gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
342
343 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344 # starting with C++11.
345 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
346 # One if \`wchar_t' is signed, zero if unsigned.
347 v;int;wchar_signed;;;1;-1;1
348
349 # Returns the floating-point format to be used for values of length LENGTH.
350 # NAME, if non-NULL, is the type name, which may be used to distinguish
351 # different target formats of the same length.
352 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
353
354 # For most targets, a pointer on the target and its representation as an
355 # address in GDB have the same size and "look the same". For such a
356 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
357 # / addr_bit will be set from it.
358 #
359 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
360 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361 # gdbarch_address_to_pointer as well.
362 #
363 # ptr_bit is the size of a pointer on the target
364 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
365 # addr_bit is the size of a target address as represented in gdb
366 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
367 #
368 # dwarf2_addr_size is the target address size as used in the Dwarf debug
369 # info. For .debug_frame FDEs, this is supposed to be the target address
370 # size from the associated CU header, and which is equivalent to the
371 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372 # Unfortunately there is no good way to determine this value. Therefore
373 # dwarf2_addr_size simply defaults to the target pointer size.
374 #
375 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376 # defined using the target's pointer size so far.
377 #
378 # Note that dwarf2_addr_size only needs to be redefined by a target if the
379 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380 # and if Dwarf versions < 4 need to be supported.
381 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
382 #
383 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
384 v;int;char_signed;;;1;-1;1
385 #
386 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
387 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
388 # Function for getting target's idea of a frame pointer. FIXME: GDB's
389 # whole scheme for dealing with "frames" and "frame pointers" needs a
390 # serious shakedown.
391 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
392 #
393 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
394 # Read a register into a new struct value. If the register is wholly
395 # or partly unavailable, this should call mark_value_bytes_unavailable
396 # as appropriate. If this is defined, then pseudo_register_read will
397 # never be called.
398 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
399 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
400 #
401 v;int;num_regs;;;0;-1
402 # This macro gives the number of pseudo-registers that live in the
403 # register namespace but do not get fetched or stored on the target.
404 # These pseudo-registers may be aliases for other registers,
405 # combinations of other registers, or they may be computed by GDB.
406 v;int;num_pseudo_regs;;;0;0;;0
407
408 # Assemble agent expression bytecode to collect pseudo-register REG.
409 # Return -1 if something goes wrong, 0 otherwise.
410 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
411
412 # Assemble agent expression bytecode to push the value of pseudo-register
413 # REG on the interpreter stack.
414 # Return -1 if something goes wrong, 0 otherwise.
415 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
416
417 # Some targets/architectures can do extra processing/display of
418 # segmentation faults. E.g., Intel MPX boundary faults.
419 # Call the architecture dependent function to handle the fault.
420 # UIOUT is the output stream where the handler will place information.
421 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
422
423 # GDB's standard (or well known) register numbers. These can map onto
424 # a real register or a pseudo (computed) register or not be defined at
425 # all (-1).
426 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
427 v;int;sp_regnum;;;-1;-1;;0
428 v;int;pc_regnum;;;-1;-1;;0
429 v;int;ps_regnum;;;-1;-1;;0
430 v;int;fp0_regnum;;;0;-1;;0
431 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
432 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
433 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
434 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
435 # Convert from an sdb register number to an internal gdb register number.
436 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
437 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
438 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
439 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
440 m;const char *;register_name;int regnr;regnr;;0
441
442 # Return the type of a register specified by the architecture. Only
443 # the register cache should call this function directly; others should
444 # use "register_type".
445 M;struct type *;register_type;int reg_nr;reg_nr
446
447 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
448 # a dummy frame. A dummy frame is created before an inferior call,
449 # the frame_id returned here must match the frame_id that was built
450 # for the inferior call. Usually this means the returned frame_id's
451 # stack address should match the address returned by
452 # gdbarch_push_dummy_call, and the returned frame_id's code address
453 # should match the address at which the breakpoint was set in the dummy
454 # frame.
455 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
456 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
457 # deprecated_fp_regnum.
458 v;int;deprecated_fp_regnum;;;-1;-1;;0
459
460 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
461 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
462 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
463
464 # Return true if the code of FRAME is writable.
465 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
466
467 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
468 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
469 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
470 # MAP a GDB RAW register number onto a simulator register number. See
471 # also include/...-sim.h.
472 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
473 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
474 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
475
476 # Determine the address where a longjmp will land and save this address
477 # in PC. Return nonzero on success.
478 #
479 # FRAME corresponds to the longjmp frame.
480 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
481
482 #
483 v;int;believe_pcc_promotion;;;;;;;
484 #
485 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
486 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
487 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
488 # Construct a value representing the contents of register REGNUM in
489 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
490 # allocate and return a struct value with all value attributes
491 # (but not the value contents) filled in.
492 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
493 #
494 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
495 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
496 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
497
498 # Return the return-value convention that will be used by FUNCTION
499 # to return a value of type VALTYPE. FUNCTION may be NULL in which
500 # case the return convention is computed based only on VALTYPE.
501 #
502 # If READBUF is not NULL, extract the return value and save it in this buffer.
503 #
504 # If WRITEBUF is not NULL, it contains a return value which will be
505 # stored into the appropriate register. This can be used when we want
506 # to force the value returned by a function (see the "return" command
507 # for instance).
508 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
509
510 # Return true if the return value of function is stored in the first hidden
511 # parameter. In theory, this feature should be language-dependent, specified
512 # by language and its ABI, such as C++. Unfortunately, compiler may
513 # implement it to a target-dependent feature. So that we need such hook here
514 # to be aware of this in GDB.
515 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
516
517 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
518 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
519 # On some platforms, a single function may provide multiple entry points,
520 # e.g. one that is used for function-pointer calls and a different one
521 # that is used for direct function calls.
522 # In order to ensure that breakpoints set on the function will trigger
523 # no matter via which entry point the function is entered, a platform
524 # may provide the skip_entrypoint callback. It is called with IP set
525 # to the main entry point of a function (as determined by the symbol table),
526 # and should return the address of the innermost entry point, where the
527 # actual breakpoint needs to be set. Note that skip_entrypoint is used
528 # by GDB common code even when debugging optimized code, where skip_prologue
529 # is not used.
530 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
531
532 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
533 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
534
535 # Return the breakpoint kind for this target based on *PCPTR.
536 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
537
538 # Return the software breakpoint from KIND. KIND can have target
539 # specific meaning like the Z0 kind parameter.
540 # SIZE is set to the software breakpoint's length in memory.
541 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
542
543 # Return the breakpoint kind for this target based on the current
544 # processor state (e.g. the current instruction mode on ARM) and the
545 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
546 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
547
548 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
549 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
550 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
551 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
552
553 # A function can be addressed by either it's "pointer" (possibly a
554 # descriptor address) or "entry point" (first executable instruction).
555 # The method "convert_from_func_ptr_addr" converting the former to the
556 # latter. gdbarch_deprecated_function_start_offset is being used to implement
557 # a simplified subset of that functionality - the function's address
558 # corresponds to the "function pointer" and the function's start
559 # corresponds to the "function entry point" - and hence is redundant.
560
561 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
562
563 # Return the remote protocol register number associated with this
564 # register. Normally the identity mapping.
565 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
566
567 # Fetch the target specific address used to represent a load module.
568 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
569
570 # Return the thread-local address at OFFSET in the thread-local
571 # storage for the thread PTID and the shared library or executable
572 # file given by LM_ADDR. If that block of thread-local storage hasn't
573 # been allocated yet, this function may throw an error. LM_ADDR may
574 # be zero for statically linked multithreaded inferiors.
575
576 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
577 #
578 v;CORE_ADDR;frame_args_skip;;;0;;;0
579 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
580 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
581 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
582 # frame-base. Enable frame-base before frame-unwind.
583 F;int;frame_num_args;struct frame_info *frame;frame
584 #
585 M;CORE_ADDR;frame_align;CORE_ADDR address;address
586 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
587 v;int;frame_red_zone_size
588 #
589 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
590 # On some machines there are bits in addresses which are not really
591 # part of the address, but are used by the kernel, the hardware, etc.
592 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
593 # we get a "real" address such as one would find in a symbol table.
594 # This is used only for addresses of instructions, and even then I'm
595 # not sure it's used in all contexts. It exists to deal with there
596 # being a few stray bits in the PC which would mislead us, not as some
597 # sort of generic thing to handle alignment or segmentation (it's
598 # possible it should be in TARGET_READ_PC instead).
599 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
600
601 # On some machines, not all bits of an address word are significant.
602 # For example, on AArch64, the top bits of an address known as the "tag"
603 # are ignored by the kernel, the hardware, etc. and can be regarded as
604 # additional data associated with the address.
605 v;int;significant_addr_bit;;;;;;0
606
607 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
608 # indicates if the target needs software single step. An ISA method to
609 # implement it.
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612 # target can single step. If not, then implement single step using breakpoints.
613 #
614 # Return a vector of addresses on which the software single step
615 # breakpoints should be inserted. NULL means software single step is
616 # not used.
617 # Multiple breakpoints may be inserted for some instructions such as
618 # conditional branch. However, each implementation must always evaluate
619 # the condition and only put the breakpoint at the branch destination if
620 # the condition is true, so that we ensure forward progress when stepping
621 # past a conditional branch to self.
622 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
623
624 # Return non-zero if the processor is executing a delay slot and a
625 # further single-step is needed before the instruction finishes.
626 M;int;single_step_through_delay;struct frame_info *frame;frame
627 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
628 # disassembler. Perhaps objdump can handle it?
629 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
630 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
631
632
633 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
634 # evaluates non-zero, this is the address where the debugger will place
635 # a step-resume breakpoint to get us past the dynamic linker.
636 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
637 # Some systems also have trampoline code for returning from shared libs.
638 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
639
640 # Return true if PC lies inside an indirect branch thunk.
641 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
642
643 # A target might have problems with watchpoints as soon as the stack
644 # frame of the current function has been destroyed. This mostly happens
645 # as the first action in a function's epilogue. stack_frame_destroyed_p()
646 # is defined to return a non-zero value if either the given addr is one
647 # instruction after the stack destroying instruction up to the trailing
648 # return instruction or if we can figure out that the stack frame has
649 # already been invalidated regardless of the value of addr. Targets
650 # which don't suffer from that problem could just let this functionality
651 # untouched.
652 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
653 # Process an ELF symbol in the minimal symbol table in a backend-specific
654 # way. Normally this hook is supposed to do nothing, however if required,
655 # then this hook can be used to apply tranformations to symbols that are
656 # considered special in some way. For example the MIPS backend uses it
657 # to interpret \`st_other' information to mark compressed code symbols so
658 # that they can be treated in the appropriate manner in the processing of
659 # the main symbol table and DWARF-2 records.
660 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
661 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
662 # Process a symbol in the main symbol table in a backend-specific way.
663 # Normally this hook is supposed to do nothing, however if required,
664 # then this hook can be used to apply tranformations to symbols that
665 # are considered special in some way. This is currently used by the
666 # MIPS backend to make sure compressed code symbols have the ISA bit
667 # set. This in turn is needed for symbol values seen in GDB to match
668 # the values used at the runtime by the program itself, for function
669 # and label references.
670 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
671 # Adjust the address retrieved from a DWARF-2 record other than a line
672 # entry in a backend-specific way. Normally this hook is supposed to
673 # return the address passed unchanged, however if that is incorrect for
674 # any reason, then this hook can be used to fix the address up in the
675 # required manner. This is currently used by the MIPS backend to make
676 # sure addresses in FDE, range records, etc. referring to compressed
677 # code have the ISA bit set, matching line information and the symbol
678 # table.
679 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
680 # Adjust the address updated by a line entry in a backend-specific way.
681 # Normally this hook is supposed to return the address passed unchanged,
682 # however in the case of inconsistencies in these records, this hook can
683 # be used to fix them up in the required manner. This is currently used
684 # by the MIPS backend to make sure all line addresses in compressed code
685 # are presented with the ISA bit set, which is not always the case. This
686 # in turn ensures breakpoint addresses are correctly matched against the
687 # stop PC.
688 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
689 v;int;cannot_step_breakpoint;;;0;0;;0
690 # See comment in target.h about continuable, steppable and
691 # non-steppable watchpoints.
692 v;int;have_nonsteppable_watchpoint;;;0;0;;0
693 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
694 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
695 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
696 # FS are passed from the generic execute_cfa_program function.
697 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
698
699 # Return the appropriate type_flags for the supplied address class.
700 # This function should return 1 if the address class was recognized and
701 # type_flags was set, zero otherwise.
702 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
703 # Is a register in a group
704 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
705 # Fetch the pointer to the ith function argument.
706 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
707
708 # Iterate over all supported register notes in a core file. For each
709 # supported register note section, the iterator must call CB and pass
710 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
711 # the supported register note sections based on the current register
712 # values. Otherwise it should enumerate all supported register note
713 # sections.
714 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
715
716 # Create core file notes
717 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
718
719 # Find core file memory regions
720 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
721
722 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
723 # core file into buffer READBUF with length LEN. Return the number of bytes read
724 # (zero indicates failure).
725 # failed, otherwise, return the red length of READBUF.
726 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
727
728 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
729 # libraries list from core file into buffer READBUF with length LEN.
730 # Return the number of bytes read (zero indicates failure).
731 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
732
733 # How the core target converts a PTID from a core file to a string.
734 M;std::string;core_pid_to_str;ptid_t ptid;ptid
735
736 # How the core target extracts the name of a thread from a core file.
737 M;const char *;core_thread_name;struct thread_info *thr;thr
738
739 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
740 # from core file into buffer READBUF with length LEN. Return the number
741 # of bytes read (zero indicates EOF, a negative value indicates failure).
742 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
743
744 # BFD target to use when generating a core file.
745 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
746
747 # If the elements of C++ vtables are in-place function descriptors rather
748 # than normal function pointers (which may point to code or a descriptor),
749 # set this to one.
750 v;int;vtable_function_descriptors;;;0;0;;0
751
752 # Set if the least significant bit of the delta is used instead of the least
753 # significant bit of the pfn for pointers to virtual member functions.
754 v;int;vbit_in_delta;;;0;0;;0
755
756 # Advance PC to next instruction in order to skip a permanent breakpoint.
757 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
758
759 # The maximum length of an instruction on this architecture in bytes.
760 V;ULONGEST;max_insn_length;;;0;0
761
762 # Copy the instruction at FROM to TO, and make any adjustments
763 # necessary to single-step it at that address.
764 #
765 # REGS holds the state the thread's registers will have before
766 # executing the copied instruction; the PC in REGS will refer to FROM,
767 # not the copy at TO. The caller should update it to point at TO later.
768 #
769 # Return a pointer to data of the architecture's choice to be passed
770 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
771 # the instruction's effects have been completely simulated, with the
772 # resulting state written back to REGS.
773 #
774 # For a general explanation of displaced stepping and how GDB uses it,
775 # see the comments in infrun.c.
776 #
777 # The TO area is only guaranteed to have space for
778 # gdbarch_max_insn_length (arch) bytes, so this function must not
779 # write more bytes than that to that area.
780 #
781 # If you do not provide this function, GDB assumes that the
782 # architecture does not support displaced stepping.
783 #
784 # If the instruction cannot execute out of line, return NULL. The
785 # core falls back to stepping past the instruction in-line instead in
786 # that case.
787 M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
788
789 # Return true if GDB should use hardware single-stepping to execute
790 # the displaced instruction identified by CLOSURE. If false,
791 # GDB will simply restart execution at the displaced instruction
792 # location, and it is up to the target to ensure GDB will receive
793 # control again (e.g. by placing a software breakpoint instruction
794 # into the displaced instruction buffer).
795 #
796 # The default implementation returns false on all targets that
797 # provide a gdbarch_software_single_step routine, and true otherwise.
798 m;int;displaced_step_hw_singlestep;struct displaced_step_copy_insn_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
799
800 # Fix up the state resulting from successfully single-stepping a
801 # displaced instruction, to give the result we would have gotten from
802 # stepping the instruction in its original location.
803 #
804 # REGS is the register state resulting from single-stepping the
805 # displaced instruction.
806 #
807 # CLOSURE is the result from the matching call to
808 # gdbarch_displaced_step_copy_insn.
809 #
810 # If you provide gdbarch_displaced_step_copy_insn.but not this
811 # function, then GDB assumes that no fixup is needed after
812 # single-stepping the instruction.
813 #
814 # For a general explanation of displaced stepping and how GDB uses it,
815 # see the comments in infrun.c.
816 M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
817
818 # Return the address of an appropriate place to put displaced
819 # instructions while we step over them. There need only be one such
820 # place, since we're only stepping one thread over a breakpoint at a
821 # time.
822 #
823 # For a general explanation of displaced stepping and how GDB uses it,
824 # see the comments in infrun.c.
825 #m;CORE_ADDR;displaced_step_location;thread_info *;thread;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
826 #m;CORE_ADDR;displaced_step_release_location;CORE_ADDR;addr;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
827 M;displaced_step_prepare_status;displaced_step_prepare;thread_info *thread;thread
828 m;displaced_step_finish_status;displaced_step_finish;thread_info *thread, gdb_signal sig;thread, sig;;NULL;;(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)
829
830 # Relocate an instruction to execute at a different address. OLDLOC
831 # is the address in the inferior memory where the instruction to
832 # relocate is currently at. On input, TO points to the destination
833 # where we want the instruction to be copied (and possibly adjusted)
834 # to. On output, it points to one past the end of the resulting
835 # instruction(s). The effect of executing the instruction at TO shall
836 # be the same as if executing it at FROM. For example, call
837 # instructions that implicitly push the return address on the stack
838 # should be adjusted to return to the instruction after OLDLOC;
839 # relative branches, and other PC-relative instructions need the
840 # offset adjusted; etc.
841 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
842
843 # Refresh overlay mapped state for section OSECT.
844 F;void;overlay_update;struct obj_section *osect;osect
845
846 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
847
848 # Handle special encoding of static variables in stabs debug info.
849 F;const char *;static_transform_name;const char *name;name
850 # Set if the address in N_SO or N_FUN stabs may be zero.
851 v;int;sofun_address_maybe_missing;;;0;0;;0
852
853 # Parse the instruction at ADDR storing in the record execution log
854 # the registers REGCACHE and memory ranges that will be affected when
855 # the instruction executes, along with their current values.
856 # Return -1 if something goes wrong, 0 otherwise.
857 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
858
859 # Save process state after a signal.
860 # Return -1 if something goes wrong, 0 otherwise.
861 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
862
863 # Signal translation: translate inferior's signal (target's) number
864 # into GDB's representation. The implementation of this method must
865 # be host independent. IOW, don't rely on symbols of the NAT_FILE
866 # header (the nm-*.h files), the host <signal.h> header, or similar
867 # headers. This is mainly used when cross-debugging core files ---
868 # "Live" targets hide the translation behind the target interface
869 # (target_wait, target_resume, etc.).
870 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
871
872 # Signal translation: translate the GDB's internal signal number into
873 # the inferior's signal (target's) representation. The implementation
874 # of this method must be host independent. IOW, don't rely on symbols
875 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
876 # header, or similar headers.
877 # Return the target signal number if found, or -1 if the GDB internal
878 # signal number is invalid.
879 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
880
881 # Extra signal info inspection.
882 #
883 # Return a type suitable to inspect extra signal information.
884 M;struct type *;get_siginfo_type;void;
885
886 # Record architecture-specific information from the symbol table.
887 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
888
889 # Function for the 'catch syscall' feature.
890
891 # Get architecture-specific system calls information from registers.
892 M;LONGEST;get_syscall_number;thread_info *thread;thread
893
894 # The filename of the XML syscall for this architecture.
895 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
896
897 # Information about system calls from this architecture
898 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
899
900 # SystemTap related fields and functions.
901
902 # A NULL-terminated array of prefixes used to mark an integer constant
903 # on the architecture's assembly.
904 # For example, on x86 integer constants are written as:
905 #
906 # \$10 ;; integer constant 10
907 #
908 # in this case, this prefix would be the character \`\$\'.
909 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
910
911 # A NULL-terminated array of suffixes used to mark an integer constant
912 # on the architecture's assembly.
913 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
914
915 # A NULL-terminated array of prefixes used to mark a register name on
916 # the architecture's assembly.
917 # For example, on x86 the register name is written as:
918 #
919 # \%eax ;; register eax
920 #
921 # in this case, this prefix would be the character \`\%\'.
922 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
923
924 # A NULL-terminated array of suffixes used to mark a register name on
925 # the architecture's assembly.
926 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
927
928 # A NULL-terminated array of prefixes used to mark a register
929 # indirection on the architecture's assembly.
930 # For example, on x86 the register indirection is written as:
931 #
932 # \(\%eax\) ;; indirecting eax
933 #
934 # in this case, this prefix would be the charater \`\(\'.
935 #
936 # Please note that we use the indirection prefix also for register
937 # displacement, e.g., \`4\(\%eax\)\' on x86.
938 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
939
940 # A NULL-terminated array of suffixes used to mark a register
941 # indirection on the architecture's assembly.
942 # For example, on x86 the register indirection is written as:
943 #
944 # \(\%eax\) ;; indirecting eax
945 #
946 # in this case, this prefix would be the charater \`\)\'.
947 #
948 # Please note that we use the indirection suffix also for register
949 # displacement, e.g., \`4\(\%eax\)\' on x86.
950 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
951
952 # Prefix(es) used to name a register using GDB's nomenclature.
953 #
954 # For example, on PPC a register is represented by a number in the assembly
955 # language (e.g., \`10\' is the 10th general-purpose register). However,
956 # inside GDB this same register has an \`r\' appended to its name, so the 10th
957 # register would be represented as \`r10\' internally.
958 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
959
960 # Suffix used to name a register using GDB's nomenclature.
961 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
962
963 # Check if S is a single operand.
964 #
965 # Single operands can be:
966 # \- Literal integers, e.g. \`\$10\' on x86
967 # \- Register access, e.g. \`\%eax\' on x86
968 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
969 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
970 #
971 # This function should check for these patterns on the string
972 # and return 1 if some were found, or zero otherwise. Please try to match
973 # as much info as you can from the string, i.e., if you have to match
974 # something like \`\(\%\', do not match just the \`\(\'.
975 M;int;stap_is_single_operand;const char *s;s
976
977 # Function used to handle a "special case" in the parser.
978 #
979 # A "special case" is considered to be an unknown token, i.e., a token
980 # that the parser does not know how to parse. A good example of special
981 # case would be ARM's register displacement syntax:
982 #
983 # [R0, #4] ;; displacing R0 by 4
984 #
985 # Since the parser assumes that a register displacement is of the form:
986 #
987 # <number> <indirection_prefix> <register_name> <indirection_suffix>
988 #
989 # it means that it will not be able to recognize and parse this odd syntax.
990 # Therefore, we should add a special case function that will handle this token.
991 #
992 # This function should generate the proper expression form of the expression
993 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
994 # and so on). It should also return 1 if the parsing was successful, or zero
995 # if the token was not recognized as a special token (in this case, returning
996 # zero means that the special parser is deferring the parsing to the generic
997 # parser), and should advance the buffer pointer (p->arg).
998 M;int;stap_parse_special_token;struct stap_parse_info *p;p
999
1000 # Perform arch-dependent adjustments to a register name.
1001 #
1002 # In very specific situations, it may be necessary for the register
1003 # name present in a SystemTap probe's argument to be handled in a
1004 # special way. For example, on i386, GCC may over-optimize the
1005 # register allocation and use smaller registers than necessary. In
1006 # such cases, the client that is reading and evaluating the SystemTap
1007 # probe (ourselves) will need to actually fetch values from the wider
1008 # version of the register in question.
1009 #
1010 # To illustrate the example, consider the following probe argument
1011 # (i386):
1012 #
1013 # 4@%ax
1014 #
1015 # This argument says that its value can be found at the %ax register,
1016 # which is a 16-bit register. However, the argument's prefix says
1017 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1018 # this case, GDB should actually fetch the probe's value from register
1019 # %eax, not %ax. In this scenario, this function would actually
1020 # replace the register name from %ax to %eax.
1021 #
1022 # The rationale for this can be found at PR breakpoints/24541.
1023 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1024
1025 # DTrace related functions.
1026
1027 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1028 # NARG must be >= 0.
1029 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1030
1031 # True if the given ADDR does not contain the instruction sequence
1032 # corresponding to a disabled DTrace is-enabled probe.
1033 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1034
1035 # Enable a DTrace is-enabled probe at ADDR.
1036 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1037
1038 # Disable a DTrace is-enabled probe at ADDR.
1039 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1040
1041 # True if the list of shared libraries is one and only for all
1042 # processes, as opposed to a list of shared libraries per inferior.
1043 # This usually means that all processes, although may or may not share
1044 # an address space, will see the same set of symbols at the same
1045 # addresses.
1046 v;int;has_global_solist;;;0;0;;0
1047
1048 # On some targets, even though each inferior has its own private
1049 # address space, the debug interface takes care of making breakpoints
1050 # visible to all address spaces automatically. For such cases,
1051 # this property should be set to true.
1052 v;int;has_global_breakpoints;;;0;0;;0
1053
1054 # True if inferiors share an address space (e.g., uClinux).
1055 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1056
1057 # True if a fast tracepoint can be set at an address.
1058 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1059
1060 # Guess register state based on tracepoint location. Used for tracepoints
1061 # where no registers have been collected, but there's only one location,
1062 # allowing us to guess the PC value, and perhaps some other registers.
1063 # On entry, regcache has all registers marked as unavailable.
1064 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1065
1066 # Return the "auto" target charset.
1067 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1068 # Return the "auto" target wide charset.
1069 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1070
1071 # If non-empty, this is a file extension that will be opened in place
1072 # of the file extension reported by the shared library list.
1073 #
1074 # This is most useful for toolchains that use a post-linker tool,
1075 # where the names of the files run on the target differ in extension
1076 # compared to the names of the files GDB should load for debug info.
1077 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1078
1079 # If true, the target OS has DOS-based file system semantics. That
1080 # is, absolute paths include a drive name, and the backslash is
1081 # considered a directory separator.
1082 v;int;has_dos_based_file_system;;;0;0;;0
1083
1084 # Generate bytecodes to collect the return address in a frame.
1085 # Since the bytecodes run on the target, possibly with GDB not even
1086 # connected, the full unwinding machinery is not available, and
1087 # typically this function will issue bytecodes for one or more likely
1088 # places that the return address may be found.
1089 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1090
1091 # Implement the "info proc" command.
1092 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1093
1094 # Implement the "info proc" command for core files. Noe that there
1095 # are two "info_proc"-like methods on gdbarch -- one for core files,
1096 # one for live targets.
1097 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1098
1099 # Iterate over all objfiles in the order that makes the most sense
1100 # for the architecture to make global symbol searches.
1101 #
1102 # CB is a callback function where OBJFILE is the objfile to be searched,
1103 # and CB_DATA a pointer to user-defined data (the same data that is passed
1104 # when calling this gdbarch method). The iteration stops if this function
1105 # returns nonzero.
1106 #
1107 # CB_DATA is a pointer to some user-defined data to be passed to
1108 # the callback.
1109 #
1110 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1111 # inspected when the symbol search was requested.
1112 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1113
1114 # Ravenscar arch-dependent ops.
1115 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1116
1117 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1118 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1119
1120 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1121 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1122
1123 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1124 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1125
1126 # Return true if there's a program/permanent breakpoint planted in
1127 # memory at ADDRESS, return false otherwise.
1128 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1129
1130 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1131 # Return 0 if *READPTR is already at the end of the buffer.
1132 # Return -1 if there is insufficient buffer for a whole entry.
1133 # Return 1 if an entry was read into *TYPEP and *VALP.
1134 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1135
1136 # Print the description of a single auxv entry described by TYPE and VAL
1137 # to FILE.
1138 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1139
1140 # Find the address range of the current inferior's vsyscall/vDSO, and
1141 # write it to *RANGE. If the vsyscall's length can't be determined, a
1142 # range with zero length is returned. Returns true if the vsyscall is
1143 # found, false otherwise.
1144 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1145
1146 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1147 # PROT has GDB_MMAP_PROT_* bitmask format.
1148 # Throw an error if it is not possible. Returned address is always valid.
1149 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1150
1151 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1152 # Print a warning if it is not possible.
1153 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1154
1155 # Return string (caller has to use xfree for it) with options for GCC
1156 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1157 # These options are put before CU's DW_AT_producer compilation options so that
1158 # they can override it.
1159 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1160
1161 # Return a regular expression that matches names used by this
1162 # architecture in GNU configury triplets. The result is statically
1163 # allocated and must not be freed. The default implementation simply
1164 # returns the BFD architecture name, which is correct in nearly every
1165 # case.
1166 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1167
1168 # Return the size in 8-bit bytes of an addressable memory unit on this
1169 # architecture. This corresponds to the number of 8-bit bytes associated to
1170 # each address in memory.
1171 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1172
1173 # Functions for allowing a target to modify its disassembler options.
1174 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1175 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1176 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1177
1178 # Type alignment override method. Return the architecture specific
1179 # alignment required for TYPE. If there is no special handling
1180 # required for TYPE then return the value 0, GDB will then apply the
1181 # default rules as laid out in gdbtypes.c:type_align.
1182 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1183
1184 # Return a string containing any flags for the given PC in the given FRAME.
1185 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1186
1187 EOF
1188 }
1189
1190 #
1191 # The .log file
1192 #
1193 exec > gdbarch.log
1194 function_list | while do_read
1195 do
1196 cat <<EOF
1197 ${class} ${returntype:-} ${function} (${formal:-})
1198 EOF
1199 for r in ${read}
1200 do
1201 eval echo "\" ${r}=\${${r}}\""
1202 done
1203 if class_is_predicate_p && fallback_default_p
1204 then
1205 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1206 kill $$
1207 exit 1
1208 fi
1209 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1210 then
1211 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1212 kill $$
1213 exit 1
1214 fi
1215 if class_is_multiarch_p
1216 then
1217 if class_is_predicate_p ; then :
1218 elif test "x${predefault}" = "x"
1219 then
1220 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1221 kill $$
1222 exit 1
1223 fi
1224 fi
1225 echo ""
1226 done
1227
1228 exec 1>&2
1229
1230
1231 copyright ()
1232 {
1233 cat <<EOF
1234 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1235 /* vi:set ro: */
1236
1237 /* Dynamic architecture support for GDB, the GNU debugger.
1238
1239 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1240
1241 This file is part of GDB.
1242
1243 This program is free software; you can redistribute it and/or modify
1244 it under the terms of the GNU General Public License as published by
1245 the Free Software Foundation; either version 3 of the License, or
1246 (at your option) any later version.
1247
1248 This program is distributed in the hope that it will be useful,
1249 but WITHOUT ANY WARRANTY; without even the implied warranty of
1250 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1251 GNU General Public License for more details.
1252
1253 You should have received a copy of the GNU General Public License
1254 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1255
1256 /* This file was created with the aid of \`\`gdbarch.sh''. */
1257
1258 EOF
1259 }
1260
1261 #
1262 # The .h file
1263 #
1264
1265 exec > new-gdbarch.h
1266 copyright
1267 cat <<EOF
1268 #ifndef GDBARCH_H
1269 #define GDBARCH_H
1270
1271 #include <vector>
1272 #include "frame.h"
1273 #include "dis-asm.h"
1274 #include "gdb_obstack.h"
1275 #include "infrun.h"
1276 #include "osabi.h"
1277 #include "displaced-stepping.h"
1278
1279 struct floatformat;
1280 struct ui_file;
1281 struct value;
1282 struct objfile;
1283 struct obj_section;
1284 struct minimal_symbol;
1285 struct regcache;
1286 struct reggroup;
1287 struct regset;
1288 struct disassemble_info;
1289 struct target_ops;
1290 struct obstack;
1291 struct bp_target_info;
1292 struct target_desc;
1293 struct symbol;
1294 struct syscall;
1295 struct agent_expr;
1296 struct axs_value;
1297 struct stap_parse_info;
1298 struct expr_builder;
1299 struct ravenscar_arch_ops;
1300 struct mem_range;
1301 struct syscalls_info;
1302 struct thread_info;
1303 struct ui_out;
1304
1305 #include "regcache.h"
1306
1307 /* The architecture associated with the inferior through the
1308 connection to the target.
1309
1310 The architecture vector provides some information that is really a
1311 property of the inferior, accessed through a particular target:
1312 ptrace operations; the layout of certain RSP packets; the solib_ops
1313 vector; etc. To differentiate architecture accesses to
1314 per-inferior/target properties from
1315 per-thread/per-frame/per-objfile properties, accesses to
1316 per-inferior/target properties should be made through this
1317 gdbarch. */
1318
1319 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1320 extern struct gdbarch *target_gdbarch (void);
1321
1322 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1323 gdbarch method. */
1324
1325 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1326 (struct objfile *objfile, void *cb_data);
1327
1328 /* Callback type for regset section iterators. The callback usually
1329 invokes the REGSET's supply or collect method, to which it must
1330 pass a buffer - for collects this buffer will need to be created using
1331 COLLECT_SIZE, for supply the existing buffer being read from should
1332 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1333 is used for diagnostic messages. CB_DATA should have been passed
1334 unchanged through the iterator. */
1335
1336 typedef void (iterate_over_regset_sections_cb)
1337 (const char *sect_name, int supply_size, int collect_size,
1338 const struct regset *regset, const char *human_name, void *cb_data);
1339
1340 /* For a function call, does the function return a value using a
1341 normal value return or a structure return - passing a hidden
1342 argument pointing to storage. For the latter, there are two
1343 cases: language-mandated structure return and target ABI
1344 structure return. */
1345
1346 enum function_call_return_method
1347 {
1348 /* Standard value return. */
1349 return_method_normal = 0,
1350
1351 /* Language ABI structure return. This is handled
1352 by passing the return location as the first parameter to
1353 the function, even preceding "this". */
1354 return_method_hidden_param,
1355
1356 /* Target ABI struct return. This is target-specific; for instance,
1357 on ia64 the first argument is passed in out0 but the hidden
1358 structure return pointer would normally be passed in r8. */
1359 return_method_struct,
1360 };
1361
1362 EOF
1363
1364 # function typedef's
1365 printf "\n"
1366 printf "\n"
1367 printf "/* The following are pre-initialized by GDBARCH. */\n"
1368 function_list | while do_read
1369 do
1370 if class_is_info_p
1371 then
1372 printf "\n"
1373 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1374 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1375 fi
1376 done
1377
1378 # function typedef's
1379 printf "\n"
1380 printf "\n"
1381 printf "/* The following are initialized by the target dependent code. */\n"
1382 function_list | while do_read
1383 do
1384 if [ -n "${comment}" ]
1385 then
1386 echo "${comment}" | sed \
1387 -e '2 s,#,/*,' \
1388 -e '3,$ s,#, ,' \
1389 -e '$ s,$, */,'
1390 fi
1391
1392 if class_is_predicate_p
1393 then
1394 printf "\n"
1395 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1396 fi
1397 if class_is_variable_p
1398 then
1399 printf "\n"
1400 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1401 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1402 fi
1403 if class_is_function_p
1404 then
1405 printf "\n"
1406 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1407 then
1408 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1409 elif class_is_multiarch_p
1410 then
1411 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1412 else
1413 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1414 fi
1415 if [ "x${formal}" = "xvoid" ]
1416 then
1417 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1418 else
1419 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1420 fi
1421 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1422 fi
1423 done
1424
1425 # close it off
1426 cat <<EOF
1427
1428 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1429
1430
1431 /* Mechanism for co-ordinating the selection of a specific
1432 architecture.
1433
1434 GDB targets (*-tdep.c) can register an interest in a specific
1435 architecture. Other GDB components can register a need to maintain
1436 per-architecture data.
1437
1438 The mechanisms below ensures that there is only a loose connection
1439 between the set-architecture command and the various GDB
1440 components. Each component can independently register their need
1441 to maintain architecture specific data with gdbarch.
1442
1443 Pragmatics:
1444
1445 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1446 didn't scale.
1447
1448 The more traditional mega-struct containing architecture specific
1449 data for all the various GDB components was also considered. Since
1450 GDB is built from a variable number of (fairly independent)
1451 components it was determined that the global aproach was not
1452 applicable. */
1453
1454
1455 /* Register a new architectural family with GDB.
1456
1457 Register support for the specified ARCHITECTURE with GDB. When
1458 gdbarch determines that the specified architecture has been
1459 selected, the corresponding INIT function is called.
1460
1461 --
1462
1463 The INIT function takes two parameters: INFO which contains the
1464 information available to gdbarch about the (possibly new)
1465 architecture; ARCHES which is a list of the previously created
1466 \`\`struct gdbarch'' for this architecture.
1467
1468 The INFO parameter is, as far as possible, be pre-initialized with
1469 information obtained from INFO.ABFD or the global defaults.
1470
1471 The ARCHES parameter is a linked list (sorted most recently used)
1472 of all the previously created architures for this architecture
1473 family. The (possibly NULL) ARCHES->gdbarch can used to access
1474 values from the previously selected architecture for this
1475 architecture family.
1476
1477 The INIT function shall return any of: NULL - indicating that it
1478 doesn't recognize the selected architecture; an existing \`\`struct
1479 gdbarch'' from the ARCHES list - indicating that the new
1480 architecture is just a synonym for an earlier architecture (see
1481 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1482 - that describes the selected architecture (see gdbarch_alloc()).
1483
1484 The DUMP_TDEP function shall print out all target specific values.
1485 Care should be taken to ensure that the function works in both the
1486 multi-arch and non- multi-arch cases. */
1487
1488 struct gdbarch_list
1489 {
1490 struct gdbarch *gdbarch;
1491 struct gdbarch_list *next;
1492 };
1493
1494 struct gdbarch_info
1495 {
1496 /* Use default: NULL (ZERO). */
1497 const struct bfd_arch_info *bfd_arch_info;
1498
1499 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1500 enum bfd_endian byte_order;
1501
1502 enum bfd_endian byte_order_for_code;
1503
1504 /* Use default: NULL (ZERO). */
1505 bfd *abfd;
1506
1507 /* Use default: NULL (ZERO). */
1508 union
1509 {
1510 /* Architecture-specific information. The generic form for targets
1511 that have extra requirements. */
1512 struct gdbarch_tdep_info *tdep_info;
1513
1514 /* Architecture-specific target description data. Numerous targets
1515 need only this, so give them an easy way to hold it. */
1516 struct tdesc_arch_data *tdesc_data;
1517
1518 /* SPU file system ID. This is a single integer, so using the
1519 generic form would only complicate code. Other targets may
1520 reuse this member if suitable. */
1521 int *id;
1522 };
1523
1524 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1525 enum gdb_osabi osabi;
1526
1527 /* Use default: NULL (ZERO). */
1528 const struct target_desc *target_desc;
1529 };
1530
1531 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1532 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1533
1534 /* DEPRECATED - use gdbarch_register() */
1535 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1536
1537 extern void gdbarch_register (enum bfd_architecture architecture,
1538 gdbarch_init_ftype *,
1539 gdbarch_dump_tdep_ftype *);
1540
1541
1542 /* Return a freshly allocated, NULL terminated, array of the valid
1543 architecture names. Since architectures are registered during the
1544 _initialize phase this function only returns useful information
1545 once initialization has been completed. */
1546
1547 extern const char **gdbarch_printable_names (void);
1548
1549
1550 /* Helper function. Search the list of ARCHES for a GDBARCH that
1551 matches the information provided by INFO. */
1552
1553 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1554
1555
1556 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1557 basic initialization using values obtained from the INFO and TDEP
1558 parameters. set_gdbarch_*() functions are called to complete the
1559 initialization of the object. */
1560
1561 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1562
1563
1564 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1565 It is assumed that the caller freeds the \`\`struct
1566 gdbarch_tdep''. */
1567
1568 extern void gdbarch_free (struct gdbarch *);
1569
1570 /* Get the obstack owned by ARCH. */
1571
1572 extern obstack *gdbarch_obstack (gdbarch *arch);
1573
1574 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1575 obstack. The memory is freed when the corresponding architecture
1576 is also freed. */
1577
1578 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1579 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1580
1581 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1582 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1583
1584 /* Duplicate STRING, returning an equivalent string that's allocated on the
1585 obstack associated with GDBARCH. The string is freed when the corresponding
1586 architecture is also freed. */
1587
1588 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1589
1590 /* Helper function. Force an update of the current architecture.
1591
1592 The actual architecture selected is determined by INFO, \`\`(gdb) set
1593 architecture'' et.al., the existing architecture and BFD's default
1594 architecture. INFO should be initialized to zero and then selected
1595 fields should be updated.
1596
1597 Returns non-zero if the update succeeds. */
1598
1599 extern int gdbarch_update_p (struct gdbarch_info info);
1600
1601
1602 /* Helper function. Find an architecture matching info.
1603
1604 INFO should be initialized using gdbarch_info_init, relevant fields
1605 set, and then finished using gdbarch_info_fill.
1606
1607 Returns the corresponding architecture, or NULL if no matching
1608 architecture was found. */
1609
1610 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1611
1612
1613 /* Helper function. Set the target gdbarch to "gdbarch". */
1614
1615 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1616
1617
1618 /* Register per-architecture data-pointer.
1619
1620 Reserve space for a per-architecture data-pointer. An identifier
1621 for the reserved data-pointer is returned. That identifer should
1622 be saved in a local static variable.
1623
1624 Memory for the per-architecture data shall be allocated using
1625 gdbarch_obstack_zalloc. That memory will be deleted when the
1626 corresponding architecture object is deleted.
1627
1628 When a previously created architecture is re-selected, the
1629 per-architecture data-pointer for that previous architecture is
1630 restored. INIT() is not re-called.
1631
1632 Multiple registrarants for any architecture are allowed (and
1633 strongly encouraged). */
1634
1635 struct gdbarch_data;
1636
1637 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1638 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1639 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1640 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1641 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1642 struct gdbarch_data *data,
1643 void *pointer);
1644
1645 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1646
1647
1648 /* Set the dynamic target-system-dependent parameters (architecture,
1649 byte-order, ...) using information found in the BFD. */
1650
1651 extern void set_gdbarch_from_file (bfd *);
1652
1653
1654 /* Initialize the current architecture to the "first" one we find on
1655 our list. */
1656
1657 extern void initialize_current_architecture (void);
1658
1659 /* gdbarch trace variable */
1660 extern unsigned int gdbarch_debug;
1661
1662 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1663
1664 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1665
1666 static inline int
1667 gdbarch_num_cooked_regs (gdbarch *arch)
1668 {
1669 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1670 }
1671
1672 #endif
1673 EOF
1674 exec 1>&2
1675 ../move-if-change new-gdbarch.h gdbarch.h
1676 rm -f new-gdbarch.h
1677
1678
1679 #
1680 # C file
1681 #
1682
1683 exec > new-gdbarch.c
1684 copyright
1685 cat <<EOF
1686
1687 #include "defs.h"
1688 #include "arch-utils.h"
1689
1690 #include "gdbcmd.h"
1691 #include "inferior.h"
1692 #include "symcat.h"
1693
1694 #include "floatformat.h"
1695 #include "reggroups.h"
1696 #include "osabi.h"
1697 #include "gdb_obstack.h"
1698 #include "observable.h"
1699 #include "regcache.h"
1700 #include "objfiles.h"
1701 #include "auxv.h"
1702 #include "frame-unwind.h"
1703 #include "dummy-frame.h"
1704
1705 /* Static function declarations */
1706
1707 static void alloc_gdbarch_data (struct gdbarch *);
1708
1709 /* Non-zero if we want to trace architecture code. */
1710
1711 #ifndef GDBARCH_DEBUG
1712 #define GDBARCH_DEBUG 0
1713 #endif
1714 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1715 static void
1716 show_gdbarch_debug (struct ui_file *file, int from_tty,
1717 struct cmd_list_element *c, const char *value)
1718 {
1719 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1720 }
1721
1722 static const char *
1723 pformat (const struct floatformat **format)
1724 {
1725 if (format == NULL)
1726 return "(null)";
1727 else
1728 /* Just print out one of them - this is only for diagnostics. */
1729 return format[0]->name;
1730 }
1731
1732 static const char *
1733 pstring (const char *string)
1734 {
1735 if (string == NULL)
1736 return "(null)";
1737 return string;
1738 }
1739
1740 static const char *
1741 pstring_ptr (char **string)
1742 {
1743 if (string == NULL || *string == NULL)
1744 return "(null)";
1745 return *string;
1746 }
1747
1748 /* Helper function to print a list of strings, represented as "const
1749 char *const *". The list is printed comma-separated. */
1750
1751 static const char *
1752 pstring_list (const char *const *list)
1753 {
1754 static char ret[100];
1755 const char *const *p;
1756 size_t offset = 0;
1757
1758 if (list == NULL)
1759 return "(null)";
1760
1761 ret[0] = '\0';
1762 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1763 {
1764 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1765 offset += 2 + s;
1766 }
1767
1768 if (offset > 0)
1769 {
1770 gdb_assert (offset - 2 < sizeof (ret));
1771 ret[offset - 2] = '\0';
1772 }
1773
1774 return ret;
1775 }
1776
1777 EOF
1778
1779 # gdbarch open the gdbarch object
1780 printf "\n"
1781 printf "/* Maintain the struct gdbarch object. */\n"
1782 printf "\n"
1783 printf "struct gdbarch\n"
1784 printf "{\n"
1785 printf " /* Has this architecture been fully initialized? */\n"
1786 printf " int initialized_p;\n"
1787 printf "\n"
1788 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1789 printf " struct obstack *obstack;\n"
1790 printf "\n"
1791 printf " /* basic architectural information. */\n"
1792 function_list | while do_read
1793 do
1794 if class_is_info_p
1795 then
1796 printf " %s %s;\n" "$returntype" "$function"
1797 fi
1798 done
1799 printf "\n"
1800 printf " /* target specific vector. */\n"
1801 printf " struct gdbarch_tdep *tdep;\n"
1802 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1803 printf "\n"
1804 printf " /* per-architecture data-pointers. */\n"
1805 printf " unsigned nr_data;\n"
1806 printf " void **data;\n"
1807 printf "\n"
1808 cat <<EOF
1809 /* Multi-arch values.
1810
1811 When extending this structure you must:
1812
1813 Add the field below.
1814
1815 Declare set/get functions and define the corresponding
1816 macro in gdbarch.h.
1817
1818 gdbarch_alloc(): If zero/NULL is not a suitable default,
1819 initialize the new field.
1820
1821 verify_gdbarch(): Confirm that the target updated the field
1822 correctly.
1823
1824 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1825 field is dumped out
1826
1827 get_gdbarch(): Implement the set/get functions (probably using
1828 the macro's as shortcuts).
1829
1830 */
1831
1832 EOF
1833 function_list | while do_read
1834 do
1835 if class_is_variable_p
1836 then
1837 printf " %s %s;\n" "$returntype" "$function"
1838 elif class_is_function_p
1839 then
1840 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1841 fi
1842 done
1843 printf "};\n"
1844
1845 # Create a new gdbarch struct
1846 cat <<EOF
1847
1848 /* Create a new \`\`struct gdbarch'' based on information provided by
1849 \`\`struct gdbarch_info''. */
1850 EOF
1851 printf "\n"
1852 cat <<EOF
1853 struct gdbarch *
1854 gdbarch_alloc (const struct gdbarch_info *info,
1855 struct gdbarch_tdep *tdep)
1856 {
1857 struct gdbarch *gdbarch;
1858
1859 /* Create an obstack for allocating all the per-architecture memory,
1860 then use that to allocate the architecture vector. */
1861 struct obstack *obstack = XNEW (struct obstack);
1862 obstack_init (obstack);
1863 gdbarch = XOBNEW (obstack, struct gdbarch);
1864 memset (gdbarch, 0, sizeof (*gdbarch));
1865 gdbarch->obstack = obstack;
1866
1867 alloc_gdbarch_data (gdbarch);
1868
1869 gdbarch->tdep = tdep;
1870 EOF
1871 printf "\n"
1872 function_list | while do_read
1873 do
1874 if class_is_info_p
1875 then
1876 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1877 fi
1878 done
1879 printf "\n"
1880 printf " /* Force the explicit initialization of these. */\n"
1881 function_list | while do_read
1882 do
1883 if class_is_function_p || class_is_variable_p
1884 then
1885 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1886 then
1887 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1888 fi
1889 fi
1890 done
1891 cat <<EOF
1892 /* gdbarch_alloc() */
1893
1894 return gdbarch;
1895 }
1896 EOF
1897
1898 # Free a gdbarch struct.
1899 printf "\n"
1900 printf "\n"
1901 cat <<EOF
1902
1903 obstack *gdbarch_obstack (gdbarch *arch)
1904 {
1905 return arch->obstack;
1906 }
1907
1908 /* See gdbarch.h. */
1909
1910 char *
1911 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1912 {
1913 return obstack_strdup (arch->obstack, string);
1914 }
1915
1916
1917 /* Free a gdbarch struct. This should never happen in normal
1918 operation --- once you've created a gdbarch, you keep it around.
1919 However, if an architecture's init function encounters an error
1920 building the structure, it may need to clean up a partially
1921 constructed gdbarch. */
1922
1923 void
1924 gdbarch_free (struct gdbarch *arch)
1925 {
1926 struct obstack *obstack;
1927
1928 gdb_assert (arch != NULL);
1929 gdb_assert (!arch->initialized_p);
1930 obstack = arch->obstack;
1931 obstack_free (obstack, 0); /* Includes the ARCH. */
1932 xfree (obstack);
1933 }
1934 EOF
1935
1936 # verify a new architecture
1937 cat <<EOF
1938
1939
1940 /* Ensure that all values in a GDBARCH are reasonable. */
1941
1942 static void
1943 verify_gdbarch (struct gdbarch *gdbarch)
1944 {
1945 string_file log;
1946
1947 /* fundamental */
1948 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1949 log.puts ("\n\tbyte-order");
1950 if (gdbarch->bfd_arch_info == NULL)
1951 log.puts ("\n\tbfd_arch_info");
1952 /* Check those that need to be defined for the given multi-arch level. */
1953 EOF
1954 function_list | while do_read
1955 do
1956 if class_is_function_p || class_is_variable_p
1957 then
1958 if [ "x${invalid_p}" = "x0" ]
1959 then
1960 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1961 elif class_is_predicate_p
1962 then
1963 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1964 # FIXME: See do_read for potential simplification
1965 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1966 then
1967 printf " if (%s)\n" "$invalid_p"
1968 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1969 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1970 then
1971 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1972 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1973 elif [ -n "${postdefault}" ]
1974 then
1975 printf " if (gdbarch->%s == 0)\n" "$function"
1976 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1977 elif [ -n "${invalid_p}" ]
1978 then
1979 printf " if (%s)\n" "$invalid_p"
1980 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1981 elif [ -n "${predefault}" ]
1982 then
1983 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1984 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1985 fi
1986 fi
1987 done
1988 cat <<EOF
1989 if (!log.empty ())
1990 internal_error (__FILE__, __LINE__,
1991 _("verify_gdbarch: the following are invalid ...%s"),
1992 log.c_str ());
1993 }
1994 EOF
1995
1996 # dump the structure
1997 printf "\n"
1998 printf "\n"
1999 cat <<EOF
2000 /* Print out the details of the current architecture. */
2001
2002 void
2003 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2004 {
2005 const char *gdb_nm_file = "<not-defined>";
2006
2007 #if defined (GDB_NM_FILE)
2008 gdb_nm_file = GDB_NM_FILE;
2009 #endif
2010 fprintf_unfiltered (file,
2011 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2012 gdb_nm_file);
2013 EOF
2014 function_list | sort '-t;' -k 3 | while do_read
2015 do
2016 # First the predicate
2017 if class_is_predicate_p
2018 then
2019 printf " fprintf_unfiltered (file,\n"
2020 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2021 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2022 fi
2023 # Print the corresponding value.
2024 if class_is_function_p
2025 then
2026 printf " fprintf_unfiltered (file,\n"
2027 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2028 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2029 else
2030 # It is a variable
2031 case "${print}:${returntype}" in
2032 :CORE_ADDR )
2033 fmt="%s"
2034 print="core_addr_to_string_nz (gdbarch->${function})"
2035 ;;
2036 :* )
2037 fmt="%s"
2038 print="plongest (gdbarch->${function})"
2039 ;;
2040 * )
2041 fmt="%s"
2042 ;;
2043 esac
2044 printf " fprintf_unfiltered (file,\n"
2045 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2046 printf " %s);\n" "$print"
2047 fi
2048 done
2049 cat <<EOF
2050 if (gdbarch->dump_tdep != NULL)
2051 gdbarch->dump_tdep (gdbarch, file);
2052 }
2053 EOF
2054
2055
2056 # GET/SET
2057 printf "\n"
2058 cat <<EOF
2059 struct gdbarch_tdep *
2060 gdbarch_tdep (struct gdbarch *gdbarch)
2061 {
2062 if (gdbarch_debug >= 2)
2063 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2064 return gdbarch->tdep;
2065 }
2066 EOF
2067 printf "\n"
2068 function_list | while do_read
2069 do
2070 if class_is_predicate_p
2071 then
2072 printf "\n"
2073 printf "int\n"
2074 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2075 printf "{\n"
2076 printf " gdb_assert (gdbarch != NULL);\n"
2077 printf " return %s;\n" "$predicate"
2078 printf "}\n"
2079 fi
2080 if class_is_function_p
2081 then
2082 printf "\n"
2083 printf "%s\n" "$returntype"
2084 if [ "x${formal}" = "xvoid" ]
2085 then
2086 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2087 else
2088 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2089 fi
2090 printf "{\n"
2091 printf " gdb_assert (gdbarch != NULL);\n"
2092 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2093 if class_is_predicate_p && test -n "${predefault}"
2094 then
2095 # Allow a call to a function with a predicate.
2096 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2097 fi
2098 printf " if (gdbarch_debug >= 2)\n"
2099 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2100 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2101 then
2102 if class_is_multiarch_p
2103 then
2104 params="gdbarch"
2105 else
2106 params=""
2107 fi
2108 else
2109 if class_is_multiarch_p
2110 then
2111 params="gdbarch, ${actual}"
2112 else
2113 params="${actual}"
2114 fi
2115 fi
2116 if [ "x${returntype}" = "xvoid" ]
2117 then
2118 printf " gdbarch->%s (%s);\n" "$function" "$params"
2119 else
2120 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2121 fi
2122 printf "}\n"
2123 printf "\n"
2124 printf "void\n"
2125 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2126 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2127 printf "{\n"
2128 printf " gdbarch->%s = %s;\n" "$function" "$function"
2129 printf "}\n"
2130 elif class_is_variable_p
2131 then
2132 printf "\n"
2133 printf "%s\n" "$returntype"
2134 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2135 printf "{\n"
2136 printf " gdb_assert (gdbarch != NULL);\n"
2137 if [ "x${invalid_p}" = "x0" ]
2138 then
2139 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2140 elif [ -n "${invalid_p}" ]
2141 then
2142 printf " /* Check variable is valid. */\n"
2143 printf " gdb_assert (!(%s));\n" "$invalid_p"
2144 elif [ -n "${predefault}" ]
2145 then
2146 printf " /* Check variable changed from pre-default. */\n"
2147 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2148 fi
2149 printf " if (gdbarch_debug >= 2)\n"
2150 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2151 printf " return gdbarch->%s;\n" "$function"
2152 printf "}\n"
2153 printf "\n"
2154 printf "void\n"
2155 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2156 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2157 printf "{\n"
2158 printf " gdbarch->%s = %s;\n" "$function" "$function"
2159 printf "}\n"
2160 elif class_is_info_p
2161 then
2162 printf "\n"
2163 printf "%s\n" "$returntype"
2164 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2165 printf "{\n"
2166 printf " gdb_assert (gdbarch != NULL);\n"
2167 printf " if (gdbarch_debug >= 2)\n"
2168 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2169 printf " return gdbarch->%s;\n" "$function"
2170 printf "}\n"
2171 fi
2172 done
2173
2174 # All the trailing guff
2175 cat <<EOF
2176
2177
2178 /* Keep a registry of per-architecture data-pointers required by GDB
2179 modules. */
2180
2181 struct gdbarch_data
2182 {
2183 unsigned index;
2184 int init_p;
2185 gdbarch_data_pre_init_ftype *pre_init;
2186 gdbarch_data_post_init_ftype *post_init;
2187 };
2188
2189 struct gdbarch_data_registration
2190 {
2191 struct gdbarch_data *data;
2192 struct gdbarch_data_registration *next;
2193 };
2194
2195 struct gdbarch_data_registry
2196 {
2197 unsigned nr;
2198 struct gdbarch_data_registration *registrations;
2199 };
2200
2201 struct gdbarch_data_registry gdbarch_data_registry =
2202 {
2203 0, NULL,
2204 };
2205
2206 static struct gdbarch_data *
2207 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2208 gdbarch_data_post_init_ftype *post_init)
2209 {
2210 struct gdbarch_data_registration **curr;
2211
2212 /* Append the new registration. */
2213 for (curr = &gdbarch_data_registry.registrations;
2214 (*curr) != NULL;
2215 curr = &(*curr)->next);
2216 (*curr) = XNEW (struct gdbarch_data_registration);
2217 (*curr)->next = NULL;
2218 (*curr)->data = XNEW (struct gdbarch_data);
2219 (*curr)->data->index = gdbarch_data_registry.nr++;
2220 (*curr)->data->pre_init = pre_init;
2221 (*curr)->data->post_init = post_init;
2222 (*curr)->data->init_p = 1;
2223 return (*curr)->data;
2224 }
2225
2226 struct gdbarch_data *
2227 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2228 {
2229 return gdbarch_data_register (pre_init, NULL);
2230 }
2231
2232 struct gdbarch_data *
2233 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2234 {
2235 return gdbarch_data_register (NULL, post_init);
2236 }
2237
2238 /* Create/delete the gdbarch data vector. */
2239
2240 static void
2241 alloc_gdbarch_data (struct gdbarch *gdbarch)
2242 {
2243 gdb_assert (gdbarch->data == NULL);
2244 gdbarch->nr_data = gdbarch_data_registry.nr;
2245 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2246 }
2247
2248 /* Initialize the current value of the specified per-architecture
2249 data-pointer. */
2250
2251 void
2252 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2253 struct gdbarch_data *data,
2254 void *pointer)
2255 {
2256 gdb_assert (data->index < gdbarch->nr_data);
2257 gdb_assert (gdbarch->data[data->index] == NULL);
2258 gdb_assert (data->pre_init == NULL);
2259 gdbarch->data[data->index] = pointer;
2260 }
2261
2262 /* Return the current value of the specified per-architecture
2263 data-pointer. */
2264
2265 void *
2266 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2267 {
2268 gdb_assert (data->index < gdbarch->nr_data);
2269 if (gdbarch->data[data->index] == NULL)
2270 {
2271 /* The data-pointer isn't initialized, call init() to get a
2272 value. */
2273 if (data->pre_init != NULL)
2274 /* Mid architecture creation: pass just the obstack, and not
2275 the entire architecture, as that way it isn't possible for
2276 pre-init code to refer to undefined architecture
2277 fields. */
2278 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2279 else if (gdbarch->initialized_p
2280 && data->post_init != NULL)
2281 /* Post architecture creation: pass the entire architecture
2282 (as all fields are valid), but be careful to also detect
2283 recursive references. */
2284 {
2285 gdb_assert (data->init_p);
2286 data->init_p = 0;
2287 gdbarch->data[data->index] = data->post_init (gdbarch);
2288 data->init_p = 1;
2289 }
2290 else
2291 /* The architecture initialization hasn't completed - punt -
2292 hope that the caller knows what they are doing. Once
2293 deprecated_set_gdbarch_data has been initialized, this can be
2294 changed to an internal error. */
2295 return NULL;
2296 gdb_assert (gdbarch->data[data->index] != NULL);
2297 }
2298 return gdbarch->data[data->index];
2299 }
2300
2301
2302 /* Keep a registry of the architectures known by GDB. */
2303
2304 struct gdbarch_registration
2305 {
2306 enum bfd_architecture bfd_architecture;
2307 gdbarch_init_ftype *init;
2308 gdbarch_dump_tdep_ftype *dump_tdep;
2309 struct gdbarch_list *arches;
2310 struct gdbarch_registration *next;
2311 };
2312
2313 static struct gdbarch_registration *gdbarch_registry = NULL;
2314
2315 static void
2316 append_name (const char ***buf, int *nr, const char *name)
2317 {
2318 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2319 (*buf)[*nr] = name;
2320 *nr += 1;
2321 }
2322
2323 const char **
2324 gdbarch_printable_names (void)
2325 {
2326 /* Accumulate a list of names based on the registed list of
2327 architectures. */
2328 int nr_arches = 0;
2329 const char **arches = NULL;
2330 struct gdbarch_registration *rego;
2331
2332 for (rego = gdbarch_registry;
2333 rego != NULL;
2334 rego = rego->next)
2335 {
2336 const struct bfd_arch_info *ap;
2337 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2338 if (ap == NULL)
2339 internal_error (__FILE__, __LINE__,
2340 _("gdbarch_architecture_names: multi-arch unknown"));
2341 do
2342 {
2343 append_name (&arches, &nr_arches, ap->printable_name);
2344 ap = ap->next;
2345 }
2346 while (ap != NULL);
2347 }
2348 append_name (&arches, &nr_arches, NULL);
2349 return arches;
2350 }
2351
2352
2353 void
2354 gdbarch_register (enum bfd_architecture bfd_architecture,
2355 gdbarch_init_ftype *init,
2356 gdbarch_dump_tdep_ftype *dump_tdep)
2357 {
2358 struct gdbarch_registration **curr;
2359 const struct bfd_arch_info *bfd_arch_info;
2360
2361 /* Check that BFD recognizes this architecture */
2362 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2363 if (bfd_arch_info == NULL)
2364 {
2365 internal_error (__FILE__, __LINE__,
2366 _("gdbarch: Attempt to register "
2367 "unknown architecture (%d)"),
2368 bfd_architecture);
2369 }
2370 /* Check that we haven't seen this architecture before. */
2371 for (curr = &gdbarch_registry;
2372 (*curr) != NULL;
2373 curr = &(*curr)->next)
2374 {
2375 if (bfd_architecture == (*curr)->bfd_architecture)
2376 internal_error (__FILE__, __LINE__,
2377 _("gdbarch: Duplicate registration "
2378 "of architecture (%s)"),
2379 bfd_arch_info->printable_name);
2380 }
2381 /* log it */
2382 if (gdbarch_debug)
2383 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2384 bfd_arch_info->printable_name,
2385 host_address_to_string (init));
2386 /* Append it */
2387 (*curr) = XNEW (struct gdbarch_registration);
2388 (*curr)->bfd_architecture = bfd_architecture;
2389 (*curr)->init = init;
2390 (*curr)->dump_tdep = dump_tdep;
2391 (*curr)->arches = NULL;
2392 (*curr)->next = NULL;
2393 }
2394
2395 void
2396 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2397 gdbarch_init_ftype *init)
2398 {
2399 gdbarch_register (bfd_architecture, init, NULL);
2400 }
2401
2402
2403 /* Look for an architecture using gdbarch_info. */
2404
2405 struct gdbarch_list *
2406 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2407 const struct gdbarch_info *info)
2408 {
2409 for (; arches != NULL; arches = arches->next)
2410 {
2411 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2412 continue;
2413 if (info->byte_order != arches->gdbarch->byte_order)
2414 continue;
2415 if (info->osabi != arches->gdbarch->osabi)
2416 continue;
2417 if (info->target_desc != arches->gdbarch->target_desc)
2418 continue;
2419 return arches;
2420 }
2421 return NULL;
2422 }
2423
2424
2425 /* Find an architecture that matches the specified INFO. Create a new
2426 architecture if needed. Return that new architecture. */
2427
2428 struct gdbarch *
2429 gdbarch_find_by_info (struct gdbarch_info info)
2430 {
2431 struct gdbarch *new_gdbarch;
2432 struct gdbarch_registration *rego;
2433
2434 /* Fill in missing parts of the INFO struct using a number of
2435 sources: "set ..."; INFOabfd supplied; and the global
2436 defaults. */
2437 gdbarch_info_fill (&info);
2438
2439 /* Must have found some sort of architecture. */
2440 gdb_assert (info.bfd_arch_info != NULL);
2441
2442 if (gdbarch_debug)
2443 {
2444 fprintf_unfiltered (gdb_stdlog,
2445 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2446 (info.bfd_arch_info != NULL
2447 ? info.bfd_arch_info->printable_name
2448 : "(null)"));
2449 fprintf_unfiltered (gdb_stdlog,
2450 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2451 info.byte_order,
2452 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2453 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2454 : "default"));
2455 fprintf_unfiltered (gdb_stdlog,
2456 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2457 info.osabi, gdbarch_osabi_name (info.osabi));
2458 fprintf_unfiltered (gdb_stdlog,
2459 "gdbarch_find_by_info: info.abfd %s\n",
2460 host_address_to_string (info.abfd));
2461 fprintf_unfiltered (gdb_stdlog,
2462 "gdbarch_find_by_info: info.tdep_info %s\n",
2463 host_address_to_string (info.tdep_info));
2464 }
2465
2466 /* Find the tdep code that knows about this architecture. */
2467 for (rego = gdbarch_registry;
2468 rego != NULL;
2469 rego = rego->next)
2470 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2471 break;
2472 if (rego == NULL)
2473 {
2474 if (gdbarch_debug)
2475 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2476 "No matching architecture\n");
2477 return 0;
2478 }
2479
2480 /* Ask the tdep code for an architecture that matches "info". */
2481 new_gdbarch = rego->init (info, rego->arches);
2482
2483 /* Did the tdep code like it? No. Reject the change and revert to
2484 the old architecture. */
2485 if (new_gdbarch == NULL)
2486 {
2487 if (gdbarch_debug)
2488 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2489 "Target rejected architecture\n");
2490 return NULL;
2491 }
2492
2493 /* Is this a pre-existing architecture (as determined by already
2494 being initialized)? Move it to the front of the architecture
2495 list (keeping the list sorted Most Recently Used). */
2496 if (new_gdbarch->initialized_p)
2497 {
2498 struct gdbarch_list **list;
2499 struct gdbarch_list *self;
2500 if (gdbarch_debug)
2501 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2502 "Previous architecture %s (%s) selected\n",
2503 host_address_to_string (new_gdbarch),
2504 new_gdbarch->bfd_arch_info->printable_name);
2505 /* Find the existing arch in the list. */
2506 for (list = &rego->arches;
2507 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2508 list = &(*list)->next);
2509 /* It had better be in the list of architectures. */
2510 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2511 /* Unlink SELF. */
2512 self = (*list);
2513 (*list) = self->next;
2514 /* Insert SELF at the front. */
2515 self->next = rego->arches;
2516 rego->arches = self;
2517 /* Return it. */
2518 return new_gdbarch;
2519 }
2520
2521 /* It's a new architecture. */
2522 if (gdbarch_debug)
2523 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2524 "New architecture %s (%s) selected\n",
2525 host_address_to_string (new_gdbarch),
2526 new_gdbarch->bfd_arch_info->printable_name);
2527
2528 /* Insert the new architecture into the front of the architecture
2529 list (keep the list sorted Most Recently Used). */
2530 {
2531 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2532 self->next = rego->arches;
2533 self->gdbarch = new_gdbarch;
2534 rego->arches = self;
2535 }
2536
2537 /* Check that the newly installed architecture is valid. Plug in
2538 any post init values. */
2539 new_gdbarch->dump_tdep = rego->dump_tdep;
2540 verify_gdbarch (new_gdbarch);
2541 new_gdbarch->initialized_p = 1;
2542
2543 if (gdbarch_debug)
2544 gdbarch_dump (new_gdbarch, gdb_stdlog);
2545
2546 return new_gdbarch;
2547 }
2548
2549 /* Make the specified architecture current. */
2550
2551 void
2552 set_target_gdbarch (struct gdbarch *new_gdbarch)
2553 {
2554 gdb_assert (new_gdbarch != NULL);
2555 gdb_assert (new_gdbarch->initialized_p);
2556 current_inferior ()->gdbarch = new_gdbarch;
2557 gdb::observers::architecture_changed.notify (new_gdbarch);
2558 registers_changed ();
2559 }
2560
2561 /* Return the current inferior's arch. */
2562
2563 struct gdbarch *
2564 target_gdbarch (void)
2565 {
2566 return current_inferior ()->gdbarch;
2567 }
2568
2569 void _initialize_gdbarch ();
2570 void
2571 _initialize_gdbarch ()
2572 {
2573 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2574 Set architecture debugging."), _("\\
2575 Show architecture debugging."), _("\\
2576 When non-zero, architecture debugging is enabled."),
2577 NULL,
2578 show_gdbarch_debug,
2579 &setdebuglist, &showdebuglist);
2580 }
2581 EOF
2582
2583 # close things off
2584 exec 1>&2
2585 ../move-if-change new-gdbarch.c gdbarch.c
2586 rm -f new-gdbarch.c
This page took 0.095978 seconds and 4 git commands to generate.