53e44db5caff24b7215f8970c6bd88ae3c29a1e8
[deliverable/binutils-gdb.git] / gdb / f-lang.c
1 /* Fortran language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
6 (fmbutt@engage.sps.mot.com).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "parser-defs.h"
28 #include "language.h"
29 #include "varobj.h"
30 #include "gdbcore.h"
31 #include "f-lang.h"
32 #include "valprint.h"
33 #include "value.h"
34 #include "cp-support.h"
35 #include "charset.h"
36 #include "c-lang.h"
37 #include "target-float.h"
38 #include "gdbarch.h"
39
40 #include <math.h>
41
42 /* Local functions */
43
44 static void f_printchar (int c, struct type *type, struct ui_file * stream);
45 static void f_emit_char (int c, struct type *type,
46 struct ui_file * stream, int quoter);
47
48 /* Return the encoding that should be used for the character type
49 TYPE. */
50
51 static const char *
52 f_get_encoding (struct type *type)
53 {
54 const char *encoding;
55
56 switch (TYPE_LENGTH (type))
57 {
58 case 1:
59 encoding = target_charset (get_type_arch (type));
60 break;
61 case 4:
62 if (type_byte_order (type) == BFD_ENDIAN_BIG)
63 encoding = "UTF-32BE";
64 else
65 encoding = "UTF-32LE";
66 break;
67
68 default:
69 error (_("unrecognized character type"));
70 }
71
72 return encoding;
73 }
74
75 /* Print the character C on STREAM as part of the contents of a literal
76 string whose delimiter is QUOTER. Note that that format for printing
77 characters and strings is language specific.
78 FIXME: This is a copy of the same function from c-exp.y. It should
79 be replaced with a true F77 version. */
80
81 static void
82 f_emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
83 {
84 const char *encoding = f_get_encoding (type);
85
86 generic_emit_char (c, type, stream, quoter, encoding);
87 }
88
89 /* Implementation of la_printchar. */
90
91 static void
92 f_printchar (int c, struct type *type, struct ui_file *stream)
93 {
94 fputs_filtered ("'", stream);
95 LA_EMIT_CHAR (c, type, stream, '\'');
96 fputs_filtered ("'", stream);
97 }
98
99 /* Print the character string STRING, printing at most LENGTH characters.
100 Printing stops early if the number hits print_max; repeat counts
101 are printed as appropriate. Print ellipses at the end if we
102 had to stop before printing LENGTH characters, or if FORCE_ELLIPSES.
103 FIXME: This is a copy of the same function from c-exp.y. It should
104 be replaced with a true F77 version. */
105
106 static void
107 f_printstr (struct ui_file *stream, struct type *type, const gdb_byte *string,
108 unsigned int length, const char *encoding, int force_ellipses,
109 const struct value_print_options *options)
110 {
111 const char *type_encoding = f_get_encoding (type);
112
113 if (TYPE_LENGTH (type) == 4)
114 fputs_filtered ("4_", stream);
115
116 if (!encoding || !*encoding)
117 encoding = type_encoding;
118
119 generic_printstr (stream, type, string, length, encoding,
120 force_ellipses, '\'', 0, options);
121 }
122 \f
123
124 /* Table of operators and their precedences for printing expressions. */
125
126 static const struct op_print f_op_print_tab[] =
127 {
128 {"+", BINOP_ADD, PREC_ADD, 0},
129 {"+", UNOP_PLUS, PREC_PREFIX, 0},
130 {"-", BINOP_SUB, PREC_ADD, 0},
131 {"-", UNOP_NEG, PREC_PREFIX, 0},
132 {"*", BINOP_MUL, PREC_MUL, 0},
133 {"/", BINOP_DIV, PREC_MUL, 0},
134 {"DIV", BINOP_INTDIV, PREC_MUL, 0},
135 {"MOD", BINOP_REM, PREC_MUL, 0},
136 {"=", BINOP_ASSIGN, PREC_ASSIGN, 1},
137 {".OR.", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
138 {".AND.", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
139 {".NOT.", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
140 {".EQ.", BINOP_EQUAL, PREC_EQUAL, 0},
141 {".NE.", BINOP_NOTEQUAL, PREC_EQUAL, 0},
142 {".LE.", BINOP_LEQ, PREC_ORDER, 0},
143 {".GE.", BINOP_GEQ, PREC_ORDER, 0},
144 {".GT.", BINOP_GTR, PREC_ORDER, 0},
145 {".LT.", BINOP_LESS, PREC_ORDER, 0},
146 {"**", UNOP_IND, PREC_PREFIX, 0},
147 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
148 {NULL, OP_NULL, PREC_REPEAT, 0}
149 };
150 \f
151 enum f_primitive_types {
152 f_primitive_type_character,
153 f_primitive_type_logical,
154 f_primitive_type_logical_s1,
155 f_primitive_type_logical_s2,
156 f_primitive_type_logical_s8,
157 f_primitive_type_integer,
158 f_primitive_type_integer_s2,
159 f_primitive_type_real,
160 f_primitive_type_real_s8,
161 f_primitive_type_real_s16,
162 f_primitive_type_complex_s8,
163 f_primitive_type_complex_s16,
164 f_primitive_type_void,
165 nr_f_primitive_types
166 };
167
168 static void
169 f_language_arch_info (struct gdbarch *gdbarch,
170 struct language_arch_info *lai)
171 {
172 const struct builtin_f_type *builtin = builtin_f_type (gdbarch);
173
174 lai->string_char_type = builtin->builtin_character;
175 lai->primitive_type_vector
176 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_f_primitive_types + 1,
177 struct type *);
178
179 lai->primitive_type_vector [f_primitive_type_character]
180 = builtin->builtin_character;
181 lai->primitive_type_vector [f_primitive_type_logical]
182 = builtin->builtin_logical;
183 lai->primitive_type_vector [f_primitive_type_logical_s1]
184 = builtin->builtin_logical_s1;
185 lai->primitive_type_vector [f_primitive_type_logical_s2]
186 = builtin->builtin_logical_s2;
187 lai->primitive_type_vector [f_primitive_type_logical_s8]
188 = builtin->builtin_logical_s8;
189 lai->primitive_type_vector [f_primitive_type_real]
190 = builtin->builtin_real;
191 lai->primitive_type_vector [f_primitive_type_real_s8]
192 = builtin->builtin_real_s8;
193 lai->primitive_type_vector [f_primitive_type_real_s16]
194 = builtin->builtin_real_s16;
195 lai->primitive_type_vector [f_primitive_type_complex_s8]
196 = builtin->builtin_complex_s8;
197 lai->primitive_type_vector [f_primitive_type_complex_s16]
198 = builtin->builtin_complex_s16;
199 lai->primitive_type_vector [f_primitive_type_void]
200 = builtin->builtin_void;
201
202 lai->bool_type_symbol = "logical";
203 lai->bool_type_default = builtin->builtin_logical_s2;
204 }
205
206 /* Remove the modules separator :: from the default break list. */
207
208 static const char *
209 f_word_break_characters (void)
210 {
211 static char *retval;
212
213 if (!retval)
214 {
215 char *s;
216
217 retval = xstrdup (default_word_break_characters ());
218 s = strchr (retval, ':');
219 if (s)
220 {
221 char *last_char = &s[strlen (s) - 1];
222
223 *s = *last_char;
224 *last_char = 0;
225 }
226 }
227 return retval;
228 }
229
230 /* Consider the modules separator :: as a valid symbol name character
231 class. */
232
233 static void
234 f_collect_symbol_completion_matches (completion_tracker &tracker,
235 complete_symbol_mode mode,
236 symbol_name_match_type compare_name,
237 const char *text, const char *word,
238 enum type_code code)
239 {
240 default_collect_symbol_completion_matches_break_on (tracker, mode,
241 compare_name,
242 text, word, ":", code);
243 }
244
245 /* Special expression evaluation cases for Fortran. */
246
247 static struct value *
248 evaluate_subexp_f (struct type *expect_type, struct expression *exp,
249 int *pos, enum noside noside)
250 {
251 struct value *arg1 = NULL, *arg2 = NULL;
252 enum exp_opcode op;
253 int pc;
254 struct type *type;
255
256 pc = *pos;
257 *pos += 1;
258 op = exp->elts[pc].opcode;
259
260 switch (op)
261 {
262 default:
263 *pos -= 1;
264 return evaluate_subexp_standard (expect_type, exp, pos, noside);
265
266 case UNOP_ABS:
267 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
268 if (noside == EVAL_SKIP)
269 return eval_skip_value (exp);
270 type = value_type (arg1);
271 switch (type->code ())
272 {
273 case TYPE_CODE_FLT:
274 {
275 double d
276 = fabs (target_float_to_host_double (value_contents (arg1),
277 value_type (arg1)));
278 return value_from_host_double (type, d);
279 }
280 case TYPE_CODE_INT:
281 {
282 LONGEST l = value_as_long (arg1);
283 l = llabs (l);
284 return value_from_longest (type, l);
285 }
286 }
287 error (_("ABS of type %s not supported"), TYPE_SAFE_NAME (type));
288
289 case BINOP_MOD:
290 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
291 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
292 if (noside == EVAL_SKIP)
293 return eval_skip_value (exp);
294 type = value_type (arg1);
295 if (type->code () != value_type (arg2)->code ())
296 error (_("non-matching types for parameters to MOD ()"));
297 switch (type->code ())
298 {
299 case TYPE_CODE_FLT:
300 {
301 double d1
302 = target_float_to_host_double (value_contents (arg1),
303 value_type (arg1));
304 double d2
305 = target_float_to_host_double (value_contents (arg2),
306 value_type (arg2));
307 double d3 = fmod (d1, d2);
308 return value_from_host_double (type, d3);
309 }
310 case TYPE_CODE_INT:
311 {
312 LONGEST v1 = value_as_long (arg1);
313 LONGEST v2 = value_as_long (arg2);
314 if (v2 == 0)
315 error (_("calling MOD (N, 0) is undefined"));
316 LONGEST v3 = v1 - (v1 / v2) * v2;
317 return value_from_longest (value_type (arg1), v3);
318 }
319 }
320 error (_("MOD of type %s not supported"), TYPE_SAFE_NAME (type));
321
322 case UNOP_FORTRAN_CEILING:
323 {
324 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
325 if (noside == EVAL_SKIP)
326 return eval_skip_value (exp);
327 type = value_type (arg1);
328 if (type->code () != TYPE_CODE_FLT)
329 error (_("argument to CEILING must be of type float"));
330 double val
331 = target_float_to_host_double (value_contents (arg1),
332 value_type (arg1));
333 val = ceil (val);
334 return value_from_host_double (type, val);
335 }
336
337 case UNOP_FORTRAN_FLOOR:
338 {
339 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
340 if (noside == EVAL_SKIP)
341 return eval_skip_value (exp);
342 type = value_type (arg1);
343 if (type->code () != TYPE_CODE_FLT)
344 error (_("argument to FLOOR must be of type float"));
345 double val
346 = target_float_to_host_double (value_contents (arg1),
347 value_type (arg1));
348 val = floor (val);
349 return value_from_host_double (type, val);
350 }
351
352 case BINOP_FORTRAN_MODULO:
353 {
354 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
355 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
356 if (noside == EVAL_SKIP)
357 return eval_skip_value (exp);
358 type = value_type (arg1);
359 if (type->code () != value_type (arg2)->code ())
360 error (_("non-matching types for parameters to MODULO ()"));
361 /* MODULO(A, P) = A - FLOOR (A / P) * P */
362 switch (type->code ())
363 {
364 case TYPE_CODE_INT:
365 {
366 LONGEST a = value_as_long (arg1);
367 LONGEST p = value_as_long (arg2);
368 LONGEST result = a - (a / p) * p;
369 if (result != 0 && (a < 0) != (p < 0))
370 result += p;
371 return value_from_longest (value_type (arg1), result);
372 }
373 case TYPE_CODE_FLT:
374 {
375 double a
376 = target_float_to_host_double (value_contents (arg1),
377 value_type (arg1));
378 double p
379 = target_float_to_host_double (value_contents (arg2),
380 value_type (arg2));
381 double result = fmod (a, p);
382 if (result != 0 && (a < 0.0) != (p < 0.0))
383 result += p;
384 return value_from_host_double (type, result);
385 }
386 }
387 error (_("MODULO of type %s not supported"), TYPE_SAFE_NAME (type));
388 }
389
390 case BINOP_FORTRAN_CMPLX:
391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
392 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
393 if (noside == EVAL_SKIP)
394 return eval_skip_value (exp);
395 type = builtin_f_type(exp->gdbarch)->builtin_complex_s16;
396 return value_literal_complex (arg1, arg2, type);
397
398 case UNOP_FORTRAN_KIND:
399 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
400 type = value_type (arg1);
401
402 switch (type->code ())
403 {
404 case TYPE_CODE_STRUCT:
405 case TYPE_CODE_UNION:
406 case TYPE_CODE_MODULE:
407 case TYPE_CODE_FUNC:
408 error (_("argument to kind must be an intrinsic type"));
409 }
410
411 if (!TYPE_TARGET_TYPE (type))
412 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
413 TYPE_LENGTH (type));
414 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
415 TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
416 }
417
418 /* Should be unreachable. */
419 return nullptr;
420 }
421
422 /* Return true if TYPE is a string. */
423
424 static bool
425 f_is_string_type_p (struct type *type)
426 {
427 type = check_typedef (type);
428 return (type->code () == TYPE_CODE_STRING
429 || (type->code () == TYPE_CODE_ARRAY
430 && TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_CHAR));
431 }
432
433 /* Special expression lengths for Fortran. */
434
435 static void
436 operator_length_f (const struct expression *exp, int pc, int *oplenp,
437 int *argsp)
438 {
439 int oplen = 1;
440 int args = 0;
441
442 switch (exp->elts[pc - 1].opcode)
443 {
444 default:
445 operator_length_standard (exp, pc, oplenp, argsp);
446 return;
447
448 case UNOP_FORTRAN_KIND:
449 case UNOP_FORTRAN_FLOOR:
450 case UNOP_FORTRAN_CEILING:
451 oplen = 1;
452 args = 1;
453 break;
454
455 case BINOP_FORTRAN_CMPLX:
456 case BINOP_FORTRAN_MODULO:
457 oplen = 1;
458 args = 2;
459 break;
460 }
461
462 *oplenp = oplen;
463 *argsp = args;
464 }
465
466 /* Helper for PRINT_SUBEXP_F. Arguments are as for PRINT_SUBEXP_F, except
467 the extra argument NAME which is the text that should be printed as the
468 name of this operation. */
469
470 static void
471 print_unop_subexp_f (struct expression *exp, int *pos,
472 struct ui_file *stream, enum precedence prec,
473 const char *name)
474 {
475 (*pos)++;
476 fprintf_filtered (stream, "%s(", name);
477 print_subexp (exp, pos, stream, PREC_SUFFIX);
478 fputs_filtered (")", stream);
479 }
480
481 /* Helper for PRINT_SUBEXP_F. Arguments are as for PRINT_SUBEXP_F, except
482 the extra argument NAME which is the text that should be printed as the
483 name of this operation. */
484
485 static void
486 print_binop_subexp_f (struct expression *exp, int *pos,
487 struct ui_file *stream, enum precedence prec,
488 const char *name)
489 {
490 (*pos)++;
491 fprintf_filtered (stream, "%s(", name);
492 print_subexp (exp, pos, stream, PREC_SUFFIX);
493 fputs_filtered (",", stream);
494 print_subexp (exp, pos, stream, PREC_SUFFIX);
495 fputs_filtered (")", stream);
496 }
497
498 /* Special expression printing for Fortran. */
499
500 static void
501 print_subexp_f (struct expression *exp, int *pos,
502 struct ui_file *stream, enum precedence prec)
503 {
504 int pc = *pos;
505 enum exp_opcode op = exp->elts[pc].opcode;
506
507 switch (op)
508 {
509 default:
510 print_subexp_standard (exp, pos, stream, prec);
511 return;
512
513 case UNOP_FORTRAN_KIND:
514 print_unop_subexp_f (exp, pos, stream, prec, "KIND");
515 return;
516
517 case UNOP_FORTRAN_FLOOR:
518 print_unop_subexp_f (exp, pos, stream, prec, "FLOOR");
519 return;
520
521 case UNOP_FORTRAN_CEILING:
522 print_unop_subexp_f (exp, pos, stream, prec, "CEILING");
523 return;
524
525 case BINOP_FORTRAN_CMPLX:
526 print_binop_subexp_f (exp, pos, stream, prec, "CMPLX");
527 return;
528
529 case BINOP_FORTRAN_MODULO:
530 print_binop_subexp_f (exp, pos, stream, prec, "MODULO");
531 return;
532 }
533 }
534
535 /* Special expression names for Fortran. */
536
537 static const char *
538 op_name_f (enum exp_opcode opcode)
539 {
540 switch (opcode)
541 {
542 default:
543 return op_name_standard (opcode);
544
545 #define OP(name) \
546 case name: \
547 return #name ;
548 #include "fortran-operator.def"
549 #undef OP
550 }
551 }
552
553 /* Special expression dumping for Fortran. */
554
555 static int
556 dump_subexp_body_f (struct expression *exp,
557 struct ui_file *stream, int elt)
558 {
559 int opcode = exp->elts[elt].opcode;
560 int oplen, nargs, i;
561
562 switch (opcode)
563 {
564 default:
565 return dump_subexp_body_standard (exp, stream, elt);
566
567 case UNOP_FORTRAN_KIND:
568 case UNOP_FORTRAN_FLOOR:
569 case UNOP_FORTRAN_CEILING:
570 case BINOP_FORTRAN_CMPLX:
571 case BINOP_FORTRAN_MODULO:
572 operator_length_f (exp, (elt + 1), &oplen, &nargs);
573 break;
574 }
575
576 elt += oplen;
577 for (i = 0; i < nargs; i += 1)
578 elt = dump_subexp (exp, stream, elt);
579
580 return elt;
581 }
582
583 /* Special expression checking for Fortran. */
584
585 static int
586 operator_check_f (struct expression *exp, int pos,
587 int (*objfile_func) (struct objfile *objfile,
588 void *data),
589 void *data)
590 {
591 const union exp_element *const elts = exp->elts;
592
593 switch (elts[pos].opcode)
594 {
595 case UNOP_FORTRAN_KIND:
596 case UNOP_FORTRAN_FLOOR:
597 case UNOP_FORTRAN_CEILING:
598 case BINOP_FORTRAN_CMPLX:
599 case BINOP_FORTRAN_MODULO:
600 /* Any references to objfiles are held in the arguments to this
601 expression, not within the expression itself, so no additional
602 checking is required here, the outer expression iteration code
603 will take care of checking each argument. */
604 break;
605
606 default:
607 return operator_check_standard (exp, pos, objfile_func, data);
608 }
609
610 return 0;
611 }
612
613 static const char *f_extensions[] =
614 {
615 ".f", ".F", ".for", ".FOR", ".ftn", ".FTN", ".fpp", ".FPP",
616 ".f90", ".F90", ".f95", ".F95", ".f03", ".F03", ".f08", ".F08",
617 NULL
618 };
619
620 /* Expression processing for Fortran. */
621 static const struct exp_descriptor exp_descriptor_f =
622 {
623 print_subexp_f,
624 operator_length_f,
625 operator_check_f,
626 op_name_f,
627 dump_subexp_body_f,
628 evaluate_subexp_f
629 };
630
631 /* Constant data that describes the Fortran language. */
632
633 extern const struct language_data f_language_data =
634 {
635 "fortran",
636 "Fortran",
637 language_fortran,
638 range_check_on,
639 case_sensitive_off,
640 array_column_major,
641 macro_expansion_no,
642 f_extensions,
643 &exp_descriptor_f,
644 f_parse, /* parser */
645 null_post_parser,
646 f_printchar, /* Print character constant */
647 f_printstr, /* function to print string constant */
648 f_emit_char, /* Function to print a single character */
649 f_print_type, /* Print a type using appropriate syntax */
650 f_print_typedef, /* Print a typedef using appropriate syntax */
651 f_value_print_innner, /* la_value_print_inner */
652 c_value_print, /* FIXME */
653 NULL, /* Language specific skip_trampoline */
654 NULL, /* name_of_this */
655 false, /* la_store_sym_names_in_linkage_form_p */
656 cp_lookup_symbol_nonlocal, /* lookup_symbol_nonlocal */
657 basic_lookup_transparent_type,/* lookup_transparent_type */
658
659 /* We could support demangling here to provide module namespaces
660 also for inferiors with only minimal symbol table (ELF symbols).
661 Just the mangling standard is not standardized across compilers
662 and there is no DW_AT_producer available for inferiors with only
663 the ELF symbols to check the mangling kind. */
664 NULL, /* Language specific symbol demangler */
665 NULL,
666 NULL, /* Language specific
667 class_name_from_physname */
668 f_op_print_tab, /* expression operators for printing */
669 0, /* arrays are first-class (not c-style) */
670 1, /* String lower bound */
671 f_word_break_characters,
672 f_collect_symbol_completion_matches,
673 f_language_arch_info,
674 default_pass_by_reference,
675 c_watch_location_expression,
676 cp_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
677 iterate_over_symbols,
678 cp_search_name_hash,
679 &default_varobj_ops,
680 NULL,
681 NULL,
682 f_is_string_type_p,
683 "(...)" /* la_struct_too_deep_ellipsis */
684 };
685
686 /* Class representing the Fortran language. */
687
688 class f_language : public language_defn
689 {
690 public:
691 f_language ()
692 : language_defn (language_fortran, f_language_data)
693 { /* Nothing. */ }
694 };
695
696 /* Single instance of the Fortran language class. */
697
698 static f_language f_language_defn;
699
700 static void *
701 build_fortran_types (struct gdbarch *gdbarch)
702 {
703 struct builtin_f_type *builtin_f_type
704 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_f_type);
705
706 builtin_f_type->builtin_void
707 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
708
709 builtin_f_type->builtin_character
710 = arch_type (gdbarch, TYPE_CODE_CHAR, TARGET_CHAR_BIT, "character");
711
712 builtin_f_type->builtin_logical_s1
713 = arch_boolean_type (gdbarch, TARGET_CHAR_BIT, 1, "logical*1");
714
715 builtin_f_type->builtin_integer_s2
716 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 0,
717 "integer*2");
718
719 builtin_f_type->builtin_integer_s8
720 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 0,
721 "integer*8");
722
723 builtin_f_type->builtin_logical_s2
724 = arch_boolean_type (gdbarch, gdbarch_short_bit (gdbarch), 1,
725 "logical*2");
726
727 builtin_f_type->builtin_logical_s8
728 = arch_boolean_type (gdbarch, gdbarch_long_long_bit (gdbarch), 1,
729 "logical*8");
730
731 builtin_f_type->builtin_integer
732 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 0,
733 "integer");
734
735 builtin_f_type->builtin_logical
736 = arch_boolean_type (gdbarch, gdbarch_int_bit (gdbarch), 1,
737 "logical*4");
738
739 builtin_f_type->builtin_real
740 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
741 "real", gdbarch_float_format (gdbarch));
742 builtin_f_type->builtin_real_s8
743 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
744 "real*8", gdbarch_double_format (gdbarch));
745 auto fmt = gdbarch_floatformat_for_type (gdbarch, "real(kind=16)", 128);
746 if (fmt != nullptr)
747 builtin_f_type->builtin_real_s16
748 = arch_float_type (gdbarch, 128, "real*16", fmt);
749 else if (gdbarch_long_double_bit (gdbarch) == 128)
750 builtin_f_type->builtin_real_s16
751 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
752 "real*16", gdbarch_long_double_format (gdbarch));
753 else
754 builtin_f_type->builtin_real_s16
755 = arch_type (gdbarch, TYPE_CODE_ERROR, 128, "real*16");
756
757 builtin_f_type->builtin_complex_s8
758 = init_complex_type ("complex*8", builtin_f_type->builtin_real);
759 builtin_f_type->builtin_complex_s16
760 = init_complex_type ("complex*16", builtin_f_type->builtin_real_s8);
761
762 if (builtin_f_type->builtin_real_s16->code () == TYPE_CODE_ERROR)
763 builtin_f_type->builtin_complex_s32
764 = arch_type (gdbarch, TYPE_CODE_ERROR, 256, "complex*32");
765 else
766 builtin_f_type->builtin_complex_s32
767 = init_complex_type ("complex*32", builtin_f_type->builtin_real_s16);
768
769 return builtin_f_type;
770 }
771
772 static struct gdbarch_data *f_type_data;
773
774 const struct builtin_f_type *
775 builtin_f_type (struct gdbarch *gdbarch)
776 {
777 return (const struct builtin_f_type *) gdbarch_data (gdbarch, f_type_data);
778 }
779
780 void _initialize_f_language ();
781 void
782 _initialize_f_language ()
783 {
784 f_type_data = gdbarch_data_register_post_init (build_fortran_types);
785 }
786
787 /* See f-lang.h. */
788
789 struct value *
790 fortran_argument_convert (struct value *value, bool is_artificial)
791 {
792 if (!is_artificial)
793 {
794 /* If the value is not in the inferior e.g. registers values,
795 convenience variables and user input. */
796 if (VALUE_LVAL (value) != lval_memory)
797 {
798 struct type *type = value_type (value);
799 const int length = TYPE_LENGTH (type);
800 const CORE_ADDR addr
801 = value_as_long (value_allocate_space_in_inferior (length));
802 write_memory (addr, value_contents (value), length);
803 struct value *val
804 = value_from_contents_and_address (type, value_contents (value),
805 addr);
806 return value_addr (val);
807 }
808 else
809 return value_addr (value); /* Program variables, e.g. arrays. */
810 }
811 return value;
812 }
813
814 /* See f-lang.h. */
815
816 struct type *
817 fortran_preserve_arg_pointer (struct value *arg, struct type *type)
818 {
819 if (value_type (arg)->code () == TYPE_CODE_PTR)
820 return value_type (arg);
821 return type;
822 }
This page took 0.043878 seconds and 3 git commands to generate.