Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2019 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53
54 /* Forward declarations for prototypes. */
55 struct field;
56 struct block;
57 struct value_print_options;
58 struct language_defn;
59
60 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
61 are already DWARF-specific. */
62
63 /* * Offset relative to the start of its containing CU (compilation
64 unit). */
65 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
66
67 /* * Offset relative to the start of its .debug_info or .debug_types
68 section. */
69 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
70
71 static inline char *
72 sect_offset_str (sect_offset offset)
73 {
74 return hex_string (to_underlying (offset));
75 }
76
77 /* Some macros for char-based bitfields. */
78
79 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
80 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
81 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
82 #define B_TYPE unsigned char
83 #define B_BYTES(x) ( 1 + ((x)>>3) )
84 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
85
86 /* * Different kinds of data types are distinguished by the `code'
87 field. */
88
89 enum type_code
90 {
91 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
92 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
93 TYPE_CODE_PTR, /**< Pointer type */
94
95 /* * Array type with lower & upper bounds.
96
97 Regardless of the language, GDB represents multidimensional
98 array types the way C does: as arrays of arrays. So an
99 instance of a GDB array type T can always be seen as a series
100 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
101 memory.
102
103 Row-major languages like C lay out multi-dimensional arrays so
104 that incrementing the rightmost index in a subscripting
105 expression results in the smallest change in the address of the
106 element referred to. Column-major languages like Fortran lay
107 them out so that incrementing the leftmost index results in the
108 smallest change.
109
110 This means that, in column-major languages, working our way
111 from type to target type corresponds to working through indices
112 from right to left, not left to right. */
113 TYPE_CODE_ARRAY,
114
115 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
116 TYPE_CODE_UNION, /**< C union or Pascal variant part */
117 TYPE_CODE_ENUM, /**< Enumeration type */
118 TYPE_CODE_FLAGS, /**< Bit flags type */
119 TYPE_CODE_FUNC, /**< Function type */
120 TYPE_CODE_INT, /**< Integer type */
121
122 /* * Floating type. This is *NOT* a complex type. Beware, there
123 are parts of GDB which bogusly assume that TYPE_CODE_FLT can
124 mean complex. */
125 TYPE_CODE_FLT,
126
127 /* * Void type. The length field specifies the length (probably
128 always one) which is used in pointer arithmetic involving
129 pointers to this type, but actually dereferencing such a
130 pointer is invalid; a void type has no length and no actual
131 representation in memory or registers. A pointer to a void
132 type is a generic pointer. */
133 TYPE_CODE_VOID,
134
135 TYPE_CODE_SET, /**< Pascal sets */
136 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
137
138 /* * A string type which is like an array of character but prints
139 differently. It does not contain a length field as Pascal
140 strings (for many Pascals, anyway) do; if we want to deal with
141 such strings, we should use a new type code. */
142 TYPE_CODE_STRING,
143
144 /* * Unknown type. The length field is valid if we were able to
145 deduce that much about the type, or 0 if we don't even know
146 that. */
147 TYPE_CODE_ERROR,
148
149 /* C++ */
150 TYPE_CODE_METHOD, /**< Method type */
151
152 /* * Pointer-to-member-function type. This describes how to access a
153 particular member function of a class (possibly a virtual
154 member function). The representation may vary between different
155 C++ ABIs. */
156 TYPE_CODE_METHODPTR,
157
158 /* * Pointer-to-member type. This is the offset within a class to
159 some particular data member. The only currently supported
160 representation uses an unbiased offset, with -1 representing
161 NULL; this is used by the Itanium C++ ABI (used by GCC on all
162 platforms). */
163 TYPE_CODE_MEMBERPTR,
164
165 TYPE_CODE_REF, /**< C++ Reference types */
166
167 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
168
169 TYPE_CODE_CHAR, /**< *real* character type */
170
171 /* * Boolean type. 0 is false, 1 is true, and other values are
172 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
173 TYPE_CODE_BOOL,
174
175 /* Fortran */
176 TYPE_CODE_COMPLEX, /**< Complex float */
177
178 TYPE_CODE_TYPEDEF,
179
180 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
181
182 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
183
184 TYPE_CODE_MODULE, /**< Fortran module. */
185
186 /* * Internal function type. */
187 TYPE_CODE_INTERNAL_FUNCTION,
188
189 /* * Methods implemented in extension languages. */
190 TYPE_CODE_XMETHOD
191 };
192
193 /* * Some bits for the type's instance_flags word. See the macros
194 below for documentation on each bit. */
195
196 enum type_instance_flag_value : unsigned
197 {
198 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
199 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
200 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
201 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
202 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
203 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
204 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
205 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
206 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
207 };
208
209 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
210
211 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
212 the type is signed (unless TYPE_NOSIGN (below) is set). */
213
214 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
215
216 /* * No sign for this type. In C++, "char", "signed char", and
217 "unsigned char" are distinct types; so we need an extra flag to
218 indicate the absence of a sign! */
219
220 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
221
222 /* * A compiler may supply dwarf instrumentation
223 that indicates the desired endian interpretation of the variable
224 differs from the native endian representation. */
225
226 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
227
228 /* * This appears in a type's flags word if it is a stub type (e.g.,
229 if someone referenced a type that wasn't defined in a source file
230 via (struct sir_not_appearing_in_this_film *)). */
231
232 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
233
234 /* * The target type of this type is a stub type, and this type needs
235 to be updated if it gets un-stubbed in check_typedef. Used for
236 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
237 based on the TYPE_LENGTH of the target type. Also, set for
238 TYPE_CODE_TYPEDEF. */
239
240 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
241
242 /* * This is a function type which appears to have a prototype. We
243 need this for function calls in order to tell us if it's necessary
244 to coerce the args, or to just do the standard conversions. This
245 is used with a short field. */
246
247 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
248
249 /* * This flag is used to indicate that processing for this type
250 is incomplete.
251
252 (Mostly intended for HP platforms, where class methods, for
253 instance, can be encountered before their classes in the debug
254 info; the incomplete type has to be marked so that the class and
255 the method can be assigned correct types.) */
256
257 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
258
259 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
260 to functions. */
261
262 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
263
264 /* * Identify a vector type. Gcc is handling this by adding an extra
265 attribute to the array type. We slurp that in as a new flag of a
266 type. This is used only in dwarf2read.c. */
267 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
268
269 /* * The debugging formats (especially STABS) do not contain enough
270 information to represent all Ada types---especially those whose
271 size depends on dynamic quantities. Therefore, the GNAT Ada
272 compiler includes extra information in the form of additional type
273 definitions connected by naming conventions. This flag indicates
274 that the type is an ordinary (unencoded) GDB type that has been
275 created from the necessary run-time information, and does not need
276 further interpretation. Optionally marks ordinary, fixed-size GDB
277 type. */
278
279 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
280
281 /* * This debug target supports TYPE_STUB(t). In the unsupported case
282 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
283 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
284 guessed the TYPE_STUB(t) value (see dwarfread.c). */
285
286 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
287
288 /* * Not textual. By default, GDB treats all single byte integers as
289 characters (or elements of strings) unless this flag is set. */
290
291 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
292
293 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
294 address is returned by this function call. TYPE_TARGET_TYPE
295 determines the final returned function type to be presented to
296 user. */
297
298 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
299
300 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
301 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
302 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
303
304 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
305 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
306 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
307
308 /* * True if this type was declared using the "class" keyword. This is
309 only valid for C++ structure and enum types. If false, a structure
310 was declared as a "struct"; if true it was declared "class". For
311 enum types, this is true when "enum class" or "enum struct" was
312 used to declare the type.. */
313
314 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
315
316 /* * True if this type is a "flag" enum. A flag enum is one where all
317 the values are pairwise disjoint when "and"ed together. This
318 affects how enum values are printed. */
319
320 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
321
322 /* * True if this type is a discriminated union type. Only valid for
323 TYPE_CODE_UNION. A discriminated union stores a reference to the
324 discriminant field along with the discriminator values in a dynamic
325 property. */
326
327 #define TYPE_FLAG_DISCRIMINATED_UNION(t) \
328 (TYPE_MAIN_TYPE (t)->flag_discriminated_union)
329
330 /* * Constant type. If this is set, the corresponding type has a
331 const modifier. */
332
333 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
334
335 /* * Volatile type. If this is set, the corresponding type has a
336 volatile modifier. */
337
338 #define TYPE_VOLATILE(t) \
339 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
340
341 /* * Restrict type. If this is set, the corresponding type has a
342 restrict modifier. */
343
344 #define TYPE_RESTRICT(t) \
345 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
346
347 /* * Atomic type. If this is set, the corresponding type has an
348 _Atomic modifier. */
349
350 #define TYPE_ATOMIC(t) \
351 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
352
353 /* * True if this type represents either an lvalue or lvalue reference type. */
354
355 #define TYPE_IS_REFERENCE(t) \
356 (TYPE_CODE (t) == TYPE_CODE_REF || TYPE_CODE (t) == TYPE_CODE_RVALUE_REF)
357
358 /* * True if this type is allocatable. */
359 #define TYPE_IS_ALLOCATABLE(t) \
360 (get_dyn_prop (DYN_PROP_ALLOCATED, t) != NULL)
361
362 /* * Instruction-space delimited type. This is for Harvard architectures
363 which have separate instruction and data address spaces (and perhaps
364 others).
365
366 GDB usually defines a flat address space that is a superset of the
367 architecture's two (or more) address spaces, but this is an extension
368 of the architecture's model.
369
370 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
371 resides in instruction memory, even if its address (in the extended
372 flat address space) does not reflect this.
373
374 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
375 corresponding type resides in the data memory space, even if
376 this is not indicated by its (flat address space) address.
377
378 If neither flag is set, the default space for functions / methods
379 is instruction space, and for data objects is data memory. */
380
381 #define TYPE_CODE_SPACE(t) \
382 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
383
384 #define TYPE_DATA_SPACE(t) \
385 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
386
387 /* * Address class flags. Some environments provide for pointers
388 whose size is different from that of a normal pointer or address
389 types where the bits are interpreted differently than normal
390 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
391 target specific ways to represent these different types of address
392 classes. */
393
394 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
395 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
396 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
397 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
398 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
399 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
400 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
401 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
402
403 /* * Information needed for a discriminated union. A discriminated
404 union is handled somewhat differently from an ordinary union.
405
406 One field is designated as the discriminant. Only one other field
407 is active at a time; which one depends on the value of the
408 discriminant and the data in this structure.
409
410 Additionally, it is possible to have a univariant discriminated
411 union. In this case, the union has just a single field, which is
412 assumed to be the only active variant -- in this case no
413 discriminant is provided. */
414
415 struct discriminant_info
416 {
417 /* * The index of the discriminant field. If -1, then this union
418 must have just a single field. */
419
420 int discriminant_index;
421
422 /* * The index of the default branch of the union. If -1, then
423 there is no default branch. */
424
425 int default_index;
426
427 /* * The discriminant values corresponding to each branch. This has
428 a number of entries equal to the number of fields in this union.
429 If discriminant_index is not -1, then that entry in this array is
430 not used. If default_index is not -1, then that entry in this
431 array is not used. */
432
433 ULONGEST discriminants[1];
434 };
435
436 enum dynamic_prop_kind
437 {
438 PROP_UNDEFINED, /* Not defined. */
439 PROP_CONST, /* Constant. */
440 PROP_ADDR_OFFSET, /* Address offset. */
441 PROP_LOCEXPR, /* Location expression. */
442 PROP_LOCLIST /* Location list. */
443 };
444
445 union dynamic_prop_data
446 {
447 /* Storage for constant property. */
448
449 LONGEST const_val;
450
451 /* Storage for dynamic property. */
452
453 void *baton;
454 };
455
456 /* * Used to store a dynamic property. */
457
458 struct dynamic_prop
459 {
460 /* Determine which field of the union dynamic_prop.data is used. */
461 enum dynamic_prop_kind kind;
462
463 /* Storage for dynamic or static value. */
464 union dynamic_prop_data data;
465 };
466
467 /* Compare two dynamic_prop objects for equality. dynamic_prop
468 instances are equal iff they have the same type and storage. */
469 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
470
471 /* Compare two dynamic_prop objects for inequality. */
472 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
473 {
474 return !(l == r);
475 }
476
477 /* * Define a type's dynamic property node kind. */
478 enum dynamic_prop_node_kind
479 {
480 /* A property providing a type's data location.
481 Evaluating this field yields to the location of an object's data. */
482 DYN_PROP_DATA_LOCATION,
483
484 /* A property representing DW_AT_allocated. The presence of this attribute
485 indicates that the object of the type can be allocated/deallocated. */
486 DYN_PROP_ALLOCATED,
487
488 /* A property representing DW_AT_allocated. The presence of this attribute
489 indicated that the object of the type can be associated. */
490 DYN_PROP_ASSOCIATED,
491
492 /* A property providing an array's byte stride. */
493 DYN_PROP_BYTE_STRIDE,
494
495 /* A property holding information about a discriminated union. */
496 DYN_PROP_DISCRIMINATED,
497 };
498
499 /* * List for dynamic type attributes. */
500 struct dynamic_prop_list
501 {
502 /* The kind of dynamic prop in this node. */
503 enum dynamic_prop_node_kind prop_kind;
504
505 /* The dynamic property itself. */
506 struct dynamic_prop prop;
507
508 /* A pointer to the next dynamic property. */
509 struct dynamic_prop_list *next;
510 };
511
512 /* * Determine which field of the union main_type.fields[x].loc is
513 used. */
514
515 enum field_loc_kind
516 {
517 FIELD_LOC_KIND_BITPOS, /**< bitpos */
518 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
519 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
520 FIELD_LOC_KIND_PHYSNAME, /**< physname */
521 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
522 };
523
524 /* * A discriminant to determine which field in the
525 main_type.type_specific union is being used, if any.
526
527 For types such as TYPE_CODE_FLT, the use of this
528 discriminant is really redundant, as we know from the type code
529 which field is going to be used. As such, it would be possible to
530 reduce the size of this enum in order to save a bit or two for
531 other fields of struct main_type. But, since we still have extra
532 room , and for the sake of clarity and consistency, we treat all fields
533 of the union the same way. */
534
535 enum type_specific_kind
536 {
537 TYPE_SPECIFIC_NONE,
538 TYPE_SPECIFIC_CPLUS_STUFF,
539 TYPE_SPECIFIC_GNAT_STUFF,
540 TYPE_SPECIFIC_FLOATFORMAT,
541 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
542 TYPE_SPECIFIC_FUNC,
543 TYPE_SPECIFIC_SELF_TYPE
544 };
545
546 union type_owner
547 {
548 struct objfile *objfile;
549 struct gdbarch *gdbarch;
550 };
551
552 union field_location
553 {
554 /* * Position of this field, counting in bits from start of
555 containing structure. For big-endian targets, it is the bit
556 offset to the MSB. For little-endian targets, it is the bit
557 offset to the LSB. */
558
559 LONGEST bitpos;
560
561 /* * Enum value. */
562 LONGEST enumval;
563
564 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
565 physaddr is the location (in the target) of the static
566 field. Otherwise, physname is the mangled label of the
567 static field. */
568
569 CORE_ADDR physaddr;
570 const char *physname;
571
572 /* * The field location can be computed by evaluating the
573 following DWARF block. Its DATA is allocated on
574 objfile_obstack - no CU load is needed to access it. */
575
576 struct dwarf2_locexpr_baton *dwarf_block;
577 };
578
579 struct field
580 {
581 union field_location loc;
582
583 /* * For a function or member type, this is 1 if the argument is
584 marked artificial. Artificial arguments should not be shown
585 to the user. For TYPE_CODE_RANGE it is set if the specific
586 bound is not defined. */
587
588 unsigned int artificial : 1;
589
590 /* * Discriminant for union field_location. */
591
592 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
593
594 /* * Size of this field, in bits, or zero if not packed.
595 If non-zero in an array type, indicates the element size in
596 bits (used only in Ada at the moment).
597 For an unpacked field, the field's type's length
598 says how many bytes the field occupies. */
599
600 unsigned int bitsize : 28;
601
602 /* * In a struct or union type, type of this field.
603 - In a function or member type, type of this argument.
604 - In an array type, the domain-type of the array. */
605
606 struct type *type;
607
608 /* * Name of field, value or argument.
609 NULL for range bounds, array domains, and member function
610 arguments. */
611
612 const char *name;
613 };
614
615 struct range_bounds
616 {
617 /* * Low bound of range. */
618
619 struct dynamic_prop low;
620
621 /* * High bound of range. */
622
623 struct dynamic_prop high;
624
625 /* The stride value for this range. This can be stored in bits or bytes
626 based on the value of BYTE_STRIDE_P. It is optional to have a stride
627 value, if this range has no stride value defined then this will be set
628 to the constant zero. */
629
630 struct dynamic_prop stride;
631
632 /* * The bias. Sometimes a range value is biased before storage.
633 The bias is added to the stored bits to form the true value. */
634
635 LONGEST bias;
636
637 /* True if HIGH range bound contains the number of elements in the
638 subrange. This affects how the final high bound is computed. */
639
640 unsigned int flag_upper_bound_is_count : 1;
641
642 /* True if LOW or/and HIGH are resolved into a static bound from
643 a dynamic one. */
644
645 unsigned int flag_bound_evaluated : 1;
646
647 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
648
649 unsigned int flag_is_byte_stride : 1;
650 };
651
652 /* Compare two range_bounds objects for equality. Simply does
653 memberwise comparison. */
654 extern bool operator== (const range_bounds &l, const range_bounds &r);
655
656 /* Compare two range_bounds objects for inequality. */
657 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
658 {
659 return !(l == r);
660 }
661
662 union type_specific
663 {
664 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
665 point to cplus_struct_default, a default static instance of a
666 struct cplus_struct_type. */
667
668 struct cplus_struct_type *cplus_stuff;
669
670 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
671 provides additional information. */
672
673 struct gnat_aux_type *gnat_stuff;
674
675 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
676 floatformat object that describes the floating-point value
677 that resides within the type. */
678
679 const struct floatformat *floatformat;
680
681 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
682
683 struct func_type *func_stuff;
684
685 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
686 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
687 is a member of. */
688
689 struct type *self_type;
690 };
691
692 /* * Main structure representing a type in GDB.
693
694 This structure is space-critical. Its layout has been tweaked to
695 reduce the space used. */
696
697 struct main_type
698 {
699 /* * Code for kind of type. */
700
701 ENUM_BITFIELD(type_code) code : 8;
702
703 /* * Flags about this type. These fields appear at this location
704 because they packs nicely here. See the TYPE_* macros for
705 documentation about these fields. */
706
707 unsigned int flag_unsigned : 1;
708 unsigned int flag_nosign : 1;
709 unsigned int flag_stub : 1;
710 unsigned int flag_target_stub : 1;
711 unsigned int flag_static : 1;
712 unsigned int flag_prototyped : 1;
713 unsigned int flag_incomplete : 1;
714 unsigned int flag_varargs : 1;
715 unsigned int flag_vector : 1;
716 unsigned int flag_stub_supported : 1;
717 unsigned int flag_gnu_ifunc : 1;
718 unsigned int flag_fixed_instance : 1;
719 unsigned int flag_objfile_owned : 1;
720 unsigned int flag_endianity_not_default : 1;
721
722 /* * True if this type was declared with "class" rather than
723 "struct". */
724
725 unsigned int flag_declared_class : 1;
726
727 /* * True if this is an enum type with disjoint values. This
728 affects how the enum is printed. */
729
730 unsigned int flag_flag_enum : 1;
731
732 /* * True if this type is a discriminated union type. Only valid
733 for TYPE_CODE_UNION. A discriminated union stores a reference to
734 the discriminant field along with the discriminator values in a
735 dynamic property. */
736
737 unsigned int flag_discriminated_union : 1;
738
739 /* * A discriminant telling us which field of the type_specific
740 union is being used for this type, if any. */
741
742 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
743
744 /* * Number of fields described for this type. This field appears
745 at this location because it packs nicely here. */
746
747 short nfields;
748
749 /* * Name of this type, or NULL if none.
750
751 This is used for printing only. For looking up a name, look for
752 a symbol in the VAR_DOMAIN. This is generally allocated in the
753 objfile's obstack. However coffread.c uses malloc. */
754
755 const char *name;
756
757 /* * Every type is now associated with a particular objfile, and the
758 type is allocated on the objfile_obstack for that objfile. One
759 problem however, is that there are times when gdb allocates new
760 types while it is not in the process of reading symbols from a
761 particular objfile. Fortunately, these happen when the type
762 being created is a derived type of an existing type, such as in
763 lookup_pointer_type(). So we can just allocate the new type
764 using the same objfile as the existing type, but to do this we
765 need a backpointer to the objfile from the existing type. Yes
766 this is somewhat ugly, but without major overhaul of the internal
767 type system, it can't be avoided for now. */
768
769 union type_owner owner;
770
771 /* * For a pointer type, describes the type of object pointed to.
772 - For an array type, describes the type of the elements.
773 - For a function or method type, describes the type of the return value.
774 - For a range type, describes the type of the full range.
775 - For a complex type, describes the type of each coordinate.
776 - For a special record or union type encoding a dynamic-sized type
777 in GNAT, a memoized pointer to a corresponding static version of
778 the type.
779 - Unused otherwise. */
780
781 struct type *target_type;
782
783 /* * For structure and union types, a description of each field.
784 For set and pascal array types, there is one "field",
785 whose type is the domain type of the set or array.
786 For range types, there are two "fields",
787 the minimum and maximum values (both inclusive).
788 For enum types, each possible value is described by one "field".
789 For a function or method type, a "field" for each parameter.
790 For C++ classes, there is one field for each base class (if it is
791 a derived class) plus one field for each class data member. Member
792 functions are recorded elsewhere.
793
794 Using a pointer to a separate array of fields
795 allows all types to have the same size, which is useful
796 because we can allocate the space for a type before
797 we know what to put in it. */
798
799 union
800 {
801 struct field *fields;
802
803 /* * Union member used for range types. */
804
805 struct range_bounds *bounds;
806
807 } flds_bnds;
808
809 /* * Slot to point to additional language-specific fields of this
810 type. */
811
812 union type_specific type_specific;
813
814 /* * Contains all dynamic type properties. */
815 struct dynamic_prop_list *dyn_prop_list;
816 };
817
818 /* * Number of bits allocated for alignment. */
819
820 #define TYPE_ALIGN_BITS 8
821
822 /* * A ``struct type'' describes a particular instance of a type, with
823 some particular qualification. */
824
825 struct type
826 {
827 /* * Type that is a pointer to this type.
828 NULL if no such pointer-to type is known yet.
829 The debugger may add the address of such a type
830 if it has to construct one later. */
831
832 struct type *pointer_type;
833
834 /* * C++: also need a reference type. */
835
836 struct type *reference_type;
837
838 /* * A C++ rvalue reference type added in C++11. */
839
840 struct type *rvalue_reference_type;
841
842 /* * Variant chain. This points to a type that differs from this
843 one only in qualifiers and length. Currently, the possible
844 qualifiers are const, volatile, code-space, data-space, and
845 address class. The length may differ only when one of the
846 address class flags are set. The variants are linked in a
847 circular ring and share MAIN_TYPE. */
848
849 struct type *chain;
850
851 /* * The alignment for this type. Zero means that the alignment was
852 not specified in the debug info. Note that this is stored in a
853 funny way: as the log base 2 (plus 1) of the alignment; so a
854 value of 1 means the alignment is 1, and a value of 9 means the
855 alignment is 256. */
856
857 unsigned align_log2 : TYPE_ALIGN_BITS;
858
859 /* * Flags specific to this instance of the type, indicating where
860 on the ring we are.
861
862 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
863 binary or-ed with the target type, with a special case for
864 address class and space class. For example if this typedef does
865 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
866 instance flags are completely inherited from the target type. No
867 qualifiers can be cleared by the typedef. See also
868 check_typedef. */
869 unsigned instance_flags : 9;
870
871 /* * Length of storage for a value of this type. The value is the
872 expression in host bytes of what sizeof(type) would return. This
873 size includes padding. For example, an i386 extended-precision
874 floating point value really only occupies ten bytes, but most
875 ABI's declare its size to be 12 bytes, to preserve alignment.
876 A `struct type' representing such a floating-point type would
877 have a `length' value of 12, even though the last two bytes are
878 unused.
879
880 Since this field is expressed in host bytes, its value is appropriate
881 to pass to memcpy and such (it is assumed that GDB itself always runs
882 on an 8-bits addressable architecture). However, when using it for
883 target address arithmetic (e.g. adding it to a target address), the
884 type_length_units function should be used in order to get the length
885 expressed in target addressable memory units. */
886
887 ULONGEST length;
888
889 /* * Core type, shared by a group of qualified types. */
890
891 struct main_type *main_type;
892 };
893
894 #define NULL_TYPE ((struct type *) 0)
895
896 struct fn_fieldlist
897 {
898
899 /* * The overloaded name.
900 This is generally allocated in the objfile's obstack.
901 However stabsread.c sometimes uses malloc. */
902
903 const char *name;
904
905 /* * The number of methods with this name. */
906
907 int length;
908
909 /* * The list of methods. */
910
911 struct fn_field *fn_fields;
912 };
913
914
915
916 struct fn_field
917 {
918 /* * If is_stub is clear, this is the mangled name which we can look
919 up to find the address of the method (FIXME: it would be cleaner
920 to have a pointer to the struct symbol here instead).
921
922 If is_stub is set, this is the portion of the mangled name which
923 specifies the arguments. For example, "ii", if there are two int
924 arguments, or "" if there are no arguments. See gdb_mangle_name
925 for the conversion from this format to the one used if is_stub is
926 clear. */
927
928 const char *physname;
929
930 /* * The function type for the method.
931
932 (This comment used to say "The return value of the method", but
933 that's wrong. The function type is expected here, i.e. something
934 with TYPE_CODE_METHOD, and *not* the return-value type). */
935
936 struct type *type;
937
938 /* * For virtual functions. First baseclass that defines this
939 virtual function. */
940
941 struct type *fcontext;
942
943 /* Attributes. */
944
945 unsigned int is_const:1;
946 unsigned int is_volatile:1;
947 unsigned int is_private:1;
948 unsigned int is_protected:1;
949 unsigned int is_artificial:1;
950
951 /* * A stub method only has some fields valid (but they are enough
952 to reconstruct the rest of the fields). */
953
954 unsigned int is_stub:1;
955
956 /* * True if this function is a constructor, false otherwise. */
957
958 unsigned int is_constructor : 1;
959
960 /* * Unused. */
961
962 unsigned int dummy:9;
963
964 /* * Index into that baseclass's virtual function table, minus 2;
965 else if static: VOFFSET_STATIC; else: 0. */
966
967 unsigned int voffset:16;
968
969 #define VOFFSET_STATIC 1
970
971 };
972
973 struct decl_field
974 {
975 /* * Unqualified name to be prefixed by owning class qualified
976 name. */
977
978 const char *name;
979
980 /* * Type this typedef named NAME represents. */
981
982 struct type *type;
983
984 /* * True if this field was declared protected, false otherwise. */
985 unsigned int is_protected : 1;
986
987 /* * True if this field was declared private, false otherwise. */
988 unsigned int is_private : 1;
989 };
990
991 /* * C++ language-specific information for TYPE_CODE_STRUCT and
992 TYPE_CODE_UNION nodes. */
993
994 struct cplus_struct_type
995 {
996 /* * Number of base classes this type derives from. The
997 baseclasses are stored in the first N_BASECLASSES fields
998 (i.e. the `fields' field of the struct type). The only fields
999 of struct field that are used are: type, name, loc.bitpos. */
1000
1001 short n_baseclasses;
1002
1003 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1004 All access to this field must be through TYPE_VPTR_FIELDNO as one
1005 thing it does is check whether the field has been initialized.
1006 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1007 which for portability reasons doesn't initialize this field.
1008 TYPE_VPTR_FIELDNO returns -1 for this case.
1009
1010 If -1, we were unable to find the virtual function table pointer in
1011 initial symbol reading, and get_vptr_fieldno should be called to find
1012 it if possible. get_vptr_fieldno will update this field if possible.
1013 Otherwise the value is left at -1.
1014
1015 Unused if this type does not have virtual functions. */
1016
1017 short vptr_fieldno;
1018
1019 /* * Number of methods with unique names. All overloaded methods
1020 with the same name count only once. */
1021
1022 short nfn_fields;
1023
1024 /* * Number of template arguments. */
1025
1026 unsigned short n_template_arguments;
1027
1028 /* * One if this struct is a dynamic class, as defined by the
1029 Itanium C++ ABI: if it requires a virtual table pointer,
1030 because it or any of its base classes have one or more virtual
1031 member functions or virtual base classes. Minus one if not
1032 dynamic. Zero if not yet computed. */
1033
1034 int is_dynamic : 2;
1035
1036 /* * The base class which defined the virtual function table pointer. */
1037
1038 struct type *vptr_basetype;
1039
1040 /* * For derived classes, the number of base classes is given by
1041 n_baseclasses and virtual_field_bits is a bit vector containing
1042 one bit per base class. If the base class is virtual, the
1043 corresponding bit will be set.
1044 I.E, given:
1045
1046 class A{};
1047 class B{};
1048 class C : public B, public virtual A {};
1049
1050 B is a baseclass of C; A is a virtual baseclass for C.
1051 This is a C++ 2.0 language feature. */
1052
1053 B_TYPE *virtual_field_bits;
1054
1055 /* * For classes with private fields, the number of fields is
1056 given by nfields and private_field_bits is a bit vector
1057 containing one bit per field.
1058
1059 If the field is private, the corresponding bit will be set. */
1060
1061 B_TYPE *private_field_bits;
1062
1063 /* * For classes with protected fields, the number of fields is
1064 given by nfields and protected_field_bits is a bit vector
1065 containing one bit per field.
1066
1067 If the field is private, the corresponding bit will be set. */
1068
1069 B_TYPE *protected_field_bits;
1070
1071 /* * For classes with fields to be ignored, either this is
1072 optimized out or this field has length 0. */
1073
1074 B_TYPE *ignore_field_bits;
1075
1076 /* * For classes, structures, and unions, a description of each
1077 field, which consists of an overloaded name, followed by the
1078 types of arguments that the method expects, and then the name
1079 after it has been renamed to make it distinct.
1080
1081 fn_fieldlists points to an array of nfn_fields of these. */
1082
1083 struct fn_fieldlist *fn_fieldlists;
1084
1085 /* * typedefs defined inside this class. typedef_field points to
1086 an array of typedef_field_count elements. */
1087
1088 struct decl_field *typedef_field;
1089
1090 unsigned typedef_field_count;
1091
1092 /* * The nested types defined by this type. nested_types points to
1093 an array of nested_types_count elements. */
1094
1095 struct decl_field *nested_types;
1096
1097 unsigned nested_types_count;
1098
1099 /* * The template arguments. This is an array with
1100 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1101 classes. */
1102
1103 struct symbol **template_arguments;
1104 };
1105
1106 /* * Struct used to store conversion rankings. */
1107
1108 struct rank
1109 {
1110 short rank;
1111
1112 /* * When two conversions are of the same type and therefore have
1113 the same rank, subrank is used to differentiate the two.
1114
1115 Eg: Two derived-class-pointer to base-class-pointer conversions
1116 would both have base pointer conversion rank, but the
1117 conversion with the shorter distance to the ancestor is
1118 preferable. 'subrank' would be used to reflect that. */
1119
1120 short subrank;
1121 };
1122
1123 /* * Used for ranking a function for overload resolution. */
1124
1125 typedef std::vector<rank> badness_vector;
1126
1127 /* * GNAT Ada-specific information for various Ada types. */
1128
1129 struct gnat_aux_type
1130 {
1131 /* * Parallel type used to encode information about dynamic types
1132 used in Ada (such as variant records, variable-size array,
1133 etc). */
1134 struct type* descriptive_type;
1135 };
1136
1137 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1138
1139 struct func_type
1140 {
1141 /* * The calling convention for targets supporting multiple ABIs.
1142 Right now this is only fetched from the Dwarf-2
1143 DW_AT_calling_convention attribute. The value is one of the
1144 DW_CC enum dwarf_calling_convention constants. */
1145
1146 unsigned calling_convention : 8;
1147
1148 /* * Whether this function normally returns to its caller. It is
1149 set from the DW_AT_noreturn attribute if set on the
1150 DW_TAG_subprogram. */
1151
1152 unsigned int is_noreturn : 1;
1153
1154 /* * Only those DW_TAG_call_site's in this function that have
1155 DW_AT_call_tail_call set are linked in this list. Function
1156 without its tail call list complete
1157 (DW_AT_call_all_tail_calls or its superset
1158 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1159 DW_TAG_call_site's exist in such function. */
1160
1161 struct call_site *tail_call_list;
1162
1163 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1164 contains the method. */
1165
1166 struct type *self_type;
1167 };
1168
1169 /* struct call_site_parameter can be referenced in callees by several ways. */
1170
1171 enum call_site_parameter_kind
1172 {
1173 /* * Use field call_site_parameter.u.dwarf_reg. */
1174 CALL_SITE_PARAMETER_DWARF_REG,
1175
1176 /* * Use field call_site_parameter.u.fb_offset. */
1177 CALL_SITE_PARAMETER_FB_OFFSET,
1178
1179 /* * Use field call_site_parameter.u.param_offset. */
1180 CALL_SITE_PARAMETER_PARAM_OFFSET
1181 };
1182
1183 struct call_site_target
1184 {
1185 union field_location loc;
1186
1187 /* * Discriminant for union field_location. */
1188
1189 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1190 };
1191
1192 union call_site_parameter_u
1193 {
1194 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1195 as DWARF register number, for register passed
1196 parameters. */
1197
1198 int dwarf_reg;
1199
1200 /* * Offset from the callee's frame base, for stack passed
1201 parameters. This equals offset from the caller's stack
1202 pointer. */
1203
1204 CORE_ADDR fb_offset;
1205
1206 /* * Offset relative to the start of this PER_CU to
1207 DW_TAG_formal_parameter which is referenced by both
1208 caller and the callee. */
1209
1210 cu_offset param_cu_off;
1211 };
1212
1213 struct call_site_parameter
1214 {
1215 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1216
1217 union call_site_parameter_u u;
1218
1219 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1220
1221 const gdb_byte *value;
1222 size_t value_size;
1223
1224 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1225 It may be NULL if not provided by DWARF. */
1226
1227 const gdb_byte *data_value;
1228 size_t data_value_size;
1229 };
1230
1231 /* * A place where a function gets called from, represented by
1232 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1233
1234 struct call_site
1235 {
1236 /* * Address of the first instruction after this call. It must be
1237 the first field as we overload core_addr_hash and core_addr_eq
1238 for it. */
1239
1240 CORE_ADDR pc;
1241
1242 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1243
1244 struct call_site *tail_call_next;
1245
1246 /* * Describe DW_AT_call_target. Missing attribute uses
1247 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1248
1249 struct call_site_target target;
1250
1251 /* * Size of the PARAMETER array. */
1252
1253 unsigned parameter_count;
1254
1255 /* * CU of the function where the call is located. It gets used
1256 for DWARF blocks execution in the parameter array below. */
1257
1258 struct dwarf2_per_cu_data *per_cu;
1259
1260 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1261
1262 struct call_site_parameter parameter[1];
1263 };
1264
1265 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1266 static structure. */
1267
1268 extern const struct cplus_struct_type cplus_struct_default;
1269
1270 extern void allocate_cplus_struct_type (struct type *);
1271
1272 #define INIT_CPLUS_SPECIFIC(type) \
1273 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1274 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1275 &cplus_struct_default)
1276
1277 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1278
1279 #define HAVE_CPLUS_STRUCT(type) \
1280 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1281 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1282
1283 #define INIT_NONE_SPECIFIC(type) \
1284 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1285 TYPE_MAIN_TYPE (type)->type_specific = {})
1286
1287 extern const struct gnat_aux_type gnat_aux_default;
1288
1289 extern void allocate_gnat_aux_type (struct type *);
1290
1291 #define INIT_GNAT_SPECIFIC(type) \
1292 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1293 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1294 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1295 /* * A macro that returns non-zero if the type-specific data should be
1296 read as "gnat-stuff". */
1297 #define HAVE_GNAT_AUX_INFO(type) \
1298 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1299
1300 /* * True if TYPE is known to be an Ada type of some kind. */
1301 #define ADA_TYPE_P(type) \
1302 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1303 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1304 && TYPE_FIXED_INSTANCE (type)))
1305
1306 #define INIT_FUNC_SPECIFIC(type) \
1307 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1308 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1309 TYPE_ZALLOC (type, \
1310 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1311
1312 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1313 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1314 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1315 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1316 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1317 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1318 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1319 #define TYPE_CHAIN(thistype) (thistype)->chain
1320 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1321 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1322 so you only have to call check_typedef once. Since allocate_value
1323 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1324 #define TYPE_LENGTH(thistype) (thistype)->length
1325
1326 /* * Return the alignment of the type in target addressable memory
1327 units, or 0 if no alignment was specified. */
1328 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1329
1330 /* * Return the alignment of the type in target addressable memory
1331 units, or 0 if no alignment was specified. */
1332 extern unsigned type_raw_align (struct type *);
1333
1334 /* * Return the alignment of the type in target addressable memory
1335 units. Return 0 if the alignment cannot be determined; but note
1336 that this makes an effort to compute the alignment even it it was
1337 not specified in the debug info. */
1338 extern unsigned type_align (struct type *);
1339
1340 /* * Set the alignment of the type. The alignment must be a power of
1341 2. Returns false if the given value does not fit in the available
1342 space in struct type. */
1343 extern bool set_type_align (struct type *, ULONGEST);
1344
1345 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1346 type, you need to do TYPE_CODE (check_type (this_type)). */
1347 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1348 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1349 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1350
1351 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1352 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1353 #define TYPE_LOW_BOUND(range_type) \
1354 TYPE_RANGE_DATA(range_type)->low.data.const_val
1355 #define TYPE_HIGH_BOUND(range_type) \
1356 TYPE_RANGE_DATA(range_type)->high.data.const_val
1357 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1358 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1359 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1360 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1361 #define TYPE_HIGH_BOUND_KIND(range_type) \
1362 TYPE_RANGE_DATA(range_type)->high.kind
1363 #define TYPE_LOW_BOUND_KIND(range_type) \
1364 TYPE_RANGE_DATA(range_type)->low.kind
1365 #define TYPE_BIT_STRIDE(range_type) \
1366 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1367 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1368
1369 /* Property accessors for the type data location. */
1370 #define TYPE_DATA_LOCATION(thistype) \
1371 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1372 #define TYPE_DATA_LOCATION_BATON(thistype) \
1373 TYPE_DATA_LOCATION (thistype)->data.baton
1374 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1375 TYPE_DATA_LOCATION (thistype)->data.const_val
1376 #define TYPE_DATA_LOCATION_KIND(thistype) \
1377 TYPE_DATA_LOCATION (thistype)->kind
1378
1379 /* Property accessors for the type allocated/associated. */
1380 #define TYPE_ALLOCATED_PROP(thistype) \
1381 get_dyn_prop (DYN_PROP_ALLOCATED, thistype)
1382 #define TYPE_ASSOCIATED_PROP(thistype) \
1383 get_dyn_prop (DYN_PROP_ASSOCIATED, thistype)
1384
1385 /* Attribute accessors for dynamic properties. */
1386 #define TYPE_DYN_PROP_LIST(thistype) \
1387 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1388 #define TYPE_DYN_PROP_BATON(dynprop) \
1389 dynprop->data.baton
1390 #define TYPE_DYN_PROP_ADDR(dynprop) \
1391 dynprop->data.const_val
1392 #define TYPE_DYN_PROP_KIND(dynprop) \
1393 dynprop->kind
1394
1395
1396 /* Accessors for struct range_bounds data attached to an array type's
1397 index type. */
1398
1399 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1400 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1401 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1402 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1403
1404 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1405 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1406
1407 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1408 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1409
1410 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1411 (TYPE_BIT_STRIDE(TYPE_INDEX_TYPE((arraytype))))
1412
1413 /* C++ */
1414
1415 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1416 /* Do not call this, use TYPE_SELF_TYPE. */
1417 extern struct type *internal_type_self_type (struct type *);
1418 extern void set_type_self_type (struct type *, struct type *);
1419
1420 extern int internal_type_vptr_fieldno (struct type *);
1421 extern void set_type_vptr_fieldno (struct type *, int);
1422 extern struct type *internal_type_vptr_basetype (struct type *);
1423 extern void set_type_vptr_basetype (struct type *, struct type *);
1424 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1425 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1426
1427 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1428 #define TYPE_SPECIFIC_FIELD(thistype) \
1429 TYPE_MAIN_TYPE(thistype)->type_specific_field
1430 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1431 where we're trying to print an Ada array using the C language.
1432 In that case, there is no "cplus_stuff", but the C language assumes
1433 that there is. What we do, in that case, is pretend that there is
1434 an implicit one which is the default cplus stuff. */
1435 #define TYPE_CPLUS_SPECIFIC(thistype) \
1436 (!HAVE_CPLUS_STRUCT(thistype) \
1437 ? (struct cplus_struct_type*)&cplus_struct_default \
1438 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1439 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1440 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1441 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1442 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1443 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1444 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1445 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1446 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1447 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1448 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1449 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1450 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1451 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1452 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1453
1454 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1455 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1456 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1457
1458 #define FIELD_TYPE(thisfld) ((thisfld).type)
1459 #define FIELD_NAME(thisfld) ((thisfld).name)
1460 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1461 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1462 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1463 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1464 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1465 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1466 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1467 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1468 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1469 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1470 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1471 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1472 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1473 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1474 #define SET_FIELD_PHYSNAME(thisfld, name) \
1475 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1476 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1477 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1478 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1479 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1480 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1481 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1482 FIELD_DWARF_BLOCK (thisfld) = (addr))
1483 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1484 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1485
1486 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1487 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1488 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1489 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1490 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1491 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1492 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1493 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1494 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1495 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1496 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1497 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1498
1499 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1500 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1501 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1502 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1503 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1504 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1505 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1506 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1507 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1508 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1509 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1510 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1511 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1512 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1513 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1514 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1515 #define TYPE_FIELD_PRIVATE(thistype, n) \
1516 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1517 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1518 #define TYPE_FIELD_PROTECTED(thistype, n) \
1519 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1520 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1521 #define TYPE_FIELD_IGNORE(thistype, n) \
1522 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1523 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1524 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1525 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1526 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1527
1528 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1529 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1530 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1531 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1532 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1533
1534 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1535 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1536 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1537 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1538 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1539 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1540
1541 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1542 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1543 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1544 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1545 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1546 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1547 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1548 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1549 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1550 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1551 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1552 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1553 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1554 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1555 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1556
1557 /* Accessors for typedefs defined by a class. */
1558 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1559 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1560 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1561 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1562 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1563 TYPE_TYPEDEF_FIELD (thistype, n).name
1564 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1565 TYPE_TYPEDEF_FIELD (thistype, n).type
1566 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1567 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1568 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1569 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1570 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1571 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1572
1573 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1574 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1575 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1576 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1577 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1578 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1579 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1580 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1581 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1582 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1583 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1584 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1585 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1586 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1587
1588 #define TYPE_IS_OPAQUE(thistype) \
1589 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1590 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1591 && (TYPE_NFIELDS (thistype) == 0) \
1592 && (!HAVE_CPLUS_STRUCT (thistype) \
1593 || TYPE_NFN_FIELDS (thistype) == 0) \
1594 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1595
1596 /* * A helper macro that returns the name of a type or "unnamed type"
1597 if the type has no name. */
1598
1599 #define TYPE_SAFE_NAME(type) \
1600 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1601
1602 /* * A helper macro that returns the name of an error type. If the
1603 type has a name, it is used; otherwise, a default is used. */
1604
1605 #define TYPE_ERROR_NAME(type) \
1606 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1607
1608 /* Given TYPE, return its floatformat. */
1609 const struct floatformat *floatformat_from_type (const struct type *type);
1610
1611 struct builtin_type
1612 {
1613 /* Integral types. */
1614
1615 /* Implicit size/sign (based on the architecture's ABI). */
1616 struct type *builtin_void;
1617 struct type *builtin_char;
1618 struct type *builtin_short;
1619 struct type *builtin_int;
1620 struct type *builtin_long;
1621 struct type *builtin_signed_char;
1622 struct type *builtin_unsigned_char;
1623 struct type *builtin_unsigned_short;
1624 struct type *builtin_unsigned_int;
1625 struct type *builtin_unsigned_long;
1626 struct type *builtin_half;
1627 struct type *builtin_float;
1628 struct type *builtin_double;
1629 struct type *builtin_long_double;
1630 struct type *builtin_complex;
1631 struct type *builtin_double_complex;
1632 struct type *builtin_string;
1633 struct type *builtin_bool;
1634 struct type *builtin_long_long;
1635 struct type *builtin_unsigned_long_long;
1636 struct type *builtin_decfloat;
1637 struct type *builtin_decdouble;
1638 struct type *builtin_declong;
1639
1640 /* "True" character types.
1641 We use these for the '/c' print format, because c_char is just a
1642 one-byte integral type, which languages less laid back than C
1643 will print as ... well, a one-byte integral type. */
1644 struct type *builtin_true_char;
1645 struct type *builtin_true_unsigned_char;
1646
1647 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1648 is for when an architecture needs to describe a register that has
1649 no size. */
1650 struct type *builtin_int0;
1651 struct type *builtin_int8;
1652 struct type *builtin_uint8;
1653 struct type *builtin_int16;
1654 struct type *builtin_uint16;
1655 struct type *builtin_int24;
1656 struct type *builtin_uint24;
1657 struct type *builtin_int32;
1658 struct type *builtin_uint32;
1659 struct type *builtin_int64;
1660 struct type *builtin_uint64;
1661 struct type *builtin_int128;
1662 struct type *builtin_uint128;
1663
1664 /* Wide character types. */
1665 struct type *builtin_char16;
1666 struct type *builtin_char32;
1667 struct type *builtin_wchar;
1668
1669 /* Pointer types. */
1670
1671 /* * `pointer to data' type. Some target platforms use an implicitly
1672 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1673 struct type *builtin_data_ptr;
1674
1675 /* * `pointer to function (returning void)' type. Harvard
1676 architectures mean that ABI function and code pointers are not
1677 interconvertible. Similarly, since ANSI, C standards have
1678 explicitly said that pointers to functions and pointers to data
1679 are not interconvertible --- that is, you can't cast a function
1680 pointer to void * and back, and expect to get the same value.
1681 However, all function pointer types are interconvertible, so void
1682 (*) () can server as a generic function pointer. */
1683
1684 struct type *builtin_func_ptr;
1685
1686 /* * `function returning pointer to function (returning void)' type.
1687 The final void return type is not significant for it. */
1688
1689 struct type *builtin_func_func;
1690
1691 /* Special-purpose types. */
1692
1693 /* * This type is used to represent a GDB internal function. */
1694
1695 struct type *internal_fn;
1696
1697 /* * This type is used to represent an xmethod. */
1698 struct type *xmethod;
1699 };
1700
1701 /* * Return the type table for the specified architecture. */
1702
1703 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1704
1705 /* * Per-objfile types used by symbol readers. */
1706
1707 struct objfile_type
1708 {
1709 /* Basic types based on the objfile architecture. */
1710 struct type *builtin_void;
1711 struct type *builtin_char;
1712 struct type *builtin_short;
1713 struct type *builtin_int;
1714 struct type *builtin_long;
1715 struct type *builtin_long_long;
1716 struct type *builtin_signed_char;
1717 struct type *builtin_unsigned_char;
1718 struct type *builtin_unsigned_short;
1719 struct type *builtin_unsigned_int;
1720 struct type *builtin_unsigned_long;
1721 struct type *builtin_unsigned_long_long;
1722 struct type *builtin_half;
1723 struct type *builtin_float;
1724 struct type *builtin_double;
1725 struct type *builtin_long_double;
1726
1727 /* * This type is used to represent symbol addresses. */
1728 struct type *builtin_core_addr;
1729
1730 /* * This type represents a type that was unrecognized in symbol
1731 read-in. */
1732 struct type *builtin_error;
1733
1734 /* * Types used for symbols with no debug information. */
1735 struct type *nodebug_text_symbol;
1736 struct type *nodebug_text_gnu_ifunc_symbol;
1737 struct type *nodebug_got_plt_symbol;
1738 struct type *nodebug_data_symbol;
1739 struct type *nodebug_unknown_symbol;
1740 struct type *nodebug_tls_symbol;
1741 };
1742
1743 /* * Return the type table for the specified objfile. */
1744
1745 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1746
1747 /* Explicit floating-point formats. See "floatformat.h". */
1748 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1749 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1750 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1751 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1752 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1753 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1754 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1755 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1756 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1757 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1758 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1759 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1760
1761
1762 /* Allocate space for storing data associated with a particular
1763 type. We ensure that the space is allocated using the same
1764 mechanism that was used to allocate the space for the type
1765 structure itself. I.e. if the type is on an objfile's
1766 objfile_obstack, then the space for data associated with that type
1767 will also be allocated on the objfile_obstack. If the type is
1768 associated with a gdbarch, then the space for data associated with that
1769 type will also be allocated on the gdbarch_obstack.
1770
1771 If a type is not associated with neither an objfile or a gdbarch then
1772 you should not use this macro to allocate space for data, instead you
1773 should call xmalloc directly, and ensure the memory is correctly freed
1774 when it is no longer needed. */
1775
1776 #define TYPE_ALLOC(t,size) \
1777 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1778 ? &TYPE_OBJFILE (t)->objfile_obstack \
1779 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1780 size))
1781
1782
1783 /* See comment on TYPE_ALLOC. */
1784
1785 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1786
1787 /* Use alloc_type to allocate a type owned by an objfile. Use
1788 alloc_type_arch to allocate a type owned by an architecture. Use
1789 alloc_type_copy to allocate a type with the same owner as a
1790 pre-existing template type, no matter whether objfile or
1791 gdbarch. */
1792 extern struct type *alloc_type (struct objfile *);
1793 extern struct type *alloc_type_arch (struct gdbarch *);
1794 extern struct type *alloc_type_copy (const struct type *);
1795
1796 /* * Return the type's architecture. For types owned by an
1797 architecture, that architecture is returned. For types owned by an
1798 objfile, that objfile's architecture is returned. */
1799
1800 extern struct gdbarch *get_type_arch (const struct type *);
1801
1802 /* * This returns the target type (or NULL) of TYPE, also skipping
1803 past typedefs. */
1804
1805 extern struct type *get_target_type (struct type *type);
1806
1807 /* Return the equivalent of TYPE_LENGTH, but in number of target
1808 addressable memory units of the associated gdbarch instead of bytes. */
1809
1810 extern unsigned int type_length_units (struct type *type);
1811
1812 /* * Helper function to construct objfile-owned types. */
1813
1814 extern struct type *init_type (struct objfile *, enum type_code, int,
1815 const char *);
1816 extern struct type *init_integer_type (struct objfile *, int, int,
1817 const char *);
1818 extern struct type *init_character_type (struct objfile *, int, int,
1819 const char *);
1820 extern struct type *init_boolean_type (struct objfile *, int, int,
1821 const char *);
1822 extern struct type *init_float_type (struct objfile *, int, const char *,
1823 const struct floatformat **,
1824 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1825 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1826 extern struct type *init_complex_type (struct objfile *, const char *,
1827 struct type *);
1828 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1829 struct type *);
1830
1831 /* Helper functions to construct architecture-owned types. */
1832 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1833 const char *);
1834 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1835 const char *);
1836 extern struct type *arch_character_type (struct gdbarch *, int, int,
1837 const char *);
1838 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1839 const char *);
1840 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1841 const struct floatformat **);
1842 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1843 extern struct type *arch_complex_type (struct gdbarch *, const char *,
1844 struct type *);
1845 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1846 struct type *);
1847
1848 /* Helper functions to construct a struct or record type. An
1849 initially empty type is created using arch_composite_type().
1850 Fields are then added using append_composite_type_field*(). A union
1851 type has its size set to the largest field. A struct type has each
1852 field packed against the previous. */
1853
1854 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1855 const char *name, enum type_code code);
1856 extern void append_composite_type_field (struct type *t, const char *name,
1857 struct type *field);
1858 extern void append_composite_type_field_aligned (struct type *t,
1859 const char *name,
1860 struct type *field,
1861 int alignment);
1862 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1863 struct type *field);
1864
1865 /* Helper functions to construct a bit flags type. An initially empty
1866 type is created using arch_flag_type(). Flags are then added using
1867 append_flag_type_field() and append_flag_type_flag(). */
1868 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1869 const char *name, int bit);
1870 extern void append_flags_type_field (struct type *type,
1871 int start_bitpos, int nr_bits,
1872 struct type *field_type, const char *name);
1873 extern void append_flags_type_flag (struct type *type, int bitpos,
1874 const char *name);
1875
1876 extern void make_vector_type (struct type *array_type);
1877 extern struct type *init_vector_type (struct type *elt_type, int n);
1878
1879 extern struct type *lookup_reference_type (struct type *, enum type_code);
1880 extern struct type *lookup_lvalue_reference_type (struct type *);
1881 extern struct type *lookup_rvalue_reference_type (struct type *);
1882
1883
1884 extern struct type *make_reference_type (struct type *, struct type **,
1885 enum type_code);
1886
1887 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1888
1889 extern struct type *make_restrict_type (struct type *);
1890
1891 extern struct type *make_unqualified_type (struct type *);
1892
1893 extern struct type *make_atomic_type (struct type *);
1894
1895 extern void replace_type (struct type *, struct type *);
1896
1897 extern int address_space_name_to_int (struct gdbarch *, const char *);
1898
1899 extern const char *address_space_int_to_name (struct gdbarch *, int);
1900
1901 extern struct type *make_type_with_address_space (struct type *type,
1902 int space_identifier);
1903
1904 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1905
1906 extern struct type *lookup_methodptr_type (struct type *);
1907
1908 extern void smash_to_method_type (struct type *type, struct type *self_type,
1909 struct type *to_type, struct field *args,
1910 int nargs, int varargs);
1911
1912 extern void smash_to_memberptr_type (struct type *, struct type *,
1913 struct type *);
1914
1915 extern void smash_to_methodptr_type (struct type *, struct type *);
1916
1917 extern struct type *allocate_stub_method (struct type *);
1918
1919 extern const char *type_name_or_error (struct type *type);
1920
1921 struct struct_elt
1922 {
1923 /* The field of the element, or NULL if no element was found. */
1924 struct field *field;
1925
1926 /* The bit offset of the element in the parent structure. */
1927 LONGEST offset;
1928 };
1929
1930 /* Given a type TYPE, lookup the field and offset of the component named
1931 NAME.
1932
1933 TYPE can be either a struct or union, or a pointer or reference to
1934 a struct or union. If it is a pointer or reference, its target
1935 type is automatically used. Thus '.' and '->' are interchangable,
1936 as specified for the definitions of the expression element types
1937 STRUCTOP_STRUCT and STRUCTOP_PTR.
1938
1939 If NOERR is nonzero, the returned structure will have field set to
1940 NULL if there is no component named NAME.
1941
1942 If the component NAME is a field in an anonymous substructure of
1943 TYPE, the returned offset is a "global" offset relative to TYPE
1944 rather than an offset within the substructure. */
1945
1946 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
1947
1948 /* Given a type TYPE, lookup the type of the component named NAME.
1949
1950 TYPE can be either a struct or union, or a pointer or reference to
1951 a struct or union. If it is a pointer or reference, its target
1952 type is automatically used. Thus '.' and '->' are interchangable,
1953 as specified for the definitions of the expression element types
1954 STRUCTOP_STRUCT and STRUCTOP_PTR.
1955
1956 If NOERR is nonzero, return NULL if there is no component named
1957 NAME. */
1958
1959 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
1960
1961 extern struct type *make_pointer_type (struct type *, struct type **);
1962
1963 extern struct type *lookup_pointer_type (struct type *);
1964
1965 extern struct type *make_function_type (struct type *, struct type **);
1966
1967 extern struct type *lookup_function_type (struct type *);
1968
1969 extern struct type *lookup_function_type_with_arguments (struct type *,
1970 int,
1971 struct type **);
1972
1973 extern struct type *create_static_range_type (struct type *, struct type *,
1974 LONGEST, LONGEST);
1975
1976
1977 extern struct type *create_array_type_with_stride
1978 (struct type *, struct type *, struct type *,
1979 struct dynamic_prop *, unsigned int);
1980
1981 extern struct type *create_range_type (struct type *, struct type *,
1982 const struct dynamic_prop *,
1983 const struct dynamic_prop *,
1984 LONGEST);
1985
1986 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
1987 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
1988 stride. */
1989
1990 extern struct type * create_range_type_with_stride
1991 (struct type *result_type, struct type *index_type,
1992 const struct dynamic_prop *low_bound,
1993 const struct dynamic_prop *high_bound, LONGEST bias,
1994 const struct dynamic_prop *stride, bool byte_stride_p);
1995
1996 extern struct type *create_array_type (struct type *, struct type *,
1997 struct type *);
1998
1999 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2000
2001 extern struct type *create_string_type (struct type *, struct type *,
2002 struct type *);
2003 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2004
2005 extern struct type *create_set_type (struct type *, struct type *);
2006
2007 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2008 const char *);
2009
2010 extern struct type *lookup_signed_typename (const struct language_defn *,
2011 const char *);
2012
2013 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2014
2015 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2016
2017 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2018 ADDR specifies the location of the variable the type is bound to.
2019 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2020 static properties is returned. */
2021 extern struct type *resolve_dynamic_type (struct type *type,
2022 const gdb_byte *valaddr,
2023 CORE_ADDR addr);
2024
2025 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2026 extern int is_dynamic_type (struct type *type);
2027
2028 /* * Return the dynamic property of the requested KIND from TYPE's
2029 list of dynamic properties. */
2030 extern struct dynamic_prop *get_dyn_prop
2031 (enum dynamic_prop_node_kind kind, const struct type *type);
2032
2033 /* * Given a dynamic property PROP of a given KIND, add this dynamic
2034 property to the given TYPE.
2035
2036 This function assumes that TYPE is objfile-owned. */
2037 extern void add_dyn_prop
2038 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
2039 struct type *type);
2040
2041 extern void remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2042 struct type *type);
2043
2044 extern struct type *check_typedef (struct type *);
2045
2046 extern void check_stub_method_group (struct type *, int);
2047
2048 extern char *gdb_mangle_name (struct type *, int, int);
2049
2050 extern struct type *lookup_typename (const struct language_defn *,
2051 const char *, const struct block *, int);
2052
2053 extern struct type *lookup_template_type (const char *, struct type *,
2054 const struct block *);
2055
2056 extern int get_vptr_fieldno (struct type *, struct type **);
2057
2058 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2059
2060 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2061 LONGEST *high_bound);
2062
2063 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2064
2065 extern int class_types_same_p (const struct type *, const struct type *);
2066
2067 extern int is_ancestor (struct type *, struct type *);
2068
2069 extern int is_public_ancestor (struct type *, struct type *);
2070
2071 extern int is_unique_ancestor (struct type *, struct value *);
2072
2073 /* Overload resolution */
2074
2075 /* * Badness if parameter list length doesn't match arg list length. */
2076 extern const struct rank LENGTH_MISMATCH_BADNESS;
2077
2078 /* * Dummy badness value for nonexistent parameter positions. */
2079 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2080 /* * Badness if no conversion among types. */
2081 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2082
2083 /* * Badness of an exact match. */
2084 extern const struct rank EXACT_MATCH_BADNESS;
2085
2086 /* * Badness of integral promotion. */
2087 extern const struct rank INTEGER_PROMOTION_BADNESS;
2088 /* * Badness of floating promotion. */
2089 extern const struct rank FLOAT_PROMOTION_BADNESS;
2090 /* * Badness of converting a derived class pointer
2091 to a base class pointer. */
2092 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2093 /* * Badness of integral conversion. */
2094 extern const struct rank INTEGER_CONVERSION_BADNESS;
2095 /* * Badness of floating conversion. */
2096 extern const struct rank FLOAT_CONVERSION_BADNESS;
2097 /* * Badness of integer<->floating conversions. */
2098 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2099 /* * Badness of conversion of pointer to void pointer. */
2100 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2101 /* * Badness of conversion to boolean. */
2102 extern const struct rank BOOL_CONVERSION_BADNESS;
2103 /* * Badness of converting derived to base class. */
2104 extern const struct rank BASE_CONVERSION_BADNESS;
2105 /* * Badness of converting from non-reference to reference. Subrank
2106 is the type of reference conversion being done. */
2107 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2108 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2109 /* * Conversion to rvalue reference. */
2110 #define REFERENCE_CONVERSION_RVALUE 1
2111 /* * Conversion to const lvalue reference. */
2112 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2113
2114 /* * Badness of converting integer 0 to NULL pointer. */
2115 extern const struct rank NULL_POINTER_CONVERSION;
2116 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2117 being done. */
2118 extern const struct rank CV_CONVERSION_BADNESS;
2119 #define CV_CONVERSION_CONST 1
2120 #define CV_CONVERSION_VOLATILE 2
2121
2122 /* Non-standard conversions allowed by the debugger */
2123
2124 /* * Converting a pointer to an int is usually OK. */
2125 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2126
2127 /* * Badness of converting a (non-zero) integer constant
2128 to a pointer. */
2129 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2130
2131 extern struct rank sum_ranks (struct rank a, struct rank b);
2132 extern int compare_ranks (struct rank a, struct rank b);
2133
2134 extern int compare_badness (const badness_vector &,
2135 const badness_vector &);
2136
2137 extern badness_vector rank_function (gdb::array_view<type *> parms,
2138 gdb::array_view<value *> args);
2139
2140 extern struct rank rank_one_type (struct type *, struct type *,
2141 struct value *);
2142
2143 extern void recursive_dump_type (struct type *, int);
2144
2145 extern int field_is_static (struct field *);
2146
2147 /* printcmd.c */
2148
2149 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2150 const struct value_print_options *,
2151 int, struct ui_file *);
2152
2153 extern int can_dereference (struct type *);
2154
2155 extern int is_integral_type (struct type *);
2156
2157 extern int is_floating_type (struct type *);
2158
2159 extern int is_scalar_type (struct type *type);
2160
2161 extern int is_scalar_type_recursive (struct type *);
2162
2163 extern int class_or_union_p (const struct type *);
2164
2165 extern void maintenance_print_type (const char *, int);
2166
2167 extern htab_t create_copied_types_hash (struct objfile *objfile);
2168
2169 extern struct type *copy_type_recursive (struct objfile *objfile,
2170 struct type *type,
2171 htab_t copied_types);
2172
2173 extern struct type *copy_type (const struct type *type);
2174
2175 extern bool types_equal (struct type *, struct type *);
2176
2177 extern bool types_deeply_equal (struct type *, struct type *);
2178
2179 extern int type_not_allocated (const struct type *type);
2180
2181 extern int type_not_associated (const struct type *type);
2182
2183 /* * When the type includes explicit byte ordering, return that.
2184 Otherwise, the byte ordering from gdbarch_byte_order for
2185 get_type_arch is returned. */
2186
2187 extern enum bfd_endian type_byte_order (const struct type *type);
2188
2189 /* A flag to enable printing of debugging information of C++
2190 overloading. */
2191
2192 extern unsigned int overload_debug;
2193
2194 #endif /* GDBTYPES_H */
This page took 0.074924 seconds and 4 git commands to generate.