ubsan: nios2: left shift cannot be represented in type 'int'
[deliverable/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2019 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "objfiles.h"
27 #include "valprint.h"
28 #include "c-lang.h"
29 #include "typeprint.h"
30 #include <algorithm>
31 #include "cli/cli-style.h"
32
33 static struct cp_abi_ops gnu_v3_abi_ops;
34
35 /* A gdbarch key for std::type_info, in the event that it can't be
36 found in the debug info. */
37
38 static struct gdbarch_data *std_type_info_gdbarch_data;
39
40
41 static int
42 gnuv3_is_vtable_name (const char *name)
43 {
44 return startswith (name, "_ZTV");
45 }
46
47 static int
48 gnuv3_is_operator_name (const char *name)
49 {
50 return startswith (name, CP_OPERATOR_STR);
51 }
52
53
54 /* To help us find the components of a vtable, we build ourselves a
55 GDB type object representing the vtable structure. Following the
56 V3 ABI, it goes something like this:
57
58 struct gdb_gnu_v3_abi_vtable {
59
60 / * An array of virtual call and virtual base offsets. The real
61 length of this array depends on the class hierarchy; we use
62 negative subscripts to access the elements. Yucky, but
63 better than the alternatives. * /
64 ptrdiff_t vcall_and_vbase_offsets[0];
65
66 / * The offset from a virtual pointer referring to this table
67 to the top of the complete object. * /
68 ptrdiff_t offset_to_top;
69
70 / * The type_info pointer for this class. This is really a
71 std::type_info *, but GDB doesn't really look at the
72 type_info object itself, so we don't bother to get the type
73 exactly right. * /
74 void *type_info;
75
76 / * Virtual table pointers in objects point here. * /
77
78 / * Virtual function pointers. Like the vcall/vbase array, the
79 real length of this table depends on the class hierarchy. * /
80 void (*virtual_functions[0]) ();
81
82 };
83
84 The catch, of course, is that the exact layout of this table
85 depends on the ABI --- word size, endianness, alignment, etc. So
86 the GDB type object is actually a per-architecture kind of thing.
87
88 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
89 which refers to the struct type * for this structure, laid out
90 appropriately for the architecture. */
91 static struct gdbarch_data *vtable_type_gdbarch_data;
92
93
94 /* Human-readable names for the numbers of the fields above. */
95 enum {
96 vtable_field_vcall_and_vbase_offsets,
97 vtable_field_offset_to_top,
98 vtable_field_type_info,
99 vtable_field_virtual_functions
100 };
101
102
103 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
104 described above, laid out appropriately for ARCH.
105
106 We use this function as the gdbarch per-architecture data
107 initialization function. */
108 static void *
109 build_gdb_vtable_type (struct gdbarch *arch)
110 {
111 struct type *t;
112 struct field *field_list, *field;
113 int offset;
114
115 struct type *void_ptr_type
116 = builtin_type (arch)->builtin_data_ptr;
117 struct type *ptr_to_void_fn_type
118 = builtin_type (arch)->builtin_func_ptr;
119
120 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
121 struct type *ptrdiff_type
122 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
123
124 /* We assume no padding is necessary, since GDB doesn't know
125 anything about alignment at the moment. If this assumption bites
126 us, we should add a gdbarch method which, given a type, returns
127 the alignment that type requires, and then use that here. */
128
129 /* Build the field list. */
130 field_list = XCNEWVEC (struct field, 4);
131 field = &field_list[0];
132 offset = 0;
133
134 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
135 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
136 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
137 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
138 offset += TYPE_LENGTH (FIELD_TYPE (*field));
139 field++;
140
141 /* ptrdiff_t offset_to_top; */
142 FIELD_NAME (*field) = "offset_to_top";
143 FIELD_TYPE (*field) = ptrdiff_type;
144 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
145 offset += TYPE_LENGTH (FIELD_TYPE (*field));
146 field++;
147
148 /* void *type_info; */
149 FIELD_NAME (*field) = "type_info";
150 FIELD_TYPE (*field) = void_ptr_type;
151 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
152 offset += TYPE_LENGTH (FIELD_TYPE (*field));
153 field++;
154
155 /* void (*virtual_functions[0]) (); */
156 FIELD_NAME (*field) = "virtual_functions";
157 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
158 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
159 offset += TYPE_LENGTH (FIELD_TYPE (*field));
160 field++;
161
162 /* We assumed in the allocation above that there were four fields. */
163 gdb_assert (field == (field_list + 4));
164
165 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
166 TYPE_NFIELDS (t) = field - field_list;
167 TYPE_FIELDS (t) = field_list;
168 TYPE_NAME (t) = "gdb_gnu_v3_abi_vtable";
169 INIT_CPLUS_SPECIFIC (t);
170
171 return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
172 }
173
174
175 /* Return the ptrdiff_t type used in the vtable type. */
176 static struct type *
177 vtable_ptrdiff_type (struct gdbarch *gdbarch)
178 {
179 struct type *vtable_type
180 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
181
182 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
183 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
184 }
185
186 /* Return the offset from the start of the imaginary `struct
187 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
188 (i.e., where objects' virtual table pointers point). */
189 static int
190 vtable_address_point_offset (struct gdbarch *gdbarch)
191 {
192 struct type *vtable_type
193 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
194
195 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
196 / TARGET_CHAR_BIT);
197 }
198
199
200 /* Determine whether structure TYPE is a dynamic class. Cache the
201 result. */
202
203 static int
204 gnuv3_dynamic_class (struct type *type)
205 {
206 int fieldnum, fieldelem;
207
208 type = check_typedef (type);
209 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
210 || TYPE_CODE (type) == TYPE_CODE_UNION);
211
212 if (TYPE_CODE (type) == TYPE_CODE_UNION)
213 return 0;
214
215 if (TYPE_CPLUS_DYNAMIC (type))
216 return TYPE_CPLUS_DYNAMIC (type) == 1;
217
218 ALLOCATE_CPLUS_STRUCT_TYPE (type);
219
220 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
221 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
222 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
223 {
224 TYPE_CPLUS_DYNAMIC (type) = 1;
225 return 1;
226 }
227
228 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
229 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
230 fieldelem++)
231 {
232 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
233
234 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
235 {
236 TYPE_CPLUS_DYNAMIC (type) = 1;
237 return 1;
238 }
239 }
240
241 TYPE_CPLUS_DYNAMIC (type) = -1;
242 return 0;
243 }
244
245 /* Find the vtable for a value of CONTAINER_TYPE located at
246 CONTAINER_ADDR. Return a value of the correct vtable type for this
247 architecture, or NULL if CONTAINER does not have a vtable. */
248
249 static struct value *
250 gnuv3_get_vtable (struct gdbarch *gdbarch,
251 struct type *container_type, CORE_ADDR container_addr)
252 {
253 struct type *vtable_type
254 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
255 struct type *vtable_pointer_type;
256 struct value *vtable_pointer;
257 CORE_ADDR vtable_address;
258
259 container_type = check_typedef (container_type);
260 gdb_assert (TYPE_CODE (container_type) == TYPE_CODE_STRUCT);
261
262 /* If this type does not have a virtual table, don't read the first
263 field. */
264 if (!gnuv3_dynamic_class (container_type))
265 return NULL;
266
267 /* We do not consult the debug information to find the virtual table.
268 The ABI specifies that it is always at offset zero in any class,
269 and debug information may not represent it.
270
271 We avoid using value_contents on principle, because the object might
272 be large. */
273
274 /* Find the type "pointer to virtual table". */
275 vtable_pointer_type = lookup_pointer_type (vtable_type);
276
277 /* Load it from the start of the class. */
278 vtable_pointer = value_at (vtable_pointer_type, container_addr);
279 vtable_address = value_as_address (vtable_pointer);
280
281 /* Correct it to point at the start of the virtual table, rather
282 than the address point. */
283 return value_at_lazy (vtable_type,
284 vtable_address
285 - vtable_address_point_offset (gdbarch));
286 }
287
288
289 static struct type *
290 gnuv3_rtti_type (struct value *value,
291 int *full_p, LONGEST *top_p, int *using_enc_p)
292 {
293 struct gdbarch *gdbarch;
294 struct type *values_type = check_typedef (value_type (value));
295 struct value *vtable;
296 struct minimal_symbol *vtable_symbol;
297 const char *vtable_symbol_name;
298 const char *class_name;
299 struct type *run_time_type;
300 LONGEST offset_to_top;
301 const char *atsign;
302
303 /* We only have RTTI for dynamic class objects. */
304 if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT
305 || !gnuv3_dynamic_class (values_type))
306 return NULL;
307
308 /* Determine architecture. */
309 gdbarch = get_type_arch (values_type);
310
311 if (using_enc_p)
312 *using_enc_p = 0;
313
314 vtable = gnuv3_get_vtable (gdbarch, values_type,
315 value_as_address (value_addr (value)));
316 if (vtable == NULL)
317 return NULL;
318
319 /* Find the linker symbol for this vtable. */
320 vtable_symbol
321 = lookup_minimal_symbol_by_pc (value_address (vtable)
322 + value_embedded_offset (vtable)).minsym;
323 if (! vtable_symbol)
324 return NULL;
325
326 /* The symbol's demangled name should be something like "vtable for
327 CLASS", where CLASS is the name of the run-time type of VALUE.
328 If we didn't like this approach, we could instead look in the
329 type_info object itself to get the class name. But this way
330 should work just as well, and doesn't read target memory. */
331 vtable_symbol_name = vtable_symbol->demangled_name ();
332 if (vtable_symbol_name == NULL
333 || !startswith (vtable_symbol_name, "vtable for "))
334 {
335 warning (_("can't find linker symbol for virtual table for `%s' value"),
336 TYPE_SAFE_NAME (values_type));
337 if (vtable_symbol_name)
338 warning (_(" found `%s' instead"), vtable_symbol_name);
339 return NULL;
340 }
341 class_name = vtable_symbol_name + 11;
342
343 /* Strip off @plt and version suffixes. */
344 atsign = strchr (class_name, '@');
345 if (atsign != NULL)
346 {
347 char *copy;
348
349 copy = (char *) alloca (atsign - class_name + 1);
350 memcpy (copy, class_name, atsign - class_name);
351 copy[atsign - class_name] = '\0';
352 class_name = copy;
353 }
354
355 /* Try to look up the class name as a type name. */
356 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
357 run_time_type = cp_lookup_rtti_type (class_name, NULL);
358 if (run_time_type == NULL)
359 return NULL;
360
361 /* Get the offset from VALUE to the top of the complete object.
362 NOTE: this is the reverse of the meaning of *TOP_P. */
363 offset_to_top
364 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
365
366 if (full_p)
367 *full_p = (- offset_to_top == value_embedded_offset (value)
368 && (TYPE_LENGTH (value_enclosing_type (value))
369 >= TYPE_LENGTH (run_time_type)));
370 if (top_p)
371 *top_p = - offset_to_top;
372 return run_time_type;
373 }
374
375 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
376 function, of type FNTYPE. */
377
378 static struct value *
379 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
380 struct type *fntype, int vtable_index)
381 {
382 struct value *vtable, *vfn;
383
384 /* Every class with virtual functions must have a vtable. */
385 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
386 value_as_address (value_addr (container)));
387 gdb_assert (vtable != NULL);
388
389 /* Fetch the appropriate function pointer from the vtable. */
390 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
391 vtable_index);
392
393 /* If this architecture uses function descriptors directly in the vtable,
394 then the address of the vtable entry is actually a "function pointer"
395 (i.e. points to the descriptor). We don't need to scale the index
396 by the size of a function descriptor; GCC does that before outputting
397 debug information. */
398 if (gdbarch_vtable_function_descriptors (gdbarch))
399 vfn = value_addr (vfn);
400
401 /* Cast the function pointer to the appropriate type. */
402 vfn = value_cast (lookup_pointer_type (fntype), vfn);
403
404 return vfn;
405 }
406
407 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
408 for a description of the arguments. */
409
410 static struct value *
411 gnuv3_virtual_fn_field (struct value **value_p,
412 struct fn_field *f, int j,
413 struct type *vfn_base, int offset)
414 {
415 struct type *values_type = check_typedef (value_type (*value_p));
416 struct gdbarch *gdbarch;
417
418 /* Some simple sanity checks. */
419 if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT)
420 error (_("Only classes can have virtual functions."));
421
422 /* Determine architecture. */
423 gdbarch = get_type_arch (values_type);
424
425 /* Cast our value to the base class which defines this virtual
426 function. This takes care of any necessary `this'
427 adjustments. */
428 if (vfn_base != values_type)
429 *value_p = value_cast (vfn_base, *value_p);
430
431 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
432 TYPE_FN_FIELD_VOFFSET (f, j));
433 }
434
435 /* Compute the offset of the baseclass which is
436 the INDEXth baseclass of class TYPE,
437 for value at VALADDR (in host) at ADDRESS (in target).
438 The result is the offset of the baseclass value relative
439 to (the address of)(ARG) + OFFSET.
440
441 -1 is returned on error. */
442
443 static int
444 gnuv3_baseclass_offset (struct type *type, int index,
445 const bfd_byte *valaddr, LONGEST embedded_offset,
446 CORE_ADDR address, const struct value *val)
447 {
448 struct gdbarch *gdbarch;
449 struct type *ptr_type;
450 struct value *vtable;
451 struct value *vbase_array;
452 long int cur_base_offset, base_offset;
453
454 /* Determine architecture. */
455 gdbarch = get_type_arch (type);
456 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
457
458 /* If it isn't a virtual base, this is easy. The offset is in the
459 type definition. */
460 if (!BASETYPE_VIA_VIRTUAL (type, index))
461 return TYPE_BASECLASS_BITPOS (type, index) / 8;
462
463 /* To access a virtual base, we need to use the vbase offset stored in
464 our vtable. Recent GCC versions provide this information. If it isn't
465 available, we could get what we needed from RTTI, or from drawing the
466 complete inheritance graph based on the debug info. Neither is
467 worthwhile. */
468 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
469 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
470 error (_("Expected a negative vbase offset (old compiler?)"));
471
472 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
473 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
474 error (_("Misaligned vbase offset."));
475 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
476
477 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
478 gdb_assert (vtable != NULL);
479 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
480 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
481 return base_offset;
482 }
483
484 /* Locate a virtual method in DOMAIN or its non-virtual base classes
485 which has virtual table index VOFFSET. The method has an associated
486 "this" adjustment of ADJUSTMENT bytes. */
487
488 static const char *
489 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
490 LONGEST adjustment)
491 {
492 int i;
493
494 /* Search this class first. */
495 if (adjustment == 0)
496 {
497 int len;
498
499 len = TYPE_NFN_FIELDS (domain);
500 for (i = 0; i < len; i++)
501 {
502 int len2, j;
503 struct fn_field *f;
504
505 f = TYPE_FN_FIELDLIST1 (domain, i);
506 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
507
508 check_stub_method_group (domain, i);
509 for (j = 0; j < len2; j++)
510 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
511 return TYPE_FN_FIELD_PHYSNAME (f, j);
512 }
513 }
514
515 /* Next search non-virtual bases. If it's in a virtual base,
516 we're out of luck. */
517 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
518 {
519 int pos;
520 struct type *basetype;
521
522 if (BASETYPE_VIA_VIRTUAL (domain, i))
523 continue;
524
525 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
526 basetype = TYPE_FIELD_TYPE (domain, i);
527 /* Recurse with a modified adjustment. We don't need to adjust
528 voffset. */
529 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
530 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
531 }
532
533 return NULL;
534 }
535
536 /* Decode GNU v3 method pointer. */
537
538 static int
539 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
540 const gdb_byte *contents,
541 CORE_ADDR *value_p,
542 LONGEST *adjustment_p)
543 {
544 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
545 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
546 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
547 CORE_ADDR ptr_value;
548 LONGEST voffset, adjustment;
549 int vbit;
550
551 /* Extract the pointer to member. The first element is either a pointer
552 or a vtable offset. For pointers, we need to use extract_typed_address
553 to allow the back-end to convert the pointer to a GDB address -- but
554 vtable offsets we must handle as integers. At this point, we do not
555 yet know which case we have, so we extract the value under both
556 interpretations and choose the right one later on. */
557 ptr_value = extract_typed_address (contents, funcptr_type);
558 voffset = extract_signed_integer (contents,
559 TYPE_LENGTH (funcptr_type), byte_order);
560 contents += TYPE_LENGTH (funcptr_type);
561 adjustment = extract_signed_integer (contents,
562 TYPE_LENGTH (offset_type), byte_order);
563
564 if (!gdbarch_vbit_in_delta (gdbarch))
565 {
566 vbit = voffset & 1;
567 voffset = voffset ^ vbit;
568 }
569 else
570 {
571 vbit = adjustment & 1;
572 adjustment = adjustment >> 1;
573 }
574
575 *value_p = vbit? voffset : ptr_value;
576 *adjustment_p = adjustment;
577 return vbit;
578 }
579
580 /* GNU v3 implementation of cplus_print_method_ptr. */
581
582 static void
583 gnuv3_print_method_ptr (const gdb_byte *contents,
584 struct type *type,
585 struct ui_file *stream)
586 {
587 struct type *self_type = TYPE_SELF_TYPE (type);
588 struct gdbarch *gdbarch = get_type_arch (self_type);
589 CORE_ADDR ptr_value;
590 LONGEST adjustment;
591 int vbit;
592
593 /* Extract the pointer to member. */
594 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
595
596 /* Check for NULL. */
597 if (ptr_value == 0 && vbit == 0)
598 {
599 fprintf_filtered (stream, "NULL");
600 return;
601 }
602
603 /* Search for a virtual method. */
604 if (vbit)
605 {
606 CORE_ADDR voffset;
607 const char *physname;
608
609 /* It's a virtual table offset, maybe in this class. Search
610 for a field with the correct vtable offset. First convert it
611 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
612 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
613
614 physname = gnuv3_find_method_in (self_type, voffset, adjustment);
615
616 /* If we found a method, print that. We don't bother to disambiguate
617 possible paths to the method based on the adjustment. */
618 if (physname)
619 {
620 char *demangled_name = gdb_demangle (physname,
621 DMGL_ANSI | DMGL_PARAMS);
622
623 fprintf_filtered (stream, "&virtual ");
624 if (demangled_name == NULL)
625 fputs_filtered (physname, stream);
626 else
627 {
628 fputs_filtered (demangled_name, stream);
629 xfree (demangled_name);
630 }
631 return;
632 }
633 }
634 else if (ptr_value != 0)
635 {
636 /* Found a non-virtual function: print out the type. */
637 fputs_filtered ("(", stream);
638 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
639 fputs_filtered (") ", stream);
640 }
641
642 /* We didn't find it; print the raw data. */
643 if (vbit)
644 {
645 fprintf_filtered (stream, "&virtual table offset ");
646 print_longest (stream, 'd', 1, ptr_value);
647 }
648 else
649 {
650 struct value_print_options opts;
651
652 get_user_print_options (&opts);
653 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
654 }
655
656 if (adjustment)
657 {
658 fprintf_filtered (stream, ", this adjustment ");
659 print_longest (stream, 'd', 1, adjustment);
660 }
661 }
662
663 /* GNU v3 implementation of cplus_method_ptr_size. */
664
665 static int
666 gnuv3_method_ptr_size (struct type *type)
667 {
668 struct gdbarch *gdbarch = get_type_arch (type);
669
670 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
671 }
672
673 /* GNU v3 implementation of cplus_make_method_ptr. */
674
675 static void
676 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
677 CORE_ADDR value, int is_virtual)
678 {
679 struct gdbarch *gdbarch = get_type_arch (type);
680 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
681 enum bfd_endian byte_order = type_byte_order (type);
682
683 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
684 always zero, since the method pointer is of the correct type.
685 But if the method pointer came from a base class, this is
686 incorrect - it should be the offset to the base. The best
687 fix might be to create the pointer to member pointing at the
688 base class and cast it to the derived class, but that requires
689 support for adjusting pointers to members when casting them -
690 not currently supported by GDB. */
691
692 if (!gdbarch_vbit_in_delta (gdbarch))
693 {
694 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
695 store_unsigned_integer (contents + size, size, byte_order, 0);
696 }
697 else
698 {
699 store_unsigned_integer (contents, size, byte_order, value);
700 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
701 }
702 }
703
704 /* GNU v3 implementation of cplus_method_ptr_to_value. */
705
706 static struct value *
707 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
708 {
709 struct gdbarch *gdbarch;
710 const gdb_byte *contents = value_contents (method_ptr);
711 CORE_ADDR ptr_value;
712 struct type *self_type, *final_type, *method_type;
713 LONGEST adjustment;
714 int vbit;
715
716 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
717 final_type = lookup_pointer_type (self_type);
718
719 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
720
721 /* Extract the pointer to member. */
722 gdbarch = get_type_arch (self_type);
723 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
724
725 /* First convert THIS to match the containing type of the pointer to
726 member. This cast may adjust the value of THIS. */
727 *this_p = value_cast (final_type, *this_p);
728
729 /* Then apply whatever adjustment is necessary. This creates a somewhat
730 strange pointer: it claims to have type FINAL_TYPE, but in fact it
731 might not be a valid FINAL_TYPE. For instance, it might be a
732 base class of FINAL_TYPE. And if it's not the primary base class,
733 then printing it out as a FINAL_TYPE object would produce some pretty
734 garbage.
735
736 But we don't really know the type of the first argument in
737 METHOD_TYPE either, which is why this happens. We can't
738 dereference this later as a FINAL_TYPE, but once we arrive in the
739 called method we'll have debugging information for the type of
740 "this" - and that'll match the value we produce here.
741
742 You can provoke this case by casting a Base::* to a Derived::*, for
743 instance. */
744 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
745 *this_p = value_ptradd (*this_p, adjustment);
746 *this_p = value_cast (final_type, *this_p);
747
748 if (vbit)
749 {
750 LONGEST voffset;
751
752 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
753 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
754 method_type, voffset);
755 }
756 else
757 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
758 }
759
760 /* Objects of this type are stored in a hash table and a vector when
761 printing the vtables for a class. */
762
763 struct value_and_voffset
764 {
765 /* The value representing the object. */
766 struct value *value;
767
768 /* The maximum vtable offset we've found for any object at this
769 offset in the outermost object. */
770 int max_voffset;
771 };
772
773 /* Hash function for value_and_voffset. */
774
775 static hashval_t
776 hash_value_and_voffset (const void *p)
777 {
778 const struct value_and_voffset *o = (const struct value_and_voffset *) p;
779
780 return value_address (o->value) + value_embedded_offset (o->value);
781 }
782
783 /* Equality function for value_and_voffset. */
784
785 static int
786 eq_value_and_voffset (const void *a, const void *b)
787 {
788 const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
789 const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
790
791 return (value_address (ova->value) + value_embedded_offset (ova->value)
792 == value_address (ovb->value) + value_embedded_offset (ovb->value));
793 }
794
795 /* Comparison function for value_and_voffset. */
796
797 static bool
798 compare_value_and_voffset (const struct value_and_voffset *va,
799 const struct value_and_voffset *vb)
800 {
801 CORE_ADDR addra = (value_address (va->value)
802 + value_embedded_offset (va->value));
803 CORE_ADDR addrb = (value_address (vb->value)
804 + value_embedded_offset (vb->value));
805
806 return addra < addrb;
807 }
808
809 /* A helper function used when printing vtables. This determines the
810 key (most derived) sub-object at each address and also computes the
811 maximum vtable offset seen for the corresponding vtable. Updates
812 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
813 needed. VALUE is the object to examine. */
814
815 static void
816 compute_vtable_size (htab_t offset_hash,
817 std::vector<value_and_voffset *> *offset_vec,
818 struct value *value)
819 {
820 int i;
821 struct type *type = check_typedef (value_type (value));
822 void **slot;
823 struct value_and_voffset search_vo, *current_vo;
824
825 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
826
827 /* If the object is not dynamic, then we are done; as it cannot have
828 dynamic base types either. */
829 if (!gnuv3_dynamic_class (type))
830 return;
831
832 /* Update the hash and the vec, if needed. */
833 search_vo.value = value;
834 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
835 if (*slot)
836 current_vo = (struct value_and_voffset *) *slot;
837 else
838 {
839 current_vo = XNEW (struct value_and_voffset);
840 current_vo->value = value;
841 current_vo->max_voffset = -1;
842 *slot = current_vo;
843 offset_vec->push_back (current_vo);
844 }
845
846 /* Update the value_and_voffset object with the highest vtable
847 offset from this class. */
848 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
849 {
850 int j;
851 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
852
853 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
854 {
855 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
856 {
857 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
858
859 if (voffset > current_vo->max_voffset)
860 current_vo->max_voffset = voffset;
861 }
862 }
863 }
864
865 /* Recurse into base classes. */
866 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
867 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
868 }
869
870 /* Helper for gnuv3_print_vtable that prints a single vtable. */
871
872 static void
873 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
874 int max_voffset,
875 struct value_print_options *opts)
876 {
877 int i;
878 struct type *type = check_typedef (value_type (value));
879 struct value *vtable;
880 CORE_ADDR vt_addr;
881
882 vtable = gnuv3_get_vtable (gdbarch, type,
883 value_address (value)
884 + value_embedded_offset (value));
885 vt_addr = value_address (value_field (vtable,
886 vtable_field_virtual_functions));
887
888 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
889 TYPE_SAFE_NAME (type),
890 paddress (gdbarch, vt_addr),
891 paddress (gdbarch, (value_address (value)
892 + value_embedded_offset (value))));
893
894 for (i = 0; i <= max_voffset; ++i)
895 {
896 /* Initialize it just to avoid a GCC false warning. */
897 CORE_ADDR addr = 0;
898 int got_error = 0;
899 struct value *vfn;
900
901 printf_filtered ("[%d]: ", i);
902
903 vfn = value_subscript (value_field (vtable,
904 vtable_field_virtual_functions),
905 i);
906
907 if (gdbarch_vtable_function_descriptors (gdbarch))
908 vfn = value_addr (vfn);
909
910 try
911 {
912 addr = value_as_address (vfn);
913 }
914 catch (const gdb_exception_error &ex)
915 {
916 fprintf_styled (gdb_stdout, metadata_style.style (),
917 _("<error: %s>"), ex.what ());
918 got_error = 1;
919 }
920
921 if (!got_error)
922 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
923 printf_filtered ("\n");
924 }
925 }
926
927 /* Implementation of the print_vtable method. */
928
929 static void
930 gnuv3_print_vtable (struct value *value)
931 {
932 struct gdbarch *gdbarch;
933 struct type *type;
934 struct value *vtable;
935 struct value_print_options opts;
936 int count;
937
938 value = coerce_ref (value);
939 type = check_typedef (value_type (value));
940 if (TYPE_CODE (type) == TYPE_CODE_PTR)
941 {
942 value = value_ind (value);
943 type = check_typedef (value_type (value));
944 }
945
946 get_user_print_options (&opts);
947
948 /* Respect 'set print object'. */
949 if (opts.objectprint)
950 {
951 value = value_full_object (value, NULL, 0, 0, 0);
952 type = check_typedef (value_type (value));
953 }
954
955 gdbarch = get_type_arch (type);
956
957 vtable = NULL;
958 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
959 vtable = gnuv3_get_vtable (gdbarch, type,
960 value_as_address (value_addr (value)));
961
962 if (!vtable)
963 {
964 printf_filtered (_("This object does not have a virtual function table\n"));
965 return;
966 }
967
968 htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
969 eq_value_and_voffset,
970 xfree, xcalloc, xfree));
971 std::vector<value_and_voffset *> result_vec;
972
973 compute_vtable_size (offset_hash.get (), &result_vec, value);
974 std::sort (result_vec.begin (), result_vec.end (),
975 compare_value_and_voffset);
976
977 count = 0;
978 for (value_and_voffset *iter : result_vec)
979 {
980 if (iter->max_voffset >= 0)
981 {
982 if (count > 0)
983 printf_filtered ("\n");
984 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
985 ++count;
986 }
987 }
988 }
989
990 /* Return a GDB type representing `struct std::type_info', laid out
991 appropriately for ARCH.
992
993 We use this function as the gdbarch per-architecture data
994 initialization function. */
995
996 static void *
997 build_std_type_info_type (struct gdbarch *arch)
998 {
999 struct type *t;
1000 struct field *field_list, *field;
1001 int offset;
1002 struct type *void_ptr_type
1003 = builtin_type (arch)->builtin_data_ptr;
1004 struct type *char_type
1005 = builtin_type (arch)->builtin_char;
1006 struct type *char_ptr_type
1007 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1008
1009 field_list = XCNEWVEC (struct field, 2);
1010 field = &field_list[0];
1011 offset = 0;
1012
1013 /* The vtable. */
1014 FIELD_NAME (*field) = "_vptr.type_info";
1015 FIELD_TYPE (*field) = void_ptr_type;
1016 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1017 offset += TYPE_LENGTH (FIELD_TYPE (*field));
1018 field++;
1019
1020 /* The name. */
1021 FIELD_NAME (*field) = "__name";
1022 FIELD_TYPE (*field) = char_ptr_type;
1023 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1024 offset += TYPE_LENGTH (FIELD_TYPE (*field));
1025 field++;
1026
1027 gdb_assert (field == (field_list + 2));
1028
1029 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
1030 TYPE_NFIELDS (t) = field - field_list;
1031 TYPE_FIELDS (t) = field_list;
1032 TYPE_NAME (t) = "gdb_gnu_v3_type_info";
1033 INIT_CPLUS_SPECIFIC (t);
1034
1035 return t;
1036 }
1037
1038 /* Implement the 'get_typeid_type' method. */
1039
1040 static struct type *
1041 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1042 {
1043 struct symbol *typeinfo;
1044 struct type *typeinfo_type;
1045
1046 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
1047 NULL).symbol;
1048 if (typeinfo == NULL)
1049 typeinfo_type
1050 = (struct type *) gdbarch_data (gdbarch, std_type_info_gdbarch_data);
1051 else
1052 typeinfo_type = SYMBOL_TYPE (typeinfo);
1053
1054 return typeinfo_type;
1055 }
1056
1057 /* Implement the 'get_typeid' method. */
1058
1059 static struct value *
1060 gnuv3_get_typeid (struct value *value)
1061 {
1062 struct type *typeinfo_type;
1063 struct type *type;
1064 struct gdbarch *gdbarch;
1065 struct value *result;
1066 std::string type_name, canonical;
1067
1068 /* We have to handle values a bit trickily here, to allow this code
1069 to work properly with non_lvalue values that are really just
1070 disguised types. */
1071 if (value_lval_const (value) == lval_memory)
1072 value = coerce_ref (value);
1073
1074 type = check_typedef (value_type (value));
1075
1076 /* In the non_lvalue case, a reference might have slipped through
1077 here. */
1078 if (TYPE_CODE (type) == TYPE_CODE_REF)
1079 type = check_typedef (TYPE_TARGET_TYPE (type));
1080
1081 /* Ignore top-level cv-qualifiers. */
1082 type = make_cv_type (0, 0, type, NULL);
1083 gdbarch = get_type_arch (type);
1084
1085 type_name = type_to_string (type);
1086 if (type_name.empty ())
1087 error (_("cannot find typeinfo for unnamed type"));
1088
1089 /* We need to canonicalize the type name here, because we do lookups
1090 using the demangled name, and so we must match the format it
1091 uses. E.g., GDB tends to use "const char *" as a type name, but
1092 the demangler uses "char const *". */
1093 canonical = cp_canonicalize_string (type_name.c_str ());
1094 if (!canonical.empty ())
1095 type_name = canonical;
1096
1097 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1098
1099 /* We check for lval_memory because in the "typeid (type-id)" case,
1100 the type is passed via a not_lval value object. */
1101 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1102 && value_lval_const (value) == lval_memory
1103 && gnuv3_dynamic_class (type))
1104 {
1105 struct value *vtable, *typeinfo_value;
1106 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1107
1108 vtable = gnuv3_get_vtable (gdbarch, type, address);
1109 if (vtable == NULL)
1110 error (_("cannot find typeinfo for object of type '%s'"),
1111 type_name.c_str ());
1112 typeinfo_value = value_field (vtable, vtable_field_type_info);
1113 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1114 typeinfo_value));
1115 }
1116 else
1117 {
1118 std::string sym_name = std::string ("typeinfo for ") + type_name;
1119 bound_minimal_symbol minsym
1120 = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
1121
1122 if (minsym.minsym == NULL)
1123 error (_("could not find typeinfo symbol for '%s'"), type_name.c_str ());
1124
1125 result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
1126 }
1127
1128 return result;
1129 }
1130
1131 /* Implement the 'get_typename_from_type_info' method. */
1132
1133 static std::string
1134 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1135 {
1136 struct gdbarch *gdbarch = get_type_arch (value_type (type_info_ptr));
1137 struct bound_minimal_symbol typeinfo_sym;
1138 CORE_ADDR addr;
1139 const char *symname;
1140 const char *class_name;
1141 const char *atsign;
1142
1143 addr = value_as_address (type_info_ptr);
1144 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1145 if (typeinfo_sym.minsym == NULL)
1146 error (_("could not find minimal symbol for typeinfo address %s"),
1147 paddress (gdbarch, addr));
1148
1149 #define TYPEINFO_PREFIX "typeinfo for "
1150 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1151 symname = typeinfo_sym.minsym->demangled_name ();
1152 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1153 TYPEINFO_PREFIX_LEN))
1154 error (_("typeinfo symbol '%s' has unexpected name"),
1155 typeinfo_sym.minsym->linkage_name ());
1156 class_name = symname + TYPEINFO_PREFIX_LEN;
1157
1158 /* Strip off @plt and version suffixes. */
1159 atsign = strchr (class_name, '@');
1160 if (atsign != NULL)
1161 return std::string (class_name, atsign - class_name);
1162 return class_name;
1163 }
1164
1165 /* Implement the 'get_type_from_type_info' method. */
1166
1167 static struct type *
1168 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1169 {
1170 /* We have to parse the type name, since in general there is not a
1171 symbol for a type. This is somewhat bogus since there may be a
1172 mis-parse. Another approach might be to re-use the demangler's
1173 internal form to reconstruct the type somehow. */
1174 std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
1175 expression_up expr (parse_expression (type_name.c_str ()));
1176 struct value *type_val = evaluate_type (expr.get ());
1177 return value_type (type_val);
1178 }
1179
1180 /* Determine if we are currently in a C++ thunk. If so, get the address
1181 of the routine we are thunking to and continue to there instead. */
1182
1183 static CORE_ADDR
1184 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
1185 {
1186 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1187 struct gdbarch *gdbarch = get_frame_arch (frame);
1188 struct bound_minimal_symbol thunk_sym, fn_sym;
1189 struct obj_section *section;
1190 const char *thunk_name, *fn_name;
1191
1192 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1193 if (real_stop_pc == 0)
1194 real_stop_pc = stop_pc;
1195
1196 /* Find the linker symbol for this potential thunk. */
1197 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1198 section = find_pc_section (real_stop_pc);
1199 if (thunk_sym.minsym == NULL || section == NULL)
1200 return 0;
1201
1202 /* The symbol's demangled name should be something like "virtual
1203 thunk to FUNCTION", where FUNCTION is the name of the function
1204 being thunked to. */
1205 thunk_name = thunk_sym.minsym->demangled_name ();
1206 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1207 return 0;
1208
1209 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1210 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1211 if (fn_sym.minsym == NULL)
1212 return 0;
1213
1214 method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
1215
1216 /* Some targets have minimal symbols pointing to function descriptors
1217 (powerpc 64 for example). Make sure to retrieve the address
1218 of the real function from the function descriptor before passing on
1219 the address to other layers of GDB. */
1220 func_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, method_stop_pc,
1221 current_top_target ());
1222 if (func_addr != 0)
1223 method_stop_pc = func_addr;
1224
1225 real_stop_pc = gdbarch_skip_trampoline_code
1226 (gdbarch, frame, method_stop_pc);
1227 if (real_stop_pc == 0)
1228 real_stop_pc = method_stop_pc;
1229
1230 return real_stop_pc;
1231 }
1232
1233 /* Return nonzero if a type should be passed by reference.
1234
1235 The rule in the v3 ABI document comes from section 3.1.1. If the
1236 type has a non-trivial copy constructor or destructor, then the
1237 caller must make a copy (by calling the copy constructor if there
1238 is one or perform the copy itself otherwise), pass the address of
1239 the copy, and then destroy the temporary (if necessary).
1240
1241 For return values with non-trivial copy constructors or
1242 destructors, space will be allocated in the caller, and a pointer
1243 will be passed as the first argument (preceding "this").
1244
1245 We don't have a bulletproof mechanism for determining whether a
1246 constructor or destructor is trivial. For GCC and DWARF2 debug
1247 information, we can check the artificial flag.
1248
1249 We don't do anything with the constructors or destructors,
1250 but we have to get the argument passing right anyway. */
1251 static int
1252 gnuv3_pass_by_reference (struct type *type)
1253 {
1254 int fieldnum, fieldelem;
1255
1256 type = check_typedef (type);
1257
1258 /* We're only interested in things that can have methods. */
1259 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1260 && TYPE_CODE (type) != TYPE_CODE_UNION)
1261 return 0;
1262
1263 /* A dynamic class has a non-trivial copy constructor.
1264 See c++98 section 12.8 Copying class objects [class.copy]. */
1265 if (gnuv3_dynamic_class (type))
1266 return 1;
1267
1268 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1269 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1270 fieldelem++)
1271 {
1272 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1273 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1274 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1275
1276 /* If this function is marked as artificial, it is compiler-generated,
1277 and we assume it is trivial. */
1278 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1279 continue;
1280
1281 /* If we've found a destructor, we must pass this by reference. */
1282 if (name[0] == '~')
1283 return 1;
1284
1285 /* If the mangled name of this method doesn't indicate that it
1286 is a constructor, we're not interested.
1287
1288 FIXME drow/2007-09-23: We could do this using the name of
1289 the method and the name of the class instead of dealing
1290 with the mangled name. We don't have a convenient function
1291 to strip off both leading scope qualifiers and trailing
1292 template arguments yet. */
1293 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1294 && !TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1295 continue;
1296
1297 /* If this method takes two arguments, and the second argument is
1298 a reference to this class, then it is a copy constructor. */
1299 if (TYPE_NFIELDS (fieldtype) == 2)
1300 {
1301 struct type *arg_type = TYPE_FIELD_TYPE (fieldtype, 1);
1302
1303 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
1304 {
1305 struct type *arg_target_type;
1306
1307 arg_target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
1308 if (class_types_same_p (arg_target_type, type))
1309 return 1;
1310 }
1311 }
1312 }
1313
1314 /* Even if all the constructors and destructors were artificial, one
1315 of them may have invoked a non-artificial constructor or
1316 destructor in a base class. If any base class needs to be passed
1317 by reference, so does this class. Similarly for members, which
1318 are constructed whenever this class is. We do not need to worry
1319 about recursive loops here, since we are only looking at members
1320 of complete class type. Also ignore any static members. */
1321 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
1322 if (! field_is_static (&TYPE_FIELD (type, fieldnum))
1323 && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
1324 return 1;
1325
1326 return 0;
1327 }
1328
1329 static void
1330 init_gnuv3_ops (void)
1331 {
1332 vtable_type_gdbarch_data
1333 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1334 std_type_info_gdbarch_data
1335 = gdbarch_data_register_post_init (build_std_type_info_type);
1336
1337 gnu_v3_abi_ops.shortname = "gnu-v3";
1338 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1339 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1340 gnu_v3_abi_ops.is_destructor_name =
1341 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1342 gnu_v3_abi_ops.is_constructor_name =
1343 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1344 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1345 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1346 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1347 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1348 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1349 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1350 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1351 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1352 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1353 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1354 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1355 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1356 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1357 gnu_v3_abi_ops.get_typename_from_type_info
1358 = gnuv3_get_typename_from_type_info;
1359 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1360 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1361 }
1362
1363 void
1364 _initialize_gnu_v3_abi (void)
1365 {
1366 init_gnuv3_ops ();
1367
1368 register_cp_abi (&gnu_v3_abi_ops);
1369 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1370 }
This page took 0.060207 seconds and 4 git commands to generate.