gdb: defer commit resume until all available events are consumed
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
214 the type is signed (unless TYPE_NOSIGN (below) is set). */
215
216 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
217
218 /* * No sign for this type. In C++, "char", "signed char", and
219 "unsigned char" are distinct types; so we need an extra flag to
220 indicate the absence of a sign! */
221
222 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
223
224 /* * A compiler may supply dwarf instrumentation
225 that indicates the desired endian interpretation of the variable
226 differs from the native endian representation. */
227
228 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
229
230 /* * This appears in a type's flags word if it is a stub type (e.g.,
231 if someone referenced a type that wasn't defined in a source file
232 via (struct sir_not_appearing_in_this_film *)). */
233
234 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
235
236 /* * The target type of this type is a stub type, and this type needs
237 to be updated if it gets un-stubbed in check_typedef. Used for
238 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
239 based on the TYPE_LENGTH of the target type. Also, set for
240 TYPE_CODE_TYPEDEF. */
241
242 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
243
244 /* * This is a function type which appears to have a prototype. We
245 need this for function calls in order to tell us if it's necessary
246 to coerce the args, or to just do the standard conversions. This
247 is used with a short field. */
248
249 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
250
251 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
252 to functions. */
253
254 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
255
256 /* * Identify a vector type. Gcc is handling this by adding an extra
257 attribute to the array type. We slurp that in as a new flag of a
258 type. This is used only in dwarf2read.c. */
259 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
260
261 /* * The debugging formats (especially STABS) do not contain enough
262 information to represent all Ada types---especially those whose
263 size depends on dynamic quantities. Therefore, the GNAT Ada
264 compiler includes extra information in the form of additional type
265 definitions connected by naming conventions. This flag indicates
266 that the type is an ordinary (unencoded) GDB type that has been
267 created from the necessary run-time information, and does not need
268 further interpretation. Optionally marks ordinary, fixed-size GDB
269 type. */
270
271 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
272
273 /* * This debug target supports TYPE_STUB(t). In the unsupported case
274 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
275 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
276 guessed the TYPE_STUB(t) value (see dwarfread.c). */
277
278 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
279
280 /* * Not textual. By default, GDB treats all single byte integers as
281 characters (or elements of strings) unless this flag is set. */
282
283 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
284
285 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
286 address is returned by this function call. TYPE_TARGET_TYPE
287 determines the final returned function type to be presented to
288 user. */
289
290 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
291
292 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
293 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
294 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
295
296 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
297 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
298 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
299
300 /* * True if this type was declared using the "class" keyword. This is
301 only valid for C++ structure and enum types. If false, a structure
302 was declared as a "struct"; if true it was declared "class". For
303 enum types, this is true when "enum class" or "enum struct" was
304 used to declare the type.. */
305
306 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
307
308 /* * True if this type is a "flag" enum. A flag enum is one where all
309 the values are pairwise disjoint when "and"ed together. This
310 affects how enum values are printed. */
311
312 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
313
314 /* * Constant type. If this is set, the corresponding type has a
315 const modifier. */
316
317 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
318
319 /* * Volatile type. If this is set, the corresponding type has a
320 volatile modifier. */
321
322 #define TYPE_VOLATILE(t) \
323 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
324
325 /* * Restrict type. If this is set, the corresponding type has a
326 restrict modifier. */
327
328 #define TYPE_RESTRICT(t) \
329 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
330
331 /* * Atomic type. If this is set, the corresponding type has an
332 _Atomic modifier. */
333
334 #define TYPE_ATOMIC(t) \
335 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
336
337 /* * True if this type represents either an lvalue or lvalue reference type. */
338
339 #define TYPE_IS_REFERENCE(t) \
340 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
341
342 /* * True if this type is allocatable. */
343 #define TYPE_IS_ALLOCATABLE(t) \
344 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
345
346 /* * True if this type has variant parts. */
347 #define TYPE_HAS_VARIANT_PARTS(t) \
348 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
349
350 /* * True if this type has a dynamic length. */
351 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
352 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
353
354 /* * Instruction-space delimited type. This is for Harvard architectures
355 which have separate instruction and data address spaces (and perhaps
356 others).
357
358 GDB usually defines a flat address space that is a superset of the
359 architecture's two (or more) address spaces, but this is an extension
360 of the architecture's model.
361
362 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
363 resides in instruction memory, even if its address (in the extended
364 flat address space) does not reflect this.
365
366 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
367 corresponding type resides in the data memory space, even if
368 this is not indicated by its (flat address space) address.
369
370 If neither flag is set, the default space for functions / methods
371 is instruction space, and for data objects is data memory. */
372
373 #define TYPE_CODE_SPACE(t) \
374 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
375
376 #define TYPE_DATA_SPACE(t) \
377 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
378
379 /* * Address class flags. Some environments provide for pointers
380 whose size is different from that of a normal pointer or address
381 types where the bits are interpreted differently than normal
382 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
383 target specific ways to represent these different types of address
384 classes. */
385
386 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
387 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
388 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
389 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
390 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
391 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
392 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
393 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
394
395 /* * Information about a single discriminant. */
396
397 struct discriminant_range
398 {
399 /* * The range of values for the variant. This is an inclusive
400 range. */
401 ULONGEST low, high;
402
403 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
404 is true if this should be an unsigned comparison; false for
405 signed. */
406 bool contains (ULONGEST value, bool is_unsigned) const
407 {
408 if (is_unsigned)
409 return value >= low && value <= high;
410 LONGEST valuel = (LONGEST) value;
411 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
412 }
413 };
414
415 struct variant_part;
416
417 /* * A single variant. A variant has a list of discriminant values.
418 When the discriminator matches one of these, the variant is
419 enabled. Each variant controls zero or more fields; and may also
420 control other variant parts as well. This struct corresponds to
421 DW_TAG_variant in DWARF. */
422
423 struct variant : allocate_on_obstack
424 {
425 /* * The discriminant ranges for this variant. */
426 gdb::array_view<discriminant_range> discriminants;
427
428 /* * The fields controlled by this variant. This is inclusive on
429 the low end and exclusive on the high end. A variant may not
430 control any fields, in which case the two values will be equal.
431 These are indexes into the type's array of fields. */
432 int first_field;
433 int last_field;
434
435 /* * Variant parts controlled by this variant. */
436 gdb::array_view<variant_part> parts;
437
438 /* * Return true if this is the default variant. The default
439 variant can be recognized because it has no associated
440 discriminants. */
441 bool is_default () const
442 {
443 return discriminants.empty ();
444 }
445
446 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
447 if this should be an unsigned comparison; false for signed. */
448 bool matches (ULONGEST value, bool is_unsigned) const;
449 };
450
451 /* * A variant part. Each variant part has an optional discriminant
452 and holds an array of variants. This struct corresponds to
453 DW_TAG_variant_part in DWARF. */
454
455 struct variant_part : allocate_on_obstack
456 {
457 /* * The index of the discriminant field in the outer type. This is
458 an index into the type's array of fields. If this is -1, there
459 is no discriminant, and only the default variant can be
460 considered to be selected. */
461 int discriminant_index;
462
463 /* * True if this discriminant is unsigned; false if signed. This
464 comes from the type of the discriminant. */
465 bool is_unsigned;
466
467 /* * The variants that are controlled by this variant part. Note
468 that these will always be sorted by field number. */
469 gdb::array_view<variant> variants;
470 };
471
472
473 enum dynamic_prop_kind
474 {
475 PROP_UNDEFINED, /* Not defined. */
476 PROP_CONST, /* Constant. */
477 PROP_ADDR_OFFSET, /* Address offset. */
478 PROP_LOCEXPR, /* Location expression. */
479 PROP_LOCLIST, /* Location list. */
480 PROP_VARIANT_PARTS, /* Variant parts. */
481 PROP_TYPE, /* Type. */
482 };
483
484 union dynamic_prop_data
485 {
486 /* Storage for constant property. */
487
488 LONGEST const_val;
489
490 /* Storage for dynamic property. */
491
492 void *baton;
493
494 /* Storage of variant parts for a type. A type with variant parts
495 has all its fields "linearized" -- stored in a single field
496 array, just as if they had all been declared that way. The
497 variant parts are attached via a dynamic property, and then are
498 used to control which fields end up in the final type during
499 dynamic type resolution. */
500
501 const gdb::array_view<variant_part> *variant_parts;
502
503 /* Once a variant type is resolved, we may want to be able to go
504 from the resolved type to the original type. In this case we
505 rewrite the property's kind and set this field. */
506
507 struct type *original_type;
508 };
509
510 /* * Used to store a dynamic property. */
511
512 struct dynamic_prop
513 {
514 /* Determine which field of the union dynamic_prop.data is used. */
515 enum dynamic_prop_kind kind;
516
517 /* Storage for dynamic or static value. */
518 union dynamic_prop_data data;
519 };
520
521 /* Compare two dynamic_prop objects for equality. dynamic_prop
522 instances are equal iff they have the same type and storage. */
523 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
524
525 /* Compare two dynamic_prop objects for inequality. */
526 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
527 {
528 return !(l == r);
529 }
530
531 /* * Define a type's dynamic property node kind. */
532 enum dynamic_prop_node_kind
533 {
534 /* A property providing a type's data location.
535 Evaluating this field yields to the location of an object's data. */
536 DYN_PROP_DATA_LOCATION,
537
538 /* A property representing DW_AT_allocated. The presence of this attribute
539 indicates that the object of the type can be allocated/deallocated. */
540 DYN_PROP_ALLOCATED,
541
542 /* A property representing DW_AT_associated. The presence of this attribute
543 indicated that the object of the type can be associated. */
544 DYN_PROP_ASSOCIATED,
545
546 /* A property providing an array's byte stride. */
547 DYN_PROP_BYTE_STRIDE,
548
549 /* A property holding variant parts. */
550 DYN_PROP_VARIANT_PARTS,
551
552 /* A property holding the size of the type. */
553 DYN_PROP_BYTE_SIZE,
554 };
555
556 /* * List for dynamic type attributes. */
557 struct dynamic_prop_list
558 {
559 /* The kind of dynamic prop in this node. */
560 enum dynamic_prop_node_kind prop_kind;
561
562 /* The dynamic property itself. */
563 struct dynamic_prop prop;
564
565 /* A pointer to the next dynamic property. */
566 struct dynamic_prop_list *next;
567 };
568
569 /* * Determine which field of the union main_type.fields[x].loc is
570 used. */
571
572 enum field_loc_kind
573 {
574 FIELD_LOC_KIND_BITPOS, /**< bitpos */
575 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
576 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
577 FIELD_LOC_KIND_PHYSNAME, /**< physname */
578 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
579 };
580
581 /* * A discriminant to determine which field in the
582 main_type.type_specific union is being used, if any.
583
584 For types such as TYPE_CODE_FLT, the use of this
585 discriminant is really redundant, as we know from the type code
586 which field is going to be used. As such, it would be possible to
587 reduce the size of this enum in order to save a bit or two for
588 other fields of struct main_type. But, since we still have extra
589 room , and for the sake of clarity and consistency, we treat all fields
590 of the union the same way. */
591
592 enum type_specific_kind
593 {
594 TYPE_SPECIFIC_NONE,
595 TYPE_SPECIFIC_CPLUS_STUFF,
596 TYPE_SPECIFIC_GNAT_STUFF,
597 TYPE_SPECIFIC_FLOATFORMAT,
598 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
599 TYPE_SPECIFIC_FUNC,
600 TYPE_SPECIFIC_SELF_TYPE
601 };
602
603 union type_owner
604 {
605 struct objfile *objfile;
606 struct gdbarch *gdbarch;
607 };
608
609 union field_location
610 {
611 /* * Position of this field, counting in bits from start of
612 containing structure. For big-endian targets, it is the bit
613 offset to the MSB. For little-endian targets, it is the bit
614 offset to the LSB. */
615
616 LONGEST bitpos;
617
618 /* * Enum value. */
619 LONGEST enumval;
620
621 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
622 physaddr is the location (in the target) of the static
623 field. Otherwise, physname is the mangled label of the
624 static field. */
625
626 CORE_ADDR physaddr;
627 const char *physname;
628
629 /* * The field location can be computed by evaluating the
630 following DWARF block. Its DATA is allocated on
631 objfile_obstack - no CU load is needed to access it. */
632
633 struct dwarf2_locexpr_baton *dwarf_block;
634 };
635
636 struct field
637 {
638 struct type *type () const
639 {
640 return this->m_type;
641 }
642
643 void set_type (struct type *type)
644 {
645 this->m_type = type;
646 }
647
648 union field_location loc;
649
650 /* * For a function or member type, this is 1 if the argument is
651 marked artificial. Artificial arguments should not be shown
652 to the user. For TYPE_CODE_RANGE it is set if the specific
653 bound is not defined. */
654
655 unsigned int artificial : 1;
656
657 /* * Discriminant for union field_location. */
658
659 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
660
661 /* * Size of this field, in bits, or zero if not packed.
662 If non-zero in an array type, indicates the element size in
663 bits (used only in Ada at the moment).
664 For an unpacked field, the field's type's length
665 says how many bytes the field occupies. */
666
667 unsigned int bitsize : 28;
668
669 /* * In a struct or union type, type of this field.
670 - In a function or member type, type of this argument.
671 - In an array type, the domain-type of the array. */
672
673 struct type *m_type;
674
675 /* * Name of field, value or argument.
676 NULL for range bounds, array domains, and member function
677 arguments. */
678
679 const char *name;
680 };
681
682 struct range_bounds
683 {
684 /* * Low bound of range. */
685
686 struct dynamic_prop low;
687
688 /* * High bound of range. */
689
690 struct dynamic_prop high;
691
692 /* The stride value for this range. This can be stored in bits or bytes
693 based on the value of BYTE_STRIDE_P. It is optional to have a stride
694 value, if this range has no stride value defined then this will be set
695 to the constant zero. */
696
697 struct dynamic_prop stride;
698
699 /* * The bias. Sometimes a range value is biased before storage.
700 The bias is added to the stored bits to form the true value. */
701
702 LONGEST bias;
703
704 /* True if HIGH range bound contains the number of elements in the
705 subrange. This affects how the final high bound is computed. */
706
707 unsigned int flag_upper_bound_is_count : 1;
708
709 /* True if LOW or/and HIGH are resolved into a static bound from
710 a dynamic one. */
711
712 unsigned int flag_bound_evaluated : 1;
713
714 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
715
716 unsigned int flag_is_byte_stride : 1;
717 };
718
719 /* Compare two range_bounds objects for equality. Simply does
720 memberwise comparison. */
721 extern bool operator== (const range_bounds &l, const range_bounds &r);
722
723 /* Compare two range_bounds objects for inequality. */
724 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
725 {
726 return !(l == r);
727 }
728
729 union type_specific
730 {
731 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
732 point to cplus_struct_default, a default static instance of a
733 struct cplus_struct_type. */
734
735 struct cplus_struct_type *cplus_stuff;
736
737 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
738 provides additional information. */
739
740 struct gnat_aux_type *gnat_stuff;
741
742 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
743 floatformat object that describes the floating-point value
744 that resides within the type. */
745
746 const struct floatformat *floatformat;
747
748 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
749
750 struct func_type *func_stuff;
751
752 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
753 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
754 is a member of. */
755
756 struct type *self_type;
757 };
758
759 /* * Main structure representing a type in GDB.
760
761 This structure is space-critical. Its layout has been tweaked to
762 reduce the space used. */
763
764 struct main_type
765 {
766 /* * Code for kind of type. */
767
768 ENUM_BITFIELD(type_code) code : 8;
769
770 /* * Flags about this type. These fields appear at this location
771 because they packs nicely here. See the TYPE_* macros for
772 documentation about these fields. */
773
774 unsigned int flag_unsigned : 1;
775 unsigned int flag_nosign : 1;
776 unsigned int flag_stub : 1;
777 unsigned int flag_target_stub : 1;
778 unsigned int flag_prototyped : 1;
779 unsigned int flag_varargs : 1;
780 unsigned int flag_vector : 1;
781 unsigned int flag_stub_supported : 1;
782 unsigned int flag_gnu_ifunc : 1;
783 unsigned int flag_fixed_instance : 1;
784 unsigned int flag_objfile_owned : 1;
785 unsigned int flag_endianity_not_default : 1;
786
787 /* * True if this type was declared with "class" rather than
788 "struct". */
789
790 unsigned int flag_declared_class : 1;
791
792 /* * True if this is an enum type with disjoint values. This
793 affects how the enum is printed. */
794
795 unsigned int flag_flag_enum : 1;
796
797 /* * A discriminant telling us which field of the type_specific
798 union is being used for this type, if any. */
799
800 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
801
802 /* * Number of fields described for this type. This field appears
803 at this location because it packs nicely here. */
804
805 short nfields;
806
807 /* * Name of this type, or NULL if none.
808
809 This is used for printing only. For looking up a name, look for
810 a symbol in the VAR_DOMAIN. This is generally allocated in the
811 objfile's obstack. However coffread.c uses malloc. */
812
813 const char *name;
814
815 /* * Every type is now associated with a particular objfile, and the
816 type is allocated on the objfile_obstack for that objfile. One
817 problem however, is that there are times when gdb allocates new
818 types while it is not in the process of reading symbols from a
819 particular objfile. Fortunately, these happen when the type
820 being created is a derived type of an existing type, such as in
821 lookup_pointer_type(). So we can just allocate the new type
822 using the same objfile as the existing type, but to do this we
823 need a backpointer to the objfile from the existing type. Yes
824 this is somewhat ugly, but without major overhaul of the internal
825 type system, it can't be avoided for now. */
826
827 union type_owner owner;
828
829 /* * For a pointer type, describes the type of object pointed to.
830 - For an array type, describes the type of the elements.
831 - For a function or method type, describes the type of the return value.
832 - For a range type, describes the type of the full range.
833 - For a complex type, describes the type of each coordinate.
834 - For a special record or union type encoding a dynamic-sized type
835 in GNAT, a memoized pointer to a corresponding static version of
836 the type.
837 - Unused otherwise. */
838
839 struct type *target_type;
840
841 /* * For structure and union types, a description of each field.
842 For set and pascal array types, there is one "field",
843 whose type is the domain type of the set or array.
844 For range types, there are two "fields",
845 the minimum and maximum values (both inclusive).
846 For enum types, each possible value is described by one "field".
847 For a function or method type, a "field" for each parameter.
848 For C++ classes, there is one field for each base class (if it is
849 a derived class) plus one field for each class data member. Member
850 functions are recorded elsewhere.
851
852 Using a pointer to a separate array of fields
853 allows all types to have the same size, which is useful
854 because we can allocate the space for a type before
855 we know what to put in it. */
856
857 union
858 {
859 struct field *fields;
860
861 /* * Union member used for range types. */
862
863 struct range_bounds *bounds;
864
865 /* If this is a scalar type, then this is its corresponding
866 complex type. */
867 struct type *complex_type;
868
869 } flds_bnds;
870
871 /* * Slot to point to additional language-specific fields of this
872 type. */
873
874 union type_specific type_specific;
875
876 /* * Contains all dynamic type properties. */
877 struct dynamic_prop_list *dyn_prop_list;
878 };
879
880 /* * Number of bits allocated for alignment. */
881
882 #define TYPE_ALIGN_BITS 8
883
884 /* * A ``struct type'' describes a particular instance of a type, with
885 some particular qualification. */
886
887 struct type
888 {
889 /* Get the type code of this type.
890
891 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
892 type, you need to do `check_typedef (type)->code ()`. */
893 type_code code () const
894 {
895 return this->main_type->code;
896 }
897
898 /* Set the type code of this type. */
899 void set_code (type_code code)
900 {
901 this->main_type->code = code;
902 }
903
904 /* Get the name of this type. */
905 const char *name () const
906 {
907 return this->main_type->name;
908 }
909
910 /* Set the name of this type. */
911 void set_name (const char *name)
912 {
913 this->main_type->name = name;
914 }
915
916 /* Get the number of fields of this type. */
917 int num_fields () const
918 {
919 return this->main_type->nfields;
920 }
921
922 /* Set the number of fields of this type. */
923 void set_num_fields (int num_fields)
924 {
925 this->main_type->nfields = num_fields;
926 }
927
928 /* Get the fields array of this type. */
929 struct field *fields () const
930 {
931 return this->main_type->flds_bnds.fields;
932 }
933
934 /* Get the field at index IDX. */
935 struct field &field (int idx) const
936 {
937 return this->fields ()[idx];
938 }
939
940 /* Set the fields array of this type. */
941 void set_fields (struct field *fields)
942 {
943 this->main_type->flds_bnds.fields = fields;
944 }
945
946 type *index_type () const
947 {
948 return this->field (0).type ();
949 }
950
951 void set_index_type (type *index_type)
952 {
953 this->field (0).set_type (index_type);
954 }
955
956 /* * Return the dynamic property of the requested KIND from this type's
957 list of dynamic properties. */
958 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
959
960 /* * Given a dynamic property PROP of a given KIND, add this dynamic
961 property to this type.
962
963 This function assumes that this type is objfile-owned. */
964 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
965
966 /* * Remove dynamic property of kind KIND from this type, if it exists. */
967 void remove_dyn_prop (dynamic_prop_node_kind kind);
968
969 /* * Type that is a pointer to this type.
970 NULL if no such pointer-to type is known yet.
971 The debugger may add the address of such a type
972 if it has to construct one later. */
973
974 struct type *pointer_type;
975
976 /* * C++: also need a reference type. */
977
978 struct type *reference_type;
979
980 /* * A C++ rvalue reference type added in C++11. */
981
982 struct type *rvalue_reference_type;
983
984 /* * Variant chain. This points to a type that differs from this
985 one only in qualifiers and length. Currently, the possible
986 qualifiers are const, volatile, code-space, data-space, and
987 address class. The length may differ only when one of the
988 address class flags are set. The variants are linked in a
989 circular ring and share MAIN_TYPE. */
990
991 struct type *chain;
992
993 /* * The alignment for this type. Zero means that the alignment was
994 not specified in the debug info. Note that this is stored in a
995 funny way: as the log base 2 (plus 1) of the alignment; so a
996 value of 1 means the alignment is 1, and a value of 9 means the
997 alignment is 256. */
998
999 unsigned align_log2 : TYPE_ALIGN_BITS;
1000
1001 /* * Flags specific to this instance of the type, indicating where
1002 on the ring we are.
1003
1004 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1005 binary or-ed with the target type, with a special case for
1006 address class and space class. For example if this typedef does
1007 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1008 instance flags are completely inherited from the target type. No
1009 qualifiers can be cleared by the typedef. See also
1010 check_typedef. */
1011 unsigned instance_flags : 9;
1012
1013 /* * Length of storage for a value of this type. The value is the
1014 expression in host bytes of what sizeof(type) would return. This
1015 size includes padding. For example, an i386 extended-precision
1016 floating point value really only occupies ten bytes, but most
1017 ABI's declare its size to be 12 bytes, to preserve alignment.
1018 A `struct type' representing such a floating-point type would
1019 have a `length' value of 12, even though the last two bytes are
1020 unused.
1021
1022 Since this field is expressed in host bytes, its value is appropriate
1023 to pass to memcpy and such (it is assumed that GDB itself always runs
1024 on an 8-bits addressable architecture). However, when using it for
1025 target address arithmetic (e.g. adding it to a target address), the
1026 type_length_units function should be used in order to get the length
1027 expressed in target addressable memory units. */
1028
1029 ULONGEST length;
1030
1031 /* * Core type, shared by a group of qualified types. */
1032
1033 struct main_type *main_type;
1034 };
1035
1036 #define NULL_TYPE ((struct type *) 0)
1037
1038 struct fn_fieldlist
1039 {
1040
1041 /* * The overloaded name.
1042 This is generally allocated in the objfile's obstack.
1043 However stabsread.c sometimes uses malloc. */
1044
1045 const char *name;
1046
1047 /* * The number of methods with this name. */
1048
1049 int length;
1050
1051 /* * The list of methods. */
1052
1053 struct fn_field *fn_fields;
1054 };
1055
1056
1057
1058 struct fn_field
1059 {
1060 /* * If is_stub is clear, this is the mangled name which we can look
1061 up to find the address of the method (FIXME: it would be cleaner
1062 to have a pointer to the struct symbol here instead).
1063
1064 If is_stub is set, this is the portion of the mangled name which
1065 specifies the arguments. For example, "ii", if there are two int
1066 arguments, or "" if there are no arguments. See gdb_mangle_name
1067 for the conversion from this format to the one used if is_stub is
1068 clear. */
1069
1070 const char *physname;
1071
1072 /* * The function type for the method.
1073
1074 (This comment used to say "The return value of the method", but
1075 that's wrong. The function type is expected here, i.e. something
1076 with TYPE_CODE_METHOD, and *not* the return-value type). */
1077
1078 struct type *type;
1079
1080 /* * For virtual functions. First baseclass that defines this
1081 virtual function. */
1082
1083 struct type *fcontext;
1084
1085 /* Attributes. */
1086
1087 unsigned int is_const:1;
1088 unsigned int is_volatile:1;
1089 unsigned int is_private:1;
1090 unsigned int is_protected:1;
1091 unsigned int is_artificial:1;
1092
1093 /* * A stub method only has some fields valid (but they are enough
1094 to reconstruct the rest of the fields). */
1095
1096 unsigned int is_stub:1;
1097
1098 /* * True if this function is a constructor, false otherwise. */
1099
1100 unsigned int is_constructor : 1;
1101
1102 /* * True if this function is deleted, false otherwise. */
1103
1104 unsigned int is_deleted : 1;
1105
1106 /* * DW_AT_defaulted attribute for this function. The value is one
1107 of the DW_DEFAULTED constants. */
1108
1109 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1110
1111 /* * Unused. */
1112
1113 unsigned int dummy:6;
1114
1115 /* * Index into that baseclass's virtual function table, minus 2;
1116 else if static: VOFFSET_STATIC; else: 0. */
1117
1118 unsigned int voffset:16;
1119
1120 #define VOFFSET_STATIC 1
1121
1122 };
1123
1124 struct decl_field
1125 {
1126 /* * Unqualified name to be prefixed by owning class qualified
1127 name. */
1128
1129 const char *name;
1130
1131 /* * Type this typedef named NAME represents. */
1132
1133 struct type *type;
1134
1135 /* * True if this field was declared protected, false otherwise. */
1136 unsigned int is_protected : 1;
1137
1138 /* * True if this field was declared private, false otherwise. */
1139 unsigned int is_private : 1;
1140 };
1141
1142 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1143 TYPE_CODE_UNION nodes. */
1144
1145 struct cplus_struct_type
1146 {
1147 /* * Number of base classes this type derives from. The
1148 baseclasses are stored in the first N_BASECLASSES fields
1149 (i.e. the `fields' field of the struct type). The only fields
1150 of struct field that are used are: type, name, loc.bitpos. */
1151
1152 short n_baseclasses;
1153
1154 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1155 All access to this field must be through TYPE_VPTR_FIELDNO as one
1156 thing it does is check whether the field has been initialized.
1157 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1158 which for portability reasons doesn't initialize this field.
1159 TYPE_VPTR_FIELDNO returns -1 for this case.
1160
1161 If -1, we were unable to find the virtual function table pointer in
1162 initial symbol reading, and get_vptr_fieldno should be called to find
1163 it if possible. get_vptr_fieldno will update this field if possible.
1164 Otherwise the value is left at -1.
1165
1166 Unused if this type does not have virtual functions. */
1167
1168 short vptr_fieldno;
1169
1170 /* * Number of methods with unique names. All overloaded methods
1171 with the same name count only once. */
1172
1173 short nfn_fields;
1174
1175 /* * Number of template arguments. */
1176
1177 unsigned short n_template_arguments;
1178
1179 /* * One if this struct is a dynamic class, as defined by the
1180 Itanium C++ ABI: if it requires a virtual table pointer,
1181 because it or any of its base classes have one or more virtual
1182 member functions or virtual base classes. Minus one if not
1183 dynamic. Zero if not yet computed. */
1184
1185 int is_dynamic : 2;
1186
1187 /* * The calling convention for this type, fetched from the
1188 DW_AT_calling_convention attribute. The value is one of the
1189 DW_CC constants. */
1190
1191 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1192
1193 /* * The base class which defined the virtual function table pointer. */
1194
1195 struct type *vptr_basetype;
1196
1197 /* * For derived classes, the number of base classes is given by
1198 n_baseclasses and virtual_field_bits is a bit vector containing
1199 one bit per base class. If the base class is virtual, the
1200 corresponding bit will be set.
1201 I.E, given:
1202
1203 class A{};
1204 class B{};
1205 class C : public B, public virtual A {};
1206
1207 B is a baseclass of C; A is a virtual baseclass for C.
1208 This is a C++ 2.0 language feature. */
1209
1210 B_TYPE *virtual_field_bits;
1211
1212 /* * For classes with private fields, the number of fields is
1213 given by nfields and private_field_bits is a bit vector
1214 containing one bit per field.
1215
1216 If the field is private, the corresponding bit will be set. */
1217
1218 B_TYPE *private_field_bits;
1219
1220 /* * For classes with protected fields, the number of fields is
1221 given by nfields and protected_field_bits is a bit vector
1222 containing one bit per field.
1223
1224 If the field is private, the corresponding bit will be set. */
1225
1226 B_TYPE *protected_field_bits;
1227
1228 /* * For classes with fields to be ignored, either this is
1229 optimized out or this field has length 0. */
1230
1231 B_TYPE *ignore_field_bits;
1232
1233 /* * For classes, structures, and unions, a description of each
1234 field, which consists of an overloaded name, followed by the
1235 types of arguments that the method expects, and then the name
1236 after it has been renamed to make it distinct.
1237
1238 fn_fieldlists points to an array of nfn_fields of these. */
1239
1240 struct fn_fieldlist *fn_fieldlists;
1241
1242 /* * typedefs defined inside this class. typedef_field points to
1243 an array of typedef_field_count elements. */
1244
1245 struct decl_field *typedef_field;
1246
1247 unsigned typedef_field_count;
1248
1249 /* * The nested types defined by this type. nested_types points to
1250 an array of nested_types_count elements. */
1251
1252 struct decl_field *nested_types;
1253
1254 unsigned nested_types_count;
1255
1256 /* * The template arguments. This is an array with
1257 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1258 classes. */
1259
1260 struct symbol **template_arguments;
1261 };
1262
1263 /* * Struct used to store conversion rankings. */
1264
1265 struct rank
1266 {
1267 short rank;
1268
1269 /* * When two conversions are of the same type and therefore have
1270 the same rank, subrank is used to differentiate the two.
1271
1272 Eg: Two derived-class-pointer to base-class-pointer conversions
1273 would both have base pointer conversion rank, but the
1274 conversion with the shorter distance to the ancestor is
1275 preferable. 'subrank' would be used to reflect that. */
1276
1277 short subrank;
1278 };
1279
1280 /* * Used for ranking a function for overload resolution. */
1281
1282 typedef std::vector<rank> badness_vector;
1283
1284 /* * GNAT Ada-specific information for various Ada types. */
1285
1286 struct gnat_aux_type
1287 {
1288 /* * Parallel type used to encode information about dynamic types
1289 used in Ada (such as variant records, variable-size array,
1290 etc). */
1291 struct type* descriptive_type;
1292 };
1293
1294 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1295
1296 struct func_type
1297 {
1298 /* * The calling convention for targets supporting multiple ABIs.
1299 Right now this is only fetched from the Dwarf-2
1300 DW_AT_calling_convention attribute. The value is one of the
1301 DW_CC constants. */
1302
1303 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1304
1305 /* * Whether this function normally returns to its caller. It is
1306 set from the DW_AT_noreturn attribute if set on the
1307 DW_TAG_subprogram. */
1308
1309 unsigned int is_noreturn : 1;
1310
1311 /* * Only those DW_TAG_call_site's in this function that have
1312 DW_AT_call_tail_call set are linked in this list. Function
1313 without its tail call list complete
1314 (DW_AT_call_all_tail_calls or its superset
1315 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1316 DW_TAG_call_site's exist in such function. */
1317
1318 struct call_site *tail_call_list;
1319
1320 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1321 contains the method. */
1322
1323 struct type *self_type;
1324 };
1325
1326 /* struct call_site_parameter can be referenced in callees by several ways. */
1327
1328 enum call_site_parameter_kind
1329 {
1330 /* * Use field call_site_parameter.u.dwarf_reg. */
1331 CALL_SITE_PARAMETER_DWARF_REG,
1332
1333 /* * Use field call_site_parameter.u.fb_offset. */
1334 CALL_SITE_PARAMETER_FB_OFFSET,
1335
1336 /* * Use field call_site_parameter.u.param_offset. */
1337 CALL_SITE_PARAMETER_PARAM_OFFSET
1338 };
1339
1340 struct call_site_target
1341 {
1342 union field_location loc;
1343
1344 /* * Discriminant for union field_location. */
1345
1346 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1347 };
1348
1349 union call_site_parameter_u
1350 {
1351 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1352 as DWARF register number, for register passed
1353 parameters. */
1354
1355 int dwarf_reg;
1356
1357 /* * Offset from the callee's frame base, for stack passed
1358 parameters. This equals offset from the caller's stack
1359 pointer. */
1360
1361 CORE_ADDR fb_offset;
1362
1363 /* * Offset relative to the start of this PER_CU to
1364 DW_TAG_formal_parameter which is referenced by both
1365 caller and the callee. */
1366
1367 cu_offset param_cu_off;
1368 };
1369
1370 struct call_site_parameter
1371 {
1372 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1373
1374 union call_site_parameter_u u;
1375
1376 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1377
1378 const gdb_byte *value;
1379 size_t value_size;
1380
1381 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1382 It may be NULL if not provided by DWARF. */
1383
1384 const gdb_byte *data_value;
1385 size_t data_value_size;
1386 };
1387
1388 /* * A place where a function gets called from, represented by
1389 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1390
1391 struct call_site
1392 {
1393 /* * Address of the first instruction after this call. It must be
1394 the first field as we overload core_addr_hash and core_addr_eq
1395 for it. */
1396
1397 CORE_ADDR pc;
1398
1399 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1400
1401 struct call_site *tail_call_next;
1402
1403 /* * Describe DW_AT_call_target. Missing attribute uses
1404 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1405
1406 struct call_site_target target;
1407
1408 /* * Size of the PARAMETER array. */
1409
1410 unsigned parameter_count;
1411
1412 /* * CU of the function where the call is located. It gets used
1413 for DWARF blocks execution in the parameter array below. */
1414
1415 dwarf2_per_cu_data *per_cu;
1416
1417 /* objfile of the function where the call is located. */
1418
1419 dwarf2_per_objfile *per_objfile;
1420
1421 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1422
1423 struct call_site_parameter parameter[1];
1424 };
1425
1426 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1427 static structure. */
1428
1429 extern const struct cplus_struct_type cplus_struct_default;
1430
1431 extern void allocate_cplus_struct_type (struct type *);
1432
1433 #define INIT_CPLUS_SPECIFIC(type) \
1434 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1435 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1436 &cplus_struct_default)
1437
1438 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1439
1440 #define HAVE_CPLUS_STRUCT(type) \
1441 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1442 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1443
1444 #define INIT_NONE_SPECIFIC(type) \
1445 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1446 TYPE_MAIN_TYPE (type)->type_specific = {})
1447
1448 extern const struct gnat_aux_type gnat_aux_default;
1449
1450 extern void allocate_gnat_aux_type (struct type *);
1451
1452 #define INIT_GNAT_SPECIFIC(type) \
1453 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1454 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1455 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1456 /* * A macro that returns non-zero if the type-specific data should be
1457 read as "gnat-stuff". */
1458 #define HAVE_GNAT_AUX_INFO(type) \
1459 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1460
1461 /* * True if TYPE is known to be an Ada type of some kind. */
1462 #define ADA_TYPE_P(type) \
1463 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1464 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1465 && TYPE_FIXED_INSTANCE (type)))
1466
1467 #define INIT_FUNC_SPECIFIC(type) \
1468 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1469 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1470 TYPE_ZALLOC (type, \
1471 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1472
1473 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1474 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1475 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1476 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1477 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1478 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1479 #define TYPE_CHAIN(thistype) (thistype)->chain
1480 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1481 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1482 so you only have to call check_typedef once. Since allocate_value
1483 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1484 #define TYPE_LENGTH(thistype) (thistype)->length
1485
1486 /* * Return the alignment of the type in target addressable memory
1487 units, or 0 if no alignment was specified. */
1488 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1489
1490 /* * Return the alignment of the type in target addressable memory
1491 units, or 0 if no alignment was specified. */
1492 extern unsigned type_raw_align (struct type *);
1493
1494 /* * Return the alignment of the type in target addressable memory
1495 units. Return 0 if the alignment cannot be determined; but note
1496 that this makes an effort to compute the alignment even it it was
1497 not specified in the debug info. */
1498 extern unsigned type_align (struct type *);
1499
1500 /* * Set the alignment of the type. The alignment must be a power of
1501 2. Returns false if the given value does not fit in the available
1502 space in struct type. */
1503 extern bool set_type_align (struct type *, ULONGEST);
1504
1505 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1506 #define TYPE_LOW_BOUND(range_type) \
1507 TYPE_RANGE_DATA(range_type)->low.data.const_val
1508 #define TYPE_HIGH_BOUND(range_type) \
1509 TYPE_RANGE_DATA(range_type)->high.data.const_val
1510 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1511 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1512 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1513 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1514 #define TYPE_HIGH_BOUND_KIND(range_type) \
1515 TYPE_RANGE_DATA(range_type)->high.kind
1516 #define TYPE_LOW_BOUND_KIND(range_type) \
1517 TYPE_RANGE_DATA(range_type)->low.kind
1518 #define TYPE_BIT_STRIDE(range_type) \
1519 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1520 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1521
1522 /* Property accessors for the type data location. */
1523 #define TYPE_DATA_LOCATION(thistype) \
1524 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1525 #define TYPE_DATA_LOCATION_BATON(thistype) \
1526 TYPE_DATA_LOCATION (thistype)->data.baton
1527 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1528 TYPE_DATA_LOCATION (thistype)->data.const_val
1529 #define TYPE_DATA_LOCATION_KIND(thistype) \
1530 TYPE_DATA_LOCATION (thistype)->kind
1531 #define TYPE_DYNAMIC_LENGTH(thistype) \
1532 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1533
1534 /* Property accessors for the type allocated/associated. */
1535 #define TYPE_ALLOCATED_PROP(thistype) \
1536 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1537 #define TYPE_ASSOCIATED_PROP(thistype) \
1538 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1539
1540 /* Attribute accessors for dynamic properties. */
1541 #define TYPE_DYN_PROP_BATON(dynprop) \
1542 dynprop->data.baton
1543 #define TYPE_DYN_PROP_ADDR(dynprop) \
1544 dynprop->data.const_val
1545 #define TYPE_DYN_PROP_KIND(dynprop) \
1546 dynprop->kind
1547
1548
1549 /* Accessors for struct range_bounds data attached to an array type's
1550 index type. */
1551
1552 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1553 TYPE_HIGH_BOUND_UNDEFINED((arraytype)->index_type ())
1554 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1555 TYPE_LOW_BOUND_UNDEFINED((arraytype)->index_type ())
1556
1557 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1558 (TYPE_HIGH_BOUND((arraytype)->index_type ()))
1559
1560 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1561 (TYPE_LOW_BOUND((arraytype)->index_type ()))
1562
1563 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1564 (TYPE_BIT_STRIDE(((arraytype)->index_type ())))
1565
1566 /* C++ */
1567
1568 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1569 /* Do not call this, use TYPE_SELF_TYPE. */
1570 extern struct type *internal_type_self_type (struct type *);
1571 extern void set_type_self_type (struct type *, struct type *);
1572
1573 extern int internal_type_vptr_fieldno (struct type *);
1574 extern void set_type_vptr_fieldno (struct type *, int);
1575 extern struct type *internal_type_vptr_basetype (struct type *);
1576 extern void set_type_vptr_basetype (struct type *, struct type *);
1577 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1578 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1579
1580 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1581 #define TYPE_SPECIFIC_FIELD(thistype) \
1582 TYPE_MAIN_TYPE(thistype)->type_specific_field
1583 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1584 where we're trying to print an Ada array using the C language.
1585 In that case, there is no "cplus_stuff", but the C language assumes
1586 that there is. What we do, in that case, is pretend that there is
1587 an implicit one which is the default cplus stuff. */
1588 #define TYPE_CPLUS_SPECIFIC(thistype) \
1589 (!HAVE_CPLUS_STRUCT(thistype) \
1590 ? (struct cplus_struct_type*)&cplus_struct_default \
1591 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1592 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1593 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1594 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1595 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1596 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1597 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1598 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1599 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1600 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1601 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1602 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1603 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1604 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1605 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1606 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1607 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1608
1609 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1610 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1611 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1612
1613 #define FIELD_NAME(thisfld) ((thisfld).name)
1614 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1615 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1616 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1617 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1618 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1619 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1620 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1621 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1622 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1623 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1624 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1625 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1626 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1627 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1628 #define SET_FIELD_PHYSNAME(thisfld, name) \
1629 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1630 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1631 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1632 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1633 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1634 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1635 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1636 FIELD_DWARF_BLOCK (thisfld) = (addr))
1637 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1638 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1639
1640 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1641 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1642 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1643 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1644 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1645 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1646 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1647 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1648 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1649 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1650
1651 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1652 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1653 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1654 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1655 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1656 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1657 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1658 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1659 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1660 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1661 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1662 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1663 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1664 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1665 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1666 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1667 #define TYPE_FIELD_PRIVATE(thistype, n) \
1668 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1669 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1670 #define TYPE_FIELD_PROTECTED(thistype, n) \
1671 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1672 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1673 #define TYPE_FIELD_IGNORE(thistype, n) \
1674 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1675 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1676 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1677 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1678 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1679
1680 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1681 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1682 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1683 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1684 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1685
1686 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1687 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1688 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1689 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1690 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1691 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1692
1693 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1694 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1695 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1696 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1697 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1698 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1699 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1700 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1701 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1702 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1703 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1704 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1705 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1706 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1707 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1708 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1709 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1710
1711 /* Accessors for typedefs defined by a class. */
1712 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1713 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1714 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1715 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1716 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1717 TYPE_TYPEDEF_FIELD (thistype, n).name
1718 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1719 TYPE_TYPEDEF_FIELD (thistype, n).type
1720 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1721 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1722 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1723 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1724 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1725 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1726
1727 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1728 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1729 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1730 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1731 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1732 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1733 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1734 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1735 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1736 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1737 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1738 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1739 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1740 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1741
1742 #define TYPE_IS_OPAQUE(thistype) \
1743 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1744 || ((thistype)->code () == TYPE_CODE_UNION)) \
1745 && ((thistype)->num_fields () == 0) \
1746 && (!HAVE_CPLUS_STRUCT (thistype) \
1747 || TYPE_NFN_FIELDS (thistype) == 0) \
1748 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1749
1750 /* * A helper macro that returns the name of a type or "unnamed type"
1751 if the type has no name. */
1752
1753 #define TYPE_SAFE_NAME(type) \
1754 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1755
1756 /* * A helper macro that returns the name of an error type. If the
1757 type has a name, it is used; otherwise, a default is used. */
1758
1759 #define TYPE_ERROR_NAME(type) \
1760 (type->name () ? type->name () : _("<error type>"))
1761
1762 /* Given TYPE, return its floatformat. */
1763 const struct floatformat *floatformat_from_type (const struct type *type);
1764
1765 struct builtin_type
1766 {
1767 /* Integral types. */
1768
1769 /* Implicit size/sign (based on the architecture's ABI). */
1770 struct type *builtin_void;
1771 struct type *builtin_char;
1772 struct type *builtin_short;
1773 struct type *builtin_int;
1774 struct type *builtin_long;
1775 struct type *builtin_signed_char;
1776 struct type *builtin_unsigned_char;
1777 struct type *builtin_unsigned_short;
1778 struct type *builtin_unsigned_int;
1779 struct type *builtin_unsigned_long;
1780 struct type *builtin_half;
1781 struct type *builtin_float;
1782 struct type *builtin_double;
1783 struct type *builtin_long_double;
1784 struct type *builtin_complex;
1785 struct type *builtin_double_complex;
1786 struct type *builtin_string;
1787 struct type *builtin_bool;
1788 struct type *builtin_long_long;
1789 struct type *builtin_unsigned_long_long;
1790 struct type *builtin_decfloat;
1791 struct type *builtin_decdouble;
1792 struct type *builtin_declong;
1793
1794 /* "True" character types.
1795 We use these for the '/c' print format, because c_char is just a
1796 one-byte integral type, which languages less laid back than C
1797 will print as ... well, a one-byte integral type. */
1798 struct type *builtin_true_char;
1799 struct type *builtin_true_unsigned_char;
1800
1801 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1802 is for when an architecture needs to describe a register that has
1803 no size. */
1804 struct type *builtin_int0;
1805 struct type *builtin_int8;
1806 struct type *builtin_uint8;
1807 struct type *builtin_int16;
1808 struct type *builtin_uint16;
1809 struct type *builtin_int24;
1810 struct type *builtin_uint24;
1811 struct type *builtin_int32;
1812 struct type *builtin_uint32;
1813 struct type *builtin_int64;
1814 struct type *builtin_uint64;
1815 struct type *builtin_int128;
1816 struct type *builtin_uint128;
1817
1818 /* Wide character types. */
1819 struct type *builtin_char16;
1820 struct type *builtin_char32;
1821 struct type *builtin_wchar;
1822
1823 /* Pointer types. */
1824
1825 /* * `pointer to data' type. Some target platforms use an implicitly
1826 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1827 struct type *builtin_data_ptr;
1828
1829 /* * `pointer to function (returning void)' type. Harvard
1830 architectures mean that ABI function and code pointers are not
1831 interconvertible. Similarly, since ANSI, C standards have
1832 explicitly said that pointers to functions and pointers to data
1833 are not interconvertible --- that is, you can't cast a function
1834 pointer to void * and back, and expect to get the same value.
1835 However, all function pointer types are interconvertible, so void
1836 (*) () can server as a generic function pointer. */
1837
1838 struct type *builtin_func_ptr;
1839
1840 /* * `function returning pointer to function (returning void)' type.
1841 The final void return type is not significant for it. */
1842
1843 struct type *builtin_func_func;
1844
1845 /* Special-purpose types. */
1846
1847 /* * This type is used to represent a GDB internal function. */
1848
1849 struct type *internal_fn;
1850
1851 /* * This type is used to represent an xmethod. */
1852 struct type *xmethod;
1853 };
1854
1855 /* * Return the type table for the specified architecture. */
1856
1857 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1858
1859 /* * Per-objfile types used by symbol readers. */
1860
1861 struct objfile_type
1862 {
1863 /* Basic types based on the objfile architecture. */
1864 struct type *builtin_void;
1865 struct type *builtin_char;
1866 struct type *builtin_short;
1867 struct type *builtin_int;
1868 struct type *builtin_long;
1869 struct type *builtin_long_long;
1870 struct type *builtin_signed_char;
1871 struct type *builtin_unsigned_char;
1872 struct type *builtin_unsigned_short;
1873 struct type *builtin_unsigned_int;
1874 struct type *builtin_unsigned_long;
1875 struct type *builtin_unsigned_long_long;
1876 struct type *builtin_half;
1877 struct type *builtin_float;
1878 struct type *builtin_double;
1879 struct type *builtin_long_double;
1880
1881 /* * This type is used to represent symbol addresses. */
1882 struct type *builtin_core_addr;
1883
1884 /* * This type represents a type that was unrecognized in symbol
1885 read-in. */
1886 struct type *builtin_error;
1887
1888 /* * Types used for symbols with no debug information. */
1889 struct type *nodebug_text_symbol;
1890 struct type *nodebug_text_gnu_ifunc_symbol;
1891 struct type *nodebug_got_plt_symbol;
1892 struct type *nodebug_data_symbol;
1893 struct type *nodebug_unknown_symbol;
1894 struct type *nodebug_tls_symbol;
1895 };
1896
1897 /* * Return the type table for the specified objfile. */
1898
1899 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1900
1901 /* Explicit floating-point formats. See "floatformat.h". */
1902 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1903 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1904 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1905 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1906 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1907 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1908 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1909 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1910 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1911 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1912 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1913 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1914
1915
1916 /* Allocate space for storing data associated with a particular
1917 type. We ensure that the space is allocated using the same
1918 mechanism that was used to allocate the space for the type
1919 structure itself. I.e. if the type is on an objfile's
1920 objfile_obstack, then the space for data associated with that type
1921 will also be allocated on the objfile_obstack. If the type is
1922 associated with a gdbarch, then the space for data associated with that
1923 type will also be allocated on the gdbarch_obstack.
1924
1925 If a type is not associated with neither an objfile or a gdbarch then
1926 you should not use this macro to allocate space for data, instead you
1927 should call xmalloc directly, and ensure the memory is correctly freed
1928 when it is no longer needed. */
1929
1930 #define TYPE_ALLOC(t,size) \
1931 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1932 ? &TYPE_OBJFILE (t)->objfile_obstack \
1933 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1934 size))
1935
1936
1937 /* See comment on TYPE_ALLOC. */
1938
1939 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1940
1941 /* Use alloc_type to allocate a type owned by an objfile. Use
1942 alloc_type_arch to allocate a type owned by an architecture. Use
1943 alloc_type_copy to allocate a type with the same owner as a
1944 pre-existing template type, no matter whether objfile or
1945 gdbarch. */
1946 extern struct type *alloc_type (struct objfile *);
1947 extern struct type *alloc_type_arch (struct gdbarch *);
1948 extern struct type *alloc_type_copy (const struct type *);
1949
1950 /* * Return the type's architecture. For types owned by an
1951 architecture, that architecture is returned. For types owned by an
1952 objfile, that objfile's architecture is returned. */
1953
1954 extern struct gdbarch *get_type_arch (const struct type *);
1955
1956 /* * This returns the target type (or NULL) of TYPE, also skipping
1957 past typedefs. */
1958
1959 extern struct type *get_target_type (struct type *type);
1960
1961 /* Return the equivalent of TYPE_LENGTH, but in number of target
1962 addressable memory units of the associated gdbarch instead of bytes. */
1963
1964 extern unsigned int type_length_units (struct type *type);
1965
1966 /* * Helper function to construct objfile-owned types. */
1967
1968 extern struct type *init_type (struct objfile *, enum type_code, int,
1969 const char *);
1970 extern struct type *init_integer_type (struct objfile *, int, int,
1971 const char *);
1972 extern struct type *init_character_type (struct objfile *, int, int,
1973 const char *);
1974 extern struct type *init_boolean_type (struct objfile *, int, int,
1975 const char *);
1976 extern struct type *init_float_type (struct objfile *, int, const char *,
1977 const struct floatformat **,
1978 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1979 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1980 extern struct type *init_complex_type (const char *, struct type *);
1981 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1982 struct type *);
1983
1984 /* Helper functions to construct architecture-owned types. */
1985 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1986 const char *);
1987 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1988 const char *);
1989 extern struct type *arch_character_type (struct gdbarch *, int, int,
1990 const char *);
1991 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1992 const char *);
1993 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1994 const struct floatformat **);
1995 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1996 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1997 struct type *);
1998
1999 /* Helper functions to construct a struct or record type. An
2000 initially empty type is created using arch_composite_type().
2001 Fields are then added using append_composite_type_field*(). A union
2002 type has its size set to the largest field. A struct type has each
2003 field packed against the previous. */
2004
2005 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2006 const char *name, enum type_code code);
2007 extern void append_composite_type_field (struct type *t, const char *name,
2008 struct type *field);
2009 extern void append_composite_type_field_aligned (struct type *t,
2010 const char *name,
2011 struct type *field,
2012 int alignment);
2013 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2014 struct type *field);
2015
2016 /* Helper functions to construct a bit flags type. An initially empty
2017 type is created using arch_flag_type(). Flags are then added using
2018 append_flag_type_field() and append_flag_type_flag(). */
2019 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2020 const char *name, int bit);
2021 extern void append_flags_type_field (struct type *type,
2022 int start_bitpos, int nr_bits,
2023 struct type *field_type, const char *name);
2024 extern void append_flags_type_flag (struct type *type, int bitpos,
2025 const char *name);
2026
2027 extern void make_vector_type (struct type *array_type);
2028 extern struct type *init_vector_type (struct type *elt_type, int n);
2029
2030 extern struct type *lookup_reference_type (struct type *, enum type_code);
2031 extern struct type *lookup_lvalue_reference_type (struct type *);
2032 extern struct type *lookup_rvalue_reference_type (struct type *);
2033
2034
2035 extern struct type *make_reference_type (struct type *, struct type **,
2036 enum type_code);
2037
2038 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2039
2040 extern struct type *make_restrict_type (struct type *);
2041
2042 extern struct type *make_unqualified_type (struct type *);
2043
2044 extern struct type *make_atomic_type (struct type *);
2045
2046 extern void replace_type (struct type *, struct type *);
2047
2048 extern int address_space_name_to_int (struct gdbarch *, const char *);
2049
2050 extern const char *address_space_int_to_name (struct gdbarch *, int);
2051
2052 extern struct type *make_type_with_address_space (struct type *type,
2053 int space_identifier);
2054
2055 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2056
2057 extern struct type *lookup_methodptr_type (struct type *);
2058
2059 extern void smash_to_method_type (struct type *type, struct type *self_type,
2060 struct type *to_type, struct field *args,
2061 int nargs, int varargs);
2062
2063 extern void smash_to_memberptr_type (struct type *, struct type *,
2064 struct type *);
2065
2066 extern void smash_to_methodptr_type (struct type *, struct type *);
2067
2068 extern struct type *allocate_stub_method (struct type *);
2069
2070 extern const char *type_name_or_error (struct type *type);
2071
2072 struct struct_elt
2073 {
2074 /* The field of the element, or NULL if no element was found. */
2075 struct field *field;
2076
2077 /* The bit offset of the element in the parent structure. */
2078 LONGEST offset;
2079 };
2080
2081 /* Given a type TYPE, lookup the field and offset of the component named
2082 NAME.
2083
2084 TYPE can be either a struct or union, or a pointer or reference to
2085 a struct or union. If it is a pointer or reference, its target
2086 type is automatically used. Thus '.' and '->' are interchangable,
2087 as specified for the definitions of the expression element types
2088 STRUCTOP_STRUCT and STRUCTOP_PTR.
2089
2090 If NOERR is nonzero, the returned structure will have field set to
2091 NULL if there is no component named NAME.
2092
2093 If the component NAME is a field in an anonymous substructure of
2094 TYPE, the returned offset is a "global" offset relative to TYPE
2095 rather than an offset within the substructure. */
2096
2097 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2098
2099 /* Given a type TYPE, lookup the type of the component named NAME.
2100
2101 TYPE can be either a struct or union, or a pointer or reference to
2102 a struct or union. If it is a pointer or reference, its target
2103 type is automatically used. Thus '.' and '->' are interchangable,
2104 as specified for the definitions of the expression element types
2105 STRUCTOP_STRUCT and STRUCTOP_PTR.
2106
2107 If NOERR is nonzero, return NULL if there is no component named
2108 NAME. */
2109
2110 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2111
2112 extern struct type *make_pointer_type (struct type *, struct type **);
2113
2114 extern struct type *lookup_pointer_type (struct type *);
2115
2116 extern struct type *make_function_type (struct type *, struct type **);
2117
2118 extern struct type *lookup_function_type (struct type *);
2119
2120 extern struct type *lookup_function_type_with_arguments (struct type *,
2121 int,
2122 struct type **);
2123
2124 extern struct type *create_static_range_type (struct type *, struct type *,
2125 LONGEST, LONGEST);
2126
2127
2128 extern struct type *create_array_type_with_stride
2129 (struct type *, struct type *, struct type *,
2130 struct dynamic_prop *, unsigned int);
2131
2132 extern struct type *create_range_type (struct type *, struct type *,
2133 const struct dynamic_prop *,
2134 const struct dynamic_prop *,
2135 LONGEST);
2136
2137 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2138 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2139 stride. */
2140
2141 extern struct type * create_range_type_with_stride
2142 (struct type *result_type, struct type *index_type,
2143 const struct dynamic_prop *low_bound,
2144 const struct dynamic_prop *high_bound, LONGEST bias,
2145 const struct dynamic_prop *stride, bool byte_stride_p);
2146
2147 extern struct type *create_array_type (struct type *, struct type *,
2148 struct type *);
2149
2150 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2151
2152 extern struct type *create_string_type (struct type *, struct type *,
2153 struct type *);
2154 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2155
2156 extern struct type *create_set_type (struct type *, struct type *);
2157
2158 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2159 const char *);
2160
2161 extern struct type *lookup_signed_typename (const struct language_defn *,
2162 const char *);
2163
2164 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2165
2166 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2167
2168 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2169 ADDR specifies the location of the variable the type is bound to.
2170 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2171 static properties is returned. */
2172 extern struct type *resolve_dynamic_type
2173 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2174 CORE_ADDR addr);
2175
2176 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2177 extern int is_dynamic_type (struct type *type);
2178
2179 extern struct type *check_typedef (struct type *);
2180
2181 extern void check_stub_method_group (struct type *, int);
2182
2183 extern char *gdb_mangle_name (struct type *, int, int);
2184
2185 extern struct type *lookup_typename (const struct language_defn *,
2186 const char *, const struct block *, int);
2187
2188 extern struct type *lookup_template_type (const char *, struct type *,
2189 const struct block *);
2190
2191 extern int get_vptr_fieldno (struct type *, struct type **);
2192
2193 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2194
2195 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2196 LONGEST *high_bound);
2197
2198 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2199
2200 extern int class_types_same_p (const struct type *, const struct type *);
2201
2202 extern int is_ancestor (struct type *, struct type *);
2203
2204 extern int is_public_ancestor (struct type *, struct type *);
2205
2206 extern int is_unique_ancestor (struct type *, struct value *);
2207
2208 /* Overload resolution */
2209
2210 /* * Badness if parameter list length doesn't match arg list length. */
2211 extern const struct rank LENGTH_MISMATCH_BADNESS;
2212
2213 /* * Dummy badness value for nonexistent parameter positions. */
2214 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2215 /* * Badness if no conversion among types. */
2216 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2217
2218 /* * Badness of an exact match. */
2219 extern const struct rank EXACT_MATCH_BADNESS;
2220
2221 /* * Badness of integral promotion. */
2222 extern const struct rank INTEGER_PROMOTION_BADNESS;
2223 /* * Badness of floating promotion. */
2224 extern const struct rank FLOAT_PROMOTION_BADNESS;
2225 /* * Badness of converting a derived class pointer
2226 to a base class pointer. */
2227 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2228 /* * Badness of integral conversion. */
2229 extern const struct rank INTEGER_CONVERSION_BADNESS;
2230 /* * Badness of floating conversion. */
2231 extern const struct rank FLOAT_CONVERSION_BADNESS;
2232 /* * Badness of integer<->floating conversions. */
2233 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2234 /* * Badness of conversion of pointer to void pointer. */
2235 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2236 /* * Badness of conversion to boolean. */
2237 extern const struct rank BOOL_CONVERSION_BADNESS;
2238 /* * Badness of converting derived to base class. */
2239 extern const struct rank BASE_CONVERSION_BADNESS;
2240 /* * Badness of converting from non-reference to reference. Subrank
2241 is the type of reference conversion being done. */
2242 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2243 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2244 /* * Conversion to rvalue reference. */
2245 #define REFERENCE_CONVERSION_RVALUE 1
2246 /* * Conversion to const lvalue reference. */
2247 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2248
2249 /* * Badness of converting integer 0 to NULL pointer. */
2250 extern const struct rank NULL_POINTER_CONVERSION;
2251 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2252 being done. */
2253 extern const struct rank CV_CONVERSION_BADNESS;
2254 #define CV_CONVERSION_CONST 1
2255 #define CV_CONVERSION_VOLATILE 2
2256
2257 /* Non-standard conversions allowed by the debugger */
2258
2259 /* * Converting a pointer to an int is usually OK. */
2260 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2261
2262 /* * Badness of converting a (non-zero) integer constant
2263 to a pointer. */
2264 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2265
2266 extern struct rank sum_ranks (struct rank a, struct rank b);
2267 extern int compare_ranks (struct rank a, struct rank b);
2268
2269 extern int compare_badness (const badness_vector &,
2270 const badness_vector &);
2271
2272 extern badness_vector rank_function (gdb::array_view<type *> parms,
2273 gdb::array_view<value *> args);
2274
2275 extern struct rank rank_one_type (struct type *, struct type *,
2276 struct value *);
2277
2278 extern void recursive_dump_type (struct type *, int);
2279
2280 extern int field_is_static (struct field *);
2281
2282 /* printcmd.c */
2283
2284 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2285 const struct value_print_options *,
2286 int, struct ui_file *);
2287
2288 extern int can_dereference (struct type *);
2289
2290 extern int is_integral_type (struct type *);
2291
2292 extern int is_floating_type (struct type *);
2293
2294 extern int is_scalar_type (struct type *type);
2295
2296 extern int is_scalar_type_recursive (struct type *);
2297
2298 extern int class_or_union_p (const struct type *);
2299
2300 extern void maintenance_print_type (const char *, int);
2301
2302 extern htab_t create_copied_types_hash (struct objfile *objfile);
2303
2304 extern struct type *copy_type_recursive (struct objfile *objfile,
2305 struct type *type,
2306 htab_t copied_types);
2307
2308 extern struct type *copy_type (const struct type *type);
2309
2310 extern bool types_equal (struct type *, struct type *);
2311
2312 extern bool types_deeply_equal (struct type *, struct type *);
2313
2314 extern int type_not_allocated (const struct type *type);
2315
2316 extern int type_not_associated (const struct type *type);
2317
2318 /* * When the type includes explicit byte ordering, return that.
2319 Otherwise, the byte ordering from gdbarch_byte_order for
2320 get_type_arch is returned. */
2321
2322 extern enum bfd_endian type_byte_order (const struct type *type);
2323
2324 /* A flag to enable printing of debugging information of C++
2325 overloading. */
2326
2327 extern unsigned int overload_debug;
2328
2329 #endif /* GDBTYPES_H */
This page took 0.076035 seconds and 4 git commands to generate.