Multi-target support
[deliverable/binutils-gdb.git] / gdb / fbsd-nat.c
1 /* Native-dependent code for FreeBSD.
2
3 Copyright (C) 2002-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbsupport/byte-vector.h"
22 #include "gdbcore.h"
23 #include "inferior.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "gdbarch.h"
27 #include "gdbcmd.h"
28 #include "gdbthread.h"
29 #include "gdbsupport/gdb_wait.h"
30 #include "inf-ptrace.h"
31 #include <sys/types.h>
32 #include <sys/procfs.h>
33 #include <sys/ptrace.h>
34 #include <sys/signal.h>
35 #include <sys/sysctl.h>
36 #include <sys/user.h>
37 #if defined(HAVE_KINFO_GETFILE) || defined(HAVE_KINFO_GETVMMAP)
38 #include <libutil.h>
39 #endif
40 #if !defined(HAVE_KINFO_GETVMMAP)
41 #include "gdbsupport/filestuff.h"
42 #endif
43
44 #include "elf-bfd.h"
45 #include "fbsd-nat.h"
46 #include "fbsd-tdep.h"
47
48 #include <list>
49
50 /* Return the name of a file that can be opened to get the symbols for
51 the child process identified by PID. */
52
53 char *
54 fbsd_nat_target::pid_to_exec_file (int pid)
55 {
56 ssize_t len;
57 static char buf[PATH_MAX];
58 char name[PATH_MAX];
59
60 #ifdef KERN_PROC_PATHNAME
61 size_t buflen;
62 int mib[4];
63
64 mib[0] = CTL_KERN;
65 mib[1] = KERN_PROC;
66 mib[2] = KERN_PROC_PATHNAME;
67 mib[3] = pid;
68 buflen = sizeof buf;
69 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
70 /* The kern.proc.pathname.<pid> sysctl returns a length of zero
71 for processes without an associated executable such as kernel
72 processes. */
73 return buflen == 0 ? NULL : buf;
74 #endif
75
76 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
77 len = readlink (name, buf, PATH_MAX - 1);
78 if (len != -1)
79 {
80 buf[len] = '\0';
81 return buf;
82 }
83
84 return NULL;
85 }
86
87 #ifdef HAVE_KINFO_GETVMMAP
88 /* Iterate over all the memory regions in the current inferior,
89 calling FUNC for each memory region. OBFD is passed as the last
90 argument to FUNC. */
91
92 int
93 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
94 void *obfd)
95 {
96 pid_t pid = inferior_ptid.pid ();
97 struct kinfo_vmentry *kve;
98 uint64_t size;
99 int i, nitems;
100
101 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
102 vmentl (kinfo_getvmmap (pid, &nitems));
103 if (vmentl == NULL)
104 perror_with_name (_("Couldn't fetch VM map entries."));
105
106 for (i = 0, kve = vmentl.get (); i < nitems; i++, kve++)
107 {
108 /* Skip unreadable segments and those where MAP_NOCORE has been set. */
109 if (!(kve->kve_protection & KVME_PROT_READ)
110 || kve->kve_flags & KVME_FLAG_NOCOREDUMP)
111 continue;
112
113 /* Skip segments with an invalid type. */
114 if (kve->kve_type != KVME_TYPE_DEFAULT
115 && kve->kve_type != KVME_TYPE_VNODE
116 && kve->kve_type != KVME_TYPE_SWAP
117 && kve->kve_type != KVME_TYPE_PHYS)
118 continue;
119
120 size = kve->kve_end - kve->kve_start;
121 if (info_verbose)
122 {
123 fprintf_filtered (gdb_stdout,
124 "Save segment, %ld bytes at %s (%c%c%c)\n",
125 (long) size,
126 paddress (target_gdbarch (), kve->kve_start),
127 kve->kve_protection & KVME_PROT_READ ? 'r' : '-',
128 kve->kve_protection & KVME_PROT_WRITE ? 'w' : '-',
129 kve->kve_protection & KVME_PROT_EXEC ? 'x' : '-');
130 }
131
132 /* Invoke the callback function to create the corefile segment.
133 Pass MODIFIED as true, we do not know the real modification state. */
134 func (kve->kve_start, size, kve->kve_protection & KVME_PROT_READ,
135 kve->kve_protection & KVME_PROT_WRITE,
136 kve->kve_protection & KVME_PROT_EXEC, 1, obfd);
137 }
138 return 0;
139 }
140 #else
141 static int
142 fbsd_read_mapping (FILE *mapfile, unsigned long *start, unsigned long *end,
143 char *protection)
144 {
145 /* FreeBSD 5.1-RELEASE uses a 256-byte buffer. */
146 char buf[256];
147 int resident, privateresident;
148 unsigned long obj;
149 int ret = EOF;
150
151 /* As of FreeBSD 5.0-RELEASE, the layout is described in
152 /usr/src/sys/fs/procfs/procfs_map.c. Somewhere in 5.1-CURRENT a
153 new column was added to the procfs map. Therefore we can't use
154 fscanf since we need to support older releases too. */
155 if (fgets (buf, sizeof buf, mapfile) != NULL)
156 ret = sscanf (buf, "%lx %lx %d %d %lx %s", start, end,
157 &resident, &privateresident, &obj, protection);
158
159 return (ret != 0 && ret != EOF);
160 }
161
162 /* Iterate over all the memory regions in the current inferior,
163 calling FUNC for each memory region. OBFD is passed as the last
164 argument to FUNC. */
165
166 int
167 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
168 void *obfd)
169 {
170 pid_t pid = inferior_ptid.pid ();
171 unsigned long start, end, size;
172 char protection[4];
173 int read, write, exec;
174
175 std::string mapfilename = string_printf ("/proc/%ld/map", (long) pid);
176 gdb_file_up mapfile (fopen (mapfilename.c_str (), "r"));
177 if (mapfile == NULL)
178 error (_("Couldn't open %s."), mapfilename.c_str ());
179
180 if (info_verbose)
181 fprintf_filtered (gdb_stdout,
182 "Reading memory regions from %s\n", mapfilename.c_str ());
183
184 /* Now iterate until end-of-file. */
185 while (fbsd_read_mapping (mapfile.get (), &start, &end, &protection[0]))
186 {
187 size = end - start;
188
189 read = (strchr (protection, 'r') != 0);
190 write = (strchr (protection, 'w') != 0);
191 exec = (strchr (protection, 'x') != 0);
192
193 if (info_verbose)
194 {
195 fprintf_filtered (gdb_stdout,
196 "Save segment, %ld bytes at %s (%c%c%c)\n",
197 size, paddress (target_gdbarch (), start),
198 read ? 'r' : '-',
199 write ? 'w' : '-',
200 exec ? 'x' : '-');
201 }
202
203 /* Invoke the callback function to create the corefile segment.
204 Pass MODIFIED as true, we do not know the real modification state. */
205 func (start, size, read, write, exec, 1, obfd);
206 }
207
208 return 0;
209 }
210 #endif
211
212 /* Fetch the command line for a running process. */
213
214 static gdb::unique_xmalloc_ptr<char>
215 fbsd_fetch_cmdline (pid_t pid)
216 {
217 size_t len;
218 int mib[4];
219
220 len = 0;
221 mib[0] = CTL_KERN;
222 mib[1] = KERN_PROC;
223 mib[2] = KERN_PROC_ARGS;
224 mib[3] = pid;
225 if (sysctl (mib, 4, NULL, &len, NULL, 0) == -1)
226 return nullptr;
227
228 if (len == 0)
229 return nullptr;
230
231 gdb::unique_xmalloc_ptr<char> cmdline ((char *) xmalloc (len));
232 if (sysctl (mib, 4, cmdline.get (), &len, NULL, 0) == -1)
233 return nullptr;
234
235 /* Join the arguments with spaces to form a single string. */
236 char *cp = cmdline.get ();
237 for (size_t i = 0; i < len - 1; i++)
238 if (cp[i] == '\0')
239 cp[i] = ' ';
240 cp[len - 1] = '\0';
241
242 return cmdline;
243 }
244
245 /* Fetch the external variant of the kernel's internal process
246 structure for the process PID into KP. */
247
248 static bool
249 fbsd_fetch_kinfo_proc (pid_t pid, struct kinfo_proc *kp)
250 {
251 size_t len;
252 int mib[4];
253
254 len = sizeof *kp;
255 mib[0] = CTL_KERN;
256 mib[1] = KERN_PROC;
257 mib[2] = KERN_PROC_PID;
258 mib[3] = pid;
259 return (sysctl (mib, 4, kp, &len, NULL, 0) == 0);
260 }
261
262 /* Implement the "info_proc" target_ops method. */
263
264 bool
265 fbsd_nat_target::info_proc (const char *args, enum info_proc_what what)
266 {
267 #ifdef HAVE_KINFO_GETFILE
268 gdb::unique_xmalloc_ptr<struct kinfo_file> fdtbl;
269 int nfd = 0;
270 #endif
271 struct kinfo_proc kp;
272 pid_t pid;
273 bool do_cmdline = false;
274 bool do_cwd = false;
275 bool do_exe = false;
276 #ifdef HAVE_KINFO_GETFILE
277 bool do_files = false;
278 #endif
279 #ifdef HAVE_KINFO_GETVMMAP
280 bool do_mappings = false;
281 #endif
282 bool do_status = false;
283
284 switch (what)
285 {
286 case IP_MINIMAL:
287 do_cmdline = true;
288 do_cwd = true;
289 do_exe = true;
290 break;
291 #ifdef HAVE_KINFO_GETVMMAP
292 case IP_MAPPINGS:
293 do_mappings = true;
294 break;
295 #endif
296 case IP_STATUS:
297 case IP_STAT:
298 do_status = true;
299 break;
300 case IP_CMDLINE:
301 do_cmdline = true;
302 break;
303 case IP_EXE:
304 do_exe = true;
305 break;
306 case IP_CWD:
307 do_cwd = true;
308 break;
309 #ifdef HAVE_KINFO_GETFILE
310 case IP_FILES:
311 do_files = true;
312 break;
313 #endif
314 case IP_ALL:
315 do_cmdline = true;
316 do_cwd = true;
317 do_exe = true;
318 #ifdef HAVE_KINFO_GETFILE
319 do_files = true;
320 #endif
321 #ifdef HAVE_KINFO_GETVMMAP
322 do_mappings = true;
323 #endif
324 do_status = true;
325 break;
326 default:
327 error (_("Not supported on this target."));
328 }
329
330 gdb_argv built_argv (args);
331 if (built_argv.count () == 0)
332 {
333 pid = inferior_ptid.pid ();
334 if (pid == 0)
335 error (_("No current process: you must name one."));
336 }
337 else if (built_argv.count () == 1 && isdigit (built_argv[0][0]))
338 pid = strtol (built_argv[0], NULL, 10);
339 else
340 error (_("Invalid arguments."));
341
342 printf_filtered (_("process %d\n"), pid);
343 #ifdef HAVE_KINFO_GETFILE
344 if (do_cwd || do_exe || do_files)
345 fdtbl.reset (kinfo_getfile (pid, &nfd));
346 #endif
347
348 if (do_cmdline)
349 {
350 gdb::unique_xmalloc_ptr<char> cmdline = fbsd_fetch_cmdline (pid);
351 if (cmdline != nullptr)
352 printf_filtered ("cmdline = '%s'\n", cmdline.get ());
353 else
354 warning (_("unable to fetch command line"));
355 }
356 if (do_cwd)
357 {
358 const char *cwd = NULL;
359 #ifdef HAVE_KINFO_GETFILE
360 struct kinfo_file *kf = fdtbl.get ();
361 for (int i = 0; i < nfd; i++, kf++)
362 {
363 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_CWD)
364 {
365 cwd = kf->kf_path;
366 break;
367 }
368 }
369 #endif
370 if (cwd != NULL)
371 printf_filtered ("cwd = '%s'\n", cwd);
372 else
373 warning (_("unable to fetch current working directory"));
374 }
375 if (do_exe)
376 {
377 const char *exe = NULL;
378 #ifdef HAVE_KINFO_GETFILE
379 struct kinfo_file *kf = fdtbl.get ();
380 for (int i = 0; i < nfd; i++, kf++)
381 {
382 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_TEXT)
383 {
384 exe = kf->kf_path;
385 break;
386 }
387 }
388 #endif
389 if (exe == NULL)
390 exe = pid_to_exec_file (pid);
391 if (exe != NULL)
392 printf_filtered ("exe = '%s'\n", exe);
393 else
394 warning (_("unable to fetch executable path name"));
395 }
396 #ifdef HAVE_KINFO_GETFILE
397 if (do_files)
398 {
399 struct kinfo_file *kf = fdtbl.get ();
400
401 if (nfd > 0)
402 {
403 fbsd_info_proc_files_header ();
404 for (int i = 0; i < nfd; i++, kf++)
405 fbsd_info_proc_files_entry (kf->kf_type, kf->kf_fd, kf->kf_flags,
406 kf->kf_offset, kf->kf_vnode_type,
407 kf->kf_sock_domain, kf->kf_sock_type,
408 kf->kf_sock_protocol, &kf->kf_sa_local,
409 &kf->kf_sa_peer, kf->kf_path);
410 }
411 else
412 warning (_("unable to fetch list of open files"));
413 }
414 #endif
415 #ifdef HAVE_KINFO_GETVMMAP
416 if (do_mappings)
417 {
418 int nvment;
419 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
420 vmentl (kinfo_getvmmap (pid, &nvment));
421
422 if (vmentl != nullptr)
423 {
424 int addr_bit = TARGET_CHAR_BIT * sizeof (void *);
425 fbsd_info_proc_mappings_header (addr_bit);
426
427 struct kinfo_vmentry *kve = vmentl.get ();
428 for (int i = 0; i < nvment; i++, kve++)
429 fbsd_info_proc_mappings_entry (addr_bit, kve->kve_start,
430 kve->kve_end, kve->kve_offset,
431 kve->kve_flags, kve->kve_protection,
432 kve->kve_path);
433 }
434 else
435 warning (_("unable to fetch virtual memory map"));
436 }
437 #endif
438 if (do_status)
439 {
440 if (!fbsd_fetch_kinfo_proc (pid, &kp))
441 warning (_("Failed to fetch process information"));
442 else
443 {
444 const char *state;
445 int pgtok;
446
447 printf_filtered ("Name: %s\n", kp.ki_comm);
448 switch (kp.ki_stat)
449 {
450 case SIDL:
451 state = "I (idle)";
452 break;
453 case SRUN:
454 state = "R (running)";
455 break;
456 case SSTOP:
457 state = "T (stopped)";
458 break;
459 case SZOMB:
460 state = "Z (zombie)";
461 break;
462 case SSLEEP:
463 state = "S (sleeping)";
464 break;
465 case SWAIT:
466 state = "W (interrupt wait)";
467 break;
468 case SLOCK:
469 state = "L (blocked on lock)";
470 break;
471 default:
472 state = "? (unknown)";
473 break;
474 }
475 printf_filtered ("State: %s\n", state);
476 printf_filtered ("Parent process: %d\n", kp.ki_ppid);
477 printf_filtered ("Process group: %d\n", kp.ki_pgid);
478 printf_filtered ("Session id: %d\n", kp.ki_sid);
479 printf_filtered ("TTY: %ju\n", (uintmax_t) kp.ki_tdev);
480 printf_filtered ("TTY owner process group: %d\n", kp.ki_tpgid);
481 printf_filtered ("User IDs (real, effective, saved): %d %d %d\n",
482 kp.ki_ruid, kp.ki_uid, kp.ki_svuid);
483 printf_filtered ("Group IDs (real, effective, saved): %d %d %d\n",
484 kp.ki_rgid, kp.ki_groups[0], kp.ki_svgid);
485 printf_filtered ("Groups: ");
486 for (int i = 0; i < kp.ki_ngroups; i++)
487 printf_filtered ("%d ", kp.ki_groups[i]);
488 printf_filtered ("\n");
489 printf_filtered ("Minor faults (no memory page): %ld\n",
490 kp.ki_rusage.ru_minflt);
491 printf_filtered ("Minor faults, children: %ld\n",
492 kp.ki_rusage_ch.ru_minflt);
493 printf_filtered ("Major faults (memory page faults): %ld\n",
494 kp.ki_rusage.ru_majflt);
495 printf_filtered ("Major faults, children: %ld\n",
496 kp.ki_rusage_ch.ru_majflt);
497 printf_filtered ("utime: %jd.%06ld\n",
498 (intmax_t) kp.ki_rusage.ru_utime.tv_sec,
499 kp.ki_rusage.ru_utime.tv_usec);
500 printf_filtered ("stime: %jd.%06ld\n",
501 (intmax_t) kp.ki_rusage.ru_stime.tv_sec,
502 kp.ki_rusage.ru_stime.tv_usec);
503 printf_filtered ("utime, children: %jd.%06ld\n",
504 (intmax_t) kp.ki_rusage_ch.ru_utime.tv_sec,
505 kp.ki_rusage_ch.ru_utime.tv_usec);
506 printf_filtered ("stime, children: %jd.%06ld\n",
507 (intmax_t) kp.ki_rusage_ch.ru_stime.tv_sec,
508 kp.ki_rusage_ch.ru_stime.tv_usec);
509 printf_filtered ("'nice' value: %d\n", kp.ki_nice);
510 printf_filtered ("Start time: %jd.%06ld\n", kp.ki_start.tv_sec,
511 kp.ki_start.tv_usec);
512 pgtok = getpagesize () / 1024;
513 printf_filtered ("Virtual memory size: %ju kB\n",
514 (uintmax_t) kp.ki_size / 1024);
515 printf_filtered ("Data size: %ju kB\n",
516 (uintmax_t) kp.ki_dsize * pgtok);
517 printf_filtered ("Stack size: %ju kB\n",
518 (uintmax_t) kp.ki_ssize * pgtok);
519 printf_filtered ("Text size: %ju kB\n",
520 (uintmax_t) kp.ki_tsize * pgtok);
521 printf_filtered ("Resident set size: %ju kB\n",
522 (uintmax_t) kp.ki_rssize * pgtok);
523 printf_filtered ("Maximum RSS: %ju kB\n",
524 (uintmax_t) kp.ki_rusage.ru_maxrss);
525 printf_filtered ("Pending Signals: ");
526 for (int i = 0; i < _SIG_WORDS; i++)
527 printf_filtered ("%08x ", kp.ki_siglist.__bits[i]);
528 printf_filtered ("\n");
529 printf_filtered ("Ignored Signals: ");
530 for (int i = 0; i < _SIG_WORDS; i++)
531 printf_filtered ("%08x ", kp.ki_sigignore.__bits[i]);
532 printf_filtered ("\n");
533 printf_filtered ("Caught Signals: ");
534 for (int i = 0; i < _SIG_WORDS; i++)
535 printf_filtered ("%08x ", kp.ki_sigcatch.__bits[i]);
536 printf_filtered ("\n");
537 }
538 }
539
540 return true;
541 }
542
543 /*
544 * The current layout of siginfo_t on FreeBSD was adopted in SVN
545 * revision 153154 which shipped in FreeBSD versions 7.0 and later.
546 * Don't bother supporting the older layout on older kernels. The
547 * older format was also never used in core dump notes.
548 */
549 #if __FreeBSD_version >= 700009
550 #define USE_SIGINFO
551 #endif
552
553 #ifdef USE_SIGINFO
554 /* Return the size of siginfo for the current inferior. */
555
556 #ifdef __LP64__
557 union sigval32 {
558 int sival_int;
559 uint32_t sival_ptr;
560 };
561
562 /* This structure matches the naming and layout of `siginfo_t' in
563 <sys/signal.h>. In particular, the `si_foo' macros defined in that
564 header can be used with both types to copy fields in the `_reason'
565 union. */
566
567 struct siginfo32
568 {
569 int si_signo;
570 int si_errno;
571 int si_code;
572 __pid_t si_pid;
573 __uid_t si_uid;
574 int si_status;
575 uint32_t si_addr;
576 union sigval32 si_value;
577 union
578 {
579 struct
580 {
581 int _trapno;
582 } _fault;
583 struct
584 {
585 int _timerid;
586 int _overrun;
587 } _timer;
588 struct
589 {
590 int _mqd;
591 } _mesgq;
592 struct
593 {
594 int32_t _band;
595 } _poll;
596 struct
597 {
598 int32_t __spare1__;
599 int __spare2__[7];
600 } __spare__;
601 } _reason;
602 };
603 #endif
604
605 static size_t
606 fbsd_siginfo_size ()
607 {
608 #ifdef __LP64__
609 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
610
611 /* Is the inferior 32-bit? If so, use the 32-bit siginfo size. */
612 if (gdbarch_long_bit (gdbarch) == 32)
613 return sizeof (struct siginfo32);
614 #endif
615 return sizeof (siginfo_t);
616 }
617
618 /* Convert a native 64-bit siginfo object to a 32-bit object. Note
619 that FreeBSD doesn't support writing to $_siginfo, so this only
620 needs to convert one way. */
621
622 static void
623 fbsd_convert_siginfo (siginfo_t *si)
624 {
625 #ifdef __LP64__
626 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
627
628 /* Is the inferior 32-bit? If not, nothing to do. */
629 if (gdbarch_long_bit (gdbarch) != 32)
630 return;
631
632 struct siginfo32 si32;
633
634 si32.si_signo = si->si_signo;
635 si32.si_errno = si->si_errno;
636 si32.si_code = si->si_code;
637 si32.si_pid = si->si_pid;
638 si32.si_uid = si->si_uid;
639 si32.si_status = si->si_status;
640 si32.si_addr = (uintptr_t) si->si_addr;
641
642 /* If sival_ptr is being used instead of sival_int on a big-endian
643 platform, then sival_int will be zero since it holds the upper
644 32-bits of the pointer value. */
645 #if _BYTE_ORDER == _BIG_ENDIAN
646 if (si->si_value.sival_int == 0)
647 si32.si_value.sival_ptr = (uintptr_t) si->si_value.sival_ptr;
648 else
649 si32.si_value.sival_int = si->si_value.sival_int;
650 #else
651 si32.si_value.sival_int = si->si_value.sival_int;
652 #endif
653
654 /* Always copy the spare fields and then possibly overwrite them for
655 signal-specific or code-specific fields. */
656 si32._reason.__spare__.__spare1__ = si->_reason.__spare__.__spare1__;
657 for (int i = 0; i < 7; i++)
658 si32._reason.__spare__.__spare2__[i] = si->_reason.__spare__.__spare2__[i];
659 switch (si->si_signo) {
660 case SIGILL:
661 case SIGFPE:
662 case SIGSEGV:
663 case SIGBUS:
664 si32.si_trapno = si->si_trapno;
665 break;
666 }
667 switch (si->si_code) {
668 case SI_TIMER:
669 si32.si_timerid = si->si_timerid;
670 si32.si_overrun = si->si_overrun;
671 break;
672 case SI_MESGQ:
673 si32.si_mqd = si->si_mqd;
674 break;
675 }
676
677 memcpy(si, &si32, sizeof (si32));
678 #endif
679 }
680 #endif
681
682 /* Implement the "xfer_partial" target_ops method. */
683
684 enum target_xfer_status
685 fbsd_nat_target::xfer_partial (enum target_object object,
686 const char *annex, gdb_byte *readbuf,
687 const gdb_byte *writebuf,
688 ULONGEST offset, ULONGEST len,
689 ULONGEST *xfered_len)
690 {
691 pid_t pid = inferior_ptid.pid ();
692
693 switch (object)
694 {
695 #ifdef USE_SIGINFO
696 case TARGET_OBJECT_SIGNAL_INFO:
697 {
698 struct ptrace_lwpinfo pl;
699 size_t siginfo_size;
700
701 /* FreeBSD doesn't support writing to $_siginfo. */
702 if (writebuf != NULL)
703 return TARGET_XFER_E_IO;
704
705 if (inferior_ptid.lwp_p ())
706 pid = inferior_ptid.lwp ();
707
708 siginfo_size = fbsd_siginfo_size ();
709 if (offset > siginfo_size)
710 return TARGET_XFER_E_IO;
711
712 if (ptrace (PT_LWPINFO, pid, (PTRACE_TYPE_ARG3) &pl, sizeof (pl)) == -1)
713 return TARGET_XFER_E_IO;
714
715 if (!(pl.pl_flags & PL_FLAG_SI))
716 return TARGET_XFER_E_IO;
717
718 fbsd_convert_siginfo (&pl.pl_siginfo);
719 if (offset + len > siginfo_size)
720 len = siginfo_size - offset;
721
722 memcpy (readbuf, ((gdb_byte *) &pl.pl_siginfo) + offset, len);
723 *xfered_len = len;
724 return TARGET_XFER_OK;
725 }
726 #endif
727 #ifdef KERN_PROC_AUXV
728 case TARGET_OBJECT_AUXV:
729 {
730 gdb::byte_vector buf_storage;
731 gdb_byte *buf;
732 size_t buflen;
733 int mib[4];
734
735 if (writebuf != NULL)
736 return TARGET_XFER_E_IO;
737 mib[0] = CTL_KERN;
738 mib[1] = KERN_PROC;
739 mib[2] = KERN_PROC_AUXV;
740 mib[3] = pid;
741 if (offset == 0)
742 {
743 buf = readbuf;
744 buflen = len;
745 }
746 else
747 {
748 buflen = offset + len;
749 buf_storage.resize (buflen);
750 buf = buf_storage.data ();
751 }
752 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
753 {
754 if (offset != 0)
755 {
756 if (buflen > offset)
757 {
758 buflen -= offset;
759 memcpy (readbuf, buf + offset, buflen);
760 }
761 else
762 buflen = 0;
763 }
764 *xfered_len = buflen;
765 return (buflen == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
766 }
767 return TARGET_XFER_E_IO;
768 }
769 #endif
770 #if defined(KERN_PROC_VMMAP) && defined(KERN_PROC_PS_STRINGS)
771 case TARGET_OBJECT_FREEBSD_VMMAP:
772 case TARGET_OBJECT_FREEBSD_PS_STRINGS:
773 {
774 gdb::byte_vector buf_storage;
775 gdb_byte *buf;
776 size_t buflen;
777 int mib[4];
778
779 int proc_target;
780 uint32_t struct_size;
781 switch (object)
782 {
783 case TARGET_OBJECT_FREEBSD_VMMAP:
784 proc_target = KERN_PROC_VMMAP;
785 struct_size = sizeof (struct kinfo_vmentry);
786 break;
787 case TARGET_OBJECT_FREEBSD_PS_STRINGS:
788 proc_target = KERN_PROC_PS_STRINGS;
789 struct_size = sizeof (void *);
790 break;
791 }
792
793 if (writebuf != NULL)
794 return TARGET_XFER_E_IO;
795
796 mib[0] = CTL_KERN;
797 mib[1] = KERN_PROC;
798 mib[2] = proc_target;
799 mib[3] = pid;
800
801 if (sysctl (mib, 4, NULL, &buflen, NULL, 0) != 0)
802 return TARGET_XFER_E_IO;
803 buflen += sizeof (struct_size);
804
805 if (offset >= buflen)
806 {
807 *xfered_len = 0;
808 return TARGET_XFER_EOF;
809 }
810
811 buf_storage.resize (buflen);
812 buf = buf_storage.data ();
813
814 memcpy (buf, &struct_size, sizeof (struct_size));
815 buflen -= sizeof (struct_size);
816 if (sysctl (mib, 4, buf + sizeof (struct_size), &buflen, NULL, 0) != 0)
817 return TARGET_XFER_E_IO;
818 buflen += sizeof (struct_size);
819
820 if (buflen - offset < len)
821 len = buflen - offset;
822 memcpy (readbuf, buf + offset, len);
823 *xfered_len = len;
824 return TARGET_XFER_OK;
825 }
826 #endif
827 default:
828 return inf_ptrace_target::xfer_partial (object, annex,
829 readbuf, writebuf, offset,
830 len, xfered_len);
831 }
832 }
833
834 #ifdef PT_LWPINFO
835 static bool debug_fbsd_lwp;
836 static bool debug_fbsd_nat;
837
838 static void
839 show_fbsd_lwp_debug (struct ui_file *file, int from_tty,
840 struct cmd_list_element *c, const char *value)
841 {
842 fprintf_filtered (file, _("Debugging of FreeBSD lwp module is %s.\n"), value);
843 }
844
845 static void
846 show_fbsd_nat_debug (struct ui_file *file, int from_tty,
847 struct cmd_list_element *c, const char *value)
848 {
849 fprintf_filtered (file, _("Debugging of FreeBSD native target is %s.\n"),
850 value);
851 }
852
853 /*
854 FreeBSD's first thread support was via a "reentrant" version of libc
855 (libc_r) that first shipped in 2.2.7. This library multiplexed all
856 of the threads in a process onto a single kernel thread. This
857 library was supported via the bsd-uthread target.
858
859 FreeBSD 5.1 introduced two new threading libraries that made use of
860 multiple kernel threads. The first (libkse) scheduled M user
861 threads onto N (<= M) kernel threads (LWPs). The second (libthr)
862 bound each user thread to a dedicated kernel thread. libkse shipped
863 as the default threading library (libpthread).
864
865 FreeBSD 5.3 added a libthread_db to abstract the interface across
866 the various thread libraries (libc_r, libkse, and libthr).
867
868 FreeBSD 7.0 switched the default threading library from from libkse
869 to libpthread and removed libc_r.
870
871 FreeBSD 8.0 removed libkse and the in-kernel support for it. The
872 only threading library supported by 8.0 and later is libthr which
873 ties each user thread directly to an LWP. To simplify the
874 implementation, this target only supports LWP-backed threads using
875 ptrace directly rather than libthread_db.
876
877 FreeBSD 11.0 introduced LWP event reporting via PT_LWP_EVENTS.
878 */
879
880 /* Return true if PTID is still active in the inferior. */
881
882 bool
883 fbsd_nat_target::thread_alive (ptid_t ptid)
884 {
885 if (ptid.lwp_p ())
886 {
887 struct ptrace_lwpinfo pl;
888
889 if (ptrace (PT_LWPINFO, ptid.lwp (), (caddr_t) &pl, sizeof pl)
890 == -1)
891 return false;
892 #ifdef PL_FLAG_EXITED
893 if (pl.pl_flags & PL_FLAG_EXITED)
894 return false;
895 #endif
896 }
897
898 return true;
899 }
900
901 /* Convert PTID to a string. */
902
903 std::string
904 fbsd_nat_target::pid_to_str (ptid_t ptid)
905 {
906 lwpid_t lwp;
907
908 lwp = ptid.lwp ();
909 if (lwp != 0)
910 {
911 int pid = ptid.pid ();
912
913 return string_printf ("LWP %d of process %d", lwp, pid);
914 }
915
916 return normal_pid_to_str (ptid);
917 }
918
919 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME
920 /* Return the name assigned to a thread by an application. Returns
921 the string in a static buffer. */
922
923 const char *
924 fbsd_nat_target::thread_name (struct thread_info *thr)
925 {
926 struct ptrace_lwpinfo pl;
927 struct kinfo_proc kp;
928 int pid = thr->ptid.pid ();
929 long lwp = thr->ptid.lwp ();
930 static char buf[sizeof pl.pl_tdname + 1];
931
932 /* Note that ptrace_lwpinfo returns the process command in pl_tdname
933 if a name has not been set explicitly. Return a NULL name in
934 that case. */
935 if (!fbsd_fetch_kinfo_proc (pid, &kp))
936 perror_with_name (_("Failed to fetch process information"));
937 if (ptrace (PT_LWPINFO, lwp, (caddr_t) &pl, sizeof pl) == -1)
938 perror_with_name (("ptrace"));
939 if (strcmp (kp.ki_comm, pl.pl_tdname) == 0)
940 return NULL;
941 xsnprintf (buf, sizeof buf, "%s", pl.pl_tdname);
942 return buf;
943 }
944 #endif
945
946 /* Enable additional event reporting on new processes.
947
948 To catch fork events, PTRACE_FORK is set on every traced process
949 to enable stops on returns from fork or vfork. Note that both the
950 parent and child will always stop, even if system call stops are
951 not enabled.
952
953 To catch LWP events, PTRACE_EVENTS is set on every traced process.
954 This enables stops on the birth for new LWPs (excluding the "main" LWP)
955 and the death of LWPs (excluding the last LWP in a process). Note
956 that unlike fork events, the LWP that creates a new LWP does not
957 report an event. */
958
959 static void
960 fbsd_enable_proc_events (pid_t pid)
961 {
962 #ifdef PT_GET_EVENT_MASK
963 int events;
964
965 if (ptrace (PT_GET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
966 sizeof (events)) == -1)
967 perror_with_name (("ptrace"));
968 events |= PTRACE_FORK | PTRACE_LWP;
969 #ifdef PTRACE_VFORK
970 events |= PTRACE_VFORK;
971 #endif
972 if (ptrace (PT_SET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
973 sizeof (events)) == -1)
974 perror_with_name (("ptrace"));
975 #else
976 #ifdef TDP_RFPPWAIT
977 if (ptrace (PT_FOLLOW_FORK, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
978 perror_with_name (("ptrace"));
979 #endif
980 #ifdef PT_LWP_EVENTS
981 if (ptrace (PT_LWP_EVENTS, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
982 perror_with_name (("ptrace"));
983 #endif
984 #endif
985 }
986
987 /* Add threads for any new LWPs in a process.
988
989 When LWP events are used, this function is only used to detect existing
990 threads when attaching to a process. On older systems, this function is
991 called to discover new threads each time the thread list is updated. */
992
993 static void
994 fbsd_add_threads (fbsd_nat_target *target, pid_t pid)
995 {
996 int i, nlwps;
997
998 gdb_assert (!in_thread_list (target, ptid_t (pid)));
999 nlwps = ptrace (PT_GETNUMLWPS, pid, NULL, 0);
1000 if (nlwps == -1)
1001 perror_with_name (("ptrace"));
1002
1003 gdb::unique_xmalloc_ptr<lwpid_t[]> lwps (XCNEWVEC (lwpid_t, nlwps));
1004
1005 nlwps = ptrace (PT_GETLWPLIST, pid, (caddr_t) lwps.get (), nlwps);
1006 if (nlwps == -1)
1007 perror_with_name (("ptrace"));
1008
1009 for (i = 0; i < nlwps; i++)
1010 {
1011 ptid_t ptid = ptid_t (pid, lwps[i], 0);
1012
1013 if (!in_thread_list (target, ptid))
1014 {
1015 #ifdef PT_LWP_EVENTS
1016 struct ptrace_lwpinfo pl;
1017
1018 /* Don't add exited threads. Note that this is only called
1019 when attaching to a multi-threaded process. */
1020 if (ptrace (PT_LWPINFO, lwps[i], (caddr_t) &pl, sizeof pl) == -1)
1021 perror_with_name (("ptrace"));
1022 if (pl.pl_flags & PL_FLAG_EXITED)
1023 continue;
1024 #endif
1025 if (debug_fbsd_lwp)
1026 fprintf_unfiltered (gdb_stdlog,
1027 "FLWP: adding thread for LWP %u\n",
1028 lwps[i]);
1029 add_thread (target, ptid);
1030 }
1031 }
1032 }
1033
1034 /* Implement the "update_thread_list" target_ops method. */
1035
1036 void
1037 fbsd_nat_target::update_thread_list ()
1038 {
1039 #ifdef PT_LWP_EVENTS
1040 /* With support for thread events, threads are added/deleted from the
1041 list as events are reported, so just try deleting exited threads. */
1042 delete_exited_threads ();
1043 #else
1044 prune_threads ();
1045
1046 fbsd_add_threads (this, inferior_ptid.pid ());
1047 #endif
1048 }
1049
1050 #ifdef TDP_RFPPWAIT
1051 /*
1052 To catch fork events, PT_FOLLOW_FORK is set on every traced process
1053 to enable stops on returns from fork or vfork. Note that both the
1054 parent and child will always stop, even if system call stops are not
1055 enabled.
1056
1057 After a fork, both the child and parent process will stop and report
1058 an event. However, there is no guarantee of order. If the parent
1059 reports its stop first, then fbsd_wait explicitly waits for the new
1060 child before returning. If the child reports its stop first, then
1061 the event is saved on a list and ignored until the parent's stop is
1062 reported. fbsd_wait could have been changed to fetch the parent PID
1063 of the new child and used that to wait for the parent explicitly.
1064 However, if two threads in the parent fork at the same time, then
1065 the wait on the parent might return the "wrong" fork event.
1066
1067 The initial version of PT_FOLLOW_FORK did not set PL_FLAG_CHILD for
1068 the new child process. This flag could be inferred by treating any
1069 events for an unknown pid as a new child.
1070
1071 In addition, the initial version of PT_FOLLOW_FORK did not report a
1072 stop event for the parent process of a vfork until after the child
1073 process executed a new program or exited. The kernel was changed to
1074 defer the wait for exit or exec of the child until after posting the
1075 stop event shortly after the change to introduce PL_FLAG_CHILD.
1076 This could be worked around by reporting a vfork event when the
1077 child event posted and ignoring the subsequent event from the
1078 parent.
1079
1080 This implementation requires both of these fixes for simplicity's
1081 sake. FreeBSD versions newer than 9.1 contain both fixes.
1082 */
1083
1084 static std::list<ptid_t> fbsd_pending_children;
1085
1086 /* Record a new child process event that is reported before the
1087 corresponding fork event in the parent. */
1088
1089 static void
1090 fbsd_remember_child (ptid_t pid)
1091 {
1092 fbsd_pending_children.push_front (pid);
1093 }
1094
1095 /* Check for a previously-recorded new child process event for PID.
1096 If one is found, remove it from the list and return the PTID. */
1097
1098 static ptid_t
1099 fbsd_is_child_pending (pid_t pid)
1100 {
1101 for (auto it = fbsd_pending_children.begin ();
1102 it != fbsd_pending_children.end (); it++)
1103 if (it->pid () == pid)
1104 {
1105 ptid_t ptid = *it;
1106 fbsd_pending_children.erase (it);
1107 return ptid;
1108 }
1109 return null_ptid;
1110 }
1111
1112 #ifndef PTRACE_VFORK
1113 static std::forward_list<ptid_t> fbsd_pending_vfork_done;
1114
1115 /* Record a pending vfork done event. */
1116
1117 static void
1118 fbsd_add_vfork_done (ptid_t pid)
1119 {
1120 fbsd_pending_vfork_done.push_front (pid);
1121 }
1122
1123 /* Check for a pending vfork done event for a specific PID. */
1124
1125 static int
1126 fbsd_is_vfork_done_pending (pid_t pid)
1127 {
1128 for (auto it = fbsd_pending_vfork_done.begin ();
1129 it != fbsd_pending_vfork_done.end (); it++)
1130 if (it->pid () == pid)
1131 return 1;
1132 return 0;
1133 }
1134
1135 /* Check for a pending vfork done event. If one is found, remove it
1136 from the list and return the PTID. */
1137
1138 static ptid_t
1139 fbsd_next_vfork_done (void)
1140 {
1141 if (!fbsd_pending_vfork_done.empty ())
1142 {
1143 ptid_t ptid = fbsd_pending_vfork_done.front ();
1144 fbsd_pending_vfork_done.pop_front ();
1145 return ptid;
1146 }
1147 return null_ptid;
1148 }
1149 #endif
1150 #endif
1151
1152 /* Implement the "resume" target_ops method. */
1153
1154 void
1155 fbsd_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1156 {
1157 #if defined(TDP_RFPPWAIT) && !defined(PTRACE_VFORK)
1158 pid_t pid;
1159
1160 /* Don't PT_CONTINUE a process which has a pending vfork done event. */
1161 if (minus_one_ptid == ptid)
1162 pid = inferior_ptid.pid ();
1163 else
1164 pid = ptid.pid ();
1165 if (fbsd_is_vfork_done_pending (pid))
1166 return;
1167 #endif
1168
1169 if (debug_fbsd_lwp)
1170 fprintf_unfiltered (gdb_stdlog,
1171 "FLWP: fbsd_resume for ptid (%d, %ld, %ld)\n",
1172 ptid.pid (), ptid.lwp (),
1173 ptid.tid ());
1174 if (ptid.lwp_p ())
1175 {
1176 /* If ptid is a specific LWP, suspend all other LWPs in the process. */
1177 inferior *inf = find_inferior_ptid (this, ptid);
1178
1179 for (thread_info *tp : inf->non_exited_threads ())
1180 {
1181 int request;
1182
1183 if (tp->ptid.lwp () == ptid.lwp ())
1184 request = PT_RESUME;
1185 else
1186 request = PT_SUSPEND;
1187
1188 if (ptrace (request, tp->ptid.lwp (), NULL, 0) == -1)
1189 perror_with_name (("ptrace"));
1190 }
1191 }
1192 else
1193 {
1194 /* If ptid is a wildcard, resume all matching threads (they won't run
1195 until the process is continued however). */
1196 for (thread_info *tp : all_non_exited_threads (this, ptid))
1197 if (ptrace (PT_RESUME, tp->ptid.lwp (), NULL, 0) == -1)
1198 perror_with_name (("ptrace"));
1199 ptid = inferior_ptid;
1200 }
1201
1202 #if __FreeBSD_version < 1200052
1203 /* When multiple threads within a process wish to report STOPPED
1204 events from wait(), the kernel picks one thread event as the
1205 thread event to report. The chosen thread event is retrieved via
1206 PT_LWPINFO by passing the process ID as the request pid. If
1207 multiple events are pending, then the subsequent wait() after
1208 resuming a process will report another STOPPED event after
1209 resuming the process to handle the next thread event and so on.
1210
1211 A single thread event is cleared as a side effect of resuming the
1212 process with PT_CONTINUE, PT_STEP, etc. In older kernels,
1213 however, the request pid was used to select which thread's event
1214 was cleared rather than always clearing the event that was just
1215 reported. To avoid clearing the event of the wrong LWP, always
1216 pass the process ID instead of an LWP ID to PT_CONTINUE or
1217 PT_SYSCALL.
1218
1219 In the case of stepping, the process ID cannot be used with
1220 PT_STEP since it would step the thread that reported an event
1221 which may not be the thread indicated by PTID. For stepping, use
1222 PT_SETSTEP to enable stepping on the desired thread before
1223 resuming the process via PT_CONTINUE instead of using
1224 PT_STEP. */
1225 if (step)
1226 {
1227 if (ptrace (PT_SETSTEP, get_ptrace_pid (ptid), NULL, 0) == -1)
1228 perror_with_name (("ptrace"));
1229 step = 0;
1230 }
1231 ptid = ptid_t (ptid.pid ());
1232 #endif
1233 inf_ptrace_target::resume (ptid, step, signo);
1234 }
1235
1236 #ifdef USE_SIGTRAP_SIGINFO
1237 /* Handle breakpoint and trace traps reported via SIGTRAP. If the
1238 trap was a breakpoint or trace trap that should be reported to the
1239 core, return true. */
1240
1241 static bool
1242 fbsd_handle_debug_trap (fbsd_nat_target *target, ptid_t ptid,
1243 const struct ptrace_lwpinfo &pl)
1244 {
1245
1246 /* Ignore traps without valid siginfo or for signals other than
1247 SIGTRAP.
1248
1249 FreeBSD kernels prior to r341800 can return stale siginfo for at
1250 least some events, but those events can be identified by
1251 additional flags set in pl_flags. True breakpoint and
1252 single-step traps should not have other flags set in
1253 pl_flags. */
1254 if (pl.pl_flags != PL_FLAG_SI || pl.pl_siginfo.si_signo != SIGTRAP)
1255 return false;
1256
1257 /* Trace traps are either a single step or a hardware watchpoint or
1258 breakpoint. */
1259 if (pl.pl_siginfo.si_code == TRAP_TRACE)
1260 {
1261 if (debug_fbsd_nat)
1262 fprintf_unfiltered (gdb_stdlog,
1263 "FNAT: trace trap for LWP %ld\n", ptid.lwp ());
1264 return true;
1265 }
1266
1267 if (pl.pl_siginfo.si_code == TRAP_BRKPT)
1268 {
1269 /* Fixup PC for the software breakpoint. */
1270 struct regcache *regcache = get_thread_regcache (target, ptid);
1271 struct gdbarch *gdbarch = regcache->arch ();
1272 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1273
1274 if (debug_fbsd_nat)
1275 fprintf_unfiltered (gdb_stdlog,
1276 "FNAT: sw breakpoint trap for LWP %ld\n",
1277 ptid.lwp ());
1278 if (decr_pc != 0)
1279 {
1280 CORE_ADDR pc;
1281
1282 pc = regcache_read_pc (regcache);
1283 regcache_write_pc (regcache, pc - decr_pc);
1284 }
1285 return true;
1286 }
1287
1288 return false;
1289 }
1290 #endif
1291
1292 /* Wait for the child specified by PTID to do something. Return the
1293 process ID of the child, or MINUS_ONE_PTID in case of error; store
1294 the status in *OURSTATUS. */
1295
1296 ptid_t
1297 fbsd_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
1298 int target_options)
1299 {
1300 ptid_t wptid;
1301
1302 while (1)
1303 {
1304 #ifndef PTRACE_VFORK
1305 wptid = fbsd_next_vfork_done ();
1306 if (wptid != null_ptid)
1307 {
1308 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1309 return wptid;
1310 }
1311 #endif
1312 wptid = inf_ptrace_target::wait (ptid, ourstatus, target_options);
1313 if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
1314 {
1315 struct ptrace_lwpinfo pl;
1316 pid_t pid;
1317 int status;
1318
1319 pid = wptid.pid ();
1320 if (ptrace (PT_LWPINFO, pid, (caddr_t) &pl, sizeof pl) == -1)
1321 perror_with_name (("ptrace"));
1322
1323 wptid = ptid_t (pid, pl.pl_lwpid, 0);
1324
1325 if (debug_fbsd_nat)
1326 {
1327 fprintf_unfiltered (gdb_stdlog,
1328 "FNAT: stop for LWP %u event %d flags %#x\n",
1329 pl.pl_lwpid, pl.pl_event, pl.pl_flags);
1330 if (pl.pl_flags & PL_FLAG_SI)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "FNAT: si_signo %u si_code %u\n",
1333 pl.pl_siginfo.si_signo,
1334 pl.pl_siginfo.si_code);
1335 }
1336
1337 #ifdef PT_LWP_EVENTS
1338 if (pl.pl_flags & PL_FLAG_EXITED)
1339 {
1340 /* If GDB attaches to a multi-threaded process, exiting
1341 threads might be skipped during post_attach that
1342 have not yet reported their PL_FLAG_EXITED event.
1343 Ignore EXITED events for an unknown LWP. */
1344 thread_info *thr = find_thread_ptid (this, wptid);
1345 if (thr != nullptr)
1346 {
1347 if (debug_fbsd_lwp)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "FLWP: deleting thread for LWP %u\n",
1350 pl.pl_lwpid);
1351 if (print_thread_events)
1352 printf_unfiltered (_("[%s exited]\n"),
1353 target_pid_to_str (wptid).c_str ());
1354 delete_thread (thr);
1355 }
1356 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1357 perror_with_name (("ptrace"));
1358 continue;
1359 }
1360 #endif
1361
1362 /* Switch to an LWP PTID on the first stop in a new process.
1363 This is done after handling PL_FLAG_EXITED to avoid
1364 switching to an exited LWP. It is done before checking
1365 PL_FLAG_BORN in case the first stop reported after
1366 attaching to an existing process is a PL_FLAG_BORN
1367 event. */
1368 if (in_thread_list (this, ptid_t (pid)))
1369 {
1370 if (debug_fbsd_lwp)
1371 fprintf_unfiltered (gdb_stdlog,
1372 "FLWP: using LWP %u for first thread\n",
1373 pl.pl_lwpid);
1374 thread_change_ptid (this, ptid_t (pid), wptid);
1375 }
1376
1377 #ifdef PT_LWP_EVENTS
1378 if (pl.pl_flags & PL_FLAG_BORN)
1379 {
1380 /* If GDB attaches to a multi-threaded process, newborn
1381 threads might be added by fbsd_add_threads that have
1382 not yet reported their PL_FLAG_BORN event. Ignore
1383 BORN events for an already-known LWP. */
1384 if (!in_thread_list (this, wptid))
1385 {
1386 if (debug_fbsd_lwp)
1387 fprintf_unfiltered (gdb_stdlog,
1388 "FLWP: adding thread for LWP %u\n",
1389 pl.pl_lwpid);
1390 add_thread (this, wptid);
1391 }
1392 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1393 return wptid;
1394 }
1395 #endif
1396
1397 #ifdef TDP_RFPPWAIT
1398 if (pl.pl_flags & PL_FLAG_FORKED)
1399 {
1400 #ifndef PTRACE_VFORK
1401 struct kinfo_proc kp;
1402 #endif
1403 ptid_t child_ptid;
1404 pid_t child;
1405
1406 child = pl.pl_child_pid;
1407 ourstatus->kind = TARGET_WAITKIND_FORKED;
1408 #ifdef PTRACE_VFORK
1409 if (pl.pl_flags & PL_FLAG_VFORKED)
1410 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1411 #endif
1412
1413 /* Make sure the other end of the fork is stopped too. */
1414 child_ptid = fbsd_is_child_pending (child);
1415 if (child_ptid == null_ptid)
1416 {
1417 pid = waitpid (child, &status, 0);
1418 if (pid == -1)
1419 perror_with_name (("waitpid"));
1420
1421 gdb_assert (pid == child);
1422
1423 if (ptrace (PT_LWPINFO, child, (caddr_t)&pl, sizeof pl) == -1)
1424 perror_with_name (("ptrace"));
1425
1426 gdb_assert (pl.pl_flags & PL_FLAG_CHILD);
1427 child_ptid = ptid_t (child, pl.pl_lwpid, 0);
1428 }
1429
1430 /* Enable additional events on the child process. */
1431 fbsd_enable_proc_events (child_ptid.pid ());
1432
1433 #ifndef PTRACE_VFORK
1434 /* For vfork, the child process will have the P_PPWAIT
1435 flag set. */
1436 if (fbsd_fetch_kinfo_proc (child, &kp))
1437 {
1438 if (kp.ki_flag & P_PPWAIT)
1439 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1440 }
1441 else
1442 warning (_("Failed to fetch process information"));
1443 #endif
1444 ourstatus->value.related_pid = child_ptid;
1445
1446 return wptid;
1447 }
1448
1449 if (pl.pl_flags & PL_FLAG_CHILD)
1450 {
1451 /* Remember that this child forked, but do not report it
1452 until the parent reports its corresponding fork
1453 event. */
1454 fbsd_remember_child (wptid);
1455 continue;
1456 }
1457
1458 #ifdef PTRACE_VFORK
1459 if (pl.pl_flags & PL_FLAG_VFORK_DONE)
1460 {
1461 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1462 return wptid;
1463 }
1464 #endif
1465 #endif
1466
1467 #ifdef PL_FLAG_EXEC
1468 if (pl.pl_flags & PL_FLAG_EXEC)
1469 {
1470 ourstatus->kind = TARGET_WAITKIND_EXECD;
1471 ourstatus->value.execd_pathname
1472 = xstrdup (pid_to_exec_file (pid));
1473 return wptid;
1474 }
1475 #endif
1476
1477 #ifdef USE_SIGTRAP_SIGINFO
1478 if (fbsd_handle_debug_trap (this, wptid, pl))
1479 return wptid;
1480 #endif
1481
1482 /* Note that PL_FLAG_SCE is set for any event reported while
1483 a thread is executing a system call in the kernel. In
1484 particular, signals that interrupt a sleep in a system
1485 call will report this flag as part of their event. Stops
1486 explicitly for system call entry and exit always use
1487 SIGTRAP, so only treat SIGTRAP events as system call
1488 entry/exit events. */
1489 if (pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)
1490 && ourstatus->value.sig == SIGTRAP)
1491 {
1492 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1493 if (catch_syscall_enabled ())
1494 {
1495 if (catching_syscall_number (pl.pl_syscall_code))
1496 {
1497 if (pl.pl_flags & PL_FLAG_SCE)
1498 ourstatus->kind = TARGET_WAITKIND_SYSCALL_ENTRY;
1499 else
1500 ourstatus->kind = TARGET_WAITKIND_SYSCALL_RETURN;
1501 ourstatus->value.syscall_number = pl.pl_syscall_code;
1502 return wptid;
1503 }
1504 }
1505 #endif
1506 /* If the core isn't interested in this event, just
1507 continue the process explicitly and wait for another
1508 event. Note that PT_SYSCALL is "sticky" on FreeBSD
1509 and once system call stops are enabled on a process
1510 it stops for all system call entries and exits. */
1511 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1512 perror_with_name (("ptrace"));
1513 continue;
1514 }
1515 }
1516 return wptid;
1517 }
1518 }
1519
1520 #ifdef USE_SIGTRAP_SIGINFO
1521 /* Implement the "stopped_by_sw_breakpoint" target_ops method. */
1522
1523 bool
1524 fbsd_nat_target::stopped_by_sw_breakpoint ()
1525 {
1526 struct ptrace_lwpinfo pl;
1527
1528 if (ptrace (PT_LWPINFO, get_ptrace_pid (inferior_ptid), (caddr_t) &pl,
1529 sizeof pl) == -1)
1530 return false;
1531
1532 return (pl.pl_flags == PL_FLAG_SI
1533 && pl.pl_siginfo.si_signo == SIGTRAP
1534 && pl.pl_siginfo.si_code == TRAP_BRKPT);
1535 }
1536
1537 /* Implement the "supports_stopped_by_sw_breakpoint" target_ops
1538 method. */
1539
1540 bool
1541 fbsd_nat_target::supports_stopped_by_sw_breakpoint ()
1542 {
1543 return true;
1544 }
1545 #endif
1546
1547 #ifdef TDP_RFPPWAIT
1548 /* Target hook for follow_fork. On entry and at return inferior_ptid is
1549 the ptid of the followed inferior. */
1550
1551 int
1552 fbsd_nat_target::follow_fork (int follow_child, int detach_fork)
1553 {
1554 if (!follow_child && detach_fork)
1555 {
1556 struct thread_info *tp = inferior_thread ();
1557 pid_t child_pid = tp->pending_follow.value.related_pid.pid ();
1558
1559 /* Breakpoints have already been detached from the child by
1560 infrun.c. */
1561
1562 if (ptrace (PT_DETACH, child_pid, (PTRACE_TYPE_ARG3)1, 0) == -1)
1563 perror_with_name (("ptrace"));
1564
1565 #ifndef PTRACE_VFORK
1566 if (tp->pending_follow.kind == TARGET_WAITKIND_VFORKED)
1567 {
1568 /* We can't insert breakpoints until the child process has
1569 finished with the shared memory region. The parent
1570 process doesn't wait for the child process to exit or
1571 exec until after it has been resumed from the ptrace stop
1572 to report the fork. Once it has been resumed it doesn't
1573 stop again before returning to userland, so there is no
1574 reliable way to wait on the parent.
1575
1576 We can't stay attached to the child to wait for an exec
1577 or exit because it may invoke ptrace(PT_TRACE_ME)
1578 (e.g. if the parent process is a debugger forking a new
1579 child process).
1580
1581 In the end, the best we can do is to make sure it runs
1582 for a little while. Hopefully it will be out of range of
1583 any breakpoints we reinsert. Usually this is only the
1584 single-step breakpoint at vfork's return point. */
1585
1586 usleep (10000);
1587
1588 /* Schedule a fake VFORK_DONE event to report on the next
1589 wait. */
1590 fbsd_add_vfork_done (inferior_ptid);
1591 }
1592 #endif
1593 }
1594
1595 return 0;
1596 }
1597
1598 int
1599 fbsd_nat_target::insert_fork_catchpoint (int pid)
1600 {
1601 return 0;
1602 }
1603
1604 int
1605 fbsd_nat_target::remove_fork_catchpoint (int pid)
1606 {
1607 return 0;
1608 }
1609
1610 int
1611 fbsd_nat_target::insert_vfork_catchpoint (int pid)
1612 {
1613 return 0;
1614 }
1615
1616 int
1617 fbsd_nat_target::remove_vfork_catchpoint (int pid)
1618 {
1619 return 0;
1620 }
1621 #endif
1622
1623 /* Implement the "post_startup_inferior" target_ops method. */
1624
1625 void
1626 fbsd_nat_target::post_startup_inferior (ptid_t pid)
1627 {
1628 fbsd_enable_proc_events (pid.pid ());
1629 }
1630
1631 /* Implement the "post_attach" target_ops method. */
1632
1633 void
1634 fbsd_nat_target::post_attach (int pid)
1635 {
1636 fbsd_enable_proc_events (pid);
1637 fbsd_add_threads (this, pid);
1638 }
1639
1640 #ifdef PL_FLAG_EXEC
1641 /* If the FreeBSD kernel supports PL_FLAG_EXEC, then traced processes
1642 will always stop after exec. */
1643
1644 int
1645 fbsd_nat_target::insert_exec_catchpoint (int pid)
1646 {
1647 return 0;
1648 }
1649
1650 int
1651 fbsd_nat_target::remove_exec_catchpoint (int pid)
1652 {
1653 return 0;
1654 }
1655 #endif
1656
1657 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1658 int
1659 fbsd_nat_target::set_syscall_catchpoint (int pid, bool needed,
1660 int any_count,
1661 gdb::array_view<const int> syscall_counts)
1662 {
1663
1664 /* Ignore the arguments. inf-ptrace.c will use PT_SYSCALL which
1665 will catch all system call entries and exits. The system calls
1666 are filtered by GDB rather than the kernel. */
1667 return 0;
1668 }
1669 #endif
1670 #endif
1671
1672 void
1673 _initialize_fbsd_nat (void)
1674 {
1675 #ifdef PT_LWPINFO
1676 add_setshow_boolean_cmd ("fbsd-lwp", class_maintenance,
1677 &debug_fbsd_lwp, _("\
1678 Set debugging of FreeBSD lwp module."), _("\
1679 Show debugging of FreeBSD lwp module."), _("\
1680 Enables printf debugging output."),
1681 NULL,
1682 &show_fbsd_lwp_debug,
1683 &setdebuglist, &showdebuglist);
1684 add_setshow_boolean_cmd ("fbsd-nat", class_maintenance,
1685 &debug_fbsd_nat, _("\
1686 Set debugging of FreeBSD native target."), _("\
1687 Show debugging of FreeBSD native target."), _("\
1688 Enables printf debugging output."),
1689 NULL,
1690 &show_fbsd_nat_debug,
1691 &setdebuglist, &showdebuglist);
1692 #endif
1693 }
This page took 0.063097 seconds and 4 git commands to generate.