr == NULL || prop == NULL)
17661 return 0;
17662
17663 if (attr_form_is_block (attr))
17664 {
17665 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17666 baton->referenced_type = NULL;
17667 baton->locexpr.per_cu = cu->per_cu;
17668 baton->locexpr.size = DW_BLOCK (attr)->size;
17669 baton->locexpr.data = DW_BLOCK (attr)->data;
17670 prop->data.baton = baton;
17671 prop->kind = PROP_LOCEXPR;
17672 gdb_assert (prop->data.baton != NULL);
17673 }
17674 else if (attr_form_is_ref (attr))
17675 {
17676 struct dwarf2_cu *target_cu = cu;
17677 struct die_info *target_die;
17678 struct attribute *target_attr;
17679
17680 target_die = follow_die_ref (die, attr, &target_cu);
17681 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17682 if (target_attr == NULL)
17683 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17684 target_cu);
17685 if (target_attr == NULL)
17686 return 0;
17687
17688 switch (target_attr->name)
17689 {
17690 case DW_AT_location:
17691 if (attr_form_is_section_offset (target_attr))
17692 {
17693 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17694 baton->referenced_type = die_type (target_die, target_cu);
17695 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17696 prop->data.baton = baton;
17697 prop->kind = PROP_LOCLIST;
17698 gdb_assert (prop->data.baton != NULL);
17699 }
17700 else if (attr_form_is_block (target_attr))
17701 {
17702 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17703 baton->referenced_type = die_type (target_die, target_cu);
17704 baton->locexpr.per_cu = cu->per_cu;
17705 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17706 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17707 prop->data.baton = baton;
17708 prop->kind = PROP_LOCEXPR;
17709 gdb_assert (prop->data.baton != NULL);
17710 }
17711 else
17712 {
17713 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17714 "dynamic property");
17715 return 0;
17716 }
17717 break;
17718 case DW_AT_data_member_location:
17719 {
17720 LONGEST offset;
17721
17722 if (!handle_data_member_location (target_die, target_cu,
17723 &offset))
17724 return 0;
17725
17726 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17727 baton->referenced_type = read_type_die (target_die->parent,
17728 target_cu);
17729 baton->offset_info.offset = offset;
17730 baton->offset_info.type = die_type (target_die, target_cu);
17731 prop->data.baton = baton;
17732 prop->kind = PROP_ADDR_OFFSET;
17733 break;
17734 }
17735 }
17736 }
17737 else if (attr_form_is_constant (attr))
17738 {
17739 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17740 prop->kind = PROP_CONST;
17741 }
17742 else
17743 {
17744 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17745 dwarf2_name (die, cu));
17746 return 0;
17747 }
17748
17749 return 1;
17750 }
17751
17752 /* Read the given DW_AT_subrange DIE. */
17753
17754 static struct type *
17755 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17756 {
17757 struct type *base_type, *orig_base_type;
17758 struct type *range_type;
17759 struct attribute *attr;
17760 struct dynamic_prop low, high;
17761 int low_default_is_valid;
17762 int high_bound_is_count = 0;
17763 const char *name;
17764 ULONGEST negative_mask;
17765
17766 orig_base_type = die_type (die, cu);
17767 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17768 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17769 creating the range type, but we use the result of check_typedef
17770 when examining properties of the type. */
17771 base_type = check_typedef (orig_base_type);
17772
17773 /* The die_type call above may have already set the type for this DIE. */
17774 range_type = get_die_type (die, cu);
17775 if (range_type)
17776 return range_type;
17777
17778 low.kind = PROP_CONST;
17779 high.kind = PROP_CONST;
17780 high.data.const_val = 0;
17781
17782 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17783 omitting DW_AT_lower_bound. */
17784 switch (cu->language)
17785 {
17786 case language_c:
17787 case language_cplus:
17788 low.data.const_val = 0;
17789 low_default_is_valid = 1;
17790 break;
17791 case language_fortran:
17792 low.data.const_val = 1;
17793 low_default_is_valid = 1;
17794 break;
17795 case language_d:
17796 case language_objc:
17797 case language_rust:
17798 low.data.const_val = 0;
17799 low_default_is_valid = (cu->header.version >= 4);
17800 break;
17801 case language_ada:
17802 case language_m2:
17803 case language_pascal:
17804 low.data.const_val = 1;
17805 low_default_is_valid = (cu->header.version >= 4);
17806 break;
17807 default:
17808 low.data.const_val = 0;
17809 low_default_is_valid = 0;
17810 break;
17811 }
17812
17813 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17814 if (attr)
17815 attr_to_dynamic_prop (attr, die, cu, &low);
17816 else if (!low_default_is_valid)
17817 complaint (_("Missing DW_AT_lower_bound "
17818 "- DIE at %s [in module %s]"),
17819 sect_offset_str (die->sect_off),
17820 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17821
17822 struct attribute *attr_ub, *attr_count;
17823 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17824 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17825 {
17826 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17827 if (attr_to_dynamic_prop (attr, die, cu, &high))
17828 {
17829 /* If bounds are constant do the final calculation here. */
17830 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17831 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17832 else
17833 high_bound_is_count = 1;
17834 }
17835 else
17836 {
17837 if (attr_ub != NULL)
17838 complaint (_("Unresolved DW_AT_upper_bound "
17839 "- DIE at %s [in module %s]"),
17840 sect_offset_str (die->sect_off),
17841 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17842 if (attr_count != NULL)
17843 complaint (_("Unresolved DW_AT_count "
17844 "- DIE at %s [in module %s]"),
17845 sect_offset_str (die->sect_off),
17846 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17847 }
17848
17849 }
17850
17851 /* Dwarf-2 specifications explicitly allows to create subrange types
17852 without specifying a base type.
17853 In that case, the base type must be set to the type of
17854 the lower bound, upper bound or count, in that order, if any of these
17855 three attributes references an object that has a type.
17856 If no base type is found, the Dwarf-2 specifications say that
17857 a signed integer type of size equal to the size of an address should
17858 be used.
17859 For the following C code: `extern char gdb_int [];'
17860 GCC produces an empty range DIE.
17861 FIXME: muller/2010-05-28: Possible references to object for low bound,
17862 high bound or count are not yet handled by this code. */
17863 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17864 {
17865 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17866 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17867 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17868 struct type *int_type = objfile_type (objfile)->builtin_int;
17869
17870 /* Test "int", "long int", and "long long int" objfile types,
17871 and select the first one having a size above or equal to the
17872 architecture address size. */
17873 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17874 base_type = int_type;
17875 else
17876 {
17877 int_type = objfile_type (objfile)->builtin_long;
17878 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17879 base_type = int_type;
17880 else
17881 {
17882 int_type = objfile_type (objfile)->builtin_long_long;
17883 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17884 base_type = int_type;
17885 }
17886 }
17887 }
17888
17889 /* Normally, the DWARF producers are expected to use a signed
17890 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17891 But this is unfortunately not always the case, as witnessed
17892 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17893 is used instead. To work around that ambiguity, we treat
17894 the bounds as signed, and thus sign-extend their values, when
17895 the base type is signed. */
17896 negative_mask =
17897 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17898 if (low.kind == PROP_CONST
17899 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17900 low.data.const_val |= negative_mask;
17901 if (high.kind == PROP_CONST
17902 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17903 high.data.const_val |= negative_mask;
17904
17905 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17906
17907 if (high_bound_is_count)
17908 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17909
17910 /* Ada expects an empty array on no boundary attributes. */
17911 if (attr == NULL && cu->language != language_ada)
17912 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17913
17914 name = dwarf2_name (die, cu);
17915 if (name)
17916 TYPE_NAME (range_type) = name;
17917
17918 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17919 if (attr)
17920 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17921
17922 maybe_set_alignment (cu, die, range_type);
17923
17924 set_die_type (die, range_type, cu);
17925
17926 /* set_die_type should be already done. */
17927 set_descriptive_type (range_type, die, cu);
17928
17929 return range_type;
17930 }
17931
17932 static struct type *
17933 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17934 {
17935 struct type *type;
17936
17937 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17938 NULL);
17939 TYPE_NAME (type) = dwarf2_name (die, cu);
17940
17941 /* In Ada, an unspecified type is typically used when the description
17942 of the type is defered to a different unit. When encountering
17943 such a type, we treat it as a stub, and try to resolve it later on,
17944 when needed. */
17945 if (cu->language == language_ada)
17946 TYPE_STUB (type) = 1;
17947
17948 return set_die_type (die, type, cu);
17949 }
17950
17951 /* Read a single die and all its descendents. Set the die's sibling
17952 field to NULL; set other fields in the die correctly, and set all
17953 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17954 location of the info_ptr after reading all of those dies. PARENT
17955 is the parent of the die in question. */
17956
17957 static struct die_info *
17958 read_die_and_children (const struct die_reader_specs *reader,
17959 const gdb_byte *info_ptr,
17960 const gdb_byte **new_info_ptr,
17961 struct die_info *parent)
17962 {
17963 struct die_info *die;
17964 const gdb_byte *cur_ptr;
17965 int has_children;
17966
17967 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17968 if (die == NULL)
17969 {
17970 *new_info_ptr = cur_ptr;
17971 return NULL;
17972 }
17973 store_in_ref_table (die, reader->cu);
17974
17975 if (has_children)
17976 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17977 else
17978 {
17979 die->child = NULL;
17980 *new_info_ptr = cur_ptr;
17981 }
17982
17983 die->sibling = NULL;
17984 die->parent = parent;
17985 return die;
17986 }
17987
17988 /* Read a die, all of its descendents, and all of its siblings; set
17989 all of the fields of all of the dies correctly. Arguments are as
17990 in read_die_and_children. */
17991
17992 static struct die_info *
17993 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17994 const gdb_byte *info_ptr,
17995 const gdb_byte **new_info_ptr,
17996 struct die_info *parent)
17997 {
17998 struct die_info *first_die, *last_sibling;
17999 const gdb_byte *cur_ptr;
18000
18001 cur_ptr = info_ptr;
18002 first_die = last_sibling = NULL;
18003
18004 while (1)
18005 {
18006 struct die_info *die
18007 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18008
18009 if (die == NULL)
18010 {
18011 *new_info_ptr = cur_ptr;
18012 return first_die;
18013 }
18014
18015 if (!first_die)
18016 first_die = die;
18017 else
18018 last_sibling->sibling = die;
18019
18020 last_sibling = die;
18021 }
18022 }
18023
18024 /* Read a die, all of its descendents, and all of its siblings; set
18025 all of the fields of all of the dies correctly. Arguments are as
18026 in read_die_and_children.
18027 This the main entry point for reading a DIE and all its children. */
18028
18029 static struct die_info *
18030 read_die_and_siblings (const struct die_reader_specs *reader,
18031 const gdb_byte *info_ptr,
18032 const gdb_byte **new_info_ptr,
18033 struct die_info *parent)
18034 {
18035 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18036 new_info_ptr, parent);
18037
18038 if (dwarf_die_debug)
18039 {
18040 fprintf_unfiltered (gdb_stdlog,
18041 "Read die from %s@0x%x of %s:\n",
18042 get_section_name (reader->die_section),
18043 (unsigned) (info_ptr - reader->die_section->buffer),
18044 bfd_get_filename (reader->abfd));
18045 dump_die (die, dwarf_die_debug);
18046 }
18047
18048 return die;
18049 }
18050
18051 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18052 attributes.
18053 The caller is responsible for filling in the extra attributes
18054 and updating (*DIEP)->num_attrs.
18055 Set DIEP to point to a newly allocated die with its information,
18056 except for its child, sibling, and parent fields.
18057 Set HAS_CHILDREN to tell whether the die has children or not. */
18058
18059 static const gdb_byte *
18060 read_full_die_1 (const struct die_reader_specs *reader,
18061 struct die_info **diep, const gdb_byte *info_ptr,
18062 int *has_children, int num_extra_attrs)
18063 {
18064 unsigned int abbrev_number, bytes_read, i;
18065 struct abbrev_info *abbrev;
18066 struct die_info *die;
18067 struct dwarf2_cu *cu = reader->cu;
18068 bfd *abfd = reader->abfd;
18069
18070 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18071 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18072 info_ptr += bytes_read;
18073 if (!abbrev_number)
18074 {
18075 *diep = NULL;
18076 *has_children = 0;
18077 return info_ptr;
18078 }
18079
18080 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18081 if (!abbrev)
18082 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18083 abbrev_number,
18084 bfd_get_filename (abfd));
18085
18086 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18087 die->sect_off = sect_off;
18088 die->tag = abbrev->tag;
18089 die->abbrev = abbrev_number;
18090
18091 /* Make the result usable.
18092 The caller needs to update num_attrs after adding the extra
18093 attributes. */
18094 die->num_attrs = abbrev->num_attrs;
18095
18096 for (i = 0; i < abbrev->num_attrs; ++i)
18097 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18098 info_ptr);
18099
18100 *diep = die;
18101 *has_children = abbrev->has_children;
18102 return info_ptr;
18103 }
18104
18105 /* Read a die and all its attributes.
18106 Set DIEP to point to a newly allocated die with its information,
18107 except for its child, sibling, and parent fields.
18108 Set HAS_CHILDREN to tell whether the die has children or not. */
18109
18110 static const gdb_byte *
18111 read_full_die (const struct die_reader_specs *reader,
18112 struct die_info **diep, const gdb_byte *info_ptr,
18113 int *has_children)
18114 {
18115 const gdb_byte *result;
18116
18117 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18118
18119 if (dwarf_die_debug)
18120 {
18121 fprintf_unfiltered (gdb_stdlog,
18122 "Read die from %s@0x%x of %s:\n",
18123 get_section_name (reader->die_section),
18124 (unsigned) (info_ptr - reader->die_section->buffer),
18125 bfd_get_filename (reader->abfd));
18126 dump_die (*diep, dwarf_die_debug);
18127 }
18128
18129 return result;
18130 }
18131 \f
18132 /* Abbreviation tables.
18133
18134 In DWARF version 2, the description of the debugging information is
18135 stored in a separate .debug_abbrev section. Before we read any
18136 dies from a section we read in all abbreviations and install them
18137 in a hash table. */
18138
18139 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18140
18141 struct abbrev_info *
18142 abbrev_table::alloc_abbrev ()
18143 {
18144 struct abbrev_info *abbrev;
18145
18146 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18147 memset (abbrev, 0, sizeof (struct abbrev_info));
18148
18149 return abbrev;
18150 }
18151
18152 /* Add an abbreviation to the table. */
18153
18154 void
18155 abbrev_table::add_abbrev (unsigned int abbrev_number,
18156 struct abbrev_info *abbrev)
18157 {
18158 unsigned int hash_number;
18159
18160 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18161 abbrev->next = m_abbrevs[hash_number];
18162 m_abbrevs[hash_number] = abbrev;
18163 }
18164
18165 /* Look up an abbrev in the table.
18166 Returns NULL if the abbrev is not found. */
18167
18168 struct abbrev_info *
18169 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18170 {
18171 unsigned int hash_number;
18172 struct abbrev_info *abbrev;
18173
18174 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18175 abbrev = m_abbrevs[hash_number];
18176
18177 while (abbrev)
18178 {
18179 if (abbrev->number == abbrev_number)
18180 return abbrev;
18181 abbrev = abbrev->next;
18182 }
18183 return NULL;
18184 }
18185
18186 /* Read in an abbrev table. */
18187
18188 static abbrev_table_up
18189 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18190 struct dwarf2_section_info *section,
18191 sect_offset sect_off)
18192 {
18193 struct objfile *objfile = dwarf2_per_objfile->objfile;
18194 bfd *abfd = get_section_bfd_owner (section);
18195 const gdb_byte *abbrev_ptr;
18196 struct abbrev_info *cur_abbrev;
18197 unsigned int abbrev_number, bytes_read, abbrev_name;
18198 unsigned int abbrev_form;
18199 struct attr_abbrev *cur_attrs;
18200 unsigned int allocated_attrs;
18201
18202 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18203
18204 dwarf2_read_section (objfile, section);
18205 abbrev_ptr = section->buffer + to_underlying (sect_off);
18206 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18207 abbrev_ptr += bytes_read;
18208
18209 allocated_attrs = ATTR_ALLOC_CHUNK;
18210 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18211
18212 /* Loop until we reach an abbrev number of 0. */
18213 while (abbrev_number)
18214 {
18215 cur_abbrev = abbrev_table->alloc_abbrev ();
18216
18217 /* read in abbrev header */
18218 cur_abbrev->number = abbrev_number;
18219 cur_abbrev->tag
18220 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18221 abbrev_ptr += bytes_read;
18222 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18223 abbrev_ptr += 1;
18224
18225 /* now read in declarations */
18226 for (;;)
18227 {
18228 LONGEST implicit_const;
18229
18230 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18231 abbrev_ptr += bytes_read;
18232 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18233 abbrev_ptr += bytes_read;
18234 if (abbrev_form == DW_FORM_implicit_const)
18235 {
18236 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18237 &bytes_read);
18238 abbrev_ptr += bytes_read;
18239 }
18240 else
18241 {
18242 /* Initialize it due to a false compiler warning. */
18243 implicit_const = -1;
18244 }
18245
18246 if (abbrev_name == 0)
18247 break;
18248
18249 if (cur_abbrev->num_attrs == allocated_attrs)
18250 {
18251 allocated_attrs += ATTR_ALLOC_CHUNK;
18252 cur_attrs
18253 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18254 }
18255
18256 cur_attrs[cur_abbrev->num_attrs].name
18257 = (enum dwarf_attribute) abbrev_name;
18258 cur_attrs[cur_abbrev->num_attrs].form
18259 = (enum dwarf_form) abbrev_form;
18260 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18261 ++cur_abbrev->num_attrs;
18262 }
18263
18264 cur_abbrev->attrs =
18265 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18266 cur_abbrev->num_attrs);
18267 memcpy (cur_abbrev->attrs, cur_attrs,
18268 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18269
18270 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18271
18272 /* Get next abbreviation.
18273 Under Irix6 the abbreviations for a compilation unit are not
18274 always properly terminated with an abbrev number of 0.
18275 Exit loop if we encounter an abbreviation which we have
18276 already read (which means we are about to read the abbreviations
18277 for the next compile unit) or if the end of the abbreviation
18278 table is reached. */
18279 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18280 break;
18281 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18282 abbrev_ptr += bytes_read;
18283 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18284 break;
18285 }
18286
18287 xfree (cur_attrs);
18288 return abbrev_table;
18289 }
18290
18291 /* Returns nonzero if TAG represents a type that we might generate a partial
18292 symbol for. */
18293
18294 static int
18295 is_type_tag_for_partial (int tag)
18296 {
18297 switch (tag)
18298 {
18299 #if 0
18300 /* Some types that would be reasonable to generate partial symbols for,
18301 that we don't at present. */
18302 case DW_TAG_array_type:
18303 case DW_TAG_file_type:
18304 case DW_TAG_ptr_to_member_type:
18305 case DW_TAG_set_type:
18306 case DW_TAG_string_type:
18307 case DW_TAG_subroutine_type:
18308 #endif
18309 case DW_TAG_base_type:
18310 case DW_TAG_class_type:
18311 case DW_TAG_interface_type:
18312 case DW_TAG_enumeration_type:
18313 case DW_TAG_structure_type:
18314 case DW_TAG_subrange_type:
18315 case DW_TAG_typedef:
18316 case DW_TAG_union_type:
18317 return 1;
18318 default:
18319 return 0;
18320 }
18321 }
18322
18323 /* Load all DIEs that are interesting for partial symbols into memory. */
18324
18325 static struct partial_die_info *
18326 load_partial_dies (const struct die_reader_specs *reader,
18327 const gdb_byte *info_ptr, int building_psymtab)
18328 {
18329 struct dwarf2_cu *cu = reader->cu;
18330 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18331 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18332 unsigned int bytes_read;
18333 unsigned int load_all = 0;
18334 int nesting_level = 1;
18335
18336 parent_die = NULL;
18337 last_die = NULL;
18338
18339 gdb_assert (cu->per_cu != NULL);
18340 if (cu->per_cu->load_all_dies)
18341 load_all = 1;
18342
18343 cu->partial_dies
18344 = htab_create_alloc_ex (cu->header.length / 12,
18345 partial_die_hash,
18346 partial_die_eq,
18347 NULL,
18348 &cu->comp_unit_obstack,
18349 hashtab_obstack_allocate,
18350 dummy_obstack_deallocate);
18351
18352 while (1)
18353 {
18354 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18355
18356 /* A NULL abbrev means the end of a series of children. */
18357 if (abbrev == NULL)
18358 {
18359 if (--nesting_level == 0)
18360 return first_die;
18361
18362 info_ptr += bytes_read;
18363 last_die = parent_die;
18364 parent_die = parent_die->die_parent;
18365 continue;
18366 }
18367
18368 /* Check for template arguments. We never save these; if
18369 they're seen, we just mark the parent, and go on our way. */
18370 if (parent_die != NULL
18371 && cu->language == language_cplus
18372 && (abbrev->tag == DW_TAG_template_type_param
18373 || abbrev->tag == DW_TAG_template_value_param))
18374 {
18375 parent_die->has_template_arguments = 1;
18376
18377 if (!load_all)
18378 {
18379 /* We don't need a partial DIE for the template argument. */
18380 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18381 continue;
18382 }
18383 }
18384
18385 /* We only recurse into c++ subprograms looking for template arguments.
18386 Skip their other children. */
18387 if (!load_all
18388 && cu->language == language_cplus
18389 && parent_die != NULL
18390 && parent_die->tag == DW_TAG_subprogram)
18391 {
18392 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18393 continue;
18394 }
18395
18396 /* Check whether this DIE is interesting enough to save. Normally
18397 we would not be interested in members here, but there may be
18398 later variables referencing them via DW_AT_specification (for
18399 static members). */
18400 if (!load_all
18401 && !is_type_tag_for_partial (abbrev->tag)
18402 && abbrev->tag != DW_TAG_constant
18403 && abbrev->tag != DW_TAG_enumerator
18404 && abbrev->tag != DW_TAG_subprogram
18405 && abbrev->tag != DW_TAG_inlined_subroutine
18406 && abbrev->tag != DW_TAG_lexical_block
18407 && abbrev->tag != DW_TAG_variable
18408 && abbrev->tag != DW_TAG_namespace
18409 && abbrev->tag != DW_TAG_module
18410 && abbrev->tag != DW_TAG_member
18411 && abbrev->tag != DW_TAG_imported_unit
18412 && abbrev->tag != DW_TAG_imported_declaration)
18413 {
18414 /* Otherwise we skip to the next sibling, if any. */
18415 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18416 continue;
18417 }
18418
18419 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18420 abbrev);
18421
18422 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18423
18424 /* This two-pass algorithm for processing partial symbols has a
18425 high cost in cache pressure. Thus, handle some simple cases
18426 here which cover the majority of C partial symbols. DIEs
18427 which neither have specification tags in them, nor could have
18428 specification tags elsewhere pointing at them, can simply be
18429 processed and discarded.
18430
18431 This segment is also optional; scan_partial_symbols and
18432 add_partial_symbol will handle these DIEs if we chain
18433 them in normally. When compilers which do not emit large
18434 quantities of duplicate debug information are more common,
18435 this code can probably be removed. */
18436
18437 /* Any complete simple types at the top level (pretty much all
18438 of them, for a language without namespaces), can be processed
18439 directly. */
18440 if (parent_die == NULL
18441 && pdi.has_specification == 0
18442 && pdi.is_declaration == 0
18443 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18444 || pdi.tag == DW_TAG_base_type
18445 || pdi.tag == DW_TAG_subrange_type))
18446 {
18447 if (building_psymtab && pdi.name != NULL)
18448 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18449 VAR_DOMAIN, LOC_TYPEDEF, -1,
18450 psymbol_placement::STATIC,
18451 0, cu->language, objfile);
18452 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18453 continue;
18454 }
18455
18456 /* The exception for DW_TAG_typedef with has_children above is
18457 a workaround of GCC PR debug/47510. In the case of this complaint
18458 type_name_or_error will error on such types later.
18459
18460 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18461 it could not find the child DIEs referenced later, this is checked
18462 above. In correct DWARF DW_TAG_typedef should have no children. */
18463
18464 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18465 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18466 "- DIE at %s [in module %s]"),
18467 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18468
18469 /* If we're at the second level, and we're an enumerator, and
18470 our parent has no specification (meaning possibly lives in a
18471 namespace elsewhere), then we can add the partial symbol now
18472 instead of queueing it. */
18473 if (pdi.tag == DW_TAG_enumerator
18474 && parent_die != NULL
18475 && parent_die->die_parent == NULL
18476 && parent_die->tag == DW_TAG_enumeration_type
18477 && parent_die->has_specification == 0)
18478 {
18479 if (pdi.name == NULL)
18480 complaint (_("malformed enumerator DIE ignored"));
18481 else if (building_psymtab)
18482 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18483 VAR_DOMAIN, LOC_CONST, -1,
18484 cu->language == language_cplus
18485 ? psymbol_placement::GLOBAL
18486 : psymbol_placement::STATIC,
18487 0, cu->language, objfile);
18488
18489 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18490 continue;
18491 }
18492
18493 struct partial_die_info *part_die
18494 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18495
18496 /* We'll save this DIE so link it in. */
18497 part_die->die_parent = parent_die;
18498 part_die->die_sibling = NULL;
18499 part_die->die_child = NULL;
18500
18501 if (last_die && last_die == parent_die)
18502 last_die->die_child = part_die;
18503 else if (last_die)
18504 last_die->die_sibling = part_die;
18505
18506 last_die = part_die;
18507
18508 if (first_die == NULL)
18509 first_die = part_die;
18510
18511 /* Maybe add the DIE to the hash table. Not all DIEs that we
18512 find interesting need to be in the hash table, because we
18513 also have the parent/sibling/child chains; only those that we
18514 might refer to by offset later during partial symbol reading.
18515
18516 For now this means things that might have be the target of a
18517 DW_AT_specification, DW_AT_abstract_origin, or
18518 DW_AT_extension. DW_AT_extension will refer only to
18519 namespaces; DW_AT_abstract_origin refers to functions (and
18520 many things under the function DIE, but we do not recurse
18521 into function DIEs during partial symbol reading) and
18522 possibly variables as well; DW_AT_specification refers to
18523 declarations. Declarations ought to have the DW_AT_declaration
18524 flag. It happens that GCC forgets to put it in sometimes, but
18525 only for functions, not for types.
18526
18527 Adding more things than necessary to the hash table is harmless
18528 except for the performance cost. Adding too few will result in
18529 wasted time in find_partial_die, when we reread the compilation
18530 unit with load_all_dies set. */
18531
18532 if (load_all
18533 || abbrev->tag == DW_TAG_constant
18534 || abbrev->tag == DW_TAG_subprogram
18535 || abbrev->tag == DW_TAG_variable
18536 || abbrev->tag == DW_TAG_namespace
18537 || part_die->is_declaration)
18538 {
18539 void **slot;
18540
18541 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18542 to_underlying (part_die->sect_off),
18543 INSERT);
18544 *slot = part_die;
18545 }
18546
18547 /* For some DIEs we want to follow their children (if any). For C
18548 we have no reason to follow the children of structures; for other
18549 languages we have to, so that we can get at method physnames
18550 to infer fully qualified class names, for DW_AT_specification,
18551 and for C++ template arguments. For C++, we also look one level
18552 inside functions to find template arguments (if the name of the
18553 function does not already contain the template arguments).
18554
18555 For Ada, we need to scan the children of subprograms and lexical
18556 blocks as well because Ada allows the definition of nested
18557 entities that could be interesting for the debugger, such as
18558 nested subprograms for instance. */
18559 if (last_die->has_children
18560 && (load_all
18561 || last_die->tag == DW_TAG_namespace
18562 || last_die->tag == DW_TAG_module
18563 || last_die->tag == DW_TAG_enumeration_type
18564 || (cu->language == language_cplus
18565 && last_die->tag == DW_TAG_subprogram
18566 && (last_die->name == NULL
18567 || strchr (last_die->name, '<') == NULL))
18568 || (cu->language != language_c
18569 && (last_die->tag == DW_TAG_class_type
18570 || last_die->tag == DW_TAG_interface_type
18571 || last_die->tag == DW_TAG_structure_type
18572 || last_die->tag == DW_TAG_union_type))
18573 || (cu->language == language_ada
18574 && (last_die->tag == DW_TAG_subprogram
18575 || last_die->tag == DW_TAG_lexical_block))))
18576 {
18577 nesting_level++;
18578 parent_die = last_die;
18579 continue;
18580 }
18581
18582 /* Otherwise we skip to the next sibling, if any. */
18583 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18584
18585 /* Back to the top, do it again. */
18586 }
18587 }
18588
18589 partial_die_info::partial_die_info (sect_offset sect_off_,
18590 struct abbrev_info *abbrev)
18591 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18592 {
18593 }
18594
18595 /* Read a minimal amount of information into the minimal die structure.
18596 INFO_PTR should point just after the initial uleb128 of a DIE. */
18597
18598 const gdb_byte *
18599 partial_die_info::read (const struct die_reader_specs *reader,
18600 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18601 {
18602 struct dwarf2_cu *cu = reader->cu;
18603 struct dwarf2_per_objfile *dwarf2_per_objfile
18604 = cu->per_cu->dwarf2_per_objfile;
18605 unsigned int i;
18606 int has_low_pc_attr = 0;
18607 int has_high_pc_attr = 0;
18608 int high_pc_relative = 0;
18609
18610 for (i = 0; i < abbrev.num_attrs; ++i)
18611 {
18612 struct attribute attr;
18613
18614 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18615
18616 /* Store the data if it is of an attribute we want to keep in a
18617 partial symbol table. */
18618 switch (attr.name)
18619 {
18620 case DW_AT_name:
18621 switch (tag)
18622 {
18623 case DW_TAG_compile_unit:
18624 case DW_TAG_partial_unit:
18625 case DW_TAG_type_unit:
18626 /* Compilation units have a DW_AT_name that is a filename, not
18627 a source language identifier. */
18628 case DW_TAG_enumeration_type:
18629 case DW_TAG_enumerator:
18630 /* These tags always have simple identifiers already; no need
18631 to canonicalize them. */
18632 name = DW_STRING (&attr);
18633 break;
18634 default:
18635 {
18636 struct objfile *objfile = dwarf2_per_objfile->objfile;
18637
18638 name
18639 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18640 &objfile->per_bfd->storage_obstack);
18641 }
18642 break;
18643 }
18644 break;
18645 case DW_AT_linkage_name:
18646 case DW_AT_MIPS_linkage_name:
18647 /* Note that both forms of linkage name might appear. We
18648 assume they will be the same, and we only store the last
18649 one we see. */
18650 if (cu->language == language_ada)
18651 name = DW_STRING (&attr);
18652 linkage_name = DW_STRING (&attr);
18653 break;
18654 case DW_AT_low_pc:
18655 has_low_pc_attr = 1;
18656 lowpc = attr_value_as_address (&attr);
18657 break;
18658 case DW_AT_high_pc:
18659 has_high_pc_attr = 1;
18660 highpc = attr_value_as_address (&attr);
18661 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18662 high_pc_relative = 1;
18663 break;
18664 case DW_AT_location:
18665 /* Support the .debug_loc offsets. */
18666 if (attr_form_is_block (&attr))
18667 {
18668 d.locdesc = DW_BLOCK (&attr);
18669 }
18670 else if (attr_form_is_section_offset (&attr))
18671 {
18672 dwarf2_complex_location_expr_complaint ();
18673 }
18674 else
18675 {
18676 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18677 "partial symbol information");
18678 }
18679 break;
18680 case DW_AT_external:
18681 is_external = DW_UNSND (&attr);
18682 break;
18683 case DW_AT_declaration:
18684 is_declaration = DW_UNSND (&attr);
18685 break;
18686 case DW_AT_type:
18687 has_type = 1;
18688 break;
18689 case DW_AT_abstract_origin:
18690 case DW_AT_specification:
18691 case DW_AT_extension:
18692 has_specification = 1;
18693 spec_offset = dwarf2_get_ref_die_offset (&attr);
18694 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18695 || cu->per_cu->is_dwz);
18696 break;
18697 case DW_AT_sibling:
18698 /* Ignore absolute siblings, they might point outside of
18699 the current compile unit. */
18700 if (attr.form == DW_FORM_ref_addr)
18701 complaint (_("ignoring absolute DW_AT_sibling"));
18702 else
18703 {
18704 const gdb_byte *buffer = reader->buffer;
18705 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18706 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18707
18708 if (sibling_ptr < info_ptr)
18709 complaint (_("DW_AT_sibling points backwards"));
18710 else if (sibling_ptr > reader->buffer_end)
18711 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18712 else
18713 sibling = sibling_ptr;
18714 }
18715 break;
18716 case DW_AT_byte_size:
18717 has_byte_size = 1;
18718 break;
18719 case DW_AT_const_value:
18720 has_const_value = 1;
18721 break;
18722 case DW_AT_calling_convention:
18723 /* DWARF doesn't provide a way to identify a program's source-level
18724 entry point. DW_AT_calling_convention attributes are only meant
18725 to describe functions' calling conventions.
18726
18727 However, because it's a necessary piece of information in
18728 Fortran, and before DWARF 4 DW_CC_program was the only
18729 piece of debugging information whose definition refers to
18730 a 'main program' at all, several compilers marked Fortran
18731 main programs with DW_CC_program --- even when those
18732 functions use the standard calling conventions.
18733
18734 Although DWARF now specifies a way to provide this
18735 information, we support this practice for backward
18736 compatibility. */
18737 if (DW_UNSND (&attr) == DW_CC_program
18738 && cu->language == language_fortran)
18739 main_subprogram = 1;
18740 break;
18741 case DW_AT_inline:
18742 if (DW_UNSND (&attr) == DW_INL_inlined
18743 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18744 may_be_inlined = 1;
18745 break;
18746
18747 case DW_AT_import:
18748 if (tag == DW_TAG_imported_unit)
18749 {
18750 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18751 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18752 || cu->per_cu->is_dwz);
18753 }
18754 break;
18755
18756 case DW_AT_main_subprogram:
18757 main_subprogram = DW_UNSND (&attr);
18758 break;
18759
18760 case DW_AT_ranges:
18761 {
18762 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18763 but that requires a full DIE, so instead we just
18764 reimplement it. */
18765 int need_ranges_base = tag != DW_TAG_compile_unit;
18766 unsigned int ranges_offset = (DW_UNSND (&attr)
18767 + (need_ranges_base
18768 ? cu->ranges_base
18769 : 0));
18770
18771 /* Value of the DW_AT_ranges attribute is the offset in the
18772 .debug_ranges section. */
18773 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18774 nullptr))
18775 has_pc_info = 1;
18776 }
18777 break;
18778
18779 default:
18780 break;
18781 }
18782 }
18783
18784 if (high_pc_relative)
18785 highpc += lowpc;
18786
18787 if (has_low_pc_attr && has_high_pc_attr)
18788 {
18789 /* When using the GNU linker, .gnu.linkonce. sections are used to
18790 eliminate duplicate copies of functions and vtables and such.
18791 The linker will arbitrarily choose one and discard the others.
18792 The AT_*_pc values for such functions refer to local labels in
18793 these sections. If the section from that file was discarded, the
18794 labels are not in the output, so the relocs get a value of 0.
18795 If this is a discarded function, mark the pc bounds as invalid,
18796 so that GDB will ignore it. */
18797 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18798 {
18799 struct objfile *objfile = dwarf2_per_objfile->objfile;
18800 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18801
18802 complaint (_("DW_AT_low_pc %s is zero "
18803 "for DIE at %s [in module %s]"),
18804 paddress (gdbarch, lowpc),
18805 sect_offset_str (sect_off),
18806 objfile_name (objfile));
18807 }
18808 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18809 else if (lowpc >= highpc)
18810 {
18811 struct objfile *objfile = dwarf2_per_objfile->objfile;
18812 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18813
18814 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18815 "for DIE at %s [in module %s]"),
18816 paddress (gdbarch, lowpc),
18817 paddress (gdbarch, highpc),
18818 sect_offset_str (sect_off),
18819 objfile_name (objfile));
18820 }
18821 else
18822 has_pc_info = 1;
18823 }
18824
18825 return info_ptr;
18826 }
18827
18828 /* Find a cached partial DIE at OFFSET in CU. */
18829
18830 struct partial_die_info *
18831 dwarf2_cu::find_partial_die (sect_offset sect_off)
18832 {
18833 struct partial_die_info *lookup_die = NULL;
18834 struct partial_die_info part_die (sect_off);
18835
18836 lookup_die = ((struct partial_die_info *)
18837 htab_find_with_hash (partial_dies, &part_die,
18838 to_underlying (sect_off)));
18839
18840 return lookup_die;
18841 }
18842
18843 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18844 except in the case of .debug_types DIEs which do not reference
18845 outside their CU (they do however referencing other types via
18846 DW_FORM_ref_sig8). */
18847
18848 static const struct cu_partial_die_info
18849 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18850 {
18851 struct dwarf2_per_objfile *dwarf2_per_objfile
18852 = cu->per_cu->dwarf2_per_objfile;
18853 struct objfile *objfile = dwarf2_per_objfile->objfile;
18854 struct dwarf2_per_cu_data *per_cu = NULL;
18855 struct partial_die_info *pd = NULL;
18856
18857 if (offset_in_dwz == cu->per_cu->is_dwz
18858 && offset_in_cu_p (&cu->header, sect_off))
18859 {
18860 pd = cu->find_partial_die (sect_off);
18861 if (pd != NULL)
18862 return { cu, pd };
18863 /* We missed recording what we needed.
18864 Load all dies and try again. */
18865 per_cu = cu->per_cu;
18866 }
18867 else
18868 {
18869 /* TUs don't reference other CUs/TUs (except via type signatures). */
18870 if (cu->per_cu->is_debug_types)
18871 {
18872 error (_("Dwarf Error: Type Unit at offset %s contains"
18873 " external reference to offset %s [in module %s].\n"),
18874 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18875 bfd_get_filename (objfile->obfd));
18876 }
18877 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18878 dwarf2_per_objfile);
18879
18880 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18881 load_partial_comp_unit (per_cu);
18882
18883 per_cu->cu->last_used = 0;
18884 pd = per_cu->cu->find_partial_die (sect_off);
18885 }
18886
18887 /* If we didn't find it, and not all dies have been loaded,
18888 load them all and try again. */
18889
18890 if (pd == NULL && per_cu->load_all_dies == 0)
18891 {
18892 per_cu->load_all_dies = 1;
18893
18894 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18895 THIS_CU->cu may already be in use. So we can't just free it and
18896 replace its DIEs with the ones we read in. Instead, we leave those
18897 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18898 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18899 set. */
18900 load_partial_comp_unit (per_cu);
18901
18902 pd = per_cu->cu->find_partial_die (sect_off);
18903 }
18904
18905 if (pd == NULL)
18906 internal_error (__FILE__, __LINE__,
18907 _("could not find partial DIE %s "
18908 "in cache [from module %s]\n"),
18909 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18910 return { per_cu->cu, pd };
18911 }
18912
18913 /* See if we can figure out if the class lives in a namespace. We do
18914 this by looking for a member function; its demangled name will
18915 contain namespace info, if there is any. */
18916
18917 static void
18918 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18919 struct dwarf2_cu *cu)
18920 {
18921 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18922 what template types look like, because the demangler
18923 frequently doesn't give the same name as the debug info. We
18924 could fix this by only using the demangled name to get the
18925 prefix (but see comment in read_structure_type). */
18926
18927 struct partial_die_info *real_pdi;
18928 struct partial_die_info *child_pdi;
18929
18930 /* If this DIE (this DIE's specification, if any) has a parent, then
18931 we should not do this. We'll prepend the parent's fully qualified
18932 name when we create the partial symbol. */
18933
18934 real_pdi = struct_pdi;
18935 while (real_pdi->has_specification)
18936 {
18937 auto res = find_partial_die (real_pdi->spec_offset,
18938 real_pdi->spec_is_dwz, cu);
18939 real_pdi = res.pdi;
18940 cu = res.cu;
18941 }
18942
18943 if (real_pdi->die_parent != NULL)
18944 return;
18945
18946 for (child_pdi = struct_pdi->die_child;
18947 child_pdi != NULL;
18948 child_pdi = child_pdi->die_sibling)
18949 {
18950 if (child_pdi->tag == DW_TAG_subprogram
18951 && child_pdi->linkage_name != NULL)
18952 {
18953 char *actual_class_name
18954 = language_class_name_from_physname (cu->language_defn,
18955 child_pdi->linkage_name);
18956 if (actual_class_name != NULL)
18957 {
18958 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18959 struct_pdi->name
18960 = ((const char *)
18961 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18962 actual_class_name,
18963 strlen (actual_class_name)));
18964 xfree (actual_class_name);
18965 }
18966 break;
18967 }
18968 }
18969 }
18970
18971 void
18972 partial_die_info::fixup (struct dwarf2_cu *cu)
18973 {
18974 /* Once we've fixed up a die, there's no point in doing so again.
18975 This also avoids a memory leak if we were to call
18976 guess_partial_die_structure_name multiple times. */
18977 if (fixup_called)
18978 return;
18979
18980 /* If we found a reference attribute and the DIE has no name, try
18981 to find a name in the referred to DIE. */
18982
18983 if (name == NULL && has_specification)
18984 {
18985 struct partial_die_info *spec_die;
18986
18987 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18988 spec_die = res.pdi;
18989 cu = res.cu;
18990
18991 spec_die->fixup (cu);
18992
18993 if (spec_die->name)
18994 {
18995 name = spec_die->name;
18996
18997 /* Copy DW_AT_external attribute if it is set. */
18998 if (spec_die->is_external)
18999 is_external = spec_die->is_external;
19000 }
19001 }
19002
19003 /* Set default names for some unnamed DIEs. */
19004
19005 if (name == NULL && tag == DW_TAG_namespace)
19006 name = CP_ANONYMOUS_NAMESPACE_STR;
19007
19008 /* If there is no parent die to provide a namespace, and there are
19009 children, see if we can determine the namespace from their linkage
19010 name. */
19011 if (cu->language == language_cplus
19012 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19013 && die_parent == NULL
19014 && has_children
19015 && (tag == DW_TAG_class_type
19016 || tag == DW_TAG_structure_type
19017 || tag == DW_TAG_union_type))
19018 guess_partial_die_structure_name (this, cu);
19019
19020 /* GCC might emit a nameless struct or union that has a linkage
19021 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19022 if (name == NULL
19023 && (tag == DW_TAG_class_type
19024 || tag == DW_TAG_interface_type
19025 || tag == DW_TAG_structure_type
19026 || tag == DW_TAG_union_type)
19027 && linkage_name != NULL)
19028 {
19029 char *demangled;
19030
19031 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19032 if (demangled)
19033 {
19034 const char *base;
19035
19036 /* Strip any leading namespaces/classes, keep only the base name.
19037 DW_AT_name for named DIEs does not contain the prefixes. */
19038 base = strrchr (demangled, ':');
19039 if (base && base > demangled && base[-1] == ':')
19040 base++;
19041 else
19042 base = demangled;
19043
19044 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19045 name
19046 = ((const char *)
19047 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19048 base, strlen (base)));
19049 xfree (demangled);
19050 }
19051 }
19052
19053 fixup_called = 1;
19054 }
19055
19056 /* Read an attribute value described by an attribute form. */
19057
19058 static const gdb_byte *
19059 read_attribute_value (const struct die_reader_specs *reader,
19060 struct attribute *attr, unsigned form,
19061 LONGEST implicit_const, const gdb_byte *info_ptr)
19062 {
19063 struct dwarf2_cu *cu = reader->cu;
19064 struct dwarf2_per_objfile *dwarf2_per_objfile
19065 = cu->per_cu->dwarf2_per_objfile;
19066 struct objfile *objfile = dwarf2_per_objfile->objfile;
19067 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19068 bfd *abfd = reader->abfd;
19069 struct comp_unit_head *cu_header = &cu->header;
19070 unsigned int bytes_read;
19071 struct dwarf_block *blk;
19072
19073 attr->form = (enum dwarf_form) form;
19074 switch (form)
19075 {
19076 case DW_FORM_ref_addr:
19077 if (cu->header.version == 2)
19078 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19079 else
19080 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19081 &cu->header, &bytes_read);
19082 info_ptr += bytes_read;
19083 break;
19084 case DW_FORM_GNU_ref_alt:
19085 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19086 info_ptr += bytes_read;
19087 break;
19088 case DW_FORM_addr:
19089 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19090 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19091 info_ptr += bytes_read;
19092 break;
19093 case DW_FORM_block2:
19094 blk = dwarf_alloc_block (cu);
19095 blk->size = read_2_bytes (abfd, info_ptr);
19096 info_ptr += 2;
19097 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19098 info_ptr += blk->size;
19099 DW_BLOCK (attr) = blk;
19100 break;
19101 case DW_FORM_block4:
19102 blk = dwarf_alloc_block (cu);
19103 blk->size = read_4_bytes (abfd, info_ptr);
19104 info_ptr += 4;
19105 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19106 info_ptr += blk->size;
19107 DW_BLOCK (attr) = blk;
19108 break;
19109 case DW_FORM_data2:
19110 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19111 info_ptr += 2;
19112 break;
19113 case DW_FORM_data4:
19114 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19115 info_ptr += 4;
19116 break;
19117 case DW_FORM_data8:
19118 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19119 info_ptr += 8;
19120 break;
19121 case DW_FORM_data16:
19122 blk = dwarf_alloc_block (cu);
19123 blk->size = 16;
19124 blk->data = read_n_bytes (abfd, info_ptr, 16);
19125 info_ptr += 16;
19126 DW_BLOCK (attr) = blk;
19127 break;
19128 case DW_FORM_sec_offset:
19129 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19130 info_ptr += bytes_read;
19131 break;
19132 case DW_FORM_string:
19133 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19134 DW_STRING_IS_CANONICAL (attr) = 0;
19135 info_ptr += bytes_read;
19136 break;
19137 case DW_FORM_strp:
19138 if (!cu->per_cu->is_dwz)
19139 {
19140 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19141 abfd, info_ptr, cu_header,
19142 &bytes_read);
19143 DW_STRING_IS_CANONICAL (attr) = 0;
19144 info_ptr += bytes_read;
19145 break;
19146 }
19147 /* FALLTHROUGH */
19148 case DW_FORM_line_strp:
19149 if (!cu->per_cu->is_dwz)
19150 {
19151 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19152 abfd, info_ptr,
19153 cu_header, &bytes_read);
19154 DW_STRING_IS_CANONICAL (attr) = 0;
19155 info_ptr += bytes_read;
19156 break;
19157 }
19158 /* FALLTHROUGH */
19159 case DW_FORM_GNU_strp_alt:
19160 {
19161 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19162 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19163 &bytes_read);
19164
19165 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19166 dwz, str_offset);
19167 DW_STRING_IS_CANONICAL (attr) = 0;
19168 info_ptr += bytes_read;
19169 }
19170 break;
19171 case DW_FORM_exprloc:
19172 case DW_FORM_block:
19173 blk = dwarf_alloc_block (cu);
19174 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19175 info_ptr += bytes_read;
19176 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19177 info_ptr += blk->size;
19178 DW_BLOCK (attr) = blk;
19179 break;
19180 case DW_FORM_block1:
19181 blk = dwarf_alloc_block (cu);
19182 blk->size = read_1_byte (abfd, info_ptr);
19183 info_ptr += 1;
19184 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19185 info_ptr += blk->size;
19186 DW_BLOCK (attr) = blk;
19187 break;
19188 case DW_FORM_data1:
19189 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19190 info_ptr += 1;
19191 break;
19192 case DW_FORM_flag:
19193 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19194 info_ptr += 1;
19195 break;
19196 case DW_FORM_flag_present:
19197 DW_UNSND (attr) = 1;
19198 break;
19199 case DW_FORM_sdata:
19200 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19201 info_ptr += bytes_read;
19202 break;
19203 case DW_FORM_udata:
19204 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19205 info_ptr += bytes_read;
19206 break;
19207 case DW_FORM_ref1:
19208 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19209 + read_1_byte (abfd, info_ptr));
19210 info_ptr += 1;
19211 break;
19212 case DW_FORM_ref2:
19213 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19214 + read_2_bytes (abfd, info_ptr));
19215 info_ptr += 2;
19216 break;
19217 case DW_FORM_ref4:
19218 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19219 + read_4_bytes (abfd, info_ptr));
19220 info_ptr += 4;
19221 break;
19222 case DW_FORM_ref8:
19223 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19224 + read_8_bytes (abfd, info_ptr));
19225 info_ptr += 8;
19226 break;
19227 case DW_FORM_ref_sig8:
19228 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19229 info_ptr += 8;
19230 break;
19231 case DW_FORM_ref_udata:
19232 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19233 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19234 info_ptr += bytes_read;
19235 break;
19236 case DW_FORM_indirect:
19237 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19238 info_ptr += bytes_read;
19239 if (form == DW_FORM_implicit_const)
19240 {
19241 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19242 info_ptr += bytes_read;
19243 }
19244 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19245 info_ptr);
19246 break;
19247 case DW_FORM_implicit_const:
19248 DW_SND (attr) = implicit_const;
19249 break;
19250 case DW_FORM_addrx:
19251 case DW_FORM_GNU_addr_index:
19252 if (reader->dwo_file == NULL)
19253 {
19254 /* For now flag a hard error.
19255 Later we can turn this into a complaint. */
19256 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19257 dwarf_form_name (form),
19258 bfd_get_filename (abfd));
19259 }
19260 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19261 info_ptr += bytes_read;
19262 break;
19263 case DW_FORM_strx:
19264 case DW_FORM_strx1:
19265 case DW_FORM_strx2:
19266 case DW_FORM_strx3:
19267 case DW_FORM_strx4:
19268 case DW_FORM_GNU_str_index:
19269 if (reader->dwo_file == NULL)
19270 {
19271 /* For now flag a hard error.
19272 Later we can turn this into a complaint if warranted. */
19273 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19274 dwarf_form_name (form),
19275 bfd_get_filename (abfd));
19276 }
19277 {
19278 ULONGEST str_index;
19279 if (form == DW_FORM_strx1)
19280 {
19281 str_index = read_1_byte (abfd, info_ptr);
19282 info_ptr += 1;
19283 }
19284 else if (form == DW_FORM_strx2)
19285 {
19286 str_index = read_2_bytes (abfd, info_ptr);
19287 info_ptr += 2;
19288 }
19289 else if (form == DW_FORM_strx3)
19290 {
19291 str_index = read_3_bytes (abfd, info_ptr);
19292 info_ptr += 3;
19293 }
19294 else if (form == DW_FORM_strx4)
19295 {
19296 str_index = read_4_bytes (abfd, info_ptr);
19297 info_ptr += 4;
19298 }
19299 else
19300 {
19301 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19302 info_ptr += bytes_read;
19303 }
19304 DW_STRING (attr) = read_str_index (reader, str_index);
19305 DW_STRING_IS_CANONICAL (attr) = 0;
19306 }
19307 break;
19308 default:
19309 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19310 dwarf_form_name (form),
19311 bfd_get_filename (abfd));
19312 }
19313
19314 /* Super hack. */
19315 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19316 attr->form = DW_FORM_GNU_ref_alt;
19317
19318 /* We have seen instances where the compiler tried to emit a byte
19319 size attribute of -1 which ended up being encoded as an unsigned
19320 0xffffffff. Although 0xffffffff is technically a valid size value,
19321 an object of this size seems pretty unlikely so we can relatively
19322 safely treat these cases as if the size attribute was invalid and
19323 treat them as zero by default. */
19324 if (attr->name == DW_AT_byte_size
19325 && form == DW_FORM_data4
19326 && DW_UNSND (attr) >= 0xffffffff)
19327 {
19328 complaint
19329 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19330 hex_string (DW_UNSND (attr)));
19331 DW_UNSND (attr) = 0;
19332 }
19333
19334 return info_ptr;
19335 }
19336
19337 /* Read an attribute described by an abbreviated attribute. */
19338
19339 static const gdb_byte *
19340 read_attribute (const struct die_reader_specs *reader,
19341 struct attribute *attr, struct attr_abbrev *abbrev,
19342 const gdb_byte *info_ptr)
19343 {
19344 attr->name = abbrev->name;
19345 return read_attribute_value (reader, attr, abbrev->form,
19346 abbrev->implicit_const, info_ptr);
19347 }
19348
19349 /* Read dwarf information from a buffer. */
19350
19351 static unsigned int
19352 read_1_byte (bfd *abfd, const gdb_byte *buf)
19353 {
19354 return bfd_get_8 (abfd, buf);
19355 }
19356
19357 static int
19358 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19359 {
19360 return bfd_get_signed_8 (abfd, buf);
19361 }
19362
19363 static unsigned int
19364 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19365 {
19366 return bfd_get_16 (abfd, buf);
19367 }
19368
19369 static int
19370 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19371 {
19372 return bfd_get_signed_16 (abfd, buf);
19373 }
19374
19375 static unsigned int
19376 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19377 {
19378 unsigned int result = 0;
19379 for (int i = 0; i < 3; ++i)
19380 {
19381 unsigned char byte = bfd_get_8 (abfd, buf);
19382 buf++;
19383 result |= ((unsigned int) byte << (i * 8));
19384 }
19385 return result;
19386 }
19387
19388 static unsigned int
19389 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19390 {
19391 return bfd_get_32 (abfd, buf);
19392 }
19393
19394 static int
19395 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19396 {
19397 return bfd_get_signed_32 (abfd, buf);
19398 }
19399
19400 static ULONGEST
19401 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19402 {
19403 return bfd_get_64 (abfd, buf);
19404 }
19405
19406 static CORE_ADDR
19407 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19408 unsigned int *bytes_read)
19409 {
19410 struct comp_unit_head *cu_header = &cu->header;
19411 CORE_ADDR retval = 0;
19412
19413 if (cu_header->signed_addr_p)
19414 {
19415 switch (cu_header->addr_size)
19416 {
19417 case 2:
19418 retval = bfd_get_signed_16 (abfd, buf);
19419 break;
19420 case 4:
19421 retval = bfd_get_signed_32 (abfd, buf);
19422 break;
19423 case 8:
19424 retval = bfd_get_signed_64 (abfd, buf);
19425 break;
19426 default:
19427 internal_error (__FILE__, __LINE__,
19428 _("read_address: bad switch, signed [in module %s]"),
19429 bfd_get_filename (abfd));
19430 }
19431 }
19432 else
19433 {
19434 switch (cu_header->addr_size)
19435 {
19436 case 2:
19437 retval = bfd_get_16 (abfd, buf);
19438 break;
19439 case 4:
19440 retval = bfd_get_32 (abfd, buf);
19441 break;
19442 case 8:
19443 retval = bfd_get_64 (abfd, buf);
19444 break;
19445 default:
19446 internal_error (__FILE__, __LINE__,
19447 _("read_address: bad switch, "
19448 "unsigned [in module %s]"),
19449 bfd_get_filename (abfd));
19450 }
19451 }
19452
19453 *bytes_read = cu_header->addr_size;
19454 return retval;
19455 }
19456
19457 /* Read the initial length from a section. The (draft) DWARF 3
19458 specification allows the initial length to take up either 4 bytes
19459 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19460 bytes describe the length and all offsets will be 8 bytes in length
19461 instead of 4.
19462
19463 An older, non-standard 64-bit format is also handled by this
19464 function. The older format in question stores the initial length
19465 as an 8-byte quantity without an escape value. Lengths greater
19466 than 2^32 aren't very common which means that the initial 4 bytes
19467 is almost always zero. Since a length value of zero doesn't make
19468 sense for the 32-bit format, this initial zero can be considered to
19469 be an escape value which indicates the presence of the older 64-bit
19470 format. As written, the code can't detect (old format) lengths
19471 greater than 4GB. If it becomes necessary to handle lengths
19472 somewhat larger than 4GB, we could allow other small values (such
19473 as the non-sensical values of 1, 2, and 3) to also be used as
19474 escape values indicating the presence of the old format.
19475
19476 The value returned via bytes_read should be used to increment the
19477 relevant pointer after calling read_initial_length().
19478
19479 [ Note: read_initial_length() and read_offset() are based on the
19480 document entitled "DWARF Debugging Information Format", revision
19481 3, draft 8, dated November 19, 2001. This document was obtained
19482 from:
19483
19484 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19485
19486 This document is only a draft and is subject to change. (So beware.)
19487
19488 Details regarding the older, non-standard 64-bit format were
19489 determined empirically by examining 64-bit ELF files produced by
19490 the SGI toolchain on an IRIX 6.5 machine.
19491
19492 - Kevin, July 16, 2002
19493 ] */
19494
19495 static LONGEST
19496 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19497 {
19498 LONGEST length = bfd_get_32 (abfd, buf);
19499
19500 if (length == 0xffffffff)
19501 {
19502 length = bfd_get_64 (abfd, buf + 4);
19503 *bytes_read = 12;
19504 }
19505 else if (length == 0)
19506 {
19507 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19508 length = bfd_get_64 (abfd, buf);
19509 *bytes_read = 8;
19510 }
19511 else
19512 {
19513 *bytes_read = 4;
19514 }
19515
19516 return length;
19517 }
19518
19519 /* Cover function for read_initial_length.
19520 Returns the length of the object at BUF, and stores the size of the
19521 initial length in *BYTES_READ and stores the size that offsets will be in
19522 *OFFSET_SIZE.
19523 If the initial length size is not equivalent to that specified in
19524 CU_HEADER then issue a complaint.
19525 This is useful when reading non-comp-unit headers. */
19526
19527 static LONGEST
19528 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19529 const struct comp_unit_head *cu_header,
19530 unsigned int *bytes_read,
19531 unsigned int *offset_size)
19532 {
19533 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19534
19535 gdb_assert (cu_header->initial_length_size == 4
19536 || cu_header->initial_length_size == 8
19537 || cu_header->initial_length_size == 12);
19538
19539 if (cu_header->initial_length_size != *bytes_read)
19540 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19541
19542 *offset_size = (*bytes_read == 4) ? 4 : 8;
19543 return length;
19544 }
19545
19546 /* Read an offset from the data stream. The size of the offset is
19547 given by cu_header->offset_size. */
19548
19549 static LONGEST
19550 read_offset (bfd *abfd, const gdb_byte *buf,
19551 const struct comp_unit_head *cu_header,
19552 unsigned int *bytes_read)
19553 {
19554 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19555
19556 *bytes_read = cu_header->offset_size;
19557 return offset;
19558 }
19559
19560 /* Read an offset from the data stream. */
19561
19562 static LONGEST
19563 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19564 {
19565 LONGEST retval = 0;
19566
19567 switch (offset_size)
19568 {
19569 case 4:
19570 retval = bfd_get_32 (abfd, buf);
19571 break;
19572 case 8:
19573 retval = bfd_get_64 (abfd, buf);
19574 break;
19575 default:
19576 internal_error (__FILE__, __LINE__,
19577 _("read_offset_1: bad switch [in module %s]"),
19578 bfd_get_filename (abfd));
19579 }
19580
19581 return retval;
19582 }
19583
19584 static const gdb_byte *
19585 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19586 {
19587 /* If the size of a host char is 8 bits, we can return a pointer
19588 to the buffer, otherwise we have to copy the data to a buffer
19589 allocated on the temporary obstack. */
19590 gdb_assert (HOST_CHAR_BIT == 8);
19591 return buf;
19592 }
19593
19594 static const char *
19595 read_direct_string (bfd *abfd, const gdb_byte *buf,
19596 unsigned int *bytes_read_ptr)
19597 {
19598 /* If the size of a host char is 8 bits, we can return a pointer
19599 to the string, otherwise we have to copy the string to a buffer
19600 allocated on the temporary obstack. */
19601 gdb_assert (HOST_CHAR_BIT == 8);
19602 if (*buf == '\0')
19603 {
19604 *bytes_read_ptr = 1;
19605 return NULL;
19606 }
19607 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19608 return (const char *) buf;
19609 }
19610
19611 /* Return pointer to string at section SECT offset STR_OFFSET with error
19612 reporting strings FORM_NAME and SECT_NAME. */
19613
19614 static const char *
19615 read_indirect_string_at_offset_from (struct objfile *objfile,
19616 bfd *abfd, LONGEST str_offset,
19617 struct dwarf2_section_info *sect,
19618 const char *form_name,
19619 const char *sect_name)
19620 {
19621 dwarf2_read_section (objfile, sect);
19622 if (sect->buffer == NULL)
19623 error (_("%s used without %s section [in module %s]"),
19624 form_name, sect_name, bfd_get_filename (abfd));
19625 if (str_offset >= sect->size)
19626 error (_("%s pointing outside of %s section [in module %s]"),
19627 form_name, sect_name, bfd_get_filename (abfd));
19628 gdb_assert (HOST_CHAR_BIT == 8);
19629 if (sect->buffer[str_offset] == '\0')
19630 return NULL;
19631 return (const char *) (sect->buffer + str_offset);
19632 }
19633
19634 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19635
19636 static const char *
19637 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19638 bfd *abfd, LONGEST str_offset)
19639 {
19640 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19641 abfd, str_offset,
19642 &dwarf2_per_objfile->str,
19643 "DW_FORM_strp", ".debug_str");
19644 }
19645
19646 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19647
19648 static const char *
19649 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19650 bfd *abfd, LONGEST str_offset)
19651 {
19652 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19653 abfd, str_offset,
19654 &dwarf2_per_objfile->line_str,
19655 "DW_FORM_line_strp",
19656 ".debug_line_str");
19657 }
19658
19659 /* Read a string at offset STR_OFFSET in the .debug_str section from
19660 the .dwz file DWZ. Throw an error if the offset is too large. If
19661 the string consists of a single NUL byte, return NULL; otherwise
19662 return a pointer to the string. */
19663
19664 static const char *
19665 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19666 LONGEST str_offset)
19667 {
19668 dwarf2_read_section (objfile, &dwz->str);
19669
19670 if (dwz->str.buffer == NULL)
19671 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19672 "section [in module %s]"),
19673 bfd_get_filename (dwz->dwz_bfd));
19674 if (str_offset >= dwz->str.size)
19675 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19676 ".debug_str section [in module %s]"),
19677 bfd_get_filename (dwz->dwz_bfd));
19678 gdb_assert (HOST_CHAR_BIT == 8);
19679 if (dwz->str.buffer[str_offset] == '\0')
19680 return NULL;
19681 return (const char *) (dwz->str.buffer + str_offset);
19682 }
19683
19684 /* Return pointer to string at .debug_str offset as read from BUF.
19685 BUF is assumed to be in a compilation unit described by CU_HEADER.
19686 Return *BYTES_READ_PTR count of bytes read from BUF. */
19687
19688 static const char *
19689 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19690 const gdb_byte *buf,
19691 const struct comp_unit_head *cu_header,
19692 unsigned int *bytes_read_ptr)
19693 {
19694 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19695
19696 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19697 }
19698
19699 /* Return pointer to string at .debug_line_str offset as read from BUF.
19700 BUF is assumed to be in a compilation unit described by CU_HEADER.
19701 Return *BYTES_READ_PTR count of bytes read from BUF. */
19702
19703 static const char *
19704 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19705 bfd *abfd, const gdb_byte *buf,
19706 const struct comp_unit_head *cu_header,
19707 unsigned int *bytes_read_ptr)
19708 {
19709 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19710
19711 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19712 str_offset);
19713 }
19714
19715 ULONGEST
19716 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19717 unsigned int *bytes_read_ptr)
19718 {
19719 ULONGEST result;
19720 unsigned int num_read;
19721 int shift;
19722 unsigned char byte;
19723
19724 result = 0;
19725 shift = 0;
19726 num_read = 0;
19727 while (1)
19728 {
19729 byte = bfd_get_8 (abfd, buf);
19730 buf++;
19731 num_read++;
19732 result |= ((ULONGEST) (byte & 127) << shift);
19733 if ((byte & 128) == 0)
19734 {
19735 break;
19736 }
19737 shift += 7;
19738 }
19739 *bytes_read_ptr = num_read;
19740 return result;
19741 }
19742
19743 static LONGEST
19744 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19745 unsigned int *bytes_read_ptr)
19746 {
19747 ULONGEST result;
19748 int shift, num_read;
19749 unsigned char byte;
19750
19751 result = 0;
19752 shift = 0;
19753 num_read = 0;
19754 while (1)
19755 {
19756 byte = bfd_get_8 (abfd, buf);
19757 buf++;
19758 num_read++;
19759 result |= ((ULONGEST) (byte & 127) << shift);
19760 shift += 7;
19761 if ((byte & 128) == 0)
19762 {
19763 break;
19764 }
19765 }
19766 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19767 result |= -(((ULONGEST) 1) << shift);
19768 *bytes_read_ptr = num_read;
19769 return result;
19770 }
19771
19772 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19773 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19774 ADDR_SIZE is the size of addresses from the CU header. */
19775
19776 static CORE_ADDR
19777 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19778 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19779 {
19780 struct objfile *objfile = dwarf2_per_objfile->objfile;
19781 bfd *abfd = objfile->obfd;
19782 const gdb_byte *info_ptr;
19783
19784 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19785 if (dwarf2_per_objfile->addr.buffer == NULL)
19786 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19787 objfile_name (objfile));
19788 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19789 error (_("DW_FORM_addr_index pointing outside of "
19790 ".debug_addr section [in module %s]"),
19791 objfile_name (objfile));
19792 info_ptr = (dwarf2_per_objfile->addr.buffer
19793 + addr_base + addr_index * addr_size);
19794 if (addr_size == 4)
19795 return bfd_get_32 (abfd, info_ptr);
19796 else
19797 return bfd_get_64 (abfd, info_ptr);
19798 }
19799
19800 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19801
19802 static CORE_ADDR
19803 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19804 {
19805 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19806 cu->addr_base, cu->header.addr_size);
19807 }
19808
19809 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19810
19811 static CORE_ADDR
19812 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19813 unsigned int *bytes_read)
19814 {
19815 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19816 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19817
19818 return read_addr_index (cu, addr_index);
19819 }
19820
19821 /* Data structure to pass results from dwarf2_read_addr_index_reader
19822 back to dwarf2_read_addr_index. */
19823
19824 struct dwarf2_read_addr_index_data
19825 {
19826 ULONGEST addr_base;
19827 int addr_size;
19828 };
19829
19830 /* die_reader_func for dwarf2_read_addr_index. */
19831
19832 static void
19833 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19834 const gdb_byte *info_ptr,
19835 struct die_info *comp_unit_die,
19836 int has_children,
19837 void *data)
19838 {
19839 struct dwarf2_cu *cu = reader->cu;
19840 struct dwarf2_read_addr_index_data *aidata =
19841 (struct dwarf2_read_addr_index_data *) data;
19842
19843 aidata->addr_base = cu->addr_base;
19844 aidata->addr_size = cu->header.addr_size;
19845 }
19846
19847 /* Given an index in .debug_addr, fetch the value.
19848 NOTE: This can be called during dwarf expression evaluation,
19849 long after the debug information has been read, and thus per_cu->cu
19850 may no longer exist. */
19851
19852 CORE_ADDR
19853 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19854 unsigned int addr_index)
19855 {
19856 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19857 struct dwarf2_cu *cu = per_cu->cu;
19858 ULONGEST addr_base;
19859 int addr_size;
19860
19861 /* We need addr_base and addr_size.
19862 If we don't have PER_CU->cu, we have to get it.
19863 Nasty, but the alternative is storing the needed info in PER_CU,
19864 which at this point doesn't seem justified: it's not clear how frequently
19865 it would get used and it would increase the size of every PER_CU.
19866 Entry points like dwarf2_per_cu_addr_size do a similar thing
19867 so we're not in uncharted territory here.
19868 Alas we need to be a bit more complicated as addr_base is contained
19869 in the DIE.
19870
19871 We don't need to read the entire CU(/TU).
19872 We just need the header and top level die.
19873
19874 IWBN to use the aging mechanism to let us lazily later discard the CU.
19875 For now we skip this optimization. */
19876
19877 if (cu != NULL)
19878 {
19879 addr_base = cu->addr_base;
19880 addr_size = cu->header.addr_size;
19881 }
19882 else
19883 {
19884 struct dwarf2_read_addr_index_data aidata;
19885
19886 /* Note: We can't use init_cutu_and_read_dies_simple here,
19887 we need addr_base. */
19888 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19889 dwarf2_read_addr_index_reader, &aidata);
19890 addr_base = aidata.addr_base;
19891 addr_size = aidata.addr_size;
19892 }
19893
19894 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19895 addr_size);
19896 }
19897
19898 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
19899 This is only used by the Fission support. */
19900
19901 static const char *
19902 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19903 {
19904 struct dwarf2_cu *cu = reader->cu;
19905 struct dwarf2_per_objfile *dwarf2_per_objfile
19906 = cu->per_cu->dwarf2_per_objfile;
19907 struct objfile *objfile = dwarf2_per_objfile->objfile;
19908 const char *objf_name = objfile_name (objfile);
19909 bfd *abfd = objfile->obfd;
19910 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19911 struct dwarf2_section_info *str_offsets_section =
19912 &reader->dwo_file->sections.str_offsets;
19913 const gdb_byte *info_ptr;
19914 ULONGEST str_offset;
19915 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19916
19917 dwarf2_read_section (objfile, str_section);
19918 dwarf2_read_section (objfile, str_offsets_section);
19919 if (str_section->buffer == NULL)
19920 error (_("%s used without .debug_str.dwo section"
19921 " in CU at offset %s [in module %s]"),
19922 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19923 if (str_offsets_section->buffer == NULL)
19924 error (_("%s used without .debug_str_offsets.dwo section"
19925 " in CU at offset %s [in module %s]"),
19926 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19927 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19928 error (_("%s pointing outside of .debug_str_offsets.dwo"
19929 " section in CU at offset %s [in module %s]"),
19930 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19931 info_ptr = (str_offsets_section->buffer
19932 + str_index * cu->header.offset_size);
19933 if (cu->header.offset_size == 4)
19934 str_offset = bfd_get_32 (abfd, info_ptr);
19935 else
19936 str_offset = bfd_get_64 (abfd, info_ptr);
19937 if (str_offset >= str_section->size)
19938 error (_("Offset from %s pointing outside of"
19939 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19940 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19941 return (const char *) (str_section->buffer + str_offset);
19942 }
19943
19944 /* Return the length of an LEB128 number in BUF. */
19945
19946 static int
19947 leb128_size (const gdb_byte *buf)
19948 {
19949 const gdb_byte *begin = buf;
19950 gdb_byte byte;
19951
19952 while (1)
19953 {
19954 byte = *buf++;
19955 if ((byte & 128) == 0)
19956 return buf - begin;
19957 }
19958 }
19959
19960 static void
19961 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19962 {
19963 switch (lang)
19964 {
19965 case DW_LANG_C89:
19966 case DW_LANG_C99:
19967 case DW_LANG_C11:
19968 case DW_LANG_C:
19969 case DW_LANG_UPC:
19970 cu->language = language_c;
19971 break;
19972 case DW_LANG_Java:
19973 case DW_LANG_C_plus_plus:
19974 case DW_LANG_C_plus_plus_11:
19975 case DW_LANG_C_plus_plus_14:
19976 cu->language = language_cplus;
19977 break;
19978 case DW_LANG_D:
19979 cu->language = language_d;
19980 break;
19981 case DW_LANG_Fortran77:
19982 case DW_LANG_Fortran90:
19983 case DW_LANG_Fortran95:
19984 case DW_LANG_Fortran03:
19985 case DW_LANG_Fortran08:
19986 cu->language = language_fortran;
19987 break;
19988 case DW_LANG_Go:
19989 cu->language = language_go;
19990 break;
19991 case DW_LANG_Mips_Assembler:
19992 cu->language = language_asm;
19993 break;
19994 case DW_LANG_Ada83:
19995 case DW_LANG_Ada95:
19996 cu->language = language_ada;
19997 break;
19998 case DW_LANG_Modula2:
19999 cu->language = language_m2;
20000 break;
20001 case DW_LANG_Pascal83:
20002 cu->language = language_pascal;
20003 break;
20004 case DW_LANG_ObjC:
20005 cu->language = language_objc;
20006 break;
20007 case DW_LANG_Rust:
20008 case DW_LANG_Rust_old:
20009 cu->language = language_rust;
20010 break;
20011 case DW_LANG_Cobol74:
20012 case DW_LANG_Cobol85:
20013 default:
20014 cu->language = language_minimal;
20015 break;
20016 }
20017 cu->language_defn = language_def (cu->language);
20018 }
20019
20020 /* Return the named attribute or NULL if not there. */
20021
20022 static struct attribute *
20023 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20024 {
20025 for (;;)
20026 {
20027 unsigned int i;
20028 struct attribute *spec = NULL;
20029
20030 for (i = 0; i < die->num_attrs; ++i)
20031 {
20032 if (die->attrs[i].name == name)
20033 return &die->attrs[i];
20034 if (die->attrs[i].name == DW_AT_specification
20035 || die->attrs[i].name == DW_AT_abstract_origin)
20036 spec = &die->attrs[i];
20037 }
20038
20039 if (!spec)
20040 break;
20041
20042 die = follow_die_ref (die, spec, &cu);
20043 }
20044
20045 return NULL;
20046 }
20047
20048 /* Return the named attribute or NULL if not there,
20049 but do not follow DW_AT_specification, etc.
20050 This is for use in contexts where we're reading .debug_types dies.
20051 Following DW_AT_specification, DW_AT_abstract_origin will take us
20052 back up the chain, and we want to go down. */
20053
20054 static struct attribute *
20055 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20056 {
20057 unsigned int i;
20058
20059 for (i = 0; i < die->num_attrs; ++i)
20060 if (die->attrs[i].name == name)
20061 return &die->attrs[i];
20062
20063 return NULL;
20064 }
20065
20066 /* Return the string associated with a string-typed attribute, or NULL if it
20067 is either not found or is of an incorrect type. */
20068
20069 static const char *
20070 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20071 {
20072 struct attribute *attr;
20073 const char *str = NULL;
20074
20075 attr = dwarf2_attr (die, name, cu);
20076
20077 if (attr != NULL)
20078 {
20079 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20080 || attr->form == DW_FORM_string
20081 || attr->form == DW_FORM_strx
20082 || attr->form == DW_FORM_GNU_str_index
20083 || attr->form == DW_FORM_GNU_strp_alt)
20084 str = DW_STRING (attr);
20085 else
20086 complaint (_("string type expected for attribute %s for "
20087 "DIE at %s in module %s"),
20088 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20089 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20090 }
20091
20092 return str;
20093 }
20094
20095 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20096 and holds a non-zero value. This function should only be used for
20097 DW_FORM_flag or DW_FORM_flag_present attributes. */
20098
20099 static int
20100 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20101 {
20102 struct attribute *attr = dwarf2_attr (die, name, cu);
20103
20104 return (attr && DW_UNSND (attr));
20105 }
20106
20107 static int
20108 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20109 {
20110 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20111 which value is non-zero. However, we have to be careful with
20112 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20113 (via dwarf2_flag_true_p) follows this attribute. So we may
20114 end up accidently finding a declaration attribute that belongs
20115 to a different DIE referenced by the specification attribute,
20116 even though the given DIE does not have a declaration attribute. */
20117 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20118 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20119 }
20120
20121 /* Return the die giving the specification for DIE, if there is
20122 one. *SPEC_CU is the CU containing DIE on input, and the CU
20123 containing the return value on output. If there is no
20124 specification, but there is an abstract origin, that is
20125 returned. */
20126
20127 static struct die_info *
20128 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20129 {
20130 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20131 *spec_cu);
20132
20133 if (spec_attr == NULL)
20134 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20135
20136 if (spec_attr == NULL)
20137 return NULL;
20138 else
20139 return follow_die_ref (die, spec_attr, spec_cu);
20140 }
20141
20142 /* Stub for free_line_header to match void * callback types. */
20143
20144 static void
20145 free_line_header_voidp (void *arg)
20146 {
20147 struct line_header *lh = (struct line_header *) arg;
20148
20149 delete lh;
20150 }
20151
20152 void
20153 line_header::add_include_dir (const char *include_dir)
20154 {
20155 if (dwarf_line_debug >= 2)
20156 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20157 include_dirs.size () + 1, include_dir);
20158
20159 include_dirs.push_back (include_dir);
20160 }
20161
20162 void
20163 line_header::add_file_name (const char *name,
20164 dir_index d_index,
20165 unsigned int mod_time,
20166 unsigned int length)
20167 {
20168 if (dwarf_line_debug >= 2)
20169 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20170 (unsigned) file_names.size () + 1, name);
20171
20172 file_names.emplace_back (name, d_index, mod_time, length);
20173 }
20174
20175 /* A convenience function to find the proper .debug_line section for a CU. */
20176
20177 static struct dwarf2_section_info *
20178 get_debug_line_section (struct dwarf2_cu *cu)
20179 {
20180 struct dwarf2_section_info *section;
20181 struct dwarf2_per_objfile *dwarf2_per_objfile
20182 = cu->per_cu->dwarf2_per_objfile;
20183
20184 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20185 DWO file. */
20186 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20187 section = &cu->dwo_unit->dwo_file->sections.line;
20188 else if (cu->per_cu->is_dwz)
20189 {
20190 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20191
20192 section = &dwz->line;
20193 }
20194 else
20195 section = &dwarf2_per_objfile->line;
20196
20197 return section;
20198 }
20199
20200 /* Read directory or file name entry format, starting with byte of
20201 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20202 entries count and the entries themselves in the described entry
20203 format. */
20204
20205 static void
20206 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20207 bfd *abfd, const gdb_byte **bufp,
20208 struct line_header *lh,
20209 const struct comp_unit_head *cu_header,
20210 void (*callback) (struct line_header *lh,
20211 const char *name,
20212 dir_index d_index,
20213 unsigned int mod_time,
20214 unsigned int length))
20215 {
20216 gdb_byte format_count, formati;
20217 ULONGEST data_count, datai;
20218 const gdb_byte *buf = *bufp;
20219 const gdb_byte *format_header_data;
20220 unsigned int bytes_read;
20221
20222 format_count = read_1_byte (abfd, buf);
20223 buf += 1;
20224 format_header_data = buf;
20225 for (formati = 0; formati < format_count; formati++)
20226 {
20227 read_unsigned_leb128 (abfd, buf, &bytes_read);
20228 buf += bytes_read;
20229 read_unsigned_leb128 (abfd, buf, &bytes_read);
20230 buf += bytes_read;
20231 }
20232
20233 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20234 buf += bytes_read;
20235 for (datai = 0; datai < data_count; datai++)
20236 {
20237 const gdb_byte *format = format_header_data;
20238 struct file_entry fe;
20239
20240 for (formati = 0; formati < format_count; formati++)
20241 {
20242 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20243 format += bytes_read;
20244
20245 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20246 format += bytes_read;
20247
20248 gdb::optional<const char *> string;
20249 gdb::optional<unsigned int> uint;
20250
20251 switch (form)
20252 {
20253 case DW_FORM_string:
20254 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20255 buf += bytes_read;
20256 break;
20257
20258 case DW_FORM_line_strp:
20259 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20260 abfd, buf,
20261 cu_header,
20262 &bytes_read));
20263 buf += bytes_read;
20264 break;
20265
20266 case DW_FORM_data1:
20267 uint.emplace (read_1_byte (abfd, buf));
20268 buf += 1;
20269 break;
20270
20271 case DW_FORM_data2:
20272 uint.emplace (read_2_bytes (abfd, buf));
20273 buf += 2;
20274 break;
20275
20276 case DW_FORM_data4:
20277 uint.emplace (read_4_bytes (abfd, buf));
20278 buf += 4;
20279 break;
20280
20281 case DW_FORM_data8:
20282 uint.emplace (read_8_bytes (abfd, buf));
20283 buf += 8;
20284 break;
20285
20286 case DW_FORM_udata:
20287 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20288 buf += bytes_read;
20289 break;
20290
20291 case DW_FORM_block:
20292 /* It is valid only for DW_LNCT_timestamp which is ignored by
20293 current GDB. */
20294 break;
20295 }
20296
20297 switch (content_type)
20298 {
20299 case DW_LNCT_path:
20300 if (string.has_value ())
20301 fe.name = *string;
20302 break;
20303 case DW_LNCT_directory_index:
20304 if (uint.has_value ())
20305 fe.d_index = (dir_index) *uint;
20306 break;
20307 case DW_LNCT_timestamp:
20308 if (uint.has_value ())
20309 fe.mod_time = *uint;
20310 break;
20311 case DW_LNCT_size:
20312 if (uint.has_value ())
20313 fe.length = *uint;
20314 break;
20315 case DW_LNCT_MD5:
20316 break;
20317 default:
20318 complaint (_("Unknown format content type %s"),
20319 pulongest (content_type));
20320 }
20321 }
20322
20323 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20324 }
20325
20326 *bufp = buf;
20327 }
20328
20329 /* Read the statement program header starting at OFFSET in
20330 .debug_line, or .debug_line.dwo. Return a pointer
20331 to a struct line_header, allocated using xmalloc.
20332 Returns NULL if there is a problem reading the header, e.g., if it
20333 has a version we don't understand.
20334
20335 NOTE: the strings in the include directory and file name tables of
20336 the returned object point into the dwarf line section buffer,
20337 and must not be freed. */
20338
20339 static line_header_up
20340 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20341 {
20342 const gdb_byte *line_ptr;
20343 unsigned int bytes_read, offset_size;
20344 int i;
20345 const char *cur_dir, *cur_file;
20346 struct dwarf2_section_info *section;
20347 bfd *abfd;
20348 struct dwarf2_per_objfile *dwarf2_per_objfile
20349 = cu->per_cu->dwarf2_per_objfile;
20350
20351 section = get_debug_line_section (cu);
20352 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20353 if (section->buffer == NULL)
20354 {
20355 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20356 complaint (_("missing .debug_line.dwo section"));
20357 else
20358 complaint (_("missing .debug_line section"));
20359 return 0;
20360 }
20361
20362 /* We can't do this until we know the section is non-empty.
20363 Only then do we know we have such a section. */
20364 abfd = get_section_bfd_owner (section);
20365
20366 /* Make sure that at least there's room for the total_length field.
20367 That could be 12 bytes long, but we're just going to fudge that. */
20368 if (to_underlying (sect_off) + 4 >= section->size)
20369 {
20370 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20371 return 0;
20372 }
20373
20374 line_header_up lh (new line_header ());
20375
20376 lh->sect_off = sect_off;
20377 lh->offset_in_dwz = cu->per_cu->is_dwz;
20378
20379 line_ptr = section->buffer + to_underlying (sect_off);
20380
20381 /* Read in the header. */
20382 lh->total_length =
20383 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20384 &bytes_read, &offset_size);
20385 line_ptr += bytes_read;
20386 if (line_ptr + lh->total_length > (section->buffer + section->size))
20387 {
20388 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20389 return 0;
20390 }
20391 lh->statement_program_end = line_ptr + lh->total_length;
20392 lh->version = read_2_bytes (abfd, line_ptr);
20393 line_ptr += 2;
20394 if (lh->version > 5)
20395 {
20396 /* This is a version we don't understand. The format could have
20397 changed in ways we don't handle properly so just punt. */
20398 complaint (_("unsupported version in .debug_line section"));
20399 return NULL;
20400 }
20401 if (lh->version >= 5)
20402 {
20403 gdb_byte segment_selector_size;
20404
20405 /* Skip address size. */
20406 read_1_byte (abfd, line_ptr);
20407 line_ptr += 1;
20408
20409 segment_selector_size = read_1_byte (abfd, line_ptr);
20410 line_ptr += 1;
20411 if (segment_selector_size != 0)
20412 {
20413 complaint (_("unsupported segment selector size %u "
20414 "in .debug_line section"),
20415 segment_selector_size);
20416 return NULL;
20417 }
20418 }
20419 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20420 line_ptr += offset_size;
20421 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20422 line_ptr += 1;
20423 if (lh->version >= 4)
20424 {
20425 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20426 line_ptr += 1;
20427 }
20428 else
20429 lh->maximum_ops_per_instruction = 1;
20430
20431 if (lh->maximum_ops_per_instruction == 0)
20432 {
20433 lh->maximum_ops_per_instruction = 1;
20434 complaint (_("invalid maximum_ops_per_instruction "
20435 "in `.debug_line' section"));
20436 }
20437
20438 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20439 line_ptr += 1;
20440 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20441 line_ptr += 1;
20442 lh->line_range = read_1_byte (abfd, line_ptr);
20443 line_ptr += 1;
20444 lh->opcode_base = read_1_byte (abfd, line_ptr);
20445 line_ptr += 1;
20446 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20447
20448 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20449 for (i = 1; i < lh->opcode_base; ++i)
20450 {
20451 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20452 line_ptr += 1;
20453 }
20454
20455 if (lh->version >= 5)
20456 {
20457 /* Read directory table. */
20458 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20459 &cu->header,
20460 [] (struct line_header *header, const char *name,
20461 dir_index d_index, unsigned int mod_time,
20462 unsigned int length)
20463 {
20464 header->add_include_dir (name);
20465 });
20466
20467 /* Read file name table. */
20468 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20469 &cu->header,
20470 [] (struct line_header *header, const char *name,
20471 dir_index d_index, unsigned int mod_time,
20472 unsigned int length)
20473 {
20474 header->add_file_name (name, d_index, mod_time, length);
20475 });
20476 }
20477 else
20478 {
20479 /* Read directory table. */
20480 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20481 {
20482 line_ptr += bytes_read;
20483 lh->add_include_dir (cur_dir);
20484 }
20485 line_ptr += bytes_read;
20486
20487 /* Read file name table. */
20488 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20489 {
20490 unsigned int mod_time, length;
20491 dir_index d_index;
20492
20493 line_ptr += bytes_read;
20494 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20495 line_ptr += bytes_read;
20496 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20497 line_ptr += bytes_read;
20498 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20499 line_ptr += bytes_read;
20500
20501 lh->add_file_name (cur_file, d_index, mod_time, length);
20502 }
20503 line_ptr += bytes_read;
20504 }
20505 lh->statement_program_start = line_ptr;
20506
20507 if (line_ptr > (section->buffer + section->size))
20508 complaint (_("line number info header doesn't "
20509 "fit in `.debug_line' section"));
20510
20511 return lh;
20512 }
20513
20514 /* Subroutine of dwarf_decode_lines to simplify it.
20515 Return the file name of the psymtab for included file FILE_INDEX
20516 in line header LH of PST.
20517 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20518 If space for the result is malloc'd, *NAME_HOLDER will be set.
20519 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20520
20521 static const char *
20522 psymtab_include_file_name (const struct line_header *lh, int file_index,
20523 const struct partial_symtab *pst,
20524 const char *comp_dir,
20525 gdb::unique_xmalloc_ptr<char> *name_holder)
20526 {
20527 const file_entry &fe = lh->file_names[file_index];
20528 const char *include_name = fe.name;
20529 const char *include_name_to_compare = include_name;
20530 const char *pst_filename;
20531 int file_is_pst;
20532
20533 const char *dir_name = fe.include_dir (lh);
20534
20535 gdb::unique_xmalloc_ptr<char> hold_compare;
20536 if (!IS_ABSOLUTE_PATH (include_name)
20537 && (dir_name != NULL || comp_dir != NULL))
20538 {
20539 /* Avoid creating a duplicate psymtab for PST.
20540 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20541 Before we do the comparison, however, we need to account
20542 for DIR_NAME and COMP_DIR.
20543 First prepend dir_name (if non-NULL). If we still don't
20544 have an absolute path prepend comp_dir (if non-NULL).
20545 However, the directory we record in the include-file's
20546 psymtab does not contain COMP_DIR (to match the
20547 corresponding symtab(s)).
20548
20549 Example:
20550
20551 bash$ cd /tmp
20552 bash$ gcc -g ./hello.c
20553 include_name = "hello.c"
20554 dir_name = "."
20555 DW_AT_comp_dir = comp_dir = "/tmp"
20556 DW_AT_name = "./hello.c"
20557
20558 */
20559
20560 if (dir_name != NULL)
20561 {
20562 name_holder->reset (concat (dir_name, SLASH_STRING,
20563 include_name, (char *) NULL));
20564 include_name = name_holder->get ();
20565 include_name_to_compare = include_name;
20566 }
20567 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20568 {
20569 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20570 include_name, (char *) NULL));
20571 include_name_to_compare = hold_compare.get ();
20572 }
20573 }
20574
20575 pst_filename = pst->filename;
20576 gdb::unique_xmalloc_ptr<char> copied_name;
20577 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20578 {
20579 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20580 pst_filename, (char *) NULL));
20581 pst_filename = copied_name.get ();
20582 }
20583
20584 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20585
20586 if (file_is_pst)
20587 return NULL;
20588 return include_name;
20589 }
20590
20591 /* State machine to track the state of the line number program. */
20592
20593 class lnp_state_machine
20594 {
20595 public:
20596 /* Initialize a machine state for the start of a line number
20597 program. */
20598 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20599 bool record_lines_p);
20600
20601 file_entry *current_file ()
20602 {
20603 /* lh->file_names is 0-based, but the file name numbers in the
20604 statement program are 1-based. */
20605 return m_line_header->file_name_at (m_file);
20606 }
20607
20608 /* Record the line in the state machine. END_SEQUENCE is true if
20609 we're processing the end of a sequence. */
20610 void record_line (bool end_sequence);
20611
20612 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20613 nop-out rest of the lines in this sequence. */
20614 void check_line_address (struct dwarf2_cu *cu,
20615 const gdb_byte *line_ptr,
20616 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20617
20618 void handle_set_discriminator (unsigned int discriminator)
20619 {
20620 m_discriminator = discriminator;
20621 m_line_has_non_zero_discriminator |= discriminator != 0;
20622 }
20623
20624 /* Handle DW_LNE_set_address. */
20625 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20626 {
20627 m_op_index = 0;
20628 address += baseaddr;
20629 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20630 }
20631
20632 /* Handle DW_LNS_advance_pc. */
20633 void handle_advance_pc (CORE_ADDR adjust);
20634
20635 /* Handle a special opcode. */
20636 void handle_special_opcode (unsigned char op_code);
20637
20638 /* Handle DW_LNS_advance_line. */
20639 void handle_advance_line (int line_delta)
20640 {
20641 advance_line (line_delta);
20642 }
20643
20644 /* Handle DW_LNS_set_file. */
20645 void handle_set_file (file_name_index file);
20646
20647 /* Handle DW_LNS_negate_stmt. */
20648 void handle_negate_stmt ()
20649 {
20650 m_is_stmt = !m_is_stmt;
20651 }
20652
20653 /* Handle DW_LNS_const_add_pc. */
20654 void handle_const_add_pc ();
20655
20656 /* Handle DW_LNS_fixed_advance_pc. */
20657 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20658 {
20659 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20660 m_op_index = 0;
20661 }
20662
20663 /* Handle DW_LNS_copy. */
20664 void handle_copy ()
20665 {
20666 record_line (false);
20667 m_discriminator = 0;
20668 }
20669
20670 /* Handle DW_LNE_end_sequence. */
20671 void handle_end_sequence ()
20672 {
20673 m_currently_recording_lines = true;
20674 }
20675
20676 private:
20677 /* Advance the line by LINE_DELTA. */
20678 void advance_line (int line_delta)
20679 {
20680 m_line += line_delta;
20681
20682 if (line_delta != 0)
20683 m_line_has_non_zero_discriminator = m_discriminator != 0;
20684 }
20685
20686 struct dwarf2_cu *m_cu;
20687
20688 gdbarch *m_gdbarch;
20689
20690 /* True if we're recording lines.
20691 Otherwise we're building partial symtabs and are just interested in
20692 finding include files mentioned by the line number program. */
20693 bool m_record_lines_p;
20694
20695 /* The line number header. */
20696 line_header *m_line_header;
20697
20698 /* These are part of the standard DWARF line number state machine,
20699 and initialized according to the DWARF spec. */
20700
20701 unsigned char m_op_index = 0;
20702 /* The line table index (1-based) of the current file. */
20703 file_name_index m_file = (file_name_index) 1;
20704 unsigned int m_line = 1;
20705
20706 /* These are initialized in the constructor. */
20707
20708 CORE_ADDR m_address;
20709 bool m_is_stmt;
20710 unsigned int m_discriminator;
20711
20712 /* Additional bits of state we need to track. */
20713
20714 /* The last file that we called dwarf2_start_subfile for.
20715 This is only used for TLLs. */
20716 unsigned int m_last_file = 0;
20717 /* The last file a line number was recorded for. */
20718 struct subfile *m_last_subfile = NULL;
20719
20720 /* When true, record the lines we decode. */
20721 bool m_currently_recording_lines = false;
20722
20723 /* The last line number that was recorded, used to coalesce
20724 consecutive entries for the same line. This can happen, for
20725 example, when discriminators are present. PR 17276. */
20726 unsigned int m_last_line = 0;
20727 bool m_line_has_non_zero_discriminator = false;
20728 };
20729
20730 void
20731 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20732 {
20733 CORE_ADDR addr_adj = (((m_op_index + adjust)
20734 / m_line_header->maximum_ops_per_instruction)
20735 * m_line_header->minimum_instruction_length);
20736 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20737 m_op_index = ((m_op_index + adjust)
20738 % m_line_header->maximum_ops_per_instruction);
20739 }
20740
20741 void
20742 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20743 {
20744 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20745 CORE_ADDR addr_adj = (((m_op_index
20746 + (adj_opcode / m_line_header->line_range))
20747 / m_line_header->maximum_ops_per_instruction)
20748 * m_line_header->minimum_instruction_length);
20749 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20750 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20751 % m_line_header->maximum_ops_per_instruction);
20752
20753 int line_delta = (m_line_header->line_base
20754 + (adj_opcode % m_line_header->line_range));
20755 advance_line (line_delta);
20756 record_line (false);
20757 m_discriminator = 0;
20758 }
20759
20760 void
20761 lnp_state_machine::handle_set_file (file_name_index file)
20762 {
20763 m_file = file;
20764
20765 const file_entry *fe = current_file ();
20766 if (fe == NULL)
20767 dwarf2_debug_line_missing_file_complaint ();
20768 else if (m_record_lines_p)
20769 {
20770 const char *dir = fe->include_dir (m_line_header);
20771
20772 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20773 m_line_has_non_zero_discriminator = m_discriminator != 0;
20774 dwarf2_start_subfile (m_cu, fe->name, dir);
20775 }
20776 }
20777
20778 void
20779 lnp_state_machine::handle_const_add_pc ()
20780 {
20781 CORE_ADDR adjust
20782 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20783
20784 CORE_ADDR addr_adj
20785 = (((m_op_index + adjust)
20786 / m_line_header->maximum_ops_per_instruction)
20787 * m_line_header->minimum_instruction_length);
20788
20789 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20790 m_op_index = ((m_op_index + adjust)
20791 % m_line_header->maximum_ops_per_instruction);
20792 }
20793
20794 /* Return non-zero if we should add LINE to the line number table.
20795 LINE is the line to add, LAST_LINE is the last line that was added,
20796 LAST_SUBFILE is the subfile for LAST_LINE.
20797 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20798 had a non-zero discriminator.
20799
20800 We have to be careful in the presence of discriminators.
20801 E.g., for this line:
20802
20803 for (i = 0; i < 100000; i++);
20804
20805 clang can emit four line number entries for that one line,
20806 each with a different discriminator.
20807 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20808
20809 However, we want gdb to coalesce all four entries into one.
20810 Otherwise the user could stepi into the middle of the line and
20811 gdb would get confused about whether the pc really was in the
20812 middle of the line.
20813
20814 Things are further complicated by the fact that two consecutive
20815 line number entries for the same line is a heuristic used by gcc
20816 to denote the end of the prologue. So we can't just discard duplicate
20817 entries, we have to be selective about it. The heuristic we use is
20818 that we only collapse consecutive entries for the same line if at least
20819 one of those entries has a non-zero discriminator. PR 17276.
20820
20821 Note: Addresses in the line number state machine can never go backwards
20822 within one sequence, thus this coalescing is ok. */
20823
20824 static int
20825 dwarf_record_line_p (struct dwarf2_cu *cu,
20826 unsigned int line, unsigned int last_line,
20827 int line_has_non_zero_discriminator,
20828 struct subfile *last_subfile)
20829 {
20830 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20831 return 1;
20832 if (line != last_line)
20833 return 1;
20834 /* Same line for the same file that we've seen already.
20835 As a last check, for pr 17276, only record the line if the line
20836 has never had a non-zero discriminator. */
20837 if (!line_has_non_zero_discriminator)
20838 return 1;
20839 return 0;
20840 }
20841
20842 /* Use the CU's builder to record line number LINE beginning at
20843 address ADDRESS in the line table of subfile SUBFILE. */
20844
20845 static void
20846 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20847 unsigned int line, CORE_ADDR address,
20848 struct dwarf2_cu *cu)
20849 {
20850 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20851
20852 if (dwarf_line_debug)
20853 {
20854 fprintf_unfiltered (gdb_stdlog,
20855 "Recording line %u, file %s, address %s\n",
20856 line, lbasename (subfile->name),
20857 paddress (gdbarch, address));
20858 }
20859
20860 if (cu != nullptr)
20861 cu->get_builder ()->record_line (subfile, line, addr);
20862 }
20863
20864 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20865 Mark the end of a set of line number records.
20866 The arguments are the same as for dwarf_record_line_1.
20867 If SUBFILE is NULL the request is ignored. */
20868
20869 static void
20870 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20871 CORE_ADDR address, struct dwarf2_cu *cu)
20872 {
20873 if (subfile == NULL)
20874 return;
20875
20876 if (dwarf_line_debug)
20877 {
20878 fprintf_unfiltered (gdb_stdlog,
20879 "Finishing current line, file %s, address %s\n",
20880 lbasename (subfile->name),
20881 paddress (gdbarch, address));
20882 }
20883
20884 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20885 }
20886
20887 void
20888 lnp_state_machine::record_line (bool end_sequence)
20889 {
20890 if (dwarf_line_debug)
20891 {
20892 fprintf_unfiltered (gdb_stdlog,
20893 "Processing actual line %u: file %u,"
20894 " address %s, is_stmt %u, discrim %u\n",
20895 m_line, to_underlying (m_file),
20896 paddress (m_gdbarch, m_address),
20897 m_is_stmt, m_discriminator);
20898 }
20899
20900 file_entry *fe = current_file ();
20901
20902 if (fe == NULL)
20903 dwarf2_debug_line_missing_file_complaint ();
20904 /* For now we ignore lines not starting on an instruction boundary.
20905 But not when processing end_sequence for compatibility with the
20906 previous version of the code. */
20907 else if (m_op_index == 0 || end_sequence)
20908 {
20909 fe->included_p = 1;
20910 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20911 {
20912 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20913 || end_sequence)
20914 {
20915 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20916 m_currently_recording_lines ? m_cu : nullptr);
20917 }
20918
20919 if (!end_sequence)
20920 {
20921 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20922 m_line_has_non_zero_discriminator,
20923 m_last_subfile))
20924 {
20925 buildsym_compunit *builder = m_cu->get_builder ();
20926 dwarf_record_line_1 (m_gdbarch,
20927 builder->get_current_subfile (),
20928 m_line, m_address,
20929 m_currently_recording_lines ? m_cu : nullptr);
20930 }
20931 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20932 m_last_line = m_line;
20933 }
20934 }
20935 }
20936 }
20937
20938 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20939 line_header *lh, bool record_lines_p)
20940 {
20941 m_cu = cu;
20942 m_gdbarch = arch;
20943 m_record_lines_p = record_lines_p;
20944 m_line_header = lh;
20945
20946 m_currently_recording_lines = true;
20947
20948 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20949 was a line entry for it so that the backend has a chance to adjust it
20950 and also record it in case it needs it. This is currently used by MIPS
20951 code, cf. `mips_adjust_dwarf2_line'. */
20952 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20953 m_is_stmt = lh->default_is_stmt;
20954 m_discriminator = 0;
20955 }
20956
20957 void
20958 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20959 const gdb_byte *line_ptr,
20960 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20961 {
20962 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20963 the pc range of the CU. However, we restrict the test to only ADDRESS
20964 values of zero to preserve GDB's previous behaviour which is to handle
20965 the specific case of a function being GC'd by the linker. */
20966
20967 if (address == 0 && address < unrelocated_lowpc)
20968 {
20969 /* This line table is for a function which has been
20970 GCd by the linker. Ignore it. PR gdb/12528 */
20971
20972 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20973 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20974
20975 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20976 line_offset, objfile_name (objfile));
20977 m_currently_recording_lines = false;
20978 /* Note: m_currently_recording_lines is left as false until we see
20979 DW_LNE_end_sequence. */
20980 }
20981 }
20982
20983 /* Subroutine of dwarf_decode_lines to simplify it.
20984 Process the line number information in LH.
20985 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20986 program in order to set included_p for every referenced header. */
20987
20988 static void
20989 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20990 const int decode_for_pst_p, CORE_ADDR lowpc)
20991 {
20992 const gdb_byte *line_ptr, *extended_end;
20993 const gdb_byte *line_end;
20994 unsigned int bytes_read, extended_len;
20995 unsigned char op_code, extended_op;
20996 CORE_ADDR baseaddr;
20997 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20998 bfd *abfd = objfile->obfd;
20999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21000 /* True if we're recording line info (as opposed to building partial
21001 symtabs and just interested in finding include files mentioned by
21002 the line number program). */
21003 bool record_lines_p = !decode_for_pst_p;
21004
21005 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21006
21007 line_ptr = lh->statement_program_start;
21008 line_end = lh->statement_program_end;
21009
21010 /* Read the statement sequences until there's nothing left. */
21011 while (line_ptr < line_end)
21012 {
21013 /* The DWARF line number program state machine. Reset the state
21014 machine at the start of each sequence. */
21015 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21016 bool end_sequence = false;
21017
21018 if (record_lines_p)
21019 {
21020 /* Start a subfile for the current file of the state
21021 machine. */
21022 const file_entry *fe = state_machine.current_file ();
21023
21024 if (fe != NULL)
21025 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21026 }
21027
21028 /* Decode the table. */
21029 while (line_ptr < line_end && !end_sequence)
21030 {
21031 op_code = read_1_byte (abfd, line_ptr);
21032 line_ptr += 1;
21033
21034 if (op_code >= lh->opcode_base)
21035 {
21036 /* Special opcode. */
21037 state_machine.handle_special_opcode (op_code);
21038 }
21039 else switch (op_code)
21040 {
21041 case DW_LNS_extended_op:
21042 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21043 &bytes_read);
21044 line_ptr += bytes_read;
21045 extended_end = line_ptr + extended_len;
21046 extended_op = read_1_byte (abfd, line_ptr);
21047 line_ptr += 1;
21048 switch (extended_op)
21049 {
21050 case DW_LNE_end_sequence:
21051 state_machine.handle_end_sequence ();
21052 end_sequence = true;
21053 break;
21054 case DW_LNE_set_address:
21055 {
21056 CORE_ADDR address
21057 = read_address (abfd, line_ptr, cu, &bytes_read);
21058 line_ptr += bytes_read;
21059
21060 state_machine.check_line_address (cu, line_ptr,
21061 lowpc - baseaddr, address);
21062 state_machine.handle_set_address (baseaddr, address);
21063 }
21064 break;
21065 case DW_LNE_define_file:
21066 {
21067 const char *cur_file;
21068 unsigned int mod_time, length;
21069 dir_index dindex;
21070
21071 cur_file = read_direct_string (abfd, line_ptr,
21072 &bytes_read);
21073 line_ptr += bytes_read;
21074 dindex = (dir_index)
21075 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21076 line_ptr += bytes_read;
21077 mod_time =
21078 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21079 line_ptr += bytes_read;
21080 length =
21081 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21082 line_ptr += bytes_read;
21083 lh->add_file_name (cur_file, dindex, mod_time, length);
21084 }
21085 break;
21086 case DW_LNE_set_discriminator:
21087 {
21088 /* The discriminator is not interesting to the
21089 debugger; just ignore it. We still need to
21090 check its value though:
21091 if there are consecutive entries for the same
21092 (non-prologue) line we want to coalesce them.
21093 PR 17276. */
21094 unsigned int discr
21095 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21096 line_ptr += bytes_read;
21097
21098 state_machine.handle_set_discriminator (discr);
21099 }
21100 break;
21101 default:
21102 complaint (_("mangled .debug_line section"));
21103 return;
21104 }
21105 /* Make sure that we parsed the extended op correctly. If e.g.
21106 we expected a different address size than the producer used,
21107 we may have read the wrong number of bytes. */
21108 if (line_ptr != extended_end)
21109 {
21110 complaint (_("mangled .debug_line section"));
21111 return;
21112 }
21113 break;
21114 case DW_LNS_copy:
21115 state_machine.handle_copy ();
21116 break;
21117 case DW_LNS_advance_pc:
21118 {
21119 CORE_ADDR adjust
21120 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21121 line_ptr += bytes_read;
21122
21123 state_machine.handle_advance_pc (adjust);
21124 }
21125 break;
21126 case DW_LNS_advance_line:
21127 {
21128 int line_delta
21129 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21130 line_ptr += bytes_read;
21131
21132 state_machine.handle_advance_line (line_delta);
21133 }
21134 break;
21135 case DW_LNS_set_file:
21136 {
21137 file_name_index file
21138 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21139 &bytes_read);
21140 line_ptr += bytes_read;
21141
21142 state_machine.handle_set_file (file);
21143 }
21144 break;
21145 case DW_LNS_set_column:
21146 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21147 line_ptr += bytes_read;
21148 break;
21149 case DW_LNS_negate_stmt:
21150 state_machine.handle_negate_stmt ();
21151 break;
21152 case DW_LNS_set_basic_block:
21153 break;
21154 /* Add to the address register of the state machine the
21155 address increment value corresponding to special opcode
21156 255. I.e., this value is scaled by the minimum
21157 instruction length since special opcode 255 would have
21158 scaled the increment. */
21159 case DW_LNS_const_add_pc:
21160 state_machine.handle_const_add_pc ();
21161 break;
21162 case DW_LNS_fixed_advance_pc:
21163 {
21164 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21165 line_ptr += 2;
21166
21167 state_machine.handle_fixed_advance_pc (addr_adj);
21168 }
21169 break;
21170 default:
21171 {
21172 /* Unknown standard opcode, ignore it. */
21173 int i;
21174
21175 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21176 {
21177 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21178 line_ptr += bytes_read;
21179 }
21180 }
21181 }
21182 }
21183
21184 if (!end_sequence)
21185 dwarf2_debug_line_missing_end_sequence_complaint ();
21186
21187 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21188 in which case we still finish recording the last line). */
21189 state_machine.record_line (true);
21190 }
21191 }
21192
21193 /* Decode the Line Number Program (LNP) for the given line_header
21194 structure and CU. The actual information extracted and the type
21195 of structures created from the LNP depends on the value of PST.
21196
21197 1. If PST is NULL, then this procedure uses the data from the program
21198 to create all necessary symbol tables, and their linetables.
21199
21200 2. If PST is not NULL, this procedure reads the program to determine
21201 the list of files included by the unit represented by PST, and
21202 builds all the associated partial symbol tables.
21203
21204 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21205 It is used for relative paths in the line table.
21206 NOTE: When processing partial symtabs (pst != NULL),
21207 comp_dir == pst->dirname.
21208
21209 NOTE: It is important that psymtabs have the same file name (via strcmp)
21210 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21211 symtab we don't use it in the name of the psymtabs we create.
21212 E.g. expand_line_sal requires this when finding psymtabs to expand.
21213 A good testcase for this is mb-inline.exp.
21214
21215 LOWPC is the lowest address in CU (or 0 if not known).
21216
21217 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21218 for its PC<->lines mapping information. Otherwise only the filename
21219 table is read in. */
21220
21221 static void
21222 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21223 struct dwarf2_cu *cu, struct partial_symtab *pst,
21224 CORE_ADDR lowpc, int decode_mapping)
21225 {
21226 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21227 const int decode_for_pst_p = (pst != NULL);
21228
21229 if (decode_mapping)
21230 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21231
21232 if (decode_for_pst_p)
21233 {
21234 int file_index;
21235
21236 /* Now that we're done scanning the Line Header Program, we can
21237 create the psymtab of each included file. */
21238 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21239 if (lh->file_names[file_index].included_p == 1)
21240 {
21241 gdb::unique_xmalloc_ptr<char> name_holder;
21242 const char *include_name =
21243 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21244 &name_holder);
21245 if (include_name != NULL)
21246 dwarf2_create_include_psymtab (include_name, pst, objfile);
21247 }
21248 }
21249 else
21250 {
21251 /* Make sure a symtab is created for every file, even files
21252 which contain only variables (i.e. no code with associated
21253 line numbers). */
21254 buildsym_compunit *builder = cu->get_builder ();
21255 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21256 int i;
21257
21258 for (i = 0; i < lh->file_names.size (); i++)
21259 {
21260 file_entry &fe = lh->file_names[i];
21261
21262 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21263
21264 if (builder->get_current_subfile ()->symtab == NULL)
21265 {
21266 builder->get_current_subfile ()->symtab
21267 = allocate_symtab (cust,
21268 builder->get_current_subfile ()->name);
21269 }
21270 fe.symtab = builder->get_current_subfile ()->symtab;
21271 }
21272 }
21273 }
21274
21275 /* Start a subfile for DWARF. FILENAME is the name of the file and
21276 DIRNAME the name of the source directory which contains FILENAME
21277 or NULL if not known.
21278 This routine tries to keep line numbers from identical absolute and
21279 relative file names in a common subfile.
21280
21281 Using the `list' example from the GDB testsuite, which resides in
21282 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21283 of /srcdir/list0.c yields the following debugging information for list0.c:
21284
21285 DW_AT_name: /srcdir/list0.c
21286 DW_AT_comp_dir: /compdir
21287 files.files[0].name: list0.h
21288 files.files[0].dir: /srcdir
21289 files.files[1].name: list0.c
21290 files.files[1].dir: /srcdir
21291
21292 The line number information for list0.c has to end up in a single
21293 subfile, so that `break /srcdir/list0.c:1' works as expected.
21294 start_subfile will ensure that this happens provided that we pass the
21295 concatenation of files.files[1].dir and files.files[1].name as the
21296 subfile's name. */
21297
21298 static void
21299 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21300 const char *dirname)
21301 {
21302 char *copy = NULL;
21303
21304 /* In order not to lose the line information directory,
21305 we concatenate it to the filename when it makes sense.
21306 Note that the Dwarf3 standard says (speaking of filenames in line
21307 information): ``The directory index is ignored for file names
21308 that represent full path names''. Thus ignoring dirname in the
21309 `else' branch below isn't an issue. */
21310
21311 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21312 {
21313 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21314 filename = copy;
21315 }
21316
21317 cu->get_builder ()->start_subfile (filename);
21318
21319 if (copy != NULL)
21320 xfree (copy);
21321 }
21322
21323 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21324 buildsym_compunit constructor. */
21325
21326 struct compunit_symtab *
21327 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21328 CORE_ADDR low_pc)
21329 {
21330 gdb_assert (m_builder == nullptr);
21331
21332 m_builder.reset (new struct buildsym_compunit
21333 (per_cu->dwarf2_per_objfile->objfile,
21334 name, comp_dir, language, low_pc));
21335
21336 list_in_scope = get_builder ()->get_file_symbols ();
21337
21338 get_builder ()->record_debugformat ("DWARF 2");
21339 get_builder ()->record_producer (producer);
21340
21341 processing_has_namespace_info = false;
21342
21343 return get_builder ()->get_compunit_symtab ();
21344 }
21345
21346 static void
21347 var_decode_location (struct attribute *attr, struct symbol *sym,
21348 struct dwarf2_cu *cu)
21349 {
21350 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21351 struct comp_unit_head *cu_header = &cu->header;
21352
21353 /* NOTE drow/2003-01-30: There used to be a comment and some special
21354 code here to turn a symbol with DW_AT_external and a
21355 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21356 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21357 with some versions of binutils) where shared libraries could have
21358 relocations against symbols in their debug information - the
21359 minimal symbol would have the right address, but the debug info
21360 would not. It's no longer necessary, because we will explicitly
21361 apply relocations when we read in the debug information now. */
21362
21363 /* A DW_AT_location attribute with no contents indicates that a
21364 variable has been optimized away. */
21365 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21366 {
21367 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21368 return;
21369 }
21370
21371 /* Handle one degenerate form of location expression specially, to
21372 preserve GDB's previous behavior when section offsets are
21373 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21374 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21375
21376 if (attr_form_is_block (attr)
21377 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21378 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21379 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21380 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21381 && (DW_BLOCK (attr)->size
21382 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21383 {
21384 unsigned int dummy;
21385
21386 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21387 SYMBOL_VALUE_ADDRESS (sym) =
21388 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21389 else
21390 SYMBOL_VALUE_ADDRESS (sym) =
21391 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21392 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21393 fixup_symbol_section (sym, objfile);
21394 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21395 SYMBOL_SECTION (sym));
21396 return;
21397 }
21398
21399 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21400 expression evaluator, and use LOC_COMPUTED only when necessary
21401 (i.e. when the value of a register or memory location is
21402 referenced, or a thread-local block, etc.). Then again, it might
21403 not be worthwhile. I'm assuming that it isn't unless performance
21404 or memory numbers show me otherwise. */
21405
21406 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21407
21408 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21409 cu->has_loclist = true;
21410 }
21411
21412 /* Given a pointer to a DWARF information entry, figure out if we need
21413 to make a symbol table entry for it, and if so, create a new entry
21414 and return a pointer to it.
21415 If TYPE is NULL, determine symbol type from the die, otherwise
21416 used the passed type.
21417 If SPACE is not NULL, use it to hold the new symbol. If it is
21418 NULL, allocate a new symbol on the objfile's obstack. */
21419
21420 static struct symbol *
21421 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21422 struct symbol *space)
21423 {
21424 struct dwarf2_per_objfile *dwarf2_per_objfile
21425 = cu->per_cu->dwarf2_per_objfile;
21426 struct objfile *objfile = dwarf2_per_objfile->objfile;
21427 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21428 struct symbol *sym = NULL;
21429 const char *name;
21430 struct attribute *attr = NULL;
21431 struct attribute *attr2 = NULL;
21432 CORE_ADDR baseaddr;
21433 struct pending **list_to_add = NULL;
21434
21435 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21436
21437 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21438
21439 name = dwarf2_name (die, cu);
21440 if (name)
21441 {
21442 const char *linkagename;
21443 int suppress_add = 0;
21444
21445 if (space)
21446 sym = space;
21447 else
21448 sym = allocate_symbol (objfile);
21449 OBJSTAT (objfile, n_syms++);
21450
21451 /* Cache this symbol's name and the name's demangled form (if any). */
21452 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21453 linkagename = dwarf2_physname (name, die, cu);
21454 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21455
21456 /* Fortran does not have mangling standard and the mangling does differ
21457 between gfortran, iFort etc. */
21458 if (cu->language == language_fortran
21459 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21460 symbol_set_demangled_name (&(sym->ginfo),
21461 dwarf2_full_name (name, die, cu),
21462 NULL);
21463
21464 /* Default assumptions.
21465 Use the passed type or decode it from the die. */
21466 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21467 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21468 if (type != NULL)
21469 SYMBOL_TYPE (sym) = type;
21470 else
21471 SYMBOL_TYPE (sym) = die_type (die, cu);
21472 attr = dwarf2_attr (die,
21473 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21474 cu);
21475 if (attr)
21476 {
21477 SYMBOL_LINE (sym) = DW_UNSND (attr);
21478 }
21479
21480 attr = dwarf2_attr (die,
21481 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21482 cu);
21483 if (attr)
21484 {
21485 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21486 struct file_entry *fe;
21487
21488 if (cu->line_header != NULL)
21489 fe = cu->line_header->file_name_at (file_index);
21490 else
21491 fe = NULL;
21492
21493 if (fe == NULL)
21494 complaint (_("file index out of range"));
21495 else
21496 symbol_set_symtab (sym, fe->symtab);
21497 }
21498
21499 switch (die->tag)
21500 {
21501 case DW_TAG_label:
21502 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21503 if (attr)
21504 {
21505 CORE_ADDR addr;
21506
21507 addr = attr_value_as_address (attr);
21508 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21509 SYMBOL_VALUE_ADDRESS (sym) = addr;
21510 }
21511 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21512 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21513 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21514 add_symbol_to_list (sym, cu->list_in_scope);
21515 break;
21516 case DW_TAG_subprogram:
21517 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21518 finish_block. */
21519 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21520 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21521 if ((attr2 && (DW_UNSND (attr2) != 0))
21522 || cu->language == language_ada)
21523 {
21524 /* Subprograms marked external are stored as a global symbol.
21525 Ada subprograms, whether marked external or not, are always
21526 stored as a global symbol, because we want to be able to
21527 access them globally. For instance, we want to be able
21528 to break on a nested subprogram without having to
21529 specify the context. */
21530 list_to_add = cu->get_builder ()->get_global_symbols ();
21531 }
21532 else
21533 {
21534 list_to_add = cu->list_in_scope;
21535 }
21536 break;
21537 case DW_TAG_inlined_subroutine:
21538 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21539 finish_block. */
21540 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21541 SYMBOL_INLINED (sym) = 1;
21542 list_to_add = cu->list_in_scope;
21543 break;
21544 case DW_TAG_template_value_param:
21545 suppress_add = 1;
21546 /* Fall through. */
21547 case DW_TAG_constant:
21548 case DW_TAG_variable:
21549 case DW_TAG_member:
21550 /* Compilation with minimal debug info may result in
21551 variables with missing type entries. Change the
21552 misleading `void' type to something sensible. */
21553 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21554 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21555
21556 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21557 /* In the case of DW_TAG_member, we should only be called for
21558 static const members. */
21559 if (die->tag == DW_TAG_member)
21560 {
21561 /* dwarf2_add_field uses die_is_declaration,
21562 so we do the same. */
21563 gdb_assert (die_is_declaration (die, cu));
21564 gdb_assert (attr);
21565 }
21566 if (attr)
21567 {
21568 dwarf2_const_value (attr, sym, cu);
21569 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21570 if (!suppress_add)
21571 {
21572 if (attr2 && (DW_UNSND (attr2) != 0))
21573 list_to_add = cu->get_builder ()->get_global_symbols ();
21574 else
21575 list_to_add = cu->list_in_scope;
21576 }
21577 break;
21578 }
21579 attr = dwarf2_attr (die, DW_AT_location, cu);
21580 if (attr)
21581 {
21582 var_decode_location (attr, sym, cu);
21583 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21584
21585 /* Fortran explicitly imports any global symbols to the local
21586 scope by DW_TAG_common_block. */
21587 if (cu->language == language_fortran && die->parent
21588 && die->parent->tag == DW_TAG_common_block)
21589 attr2 = NULL;
21590
21591 if (SYMBOL_CLASS (sym) == LOC_STATIC
21592 && SYMBOL_VALUE_ADDRESS (sym) == 0
21593 && !dwarf2_per_objfile->has_section_at_zero)
21594 {
21595 /* When a static variable is eliminated by the linker,
21596 the corresponding debug information is not stripped
21597 out, but the variable address is set to null;
21598 do not add such variables into symbol table. */
21599 }
21600 else if (attr2 && (DW_UNSND (attr2) != 0))
21601 {
21602 /* Workaround gfortran PR debug/40040 - it uses
21603 DW_AT_location for variables in -fPIC libraries which may
21604 get overriden by other libraries/executable and get
21605 a different address. Resolve it by the minimal symbol
21606 which may come from inferior's executable using copy
21607 relocation. Make this workaround only for gfortran as for
21608 other compilers GDB cannot guess the minimal symbol
21609 Fortran mangling kind. */
21610 if (cu->language == language_fortran && die->parent
21611 && die->parent->tag == DW_TAG_module
21612 && cu->producer
21613 && startswith (cu->producer, "GNU Fortran"))
21614 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21615
21616 /* A variable with DW_AT_external is never static,
21617 but it may be block-scoped. */
21618 list_to_add
21619 = ((cu->list_in_scope
21620 == cu->get_builder ()->get_file_symbols ())
21621 ? cu->get_builder ()->get_global_symbols ()
21622 : cu->list_in_scope);
21623 }
21624 else
21625 list_to_add = cu->list_in_scope;
21626 }
21627 else
21628 {
21629 /* We do not know the address of this symbol.
21630 If it is an external symbol and we have type information
21631 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21632 The address of the variable will then be determined from
21633 the minimal symbol table whenever the variable is
21634 referenced. */
21635 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21636
21637 /* Fortran explicitly imports any global symbols to the local
21638 scope by DW_TAG_common_block. */
21639 if (cu->language == language_fortran && die->parent
21640 && die->parent->tag == DW_TAG_common_block)
21641 {
21642 /* SYMBOL_CLASS doesn't matter here because
21643 read_common_block is going to reset it. */
21644 if (!suppress_add)
21645 list_to_add = cu->list_in_scope;
21646 }
21647 else if (attr2 && (DW_UNSND (attr2) != 0)
21648 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21649 {
21650 /* A variable with DW_AT_external is never static, but it
21651 may be block-scoped. */
21652 list_to_add
21653 = ((cu->list_in_scope
21654 == cu->get_builder ()->get_file_symbols ())
21655 ? cu->get_builder ()->get_global_symbols ()
21656 : cu->list_in_scope);
21657
21658 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21659 }
21660 else if (!die_is_declaration (die, cu))
21661 {
21662 /* Use the default LOC_OPTIMIZED_OUT class. */
21663 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21664 if (!suppress_add)
21665 list_to_add = cu->list_in_scope;
21666 }
21667 }
21668 break;
21669 case DW_TAG_formal_parameter:
21670 {
21671 /* If we are inside a function, mark this as an argument. If
21672 not, we might be looking at an argument to an inlined function
21673 when we do not have enough information to show inlined frames;
21674 pretend it's a local variable in that case so that the user can
21675 still see it. */
21676 struct context_stack *curr
21677 = cu->get_builder ()->get_current_context_stack ();
21678 if (curr != nullptr && curr->name != nullptr)
21679 SYMBOL_IS_ARGUMENT (sym) = 1;
21680 attr = dwarf2_attr (die, DW_AT_location, cu);
21681 if (attr)
21682 {
21683 var_decode_location (attr, sym, cu);
21684 }
21685 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21686 if (attr)
21687 {
21688 dwarf2_const_value (attr, sym, cu);
21689 }
21690
21691 list_to_add = cu->list_in_scope;
21692 }
21693 break;
21694 case DW_TAG_unspecified_parameters:
21695 /* From varargs functions; gdb doesn't seem to have any
21696 interest in this information, so just ignore it for now.
21697 (FIXME?) */
21698 break;
21699 case DW_TAG_template_type_param:
21700 suppress_add = 1;
21701 /* Fall through. */
21702 case DW_TAG_class_type:
21703 case DW_TAG_interface_type:
21704 case DW_TAG_structure_type:
21705 case DW_TAG_union_type:
21706 case DW_TAG_set_type:
21707 case DW_TAG_enumeration_type:
21708 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21709 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21710
21711 {
21712 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21713 really ever be static objects: otherwise, if you try
21714 to, say, break of a class's method and you're in a file
21715 which doesn't mention that class, it won't work unless
21716 the check for all static symbols in lookup_symbol_aux
21717 saves you. See the OtherFileClass tests in
21718 gdb.c++/namespace.exp. */
21719
21720 if (!suppress_add)
21721 {
21722 buildsym_compunit *builder = cu->get_builder ();
21723 list_to_add
21724 = (cu->list_in_scope == builder->get_file_symbols ()
21725 && cu->language == language_cplus
21726 ? builder->get_global_symbols ()
21727 : cu->list_in_scope);
21728
21729 /* The semantics of C++ state that "struct foo {
21730 ... }" also defines a typedef for "foo". */
21731 if (cu->language == language_cplus
21732 || cu->language == language_ada
21733 || cu->language == language_d
21734 || cu->language == language_rust)
21735 {
21736 /* The symbol's name is already allocated along
21737 with this objfile, so we don't need to
21738 duplicate it for the type. */
21739 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21740 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21741 }
21742 }
21743 }
21744 break;
21745 case DW_TAG_typedef:
21746 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21747 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21748 list_to_add = cu->list_in_scope;
21749 break;
21750 case DW_TAG_base_type:
21751 case DW_TAG_subrange_type:
21752 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21753 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21754 list_to_add = cu->list_in_scope;
21755 break;
21756 case DW_TAG_enumerator:
21757 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21758 if (attr)
21759 {
21760 dwarf2_const_value (attr, sym, cu);
21761 }
21762 {
21763 /* NOTE: carlton/2003-11-10: See comment above in the
21764 DW_TAG_class_type, etc. block. */
21765
21766 list_to_add
21767 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21768 && cu->language == language_cplus
21769 ? cu->get_builder ()->get_global_symbols ()
21770 : cu->list_in_scope);
21771 }
21772 break;
21773 case DW_TAG_imported_declaration:
21774 case DW_TAG_namespace:
21775 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21776 list_to_add = cu->get_builder ()->get_global_symbols ();
21777 break;
21778 case DW_TAG_module:
21779 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21780 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21781 list_to_add = cu->get_builder ()->get_global_symbols ();
21782 break;
21783 case DW_TAG_common_block:
21784 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21785 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21786 add_symbol_to_list (sym, cu->list_in_scope);
21787 break;
21788 default:
21789 /* Not a tag we recognize. Hopefully we aren't processing
21790 trash data, but since we must specifically ignore things
21791 we don't recognize, there is nothing else we should do at
21792 this point. */
21793 complaint (_("unsupported tag: '%s'"),
21794 dwarf_tag_name (die->tag));
21795 break;
21796 }
21797
21798 if (suppress_add)
21799 {
21800 sym->hash_next = objfile->template_symbols;
21801 objfile->template_symbols = sym;
21802 list_to_add = NULL;
21803 }
21804
21805 if (list_to_add != NULL)
21806 add_symbol_to_list (sym, list_to_add);
21807
21808 /* For the benefit of old versions of GCC, check for anonymous
21809 namespaces based on the demangled name. */
21810 if (!cu->processing_has_namespace_info
21811 && cu->language == language_cplus)
21812 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21813 }
21814 return (sym);
21815 }
21816
21817 /* Given an attr with a DW_FORM_dataN value in host byte order,
21818 zero-extend it as appropriate for the symbol's type. The DWARF
21819 standard (v4) is not entirely clear about the meaning of using
21820 DW_FORM_dataN for a constant with a signed type, where the type is
21821 wider than the data. The conclusion of a discussion on the DWARF
21822 list was that this is unspecified. We choose to always zero-extend
21823 because that is the interpretation long in use by GCC. */
21824
21825 static gdb_byte *
21826 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21827 struct dwarf2_cu *cu, LONGEST *value, int bits)
21828 {
21829 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21830 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21831 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21832 LONGEST l = DW_UNSND (attr);
21833
21834 if (bits < sizeof (*value) * 8)
21835 {
21836 l &= ((LONGEST) 1 << bits) - 1;
21837 *value = l;
21838 }
21839 else if (bits == sizeof (*value) * 8)
21840 *value = l;
21841 else
21842 {
21843 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21844 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21845 return bytes;
21846 }
21847
21848 return NULL;
21849 }
21850
21851 /* Read a constant value from an attribute. Either set *VALUE, or if
21852 the value does not fit in *VALUE, set *BYTES - either already
21853 allocated on the objfile obstack, or newly allocated on OBSTACK,
21854 or, set *BATON, if we translated the constant to a location
21855 expression. */
21856
21857 static void
21858 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21859 const char *name, struct obstack *obstack,
21860 struct dwarf2_cu *cu,
21861 LONGEST *value, const gdb_byte **bytes,
21862 struct dwarf2_locexpr_baton **baton)
21863 {
21864 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21865 struct comp_unit_head *cu_header = &cu->header;
21866 struct dwarf_block *blk;
21867 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21868 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21869
21870 *value = 0;
21871 *bytes = NULL;
21872 *baton = NULL;
21873
21874 switch (attr->form)
21875 {
21876 case DW_FORM_addr:
21877 case DW_FORM_addrx:
21878 case DW_FORM_GNU_addr_index:
21879 {
21880 gdb_byte *data;
21881
21882 if (TYPE_LENGTH (type) != cu_header->addr_size)
21883 dwarf2_const_value_length_mismatch_complaint (name,
21884 cu_header->addr_size,
21885 TYPE_LENGTH (type));
21886 /* Symbols of this form are reasonably rare, so we just
21887 piggyback on the existing location code rather than writing
21888 a new implementation of symbol_computed_ops. */
21889 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21890 (*baton)->per_cu = cu->per_cu;
21891 gdb_assert ((*baton)->per_cu);
21892
21893 (*baton)->size = 2 + cu_header->addr_size;
21894 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21895 (*baton)->data = data;
21896
21897 data[0] = DW_OP_addr;
21898 store_unsigned_integer (&data[1], cu_header->addr_size,
21899 byte_order, DW_ADDR (attr));
21900 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21901 }
21902 break;
21903 case DW_FORM_string:
21904 case DW_FORM_strp:
21905 case DW_FORM_strx:
21906 case DW_FORM_GNU_str_index:
21907 case DW_FORM_GNU_strp_alt:
21908 /* DW_STRING is already allocated on the objfile obstack, point
21909 directly to it. */
21910 *bytes = (const gdb_byte *) DW_STRING (attr);
21911 break;
21912 case DW_FORM_block1:
21913 case DW_FORM_block2:
21914 case DW_FORM_block4:
21915 case DW_FORM_block:
21916 case DW_FORM_exprloc:
21917 case DW_FORM_data16:
21918 blk = DW_BLOCK (attr);
21919 if (TYPE_LENGTH (type) != blk->size)
21920 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21921 TYPE_LENGTH (type));
21922 *bytes = blk->data;
21923 break;
21924
21925 /* The DW_AT_const_value attributes are supposed to carry the
21926 symbol's value "represented as it would be on the target
21927 architecture." By the time we get here, it's already been
21928 converted to host endianness, so we just need to sign- or
21929 zero-extend it as appropriate. */
21930 case DW_FORM_data1:
21931 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21932 break;
21933 case DW_FORM_data2:
21934 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21935 break;
21936 case DW_FORM_data4:
21937 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21938 break;
21939 case DW_FORM_data8:
21940 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21941 break;
21942
21943 case DW_FORM_sdata:
21944 case DW_FORM_implicit_const:
21945 *value = DW_SND (attr);
21946 break;
21947
21948 case DW_FORM_udata:
21949 *value = DW_UNSND (attr);
21950 break;
21951
21952 default:
21953 complaint (_("unsupported const value attribute form: '%s'"),
21954 dwarf_form_name (attr->form));
21955 *value = 0;
21956 break;
21957 }
21958 }
21959
21960
21961 /* Copy constant value from an attribute to a symbol. */
21962
21963 static void
21964 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21965 struct dwarf2_cu *cu)
21966 {
21967 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21968 LONGEST value;
21969 const gdb_byte *bytes;
21970 struct dwarf2_locexpr_baton *baton;
21971
21972 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21973 SYMBOL_PRINT_NAME (sym),
21974 &objfile->objfile_obstack, cu,
21975 &value, &bytes, &baton);
21976
21977 if (baton != NULL)
21978 {
21979 SYMBOL_LOCATION_BATON (sym) = baton;
21980 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21981 }
21982 else if (bytes != NULL)
21983 {
21984 SYMBOL_VALUE_BYTES (sym) = bytes;
21985 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21986 }
21987 else
21988 {
21989 SYMBOL_VALUE (sym) = value;
21990 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21991 }
21992 }
21993
21994 /* Return the type of the die in question using its DW_AT_type attribute. */
21995
21996 static struct type *
21997 die_type (struct die_info *die, struct dwarf2_cu *cu)
21998 {
21999 struct attribute *type_attr;
22000
22001 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22002 if (!type_attr)
22003 {
22004 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22005 /* A missing DW_AT_type represents a void type. */
22006 return objfile_type (objfile)->builtin_void;
22007 }
22008
22009 return lookup_die_type (die, type_attr, cu);
22010 }
22011
22012 /* True iff CU's producer generates GNAT Ada auxiliary information
22013 that allows to find parallel types through that information instead
22014 of having to do expensive parallel lookups by type name. */
22015
22016 static int
22017 need_gnat_info (struct dwarf2_cu *cu)
22018 {
22019 /* Assume that the Ada compiler was GNAT, which always produces
22020 the auxiliary information. */
22021 return (cu->language == language_ada);
22022 }
22023
22024 /* Return the auxiliary type of the die in question using its
22025 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22026 attribute is not present. */
22027
22028 static struct type *
22029 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22030 {
22031 struct attribute *type_attr;
22032
22033 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22034 if (!type_attr)
22035 return NULL;
22036
22037 return lookup_die_type (die, type_attr, cu);
22038 }
22039
22040 /* If DIE has a descriptive_type attribute, then set the TYPE's
22041 descriptive type accordingly. */
22042
22043 static void
22044 set_descriptive_type (struct type *type, struct die_info *die,
22045 struct dwarf2_cu *cu)
22046 {
22047 struct type *descriptive_type = die_descriptive_type (die, cu);
22048
22049 if (descriptive_type)
22050 {
22051 ALLOCATE_GNAT_AUX_TYPE (type);
22052 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22053 }
22054 }
22055
22056 /* Return the containing type of the die in question using its
22057 DW_AT_containing_type attribute. */
22058
22059 static struct type *
22060 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22061 {
22062 struct attribute *type_attr;
22063 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22064
22065 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22066 if (!type_attr)
22067 error (_("Dwarf Error: Problem turning containing type into gdb type "
22068 "[in module %s]"), objfile_name (objfile));
22069
22070 return lookup_die_type (die, type_attr, cu);
22071 }
22072
22073 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22074
22075 static struct type *
22076 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22077 {
22078 struct dwarf2_per_objfile *dwarf2_per_objfile
22079 = cu->per_cu->dwarf2_per_objfile;
22080 struct objfile *objfile = dwarf2_per_objfile->objfile;
22081 char *saved;
22082
22083 std::string message
22084 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22085 objfile_name (objfile),
22086 sect_offset_str (cu->header.sect_off),
22087 sect_offset_str (die->sect_off));
22088 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22089 message.c_str (), message.length ());
22090
22091 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22092 }
22093
22094 /* Look up the type of DIE in CU using its type attribute ATTR.
22095 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22096 DW_AT_containing_type.
22097 If there is no type substitute an error marker. */
22098
22099 static struct type *
22100 lookup_die_type (struct die_info *die, const struct attribute *attr,
22101 struct dwarf2_cu *cu)
22102 {
22103 struct dwarf2_per_objfile *dwarf2_per_objfile
22104 = cu->per_cu->dwarf2_per_objfile;
22105 struct objfile *objfile = dwarf2_per_objfile->objfile;
22106 struct type *this_type;
22107
22108 gdb_assert (attr->name == DW_AT_type
22109 || attr->name == DW_AT_GNAT_descriptive_type
22110 || attr->name == DW_AT_containing_type);
22111
22112 /* First see if we have it cached. */
22113
22114 if (attr->form == DW_FORM_GNU_ref_alt)
22115 {
22116 struct dwarf2_per_cu_data *per_cu;
22117 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22118
22119 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22120 dwarf2_per_objfile);
22121 this_type = get_die_type_at_offset (sect_off, per_cu);
22122 }
22123 else if (attr_form_is_ref (attr))
22124 {
22125 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22126
22127 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22128 }
22129 else if (attr->form == DW_FORM_ref_sig8)
22130 {
22131 ULONGEST signature = DW_SIGNATURE (attr);
22132
22133 return get_signatured_type (die, signature, cu);
22134 }
22135 else
22136 {
22137 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22138 " at %s [in module %s]"),
22139 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22140 objfile_name (objfile));
22141 return build_error_marker_type (cu, die);
22142 }
22143
22144 /* If not cached we need to read it in. */
22145
22146 if (this_type == NULL)
22147 {
22148 struct die_info *type_die = NULL;
22149 struct dwarf2_cu *type_cu = cu;
22150
22151 if (attr_form_is_ref (attr))
22152 type_die = follow_die_ref (die, attr, &type_cu);
22153 if (type_die == NULL)
22154 return build_error_marker_type (cu, die);
22155 /* If we find the type now, it's probably because the type came
22156 from an inter-CU reference and the type's CU got expanded before
22157 ours. */
22158 this_type = read_type_die (type_die, type_cu);
22159 }
22160
22161 /* If we still don't have a type use an error marker. */
22162
22163 if (this_type == NULL)
22164 return build_error_marker_type (cu, die);
22165
22166 return this_type;
22167 }
22168
22169 /* Return the type in DIE, CU.
22170 Returns NULL for invalid types.
22171
22172 This first does a lookup in die_type_hash,
22173 and only reads the die in if necessary.
22174
22175 NOTE: This can be called when reading in partial or full symbols. */
22176
22177 static struct type *
22178 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22179 {
22180 struct type *this_type;
22181
22182 this_type = get_die_type (die, cu);
22183 if (this_type)
22184 return this_type;
22185
22186 return read_type_die_1 (die, cu);
22187 }
22188
22189 /* Read the type in DIE, CU.
22190 Returns NULL for invalid types. */
22191
22192 static struct type *
22193 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22194 {
22195 struct type *this_type = NULL;
22196
22197 switch (die->tag)
22198 {
22199 case DW_TAG_class_type:
22200 case DW_TAG_interface_type:
22201 case DW_TAG_structure_type:
22202 case DW_TAG_union_type:
22203 this_type = read_structure_type (die, cu);
22204 break;
22205 case DW_TAG_enumeration_type:
22206 this_type = read_enumeration_type (die, cu);
22207 break;
22208 case DW_TAG_subprogram:
22209 case DW_TAG_subroutine_type:
22210 case DW_TAG_inlined_subroutine:
22211 this_type = read_subroutine_type (die, cu);
22212 break;
22213 case DW_TAG_array_type:
22214 this_type = read_array_type (die, cu);
22215 break;
22216 case DW_TAG_set_type:
22217 this_type = read_set_type (die, cu);
22218 break;
22219 case DW_TAG_pointer_type:
22220 this_type = read_tag_pointer_type (die, cu);
22221 break;
22222 case DW_TAG_ptr_to_member_type:
22223 this_type = read_tag_ptr_to_member_type (die, cu);
22224 break;
22225 case DW_TAG_reference_type:
22226 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22227 break;
22228 case DW_TAG_rvalue_reference_type:
22229 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22230 break;
22231 case DW_TAG_const_type:
22232 this_type = read_tag_const_type (die, cu);
22233 break;
22234 case DW_TAG_volatile_type:
22235 this_type = read_tag_volatile_type (die, cu);
22236 break;
22237 case DW_TAG_restrict_type:
22238 this_type = read_tag_restrict_type (die, cu);
22239 break;
22240 case DW_TAG_string_type:
22241 this_type = read_tag_string_type (die, cu);
22242 break;
22243 case DW_TAG_typedef:
22244 this_type = read_typedef (die, cu);
22245 break;
22246 case DW_TAG_subrange_type:
22247 this_type = read_subrange_type (die, cu);
22248 break;
22249 case DW_TAG_base_type:
22250 this_type = read_base_type (die, cu);
22251 break;
22252 case DW_TAG_unspecified_type:
22253 this_type = read_unspecified_type (die, cu);
22254 break;
22255 case DW_TAG_namespace:
22256 this_type = read_namespace_type (die, cu);
22257 break;
22258 case DW_TAG_module:
22259 this_type = read_module_type (die, cu);
22260 break;
22261 case DW_TAG_atomic_type:
22262 this_type = read_tag_atomic_type (die, cu);
22263 break;
22264 default:
22265 complaint (_("unexpected tag in read_type_die: '%s'"),
22266 dwarf_tag_name (die->tag));
22267 break;
22268 }
22269
22270 return this_type;
22271 }
22272
22273 /* See if we can figure out if the class lives in a namespace. We do
22274 this by looking for a member function; its demangled name will
22275 contain namespace info, if there is any.
22276 Return the computed name or NULL.
22277 Space for the result is allocated on the objfile's obstack.
22278 This is the full-die version of guess_partial_die_structure_name.
22279 In this case we know DIE has no useful parent. */
22280
22281 static char *
22282 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22283 {
22284 struct die_info *spec_die;
22285 struct dwarf2_cu *spec_cu;
22286 struct die_info *child;
22287 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22288
22289 spec_cu = cu;
22290 spec_die = die_specification (die, &spec_cu);
22291 if (spec_die != NULL)
22292 {
22293 die = spec_die;
22294 cu = spec_cu;
22295 }
22296
22297 for (child = die->child;
22298 child != NULL;
22299 child = child->sibling)
22300 {
22301 if (child->tag == DW_TAG_subprogram)
22302 {
22303 const char *linkage_name = dw2_linkage_name (child, cu);
22304
22305 if (linkage_name != NULL)
22306 {
22307 char *actual_name
22308 = language_class_name_from_physname (cu->language_defn,
22309 linkage_name);
22310 char *name = NULL;
22311
22312 if (actual_name != NULL)
22313 {
22314 const char *die_name = dwarf2_name (die, cu);
22315
22316 if (die_name != NULL
22317 && strcmp (die_name, actual_name) != 0)
22318 {
22319 /* Strip off the class name from the full name.
22320 We want the prefix. */
22321 int die_name_len = strlen (die_name);
22322 int actual_name_len = strlen (actual_name);
22323
22324 /* Test for '::' as a sanity check. */
22325 if (actual_name_len > die_name_len + 2
22326 && actual_name[actual_name_len
22327 - die_name_len - 1] == ':')
22328 name = (char *) obstack_copy0 (
22329 &objfile->per_bfd->storage_obstack,
22330 actual_name, actual_name_len - die_name_len - 2);
22331 }
22332 }
22333 xfree (actual_name);
22334 return name;
22335 }
22336 }
22337 }
22338
22339 return NULL;
22340 }
22341
22342 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22343 prefix part in such case. See
22344 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22345
22346 static const char *
22347 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22348 {
22349 struct attribute *attr;
22350 const char *base;
22351
22352 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22353 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22354 return NULL;
22355
22356 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22357 return NULL;
22358
22359 attr = dw2_linkage_name_attr (die, cu);
22360 if (attr == NULL || DW_STRING (attr) == NULL)
22361 return NULL;
22362
22363 /* dwarf2_name had to be already called. */
22364 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22365
22366 /* Strip the base name, keep any leading namespaces/classes. */
22367 base = strrchr (DW_STRING (attr), ':');
22368 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22369 return "";
22370
22371 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22372 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22373 DW_STRING (attr),
22374 &base[-1] - DW_STRING (attr));
22375 }
22376
22377 /* Return the name of the namespace/class that DIE is defined within,
22378 or "" if we can't tell. The caller should not xfree the result.
22379
22380 For example, if we're within the method foo() in the following
22381 code:
22382
22383 namespace N {
22384 class C {
22385 void foo () {
22386 }
22387 };
22388 }
22389
22390 then determine_prefix on foo's die will return "N::C". */
22391
22392 static const char *
22393 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22394 {
22395 struct dwarf2_per_objfile *dwarf2_per_objfile
22396 = cu->per_cu->dwarf2_per_objfile;
22397 struct die_info *parent, *spec_die;
22398 struct dwarf2_cu *spec_cu;
22399 struct type *parent_type;
22400 const char *retval;
22401
22402 if (cu->language != language_cplus
22403 && cu->language != language_fortran && cu->language != language_d
22404 && cu->language != language_rust)
22405 return "";
22406
22407 retval = anonymous_struct_prefix (die, cu);
22408 if (retval)
22409 return retval;
22410
22411 /* We have to be careful in the presence of DW_AT_specification.
22412 For example, with GCC 3.4, given the code
22413
22414 namespace N {
22415 void foo() {
22416 // Definition of N::foo.
22417 }
22418 }
22419
22420 then we'll have a tree of DIEs like this:
22421
22422 1: DW_TAG_compile_unit
22423 2: DW_TAG_namespace // N
22424 3: DW_TAG_subprogram // declaration of N::foo
22425 4: DW_TAG_subprogram // definition of N::foo
22426 DW_AT_specification // refers to die #3
22427
22428 Thus, when processing die #4, we have to pretend that we're in
22429 the context of its DW_AT_specification, namely the contex of die
22430 #3. */
22431 spec_cu = cu;
22432 spec_die = die_specification (die, &spec_cu);
22433 if (spec_die == NULL)
22434 parent = die->parent;
22435 else
22436 {
22437 parent = spec_die->parent;
22438 cu = spec_cu;
22439 }
22440
22441 if (parent == NULL)
22442 return "";
22443 else if (parent->building_fullname)
22444 {
22445 const char *name;
22446 const char *parent_name;
22447
22448 /* It has been seen on RealView 2.2 built binaries,
22449 DW_TAG_template_type_param types actually _defined_ as
22450 children of the parent class:
22451
22452 enum E {};
22453 template class <class Enum> Class{};
22454 Class<enum E> class_e;
22455
22456 1: DW_TAG_class_type (Class)
22457 2: DW_TAG_enumeration_type (E)
22458 3: DW_TAG_enumerator (enum1:0)
22459 3: DW_TAG_enumerator (enum2:1)
22460 ...
22461 2: DW_TAG_template_type_param
22462 DW_AT_type DW_FORM_ref_udata (E)
22463
22464 Besides being broken debug info, it can put GDB into an
22465 infinite loop. Consider:
22466
22467 When we're building the full name for Class<E>, we'll start
22468 at Class, and go look over its template type parameters,
22469 finding E. We'll then try to build the full name of E, and
22470 reach here. We're now trying to build the full name of E,
22471 and look over the parent DIE for containing scope. In the
22472 broken case, if we followed the parent DIE of E, we'd again
22473 find Class, and once again go look at its template type
22474 arguments, etc., etc. Simply don't consider such parent die
22475 as source-level parent of this die (it can't be, the language
22476 doesn't allow it), and break the loop here. */
22477 name = dwarf2_name (die, cu);
22478 parent_name = dwarf2_name (parent, cu);
22479 complaint (_("template param type '%s' defined within parent '%s'"),
22480 name ? name : "<unknown>",
22481 parent_name ? parent_name : "<unknown>");
22482 return "";
22483 }
22484 else
22485 switch (parent->tag)
22486 {
22487 case DW_TAG_namespace:
22488 parent_type = read_type_die (parent, cu);
22489 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22490 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22491 Work around this problem here. */
22492 if (cu->language == language_cplus
22493 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22494 return "";
22495 /* We give a name to even anonymous namespaces. */
22496 return TYPE_NAME (parent_type);
22497 case DW_TAG_class_type:
22498 case DW_TAG_interface_type:
22499 case DW_TAG_structure_type:
22500 case DW_TAG_union_type:
22501 case DW_TAG_module:
22502 parent_type = read_type_die (parent, cu);
22503 if (TYPE_NAME (parent_type) != NULL)
22504 return TYPE_NAME (parent_type);
22505 else
22506 /* An anonymous structure is only allowed non-static data
22507 members; no typedefs, no member functions, et cetera.
22508 So it does not need a prefix. */
22509 return "";
22510 case DW_TAG_compile_unit:
22511 case DW_TAG_partial_unit:
22512 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22513 if (cu->language == language_cplus
22514 && !dwarf2_per_objfile->types.empty ()
22515 && die->child != NULL
22516 && (die->tag == DW_TAG_class_type
22517 || die->tag == DW_TAG_structure_type
22518 || die->tag == DW_TAG_union_type))
22519 {
22520 char *name = guess_full_die_structure_name (die, cu);
22521 if (name != NULL)
22522 return name;
22523 }
22524 return "";
22525 case DW_TAG_enumeration_type:
22526 parent_type = read_type_die (parent, cu);
22527 if (TYPE_DECLARED_CLASS (parent_type))
22528 {
22529 if (TYPE_NAME (parent_type) != NULL)
22530 return TYPE_NAME (parent_type);
22531 return "";
22532 }
22533 /* Fall through. */
22534 default:
22535 return determine_prefix (parent, cu);
22536 }
22537 }
22538
22539 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22540 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22541 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22542 an obconcat, otherwise allocate storage for the result. The CU argument is
22543 used to determine the language and hence, the appropriate separator. */
22544
22545 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22546
22547 static char *
22548 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22549 int physname, struct dwarf2_cu *cu)
22550 {
22551 const char *lead = "";
22552 const char *sep;
22553
22554 if (suffix == NULL || suffix[0] == '\0'
22555 || prefix == NULL || prefix[0] == '\0')
22556 sep = "";
22557 else if (cu->language == language_d)
22558 {
22559 /* For D, the 'main' function could be defined in any module, but it
22560 should never be prefixed. */
22561 if (strcmp (suffix, "D main") == 0)
22562 {
22563 prefix = "";
22564 sep = "";
22565 }
22566 else
22567 sep = ".";
22568 }
22569 else if (cu->language == language_fortran && physname)
22570 {
22571 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22572 DW_AT_MIPS_linkage_name is preferred and used instead. */
22573
22574 lead = "__";
22575 sep = "_MOD_";
22576 }
22577 else
22578 sep = "::";
22579
22580 if (prefix == NULL)
22581 prefix = "";
22582 if (suffix == NULL)
22583 suffix = "";
22584
22585 if (obs == NULL)
22586 {
22587 char *retval
22588 = ((char *)
22589 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22590
22591 strcpy (retval, lead);
22592 strcat (retval, prefix);
22593 strcat (retval, sep);
22594 strcat (retval, suffix);
22595 return retval;
22596 }
22597 else
22598 {
22599 /* We have an obstack. */
22600 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22601 }
22602 }
22603
22604 /* Return sibling of die, NULL if no sibling. */
22605
22606 static struct die_info *
22607 sibling_die (struct die_info *die)
22608 {
22609 return die->sibling;
22610 }
22611
22612 /* Get name of a die, return NULL if not found. */
22613
22614 static const char *
22615 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22616 struct obstack *obstack)
22617 {
22618 if (name && cu->language == language_cplus)
22619 {
22620 std::string canon_name = cp_canonicalize_string (name);
22621
22622 if (!canon_name.empty ())
22623 {
22624 if (canon_name != name)
22625 name = (const char *) obstack_copy0 (obstack,
22626 canon_name.c_str (),
22627 canon_name.length ());
22628 }
22629 }
22630
22631 return name;
22632 }
22633
22634 /* Get name of a die, return NULL if not found.
22635 Anonymous namespaces are converted to their magic string. */
22636
22637 static const char *
22638 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22639 {
22640 struct attribute *attr;
22641 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22642
22643 attr = dwarf2_attr (die, DW_AT_name, cu);
22644 if ((!attr || !DW_STRING (attr))
22645 && die->tag != DW_TAG_namespace
22646 && die->tag != DW_TAG_class_type
22647 && die->tag != DW_TAG_interface_type
22648 && die->tag != DW_TAG_structure_type
22649 && die->tag != DW_TAG_union_type)
22650 return NULL;
22651
22652 switch (die->tag)
22653 {
22654 case DW_TAG_compile_unit:
22655 case DW_TAG_partial_unit:
22656 /* Compilation units have a DW_AT_name that is a filename, not
22657 a source language identifier. */
22658 case DW_TAG_enumeration_type:
22659 case DW_TAG_enumerator:
22660 /* These tags always have simple identifiers already; no need
22661 to canonicalize them. */
22662 return DW_STRING (attr);
22663
22664 case DW_TAG_namespace:
22665 if (attr != NULL && DW_STRING (attr) != NULL)
22666 return DW_STRING (attr);
22667 return CP_ANONYMOUS_NAMESPACE_STR;
22668
22669 case DW_TAG_class_type:
22670 case DW_TAG_interface_type:
22671 case DW_TAG_structure_type:
22672 case DW_TAG_union_type:
22673 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22674 structures or unions. These were of the form "._%d" in GCC 4.1,
22675 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22676 and GCC 4.4. We work around this problem by ignoring these. */
22677 if (attr && DW_STRING (attr)
22678 && (startswith (DW_STRING (attr), "._")
22679 || startswith (DW_STRING (attr), "<anonymous")))
22680 return NULL;
22681
22682 /* GCC might emit a nameless typedef that has a linkage name. See
22683 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22684 if (!attr || DW_STRING (attr) == NULL)
22685 {
22686 char *demangled = NULL;
22687
22688 attr = dw2_linkage_name_attr (die, cu);
22689 if (attr == NULL || DW_STRING (attr) == NULL)
22690 return NULL;
22691
22692 /* Avoid demangling DW_STRING (attr) the second time on a second
22693 call for the same DIE. */
22694 if (!DW_STRING_IS_CANONICAL (attr))
22695 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22696
22697 if (demangled)
22698 {
22699 const char *base;
22700
22701 /* FIXME: we already did this for the partial symbol... */
22702 DW_STRING (attr)
22703 = ((const char *)
22704 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22705 demangled, strlen (demangled)));
22706 DW_STRING_IS_CANONICAL (attr) = 1;
22707 xfree (demangled);
22708
22709 /* Strip any leading namespaces/classes, keep only the base name.
22710 DW_AT_name for named DIEs does not contain the prefixes. */
22711 base = strrchr (DW_STRING (attr), ':');
22712 if (base && base > DW_STRING (attr) && base[-1] == ':')
22713 return &base[1];
22714 else
22715 return DW_STRING (attr);
22716 }
22717 }
22718 break;
22719
22720 default:
22721 break;
22722 }
22723
22724 if (!DW_STRING_IS_CANONICAL (attr))
22725 {
22726 DW_STRING (attr)
22727 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22728 &objfile->per_bfd->storage_obstack);
22729 DW_STRING_IS_CANONICAL (attr) = 1;
22730 }
22731 return DW_STRING (attr);
22732 }
22733
22734 /* Return the die that this die in an extension of, or NULL if there
22735 is none. *EXT_CU is the CU containing DIE on input, and the CU
22736 containing the return value on output. */
22737
22738 static struct die_info *
22739 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22740 {
22741 struct attribute *attr;
22742
22743 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22744 if (attr == NULL)
22745 return NULL;
22746
22747 return follow_die_ref (die, attr, ext_cu);
22748 }
22749
22750 /* A convenience function that returns an "unknown" DWARF name,
22751 including the value of V. STR is the name of the entity being
22752 printed, e.g., "TAG". */
22753
22754 static const char *
22755 dwarf_unknown (const char *str, unsigned v)
22756 {
22757 char *cell = get_print_cell ();
22758 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22759 return cell;
22760 }
22761
22762 /* Convert a DIE tag into its string name. */
22763
22764 static const char *
22765 dwarf_tag_name (unsigned tag)
22766 {
22767 const char *name = get_DW_TAG_name (tag);
22768
22769 if (name == NULL)
22770 return dwarf_unknown ("TAG", tag);
22771
22772 return name;
22773 }
22774
22775 /* Convert a DWARF attribute code into its string name. */
22776
22777 static const char *
22778 dwarf_attr_name (unsigned attr)
22779 {
22780 const char *name;
22781
22782 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22783 if (attr == DW_AT_MIPS_fde)
22784 return "DW_AT_MIPS_fde";
22785 #else
22786 if (attr == DW_AT_HP_block_index)
22787 return "DW_AT_HP_block_index";
22788 #endif
22789
22790 name = get_DW_AT_name (attr);
22791
22792 if (name == NULL)
22793 return dwarf_unknown ("AT", attr);
22794
22795 return name;
22796 }
22797
22798 /* Convert a DWARF value form code into its string name. */
22799
22800 static const char *
22801 dwarf_form_name (unsigned form)
22802 {
22803 const char *name = get_DW_FORM_name (form);
22804
22805 if (name == NULL)
22806 return dwarf_unknown ("FORM", form);
22807
22808 return name;
22809 }
22810
22811 static const char *
22812 dwarf_bool_name (unsigned mybool)
22813 {
22814 if (mybool)
22815 return "TRUE";
22816 else
22817 return "FALSE";
22818 }
22819
22820 /* Convert a DWARF type code into its string name. */
22821
22822 static const char *
22823 dwarf_type_encoding_name (unsigned enc)
22824 {
22825 const char *name = get_DW_ATE_name (enc);
22826
22827 if (name == NULL)
22828 return dwarf_unknown ("ATE", enc);
22829
22830 return name;
22831 }
22832
22833 static void
22834 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22835 {
22836 unsigned int i;
22837
22838 print_spaces (indent, f);
22839 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22840 dwarf_tag_name (die->tag), die->abbrev,
22841 sect_offset_str (die->sect_off));
22842
22843 if (die->parent != NULL)
22844 {
22845 print_spaces (indent, f);
22846 fprintf_unfiltered (f, " parent at offset: %s\n",
22847 sect_offset_str (die->parent->sect_off));
22848 }
22849
22850 print_spaces (indent, f);
22851 fprintf_unfiltered (f, " has children: %s\n",
22852 dwarf_bool_name (die->child != NULL));
22853
22854 print_spaces (indent, f);
22855 fprintf_unfiltered (f, " attributes:\n");
22856
22857 for (i = 0; i < die->num_attrs; ++i)
22858 {
22859 print_spaces (indent, f);
22860 fprintf_unfiltered (f, " %s (%s) ",
22861 dwarf_attr_name (die->attrs[i].name),
22862 dwarf_form_name (die->attrs[i].form));
22863
22864 switch (die->attrs[i].form)
22865 {
22866 case DW_FORM_addr:
22867 case DW_FORM_addrx:
22868 case DW_FORM_GNU_addr_index:
22869 fprintf_unfiltered (f, "address: ");
22870 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22871 break;
22872 case DW_FORM_block2:
22873 case DW_FORM_block4:
22874 case DW_FORM_block:
22875 case DW_FORM_block1:
22876 fprintf_unfiltered (f, "block: size %s",
22877 pulongest (DW_BLOCK (&die->attrs[i])->size));
22878 break;
22879 case DW_FORM_exprloc:
22880 fprintf_unfiltered (f, "expression: size %s",
22881 pulongest (DW_BLOCK (&die->attrs[i])->size));
22882 break;
22883 case DW_FORM_data16:
22884 fprintf_unfiltered (f, "constant of 16 bytes");
22885 break;
22886 case DW_FORM_ref_addr:
22887 fprintf_unfiltered (f, "ref address: ");
22888 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22889 break;
22890 case DW_FORM_GNU_ref_alt:
22891 fprintf_unfiltered (f, "alt ref address: ");
22892 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22893 break;
22894 case DW_FORM_ref1:
22895 case DW_FORM_ref2:
22896 case DW_FORM_ref4:
22897 case DW_FORM_ref8:
22898 case DW_FORM_ref_udata:
22899 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22900 (long) (DW_UNSND (&die->attrs[i])));
22901 break;
22902 case DW_FORM_data1:
22903 case DW_FORM_data2:
22904 case DW_FORM_data4:
22905 case DW_FORM_data8:
22906 case DW_FORM_udata:
22907 case DW_FORM_sdata:
22908 fprintf_unfiltered (f, "constant: %s",
22909 pulongest (DW_UNSND (&die->attrs[i])));
22910 break;
22911 case DW_FORM_sec_offset:
22912 fprintf_unfiltered (f, "section offset: %s",
22913 pulongest (DW_UNSND (&die->attrs[i])));
22914 break;
22915 case DW_FORM_ref_sig8:
22916 fprintf_unfiltered (f, "signature: %s",
22917 hex_string (DW_SIGNATURE (&die->attrs[i])));
22918 break;
22919 case DW_FORM_string:
22920 case DW_FORM_strp:
22921 case DW_FORM_line_strp:
22922 case DW_FORM_strx:
22923 case DW_FORM_GNU_str_index:
22924 case DW_FORM_GNU_strp_alt:
22925 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22926 DW_STRING (&die->attrs[i])
22927 ? DW_STRING (&die->attrs[i]) : "",
22928 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22929 break;
22930 case DW_FORM_flag:
22931 if (DW_UNSND (&die->attrs[i]))
22932 fprintf_unfiltered (f, "flag: TRUE");
22933 else
22934 fprintf_unfiltered (f, "flag: FALSE");
22935 break;
22936 case DW_FORM_flag_present:
22937 fprintf_unfiltered (f, "flag: TRUE");
22938 break;
22939 case DW_FORM_indirect:
22940 /* The reader will have reduced the indirect form to
22941 the "base form" so this form should not occur. */
22942 fprintf_unfiltered (f,
22943 "unexpected attribute form: DW_FORM_indirect");
22944 break;
22945 case DW_FORM_implicit_const:
22946 fprintf_unfiltered (f, "constant: %s",
22947 plongest (DW_SND (&die->attrs[i])));
22948 break;
22949 default:
22950 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22951 die->attrs[i].form);
22952 break;
22953 }
22954 fprintf_unfiltered (f, "\n");
22955 }
22956 }
22957
22958 static void
22959 dump_die_for_error (struct die_info *die)
22960 {
22961 dump_die_shallow (gdb_stderr, 0, die);
22962 }
22963
22964 static void
22965 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22966 {
22967 int indent = level * 4;
22968
22969 gdb_assert (die != NULL);
22970
22971 if (level >= max_level)
22972 return;
22973
22974 dump_die_shallow (f, indent, die);
22975
22976 if (die->child != NULL)
22977 {
22978 print_spaces (indent, f);
22979 fprintf_unfiltered (f, " Children:");
22980 if (level + 1 < max_level)
22981 {
22982 fprintf_unfiltered (f, "\n");
22983 dump_die_1 (f, level + 1, max_level, die->child);
22984 }
22985 else
22986 {
22987 fprintf_unfiltered (f,
22988 " [not printed, max nesting level reached]\n");
22989 }
22990 }
22991
22992 if (die->sibling != NULL && level > 0)
22993 {
22994 dump_die_1 (f, level, max_level, die->sibling);
22995 }
22996 }
22997
22998 /* This is called from the pdie macro in gdbinit.in.
22999 It's not static so gcc will keep a copy callable from gdb. */
23000
23001 void
23002 dump_die (struct die_info *die, int max_level)
23003 {
23004 dump_die_1 (gdb_stdlog, 0, max_level, die);
23005 }
23006
23007 static void
23008 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23009 {
23010 void **slot;
23011
23012 slot = htab_find_slot_with_hash (cu->die_hash, die,
23013 to_underlying (die->sect_off),
23014 INSERT);
23015
23016 *slot = die;
23017 }
23018
23019 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23020 required kind. */
23021
23022 static sect_offset
23023 dwarf2_get_ref_die_offset (const struct attribute *attr)
23024 {
23025 if (attr_form_is_ref (attr))
23026 return (sect_offset) DW_UNSND (attr);
23027
23028 complaint (_("unsupported die ref attribute form: '%s'"),
23029 dwarf_form_name (attr->form));
23030 return {};
23031 }
23032
23033 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23034 * the value held by the attribute is not constant. */
23035
23036 static LONGEST
23037 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23038 {
23039 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23040 return DW_SND (attr);
23041 else if (attr->form == DW_FORM_udata
23042 || attr->form == DW_FORM_data1
23043 || attr->form == DW_FORM_data2
23044 || attr->form == DW_FORM_data4
23045 || attr->form == DW_FORM_data8)
23046 return DW_UNSND (attr);
23047 else
23048 {
23049 /* For DW_FORM_data16 see attr_form_is_constant. */
23050 complaint (_("Attribute value is not a constant (%s)"),
23051 dwarf_form_name (attr->form));
23052 return default_value;
23053 }
23054 }
23055
23056 /* Follow reference or signature attribute ATTR of SRC_DIE.
23057 On entry *REF_CU is the CU of SRC_DIE.
23058 On exit *REF_CU is the CU of the result. */
23059
23060 static struct die_info *
23061 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23062 struct dwarf2_cu **ref_cu)
23063 {
23064 struct die_info *die;
23065
23066 if (attr_form_is_ref (attr))
23067 die = follow_die_ref (src_die, attr, ref_cu);
23068 else if (attr->form == DW_FORM_ref_sig8)
23069 die = follow_die_sig (src_die, attr, ref_cu);
23070 else
23071 {
23072 dump_die_for_error (src_die);
23073 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23074 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23075 }
23076
23077 return die;
23078 }
23079
23080 /* Follow reference OFFSET.
23081 On entry *REF_CU is the CU of the source die referencing OFFSET.
23082 On exit *REF_CU is the CU of the result.
23083 Returns NULL if OFFSET is invalid. */
23084
23085 static struct die_info *
23086 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23087 struct dwarf2_cu **ref_cu)
23088 {
23089 struct die_info temp_die;
23090 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23091 struct dwarf2_per_objfile *dwarf2_per_objfile
23092 = cu->per_cu->dwarf2_per_objfile;
23093
23094 gdb_assert (cu->per_cu != NULL);
23095
23096 target_cu = cu;
23097
23098 if (cu->per_cu->is_debug_types)
23099 {
23100 /* .debug_types CUs cannot reference anything outside their CU.
23101 If they need to, they have to reference a signatured type via
23102 DW_FORM_ref_sig8. */
23103 if (!offset_in_cu_p (&cu->header, sect_off))
23104 return NULL;
23105 }
23106 else if (offset_in_dwz != cu->per_cu->is_dwz
23107 || !offset_in_cu_p (&cu->header, sect_off))
23108 {
23109 struct dwarf2_per_cu_data *per_cu;
23110
23111 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23112 dwarf2_per_objfile);
23113
23114 /* If necessary, add it to the queue and load its DIEs. */
23115 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23116 load_full_comp_unit (per_cu, false, cu->language);
23117
23118 target_cu = per_cu->cu;
23119 }
23120 else if (cu->dies == NULL)
23121 {
23122 /* We're loading full DIEs during partial symbol reading. */
23123 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23124 load_full_comp_unit (cu->per_cu, false, language_minimal);
23125 }
23126
23127 *ref_cu = target_cu;
23128 temp_die.sect_off = sect_off;
23129
23130 if (target_cu != cu)
23131 target_cu->ancestor = cu;
23132
23133 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23134 &temp_die,
23135 to_underlying (sect_off));
23136 }
23137
23138 /* Follow reference attribute ATTR of SRC_DIE.
23139 On entry *REF_CU is the CU of SRC_DIE.
23140 On exit *REF_CU is the CU of the result. */
23141
23142 static struct die_info *
23143 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23144 struct dwarf2_cu **ref_cu)
23145 {
23146 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23147 struct dwarf2_cu *cu = *ref_cu;
23148 struct die_info *die;
23149
23150 die = follow_die_offset (sect_off,
23151 (attr->form == DW_FORM_GNU_ref_alt
23152 || cu->per_cu->is_dwz),
23153 ref_cu);
23154 if (!die)
23155 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23156 "at %s [in module %s]"),
23157 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23158 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23159
23160 return die;
23161 }
23162
23163 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23164 Returned value is intended for DW_OP_call*. Returned
23165 dwarf2_locexpr_baton->data has lifetime of
23166 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23167
23168 struct dwarf2_locexpr_baton
23169 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23170 struct dwarf2_per_cu_data *per_cu,
23171 CORE_ADDR (*get_frame_pc) (void *baton),
23172 void *baton, bool resolve_abstract_p)
23173 {
23174 struct dwarf2_cu *cu;
23175 struct die_info *die;
23176 struct attribute *attr;
23177 struct dwarf2_locexpr_baton retval;
23178 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23179 struct objfile *objfile = dwarf2_per_objfile->objfile;
23180
23181 if (per_cu->cu == NULL)
23182 load_cu (per_cu, false);
23183 cu = per_cu->cu;
23184 if (cu == NULL)
23185 {
23186 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23187 Instead just throw an error, not much else we can do. */
23188 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23189 sect_offset_str (sect_off), objfile_name (objfile));
23190 }
23191
23192 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23193 if (!die)
23194 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23195 sect_offset_str (sect_off), objfile_name (objfile));
23196
23197 attr = dwarf2_attr (die, DW_AT_location, cu);
23198 if (!attr && resolve_abstract_p
23199 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23200 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23201 {
23202 CORE_ADDR pc = (*get_frame_pc) (baton);
23203
23204 for (const auto &cand_off
23205 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23206 {
23207 struct dwarf2_cu *cand_cu = cu;
23208 struct die_info *cand
23209 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23210 if (!cand
23211 || !cand->parent
23212 || cand->parent->tag != DW_TAG_subprogram)
23213 continue;
23214
23215 CORE_ADDR pc_low, pc_high;
23216 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23217 if (pc_low == ((CORE_ADDR) -1)
23218 || !(pc_low <= pc && pc < pc_high))
23219 continue;
23220
23221 die = cand;
23222 attr = dwarf2_attr (die, DW_AT_location, cu);
23223 break;
23224 }
23225 }
23226
23227 if (!attr)
23228 {
23229 /* DWARF: "If there is no such attribute, then there is no effect.".
23230 DATA is ignored if SIZE is 0. */
23231
23232 retval.data = NULL;
23233 retval.size = 0;
23234 }
23235 else if (attr_form_is_section_offset (attr))
23236 {
23237 struct dwarf2_loclist_baton loclist_baton;
23238 CORE_ADDR pc = (*get_frame_pc) (baton);
23239 size_t size;
23240
23241 fill_in_loclist_baton (cu, &loclist_baton, attr);
23242
23243 retval.data = dwarf2_find_location_expression (&loclist_baton,
23244 &size, pc);
23245 retval.size = size;
23246 }
23247 else
23248 {
23249 if (!attr_form_is_block (attr))
23250 error (_("Dwarf Error: DIE at %s referenced in module %s "
23251 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23252 sect_offset_str (sect_off), objfile_name (objfile));
23253
23254 retval.data = DW_BLOCK (attr)->data;
23255 retval.size = DW_BLOCK (attr)->size;
23256 }
23257 retval.per_cu = cu->per_cu;
23258
23259 age_cached_comp_units (dwarf2_per_objfile);
23260
23261 return retval;
23262 }
23263
23264 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23265 offset. */
23266
23267 struct dwarf2_locexpr_baton
23268 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23269 struct dwarf2_per_cu_data *per_cu,
23270 CORE_ADDR (*get_frame_pc) (void *baton),
23271 void *baton)
23272 {
23273 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23274
23275 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23276 }
23277
23278 /* Write a constant of a given type as target-ordered bytes into
23279 OBSTACK. */
23280
23281 static const gdb_byte *
23282 write_constant_as_bytes (struct obstack *obstack,
23283 enum bfd_endian byte_order,
23284 struct type *type,
23285 ULONGEST value,
23286 LONGEST *len)
23287 {
23288 gdb_byte *result;
23289
23290 *len = TYPE_LENGTH (type);
23291 result = (gdb_byte *) obstack_alloc (obstack, *len);
23292 store_unsigned_integer (result, *len, byte_order, value);
23293
23294 return result;
23295 }
23296
23297 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23298 pointer to the constant bytes and set LEN to the length of the
23299 data. If memory is needed, allocate it on OBSTACK. If the DIE
23300 does not have a DW_AT_const_value, return NULL. */
23301
23302 const gdb_byte *
23303 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23304 struct dwarf2_per_cu_data *per_cu,
23305 struct obstack *obstack,
23306 LONGEST *len)
23307 {
23308 struct dwarf2_cu *cu;
23309 struct die_info *die;
23310 struct attribute *attr;
23311 const gdb_byte *result = NULL;
23312 struct type *type;
23313 LONGEST value;
23314 enum bfd_endian byte_order;
23315 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23316
23317 if (per_cu->cu == NULL)
23318 load_cu (per_cu, false);
23319 cu = per_cu->cu;
23320 if (cu == NULL)
23321 {
23322 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23323 Instead just throw an error, not much else we can do. */
23324 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23325 sect_offset_str (sect_off), objfile_name (objfile));
23326 }
23327
23328 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23329 if (!die)
23330 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23331 sect_offset_str (sect_off), objfile_name (objfile));
23332
23333 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23334 if (attr == NULL)
23335 return NULL;
23336
23337 byte_order = (bfd_big_endian (objfile->obfd)
23338 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23339
23340 switch (attr->form)
23341 {
23342 case DW_FORM_addr:
23343 case DW_FORM_addrx:
23344 case DW_FORM_GNU_addr_index:
23345 {
23346 gdb_byte *tem;
23347
23348 *len = cu->header.addr_size;
23349 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23350 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23351 result = tem;
23352 }
23353 break;
23354 case DW_FORM_string:
23355 case DW_FORM_strp:
23356 case DW_FORM_strx:
23357 case DW_FORM_GNU_str_index:
23358 case DW_FORM_GNU_strp_alt:
23359 /* DW_STRING is already allocated on the objfile obstack, point
23360 directly to it. */
23361 result = (const gdb_byte *) DW_STRING (attr);
23362 *len = strlen (DW_STRING (attr));
23363 break;
23364 case DW_FORM_block1:
23365 case DW_FORM_block2:
23366 case DW_FORM_block4:
23367 case DW_FORM_block:
23368 case DW_FORM_exprloc:
23369 case DW_FORM_data16:
23370 result = DW_BLOCK (attr)->data;
23371 *len = DW_BLOCK (attr)->size;
23372 break;
23373
23374 /* The DW_AT_const_value attributes are supposed to carry the
23375 symbol's value "represented as it would be on the target
23376 architecture." By the time we get here, it's already been
23377 converted to host endianness, so we just need to sign- or
23378 zero-extend it as appropriate. */
23379 case DW_FORM_data1:
23380 type = die_type (die, cu);
23381 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23382 if (result == NULL)
23383 result = write_constant_as_bytes (obstack, byte_order,
23384 type, value, len);
23385 break;
23386 case DW_FORM_data2:
23387 type = die_type (die, cu);
23388 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23389 if (result == NULL)
23390 result = write_constant_as_bytes (obstack, byte_order,
23391 type, value, len);
23392 break;
23393 case DW_FORM_data4:
23394 type = die_type (die, cu);
23395 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23396 if (result == NULL)
23397 result = write_constant_as_bytes (obstack, byte_order,
23398 type, value, len);
23399 break;
23400 case DW_FORM_data8:
23401 type = die_type (die, cu);
23402 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23403 if (result == NULL)
23404 result = write_constant_as_bytes (obstack, byte_order,
23405 type, value, len);
23406 break;
23407
23408 case DW_FORM_sdata:
23409 case DW_FORM_implicit_const:
23410 type = die_type (die, cu);
23411 result = write_constant_as_bytes (obstack, byte_order,
23412 type, DW_SND (attr), len);
23413 break;
23414
23415 case DW_FORM_udata:
23416 type = die_type (die, cu);
23417 result = write_constant_as_bytes (obstack, byte_order,
23418 type, DW_UNSND (attr), len);
23419 break;
23420
23421 default:
23422 complaint (_("unsupported const value attribute form: '%s'"),
23423 dwarf_form_name (attr->form));
23424 break;
23425 }
23426
23427 return result;
23428 }
23429
23430 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23431 valid type for this die is found. */
23432
23433 struct type *
23434 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23435 struct dwarf2_per_cu_data *per_cu)
23436 {
23437 struct dwarf2_cu *cu;
23438 struct die_info *die;
23439
23440 if (per_cu->cu == NULL)
23441 load_cu (per_cu, false);
23442 cu = per_cu->cu;
23443 if (!cu)
23444 return NULL;
23445
23446 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23447 if (!die)
23448 return NULL;
23449
23450 return die_type (die, cu);
23451 }
23452
23453 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23454 PER_CU. */
23455
23456 struct type *
23457 dwarf2_get_die_type (cu_offset die_offset,
23458 struct dwarf2_per_cu_data *per_cu)
23459 {
23460 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23461 return get_die_type_at_offset (die_offset_sect, per_cu);
23462 }
23463
23464 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23465 On entry *REF_CU is the CU of SRC_DIE.
23466 On exit *REF_CU is the CU of the result.
23467 Returns NULL if the referenced DIE isn't found. */
23468
23469 static struct die_info *
23470 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23471 struct dwarf2_cu **ref_cu)
23472 {
23473 struct die_info temp_die;
23474 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23475 struct die_info *die;
23476
23477 /* While it might be nice to assert sig_type->type == NULL here,
23478 we can get here for DW_AT_imported_declaration where we need
23479 the DIE not the type. */
23480
23481 /* If necessary, add it to the queue and load its DIEs. */
23482
23483 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23484 read_signatured_type (sig_type);
23485
23486 sig_cu = sig_type->per_cu.cu;
23487 gdb_assert (sig_cu != NULL);
23488 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23489 temp_die.sect_off = sig_type->type_offset_in_section;
23490 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23491 to_underlying (temp_die.sect_off));
23492 if (die)
23493 {
23494 struct dwarf2_per_objfile *dwarf2_per_objfile
23495 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23496
23497 /* For .gdb_index version 7 keep track of included TUs.
23498 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23499 if (dwarf2_per_objfile->index_table != NULL
23500 && dwarf2_per_objfile->index_table->version <= 7)
23501 {
23502 VEC_safe_push (dwarf2_per_cu_ptr,
23503 (*ref_cu)->per_cu->imported_symtabs,
23504 sig_cu->per_cu);
23505 }
23506
23507 *ref_cu = sig_cu;
23508 if (sig_cu != cu)
23509 sig_cu->ancestor = cu;
23510
23511 return die;
23512 }
23513
23514 return NULL;
23515 }
23516
23517 /* Follow signatured type referenced by ATTR in SRC_DIE.
23518 On entry *REF_CU is the CU of SRC_DIE.
23519 On exit *REF_CU is the CU of the result.
23520 The result is the DIE of the type.
23521 If the referenced type cannot be found an error is thrown. */
23522
23523 static struct die_info *
23524 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23525 struct dwarf2_cu **ref_cu)
23526 {
23527 ULONGEST signature = DW_SIGNATURE (attr);
23528 struct signatured_type *sig_type;
23529 struct die_info *die;
23530
23531 gdb_assert (attr->form == DW_FORM_ref_sig8);
23532
23533 sig_type = lookup_signatured_type (*ref_cu, signature);
23534 /* sig_type will be NULL if the signatured type is missing from
23535 the debug info. */
23536 if (sig_type == NULL)
23537 {
23538 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23539 " from DIE at %s [in module %s]"),
23540 hex_string (signature), sect_offset_str (src_die->sect_off),
23541 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23542 }
23543
23544 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23545 if (die == NULL)
23546 {
23547 dump_die_for_error (src_die);
23548 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23549 " from DIE at %s [in module %s]"),
23550 hex_string (signature), sect_offset_str (src_die->sect_off),
23551 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23552 }
23553
23554 return die;
23555 }
23556
23557 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23558 reading in and processing the type unit if necessary. */
23559
23560 static struct type *
23561 get_signatured_type (struct die_info *die, ULONGEST signature,
23562 struct dwarf2_cu *cu)
23563 {
23564 struct dwarf2_per_objfile *dwarf2_per_objfile
23565 = cu->per_cu->dwarf2_per_objfile;
23566 struct signatured_type *sig_type;
23567 struct dwarf2_cu *type_cu;
23568 struct die_info *type_die;
23569 struct type *type;
23570
23571 sig_type = lookup_signatured_type (cu, signature);
23572 /* sig_type will be NULL if the signatured type is missing from
23573 the debug info. */
23574 if (sig_type == NULL)
23575 {
23576 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23577 " from DIE at %s [in module %s]"),
23578 hex_string (signature), sect_offset_str (die->sect_off),
23579 objfile_name (dwarf2_per_objfile->objfile));
23580 return build_error_marker_type (cu, die);
23581 }
23582
23583 /* If we already know the type we're done. */
23584 if (sig_type->type != NULL)
23585 return sig_type->type;
23586
23587 type_cu = cu;
23588 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23589 if (type_die != NULL)
23590 {
23591 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23592 is created. This is important, for example, because for c++ classes
23593 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23594 type = read_type_die (type_die, type_cu);
23595 if (type == NULL)
23596 {
23597 complaint (_("Dwarf Error: Cannot build signatured type %s"
23598 " referenced from DIE at %s [in module %s]"),
23599 hex_string (signature), sect_offset_str (die->sect_off),
23600 objfile_name (dwarf2_per_objfile->objfile));
23601 type = build_error_marker_type (cu, die);
23602 }
23603 }
23604 else
23605 {
23606 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23607 " from DIE at %s [in module %s]"),
23608 hex_string (signature), sect_offset_str (die->sect_off),
23609 objfile_name (dwarf2_per_objfile->objfile));
23610 type = build_error_marker_type (cu, die);
23611 }
23612 sig_type->type = type;
23613
23614 return type;
23615 }
23616
23617 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23618 reading in and processing the type unit if necessary. */
23619
23620 static struct type *
23621 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23622 struct dwarf2_cu *cu) /* ARI: editCase function */
23623 {
23624 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23625 if (attr_form_is_ref (attr))
23626 {
23627 struct dwarf2_cu *type_cu = cu;
23628 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23629
23630 return read_type_die (type_die, type_cu);
23631 }
23632 else if (attr->form == DW_FORM_ref_sig8)
23633 {
23634 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23635 }
23636 else
23637 {
23638 struct dwarf2_per_objfile *dwarf2_per_objfile
23639 = cu->per_cu->dwarf2_per_objfile;
23640
23641 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23642 " at %s [in module %s]"),
23643 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23644 objfile_name (dwarf2_per_objfile->objfile));
23645 return build_error_marker_type (cu, die);
23646 }
23647 }
23648
23649 /* Load the DIEs associated with type unit PER_CU into memory. */
23650
23651 static void
23652 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23653 {
23654 struct signatured_type *sig_type;
23655
23656 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23657 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23658
23659 /* We have the per_cu, but we need the signatured_type.
23660 Fortunately this is an easy translation. */
23661 gdb_assert (per_cu->is_debug_types);
23662 sig_type = (struct signatured_type *) per_cu;
23663
23664 gdb_assert (per_cu->cu == NULL);
23665
23666 read_signatured_type (sig_type);
23667
23668 gdb_assert (per_cu->cu != NULL);
23669 }
23670
23671 /* die_reader_func for read_signatured_type.
23672 This is identical to load_full_comp_unit_reader,
23673 but is kept separate for now. */
23674
23675 static void
23676 read_signatured_type_reader (const struct die_reader_specs *reader,
23677 const gdb_byte *info_ptr,
23678 struct die_info *comp_unit_die,
23679 int has_children,
23680 void *data)
23681 {
23682 struct dwarf2_cu *cu = reader->cu;
23683
23684 gdb_assert (cu->die_hash == NULL);
23685 cu->die_hash =
23686 htab_create_alloc_ex (cu->header.length / 12,
23687 die_hash,
23688 die_eq,
23689 NULL,
23690 &cu->comp_unit_obstack,
23691 hashtab_obstack_allocate,
23692 dummy_obstack_deallocate);
23693
23694 if (has_children)
23695 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23696 &info_ptr, comp_unit_die);
23697 cu->dies = comp_unit_die;
23698 /* comp_unit_die is not stored in die_hash, no need. */
23699
23700 /* We try not to read any attributes in this function, because not
23701 all CUs needed for references have been loaded yet, and symbol
23702 table processing isn't initialized. But we have to set the CU language,
23703 or we won't be able to build types correctly.
23704 Similarly, if we do not read the producer, we can not apply
23705 producer-specific interpretation. */
23706 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23707 }
23708
23709 /* Read in a signatured type and build its CU and DIEs.
23710 If the type is a stub for the real type in a DWO file,
23711 read in the real type from the DWO file as well. */
23712
23713 static void
23714 read_signatured_type (struct signatured_type *sig_type)
23715 {
23716 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23717
23718 gdb_assert (per_cu->is_debug_types);
23719 gdb_assert (per_cu->cu == NULL);
23720
23721 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23722 read_signatured_type_reader, NULL);
23723 sig_type->per_cu.tu_read = 1;
23724 }
23725
23726 /* Decode simple location descriptions.
23727 Given a pointer to a dwarf block that defines a location, compute
23728 the location and return the value.
23729
23730 NOTE drow/2003-11-18: This function is called in two situations
23731 now: for the address of static or global variables (partial symbols
23732 only) and for offsets into structures which are expected to be
23733 (more or less) constant. The partial symbol case should go away,
23734 and only the constant case should remain. That will let this
23735 function complain more accurately. A few special modes are allowed
23736 without complaint for global variables (for instance, global
23737 register values and thread-local values).
23738
23739 A location description containing no operations indicates that the
23740 object is optimized out. The return value is 0 for that case.
23741 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23742 callers will only want a very basic result and this can become a
23743 complaint.
23744
23745 Note that stack[0] is unused except as a default error return. */
23746
23747 static CORE_ADDR
23748 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23749 {
23750 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23751 size_t i;
23752 size_t size = blk->size;
23753 const gdb_byte *data = blk->data;
23754 CORE_ADDR stack[64];
23755 int stacki;
23756 unsigned int bytes_read, unsnd;
23757 gdb_byte op;
23758
23759 i = 0;
23760 stacki = 0;
23761 stack[stacki] = 0;
23762 stack[++stacki] = 0;
23763
23764 while (i < size)
23765 {
23766 op = data[i++];
23767 switch (op)
23768 {
23769 case DW_OP_lit0:
23770 case DW_OP_lit1:
23771 case DW_OP_lit2:
23772 case DW_OP_lit3:
23773 case DW_OP_lit4:
23774 case DW_OP_lit5:
23775 case DW_OP_lit6:
23776 case DW_OP_lit7:
23777 case DW_OP_lit8:
23778 case DW_OP_lit9:
23779 case DW_OP_lit10:
23780 case DW_OP_lit11:
23781 case DW_OP_lit12:
23782 case DW_OP_lit13:
23783 case DW_OP_lit14:
23784 case DW_OP_lit15:
23785 case DW_OP_lit16:
23786 case DW_OP_lit17:
23787 case DW_OP_lit18:
23788 case DW_OP_lit19:
23789 case DW_OP_lit20:
23790 case DW_OP_lit21:
23791 case DW_OP_lit22:
23792 case DW_OP_lit23:
23793 case DW_OP_lit24:
23794 case DW_OP_lit25:
23795 case DW_OP_lit26:
23796 case DW_OP_lit27:
23797 case DW_OP_lit28:
23798 case DW_OP_lit29:
23799 case DW_OP_lit30:
23800 case DW_OP_lit31:
23801 stack[++stacki] = op - DW_OP_lit0;
23802 break;
23803
23804 case DW_OP_reg0:
23805 case DW_OP_reg1:
23806 case DW_OP_reg2:
23807 case DW_OP_reg3:
23808 case DW_OP_reg4:
23809 case DW_OP_reg5:
23810 case DW_OP_reg6:
23811 case DW_OP_reg7:
23812 case DW_OP_reg8:
23813 case DW_OP_reg9:
23814 case DW_OP_reg10:
23815 case DW_OP_reg11:
23816 case DW_OP_reg12:
23817 case DW_OP_reg13:
23818 case DW_OP_reg14:
23819 case DW_OP_reg15:
23820 case DW_OP_reg16:
23821 case DW_OP_reg17:
23822 case DW_OP_reg18:
23823 case DW_OP_reg19:
23824 case DW_OP_reg20:
23825 case DW_OP_reg21:
23826 case DW_OP_reg22:
23827 case DW_OP_reg23:
23828 case DW_OP_reg24:
23829 case DW_OP_reg25:
23830 case DW_OP_reg26:
23831 case DW_OP_reg27:
23832 case DW_OP_reg28:
23833 case DW_OP_reg29:
23834 case DW_OP_reg30:
23835 case DW_OP_reg31:
23836 stack[++stacki] = op - DW_OP_reg0;
23837 if (i < size)
23838 dwarf2_complex_location_expr_complaint ();
23839 break;
23840
23841 case DW_OP_regx:
23842 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23843 i += bytes_read;
23844 stack[++stacki] = unsnd;
23845 if (i < size)
23846 dwarf2_complex_location_expr_complaint ();
23847 break;
23848
23849 case DW_OP_addr:
23850 stack[++stacki] = read_address (objfile->obfd, &data[i],
23851 cu, &bytes_read);
23852 i += bytes_read;
23853 break;
23854
23855 case DW_OP_const1u:
23856 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23857 i += 1;
23858 break;
23859
23860 case DW_OP_const1s:
23861 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23862 i += 1;
23863 break;
23864
23865 case DW_OP_const2u:
23866 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23867 i += 2;
23868 break;
23869
23870 case DW_OP_const2s:
23871 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23872 i += 2;
23873 break;
23874
23875 case DW_OP_const4u:
23876 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23877 i += 4;
23878 break;
23879
23880 case DW_OP_const4s:
23881 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23882 i += 4;
23883 break;
23884
23885 case DW_OP_const8u:
23886 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23887 i += 8;
23888 break;
23889
23890 case DW_OP_constu:
23891 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23892 &bytes_read);
23893 i += bytes_read;
23894 break;
23895
23896 case DW_OP_consts:
23897 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23898 i += bytes_read;
23899 break;
23900
23901 case DW_OP_dup:
23902 stack[stacki + 1] = stack[stacki];
23903 stacki++;
23904 break;
23905
23906 case DW_OP_plus:
23907 stack[stacki - 1] += stack[stacki];
23908 stacki--;
23909 break;
23910
23911 case DW_OP_plus_uconst:
23912 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23913 &bytes_read);
23914 i += bytes_read;
23915 break;
23916
23917 case DW_OP_minus:
23918 stack[stacki - 1] -= stack[stacki];
23919 stacki--;
23920 break;
23921
23922 case DW_OP_deref:
23923 /* If we're not the last op, then we definitely can't encode
23924 this using GDB's address_class enum. This is valid for partial
23925 global symbols, although the variable's address will be bogus
23926 in the psymtab. */
23927 if (i < size)
23928 dwarf2_complex_location_expr_complaint ();
23929 break;
23930
23931 case DW_OP_GNU_push_tls_address:
23932 case DW_OP_form_tls_address:
23933 /* The top of the stack has the offset from the beginning
23934 of the thread control block at which the variable is located. */
23935 /* Nothing should follow this operator, so the top of stack would
23936 be returned. */
23937 /* This is valid for partial global symbols, but the variable's
23938 address will be bogus in the psymtab. Make it always at least
23939 non-zero to not look as a variable garbage collected by linker
23940 which have DW_OP_addr 0. */
23941 if (i < size)
23942 dwarf2_complex_location_expr_complaint ();
23943 stack[stacki]++;
23944 break;
23945
23946 case DW_OP_GNU_uninit:
23947 break;
23948
23949 case DW_OP_addrx:
23950 case DW_OP_GNU_addr_index:
23951 case DW_OP_GNU_const_index:
23952 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23953 &bytes_read);
23954 i += bytes_read;
23955 break;
23956
23957 default:
23958 {
23959 const char *name = get_DW_OP_name (op);
23960
23961 if (name)
23962 complaint (_("unsupported stack op: '%s'"),
23963 name);
23964 else
23965 complaint (_("unsupported stack op: '%02x'"),
23966 op);
23967 }
23968
23969 return (stack[stacki]);
23970 }
23971
23972 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23973 outside of the allocated space. Also enforce minimum>0. */
23974 if (stacki >= ARRAY_SIZE (stack) - 1)
23975 {
23976 complaint (_("location description stack overflow"));
23977 return 0;
23978 }
23979
23980 if (stacki <= 0)
23981 {
23982 complaint (_("location description stack underflow"));
23983 return 0;
23984 }
23985 }
23986 return (stack[stacki]);
23987 }
23988
23989 /* memory allocation interface */
23990
23991 static struct dwarf_block *
23992 dwarf_alloc_block (struct dwarf2_cu *cu)
23993 {
23994 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23995 }
23996
23997 static struct die_info *
23998 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23999 {
24000 struct die_info *die;
24001 size_t size = sizeof (struct die_info);
24002
24003 if (num_attrs > 1)
24004 size += (num_attrs - 1) * sizeof (struct attribute);
24005
24006 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24007 memset (die, 0, sizeof (struct die_info));
24008 return (die);
24009 }
24010
24011 \f
24012 /* Macro support. */
24013
24014 /* Return file name relative to the compilation directory of file number I in
24015 *LH's file name table. The result is allocated using xmalloc; the caller is
24016 responsible for freeing it. */
24017
24018 static char *
24019 file_file_name (int file, struct line_header *lh)
24020 {
24021 /* Is the file number a valid index into the line header's file name
24022 table? Remember that file numbers start with one, not zero. */
24023 if (1 <= file && file <= lh->file_names.size ())
24024 {
24025 const file_entry &fe = lh->file_names[file - 1];
24026
24027 if (!IS_ABSOLUTE_PATH (fe.name))
24028 {
24029 const char *dir = fe.include_dir (lh);
24030 if (dir != NULL)
24031 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
24032 }
24033 return xstrdup (fe.name);
24034 }
24035 else
24036 {
24037 /* The compiler produced a bogus file number. We can at least
24038 record the macro definitions made in the file, even if we
24039 won't be able to find the file by name. */
24040 char fake_name[80];
24041
24042 xsnprintf (fake_name, sizeof (fake_name),
24043 "<bad macro file number %d>", file);
24044
24045 complaint (_("bad file number in macro information (%d)"),
24046 file);
24047
24048 return xstrdup (fake_name);
24049 }
24050 }
24051
24052 /* Return the full name of file number I in *LH's file name table.
24053 Use COMP_DIR as the name of the current directory of the
24054 compilation. The result is allocated using xmalloc; the caller is
24055 responsible for freeing it. */
24056 static char *
24057 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24058 {
24059 /* Is the file number a valid index into the line header's file name
24060 table? Remember that file numbers start with one, not zero. */
24061 if (1 <= file && file <= lh->file_names.size ())
24062 {
24063 char *relative = file_file_name (file, lh);
24064
24065 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24066 return relative;
24067 return reconcat (relative, comp_dir, SLASH_STRING,
24068 relative, (char *) NULL);
24069 }
24070 else
24071 return file_file_name (file, lh);
24072 }
24073
24074
24075 static struct macro_source_file *
24076 macro_start_file (struct dwarf2_cu *cu,
24077 int file, int line,
24078 struct macro_source_file *current_file,
24079 struct line_header *lh)
24080 {
24081 /* File name relative to the compilation directory of this source file. */
24082 char *file_name = file_file_name (file, lh);
24083
24084 if (! current_file)
24085 {
24086 /* Note: We don't create a macro table for this compilation unit
24087 at all until we actually get a filename. */
24088 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24089
24090 /* If we have no current file, then this must be the start_file
24091 directive for the compilation unit's main source file. */
24092 current_file = macro_set_main (macro_table, file_name);
24093 macro_define_special (macro_table);
24094 }
24095 else
24096 current_file = macro_include (current_file, line, file_name);
24097
24098 xfree (file_name);
24099
24100 return current_file;
24101 }
24102
24103 static const char *
24104 consume_improper_spaces (const char *p, const char *body)
24105 {
24106 if (*p == ' ')
24107 {
24108 complaint (_("macro definition contains spaces "
24109 "in formal argument list:\n`%s'"),
24110 body);
24111
24112 while (*p == ' ')
24113 p++;
24114 }
24115
24116 return p;
24117 }
24118
24119
24120 static void
24121 parse_macro_definition (struct macro_source_file *file, int line,
24122 const char *body)
24123 {
24124 const char *p;
24125
24126 /* The body string takes one of two forms. For object-like macro
24127 definitions, it should be:
24128
24129 <macro name> " " <definition>
24130
24131 For function-like macro definitions, it should be:
24132
24133 <macro name> "() " <definition>
24134 or
24135 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24136
24137 Spaces may appear only where explicitly indicated, and in the
24138 <definition>.
24139
24140 The Dwarf 2 spec says that an object-like macro's name is always
24141 followed by a space, but versions of GCC around March 2002 omit
24142 the space when the macro's definition is the empty string.
24143
24144 The Dwarf 2 spec says that there should be no spaces between the
24145 formal arguments in a function-like macro's formal argument list,
24146 but versions of GCC around March 2002 include spaces after the
24147 commas. */
24148
24149
24150 /* Find the extent of the macro name. The macro name is terminated
24151 by either a space or null character (for an object-like macro) or
24152 an opening paren (for a function-like macro). */
24153 for (p = body; *p; p++)
24154 if (*p == ' ' || *p == '(')
24155 break;
24156
24157 if (*p == ' ' || *p == '\0')
24158 {
24159 /* It's an object-like macro. */
24160 int name_len = p - body;
24161 char *name = savestring (body, name_len);
24162 const char *replacement;
24163
24164 if (*p == ' ')
24165 replacement = body + name_len + 1;
24166 else
24167 {
24168 dwarf2_macro_malformed_definition_complaint (body);
24169 replacement = body + name_len;
24170 }
24171
24172 macro_define_object (file, line, name, replacement);
24173
24174 xfree (name);
24175 }
24176 else if (*p == '(')
24177 {
24178 /* It's a function-like macro. */
24179 char *name = savestring (body, p - body);
24180 int argc = 0;
24181 int argv_size = 1;
24182 char **argv = XNEWVEC (char *, argv_size);
24183
24184 p++;
24185
24186 p = consume_improper_spaces (p, body);
24187
24188 /* Parse the formal argument list. */
24189 while (*p && *p != ')')
24190 {
24191 /* Find the extent of the current argument name. */
24192 const char *arg_start = p;
24193
24194 while (*p && *p != ',' && *p != ')' && *p != ' ')
24195 p++;
24196
24197 if (! *p || p == arg_start)
24198 dwarf2_macro_malformed_definition_complaint (body);
24199 else
24200 {
24201 /* Make sure argv has room for the new argument. */
24202 if (argc >= argv_size)
24203 {
24204 argv_size *= 2;
24205 argv = XRESIZEVEC (char *, argv, argv_size);
24206 }
24207
24208 argv[argc++] = savestring (arg_start, p - arg_start);
24209 }
24210
24211 p = consume_improper_spaces (p, body);
24212
24213 /* Consume the comma, if present. */
24214 if (*p == ',')
24215 {
24216 p++;
24217
24218 p = consume_improper_spaces (p, body);
24219 }
24220 }
24221
24222 if (*p == ')')
24223 {
24224 p++;
24225
24226 if (*p == ' ')
24227 /* Perfectly formed definition, no complaints. */
24228 macro_define_function (file, line, name,
24229 argc, (const char **) argv,
24230 p + 1);
24231 else if (*p == '\0')
24232 {
24233 /* Complain, but do define it. */
24234 dwarf2_macro_malformed_definition_complaint (body);
24235 macro_define_function (file, line, name,
24236 argc, (const char **) argv,
24237 p);
24238 }
24239 else
24240 /* Just complain. */
24241 dwarf2_macro_malformed_definition_complaint (body);
24242 }
24243 else
24244 /* Just complain. */
24245 dwarf2_macro_malformed_definition_complaint (body);
24246
24247 xfree (name);
24248 {
24249 int i;
24250
24251 for (i = 0; i < argc; i++)
24252 xfree (argv[i]);
24253 }
24254 xfree (argv);
24255 }
24256 else
24257 dwarf2_macro_malformed_definition_complaint (body);
24258 }
24259
24260 /* Skip some bytes from BYTES according to the form given in FORM.
24261 Returns the new pointer. */
24262
24263 static const gdb_byte *
24264 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24265 enum dwarf_form form,
24266 unsigned int offset_size,
24267 struct dwarf2_section_info *section)
24268 {
24269 unsigned int bytes_read;
24270
24271 switch (form)
24272 {
24273 case DW_FORM_data1:
24274 case DW_FORM_flag:
24275 ++bytes;
24276 break;
24277
24278 case DW_FORM_data2:
24279 bytes += 2;
24280 break;
24281
24282 case DW_FORM_data4:
24283 bytes += 4;
24284 break;
24285
24286 case DW_FORM_data8:
24287 bytes += 8;
24288 break;
24289
24290 case DW_FORM_data16:
24291 bytes += 16;
24292 break;
24293
24294 case DW_FORM_string:
24295 read_direct_string (abfd, bytes, &bytes_read);
24296 bytes += bytes_read;
24297 break;
24298
24299 case DW_FORM_sec_offset:
24300 case DW_FORM_strp:
24301 case DW_FORM_GNU_strp_alt:
24302 bytes += offset_size;
24303 break;
24304
24305 case DW_FORM_block:
24306 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24307 bytes += bytes_read;
24308 break;
24309
24310 case DW_FORM_block1:
24311 bytes += 1 + read_1_byte (abfd, bytes);
24312 break;
24313 case DW_FORM_block2:
24314 bytes += 2 + read_2_bytes (abfd, bytes);
24315 break;
24316 case DW_FORM_block4:
24317 bytes += 4 + read_4_bytes (abfd, bytes);
24318 break;
24319
24320 case DW_FORM_addrx:
24321 case DW_FORM_sdata:
24322 case DW_FORM_strx:
24323 case DW_FORM_udata:
24324 case DW_FORM_GNU_addr_index:
24325 case DW_FORM_GNU_str_index:
24326 bytes = gdb_skip_leb128 (bytes, buffer_end);
24327 if (bytes == NULL)
24328 {
24329 dwarf2_section_buffer_overflow_complaint (section);
24330 return NULL;
24331 }
24332 break;
24333
24334 case DW_FORM_implicit_const:
24335 break;
24336
24337 default:
24338 {
24339 complaint (_("invalid form 0x%x in `%s'"),
24340 form, get_section_name (section));
24341 return NULL;
24342 }
24343 }
24344
24345 return bytes;
24346 }
24347
24348 /* A helper for dwarf_decode_macros that handles skipping an unknown
24349 opcode. Returns an updated pointer to the macro data buffer; or,
24350 on error, issues a complaint and returns NULL. */
24351
24352 static const gdb_byte *
24353 skip_unknown_opcode (unsigned int opcode,
24354 const gdb_byte **opcode_definitions,
24355 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24356 bfd *abfd,
24357 unsigned int offset_size,
24358 struct dwarf2_section_info *section)
24359 {
24360 unsigned int bytes_read, i;
24361 unsigned long arg;
24362 const gdb_byte *defn;
24363
24364 if (opcode_definitions[opcode] == NULL)
24365 {
24366 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24367 opcode);
24368 return NULL;
24369 }
24370
24371 defn = opcode_definitions[opcode];
24372 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24373 defn += bytes_read;
24374
24375 for (i = 0; i < arg; ++i)
24376 {
24377 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24378 (enum dwarf_form) defn[i], offset_size,
24379 section);
24380 if (mac_ptr == NULL)
24381 {
24382 /* skip_form_bytes already issued the complaint. */
24383 return NULL;
24384 }
24385 }
24386
24387 return mac_ptr;
24388 }
24389
24390 /* A helper function which parses the header of a macro section.
24391 If the macro section is the extended (for now called "GNU") type,
24392 then this updates *OFFSET_SIZE. Returns a pointer to just after
24393 the header, or issues a complaint and returns NULL on error. */
24394
24395 static const gdb_byte *
24396 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24397 bfd *abfd,
24398 const gdb_byte *mac_ptr,
24399 unsigned int *offset_size,
24400 int section_is_gnu)
24401 {
24402 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24403
24404 if (section_is_gnu)
24405 {
24406 unsigned int version, flags;
24407
24408 version = read_2_bytes (abfd, mac_ptr);
24409 if (version != 4 && version != 5)
24410 {
24411 complaint (_("unrecognized version `%d' in .debug_macro section"),
24412 version);
24413 return NULL;
24414 }
24415 mac_ptr += 2;
24416
24417 flags = read_1_byte (abfd, mac_ptr);
24418 ++mac_ptr;
24419 *offset_size = (flags & 1) ? 8 : 4;
24420
24421 if ((flags & 2) != 0)
24422 /* We don't need the line table offset. */
24423 mac_ptr += *offset_size;
24424
24425 /* Vendor opcode descriptions. */
24426 if ((flags & 4) != 0)
24427 {
24428 unsigned int i, count;
24429
24430 count = read_1_byte (abfd, mac_ptr);
24431 ++mac_ptr;
24432 for (i = 0; i < count; ++i)
24433 {
24434 unsigned int opcode, bytes_read;
24435 unsigned long arg;
24436
24437 opcode = read_1_byte (abfd, mac_ptr);
24438 ++mac_ptr;
24439 opcode_definitions[opcode] = mac_ptr;
24440 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24441 mac_ptr += bytes_read;
24442 mac_ptr += arg;
24443 }
24444 }
24445 }
24446
24447 return mac_ptr;
24448 }
24449
24450 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24451 including DW_MACRO_import. */
24452
24453 static void
24454 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24455 bfd *abfd,
24456 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24457 struct macro_source_file *current_file,
24458 struct line_header *lh,
24459 struct dwarf2_section_info *section,
24460 int section_is_gnu, int section_is_dwz,
24461 unsigned int offset_size,
24462 htab_t include_hash)
24463 {
24464 struct dwarf2_per_objfile *dwarf2_per_objfile
24465 = cu->per_cu->dwarf2_per_objfile;
24466 struct objfile *objfile = dwarf2_per_objfile->objfile;
24467 enum dwarf_macro_record_type macinfo_type;
24468 int at_commandline;
24469 const gdb_byte *opcode_definitions[256];
24470
24471 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24472 &offset_size, section_is_gnu);
24473 if (mac_ptr == NULL)
24474 {
24475 /* We already issued a complaint. */
24476 return;
24477 }
24478
24479 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24480 GDB is still reading the definitions from command line. First
24481 DW_MACINFO_start_file will need to be ignored as it was already executed
24482 to create CURRENT_FILE for the main source holding also the command line
24483 definitions. On first met DW_MACINFO_start_file this flag is reset to
24484 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24485
24486 at_commandline = 1;
24487
24488 do
24489 {
24490 /* Do we at least have room for a macinfo type byte? */
24491 if (mac_ptr >= mac_end)
24492 {
24493 dwarf2_section_buffer_overflow_complaint (section);
24494 break;
24495 }
24496
24497 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24498 mac_ptr++;
24499
24500 /* Note that we rely on the fact that the corresponding GNU and
24501 DWARF constants are the same. */
24502 DIAGNOSTIC_PUSH
24503 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24504 switch (macinfo_type)
24505 {
24506 /* A zero macinfo type indicates the end of the macro
24507 information. */
24508 case 0:
24509 break;
24510
24511 case DW_MACRO_define:
24512 case DW_MACRO_undef:
24513 case DW_MACRO_define_strp:
24514 case DW_MACRO_undef_strp:
24515 case DW_MACRO_define_sup:
24516 case DW_MACRO_undef_sup:
24517 {
24518 unsigned int bytes_read;
24519 int line;
24520 const char *body;
24521 int is_define;
24522
24523 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24524 mac_ptr += bytes_read;
24525
24526 if (macinfo_type == DW_MACRO_define
24527 || macinfo_type == DW_MACRO_undef)
24528 {
24529 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24530 mac_ptr += bytes_read;
24531 }
24532 else
24533 {
24534 LONGEST str_offset;
24535
24536 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24537 mac_ptr += offset_size;
24538
24539 if (macinfo_type == DW_MACRO_define_sup
24540 || macinfo_type == DW_MACRO_undef_sup
24541 || section_is_dwz)
24542 {
24543 struct dwz_file *dwz
24544 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24545
24546 body = read_indirect_string_from_dwz (objfile,
24547 dwz, str_offset);
24548 }
24549 else
24550 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24551 abfd, str_offset);
24552 }
24553
24554 is_define = (macinfo_type == DW_MACRO_define
24555 || macinfo_type == DW_MACRO_define_strp
24556 || macinfo_type == DW_MACRO_define_sup);
24557 if (! current_file)
24558 {
24559 /* DWARF violation as no main source is present. */
24560 complaint (_("debug info with no main source gives macro %s "
24561 "on line %d: %s"),
24562 is_define ? _("definition") : _("undefinition"),
24563 line, body);
24564 break;
24565 }
24566 if ((line == 0 && !at_commandline)
24567 || (line != 0 && at_commandline))
24568 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24569 at_commandline ? _("command-line") : _("in-file"),
24570 is_define ? _("definition") : _("undefinition"),
24571 line == 0 ? _("zero") : _("non-zero"), line, body);
24572
24573 if (body == NULL)
24574 {
24575 /* Fedora's rpm-build's "debugedit" binary
24576 corrupted .debug_macro sections.
24577
24578 For more info, see
24579 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24580 complaint (_("debug info gives %s invalid macro %s "
24581 "without body (corrupted?) at line %d "
24582 "on file %s"),
24583 at_commandline ? _("command-line") : _("in-file"),
24584 is_define ? _("definition") : _("undefinition"),
24585 line, current_file->filename);
24586 }
24587 else if (is_define)
24588 parse_macro_definition (current_file, line, body);
24589 else
24590 {
24591 gdb_assert (macinfo_type == DW_MACRO_undef
24592 || macinfo_type == DW_MACRO_undef_strp
24593 || macinfo_type == DW_MACRO_undef_sup);
24594 macro_undef (current_file, line, body);
24595 }
24596 }
24597 break;
24598
24599 case DW_MACRO_start_file:
24600 {
24601 unsigned int bytes_read;
24602 int line, file;
24603
24604 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24605 mac_ptr += bytes_read;
24606 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24607 mac_ptr += bytes_read;
24608
24609 if ((line == 0 && !at_commandline)
24610 || (line != 0 && at_commandline))
24611 complaint (_("debug info gives source %d included "
24612 "from %s at %s line %d"),
24613 file, at_commandline ? _("command-line") : _("file"),
24614 line == 0 ? _("zero") : _("non-zero"), line);
24615
24616 if (at_commandline)
24617 {
24618 /* This DW_MACRO_start_file was executed in the
24619 pass one. */
24620 at_commandline = 0;
24621 }
24622 else
24623 current_file = macro_start_file (cu, file, line, current_file,
24624 lh);
24625 }
24626 break;
24627
24628 case DW_MACRO_end_file:
24629 if (! current_file)
24630 complaint (_("macro debug info has an unmatched "
24631 "`close_file' directive"));
24632 else
24633 {
24634 current_file = current_file->included_by;
24635 if (! current_file)
24636 {
24637 enum dwarf_macro_record_type next_type;
24638
24639 /* GCC circa March 2002 doesn't produce the zero
24640 type byte marking the end of the compilation
24641 unit. Complain if it's not there, but exit no
24642 matter what. */
24643
24644 /* Do we at least have room for a macinfo type byte? */
24645 if (mac_ptr >= mac_end)
24646 {
24647 dwarf2_section_buffer_overflow_complaint (section);
24648 return;
24649 }
24650
24651 /* We don't increment mac_ptr here, so this is just
24652 a look-ahead. */
24653 next_type
24654 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24655 mac_ptr);
24656 if (next_type != 0)
24657 complaint (_("no terminating 0-type entry for "
24658 "macros in `.debug_macinfo' section"));
24659
24660 return;
24661 }
24662 }
24663 break;
24664
24665 case DW_MACRO_import:
24666 case DW_MACRO_import_sup:
24667 {
24668 LONGEST offset;
24669 void **slot;
24670 bfd *include_bfd = abfd;
24671 struct dwarf2_section_info *include_section = section;
24672 const gdb_byte *include_mac_end = mac_end;
24673 int is_dwz = section_is_dwz;
24674 const gdb_byte *new_mac_ptr;
24675
24676 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24677 mac_ptr += offset_size;
24678
24679 if (macinfo_type == DW_MACRO_import_sup)
24680 {
24681 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24682
24683 dwarf2_read_section (objfile, &dwz->macro);
24684
24685 include_section = &dwz->macro;
24686 include_bfd = get_section_bfd_owner (include_section);
24687 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24688 is_dwz = 1;
24689 }
24690
24691 new_mac_ptr = include_section->buffer + offset;
24692 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24693
24694 if (*slot != NULL)
24695 {
24696 /* This has actually happened; see
24697 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24698 complaint (_("recursive DW_MACRO_import in "
24699 ".debug_macro section"));
24700 }
24701 else
24702 {
24703 *slot = (void *) new_mac_ptr;
24704
24705 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24706 include_mac_end, current_file, lh,
24707 section, section_is_gnu, is_dwz,
24708 offset_size, include_hash);
24709
24710 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24711 }
24712 }
24713 break;
24714
24715 case DW_MACINFO_vendor_ext:
24716 if (!section_is_gnu)
24717 {
24718 unsigned int bytes_read;
24719
24720 /* This reads the constant, but since we don't recognize
24721 any vendor extensions, we ignore it. */
24722 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24723 mac_ptr += bytes_read;
24724 read_direct_string (abfd, mac_ptr, &bytes_read);
24725 mac_ptr += bytes_read;
24726
24727 /* We don't recognize any vendor extensions. */
24728 break;
24729 }
24730 /* FALLTHROUGH */
24731
24732 default:
24733 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24734 mac_ptr, mac_end, abfd, offset_size,
24735 section);
24736 if (mac_ptr == NULL)
24737 return;
24738 break;
24739 }
24740 DIAGNOSTIC_POP
24741 } while (macinfo_type != 0);
24742 }
24743
24744 static void
24745 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24746 int section_is_gnu)
24747 {
24748 struct dwarf2_per_objfile *dwarf2_per_objfile
24749 = cu->per_cu->dwarf2_per_objfile;
24750 struct objfile *objfile = dwarf2_per_objfile->objfile;
24751 struct line_header *lh = cu->line_header;
24752 bfd *abfd;
24753 const gdb_byte *mac_ptr, *mac_end;
24754 struct macro_source_file *current_file = 0;
24755 enum dwarf_macro_record_type macinfo_type;
24756 unsigned int offset_size = cu->header.offset_size;
24757 const gdb_byte *opcode_definitions[256];
24758 void **slot;
24759 struct dwarf2_section_info *section;
24760 const char *section_name;
24761
24762 if (cu->dwo_unit != NULL)
24763 {
24764 if (section_is_gnu)
24765 {
24766 section = &cu->dwo_unit->dwo_file->sections.macro;
24767 section_name = ".debug_macro.dwo";
24768 }
24769 else
24770 {
24771 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24772 section_name = ".debug_macinfo.dwo";
24773 }
24774 }
24775 else
24776 {
24777 if (section_is_gnu)
24778 {
24779 section = &dwarf2_per_objfile->macro;
24780 section_name = ".debug_macro";
24781 }
24782 else
24783 {
24784 section = &dwarf2_per_objfile->macinfo;
24785 section_name = ".debug_macinfo";
24786 }
24787 }
24788
24789 dwarf2_read_section (objfile, section);
24790 if (section->buffer == NULL)
24791 {
24792 complaint (_("missing %s section"), section_name);
24793 return;
24794 }
24795 abfd = get_section_bfd_owner (section);
24796
24797 /* First pass: Find the name of the base filename.
24798 This filename is needed in order to process all macros whose definition
24799 (or undefinition) comes from the command line. These macros are defined
24800 before the first DW_MACINFO_start_file entry, and yet still need to be
24801 associated to the base file.
24802
24803 To determine the base file name, we scan the macro definitions until we
24804 reach the first DW_MACINFO_start_file entry. We then initialize
24805 CURRENT_FILE accordingly so that any macro definition found before the
24806 first DW_MACINFO_start_file can still be associated to the base file. */
24807
24808 mac_ptr = section->buffer + offset;
24809 mac_end = section->buffer + section->size;
24810
24811 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24812 &offset_size, section_is_gnu);
24813 if (mac_ptr == NULL)
24814 {
24815 /* We already issued a complaint. */
24816 return;
24817 }
24818
24819 do
24820 {
24821 /* Do we at least have room for a macinfo type byte? */
24822 if (mac_ptr >= mac_end)
24823 {
24824 /* Complaint is printed during the second pass as GDB will probably
24825 stop the first pass earlier upon finding
24826 DW_MACINFO_start_file. */
24827 break;
24828 }
24829
24830 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24831 mac_ptr++;
24832
24833 /* Note that we rely on the fact that the corresponding GNU and
24834 DWARF constants are the same. */
24835 DIAGNOSTIC_PUSH
24836 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24837 switch (macinfo_type)
24838 {
24839 /* A zero macinfo type indicates the end of the macro
24840 information. */
24841 case 0:
24842 break;
24843
24844 case DW_MACRO_define:
24845 case DW_MACRO_undef:
24846 /* Only skip the data by MAC_PTR. */
24847 {
24848 unsigned int bytes_read;
24849
24850 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24851 mac_ptr += bytes_read;
24852 read_direct_string (abfd, mac_ptr, &bytes_read);
24853 mac_ptr += bytes_read;
24854 }
24855 break;
24856
24857 case DW_MACRO_start_file:
24858 {
24859 unsigned int bytes_read;
24860 int line, file;
24861
24862 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24863 mac_ptr += bytes_read;
24864 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24865 mac_ptr += bytes_read;
24866
24867 current_file = macro_start_file (cu, file, line, current_file, lh);
24868 }
24869 break;
24870
24871 case DW_MACRO_end_file:
24872 /* No data to skip by MAC_PTR. */
24873 break;
24874
24875 case DW_MACRO_define_strp:
24876 case DW_MACRO_undef_strp:
24877 case DW_MACRO_define_sup:
24878 case DW_MACRO_undef_sup:
24879 {
24880 unsigned int bytes_read;
24881
24882 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24883 mac_ptr += bytes_read;
24884 mac_ptr += offset_size;
24885 }
24886 break;
24887
24888 case DW_MACRO_import:
24889 case DW_MACRO_import_sup:
24890 /* Note that, according to the spec, a transparent include
24891 chain cannot call DW_MACRO_start_file. So, we can just
24892 skip this opcode. */
24893 mac_ptr += offset_size;
24894 break;
24895
24896 case DW_MACINFO_vendor_ext:
24897 /* Only skip the data by MAC_PTR. */
24898 if (!section_is_gnu)
24899 {
24900 unsigned int bytes_read;
24901
24902 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24903 mac_ptr += bytes_read;
24904 read_direct_string (abfd, mac_ptr, &bytes_read);
24905 mac_ptr += bytes_read;
24906 }
24907 /* FALLTHROUGH */
24908
24909 default:
24910 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24911 mac_ptr, mac_end, abfd, offset_size,
24912 section);
24913 if (mac_ptr == NULL)
24914 return;
24915 break;
24916 }
24917 DIAGNOSTIC_POP
24918 } while (macinfo_type != 0 && current_file == NULL);
24919
24920 /* Second pass: Process all entries.
24921
24922 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24923 command-line macro definitions/undefinitions. This flag is unset when we
24924 reach the first DW_MACINFO_start_file entry. */
24925
24926 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24927 htab_eq_pointer,
24928 NULL, xcalloc, xfree));
24929 mac_ptr = section->buffer + offset;
24930 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24931 *slot = (void *) mac_ptr;
24932 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24933 current_file, lh, section,
24934 section_is_gnu, 0, offset_size,
24935 include_hash.get ());
24936 }
24937
24938 /* Check if the attribute's form is a DW_FORM_block*
24939 if so return true else false. */
24940
24941 static int
24942 attr_form_is_block (const struct attribute *attr)
24943 {
24944 return (attr == NULL ? 0 :
24945 attr->form == DW_FORM_block1
24946 || attr->form == DW_FORM_block2
24947 || attr->form == DW_FORM_block4
24948 || attr->form == DW_FORM_block
24949 || attr->form == DW_FORM_exprloc);
24950 }
24951
24952 /* Return non-zero if ATTR's value is a section offset --- classes
24953 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24954 You may use DW_UNSND (attr) to retrieve such offsets.
24955
24956 Section 7.5.4, "Attribute Encodings", explains that no attribute
24957 may have a value that belongs to more than one of these classes; it
24958 would be ambiguous if we did, because we use the same forms for all
24959 of them. */
24960
24961 static int
24962 attr_form_is_section_offset (const struct attribute *attr)
24963 {
24964 return (attr->form == DW_FORM_data4
24965 || attr->form == DW_FORM_data8
24966 || attr->form == DW_FORM_sec_offset);
24967 }
24968
24969 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24970 zero otherwise. When this function returns true, you can apply
24971 dwarf2_get_attr_constant_value to it.
24972
24973 However, note that for some attributes you must check
24974 attr_form_is_section_offset before using this test. DW_FORM_data4
24975 and DW_FORM_data8 are members of both the constant class, and of
24976 the classes that contain offsets into other debug sections
24977 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24978 that, if an attribute's can be either a constant or one of the
24979 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24980 taken as section offsets, not constants.
24981
24982 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24983 cannot handle that. */
24984
24985 static int
24986 attr_form_is_constant (const struct attribute *attr)
24987 {
24988 switch (attr->form)
24989 {
24990 case DW_FORM_sdata:
24991 case DW_FORM_udata:
24992 case DW_FORM_data1:
24993 case DW_FORM_data2:
24994 case DW_FORM_data4:
24995 case DW_FORM_data8:
24996 case DW_FORM_implicit_const:
24997 return 1;
24998 default:
24999 return 0;
25000 }
25001 }
25002
25003
25004 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25005 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25006
25007 static int
25008 attr_form_is_ref (const struct attribute *attr)
25009 {
25010 switch (attr->form)
25011 {
25012 case DW_FORM_ref_addr:
25013 case DW_FORM_ref1:
25014 case DW_FORM_ref2:
25015 case DW_FORM_ref4:
25016 case DW_FORM_ref8:
25017 case DW_FORM_ref_udata:
25018 case DW_FORM_GNU_ref_alt:
25019 return 1;
25020 default:
25021 return 0;
25022 }
25023 }
25024
25025 /* Return the .debug_loc section to use for CU.
25026 For DWO files use .debug_loc.dwo. */
25027
25028 static struct dwarf2_section_info *
25029 cu_debug_loc_section (struct dwarf2_cu *cu)
25030 {
25031 struct dwarf2_per_objfile *dwarf2_per_objfile
25032 = cu->per_cu->dwarf2_per_objfile;
25033
25034 if (cu->dwo_unit)
25035 {
25036 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25037
25038 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25039 }
25040 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25041 : &dwarf2_per_objfile->loc);
25042 }
25043
25044 /* A helper function that fills in a dwarf2_loclist_baton. */
25045
25046 static void
25047 fill_in_loclist_baton (struct dwarf2_cu *cu,
25048 struct dwarf2_loclist_baton *baton,
25049 const struct attribute *attr)
25050 {
25051 struct dwarf2_per_objfile *dwarf2_per_objfile
25052 = cu->per_cu->dwarf2_per_objfile;
25053 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25054
25055 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25056
25057 baton->per_cu = cu->per_cu;
25058 gdb_assert (baton->per_cu);
25059 /* We don't know how long the location list is, but make sure we
25060 don't run off the edge of the section. */
25061 baton->size = section->size - DW_UNSND (attr);
25062 baton->data = section->buffer + DW_UNSND (attr);
25063 baton->base_address = cu->base_address;
25064 baton->from_dwo = cu->dwo_unit != NULL;
25065 }
25066
25067 static void
25068 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25069 struct dwarf2_cu *cu, int is_block)
25070 {
25071 struct dwarf2_per_objfile *dwarf2_per_objfile
25072 = cu->per_cu->dwarf2_per_objfile;
25073 struct objfile *objfile = dwarf2_per_objfile->objfile;
25074 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25075
25076 if (attr_form_is_section_offset (attr)
25077 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25078 the section. If so, fall through to the complaint in the
25079 other branch. */
25080 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25081 {
25082 struct dwarf2_loclist_baton *baton;
25083
25084 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25085
25086 fill_in_loclist_baton (cu, baton, attr);
25087
25088 if (cu->base_known == 0)
25089 complaint (_("Location list used without "
25090 "specifying the CU base address."));
25091
25092 SYMBOL_ACLASS_INDEX (sym) = (is_block
25093 ? dwarf2_loclist_block_index
25094 : dwarf2_loclist_index);
25095 SYMBOL_LOCATION_BATON (sym) = baton;
25096 }
25097 else
25098 {
25099 struct dwarf2_locexpr_baton *baton;
25100
25101 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25102 baton->per_cu = cu->per_cu;
25103 gdb_assert (baton->per_cu);
25104
25105 if (attr_form_is_block (attr))
25106 {
25107 /* Note that we're just copying the block's data pointer
25108 here, not the actual data. We're still pointing into the
25109 info_buffer for SYM's objfile; right now we never release
25110 that buffer, but when we do clean up properly this may
25111 need to change. */
25112 baton->size = DW_BLOCK (attr)->size;
25113 baton->data = DW_BLOCK (attr)->data;
25114 }
25115 else
25116 {
25117 dwarf2_invalid_attrib_class_complaint ("location description",
25118 SYMBOL_NATURAL_NAME (sym));
25119 baton->size = 0;
25120 }
25121
25122 SYMBOL_ACLASS_INDEX (sym) = (is_block
25123 ? dwarf2_locexpr_block_index
25124 : dwarf2_locexpr_index);
25125 SYMBOL_LOCATION_BATON (sym) = baton;
25126 }
25127 }
25128
25129 /* Return the OBJFILE associated with the compilation unit CU. If CU
25130 came from a separate debuginfo file, then the master objfile is
25131 returned. */
25132
25133 struct objfile *
25134 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25135 {
25136 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25137
25138 /* Return the master objfile, so that we can report and look up the
25139 correct file containing this variable. */
25140 if (objfile->separate_debug_objfile_backlink)
25141 objfile = objfile->separate_debug_objfile_backlink;
25142
25143 return objfile;
25144 }
25145
25146 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25147 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25148 CU_HEADERP first. */
25149
25150 static const struct comp_unit_head *
25151 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25152 struct dwarf2_per_cu_data *per_cu)
25153 {
25154 const gdb_byte *info_ptr;
25155
25156 if (per_cu->cu)
25157 return &per_cu->cu->header;
25158
25159 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25160
25161 memset (cu_headerp, 0, sizeof (*cu_headerp));
25162 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25163 rcuh_kind::COMPILE);
25164
25165 return cu_headerp;
25166 }
25167
25168 /* Return the address size given in the compilation unit header for CU. */
25169
25170 int
25171 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25172 {
25173 struct comp_unit_head cu_header_local;
25174 const struct comp_unit_head *cu_headerp;
25175
25176 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25177
25178 return cu_headerp->addr_size;
25179 }
25180
25181 /* Return the offset size given in the compilation unit header for CU. */
25182
25183 int
25184 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25185 {
25186 struct comp_unit_head cu_header_local;
25187 const struct comp_unit_head *cu_headerp;
25188
25189 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25190
25191 return cu_headerp->offset_size;
25192 }
25193
25194 /* See its dwarf2loc.h declaration. */
25195
25196 int
25197 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25198 {
25199 struct comp_unit_head cu_header_local;
25200 const struct comp_unit_head *cu_headerp;
25201
25202 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25203
25204 if (cu_headerp->version == 2)
25205 return cu_headerp->addr_size;
25206 else
25207 return cu_headerp->offset_size;
25208 }
25209
25210 /* Return the text offset of the CU. The returned offset comes from
25211 this CU's objfile. If this objfile came from a separate debuginfo
25212 file, then the offset may be different from the corresponding
25213 offset in the parent objfile. */
25214
25215 CORE_ADDR
25216 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25217 {
25218 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25219
25220 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25221 }
25222
25223 /* Return DWARF version number of PER_CU. */
25224
25225 short
25226 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25227 {
25228 return per_cu->dwarf_version;
25229 }
25230
25231 /* Locate the .debug_info compilation unit from CU's objfile which contains
25232 the DIE at OFFSET. Raises an error on failure. */
25233
25234 static struct dwarf2_per_cu_data *
25235 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25236 unsigned int offset_in_dwz,
25237 struct dwarf2_per_objfile *dwarf2_per_objfile)
25238 {
25239 struct dwarf2_per_cu_data *this_cu;
25240 int low, high;
25241
25242 low = 0;
25243 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25244 while (high > low)
25245 {
25246 struct dwarf2_per_cu_data *mid_cu;
25247 int mid = low + (high - low) / 2;
25248
25249 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25250 if (mid_cu->is_dwz > offset_in_dwz
25251 || (mid_cu->is_dwz == offset_in_dwz
25252 && mid_cu->sect_off + mid_cu->length >= sect_off))
25253 high = mid;
25254 else
25255 low = mid + 1;
25256 }
25257 gdb_assert (low == high);
25258 this_cu = dwarf2_per_objfile->all_comp_units[low];
25259 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25260 {
25261 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25262 error (_("Dwarf Error: could not find partial DIE containing "
25263 "offset %s [in module %s]"),
25264 sect_offset_str (sect_off),
25265 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25266
25267 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25268 <= sect_off);
25269 return dwarf2_per_objfile->all_comp_units[low-1];
25270 }
25271 else
25272 {
25273 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25274 && sect_off >= this_cu->sect_off + this_cu->length)
25275 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25276 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25277 return this_cu;
25278 }
25279 }
25280
25281 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25282
25283 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25284 : per_cu (per_cu_),
25285 mark (false),
25286 has_loclist (false),
25287 checked_producer (false),
25288 producer_is_gxx_lt_4_6 (false),
25289 producer_is_gcc_lt_4_3 (false),
25290 producer_is_icc (false),
25291 producer_is_icc_lt_14 (false),
25292 producer_is_codewarrior (false),
25293 processing_has_namespace_info (false)
25294 {
25295 per_cu->cu = this;
25296 }
25297
25298 /* Destroy a dwarf2_cu. */
25299
25300 dwarf2_cu::~dwarf2_cu ()
25301 {
25302 per_cu->cu = NULL;
25303 }
25304
25305 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25306
25307 static void
25308 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25309 enum language pretend_language)
25310 {
25311 struct attribute *attr;
25312
25313 /* Set the language we're debugging. */
25314 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25315 if (attr)
25316 set_cu_language (DW_UNSND (attr), cu);
25317 else
25318 {
25319 cu->language = pretend_language;
25320 cu->language_defn = language_def (cu->language);
25321 }
25322
25323 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25324 }
25325
25326 /* Increase the age counter on each cached compilation unit, and free
25327 any that are too old. */
25328
25329 static void
25330 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25331 {
25332 struct dwarf2_per_cu_data *per_cu, **last_chain;
25333
25334 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25335 per_cu = dwarf2_per_objfile->read_in_chain;
25336 while (per_cu != NULL)
25337 {
25338 per_cu->cu->last_used ++;
25339 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25340 dwarf2_mark (per_cu->cu);
25341 per_cu = per_cu->cu->read_in_chain;
25342 }
25343
25344 per_cu = dwarf2_per_objfile->read_in_chain;
25345 last_chain = &dwarf2_per_objfile->read_in_chain;
25346 while (per_cu != NULL)
25347 {
25348 struct dwarf2_per_cu_data *next_cu;
25349
25350 next_cu = per_cu->cu->read_in_chain;
25351
25352 if (!per_cu->cu->mark)
25353 {
25354 delete per_cu->cu;
25355 *last_chain = next_cu;
25356 }
25357 else
25358 last_chain = &per_cu->cu->read_in_chain;
25359
25360 per_cu = next_cu;
25361 }
25362 }
25363
25364 /* Remove a single compilation unit from the cache. */
25365
25366 static void
25367 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25368 {
25369 struct dwarf2_per_cu_data *per_cu, **last_chain;
25370 struct dwarf2_per_objfile *dwarf2_per_objfile
25371 = target_per_cu->dwarf2_per_objfile;
25372
25373 per_cu = dwarf2_per_objfile->read_in_chain;
25374 last_chain = &dwarf2_per_objfile->read_in_chain;
25375 while (per_cu != NULL)
25376 {
25377 struct dwarf2_per_cu_data *next_cu;
25378
25379 next_cu = per_cu->cu->read_in_chain;
25380
25381 if (per_cu == target_per_cu)
25382 {
25383 delete per_cu->cu;
25384 per_cu->cu = NULL;
25385 *last_chain = next_cu;
25386 break;
25387 }
25388 else
25389 last_chain = &per_cu->cu->read_in_chain;
25390
25391 per_cu = next_cu;
25392 }
25393 }
25394
25395 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25396 We store these in a hash table separate from the DIEs, and preserve them
25397 when the DIEs are flushed out of cache.
25398
25399 The CU "per_cu" pointer is needed because offset alone is not enough to
25400 uniquely identify the type. A file may have multiple .debug_types sections,
25401 or the type may come from a DWO file. Furthermore, while it's more logical
25402 to use per_cu->section+offset, with Fission the section with the data is in
25403 the DWO file but we don't know that section at the point we need it.
25404 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25405 because we can enter the lookup routine, get_die_type_at_offset, from
25406 outside this file, and thus won't necessarily have PER_CU->cu.
25407 Fortunately, PER_CU is stable for the life of the objfile. */
25408
25409 struct dwarf2_per_cu_offset_and_type
25410 {
25411 const struct dwarf2_per_cu_data *per_cu;
25412 sect_offset sect_off;
25413 struct type *type;
25414 };
25415
25416 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25417
25418 static hashval_t
25419 per_cu_offset_and_type_hash (const void *item)
25420 {
25421 const struct dwarf2_per_cu_offset_and_type *ofs
25422 = (const struct dwarf2_per_cu_offset_and_type *) item;
25423
25424 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25425 }
25426
25427 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25428
25429 static int
25430 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25431 {
25432 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25433 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25434 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25435 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25436
25437 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25438 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25439 }
25440
25441 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25442 table if necessary. For convenience, return TYPE.
25443
25444 The DIEs reading must have careful ordering to:
25445 * Not cause infite loops trying to read in DIEs as a prerequisite for
25446 reading current DIE.
25447 * Not trying to dereference contents of still incompletely read in types
25448 while reading in other DIEs.
25449 * Enable referencing still incompletely read in types just by a pointer to
25450 the type without accessing its fields.
25451
25452 Therefore caller should follow these rules:
25453 * Try to fetch any prerequisite types we may need to build this DIE type
25454 before building the type and calling set_die_type.
25455 * After building type call set_die_type for current DIE as soon as
25456 possible before fetching more types to complete the current type.
25457 * Make the type as complete as possible before fetching more types. */
25458
25459 static struct type *
25460 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25461 {
25462 struct dwarf2_per_objfile *dwarf2_per_objfile
25463 = cu->per_cu->dwarf2_per_objfile;
25464 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25465 struct objfile *objfile = dwarf2_per_objfile->objfile;
25466 struct attribute *attr;
25467 struct dynamic_prop prop;
25468
25469 /* For Ada types, make sure that the gnat-specific data is always
25470 initialized (if not already set). There are a few types where
25471 we should not be doing so, because the type-specific area is
25472 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25473 where the type-specific area is used to store the floatformat).
25474 But this is not a problem, because the gnat-specific information
25475 is actually not needed for these types. */
25476 if (need_gnat_info (cu)
25477 && TYPE_CODE (type) != TYPE_CODE_FUNC
25478 && TYPE_CODE (type) != TYPE_CODE_FLT
25479 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25480 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25481 && TYPE_CODE (type) != TYPE_CODE_METHOD
25482 && !HAVE_GNAT_AUX_INFO (type))
25483 INIT_GNAT_SPECIFIC (type);
25484
25485 /* Read DW_AT_allocated and set in type. */
25486 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25487 if (attr_form_is_block (attr))
25488 {
25489 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25490 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25491 }
25492 else if (attr != NULL)
25493 {
25494 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25495 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25496 sect_offset_str (die->sect_off));
25497 }
25498
25499 /* Read DW_AT_associated and set in type. */
25500 attr = dwarf2_attr (die, DW_AT_associated, cu);
25501 if (attr_form_is_block (attr))
25502 {
25503 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25504 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25505 }
25506 else if (attr != NULL)
25507 {
25508 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25509 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25510 sect_offset_str (die->sect_off));
25511 }
25512
25513 /* Read DW_AT_data_location and set in type. */
25514 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25515 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25516 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25517
25518 if (dwarf2_per_objfile->die_type_hash == NULL)
25519 {
25520 dwarf2_per_objfile->die_type_hash =
25521 htab_create_alloc_ex (127,
25522 per_cu_offset_and_type_hash,
25523 per_cu_offset_and_type_eq,
25524 NULL,
25525 &objfile->objfile_obstack,
25526 hashtab_obstack_allocate,
25527 dummy_obstack_deallocate);
25528 }
25529
25530 ofs.per_cu = cu->per_cu;
25531 ofs.sect_off = die->sect_off;
25532 ofs.type = type;
25533 slot = (struct dwarf2_per_cu_offset_and_type **)
25534 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25535 if (*slot)
25536 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25537 sect_offset_str (die->sect_off));
25538 *slot = XOBNEW (&objfile->objfile_obstack,
25539 struct dwarf2_per_cu_offset_and_type);
25540 **slot = ofs;
25541 return type;
25542 }
25543
25544 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25545 or return NULL if the die does not have a saved type. */
25546
25547 static struct type *
25548 get_die_type_at_offset (sect_offset sect_off,
25549 struct dwarf2_per_cu_data *per_cu)
25550 {
25551 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25552 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25553
25554 if (dwarf2_per_objfile->die_type_hash == NULL)
25555 return NULL;
25556
25557 ofs.per_cu = per_cu;
25558 ofs.sect_off = sect_off;
25559 slot = ((struct dwarf2_per_cu_offset_and_type *)
25560 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25561 if (slot)
25562 return slot->type;
25563 else
25564 return NULL;
25565 }
25566
25567 /* Look up the type for DIE in CU in die_type_hash,
25568 or return NULL if DIE does not have a saved type. */
25569
25570 static struct type *
25571 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25572 {
25573 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25574 }
25575
25576 /* Add a dependence relationship from CU to REF_PER_CU. */
25577
25578 static void
25579 dwarf2_add_dependence (struct dwarf2_cu *cu,
25580 struct dwarf2_per_cu_data *ref_per_cu)
25581 {
25582 void **slot;
25583
25584 if (cu->dependencies == NULL)
25585 cu->dependencies
25586 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25587 NULL, &cu->comp_unit_obstack,
25588 hashtab_obstack_allocate,
25589 dummy_obstack_deallocate);
25590
25591 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25592 if (*slot == NULL)
25593 *slot = ref_per_cu;
25594 }
25595
25596 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25597 Set the mark field in every compilation unit in the
25598 cache that we must keep because we are keeping CU. */
25599
25600 static int
25601 dwarf2_mark_helper (void **slot, void *data)
25602 {
25603 struct dwarf2_per_cu_data *per_cu;
25604
25605 per_cu = (struct dwarf2_per_cu_data *) *slot;
25606
25607 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25608 reading of the chain. As such dependencies remain valid it is not much
25609 useful to track and undo them during QUIT cleanups. */
25610 if (per_cu->cu == NULL)
25611 return 1;
25612
25613 if (per_cu->cu->mark)
25614 return 1;
25615 per_cu->cu->mark = true;
25616
25617 if (per_cu->cu->dependencies != NULL)
25618 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25619
25620 return 1;
25621 }
25622
25623 /* Set the mark field in CU and in every other compilation unit in the
25624 cache that we must keep because we are keeping CU. */
25625
25626 static void
25627 dwarf2_mark (struct dwarf2_cu *cu)
25628 {
25629 if (cu->mark)
25630 return;
25631 cu->mark = true;
25632 if (cu->dependencies != NULL)
25633 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25634 }
25635
25636 static void
25637 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25638 {
25639 while (per_cu)
25640 {
25641 per_cu->cu->mark = false;
25642 per_cu = per_cu->cu->read_in_chain;
25643 }
25644 }
25645
25646 /* Trivial hash function for partial_die_info: the hash value of a DIE
25647 is its offset in .debug_info for this objfile. */
25648
25649 static hashval_t
25650 partial_die_hash (const void *item)
25651 {
25652 const struct partial_die_info *part_die
25653 = (const struct partial_die_info *) item;
25654
25655 return to_underlying (part_die->sect_off);
25656 }
25657
25658 /* Trivial comparison function for partial_die_info structures: two DIEs
25659 are equal if they have the same offset. */
25660
25661 static int
25662 partial_die_eq (const void *item_lhs, const void *item_rhs)
25663 {
25664 const struct partial_die_info *part_die_lhs
25665 = (const struct partial_die_info *) item_lhs;
25666 const struct partial_die_info *part_die_rhs
25667 = (const struct partial_die_info *) item_rhs;
25668
25669 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25670 }
25671
25672 struct cmd_list_element *set_dwarf_cmdlist;
25673 struct cmd_list_element *show_dwarf_cmdlist;
25674
25675 static void
25676 set_dwarf_cmd (const char *args, int from_tty)
25677 {
25678 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25679 gdb_stdout);
25680 }
25681
25682 static void
25683 show_dwarf_cmd (const char *args, int from_tty)
25684 {
25685 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25686 }
25687
25688 int dwarf_always_disassemble;
25689
25690 static void
25691 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25692 struct cmd_list_element *c, const char *value)
25693 {
25694 fprintf_filtered (file,
25695 _("Whether to always disassemble "
25696 "DWARF expressions is %s.\n"),
25697 value);
25698 }
25699
25700 static void
25701 show_check_physname (struct ui_file *file, int from_tty,
25702 struct cmd_list_element *c, const char *value)
25703 {
25704 fprintf_filtered (file,
25705 _("Whether to check \"physname\" is %s.\n"),
25706 value);
25707 }
25708
25709 void
25710 _initialize_dwarf2_read (void)
25711 {
25712 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25713 Set DWARF specific variables.\n\
25714 Configure DWARF variables such as the cache size"),
25715 &set_dwarf_cmdlist, "maintenance set dwarf ",
25716 0/*allow-unknown*/, &maintenance_set_cmdlist);
25717
25718 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25719 Show DWARF specific variables\n\
25720 Show DWARF variables such as the cache size"),
25721 &show_dwarf_cmdlist, "maintenance show dwarf ",
25722 0/*allow-unknown*/, &maintenance_show_cmdlist);
25723
25724 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25725 &dwarf_max_cache_age, _("\
25726 Set the upper bound on the age of cached DWARF compilation units."), _("\
25727 Show the upper bound on the age of cached DWARF compilation units."), _("\
25728 A higher limit means that cached compilation units will be stored\n\
25729 in memory longer, and more total memory will be used. Zero disables\n\
25730 caching, which can slow down startup."),
25731 NULL,
25732 show_dwarf_max_cache_age,
25733 &set_dwarf_cmdlist,
25734 &show_dwarf_cmdlist);
25735
25736 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25737 &dwarf_always_disassemble, _("\
25738 Set whether `info address' always disassembles DWARF expressions."), _("\
25739 Show whether `info address' always disassembles DWARF expressions."), _("\
25740 When enabled, DWARF expressions are always printed in an assembly-like\n\
25741 syntax. When disabled, expressions will be printed in a more\n\
25742 conversational style, when possible."),
25743 NULL,
25744 show_dwarf_always_disassemble,
25745 &set_dwarf_cmdlist,
25746 &show_dwarf_cmdlist);
25747
25748 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25749 Set debugging of the DWARF reader."), _("\
25750 Show debugging of the DWARF reader."), _("\
25751 When enabled (non-zero), debugging messages are printed during DWARF\n\
25752 reading and symtab expansion. A value of 1 (one) provides basic\n\
25753 information. A value greater than 1 provides more verbose information."),
25754 NULL,
25755 NULL,
25756 &setdebuglist, &showdebuglist);
25757
25758 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25759 Set debugging of the DWARF DIE reader."), _("\
25760 Show debugging of the DWARF DIE reader."), _("\
25761 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25762 The value is the maximum depth to print."),
25763 NULL,
25764 NULL,
25765 &setdebuglist, &showdebuglist);
25766
25767 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25768 Set debugging of the dwarf line reader."), _("\
25769 Show debugging of the dwarf line reader."), _("\
25770 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25771 A value of 1 (one) provides basic information.\n\
25772 A value greater than 1 provides more verbose information."),
25773 NULL,
25774 NULL,
25775 &setdebuglist, &showdebuglist);
25776
25777 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25778 Set cross-checking of \"physname\" code against demangler."), _("\
25779 Show cross-checking of \"physname\" code against demangler."), _("\
25780 When enabled, GDB's internal \"physname\" code is checked against\n\
25781 the demangler."),
25782 NULL, show_check_physname,
25783 &setdebuglist, &showdebuglist);
25784
25785 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25786 no_class, &use_deprecated_index_sections, _("\
25787 Set whether to use deprecated gdb_index sections."), _("\
25788 Show whether to use deprecated gdb_index sections."), _("\
25789 When enabled, deprecated .gdb_index sections are used anyway.\n\
25790 Normally they are ignored either because of a missing feature or\n\
25791 performance issue.\n\
25792 Warning: This option must be enabled before gdb reads the file."),
25793 NULL,
25794 NULL,
25795 &setlist, &showlist);
25796
25797 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25798 &dwarf2_locexpr_funcs);
25799 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25800 &dwarf2_loclist_funcs);
25801
25802 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25803 &dwarf2_block_frame_base_locexpr_funcs);
25804 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25805 &dwarf2_block_frame_base_loclist_funcs);
25806
25807 #if GDB_SELF_TEST
25808 selftests::register_test ("dw2_expand_symtabs_matching",
25809 selftests::dw2_expand_symtabs_matching::run_test);
25810 #endif
25811 }
This page took 0.529045 seconds and 5 git commands to generate.