4255795ea674bc660a745757977fd9c286d0285f
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "gdbsupport/agent.h"
23 #include "tdesc.h"
24 #include "gdbsupport/rsp-low.h"
25 #include "gdbsupport/signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdbsupport/gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "gdbsupport/filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "gdbsupport/common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "gdbsupport/environ.h"
53 #include "gdbsupport/gdb-sigmask.h"
54 #include "gdbsupport/scoped_restore.h"
55 #ifndef ELFMAG0
56 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
57 then ELFMAG0 will have been defined. If it didn't get included by
58 gdb_proc_service.h then including it will likely introduce a duplicate
59 definition of elf_fpregset_t. */
60 #include <elf.h>
61 #endif
62 #include "nat/linux-namespaces.h"
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif
70
71 #ifndef O_LARGEFILE
72 #define O_LARGEFILE 0
73 #endif
74
75 #ifndef AT_HWCAP2
76 #define AT_HWCAP2 26
77 #endif
78
79 /* Some targets did not define these ptrace constants from the start,
80 so gdbserver defines them locally here. In the future, these may
81 be removed after they are added to asm/ptrace.h. */
82 #if !(defined(PT_TEXT_ADDR) \
83 || defined(PT_DATA_ADDR) \
84 || defined(PT_TEXT_END_ADDR))
85 #if defined(__mcoldfire__)
86 /* These are still undefined in 3.10 kernels. */
87 #define PT_TEXT_ADDR 49*4
88 #define PT_DATA_ADDR 50*4
89 #define PT_TEXT_END_ADDR 51*4
90 /* BFIN already defines these since at least 2.6.32 kernels. */
91 #elif defined(BFIN)
92 #define PT_TEXT_ADDR 220
93 #define PT_TEXT_END_ADDR 224
94 #define PT_DATA_ADDR 228
95 /* These are still undefined in 3.10 kernels. */
96 #elif defined(__TMS320C6X__)
97 #define PT_TEXT_ADDR (0x10000*4)
98 #define PT_DATA_ADDR (0x10004*4)
99 #define PT_TEXT_END_ADDR (0x10008*4)
100 #endif
101 #endif
102
103 #ifdef HAVE_LINUX_BTRACE
104 # include "nat/linux-btrace.h"
105 # include "gdbsupport/btrace-common.h"
106 #endif
107
108 #ifndef HAVE_ELF32_AUXV_T
109 /* Copied from glibc's elf.h. */
110 typedef struct
111 {
112 uint32_t a_type; /* Entry type */
113 union
114 {
115 uint32_t a_val; /* Integer value */
116 /* We use to have pointer elements added here. We cannot do that,
117 though, since it does not work when using 32-bit definitions
118 on 64-bit platforms and vice versa. */
119 } a_un;
120 } Elf32_auxv_t;
121 #endif
122
123 #ifndef HAVE_ELF64_AUXV_T
124 /* Copied from glibc's elf.h. */
125 typedef struct
126 {
127 uint64_t a_type; /* Entry type */
128 union
129 {
130 uint64_t a_val; /* Integer value */
131 /* We use to have pointer elements added here. We cannot do that,
132 though, since it does not work when using 32-bit definitions
133 on 64-bit platforms and vice versa. */
134 } a_un;
135 } Elf64_auxv_t;
136 #endif
137
138 /* Does the current host support PTRACE_GETREGSET? */
139 int have_ptrace_getregset = -1;
140
141 /* LWP accessors. */
142
143 /* See nat/linux-nat.h. */
144
145 ptid_t
146 ptid_of_lwp (struct lwp_info *lwp)
147 {
148 return ptid_of (get_lwp_thread (lwp));
149 }
150
151 /* See nat/linux-nat.h. */
152
153 void
154 lwp_set_arch_private_info (struct lwp_info *lwp,
155 struct arch_lwp_info *info)
156 {
157 lwp->arch_private = info;
158 }
159
160 /* See nat/linux-nat.h. */
161
162 struct arch_lwp_info *
163 lwp_arch_private_info (struct lwp_info *lwp)
164 {
165 return lwp->arch_private;
166 }
167
168 /* See nat/linux-nat.h. */
169
170 int
171 lwp_is_stopped (struct lwp_info *lwp)
172 {
173 return lwp->stopped;
174 }
175
176 /* See nat/linux-nat.h. */
177
178 enum target_stop_reason
179 lwp_stop_reason (struct lwp_info *lwp)
180 {
181 return lwp->stop_reason;
182 }
183
184 /* See nat/linux-nat.h. */
185
186 int
187 lwp_is_stepping (struct lwp_info *lwp)
188 {
189 return lwp->stepping;
190 }
191
192 /* A list of all unknown processes which receive stop signals. Some
193 other process will presumably claim each of these as forked
194 children momentarily. */
195
196 struct simple_pid_list
197 {
198 /* The process ID. */
199 int pid;
200
201 /* The status as reported by waitpid. */
202 int status;
203
204 /* Next in chain. */
205 struct simple_pid_list *next;
206 };
207 struct simple_pid_list *stopped_pids;
208
209 /* Trivial list manipulation functions to keep track of a list of new
210 stopped processes. */
211
212 static void
213 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
214 {
215 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
216
217 new_pid->pid = pid;
218 new_pid->status = status;
219 new_pid->next = *listp;
220 *listp = new_pid;
221 }
222
223 static int
224 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
225 {
226 struct simple_pid_list **p;
227
228 for (p = listp; *p != NULL; p = &(*p)->next)
229 if ((*p)->pid == pid)
230 {
231 struct simple_pid_list *next = (*p)->next;
232
233 *statusp = (*p)->status;
234 xfree (*p);
235 *p = next;
236 return 1;
237 }
238 return 0;
239 }
240
241 enum stopping_threads_kind
242 {
243 /* Not stopping threads presently. */
244 NOT_STOPPING_THREADS,
245
246 /* Stopping threads. */
247 STOPPING_THREADS,
248
249 /* Stopping and suspending threads. */
250 STOPPING_AND_SUSPENDING_THREADS
251 };
252
253 /* This is set while stop_all_lwps is in effect. */
254 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
255
256 /* FIXME make into a target method? */
257 int using_threads = 1;
258
259 /* True if we're presently stabilizing threads (moving them out of
260 jump pads). */
261 static int stabilizing_threads;
262
263 static void linux_resume_one_lwp (struct lwp_info *lwp,
264 int step, int signal, siginfo_t *info);
265 static void linux_resume (struct thread_resume *resume_info, size_t n);
266 static void stop_all_lwps (int suspend, struct lwp_info *except);
267 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
268 static void unsuspend_all_lwps (struct lwp_info *except);
269 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
270 int *wstat, int options);
271 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
272 static struct lwp_info *add_lwp (ptid_t ptid);
273 static void linux_mourn (struct process_info *process);
274 static int linux_stopped_by_watchpoint (void);
275 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
276 static int lwp_is_marked_dead (struct lwp_info *lwp);
277 static void proceed_all_lwps (void);
278 static int finish_step_over (struct lwp_info *lwp);
279 static int kill_lwp (unsigned long lwpid, int signo);
280 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
281 static void complete_ongoing_step_over (void);
282 static int linux_low_ptrace_options (int attached);
283 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
284 static void proceed_one_lwp (thread_info *thread, lwp_info *except);
285
286 /* When the event-loop is doing a step-over, this points at the thread
287 being stepped. */
288 ptid_t step_over_bkpt;
289
290 /* True if the low target can hardware single-step. */
291
292 static int
293 can_hardware_single_step (void)
294 {
295 if (the_low_target.supports_hardware_single_step != NULL)
296 return the_low_target.supports_hardware_single_step ();
297 else
298 return 0;
299 }
300
301 /* True if the low target can software single-step. Such targets
302 implement the GET_NEXT_PCS callback. */
303
304 static int
305 can_software_single_step (void)
306 {
307 return (the_low_target.get_next_pcs != NULL);
308 }
309
310 /* True if the low target supports memory breakpoints. If so, we'll
311 have a GET_PC implementation. */
312
313 static int
314 supports_breakpoints (void)
315 {
316 return (the_low_target.get_pc != NULL);
317 }
318
319 /* Returns true if this target can support fast tracepoints. This
320 does not mean that the in-process agent has been loaded in the
321 inferior. */
322
323 static int
324 supports_fast_tracepoints (void)
325 {
326 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
327 }
328
329 /* True if LWP is stopped in its stepping range. */
330
331 static int
332 lwp_in_step_range (struct lwp_info *lwp)
333 {
334 CORE_ADDR pc = lwp->stop_pc;
335
336 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
337 }
338
339 struct pending_signals
340 {
341 int signal;
342 siginfo_t info;
343 struct pending_signals *prev;
344 };
345
346 /* The read/write ends of the pipe registered as waitable file in the
347 event loop. */
348 static int linux_event_pipe[2] = { -1, -1 };
349
350 /* True if we're currently in async mode. */
351 #define target_is_async_p() (linux_event_pipe[0] != -1)
352
353 static void send_sigstop (struct lwp_info *lwp);
354 static void wait_for_sigstop (void);
355
356 /* Return non-zero if HEADER is a 64-bit ELF file. */
357
358 static int
359 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
360 {
361 if (header->e_ident[EI_MAG0] == ELFMAG0
362 && header->e_ident[EI_MAG1] == ELFMAG1
363 && header->e_ident[EI_MAG2] == ELFMAG2
364 && header->e_ident[EI_MAG3] == ELFMAG3)
365 {
366 *machine = header->e_machine;
367 return header->e_ident[EI_CLASS] == ELFCLASS64;
368
369 }
370 *machine = EM_NONE;
371 return -1;
372 }
373
374 /* Return non-zero if FILE is a 64-bit ELF file,
375 zero if the file is not a 64-bit ELF file,
376 and -1 if the file is not accessible or doesn't exist. */
377
378 static int
379 elf_64_file_p (const char *file, unsigned int *machine)
380 {
381 Elf64_Ehdr header;
382 int fd;
383
384 fd = open (file, O_RDONLY);
385 if (fd < 0)
386 return -1;
387
388 if (read (fd, &header, sizeof (header)) != sizeof (header))
389 {
390 close (fd);
391 return 0;
392 }
393 close (fd);
394
395 return elf_64_header_p (&header, machine);
396 }
397
398 /* Accepts an integer PID; Returns true if the executable PID is
399 running is a 64-bit ELF file.. */
400
401 int
402 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
403 {
404 char file[PATH_MAX];
405
406 sprintf (file, "/proc/%d/exe", pid);
407 return elf_64_file_p (file, machine);
408 }
409
410 static void
411 delete_lwp (struct lwp_info *lwp)
412 {
413 struct thread_info *thr = get_lwp_thread (lwp);
414
415 if (debug_threads)
416 debug_printf ("deleting %ld\n", lwpid_of (thr));
417
418 remove_thread (thr);
419
420 if (the_low_target.delete_thread != NULL)
421 the_low_target.delete_thread (lwp->arch_private);
422 else
423 gdb_assert (lwp->arch_private == NULL);
424
425 free (lwp);
426 }
427
428 /* Add a process to the common process list, and set its private
429 data. */
430
431 static struct process_info *
432 linux_add_process (int pid, int attached)
433 {
434 struct process_info *proc;
435
436 proc = add_process (pid, attached);
437 proc->priv = XCNEW (struct process_info_private);
438
439 if (the_low_target.new_process != NULL)
440 proc->priv->arch_private = the_low_target.new_process ();
441
442 return proc;
443 }
444
445 static CORE_ADDR get_pc (struct lwp_info *lwp);
446
447 /* Call the target arch_setup function on the current thread. */
448
449 static void
450 linux_arch_setup (void)
451 {
452 the_low_target.arch_setup ();
453 }
454
455 /* Call the target arch_setup function on THREAD. */
456
457 static void
458 linux_arch_setup_thread (struct thread_info *thread)
459 {
460 struct thread_info *saved_thread;
461
462 saved_thread = current_thread;
463 current_thread = thread;
464
465 linux_arch_setup ();
466
467 current_thread = saved_thread;
468 }
469
470 /* Handle a GNU/Linux extended wait response. If we see a clone,
471 fork, or vfork event, we need to add the new LWP to our list
472 (and return 0 so as not to report the trap to higher layers).
473 If we see an exec event, we will modify ORIG_EVENT_LWP to point
474 to a new LWP representing the new program. */
475
476 static int
477 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
478 {
479 client_state &cs = get_client_state ();
480 struct lwp_info *event_lwp = *orig_event_lwp;
481 int event = linux_ptrace_get_extended_event (wstat);
482 struct thread_info *event_thr = get_lwp_thread (event_lwp);
483 struct lwp_info *new_lwp;
484
485 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
486
487 /* All extended events we currently use are mid-syscall. Only
488 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
489 you have to be using PTRACE_SEIZE to get that. */
490 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
491
492 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
493 || (event == PTRACE_EVENT_CLONE))
494 {
495 ptid_t ptid;
496 unsigned long new_pid;
497 int ret, status;
498
499 /* Get the pid of the new lwp. */
500 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
501 &new_pid);
502
503 /* If we haven't already seen the new PID stop, wait for it now. */
504 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
505 {
506 /* The new child has a pending SIGSTOP. We can't affect it until it
507 hits the SIGSTOP, but we're already attached. */
508
509 ret = my_waitpid (new_pid, &status, __WALL);
510
511 if (ret == -1)
512 perror_with_name ("waiting for new child");
513 else if (ret != new_pid)
514 warning ("wait returned unexpected PID %d", ret);
515 else if (!WIFSTOPPED (status))
516 warning ("wait returned unexpected status 0x%x", status);
517 }
518
519 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
520 {
521 struct process_info *parent_proc;
522 struct process_info *child_proc;
523 struct lwp_info *child_lwp;
524 struct thread_info *child_thr;
525 struct target_desc *tdesc;
526
527 ptid = ptid_t (new_pid, new_pid, 0);
528
529 if (debug_threads)
530 {
531 debug_printf ("HEW: Got fork event from LWP %ld, "
532 "new child is %d\n",
533 ptid_of (event_thr).lwp (),
534 ptid.pid ());
535 }
536
537 /* Add the new process to the tables and clone the breakpoint
538 lists of the parent. We need to do this even if the new process
539 will be detached, since we will need the process object and the
540 breakpoints to remove any breakpoints from memory when we
541 detach, and the client side will access registers. */
542 child_proc = linux_add_process (new_pid, 0);
543 gdb_assert (child_proc != NULL);
544 child_lwp = add_lwp (ptid);
545 gdb_assert (child_lwp != NULL);
546 child_lwp->stopped = 1;
547 child_lwp->must_set_ptrace_flags = 1;
548 child_lwp->status_pending_p = 0;
549 child_thr = get_lwp_thread (child_lwp);
550 child_thr->last_resume_kind = resume_stop;
551 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
552
553 /* If we're suspending all threads, leave this one suspended
554 too. If the fork/clone parent is stepping over a breakpoint,
555 all other threads have been suspended already. Leave the
556 child suspended too. */
557 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
558 || event_lwp->bp_reinsert != 0)
559 {
560 if (debug_threads)
561 debug_printf ("HEW: leaving child suspended\n");
562 child_lwp->suspended = 1;
563 }
564
565 parent_proc = get_thread_process (event_thr);
566 child_proc->attached = parent_proc->attached;
567
568 if (event_lwp->bp_reinsert != 0
569 && can_software_single_step ()
570 && event == PTRACE_EVENT_VFORK)
571 {
572 /* If we leave single-step breakpoints there, child will
573 hit it, so uninsert single-step breakpoints from parent
574 (and child). Once vfork child is done, reinsert
575 them back to parent. */
576 uninsert_single_step_breakpoints (event_thr);
577 }
578
579 clone_all_breakpoints (child_thr, event_thr);
580
581 tdesc = allocate_target_description ();
582 copy_target_description (tdesc, parent_proc->tdesc);
583 child_proc->tdesc = tdesc;
584
585 /* Clone arch-specific process data. */
586 if (the_low_target.new_fork != NULL)
587 the_low_target.new_fork (parent_proc, child_proc);
588
589 /* Save fork info in the parent thread. */
590 if (event == PTRACE_EVENT_FORK)
591 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
592 else if (event == PTRACE_EVENT_VFORK)
593 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
594
595 event_lwp->waitstatus.value.related_pid = ptid;
596
597 /* The status_pending field contains bits denoting the
598 extended event, so when the pending event is handled,
599 the handler will look at lwp->waitstatus. */
600 event_lwp->status_pending_p = 1;
601 event_lwp->status_pending = wstat;
602
603 /* Link the threads until the parent event is passed on to
604 higher layers. */
605 event_lwp->fork_relative = child_lwp;
606 child_lwp->fork_relative = event_lwp;
607
608 /* If the parent thread is doing step-over with single-step
609 breakpoints, the list of single-step breakpoints are cloned
610 from the parent's. Remove them from the child process.
611 In case of vfork, we'll reinsert them back once vforked
612 child is done. */
613 if (event_lwp->bp_reinsert != 0
614 && can_software_single_step ())
615 {
616 /* The child process is forked and stopped, so it is safe
617 to access its memory without stopping all other threads
618 from other processes. */
619 delete_single_step_breakpoints (child_thr);
620
621 gdb_assert (has_single_step_breakpoints (event_thr));
622 gdb_assert (!has_single_step_breakpoints (child_thr));
623 }
624
625 /* Report the event. */
626 return 0;
627 }
628
629 if (debug_threads)
630 debug_printf ("HEW: Got clone event "
631 "from LWP %ld, new child is LWP %ld\n",
632 lwpid_of (event_thr), new_pid);
633
634 ptid = ptid_t (pid_of (event_thr), new_pid, 0);
635 new_lwp = add_lwp (ptid);
636
637 /* Either we're going to immediately resume the new thread
638 or leave it stopped. linux_resume_one_lwp is a nop if it
639 thinks the thread is currently running, so set this first
640 before calling linux_resume_one_lwp. */
641 new_lwp->stopped = 1;
642
643 /* If we're suspending all threads, leave this one suspended
644 too. If the fork/clone parent is stepping over a breakpoint,
645 all other threads have been suspended already. Leave the
646 child suspended too. */
647 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
648 || event_lwp->bp_reinsert != 0)
649 new_lwp->suspended = 1;
650
651 /* Normally we will get the pending SIGSTOP. But in some cases
652 we might get another signal delivered to the group first.
653 If we do get another signal, be sure not to lose it. */
654 if (WSTOPSIG (status) != SIGSTOP)
655 {
656 new_lwp->stop_expected = 1;
657 new_lwp->status_pending_p = 1;
658 new_lwp->status_pending = status;
659 }
660 else if (cs.report_thread_events)
661 {
662 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
663 new_lwp->status_pending_p = 1;
664 new_lwp->status_pending = status;
665 }
666
667 #ifdef USE_THREAD_DB
668 thread_db_notice_clone (event_thr, ptid);
669 #endif
670
671 /* Don't report the event. */
672 return 1;
673 }
674 else if (event == PTRACE_EVENT_VFORK_DONE)
675 {
676 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
677
678 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
679 {
680 reinsert_single_step_breakpoints (event_thr);
681
682 gdb_assert (has_single_step_breakpoints (event_thr));
683 }
684
685 /* Report the event. */
686 return 0;
687 }
688 else if (event == PTRACE_EVENT_EXEC && cs.report_exec_events)
689 {
690 struct process_info *proc;
691 std::vector<int> syscalls_to_catch;
692 ptid_t event_ptid;
693 pid_t event_pid;
694
695 if (debug_threads)
696 {
697 debug_printf ("HEW: Got exec event from LWP %ld\n",
698 lwpid_of (event_thr));
699 }
700
701 /* Get the event ptid. */
702 event_ptid = ptid_of (event_thr);
703 event_pid = event_ptid.pid ();
704
705 /* Save the syscall list from the execing process. */
706 proc = get_thread_process (event_thr);
707 syscalls_to_catch = std::move (proc->syscalls_to_catch);
708
709 /* Delete the execing process and all its threads. */
710 linux_mourn (proc);
711 current_thread = NULL;
712
713 /* Create a new process/lwp/thread. */
714 proc = linux_add_process (event_pid, 0);
715 event_lwp = add_lwp (event_ptid);
716 event_thr = get_lwp_thread (event_lwp);
717 gdb_assert (current_thread == event_thr);
718 linux_arch_setup_thread (event_thr);
719
720 /* Set the event status. */
721 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
722 event_lwp->waitstatus.value.execd_pathname
723 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
724
725 /* Mark the exec status as pending. */
726 event_lwp->stopped = 1;
727 event_lwp->status_pending_p = 1;
728 event_lwp->status_pending = wstat;
729 event_thr->last_resume_kind = resume_continue;
730 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
731
732 /* Update syscall state in the new lwp, effectively mid-syscall too. */
733 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
734
735 /* Restore the list to catch. Don't rely on the client, which is free
736 to avoid sending a new list when the architecture doesn't change.
737 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
738 proc->syscalls_to_catch = std::move (syscalls_to_catch);
739
740 /* Report the event. */
741 *orig_event_lwp = event_lwp;
742 return 0;
743 }
744
745 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
746 }
747
748 /* Return the PC as read from the regcache of LWP, without any
749 adjustment. */
750
751 static CORE_ADDR
752 get_pc (struct lwp_info *lwp)
753 {
754 struct thread_info *saved_thread;
755 struct regcache *regcache;
756 CORE_ADDR pc;
757
758 if (the_low_target.get_pc == NULL)
759 return 0;
760
761 saved_thread = current_thread;
762 current_thread = get_lwp_thread (lwp);
763
764 regcache = get_thread_regcache (current_thread, 1);
765 pc = (*the_low_target.get_pc) (regcache);
766
767 if (debug_threads)
768 debug_printf ("pc is 0x%lx\n", (long) pc);
769
770 current_thread = saved_thread;
771 return pc;
772 }
773
774 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
775 Fill *SYSNO with the syscall nr trapped. */
776
777 static void
778 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
779 {
780 struct thread_info *saved_thread;
781 struct regcache *regcache;
782
783 if (the_low_target.get_syscall_trapinfo == NULL)
784 {
785 /* If we cannot get the syscall trapinfo, report an unknown
786 system call number. */
787 *sysno = UNKNOWN_SYSCALL;
788 return;
789 }
790
791 saved_thread = current_thread;
792 current_thread = get_lwp_thread (lwp);
793
794 regcache = get_thread_regcache (current_thread, 1);
795 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
796
797 if (debug_threads)
798 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
799
800 current_thread = saved_thread;
801 }
802
803 static int check_stopped_by_watchpoint (struct lwp_info *child);
804
805 /* Called when the LWP stopped for a signal/trap. If it stopped for a
806 trap check what caused it (breakpoint, watchpoint, trace, etc.),
807 and save the result in the LWP's stop_reason field. If it stopped
808 for a breakpoint, decrement the PC if necessary on the lwp's
809 architecture. Returns true if we now have the LWP's stop PC. */
810
811 static int
812 save_stop_reason (struct lwp_info *lwp)
813 {
814 CORE_ADDR pc;
815 CORE_ADDR sw_breakpoint_pc;
816 struct thread_info *saved_thread;
817 #if USE_SIGTRAP_SIGINFO
818 siginfo_t siginfo;
819 #endif
820
821 if (the_low_target.get_pc == NULL)
822 return 0;
823
824 pc = get_pc (lwp);
825 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
826
827 /* breakpoint_at reads from the current thread. */
828 saved_thread = current_thread;
829 current_thread = get_lwp_thread (lwp);
830
831 #if USE_SIGTRAP_SIGINFO
832 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
833 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
834 {
835 if (siginfo.si_signo == SIGTRAP)
836 {
837 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
838 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
839 {
840 /* The si_code is ambiguous on this arch -- check debug
841 registers. */
842 if (!check_stopped_by_watchpoint (lwp))
843 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
844 }
845 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
846 {
847 /* If we determine the LWP stopped for a SW breakpoint,
848 trust it. Particularly don't check watchpoint
849 registers, because at least on s390, we'd find
850 stopped-by-watchpoint as long as there's a watchpoint
851 set. */
852 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
853 }
854 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
855 {
856 /* This can indicate either a hardware breakpoint or
857 hardware watchpoint. Check debug registers. */
858 if (!check_stopped_by_watchpoint (lwp))
859 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
860 }
861 else if (siginfo.si_code == TRAP_TRACE)
862 {
863 /* We may have single stepped an instruction that
864 triggered a watchpoint. In that case, on some
865 architectures (such as x86), instead of TRAP_HWBKPT,
866 si_code indicates TRAP_TRACE, and we need to check
867 the debug registers separately. */
868 if (!check_stopped_by_watchpoint (lwp))
869 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
870 }
871 }
872 }
873 #else
874 /* We may have just stepped a breakpoint instruction. E.g., in
875 non-stop mode, GDB first tells the thread A to step a range, and
876 then the user inserts a breakpoint inside the range. In that
877 case we need to report the breakpoint PC. */
878 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
879 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
880 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
881
882 if (hardware_breakpoint_inserted_here (pc))
883 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
884
885 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
886 check_stopped_by_watchpoint (lwp);
887 #endif
888
889 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
890 {
891 if (debug_threads)
892 {
893 struct thread_info *thr = get_lwp_thread (lwp);
894
895 debug_printf ("CSBB: %s stopped by software breakpoint\n",
896 target_pid_to_str (ptid_of (thr)));
897 }
898
899 /* Back up the PC if necessary. */
900 if (pc != sw_breakpoint_pc)
901 {
902 struct regcache *regcache
903 = get_thread_regcache (current_thread, 1);
904 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
905 }
906
907 /* Update this so we record the correct stop PC below. */
908 pc = sw_breakpoint_pc;
909 }
910 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
911 {
912 if (debug_threads)
913 {
914 struct thread_info *thr = get_lwp_thread (lwp);
915
916 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
917 target_pid_to_str (ptid_of (thr)));
918 }
919 }
920 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
921 {
922 if (debug_threads)
923 {
924 struct thread_info *thr = get_lwp_thread (lwp);
925
926 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
927 target_pid_to_str (ptid_of (thr)));
928 }
929 }
930 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
931 {
932 if (debug_threads)
933 {
934 struct thread_info *thr = get_lwp_thread (lwp);
935
936 debug_printf ("CSBB: %s stopped by trace\n",
937 target_pid_to_str (ptid_of (thr)));
938 }
939 }
940
941 lwp->stop_pc = pc;
942 current_thread = saved_thread;
943 return 1;
944 }
945
946 static struct lwp_info *
947 add_lwp (ptid_t ptid)
948 {
949 struct lwp_info *lwp;
950
951 lwp = XCNEW (struct lwp_info);
952
953 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
954
955 lwp->thread = add_thread (ptid, lwp);
956
957 if (the_low_target.new_thread != NULL)
958 the_low_target.new_thread (lwp);
959
960 return lwp;
961 }
962
963 /* Callback to be used when calling fork_inferior, responsible for
964 actually initiating the tracing of the inferior. */
965
966 static void
967 linux_ptrace_fun ()
968 {
969 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
970 (PTRACE_TYPE_ARG4) 0) < 0)
971 trace_start_error_with_name ("ptrace");
972
973 if (setpgid (0, 0) < 0)
974 trace_start_error_with_name ("setpgid");
975
976 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
977 stdout to stderr so that inferior i/o doesn't corrupt the connection.
978 Also, redirect stdin to /dev/null. */
979 if (remote_connection_is_stdio ())
980 {
981 if (close (0) < 0)
982 trace_start_error_with_name ("close");
983 if (open ("/dev/null", O_RDONLY) < 0)
984 trace_start_error_with_name ("open");
985 if (dup2 (2, 1) < 0)
986 trace_start_error_with_name ("dup2");
987 if (write (2, "stdin/stdout redirected\n",
988 sizeof ("stdin/stdout redirected\n") - 1) < 0)
989 {
990 /* Errors ignored. */;
991 }
992 }
993 }
994
995 /* Start an inferior process and returns its pid.
996 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
997 are its arguments. */
998
999 static int
1000 linux_create_inferior (const char *program,
1001 const std::vector<char *> &program_args)
1002 {
1003 client_state &cs = get_client_state ();
1004 struct lwp_info *new_lwp;
1005 int pid;
1006 ptid_t ptid;
1007
1008 {
1009 maybe_disable_address_space_randomization restore_personality
1010 (cs.disable_randomization);
1011 std::string str_program_args = stringify_argv (program_args);
1012
1013 pid = fork_inferior (program,
1014 str_program_args.c_str (),
1015 get_environ ()->envp (), linux_ptrace_fun,
1016 NULL, NULL, NULL, NULL);
1017 }
1018
1019 linux_add_process (pid, 0);
1020
1021 ptid = ptid_t (pid, pid, 0);
1022 new_lwp = add_lwp (ptid);
1023 new_lwp->must_set_ptrace_flags = 1;
1024
1025 post_fork_inferior (pid, program);
1026
1027 return pid;
1028 }
1029
1030 /* Implement the post_create_inferior target_ops method. */
1031
1032 static void
1033 linux_post_create_inferior (void)
1034 {
1035 struct lwp_info *lwp = get_thread_lwp (current_thread);
1036
1037 linux_arch_setup ();
1038
1039 if (lwp->must_set_ptrace_flags)
1040 {
1041 struct process_info *proc = current_process ();
1042 int options = linux_low_ptrace_options (proc->attached);
1043
1044 linux_enable_event_reporting (lwpid_of (current_thread), options);
1045 lwp->must_set_ptrace_flags = 0;
1046 }
1047 }
1048
1049 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1050 error. */
1051
1052 int
1053 linux_attach_lwp (ptid_t ptid)
1054 {
1055 struct lwp_info *new_lwp;
1056 int lwpid = ptid.lwp ();
1057
1058 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1059 != 0)
1060 return errno;
1061
1062 new_lwp = add_lwp (ptid);
1063
1064 /* We need to wait for SIGSTOP before being able to make the next
1065 ptrace call on this LWP. */
1066 new_lwp->must_set_ptrace_flags = 1;
1067
1068 if (linux_proc_pid_is_stopped (lwpid))
1069 {
1070 if (debug_threads)
1071 debug_printf ("Attached to a stopped process\n");
1072
1073 /* The process is definitely stopped. It is in a job control
1074 stop, unless the kernel predates the TASK_STOPPED /
1075 TASK_TRACED distinction, in which case it might be in a
1076 ptrace stop. Make sure it is in a ptrace stop; from there we
1077 can kill it, signal it, et cetera.
1078
1079 First make sure there is a pending SIGSTOP. Since we are
1080 already attached, the process can not transition from stopped
1081 to running without a PTRACE_CONT; so we know this signal will
1082 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1083 probably already in the queue (unless this kernel is old
1084 enough to use TASK_STOPPED for ptrace stops); but since
1085 SIGSTOP is not an RT signal, it can only be queued once. */
1086 kill_lwp (lwpid, SIGSTOP);
1087
1088 /* Finally, resume the stopped process. This will deliver the
1089 SIGSTOP (or a higher priority signal, just like normal
1090 PTRACE_ATTACH), which we'll catch later on. */
1091 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1092 }
1093
1094 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1095 brings it to a halt.
1096
1097 There are several cases to consider here:
1098
1099 1) gdbserver has already attached to the process and is being notified
1100 of a new thread that is being created.
1101 In this case we should ignore that SIGSTOP and resume the
1102 process. This is handled below by setting stop_expected = 1,
1103 and the fact that add_thread sets last_resume_kind ==
1104 resume_continue.
1105
1106 2) This is the first thread (the process thread), and we're attaching
1107 to it via attach_inferior.
1108 In this case we want the process thread to stop.
1109 This is handled by having linux_attach set last_resume_kind ==
1110 resume_stop after we return.
1111
1112 If the pid we are attaching to is also the tgid, we attach to and
1113 stop all the existing threads. Otherwise, we attach to pid and
1114 ignore any other threads in the same group as this pid.
1115
1116 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1117 existing threads.
1118 In this case we want the thread to stop.
1119 FIXME: This case is currently not properly handled.
1120 We should wait for the SIGSTOP but don't. Things work apparently
1121 because enough time passes between when we ptrace (ATTACH) and when
1122 gdb makes the next ptrace call on the thread.
1123
1124 On the other hand, if we are currently trying to stop all threads, we
1125 should treat the new thread as if we had sent it a SIGSTOP. This works
1126 because we are guaranteed that the add_lwp call above added us to the
1127 end of the list, and so the new thread has not yet reached
1128 wait_for_sigstop (but will). */
1129 new_lwp->stop_expected = 1;
1130
1131 return 0;
1132 }
1133
1134 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1135 already attached. Returns true if a new LWP is found, false
1136 otherwise. */
1137
1138 static int
1139 attach_proc_task_lwp_callback (ptid_t ptid)
1140 {
1141 /* Is this a new thread? */
1142 if (find_thread_ptid (ptid) == NULL)
1143 {
1144 int lwpid = ptid.lwp ();
1145 int err;
1146
1147 if (debug_threads)
1148 debug_printf ("Found new lwp %d\n", lwpid);
1149
1150 err = linux_attach_lwp (ptid);
1151
1152 /* Be quiet if we simply raced with the thread exiting. EPERM
1153 is returned if the thread's task still exists, and is marked
1154 as exited or zombie, as well as other conditions, so in that
1155 case, confirm the status in /proc/PID/status. */
1156 if (err == ESRCH
1157 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1158 {
1159 if (debug_threads)
1160 {
1161 debug_printf ("Cannot attach to lwp %d: "
1162 "thread is gone (%d: %s)\n",
1163 lwpid, err, safe_strerror (err));
1164 }
1165 }
1166 else if (err != 0)
1167 {
1168 std::string reason
1169 = linux_ptrace_attach_fail_reason_string (ptid, err);
1170
1171 warning (_("Cannot attach to lwp %d: %s"), lwpid, reason.c_str ());
1172 }
1173
1174 return 1;
1175 }
1176 return 0;
1177 }
1178
1179 static void async_file_mark (void);
1180
1181 /* Attach to PID. If PID is the tgid, attach to it and all
1182 of its threads. */
1183
1184 static int
1185 linux_attach (unsigned long pid)
1186 {
1187 struct process_info *proc;
1188 struct thread_info *initial_thread;
1189 ptid_t ptid = ptid_t (pid, pid, 0);
1190 int err;
1191
1192 proc = linux_add_process (pid, 1);
1193
1194 /* Attach to PID. We will check for other threads
1195 soon. */
1196 err = linux_attach_lwp (ptid);
1197 if (err != 0)
1198 {
1199 remove_process (proc);
1200
1201 std::string reason = linux_ptrace_attach_fail_reason_string (ptid, err);
1202 error ("Cannot attach to process %ld: %s", pid, reason.c_str ());
1203 }
1204
1205 /* Don't ignore the initial SIGSTOP if we just attached to this
1206 process. It will be collected by wait shortly. */
1207 initial_thread = find_thread_ptid (ptid_t (pid, pid, 0));
1208 initial_thread->last_resume_kind = resume_stop;
1209
1210 /* We must attach to every LWP. If /proc is mounted, use that to
1211 find them now. On the one hand, the inferior may be using raw
1212 clone instead of using pthreads. On the other hand, even if it
1213 is using pthreads, GDB may not be connected yet (thread_db needs
1214 to do symbol lookups, through qSymbol). Also, thread_db walks
1215 structures in the inferior's address space to find the list of
1216 threads/LWPs, and those structures may well be corrupted. Note
1217 that once thread_db is loaded, we'll still use it to list threads
1218 and associate pthread info with each LWP. */
1219 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1220
1221 /* GDB will shortly read the xml target description for this
1222 process, to figure out the process' architecture. But the target
1223 description is only filled in when the first process/thread in
1224 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1225 that now, otherwise, if GDB is fast enough, it could read the
1226 target description _before_ that initial stop. */
1227 if (non_stop)
1228 {
1229 struct lwp_info *lwp;
1230 int wstat, lwpid;
1231 ptid_t pid_ptid = ptid_t (pid);
1232
1233 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1234 &wstat, __WALL);
1235 gdb_assert (lwpid > 0);
1236
1237 lwp = find_lwp_pid (ptid_t (lwpid));
1238
1239 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1240 {
1241 lwp->status_pending_p = 1;
1242 lwp->status_pending = wstat;
1243 }
1244
1245 initial_thread->last_resume_kind = resume_continue;
1246
1247 async_file_mark ();
1248
1249 gdb_assert (proc->tdesc != NULL);
1250 }
1251
1252 return 0;
1253 }
1254
1255 static int
1256 last_thread_of_process_p (int pid)
1257 {
1258 bool seen_one = false;
1259
1260 thread_info *thread = find_thread (pid, [&] (thread_info *thr_arg)
1261 {
1262 if (!seen_one)
1263 {
1264 /* This is the first thread of this process we see. */
1265 seen_one = true;
1266 return false;
1267 }
1268 else
1269 {
1270 /* This is the second thread of this process we see. */
1271 return true;
1272 }
1273 });
1274
1275 return thread == NULL;
1276 }
1277
1278 /* Kill LWP. */
1279
1280 static void
1281 linux_kill_one_lwp (struct lwp_info *lwp)
1282 {
1283 struct thread_info *thr = get_lwp_thread (lwp);
1284 int pid = lwpid_of (thr);
1285
1286 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1287 there is no signal context, and ptrace(PTRACE_KILL) (or
1288 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1289 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1290 alternative is to kill with SIGKILL. We only need one SIGKILL
1291 per process, not one for each thread. But since we still support
1292 support debugging programs using raw clone without CLONE_THREAD,
1293 we send one for each thread. For years, we used PTRACE_KILL
1294 only, so we're being a bit paranoid about some old kernels where
1295 PTRACE_KILL might work better (dubious if there are any such, but
1296 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1297 second, and so we're fine everywhere. */
1298
1299 errno = 0;
1300 kill_lwp (pid, SIGKILL);
1301 if (debug_threads)
1302 {
1303 int save_errno = errno;
1304
1305 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1306 target_pid_to_str (ptid_of (thr)),
1307 save_errno ? safe_strerror (save_errno) : "OK");
1308 }
1309
1310 errno = 0;
1311 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1312 if (debug_threads)
1313 {
1314 int save_errno = errno;
1315
1316 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1317 target_pid_to_str (ptid_of (thr)),
1318 save_errno ? safe_strerror (save_errno) : "OK");
1319 }
1320 }
1321
1322 /* Kill LWP and wait for it to die. */
1323
1324 static void
1325 kill_wait_lwp (struct lwp_info *lwp)
1326 {
1327 struct thread_info *thr = get_lwp_thread (lwp);
1328 int pid = ptid_of (thr).pid ();
1329 int lwpid = ptid_of (thr).lwp ();
1330 int wstat;
1331 int res;
1332
1333 if (debug_threads)
1334 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1335
1336 do
1337 {
1338 linux_kill_one_lwp (lwp);
1339
1340 /* Make sure it died. Notes:
1341
1342 - The loop is most likely unnecessary.
1343
1344 - We don't use linux_wait_for_event as that could delete lwps
1345 while we're iterating over them. We're not interested in
1346 any pending status at this point, only in making sure all
1347 wait status on the kernel side are collected until the
1348 process is reaped.
1349
1350 - We don't use __WALL here as the __WALL emulation relies on
1351 SIGCHLD, and killing a stopped process doesn't generate
1352 one, nor an exit status.
1353 */
1354 res = my_waitpid (lwpid, &wstat, 0);
1355 if (res == -1 && errno == ECHILD)
1356 res = my_waitpid (lwpid, &wstat, __WCLONE);
1357 } while (res > 0 && WIFSTOPPED (wstat));
1358
1359 /* Even if it was stopped, the child may have already disappeared.
1360 E.g., if it was killed by SIGKILL. */
1361 if (res < 0 && errno != ECHILD)
1362 perror_with_name ("kill_wait_lwp");
1363 }
1364
1365 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1366 except the leader. */
1367
1368 static void
1369 kill_one_lwp_callback (thread_info *thread, int pid)
1370 {
1371 struct lwp_info *lwp = get_thread_lwp (thread);
1372
1373 /* We avoid killing the first thread here, because of a Linux kernel (at
1374 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1375 the children get a chance to be reaped, it will remain a zombie
1376 forever. */
1377
1378 if (lwpid_of (thread) == pid)
1379 {
1380 if (debug_threads)
1381 debug_printf ("lkop: is last of process %s\n",
1382 target_pid_to_str (thread->id));
1383 return;
1384 }
1385
1386 kill_wait_lwp (lwp);
1387 }
1388
1389 static int
1390 linux_kill (process_info *process)
1391 {
1392 int pid = process->pid;
1393
1394 /* If we're killing a running inferior, make sure it is stopped
1395 first, as PTRACE_KILL will not work otherwise. */
1396 stop_all_lwps (0, NULL);
1397
1398 for_each_thread (pid, [&] (thread_info *thread)
1399 {
1400 kill_one_lwp_callback (thread, pid);
1401 });
1402
1403 /* See the comment in linux_kill_one_lwp. We did not kill the first
1404 thread in the list, so do so now. */
1405 lwp_info *lwp = find_lwp_pid (ptid_t (pid));
1406
1407 if (lwp == NULL)
1408 {
1409 if (debug_threads)
1410 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1411 pid);
1412 }
1413 else
1414 kill_wait_lwp (lwp);
1415
1416 the_target->mourn (process);
1417
1418 /* Since we presently can only stop all lwps of all processes, we
1419 need to unstop lwps of other processes. */
1420 unstop_all_lwps (0, NULL);
1421 return 0;
1422 }
1423
1424 /* Get pending signal of THREAD, for detaching purposes. This is the
1425 signal the thread last stopped for, which we need to deliver to the
1426 thread when detaching, otherwise, it'd be suppressed/lost. */
1427
1428 static int
1429 get_detach_signal (struct thread_info *thread)
1430 {
1431 client_state &cs = get_client_state ();
1432 enum gdb_signal signo = GDB_SIGNAL_0;
1433 int status;
1434 struct lwp_info *lp = get_thread_lwp (thread);
1435
1436 if (lp->status_pending_p)
1437 status = lp->status_pending;
1438 else
1439 {
1440 /* If the thread had been suspended by gdbserver, and it stopped
1441 cleanly, then it'll have stopped with SIGSTOP. But we don't
1442 want to deliver that SIGSTOP. */
1443 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1444 || thread->last_status.value.sig == GDB_SIGNAL_0)
1445 return 0;
1446
1447 /* Otherwise, we may need to deliver the signal we
1448 intercepted. */
1449 status = lp->last_status;
1450 }
1451
1452 if (!WIFSTOPPED (status))
1453 {
1454 if (debug_threads)
1455 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1456 target_pid_to_str (ptid_of (thread)));
1457 return 0;
1458 }
1459
1460 /* Extended wait statuses aren't real SIGTRAPs. */
1461 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1462 {
1463 if (debug_threads)
1464 debug_printf ("GPS: lwp %s had stopped with extended "
1465 "status: no pending signal\n",
1466 target_pid_to_str (ptid_of (thread)));
1467 return 0;
1468 }
1469
1470 signo = gdb_signal_from_host (WSTOPSIG (status));
1471
1472 if (cs.program_signals_p && !cs.program_signals[signo])
1473 {
1474 if (debug_threads)
1475 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1476 target_pid_to_str (ptid_of (thread)),
1477 gdb_signal_to_string (signo));
1478 return 0;
1479 }
1480 else if (!cs.program_signals_p
1481 /* If we have no way to know which signals GDB does not
1482 want to have passed to the program, assume
1483 SIGTRAP/SIGINT, which is GDB's default. */
1484 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1485 {
1486 if (debug_threads)
1487 debug_printf ("GPS: lwp %s had signal %s, "
1488 "but we don't know if we should pass it. "
1489 "Default to not.\n",
1490 target_pid_to_str (ptid_of (thread)),
1491 gdb_signal_to_string (signo));
1492 return 0;
1493 }
1494 else
1495 {
1496 if (debug_threads)
1497 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1498 target_pid_to_str (ptid_of (thread)),
1499 gdb_signal_to_string (signo));
1500
1501 return WSTOPSIG (status);
1502 }
1503 }
1504
1505 /* Detach from LWP. */
1506
1507 static void
1508 linux_detach_one_lwp (struct lwp_info *lwp)
1509 {
1510 struct thread_info *thread = get_lwp_thread (lwp);
1511 int sig;
1512 int lwpid;
1513
1514 /* If there is a pending SIGSTOP, get rid of it. */
1515 if (lwp->stop_expected)
1516 {
1517 if (debug_threads)
1518 debug_printf ("Sending SIGCONT to %s\n",
1519 target_pid_to_str (ptid_of (thread)));
1520
1521 kill_lwp (lwpid_of (thread), SIGCONT);
1522 lwp->stop_expected = 0;
1523 }
1524
1525 /* Pass on any pending signal for this thread. */
1526 sig = get_detach_signal (thread);
1527
1528 /* Preparing to resume may try to write registers, and fail if the
1529 lwp is zombie. If that happens, ignore the error. We'll handle
1530 it below, when detach fails with ESRCH. */
1531 try
1532 {
1533 /* Flush any pending changes to the process's registers. */
1534 regcache_invalidate_thread (thread);
1535
1536 /* Finally, let it resume. */
1537 if (the_low_target.prepare_to_resume != NULL)
1538 the_low_target.prepare_to_resume (lwp);
1539 }
1540 catch (const gdb_exception_error &ex)
1541 {
1542 if (!check_ptrace_stopped_lwp_gone (lwp))
1543 throw;
1544 }
1545
1546 lwpid = lwpid_of (thread);
1547 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1548 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1549 {
1550 int save_errno = errno;
1551
1552 /* We know the thread exists, so ESRCH must mean the lwp is
1553 zombie. This can happen if one of the already-detached
1554 threads exits the whole thread group. In that case we're
1555 still attached, and must reap the lwp. */
1556 if (save_errno == ESRCH)
1557 {
1558 int ret, status;
1559
1560 ret = my_waitpid (lwpid, &status, __WALL);
1561 if (ret == -1)
1562 {
1563 warning (_("Couldn't reap LWP %d while detaching: %s"),
1564 lwpid, safe_strerror (errno));
1565 }
1566 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1567 {
1568 warning (_("Reaping LWP %d while detaching "
1569 "returned unexpected status 0x%x"),
1570 lwpid, status);
1571 }
1572 }
1573 else
1574 {
1575 error (_("Can't detach %s: %s"),
1576 target_pid_to_str (ptid_of (thread)),
1577 safe_strerror (save_errno));
1578 }
1579 }
1580 else if (debug_threads)
1581 {
1582 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1583 target_pid_to_str (ptid_of (thread)),
1584 strsignal (sig));
1585 }
1586
1587 delete_lwp (lwp);
1588 }
1589
1590 /* Callback for for_each_thread. Detaches from non-leader threads of a
1591 given process. */
1592
1593 static void
1594 linux_detach_lwp_callback (thread_info *thread)
1595 {
1596 /* We don't actually detach from the thread group leader just yet.
1597 If the thread group exits, we must reap the zombie clone lwps
1598 before we're able to reap the leader. */
1599 if (thread->id.pid () == thread->id.lwp ())
1600 return;
1601
1602 lwp_info *lwp = get_thread_lwp (thread);
1603 linux_detach_one_lwp (lwp);
1604 }
1605
1606 static int
1607 linux_detach (process_info *process)
1608 {
1609 struct lwp_info *main_lwp;
1610
1611 /* As there's a step over already in progress, let it finish first,
1612 otherwise nesting a stabilize_threads operation on top gets real
1613 messy. */
1614 complete_ongoing_step_over ();
1615
1616 /* Stop all threads before detaching. First, ptrace requires that
1617 the thread is stopped to successfully detach. Second, thread_db
1618 may need to uninstall thread event breakpoints from memory, which
1619 only works with a stopped process anyway. */
1620 stop_all_lwps (0, NULL);
1621
1622 #ifdef USE_THREAD_DB
1623 thread_db_detach (process);
1624 #endif
1625
1626 /* Stabilize threads (move out of jump pads). */
1627 stabilize_threads ();
1628
1629 /* Detach from the clone lwps first. If the thread group exits just
1630 while we're detaching, we must reap the clone lwps before we're
1631 able to reap the leader. */
1632 for_each_thread (process->pid, linux_detach_lwp_callback);
1633
1634 main_lwp = find_lwp_pid (ptid_t (process->pid));
1635 linux_detach_one_lwp (main_lwp);
1636
1637 the_target->mourn (process);
1638
1639 /* Since we presently can only stop all lwps of all processes, we
1640 need to unstop lwps of other processes. */
1641 unstop_all_lwps (0, NULL);
1642 return 0;
1643 }
1644
1645 /* Remove all LWPs that belong to process PROC from the lwp list. */
1646
1647 static void
1648 linux_mourn (struct process_info *process)
1649 {
1650 struct process_info_private *priv;
1651
1652 #ifdef USE_THREAD_DB
1653 thread_db_mourn (process);
1654 #endif
1655
1656 for_each_thread (process->pid, [] (thread_info *thread)
1657 {
1658 delete_lwp (get_thread_lwp (thread));
1659 });
1660
1661 /* Freeing all private data. */
1662 priv = process->priv;
1663 if (the_low_target.delete_process != NULL)
1664 the_low_target.delete_process (priv->arch_private);
1665 else
1666 gdb_assert (priv->arch_private == NULL);
1667 free (priv);
1668 process->priv = NULL;
1669
1670 remove_process (process);
1671 }
1672
1673 static void
1674 linux_join (int pid)
1675 {
1676 int status, ret;
1677
1678 do {
1679 ret = my_waitpid (pid, &status, 0);
1680 if (WIFEXITED (status) || WIFSIGNALED (status))
1681 break;
1682 } while (ret != -1 || errno != ECHILD);
1683 }
1684
1685 /* Return nonzero if the given thread is still alive. */
1686 static int
1687 linux_thread_alive (ptid_t ptid)
1688 {
1689 struct lwp_info *lwp = find_lwp_pid (ptid);
1690
1691 /* We assume we always know if a thread exits. If a whole process
1692 exited but we still haven't been able to report it to GDB, we'll
1693 hold on to the last lwp of the dead process. */
1694 if (lwp != NULL)
1695 return !lwp_is_marked_dead (lwp);
1696 else
1697 return 0;
1698 }
1699
1700 /* Return 1 if this lwp still has an interesting status pending. If
1701 not (e.g., it had stopped for a breakpoint that is gone), return
1702 false. */
1703
1704 static int
1705 thread_still_has_status_pending_p (struct thread_info *thread)
1706 {
1707 struct lwp_info *lp = get_thread_lwp (thread);
1708
1709 if (!lp->status_pending_p)
1710 return 0;
1711
1712 if (thread->last_resume_kind != resume_stop
1713 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1714 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1715 {
1716 struct thread_info *saved_thread;
1717 CORE_ADDR pc;
1718 int discard = 0;
1719
1720 gdb_assert (lp->last_status != 0);
1721
1722 pc = get_pc (lp);
1723
1724 saved_thread = current_thread;
1725 current_thread = thread;
1726
1727 if (pc != lp->stop_pc)
1728 {
1729 if (debug_threads)
1730 debug_printf ("PC of %ld changed\n",
1731 lwpid_of (thread));
1732 discard = 1;
1733 }
1734
1735 #if !USE_SIGTRAP_SIGINFO
1736 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1737 && !(*the_low_target.breakpoint_at) (pc))
1738 {
1739 if (debug_threads)
1740 debug_printf ("previous SW breakpoint of %ld gone\n",
1741 lwpid_of (thread));
1742 discard = 1;
1743 }
1744 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1745 && !hardware_breakpoint_inserted_here (pc))
1746 {
1747 if (debug_threads)
1748 debug_printf ("previous HW breakpoint of %ld gone\n",
1749 lwpid_of (thread));
1750 discard = 1;
1751 }
1752 #endif
1753
1754 current_thread = saved_thread;
1755
1756 if (discard)
1757 {
1758 if (debug_threads)
1759 debug_printf ("discarding pending breakpoint status\n");
1760 lp->status_pending_p = 0;
1761 return 0;
1762 }
1763 }
1764
1765 return 1;
1766 }
1767
1768 /* Returns true if LWP is resumed from the client's perspective. */
1769
1770 static int
1771 lwp_resumed (struct lwp_info *lwp)
1772 {
1773 struct thread_info *thread = get_lwp_thread (lwp);
1774
1775 if (thread->last_resume_kind != resume_stop)
1776 return 1;
1777
1778 /* Did gdb send us a `vCont;t', but we haven't reported the
1779 corresponding stop to gdb yet? If so, the thread is still
1780 resumed/running from gdb's perspective. */
1781 if (thread->last_resume_kind == resume_stop
1782 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1783 return 1;
1784
1785 return 0;
1786 }
1787
1788 /* Return true if this lwp has an interesting status pending. */
1789 static bool
1790 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1791 {
1792 struct lwp_info *lp = get_thread_lwp (thread);
1793
1794 /* Check if we're only interested in events from a specific process
1795 or a specific LWP. */
1796 if (!thread->id.matches (ptid))
1797 return 0;
1798
1799 if (!lwp_resumed (lp))
1800 return 0;
1801
1802 if (lp->status_pending_p
1803 && !thread_still_has_status_pending_p (thread))
1804 {
1805 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1806 return 0;
1807 }
1808
1809 return lp->status_pending_p;
1810 }
1811
1812 struct lwp_info *
1813 find_lwp_pid (ptid_t ptid)
1814 {
1815 thread_info *thread = find_thread ([&] (thread_info *thr_arg)
1816 {
1817 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1818 return thr_arg->id.lwp () == lwp;
1819 });
1820
1821 if (thread == NULL)
1822 return NULL;
1823
1824 return get_thread_lwp (thread);
1825 }
1826
1827 /* Return the number of known LWPs in the tgid given by PID. */
1828
1829 static int
1830 num_lwps (int pid)
1831 {
1832 int count = 0;
1833
1834 for_each_thread (pid, [&] (thread_info *thread)
1835 {
1836 count++;
1837 });
1838
1839 return count;
1840 }
1841
1842 /* See nat/linux-nat.h. */
1843
1844 struct lwp_info *
1845 iterate_over_lwps (ptid_t filter,
1846 gdb::function_view<iterate_over_lwps_ftype> callback)
1847 {
1848 thread_info *thread = find_thread (filter, [&] (thread_info *thr_arg)
1849 {
1850 lwp_info *lwp = get_thread_lwp (thr_arg);
1851
1852 return callback (lwp);
1853 });
1854
1855 if (thread == NULL)
1856 return NULL;
1857
1858 return get_thread_lwp (thread);
1859 }
1860
1861 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1862 their exits until all other threads in the group have exited. */
1863
1864 static void
1865 check_zombie_leaders (void)
1866 {
1867 for_each_process ([] (process_info *proc) {
1868 pid_t leader_pid = pid_of (proc);
1869 struct lwp_info *leader_lp;
1870
1871 leader_lp = find_lwp_pid (ptid_t (leader_pid));
1872
1873 if (debug_threads)
1874 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1875 "num_lwps=%d, zombie=%d\n",
1876 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1877 linux_proc_pid_is_zombie (leader_pid));
1878
1879 if (leader_lp != NULL && !leader_lp->stopped
1880 /* Check if there are other threads in the group, as we may
1881 have raced with the inferior simply exiting. */
1882 && !last_thread_of_process_p (leader_pid)
1883 && linux_proc_pid_is_zombie (leader_pid))
1884 {
1885 /* A leader zombie can mean one of two things:
1886
1887 - It exited, and there's an exit status pending
1888 available, or only the leader exited (not the whole
1889 program). In the latter case, we can't waitpid the
1890 leader's exit status until all other threads are gone.
1891
1892 - There are 3 or more threads in the group, and a thread
1893 other than the leader exec'd. On an exec, the Linux
1894 kernel destroys all other threads (except the execing
1895 one) in the thread group, and resets the execing thread's
1896 tid to the tgid. No exit notification is sent for the
1897 execing thread -- from the ptracer's perspective, it
1898 appears as though the execing thread just vanishes.
1899 Until we reap all other threads except the leader and the
1900 execing thread, the leader will be zombie, and the
1901 execing thread will be in `D (disc sleep)'. As soon as
1902 all other threads are reaped, the execing thread changes
1903 it's tid to the tgid, and the previous (zombie) leader
1904 vanishes, giving place to the "new" leader. We could try
1905 distinguishing the exit and exec cases, by waiting once
1906 more, and seeing if something comes out, but it doesn't
1907 sound useful. The previous leader _does_ go away, and
1908 we'll re-add the new one once we see the exec event
1909 (which is just the same as what would happen if the
1910 previous leader did exit voluntarily before some other
1911 thread execs). */
1912
1913 if (debug_threads)
1914 debug_printf ("CZL: Thread group leader %d zombie "
1915 "(it exited, or another thread execd).\n",
1916 leader_pid);
1917
1918 delete_lwp (leader_lp);
1919 }
1920 });
1921 }
1922
1923 /* Callback for `find_thread'. Returns the first LWP that is not
1924 stopped. */
1925
1926 static bool
1927 not_stopped_callback (thread_info *thread, ptid_t filter)
1928 {
1929 if (!thread->id.matches (filter))
1930 return false;
1931
1932 lwp_info *lwp = get_thread_lwp (thread);
1933
1934 return !lwp->stopped;
1935 }
1936
1937 /* Increment LWP's suspend count. */
1938
1939 static void
1940 lwp_suspended_inc (struct lwp_info *lwp)
1941 {
1942 lwp->suspended++;
1943
1944 if (debug_threads && lwp->suspended > 4)
1945 {
1946 struct thread_info *thread = get_lwp_thread (lwp);
1947
1948 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1949 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1950 }
1951 }
1952
1953 /* Decrement LWP's suspend count. */
1954
1955 static void
1956 lwp_suspended_decr (struct lwp_info *lwp)
1957 {
1958 lwp->suspended--;
1959
1960 if (lwp->suspended < 0)
1961 {
1962 struct thread_info *thread = get_lwp_thread (lwp);
1963
1964 internal_error (__FILE__, __LINE__,
1965 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1966 lwp->suspended);
1967 }
1968 }
1969
1970 /* This function should only be called if the LWP got a SIGTRAP.
1971
1972 Handle any tracepoint steps or hits. Return true if a tracepoint
1973 event was handled, 0 otherwise. */
1974
1975 static int
1976 handle_tracepoints (struct lwp_info *lwp)
1977 {
1978 struct thread_info *tinfo = get_lwp_thread (lwp);
1979 int tpoint_related_event = 0;
1980
1981 gdb_assert (lwp->suspended == 0);
1982
1983 /* If this tracepoint hit causes a tracing stop, we'll immediately
1984 uninsert tracepoints. To do this, we temporarily pause all
1985 threads, unpatch away, and then unpause threads. We need to make
1986 sure the unpausing doesn't resume LWP too. */
1987 lwp_suspended_inc (lwp);
1988
1989 /* And we need to be sure that any all-threads-stopping doesn't try
1990 to move threads out of the jump pads, as it could deadlock the
1991 inferior (LWP could be in the jump pad, maybe even holding the
1992 lock.) */
1993
1994 /* Do any necessary step collect actions. */
1995 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1996
1997 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1998
1999 /* See if we just hit a tracepoint and do its main collect
2000 actions. */
2001 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2002
2003 lwp_suspended_decr (lwp);
2004
2005 gdb_assert (lwp->suspended == 0);
2006 gdb_assert (!stabilizing_threads
2007 || (lwp->collecting_fast_tracepoint
2008 != fast_tpoint_collect_result::not_collecting));
2009
2010 if (tpoint_related_event)
2011 {
2012 if (debug_threads)
2013 debug_printf ("got a tracepoint event\n");
2014 return 1;
2015 }
2016
2017 return 0;
2018 }
2019
2020 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2021 collection status. */
2022
2023 static fast_tpoint_collect_result
2024 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2025 struct fast_tpoint_collect_status *status)
2026 {
2027 CORE_ADDR thread_area;
2028 struct thread_info *thread = get_lwp_thread (lwp);
2029
2030 if (the_low_target.get_thread_area == NULL)
2031 return fast_tpoint_collect_result::not_collecting;
2032
2033 /* Get the thread area address. This is used to recognize which
2034 thread is which when tracing with the in-process agent library.
2035 We don't read anything from the address, and treat it as opaque;
2036 it's the address itself that we assume is unique per-thread. */
2037 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2038 return fast_tpoint_collect_result::not_collecting;
2039
2040 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2041 }
2042
2043 /* The reason we resume in the caller, is because we want to be able
2044 to pass lwp->status_pending as WSTAT, and we need to clear
2045 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2046 refuses to resume. */
2047
2048 static int
2049 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2050 {
2051 struct thread_info *saved_thread;
2052
2053 saved_thread = current_thread;
2054 current_thread = get_lwp_thread (lwp);
2055
2056 if ((wstat == NULL
2057 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2058 && supports_fast_tracepoints ()
2059 && agent_loaded_p ())
2060 {
2061 struct fast_tpoint_collect_status status;
2062
2063 if (debug_threads)
2064 debug_printf ("Checking whether LWP %ld needs to move out of the "
2065 "jump pad.\n",
2066 lwpid_of (current_thread));
2067
2068 fast_tpoint_collect_result r
2069 = linux_fast_tracepoint_collecting (lwp, &status);
2070
2071 if (wstat == NULL
2072 || (WSTOPSIG (*wstat) != SIGILL
2073 && WSTOPSIG (*wstat) != SIGFPE
2074 && WSTOPSIG (*wstat) != SIGSEGV
2075 && WSTOPSIG (*wstat) != SIGBUS))
2076 {
2077 lwp->collecting_fast_tracepoint = r;
2078
2079 if (r != fast_tpoint_collect_result::not_collecting)
2080 {
2081 if (r == fast_tpoint_collect_result::before_insn
2082 && lwp->exit_jump_pad_bkpt == NULL)
2083 {
2084 /* Haven't executed the original instruction yet.
2085 Set breakpoint there, and wait till it's hit,
2086 then single-step until exiting the jump pad. */
2087 lwp->exit_jump_pad_bkpt
2088 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2089 }
2090
2091 if (debug_threads)
2092 debug_printf ("Checking whether LWP %ld needs to move out of "
2093 "the jump pad...it does\n",
2094 lwpid_of (current_thread));
2095 current_thread = saved_thread;
2096
2097 return 1;
2098 }
2099 }
2100 else
2101 {
2102 /* If we get a synchronous signal while collecting, *and*
2103 while executing the (relocated) original instruction,
2104 reset the PC to point at the tpoint address, before
2105 reporting to GDB. Otherwise, it's an IPA lib bug: just
2106 report the signal to GDB, and pray for the best. */
2107
2108 lwp->collecting_fast_tracepoint
2109 = fast_tpoint_collect_result::not_collecting;
2110
2111 if (r != fast_tpoint_collect_result::not_collecting
2112 && (status.adjusted_insn_addr <= lwp->stop_pc
2113 && lwp->stop_pc < status.adjusted_insn_addr_end))
2114 {
2115 siginfo_t info;
2116 struct regcache *regcache;
2117
2118 /* The si_addr on a few signals references the address
2119 of the faulting instruction. Adjust that as
2120 well. */
2121 if ((WSTOPSIG (*wstat) == SIGILL
2122 || WSTOPSIG (*wstat) == SIGFPE
2123 || WSTOPSIG (*wstat) == SIGBUS
2124 || WSTOPSIG (*wstat) == SIGSEGV)
2125 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2126 (PTRACE_TYPE_ARG3) 0, &info) == 0
2127 /* Final check just to make sure we don't clobber
2128 the siginfo of non-kernel-sent signals. */
2129 && (uintptr_t) info.si_addr == lwp->stop_pc)
2130 {
2131 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2132 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2133 (PTRACE_TYPE_ARG3) 0, &info);
2134 }
2135
2136 regcache = get_thread_regcache (current_thread, 1);
2137 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2138 lwp->stop_pc = status.tpoint_addr;
2139
2140 /* Cancel any fast tracepoint lock this thread was
2141 holding. */
2142 force_unlock_trace_buffer ();
2143 }
2144
2145 if (lwp->exit_jump_pad_bkpt != NULL)
2146 {
2147 if (debug_threads)
2148 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2149 "stopping all threads momentarily.\n");
2150
2151 stop_all_lwps (1, lwp);
2152
2153 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2154 lwp->exit_jump_pad_bkpt = NULL;
2155
2156 unstop_all_lwps (1, lwp);
2157
2158 gdb_assert (lwp->suspended >= 0);
2159 }
2160 }
2161 }
2162
2163 if (debug_threads)
2164 debug_printf ("Checking whether LWP %ld needs to move out of the "
2165 "jump pad...no\n",
2166 lwpid_of (current_thread));
2167
2168 current_thread = saved_thread;
2169 return 0;
2170 }
2171
2172 /* Enqueue one signal in the "signals to report later when out of the
2173 jump pad" list. */
2174
2175 static void
2176 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2177 {
2178 struct pending_signals *p_sig;
2179 struct thread_info *thread = get_lwp_thread (lwp);
2180
2181 if (debug_threads)
2182 debug_printf ("Deferring signal %d for LWP %ld.\n",
2183 WSTOPSIG (*wstat), lwpid_of (thread));
2184
2185 if (debug_threads)
2186 {
2187 struct pending_signals *sig;
2188
2189 for (sig = lwp->pending_signals_to_report;
2190 sig != NULL;
2191 sig = sig->prev)
2192 debug_printf (" Already queued %d\n",
2193 sig->signal);
2194
2195 debug_printf (" (no more currently queued signals)\n");
2196 }
2197
2198 /* Don't enqueue non-RT signals if they are already in the deferred
2199 queue. (SIGSTOP being the easiest signal to see ending up here
2200 twice) */
2201 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2202 {
2203 struct pending_signals *sig;
2204
2205 for (sig = lwp->pending_signals_to_report;
2206 sig != NULL;
2207 sig = sig->prev)
2208 {
2209 if (sig->signal == WSTOPSIG (*wstat))
2210 {
2211 if (debug_threads)
2212 debug_printf ("Not requeuing already queued non-RT signal %d"
2213 " for LWP %ld\n",
2214 sig->signal,
2215 lwpid_of (thread));
2216 return;
2217 }
2218 }
2219 }
2220
2221 p_sig = XCNEW (struct pending_signals);
2222 p_sig->prev = lwp->pending_signals_to_report;
2223 p_sig->signal = WSTOPSIG (*wstat);
2224
2225 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2226 &p_sig->info);
2227
2228 lwp->pending_signals_to_report = p_sig;
2229 }
2230
2231 /* Dequeue one signal from the "signals to report later when out of
2232 the jump pad" list. */
2233
2234 static int
2235 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2236 {
2237 struct thread_info *thread = get_lwp_thread (lwp);
2238
2239 if (lwp->pending_signals_to_report != NULL)
2240 {
2241 struct pending_signals **p_sig;
2242
2243 p_sig = &lwp->pending_signals_to_report;
2244 while ((*p_sig)->prev != NULL)
2245 p_sig = &(*p_sig)->prev;
2246
2247 *wstat = W_STOPCODE ((*p_sig)->signal);
2248 if ((*p_sig)->info.si_signo != 0)
2249 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2250 &(*p_sig)->info);
2251 free (*p_sig);
2252 *p_sig = NULL;
2253
2254 if (debug_threads)
2255 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2256 WSTOPSIG (*wstat), lwpid_of (thread));
2257
2258 if (debug_threads)
2259 {
2260 struct pending_signals *sig;
2261
2262 for (sig = lwp->pending_signals_to_report;
2263 sig != NULL;
2264 sig = sig->prev)
2265 debug_printf (" Still queued %d\n",
2266 sig->signal);
2267
2268 debug_printf (" (no more queued signals)\n");
2269 }
2270
2271 return 1;
2272 }
2273
2274 return 0;
2275 }
2276
2277 /* Fetch the possibly triggered data watchpoint info and store it in
2278 CHILD.
2279
2280 On some archs, like x86, that use debug registers to set
2281 watchpoints, it's possible that the way to know which watched
2282 address trapped, is to check the register that is used to select
2283 which address to watch. Problem is, between setting the watchpoint
2284 and reading back which data address trapped, the user may change
2285 the set of watchpoints, and, as a consequence, GDB changes the
2286 debug registers in the inferior. To avoid reading back a stale
2287 stopped-data-address when that happens, we cache in LP the fact
2288 that a watchpoint trapped, and the corresponding data address, as
2289 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2290 registers meanwhile, we have the cached data we can rely on. */
2291
2292 static int
2293 check_stopped_by_watchpoint (struct lwp_info *child)
2294 {
2295 if (the_low_target.stopped_by_watchpoint != NULL)
2296 {
2297 struct thread_info *saved_thread;
2298
2299 saved_thread = current_thread;
2300 current_thread = get_lwp_thread (child);
2301
2302 if (the_low_target.stopped_by_watchpoint ())
2303 {
2304 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2305
2306 if (the_low_target.stopped_data_address != NULL)
2307 child->stopped_data_address
2308 = the_low_target.stopped_data_address ();
2309 else
2310 child->stopped_data_address = 0;
2311 }
2312
2313 current_thread = saved_thread;
2314 }
2315
2316 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2317 }
2318
2319 /* Return the ptrace options that we want to try to enable. */
2320
2321 static int
2322 linux_low_ptrace_options (int attached)
2323 {
2324 client_state &cs = get_client_state ();
2325 int options = 0;
2326
2327 if (!attached)
2328 options |= PTRACE_O_EXITKILL;
2329
2330 if (cs.report_fork_events)
2331 options |= PTRACE_O_TRACEFORK;
2332
2333 if (cs.report_vfork_events)
2334 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2335
2336 if (cs.report_exec_events)
2337 options |= PTRACE_O_TRACEEXEC;
2338
2339 options |= PTRACE_O_TRACESYSGOOD;
2340
2341 return options;
2342 }
2343
2344 /* Do low-level handling of the event, and check if we should go on
2345 and pass it to caller code. Return the affected lwp if we are, or
2346 NULL otherwise. */
2347
2348 static struct lwp_info *
2349 linux_low_filter_event (int lwpid, int wstat)
2350 {
2351 client_state &cs = get_client_state ();
2352 struct lwp_info *child;
2353 struct thread_info *thread;
2354 int have_stop_pc = 0;
2355
2356 child = find_lwp_pid (ptid_t (lwpid));
2357
2358 /* Check for stop events reported by a process we didn't already
2359 know about - anything not already in our LWP list.
2360
2361 If we're expecting to receive stopped processes after
2362 fork, vfork, and clone events, then we'll just add the
2363 new one to our list and go back to waiting for the event
2364 to be reported - the stopped process might be returned
2365 from waitpid before or after the event is.
2366
2367 But note the case of a non-leader thread exec'ing after the
2368 leader having exited, and gone from our lists (because
2369 check_zombie_leaders deleted it). The non-leader thread
2370 changes its tid to the tgid. */
2371
2372 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2373 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2374 {
2375 ptid_t child_ptid;
2376
2377 /* A multi-thread exec after we had seen the leader exiting. */
2378 if (debug_threads)
2379 {
2380 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2381 "after exec.\n", lwpid);
2382 }
2383
2384 child_ptid = ptid_t (lwpid, lwpid, 0);
2385 child = add_lwp (child_ptid);
2386 child->stopped = 1;
2387 current_thread = child->thread;
2388 }
2389
2390 /* If we didn't find a process, one of two things presumably happened:
2391 - A process we started and then detached from has exited. Ignore it.
2392 - A process we are controlling has forked and the new child's stop
2393 was reported to us by the kernel. Save its PID. */
2394 if (child == NULL && WIFSTOPPED (wstat))
2395 {
2396 add_to_pid_list (&stopped_pids, lwpid, wstat);
2397 return NULL;
2398 }
2399 else if (child == NULL)
2400 return NULL;
2401
2402 thread = get_lwp_thread (child);
2403
2404 child->stopped = 1;
2405
2406 child->last_status = wstat;
2407
2408 /* Check if the thread has exited. */
2409 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2410 {
2411 if (debug_threads)
2412 debug_printf ("LLFE: %d exited.\n", lwpid);
2413
2414 if (finish_step_over (child))
2415 {
2416 /* Unsuspend all other LWPs, and set them back running again. */
2417 unsuspend_all_lwps (child);
2418 }
2419
2420 /* If there is at least one more LWP, then the exit signal was
2421 not the end of the debugged application and should be
2422 ignored, unless GDB wants to hear about thread exits. */
2423 if (cs.report_thread_events
2424 || last_thread_of_process_p (pid_of (thread)))
2425 {
2426 /* Since events are serialized to GDB core, and we can't
2427 report this one right now. Leave the status pending for
2428 the next time we're able to report it. */
2429 mark_lwp_dead (child, wstat);
2430 return child;
2431 }
2432 else
2433 {
2434 delete_lwp (child);
2435 return NULL;
2436 }
2437 }
2438
2439 gdb_assert (WIFSTOPPED (wstat));
2440
2441 if (WIFSTOPPED (wstat))
2442 {
2443 struct process_info *proc;
2444
2445 /* Architecture-specific setup after inferior is running. */
2446 proc = find_process_pid (pid_of (thread));
2447 if (proc->tdesc == NULL)
2448 {
2449 if (proc->attached)
2450 {
2451 /* This needs to happen after we have attached to the
2452 inferior and it is stopped for the first time, but
2453 before we access any inferior registers. */
2454 linux_arch_setup_thread (thread);
2455 }
2456 else
2457 {
2458 /* The process is started, but GDBserver will do
2459 architecture-specific setup after the program stops at
2460 the first instruction. */
2461 child->status_pending_p = 1;
2462 child->status_pending = wstat;
2463 return child;
2464 }
2465 }
2466 }
2467
2468 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2469 {
2470 struct process_info *proc = find_process_pid (pid_of (thread));
2471 int options = linux_low_ptrace_options (proc->attached);
2472
2473 linux_enable_event_reporting (lwpid, options);
2474 child->must_set_ptrace_flags = 0;
2475 }
2476
2477 /* Always update syscall_state, even if it will be filtered later. */
2478 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2479 {
2480 child->syscall_state
2481 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2482 ? TARGET_WAITKIND_SYSCALL_RETURN
2483 : TARGET_WAITKIND_SYSCALL_ENTRY);
2484 }
2485 else
2486 {
2487 /* Almost all other ptrace-stops are known to be outside of system
2488 calls, with further exceptions in handle_extended_wait. */
2489 child->syscall_state = TARGET_WAITKIND_IGNORE;
2490 }
2491
2492 /* Be careful to not overwrite stop_pc until save_stop_reason is
2493 called. */
2494 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2495 && linux_is_extended_waitstatus (wstat))
2496 {
2497 child->stop_pc = get_pc (child);
2498 if (handle_extended_wait (&child, wstat))
2499 {
2500 /* The event has been handled, so just return without
2501 reporting it. */
2502 return NULL;
2503 }
2504 }
2505
2506 if (linux_wstatus_maybe_breakpoint (wstat))
2507 {
2508 if (save_stop_reason (child))
2509 have_stop_pc = 1;
2510 }
2511
2512 if (!have_stop_pc)
2513 child->stop_pc = get_pc (child);
2514
2515 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2516 && child->stop_expected)
2517 {
2518 if (debug_threads)
2519 debug_printf ("Expected stop.\n");
2520 child->stop_expected = 0;
2521
2522 if (thread->last_resume_kind == resume_stop)
2523 {
2524 /* We want to report the stop to the core. Treat the
2525 SIGSTOP as a normal event. */
2526 if (debug_threads)
2527 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2528 target_pid_to_str (ptid_of (thread)));
2529 }
2530 else if (stopping_threads != NOT_STOPPING_THREADS)
2531 {
2532 /* Stopping threads. We don't want this SIGSTOP to end up
2533 pending. */
2534 if (debug_threads)
2535 debug_printf ("LLW: SIGSTOP caught for %s "
2536 "while stopping threads.\n",
2537 target_pid_to_str (ptid_of (thread)));
2538 return NULL;
2539 }
2540 else
2541 {
2542 /* This is a delayed SIGSTOP. Filter out the event. */
2543 if (debug_threads)
2544 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2545 child->stepping ? "step" : "continue",
2546 target_pid_to_str (ptid_of (thread)));
2547
2548 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2549 return NULL;
2550 }
2551 }
2552
2553 child->status_pending_p = 1;
2554 child->status_pending = wstat;
2555 return child;
2556 }
2557
2558 /* Return true if THREAD is doing hardware single step. */
2559
2560 static int
2561 maybe_hw_step (struct thread_info *thread)
2562 {
2563 if (can_hardware_single_step ())
2564 return 1;
2565 else
2566 {
2567 /* GDBserver must insert single-step breakpoint for software
2568 single step. */
2569 gdb_assert (has_single_step_breakpoints (thread));
2570 return 0;
2571 }
2572 }
2573
2574 /* Resume LWPs that are currently stopped without any pending status
2575 to report, but are resumed from the core's perspective. */
2576
2577 static void
2578 resume_stopped_resumed_lwps (thread_info *thread)
2579 {
2580 struct lwp_info *lp = get_thread_lwp (thread);
2581
2582 if (lp->stopped
2583 && !lp->suspended
2584 && !lp->status_pending_p
2585 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2586 {
2587 int step = 0;
2588
2589 if (thread->last_resume_kind == resume_step)
2590 step = maybe_hw_step (thread);
2591
2592 if (debug_threads)
2593 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2594 target_pid_to_str (ptid_of (thread)),
2595 paddress (lp->stop_pc),
2596 step);
2597
2598 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2599 }
2600 }
2601
2602 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2603 match FILTER_PTID (leaving others pending). The PTIDs can be:
2604 minus_one_ptid, to specify any child; a pid PTID, specifying all
2605 lwps of a thread group; or a PTID representing a single lwp. Store
2606 the stop status through the status pointer WSTAT. OPTIONS is
2607 passed to the waitpid call. Return 0 if no event was found and
2608 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2609 was found. Return the PID of the stopped child otherwise. */
2610
2611 static int
2612 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2613 int *wstatp, int options)
2614 {
2615 struct thread_info *event_thread;
2616 struct lwp_info *event_child, *requested_child;
2617 sigset_t block_mask, prev_mask;
2618
2619 retry:
2620 /* N.B. event_thread points to the thread_info struct that contains
2621 event_child. Keep them in sync. */
2622 event_thread = NULL;
2623 event_child = NULL;
2624 requested_child = NULL;
2625
2626 /* Check for a lwp with a pending status. */
2627
2628 if (filter_ptid == minus_one_ptid || filter_ptid.is_pid ())
2629 {
2630 event_thread = find_thread_in_random ([&] (thread_info *thread)
2631 {
2632 return status_pending_p_callback (thread, filter_ptid);
2633 });
2634
2635 if (event_thread != NULL)
2636 event_child = get_thread_lwp (event_thread);
2637 if (debug_threads && event_thread)
2638 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2639 }
2640 else if (filter_ptid != null_ptid)
2641 {
2642 requested_child = find_lwp_pid (filter_ptid);
2643
2644 if (stopping_threads == NOT_STOPPING_THREADS
2645 && requested_child->status_pending_p
2646 && (requested_child->collecting_fast_tracepoint
2647 != fast_tpoint_collect_result::not_collecting))
2648 {
2649 enqueue_one_deferred_signal (requested_child,
2650 &requested_child->status_pending);
2651 requested_child->status_pending_p = 0;
2652 requested_child->status_pending = 0;
2653 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2654 }
2655
2656 if (requested_child->suspended
2657 && requested_child->status_pending_p)
2658 {
2659 internal_error (__FILE__, __LINE__,
2660 "requesting an event out of a"
2661 " suspended child?");
2662 }
2663
2664 if (requested_child->status_pending_p)
2665 {
2666 event_child = requested_child;
2667 event_thread = get_lwp_thread (event_child);
2668 }
2669 }
2670
2671 if (event_child != NULL)
2672 {
2673 if (debug_threads)
2674 debug_printf ("Got an event from pending child %ld (%04x)\n",
2675 lwpid_of (event_thread), event_child->status_pending);
2676 *wstatp = event_child->status_pending;
2677 event_child->status_pending_p = 0;
2678 event_child->status_pending = 0;
2679 current_thread = event_thread;
2680 return lwpid_of (event_thread);
2681 }
2682
2683 /* But if we don't find a pending event, we'll have to wait.
2684
2685 We only enter this loop if no process has a pending wait status.
2686 Thus any action taken in response to a wait status inside this
2687 loop is responding as soon as we detect the status, not after any
2688 pending events. */
2689
2690 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2691 all signals while here. */
2692 sigfillset (&block_mask);
2693 gdb_sigmask (SIG_BLOCK, &block_mask, &prev_mask);
2694
2695 /* Always pull all events out of the kernel. We'll randomly select
2696 an event LWP out of all that have events, to prevent
2697 starvation. */
2698 while (event_child == NULL)
2699 {
2700 pid_t ret = 0;
2701
2702 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2703 quirks:
2704
2705 - If the thread group leader exits while other threads in the
2706 thread group still exist, waitpid(TGID, ...) hangs. That
2707 waitpid won't return an exit status until the other threads
2708 in the group are reaped.
2709
2710 - When a non-leader thread execs, that thread just vanishes
2711 without reporting an exit (so we'd hang if we waited for it
2712 explicitly in that case). The exec event is reported to
2713 the TGID pid. */
2714 errno = 0;
2715 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2716
2717 if (debug_threads)
2718 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2719 ret, errno ? safe_strerror (errno) : "ERRNO-OK");
2720
2721 if (ret > 0)
2722 {
2723 if (debug_threads)
2724 {
2725 debug_printf ("LLW: waitpid %ld received %s\n",
2726 (long) ret, status_to_str (*wstatp));
2727 }
2728
2729 /* Filter all events. IOW, leave all events pending. We'll
2730 randomly select an event LWP out of all that have events
2731 below. */
2732 linux_low_filter_event (ret, *wstatp);
2733 /* Retry until nothing comes out of waitpid. A single
2734 SIGCHLD can indicate more than one child stopped. */
2735 continue;
2736 }
2737
2738 /* Now that we've pulled all events out of the kernel, resume
2739 LWPs that don't have an interesting event to report. */
2740 if (stopping_threads == NOT_STOPPING_THREADS)
2741 for_each_thread (resume_stopped_resumed_lwps);
2742
2743 /* ... and find an LWP with a status to report to the core, if
2744 any. */
2745 event_thread = find_thread_in_random ([&] (thread_info *thread)
2746 {
2747 return status_pending_p_callback (thread, filter_ptid);
2748 });
2749
2750 if (event_thread != NULL)
2751 {
2752 event_child = get_thread_lwp (event_thread);
2753 *wstatp = event_child->status_pending;
2754 event_child->status_pending_p = 0;
2755 event_child->status_pending = 0;
2756 break;
2757 }
2758
2759 /* Check for zombie thread group leaders. Those can't be reaped
2760 until all other threads in the thread group are. */
2761 check_zombie_leaders ();
2762
2763 auto not_stopped = [&] (thread_info *thread)
2764 {
2765 return not_stopped_callback (thread, wait_ptid);
2766 };
2767
2768 /* If there are no resumed children left in the set of LWPs we
2769 want to wait for, bail. We can't just block in
2770 waitpid/sigsuspend, because lwps might have been left stopped
2771 in trace-stop state, and we'd be stuck forever waiting for
2772 their status to change (which would only happen if we resumed
2773 them). Even if WNOHANG is set, this return code is preferred
2774 over 0 (below), as it is more detailed. */
2775 if (find_thread (not_stopped) == NULL)
2776 {
2777 if (debug_threads)
2778 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2779 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2780 return -1;
2781 }
2782
2783 /* No interesting event to report to the caller. */
2784 if ((options & WNOHANG))
2785 {
2786 if (debug_threads)
2787 debug_printf ("WNOHANG set, no event found\n");
2788
2789 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2790 return 0;
2791 }
2792
2793 /* Block until we get an event reported with SIGCHLD. */
2794 if (debug_threads)
2795 debug_printf ("sigsuspend'ing\n");
2796
2797 sigsuspend (&prev_mask);
2798 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2799 goto retry;
2800 }
2801
2802 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2803
2804 current_thread = event_thread;
2805
2806 return lwpid_of (event_thread);
2807 }
2808
2809 /* Wait for an event from child(ren) PTID. PTIDs can be:
2810 minus_one_ptid, to specify any child; a pid PTID, specifying all
2811 lwps of a thread group; or a PTID representing a single lwp. Store
2812 the stop status through the status pointer WSTAT. OPTIONS is
2813 passed to the waitpid call. Return 0 if no event was found and
2814 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2815 was found. Return the PID of the stopped child otherwise. */
2816
2817 static int
2818 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2819 {
2820 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2821 }
2822
2823 /* Select one LWP out of those that have events pending. */
2824
2825 static void
2826 select_event_lwp (struct lwp_info **orig_lp)
2827 {
2828 struct thread_info *event_thread = NULL;
2829
2830 /* In all-stop, give preference to the LWP that is being
2831 single-stepped. There will be at most one, and it's the LWP that
2832 the core is most interested in. If we didn't do this, then we'd
2833 have to handle pending step SIGTRAPs somehow in case the core
2834 later continues the previously-stepped thread, otherwise we'd
2835 report the pending SIGTRAP, and the core, not having stepped the
2836 thread, wouldn't understand what the trap was for, and therefore
2837 would report it to the user as a random signal. */
2838 if (!non_stop)
2839 {
2840 event_thread = find_thread ([] (thread_info *thread)
2841 {
2842 lwp_info *lp = get_thread_lwp (thread);
2843
2844 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2845 && thread->last_resume_kind == resume_step
2846 && lp->status_pending_p);
2847 });
2848
2849 if (event_thread != NULL)
2850 {
2851 if (debug_threads)
2852 debug_printf ("SEL: Select single-step %s\n",
2853 target_pid_to_str (ptid_of (event_thread)));
2854 }
2855 }
2856 if (event_thread == NULL)
2857 {
2858 /* No single-stepping LWP. Select one at random, out of those
2859 which have had events. */
2860
2861 event_thread = find_thread_in_random ([&] (thread_info *thread)
2862 {
2863 lwp_info *lp = get_thread_lwp (thread);
2864
2865 /* Only resumed LWPs that have an event pending. */
2866 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2867 && lp->status_pending_p);
2868 });
2869 }
2870
2871 if (event_thread != NULL)
2872 {
2873 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2874
2875 /* Switch the event LWP. */
2876 *orig_lp = event_lp;
2877 }
2878 }
2879
2880 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2881 NULL. */
2882
2883 static void
2884 unsuspend_all_lwps (struct lwp_info *except)
2885 {
2886 for_each_thread ([&] (thread_info *thread)
2887 {
2888 lwp_info *lwp = get_thread_lwp (thread);
2889
2890 if (lwp != except)
2891 lwp_suspended_decr (lwp);
2892 });
2893 }
2894
2895 static void move_out_of_jump_pad_callback (thread_info *thread);
2896 static bool stuck_in_jump_pad_callback (thread_info *thread);
2897 static bool lwp_running (thread_info *thread);
2898 static ptid_t linux_wait_1 (ptid_t ptid,
2899 struct target_waitstatus *ourstatus,
2900 int target_options);
2901
2902 /* Stabilize threads (move out of jump pads).
2903
2904 If a thread is midway collecting a fast tracepoint, we need to
2905 finish the collection and move it out of the jump pad before
2906 reporting the signal.
2907
2908 This avoids recursion while collecting (when a signal arrives
2909 midway, and the signal handler itself collects), which would trash
2910 the trace buffer. In case the user set a breakpoint in a signal
2911 handler, this avoids the backtrace showing the jump pad, etc..
2912 Most importantly, there are certain things we can't do safely if
2913 threads are stopped in a jump pad (or in its callee's). For
2914 example:
2915
2916 - starting a new trace run. A thread still collecting the
2917 previous run, could trash the trace buffer when resumed. The trace
2918 buffer control structures would have been reset but the thread had
2919 no way to tell. The thread could even midway memcpy'ing to the
2920 buffer, which would mean that when resumed, it would clobber the
2921 trace buffer that had been set for a new run.
2922
2923 - we can't rewrite/reuse the jump pads for new tracepoints
2924 safely. Say you do tstart while a thread is stopped midway while
2925 collecting. When the thread is later resumed, it finishes the
2926 collection, and returns to the jump pad, to execute the original
2927 instruction that was under the tracepoint jump at the time the
2928 older run had been started. If the jump pad had been rewritten
2929 since for something else in the new run, the thread would now
2930 execute the wrong / random instructions. */
2931
2932 static void
2933 linux_stabilize_threads (void)
2934 {
2935 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
2936
2937 if (thread_stuck != NULL)
2938 {
2939 if (debug_threads)
2940 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2941 lwpid_of (thread_stuck));
2942 return;
2943 }
2944
2945 thread_info *saved_thread = current_thread;
2946
2947 stabilizing_threads = 1;
2948
2949 /* Kick 'em all. */
2950 for_each_thread (move_out_of_jump_pad_callback);
2951
2952 /* Loop until all are stopped out of the jump pads. */
2953 while (find_thread (lwp_running) != NULL)
2954 {
2955 struct target_waitstatus ourstatus;
2956 struct lwp_info *lwp;
2957 int wstat;
2958
2959 /* Note that we go through the full wait even loop. While
2960 moving threads out of jump pad, we need to be able to step
2961 over internal breakpoints and such. */
2962 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2963
2964 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2965 {
2966 lwp = get_thread_lwp (current_thread);
2967
2968 /* Lock it. */
2969 lwp_suspended_inc (lwp);
2970
2971 if (ourstatus.value.sig != GDB_SIGNAL_0
2972 || current_thread->last_resume_kind == resume_stop)
2973 {
2974 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2975 enqueue_one_deferred_signal (lwp, &wstat);
2976 }
2977 }
2978 }
2979
2980 unsuspend_all_lwps (NULL);
2981
2982 stabilizing_threads = 0;
2983
2984 current_thread = saved_thread;
2985
2986 if (debug_threads)
2987 {
2988 thread_stuck = find_thread (stuck_in_jump_pad_callback);
2989
2990 if (thread_stuck != NULL)
2991 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2992 lwpid_of (thread_stuck));
2993 }
2994 }
2995
2996 /* Convenience function that is called when the kernel reports an
2997 event that is not passed out to GDB. */
2998
2999 static ptid_t
3000 ignore_event (struct target_waitstatus *ourstatus)
3001 {
3002 /* If we got an event, there may still be others, as a single
3003 SIGCHLD can indicate more than one child stopped. This forces
3004 another target_wait call. */
3005 async_file_mark ();
3006
3007 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3008 return null_ptid;
3009 }
3010
3011 /* Convenience function that is called when the kernel reports an exit
3012 event. This decides whether to report the event to GDB as a
3013 process exit event, a thread exit event, or to suppress the
3014 event. */
3015
3016 static ptid_t
3017 filter_exit_event (struct lwp_info *event_child,
3018 struct target_waitstatus *ourstatus)
3019 {
3020 client_state &cs = get_client_state ();
3021 struct thread_info *thread = get_lwp_thread (event_child);
3022 ptid_t ptid = ptid_of (thread);
3023
3024 if (!last_thread_of_process_p (pid_of (thread)))
3025 {
3026 if (cs.report_thread_events)
3027 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3028 else
3029 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3030
3031 delete_lwp (event_child);
3032 }
3033 return ptid;
3034 }
3035
3036 /* Returns 1 if GDB is interested in any event_child syscalls. */
3037
3038 static int
3039 gdb_catching_syscalls_p (struct lwp_info *event_child)
3040 {
3041 struct thread_info *thread = get_lwp_thread (event_child);
3042 struct process_info *proc = get_thread_process (thread);
3043
3044 return !proc->syscalls_to_catch.empty ();
3045 }
3046
3047 /* Returns 1 if GDB is interested in the event_child syscall.
3048 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3049
3050 static int
3051 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3052 {
3053 int sysno;
3054 struct thread_info *thread = get_lwp_thread (event_child);
3055 struct process_info *proc = get_thread_process (thread);
3056
3057 if (proc->syscalls_to_catch.empty ())
3058 return 0;
3059
3060 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3061 return 1;
3062
3063 get_syscall_trapinfo (event_child, &sysno);
3064
3065 for (int iter : proc->syscalls_to_catch)
3066 if (iter == sysno)
3067 return 1;
3068
3069 return 0;
3070 }
3071
3072 /* Wait for process, returns status. */
3073
3074 static ptid_t
3075 linux_wait_1 (ptid_t ptid,
3076 struct target_waitstatus *ourstatus, int target_options)
3077 {
3078 client_state &cs = get_client_state ();
3079 int w;
3080 struct lwp_info *event_child;
3081 int options;
3082 int pid;
3083 int step_over_finished;
3084 int bp_explains_trap;
3085 int maybe_internal_trap;
3086 int report_to_gdb;
3087 int trace_event;
3088 int in_step_range;
3089 int any_resumed;
3090
3091 if (debug_threads)
3092 {
3093 debug_enter ();
3094 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3095 }
3096
3097 /* Translate generic target options into linux options. */
3098 options = __WALL;
3099 if (target_options & TARGET_WNOHANG)
3100 options |= WNOHANG;
3101
3102 bp_explains_trap = 0;
3103 trace_event = 0;
3104 in_step_range = 0;
3105 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3106
3107 auto status_pending_p_any = [&] (thread_info *thread)
3108 {
3109 return status_pending_p_callback (thread, minus_one_ptid);
3110 };
3111
3112 auto not_stopped = [&] (thread_info *thread)
3113 {
3114 return not_stopped_callback (thread, minus_one_ptid);
3115 };
3116
3117 /* Find a resumed LWP, if any. */
3118 if (find_thread (status_pending_p_any) != NULL)
3119 any_resumed = 1;
3120 else if (find_thread (not_stopped) != NULL)
3121 any_resumed = 1;
3122 else
3123 any_resumed = 0;
3124
3125 if (step_over_bkpt == null_ptid)
3126 pid = linux_wait_for_event (ptid, &w, options);
3127 else
3128 {
3129 if (debug_threads)
3130 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3131 target_pid_to_str (step_over_bkpt));
3132 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3133 }
3134
3135 if (pid == 0 || (pid == -1 && !any_resumed))
3136 {
3137 gdb_assert (target_options & TARGET_WNOHANG);
3138
3139 if (debug_threads)
3140 {
3141 debug_printf ("linux_wait_1 ret = null_ptid, "
3142 "TARGET_WAITKIND_IGNORE\n");
3143 debug_exit ();
3144 }
3145
3146 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3147 return null_ptid;
3148 }
3149 else if (pid == -1)
3150 {
3151 if (debug_threads)
3152 {
3153 debug_printf ("linux_wait_1 ret = null_ptid, "
3154 "TARGET_WAITKIND_NO_RESUMED\n");
3155 debug_exit ();
3156 }
3157
3158 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3159 return null_ptid;
3160 }
3161
3162 event_child = get_thread_lwp (current_thread);
3163
3164 /* linux_wait_for_event only returns an exit status for the last
3165 child of a process. Report it. */
3166 if (WIFEXITED (w) || WIFSIGNALED (w))
3167 {
3168 if (WIFEXITED (w))
3169 {
3170 ourstatus->kind = TARGET_WAITKIND_EXITED;
3171 ourstatus->value.integer = WEXITSTATUS (w);
3172
3173 if (debug_threads)
3174 {
3175 debug_printf ("linux_wait_1 ret = %s, exited with "
3176 "retcode %d\n",
3177 target_pid_to_str (ptid_of (current_thread)),
3178 WEXITSTATUS (w));
3179 debug_exit ();
3180 }
3181 }
3182 else
3183 {
3184 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3185 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3186
3187 if (debug_threads)
3188 {
3189 debug_printf ("linux_wait_1 ret = %s, terminated with "
3190 "signal %d\n",
3191 target_pid_to_str (ptid_of (current_thread)),
3192 WTERMSIG (w));
3193 debug_exit ();
3194 }
3195 }
3196
3197 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3198 return filter_exit_event (event_child, ourstatus);
3199
3200 return ptid_of (current_thread);
3201 }
3202
3203 /* If step-over executes a breakpoint instruction, in the case of a
3204 hardware single step it means a gdb/gdbserver breakpoint had been
3205 planted on top of a permanent breakpoint, in the case of a software
3206 single step it may just mean that gdbserver hit the reinsert breakpoint.
3207 The PC has been adjusted by save_stop_reason to point at
3208 the breakpoint address.
3209 So in the case of the hardware single step advance the PC manually
3210 past the breakpoint and in the case of software single step advance only
3211 if it's not the single_step_breakpoint we are hitting.
3212 This avoids that a program would keep trapping a permanent breakpoint
3213 forever. */
3214 if (step_over_bkpt != null_ptid
3215 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3216 && (event_child->stepping
3217 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3218 {
3219 int increment_pc = 0;
3220 int breakpoint_kind = 0;
3221 CORE_ADDR stop_pc = event_child->stop_pc;
3222
3223 breakpoint_kind =
3224 the_target->breakpoint_kind_from_current_state (&stop_pc);
3225 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3226
3227 if (debug_threads)
3228 {
3229 debug_printf ("step-over for %s executed software breakpoint\n",
3230 target_pid_to_str (ptid_of (current_thread)));
3231 }
3232
3233 if (increment_pc != 0)
3234 {
3235 struct regcache *regcache
3236 = get_thread_regcache (current_thread, 1);
3237
3238 event_child->stop_pc += increment_pc;
3239 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3240
3241 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3242 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3243 }
3244 }
3245
3246 /* If this event was not handled before, and is not a SIGTRAP, we
3247 report it. SIGILL and SIGSEGV are also treated as traps in case
3248 a breakpoint is inserted at the current PC. If this target does
3249 not support internal breakpoints at all, we also report the
3250 SIGTRAP without further processing; it's of no concern to us. */
3251 maybe_internal_trap
3252 = (supports_breakpoints ()
3253 && (WSTOPSIG (w) == SIGTRAP
3254 || ((WSTOPSIG (w) == SIGILL
3255 || WSTOPSIG (w) == SIGSEGV)
3256 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3257
3258 if (maybe_internal_trap)
3259 {
3260 /* Handle anything that requires bookkeeping before deciding to
3261 report the event or continue waiting. */
3262
3263 /* First check if we can explain the SIGTRAP with an internal
3264 breakpoint, or if we should possibly report the event to GDB.
3265 Do this before anything that may remove or insert a
3266 breakpoint. */
3267 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3268
3269 /* We have a SIGTRAP, possibly a step-over dance has just
3270 finished. If so, tweak the state machine accordingly,
3271 reinsert breakpoints and delete any single-step
3272 breakpoints. */
3273 step_over_finished = finish_step_over (event_child);
3274
3275 /* Now invoke the callbacks of any internal breakpoints there. */
3276 check_breakpoints (event_child->stop_pc);
3277
3278 /* Handle tracepoint data collecting. This may overflow the
3279 trace buffer, and cause a tracing stop, removing
3280 breakpoints. */
3281 trace_event = handle_tracepoints (event_child);
3282
3283 if (bp_explains_trap)
3284 {
3285 if (debug_threads)
3286 debug_printf ("Hit a gdbserver breakpoint.\n");
3287 }
3288 }
3289 else
3290 {
3291 /* We have some other signal, possibly a step-over dance was in
3292 progress, and it should be cancelled too. */
3293 step_over_finished = finish_step_over (event_child);
3294 }
3295
3296 /* We have all the data we need. Either report the event to GDB, or
3297 resume threads and keep waiting for more. */
3298
3299 /* If we're collecting a fast tracepoint, finish the collection and
3300 move out of the jump pad before delivering a signal. See
3301 linux_stabilize_threads. */
3302
3303 if (WIFSTOPPED (w)
3304 && WSTOPSIG (w) != SIGTRAP
3305 && supports_fast_tracepoints ()
3306 && agent_loaded_p ())
3307 {
3308 if (debug_threads)
3309 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3310 "to defer or adjust it.\n",
3311 WSTOPSIG (w), lwpid_of (current_thread));
3312
3313 /* Allow debugging the jump pad itself. */
3314 if (current_thread->last_resume_kind != resume_step
3315 && maybe_move_out_of_jump_pad (event_child, &w))
3316 {
3317 enqueue_one_deferred_signal (event_child, &w);
3318
3319 if (debug_threads)
3320 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3321 WSTOPSIG (w), lwpid_of (current_thread));
3322
3323 linux_resume_one_lwp (event_child, 0, 0, NULL);
3324
3325 if (debug_threads)
3326 debug_exit ();
3327 return ignore_event (ourstatus);
3328 }
3329 }
3330
3331 if (event_child->collecting_fast_tracepoint
3332 != fast_tpoint_collect_result::not_collecting)
3333 {
3334 if (debug_threads)
3335 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3336 "Check if we're already there.\n",
3337 lwpid_of (current_thread),
3338 (int) event_child->collecting_fast_tracepoint);
3339
3340 trace_event = 1;
3341
3342 event_child->collecting_fast_tracepoint
3343 = linux_fast_tracepoint_collecting (event_child, NULL);
3344
3345 if (event_child->collecting_fast_tracepoint
3346 != fast_tpoint_collect_result::before_insn)
3347 {
3348 /* No longer need this breakpoint. */
3349 if (event_child->exit_jump_pad_bkpt != NULL)
3350 {
3351 if (debug_threads)
3352 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3353 "stopping all threads momentarily.\n");
3354
3355 /* Other running threads could hit this breakpoint.
3356 We don't handle moribund locations like GDB does,
3357 instead we always pause all threads when removing
3358 breakpoints, so that any step-over or
3359 decr_pc_after_break adjustment is always taken
3360 care of while the breakpoint is still
3361 inserted. */
3362 stop_all_lwps (1, event_child);
3363
3364 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3365 event_child->exit_jump_pad_bkpt = NULL;
3366
3367 unstop_all_lwps (1, event_child);
3368
3369 gdb_assert (event_child->suspended >= 0);
3370 }
3371 }
3372
3373 if (event_child->collecting_fast_tracepoint
3374 == fast_tpoint_collect_result::not_collecting)
3375 {
3376 if (debug_threads)
3377 debug_printf ("fast tracepoint finished "
3378 "collecting successfully.\n");
3379
3380 /* We may have a deferred signal to report. */
3381 if (dequeue_one_deferred_signal (event_child, &w))
3382 {
3383 if (debug_threads)
3384 debug_printf ("dequeued one signal.\n");
3385 }
3386 else
3387 {
3388 if (debug_threads)
3389 debug_printf ("no deferred signals.\n");
3390
3391 if (stabilizing_threads)
3392 {
3393 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3394 ourstatus->value.sig = GDB_SIGNAL_0;
3395
3396 if (debug_threads)
3397 {
3398 debug_printf ("linux_wait_1 ret = %s, stopped "
3399 "while stabilizing threads\n",
3400 target_pid_to_str (ptid_of (current_thread)));
3401 debug_exit ();
3402 }
3403
3404 return ptid_of (current_thread);
3405 }
3406 }
3407 }
3408 }
3409
3410 /* Check whether GDB would be interested in this event. */
3411
3412 /* Check if GDB is interested in this syscall. */
3413 if (WIFSTOPPED (w)
3414 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3415 && !gdb_catch_this_syscall_p (event_child))
3416 {
3417 if (debug_threads)
3418 {
3419 debug_printf ("Ignored syscall for LWP %ld.\n",
3420 lwpid_of (current_thread));
3421 }
3422
3423 linux_resume_one_lwp (event_child, event_child->stepping,
3424 0, NULL);
3425
3426 if (debug_threads)
3427 debug_exit ();
3428 return ignore_event (ourstatus);
3429 }
3430
3431 /* If GDB is not interested in this signal, don't stop other
3432 threads, and don't report it to GDB. Just resume the inferior
3433 right away. We do this for threading-related signals as well as
3434 any that GDB specifically requested we ignore. But never ignore
3435 SIGSTOP if we sent it ourselves, and do not ignore signals when
3436 stepping - they may require special handling to skip the signal
3437 handler. Also never ignore signals that could be caused by a
3438 breakpoint. */
3439 if (WIFSTOPPED (w)
3440 && current_thread->last_resume_kind != resume_step
3441 && (
3442 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3443 (current_process ()->priv->thread_db != NULL
3444 && (WSTOPSIG (w) == __SIGRTMIN
3445 || WSTOPSIG (w) == __SIGRTMIN + 1))
3446 ||
3447 #endif
3448 (cs.pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3449 && !(WSTOPSIG (w) == SIGSTOP
3450 && current_thread->last_resume_kind == resume_stop)
3451 && !linux_wstatus_maybe_breakpoint (w))))
3452 {
3453 siginfo_t info, *info_p;
3454
3455 if (debug_threads)
3456 debug_printf ("Ignored signal %d for LWP %ld.\n",
3457 WSTOPSIG (w), lwpid_of (current_thread));
3458
3459 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3460 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3461 info_p = &info;
3462 else
3463 info_p = NULL;
3464
3465 if (step_over_finished)
3466 {
3467 /* We cancelled this thread's step-over above. We still
3468 need to unsuspend all other LWPs, and set them back
3469 running again while the signal handler runs. */
3470 unsuspend_all_lwps (event_child);
3471
3472 /* Enqueue the pending signal info so that proceed_all_lwps
3473 doesn't lose it. */
3474 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3475
3476 proceed_all_lwps ();
3477 }
3478 else
3479 {
3480 linux_resume_one_lwp (event_child, event_child->stepping,
3481 WSTOPSIG (w), info_p);
3482 }
3483
3484 if (debug_threads)
3485 debug_exit ();
3486
3487 return ignore_event (ourstatus);
3488 }
3489
3490 /* Note that all addresses are always "out of the step range" when
3491 there's no range to begin with. */
3492 in_step_range = lwp_in_step_range (event_child);
3493
3494 /* If GDB wanted this thread to single step, and the thread is out
3495 of the step range, we always want to report the SIGTRAP, and let
3496 GDB handle it. Watchpoints should always be reported. So should
3497 signals we can't explain. A SIGTRAP we can't explain could be a
3498 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3499 do, we're be able to handle GDB breakpoints on top of internal
3500 breakpoints, by handling the internal breakpoint and still
3501 reporting the event to GDB. If we don't, we're out of luck, GDB
3502 won't see the breakpoint hit. If we see a single-step event but
3503 the thread should be continuing, don't pass the trap to gdb.
3504 That indicates that we had previously finished a single-step but
3505 left the single-step pending -- see
3506 complete_ongoing_step_over. */
3507 report_to_gdb = (!maybe_internal_trap
3508 || (current_thread->last_resume_kind == resume_step
3509 && !in_step_range)
3510 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3511 || (!in_step_range
3512 && !bp_explains_trap
3513 && !trace_event
3514 && !step_over_finished
3515 && !(current_thread->last_resume_kind == resume_continue
3516 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3517 || (gdb_breakpoint_here (event_child->stop_pc)
3518 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3519 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3520 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3521
3522 run_breakpoint_commands (event_child->stop_pc);
3523
3524 /* We found no reason GDB would want us to stop. We either hit one
3525 of our own breakpoints, or finished an internal step GDB
3526 shouldn't know about. */
3527 if (!report_to_gdb)
3528 {
3529 if (debug_threads)
3530 {
3531 if (bp_explains_trap)
3532 debug_printf ("Hit a gdbserver breakpoint.\n");
3533 if (step_over_finished)
3534 debug_printf ("Step-over finished.\n");
3535 if (trace_event)
3536 debug_printf ("Tracepoint event.\n");
3537 if (lwp_in_step_range (event_child))
3538 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3539 paddress (event_child->stop_pc),
3540 paddress (event_child->step_range_start),
3541 paddress (event_child->step_range_end));
3542 }
3543
3544 /* We're not reporting this breakpoint to GDB, so apply the
3545 decr_pc_after_break adjustment to the inferior's regcache
3546 ourselves. */
3547
3548 if (the_low_target.set_pc != NULL)
3549 {
3550 struct regcache *regcache
3551 = get_thread_regcache (current_thread, 1);
3552 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3553 }
3554
3555 if (step_over_finished)
3556 {
3557 /* If we have finished stepping over a breakpoint, we've
3558 stopped and suspended all LWPs momentarily except the
3559 stepping one. This is where we resume them all again.
3560 We're going to keep waiting, so use proceed, which
3561 handles stepping over the next breakpoint. */
3562 unsuspend_all_lwps (event_child);
3563 }
3564 else
3565 {
3566 /* Remove the single-step breakpoints if any. Note that
3567 there isn't single-step breakpoint if we finished stepping
3568 over. */
3569 if (can_software_single_step ()
3570 && has_single_step_breakpoints (current_thread))
3571 {
3572 stop_all_lwps (0, event_child);
3573 delete_single_step_breakpoints (current_thread);
3574 unstop_all_lwps (0, event_child);
3575 }
3576 }
3577
3578 if (debug_threads)
3579 debug_printf ("proceeding all threads.\n");
3580 proceed_all_lwps ();
3581
3582 if (debug_threads)
3583 debug_exit ();
3584
3585 return ignore_event (ourstatus);
3586 }
3587
3588 if (debug_threads)
3589 {
3590 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3591 {
3592 std::string str
3593 = target_waitstatus_to_string (&event_child->waitstatus);
3594
3595 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3596 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3597 }
3598 if (current_thread->last_resume_kind == resume_step)
3599 {
3600 if (event_child->step_range_start == event_child->step_range_end)
3601 debug_printf ("GDB wanted to single-step, reporting event.\n");
3602 else if (!lwp_in_step_range (event_child))
3603 debug_printf ("Out of step range, reporting event.\n");
3604 }
3605 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3606 debug_printf ("Stopped by watchpoint.\n");
3607 else if (gdb_breakpoint_here (event_child->stop_pc))
3608 debug_printf ("Stopped by GDB breakpoint.\n");
3609 if (debug_threads)
3610 debug_printf ("Hit a non-gdbserver trap event.\n");
3611 }
3612
3613 /* Alright, we're going to report a stop. */
3614
3615 /* Remove single-step breakpoints. */
3616 if (can_software_single_step ())
3617 {
3618 /* Remove single-step breakpoints or not. It it is true, stop all
3619 lwps, so that other threads won't hit the breakpoint in the
3620 staled memory. */
3621 int remove_single_step_breakpoints_p = 0;
3622
3623 if (non_stop)
3624 {
3625 remove_single_step_breakpoints_p
3626 = has_single_step_breakpoints (current_thread);
3627 }
3628 else
3629 {
3630 /* In all-stop, a stop reply cancels all previous resume
3631 requests. Delete all single-step breakpoints. */
3632
3633 find_thread ([&] (thread_info *thread) {
3634 if (has_single_step_breakpoints (thread))
3635 {
3636 remove_single_step_breakpoints_p = 1;
3637 return true;
3638 }
3639
3640 return false;
3641 });
3642 }
3643
3644 if (remove_single_step_breakpoints_p)
3645 {
3646 /* If we remove single-step breakpoints from memory, stop all lwps,
3647 so that other threads won't hit the breakpoint in the staled
3648 memory. */
3649 stop_all_lwps (0, event_child);
3650
3651 if (non_stop)
3652 {
3653 gdb_assert (has_single_step_breakpoints (current_thread));
3654 delete_single_step_breakpoints (current_thread);
3655 }
3656 else
3657 {
3658 for_each_thread ([] (thread_info *thread){
3659 if (has_single_step_breakpoints (thread))
3660 delete_single_step_breakpoints (thread);
3661 });
3662 }
3663
3664 unstop_all_lwps (0, event_child);
3665 }
3666 }
3667
3668 if (!stabilizing_threads)
3669 {
3670 /* In all-stop, stop all threads. */
3671 if (!non_stop)
3672 stop_all_lwps (0, NULL);
3673
3674 if (step_over_finished)
3675 {
3676 if (!non_stop)
3677 {
3678 /* If we were doing a step-over, all other threads but
3679 the stepping one had been paused in start_step_over,
3680 with their suspend counts incremented. We don't want
3681 to do a full unstop/unpause, because we're in
3682 all-stop mode (so we want threads stopped), but we
3683 still need to unsuspend the other threads, to
3684 decrement their `suspended' count back. */
3685 unsuspend_all_lwps (event_child);
3686 }
3687 else
3688 {
3689 /* If we just finished a step-over, then all threads had
3690 been momentarily paused. In all-stop, that's fine,
3691 we want threads stopped by now anyway. In non-stop,
3692 we need to re-resume threads that GDB wanted to be
3693 running. */
3694 unstop_all_lwps (1, event_child);
3695 }
3696 }
3697
3698 /* If we're not waiting for a specific LWP, choose an event LWP
3699 from among those that have had events. Giving equal priority
3700 to all LWPs that have had events helps prevent
3701 starvation. */
3702 if (ptid == minus_one_ptid)
3703 {
3704 event_child->status_pending_p = 1;
3705 event_child->status_pending = w;
3706
3707 select_event_lwp (&event_child);
3708
3709 /* current_thread and event_child must stay in sync. */
3710 current_thread = get_lwp_thread (event_child);
3711
3712 event_child->status_pending_p = 0;
3713 w = event_child->status_pending;
3714 }
3715
3716
3717 /* Stabilize threads (move out of jump pads). */
3718 if (!non_stop)
3719 stabilize_threads ();
3720 }
3721 else
3722 {
3723 /* If we just finished a step-over, then all threads had been
3724 momentarily paused. In all-stop, that's fine, we want
3725 threads stopped by now anyway. In non-stop, we need to
3726 re-resume threads that GDB wanted to be running. */
3727 if (step_over_finished)
3728 unstop_all_lwps (1, event_child);
3729 }
3730
3731 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3732 {
3733 /* If the reported event is an exit, fork, vfork or exec, let
3734 GDB know. */
3735
3736 /* Break the unreported fork relationship chain. */
3737 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3738 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3739 {
3740 event_child->fork_relative->fork_relative = NULL;
3741 event_child->fork_relative = NULL;
3742 }
3743
3744 *ourstatus = event_child->waitstatus;
3745 /* Clear the event lwp's waitstatus since we handled it already. */
3746 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3747 }
3748 else
3749 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3750
3751 /* Now that we've selected our final event LWP, un-adjust its PC if
3752 it was a software breakpoint, and the client doesn't know we can
3753 adjust the breakpoint ourselves. */
3754 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3755 && !cs.swbreak_feature)
3756 {
3757 int decr_pc = the_low_target.decr_pc_after_break;
3758
3759 if (decr_pc != 0)
3760 {
3761 struct regcache *regcache
3762 = get_thread_regcache (current_thread, 1);
3763 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3764 }
3765 }
3766
3767 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3768 {
3769 get_syscall_trapinfo (event_child,
3770 &ourstatus->value.syscall_number);
3771 ourstatus->kind = event_child->syscall_state;
3772 }
3773 else if (current_thread->last_resume_kind == resume_stop
3774 && WSTOPSIG (w) == SIGSTOP)
3775 {
3776 /* A thread that has been requested to stop by GDB with vCont;t,
3777 and it stopped cleanly, so report as SIG0. The use of
3778 SIGSTOP is an implementation detail. */
3779 ourstatus->value.sig = GDB_SIGNAL_0;
3780 }
3781 else if (current_thread->last_resume_kind == resume_stop
3782 && WSTOPSIG (w) != SIGSTOP)
3783 {
3784 /* A thread that has been requested to stop by GDB with vCont;t,
3785 but, it stopped for other reasons. */
3786 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3787 }
3788 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3789 {
3790 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3791 }
3792
3793 gdb_assert (step_over_bkpt == null_ptid);
3794
3795 if (debug_threads)
3796 {
3797 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3798 target_pid_to_str (ptid_of (current_thread)),
3799 ourstatus->kind, ourstatus->value.sig);
3800 debug_exit ();
3801 }
3802
3803 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3804 return filter_exit_event (event_child, ourstatus);
3805
3806 return ptid_of (current_thread);
3807 }
3808
3809 /* Get rid of any pending event in the pipe. */
3810 static void
3811 async_file_flush (void)
3812 {
3813 int ret;
3814 char buf;
3815
3816 do
3817 ret = read (linux_event_pipe[0], &buf, 1);
3818 while (ret >= 0 || (ret == -1 && errno == EINTR));
3819 }
3820
3821 /* Put something in the pipe, so the event loop wakes up. */
3822 static void
3823 async_file_mark (void)
3824 {
3825 int ret;
3826
3827 async_file_flush ();
3828
3829 do
3830 ret = write (linux_event_pipe[1], "+", 1);
3831 while (ret == 0 || (ret == -1 && errno == EINTR));
3832
3833 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3834 be awakened anyway. */
3835 }
3836
3837 static ptid_t
3838 linux_wait (ptid_t ptid,
3839 struct target_waitstatus *ourstatus, int target_options)
3840 {
3841 ptid_t event_ptid;
3842
3843 /* Flush the async file first. */
3844 if (target_is_async_p ())
3845 async_file_flush ();
3846
3847 do
3848 {
3849 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3850 }
3851 while ((target_options & TARGET_WNOHANG) == 0
3852 && event_ptid == null_ptid
3853 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3854
3855 /* If at least one stop was reported, there may be more. A single
3856 SIGCHLD can signal more than one child stop. */
3857 if (target_is_async_p ()
3858 && (target_options & TARGET_WNOHANG) != 0
3859 && event_ptid != null_ptid)
3860 async_file_mark ();
3861
3862 return event_ptid;
3863 }
3864
3865 /* Send a signal to an LWP. */
3866
3867 static int
3868 kill_lwp (unsigned long lwpid, int signo)
3869 {
3870 int ret;
3871
3872 errno = 0;
3873 ret = syscall (__NR_tkill, lwpid, signo);
3874 if (errno == ENOSYS)
3875 {
3876 /* If tkill fails, then we are not using nptl threads, a
3877 configuration we no longer support. */
3878 perror_with_name (("tkill"));
3879 }
3880 return ret;
3881 }
3882
3883 void
3884 linux_stop_lwp (struct lwp_info *lwp)
3885 {
3886 send_sigstop (lwp);
3887 }
3888
3889 static void
3890 send_sigstop (struct lwp_info *lwp)
3891 {
3892 int pid;
3893
3894 pid = lwpid_of (get_lwp_thread (lwp));
3895
3896 /* If we already have a pending stop signal for this process, don't
3897 send another. */
3898 if (lwp->stop_expected)
3899 {
3900 if (debug_threads)
3901 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3902
3903 return;
3904 }
3905
3906 if (debug_threads)
3907 debug_printf ("Sending sigstop to lwp %d\n", pid);
3908
3909 lwp->stop_expected = 1;
3910 kill_lwp (pid, SIGSTOP);
3911 }
3912
3913 static void
3914 send_sigstop (thread_info *thread, lwp_info *except)
3915 {
3916 struct lwp_info *lwp = get_thread_lwp (thread);
3917
3918 /* Ignore EXCEPT. */
3919 if (lwp == except)
3920 return;
3921
3922 if (lwp->stopped)
3923 return;
3924
3925 send_sigstop (lwp);
3926 }
3927
3928 /* Increment the suspend count of an LWP, and stop it, if not stopped
3929 yet. */
3930 static void
3931 suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3932 {
3933 struct lwp_info *lwp = get_thread_lwp (thread);
3934
3935 /* Ignore EXCEPT. */
3936 if (lwp == except)
3937 return;
3938
3939 lwp_suspended_inc (lwp);
3940
3941 send_sigstop (thread, except);
3942 }
3943
3944 static void
3945 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3946 {
3947 /* Store the exit status for later. */
3948 lwp->status_pending_p = 1;
3949 lwp->status_pending = wstat;
3950
3951 /* Store in waitstatus as well, as there's nothing else to process
3952 for this event. */
3953 if (WIFEXITED (wstat))
3954 {
3955 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3956 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3957 }
3958 else if (WIFSIGNALED (wstat))
3959 {
3960 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3961 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3962 }
3963
3964 /* Prevent trying to stop it. */
3965 lwp->stopped = 1;
3966
3967 /* No further stops are expected from a dead lwp. */
3968 lwp->stop_expected = 0;
3969 }
3970
3971 /* Return true if LWP has exited already, and has a pending exit event
3972 to report to GDB. */
3973
3974 static int
3975 lwp_is_marked_dead (struct lwp_info *lwp)
3976 {
3977 return (lwp->status_pending_p
3978 && (WIFEXITED (lwp->status_pending)
3979 || WIFSIGNALED (lwp->status_pending)));
3980 }
3981
3982 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3983
3984 static void
3985 wait_for_sigstop (void)
3986 {
3987 struct thread_info *saved_thread;
3988 ptid_t saved_tid;
3989 int wstat;
3990 int ret;
3991
3992 saved_thread = current_thread;
3993 if (saved_thread != NULL)
3994 saved_tid = saved_thread->id;
3995 else
3996 saved_tid = null_ptid; /* avoid bogus unused warning */
3997
3998 if (debug_threads)
3999 debug_printf ("wait_for_sigstop: pulling events\n");
4000
4001 /* Passing NULL_PTID as filter indicates we want all events to be
4002 left pending. Eventually this returns when there are no
4003 unwaited-for children left. */
4004 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4005 &wstat, __WALL);
4006 gdb_assert (ret == -1);
4007
4008 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4009 current_thread = saved_thread;
4010 else
4011 {
4012 if (debug_threads)
4013 debug_printf ("Previously current thread died.\n");
4014
4015 /* We can't change the current inferior behind GDB's back,
4016 otherwise, a subsequent command may apply to the wrong
4017 process. */
4018 current_thread = NULL;
4019 }
4020 }
4021
4022 /* Returns true if THREAD is stopped in a jump pad, and we can't
4023 move it out, because we need to report the stop event to GDB. For
4024 example, if the user puts a breakpoint in the jump pad, it's
4025 because she wants to debug it. */
4026
4027 static bool
4028 stuck_in_jump_pad_callback (thread_info *thread)
4029 {
4030 struct lwp_info *lwp = get_thread_lwp (thread);
4031
4032 if (lwp->suspended != 0)
4033 {
4034 internal_error (__FILE__, __LINE__,
4035 "LWP %ld is suspended, suspended=%d\n",
4036 lwpid_of (thread), lwp->suspended);
4037 }
4038 gdb_assert (lwp->stopped);
4039
4040 /* Allow debugging the jump pad, gdb_collect, etc.. */
4041 return (supports_fast_tracepoints ()
4042 && agent_loaded_p ()
4043 && (gdb_breakpoint_here (lwp->stop_pc)
4044 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4045 || thread->last_resume_kind == resume_step)
4046 && (linux_fast_tracepoint_collecting (lwp, NULL)
4047 != fast_tpoint_collect_result::not_collecting));
4048 }
4049
4050 static void
4051 move_out_of_jump_pad_callback (thread_info *thread)
4052 {
4053 struct thread_info *saved_thread;
4054 struct lwp_info *lwp = get_thread_lwp (thread);
4055 int *wstat;
4056
4057 if (lwp->suspended != 0)
4058 {
4059 internal_error (__FILE__, __LINE__,
4060 "LWP %ld is suspended, suspended=%d\n",
4061 lwpid_of (thread), lwp->suspended);
4062 }
4063 gdb_assert (lwp->stopped);
4064
4065 /* For gdb_breakpoint_here. */
4066 saved_thread = current_thread;
4067 current_thread = thread;
4068
4069 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4070
4071 /* Allow debugging the jump pad, gdb_collect, etc. */
4072 if (!gdb_breakpoint_here (lwp->stop_pc)
4073 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4074 && thread->last_resume_kind != resume_step
4075 && maybe_move_out_of_jump_pad (lwp, wstat))
4076 {
4077 if (debug_threads)
4078 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4079 lwpid_of (thread));
4080
4081 if (wstat)
4082 {
4083 lwp->status_pending_p = 0;
4084 enqueue_one_deferred_signal (lwp, wstat);
4085
4086 if (debug_threads)
4087 debug_printf ("Signal %d for LWP %ld deferred "
4088 "(in jump pad)\n",
4089 WSTOPSIG (*wstat), lwpid_of (thread));
4090 }
4091
4092 linux_resume_one_lwp (lwp, 0, 0, NULL);
4093 }
4094 else
4095 lwp_suspended_inc (lwp);
4096
4097 current_thread = saved_thread;
4098 }
4099
4100 static bool
4101 lwp_running (thread_info *thread)
4102 {
4103 struct lwp_info *lwp = get_thread_lwp (thread);
4104
4105 if (lwp_is_marked_dead (lwp))
4106 return false;
4107
4108 return !lwp->stopped;
4109 }
4110
4111 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4112 If SUSPEND, then also increase the suspend count of every LWP,
4113 except EXCEPT. */
4114
4115 static void
4116 stop_all_lwps (int suspend, struct lwp_info *except)
4117 {
4118 /* Should not be called recursively. */
4119 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4120
4121 if (debug_threads)
4122 {
4123 debug_enter ();
4124 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4125 suspend ? "stop-and-suspend" : "stop",
4126 except != NULL
4127 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4128 : "none");
4129 }
4130
4131 stopping_threads = (suspend
4132 ? STOPPING_AND_SUSPENDING_THREADS
4133 : STOPPING_THREADS);
4134
4135 if (suspend)
4136 for_each_thread ([&] (thread_info *thread)
4137 {
4138 suspend_and_send_sigstop (thread, except);
4139 });
4140 else
4141 for_each_thread ([&] (thread_info *thread)
4142 {
4143 send_sigstop (thread, except);
4144 });
4145
4146 wait_for_sigstop ();
4147 stopping_threads = NOT_STOPPING_THREADS;
4148
4149 if (debug_threads)
4150 {
4151 debug_printf ("stop_all_lwps done, setting stopping_threads "
4152 "back to !stopping\n");
4153 debug_exit ();
4154 }
4155 }
4156
4157 /* Enqueue one signal in the chain of signals which need to be
4158 delivered to this process on next resume. */
4159
4160 static void
4161 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4162 {
4163 struct pending_signals *p_sig = XNEW (struct pending_signals);
4164
4165 p_sig->prev = lwp->pending_signals;
4166 p_sig->signal = signal;
4167 if (info == NULL)
4168 memset (&p_sig->info, 0, sizeof (siginfo_t));
4169 else
4170 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4171 lwp->pending_signals = p_sig;
4172 }
4173
4174 /* Install breakpoints for software single stepping. */
4175
4176 static void
4177 install_software_single_step_breakpoints (struct lwp_info *lwp)
4178 {
4179 struct thread_info *thread = get_lwp_thread (lwp);
4180 struct regcache *regcache = get_thread_regcache (thread, 1);
4181
4182 scoped_restore save_current_thread = make_scoped_restore (&current_thread);
4183
4184 current_thread = thread;
4185 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4186
4187 for (CORE_ADDR pc : next_pcs)
4188 set_single_step_breakpoint (pc, current_ptid);
4189 }
4190
4191 /* Single step via hardware or software single step.
4192 Return 1 if hardware single stepping, 0 if software single stepping
4193 or can't single step. */
4194
4195 static int
4196 single_step (struct lwp_info* lwp)
4197 {
4198 int step = 0;
4199
4200 if (can_hardware_single_step ())
4201 {
4202 step = 1;
4203 }
4204 else if (can_software_single_step ())
4205 {
4206 install_software_single_step_breakpoints (lwp);
4207 step = 0;
4208 }
4209 else
4210 {
4211 if (debug_threads)
4212 debug_printf ("stepping is not implemented on this target");
4213 }
4214
4215 return step;
4216 }
4217
4218 /* The signal can be delivered to the inferior if we are not trying to
4219 finish a fast tracepoint collect. Since signal can be delivered in
4220 the step-over, the program may go to signal handler and trap again
4221 after return from the signal handler. We can live with the spurious
4222 double traps. */
4223
4224 static int
4225 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4226 {
4227 return (lwp->collecting_fast_tracepoint
4228 == fast_tpoint_collect_result::not_collecting);
4229 }
4230
4231 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4232 SIGNAL is nonzero, give it that signal. */
4233
4234 static void
4235 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4236 int step, int signal, siginfo_t *info)
4237 {
4238 struct thread_info *thread = get_lwp_thread (lwp);
4239 struct thread_info *saved_thread;
4240 int ptrace_request;
4241 struct process_info *proc = get_thread_process (thread);
4242
4243 /* Note that target description may not be initialised
4244 (proc->tdesc == NULL) at this point because the program hasn't
4245 stopped at the first instruction yet. It means GDBserver skips
4246 the extra traps from the wrapper program (see option --wrapper).
4247 Code in this function that requires register access should be
4248 guarded by proc->tdesc == NULL or something else. */
4249
4250 if (lwp->stopped == 0)
4251 return;
4252
4253 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4254
4255 fast_tpoint_collect_result fast_tp_collecting
4256 = lwp->collecting_fast_tracepoint;
4257
4258 gdb_assert (!stabilizing_threads
4259 || (fast_tp_collecting
4260 != fast_tpoint_collect_result::not_collecting));
4261
4262 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4263 user used the "jump" command, or "set $pc = foo"). */
4264 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4265 {
4266 /* Collecting 'while-stepping' actions doesn't make sense
4267 anymore. */
4268 release_while_stepping_state_list (thread);
4269 }
4270
4271 /* If we have pending signals or status, and a new signal, enqueue the
4272 signal. Also enqueue the signal if it can't be delivered to the
4273 inferior right now. */
4274 if (signal != 0
4275 && (lwp->status_pending_p
4276 || lwp->pending_signals != NULL
4277 || !lwp_signal_can_be_delivered (lwp)))
4278 {
4279 enqueue_pending_signal (lwp, signal, info);
4280
4281 /* Postpone any pending signal. It was enqueued above. */
4282 signal = 0;
4283 }
4284
4285 if (lwp->status_pending_p)
4286 {
4287 if (debug_threads)
4288 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4289 " has pending status\n",
4290 lwpid_of (thread), step ? "step" : "continue",
4291 lwp->stop_expected ? "expected" : "not expected");
4292 return;
4293 }
4294
4295 saved_thread = current_thread;
4296 current_thread = thread;
4297
4298 /* This bit needs some thinking about. If we get a signal that
4299 we must report while a single-step reinsert is still pending,
4300 we often end up resuming the thread. It might be better to
4301 (ew) allow a stack of pending events; then we could be sure that
4302 the reinsert happened right away and not lose any signals.
4303
4304 Making this stack would also shrink the window in which breakpoints are
4305 uninserted (see comment in linux_wait_for_lwp) but not enough for
4306 complete correctness, so it won't solve that problem. It may be
4307 worthwhile just to solve this one, however. */
4308 if (lwp->bp_reinsert != 0)
4309 {
4310 if (debug_threads)
4311 debug_printf (" pending reinsert at 0x%s\n",
4312 paddress (lwp->bp_reinsert));
4313
4314 if (can_hardware_single_step ())
4315 {
4316 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4317 {
4318 if (step == 0)
4319 warning ("BAD - reinserting but not stepping.");
4320 if (lwp->suspended)
4321 warning ("BAD - reinserting and suspended(%d).",
4322 lwp->suspended);
4323 }
4324 }
4325
4326 step = maybe_hw_step (thread);
4327 }
4328
4329 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4330 {
4331 if (debug_threads)
4332 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4333 " (exit-jump-pad-bkpt)\n",
4334 lwpid_of (thread));
4335 }
4336 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4337 {
4338 if (debug_threads)
4339 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4340 " single-stepping\n",
4341 lwpid_of (thread));
4342
4343 if (can_hardware_single_step ())
4344 step = 1;
4345 else
4346 {
4347 internal_error (__FILE__, __LINE__,
4348 "moving out of jump pad single-stepping"
4349 " not implemented on this target");
4350 }
4351 }
4352
4353 /* If we have while-stepping actions in this thread set it stepping.
4354 If we have a signal to deliver, it may or may not be set to
4355 SIG_IGN, we don't know. Assume so, and allow collecting
4356 while-stepping into a signal handler. A possible smart thing to
4357 do would be to set an internal breakpoint at the signal return
4358 address, continue, and carry on catching this while-stepping
4359 action only when that breakpoint is hit. A future
4360 enhancement. */
4361 if (thread->while_stepping != NULL)
4362 {
4363 if (debug_threads)
4364 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4365 lwpid_of (thread));
4366
4367 step = single_step (lwp);
4368 }
4369
4370 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4371 {
4372 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4373
4374 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4375
4376 if (debug_threads)
4377 {
4378 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4379 (long) lwp->stop_pc);
4380 }
4381 }
4382
4383 /* If we have pending signals, consume one if it can be delivered to
4384 the inferior. */
4385 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4386 {
4387 struct pending_signals **p_sig;
4388
4389 p_sig = &lwp->pending_signals;
4390 while ((*p_sig)->prev != NULL)
4391 p_sig = &(*p_sig)->prev;
4392
4393 signal = (*p_sig)->signal;
4394 if ((*p_sig)->info.si_signo != 0)
4395 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4396 &(*p_sig)->info);
4397
4398 free (*p_sig);
4399 *p_sig = NULL;
4400 }
4401
4402 if (debug_threads)
4403 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4404 lwpid_of (thread), step ? "step" : "continue", signal,
4405 lwp->stop_expected ? "expected" : "not expected");
4406
4407 if (the_low_target.prepare_to_resume != NULL)
4408 the_low_target.prepare_to_resume (lwp);
4409
4410 regcache_invalidate_thread (thread);
4411 errno = 0;
4412 lwp->stepping = step;
4413 if (step)
4414 ptrace_request = PTRACE_SINGLESTEP;
4415 else if (gdb_catching_syscalls_p (lwp))
4416 ptrace_request = PTRACE_SYSCALL;
4417 else
4418 ptrace_request = PTRACE_CONT;
4419 ptrace (ptrace_request,
4420 lwpid_of (thread),
4421 (PTRACE_TYPE_ARG3) 0,
4422 /* Coerce to a uintptr_t first to avoid potential gcc warning
4423 of coercing an 8 byte integer to a 4 byte pointer. */
4424 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4425
4426 current_thread = saved_thread;
4427 if (errno)
4428 perror_with_name ("resuming thread");
4429
4430 /* Successfully resumed. Clear state that no longer makes sense,
4431 and mark the LWP as running. Must not do this before resuming
4432 otherwise if that fails other code will be confused. E.g., we'd
4433 later try to stop the LWP and hang forever waiting for a stop
4434 status. Note that we must not throw after this is cleared,
4435 otherwise handle_zombie_lwp_error would get confused. */
4436 lwp->stopped = 0;
4437 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4438 }
4439
4440 /* Called when we try to resume a stopped LWP and that errors out. If
4441 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4442 or about to become), discard the error, clear any pending status
4443 the LWP may have, and return true (we'll collect the exit status
4444 soon enough). Otherwise, return false. */
4445
4446 static int
4447 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4448 {
4449 struct thread_info *thread = get_lwp_thread (lp);
4450
4451 /* If we get an error after resuming the LWP successfully, we'd
4452 confuse !T state for the LWP being gone. */
4453 gdb_assert (lp->stopped);
4454
4455 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4456 because even if ptrace failed with ESRCH, the tracee may be "not
4457 yet fully dead", but already refusing ptrace requests. In that
4458 case the tracee has 'R (Running)' state for a little bit
4459 (observed in Linux 3.18). See also the note on ESRCH in the
4460 ptrace(2) man page. Instead, check whether the LWP has any state
4461 other than ptrace-stopped. */
4462
4463 /* Don't assume anything if /proc/PID/status can't be read. */
4464 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4465 {
4466 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4467 lp->status_pending_p = 0;
4468 return 1;
4469 }
4470 return 0;
4471 }
4472
4473 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4474 disappears while we try to resume it. */
4475
4476 static void
4477 linux_resume_one_lwp (struct lwp_info *lwp,
4478 int step, int signal, siginfo_t *info)
4479 {
4480 try
4481 {
4482 linux_resume_one_lwp_throw (lwp, step, signal, info);
4483 }
4484 catch (const gdb_exception_error &ex)
4485 {
4486 if (!check_ptrace_stopped_lwp_gone (lwp))
4487 throw;
4488 }
4489 }
4490
4491 /* This function is called once per thread via for_each_thread.
4492 We look up which resume request applies to THREAD and mark it with a
4493 pointer to the appropriate resume request.
4494
4495 This algorithm is O(threads * resume elements), but resume elements
4496 is small (and will remain small at least until GDB supports thread
4497 suspension). */
4498
4499 static void
4500 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4501 {
4502 struct lwp_info *lwp = get_thread_lwp (thread);
4503
4504 for (int ndx = 0; ndx < n; ndx++)
4505 {
4506 ptid_t ptid = resume[ndx].thread;
4507 if (ptid == minus_one_ptid
4508 || ptid == thread->id
4509 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4510 of PID'. */
4511 || (ptid.pid () == pid_of (thread)
4512 && (ptid.is_pid ()
4513 || ptid.lwp () == -1)))
4514 {
4515 if (resume[ndx].kind == resume_stop
4516 && thread->last_resume_kind == resume_stop)
4517 {
4518 if (debug_threads)
4519 debug_printf ("already %s LWP %ld at GDB's request\n",
4520 (thread->last_status.kind
4521 == TARGET_WAITKIND_STOPPED)
4522 ? "stopped"
4523 : "stopping",
4524 lwpid_of (thread));
4525
4526 continue;
4527 }
4528
4529 /* Ignore (wildcard) resume requests for already-resumed
4530 threads. */
4531 if (resume[ndx].kind != resume_stop
4532 && thread->last_resume_kind != resume_stop)
4533 {
4534 if (debug_threads)
4535 debug_printf ("already %s LWP %ld at GDB's request\n",
4536 (thread->last_resume_kind
4537 == resume_step)
4538 ? "stepping"
4539 : "continuing",
4540 lwpid_of (thread));
4541 continue;
4542 }
4543
4544 /* Don't let wildcard resumes resume fork children that GDB
4545 does not yet know are new fork children. */
4546 if (lwp->fork_relative != NULL)
4547 {
4548 struct lwp_info *rel = lwp->fork_relative;
4549
4550 if (rel->status_pending_p
4551 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4552 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4553 {
4554 if (debug_threads)
4555 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4556 lwpid_of (thread));
4557 continue;
4558 }
4559 }
4560
4561 /* If the thread has a pending event that has already been
4562 reported to GDBserver core, but GDB has not pulled the
4563 event out of the vStopped queue yet, likewise, ignore the
4564 (wildcard) resume request. */
4565 if (in_queued_stop_replies (thread->id))
4566 {
4567 if (debug_threads)
4568 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4569 lwpid_of (thread));
4570 continue;
4571 }
4572
4573 lwp->resume = &resume[ndx];
4574 thread->last_resume_kind = lwp->resume->kind;
4575
4576 lwp->step_range_start = lwp->resume->step_range_start;
4577 lwp->step_range_end = lwp->resume->step_range_end;
4578
4579 /* If we had a deferred signal to report, dequeue one now.
4580 This can happen if LWP gets more than one signal while
4581 trying to get out of a jump pad. */
4582 if (lwp->stopped
4583 && !lwp->status_pending_p
4584 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4585 {
4586 lwp->status_pending_p = 1;
4587
4588 if (debug_threads)
4589 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4590 "leaving status pending.\n",
4591 WSTOPSIG (lwp->status_pending),
4592 lwpid_of (thread));
4593 }
4594
4595 return;
4596 }
4597 }
4598
4599 /* No resume action for this thread. */
4600 lwp->resume = NULL;
4601 }
4602
4603 /* find_thread callback for linux_resume. Return true if this lwp has an
4604 interesting status pending. */
4605
4606 static bool
4607 resume_status_pending_p (thread_info *thread)
4608 {
4609 struct lwp_info *lwp = get_thread_lwp (thread);
4610
4611 /* LWPs which will not be resumed are not interesting, because
4612 we might not wait for them next time through linux_wait. */
4613 if (lwp->resume == NULL)
4614 return false;
4615
4616 return thread_still_has_status_pending_p (thread);
4617 }
4618
4619 /* Return 1 if this lwp that GDB wants running is stopped at an
4620 internal breakpoint that we need to step over. It assumes that any
4621 required STOP_PC adjustment has already been propagated to the
4622 inferior's regcache. */
4623
4624 static bool
4625 need_step_over_p (thread_info *thread)
4626 {
4627 struct lwp_info *lwp = get_thread_lwp (thread);
4628 struct thread_info *saved_thread;
4629 CORE_ADDR pc;
4630 struct process_info *proc = get_thread_process (thread);
4631
4632 /* GDBserver is skipping the extra traps from the wrapper program,
4633 don't have to do step over. */
4634 if (proc->tdesc == NULL)
4635 return false;
4636
4637 /* LWPs which will not be resumed are not interesting, because we
4638 might not wait for them next time through linux_wait. */
4639
4640 if (!lwp->stopped)
4641 {
4642 if (debug_threads)
4643 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4644 lwpid_of (thread));
4645 return false;
4646 }
4647
4648 if (thread->last_resume_kind == resume_stop)
4649 {
4650 if (debug_threads)
4651 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4652 " stopped\n",
4653 lwpid_of (thread));
4654 return false;
4655 }
4656
4657 gdb_assert (lwp->suspended >= 0);
4658
4659 if (lwp->suspended)
4660 {
4661 if (debug_threads)
4662 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4663 lwpid_of (thread));
4664 return false;
4665 }
4666
4667 if (lwp->status_pending_p)
4668 {
4669 if (debug_threads)
4670 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4671 " status.\n",
4672 lwpid_of (thread));
4673 return false;
4674 }
4675
4676 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4677 or we have. */
4678 pc = get_pc (lwp);
4679
4680 /* If the PC has changed since we stopped, then don't do anything,
4681 and let the breakpoint/tracepoint be hit. This happens if, for
4682 instance, GDB handled the decr_pc_after_break subtraction itself,
4683 GDB is OOL stepping this thread, or the user has issued a "jump"
4684 command, or poked thread's registers herself. */
4685 if (pc != lwp->stop_pc)
4686 {
4687 if (debug_threads)
4688 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4689 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4690 lwpid_of (thread),
4691 paddress (lwp->stop_pc), paddress (pc));
4692 return false;
4693 }
4694
4695 /* On software single step target, resume the inferior with signal
4696 rather than stepping over. */
4697 if (can_software_single_step ()
4698 && lwp->pending_signals != NULL
4699 && lwp_signal_can_be_delivered (lwp))
4700 {
4701 if (debug_threads)
4702 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4703 " signals.\n",
4704 lwpid_of (thread));
4705
4706 return false;
4707 }
4708
4709 saved_thread = current_thread;
4710 current_thread = thread;
4711
4712 /* We can only step over breakpoints we know about. */
4713 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4714 {
4715 /* Don't step over a breakpoint that GDB expects to hit
4716 though. If the condition is being evaluated on the target's side
4717 and it evaluate to false, step over this breakpoint as well. */
4718 if (gdb_breakpoint_here (pc)
4719 && gdb_condition_true_at_breakpoint (pc)
4720 && gdb_no_commands_at_breakpoint (pc))
4721 {
4722 if (debug_threads)
4723 debug_printf ("Need step over [LWP %ld]? yes, but found"
4724 " GDB breakpoint at 0x%s; skipping step over\n",
4725 lwpid_of (thread), paddress (pc));
4726
4727 current_thread = saved_thread;
4728 return false;
4729 }
4730 else
4731 {
4732 if (debug_threads)
4733 debug_printf ("Need step over [LWP %ld]? yes, "
4734 "found breakpoint at 0x%s\n",
4735 lwpid_of (thread), paddress (pc));
4736
4737 /* We've found an lwp that needs stepping over --- return 1 so
4738 that find_thread stops looking. */
4739 current_thread = saved_thread;
4740
4741 return true;
4742 }
4743 }
4744
4745 current_thread = saved_thread;
4746
4747 if (debug_threads)
4748 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4749 " at 0x%s\n",
4750 lwpid_of (thread), paddress (pc));
4751
4752 return false;
4753 }
4754
4755 /* Start a step-over operation on LWP. When LWP stopped at a
4756 breakpoint, to make progress, we need to remove the breakpoint out
4757 of the way. If we let other threads run while we do that, they may
4758 pass by the breakpoint location and miss hitting it. To avoid
4759 that, a step-over momentarily stops all threads while LWP is
4760 single-stepped by either hardware or software while the breakpoint
4761 is temporarily uninserted from the inferior. When the single-step
4762 finishes, we reinsert the breakpoint, and let all threads that are
4763 supposed to be running, run again. */
4764
4765 static int
4766 start_step_over (struct lwp_info *lwp)
4767 {
4768 struct thread_info *thread = get_lwp_thread (lwp);
4769 struct thread_info *saved_thread;
4770 CORE_ADDR pc;
4771 int step;
4772
4773 if (debug_threads)
4774 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4775 lwpid_of (thread));
4776
4777 stop_all_lwps (1, lwp);
4778
4779 if (lwp->suspended != 0)
4780 {
4781 internal_error (__FILE__, __LINE__,
4782 "LWP %ld suspended=%d\n", lwpid_of (thread),
4783 lwp->suspended);
4784 }
4785
4786 if (debug_threads)
4787 debug_printf ("Done stopping all threads for step-over.\n");
4788
4789 /* Note, we should always reach here with an already adjusted PC,
4790 either by GDB (if we're resuming due to GDB's request), or by our
4791 caller, if we just finished handling an internal breakpoint GDB
4792 shouldn't care about. */
4793 pc = get_pc (lwp);
4794
4795 saved_thread = current_thread;
4796 current_thread = thread;
4797
4798 lwp->bp_reinsert = pc;
4799 uninsert_breakpoints_at (pc);
4800 uninsert_fast_tracepoint_jumps_at (pc);
4801
4802 step = single_step (lwp);
4803
4804 current_thread = saved_thread;
4805
4806 linux_resume_one_lwp (lwp, step, 0, NULL);
4807
4808 /* Require next event from this LWP. */
4809 step_over_bkpt = thread->id;
4810 return 1;
4811 }
4812
4813 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4814 start_step_over, if still there, and delete any single-step
4815 breakpoints we've set, on non hardware single-step targets. */
4816
4817 static int
4818 finish_step_over (struct lwp_info *lwp)
4819 {
4820 if (lwp->bp_reinsert != 0)
4821 {
4822 struct thread_info *saved_thread = current_thread;
4823
4824 if (debug_threads)
4825 debug_printf ("Finished step over.\n");
4826
4827 current_thread = get_lwp_thread (lwp);
4828
4829 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4830 may be no breakpoint to reinsert there by now. */
4831 reinsert_breakpoints_at (lwp->bp_reinsert);
4832 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4833
4834 lwp->bp_reinsert = 0;
4835
4836 /* Delete any single-step breakpoints. No longer needed. We
4837 don't have to worry about other threads hitting this trap,
4838 and later not being able to explain it, because we were
4839 stepping over a breakpoint, and we hold all threads but
4840 LWP stopped while doing that. */
4841 if (!can_hardware_single_step ())
4842 {
4843 gdb_assert (has_single_step_breakpoints (current_thread));
4844 delete_single_step_breakpoints (current_thread);
4845 }
4846
4847 step_over_bkpt = null_ptid;
4848 current_thread = saved_thread;
4849 return 1;
4850 }
4851 else
4852 return 0;
4853 }
4854
4855 /* If there's a step over in progress, wait until all threads stop
4856 (that is, until the stepping thread finishes its step), and
4857 unsuspend all lwps. The stepping thread ends with its status
4858 pending, which is processed later when we get back to processing
4859 events. */
4860
4861 static void
4862 complete_ongoing_step_over (void)
4863 {
4864 if (step_over_bkpt != null_ptid)
4865 {
4866 struct lwp_info *lwp;
4867 int wstat;
4868 int ret;
4869
4870 if (debug_threads)
4871 debug_printf ("detach: step over in progress, finish it first\n");
4872
4873 /* Passing NULL_PTID as filter indicates we want all events to
4874 be left pending. Eventually this returns when there are no
4875 unwaited-for children left. */
4876 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4877 &wstat, __WALL);
4878 gdb_assert (ret == -1);
4879
4880 lwp = find_lwp_pid (step_over_bkpt);
4881 if (lwp != NULL)
4882 finish_step_over (lwp);
4883 step_over_bkpt = null_ptid;
4884 unsuspend_all_lwps (lwp);
4885 }
4886 }
4887
4888 /* This function is called once per thread. We check the thread's resume
4889 request, which will tell us whether to resume, step, or leave the thread
4890 stopped; and what signal, if any, it should be sent.
4891
4892 For threads which we aren't explicitly told otherwise, we preserve
4893 the stepping flag; this is used for stepping over gdbserver-placed
4894 breakpoints.
4895
4896 If pending_flags was set in any thread, we queue any needed
4897 signals, since we won't actually resume. We already have a pending
4898 event to report, so we don't need to preserve any step requests;
4899 they should be re-issued if necessary. */
4900
4901 static void
4902 linux_resume_one_thread (thread_info *thread, bool leave_all_stopped)
4903 {
4904 struct lwp_info *lwp = get_thread_lwp (thread);
4905 int leave_pending;
4906
4907 if (lwp->resume == NULL)
4908 return;
4909
4910 if (lwp->resume->kind == resume_stop)
4911 {
4912 if (debug_threads)
4913 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4914
4915 if (!lwp->stopped)
4916 {
4917 if (debug_threads)
4918 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4919
4920 /* Stop the thread, and wait for the event asynchronously,
4921 through the event loop. */
4922 send_sigstop (lwp);
4923 }
4924 else
4925 {
4926 if (debug_threads)
4927 debug_printf ("already stopped LWP %ld\n",
4928 lwpid_of (thread));
4929
4930 /* The LWP may have been stopped in an internal event that
4931 was not meant to be notified back to GDB (e.g., gdbserver
4932 breakpoint), so we should be reporting a stop event in
4933 this case too. */
4934
4935 /* If the thread already has a pending SIGSTOP, this is a
4936 no-op. Otherwise, something later will presumably resume
4937 the thread and this will cause it to cancel any pending
4938 operation, due to last_resume_kind == resume_stop. If
4939 the thread already has a pending status to report, we
4940 will still report it the next time we wait - see
4941 status_pending_p_callback. */
4942
4943 /* If we already have a pending signal to report, then
4944 there's no need to queue a SIGSTOP, as this means we're
4945 midway through moving the LWP out of the jumppad, and we
4946 will report the pending signal as soon as that is
4947 finished. */
4948 if (lwp->pending_signals_to_report == NULL)
4949 send_sigstop (lwp);
4950 }
4951
4952 /* For stop requests, we're done. */
4953 lwp->resume = NULL;
4954 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4955 return;
4956 }
4957
4958 /* If this thread which is about to be resumed has a pending status,
4959 then don't resume it - we can just report the pending status.
4960 Likewise if it is suspended, because e.g., another thread is
4961 stepping past a breakpoint. Make sure to queue any signals that
4962 would otherwise be sent. In all-stop mode, we do this decision
4963 based on if *any* thread has a pending status. If there's a
4964 thread that needs the step-over-breakpoint dance, then don't
4965 resume any other thread but that particular one. */
4966 leave_pending = (lwp->suspended
4967 || lwp->status_pending_p
4968 || leave_all_stopped);
4969
4970 /* If we have a new signal, enqueue the signal. */
4971 if (lwp->resume->sig != 0)
4972 {
4973 siginfo_t info, *info_p;
4974
4975 /* If this is the same signal we were previously stopped by,
4976 make sure to queue its siginfo. */
4977 if (WIFSTOPPED (lwp->last_status)
4978 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
4979 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
4980 (PTRACE_TYPE_ARG3) 0, &info) == 0)
4981 info_p = &info;
4982 else
4983 info_p = NULL;
4984
4985 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
4986 }
4987
4988 if (!leave_pending)
4989 {
4990 if (debug_threads)
4991 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4992
4993 proceed_one_lwp (thread, NULL);
4994 }
4995 else
4996 {
4997 if (debug_threads)
4998 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4999 }
5000
5001 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5002 lwp->resume = NULL;
5003 }
5004
5005 static void
5006 linux_resume (struct thread_resume *resume_info, size_t n)
5007 {
5008 struct thread_info *need_step_over = NULL;
5009
5010 if (debug_threads)
5011 {
5012 debug_enter ();
5013 debug_printf ("linux_resume:\n");
5014 }
5015
5016 for_each_thread ([&] (thread_info *thread)
5017 {
5018 linux_set_resume_request (thread, resume_info, n);
5019 });
5020
5021 /* If there is a thread which would otherwise be resumed, which has
5022 a pending status, then don't resume any threads - we can just
5023 report the pending status. Make sure to queue any signals that
5024 would otherwise be sent. In non-stop mode, we'll apply this
5025 logic to each thread individually. We consume all pending events
5026 before considering to start a step-over (in all-stop). */
5027 bool any_pending = false;
5028 if (!non_stop)
5029 any_pending = find_thread (resume_status_pending_p) != NULL;
5030
5031 /* If there is a thread which would otherwise be resumed, which is
5032 stopped at a breakpoint that needs stepping over, then don't
5033 resume any threads - have it step over the breakpoint with all
5034 other threads stopped, then resume all threads again. Make sure
5035 to queue any signals that would otherwise be delivered or
5036 queued. */
5037 if (!any_pending && supports_breakpoints ())
5038 need_step_over = find_thread (need_step_over_p);
5039
5040 bool leave_all_stopped = (need_step_over != NULL || any_pending);
5041
5042 if (debug_threads)
5043 {
5044 if (need_step_over != NULL)
5045 debug_printf ("Not resuming all, need step over\n");
5046 else if (any_pending)
5047 debug_printf ("Not resuming, all-stop and found "
5048 "an LWP with pending status\n");
5049 else
5050 debug_printf ("Resuming, no pending status or step over needed\n");
5051 }
5052
5053 /* Even if we're leaving threads stopped, queue all signals we'd
5054 otherwise deliver. */
5055 for_each_thread ([&] (thread_info *thread)
5056 {
5057 linux_resume_one_thread (thread, leave_all_stopped);
5058 });
5059
5060 if (need_step_over)
5061 start_step_over (get_thread_lwp (need_step_over));
5062
5063 if (debug_threads)
5064 {
5065 debug_printf ("linux_resume done\n");
5066 debug_exit ();
5067 }
5068
5069 /* We may have events that were pending that can/should be sent to
5070 the client now. Trigger a linux_wait call. */
5071 if (target_is_async_p ())
5072 async_file_mark ();
5073 }
5074
5075 /* This function is called once per thread. We check the thread's
5076 last resume request, which will tell us whether to resume, step, or
5077 leave the thread stopped. Any signal the client requested to be
5078 delivered has already been enqueued at this point.
5079
5080 If any thread that GDB wants running is stopped at an internal
5081 breakpoint that needs stepping over, we start a step-over operation
5082 on that particular thread, and leave all others stopped. */
5083
5084 static void
5085 proceed_one_lwp (thread_info *thread, lwp_info *except)
5086 {
5087 struct lwp_info *lwp = get_thread_lwp (thread);
5088 int step;
5089
5090 if (lwp == except)
5091 return;
5092
5093 if (debug_threads)
5094 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5095
5096 if (!lwp->stopped)
5097 {
5098 if (debug_threads)
5099 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5100 return;
5101 }
5102
5103 if (thread->last_resume_kind == resume_stop
5104 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5105 {
5106 if (debug_threads)
5107 debug_printf (" client wants LWP to remain %ld stopped\n",
5108 lwpid_of (thread));
5109 return;
5110 }
5111
5112 if (lwp->status_pending_p)
5113 {
5114 if (debug_threads)
5115 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5116 lwpid_of (thread));
5117 return;
5118 }
5119
5120 gdb_assert (lwp->suspended >= 0);
5121
5122 if (lwp->suspended)
5123 {
5124 if (debug_threads)
5125 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5126 return;
5127 }
5128
5129 if (thread->last_resume_kind == resume_stop
5130 && lwp->pending_signals_to_report == NULL
5131 && (lwp->collecting_fast_tracepoint
5132 == fast_tpoint_collect_result::not_collecting))
5133 {
5134 /* We haven't reported this LWP as stopped yet (otherwise, the
5135 last_status.kind check above would catch it, and we wouldn't
5136 reach here. This LWP may have been momentarily paused by a
5137 stop_all_lwps call while handling for example, another LWP's
5138 step-over. In that case, the pending expected SIGSTOP signal
5139 that was queued at vCont;t handling time will have already
5140 been consumed by wait_for_sigstop, and so we need to requeue
5141 another one here. Note that if the LWP already has a SIGSTOP
5142 pending, this is a no-op. */
5143
5144 if (debug_threads)
5145 debug_printf ("Client wants LWP %ld to stop. "
5146 "Making sure it has a SIGSTOP pending\n",
5147 lwpid_of (thread));
5148
5149 send_sigstop (lwp);
5150 }
5151
5152 if (thread->last_resume_kind == resume_step)
5153 {
5154 if (debug_threads)
5155 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5156 lwpid_of (thread));
5157
5158 /* If resume_step is requested by GDB, install single-step
5159 breakpoints when the thread is about to be actually resumed if
5160 the single-step breakpoints weren't removed. */
5161 if (can_software_single_step ()
5162 && !has_single_step_breakpoints (thread))
5163 install_software_single_step_breakpoints (lwp);
5164
5165 step = maybe_hw_step (thread);
5166 }
5167 else if (lwp->bp_reinsert != 0)
5168 {
5169 if (debug_threads)
5170 debug_printf (" stepping LWP %ld, reinsert set\n",
5171 lwpid_of (thread));
5172
5173 step = maybe_hw_step (thread);
5174 }
5175 else
5176 step = 0;
5177
5178 linux_resume_one_lwp (lwp, step, 0, NULL);
5179 }
5180
5181 static void
5182 unsuspend_and_proceed_one_lwp (thread_info *thread, lwp_info *except)
5183 {
5184 struct lwp_info *lwp = get_thread_lwp (thread);
5185
5186 if (lwp == except)
5187 return;
5188
5189 lwp_suspended_decr (lwp);
5190
5191 proceed_one_lwp (thread, except);
5192 }
5193
5194 /* When we finish a step-over, set threads running again. If there's
5195 another thread that may need a step-over, now's the time to start
5196 it. Eventually, we'll move all threads past their breakpoints. */
5197
5198 static void
5199 proceed_all_lwps (void)
5200 {
5201 struct thread_info *need_step_over;
5202
5203 /* If there is a thread which would otherwise be resumed, which is
5204 stopped at a breakpoint that needs stepping over, then don't
5205 resume any threads - have it step over the breakpoint with all
5206 other threads stopped, then resume all threads again. */
5207
5208 if (supports_breakpoints ())
5209 {
5210 need_step_over = find_thread (need_step_over_p);
5211
5212 if (need_step_over != NULL)
5213 {
5214 if (debug_threads)
5215 debug_printf ("proceed_all_lwps: found "
5216 "thread %ld needing a step-over\n",
5217 lwpid_of (need_step_over));
5218
5219 start_step_over (get_thread_lwp (need_step_over));
5220 return;
5221 }
5222 }
5223
5224 if (debug_threads)
5225 debug_printf ("Proceeding, no step-over needed\n");
5226
5227 for_each_thread ([] (thread_info *thread)
5228 {
5229 proceed_one_lwp (thread, NULL);
5230 });
5231 }
5232
5233 /* Stopped LWPs that the client wanted to be running, that don't have
5234 pending statuses, are set to run again, except for EXCEPT, if not
5235 NULL. This undoes a stop_all_lwps call. */
5236
5237 static void
5238 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5239 {
5240 if (debug_threads)
5241 {
5242 debug_enter ();
5243 if (except)
5244 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5245 lwpid_of (get_lwp_thread (except)));
5246 else
5247 debug_printf ("unstopping all lwps\n");
5248 }
5249
5250 if (unsuspend)
5251 for_each_thread ([&] (thread_info *thread)
5252 {
5253 unsuspend_and_proceed_one_lwp (thread, except);
5254 });
5255 else
5256 for_each_thread ([&] (thread_info *thread)
5257 {
5258 proceed_one_lwp (thread, except);
5259 });
5260
5261 if (debug_threads)
5262 {
5263 debug_printf ("unstop_all_lwps done\n");
5264 debug_exit ();
5265 }
5266 }
5267
5268
5269 #ifdef HAVE_LINUX_REGSETS
5270
5271 #define use_linux_regsets 1
5272
5273 /* Returns true if REGSET has been disabled. */
5274
5275 static int
5276 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5277 {
5278 return (info->disabled_regsets != NULL
5279 && info->disabled_regsets[regset - info->regsets]);
5280 }
5281
5282 /* Disable REGSET. */
5283
5284 static void
5285 disable_regset (struct regsets_info *info, struct regset_info *regset)
5286 {
5287 int dr_offset;
5288
5289 dr_offset = regset - info->regsets;
5290 if (info->disabled_regsets == NULL)
5291 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5292 info->disabled_regsets[dr_offset] = 1;
5293 }
5294
5295 static int
5296 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5297 struct regcache *regcache)
5298 {
5299 struct regset_info *regset;
5300 int saw_general_regs = 0;
5301 int pid;
5302 struct iovec iov;
5303
5304 pid = lwpid_of (current_thread);
5305 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5306 {
5307 void *buf, *data;
5308 int nt_type, res;
5309
5310 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5311 continue;
5312
5313 buf = xmalloc (regset->size);
5314
5315 nt_type = regset->nt_type;
5316 if (nt_type)
5317 {
5318 iov.iov_base = buf;
5319 iov.iov_len = regset->size;
5320 data = (void *) &iov;
5321 }
5322 else
5323 data = buf;
5324
5325 #ifndef __sparc__
5326 res = ptrace (regset->get_request, pid,
5327 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5328 #else
5329 res = ptrace (regset->get_request, pid, data, nt_type);
5330 #endif
5331 if (res < 0)
5332 {
5333 if (errno == EIO
5334 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5335 {
5336 /* If we get EIO on a regset, or an EINVAL and the regset is
5337 optional, do not try it again for this process mode. */
5338 disable_regset (regsets_info, regset);
5339 }
5340 else if (errno == ENODATA)
5341 {
5342 /* ENODATA may be returned if the regset is currently
5343 not "active". This can happen in normal operation,
5344 so suppress the warning in this case. */
5345 }
5346 else if (errno == ESRCH)
5347 {
5348 /* At this point, ESRCH should mean the process is
5349 already gone, in which case we simply ignore attempts
5350 to read its registers. */
5351 }
5352 else
5353 {
5354 char s[256];
5355 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5356 pid);
5357 perror (s);
5358 }
5359 }
5360 else
5361 {
5362 if (regset->type == GENERAL_REGS)
5363 saw_general_regs = 1;
5364 regset->store_function (regcache, buf);
5365 }
5366 free (buf);
5367 }
5368 if (saw_general_regs)
5369 return 0;
5370 else
5371 return 1;
5372 }
5373
5374 static int
5375 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5376 struct regcache *regcache)
5377 {
5378 struct regset_info *regset;
5379 int saw_general_regs = 0;
5380 int pid;
5381 struct iovec iov;
5382
5383 pid = lwpid_of (current_thread);
5384 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5385 {
5386 void *buf, *data;
5387 int nt_type, res;
5388
5389 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5390 || regset->fill_function == NULL)
5391 continue;
5392
5393 buf = xmalloc (regset->size);
5394
5395 /* First fill the buffer with the current register set contents,
5396 in case there are any items in the kernel's regset that are
5397 not in gdbserver's regcache. */
5398
5399 nt_type = regset->nt_type;
5400 if (nt_type)
5401 {
5402 iov.iov_base = buf;
5403 iov.iov_len = regset->size;
5404 data = (void *) &iov;
5405 }
5406 else
5407 data = buf;
5408
5409 #ifndef __sparc__
5410 res = ptrace (regset->get_request, pid,
5411 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5412 #else
5413 res = ptrace (regset->get_request, pid, data, nt_type);
5414 #endif
5415
5416 if (res == 0)
5417 {
5418 /* Then overlay our cached registers on that. */
5419 regset->fill_function (regcache, buf);
5420
5421 /* Only now do we write the register set. */
5422 #ifndef __sparc__
5423 res = ptrace (regset->set_request, pid,
5424 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5425 #else
5426 res = ptrace (regset->set_request, pid, data, nt_type);
5427 #endif
5428 }
5429
5430 if (res < 0)
5431 {
5432 if (errno == EIO
5433 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5434 {
5435 /* If we get EIO on a regset, or an EINVAL and the regset is
5436 optional, do not try it again for this process mode. */
5437 disable_regset (regsets_info, regset);
5438 }
5439 else if (errno == ESRCH)
5440 {
5441 /* At this point, ESRCH should mean the process is
5442 already gone, in which case we simply ignore attempts
5443 to change its registers. See also the related
5444 comment in linux_resume_one_lwp. */
5445 free (buf);
5446 return 0;
5447 }
5448 else
5449 {
5450 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5451 }
5452 }
5453 else if (regset->type == GENERAL_REGS)
5454 saw_general_regs = 1;
5455 free (buf);
5456 }
5457 if (saw_general_regs)
5458 return 0;
5459 else
5460 return 1;
5461 }
5462
5463 #else /* !HAVE_LINUX_REGSETS */
5464
5465 #define use_linux_regsets 0
5466 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5467 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5468
5469 #endif
5470
5471 /* Return 1 if register REGNO is supported by one of the regset ptrace
5472 calls or 0 if it has to be transferred individually. */
5473
5474 static int
5475 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5476 {
5477 unsigned char mask = 1 << (regno % 8);
5478 size_t index = regno / 8;
5479
5480 return (use_linux_regsets
5481 && (regs_info->regset_bitmap == NULL
5482 || (regs_info->regset_bitmap[index] & mask) != 0));
5483 }
5484
5485 #ifdef HAVE_LINUX_USRREGS
5486
5487 static int
5488 register_addr (const struct usrregs_info *usrregs, int regnum)
5489 {
5490 int addr;
5491
5492 if (regnum < 0 || regnum >= usrregs->num_regs)
5493 error ("Invalid register number %d.", regnum);
5494
5495 addr = usrregs->regmap[regnum];
5496
5497 return addr;
5498 }
5499
5500 /* Fetch one register. */
5501 static void
5502 fetch_register (const struct usrregs_info *usrregs,
5503 struct regcache *regcache, int regno)
5504 {
5505 CORE_ADDR regaddr;
5506 int i, size;
5507 char *buf;
5508 int pid;
5509
5510 if (regno >= usrregs->num_regs)
5511 return;
5512 if ((*the_low_target.cannot_fetch_register) (regno))
5513 return;
5514
5515 regaddr = register_addr (usrregs, regno);
5516 if (regaddr == -1)
5517 return;
5518
5519 size = ((register_size (regcache->tdesc, regno)
5520 + sizeof (PTRACE_XFER_TYPE) - 1)
5521 & -sizeof (PTRACE_XFER_TYPE));
5522 buf = (char *) alloca (size);
5523
5524 pid = lwpid_of (current_thread);
5525 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5526 {
5527 errno = 0;
5528 *(PTRACE_XFER_TYPE *) (buf + i) =
5529 ptrace (PTRACE_PEEKUSER, pid,
5530 /* Coerce to a uintptr_t first to avoid potential gcc warning
5531 of coercing an 8 byte integer to a 4 byte pointer. */
5532 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5533 regaddr += sizeof (PTRACE_XFER_TYPE);
5534 if (errno != 0)
5535 {
5536 /* Mark register REGNO unavailable. */
5537 supply_register (regcache, regno, NULL);
5538 return;
5539 }
5540 }
5541
5542 if (the_low_target.supply_ptrace_register)
5543 the_low_target.supply_ptrace_register (regcache, regno, buf);
5544 else
5545 supply_register (regcache, regno, buf);
5546 }
5547
5548 /* Store one register. */
5549 static void
5550 store_register (const struct usrregs_info *usrregs,
5551 struct regcache *regcache, int regno)
5552 {
5553 CORE_ADDR regaddr;
5554 int i, size;
5555 char *buf;
5556 int pid;
5557
5558 if (regno >= usrregs->num_regs)
5559 return;
5560 if ((*the_low_target.cannot_store_register) (regno))
5561 return;
5562
5563 regaddr = register_addr (usrregs, regno);
5564 if (regaddr == -1)
5565 return;
5566
5567 size = ((register_size (regcache->tdesc, regno)
5568 + sizeof (PTRACE_XFER_TYPE) - 1)
5569 & -sizeof (PTRACE_XFER_TYPE));
5570 buf = (char *) alloca (size);
5571 memset (buf, 0, size);
5572
5573 if (the_low_target.collect_ptrace_register)
5574 the_low_target.collect_ptrace_register (regcache, regno, buf);
5575 else
5576 collect_register (regcache, regno, buf);
5577
5578 pid = lwpid_of (current_thread);
5579 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5580 {
5581 errno = 0;
5582 ptrace (PTRACE_POKEUSER, pid,
5583 /* Coerce to a uintptr_t first to avoid potential gcc warning
5584 about coercing an 8 byte integer to a 4 byte pointer. */
5585 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5586 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5587 if (errno != 0)
5588 {
5589 /* At this point, ESRCH should mean the process is
5590 already gone, in which case we simply ignore attempts
5591 to change its registers. See also the related
5592 comment in linux_resume_one_lwp. */
5593 if (errno == ESRCH)
5594 return;
5595
5596 if ((*the_low_target.cannot_store_register) (regno) == 0)
5597 error ("writing register %d: %s", regno, safe_strerror (errno));
5598 }
5599 regaddr += sizeof (PTRACE_XFER_TYPE);
5600 }
5601 }
5602
5603 /* Fetch all registers, or just one, from the child process.
5604 If REGNO is -1, do this for all registers, skipping any that are
5605 assumed to have been retrieved by regsets_fetch_inferior_registers,
5606 unless ALL is non-zero.
5607 Otherwise, REGNO specifies which register (so we can save time). */
5608 static void
5609 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5610 struct regcache *regcache, int regno, int all)
5611 {
5612 struct usrregs_info *usr = regs_info->usrregs;
5613
5614 if (regno == -1)
5615 {
5616 for (regno = 0; regno < usr->num_regs; regno++)
5617 if (all || !linux_register_in_regsets (regs_info, regno))
5618 fetch_register (usr, regcache, regno);
5619 }
5620 else
5621 fetch_register (usr, regcache, regno);
5622 }
5623
5624 /* Store our register values back into the inferior.
5625 If REGNO is -1, do this for all registers, skipping any that are
5626 assumed to have been saved by regsets_store_inferior_registers,
5627 unless ALL is non-zero.
5628 Otherwise, REGNO specifies which register (so we can save time). */
5629 static void
5630 usr_store_inferior_registers (const struct regs_info *regs_info,
5631 struct regcache *regcache, int regno, int all)
5632 {
5633 struct usrregs_info *usr = regs_info->usrregs;
5634
5635 if (regno == -1)
5636 {
5637 for (regno = 0; regno < usr->num_regs; regno++)
5638 if (all || !linux_register_in_regsets (regs_info, regno))
5639 store_register (usr, regcache, regno);
5640 }
5641 else
5642 store_register (usr, regcache, regno);
5643 }
5644
5645 #else /* !HAVE_LINUX_USRREGS */
5646
5647 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5648 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5649
5650 #endif
5651
5652
5653 static void
5654 linux_fetch_registers (struct regcache *regcache, int regno)
5655 {
5656 int use_regsets;
5657 int all = 0;
5658 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5659
5660 if (regno == -1)
5661 {
5662 if (the_low_target.fetch_register != NULL
5663 && regs_info->usrregs != NULL)
5664 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5665 (*the_low_target.fetch_register) (regcache, regno);
5666
5667 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5668 if (regs_info->usrregs != NULL)
5669 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5670 }
5671 else
5672 {
5673 if (the_low_target.fetch_register != NULL
5674 && (*the_low_target.fetch_register) (regcache, regno))
5675 return;
5676
5677 use_regsets = linux_register_in_regsets (regs_info, regno);
5678 if (use_regsets)
5679 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5680 regcache);
5681 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5682 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5683 }
5684 }
5685
5686 static void
5687 linux_store_registers (struct regcache *regcache, int regno)
5688 {
5689 int use_regsets;
5690 int all = 0;
5691 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5692
5693 if (regno == -1)
5694 {
5695 all = regsets_store_inferior_registers (regs_info->regsets_info,
5696 regcache);
5697 if (regs_info->usrregs != NULL)
5698 usr_store_inferior_registers (regs_info, regcache, regno, all);
5699 }
5700 else
5701 {
5702 use_regsets = linux_register_in_regsets (regs_info, regno);
5703 if (use_regsets)
5704 all = regsets_store_inferior_registers (regs_info->regsets_info,
5705 regcache);
5706 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5707 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5708 }
5709 }
5710
5711
5712 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5713 to debugger memory starting at MYADDR. */
5714
5715 static int
5716 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5717 {
5718 int pid = lwpid_of (current_thread);
5719 PTRACE_XFER_TYPE *buffer;
5720 CORE_ADDR addr;
5721 int count;
5722 char filename[64];
5723 int i;
5724 int ret;
5725 int fd;
5726
5727 /* Try using /proc. Don't bother for one word. */
5728 if (len >= 3 * sizeof (long))
5729 {
5730 int bytes;
5731
5732 /* We could keep this file open and cache it - possibly one per
5733 thread. That requires some juggling, but is even faster. */
5734 sprintf (filename, "/proc/%d/mem", pid);
5735 fd = open (filename, O_RDONLY | O_LARGEFILE);
5736 if (fd == -1)
5737 goto no_proc;
5738
5739 /* If pread64 is available, use it. It's faster if the kernel
5740 supports it (only one syscall), and it's 64-bit safe even on
5741 32-bit platforms (for instance, SPARC debugging a SPARC64
5742 application). */
5743 #ifdef HAVE_PREAD64
5744 bytes = pread64 (fd, myaddr, len, memaddr);
5745 #else
5746 bytes = -1;
5747 if (lseek (fd, memaddr, SEEK_SET) != -1)
5748 bytes = read (fd, myaddr, len);
5749 #endif
5750
5751 close (fd);
5752 if (bytes == len)
5753 return 0;
5754
5755 /* Some data was read, we'll try to get the rest with ptrace. */
5756 if (bytes > 0)
5757 {
5758 memaddr += bytes;
5759 myaddr += bytes;
5760 len -= bytes;
5761 }
5762 }
5763
5764 no_proc:
5765 /* Round starting address down to longword boundary. */
5766 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5767 /* Round ending address up; get number of longwords that makes. */
5768 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5769 / sizeof (PTRACE_XFER_TYPE));
5770 /* Allocate buffer of that many longwords. */
5771 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5772
5773 /* Read all the longwords */
5774 errno = 0;
5775 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5776 {
5777 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5778 about coercing an 8 byte integer to a 4 byte pointer. */
5779 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5780 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5781 (PTRACE_TYPE_ARG4) 0);
5782 if (errno)
5783 break;
5784 }
5785 ret = errno;
5786
5787 /* Copy appropriate bytes out of the buffer. */
5788 if (i > 0)
5789 {
5790 i *= sizeof (PTRACE_XFER_TYPE);
5791 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5792 memcpy (myaddr,
5793 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5794 i < len ? i : len);
5795 }
5796
5797 return ret;
5798 }
5799
5800 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5801 memory at MEMADDR. On failure (cannot write to the inferior)
5802 returns the value of errno. Always succeeds if LEN is zero. */
5803
5804 static int
5805 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5806 {
5807 int i;
5808 /* Round starting address down to longword boundary. */
5809 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5810 /* Round ending address up; get number of longwords that makes. */
5811 int count
5812 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5813 / sizeof (PTRACE_XFER_TYPE);
5814
5815 /* Allocate buffer of that many longwords. */
5816 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5817
5818 int pid = lwpid_of (current_thread);
5819
5820 if (len == 0)
5821 {
5822 /* Zero length write always succeeds. */
5823 return 0;
5824 }
5825
5826 if (debug_threads)
5827 {
5828 /* Dump up to four bytes. */
5829 char str[4 * 2 + 1];
5830 char *p = str;
5831 int dump = len < 4 ? len : 4;
5832
5833 for (i = 0; i < dump; i++)
5834 {
5835 sprintf (p, "%02x", myaddr[i]);
5836 p += 2;
5837 }
5838 *p = '\0';
5839
5840 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5841 str, (long) memaddr, pid);
5842 }
5843
5844 /* Fill start and end extra bytes of buffer with existing memory data. */
5845
5846 errno = 0;
5847 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5848 about coercing an 8 byte integer to a 4 byte pointer. */
5849 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5850 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5851 (PTRACE_TYPE_ARG4) 0);
5852 if (errno)
5853 return errno;
5854
5855 if (count > 1)
5856 {
5857 errno = 0;
5858 buffer[count - 1]
5859 = ptrace (PTRACE_PEEKTEXT, pid,
5860 /* Coerce to a uintptr_t first to avoid potential gcc warning
5861 about coercing an 8 byte integer to a 4 byte pointer. */
5862 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5863 * sizeof (PTRACE_XFER_TYPE)),
5864 (PTRACE_TYPE_ARG4) 0);
5865 if (errno)
5866 return errno;
5867 }
5868
5869 /* Copy data to be written over corresponding part of buffer. */
5870
5871 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5872 myaddr, len);
5873
5874 /* Write the entire buffer. */
5875
5876 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5877 {
5878 errno = 0;
5879 ptrace (PTRACE_POKETEXT, pid,
5880 /* Coerce to a uintptr_t first to avoid potential gcc warning
5881 about coercing an 8 byte integer to a 4 byte pointer. */
5882 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5883 (PTRACE_TYPE_ARG4) buffer[i]);
5884 if (errno)
5885 return errno;
5886 }
5887
5888 return 0;
5889 }
5890
5891 static void
5892 linux_look_up_symbols (void)
5893 {
5894 #ifdef USE_THREAD_DB
5895 struct process_info *proc = current_process ();
5896
5897 if (proc->priv->thread_db != NULL)
5898 return;
5899
5900 thread_db_init ();
5901 #endif
5902 }
5903
5904 static void
5905 linux_request_interrupt (void)
5906 {
5907 /* Send a SIGINT to the process group. This acts just like the user
5908 typed a ^C on the controlling terminal. */
5909 kill (-signal_pid, SIGINT);
5910 }
5911
5912 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5913 to debugger memory starting at MYADDR. */
5914
5915 static int
5916 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5917 {
5918 char filename[PATH_MAX];
5919 int fd, n;
5920 int pid = lwpid_of (current_thread);
5921
5922 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5923
5924 fd = open (filename, O_RDONLY);
5925 if (fd < 0)
5926 return -1;
5927
5928 if (offset != (CORE_ADDR) 0
5929 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5930 n = -1;
5931 else
5932 n = read (fd, myaddr, len);
5933
5934 close (fd);
5935
5936 return n;
5937 }
5938
5939 /* These breakpoint and watchpoint related wrapper functions simply
5940 pass on the function call if the target has registered a
5941 corresponding function. */
5942
5943 static int
5944 linux_supports_z_point_type (char z_type)
5945 {
5946 return (the_low_target.supports_z_point_type != NULL
5947 && the_low_target.supports_z_point_type (z_type));
5948 }
5949
5950 static int
5951 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5952 int size, struct raw_breakpoint *bp)
5953 {
5954 if (type == raw_bkpt_type_sw)
5955 return insert_memory_breakpoint (bp);
5956 else if (the_low_target.insert_point != NULL)
5957 return the_low_target.insert_point (type, addr, size, bp);
5958 else
5959 /* Unsupported (see target.h). */
5960 return 1;
5961 }
5962
5963 static int
5964 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5965 int size, struct raw_breakpoint *bp)
5966 {
5967 if (type == raw_bkpt_type_sw)
5968 return remove_memory_breakpoint (bp);
5969 else if (the_low_target.remove_point != NULL)
5970 return the_low_target.remove_point (type, addr, size, bp);
5971 else
5972 /* Unsupported (see target.h). */
5973 return 1;
5974 }
5975
5976 /* Implement the to_stopped_by_sw_breakpoint target_ops
5977 method. */
5978
5979 static int
5980 linux_stopped_by_sw_breakpoint (void)
5981 {
5982 struct lwp_info *lwp = get_thread_lwp (current_thread);
5983
5984 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5985 }
5986
5987 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5988 method. */
5989
5990 static int
5991 linux_supports_stopped_by_sw_breakpoint (void)
5992 {
5993 return USE_SIGTRAP_SIGINFO;
5994 }
5995
5996 /* Implement the to_stopped_by_hw_breakpoint target_ops
5997 method. */
5998
5999 static int
6000 linux_stopped_by_hw_breakpoint (void)
6001 {
6002 struct lwp_info *lwp = get_thread_lwp (current_thread);
6003
6004 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6005 }
6006
6007 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6008 method. */
6009
6010 static int
6011 linux_supports_stopped_by_hw_breakpoint (void)
6012 {
6013 return USE_SIGTRAP_SIGINFO;
6014 }
6015
6016 /* Implement the supports_hardware_single_step target_ops method. */
6017
6018 static int
6019 linux_supports_hardware_single_step (void)
6020 {
6021 return can_hardware_single_step ();
6022 }
6023
6024 static int
6025 linux_supports_software_single_step (void)
6026 {
6027 return can_software_single_step ();
6028 }
6029
6030 static int
6031 linux_stopped_by_watchpoint (void)
6032 {
6033 struct lwp_info *lwp = get_thread_lwp (current_thread);
6034
6035 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6036 }
6037
6038 static CORE_ADDR
6039 linux_stopped_data_address (void)
6040 {
6041 struct lwp_info *lwp = get_thread_lwp (current_thread);
6042
6043 return lwp->stopped_data_address;
6044 }
6045
6046 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6047 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6048 && defined(PT_TEXT_END_ADDR)
6049
6050 /* This is only used for targets that define PT_TEXT_ADDR,
6051 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6052 the target has different ways of acquiring this information, like
6053 loadmaps. */
6054
6055 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6056 to tell gdb about. */
6057
6058 static int
6059 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6060 {
6061 unsigned long text, text_end, data;
6062 int pid = lwpid_of (current_thread);
6063
6064 errno = 0;
6065
6066 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6067 (PTRACE_TYPE_ARG4) 0);
6068 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6069 (PTRACE_TYPE_ARG4) 0);
6070 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6071 (PTRACE_TYPE_ARG4) 0);
6072
6073 if (errno == 0)
6074 {
6075 /* Both text and data offsets produced at compile-time (and so
6076 used by gdb) are relative to the beginning of the program,
6077 with the data segment immediately following the text segment.
6078 However, the actual runtime layout in memory may put the data
6079 somewhere else, so when we send gdb a data base-address, we
6080 use the real data base address and subtract the compile-time
6081 data base-address from it (which is just the length of the
6082 text segment). BSS immediately follows data in both
6083 cases. */
6084 *text_p = text;
6085 *data_p = data - (text_end - text);
6086
6087 return 1;
6088 }
6089 return 0;
6090 }
6091 #endif
6092
6093 static int
6094 linux_qxfer_osdata (const char *annex,
6095 unsigned char *readbuf, unsigned const char *writebuf,
6096 CORE_ADDR offset, int len)
6097 {
6098 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6099 }
6100
6101 /* Convert a native/host siginfo object, into/from the siginfo in the
6102 layout of the inferiors' architecture. */
6103
6104 static void
6105 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6106 {
6107 int done = 0;
6108
6109 if (the_low_target.siginfo_fixup != NULL)
6110 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6111
6112 /* If there was no callback, or the callback didn't do anything,
6113 then just do a straight memcpy. */
6114 if (!done)
6115 {
6116 if (direction == 1)
6117 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6118 else
6119 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6120 }
6121 }
6122
6123 static int
6124 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6125 unsigned const char *writebuf, CORE_ADDR offset, int len)
6126 {
6127 int pid;
6128 siginfo_t siginfo;
6129 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6130
6131 if (current_thread == NULL)
6132 return -1;
6133
6134 pid = lwpid_of (current_thread);
6135
6136 if (debug_threads)
6137 debug_printf ("%s siginfo for lwp %d.\n",
6138 readbuf != NULL ? "Reading" : "Writing",
6139 pid);
6140
6141 if (offset >= sizeof (siginfo))
6142 return -1;
6143
6144 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6145 return -1;
6146
6147 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6148 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6149 inferior with a 64-bit GDBSERVER should look the same as debugging it
6150 with a 32-bit GDBSERVER, we need to convert it. */
6151 siginfo_fixup (&siginfo, inf_siginfo, 0);
6152
6153 if (offset + len > sizeof (siginfo))
6154 len = sizeof (siginfo) - offset;
6155
6156 if (readbuf != NULL)
6157 memcpy (readbuf, inf_siginfo + offset, len);
6158 else
6159 {
6160 memcpy (inf_siginfo + offset, writebuf, len);
6161
6162 /* Convert back to ptrace layout before flushing it out. */
6163 siginfo_fixup (&siginfo, inf_siginfo, 1);
6164
6165 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6166 return -1;
6167 }
6168
6169 return len;
6170 }
6171
6172 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6173 so we notice when children change state; as the handler for the
6174 sigsuspend in my_waitpid. */
6175
6176 static void
6177 sigchld_handler (int signo)
6178 {
6179 int old_errno = errno;
6180
6181 if (debug_threads)
6182 {
6183 do
6184 {
6185 /* Use the async signal safe debug function. */
6186 if (debug_write ("sigchld_handler\n",
6187 sizeof ("sigchld_handler\n") - 1) < 0)
6188 break; /* just ignore */
6189 } while (0);
6190 }
6191
6192 if (target_is_async_p ())
6193 async_file_mark (); /* trigger a linux_wait */
6194
6195 errno = old_errno;
6196 }
6197
6198 static int
6199 linux_supports_non_stop (void)
6200 {
6201 return 1;
6202 }
6203
6204 static int
6205 linux_async (int enable)
6206 {
6207 int previous = target_is_async_p ();
6208
6209 if (debug_threads)
6210 debug_printf ("linux_async (%d), previous=%d\n",
6211 enable, previous);
6212
6213 if (previous != enable)
6214 {
6215 sigset_t mask;
6216 sigemptyset (&mask);
6217 sigaddset (&mask, SIGCHLD);
6218
6219 gdb_sigmask (SIG_BLOCK, &mask, NULL);
6220
6221 if (enable)
6222 {
6223 if (pipe (linux_event_pipe) == -1)
6224 {
6225 linux_event_pipe[0] = -1;
6226 linux_event_pipe[1] = -1;
6227 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6228
6229 warning ("creating event pipe failed.");
6230 return previous;
6231 }
6232
6233 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6234 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6235
6236 /* Register the event loop handler. */
6237 add_file_handler (linux_event_pipe[0],
6238 handle_target_event, NULL);
6239
6240 /* Always trigger a linux_wait. */
6241 async_file_mark ();
6242 }
6243 else
6244 {
6245 delete_file_handler (linux_event_pipe[0]);
6246
6247 close (linux_event_pipe[0]);
6248 close (linux_event_pipe[1]);
6249 linux_event_pipe[0] = -1;
6250 linux_event_pipe[1] = -1;
6251 }
6252
6253 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6254 }
6255
6256 return previous;
6257 }
6258
6259 static int
6260 linux_start_non_stop (int nonstop)
6261 {
6262 /* Register or unregister from event-loop accordingly. */
6263 linux_async (nonstop);
6264
6265 if (target_is_async_p () != (nonstop != 0))
6266 return -1;
6267
6268 return 0;
6269 }
6270
6271 static int
6272 linux_supports_multi_process (void)
6273 {
6274 return 1;
6275 }
6276
6277 /* Check if fork events are supported. */
6278
6279 static int
6280 linux_supports_fork_events (void)
6281 {
6282 return linux_supports_tracefork ();
6283 }
6284
6285 /* Check if vfork events are supported. */
6286
6287 static int
6288 linux_supports_vfork_events (void)
6289 {
6290 return linux_supports_tracefork ();
6291 }
6292
6293 /* Check if exec events are supported. */
6294
6295 static int
6296 linux_supports_exec_events (void)
6297 {
6298 return linux_supports_traceexec ();
6299 }
6300
6301 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6302 ptrace flags for all inferiors. This is in case the new GDB connection
6303 doesn't support the same set of events that the previous one did. */
6304
6305 static void
6306 linux_handle_new_gdb_connection (void)
6307 {
6308 /* Request that all the lwps reset their ptrace options. */
6309 for_each_thread ([] (thread_info *thread)
6310 {
6311 struct lwp_info *lwp = get_thread_lwp (thread);
6312
6313 if (!lwp->stopped)
6314 {
6315 /* Stop the lwp so we can modify its ptrace options. */
6316 lwp->must_set_ptrace_flags = 1;
6317 linux_stop_lwp (lwp);
6318 }
6319 else
6320 {
6321 /* Already stopped; go ahead and set the ptrace options. */
6322 struct process_info *proc = find_process_pid (pid_of (thread));
6323 int options = linux_low_ptrace_options (proc->attached);
6324
6325 linux_enable_event_reporting (lwpid_of (thread), options);
6326 lwp->must_set_ptrace_flags = 0;
6327 }
6328 });
6329 }
6330
6331 static int
6332 linux_supports_disable_randomization (void)
6333 {
6334 #ifdef HAVE_PERSONALITY
6335 return 1;
6336 #else
6337 return 0;
6338 #endif
6339 }
6340
6341 static int
6342 linux_supports_agent (void)
6343 {
6344 return 1;
6345 }
6346
6347 static int
6348 linux_supports_range_stepping (void)
6349 {
6350 if (can_software_single_step ())
6351 return 1;
6352 if (*the_low_target.supports_range_stepping == NULL)
6353 return 0;
6354
6355 return (*the_low_target.supports_range_stepping) ();
6356 }
6357
6358 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6359 struct target_loadseg
6360 {
6361 /* Core address to which the segment is mapped. */
6362 Elf32_Addr addr;
6363 /* VMA recorded in the program header. */
6364 Elf32_Addr p_vaddr;
6365 /* Size of this segment in memory. */
6366 Elf32_Word p_memsz;
6367 };
6368
6369 # if defined PT_GETDSBT
6370 struct target_loadmap
6371 {
6372 /* Protocol version number, must be zero. */
6373 Elf32_Word version;
6374 /* Pointer to the DSBT table, its size, and the DSBT index. */
6375 unsigned *dsbt_table;
6376 unsigned dsbt_size, dsbt_index;
6377 /* Number of segments in this map. */
6378 Elf32_Word nsegs;
6379 /* The actual memory map. */
6380 struct target_loadseg segs[/*nsegs*/];
6381 };
6382 # define LINUX_LOADMAP PT_GETDSBT
6383 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6384 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6385 # else
6386 struct target_loadmap
6387 {
6388 /* Protocol version number, must be zero. */
6389 Elf32_Half version;
6390 /* Number of segments in this map. */
6391 Elf32_Half nsegs;
6392 /* The actual memory map. */
6393 struct target_loadseg segs[/*nsegs*/];
6394 };
6395 # define LINUX_LOADMAP PTRACE_GETFDPIC
6396 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6397 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6398 # endif
6399
6400 static int
6401 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6402 unsigned char *myaddr, unsigned int len)
6403 {
6404 int pid = lwpid_of (current_thread);
6405 int addr = -1;
6406 struct target_loadmap *data = NULL;
6407 unsigned int actual_length, copy_length;
6408
6409 if (strcmp (annex, "exec") == 0)
6410 addr = (int) LINUX_LOADMAP_EXEC;
6411 else if (strcmp (annex, "interp") == 0)
6412 addr = (int) LINUX_LOADMAP_INTERP;
6413 else
6414 return -1;
6415
6416 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6417 return -1;
6418
6419 if (data == NULL)
6420 return -1;
6421
6422 actual_length = sizeof (struct target_loadmap)
6423 + sizeof (struct target_loadseg) * data->nsegs;
6424
6425 if (offset < 0 || offset > actual_length)
6426 return -1;
6427
6428 copy_length = actual_length - offset < len ? actual_length - offset : len;
6429 memcpy (myaddr, (char *) data + offset, copy_length);
6430 return copy_length;
6431 }
6432 #else
6433 # define linux_read_loadmap NULL
6434 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6435
6436 static void
6437 linux_process_qsupported (char **features, int count)
6438 {
6439 if (the_low_target.process_qsupported != NULL)
6440 the_low_target.process_qsupported (features, count);
6441 }
6442
6443 static int
6444 linux_supports_catch_syscall (void)
6445 {
6446 return (the_low_target.get_syscall_trapinfo != NULL
6447 && linux_supports_tracesysgood ());
6448 }
6449
6450 static int
6451 linux_get_ipa_tdesc_idx (void)
6452 {
6453 if (the_low_target.get_ipa_tdesc_idx == NULL)
6454 return 0;
6455
6456 return (*the_low_target.get_ipa_tdesc_idx) ();
6457 }
6458
6459 static int
6460 linux_supports_tracepoints (void)
6461 {
6462 if (*the_low_target.supports_tracepoints == NULL)
6463 return 0;
6464
6465 return (*the_low_target.supports_tracepoints) ();
6466 }
6467
6468 static CORE_ADDR
6469 linux_read_pc (struct regcache *regcache)
6470 {
6471 if (the_low_target.get_pc == NULL)
6472 return 0;
6473
6474 return (*the_low_target.get_pc) (regcache);
6475 }
6476
6477 static void
6478 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6479 {
6480 gdb_assert (the_low_target.set_pc != NULL);
6481
6482 (*the_low_target.set_pc) (regcache, pc);
6483 }
6484
6485 static int
6486 linux_thread_stopped (struct thread_info *thread)
6487 {
6488 return get_thread_lwp (thread)->stopped;
6489 }
6490
6491 /* This exposes stop-all-threads functionality to other modules. */
6492
6493 static void
6494 linux_pause_all (int freeze)
6495 {
6496 stop_all_lwps (freeze, NULL);
6497 }
6498
6499 /* This exposes unstop-all-threads functionality to other gdbserver
6500 modules. */
6501
6502 static void
6503 linux_unpause_all (int unfreeze)
6504 {
6505 unstop_all_lwps (unfreeze, NULL);
6506 }
6507
6508 static int
6509 linux_prepare_to_access_memory (void)
6510 {
6511 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6512 running LWP. */
6513 if (non_stop)
6514 linux_pause_all (1);
6515 return 0;
6516 }
6517
6518 static void
6519 linux_done_accessing_memory (void)
6520 {
6521 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6522 running LWP. */
6523 if (non_stop)
6524 linux_unpause_all (1);
6525 }
6526
6527 static int
6528 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6529 CORE_ADDR collector,
6530 CORE_ADDR lockaddr,
6531 ULONGEST orig_size,
6532 CORE_ADDR *jump_entry,
6533 CORE_ADDR *trampoline,
6534 ULONGEST *trampoline_size,
6535 unsigned char *jjump_pad_insn,
6536 ULONGEST *jjump_pad_insn_size,
6537 CORE_ADDR *adjusted_insn_addr,
6538 CORE_ADDR *adjusted_insn_addr_end,
6539 char *err)
6540 {
6541 return (*the_low_target.install_fast_tracepoint_jump_pad)
6542 (tpoint, tpaddr, collector, lockaddr, orig_size,
6543 jump_entry, trampoline, trampoline_size,
6544 jjump_pad_insn, jjump_pad_insn_size,
6545 adjusted_insn_addr, adjusted_insn_addr_end,
6546 err);
6547 }
6548
6549 static struct emit_ops *
6550 linux_emit_ops (void)
6551 {
6552 if (the_low_target.emit_ops != NULL)
6553 return (*the_low_target.emit_ops) ();
6554 else
6555 return NULL;
6556 }
6557
6558 static int
6559 linux_get_min_fast_tracepoint_insn_len (void)
6560 {
6561 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6562 }
6563
6564 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6565
6566 static int
6567 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6568 CORE_ADDR *phdr_memaddr, int *num_phdr)
6569 {
6570 char filename[PATH_MAX];
6571 int fd;
6572 const int auxv_size = is_elf64
6573 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6574 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6575
6576 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6577
6578 fd = open (filename, O_RDONLY);
6579 if (fd < 0)
6580 return 1;
6581
6582 *phdr_memaddr = 0;
6583 *num_phdr = 0;
6584 while (read (fd, buf, auxv_size) == auxv_size
6585 && (*phdr_memaddr == 0 || *num_phdr == 0))
6586 {
6587 if (is_elf64)
6588 {
6589 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6590
6591 switch (aux->a_type)
6592 {
6593 case AT_PHDR:
6594 *phdr_memaddr = aux->a_un.a_val;
6595 break;
6596 case AT_PHNUM:
6597 *num_phdr = aux->a_un.a_val;
6598 break;
6599 }
6600 }
6601 else
6602 {
6603 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6604
6605 switch (aux->a_type)
6606 {
6607 case AT_PHDR:
6608 *phdr_memaddr = aux->a_un.a_val;
6609 break;
6610 case AT_PHNUM:
6611 *num_phdr = aux->a_un.a_val;
6612 break;
6613 }
6614 }
6615 }
6616
6617 close (fd);
6618
6619 if (*phdr_memaddr == 0 || *num_phdr == 0)
6620 {
6621 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6622 "phdr_memaddr = %ld, phdr_num = %d",
6623 (long) *phdr_memaddr, *num_phdr);
6624 return 2;
6625 }
6626
6627 return 0;
6628 }
6629
6630 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6631
6632 static CORE_ADDR
6633 get_dynamic (const int pid, const int is_elf64)
6634 {
6635 CORE_ADDR phdr_memaddr, relocation;
6636 int num_phdr, i;
6637 unsigned char *phdr_buf;
6638 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6639
6640 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6641 return 0;
6642
6643 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6644 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6645
6646 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6647 return 0;
6648
6649 /* Compute relocation: it is expected to be 0 for "regular" executables,
6650 non-zero for PIE ones. */
6651 relocation = -1;
6652 for (i = 0; relocation == -1 && i < num_phdr; i++)
6653 if (is_elf64)
6654 {
6655 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6656
6657 if (p->p_type == PT_PHDR)
6658 relocation = phdr_memaddr - p->p_vaddr;
6659 }
6660 else
6661 {
6662 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6663
6664 if (p->p_type == PT_PHDR)
6665 relocation = phdr_memaddr - p->p_vaddr;
6666 }
6667
6668 if (relocation == -1)
6669 {
6670 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6671 any real world executables, including PIE executables, have always
6672 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6673 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6674 or present DT_DEBUG anyway (fpc binaries are statically linked).
6675
6676 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6677
6678 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6679
6680 return 0;
6681 }
6682
6683 for (i = 0; i < num_phdr; i++)
6684 {
6685 if (is_elf64)
6686 {
6687 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6688
6689 if (p->p_type == PT_DYNAMIC)
6690 return p->p_vaddr + relocation;
6691 }
6692 else
6693 {
6694 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6695
6696 if (p->p_type == PT_DYNAMIC)
6697 return p->p_vaddr + relocation;
6698 }
6699 }
6700
6701 return 0;
6702 }
6703
6704 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6705 can be 0 if the inferior does not yet have the library list initialized.
6706 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6707 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6708
6709 static CORE_ADDR
6710 get_r_debug (const int pid, const int is_elf64)
6711 {
6712 CORE_ADDR dynamic_memaddr;
6713 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6714 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6715 CORE_ADDR map = -1;
6716
6717 dynamic_memaddr = get_dynamic (pid, is_elf64);
6718 if (dynamic_memaddr == 0)
6719 return map;
6720
6721 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6722 {
6723 if (is_elf64)
6724 {
6725 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6726 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6727 union
6728 {
6729 Elf64_Xword map;
6730 unsigned char buf[sizeof (Elf64_Xword)];
6731 }
6732 rld_map;
6733 #endif
6734 #ifdef DT_MIPS_RLD_MAP
6735 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6736 {
6737 if (linux_read_memory (dyn->d_un.d_val,
6738 rld_map.buf, sizeof (rld_map.buf)) == 0)
6739 return rld_map.map;
6740 else
6741 break;
6742 }
6743 #endif /* DT_MIPS_RLD_MAP */
6744 #ifdef DT_MIPS_RLD_MAP_REL
6745 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6746 {
6747 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6748 rld_map.buf, sizeof (rld_map.buf)) == 0)
6749 return rld_map.map;
6750 else
6751 break;
6752 }
6753 #endif /* DT_MIPS_RLD_MAP_REL */
6754
6755 if (dyn->d_tag == DT_DEBUG && map == -1)
6756 map = dyn->d_un.d_val;
6757
6758 if (dyn->d_tag == DT_NULL)
6759 break;
6760 }
6761 else
6762 {
6763 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6764 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6765 union
6766 {
6767 Elf32_Word map;
6768 unsigned char buf[sizeof (Elf32_Word)];
6769 }
6770 rld_map;
6771 #endif
6772 #ifdef DT_MIPS_RLD_MAP
6773 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6774 {
6775 if (linux_read_memory (dyn->d_un.d_val,
6776 rld_map.buf, sizeof (rld_map.buf)) == 0)
6777 return rld_map.map;
6778 else
6779 break;
6780 }
6781 #endif /* DT_MIPS_RLD_MAP */
6782 #ifdef DT_MIPS_RLD_MAP_REL
6783 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6784 {
6785 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6786 rld_map.buf, sizeof (rld_map.buf)) == 0)
6787 return rld_map.map;
6788 else
6789 break;
6790 }
6791 #endif /* DT_MIPS_RLD_MAP_REL */
6792
6793 if (dyn->d_tag == DT_DEBUG && map == -1)
6794 map = dyn->d_un.d_val;
6795
6796 if (dyn->d_tag == DT_NULL)
6797 break;
6798 }
6799
6800 dynamic_memaddr += dyn_size;
6801 }
6802
6803 return map;
6804 }
6805
6806 /* Read one pointer from MEMADDR in the inferior. */
6807
6808 static int
6809 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6810 {
6811 int ret;
6812
6813 /* Go through a union so this works on either big or little endian
6814 hosts, when the inferior's pointer size is smaller than the size
6815 of CORE_ADDR. It is assumed the inferior's endianness is the
6816 same of the superior's. */
6817 union
6818 {
6819 CORE_ADDR core_addr;
6820 unsigned int ui;
6821 unsigned char uc;
6822 } addr;
6823
6824 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6825 if (ret == 0)
6826 {
6827 if (ptr_size == sizeof (CORE_ADDR))
6828 *ptr = addr.core_addr;
6829 else if (ptr_size == sizeof (unsigned int))
6830 *ptr = addr.ui;
6831 else
6832 gdb_assert_not_reached ("unhandled pointer size");
6833 }
6834 return ret;
6835 }
6836
6837 struct link_map_offsets
6838 {
6839 /* Offset and size of r_debug.r_version. */
6840 int r_version_offset;
6841
6842 /* Offset and size of r_debug.r_map. */
6843 int r_map_offset;
6844
6845 /* Offset to l_addr field in struct link_map. */
6846 int l_addr_offset;
6847
6848 /* Offset to l_name field in struct link_map. */
6849 int l_name_offset;
6850
6851 /* Offset to l_ld field in struct link_map. */
6852 int l_ld_offset;
6853
6854 /* Offset to l_next field in struct link_map. */
6855 int l_next_offset;
6856
6857 /* Offset to l_prev field in struct link_map. */
6858 int l_prev_offset;
6859 };
6860
6861 /* Construct qXfer:libraries-svr4:read reply. */
6862
6863 static int
6864 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6865 unsigned const char *writebuf,
6866 CORE_ADDR offset, int len)
6867 {
6868 struct process_info_private *const priv = current_process ()->priv;
6869 char filename[PATH_MAX];
6870 int pid, is_elf64;
6871
6872 static const struct link_map_offsets lmo_32bit_offsets =
6873 {
6874 0, /* r_version offset. */
6875 4, /* r_debug.r_map offset. */
6876 0, /* l_addr offset in link_map. */
6877 4, /* l_name offset in link_map. */
6878 8, /* l_ld offset in link_map. */
6879 12, /* l_next offset in link_map. */
6880 16 /* l_prev offset in link_map. */
6881 };
6882
6883 static const struct link_map_offsets lmo_64bit_offsets =
6884 {
6885 0, /* r_version offset. */
6886 8, /* r_debug.r_map offset. */
6887 0, /* l_addr offset in link_map. */
6888 8, /* l_name offset in link_map. */
6889 16, /* l_ld offset in link_map. */
6890 24, /* l_next offset in link_map. */
6891 32 /* l_prev offset in link_map. */
6892 };
6893 const struct link_map_offsets *lmo;
6894 unsigned int machine;
6895 int ptr_size;
6896 CORE_ADDR lm_addr = 0, lm_prev = 0;
6897 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6898 int header_done = 0;
6899
6900 if (writebuf != NULL)
6901 return -2;
6902 if (readbuf == NULL)
6903 return -1;
6904
6905 pid = lwpid_of (current_thread);
6906 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6907 is_elf64 = elf_64_file_p (filename, &machine);
6908 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6909 ptr_size = is_elf64 ? 8 : 4;
6910
6911 while (annex[0] != '\0')
6912 {
6913 const char *sep;
6914 CORE_ADDR *addrp;
6915 int name_len;
6916
6917 sep = strchr (annex, '=');
6918 if (sep == NULL)
6919 break;
6920
6921 name_len = sep - annex;
6922 if (name_len == 5 && startswith (annex, "start"))
6923 addrp = &lm_addr;
6924 else if (name_len == 4 && startswith (annex, "prev"))
6925 addrp = &lm_prev;
6926 else
6927 {
6928 annex = strchr (sep, ';');
6929 if (annex == NULL)
6930 break;
6931 annex++;
6932 continue;
6933 }
6934
6935 annex = decode_address_to_semicolon (addrp, sep + 1);
6936 }
6937
6938 if (lm_addr == 0)
6939 {
6940 int r_version = 0;
6941
6942 if (priv->r_debug == 0)
6943 priv->r_debug = get_r_debug (pid, is_elf64);
6944
6945 /* We failed to find DT_DEBUG. Such situation will not change
6946 for this inferior - do not retry it. Report it to GDB as
6947 E01, see for the reasons at the GDB solib-svr4.c side. */
6948 if (priv->r_debug == (CORE_ADDR) -1)
6949 return -1;
6950
6951 if (priv->r_debug != 0)
6952 {
6953 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6954 (unsigned char *) &r_version,
6955 sizeof (r_version)) != 0
6956 || r_version != 1)
6957 {
6958 warning ("unexpected r_debug version %d", r_version);
6959 }
6960 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6961 &lm_addr, ptr_size) != 0)
6962 {
6963 warning ("unable to read r_map from 0x%lx",
6964 (long) priv->r_debug + lmo->r_map_offset);
6965 }
6966 }
6967 }
6968
6969 std::string document = "<library-list-svr4 version=\"1.0\"";
6970
6971 while (lm_addr
6972 && read_one_ptr (lm_addr + lmo->l_name_offset,
6973 &l_name, ptr_size) == 0
6974 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6975 &l_addr, ptr_size) == 0
6976 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6977 &l_ld, ptr_size) == 0
6978 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6979 &l_prev, ptr_size) == 0
6980 && read_one_ptr (lm_addr + lmo->l_next_offset,
6981 &l_next, ptr_size) == 0)
6982 {
6983 unsigned char libname[PATH_MAX];
6984
6985 if (lm_prev != l_prev)
6986 {
6987 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6988 (long) lm_prev, (long) l_prev);
6989 break;
6990 }
6991
6992 /* Ignore the first entry even if it has valid name as the first entry
6993 corresponds to the main executable. The first entry should not be
6994 skipped if the dynamic loader was loaded late by a static executable
6995 (see solib-svr4.c parameter ignore_first). But in such case the main
6996 executable does not have PT_DYNAMIC present and this function already
6997 exited above due to failed get_r_debug. */
6998 if (lm_prev == 0)
6999 string_appendf (document, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7000 else
7001 {
7002 /* Not checking for error because reading may stop before
7003 we've got PATH_MAX worth of characters. */
7004 libname[0] = '\0';
7005 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7006 libname[sizeof (libname) - 1] = '\0';
7007 if (libname[0] != '\0')
7008 {
7009 if (!header_done)
7010 {
7011 /* Terminate `<library-list-svr4'. */
7012 document += '>';
7013 header_done = 1;
7014 }
7015
7016 string_appendf (document, "<library name=\"");
7017 xml_escape_text_append (&document, (char *) libname);
7018 string_appendf (document, "\" lm=\"0x%lx\" "
7019 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7020 (unsigned long) lm_addr, (unsigned long) l_addr,
7021 (unsigned long) l_ld);
7022 }
7023 }
7024
7025 lm_prev = lm_addr;
7026 lm_addr = l_next;
7027 }
7028
7029 if (!header_done)
7030 {
7031 /* Empty list; terminate `<library-list-svr4'. */
7032 document += "/>";
7033 }
7034 else
7035 document += "</library-list-svr4>";
7036
7037 int document_len = document.length ();
7038 if (offset < document_len)
7039 document_len -= offset;
7040 else
7041 document_len = 0;
7042 if (len > document_len)
7043 len = document_len;
7044
7045 memcpy (readbuf, document.data () + offset, len);
7046
7047 return len;
7048 }
7049
7050 #ifdef HAVE_LINUX_BTRACE
7051
7052 /* See to_disable_btrace target method. */
7053
7054 static int
7055 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7056 {
7057 enum btrace_error err;
7058
7059 err = linux_disable_btrace (tinfo);
7060 return (err == BTRACE_ERR_NONE ? 0 : -1);
7061 }
7062
7063 /* Encode an Intel Processor Trace configuration. */
7064
7065 static void
7066 linux_low_encode_pt_config (struct buffer *buffer,
7067 const struct btrace_data_pt_config *config)
7068 {
7069 buffer_grow_str (buffer, "<pt-config>\n");
7070
7071 switch (config->cpu.vendor)
7072 {
7073 case CV_INTEL:
7074 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7075 "model=\"%u\" stepping=\"%u\"/>\n",
7076 config->cpu.family, config->cpu.model,
7077 config->cpu.stepping);
7078 break;
7079
7080 default:
7081 break;
7082 }
7083
7084 buffer_grow_str (buffer, "</pt-config>\n");
7085 }
7086
7087 /* Encode a raw buffer. */
7088
7089 static void
7090 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7091 unsigned int size)
7092 {
7093 if (size == 0)
7094 return;
7095
7096 /* We use hex encoding - see gdbsupport/rsp-low.h. */
7097 buffer_grow_str (buffer, "<raw>\n");
7098
7099 while (size-- > 0)
7100 {
7101 char elem[2];
7102
7103 elem[0] = tohex ((*data >> 4) & 0xf);
7104 elem[1] = tohex (*data++ & 0xf);
7105
7106 buffer_grow (buffer, elem, 2);
7107 }
7108
7109 buffer_grow_str (buffer, "</raw>\n");
7110 }
7111
7112 /* See to_read_btrace target method. */
7113
7114 static int
7115 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7116 enum btrace_read_type type)
7117 {
7118 struct btrace_data btrace;
7119 enum btrace_error err;
7120
7121 err = linux_read_btrace (&btrace, tinfo, type);
7122 if (err != BTRACE_ERR_NONE)
7123 {
7124 if (err == BTRACE_ERR_OVERFLOW)
7125 buffer_grow_str0 (buffer, "E.Overflow.");
7126 else
7127 buffer_grow_str0 (buffer, "E.Generic Error.");
7128
7129 return -1;
7130 }
7131
7132 switch (btrace.format)
7133 {
7134 case BTRACE_FORMAT_NONE:
7135 buffer_grow_str0 (buffer, "E.No Trace.");
7136 return -1;
7137
7138 case BTRACE_FORMAT_BTS:
7139 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7140 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7141
7142 for (const btrace_block &block : *btrace.variant.bts.blocks)
7143 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7144 paddress (block.begin), paddress (block.end));
7145
7146 buffer_grow_str0 (buffer, "</btrace>\n");
7147 break;
7148
7149 case BTRACE_FORMAT_PT:
7150 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7151 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7152 buffer_grow_str (buffer, "<pt>\n");
7153
7154 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7155
7156 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7157 btrace.variant.pt.size);
7158
7159 buffer_grow_str (buffer, "</pt>\n");
7160 buffer_grow_str0 (buffer, "</btrace>\n");
7161 break;
7162
7163 default:
7164 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7165 return -1;
7166 }
7167
7168 return 0;
7169 }
7170
7171 /* See to_btrace_conf target method. */
7172
7173 static int
7174 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7175 struct buffer *buffer)
7176 {
7177 const struct btrace_config *conf;
7178
7179 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7180 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7181
7182 conf = linux_btrace_conf (tinfo);
7183 if (conf != NULL)
7184 {
7185 switch (conf->format)
7186 {
7187 case BTRACE_FORMAT_NONE:
7188 break;
7189
7190 case BTRACE_FORMAT_BTS:
7191 buffer_xml_printf (buffer, "<bts");
7192 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7193 buffer_xml_printf (buffer, " />\n");
7194 break;
7195
7196 case BTRACE_FORMAT_PT:
7197 buffer_xml_printf (buffer, "<pt");
7198 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7199 buffer_xml_printf (buffer, "/>\n");
7200 break;
7201 }
7202 }
7203
7204 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7205 return 0;
7206 }
7207 #endif /* HAVE_LINUX_BTRACE */
7208
7209 /* See nat/linux-nat.h. */
7210
7211 ptid_t
7212 current_lwp_ptid (void)
7213 {
7214 return ptid_of (current_thread);
7215 }
7216
7217 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7218
7219 static int
7220 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7221 {
7222 if (the_low_target.breakpoint_kind_from_pc != NULL)
7223 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7224 else
7225 return default_breakpoint_kind_from_pc (pcptr);
7226 }
7227
7228 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7229
7230 static const gdb_byte *
7231 linux_sw_breakpoint_from_kind (int kind, int *size)
7232 {
7233 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7234
7235 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7236 }
7237
7238 /* Implementation of the target_ops method
7239 "breakpoint_kind_from_current_state". */
7240
7241 static int
7242 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7243 {
7244 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7245 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7246 else
7247 return linux_breakpoint_kind_from_pc (pcptr);
7248 }
7249
7250 /* Default implementation of linux_target_ops method "set_pc" for
7251 32-bit pc register which is literally named "pc". */
7252
7253 void
7254 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7255 {
7256 uint32_t newpc = pc;
7257
7258 supply_register_by_name (regcache, "pc", &newpc);
7259 }
7260
7261 /* Default implementation of linux_target_ops method "get_pc" for
7262 32-bit pc register which is literally named "pc". */
7263
7264 CORE_ADDR
7265 linux_get_pc_32bit (struct regcache *regcache)
7266 {
7267 uint32_t pc;
7268
7269 collect_register_by_name (regcache, "pc", &pc);
7270 if (debug_threads)
7271 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7272 return pc;
7273 }
7274
7275 /* Default implementation of linux_target_ops method "set_pc" for
7276 64-bit pc register which is literally named "pc". */
7277
7278 void
7279 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7280 {
7281 uint64_t newpc = pc;
7282
7283 supply_register_by_name (regcache, "pc", &newpc);
7284 }
7285
7286 /* Default implementation of linux_target_ops method "get_pc" for
7287 64-bit pc register which is literally named "pc". */
7288
7289 CORE_ADDR
7290 linux_get_pc_64bit (struct regcache *regcache)
7291 {
7292 uint64_t pc;
7293
7294 collect_register_by_name (regcache, "pc", &pc);
7295 if (debug_threads)
7296 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7297 return pc;
7298 }
7299
7300 /* See linux-low.h. */
7301
7302 int
7303 linux_get_auxv (int wordsize, CORE_ADDR match, CORE_ADDR *valp)
7304 {
7305 gdb_byte *data = (gdb_byte *) alloca (2 * wordsize);
7306 int offset = 0;
7307
7308 gdb_assert (wordsize == 4 || wordsize == 8);
7309
7310 while ((*the_target->read_auxv) (offset, data, 2 * wordsize) == 2 * wordsize)
7311 {
7312 if (wordsize == 4)
7313 {
7314 uint32_t *data_p = (uint32_t *) data;
7315 if (data_p[0] == match)
7316 {
7317 *valp = data_p[1];
7318 return 1;
7319 }
7320 }
7321 else
7322 {
7323 uint64_t *data_p = (uint64_t *) data;
7324 if (data_p[0] == match)
7325 {
7326 *valp = data_p[1];
7327 return 1;
7328 }
7329 }
7330
7331 offset += 2 * wordsize;
7332 }
7333
7334 return 0;
7335 }
7336
7337 /* See linux-low.h. */
7338
7339 CORE_ADDR
7340 linux_get_hwcap (int wordsize)
7341 {
7342 CORE_ADDR hwcap = 0;
7343 linux_get_auxv (wordsize, AT_HWCAP, &hwcap);
7344 return hwcap;
7345 }
7346
7347 /* See linux-low.h. */
7348
7349 CORE_ADDR
7350 linux_get_hwcap2 (int wordsize)
7351 {
7352 CORE_ADDR hwcap2 = 0;
7353 linux_get_auxv (wordsize, AT_HWCAP2, &hwcap2);
7354 return hwcap2;
7355 }
7356
7357 static struct target_ops linux_target_ops = {
7358 linux_create_inferior,
7359 linux_post_create_inferior,
7360 linux_attach,
7361 linux_kill,
7362 linux_detach,
7363 linux_mourn,
7364 linux_join,
7365 linux_thread_alive,
7366 linux_resume,
7367 linux_wait,
7368 linux_fetch_registers,
7369 linux_store_registers,
7370 linux_prepare_to_access_memory,
7371 linux_done_accessing_memory,
7372 linux_read_memory,
7373 linux_write_memory,
7374 linux_look_up_symbols,
7375 linux_request_interrupt,
7376 linux_read_auxv,
7377 linux_supports_z_point_type,
7378 linux_insert_point,
7379 linux_remove_point,
7380 linux_stopped_by_sw_breakpoint,
7381 linux_supports_stopped_by_sw_breakpoint,
7382 linux_stopped_by_hw_breakpoint,
7383 linux_supports_stopped_by_hw_breakpoint,
7384 linux_supports_hardware_single_step,
7385 linux_stopped_by_watchpoint,
7386 linux_stopped_data_address,
7387 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7388 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7389 && defined(PT_TEXT_END_ADDR)
7390 linux_read_offsets,
7391 #else
7392 NULL,
7393 #endif
7394 #ifdef USE_THREAD_DB
7395 thread_db_get_tls_address,
7396 #else
7397 NULL,
7398 #endif
7399 hostio_last_error_from_errno,
7400 linux_qxfer_osdata,
7401 linux_xfer_siginfo,
7402 linux_supports_non_stop,
7403 linux_async,
7404 linux_start_non_stop,
7405 linux_supports_multi_process,
7406 linux_supports_fork_events,
7407 linux_supports_vfork_events,
7408 linux_supports_exec_events,
7409 linux_handle_new_gdb_connection,
7410 #ifdef USE_THREAD_DB
7411 thread_db_handle_monitor_command,
7412 #else
7413 NULL,
7414 #endif
7415 linux_common_core_of_thread,
7416 linux_read_loadmap,
7417 linux_process_qsupported,
7418 linux_supports_tracepoints,
7419 linux_read_pc,
7420 linux_write_pc,
7421 linux_thread_stopped,
7422 NULL,
7423 linux_pause_all,
7424 linux_unpause_all,
7425 linux_stabilize_threads,
7426 linux_install_fast_tracepoint_jump_pad,
7427 linux_emit_ops,
7428 linux_supports_disable_randomization,
7429 linux_get_min_fast_tracepoint_insn_len,
7430 linux_qxfer_libraries_svr4,
7431 linux_supports_agent,
7432 #ifdef HAVE_LINUX_BTRACE
7433 linux_enable_btrace,
7434 linux_low_disable_btrace,
7435 linux_low_read_btrace,
7436 linux_low_btrace_conf,
7437 #else
7438 NULL,
7439 NULL,
7440 NULL,
7441 NULL,
7442 #endif
7443 linux_supports_range_stepping,
7444 linux_proc_pid_to_exec_file,
7445 linux_mntns_open_cloexec,
7446 linux_mntns_unlink,
7447 linux_mntns_readlink,
7448 linux_breakpoint_kind_from_pc,
7449 linux_sw_breakpoint_from_kind,
7450 linux_proc_tid_get_name,
7451 linux_breakpoint_kind_from_current_state,
7452 linux_supports_software_single_step,
7453 linux_supports_catch_syscall,
7454 linux_get_ipa_tdesc_idx,
7455 #if USE_THREAD_DB
7456 thread_db_thread_handle,
7457 #else
7458 NULL,
7459 #endif
7460 };
7461
7462 #ifdef HAVE_LINUX_REGSETS
7463 void
7464 initialize_regsets_info (struct regsets_info *info)
7465 {
7466 for (info->num_regsets = 0;
7467 info->regsets[info->num_regsets].size >= 0;
7468 info->num_regsets++)
7469 ;
7470 }
7471 #endif
7472
7473 void
7474 initialize_low (void)
7475 {
7476 struct sigaction sigchld_action;
7477
7478 memset (&sigchld_action, 0, sizeof (sigchld_action));
7479 set_target_ops (&linux_target_ops);
7480
7481 linux_ptrace_init_warnings ();
7482 linux_proc_init_warnings ();
7483
7484 sigchld_action.sa_handler = sigchld_handler;
7485 sigemptyset (&sigchld_action.sa_mask);
7486 sigchld_action.sa_flags = SA_RESTART;
7487 sigaction (SIGCHLD, &sigchld_action, NULL);
7488
7489 initialize_low_arch ();
7490
7491 linux_check_ptrace_features ();
7492 }
This page took 0.177235 seconds and 3 git commands to generate.