Handle multiple target events before commit resume
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static bool opaque_type_resolution = true;
121
122 /* See gdbtypes.h. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static bool strict_type_checking = true;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
579 {
580 int type_flags;
581
582 /* Check for known address space delimiters. */
583 if (!strcmp (space_identifier, "code"))
584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
585 else if (!strcmp (space_identifier, "data"))
586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
591 return type_flags;
592 else
593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
594 }
595
596 /* Identify address space identifier by integer flag as defined in
597 gdbtypes.h -- return the string version of the adress space name. */
598
599 const char *
600 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
601 {
602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
603 return "code";
604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
605 return "data";
606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
609 else
610 return NULL;
611 }
612
613 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
617
618 static struct type *
619 make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
621 {
622 struct type *ntype;
623
624 ntype = type;
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
632
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
648
649 /* Pointers or references to the original type are not relevant to
650 the new type. */
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
653
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
660
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
664 return ntype;
665 }
666
667 /* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
675
676 struct type *
677 make_type_with_address_space (struct type *type, int space_flag)
678 {
679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686 }
687
688 /* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
693
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
699
700 struct type *
701 make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
704 {
705 struct type *ntype; /* New type */
706
707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
710
711 if (cnst)
712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
713
714 if (voltl)
715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
716
717 if (typeptr && *typeptr != NULL)
718 {
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
732 }
733
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
736
737 if (typeptr != NULL)
738 *typeptr = ntype;
739
740 return ntype;
741 }
742
743 /* Make a 'restrict'-qualified version of TYPE. */
744
745 struct type *
746 make_restrict_type (struct type *type)
747 {
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752 }
753
754 /* Make a type without const, volatile, or restrict. */
755
756 struct type *
757 make_unqualified_type (struct type *type)
758 {
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765 }
766
767 /* Make a '_Atomic'-qualified version of TYPE. */
768
769 struct type *
770 make_atomic_type (struct type *type)
771 {
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776 }
777
778 /* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
781
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
787
788 void
789 replace_type (struct type *ntype, struct type *type)
790 {
791 struct type *chain;
792
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
798
799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
800
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
803 chain = ntype;
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
818
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
822 }
823
824 /* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829 struct type *
830 lookup_memberptr_type (struct type *type, struct type *domain)
831 {
832 struct type *mtype;
833
834 mtype = alloc_type_copy (type);
835 smash_to_memberptr_type (mtype, domain, type);
836 return mtype;
837 }
838
839 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841 struct type *
842 lookup_methodptr_type (struct type *to_type)
843 {
844 struct type *mtype;
845
846 mtype = alloc_type_copy (to_type);
847 smash_to_methodptr_type (mtype, to_type);
848 return mtype;
849 }
850
851 /* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
856
857 struct type *
858 allocate_stub_method (struct type *type)
859 {
860 struct type *mtype;
861
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
866 TYPE_TARGET_TYPE (mtype) = type;
867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
868 return mtype;
869 }
870
871 /* See gdbtypes.h. */
872
873 bool
874 operator== (const dynamic_prop &l, const dynamic_prop &r)
875 {
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892 }
893
894 /* See gdbtypes.h. */
895
896 bool
897 operator== (const range_bounds &l, const range_bounds &r)
898 {
899 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
904 && FIELD_EQ (flag_bound_evaluated)
905 && FIELD_EQ (bias));
906
907 #undef FIELD_EQ
908 }
909
910 /* Create a range type with a dynamic range from LOW_BOUND to
911 HIGH_BOUND, inclusive. See create_range_type for further details. */
912
913 struct type *
914 create_range_type (struct type *result_type, struct type *index_type,
915 const struct dynamic_prop *low_bound,
916 const struct dynamic_prop *high_bound,
917 LONGEST bias)
918 {
919 /* The INDEX_TYPE should be a type capable of holding the upper and lower
920 bounds, as such a zero sized, or void type makes no sense. */
921 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
922 gdb_assert (TYPE_LENGTH (index_type) > 0);
923
924 if (result_type == NULL)
925 result_type = alloc_type_copy (index_type);
926 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
927 TYPE_TARGET_TYPE (result_type) = index_type;
928 if (TYPE_STUB (index_type))
929 TYPE_TARGET_STUB (result_type) = 1;
930 else
931 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
932
933 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
934 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
935 TYPE_RANGE_DATA (result_type)->low = *low_bound;
936 TYPE_RANGE_DATA (result_type)->high = *high_bound;
937 TYPE_RANGE_DATA (result_type)->bias = bias;
938
939 /* Initialize the stride to be a constant, the value will already be zero
940 thanks to the use of TYPE_ZALLOC above. */
941 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
942
943 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
944 TYPE_UNSIGNED (result_type) = 1;
945
946 /* Ada allows the declaration of range types whose upper bound is
947 less than the lower bound, so checking the lower bound is not
948 enough. Make sure we do not mark a range type whose upper bound
949 is negative as unsigned. */
950 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
951 TYPE_UNSIGNED (result_type) = 0;
952
953 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
954 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
955
956 return result_type;
957 }
958
959 /* See gdbtypes.h. */
960
961 struct type *
962 create_range_type_with_stride (struct type *result_type,
963 struct type *index_type,
964 const struct dynamic_prop *low_bound,
965 const struct dynamic_prop *high_bound,
966 LONGEST bias,
967 const struct dynamic_prop *stride,
968 bool byte_stride_p)
969 {
970 result_type = create_range_type (result_type, index_type, low_bound,
971 high_bound, bias);
972
973 gdb_assert (stride != nullptr);
974 TYPE_RANGE_DATA (result_type)->stride = *stride;
975 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
976
977 return result_type;
978 }
979
980
981
982 /* Create a range type using either a blank type supplied in
983 RESULT_TYPE, or creating a new type, inheriting the objfile from
984 INDEX_TYPE.
985
986 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
987 to HIGH_BOUND, inclusive.
988
989 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
990 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
991
992 struct type *
993 create_static_range_type (struct type *result_type, struct type *index_type,
994 LONGEST low_bound, LONGEST high_bound)
995 {
996 struct dynamic_prop low, high;
997
998 low.kind = PROP_CONST;
999 low.data.const_val = low_bound;
1000
1001 high.kind = PROP_CONST;
1002 high.data.const_val = high_bound;
1003
1004 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1005
1006 return result_type;
1007 }
1008
1009 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1010 are static, otherwise returns 0. */
1011
1012 static bool
1013 has_static_range (const struct range_bounds *bounds)
1014 {
1015 /* If the range doesn't have a defined stride then its stride field will
1016 be initialized to the constant 0. */
1017 return (bounds->low.kind == PROP_CONST
1018 && bounds->high.kind == PROP_CONST
1019 && bounds->stride.kind == PROP_CONST);
1020 }
1021
1022
1023 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1024 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1025 bounds will fit in LONGEST), or -1 otherwise. */
1026
1027 int
1028 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1029 {
1030 type = check_typedef (type);
1031 switch (TYPE_CODE (type))
1032 {
1033 case TYPE_CODE_RANGE:
1034 *lowp = TYPE_LOW_BOUND (type);
1035 *highp = TYPE_HIGH_BOUND (type);
1036 return 1;
1037 case TYPE_CODE_ENUM:
1038 if (TYPE_NFIELDS (type) > 0)
1039 {
1040 /* The enums may not be sorted by value, so search all
1041 entries. */
1042 int i;
1043
1044 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1045 for (i = 0; i < TYPE_NFIELDS (type); i++)
1046 {
1047 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1048 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1049 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1050 *highp = TYPE_FIELD_ENUMVAL (type, i);
1051 }
1052
1053 /* Set unsigned indicator if warranted. */
1054 if (*lowp >= 0)
1055 {
1056 TYPE_UNSIGNED (type) = 1;
1057 }
1058 }
1059 else
1060 {
1061 *lowp = 0;
1062 *highp = -1;
1063 }
1064 return 0;
1065 case TYPE_CODE_BOOL:
1066 *lowp = 0;
1067 *highp = 1;
1068 return 0;
1069 case TYPE_CODE_INT:
1070 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1071 return -1;
1072 if (!TYPE_UNSIGNED (type))
1073 {
1074 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1075 *highp = -*lowp - 1;
1076 return 0;
1077 }
1078 /* fall through */
1079 case TYPE_CODE_CHAR:
1080 *lowp = 0;
1081 /* This round-about calculation is to avoid shifting by
1082 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1083 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1084 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1085 *highp = (*highp - 1) | *highp;
1086 return 0;
1087 default:
1088 return -1;
1089 }
1090 }
1091
1092 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1093 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1094 Save the high bound into HIGH_BOUND if not NULL.
1095
1096 Return 1 if the operation was successful. Return zero otherwise,
1097 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1098
1099 We now simply use get_discrete_bounds call to get the values
1100 of the low and high bounds.
1101 get_discrete_bounds can return three values:
1102 1, meaning that index is a range,
1103 0, meaning that index is a discrete type,
1104 or -1 for failure. */
1105
1106 int
1107 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1108 {
1109 struct type *index = TYPE_INDEX_TYPE (type);
1110 LONGEST low = 0;
1111 LONGEST high = 0;
1112 int res;
1113
1114 if (index == NULL)
1115 return 0;
1116
1117 res = get_discrete_bounds (index, &low, &high);
1118 if (res == -1)
1119 return 0;
1120
1121 /* Check if the array bounds are undefined. */
1122 if (res == 1
1123 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1124 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1125 return 0;
1126
1127 if (low_bound)
1128 *low_bound = low;
1129
1130 if (high_bound)
1131 *high_bound = high;
1132
1133 return 1;
1134 }
1135
1136 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1137 representation of a value of this type, save the corresponding
1138 position number in POS.
1139
1140 Its differs from VAL only in the case of enumeration types. In
1141 this case, the position number of the value of the first listed
1142 enumeration literal is zero; the position number of the value of
1143 each subsequent enumeration literal is one more than that of its
1144 predecessor in the list.
1145
1146 Return 1 if the operation was successful. Return zero otherwise,
1147 in which case the value of POS is unmodified.
1148 */
1149
1150 int
1151 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1152 {
1153 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1154 {
1155 int i;
1156
1157 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1158 {
1159 if (val == TYPE_FIELD_ENUMVAL (type, i))
1160 {
1161 *pos = i;
1162 return 1;
1163 }
1164 }
1165 /* Invalid enumeration value. */
1166 return 0;
1167 }
1168 else
1169 {
1170 *pos = val;
1171 return 1;
1172 }
1173 }
1174
1175 /* Create an array type using either a blank type supplied in
1176 RESULT_TYPE, or creating a new type, inheriting the objfile from
1177 RANGE_TYPE.
1178
1179 Elements will be of type ELEMENT_TYPE, the indices will be of type
1180 RANGE_TYPE.
1181
1182 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1183 This byte stride property is added to the resulting array type
1184 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1185 argument can only be used to create types that are objfile-owned
1186 (see add_dyn_prop), meaning that either this function must be called
1187 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1188
1189 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1190 If BIT_STRIDE is not zero, build a packed array type whose element
1191 size is BIT_STRIDE. Otherwise, ignore this parameter.
1192
1193 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1194 sure it is TYPE_CODE_UNDEF before we bash it into an array
1195 type? */
1196
1197 struct type *
1198 create_array_type_with_stride (struct type *result_type,
1199 struct type *element_type,
1200 struct type *range_type,
1201 struct dynamic_prop *byte_stride_prop,
1202 unsigned int bit_stride)
1203 {
1204 if (byte_stride_prop != NULL
1205 && byte_stride_prop->kind == PROP_CONST)
1206 {
1207 /* The byte stride is actually not dynamic. Pretend we were
1208 called with bit_stride set instead of byte_stride_prop.
1209 This will give us the same result type, while avoiding
1210 the need to handle this as a special case. */
1211 bit_stride = byte_stride_prop->data.const_val * 8;
1212 byte_stride_prop = NULL;
1213 }
1214
1215 if (result_type == NULL)
1216 result_type = alloc_type_copy (range_type);
1217
1218 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1219 TYPE_TARGET_TYPE (result_type) = element_type;
1220 if (byte_stride_prop == NULL
1221 && has_static_range (TYPE_RANGE_DATA (range_type))
1222 && (!type_not_associated (result_type)
1223 && !type_not_allocated (result_type)))
1224 {
1225 LONGEST low_bound, high_bound;
1226 unsigned int stride;
1227
1228 /* If the array itself doesn't provide a stride value then take
1229 whatever stride the range provides. Don't update BIT_STRIDE as
1230 we don't want to place the stride value from the range into this
1231 arrays bit size field. */
1232 stride = bit_stride;
1233 if (stride == 0)
1234 stride = TYPE_BIT_STRIDE (range_type);
1235
1236 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1237 low_bound = high_bound = 0;
1238 element_type = check_typedef (element_type);
1239 /* Be careful when setting the array length. Ada arrays can be
1240 empty arrays with the high_bound being smaller than the low_bound.
1241 In such cases, the array length should be zero. */
1242 if (high_bound < low_bound)
1243 TYPE_LENGTH (result_type) = 0;
1244 else if (stride > 0)
1245 TYPE_LENGTH (result_type) =
1246 (stride * (high_bound - low_bound + 1) + 7) / 8;
1247 else
1248 TYPE_LENGTH (result_type) =
1249 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1250 }
1251 else
1252 {
1253 /* This type is dynamic and its length needs to be computed
1254 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1255 undefined by setting it to zero. Although we are not expected
1256 to trust TYPE_LENGTH in this case, setting the size to zero
1257 allows us to avoid allocating objects of random sizes in case
1258 we accidently do. */
1259 TYPE_LENGTH (result_type) = 0;
1260 }
1261
1262 TYPE_NFIELDS (result_type) = 1;
1263 TYPE_FIELDS (result_type) =
1264 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1265 TYPE_INDEX_TYPE (result_type) = range_type;
1266 if (byte_stride_prop != NULL)
1267 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1268 else if (bit_stride > 0)
1269 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1270
1271 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1272 if (TYPE_LENGTH (result_type) == 0)
1273 TYPE_TARGET_STUB (result_type) = 1;
1274
1275 return result_type;
1276 }
1277
1278 /* Same as create_array_type_with_stride but with no bit_stride
1279 (BIT_STRIDE = 0), thus building an unpacked array. */
1280
1281 struct type *
1282 create_array_type (struct type *result_type,
1283 struct type *element_type,
1284 struct type *range_type)
1285 {
1286 return create_array_type_with_stride (result_type, element_type,
1287 range_type, NULL, 0);
1288 }
1289
1290 struct type *
1291 lookup_array_range_type (struct type *element_type,
1292 LONGEST low_bound, LONGEST high_bound)
1293 {
1294 struct type *index_type;
1295 struct type *range_type;
1296
1297 if (TYPE_OBJFILE_OWNED (element_type))
1298 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1299 else
1300 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1301 range_type = create_static_range_type (NULL, index_type,
1302 low_bound, high_bound);
1303
1304 return create_array_type (NULL, element_type, range_type);
1305 }
1306
1307 /* Create a string type using either a blank type supplied in
1308 RESULT_TYPE, or creating a new type. String types are similar
1309 enough to array of char types that we can use create_array_type to
1310 build the basic type and then bash it into a string type.
1311
1312 For fixed length strings, the range type contains 0 as the lower
1313 bound and the length of the string minus one as the upper bound.
1314
1315 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1316 sure it is TYPE_CODE_UNDEF before we bash it into a string
1317 type? */
1318
1319 struct type *
1320 create_string_type (struct type *result_type,
1321 struct type *string_char_type,
1322 struct type *range_type)
1323 {
1324 result_type = create_array_type (result_type,
1325 string_char_type,
1326 range_type);
1327 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1328 return result_type;
1329 }
1330
1331 struct type *
1332 lookup_string_range_type (struct type *string_char_type,
1333 LONGEST low_bound, LONGEST high_bound)
1334 {
1335 struct type *result_type;
1336
1337 result_type = lookup_array_range_type (string_char_type,
1338 low_bound, high_bound);
1339 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1340 return result_type;
1341 }
1342
1343 struct type *
1344 create_set_type (struct type *result_type, struct type *domain_type)
1345 {
1346 if (result_type == NULL)
1347 result_type = alloc_type_copy (domain_type);
1348
1349 TYPE_CODE (result_type) = TYPE_CODE_SET;
1350 TYPE_NFIELDS (result_type) = 1;
1351 TYPE_FIELDS (result_type)
1352 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1353
1354 if (!TYPE_STUB (domain_type))
1355 {
1356 LONGEST low_bound, high_bound, bit_length;
1357
1358 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1359 low_bound = high_bound = 0;
1360 bit_length = high_bound - low_bound + 1;
1361 TYPE_LENGTH (result_type)
1362 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1363 if (low_bound >= 0)
1364 TYPE_UNSIGNED (result_type) = 1;
1365 }
1366 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1367
1368 return result_type;
1369 }
1370
1371 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1372 and any array types nested inside it. */
1373
1374 void
1375 make_vector_type (struct type *array_type)
1376 {
1377 struct type *inner_array, *elt_type;
1378 int flags;
1379
1380 /* Find the innermost array type, in case the array is
1381 multi-dimensional. */
1382 inner_array = array_type;
1383 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1384 inner_array = TYPE_TARGET_TYPE (inner_array);
1385
1386 elt_type = TYPE_TARGET_TYPE (inner_array);
1387 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1388 {
1389 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1390 elt_type = make_qualified_type (elt_type, flags, NULL);
1391 TYPE_TARGET_TYPE (inner_array) = elt_type;
1392 }
1393
1394 TYPE_VECTOR (array_type) = 1;
1395 }
1396
1397 struct type *
1398 init_vector_type (struct type *elt_type, int n)
1399 {
1400 struct type *array_type;
1401
1402 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1403 make_vector_type (array_type);
1404 return array_type;
1405 }
1406
1407 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1408 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1409 confusing. "self" is a common enough replacement for "this".
1410 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1411 TYPE_CODE_METHOD. */
1412
1413 struct type *
1414 internal_type_self_type (struct type *type)
1415 {
1416 switch (TYPE_CODE (type))
1417 {
1418 case TYPE_CODE_METHODPTR:
1419 case TYPE_CODE_MEMBERPTR:
1420 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1421 return NULL;
1422 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1423 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1424 case TYPE_CODE_METHOD:
1425 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1426 return NULL;
1427 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1428 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1429 default:
1430 gdb_assert_not_reached ("bad type");
1431 }
1432 }
1433
1434 /* Set the type of the class that TYPE belongs to.
1435 In c++ this is the class of "this".
1436 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1437 TYPE_CODE_METHOD. */
1438
1439 void
1440 set_type_self_type (struct type *type, struct type *self_type)
1441 {
1442 switch (TYPE_CODE (type))
1443 {
1444 case TYPE_CODE_METHODPTR:
1445 case TYPE_CODE_MEMBERPTR:
1446 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1447 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1448 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1449 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1450 break;
1451 case TYPE_CODE_METHOD:
1452 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1453 INIT_FUNC_SPECIFIC (type);
1454 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1455 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1456 break;
1457 default:
1458 gdb_assert_not_reached ("bad type");
1459 }
1460 }
1461
1462 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1463 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1464 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1465 TYPE doesn't include the offset (that's the value of the MEMBER
1466 itself), but does include the structure type into which it points
1467 (for some reason).
1468
1469 When "smashing" the type, we preserve the objfile that the old type
1470 pointed to, since we aren't changing where the type is actually
1471 allocated. */
1472
1473 void
1474 smash_to_memberptr_type (struct type *type, struct type *self_type,
1475 struct type *to_type)
1476 {
1477 smash_type (type);
1478 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1479 TYPE_TARGET_TYPE (type) = to_type;
1480 set_type_self_type (type, self_type);
1481 /* Assume that a data member pointer is the same size as a normal
1482 pointer. */
1483 TYPE_LENGTH (type)
1484 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1485 }
1486
1487 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1488
1489 When "smashing" the type, we preserve the objfile that the old type
1490 pointed to, since we aren't changing where the type is actually
1491 allocated. */
1492
1493 void
1494 smash_to_methodptr_type (struct type *type, struct type *to_type)
1495 {
1496 smash_type (type);
1497 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1498 TYPE_TARGET_TYPE (type) = to_type;
1499 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1500 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1501 }
1502
1503 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1504 METHOD just means `function that gets an extra "this" argument'.
1505
1506 When "smashing" the type, we preserve the objfile that the old type
1507 pointed to, since we aren't changing where the type is actually
1508 allocated. */
1509
1510 void
1511 smash_to_method_type (struct type *type, struct type *self_type,
1512 struct type *to_type, struct field *args,
1513 int nargs, int varargs)
1514 {
1515 smash_type (type);
1516 TYPE_CODE (type) = TYPE_CODE_METHOD;
1517 TYPE_TARGET_TYPE (type) = to_type;
1518 set_type_self_type (type, self_type);
1519 TYPE_FIELDS (type) = args;
1520 TYPE_NFIELDS (type) = nargs;
1521 if (varargs)
1522 TYPE_VARARGS (type) = 1;
1523 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1524 }
1525
1526 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1527 Since GCC PR debug/47510 DWARF provides associated information to detect the
1528 anonymous class linkage name from its typedef.
1529
1530 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1531 apply it itself. */
1532
1533 const char *
1534 type_name_or_error (struct type *type)
1535 {
1536 struct type *saved_type = type;
1537 const char *name;
1538 struct objfile *objfile;
1539
1540 type = check_typedef (type);
1541
1542 name = TYPE_NAME (type);
1543 if (name != NULL)
1544 return name;
1545
1546 name = TYPE_NAME (saved_type);
1547 objfile = TYPE_OBJFILE (saved_type);
1548 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1549 name ? name : "<anonymous>",
1550 objfile ? objfile_name (objfile) : "<arch>");
1551 }
1552
1553 /* Lookup a typedef or primitive type named NAME, visible in lexical
1554 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1555 suitably defined. */
1556
1557 struct type *
1558 lookup_typename (const struct language_defn *language,
1559 const char *name,
1560 const struct block *block, int noerr)
1561 {
1562 struct symbol *sym;
1563
1564 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1565 language->la_language, NULL).symbol;
1566 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1567 return SYMBOL_TYPE (sym);
1568
1569 if (noerr)
1570 return NULL;
1571 error (_("No type named %s."), name);
1572 }
1573
1574 struct type *
1575 lookup_unsigned_typename (const struct language_defn *language,
1576 const char *name)
1577 {
1578 char *uns = (char *) alloca (strlen (name) + 10);
1579
1580 strcpy (uns, "unsigned ");
1581 strcpy (uns + 9, name);
1582 return lookup_typename (language, uns, NULL, 0);
1583 }
1584
1585 struct type *
1586 lookup_signed_typename (const struct language_defn *language, const char *name)
1587 {
1588 struct type *t;
1589 char *uns = (char *) alloca (strlen (name) + 8);
1590
1591 strcpy (uns, "signed ");
1592 strcpy (uns + 7, name);
1593 t = lookup_typename (language, uns, NULL, 1);
1594 /* If we don't find "signed FOO" just try again with plain "FOO". */
1595 if (t != NULL)
1596 return t;
1597 return lookup_typename (language, name, NULL, 0);
1598 }
1599
1600 /* Lookup a structure type named "struct NAME",
1601 visible in lexical block BLOCK. */
1602
1603 struct type *
1604 lookup_struct (const char *name, const struct block *block)
1605 {
1606 struct symbol *sym;
1607
1608 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1609
1610 if (sym == NULL)
1611 {
1612 error (_("No struct type named %s."), name);
1613 }
1614 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1615 {
1616 error (_("This context has class, union or enum %s, not a struct."),
1617 name);
1618 }
1619 return (SYMBOL_TYPE (sym));
1620 }
1621
1622 /* Lookup a union type named "union NAME",
1623 visible in lexical block BLOCK. */
1624
1625 struct type *
1626 lookup_union (const char *name, const struct block *block)
1627 {
1628 struct symbol *sym;
1629 struct type *t;
1630
1631 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1632
1633 if (sym == NULL)
1634 error (_("No union type named %s."), name);
1635
1636 t = SYMBOL_TYPE (sym);
1637
1638 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1639 return t;
1640
1641 /* If we get here, it's not a union. */
1642 error (_("This context has class, struct or enum %s, not a union."),
1643 name);
1644 }
1645
1646 /* Lookup an enum type named "enum NAME",
1647 visible in lexical block BLOCK. */
1648
1649 struct type *
1650 lookup_enum (const char *name, const struct block *block)
1651 {
1652 struct symbol *sym;
1653
1654 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1655 if (sym == NULL)
1656 {
1657 error (_("No enum type named %s."), name);
1658 }
1659 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1660 {
1661 error (_("This context has class, struct or union %s, not an enum."),
1662 name);
1663 }
1664 return (SYMBOL_TYPE (sym));
1665 }
1666
1667 /* Lookup a template type named "template NAME<TYPE>",
1668 visible in lexical block BLOCK. */
1669
1670 struct type *
1671 lookup_template_type (const char *name, struct type *type,
1672 const struct block *block)
1673 {
1674 struct symbol *sym;
1675 char *nam = (char *)
1676 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1677
1678 strcpy (nam, name);
1679 strcat (nam, "<");
1680 strcat (nam, TYPE_NAME (type));
1681 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1682
1683 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1684
1685 if (sym == NULL)
1686 {
1687 error (_("No template type named %s."), name);
1688 }
1689 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1690 {
1691 error (_("This context has class, union or enum %s, not a struct."),
1692 name);
1693 }
1694 return (SYMBOL_TYPE (sym));
1695 }
1696
1697 /* See gdbtypes.h. */
1698
1699 struct_elt
1700 lookup_struct_elt (struct type *type, const char *name, int noerr)
1701 {
1702 int i;
1703
1704 for (;;)
1705 {
1706 type = check_typedef (type);
1707 if (TYPE_CODE (type) != TYPE_CODE_PTR
1708 && TYPE_CODE (type) != TYPE_CODE_REF)
1709 break;
1710 type = TYPE_TARGET_TYPE (type);
1711 }
1712
1713 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1714 && TYPE_CODE (type) != TYPE_CODE_UNION)
1715 {
1716 std::string type_name = type_to_string (type);
1717 error (_("Type %s is not a structure or union type."),
1718 type_name.c_str ());
1719 }
1720
1721 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1722 {
1723 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1724
1725 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1726 {
1727 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1728 }
1729 else if (!t_field_name || *t_field_name == '\0')
1730 {
1731 struct_elt elt
1732 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1733 if (elt.field != NULL)
1734 {
1735 elt.offset += TYPE_FIELD_BITPOS (type, i);
1736 return elt;
1737 }
1738 }
1739 }
1740
1741 /* OK, it's not in this class. Recursively check the baseclasses. */
1742 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1743 {
1744 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1745 if (elt.field != NULL)
1746 return elt;
1747 }
1748
1749 if (noerr)
1750 return {nullptr, 0};
1751
1752 std::string type_name = type_to_string (type);
1753 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1754 }
1755
1756 /* See gdbtypes.h. */
1757
1758 struct type *
1759 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1760 {
1761 struct_elt elt = lookup_struct_elt (type, name, noerr);
1762 if (elt.field != NULL)
1763 return FIELD_TYPE (*elt.field);
1764 else
1765 return NULL;
1766 }
1767
1768 /* Store in *MAX the largest number representable by unsigned integer type
1769 TYPE. */
1770
1771 void
1772 get_unsigned_type_max (struct type *type, ULONGEST *max)
1773 {
1774 unsigned int n;
1775
1776 type = check_typedef (type);
1777 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1778 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1779
1780 /* Written this way to avoid overflow. */
1781 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1782 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1783 }
1784
1785 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1786 signed integer type TYPE. */
1787
1788 void
1789 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1790 {
1791 unsigned int n;
1792
1793 type = check_typedef (type);
1794 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1795 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1796
1797 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1798 *min = -((ULONGEST) 1 << (n - 1));
1799 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1800 }
1801
1802 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1803 cplus_stuff.vptr_fieldno.
1804
1805 cplus_stuff is initialized to cplus_struct_default which does not
1806 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1807 designated initializers). We cope with that here. */
1808
1809 int
1810 internal_type_vptr_fieldno (struct type *type)
1811 {
1812 type = check_typedef (type);
1813 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1814 || TYPE_CODE (type) == TYPE_CODE_UNION);
1815 if (!HAVE_CPLUS_STRUCT (type))
1816 return -1;
1817 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1818 }
1819
1820 /* Set the value of cplus_stuff.vptr_fieldno. */
1821
1822 void
1823 set_type_vptr_fieldno (struct type *type, int fieldno)
1824 {
1825 type = check_typedef (type);
1826 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1827 || TYPE_CODE (type) == TYPE_CODE_UNION);
1828 if (!HAVE_CPLUS_STRUCT (type))
1829 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1830 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1831 }
1832
1833 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1834 cplus_stuff.vptr_basetype. */
1835
1836 struct type *
1837 internal_type_vptr_basetype (struct type *type)
1838 {
1839 type = check_typedef (type);
1840 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1841 || TYPE_CODE (type) == TYPE_CODE_UNION);
1842 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1843 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1844 }
1845
1846 /* Set the value of cplus_stuff.vptr_basetype. */
1847
1848 void
1849 set_type_vptr_basetype (struct type *type, struct type *basetype)
1850 {
1851 type = check_typedef (type);
1852 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1853 || TYPE_CODE (type) == TYPE_CODE_UNION);
1854 if (!HAVE_CPLUS_STRUCT (type))
1855 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1856 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1857 }
1858
1859 /* Lookup the vptr basetype/fieldno values for TYPE.
1860 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1861 vptr_fieldno. Also, if found and basetype is from the same objfile,
1862 cache the results.
1863 If not found, return -1 and ignore BASETYPEP.
1864 Callers should be aware that in some cases (for example,
1865 the type or one of its baseclasses is a stub type and we are
1866 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1867 this function will not be able to find the
1868 virtual function table pointer, and vptr_fieldno will remain -1 and
1869 vptr_basetype will remain NULL or incomplete. */
1870
1871 int
1872 get_vptr_fieldno (struct type *type, struct type **basetypep)
1873 {
1874 type = check_typedef (type);
1875
1876 if (TYPE_VPTR_FIELDNO (type) < 0)
1877 {
1878 int i;
1879
1880 /* We must start at zero in case the first (and only) baseclass
1881 is virtual (and hence we cannot share the table pointer). */
1882 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1883 {
1884 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1885 int fieldno;
1886 struct type *basetype;
1887
1888 fieldno = get_vptr_fieldno (baseclass, &basetype);
1889 if (fieldno >= 0)
1890 {
1891 /* If the type comes from a different objfile we can't cache
1892 it, it may have a different lifetime. PR 2384 */
1893 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1894 {
1895 set_type_vptr_fieldno (type, fieldno);
1896 set_type_vptr_basetype (type, basetype);
1897 }
1898 if (basetypep)
1899 *basetypep = basetype;
1900 return fieldno;
1901 }
1902 }
1903
1904 /* Not found. */
1905 return -1;
1906 }
1907 else
1908 {
1909 if (basetypep)
1910 *basetypep = TYPE_VPTR_BASETYPE (type);
1911 return TYPE_VPTR_FIELDNO (type);
1912 }
1913 }
1914
1915 static void
1916 stub_noname_complaint (void)
1917 {
1918 complaint (_("stub type has NULL name"));
1919 }
1920
1921 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1922 attached to it, and that property has a non-constant value. */
1923
1924 static int
1925 array_type_has_dynamic_stride (struct type *type)
1926 {
1927 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1928
1929 return (prop != NULL && prop->kind != PROP_CONST);
1930 }
1931
1932 /* Worker for is_dynamic_type. */
1933
1934 static int
1935 is_dynamic_type_internal (struct type *type, int top_level)
1936 {
1937 type = check_typedef (type);
1938
1939 /* We only want to recognize references at the outermost level. */
1940 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1941 type = check_typedef (TYPE_TARGET_TYPE (type));
1942
1943 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1944 dynamic, even if the type itself is statically defined.
1945 From a user's point of view, this may appear counter-intuitive;
1946 but it makes sense in this context, because the point is to determine
1947 whether any part of the type needs to be resolved before it can
1948 be exploited. */
1949 if (TYPE_DATA_LOCATION (type) != NULL
1950 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1951 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1952 return 1;
1953
1954 if (TYPE_ASSOCIATED_PROP (type))
1955 return 1;
1956
1957 if (TYPE_ALLOCATED_PROP (type))
1958 return 1;
1959
1960 switch (TYPE_CODE (type))
1961 {
1962 case TYPE_CODE_RANGE:
1963 {
1964 /* A range type is obviously dynamic if it has at least one
1965 dynamic bound. But also consider the range type to be
1966 dynamic when its subtype is dynamic, even if the bounds
1967 of the range type are static. It allows us to assume that
1968 the subtype of a static range type is also static. */
1969 return (!has_static_range (TYPE_RANGE_DATA (type))
1970 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1971 }
1972
1973 case TYPE_CODE_STRING:
1974 /* Strings are very much like an array of characters, and can be
1975 treated as one here. */
1976 case TYPE_CODE_ARRAY:
1977 {
1978 gdb_assert (TYPE_NFIELDS (type) == 1);
1979
1980 /* The array is dynamic if either the bounds are dynamic... */
1981 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1982 return 1;
1983 /* ... or the elements it contains have a dynamic contents... */
1984 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1985 return 1;
1986 /* ... or if it has a dynamic stride... */
1987 if (array_type_has_dynamic_stride (type))
1988 return 1;
1989 return 0;
1990 }
1991
1992 case TYPE_CODE_STRUCT:
1993 case TYPE_CODE_UNION:
1994 {
1995 int i;
1996
1997 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1998 if (!field_is_static (&TYPE_FIELD (type, i))
1999 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2000 return 1;
2001 }
2002 break;
2003 }
2004
2005 return 0;
2006 }
2007
2008 /* See gdbtypes.h. */
2009
2010 int
2011 is_dynamic_type (struct type *type)
2012 {
2013 return is_dynamic_type_internal (type, 1);
2014 }
2015
2016 static struct type *resolve_dynamic_type_internal
2017 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2018
2019 /* Given a dynamic range type (dyn_range_type) and a stack of
2020 struct property_addr_info elements, return a static version
2021 of that type. */
2022
2023 static struct type *
2024 resolve_dynamic_range (struct type *dyn_range_type,
2025 struct property_addr_info *addr_stack)
2026 {
2027 CORE_ADDR value;
2028 struct type *static_range_type, *static_target_type;
2029 const struct dynamic_prop *prop;
2030 struct dynamic_prop low_bound, high_bound, stride;
2031
2032 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2033
2034 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2035 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2036 {
2037 low_bound.kind = PROP_CONST;
2038 low_bound.data.const_val = value;
2039 }
2040 else
2041 {
2042 low_bound.kind = PROP_UNDEFINED;
2043 low_bound.data.const_val = 0;
2044 }
2045
2046 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2047 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2048 {
2049 high_bound.kind = PROP_CONST;
2050 high_bound.data.const_val = value;
2051
2052 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2053 high_bound.data.const_val
2054 = low_bound.data.const_val + high_bound.data.const_val - 1;
2055 }
2056 else
2057 {
2058 high_bound.kind = PROP_UNDEFINED;
2059 high_bound.data.const_val = 0;
2060 }
2061
2062 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2063 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2064 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2065 {
2066 stride.kind = PROP_CONST;
2067 stride.data.const_val = value;
2068
2069 /* If we have a bit stride that is not an exact number of bytes then
2070 I really don't think this is going to work with current GDB, the
2071 array indexing code in GDB seems to be pretty heavily tied to byte
2072 offsets right now. Assuming 8 bits in a byte. */
2073 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2074 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2075 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2076 error (_("bit strides that are not a multiple of the byte size "
2077 "are currently not supported"));
2078 }
2079 else
2080 {
2081 stride.kind = PROP_UNDEFINED;
2082 stride.data.const_val = 0;
2083 byte_stride_p = true;
2084 }
2085
2086 static_target_type
2087 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2088 addr_stack, 0);
2089 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2090 static_range_type = create_range_type_with_stride
2091 (copy_type (dyn_range_type), static_target_type,
2092 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2093 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2094 return static_range_type;
2095 }
2096
2097 /* Resolves dynamic bound values of an array or string type TYPE to static
2098 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2099 needed during the dynamic resolution. */
2100
2101 static struct type *
2102 resolve_dynamic_array_or_string (struct type *type,
2103 struct property_addr_info *addr_stack)
2104 {
2105 CORE_ADDR value;
2106 struct type *elt_type;
2107 struct type *range_type;
2108 struct type *ary_dim;
2109 struct dynamic_prop *prop;
2110 unsigned int bit_stride = 0;
2111
2112 /* For dynamic type resolution strings can be treated like arrays of
2113 characters. */
2114 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2115 || TYPE_CODE (type) == TYPE_CODE_STRING);
2116
2117 type = copy_type (type);
2118
2119 elt_type = type;
2120 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2121 range_type = resolve_dynamic_range (range_type, addr_stack);
2122
2123 /* Resolve allocated/associated here before creating a new array type, which
2124 will update the length of the array accordingly. */
2125 prop = TYPE_ALLOCATED_PROP (type);
2126 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2127 {
2128 TYPE_DYN_PROP_ADDR (prop) = value;
2129 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2130 }
2131 prop = TYPE_ASSOCIATED_PROP (type);
2132 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2133 {
2134 TYPE_DYN_PROP_ADDR (prop) = value;
2135 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2136 }
2137
2138 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2139
2140 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2141 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2142 else
2143 elt_type = TYPE_TARGET_TYPE (type);
2144
2145 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2146 if (prop != NULL)
2147 {
2148 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2149 {
2150 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2151 bit_stride = (unsigned int) (value * 8);
2152 }
2153 else
2154 {
2155 /* Could be a bug in our code, but it could also happen
2156 if the DWARF info is not correct. Issue a warning,
2157 and assume no byte/bit stride (leave bit_stride = 0). */
2158 warning (_("cannot determine array stride for type %s"),
2159 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2160 }
2161 }
2162 else
2163 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2164
2165 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2166 bit_stride);
2167 }
2168
2169 /* Resolve dynamic bounds of members of the union TYPE to static
2170 bounds. ADDR_STACK is a stack of struct property_addr_info
2171 to be used if needed during the dynamic resolution. */
2172
2173 static struct type *
2174 resolve_dynamic_union (struct type *type,
2175 struct property_addr_info *addr_stack)
2176 {
2177 struct type *resolved_type;
2178 int i;
2179 unsigned int max_len = 0;
2180
2181 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2182
2183 resolved_type = copy_type (type);
2184 TYPE_FIELDS (resolved_type)
2185 = (struct field *) TYPE_ALLOC (resolved_type,
2186 TYPE_NFIELDS (resolved_type)
2187 * sizeof (struct field));
2188 memcpy (TYPE_FIELDS (resolved_type),
2189 TYPE_FIELDS (type),
2190 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2191 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2192 {
2193 struct type *t;
2194
2195 if (field_is_static (&TYPE_FIELD (type, i)))
2196 continue;
2197
2198 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2199 addr_stack, 0);
2200 TYPE_FIELD_TYPE (resolved_type, i) = t;
2201 if (TYPE_LENGTH (t) > max_len)
2202 max_len = TYPE_LENGTH (t);
2203 }
2204
2205 TYPE_LENGTH (resolved_type) = max_len;
2206 return resolved_type;
2207 }
2208
2209 /* Resolve dynamic bounds of members of the struct TYPE to static
2210 bounds. ADDR_STACK is a stack of struct property_addr_info to
2211 be used if needed during the dynamic resolution. */
2212
2213 static struct type *
2214 resolve_dynamic_struct (struct type *type,
2215 struct property_addr_info *addr_stack)
2216 {
2217 struct type *resolved_type;
2218 int i;
2219 unsigned resolved_type_bit_length = 0;
2220
2221 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2222 gdb_assert (TYPE_NFIELDS (type) > 0);
2223
2224 resolved_type = copy_type (type);
2225 TYPE_FIELDS (resolved_type)
2226 = (struct field *) TYPE_ALLOC (resolved_type,
2227 TYPE_NFIELDS (resolved_type)
2228 * sizeof (struct field));
2229 memcpy (TYPE_FIELDS (resolved_type),
2230 TYPE_FIELDS (type),
2231 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2232 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2233 {
2234 unsigned new_bit_length;
2235 struct property_addr_info pinfo;
2236
2237 if (field_is_static (&TYPE_FIELD (type, i)))
2238 continue;
2239
2240 /* As we know this field is not a static field, the field's
2241 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2242 this is the case, but only trigger a simple error rather
2243 than an internal error if that fails. While failing
2244 that verification indicates a bug in our code, the error
2245 is not severe enough to suggest to the user he stops
2246 his debugging session because of it. */
2247 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2248 error (_("Cannot determine struct field location"
2249 " (invalid location kind)"));
2250
2251 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2252 pinfo.valaddr = addr_stack->valaddr;
2253 pinfo.addr
2254 = (addr_stack->addr
2255 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2256 pinfo.next = addr_stack;
2257
2258 TYPE_FIELD_TYPE (resolved_type, i)
2259 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2260 &pinfo, 0);
2261 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2262 == FIELD_LOC_KIND_BITPOS);
2263
2264 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2265 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2266 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2267 else
2268 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2269 * TARGET_CHAR_BIT);
2270
2271 /* Normally, we would use the position and size of the last field
2272 to determine the size of the enclosing structure. But GCC seems
2273 to be encoding the position of some fields incorrectly when
2274 the struct contains a dynamic field that is not placed last.
2275 So we compute the struct size based on the field that has
2276 the highest position + size - probably the best we can do. */
2277 if (new_bit_length > resolved_type_bit_length)
2278 resolved_type_bit_length = new_bit_length;
2279 }
2280
2281 /* The length of a type won't change for fortran, but it does for C and Ada.
2282 For fortran the size of dynamic fields might change over time but not the
2283 type length of the structure. If we adapt it, we run into problems
2284 when calculating the element offset for arrays of structs. */
2285 if (current_language->la_language != language_fortran)
2286 TYPE_LENGTH (resolved_type)
2287 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2288
2289 /* The Ada language uses this field as a cache for static fixed types: reset
2290 it as RESOLVED_TYPE must have its own static fixed type. */
2291 TYPE_TARGET_TYPE (resolved_type) = NULL;
2292
2293 return resolved_type;
2294 }
2295
2296 /* Worker for resolved_dynamic_type. */
2297
2298 static struct type *
2299 resolve_dynamic_type_internal (struct type *type,
2300 struct property_addr_info *addr_stack,
2301 int top_level)
2302 {
2303 struct type *real_type = check_typedef (type);
2304 struct type *resolved_type = type;
2305 struct dynamic_prop *prop;
2306 CORE_ADDR value;
2307
2308 if (!is_dynamic_type_internal (real_type, top_level))
2309 return type;
2310
2311 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2312 {
2313 resolved_type = copy_type (type);
2314 TYPE_TARGET_TYPE (resolved_type)
2315 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2316 top_level);
2317 }
2318 else
2319 {
2320 /* Before trying to resolve TYPE, make sure it is not a stub. */
2321 type = real_type;
2322
2323 switch (TYPE_CODE (type))
2324 {
2325 case TYPE_CODE_REF:
2326 {
2327 struct property_addr_info pinfo;
2328
2329 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2330 pinfo.valaddr = NULL;
2331 if (addr_stack->valaddr != NULL)
2332 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2333 else
2334 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2335 pinfo.next = addr_stack;
2336
2337 resolved_type = copy_type (type);
2338 TYPE_TARGET_TYPE (resolved_type)
2339 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2340 &pinfo, top_level);
2341 break;
2342 }
2343
2344 case TYPE_CODE_STRING:
2345 /* Strings are very much like an array of characters, and can be
2346 treated as one here. */
2347 case TYPE_CODE_ARRAY:
2348 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2349 break;
2350
2351 case TYPE_CODE_RANGE:
2352 resolved_type = resolve_dynamic_range (type, addr_stack);
2353 break;
2354
2355 case TYPE_CODE_UNION:
2356 resolved_type = resolve_dynamic_union (type, addr_stack);
2357 break;
2358
2359 case TYPE_CODE_STRUCT:
2360 resolved_type = resolve_dynamic_struct (type, addr_stack);
2361 break;
2362 }
2363 }
2364
2365 /* Resolve data_location attribute. */
2366 prop = TYPE_DATA_LOCATION (resolved_type);
2367 if (prop != NULL
2368 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2369 {
2370 TYPE_DYN_PROP_ADDR (prop) = value;
2371 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2372 }
2373
2374 return resolved_type;
2375 }
2376
2377 /* See gdbtypes.h */
2378
2379 struct type *
2380 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2381 CORE_ADDR addr)
2382 {
2383 struct property_addr_info pinfo
2384 = {check_typedef (type), valaddr, addr, NULL};
2385
2386 return resolve_dynamic_type_internal (type, &pinfo, 1);
2387 }
2388
2389 /* See gdbtypes.h */
2390
2391 struct dynamic_prop *
2392 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2393 {
2394 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2395
2396 while (node != NULL)
2397 {
2398 if (node->prop_kind == prop_kind)
2399 return &node->prop;
2400 node = node->next;
2401 }
2402 return NULL;
2403 }
2404
2405 /* See gdbtypes.h */
2406
2407 void
2408 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2409 struct type *type)
2410 {
2411 struct dynamic_prop_list *temp;
2412
2413 gdb_assert (TYPE_OBJFILE_OWNED (type));
2414
2415 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2416 struct dynamic_prop_list);
2417 temp->prop_kind = prop_kind;
2418 temp->prop = prop;
2419 temp->next = TYPE_DYN_PROP_LIST (type);
2420
2421 TYPE_DYN_PROP_LIST (type) = temp;
2422 }
2423
2424 /* Remove dynamic property from TYPE in case it exists. */
2425
2426 void
2427 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2428 struct type *type)
2429 {
2430 struct dynamic_prop_list *prev_node, *curr_node;
2431
2432 curr_node = TYPE_DYN_PROP_LIST (type);
2433 prev_node = NULL;
2434
2435 while (NULL != curr_node)
2436 {
2437 if (curr_node->prop_kind == prop_kind)
2438 {
2439 /* Update the linked list but don't free anything.
2440 The property was allocated on objstack and it is not known
2441 if we are on top of it. Nevertheless, everything is released
2442 when the complete objstack is freed. */
2443 if (NULL == prev_node)
2444 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2445 else
2446 prev_node->next = curr_node->next;
2447
2448 return;
2449 }
2450
2451 prev_node = curr_node;
2452 curr_node = curr_node->next;
2453 }
2454 }
2455
2456 /* Find the real type of TYPE. This function returns the real type,
2457 after removing all layers of typedefs, and completing opaque or stub
2458 types. Completion changes the TYPE argument, but stripping of
2459 typedefs does not.
2460
2461 Instance flags (e.g. const/volatile) are preserved as typedefs are
2462 stripped. If necessary a new qualified form of the underlying type
2463 is created.
2464
2465 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2466 not been computed and we're either in the middle of reading symbols, or
2467 there was no name for the typedef in the debug info.
2468
2469 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2470 QUITs in the symbol reading code can also throw.
2471 Thus this function can throw an exception.
2472
2473 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2474 the target type.
2475
2476 If this is a stubbed struct (i.e. declared as struct foo *), see if
2477 we can find a full definition in some other file. If so, copy this
2478 definition, so we can use it in future. There used to be a comment
2479 (but not any code) that if we don't find a full definition, we'd
2480 set a flag so we don't spend time in the future checking the same
2481 type. That would be a mistake, though--we might load in more
2482 symbols which contain a full definition for the type. */
2483
2484 struct type *
2485 check_typedef (struct type *type)
2486 {
2487 struct type *orig_type = type;
2488 /* While we're removing typedefs, we don't want to lose qualifiers.
2489 E.g., const/volatile. */
2490 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2491
2492 gdb_assert (type);
2493
2494 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2495 {
2496 if (!TYPE_TARGET_TYPE (type))
2497 {
2498 const char *name;
2499 struct symbol *sym;
2500
2501 /* It is dangerous to call lookup_symbol if we are currently
2502 reading a symtab. Infinite recursion is one danger. */
2503 if (currently_reading_symtab)
2504 return make_qualified_type (type, instance_flags, NULL);
2505
2506 name = TYPE_NAME (type);
2507 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2508 VAR_DOMAIN as appropriate? */
2509 if (name == NULL)
2510 {
2511 stub_noname_complaint ();
2512 return make_qualified_type (type, instance_flags, NULL);
2513 }
2514 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2515 if (sym)
2516 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2517 else /* TYPE_CODE_UNDEF */
2518 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2519 }
2520 type = TYPE_TARGET_TYPE (type);
2521
2522 /* Preserve the instance flags as we traverse down the typedef chain.
2523
2524 Handling address spaces/classes is nasty, what do we do if there's a
2525 conflict?
2526 E.g., what if an outer typedef marks the type as class_1 and an inner
2527 typedef marks the type as class_2?
2528 This is the wrong place to do such error checking. We leave it to
2529 the code that created the typedef in the first place to flag the
2530 error. We just pick the outer address space (akin to letting the
2531 outer cast in a chain of casting win), instead of assuming
2532 "it can't happen". */
2533 {
2534 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2535 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2536 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2537 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2538
2539 /* Treat code vs data spaces and address classes separately. */
2540 if ((instance_flags & ALL_SPACES) != 0)
2541 new_instance_flags &= ~ALL_SPACES;
2542 if ((instance_flags & ALL_CLASSES) != 0)
2543 new_instance_flags &= ~ALL_CLASSES;
2544
2545 instance_flags |= new_instance_flags;
2546 }
2547 }
2548
2549 /* If this is a struct/class/union with no fields, then check
2550 whether a full definition exists somewhere else. This is for
2551 systems where a type definition with no fields is issued for such
2552 types, instead of identifying them as stub types in the first
2553 place. */
2554
2555 if (TYPE_IS_OPAQUE (type)
2556 && opaque_type_resolution
2557 && !currently_reading_symtab)
2558 {
2559 const char *name = TYPE_NAME (type);
2560 struct type *newtype;
2561
2562 if (name == NULL)
2563 {
2564 stub_noname_complaint ();
2565 return make_qualified_type (type, instance_flags, NULL);
2566 }
2567 newtype = lookup_transparent_type (name);
2568
2569 if (newtype)
2570 {
2571 /* If the resolved type and the stub are in the same
2572 objfile, then replace the stub type with the real deal.
2573 But if they're in separate objfiles, leave the stub
2574 alone; we'll just look up the transparent type every time
2575 we call check_typedef. We can't create pointers between
2576 types allocated to different objfiles, since they may
2577 have different lifetimes. Trying to copy NEWTYPE over to
2578 TYPE's objfile is pointless, too, since you'll have to
2579 move over any other types NEWTYPE refers to, which could
2580 be an unbounded amount of stuff. */
2581 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2582 type = make_qualified_type (newtype,
2583 TYPE_INSTANCE_FLAGS (type),
2584 type);
2585 else
2586 type = newtype;
2587 }
2588 }
2589 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2590 types. */
2591 else if (TYPE_STUB (type) && !currently_reading_symtab)
2592 {
2593 const char *name = TYPE_NAME (type);
2594 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2595 as appropriate? */
2596 struct symbol *sym;
2597
2598 if (name == NULL)
2599 {
2600 stub_noname_complaint ();
2601 return make_qualified_type (type, instance_flags, NULL);
2602 }
2603 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2604 if (sym)
2605 {
2606 /* Same as above for opaque types, we can replace the stub
2607 with the complete type only if they are in the same
2608 objfile. */
2609 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2610 type = make_qualified_type (SYMBOL_TYPE (sym),
2611 TYPE_INSTANCE_FLAGS (type),
2612 type);
2613 else
2614 type = SYMBOL_TYPE (sym);
2615 }
2616 }
2617
2618 if (TYPE_TARGET_STUB (type))
2619 {
2620 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2621
2622 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2623 {
2624 /* Nothing we can do. */
2625 }
2626 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2627 {
2628 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2629 TYPE_TARGET_STUB (type) = 0;
2630 }
2631 }
2632
2633 type = make_qualified_type (type, instance_flags, NULL);
2634
2635 /* Cache TYPE_LENGTH for future use. */
2636 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2637
2638 return type;
2639 }
2640
2641 /* Parse a type expression in the string [P..P+LENGTH). If an error
2642 occurs, silently return a void type. */
2643
2644 static struct type *
2645 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2646 {
2647 struct ui_file *saved_gdb_stderr;
2648 struct type *type = NULL; /* Initialize to keep gcc happy. */
2649
2650 /* Suppress error messages. */
2651 saved_gdb_stderr = gdb_stderr;
2652 gdb_stderr = &null_stream;
2653
2654 /* Call parse_and_eval_type() without fear of longjmp()s. */
2655 try
2656 {
2657 type = parse_and_eval_type (p, length);
2658 }
2659 catch (const gdb_exception_error &except)
2660 {
2661 type = builtin_type (gdbarch)->builtin_void;
2662 }
2663
2664 /* Stop suppressing error messages. */
2665 gdb_stderr = saved_gdb_stderr;
2666
2667 return type;
2668 }
2669
2670 /* Ugly hack to convert method stubs into method types.
2671
2672 He ain't kiddin'. This demangles the name of the method into a
2673 string including argument types, parses out each argument type,
2674 generates a string casting a zero to that type, evaluates the
2675 string, and stuffs the resulting type into an argtype vector!!!
2676 Then it knows the type of the whole function (including argument
2677 types for overloading), which info used to be in the stab's but was
2678 removed to hack back the space required for them. */
2679
2680 static void
2681 check_stub_method (struct type *type, int method_id, int signature_id)
2682 {
2683 struct gdbarch *gdbarch = get_type_arch (type);
2684 struct fn_field *f;
2685 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2686 char *demangled_name = gdb_demangle (mangled_name,
2687 DMGL_PARAMS | DMGL_ANSI);
2688 char *argtypetext, *p;
2689 int depth = 0, argcount = 1;
2690 struct field *argtypes;
2691 struct type *mtype;
2692
2693 /* Make sure we got back a function string that we can use. */
2694 if (demangled_name)
2695 p = strchr (demangled_name, '(');
2696 else
2697 p = NULL;
2698
2699 if (demangled_name == NULL || p == NULL)
2700 error (_("Internal: Cannot demangle mangled name `%s'."),
2701 mangled_name);
2702
2703 /* Now, read in the parameters that define this type. */
2704 p += 1;
2705 argtypetext = p;
2706 while (*p)
2707 {
2708 if (*p == '(' || *p == '<')
2709 {
2710 depth += 1;
2711 }
2712 else if (*p == ')' || *p == '>')
2713 {
2714 depth -= 1;
2715 }
2716 else if (*p == ',' && depth == 0)
2717 {
2718 argcount += 1;
2719 }
2720
2721 p += 1;
2722 }
2723
2724 /* If we read one argument and it was ``void'', don't count it. */
2725 if (startswith (argtypetext, "(void)"))
2726 argcount -= 1;
2727
2728 /* We need one extra slot, for the THIS pointer. */
2729
2730 argtypes = (struct field *)
2731 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2732 p = argtypetext;
2733
2734 /* Add THIS pointer for non-static methods. */
2735 f = TYPE_FN_FIELDLIST1 (type, method_id);
2736 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2737 argcount = 0;
2738 else
2739 {
2740 argtypes[0].type = lookup_pointer_type (type);
2741 argcount = 1;
2742 }
2743
2744 if (*p != ')') /* () means no args, skip while. */
2745 {
2746 depth = 0;
2747 while (*p)
2748 {
2749 if (depth <= 0 && (*p == ',' || *p == ')'))
2750 {
2751 /* Avoid parsing of ellipsis, they will be handled below.
2752 Also avoid ``void'' as above. */
2753 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2754 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2755 {
2756 argtypes[argcount].type =
2757 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2758 argcount += 1;
2759 }
2760 argtypetext = p + 1;
2761 }
2762
2763 if (*p == '(' || *p == '<')
2764 {
2765 depth += 1;
2766 }
2767 else if (*p == ')' || *p == '>')
2768 {
2769 depth -= 1;
2770 }
2771
2772 p += 1;
2773 }
2774 }
2775
2776 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2777
2778 /* Now update the old "stub" type into a real type. */
2779 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2780 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2781 We want a method (TYPE_CODE_METHOD). */
2782 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2783 argtypes, argcount, p[-2] == '.');
2784 TYPE_STUB (mtype) = 0;
2785 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2786
2787 xfree (demangled_name);
2788 }
2789
2790 /* This is the external interface to check_stub_method, above. This
2791 function unstubs all of the signatures for TYPE's METHOD_ID method
2792 name. After calling this function TYPE_FN_FIELD_STUB will be
2793 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2794 correct.
2795
2796 This function unfortunately can not die until stabs do. */
2797
2798 void
2799 check_stub_method_group (struct type *type, int method_id)
2800 {
2801 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2802 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2803
2804 for (int j = 0; j < len; j++)
2805 {
2806 if (TYPE_FN_FIELD_STUB (f, j))
2807 check_stub_method (type, method_id, j);
2808 }
2809 }
2810
2811 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
2812 const struct cplus_struct_type cplus_struct_default = { };
2813
2814 void
2815 allocate_cplus_struct_type (struct type *type)
2816 {
2817 if (HAVE_CPLUS_STRUCT (type))
2818 /* Structure was already allocated. Nothing more to do. */
2819 return;
2820
2821 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2822 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2823 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2824 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2825 set_type_vptr_fieldno (type, -1);
2826 }
2827
2828 const struct gnat_aux_type gnat_aux_default =
2829 { NULL };
2830
2831 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2832 and allocate the associated gnat-specific data. The gnat-specific
2833 data is also initialized to gnat_aux_default. */
2834
2835 void
2836 allocate_gnat_aux_type (struct type *type)
2837 {
2838 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2839 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2840 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2841 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2842 }
2843
2844 /* Helper function to initialize a newly allocated type. Set type code
2845 to CODE and initialize the type-specific fields accordingly. */
2846
2847 static void
2848 set_type_code (struct type *type, enum type_code code)
2849 {
2850 TYPE_CODE (type) = code;
2851
2852 switch (code)
2853 {
2854 case TYPE_CODE_STRUCT:
2855 case TYPE_CODE_UNION:
2856 case TYPE_CODE_NAMESPACE:
2857 INIT_CPLUS_SPECIFIC (type);
2858 break;
2859 case TYPE_CODE_FLT:
2860 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2861 break;
2862 case TYPE_CODE_FUNC:
2863 INIT_FUNC_SPECIFIC (type);
2864 break;
2865 }
2866 }
2867
2868 /* Helper function to verify floating-point format and size.
2869 BIT is the type size in bits; if BIT equals -1, the size is
2870 determined by the floatformat. Returns size to be used. */
2871
2872 static int
2873 verify_floatformat (int bit, const struct floatformat *floatformat)
2874 {
2875 gdb_assert (floatformat != NULL);
2876
2877 if (bit == -1)
2878 bit = floatformat->totalsize;
2879
2880 gdb_assert (bit >= 0);
2881 gdb_assert (bit >= floatformat->totalsize);
2882
2883 return bit;
2884 }
2885
2886 /* Return the floating-point format for a floating-point variable of
2887 type TYPE. */
2888
2889 const struct floatformat *
2890 floatformat_from_type (const struct type *type)
2891 {
2892 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2893 gdb_assert (TYPE_FLOATFORMAT (type));
2894 return TYPE_FLOATFORMAT (type);
2895 }
2896
2897 /* Helper function to initialize the standard scalar types.
2898
2899 If NAME is non-NULL, then it is used to initialize the type name.
2900 Note that NAME is not copied; it is required to have a lifetime at
2901 least as long as OBJFILE. */
2902
2903 struct type *
2904 init_type (struct objfile *objfile, enum type_code code, int bit,
2905 const char *name)
2906 {
2907 struct type *type;
2908
2909 type = alloc_type (objfile);
2910 set_type_code (type, code);
2911 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2912 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2913 TYPE_NAME (type) = name;
2914
2915 return type;
2916 }
2917
2918 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2919 to use with variables that have no debug info. NAME is the type
2920 name. */
2921
2922 static struct type *
2923 init_nodebug_var_type (struct objfile *objfile, const char *name)
2924 {
2925 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2926 }
2927
2928 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2929 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2930 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2931
2932 struct type *
2933 init_integer_type (struct objfile *objfile,
2934 int bit, int unsigned_p, const char *name)
2935 {
2936 struct type *t;
2937
2938 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2939 if (unsigned_p)
2940 TYPE_UNSIGNED (t) = 1;
2941
2942 return t;
2943 }
2944
2945 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2946 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2947 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2948
2949 struct type *
2950 init_character_type (struct objfile *objfile,
2951 int bit, int unsigned_p, const char *name)
2952 {
2953 struct type *t;
2954
2955 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2956 if (unsigned_p)
2957 TYPE_UNSIGNED (t) = 1;
2958
2959 return t;
2960 }
2961
2962 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2963 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2964 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2965
2966 struct type *
2967 init_boolean_type (struct objfile *objfile,
2968 int bit, int unsigned_p, const char *name)
2969 {
2970 struct type *t;
2971
2972 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2973 if (unsigned_p)
2974 TYPE_UNSIGNED (t) = 1;
2975
2976 return t;
2977 }
2978
2979 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2980 BIT is the type size in bits; if BIT equals -1, the size is
2981 determined by the floatformat. NAME is the type name. Set the
2982 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
2983 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
2984 order of the objfile's architecture is used. */
2985
2986 struct type *
2987 init_float_type (struct objfile *objfile,
2988 int bit, const char *name,
2989 const struct floatformat **floatformats,
2990 enum bfd_endian byte_order)
2991 {
2992 if (byte_order == BFD_ENDIAN_UNKNOWN)
2993 {
2994 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2995 byte_order = gdbarch_byte_order (gdbarch);
2996 }
2997 const struct floatformat *fmt = floatformats[byte_order];
2998 struct type *t;
2999
3000 bit = verify_floatformat (bit, fmt);
3001 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3002 TYPE_FLOATFORMAT (t) = fmt;
3003
3004 return t;
3005 }
3006
3007 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3008 BIT is the type size in bits. NAME is the type name. */
3009
3010 struct type *
3011 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3012 {
3013 struct type *t;
3014
3015 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3016 return t;
3017 }
3018
3019 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
3020 NAME is the type name. TARGET_TYPE is the component float type. */
3021
3022 struct type *
3023 init_complex_type (struct objfile *objfile,
3024 const char *name, struct type *target_type)
3025 {
3026 struct type *t;
3027
3028 t = init_type (objfile, TYPE_CODE_COMPLEX,
3029 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
3030 TYPE_TARGET_TYPE (t) = target_type;
3031 return t;
3032 }
3033
3034 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3035 BIT is the pointer type size in bits. NAME is the type name.
3036 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3037 TYPE_UNSIGNED flag. */
3038
3039 struct type *
3040 init_pointer_type (struct objfile *objfile,
3041 int bit, const char *name, struct type *target_type)
3042 {
3043 struct type *t;
3044
3045 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3046 TYPE_TARGET_TYPE (t) = target_type;
3047 TYPE_UNSIGNED (t) = 1;
3048 return t;
3049 }
3050
3051 /* See gdbtypes.h. */
3052
3053 unsigned
3054 type_raw_align (struct type *type)
3055 {
3056 if (type->align_log2 != 0)
3057 return 1 << (type->align_log2 - 1);
3058 return 0;
3059 }
3060
3061 /* See gdbtypes.h. */
3062
3063 unsigned
3064 type_align (struct type *type)
3065 {
3066 /* Check alignment provided in the debug information. */
3067 unsigned raw_align = type_raw_align (type);
3068 if (raw_align != 0)
3069 return raw_align;
3070
3071 /* Allow the architecture to provide an alignment. */
3072 struct gdbarch *arch = get_type_arch (type);
3073 ULONGEST align = gdbarch_type_align (arch, type);
3074 if (align != 0)
3075 return align;
3076
3077 switch (TYPE_CODE (type))
3078 {
3079 case TYPE_CODE_PTR:
3080 case TYPE_CODE_FUNC:
3081 case TYPE_CODE_FLAGS:
3082 case TYPE_CODE_INT:
3083 case TYPE_CODE_RANGE:
3084 case TYPE_CODE_FLT:
3085 case TYPE_CODE_ENUM:
3086 case TYPE_CODE_REF:
3087 case TYPE_CODE_RVALUE_REF:
3088 case TYPE_CODE_CHAR:
3089 case TYPE_CODE_BOOL:
3090 case TYPE_CODE_DECFLOAT:
3091 case TYPE_CODE_METHODPTR:
3092 case TYPE_CODE_MEMBERPTR:
3093 align = type_length_units (check_typedef (type));
3094 break;
3095
3096 case TYPE_CODE_ARRAY:
3097 case TYPE_CODE_COMPLEX:
3098 case TYPE_CODE_TYPEDEF:
3099 align = type_align (TYPE_TARGET_TYPE (type));
3100 break;
3101
3102 case TYPE_CODE_STRUCT:
3103 case TYPE_CODE_UNION:
3104 {
3105 int number_of_non_static_fields = 0;
3106 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3107 {
3108 if (!field_is_static (&TYPE_FIELD (type, i)))
3109 {
3110 number_of_non_static_fields++;
3111 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3112 if (f_align == 0)
3113 {
3114 /* Don't pretend we know something we don't. */
3115 align = 0;
3116 break;
3117 }
3118 if (f_align > align)
3119 align = f_align;
3120 }
3121 }
3122 /* A struct with no fields, or with only static fields has an
3123 alignment of 1. */
3124 if (number_of_non_static_fields == 0)
3125 align = 1;
3126 }
3127 break;
3128
3129 case TYPE_CODE_SET:
3130 case TYPE_CODE_STRING:
3131 /* Not sure what to do here, and these can't appear in C or C++
3132 anyway. */
3133 break;
3134
3135 case TYPE_CODE_VOID:
3136 align = 1;
3137 break;
3138
3139 case TYPE_CODE_ERROR:
3140 case TYPE_CODE_METHOD:
3141 default:
3142 break;
3143 }
3144
3145 if ((align & (align - 1)) != 0)
3146 {
3147 /* Not a power of 2, so pass. */
3148 align = 0;
3149 }
3150
3151 return align;
3152 }
3153
3154 /* See gdbtypes.h. */
3155
3156 bool
3157 set_type_align (struct type *type, ULONGEST align)
3158 {
3159 /* Must be a power of 2. Zero is ok. */
3160 gdb_assert ((align & (align - 1)) == 0);
3161
3162 unsigned result = 0;
3163 while (align != 0)
3164 {
3165 ++result;
3166 align >>= 1;
3167 }
3168
3169 if (result >= (1 << TYPE_ALIGN_BITS))
3170 return false;
3171
3172 type->align_log2 = result;
3173 return true;
3174 }
3175
3176 \f
3177 /* Queries on types. */
3178
3179 int
3180 can_dereference (struct type *t)
3181 {
3182 /* FIXME: Should we return true for references as well as
3183 pointers? */
3184 t = check_typedef (t);
3185 return
3186 (t != NULL
3187 && TYPE_CODE (t) == TYPE_CODE_PTR
3188 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3189 }
3190
3191 int
3192 is_integral_type (struct type *t)
3193 {
3194 t = check_typedef (t);
3195 return
3196 ((t != NULL)
3197 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3198 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3199 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3200 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3201 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3202 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3203 }
3204
3205 int
3206 is_floating_type (struct type *t)
3207 {
3208 t = check_typedef (t);
3209 return
3210 ((t != NULL)
3211 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3212 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3213 }
3214
3215 /* Return true if TYPE is scalar. */
3216
3217 int
3218 is_scalar_type (struct type *type)
3219 {
3220 type = check_typedef (type);
3221
3222 switch (TYPE_CODE (type))
3223 {
3224 case TYPE_CODE_ARRAY:
3225 case TYPE_CODE_STRUCT:
3226 case TYPE_CODE_UNION:
3227 case TYPE_CODE_SET:
3228 case TYPE_CODE_STRING:
3229 return 0;
3230 default:
3231 return 1;
3232 }
3233 }
3234
3235 /* Return true if T is scalar, or a composite type which in practice has
3236 the memory layout of a scalar type. E.g., an array or struct with only
3237 one scalar element inside it, or a union with only scalar elements. */
3238
3239 int
3240 is_scalar_type_recursive (struct type *t)
3241 {
3242 t = check_typedef (t);
3243
3244 if (is_scalar_type (t))
3245 return 1;
3246 /* Are we dealing with an array or string of known dimensions? */
3247 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3248 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3249 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3250 {
3251 LONGEST low_bound, high_bound;
3252 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3253
3254 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3255
3256 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3257 }
3258 /* Are we dealing with a struct with one element? */
3259 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3260 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3261 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3262 {
3263 int i, n = TYPE_NFIELDS (t);
3264
3265 /* If all elements of the union are scalar, then the union is scalar. */
3266 for (i = 0; i < n; i++)
3267 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3268 return 0;
3269
3270 return 1;
3271 }
3272
3273 return 0;
3274 }
3275
3276 /* Return true is T is a class or a union. False otherwise. */
3277
3278 int
3279 class_or_union_p (const struct type *t)
3280 {
3281 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3282 || TYPE_CODE (t) == TYPE_CODE_UNION);
3283 }
3284
3285 /* A helper function which returns true if types A and B represent the
3286 "same" class type. This is true if the types have the same main
3287 type, or the same name. */
3288
3289 int
3290 class_types_same_p (const struct type *a, const struct type *b)
3291 {
3292 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3293 || (TYPE_NAME (a) && TYPE_NAME (b)
3294 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3295 }
3296
3297 /* If BASE is an ancestor of DCLASS return the distance between them.
3298 otherwise return -1;
3299 eg:
3300
3301 class A {};
3302 class B: public A {};
3303 class C: public B {};
3304 class D: C {};
3305
3306 distance_to_ancestor (A, A, 0) = 0
3307 distance_to_ancestor (A, B, 0) = 1
3308 distance_to_ancestor (A, C, 0) = 2
3309 distance_to_ancestor (A, D, 0) = 3
3310
3311 If PUBLIC is 1 then only public ancestors are considered,
3312 and the function returns the distance only if BASE is a public ancestor
3313 of DCLASS.
3314 Eg:
3315
3316 distance_to_ancestor (A, D, 1) = -1. */
3317
3318 static int
3319 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3320 {
3321 int i;
3322 int d;
3323
3324 base = check_typedef (base);
3325 dclass = check_typedef (dclass);
3326
3327 if (class_types_same_p (base, dclass))
3328 return 0;
3329
3330 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3331 {
3332 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3333 continue;
3334
3335 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3336 if (d >= 0)
3337 return 1 + d;
3338 }
3339
3340 return -1;
3341 }
3342
3343 /* Check whether BASE is an ancestor or base class or DCLASS
3344 Return 1 if so, and 0 if not.
3345 Note: If BASE and DCLASS are of the same type, this function
3346 will return 1. So for some class A, is_ancestor (A, A) will
3347 return 1. */
3348
3349 int
3350 is_ancestor (struct type *base, struct type *dclass)
3351 {
3352 return distance_to_ancestor (base, dclass, 0) >= 0;
3353 }
3354
3355 /* Like is_ancestor, but only returns true when BASE is a public
3356 ancestor of DCLASS. */
3357
3358 int
3359 is_public_ancestor (struct type *base, struct type *dclass)
3360 {
3361 return distance_to_ancestor (base, dclass, 1) >= 0;
3362 }
3363
3364 /* A helper function for is_unique_ancestor. */
3365
3366 static int
3367 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3368 int *offset,
3369 const gdb_byte *valaddr, int embedded_offset,
3370 CORE_ADDR address, struct value *val)
3371 {
3372 int i, count = 0;
3373
3374 base = check_typedef (base);
3375 dclass = check_typedef (dclass);
3376
3377 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3378 {
3379 struct type *iter;
3380 int this_offset;
3381
3382 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3383
3384 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3385 address, val);
3386
3387 if (class_types_same_p (base, iter))
3388 {
3389 /* If this is the first subclass, set *OFFSET and set count
3390 to 1. Otherwise, if this is at the same offset as
3391 previous instances, do nothing. Otherwise, increment
3392 count. */
3393 if (*offset == -1)
3394 {
3395 *offset = this_offset;
3396 count = 1;
3397 }
3398 else if (this_offset == *offset)
3399 {
3400 /* Nothing. */
3401 }
3402 else
3403 ++count;
3404 }
3405 else
3406 count += is_unique_ancestor_worker (base, iter, offset,
3407 valaddr,
3408 embedded_offset + this_offset,
3409 address, val);
3410 }
3411
3412 return count;
3413 }
3414
3415 /* Like is_ancestor, but only returns true if BASE is a unique base
3416 class of the type of VAL. */
3417
3418 int
3419 is_unique_ancestor (struct type *base, struct value *val)
3420 {
3421 int offset = -1;
3422
3423 return is_unique_ancestor_worker (base, value_type (val), &offset,
3424 value_contents_for_printing (val),
3425 value_embedded_offset (val),
3426 value_address (val), val) == 1;
3427 }
3428
3429 /* See gdbtypes.h. */
3430
3431 enum bfd_endian
3432 type_byte_order (const struct type *type)
3433 {
3434 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3435 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3436 {
3437 if (byteorder == BFD_ENDIAN_BIG)
3438 return BFD_ENDIAN_LITTLE;
3439 else
3440 {
3441 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3442 return BFD_ENDIAN_BIG;
3443 }
3444 }
3445
3446 return byteorder;
3447 }
3448
3449 \f
3450 /* Overload resolution. */
3451
3452 /* Return the sum of the rank of A with the rank of B. */
3453
3454 struct rank
3455 sum_ranks (struct rank a, struct rank b)
3456 {
3457 struct rank c;
3458 c.rank = a.rank + b.rank;
3459 c.subrank = a.subrank + b.subrank;
3460 return c;
3461 }
3462
3463 /* Compare rank A and B and return:
3464 0 if a = b
3465 1 if a is better than b
3466 -1 if b is better than a. */
3467
3468 int
3469 compare_ranks (struct rank a, struct rank b)
3470 {
3471 if (a.rank == b.rank)
3472 {
3473 if (a.subrank == b.subrank)
3474 return 0;
3475 if (a.subrank < b.subrank)
3476 return 1;
3477 if (a.subrank > b.subrank)
3478 return -1;
3479 }
3480
3481 if (a.rank < b.rank)
3482 return 1;
3483
3484 /* a.rank > b.rank */
3485 return -1;
3486 }
3487
3488 /* Functions for overload resolution begin here. */
3489
3490 /* Compare two badness vectors A and B and return the result.
3491 0 => A and B are identical
3492 1 => A and B are incomparable
3493 2 => A is better than B
3494 3 => A is worse than B */
3495
3496 int
3497 compare_badness (const badness_vector &a, const badness_vector &b)
3498 {
3499 int i;
3500 int tmp;
3501 short found_pos = 0; /* any positives in c? */
3502 short found_neg = 0; /* any negatives in c? */
3503
3504 /* differing sizes => incomparable */
3505 if (a.size () != b.size ())
3506 return 1;
3507
3508 /* Subtract b from a */
3509 for (i = 0; i < a.size (); i++)
3510 {
3511 tmp = compare_ranks (b[i], a[i]);
3512 if (tmp > 0)
3513 found_pos = 1;
3514 else if (tmp < 0)
3515 found_neg = 1;
3516 }
3517
3518 if (found_pos)
3519 {
3520 if (found_neg)
3521 return 1; /* incomparable */
3522 else
3523 return 3; /* A > B */
3524 }
3525 else
3526 /* no positives */
3527 {
3528 if (found_neg)
3529 return 2; /* A < B */
3530 else
3531 return 0; /* A == B */
3532 }
3533 }
3534
3535 /* Rank a function by comparing its parameter types (PARMS), to the
3536 types of an argument list (ARGS). Return the badness vector. This
3537 has ARGS.size() + 1 entries. */
3538
3539 badness_vector
3540 rank_function (gdb::array_view<type *> parms,
3541 gdb::array_view<value *> args)
3542 {
3543 /* add 1 for the length-match rank. */
3544 badness_vector bv;
3545 bv.reserve (1 + args.size ());
3546
3547 /* First compare the lengths of the supplied lists.
3548 If there is a mismatch, set it to a high value. */
3549
3550 /* pai/1997-06-03 FIXME: when we have debug info about default
3551 arguments and ellipsis parameter lists, we should consider those
3552 and rank the length-match more finely. */
3553
3554 bv.push_back ((args.size () != parms.size ())
3555 ? LENGTH_MISMATCH_BADNESS
3556 : EXACT_MATCH_BADNESS);
3557
3558 /* Now rank all the parameters of the candidate function. */
3559 size_t min_len = std::min (parms.size (), args.size ());
3560
3561 for (size_t i = 0; i < min_len; i++)
3562 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3563 args[i]));
3564
3565 /* If more arguments than parameters, add dummy entries. */
3566 for (size_t i = min_len; i < args.size (); i++)
3567 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3568
3569 return bv;
3570 }
3571
3572 /* Compare the names of two integer types, assuming that any sign
3573 qualifiers have been checked already. We do it this way because
3574 there may be an "int" in the name of one of the types. */
3575
3576 static int
3577 integer_types_same_name_p (const char *first, const char *second)
3578 {
3579 int first_p, second_p;
3580
3581 /* If both are shorts, return 1; if neither is a short, keep
3582 checking. */
3583 first_p = (strstr (first, "short") != NULL);
3584 second_p = (strstr (second, "short") != NULL);
3585 if (first_p && second_p)
3586 return 1;
3587 if (first_p || second_p)
3588 return 0;
3589
3590 /* Likewise for long. */
3591 first_p = (strstr (first, "long") != NULL);
3592 second_p = (strstr (second, "long") != NULL);
3593 if (first_p && second_p)
3594 return 1;
3595 if (first_p || second_p)
3596 return 0;
3597
3598 /* Likewise for char. */
3599 first_p = (strstr (first, "char") != NULL);
3600 second_p = (strstr (second, "char") != NULL);
3601 if (first_p && second_p)
3602 return 1;
3603 if (first_p || second_p)
3604 return 0;
3605
3606 /* They must both be ints. */
3607 return 1;
3608 }
3609
3610 /* Compares type A to type B. Returns true if they represent the same
3611 type, false otherwise. */
3612
3613 bool
3614 types_equal (struct type *a, struct type *b)
3615 {
3616 /* Identical type pointers. */
3617 /* However, this still doesn't catch all cases of same type for b
3618 and a. The reason is that builtin types are different from
3619 the same ones constructed from the object. */
3620 if (a == b)
3621 return true;
3622
3623 /* Resolve typedefs */
3624 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3625 a = check_typedef (a);
3626 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3627 b = check_typedef (b);
3628
3629 /* If after resolving typedefs a and b are not of the same type
3630 code then they are not equal. */
3631 if (TYPE_CODE (a) != TYPE_CODE (b))
3632 return false;
3633
3634 /* If a and b are both pointers types or both reference types then
3635 they are equal of the same type iff the objects they refer to are
3636 of the same type. */
3637 if (TYPE_CODE (a) == TYPE_CODE_PTR
3638 || TYPE_CODE (a) == TYPE_CODE_REF)
3639 return types_equal (TYPE_TARGET_TYPE (a),
3640 TYPE_TARGET_TYPE (b));
3641
3642 /* Well, damnit, if the names are exactly the same, I'll say they
3643 are exactly the same. This happens when we generate method
3644 stubs. The types won't point to the same address, but they
3645 really are the same. */
3646
3647 if (TYPE_NAME (a) && TYPE_NAME (b)
3648 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3649 return true;
3650
3651 /* Check if identical after resolving typedefs. */
3652 if (a == b)
3653 return true;
3654
3655 /* Two function types are equal if their argument and return types
3656 are equal. */
3657 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3658 {
3659 int i;
3660
3661 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3662 return false;
3663
3664 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3665 return false;
3666
3667 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3668 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3669 return false;
3670
3671 return true;
3672 }
3673
3674 return false;
3675 }
3676 \f
3677 /* Deep comparison of types. */
3678
3679 /* An entry in the type-equality bcache. */
3680
3681 struct type_equality_entry
3682 {
3683 type_equality_entry (struct type *t1, struct type *t2)
3684 : type1 (t1),
3685 type2 (t2)
3686 {
3687 }
3688
3689 struct type *type1, *type2;
3690 };
3691
3692 /* A helper function to compare two strings. Returns true if they are
3693 the same, false otherwise. Handles NULLs properly. */
3694
3695 static bool
3696 compare_maybe_null_strings (const char *s, const char *t)
3697 {
3698 if (s == NULL || t == NULL)
3699 return s == t;
3700 return strcmp (s, t) == 0;
3701 }
3702
3703 /* A helper function for check_types_worklist that checks two types for
3704 "deep" equality. Returns true if the types are considered the
3705 same, false otherwise. */
3706
3707 static bool
3708 check_types_equal (struct type *type1, struct type *type2,
3709 std::vector<type_equality_entry> *worklist)
3710 {
3711 type1 = check_typedef (type1);
3712 type2 = check_typedef (type2);
3713
3714 if (type1 == type2)
3715 return true;
3716
3717 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3718 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3719 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3720 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3721 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3722 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3723 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3724 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3725 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3726 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3727 return false;
3728
3729 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3730 return false;
3731 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3732 return false;
3733
3734 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3735 {
3736 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3737 return false;
3738 }
3739 else
3740 {
3741 int i;
3742
3743 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3744 {
3745 const struct field *field1 = &TYPE_FIELD (type1, i);
3746 const struct field *field2 = &TYPE_FIELD (type2, i);
3747
3748 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3749 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3750 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3751 return false;
3752 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3753 FIELD_NAME (*field2)))
3754 return false;
3755 switch (FIELD_LOC_KIND (*field1))
3756 {
3757 case FIELD_LOC_KIND_BITPOS:
3758 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3759 return false;
3760 break;
3761 case FIELD_LOC_KIND_ENUMVAL:
3762 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3763 return false;
3764 break;
3765 case FIELD_LOC_KIND_PHYSADDR:
3766 if (FIELD_STATIC_PHYSADDR (*field1)
3767 != FIELD_STATIC_PHYSADDR (*field2))
3768 return false;
3769 break;
3770 case FIELD_LOC_KIND_PHYSNAME:
3771 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3772 FIELD_STATIC_PHYSNAME (*field2)))
3773 return false;
3774 break;
3775 case FIELD_LOC_KIND_DWARF_BLOCK:
3776 {
3777 struct dwarf2_locexpr_baton *block1, *block2;
3778
3779 block1 = FIELD_DWARF_BLOCK (*field1);
3780 block2 = FIELD_DWARF_BLOCK (*field2);
3781 if (block1->per_cu != block2->per_cu
3782 || block1->size != block2->size
3783 || memcmp (block1->data, block2->data, block1->size) != 0)
3784 return false;
3785 }
3786 break;
3787 default:
3788 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3789 "%d by check_types_equal"),
3790 FIELD_LOC_KIND (*field1));
3791 }
3792
3793 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3794 }
3795 }
3796
3797 if (TYPE_TARGET_TYPE (type1) != NULL)
3798 {
3799 if (TYPE_TARGET_TYPE (type2) == NULL)
3800 return false;
3801
3802 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3803 TYPE_TARGET_TYPE (type2));
3804 }
3805 else if (TYPE_TARGET_TYPE (type2) != NULL)
3806 return false;
3807
3808 return true;
3809 }
3810
3811 /* Check types on a worklist for equality. Returns false if any pair
3812 is not equal, true if they are all considered equal. */
3813
3814 static bool
3815 check_types_worklist (std::vector<type_equality_entry> *worklist,
3816 gdb::bcache *cache)
3817 {
3818 while (!worklist->empty ())
3819 {
3820 int added;
3821
3822 struct type_equality_entry entry = std::move (worklist->back ());
3823 worklist->pop_back ();
3824
3825 /* If the type pair has already been visited, we know it is
3826 ok. */
3827 cache->insert (&entry, sizeof (entry), &added);
3828 if (!added)
3829 continue;
3830
3831 if (!check_types_equal (entry.type1, entry.type2, worklist))
3832 return false;
3833 }
3834
3835 return true;
3836 }
3837
3838 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3839 "deep comparison". Otherwise return false. */
3840
3841 bool
3842 types_deeply_equal (struct type *type1, struct type *type2)
3843 {
3844 std::vector<type_equality_entry> worklist;
3845
3846 gdb_assert (type1 != NULL && type2 != NULL);
3847
3848 /* Early exit for the simple case. */
3849 if (type1 == type2)
3850 return true;
3851
3852 gdb::bcache cache (nullptr, nullptr);
3853 worklist.emplace_back (type1, type2);
3854 return check_types_worklist (&worklist, &cache);
3855 }
3856
3857 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3858 Otherwise return one. */
3859
3860 int
3861 type_not_allocated (const struct type *type)
3862 {
3863 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3864
3865 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3866 && !TYPE_DYN_PROP_ADDR (prop));
3867 }
3868
3869 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3870 Otherwise return one. */
3871
3872 int
3873 type_not_associated (const struct type *type)
3874 {
3875 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3876
3877 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3878 && !TYPE_DYN_PROP_ADDR (prop));
3879 }
3880
3881 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3882
3883 static struct rank
3884 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3885 {
3886 struct rank rank = {0,0};
3887
3888 switch (TYPE_CODE (arg))
3889 {
3890 case TYPE_CODE_PTR:
3891
3892 /* Allowed pointer conversions are:
3893 (a) pointer to void-pointer conversion. */
3894 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3895 return VOID_PTR_CONVERSION_BADNESS;
3896
3897 /* (b) pointer to ancestor-pointer conversion. */
3898 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3899 TYPE_TARGET_TYPE (arg),
3900 0);
3901 if (rank.subrank >= 0)
3902 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3903
3904 return INCOMPATIBLE_TYPE_BADNESS;
3905 case TYPE_CODE_ARRAY:
3906 {
3907 struct type *t1 = TYPE_TARGET_TYPE (parm);
3908 struct type *t2 = TYPE_TARGET_TYPE (arg);
3909
3910 if (types_equal (t1, t2))
3911 {
3912 /* Make sure they are CV equal. */
3913 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3914 rank.subrank |= CV_CONVERSION_CONST;
3915 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3916 rank.subrank |= CV_CONVERSION_VOLATILE;
3917 if (rank.subrank != 0)
3918 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3919 return EXACT_MATCH_BADNESS;
3920 }
3921 return INCOMPATIBLE_TYPE_BADNESS;
3922 }
3923 case TYPE_CODE_FUNC:
3924 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3925 case TYPE_CODE_INT:
3926 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3927 {
3928 if (value_as_long (value) == 0)
3929 {
3930 /* Null pointer conversion: allow it to be cast to a pointer.
3931 [4.10.1 of C++ standard draft n3290] */
3932 return NULL_POINTER_CONVERSION_BADNESS;
3933 }
3934 else
3935 {
3936 /* If type checking is disabled, allow the conversion. */
3937 if (!strict_type_checking)
3938 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3939 }
3940 }
3941 /* fall through */
3942 case TYPE_CODE_ENUM:
3943 case TYPE_CODE_FLAGS:
3944 case TYPE_CODE_CHAR:
3945 case TYPE_CODE_RANGE:
3946 case TYPE_CODE_BOOL:
3947 default:
3948 return INCOMPATIBLE_TYPE_BADNESS;
3949 }
3950 }
3951
3952 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3953
3954 static struct rank
3955 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3956 {
3957 switch (TYPE_CODE (arg))
3958 {
3959 case TYPE_CODE_PTR:
3960 case TYPE_CODE_ARRAY:
3961 return rank_one_type (TYPE_TARGET_TYPE (parm),
3962 TYPE_TARGET_TYPE (arg), NULL);
3963 default:
3964 return INCOMPATIBLE_TYPE_BADNESS;
3965 }
3966 }
3967
3968 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3969
3970 static struct rank
3971 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3972 {
3973 switch (TYPE_CODE (arg))
3974 {
3975 case TYPE_CODE_PTR: /* funcptr -> func */
3976 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3977 default:
3978 return INCOMPATIBLE_TYPE_BADNESS;
3979 }
3980 }
3981
3982 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3983
3984 static struct rank
3985 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3986 {
3987 switch (TYPE_CODE (arg))
3988 {
3989 case TYPE_CODE_INT:
3990 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3991 {
3992 /* Deal with signed, unsigned, and plain chars and
3993 signed and unsigned ints. */
3994 if (TYPE_NOSIGN (parm))
3995 {
3996 /* This case only for character types. */
3997 if (TYPE_NOSIGN (arg))
3998 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3999 else /* signed/unsigned char -> plain char */
4000 return INTEGER_CONVERSION_BADNESS;
4001 }
4002 else if (TYPE_UNSIGNED (parm))
4003 {
4004 if (TYPE_UNSIGNED (arg))
4005 {
4006 /* unsigned int -> unsigned int, or
4007 unsigned long -> unsigned long */
4008 if (integer_types_same_name_p (TYPE_NAME (parm),
4009 TYPE_NAME (arg)))
4010 return EXACT_MATCH_BADNESS;
4011 else if (integer_types_same_name_p (TYPE_NAME (arg),
4012 "int")
4013 && integer_types_same_name_p (TYPE_NAME (parm),
4014 "long"))
4015 /* unsigned int -> unsigned long */
4016 return INTEGER_PROMOTION_BADNESS;
4017 else
4018 /* unsigned long -> unsigned int */
4019 return INTEGER_CONVERSION_BADNESS;
4020 }
4021 else
4022 {
4023 if (integer_types_same_name_p (TYPE_NAME (arg),
4024 "long")
4025 && integer_types_same_name_p (TYPE_NAME (parm),
4026 "int"))
4027 /* signed long -> unsigned int */
4028 return INTEGER_CONVERSION_BADNESS;
4029 else
4030 /* signed int/long -> unsigned int/long */
4031 return INTEGER_CONVERSION_BADNESS;
4032 }
4033 }
4034 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4035 {
4036 if (integer_types_same_name_p (TYPE_NAME (parm),
4037 TYPE_NAME (arg)))
4038 return EXACT_MATCH_BADNESS;
4039 else if (integer_types_same_name_p (TYPE_NAME (arg),
4040 "int")
4041 && integer_types_same_name_p (TYPE_NAME (parm),
4042 "long"))
4043 return INTEGER_PROMOTION_BADNESS;
4044 else
4045 return INTEGER_CONVERSION_BADNESS;
4046 }
4047 else
4048 return INTEGER_CONVERSION_BADNESS;
4049 }
4050 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4051 return INTEGER_PROMOTION_BADNESS;
4052 else
4053 return INTEGER_CONVERSION_BADNESS;
4054 case TYPE_CODE_ENUM:
4055 case TYPE_CODE_FLAGS:
4056 case TYPE_CODE_CHAR:
4057 case TYPE_CODE_RANGE:
4058 case TYPE_CODE_BOOL:
4059 if (TYPE_DECLARED_CLASS (arg))
4060 return INCOMPATIBLE_TYPE_BADNESS;
4061 return INTEGER_PROMOTION_BADNESS;
4062 case TYPE_CODE_FLT:
4063 return INT_FLOAT_CONVERSION_BADNESS;
4064 case TYPE_CODE_PTR:
4065 return NS_POINTER_CONVERSION_BADNESS;
4066 default:
4067 return INCOMPATIBLE_TYPE_BADNESS;
4068 }
4069 }
4070
4071 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4072
4073 static struct rank
4074 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4075 {
4076 switch (TYPE_CODE (arg))
4077 {
4078 case TYPE_CODE_INT:
4079 case TYPE_CODE_CHAR:
4080 case TYPE_CODE_RANGE:
4081 case TYPE_CODE_BOOL:
4082 case TYPE_CODE_ENUM:
4083 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4084 return INCOMPATIBLE_TYPE_BADNESS;
4085 return INTEGER_CONVERSION_BADNESS;
4086 case TYPE_CODE_FLT:
4087 return INT_FLOAT_CONVERSION_BADNESS;
4088 default:
4089 return INCOMPATIBLE_TYPE_BADNESS;
4090 }
4091 }
4092
4093 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4094
4095 static struct rank
4096 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4097 {
4098 switch (TYPE_CODE (arg))
4099 {
4100 case TYPE_CODE_RANGE:
4101 case TYPE_CODE_BOOL:
4102 case TYPE_CODE_ENUM:
4103 if (TYPE_DECLARED_CLASS (arg))
4104 return INCOMPATIBLE_TYPE_BADNESS;
4105 return INTEGER_CONVERSION_BADNESS;
4106 case TYPE_CODE_FLT:
4107 return INT_FLOAT_CONVERSION_BADNESS;
4108 case TYPE_CODE_INT:
4109 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4110 return INTEGER_CONVERSION_BADNESS;
4111 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4112 return INTEGER_PROMOTION_BADNESS;
4113 /* fall through */
4114 case TYPE_CODE_CHAR:
4115 /* Deal with signed, unsigned, and plain chars for C++ and
4116 with int cases falling through from previous case. */
4117 if (TYPE_NOSIGN (parm))
4118 {
4119 if (TYPE_NOSIGN (arg))
4120 return EXACT_MATCH_BADNESS;
4121 else
4122 return INTEGER_CONVERSION_BADNESS;
4123 }
4124 else if (TYPE_UNSIGNED (parm))
4125 {
4126 if (TYPE_UNSIGNED (arg))
4127 return EXACT_MATCH_BADNESS;
4128 else
4129 return INTEGER_PROMOTION_BADNESS;
4130 }
4131 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4132 return EXACT_MATCH_BADNESS;
4133 else
4134 return INTEGER_CONVERSION_BADNESS;
4135 default:
4136 return INCOMPATIBLE_TYPE_BADNESS;
4137 }
4138 }
4139
4140 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4141
4142 static struct rank
4143 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4144 {
4145 switch (TYPE_CODE (arg))
4146 {
4147 case TYPE_CODE_INT:
4148 case TYPE_CODE_CHAR:
4149 case TYPE_CODE_RANGE:
4150 case TYPE_CODE_BOOL:
4151 case TYPE_CODE_ENUM:
4152 return INTEGER_CONVERSION_BADNESS;
4153 case TYPE_CODE_FLT:
4154 return INT_FLOAT_CONVERSION_BADNESS;
4155 default:
4156 return INCOMPATIBLE_TYPE_BADNESS;
4157 }
4158 }
4159
4160 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4161
4162 static struct rank
4163 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4164 {
4165 switch (TYPE_CODE (arg))
4166 {
4167 /* n3290 draft, section 4.12.1 (conv.bool):
4168
4169 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4170 pointer to member type can be converted to a prvalue of type
4171 bool. A zero value, null pointer value, or null member pointer
4172 value is converted to false; any other value is converted to
4173 true. A prvalue of type std::nullptr_t can be converted to a
4174 prvalue of type bool; the resulting value is false." */
4175 case TYPE_CODE_INT:
4176 case TYPE_CODE_CHAR:
4177 case TYPE_CODE_ENUM:
4178 case TYPE_CODE_FLT:
4179 case TYPE_CODE_MEMBERPTR:
4180 case TYPE_CODE_PTR:
4181 return BOOL_CONVERSION_BADNESS;
4182 case TYPE_CODE_RANGE:
4183 return INCOMPATIBLE_TYPE_BADNESS;
4184 case TYPE_CODE_BOOL:
4185 return EXACT_MATCH_BADNESS;
4186 default:
4187 return INCOMPATIBLE_TYPE_BADNESS;
4188 }
4189 }
4190
4191 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4192
4193 static struct rank
4194 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4195 {
4196 switch (TYPE_CODE (arg))
4197 {
4198 case TYPE_CODE_FLT:
4199 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4200 return FLOAT_PROMOTION_BADNESS;
4201 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4202 return EXACT_MATCH_BADNESS;
4203 else
4204 return FLOAT_CONVERSION_BADNESS;
4205 case TYPE_CODE_INT:
4206 case TYPE_CODE_BOOL:
4207 case TYPE_CODE_ENUM:
4208 case TYPE_CODE_RANGE:
4209 case TYPE_CODE_CHAR:
4210 return INT_FLOAT_CONVERSION_BADNESS;
4211 default:
4212 return INCOMPATIBLE_TYPE_BADNESS;
4213 }
4214 }
4215
4216 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4217
4218 static struct rank
4219 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4220 {
4221 switch (TYPE_CODE (arg))
4222 { /* Strictly not needed for C++, but... */
4223 case TYPE_CODE_FLT:
4224 return FLOAT_PROMOTION_BADNESS;
4225 case TYPE_CODE_COMPLEX:
4226 return EXACT_MATCH_BADNESS;
4227 default:
4228 return INCOMPATIBLE_TYPE_BADNESS;
4229 }
4230 }
4231
4232 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4233
4234 static struct rank
4235 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4236 {
4237 struct rank rank = {0, 0};
4238
4239 switch (TYPE_CODE (arg))
4240 {
4241 case TYPE_CODE_STRUCT:
4242 /* Check for derivation */
4243 rank.subrank = distance_to_ancestor (parm, arg, 0);
4244 if (rank.subrank >= 0)
4245 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4246 /* fall through */
4247 default:
4248 return INCOMPATIBLE_TYPE_BADNESS;
4249 }
4250 }
4251
4252 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4253
4254 static struct rank
4255 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4256 {
4257 switch (TYPE_CODE (arg))
4258 {
4259 /* Not in C++ */
4260 case TYPE_CODE_SET:
4261 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4262 TYPE_FIELD_TYPE (arg, 0), NULL);
4263 default:
4264 return INCOMPATIBLE_TYPE_BADNESS;
4265 }
4266 }
4267
4268 /* Compare one type (PARM) for compatibility with another (ARG).
4269 * PARM is intended to be the parameter type of a function; and
4270 * ARG is the supplied argument's type. This function tests if
4271 * the latter can be converted to the former.
4272 * VALUE is the argument's value or NULL if none (or called recursively)
4273 *
4274 * Return 0 if they are identical types;
4275 * Otherwise, return an integer which corresponds to how compatible
4276 * PARM is to ARG. The higher the return value, the worse the match.
4277 * Generally the "bad" conversions are all uniformly assigned a 100. */
4278
4279 struct rank
4280 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4281 {
4282 struct rank rank = {0,0};
4283
4284 /* Resolve typedefs */
4285 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4286 parm = check_typedef (parm);
4287 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4288 arg = check_typedef (arg);
4289
4290 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4291 {
4292 if (VALUE_LVAL (value) == not_lval)
4293 {
4294 /* Rvalues should preferably bind to rvalue references or const
4295 lvalue references. */
4296 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4297 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4298 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4299 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4300 else
4301 return INCOMPATIBLE_TYPE_BADNESS;
4302 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4303 }
4304 else
4305 {
4306 /* It's illegal to pass an lvalue as an rvalue. */
4307 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4308 return INCOMPATIBLE_TYPE_BADNESS;
4309 }
4310 }
4311
4312 if (types_equal (parm, arg))
4313 {
4314 struct type *t1 = parm;
4315 struct type *t2 = arg;
4316
4317 /* For pointers and references, compare target type. */
4318 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4319 {
4320 t1 = TYPE_TARGET_TYPE (parm);
4321 t2 = TYPE_TARGET_TYPE (arg);
4322 }
4323
4324 /* Make sure they are CV equal, too. */
4325 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4326 rank.subrank |= CV_CONVERSION_CONST;
4327 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4328 rank.subrank |= CV_CONVERSION_VOLATILE;
4329 if (rank.subrank != 0)
4330 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4331 return EXACT_MATCH_BADNESS;
4332 }
4333
4334 /* See through references, since we can almost make non-references
4335 references. */
4336
4337 if (TYPE_IS_REFERENCE (arg))
4338 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4339 REFERENCE_SEE_THROUGH_BADNESS));
4340 if (TYPE_IS_REFERENCE (parm))
4341 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4342 REFERENCE_SEE_THROUGH_BADNESS));
4343 if (overload_debug)
4344 /* Debugging only. */
4345 fprintf_filtered (gdb_stderr,
4346 "------ Arg is %s [%d], parm is %s [%d]\n",
4347 TYPE_NAME (arg), TYPE_CODE (arg),
4348 TYPE_NAME (parm), TYPE_CODE (parm));
4349
4350 /* x -> y means arg of type x being supplied for parameter of type y. */
4351
4352 switch (TYPE_CODE (parm))
4353 {
4354 case TYPE_CODE_PTR:
4355 return rank_one_type_parm_ptr (parm, arg, value);
4356 case TYPE_CODE_ARRAY:
4357 return rank_one_type_parm_array (parm, arg, value);
4358 case TYPE_CODE_FUNC:
4359 return rank_one_type_parm_func (parm, arg, value);
4360 case TYPE_CODE_INT:
4361 return rank_one_type_parm_int (parm, arg, value);
4362 case TYPE_CODE_ENUM:
4363 return rank_one_type_parm_enum (parm, arg, value);
4364 case TYPE_CODE_CHAR:
4365 return rank_one_type_parm_char (parm, arg, value);
4366 case TYPE_CODE_RANGE:
4367 return rank_one_type_parm_range (parm, arg, value);
4368 case TYPE_CODE_BOOL:
4369 return rank_one_type_parm_bool (parm, arg, value);
4370 case TYPE_CODE_FLT:
4371 return rank_one_type_parm_float (parm, arg, value);
4372 case TYPE_CODE_COMPLEX:
4373 return rank_one_type_parm_complex (parm, arg, value);
4374 case TYPE_CODE_STRUCT:
4375 return rank_one_type_parm_struct (parm, arg, value);
4376 case TYPE_CODE_SET:
4377 return rank_one_type_parm_set (parm, arg, value);
4378 default:
4379 return INCOMPATIBLE_TYPE_BADNESS;
4380 } /* switch (TYPE_CODE (arg)) */
4381 }
4382
4383 /* End of functions for overload resolution. */
4384 \f
4385 /* Routines to pretty-print types. */
4386
4387 static void
4388 print_bit_vector (B_TYPE *bits, int nbits)
4389 {
4390 int bitno;
4391
4392 for (bitno = 0; bitno < nbits; bitno++)
4393 {
4394 if ((bitno % 8) == 0)
4395 {
4396 puts_filtered (" ");
4397 }
4398 if (B_TST (bits, bitno))
4399 printf_filtered (("1"));
4400 else
4401 printf_filtered (("0"));
4402 }
4403 }
4404
4405 /* Note the first arg should be the "this" pointer, we may not want to
4406 include it since we may get into a infinitely recursive
4407 situation. */
4408
4409 static void
4410 print_args (struct field *args, int nargs, int spaces)
4411 {
4412 if (args != NULL)
4413 {
4414 int i;
4415
4416 for (i = 0; i < nargs; i++)
4417 {
4418 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4419 args[i].name != NULL ? args[i].name : "<NULL>");
4420 recursive_dump_type (args[i].type, spaces + 2);
4421 }
4422 }
4423 }
4424
4425 int
4426 field_is_static (struct field *f)
4427 {
4428 /* "static" fields are the fields whose location is not relative
4429 to the address of the enclosing struct. It would be nice to
4430 have a dedicated flag that would be set for static fields when
4431 the type is being created. But in practice, checking the field
4432 loc_kind should give us an accurate answer. */
4433 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4434 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4435 }
4436
4437 static void
4438 dump_fn_fieldlists (struct type *type, int spaces)
4439 {
4440 int method_idx;
4441 int overload_idx;
4442 struct fn_field *f;
4443
4444 printfi_filtered (spaces, "fn_fieldlists ");
4445 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4446 printf_filtered ("\n");
4447 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4448 {
4449 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4450 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4451 method_idx,
4452 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4453 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4454 gdb_stdout);
4455 printf_filtered (_(") length %d\n"),
4456 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4457 for (overload_idx = 0;
4458 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4459 overload_idx++)
4460 {
4461 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4462 overload_idx,
4463 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4464 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4465 gdb_stdout);
4466 printf_filtered (")\n");
4467 printfi_filtered (spaces + 8, "type ");
4468 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4469 gdb_stdout);
4470 printf_filtered ("\n");
4471
4472 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4473 spaces + 8 + 2);
4474
4475 printfi_filtered (spaces + 8, "args ");
4476 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4477 gdb_stdout);
4478 printf_filtered ("\n");
4479 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4480 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4481 spaces + 8 + 2);
4482 printfi_filtered (spaces + 8, "fcontext ");
4483 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4484 gdb_stdout);
4485 printf_filtered ("\n");
4486
4487 printfi_filtered (spaces + 8, "is_const %d\n",
4488 TYPE_FN_FIELD_CONST (f, overload_idx));
4489 printfi_filtered (spaces + 8, "is_volatile %d\n",
4490 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4491 printfi_filtered (spaces + 8, "is_private %d\n",
4492 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4493 printfi_filtered (spaces + 8, "is_protected %d\n",
4494 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4495 printfi_filtered (spaces + 8, "is_stub %d\n",
4496 TYPE_FN_FIELD_STUB (f, overload_idx));
4497 printfi_filtered (spaces + 8, "voffset %u\n",
4498 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4499 }
4500 }
4501 }
4502
4503 static void
4504 print_cplus_stuff (struct type *type, int spaces)
4505 {
4506 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4507 printfi_filtered (spaces, "vptr_basetype ");
4508 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4509 puts_filtered ("\n");
4510 if (TYPE_VPTR_BASETYPE (type) != NULL)
4511 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4512
4513 printfi_filtered (spaces, "n_baseclasses %d\n",
4514 TYPE_N_BASECLASSES (type));
4515 printfi_filtered (spaces, "nfn_fields %d\n",
4516 TYPE_NFN_FIELDS (type));
4517 if (TYPE_N_BASECLASSES (type) > 0)
4518 {
4519 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4520 TYPE_N_BASECLASSES (type));
4521 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4522 gdb_stdout);
4523 printf_filtered (")");
4524
4525 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4526 TYPE_N_BASECLASSES (type));
4527 puts_filtered ("\n");
4528 }
4529 if (TYPE_NFIELDS (type) > 0)
4530 {
4531 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4532 {
4533 printfi_filtered (spaces,
4534 "private_field_bits (%d bits at *",
4535 TYPE_NFIELDS (type));
4536 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4537 gdb_stdout);
4538 printf_filtered (")");
4539 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4540 TYPE_NFIELDS (type));
4541 puts_filtered ("\n");
4542 }
4543 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4544 {
4545 printfi_filtered (spaces,
4546 "protected_field_bits (%d bits at *",
4547 TYPE_NFIELDS (type));
4548 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4549 gdb_stdout);
4550 printf_filtered (")");
4551 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4552 TYPE_NFIELDS (type));
4553 puts_filtered ("\n");
4554 }
4555 }
4556 if (TYPE_NFN_FIELDS (type) > 0)
4557 {
4558 dump_fn_fieldlists (type, spaces);
4559 }
4560 }
4561
4562 /* Print the contents of the TYPE's type_specific union, assuming that
4563 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4564
4565 static void
4566 print_gnat_stuff (struct type *type, int spaces)
4567 {
4568 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4569
4570 if (descriptive_type == NULL)
4571 printfi_filtered (spaces + 2, "no descriptive type\n");
4572 else
4573 {
4574 printfi_filtered (spaces + 2, "descriptive type\n");
4575 recursive_dump_type (descriptive_type, spaces + 4);
4576 }
4577 }
4578
4579 static struct obstack dont_print_type_obstack;
4580
4581 void
4582 recursive_dump_type (struct type *type, int spaces)
4583 {
4584 int idx;
4585
4586 if (spaces == 0)
4587 obstack_begin (&dont_print_type_obstack, 0);
4588
4589 if (TYPE_NFIELDS (type) > 0
4590 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4591 {
4592 struct type **first_dont_print
4593 = (struct type **) obstack_base (&dont_print_type_obstack);
4594
4595 int i = (struct type **)
4596 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4597
4598 while (--i >= 0)
4599 {
4600 if (type == first_dont_print[i])
4601 {
4602 printfi_filtered (spaces, "type node ");
4603 gdb_print_host_address (type, gdb_stdout);
4604 printf_filtered (_(" <same as already seen type>\n"));
4605 return;
4606 }
4607 }
4608
4609 obstack_ptr_grow (&dont_print_type_obstack, type);
4610 }
4611
4612 printfi_filtered (spaces, "type node ");
4613 gdb_print_host_address (type, gdb_stdout);
4614 printf_filtered ("\n");
4615 printfi_filtered (spaces, "name '%s' (",
4616 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4617 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4618 printf_filtered (")\n");
4619 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4620 switch (TYPE_CODE (type))
4621 {
4622 case TYPE_CODE_UNDEF:
4623 printf_filtered ("(TYPE_CODE_UNDEF)");
4624 break;
4625 case TYPE_CODE_PTR:
4626 printf_filtered ("(TYPE_CODE_PTR)");
4627 break;
4628 case TYPE_CODE_ARRAY:
4629 printf_filtered ("(TYPE_CODE_ARRAY)");
4630 break;
4631 case TYPE_CODE_STRUCT:
4632 printf_filtered ("(TYPE_CODE_STRUCT)");
4633 break;
4634 case TYPE_CODE_UNION:
4635 printf_filtered ("(TYPE_CODE_UNION)");
4636 break;
4637 case TYPE_CODE_ENUM:
4638 printf_filtered ("(TYPE_CODE_ENUM)");
4639 break;
4640 case TYPE_CODE_FLAGS:
4641 printf_filtered ("(TYPE_CODE_FLAGS)");
4642 break;
4643 case TYPE_CODE_FUNC:
4644 printf_filtered ("(TYPE_CODE_FUNC)");
4645 break;
4646 case TYPE_CODE_INT:
4647 printf_filtered ("(TYPE_CODE_INT)");
4648 break;
4649 case TYPE_CODE_FLT:
4650 printf_filtered ("(TYPE_CODE_FLT)");
4651 break;
4652 case TYPE_CODE_VOID:
4653 printf_filtered ("(TYPE_CODE_VOID)");
4654 break;
4655 case TYPE_CODE_SET:
4656 printf_filtered ("(TYPE_CODE_SET)");
4657 break;
4658 case TYPE_CODE_RANGE:
4659 printf_filtered ("(TYPE_CODE_RANGE)");
4660 break;
4661 case TYPE_CODE_STRING:
4662 printf_filtered ("(TYPE_CODE_STRING)");
4663 break;
4664 case TYPE_CODE_ERROR:
4665 printf_filtered ("(TYPE_CODE_ERROR)");
4666 break;
4667 case TYPE_CODE_MEMBERPTR:
4668 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4669 break;
4670 case TYPE_CODE_METHODPTR:
4671 printf_filtered ("(TYPE_CODE_METHODPTR)");
4672 break;
4673 case TYPE_CODE_METHOD:
4674 printf_filtered ("(TYPE_CODE_METHOD)");
4675 break;
4676 case TYPE_CODE_REF:
4677 printf_filtered ("(TYPE_CODE_REF)");
4678 break;
4679 case TYPE_CODE_CHAR:
4680 printf_filtered ("(TYPE_CODE_CHAR)");
4681 break;
4682 case TYPE_CODE_BOOL:
4683 printf_filtered ("(TYPE_CODE_BOOL)");
4684 break;
4685 case TYPE_CODE_COMPLEX:
4686 printf_filtered ("(TYPE_CODE_COMPLEX)");
4687 break;
4688 case TYPE_CODE_TYPEDEF:
4689 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4690 break;
4691 case TYPE_CODE_NAMESPACE:
4692 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4693 break;
4694 default:
4695 printf_filtered ("(UNKNOWN TYPE CODE)");
4696 break;
4697 }
4698 puts_filtered ("\n");
4699 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4700 if (TYPE_OBJFILE_OWNED (type))
4701 {
4702 printfi_filtered (spaces, "objfile ");
4703 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4704 }
4705 else
4706 {
4707 printfi_filtered (spaces, "gdbarch ");
4708 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4709 }
4710 printf_filtered ("\n");
4711 printfi_filtered (spaces, "target_type ");
4712 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4713 printf_filtered ("\n");
4714 if (TYPE_TARGET_TYPE (type) != NULL)
4715 {
4716 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4717 }
4718 printfi_filtered (spaces, "pointer_type ");
4719 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4720 printf_filtered ("\n");
4721 printfi_filtered (spaces, "reference_type ");
4722 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4723 printf_filtered ("\n");
4724 printfi_filtered (spaces, "type_chain ");
4725 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4726 printf_filtered ("\n");
4727 printfi_filtered (spaces, "instance_flags 0x%x",
4728 TYPE_INSTANCE_FLAGS (type));
4729 if (TYPE_CONST (type))
4730 {
4731 puts_filtered (" TYPE_CONST");
4732 }
4733 if (TYPE_VOLATILE (type))
4734 {
4735 puts_filtered (" TYPE_VOLATILE");
4736 }
4737 if (TYPE_CODE_SPACE (type))
4738 {
4739 puts_filtered (" TYPE_CODE_SPACE");
4740 }
4741 if (TYPE_DATA_SPACE (type))
4742 {
4743 puts_filtered (" TYPE_DATA_SPACE");
4744 }
4745 if (TYPE_ADDRESS_CLASS_1 (type))
4746 {
4747 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4748 }
4749 if (TYPE_ADDRESS_CLASS_2 (type))
4750 {
4751 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4752 }
4753 if (TYPE_RESTRICT (type))
4754 {
4755 puts_filtered (" TYPE_RESTRICT");
4756 }
4757 if (TYPE_ATOMIC (type))
4758 {
4759 puts_filtered (" TYPE_ATOMIC");
4760 }
4761 puts_filtered ("\n");
4762
4763 printfi_filtered (spaces, "flags");
4764 if (TYPE_UNSIGNED (type))
4765 {
4766 puts_filtered (" TYPE_UNSIGNED");
4767 }
4768 if (TYPE_NOSIGN (type))
4769 {
4770 puts_filtered (" TYPE_NOSIGN");
4771 }
4772 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4773 {
4774 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4775 }
4776 if (TYPE_STUB (type))
4777 {
4778 puts_filtered (" TYPE_STUB");
4779 }
4780 if (TYPE_TARGET_STUB (type))
4781 {
4782 puts_filtered (" TYPE_TARGET_STUB");
4783 }
4784 if (TYPE_PROTOTYPED (type))
4785 {
4786 puts_filtered (" TYPE_PROTOTYPED");
4787 }
4788 if (TYPE_INCOMPLETE (type))
4789 {
4790 puts_filtered (" TYPE_INCOMPLETE");
4791 }
4792 if (TYPE_VARARGS (type))
4793 {
4794 puts_filtered (" TYPE_VARARGS");
4795 }
4796 /* This is used for things like AltiVec registers on ppc. Gcc emits
4797 an attribute for the array type, which tells whether or not we
4798 have a vector, instead of a regular array. */
4799 if (TYPE_VECTOR (type))
4800 {
4801 puts_filtered (" TYPE_VECTOR");
4802 }
4803 if (TYPE_FIXED_INSTANCE (type))
4804 {
4805 puts_filtered (" TYPE_FIXED_INSTANCE");
4806 }
4807 if (TYPE_STUB_SUPPORTED (type))
4808 {
4809 puts_filtered (" TYPE_STUB_SUPPORTED");
4810 }
4811 if (TYPE_NOTTEXT (type))
4812 {
4813 puts_filtered (" TYPE_NOTTEXT");
4814 }
4815 puts_filtered ("\n");
4816 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4817 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4818 puts_filtered ("\n");
4819 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4820 {
4821 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4822 printfi_filtered (spaces + 2,
4823 "[%d] enumval %s type ",
4824 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4825 else
4826 printfi_filtered (spaces + 2,
4827 "[%d] bitpos %s bitsize %d type ",
4828 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4829 TYPE_FIELD_BITSIZE (type, idx));
4830 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4831 printf_filtered (" name '%s' (",
4832 TYPE_FIELD_NAME (type, idx) != NULL
4833 ? TYPE_FIELD_NAME (type, idx)
4834 : "<NULL>");
4835 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4836 printf_filtered (")\n");
4837 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4838 {
4839 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4840 }
4841 }
4842 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4843 {
4844 printfi_filtered (spaces, "low %s%s high %s%s\n",
4845 plongest (TYPE_LOW_BOUND (type)),
4846 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4847 plongest (TYPE_HIGH_BOUND (type)),
4848 TYPE_HIGH_BOUND_UNDEFINED (type)
4849 ? " (undefined)" : "");
4850 }
4851
4852 switch (TYPE_SPECIFIC_FIELD (type))
4853 {
4854 case TYPE_SPECIFIC_CPLUS_STUFF:
4855 printfi_filtered (spaces, "cplus_stuff ");
4856 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4857 gdb_stdout);
4858 puts_filtered ("\n");
4859 print_cplus_stuff (type, spaces);
4860 break;
4861
4862 case TYPE_SPECIFIC_GNAT_STUFF:
4863 printfi_filtered (spaces, "gnat_stuff ");
4864 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4865 puts_filtered ("\n");
4866 print_gnat_stuff (type, spaces);
4867 break;
4868
4869 case TYPE_SPECIFIC_FLOATFORMAT:
4870 printfi_filtered (spaces, "floatformat ");
4871 if (TYPE_FLOATFORMAT (type) == NULL
4872 || TYPE_FLOATFORMAT (type)->name == NULL)
4873 puts_filtered ("(null)");
4874 else
4875 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4876 puts_filtered ("\n");
4877 break;
4878
4879 case TYPE_SPECIFIC_FUNC:
4880 printfi_filtered (spaces, "calling_convention %d\n",
4881 TYPE_CALLING_CONVENTION (type));
4882 /* tail_call_list is not printed. */
4883 break;
4884
4885 case TYPE_SPECIFIC_SELF_TYPE:
4886 printfi_filtered (spaces, "self_type ");
4887 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4888 puts_filtered ("\n");
4889 break;
4890 }
4891
4892 if (spaces == 0)
4893 obstack_free (&dont_print_type_obstack, NULL);
4894 }
4895 \f
4896 /* Trivial helpers for the libiberty hash table, for mapping one
4897 type to another. */
4898
4899 struct type_pair : public allocate_on_obstack
4900 {
4901 type_pair (struct type *old_, struct type *newobj_)
4902 : old (old_), newobj (newobj_)
4903 {}
4904
4905 struct type * const old, * const newobj;
4906 };
4907
4908 static hashval_t
4909 type_pair_hash (const void *item)
4910 {
4911 const struct type_pair *pair = (const struct type_pair *) item;
4912
4913 return htab_hash_pointer (pair->old);
4914 }
4915
4916 static int
4917 type_pair_eq (const void *item_lhs, const void *item_rhs)
4918 {
4919 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4920 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4921
4922 return lhs->old == rhs->old;
4923 }
4924
4925 /* Allocate the hash table used by copy_type_recursive to walk
4926 types without duplicates. We use OBJFILE's obstack, because
4927 OBJFILE is about to be deleted. */
4928
4929 htab_t
4930 create_copied_types_hash (struct objfile *objfile)
4931 {
4932 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4933 NULL, &objfile->objfile_obstack,
4934 hashtab_obstack_allocate,
4935 dummy_obstack_deallocate);
4936 }
4937
4938 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4939
4940 static struct dynamic_prop_list *
4941 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4942 struct dynamic_prop_list *list)
4943 {
4944 struct dynamic_prop_list *copy = list;
4945 struct dynamic_prop_list **node_ptr = &copy;
4946
4947 while (*node_ptr != NULL)
4948 {
4949 struct dynamic_prop_list *node_copy;
4950
4951 node_copy = ((struct dynamic_prop_list *)
4952 obstack_copy (objfile_obstack, *node_ptr,
4953 sizeof (struct dynamic_prop_list)));
4954 node_copy->prop = (*node_ptr)->prop;
4955 *node_ptr = node_copy;
4956
4957 node_ptr = &node_copy->next;
4958 }
4959
4960 return copy;
4961 }
4962
4963 /* Recursively copy (deep copy) TYPE, if it is associated with
4964 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4965 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4966 it is not associated with OBJFILE. */
4967
4968 struct type *
4969 copy_type_recursive (struct objfile *objfile,
4970 struct type *type,
4971 htab_t copied_types)
4972 {
4973 void **slot;
4974 struct type *new_type;
4975
4976 if (! TYPE_OBJFILE_OWNED (type))
4977 return type;
4978
4979 /* This type shouldn't be pointing to any types in other objfiles;
4980 if it did, the type might disappear unexpectedly. */
4981 gdb_assert (TYPE_OBJFILE (type) == objfile);
4982
4983 struct type_pair pair (type, nullptr);
4984
4985 slot = htab_find_slot (copied_types, &pair, INSERT);
4986 if (*slot != NULL)
4987 return ((struct type_pair *) *slot)->newobj;
4988
4989 new_type = alloc_type_arch (get_type_arch (type));
4990
4991 /* We must add the new type to the hash table immediately, in case
4992 we encounter this type again during a recursive call below. */
4993 struct type_pair *stored
4994 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4995
4996 *slot = stored;
4997
4998 /* Copy the common fields of types. For the main type, we simply
4999 copy the entire thing and then update specific fields as needed. */
5000 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5001 TYPE_OBJFILE_OWNED (new_type) = 0;
5002 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5003
5004 if (TYPE_NAME (type))
5005 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
5006
5007 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5008 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5009
5010 /* Copy the fields. */
5011 if (TYPE_NFIELDS (type))
5012 {
5013 int i, nfields;
5014
5015 nfields = TYPE_NFIELDS (type);
5016 TYPE_FIELDS (new_type) = (struct field *)
5017 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
5018 for (i = 0; i < nfields; i++)
5019 {
5020 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5021 TYPE_FIELD_ARTIFICIAL (type, i);
5022 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5023 if (TYPE_FIELD_TYPE (type, i))
5024 TYPE_FIELD_TYPE (new_type, i)
5025 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5026 copied_types);
5027 if (TYPE_FIELD_NAME (type, i))
5028 TYPE_FIELD_NAME (new_type, i) =
5029 xstrdup (TYPE_FIELD_NAME (type, i));
5030 switch (TYPE_FIELD_LOC_KIND (type, i))
5031 {
5032 case FIELD_LOC_KIND_BITPOS:
5033 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5034 TYPE_FIELD_BITPOS (type, i));
5035 break;
5036 case FIELD_LOC_KIND_ENUMVAL:
5037 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5038 TYPE_FIELD_ENUMVAL (type, i));
5039 break;
5040 case FIELD_LOC_KIND_PHYSADDR:
5041 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5042 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5043 break;
5044 case FIELD_LOC_KIND_PHYSNAME:
5045 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5046 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5047 i)));
5048 break;
5049 default:
5050 internal_error (__FILE__, __LINE__,
5051 _("Unexpected type field location kind: %d"),
5052 TYPE_FIELD_LOC_KIND (type, i));
5053 }
5054 }
5055 }
5056
5057 /* For range types, copy the bounds information. */
5058 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5059 {
5060 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5061 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5062 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5063 }
5064
5065 if (TYPE_DYN_PROP_LIST (type) != NULL)
5066 TYPE_DYN_PROP_LIST (new_type)
5067 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5068 TYPE_DYN_PROP_LIST (type));
5069
5070
5071 /* Copy pointers to other types. */
5072 if (TYPE_TARGET_TYPE (type))
5073 TYPE_TARGET_TYPE (new_type) =
5074 copy_type_recursive (objfile,
5075 TYPE_TARGET_TYPE (type),
5076 copied_types);
5077
5078 /* Maybe copy the type_specific bits.
5079
5080 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5081 base classes and methods. There's no fundamental reason why we
5082 can't, but at the moment it is not needed. */
5083
5084 switch (TYPE_SPECIFIC_FIELD (type))
5085 {
5086 case TYPE_SPECIFIC_NONE:
5087 break;
5088 case TYPE_SPECIFIC_FUNC:
5089 INIT_FUNC_SPECIFIC (new_type);
5090 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5091 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5092 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5093 break;
5094 case TYPE_SPECIFIC_FLOATFORMAT:
5095 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5096 break;
5097 case TYPE_SPECIFIC_CPLUS_STUFF:
5098 INIT_CPLUS_SPECIFIC (new_type);
5099 break;
5100 case TYPE_SPECIFIC_GNAT_STUFF:
5101 INIT_GNAT_SPECIFIC (new_type);
5102 break;
5103 case TYPE_SPECIFIC_SELF_TYPE:
5104 set_type_self_type (new_type,
5105 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5106 copied_types));
5107 break;
5108 default:
5109 gdb_assert_not_reached ("bad type_specific_kind");
5110 }
5111
5112 return new_type;
5113 }
5114
5115 /* Make a copy of the given TYPE, except that the pointer & reference
5116 types are not preserved.
5117
5118 This function assumes that the given type has an associated objfile.
5119 This objfile is used to allocate the new type. */
5120
5121 struct type *
5122 copy_type (const struct type *type)
5123 {
5124 struct type *new_type;
5125
5126 gdb_assert (TYPE_OBJFILE_OWNED (type));
5127
5128 new_type = alloc_type_copy (type);
5129 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5130 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5131 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5132 sizeof (struct main_type));
5133 if (TYPE_DYN_PROP_LIST (type) != NULL)
5134 TYPE_DYN_PROP_LIST (new_type)
5135 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5136 TYPE_DYN_PROP_LIST (type));
5137
5138 return new_type;
5139 }
5140 \f
5141 /* Helper functions to initialize architecture-specific types. */
5142
5143 /* Allocate a type structure associated with GDBARCH and set its
5144 CODE, LENGTH, and NAME fields. */
5145
5146 struct type *
5147 arch_type (struct gdbarch *gdbarch,
5148 enum type_code code, int bit, const char *name)
5149 {
5150 struct type *type;
5151
5152 type = alloc_type_arch (gdbarch);
5153 set_type_code (type, code);
5154 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5155 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5156
5157 if (name)
5158 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5159
5160 return type;
5161 }
5162
5163 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5164 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5165 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5166
5167 struct type *
5168 arch_integer_type (struct gdbarch *gdbarch,
5169 int bit, int unsigned_p, const char *name)
5170 {
5171 struct type *t;
5172
5173 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5174 if (unsigned_p)
5175 TYPE_UNSIGNED (t) = 1;
5176
5177 return t;
5178 }
5179
5180 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5181 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5182 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5183
5184 struct type *
5185 arch_character_type (struct gdbarch *gdbarch,
5186 int bit, int unsigned_p, const char *name)
5187 {
5188 struct type *t;
5189
5190 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5191 if (unsigned_p)
5192 TYPE_UNSIGNED (t) = 1;
5193
5194 return t;
5195 }
5196
5197 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5198 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5199 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5200
5201 struct type *
5202 arch_boolean_type (struct gdbarch *gdbarch,
5203 int bit, int unsigned_p, const char *name)
5204 {
5205 struct type *t;
5206
5207 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5208 if (unsigned_p)
5209 TYPE_UNSIGNED (t) = 1;
5210
5211 return t;
5212 }
5213
5214 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5215 BIT is the type size in bits; if BIT equals -1, the size is
5216 determined by the floatformat. NAME is the type name. Set the
5217 TYPE_FLOATFORMAT from FLOATFORMATS. */
5218
5219 struct type *
5220 arch_float_type (struct gdbarch *gdbarch,
5221 int bit, const char *name,
5222 const struct floatformat **floatformats)
5223 {
5224 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5225 struct type *t;
5226
5227 bit = verify_floatformat (bit, fmt);
5228 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5229 TYPE_FLOATFORMAT (t) = fmt;
5230
5231 return t;
5232 }
5233
5234 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5235 BIT is the type size in bits. NAME is the type name. */
5236
5237 struct type *
5238 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5239 {
5240 struct type *t;
5241
5242 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5243 return t;
5244 }
5245
5246 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5247 NAME is the type name. TARGET_TYPE is the component float type. */
5248
5249 struct type *
5250 arch_complex_type (struct gdbarch *gdbarch,
5251 const char *name, struct type *target_type)
5252 {
5253 struct type *t;
5254
5255 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5256 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5257 TYPE_TARGET_TYPE (t) = target_type;
5258 return t;
5259 }
5260
5261 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5262 BIT is the pointer type size in bits. NAME is the type name.
5263 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5264 TYPE_UNSIGNED flag. */
5265
5266 struct type *
5267 arch_pointer_type (struct gdbarch *gdbarch,
5268 int bit, const char *name, struct type *target_type)
5269 {
5270 struct type *t;
5271
5272 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5273 TYPE_TARGET_TYPE (t) = target_type;
5274 TYPE_UNSIGNED (t) = 1;
5275 return t;
5276 }
5277
5278 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5279 NAME is the type name. BIT is the size of the flag word in bits. */
5280
5281 struct type *
5282 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5283 {
5284 struct type *type;
5285
5286 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5287 TYPE_UNSIGNED (type) = 1;
5288 TYPE_NFIELDS (type) = 0;
5289 /* Pre-allocate enough space assuming every field is one bit. */
5290 TYPE_FIELDS (type)
5291 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5292
5293 return type;
5294 }
5295
5296 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5297 position BITPOS is called NAME. Pass NAME as "" for fields that
5298 should not be printed. */
5299
5300 void
5301 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5302 struct type *field_type, const char *name)
5303 {
5304 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5305 int field_nr = TYPE_NFIELDS (type);
5306
5307 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5308 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5309 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5310 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5311 gdb_assert (name != NULL);
5312
5313 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5314 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5315 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5316 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5317 ++TYPE_NFIELDS (type);
5318 }
5319
5320 /* Special version of append_flags_type_field to add a flag field.
5321 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5322 position BITPOS is called NAME. */
5323
5324 void
5325 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5326 {
5327 struct gdbarch *gdbarch = get_type_arch (type);
5328
5329 append_flags_type_field (type, bitpos, 1,
5330 builtin_type (gdbarch)->builtin_bool,
5331 name);
5332 }
5333
5334 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5335 specified by CODE) associated with GDBARCH. NAME is the type name. */
5336
5337 struct type *
5338 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5339 enum type_code code)
5340 {
5341 struct type *t;
5342
5343 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5344 t = arch_type (gdbarch, code, 0, NULL);
5345 TYPE_NAME (t) = name;
5346 INIT_CPLUS_SPECIFIC (t);
5347 return t;
5348 }
5349
5350 /* Add new field with name NAME and type FIELD to composite type T.
5351 Do not set the field's position or adjust the type's length;
5352 the caller should do so. Return the new field. */
5353
5354 struct field *
5355 append_composite_type_field_raw (struct type *t, const char *name,
5356 struct type *field)
5357 {
5358 struct field *f;
5359
5360 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5361 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5362 TYPE_NFIELDS (t));
5363 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5364 memset (f, 0, sizeof f[0]);
5365 FIELD_TYPE (f[0]) = field;
5366 FIELD_NAME (f[0]) = name;
5367 return f;
5368 }
5369
5370 /* Add new field with name NAME and type FIELD to composite type T.
5371 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5372
5373 void
5374 append_composite_type_field_aligned (struct type *t, const char *name,
5375 struct type *field, int alignment)
5376 {
5377 struct field *f = append_composite_type_field_raw (t, name, field);
5378
5379 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5380 {
5381 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5382 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5383 }
5384 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5385 {
5386 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5387 if (TYPE_NFIELDS (t) > 1)
5388 {
5389 SET_FIELD_BITPOS (f[0],
5390 (FIELD_BITPOS (f[-1])
5391 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5392 * TARGET_CHAR_BIT)));
5393
5394 if (alignment)
5395 {
5396 int left;
5397
5398 alignment *= TARGET_CHAR_BIT;
5399 left = FIELD_BITPOS (f[0]) % alignment;
5400
5401 if (left)
5402 {
5403 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5404 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5405 }
5406 }
5407 }
5408 }
5409 }
5410
5411 /* Add new field with name NAME and type FIELD to composite type T. */
5412
5413 void
5414 append_composite_type_field (struct type *t, const char *name,
5415 struct type *field)
5416 {
5417 append_composite_type_field_aligned (t, name, field, 0);
5418 }
5419
5420 static struct gdbarch_data *gdbtypes_data;
5421
5422 const struct builtin_type *
5423 builtin_type (struct gdbarch *gdbarch)
5424 {
5425 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5426 }
5427
5428 static void *
5429 gdbtypes_post_init (struct gdbarch *gdbarch)
5430 {
5431 struct builtin_type *builtin_type
5432 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5433
5434 /* Basic types. */
5435 builtin_type->builtin_void
5436 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5437 builtin_type->builtin_char
5438 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5439 !gdbarch_char_signed (gdbarch), "char");
5440 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5441 builtin_type->builtin_signed_char
5442 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5443 0, "signed char");
5444 builtin_type->builtin_unsigned_char
5445 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5446 1, "unsigned char");
5447 builtin_type->builtin_short
5448 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5449 0, "short");
5450 builtin_type->builtin_unsigned_short
5451 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5452 1, "unsigned short");
5453 builtin_type->builtin_int
5454 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5455 0, "int");
5456 builtin_type->builtin_unsigned_int
5457 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5458 1, "unsigned int");
5459 builtin_type->builtin_long
5460 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5461 0, "long");
5462 builtin_type->builtin_unsigned_long
5463 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5464 1, "unsigned long");
5465 builtin_type->builtin_long_long
5466 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5467 0, "long long");
5468 builtin_type->builtin_unsigned_long_long
5469 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5470 1, "unsigned long long");
5471 builtin_type->builtin_half
5472 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5473 "half", gdbarch_half_format (gdbarch));
5474 builtin_type->builtin_float
5475 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5476 "float", gdbarch_float_format (gdbarch));
5477 builtin_type->builtin_double
5478 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5479 "double", gdbarch_double_format (gdbarch));
5480 builtin_type->builtin_long_double
5481 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5482 "long double", gdbarch_long_double_format (gdbarch));
5483 builtin_type->builtin_complex
5484 = arch_complex_type (gdbarch, "complex",
5485 builtin_type->builtin_float);
5486 builtin_type->builtin_double_complex
5487 = arch_complex_type (gdbarch, "double complex",
5488 builtin_type->builtin_double);
5489 builtin_type->builtin_string
5490 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5491 builtin_type->builtin_bool
5492 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5493
5494 /* The following three are about decimal floating point types, which
5495 are 32-bits, 64-bits and 128-bits respectively. */
5496 builtin_type->builtin_decfloat
5497 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5498 builtin_type->builtin_decdouble
5499 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5500 builtin_type->builtin_declong
5501 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5502
5503 /* "True" character types. */
5504 builtin_type->builtin_true_char
5505 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5506 builtin_type->builtin_true_unsigned_char
5507 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5508
5509 /* Fixed-size integer types. */
5510 builtin_type->builtin_int0
5511 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5512 builtin_type->builtin_int8
5513 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5514 builtin_type->builtin_uint8
5515 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5516 builtin_type->builtin_int16
5517 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5518 builtin_type->builtin_uint16
5519 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5520 builtin_type->builtin_int24
5521 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5522 builtin_type->builtin_uint24
5523 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5524 builtin_type->builtin_int32
5525 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5526 builtin_type->builtin_uint32
5527 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5528 builtin_type->builtin_int64
5529 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5530 builtin_type->builtin_uint64
5531 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5532 builtin_type->builtin_int128
5533 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5534 builtin_type->builtin_uint128
5535 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5536 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5537 TYPE_INSTANCE_FLAG_NOTTEXT;
5538 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5539 TYPE_INSTANCE_FLAG_NOTTEXT;
5540
5541 /* Wide character types. */
5542 builtin_type->builtin_char16
5543 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5544 builtin_type->builtin_char32
5545 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5546 builtin_type->builtin_wchar
5547 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5548 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5549
5550 /* Default data/code pointer types. */
5551 builtin_type->builtin_data_ptr
5552 = lookup_pointer_type (builtin_type->builtin_void);
5553 builtin_type->builtin_func_ptr
5554 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5555 builtin_type->builtin_func_func
5556 = lookup_function_type (builtin_type->builtin_func_ptr);
5557
5558 /* This type represents a GDB internal function. */
5559 builtin_type->internal_fn
5560 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5561 "<internal function>");
5562
5563 /* This type represents an xmethod. */
5564 builtin_type->xmethod
5565 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5566
5567 return builtin_type;
5568 }
5569
5570 /* This set of objfile-based types is intended to be used by symbol
5571 readers as basic types. */
5572
5573 static const struct objfile_key<struct objfile_type,
5574 gdb::noop_deleter<struct objfile_type>>
5575 objfile_type_data;
5576
5577 const struct objfile_type *
5578 objfile_type (struct objfile *objfile)
5579 {
5580 struct gdbarch *gdbarch;
5581 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5582
5583 if (objfile_type)
5584 return objfile_type;
5585
5586 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5587 1, struct objfile_type);
5588
5589 /* Use the objfile architecture to determine basic type properties. */
5590 gdbarch = get_objfile_arch (objfile);
5591
5592 /* Basic types. */
5593 objfile_type->builtin_void
5594 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5595 objfile_type->builtin_char
5596 = init_integer_type (objfile, TARGET_CHAR_BIT,
5597 !gdbarch_char_signed (gdbarch), "char");
5598 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5599 objfile_type->builtin_signed_char
5600 = init_integer_type (objfile, TARGET_CHAR_BIT,
5601 0, "signed char");
5602 objfile_type->builtin_unsigned_char
5603 = init_integer_type (objfile, TARGET_CHAR_BIT,
5604 1, "unsigned char");
5605 objfile_type->builtin_short
5606 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5607 0, "short");
5608 objfile_type->builtin_unsigned_short
5609 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5610 1, "unsigned short");
5611 objfile_type->builtin_int
5612 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5613 0, "int");
5614 objfile_type->builtin_unsigned_int
5615 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5616 1, "unsigned int");
5617 objfile_type->builtin_long
5618 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5619 0, "long");
5620 objfile_type->builtin_unsigned_long
5621 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5622 1, "unsigned long");
5623 objfile_type->builtin_long_long
5624 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5625 0, "long long");
5626 objfile_type->builtin_unsigned_long_long
5627 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5628 1, "unsigned long long");
5629 objfile_type->builtin_float
5630 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5631 "float", gdbarch_float_format (gdbarch));
5632 objfile_type->builtin_double
5633 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5634 "double", gdbarch_double_format (gdbarch));
5635 objfile_type->builtin_long_double
5636 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5637 "long double", gdbarch_long_double_format (gdbarch));
5638
5639 /* This type represents a type that was unrecognized in symbol read-in. */
5640 objfile_type->builtin_error
5641 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5642
5643 /* The following set of types is used for symbols with no
5644 debug information. */
5645 objfile_type->nodebug_text_symbol
5646 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5647 "<text variable, no debug info>");
5648 objfile_type->nodebug_text_gnu_ifunc_symbol
5649 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5650 "<text gnu-indirect-function variable, no debug info>");
5651 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5652 objfile_type->nodebug_got_plt_symbol
5653 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5654 "<text from jump slot in .got.plt, no debug info>",
5655 objfile_type->nodebug_text_symbol);
5656 objfile_type->nodebug_data_symbol
5657 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5658 objfile_type->nodebug_unknown_symbol
5659 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5660 objfile_type->nodebug_tls_symbol
5661 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5662
5663 /* NOTE: on some targets, addresses and pointers are not necessarily
5664 the same.
5665
5666 The upshot is:
5667 - gdb's `struct type' always describes the target's
5668 representation.
5669 - gdb's `struct value' objects should always hold values in
5670 target form.
5671 - gdb's CORE_ADDR values are addresses in the unified virtual
5672 address space that the assembler and linker work with. Thus,
5673 since target_read_memory takes a CORE_ADDR as an argument, it
5674 can access any memory on the target, even if the processor has
5675 separate code and data address spaces.
5676
5677 In this context, objfile_type->builtin_core_addr is a bit odd:
5678 it's a target type for a value the target will never see. It's
5679 only used to hold the values of (typeless) linker symbols, which
5680 are indeed in the unified virtual address space. */
5681
5682 objfile_type->builtin_core_addr
5683 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5684 "__CORE_ADDR");
5685
5686 objfile_type_data.set (objfile, objfile_type);
5687 return objfile_type;
5688 }
5689
5690 void
5691 _initialize_gdbtypes (void)
5692 {
5693 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5694
5695 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5696 _("Set debugging of C++ overloading."),
5697 _("Show debugging of C++ overloading."),
5698 _("When enabled, ranking of the "
5699 "functions is displayed."),
5700 NULL,
5701 show_overload_debug,
5702 &setdebuglist, &showdebuglist);
5703
5704 /* Add user knob for controlling resolution of opaque types. */
5705 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5706 &opaque_type_resolution,
5707 _("Set resolution of opaque struct/class/union"
5708 " types (if set before loading symbols)."),
5709 _("Show resolution of opaque struct/class/union"
5710 " types (if set before loading symbols)."),
5711 NULL, NULL,
5712 show_opaque_type_resolution,
5713 &setlist, &showlist);
5714
5715 /* Add an option to permit non-strict type checking. */
5716 add_setshow_boolean_cmd ("type", class_support,
5717 &strict_type_checking,
5718 _("Set strict type checking."),
5719 _("Show strict type checking."),
5720 NULL, NULL,
5721 show_strict_type_checking,
5722 &setchecklist, &showchecklist);
5723 }
This page took 0.150862 seconds and 4 git commands to generate.