gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "dwarf2.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29 #include "c-lang.h"
30 #include "typeprint.h"
31 #include <algorithm>
32 #include "cli/cli-style.h"
33 #include "dwarf2/loc.h"
34
35 static struct cp_abi_ops gnu_v3_abi_ops;
36
37 /* A gdbarch key for std::type_info, in the event that it can't be
38 found in the debug info. */
39
40 static struct gdbarch_data *std_type_info_gdbarch_data;
41
42
43 static int
44 gnuv3_is_vtable_name (const char *name)
45 {
46 return startswith (name, "_ZTV");
47 }
48
49 static int
50 gnuv3_is_operator_name (const char *name)
51 {
52 return startswith (name, CP_OPERATOR_STR);
53 }
54
55
56 /* To help us find the components of a vtable, we build ourselves a
57 GDB type object representing the vtable structure. Following the
58 V3 ABI, it goes something like this:
59
60 struct gdb_gnu_v3_abi_vtable {
61
62 / * An array of virtual call and virtual base offsets. The real
63 length of this array depends on the class hierarchy; we use
64 negative subscripts to access the elements. Yucky, but
65 better than the alternatives. * /
66 ptrdiff_t vcall_and_vbase_offsets[0];
67
68 / * The offset from a virtual pointer referring to this table
69 to the top of the complete object. * /
70 ptrdiff_t offset_to_top;
71
72 / * The type_info pointer for this class. This is really a
73 std::type_info *, but GDB doesn't really look at the
74 type_info object itself, so we don't bother to get the type
75 exactly right. * /
76 void *type_info;
77
78 / * Virtual table pointers in objects point here. * /
79
80 / * Virtual function pointers. Like the vcall/vbase array, the
81 real length of this table depends on the class hierarchy. * /
82 void (*virtual_functions[0]) ();
83
84 };
85
86 The catch, of course, is that the exact layout of this table
87 depends on the ABI --- word size, endianness, alignment, etc. So
88 the GDB type object is actually a per-architecture kind of thing.
89
90 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
91 which refers to the struct type * for this structure, laid out
92 appropriately for the architecture. */
93 static struct gdbarch_data *vtable_type_gdbarch_data;
94
95
96 /* Human-readable names for the numbers of the fields above. */
97 enum {
98 vtable_field_vcall_and_vbase_offsets,
99 vtable_field_offset_to_top,
100 vtable_field_type_info,
101 vtable_field_virtual_functions
102 };
103
104
105 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
106 described above, laid out appropriately for ARCH.
107
108 We use this function as the gdbarch per-architecture data
109 initialization function. */
110 static void *
111 build_gdb_vtable_type (struct gdbarch *arch)
112 {
113 struct type *t;
114 struct field *field_list, *field;
115 int offset;
116
117 struct type *void_ptr_type
118 = builtin_type (arch)->builtin_data_ptr;
119 struct type *ptr_to_void_fn_type
120 = builtin_type (arch)->builtin_func_ptr;
121
122 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
123 struct type *ptrdiff_type
124 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
125
126 /* We assume no padding is necessary, since GDB doesn't know
127 anything about alignment at the moment. If this assumption bites
128 us, we should add a gdbarch method which, given a type, returns
129 the alignment that type requires, and then use that here. */
130
131 /* Build the field list. */
132 field_list = XCNEWVEC (struct field, 4);
133 field = &field_list[0];
134 offset = 0;
135
136 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
137 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
138 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
139 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
140 offset += TYPE_LENGTH (FIELD_TYPE (*field));
141 field++;
142
143 /* ptrdiff_t offset_to_top; */
144 FIELD_NAME (*field) = "offset_to_top";
145 FIELD_TYPE (*field) = ptrdiff_type;
146 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
147 offset += TYPE_LENGTH (FIELD_TYPE (*field));
148 field++;
149
150 /* void *type_info; */
151 FIELD_NAME (*field) = "type_info";
152 FIELD_TYPE (*field) = void_ptr_type;
153 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
154 offset += TYPE_LENGTH (FIELD_TYPE (*field));
155 field++;
156
157 /* void (*virtual_functions[0]) (); */
158 FIELD_NAME (*field) = "virtual_functions";
159 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
160 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
161 offset += TYPE_LENGTH (FIELD_TYPE (*field));
162 field++;
163
164 /* We assumed in the allocation above that there were four fields. */
165 gdb_assert (field == (field_list + 4));
166
167 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
168 t->set_num_fields (field - field_list);
169 t->set_fields (field_list);
170 t->set_name ("gdb_gnu_v3_abi_vtable");
171 INIT_CPLUS_SPECIFIC (t);
172
173 return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
174 }
175
176
177 /* Return the ptrdiff_t type used in the vtable type. */
178 static struct type *
179 vtable_ptrdiff_type (struct gdbarch *gdbarch)
180 {
181 struct type *vtable_type
182 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
183
184 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
185 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
186 }
187
188 /* Return the offset from the start of the imaginary `struct
189 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
190 (i.e., where objects' virtual table pointers point). */
191 static int
192 vtable_address_point_offset (struct gdbarch *gdbarch)
193 {
194 struct type *vtable_type
195 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
196
197 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
198 / TARGET_CHAR_BIT);
199 }
200
201
202 /* Determine whether structure TYPE is a dynamic class. Cache the
203 result. */
204
205 static int
206 gnuv3_dynamic_class (struct type *type)
207 {
208 int fieldnum, fieldelem;
209
210 type = check_typedef (type);
211 gdb_assert (type->code () == TYPE_CODE_STRUCT
212 || type->code () == TYPE_CODE_UNION);
213
214 if (type->code () == TYPE_CODE_UNION)
215 return 0;
216
217 if (TYPE_CPLUS_DYNAMIC (type))
218 return TYPE_CPLUS_DYNAMIC (type) == 1;
219
220 ALLOCATE_CPLUS_STRUCT_TYPE (type);
221
222 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
223 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
224 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
225 {
226 TYPE_CPLUS_DYNAMIC (type) = 1;
227 return 1;
228 }
229
230 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
231 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
232 fieldelem++)
233 {
234 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
235
236 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
237 {
238 TYPE_CPLUS_DYNAMIC (type) = 1;
239 return 1;
240 }
241 }
242
243 TYPE_CPLUS_DYNAMIC (type) = -1;
244 return 0;
245 }
246
247 /* Find the vtable for a value of CONTAINER_TYPE located at
248 CONTAINER_ADDR. Return a value of the correct vtable type for this
249 architecture, or NULL if CONTAINER does not have a vtable. */
250
251 static struct value *
252 gnuv3_get_vtable (struct gdbarch *gdbarch,
253 struct type *container_type, CORE_ADDR container_addr)
254 {
255 struct type *vtable_type
256 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
257 struct type *vtable_pointer_type;
258 struct value *vtable_pointer;
259 CORE_ADDR vtable_address;
260
261 container_type = check_typedef (container_type);
262 gdb_assert (container_type->code () == TYPE_CODE_STRUCT);
263
264 /* If this type does not have a virtual table, don't read the first
265 field. */
266 if (!gnuv3_dynamic_class (container_type))
267 return NULL;
268
269 /* We do not consult the debug information to find the virtual table.
270 The ABI specifies that it is always at offset zero in any class,
271 and debug information may not represent it.
272
273 We avoid using value_contents on principle, because the object might
274 be large. */
275
276 /* Find the type "pointer to virtual table". */
277 vtable_pointer_type = lookup_pointer_type (vtable_type);
278
279 /* Load it from the start of the class. */
280 vtable_pointer = value_at (vtable_pointer_type, container_addr);
281 vtable_address = value_as_address (vtable_pointer);
282
283 /* Correct it to point at the start of the virtual table, rather
284 than the address point. */
285 return value_at_lazy (vtable_type,
286 vtable_address
287 - vtable_address_point_offset (gdbarch));
288 }
289
290
291 static struct type *
292 gnuv3_rtti_type (struct value *value,
293 int *full_p, LONGEST *top_p, int *using_enc_p)
294 {
295 struct gdbarch *gdbarch;
296 struct type *values_type = check_typedef (value_type (value));
297 struct value *vtable;
298 struct minimal_symbol *vtable_symbol;
299 const char *vtable_symbol_name;
300 const char *class_name;
301 struct type *run_time_type;
302 LONGEST offset_to_top;
303 const char *atsign;
304
305 /* We only have RTTI for dynamic class objects. */
306 if (values_type->code () != TYPE_CODE_STRUCT
307 || !gnuv3_dynamic_class (values_type))
308 return NULL;
309
310 /* Determine architecture. */
311 gdbarch = get_type_arch (values_type);
312
313 if (using_enc_p)
314 *using_enc_p = 0;
315
316 vtable = gnuv3_get_vtable (gdbarch, values_type,
317 value_as_address (value_addr (value)));
318 if (vtable == NULL)
319 return NULL;
320
321 /* Find the linker symbol for this vtable. */
322 vtable_symbol
323 = lookup_minimal_symbol_by_pc (value_address (vtable)
324 + value_embedded_offset (vtable)).minsym;
325 if (! vtable_symbol)
326 return NULL;
327
328 /* The symbol's demangled name should be something like "vtable for
329 CLASS", where CLASS is the name of the run-time type of VALUE.
330 If we didn't like this approach, we could instead look in the
331 type_info object itself to get the class name. But this way
332 should work just as well, and doesn't read target memory. */
333 vtable_symbol_name = vtable_symbol->demangled_name ();
334 if (vtable_symbol_name == NULL
335 || !startswith (vtable_symbol_name, "vtable for "))
336 {
337 warning (_("can't find linker symbol for virtual table for `%s' value"),
338 TYPE_SAFE_NAME (values_type));
339 if (vtable_symbol_name)
340 warning (_(" found `%s' instead"), vtable_symbol_name);
341 return NULL;
342 }
343 class_name = vtable_symbol_name + 11;
344
345 /* Strip off @plt and version suffixes. */
346 atsign = strchr (class_name, '@');
347 if (atsign != NULL)
348 {
349 char *copy;
350
351 copy = (char *) alloca (atsign - class_name + 1);
352 memcpy (copy, class_name, atsign - class_name);
353 copy[atsign - class_name] = '\0';
354 class_name = copy;
355 }
356
357 /* Try to look up the class name as a type name. */
358 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
359 run_time_type = cp_lookup_rtti_type (class_name, NULL);
360 if (run_time_type == NULL)
361 return NULL;
362
363 /* Get the offset from VALUE to the top of the complete object.
364 NOTE: this is the reverse of the meaning of *TOP_P. */
365 offset_to_top
366 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
367
368 if (full_p)
369 *full_p = (- offset_to_top == value_embedded_offset (value)
370 && (TYPE_LENGTH (value_enclosing_type (value))
371 >= TYPE_LENGTH (run_time_type)));
372 if (top_p)
373 *top_p = - offset_to_top;
374 return run_time_type;
375 }
376
377 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
378 function, of type FNTYPE. */
379
380 static struct value *
381 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
382 struct type *fntype, int vtable_index)
383 {
384 struct value *vtable, *vfn;
385
386 /* Every class with virtual functions must have a vtable. */
387 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
388 value_as_address (value_addr (container)));
389 gdb_assert (vtable != NULL);
390
391 /* Fetch the appropriate function pointer from the vtable. */
392 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
393 vtable_index);
394
395 /* If this architecture uses function descriptors directly in the vtable,
396 then the address of the vtable entry is actually a "function pointer"
397 (i.e. points to the descriptor). We don't need to scale the index
398 by the size of a function descriptor; GCC does that before outputting
399 debug information. */
400 if (gdbarch_vtable_function_descriptors (gdbarch))
401 vfn = value_addr (vfn);
402
403 /* Cast the function pointer to the appropriate type. */
404 vfn = value_cast (lookup_pointer_type (fntype), vfn);
405
406 return vfn;
407 }
408
409 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
410 for a description of the arguments. */
411
412 static struct value *
413 gnuv3_virtual_fn_field (struct value **value_p,
414 struct fn_field *f, int j,
415 struct type *vfn_base, int offset)
416 {
417 struct type *values_type = check_typedef (value_type (*value_p));
418 struct gdbarch *gdbarch;
419
420 /* Some simple sanity checks. */
421 if (values_type->code () != TYPE_CODE_STRUCT)
422 error (_("Only classes can have virtual functions."));
423
424 /* Determine architecture. */
425 gdbarch = get_type_arch (values_type);
426
427 /* Cast our value to the base class which defines this virtual
428 function. This takes care of any necessary `this'
429 adjustments. */
430 if (vfn_base != values_type)
431 *value_p = value_cast (vfn_base, *value_p);
432
433 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
434 TYPE_FN_FIELD_VOFFSET (f, j));
435 }
436
437 /* Compute the offset of the baseclass which is
438 the INDEXth baseclass of class TYPE,
439 for value at VALADDR (in host) at ADDRESS (in target).
440 The result is the offset of the baseclass value relative
441 to (the address of)(ARG) + OFFSET.
442
443 -1 is returned on error. */
444
445 static int
446 gnuv3_baseclass_offset (struct type *type, int index,
447 const bfd_byte *valaddr, LONGEST embedded_offset,
448 CORE_ADDR address, const struct value *val)
449 {
450 struct gdbarch *gdbarch;
451 struct type *ptr_type;
452 struct value *vtable;
453 struct value *vbase_array;
454 long int cur_base_offset, base_offset;
455
456 /* Determine architecture. */
457 gdbarch = get_type_arch (type);
458 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
459
460 /* If it isn't a virtual base, this is easy. The offset is in the
461 type definition. */
462 if (!BASETYPE_VIA_VIRTUAL (type, index))
463 return TYPE_BASECLASS_BITPOS (type, index) / 8;
464
465 /* If we have a DWARF expression for the offset, evaluate it. */
466 if (TYPE_FIELD_LOC_KIND (type, index) == FIELD_LOC_KIND_DWARF_BLOCK)
467 {
468 struct dwarf2_property_baton baton;
469 baton.property_type
470 = lookup_pointer_type (TYPE_FIELD_TYPE (type, index));
471 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (type, index);
472
473 struct dynamic_prop prop;
474 prop.kind = PROP_LOCEXPR;
475 prop.data.baton = &baton;
476
477 struct property_addr_info addr_stack;
478 addr_stack.type = type;
479 /* Note that we don't set "valaddr" here. Doing so causes
480 regressions. FIXME. */
481 addr_stack.addr = address + embedded_offset;
482 addr_stack.next = nullptr;
483
484 CORE_ADDR result;
485 if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result,
486 true))
487 return (int) (result - addr_stack.addr);
488 }
489
490 /* To access a virtual base, we need to use the vbase offset stored in
491 our vtable. Recent GCC versions provide this information. If it isn't
492 available, we could get what we needed from RTTI, or from drawing the
493 complete inheritance graph based on the debug info. Neither is
494 worthwhile. */
495 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
496 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
497 error (_("Expected a negative vbase offset (old compiler?)"));
498
499 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
500 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
501 error (_("Misaligned vbase offset."));
502 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
503
504 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
505 gdb_assert (vtable != NULL);
506 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
507 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
508 return base_offset;
509 }
510
511 /* Locate a virtual method in DOMAIN or its non-virtual base classes
512 which has virtual table index VOFFSET. The method has an associated
513 "this" adjustment of ADJUSTMENT bytes. */
514
515 static const char *
516 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
517 LONGEST adjustment)
518 {
519 int i;
520
521 /* Search this class first. */
522 if (adjustment == 0)
523 {
524 int len;
525
526 len = TYPE_NFN_FIELDS (domain);
527 for (i = 0; i < len; i++)
528 {
529 int len2, j;
530 struct fn_field *f;
531
532 f = TYPE_FN_FIELDLIST1 (domain, i);
533 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
534
535 check_stub_method_group (domain, i);
536 for (j = 0; j < len2; j++)
537 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
538 return TYPE_FN_FIELD_PHYSNAME (f, j);
539 }
540 }
541
542 /* Next search non-virtual bases. If it's in a virtual base,
543 we're out of luck. */
544 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
545 {
546 int pos;
547 struct type *basetype;
548
549 if (BASETYPE_VIA_VIRTUAL (domain, i))
550 continue;
551
552 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
553 basetype = TYPE_FIELD_TYPE (domain, i);
554 /* Recurse with a modified adjustment. We don't need to adjust
555 voffset. */
556 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
557 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
558 }
559
560 return NULL;
561 }
562
563 /* Decode GNU v3 method pointer. */
564
565 static int
566 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
567 const gdb_byte *contents,
568 CORE_ADDR *value_p,
569 LONGEST *adjustment_p)
570 {
571 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
572 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
574 CORE_ADDR ptr_value;
575 LONGEST voffset, adjustment;
576 int vbit;
577
578 /* Extract the pointer to member. The first element is either a pointer
579 or a vtable offset. For pointers, we need to use extract_typed_address
580 to allow the back-end to convert the pointer to a GDB address -- but
581 vtable offsets we must handle as integers. At this point, we do not
582 yet know which case we have, so we extract the value under both
583 interpretations and choose the right one later on. */
584 ptr_value = extract_typed_address (contents, funcptr_type);
585 voffset = extract_signed_integer (contents,
586 TYPE_LENGTH (funcptr_type), byte_order);
587 contents += TYPE_LENGTH (funcptr_type);
588 adjustment = extract_signed_integer (contents,
589 TYPE_LENGTH (offset_type), byte_order);
590
591 if (!gdbarch_vbit_in_delta (gdbarch))
592 {
593 vbit = voffset & 1;
594 voffset = voffset ^ vbit;
595 }
596 else
597 {
598 vbit = adjustment & 1;
599 adjustment = adjustment >> 1;
600 }
601
602 *value_p = vbit? voffset : ptr_value;
603 *adjustment_p = adjustment;
604 return vbit;
605 }
606
607 /* GNU v3 implementation of cplus_print_method_ptr. */
608
609 static void
610 gnuv3_print_method_ptr (const gdb_byte *contents,
611 struct type *type,
612 struct ui_file *stream)
613 {
614 struct type *self_type = TYPE_SELF_TYPE (type);
615 struct gdbarch *gdbarch = get_type_arch (self_type);
616 CORE_ADDR ptr_value;
617 LONGEST adjustment;
618 int vbit;
619
620 /* Extract the pointer to member. */
621 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
622
623 /* Check for NULL. */
624 if (ptr_value == 0 && vbit == 0)
625 {
626 fprintf_filtered (stream, "NULL");
627 return;
628 }
629
630 /* Search for a virtual method. */
631 if (vbit)
632 {
633 CORE_ADDR voffset;
634 const char *physname;
635
636 /* It's a virtual table offset, maybe in this class. Search
637 for a field with the correct vtable offset. First convert it
638 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
639 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
640
641 physname = gnuv3_find_method_in (self_type, voffset, adjustment);
642
643 /* If we found a method, print that. We don't bother to disambiguate
644 possible paths to the method based on the adjustment. */
645 if (physname)
646 {
647 char *demangled_name = gdb_demangle (physname,
648 DMGL_ANSI | DMGL_PARAMS);
649
650 fprintf_filtered (stream, "&virtual ");
651 if (demangled_name == NULL)
652 fputs_filtered (physname, stream);
653 else
654 {
655 fputs_filtered (demangled_name, stream);
656 xfree (demangled_name);
657 }
658 return;
659 }
660 }
661 else if (ptr_value != 0)
662 {
663 /* Found a non-virtual function: print out the type. */
664 fputs_filtered ("(", stream);
665 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
666 fputs_filtered (") ", stream);
667 }
668
669 /* We didn't find it; print the raw data. */
670 if (vbit)
671 {
672 fprintf_filtered (stream, "&virtual table offset ");
673 print_longest (stream, 'd', 1, ptr_value);
674 }
675 else
676 {
677 struct value_print_options opts;
678
679 get_user_print_options (&opts);
680 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
681 }
682
683 if (adjustment)
684 {
685 fprintf_filtered (stream, ", this adjustment ");
686 print_longest (stream, 'd', 1, adjustment);
687 }
688 }
689
690 /* GNU v3 implementation of cplus_method_ptr_size. */
691
692 static int
693 gnuv3_method_ptr_size (struct type *type)
694 {
695 struct gdbarch *gdbarch = get_type_arch (type);
696
697 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
698 }
699
700 /* GNU v3 implementation of cplus_make_method_ptr. */
701
702 static void
703 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
704 CORE_ADDR value, int is_virtual)
705 {
706 struct gdbarch *gdbarch = get_type_arch (type);
707 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
708 enum bfd_endian byte_order = type_byte_order (type);
709
710 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
711 always zero, since the method pointer is of the correct type.
712 But if the method pointer came from a base class, this is
713 incorrect - it should be the offset to the base. The best
714 fix might be to create the pointer to member pointing at the
715 base class and cast it to the derived class, but that requires
716 support for adjusting pointers to members when casting them -
717 not currently supported by GDB. */
718
719 if (!gdbarch_vbit_in_delta (gdbarch))
720 {
721 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
722 store_unsigned_integer (contents + size, size, byte_order, 0);
723 }
724 else
725 {
726 store_unsigned_integer (contents, size, byte_order, value);
727 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
728 }
729 }
730
731 /* GNU v3 implementation of cplus_method_ptr_to_value. */
732
733 static struct value *
734 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
735 {
736 struct gdbarch *gdbarch;
737 const gdb_byte *contents = value_contents (method_ptr);
738 CORE_ADDR ptr_value;
739 struct type *self_type, *final_type, *method_type;
740 LONGEST adjustment;
741 int vbit;
742
743 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
744 final_type = lookup_pointer_type (self_type);
745
746 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
747
748 /* Extract the pointer to member. */
749 gdbarch = get_type_arch (self_type);
750 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
751
752 /* First convert THIS to match the containing type of the pointer to
753 member. This cast may adjust the value of THIS. */
754 *this_p = value_cast (final_type, *this_p);
755
756 /* Then apply whatever adjustment is necessary. This creates a somewhat
757 strange pointer: it claims to have type FINAL_TYPE, but in fact it
758 might not be a valid FINAL_TYPE. For instance, it might be a
759 base class of FINAL_TYPE. And if it's not the primary base class,
760 then printing it out as a FINAL_TYPE object would produce some pretty
761 garbage.
762
763 But we don't really know the type of the first argument in
764 METHOD_TYPE either, which is why this happens. We can't
765 dereference this later as a FINAL_TYPE, but once we arrive in the
766 called method we'll have debugging information for the type of
767 "this" - and that'll match the value we produce here.
768
769 You can provoke this case by casting a Base::* to a Derived::*, for
770 instance. */
771 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
772 *this_p = value_ptradd (*this_p, adjustment);
773 *this_p = value_cast (final_type, *this_p);
774
775 if (vbit)
776 {
777 LONGEST voffset;
778
779 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
780 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
781 method_type, voffset);
782 }
783 else
784 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
785 }
786
787 /* Objects of this type are stored in a hash table and a vector when
788 printing the vtables for a class. */
789
790 struct value_and_voffset
791 {
792 /* The value representing the object. */
793 struct value *value;
794
795 /* The maximum vtable offset we've found for any object at this
796 offset in the outermost object. */
797 int max_voffset;
798 };
799
800 /* Hash function for value_and_voffset. */
801
802 static hashval_t
803 hash_value_and_voffset (const void *p)
804 {
805 const struct value_and_voffset *o = (const struct value_and_voffset *) p;
806
807 return value_address (o->value) + value_embedded_offset (o->value);
808 }
809
810 /* Equality function for value_and_voffset. */
811
812 static int
813 eq_value_and_voffset (const void *a, const void *b)
814 {
815 const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
816 const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
817
818 return (value_address (ova->value) + value_embedded_offset (ova->value)
819 == value_address (ovb->value) + value_embedded_offset (ovb->value));
820 }
821
822 /* Comparison function for value_and_voffset. */
823
824 static bool
825 compare_value_and_voffset (const struct value_and_voffset *va,
826 const struct value_and_voffset *vb)
827 {
828 CORE_ADDR addra = (value_address (va->value)
829 + value_embedded_offset (va->value));
830 CORE_ADDR addrb = (value_address (vb->value)
831 + value_embedded_offset (vb->value));
832
833 return addra < addrb;
834 }
835
836 /* A helper function used when printing vtables. This determines the
837 key (most derived) sub-object at each address and also computes the
838 maximum vtable offset seen for the corresponding vtable. Updates
839 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
840 needed. VALUE is the object to examine. */
841
842 static void
843 compute_vtable_size (htab_t offset_hash,
844 std::vector<value_and_voffset *> *offset_vec,
845 struct value *value)
846 {
847 int i;
848 struct type *type = check_typedef (value_type (value));
849 void **slot;
850 struct value_and_voffset search_vo, *current_vo;
851
852 gdb_assert (type->code () == TYPE_CODE_STRUCT);
853
854 /* If the object is not dynamic, then we are done; as it cannot have
855 dynamic base types either. */
856 if (!gnuv3_dynamic_class (type))
857 return;
858
859 /* Update the hash and the vec, if needed. */
860 search_vo.value = value;
861 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
862 if (*slot)
863 current_vo = (struct value_and_voffset *) *slot;
864 else
865 {
866 current_vo = XNEW (struct value_and_voffset);
867 current_vo->value = value;
868 current_vo->max_voffset = -1;
869 *slot = current_vo;
870 offset_vec->push_back (current_vo);
871 }
872
873 /* Update the value_and_voffset object with the highest vtable
874 offset from this class. */
875 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
876 {
877 int j;
878 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
879
880 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
881 {
882 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
883 {
884 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
885
886 if (voffset > current_vo->max_voffset)
887 current_vo->max_voffset = voffset;
888 }
889 }
890 }
891
892 /* Recurse into base classes. */
893 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
894 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
895 }
896
897 /* Helper for gnuv3_print_vtable that prints a single vtable. */
898
899 static void
900 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
901 int max_voffset,
902 struct value_print_options *opts)
903 {
904 int i;
905 struct type *type = check_typedef (value_type (value));
906 struct value *vtable;
907 CORE_ADDR vt_addr;
908
909 vtable = gnuv3_get_vtable (gdbarch, type,
910 value_address (value)
911 + value_embedded_offset (value));
912 vt_addr = value_address (value_field (vtable,
913 vtable_field_virtual_functions));
914
915 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
916 TYPE_SAFE_NAME (type),
917 paddress (gdbarch, vt_addr),
918 paddress (gdbarch, (value_address (value)
919 + value_embedded_offset (value))));
920
921 for (i = 0; i <= max_voffset; ++i)
922 {
923 /* Initialize it just to avoid a GCC false warning. */
924 CORE_ADDR addr = 0;
925 int got_error = 0;
926 struct value *vfn;
927
928 printf_filtered ("[%d]: ", i);
929
930 vfn = value_subscript (value_field (vtable,
931 vtable_field_virtual_functions),
932 i);
933
934 if (gdbarch_vtable_function_descriptors (gdbarch))
935 vfn = value_addr (vfn);
936
937 try
938 {
939 addr = value_as_address (vfn);
940 }
941 catch (const gdb_exception_error &ex)
942 {
943 fprintf_styled (gdb_stdout, metadata_style.style (),
944 _("<error: %s>"), ex.what ());
945 got_error = 1;
946 }
947
948 if (!got_error)
949 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
950 printf_filtered ("\n");
951 }
952 }
953
954 /* Implementation of the print_vtable method. */
955
956 static void
957 gnuv3_print_vtable (struct value *value)
958 {
959 struct gdbarch *gdbarch;
960 struct type *type;
961 struct value *vtable;
962 struct value_print_options opts;
963 int count;
964
965 value = coerce_ref (value);
966 type = check_typedef (value_type (value));
967 if (type->code () == TYPE_CODE_PTR)
968 {
969 value = value_ind (value);
970 type = check_typedef (value_type (value));
971 }
972
973 get_user_print_options (&opts);
974
975 /* Respect 'set print object'. */
976 if (opts.objectprint)
977 {
978 value = value_full_object (value, NULL, 0, 0, 0);
979 type = check_typedef (value_type (value));
980 }
981
982 gdbarch = get_type_arch (type);
983
984 vtable = NULL;
985 if (type->code () == TYPE_CODE_STRUCT)
986 vtable = gnuv3_get_vtable (gdbarch, type,
987 value_as_address (value_addr (value)));
988
989 if (!vtable)
990 {
991 printf_filtered (_("This object does not have a virtual function table\n"));
992 return;
993 }
994
995 htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
996 eq_value_and_voffset,
997 xfree, xcalloc, xfree));
998 std::vector<value_and_voffset *> result_vec;
999
1000 compute_vtable_size (offset_hash.get (), &result_vec, value);
1001 std::sort (result_vec.begin (), result_vec.end (),
1002 compare_value_and_voffset);
1003
1004 count = 0;
1005 for (value_and_voffset *iter : result_vec)
1006 {
1007 if (iter->max_voffset >= 0)
1008 {
1009 if (count > 0)
1010 printf_filtered ("\n");
1011 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
1012 ++count;
1013 }
1014 }
1015 }
1016
1017 /* Return a GDB type representing `struct std::type_info', laid out
1018 appropriately for ARCH.
1019
1020 We use this function as the gdbarch per-architecture data
1021 initialization function. */
1022
1023 static void *
1024 build_std_type_info_type (struct gdbarch *arch)
1025 {
1026 struct type *t;
1027 struct field *field_list, *field;
1028 int offset;
1029 struct type *void_ptr_type
1030 = builtin_type (arch)->builtin_data_ptr;
1031 struct type *char_type
1032 = builtin_type (arch)->builtin_char;
1033 struct type *char_ptr_type
1034 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1035
1036 field_list = XCNEWVEC (struct field, 2);
1037 field = &field_list[0];
1038 offset = 0;
1039
1040 /* The vtable. */
1041 FIELD_NAME (*field) = "_vptr.type_info";
1042 FIELD_TYPE (*field) = void_ptr_type;
1043 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1044 offset += TYPE_LENGTH (FIELD_TYPE (*field));
1045 field++;
1046
1047 /* The name. */
1048 FIELD_NAME (*field) = "__name";
1049 FIELD_TYPE (*field) = char_ptr_type;
1050 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1051 offset += TYPE_LENGTH (FIELD_TYPE (*field));
1052 field++;
1053
1054 gdb_assert (field == (field_list + 2));
1055
1056 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
1057 t->set_num_fields (field - field_list);
1058 t->set_fields (field_list);
1059 t->set_name ("gdb_gnu_v3_type_info");
1060 INIT_CPLUS_SPECIFIC (t);
1061
1062 return t;
1063 }
1064
1065 /* Implement the 'get_typeid_type' method. */
1066
1067 static struct type *
1068 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1069 {
1070 struct symbol *typeinfo;
1071 struct type *typeinfo_type;
1072
1073 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
1074 NULL).symbol;
1075 if (typeinfo == NULL)
1076 typeinfo_type
1077 = (struct type *) gdbarch_data (gdbarch, std_type_info_gdbarch_data);
1078 else
1079 typeinfo_type = SYMBOL_TYPE (typeinfo);
1080
1081 return typeinfo_type;
1082 }
1083
1084 /* Implement the 'get_typeid' method. */
1085
1086 static struct value *
1087 gnuv3_get_typeid (struct value *value)
1088 {
1089 struct type *typeinfo_type;
1090 struct type *type;
1091 struct gdbarch *gdbarch;
1092 struct value *result;
1093 std::string type_name;
1094 gdb::unique_xmalloc_ptr<char> canonical;
1095
1096 /* We have to handle values a bit trickily here, to allow this code
1097 to work properly with non_lvalue values that are really just
1098 disguised types. */
1099 if (value_lval_const (value) == lval_memory)
1100 value = coerce_ref (value);
1101
1102 type = check_typedef (value_type (value));
1103
1104 /* In the non_lvalue case, a reference might have slipped through
1105 here. */
1106 if (type->code () == TYPE_CODE_REF)
1107 type = check_typedef (TYPE_TARGET_TYPE (type));
1108
1109 /* Ignore top-level cv-qualifiers. */
1110 type = make_cv_type (0, 0, type, NULL);
1111 gdbarch = get_type_arch (type);
1112
1113 type_name = type_to_string (type);
1114 if (type_name.empty ())
1115 error (_("cannot find typeinfo for unnamed type"));
1116
1117 /* We need to canonicalize the type name here, because we do lookups
1118 using the demangled name, and so we must match the format it
1119 uses. E.g., GDB tends to use "const char *" as a type name, but
1120 the demangler uses "char const *". */
1121 canonical = cp_canonicalize_string (type_name.c_str ());
1122 const char *name = (canonical == nullptr
1123 ? type_name.c_str ()
1124 : canonical.get ());
1125
1126 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1127
1128 /* We check for lval_memory because in the "typeid (type-id)" case,
1129 the type is passed via a not_lval value object. */
1130 if (type->code () == TYPE_CODE_STRUCT
1131 && value_lval_const (value) == lval_memory
1132 && gnuv3_dynamic_class (type))
1133 {
1134 struct value *vtable, *typeinfo_value;
1135 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1136
1137 vtable = gnuv3_get_vtable (gdbarch, type, address);
1138 if (vtable == NULL)
1139 error (_("cannot find typeinfo for object of type '%s'"),
1140 name);
1141 typeinfo_value = value_field (vtable, vtable_field_type_info);
1142 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1143 typeinfo_value));
1144 }
1145 else
1146 {
1147 std::string sym_name = std::string ("typeinfo for ") + name;
1148 bound_minimal_symbol minsym
1149 = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
1150
1151 if (minsym.minsym == NULL)
1152 error (_("could not find typeinfo symbol for '%s'"), name);
1153
1154 result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
1155 }
1156
1157 return result;
1158 }
1159
1160 /* Implement the 'get_typename_from_type_info' method. */
1161
1162 static std::string
1163 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1164 {
1165 struct gdbarch *gdbarch = get_type_arch (value_type (type_info_ptr));
1166 struct bound_minimal_symbol typeinfo_sym;
1167 CORE_ADDR addr;
1168 const char *symname;
1169 const char *class_name;
1170 const char *atsign;
1171
1172 addr = value_as_address (type_info_ptr);
1173 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1174 if (typeinfo_sym.minsym == NULL)
1175 error (_("could not find minimal symbol for typeinfo address %s"),
1176 paddress (gdbarch, addr));
1177
1178 #define TYPEINFO_PREFIX "typeinfo for "
1179 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1180 symname = typeinfo_sym.minsym->demangled_name ();
1181 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1182 TYPEINFO_PREFIX_LEN))
1183 error (_("typeinfo symbol '%s' has unexpected name"),
1184 typeinfo_sym.minsym->linkage_name ());
1185 class_name = symname + TYPEINFO_PREFIX_LEN;
1186
1187 /* Strip off @plt and version suffixes. */
1188 atsign = strchr (class_name, '@');
1189 if (atsign != NULL)
1190 return std::string (class_name, atsign - class_name);
1191 return class_name;
1192 }
1193
1194 /* Implement the 'get_type_from_type_info' method. */
1195
1196 static struct type *
1197 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1198 {
1199 /* We have to parse the type name, since in general there is not a
1200 symbol for a type. This is somewhat bogus since there may be a
1201 mis-parse. Another approach might be to re-use the demangler's
1202 internal form to reconstruct the type somehow. */
1203 std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
1204 expression_up expr (parse_expression (type_name.c_str ()));
1205 struct value *type_val = evaluate_type (expr.get ());
1206 return value_type (type_val);
1207 }
1208
1209 /* Determine if we are currently in a C++ thunk. If so, get the address
1210 of the routine we are thunking to and continue to there instead. */
1211
1212 static CORE_ADDR
1213 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
1214 {
1215 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1216 struct gdbarch *gdbarch = get_frame_arch (frame);
1217 struct bound_minimal_symbol thunk_sym, fn_sym;
1218 struct obj_section *section;
1219 const char *thunk_name, *fn_name;
1220
1221 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1222 if (real_stop_pc == 0)
1223 real_stop_pc = stop_pc;
1224
1225 /* Find the linker symbol for this potential thunk. */
1226 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1227 section = find_pc_section (real_stop_pc);
1228 if (thunk_sym.minsym == NULL || section == NULL)
1229 return 0;
1230
1231 /* The symbol's demangled name should be something like "virtual
1232 thunk to FUNCTION", where FUNCTION is the name of the function
1233 being thunked to. */
1234 thunk_name = thunk_sym.minsym->demangled_name ();
1235 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1236 return 0;
1237
1238 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1239 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1240 if (fn_sym.minsym == NULL)
1241 return 0;
1242
1243 method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
1244
1245 /* Some targets have minimal symbols pointing to function descriptors
1246 (powerpc 64 for example). Make sure to retrieve the address
1247 of the real function from the function descriptor before passing on
1248 the address to other layers of GDB. */
1249 func_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, method_stop_pc,
1250 current_top_target ());
1251 if (func_addr != 0)
1252 method_stop_pc = func_addr;
1253
1254 real_stop_pc = gdbarch_skip_trampoline_code
1255 (gdbarch, frame, method_stop_pc);
1256 if (real_stop_pc == 0)
1257 real_stop_pc = method_stop_pc;
1258
1259 return real_stop_pc;
1260 }
1261
1262 /* A member function is in one these states. */
1263
1264 enum definition_style
1265 {
1266 DOES_NOT_EXIST_IN_SOURCE,
1267 DEFAULTED_INSIDE,
1268 DEFAULTED_OUTSIDE,
1269 DELETED,
1270 EXPLICIT,
1271 };
1272
1273 /* Return how the given field is defined. */
1274
1275 static definition_style
1276 get_def_style (struct fn_field *fn, int fieldelem)
1277 {
1278 if (TYPE_FN_FIELD_DELETED (fn, fieldelem))
1279 return DELETED;
1280
1281 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1282 return DOES_NOT_EXIST_IN_SOURCE;
1283
1284 switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem))
1285 {
1286 case DW_DEFAULTED_no:
1287 return EXPLICIT;
1288 case DW_DEFAULTED_in_class:
1289 return DEFAULTED_INSIDE;
1290 case DW_DEFAULTED_out_of_class:
1291 return DEFAULTED_OUTSIDE;
1292 default:
1293 break;
1294 }
1295
1296 return EXPLICIT;
1297 }
1298
1299 /* Helper functions to determine whether the given definition style
1300 denotes that the definition is user-provided or implicit.
1301 Being defaulted outside the class decl counts as an explicit
1302 user-definition, while being defaulted inside is implicit. */
1303
1304 static bool
1305 is_user_provided_def (definition_style def)
1306 {
1307 return def == EXPLICIT || def == DEFAULTED_OUTSIDE;
1308 }
1309
1310 static bool
1311 is_implicit_def (definition_style def)
1312 {
1313 return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE;
1314 }
1315
1316 /* Helper function to decide if METHOD_TYPE is a copy/move
1317 constructor type for CLASS_TYPE. EXPECTED is the expected
1318 type code for the "right-hand-side" argument.
1319 This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
1320 and IS_MOVE_CONSTRUCTOR_TYPE functions below. Normally, you should
1321 not need to call this directly. */
1322
1323 static bool
1324 is_copy_or_move_constructor_type (struct type *class_type,
1325 struct type *method_type,
1326 type_code expected)
1327 {
1328 /* The method should take at least two arguments... */
1329 if (method_type->num_fields () < 2)
1330 return false;
1331
1332 /* ...and the second argument should be the same as the class
1333 type, with the expected type code... */
1334 struct type *arg_type = TYPE_FIELD_TYPE (method_type, 1);
1335
1336 if (arg_type->code () != expected)
1337 return false;
1338
1339 struct type *target = check_typedef (TYPE_TARGET_TYPE (arg_type));
1340 if (!(class_types_same_p (target, class_type)))
1341 return false;
1342
1343 /* ...and if any of the remaining arguments don't have a default value
1344 then this is not a copy or move constructor, but just a
1345 constructor. */
1346 for (int i = 2; i < method_type->num_fields (); i++)
1347 {
1348 arg_type = TYPE_FIELD_TYPE (method_type, i);
1349 /* FIXME aktemur/2019-10-31: As of this date, neither
1350 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
1351 attribute. GDB is also not set to read this attribute, yet.
1352 Hence, we immediately return false if there are more than
1353 2 parameters.
1354 GCC bug link:
1355 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
1356 */
1357 return false;
1358 }
1359
1360 return true;
1361 }
1362
1363 /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE. */
1364
1365 static bool
1366 is_copy_constructor_type (struct type *class_type,
1367 struct type *method_type)
1368 {
1369 return is_copy_or_move_constructor_type (class_type, method_type,
1370 TYPE_CODE_REF);
1371 }
1372
1373 /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE. */
1374
1375 static bool
1376 is_move_constructor_type (struct type *class_type,
1377 struct type *method_type)
1378 {
1379 return is_copy_or_move_constructor_type (class_type, method_type,
1380 TYPE_CODE_RVALUE_REF);
1381 }
1382
1383 /* Return pass-by-reference information for the given TYPE.
1384
1385 The rule in the v3 ABI document comes from section 3.1.1. If the
1386 type has a non-trivial copy constructor or destructor, then the
1387 caller must make a copy (by calling the copy constructor if there
1388 is one or perform the copy itself otherwise), pass the address of
1389 the copy, and then destroy the temporary (if necessary).
1390
1391 For return values with non-trivial copy/move constructors or
1392 destructors, space will be allocated in the caller, and a pointer
1393 will be passed as the first argument (preceding "this").
1394
1395 We don't have a bulletproof mechanism for determining whether a
1396 constructor or destructor is trivial. For GCC and DWARF5 debug
1397 information, we can check the calling_convention attribute,
1398 the 'artificial' flag, the 'defaulted' attribute, and the
1399 'deleted' attribute. */
1400
1401 static struct language_pass_by_ref_info
1402 gnuv3_pass_by_reference (struct type *type)
1403 {
1404 int fieldnum, fieldelem;
1405
1406 type = check_typedef (type);
1407
1408 /* Start with the default values. */
1409 struct language_pass_by_ref_info info;
1410
1411 bool has_cc_attr = false;
1412 bool is_pass_by_value = false;
1413 bool is_dynamic = false;
1414 definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE;
1415 definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE;
1416 definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE;
1417
1418 /* We're only interested in things that can have methods. */
1419 if (type->code () != TYPE_CODE_STRUCT
1420 && type->code () != TYPE_CODE_UNION)
1421 return info;
1422
1423 /* The compiler may have emitted the calling convention attribute.
1424 Note: GCC does not produce this attribute as of version 9.2.1.
1425 Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418 */
1426 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value)
1427 {
1428 has_cc_attr = true;
1429 is_pass_by_value = true;
1430 /* Do not return immediately. We have to find out if this type
1431 is copy_constructible and destructible. */
1432 }
1433
1434 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference)
1435 {
1436 has_cc_attr = true;
1437 is_pass_by_value = false;
1438 }
1439
1440 /* A dynamic class has a non-trivial copy constructor.
1441 See c++98 section 12.8 Copying class objects [class.copy]. */
1442 if (gnuv3_dynamic_class (type))
1443 is_dynamic = true;
1444
1445 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1446 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1447 fieldelem++)
1448 {
1449 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1450 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1451 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1452
1453 if (name[0] == '~')
1454 {
1455 /* We've found a destructor.
1456 There should be at most one dtor definition. */
1457 gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE);
1458 dtor_def = get_def_style (fn, fieldelem);
1459 }
1460 else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1461 || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1462 {
1463 /* FIXME drow/2007-09-23: We could do this using the name of
1464 the method and the name of the class instead of dealing
1465 with the mangled name. We don't have a convenient function
1466 to strip off both leading scope qualifiers and trailing
1467 template arguments yet. */
1468 if (is_copy_constructor_type (type, fieldtype))
1469 {
1470 /* There may be more than one cctors. E.g.: one that
1471 take a const parameter and another that takes a
1472 non-const parameter. Such as:
1473
1474 class K {
1475 K (const K &k)...
1476 K (K &k)...
1477 };
1478
1479 It is sufficient for the type to be non-trivial
1480 even only one of the cctors is explicit.
1481 Therefore, update the cctor_def value in the
1482 implicit -> explicit direction, not backwards. */
1483
1484 if (is_implicit_def (cctor_def))
1485 cctor_def = get_def_style (fn, fieldelem);
1486 }
1487 else if (is_move_constructor_type (type, fieldtype))
1488 {
1489 /* Again, there may be multiple move ctors. Update the
1490 mctor_def value if we found an explicit def and the
1491 existing one is not explicit. Otherwise retain the
1492 existing value. */
1493 if (is_implicit_def (mctor_def))
1494 mctor_def = get_def_style (fn, fieldelem);
1495 }
1496 }
1497 }
1498
1499 bool cctor_implicitly_deleted
1500 = (mctor_def != DOES_NOT_EXIST_IN_SOURCE
1501 && cctor_def == DOES_NOT_EXIST_IN_SOURCE);
1502
1503 bool cctor_explicitly_deleted = (cctor_def == DELETED);
1504
1505 if (cctor_implicitly_deleted || cctor_explicitly_deleted)
1506 info.copy_constructible = false;
1507
1508 if (dtor_def == DELETED)
1509 info.destructible = false;
1510
1511 info.trivially_destructible = is_implicit_def (dtor_def);
1512
1513 info.trivially_copy_constructible
1514 = (is_implicit_def (cctor_def)
1515 && !is_dynamic);
1516
1517 info.trivially_copyable
1518 = (info.trivially_copy_constructible
1519 && info.trivially_destructible
1520 && !is_user_provided_def (mctor_def));
1521
1522 /* Even if all the constructors and destructors were artificial, one
1523 of them may have invoked a non-artificial constructor or
1524 destructor in a base class. If any base class needs to be passed
1525 by reference, so does this class. Similarly for members, which
1526 are constructed whenever this class is. We do not need to worry
1527 about recursive loops here, since we are only looking at members
1528 of complete class type. Also ignore any static members. */
1529 for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++)
1530 if (!field_is_static (&type->field (fieldnum)))
1531 {
1532 struct type *field_type = TYPE_FIELD_TYPE (type, fieldnum);
1533
1534 /* For arrays, make the decision based on the element type. */
1535 if (field_type->code () == TYPE_CODE_ARRAY)
1536 field_type = check_typedef (TYPE_TARGET_TYPE (field_type));
1537
1538 struct language_pass_by_ref_info field_info
1539 = gnuv3_pass_by_reference (field_type);
1540
1541 if (!field_info.copy_constructible)
1542 info.copy_constructible = false;
1543 if (!field_info.destructible)
1544 info.destructible = false;
1545 if (!field_info.trivially_copyable)
1546 info.trivially_copyable = false;
1547 if (!field_info.trivially_copy_constructible)
1548 info.trivially_copy_constructible = false;
1549 if (!field_info.trivially_destructible)
1550 info.trivially_destructible = false;
1551 }
1552
1553 /* Consistency check. */
1554 if (has_cc_attr && info.trivially_copyable != is_pass_by_value)
1555 {
1556 /* DWARF CC attribute is not the same as the inferred value;
1557 use the DWARF attribute. */
1558 info.trivially_copyable = is_pass_by_value;
1559 }
1560
1561 return info;
1562 }
1563
1564 static void
1565 init_gnuv3_ops (void)
1566 {
1567 vtable_type_gdbarch_data
1568 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1569 std_type_info_gdbarch_data
1570 = gdbarch_data_register_post_init (build_std_type_info_type);
1571
1572 gnu_v3_abi_ops.shortname = "gnu-v3";
1573 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1574 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1575 gnu_v3_abi_ops.is_destructor_name =
1576 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1577 gnu_v3_abi_ops.is_constructor_name =
1578 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1579 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1580 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1581 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1582 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1583 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1584 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1585 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1586 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1587 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1588 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1589 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1590 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1591 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1592 gnu_v3_abi_ops.get_typename_from_type_info
1593 = gnuv3_get_typename_from_type_info;
1594 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1595 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1596 }
1597
1598 void _initialize_gnu_v3_abi ();
1599 void
1600 _initialize_gnu_v3_abi ()
1601 {
1602 init_gnuv3_ops ();
1603
1604 register_cp_abi (&gnu_v3_abi_ops);
1605 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1606 }
This page took 0.075187 seconds and 4 git commands to generate.