8c71bd7650fc01322d0d86fb49fa7c411ddca2a6
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "x86-nat.h"
89 #include "inferior.h"
90 #include "infrun.h"
91 #include "gdbthread.h"
92 #include "gdbsupport/gdb_wait.h"
93 #include "gdbcore.h"
94 #include "command.h"
95 #include "gdbcmd.h"
96 #include "floatformat.h"
97 #include "buildsym-legacy.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "nat/x86-cpuid.h"
101 #include "value.h"
102 #include "regcache.h"
103 #include "top.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
106
107 #include <ctype.h>
108 #include <unistd.h>
109 #include <sys/utsname.h>
110 #include <io.h>
111 #include <dos.h>
112 #include <dpmi.h>
113 #include <go32.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
119 #endif
120
121 #include <langinfo.h>
122
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
125 here. */
126 typedef struct
127 {
128 unsigned short sig0;
129 unsigned short sig1;
130 unsigned short sig2;
131 unsigned short sig3;
132 unsigned short exponent:15;
133 unsigned short sign:1;
134 }
135 NPXREG;
136
137 typedef struct
138 {
139 unsigned int control;
140 unsigned int status;
141 unsigned int tag;
142 unsigned int eip;
143 unsigned int cs;
144 unsigned int dataptr;
145 unsigned int datasel;
146 NPXREG reg[8];
147 }
148 NPX;
149
150 static NPX npx;
151
152 static void save_npx (void); /* Save the FPU of the debugged program. */
153 static void load_npx (void); /* Restore the FPU of the debugged program. */
154
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
157 /* *INDENT-OFF* */
158
159 static void
160 save_npx (void)
161 {
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
164 jz 1f \n\
165 xorb %%al, %%al \n\
166 outb %%al, $0xf0 \n\
167 movb $0x20, %%al \n\
168 outb %%al, $0xa0 \n\
169 outb %%al, $0x20 \n\
170 1: \n\
171 fnsave %0 \n\
172 fwait "
173 : "=m" (npx)
174 : /* No input */
175 : "%eax");
176 }
177
178 /* *INDENT-ON* */
179
180
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
183
184 static void
185 load_npx (void)
186 {
187 asm ("frstor %0":"=m" (npx));
188 }
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
191 typedef struct {
192 char *command;
193 int redirected;
194 } cmdline_t;
195
196 void
197 redir_cmdline_delete (cmdline_t *ptr)
198 {
199 ptr->redirected = 0;
200 }
201
202 int
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
204 {
205 return -1;
206 }
207
208 int
209 redir_to_child (cmdline_t *ptr)
210 {
211 return 1;
212 }
213
214 int
215 redir_to_debugger (cmdline_t *ptr)
216 {
217 return 1;
218 }
219
220 int
221 redir_debug_init (cmdline_t *ptr)
222 {
223 return 0;
224 }
225 #endif /* __DJGPP_MINOR < 3 */
226
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
231
232 #define SOME_PID 42
233
234 static int prog_has_started = 0;
235
236 #define r_ofs(x) (offsetof(TSS,x))
237
238 static struct
239 {
240 size_t tss_ofs;
241 size_t size;
242 }
243 regno_mapping[] =
244 {
245 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
246 {r_ofs (tss_ecx), 4},
247 {r_ofs (tss_edx), 4},
248 {r_ofs (tss_ebx), 4},
249 {r_ofs (tss_esp), 4},
250 {r_ofs (tss_ebp), 4},
251 {r_ofs (tss_esi), 4},
252 {r_ofs (tss_edi), 4},
253 {r_ofs (tss_eip), 4},
254 {r_ofs (tss_eflags), 4},
255 {r_ofs (tss_cs), 2},
256 {r_ofs (tss_ss), 2},
257 {r_ofs (tss_ds), 2},
258 {r_ofs (tss_es), 2},
259 {r_ofs (tss_fs), 2},
260 {r_ofs (tss_gs), 2},
261 {0, 10}, /* 8 FP registers, from npx.reg[] */
262 {1, 10},
263 {2, 10},
264 {3, 10},
265 {4, 10},
266 {5, 10},
267 {6, 10},
268 {7, 10},
269 /* The order of the next 7 registers must be consistent
270 with their numbering in config/i386/tm-i386.h, which see. */
271 {0, 2}, /* control word, from npx */
272 {4, 2}, /* status word, from npx */
273 {8, 2}, /* tag word, from npx */
274 {16, 2}, /* last FP exception CS from npx */
275 {12, 4}, /* last FP exception EIP from npx */
276 {24, 2}, /* last FP exception operand selector from npx */
277 {20, 4}, /* last FP exception operand offset from npx */
278 {18, 2} /* last FP opcode from npx */
279 };
280
281 static struct
282 {
283 int go32_sig;
284 enum gdb_signal gdb_sig;
285 }
286 sig_map[] =
287 {
288 {0, GDB_SIGNAL_FPE},
289 {1, GDB_SIGNAL_TRAP},
290 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
291 but I think SIGBUS is better, since the NMI is usually activated
292 as a result of a memory parity check failure. */
293 {2, GDB_SIGNAL_BUS},
294 {3, GDB_SIGNAL_TRAP},
295 {4, GDB_SIGNAL_FPE},
296 {5, GDB_SIGNAL_SEGV},
297 {6, GDB_SIGNAL_ILL},
298 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
299 {8, GDB_SIGNAL_SEGV},
300 {9, GDB_SIGNAL_SEGV},
301 {10, GDB_SIGNAL_BUS},
302 {11, GDB_SIGNAL_SEGV},
303 {12, GDB_SIGNAL_SEGV},
304 {13, GDB_SIGNAL_SEGV},
305 {14, GDB_SIGNAL_SEGV},
306 {16, GDB_SIGNAL_FPE},
307 {17, GDB_SIGNAL_BUS},
308 {31, GDB_SIGNAL_ILL},
309 {0x1b, GDB_SIGNAL_INT},
310 {0x75, GDB_SIGNAL_FPE},
311 {0x78, GDB_SIGNAL_ALRM},
312 {0x79, GDB_SIGNAL_INT},
313 {0x7a, GDB_SIGNAL_QUIT},
314 {-1, GDB_SIGNAL_LAST}
315 };
316
317 static struct {
318 enum gdb_signal gdb_sig;
319 int djgpp_excepno;
320 } excepn_map[] = {
321 {GDB_SIGNAL_0, -1},
322 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
323 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
324 {GDB_SIGNAL_SEGV, 13}, /* GPF */
325 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
326 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
327 details. */
328 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
329 {GDB_SIGNAL_FPE, 0x75},
330 {GDB_SIGNAL_INT, 0x79},
331 {GDB_SIGNAL_QUIT, 0x7a},
332 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
333 {GDB_SIGNAL_PROF, 0x78},
334 {GDB_SIGNAL_LAST, -1}
335 };
336
337 /* The go32 target. */
338
339 struct go32_nat_target final : public x86_nat_target<inf_child_target>
340 {
341 void attach (const char *, int) override;
342
343 void resume (ptid_t, int, enum gdb_signal) override;
344
345 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
346
347 void fetch_registers (struct regcache *, int) override;
348 void store_registers (struct regcache *, int) override;
349
350 enum target_xfer_status xfer_partial (enum target_object object,
351 const char *annex,
352 gdb_byte *readbuf,
353 const gdb_byte *writebuf,
354 ULONGEST offset, ULONGEST len,
355 ULONGEST *xfered_len) override;
356
357 void files_info () override;
358
359 void terminal_init () override;
360
361 void terminal_inferior () override;
362
363 void terminal_ours_for_output () override;
364
365 void terminal_ours () override;
366
367 void terminal_info (const char *, int) override;
368
369 void pass_ctrlc () override;
370
371 void kill () override;
372
373 void create_inferior (const char *, const std::string &,
374 char **, int) override;
375
376 void mourn_inferior () override;
377
378 bool thread_alive (ptid_t ptid) override;
379
380 std::string pid_to_str (ptid_t) override;
381 };
382
383 static go32_nat_target the_go32_nat_target;
384
385 void
386 go32_nat_target::attach (const char *args, int from_tty)
387 {
388 error (_("\
389 You cannot attach to a running program on this platform.\n\
390 Use the `run' command to run DJGPP programs."));
391 }
392
393 static int resume_is_step;
394 static int resume_signal = -1;
395
396 void
397 go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
398 {
399 int i;
400
401 resume_is_step = step;
402
403 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
404 {
405 for (i = 0, resume_signal = -1;
406 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
407 if (excepn_map[i].gdb_sig == siggnal)
408 {
409 resume_signal = excepn_map[i].djgpp_excepno;
410 break;
411 }
412 if (resume_signal == -1)
413 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
414 gdb_signal_to_name (siggnal));
415 }
416 }
417
418 static char child_cwd[FILENAME_MAX];
419
420 ptid_t
421 go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status,
422 int options)
423 {
424 int i;
425 unsigned char saved_opcode;
426 unsigned long INT3_addr = 0;
427 int stepping_over_INT = 0;
428
429 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
430 if (resume_is_step)
431 {
432 /* If the next instruction is INT xx or INTO, we need to handle
433 them specially. Intel manuals say that these instructions
434 reset the single-step flag (a.k.a. TF). However, it seems
435 that, at least in the DPMI environment, and at least when
436 stepping over the DPMI interrupt 31h, the problem is having
437 TF set at all when INT 31h is executed: the debuggee either
438 crashes (and takes the system with it) or is killed by a
439 SIGTRAP.
440
441 So we need to emulate single-step mode: we put an INT3 opcode
442 right after the INT xx instruction, let the debuggee run
443 until it hits INT3 and stops, then restore the original
444 instruction which we overwrote with the INT3 opcode, and back
445 up the debuggee's EIP to that instruction. */
446 read_child (a_tss.tss_eip, &saved_opcode, 1);
447 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
448 {
449 unsigned char INT3_opcode = 0xCC;
450
451 INT3_addr
452 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
453 stepping_over_INT = 1;
454 read_child (INT3_addr, &saved_opcode, 1);
455 write_child (INT3_addr, &INT3_opcode, 1);
456 }
457 else
458 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
459 }
460
461 /* The special value FFFFh in tss_trap indicates to run_child that
462 tss_irqn holds a signal to be delivered to the debuggee. */
463 if (resume_signal <= -1)
464 {
465 a_tss.tss_trap = 0;
466 a_tss.tss_irqn = 0xff;
467 }
468 else
469 {
470 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
471 a_tss.tss_irqn = resume_signal;
472 }
473
474 /* The child might change working directory behind our back. The
475 GDB users won't like the side effects of that when they work with
476 relative file names, and GDB might be confused by its current
477 directory not being in sync with the truth. So we always make a
478 point of changing back to where GDB thinks is its cwd, when we
479 return control to the debugger, but restore child's cwd before we
480 run it. */
481 /* Initialize child_cwd, before the first call to run_child and not
482 in the initialization, so the child get also the changed directory
483 set with the gdb-command "cd ..." */
484 if (!*child_cwd)
485 /* Initialize child's cwd with the current one. */
486 getcwd (child_cwd, sizeof (child_cwd));
487
488 chdir (child_cwd);
489
490 #if __DJGPP_MINOR__ < 3
491 load_npx ();
492 #endif
493 run_child ();
494 #if __DJGPP_MINOR__ < 3
495 save_npx ();
496 #endif
497
498 /* Did we step over an INT xx instruction? */
499 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
500 {
501 /* Restore the original opcode. */
502 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
503 write_child (a_tss.tss_eip, &saved_opcode, 1);
504 /* Simulate a TRAP exception. */
505 a_tss.tss_irqn = 1;
506 a_tss.tss_eflags |= 0x0100;
507 }
508
509 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
510 chdir (current_directory);
511
512 if (a_tss.tss_irqn == 0x21)
513 {
514 status->kind = TARGET_WAITKIND_EXITED;
515 status->value.integer = a_tss.tss_eax & 0xff;
516 }
517 else
518 {
519 status->value.sig = GDB_SIGNAL_UNKNOWN;
520 status->kind = TARGET_WAITKIND_STOPPED;
521 for (i = 0; sig_map[i].go32_sig != -1; i++)
522 {
523 if (a_tss.tss_irqn == sig_map[i].go32_sig)
524 {
525 #if __DJGPP_MINOR__ < 3
526 if ((status->value.sig = sig_map[i].gdb_sig) !=
527 GDB_SIGNAL_TRAP)
528 status->kind = TARGET_WAITKIND_SIGNALLED;
529 #else
530 status->value.sig = sig_map[i].gdb_sig;
531 #endif
532 break;
533 }
534 }
535 }
536 return ptid_t (SOME_PID);
537 }
538
539 static void
540 fetch_register (struct regcache *regcache, int regno)
541 {
542 struct gdbarch *gdbarch = regcache->arch ();
543 if (regno < gdbarch_fp0_regnum (gdbarch))
544 regcache->raw_supply (regno,
545 (char *) &a_tss + regno_mapping[regno].tss_ofs);
546 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
547 regno))
548 i387_supply_fsave (regcache, regno, &npx);
549 else
550 internal_error (__FILE__, __LINE__,
551 _("Invalid register no. %d in fetch_register."), regno);
552 }
553
554 void
555 go32_nat_target::fetch_registers (struct regcache *regcache, int regno)
556 {
557 if (regno >= 0)
558 fetch_register (regcache, regno);
559 else
560 {
561 for (regno = 0;
562 regno < gdbarch_fp0_regnum (regcache->arch ());
563 regno++)
564 fetch_register (regcache, regno);
565 i387_supply_fsave (regcache, -1, &npx);
566 }
567 }
568
569 static void
570 store_register (const struct regcache *regcache, int regno)
571 {
572 struct gdbarch *gdbarch = regcache->arch ();
573 if (regno < gdbarch_fp0_regnum (gdbarch))
574 regcache->raw_collect (regno,
575 (char *) &a_tss + regno_mapping[regno].tss_ofs);
576 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
577 regno))
578 i387_collect_fsave (regcache, regno, &npx);
579 else
580 internal_error (__FILE__, __LINE__,
581 _("Invalid register no. %d in store_register."), regno);
582 }
583
584 void
585 go32_nat_target::store_registers (struct regcache *regcache, int regno)
586 {
587 unsigned r;
588
589 if (regno >= 0)
590 store_register (regcache, regno);
591 else
592 {
593 for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++)
594 store_register (regcache, r);
595 i387_collect_fsave (regcache, -1, &npx);
596 }
597 }
598
599 /* Const-correct version of DJGPP's write_child, which unfortunately
600 takes a non-const buffer pointer. */
601
602 static int
603 my_write_child (unsigned child_addr, const void *buf, unsigned len)
604 {
605 static void *buffer = NULL;
606 static unsigned buffer_len = 0;
607 int res;
608
609 if (buffer_len < len)
610 {
611 buffer = xrealloc (buffer, len);
612 buffer_len = len;
613 }
614
615 memcpy (buffer, buf, len);
616 res = write_child (child_addr, buffer, len);
617 return res;
618 }
619
620 /* Helper for go32_xfer_partial that handles memory transfers.
621 Arguments are like target_xfer_partial. */
622
623 static enum target_xfer_status
624 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
625 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
626 {
627 int res;
628
629 if (writebuf != NULL)
630 res = my_write_child (memaddr, writebuf, len);
631 else
632 res = read_child (memaddr, readbuf, len);
633
634 /* read_child and write_child return zero on success, non-zero on
635 failure. */
636 if (res != 0)
637 return TARGET_XFER_E_IO;
638
639 *xfered_len = len;
640 return TARGET_XFER_OK;
641 }
642
643 /* Target to_xfer_partial implementation. */
644
645 enum target_xfer_status
646 go32_nat_target::xfer_partial (enum target_object object,
647 const char *annex, gdb_byte *readbuf,
648 const gdb_byte *writebuf, ULONGEST offset,
649 ULONGEST len,
650 ULONGEST *xfered_len)
651 {
652 switch (object)
653 {
654 case TARGET_OBJECT_MEMORY:
655 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
656
657 default:
658 return this->beneath ()->xfer_partial (object, annex,
659 readbuf, writebuf, offset, len,
660 xfered_len);
661 }
662 }
663
664 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
665
666 void
667 go32_nat_target::files_info ()
668 {
669 printf_unfiltered ("You are running a DJGPP V2 program.\n");
670 }
671
672 void
673 go32_nat_target::kill_inferior ()
674 {
675 mourn_inferior ();
676 }
677
678 void
679 go32_nat_target::create_inferior (const char *exec_file,
680 const std::string &allargs,
681 char **env, int from_tty)
682 {
683 extern char **environ;
684 jmp_buf start_state;
685 char *cmdline;
686 char **env_save = environ;
687 size_t cmdlen;
688 struct inferior *inf;
689 int result;
690 const char *args = allargs.c_str ();
691
692 /* If no exec file handed to us, get it from the exec-file command -- with
693 a good, common error message if none is specified. */
694 if (exec_file == 0)
695 exec_file = get_exec_file (1);
696
697 resume_signal = -1;
698 resume_is_step = 0;
699
700 /* Initialize child's cwd as empty to be initialized when starting
701 the child. */
702 *child_cwd = 0;
703
704 /* Init command line storage. */
705 if (redir_debug_init (&child_cmd) == -1)
706 internal_error (__FILE__, __LINE__,
707 _("Cannot allocate redirection storage: "
708 "not enough memory.\n"));
709
710 /* Parse the command line and create redirections. */
711 if (strpbrk (args, "<>"))
712 {
713 if (redir_cmdline_parse (args, &child_cmd) == 0)
714 args = child_cmd.command;
715 else
716 error (_("Syntax error in command line."));
717 }
718 else
719 child_cmd.command = xstrdup (args);
720
721 cmdlen = strlen (args);
722 /* v2loadimage passes command lines via DOS memory, so it cannot
723 possibly handle commands longer than 1MB. */
724 if (cmdlen > 1024*1024)
725 error (_("Command line too long."));
726
727 cmdline = (char *) xmalloc (cmdlen + 4);
728 strcpy (cmdline + 1, args);
729 /* If the command-line length fits into DOS 126-char limits, use the
730 DOS command tail format; otherwise, tell v2loadimage to pass it
731 through a buffer in conventional memory. */
732 if (cmdlen < 127)
733 {
734 cmdline[0] = strlen (args);
735 cmdline[cmdlen + 1] = 13;
736 }
737 else
738 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
739
740 environ = env;
741
742 result = v2loadimage (exec_file, cmdline, start_state);
743
744 environ = env_save;
745 xfree (cmdline);
746
747 if (result != 0)
748 error (_("Load failed for image %s"), exec_file);
749
750 edi_init (start_state);
751 #if __DJGPP_MINOR__ < 3
752 save_npx ();
753 #endif
754
755 inferior_ptid = ptid_t (SOME_PID);
756 inf = current_inferior ();
757 inferior_appeared (inf, SOME_PID);
758
759 if (!target_is_pushed (this))
760 push_target (this);
761
762 add_thread_silent (inferior_ptid);
763
764 clear_proceed_status (0);
765 insert_breakpoints ();
766 prog_has_started = 1;
767 }
768
769 void
770 go32_nat_target::mourn_inferior ()
771 {
772 ptid_t ptid;
773
774 redir_cmdline_delete (&child_cmd);
775 resume_signal = -1;
776 resume_is_step = 0;
777
778 cleanup_client ();
779
780 /* We need to make sure all the breakpoint enable bits in the DR7
781 register are reset when the inferior exits. Otherwise, if they
782 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
783 failure to set more watchpoints, and other calamities. It would
784 be nice if GDB itself would take care to remove all breakpoints
785 at all times, but it doesn't, probably under an assumption that
786 the OS cleans up when the debuggee exits. */
787 x86_cleanup_dregs ();
788
789 ptid = inferior_ptid;
790 inferior_ptid = null_ptid;
791 prog_has_started = 0;
792
793 generic_mourn_inferior ();
794 maybe_unpush_target ();
795 }
796
797 /* Hardware watchpoint support. */
798
799 #define D_REGS edi.dr
800 #define CONTROL D_REGS[7]
801 #define STATUS D_REGS[6]
802
803 /* Pass the address ADDR to the inferior in the I'th debug register.
804 Here we just store the address in D_REGS, the watchpoint will be
805 actually set up when go32_wait runs the debuggee. */
806 static void
807 go32_set_dr (int i, CORE_ADDR addr)
808 {
809 if (i < 0 || i > 3)
810 internal_error (__FILE__, __LINE__,
811 _("Invalid register %d in go32_set_dr.\n"), i);
812 D_REGS[i] = addr;
813 }
814
815 /* Pass the value VAL to the inferior in the DR7 debug control
816 register. Here we just store the address in D_REGS, the watchpoint
817 will be actually set up when go32_wait runs the debuggee. */
818 static void
819 go32_set_dr7 (unsigned long val)
820 {
821 CONTROL = val;
822 }
823
824 /* Get the value of the DR6 debug status register from the inferior.
825 Here we just return the value stored in D_REGS, as we've got it
826 from the last go32_wait call. */
827 static unsigned long
828 go32_get_dr6 (void)
829 {
830 return STATUS;
831 }
832
833 /* Get the value of the DR7 debug status register from the inferior.
834 Here we just return the value stored in D_REGS, as we've got it
835 from the last go32_wait call. */
836
837 static unsigned long
838 go32_get_dr7 (void)
839 {
840 return CONTROL;
841 }
842
843 /* Get the value of the DR debug register I from the inferior. Here
844 we just return the value stored in D_REGS, as we've got it from the
845 last go32_wait call. */
846
847 static CORE_ADDR
848 go32_get_dr (int i)
849 {
850 if (i < 0 || i > 3)
851 internal_error (__FILE__, __LINE__,
852 _("Invalid register %d in go32_get_dr.\n"), i);
853 return D_REGS[i];
854 }
855
856 /* Put the device open on handle FD into either raw or cooked
857 mode, return 1 if it was in raw mode, zero otherwise. */
858
859 static int
860 device_mode (int fd, int raw_p)
861 {
862 int oldmode, newmode;
863 __dpmi_regs regs;
864
865 regs.x.ax = 0x4400;
866 regs.x.bx = fd;
867 __dpmi_int (0x21, &regs);
868 if (regs.x.flags & 1)
869 return -1;
870 newmode = oldmode = regs.x.dx;
871
872 if (raw_p)
873 newmode |= 0x20;
874 else
875 newmode &= ~0x20;
876
877 if (oldmode & 0x80) /* Only for character dev. */
878 {
879 regs.x.ax = 0x4401;
880 regs.x.bx = fd;
881 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
882 __dpmi_int (0x21, &regs);
883 if (regs.x.flags & 1)
884 return -1;
885 }
886 return (oldmode & 0x20) == 0x20;
887 }
888
889
890 static int inf_mode_valid = 0;
891 static int inf_terminal_mode;
892
893 /* This semaphore is needed because, amazingly enough, GDB calls
894 target.to_terminal_ours more than once after the inferior stops.
895 But we need the information from the first call only, since the
896 second call will always see GDB's own cooked terminal. */
897 static int terminal_is_ours = 1;
898
899 void
900 go32_nat_target::terminal_init ()
901 {
902 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
903 terminal_is_ours = 1;
904 }
905
906 void
907 go32_nat_target::terminal_info (const char *args, int from_tty)
908 {
909 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
910 !inf_mode_valid
911 ? "default" : inf_terminal_mode ? "raw" : "cooked");
912
913 #if __DJGPP_MINOR__ > 2
914 if (child_cmd.redirection)
915 {
916 int i;
917
918 for (i = 0; i < DBG_HANDLES; i++)
919 {
920 if (child_cmd.redirection[i]->file_name)
921 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
922 i, child_cmd.redirection[i]->file_name);
923 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
924 printf_unfiltered
925 ("\tFile handle %d appears to be closed by inferior.\n", i);
926 /* Mask off the raw/cooked bit when comparing device info words. */
927 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
928 != (_get_dev_info (i) & 0xdf))
929 printf_unfiltered
930 ("\tFile handle %d appears to be redirected by inferior.\n", i);
931 }
932 }
933 #endif
934 }
935
936 void
937 go32_nat_target::terminal_inferior ()
938 {
939 /* Redirect standard handles as child wants them. */
940 errno = 0;
941 if (redir_to_child (&child_cmd) == -1)
942 {
943 redir_to_debugger (&child_cmd);
944 error (_("Cannot redirect standard handles for program: %s."),
945 safe_strerror (errno));
946 }
947 /* Set the console device of the inferior to whatever mode
948 (raw or cooked) we found it last time. */
949 if (terminal_is_ours)
950 {
951 if (inf_mode_valid)
952 device_mode (0, inf_terminal_mode);
953 terminal_is_ours = 0;
954 }
955 }
956
957 void
958 go32_nat_target::terminal_ours ()
959 {
960 /* Switch to cooked mode on the gdb terminal and save the inferior
961 terminal mode to be restored when it is resumed. */
962 if (!terminal_is_ours)
963 {
964 inf_terminal_mode = device_mode (0, 0);
965 if (inf_terminal_mode != -1)
966 inf_mode_valid = 1;
967 else
968 /* If device_mode returned -1, we don't know what happens with
969 handle 0 anymore, so make the info invalid. */
970 inf_mode_valid = 0;
971 terminal_is_ours = 1;
972
973 /* Restore debugger's standard handles. */
974 errno = 0;
975 if (redir_to_debugger (&child_cmd) == -1)
976 {
977 redir_to_child (&child_cmd);
978 error (_("Cannot redirect standard handles for debugger: %s."),
979 safe_strerror (errno));
980 }
981 }
982 }
983
984 void
985 go32_nat_target::pass_ctrlc ()
986 {
987 }
988
989 bool
990 go32_nat_target::thread_alive (ptid_t ptid)
991 {
992 return ptid != null_ptid;
993 }
994
995 std::string
996 go32_nat_target::pid_to_str (ptid_t ptid)
997 {
998 return normal_pid_to_str (ptid);
999 }
1000
1001 /* Return the current DOS codepage number. */
1002 static int
1003 dos_codepage (void)
1004 {
1005 __dpmi_regs regs;
1006
1007 regs.x.ax = 0x6601;
1008 __dpmi_int (0x21, &regs);
1009 if (!(regs.x.flags & 1))
1010 return regs.x.bx & 0xffff;
1011 else
1012 return 437; /* default */
1013 }
1014
1015 /* Limited emulation of `nl_langinfo', for charset.c. */
1016 char *
1017 nl_langinfo (nl_item item)
1018 {
1019 char *retval;
1020
1021 switch (item)
1022 {
1023 case CODESET:
1024 {
1025 /* 8 is enough for SHORT_MAX + "CP" + null. */
1026 char buf[8];
1027 int blen = sizeof (buf);
1028 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1029
1030 if (needed > blen) /* Should never happen. */
1031 buf[0] = 0;
1032 retval = xstrdup (buf);
1033 }
1034 break;
1035 default:
1036 retval = xstrdup ("");
1037 break;
1038 }
1039 return retval;
1040 }
1041
1042 unsigned short windows_major, windows_minor;
1043
1044 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1045 static void
1046 go32_get_windows_version(void)
1047 {
1048 __dpmi_regs r;
1049
1050 r.x.ax = 0x1600;
1051 __dpmi_int(0x2f, &r);
1052 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1053 && (r.h.al > 3 || r.h.ah > 0))
1054 {
1055 windows_major = r.h.al;
1056 windows_minor = r.h.ah;
1057 }
1058 else
1059 windows_major = 0xff; /* meaning no Windows */
1060 }
1061
1062 /* A subroutine of go32_sysinfo to display memory info. */
1063 static void
1064 print_mem (unsigned long datum, const char *header, int in_pages_p)
1065 {
1066 if (datum != 0xffffffffUL)
1067 {
1068 if (in_pages_p)
1069 datum <<= 12;
1070 puts_filtered (header);
1071 if (datum > 1024)
1072 {
1073 printf_filtered ("%lu KB", datum >> 10);
1074 if (datum > 1024 * 1024)
1075 printf_filtered (" (%lu MB)", datum >> 20);
1076 }
1077 else
1078 printf_filtered ("%lu Bytes", datum);
1079 puts_filtered ("\n");
1080 }
1081 }
1082
1083 /* Display assorted information about the underlying OS. */
1084 static void
1085 go32_sysinfo (const char *arg, int from_tty)
1086 {
1087 static const char test_pattern[] =
1088 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1089 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1090 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1091 struct utsname u;
1092 char cpuid_vendor[13];
1093 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1094 unsigned true_dos_version = _get_dos_version (1);
1095 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1096 int dpmi_flags;
1097 char dpmi_vendor_info[129];
1098 int dpmi_vendor_available;
1099 __dpmi_version_ret dpmi_version_data;
1100 long eflags;
1101 __dpmi_free_mem_info mem_info;
1102 __dpmi_regs regs;
1103
1104 cpuid_vendor[0] = '\0';
1105 if (uname (&u))
1106 strcpy (u.machine, "Unknown x86");
1107 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1108 {
1109 /* CPUID with EAX = 0 returns the Vendor ID. */
1110 #if 0
1111 /* Ideally we would use x86_cpuid(), but it needs someone to run
1112 native tests first to make sure things actually work. They should.
1113 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1114 unsigned int eax, ebx, ecx, edx;
1115
1116 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
1117 {
1118 cpuid_max = eax;
1119 memcpy (&vendor[0], &ebx, 4);
1120 memcpy (&vendor[4], &ecx, 4);
1121 memcpy (&vendor[8], &edx, 4);
1122 cpuid_vendor[12] = '\0';
1123 }
1124 #else
1125 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1126 "xorl %%ecx, %%ecx;"
1127 "xorl %%edx, %%edx;"
1128 "movl $0, %%eax;"
1129 "cpuid;"
1130 "movl %%ebx, %0;"
1131 "movl %%edx, %1;"
1132 "movl %%ecx, %2;"
1133 "movl %%eax, %3;"
1134 : "=m" (cpuid_vendor[0]),
1135 "=m" (cpuid_vendor[4]),
1136 "=m" (cpuid_vendor[8]),
1137 "=m" (cpuid_max)
1138 :
1139 : "%eax", "%ebx", "%ecx", "%edx");
1140 cpuid_vendor[12] = '\0';
1141 #endif
1142 }
1143
1144 printf_filtered ("CPU Type.......................%s", u.machine);
1145 if (cpuid_vendor[0])
1146 printf_filtered (" (%s)", cpuid_vendor);
1147 puts_filtered ("\n");
1148
1149 /* CPUID with EAX = 1 returns processor signature and features. */
1150 if (cpuid_max >= 1)
1151 {
1152 static const char *brand_name[] = {
1153 "",
1154 " Celeron",
1155 " III",
1156 " III Xeon",
1157 "", "", "", "",
1158 " 4"
1159 };
1160 char cpu_string[80];
1161 char cpu_brand[20];
1162 unsigned brand_idx;
1163 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1164 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1165 int hygon_p = strcmp (cpuid_vendor, "HygonGenuine") == 0;
1166 unsigned cpu_family, cpu_model;
1167
1168 #if 0
1169 /* See comment above about cpuid usage. */
1170 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1171 #else
1172 __asm__ __volatile__ ("movl $1, %%eax;"
1173 "cpuid;"
1174 : "=a" (cpuid_eax),
1175 "=b" (cpuid_ebx),
1176 "=d" (cpuid_edx)
1177 :
1178 : "%ecx");
1179 #endif
1180 brand_idx = cpuid_ebx & 0xff;
1181 cpu_family = (cpuid_eax >> 8) & 0xf;
1182 cpu_model = (cpuid_eax >> 4) & 0xf;
1183 cpu_brand[0] = '\0';
1184 if (intel_p)
1185 {
1186 if (brand_idx > 0
1187 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1188 && *brand_name[brand_idx])
1189 strcpy (cpu_brand, brand_name[brand_idx]);
1190 else if (cpu_family == 5)
1191 {
1192 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1193 strcpy (cpu_brand, " MMX");
1194 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1195 strcpy (cpu_brand, " OverDrive");
1196 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1197 strcpy (cpu_brand, " Dual");
1198 }
1199 else if (cpu_family == 6 && cpu_model < 8)
1200 {
1201 switch (cpu_model)
1202 {
1203 case 1:
1204 strcpy (cpu_brand, " Pro");
1205 break;
1206 case 3:
1207 strcpy (cpu_brand, " II");
1208 break;
1209 case 5:
1210 strcpy (cpu_brand, " II Xeon");
1211 break;
1212 case 6:
1213 strcpy (cpu_brand, " Celeron");
1214 break;
1215 case 7:
1216 strcpy (cpu_brand, " III");
1217 break;
1218 }
1219 }
1220 }
1221 else if (amd_p)
1222 {
1223 switch (cpu_family)
1224 {
1225 case 4:
1226 strcpy (cpu_brand, "486/5x86");
1227 break;
1228 case 5:
1229 switch (cpu_model)
1230 {
1231 case 0:
1232 case 1:
1233 case 2:
1234 case 3:
1235 strcpy (cpu_brand, "-K5");
1236 break;
1237 case 6:
1238 case 7:
1239 strcpy (cpu_brand, "-K6");
1240 break;
1241 case 8:
1242 strcpy (cpu_brand, "-K6-2");
1243 break;
1244 case 9:
1245 strcpy (cpu_brand, "-K6-III");
1246 break;
1247 }
1248 break;
1249 case 6:
1250 switch (cpu_model)
1251 {
1252 case 1:
1253 case 2:
1254 case 4:
1255 strcpy (cpu_brand, " Athlon");
1256 break;
1257 case 3:
1258 strcpy (cpu_brand, " Duron");
1259 break;
1260 }
1261 break;
1262 }
1263 }
1264 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1265 intel_p ? "Pentium" : (amd_p ? "AMD" : (hygon_p ? "Hygon" : "ix86")),
1266 cpu_brand, cpu_model, cpuid_eax & 0xf);
1267 printfi_filtered (31, "%s\n", cpu_string);
1268 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1269 || ((cpuid_edx & 1) == 0)
1270 || ((amd_p || hygon_p) && (cpuid_edx & (3 << 30)) != 0))
1271 {
1272 puts_filtered ("CPU Features...................");
1273 /* We only list features which might be useful in the DPMI
1274 environment. */
1275 if ((cpuid_edx & 1) == 0)
1276 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1277 if ((cpuid_edx & (1 << 1)) != 0)
1278 puts_filtered ("VME ");
1279 if ((cpuid_edx & (1 << 2)) != 0)
1280 puts_filtered ("DE ");
1281 if ((cpuid_edx & (1 << 4)) != 0)
1282 puts_filtered ("TSC ");
1283 if ((cpuid_edx & (1 << 23)) != 0)
1284 puts_filtered ("MMX ");
1285 if ((cpuid_edx & (1 << 25)) != 0)
1286 puts_filtered ("SSE ");
1287 if ((cpuid_edx & (1 << 26)) != 0)
1288 puts_filtered ("SSE2 ");
1289 if (amd_p || hygon_p)
1290 {
1291 if ((cpuid_edx & (1 << 31)) != 0)
1292 puts_filtered ("3DNow! ");
1293 if ((cpuid_edx & (1 << 30)) != 0)
1294 puts_filtered ("3DNow!Ext");
1295 }
1296 puts_filtered ("\n");
1297 }
1298 }
1299 puts_filtered ("\n");
1300 printf_filtered ("DOS Version....................%s %s.%s",
1301 _os_flavor, u.release, u.version);
1302 if (true_dos_version != advertized_dos_version)
1303 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1304 puts_filtered ("\n");
1305 if (!windows_major)
1306 go32_get_windows_version ();
1307 if (windows_major != 0xff)
1308 {
1309 const char *windows_flavor;
1310
1311 printf_filtered ("Windows Version................%d.%02d (Windows ",
1312 windows_major, windows_minor);
1313 switch (windows_major)
1314 {
1315 case 3:
1316 windows_flavor = "3.X";
1317 break;
1318 case 4:
1319 switch (windows_minor)
1320 {
1321 case 0:
1322 windows_flavor = "95, 95A, or 95B";
1323 break;
1324 case 3:
1325 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1326 break;
1327 case 10:
1328 windows_flavor = "98 or 98 SE";
1329 break;
1330 case 90:
1331 windows_flavor = "ME";
1332 break;
1333 default:
1334 windows_flavor = "9X";
1335 break;
1336 }
1337 break;
1338 default:
1339 windows_flavor = "??";
1340 break;
1341 }
1342 printf_filtered ("%s)\n", windows_flavor);
1343 }
1344 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1345 printf_filtered ("Windows Version................"
1346 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1347 puts_filtered ("\n");
1348 /* On some versions of Windows, __dpmi_get_capabilities returns
1349 zero, but the buffer is not filled with info, so we fill the
1350 buffer with a known pattern and test for it afterwards. */
1351 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1352 dpmi_vendor_available =
1353 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1354 if (dpmi_vendor_available == 0
1355 && memcmp (dpmi_vendor_info, test_pattern,
1356 sizeof(dpmi_vendor_info)) != 0)
1357 {
1358 /* The DPMI spec says the vendor string should be ASCIIZ, but
1359 I don't trust the vendors to follow that... */
1360 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1361 dpmi_vendor_info[128] = '\0';
1362 printf_filtered ("DPMI Host......................"
1363 "%s v%d.%d (capabilities: %#x)\n",
1364 &dpmi_vendor_info[2],
1365 (unsigned)dpmi_vendor_info[0],
1366 (unsigned)dpmi_vendor_info[1],
1367 ((unsigned)dpmi_flags & 0x7f));
1368 }
1369 else
1370 printf_filtered ("DPMI Host......................(Info not available)\n");
1371 __dpmi_get_version (&dpmi_version_data);
1372 printf_filtered ("DPMI Version...................%d.%02d\n",
1373 dpmi_version_data.major, dpmi_version_data.minor);
1374 printf_filtered ("DPMI Info......................"
1375 "%s-bit DPMI, with%s Virtual Memory support\n",
1376 (dpmi_version_data.flags & 1) ? "32" : "16",
1377 (dpmi_version_data.flags & 4) ? "" : "out");
1378 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1379 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1380 printfi_filtered (31, "Processor type: i%d86\n",
1381 dpmi_version_data.cpu);
1382 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1383 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1384
1385 /* a_tss is only initialized when the debuggee is first run. */
1386 if (prog_has_started)
1387 {
1388 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1389 printf_filtered ("Protection....................."
1390 "Ring %d (in %s), with%s I/O protection\n",
1391 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1392 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1393 }
1394 puts_filtered ("\n");
1395 __dpmi_get_free_memory_information (&mem_info);
1396 print_mem (mem_info.total_number_of_physical_pages,
1397 "DPMI Total Physical Memory.....", 1);
1398 print_mem (mem_info.total_number_of_free_pages,
1399 "DPMI Free Physical Memory......", 1);
1400 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1401 "DPMI Swap Space................", 1);
1402 print_mem (mem_info.linear_address_space_size_in_pages,
1403 "DPMI Total Linear Address Size.", 1);
1404 print_mem (mem_info.free_linear_address_space_in_pages,
1405 "DPMI Free Linear Address Size..", 1);
1406 print_mem (mem_info.largest_available_free_block_in_bytes,
1407 "DPMI Largest Free Memory Block.", 0);
1408
1409 regs.h.ah = 0x48;
1410 regs.x.bx = 0xffff;
1411 __dpmi_int (0x21, &regs);
1412 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1413 regs.x.ax = 0x5800;
1414 __dpmi_int (0x21, &regs);
1415 if ((regs.x.flags & 1) == 0)
1416 {
1417 static const char *dos_hilo[] = {
1418 "Low", "", "", "", "High", "", "", "", "High, then Low"
1419 };
1420 static const char *dos_fit[] = {
1421 "First", "Best", "Last"
1422 };
1423 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1424 int fit_idx = regs.x.ax & 0x0f;
1425
1426 if (hilo_idx > 8)
1427 hilo_idx = 0;
1428 if (fit_idx > 2)
1429 fit_idx = 0;
1430 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1431 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1432 regs.x.ax = 0x5802;
1433 __dpmi_int (0x21, &regs);
1434 if ((regs.x.flags & 1) != 0)
1435 regs.h.al = 0;
1436 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1437 regs.h.al == 0 ? "not " : "");
1438 }
1439 }
1440
1441 struct seg_descr {
1442 unsigned short limit0;
1443 unsigned short base0;
1444 unsigned char base1;
1445 unsigned stype:5;
1446 unsigned dpl:2;
1447 unsigned present:1;
1448 unsigned limit1:4;
1449 unsigned available:1;
1450 unsigned dummy:1;
1451 unsigned bit32:1;
1452 unsigned page_granular:1;
1453 unsigned char base2;
1454 } __attribute__ ((packed));
1455
1456 struct gate_descr {
1457 unsigned short offset0;
1458 unsigned short selector;
1459 unsigned param_count:5;
1460 unsigned dummy:3;
1461 unsigned stype:5;
1462 unsigned dpl:2;
1463 unsigned present:1;
1464 unsigned short offset1;
1465 } __attribute__ ((packed));
1466
1467 /* Read LEN bytes starting at logical address ADDR, and put the result
1468 into DEST. Return 1 if success, zero if not. */
1469 static int
1470 read_memory_region (unsigned long addr, void *dest, size_t len)
1471 {
1472 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1473 int retval = 1;
1474
1475 /* For the low memory, we can simply use _dos_ds. */
1476 if (addr <= dos_ds_limit - len)
1477 dosmemget (addr, len, dest);
1478 else
1479 {
1480 /* For memory above 1MB we need to set up a special segment to
1481 be able to access that memory. */
1482 int sel = __dpmi_allocate_ldt_descriptors (1);
1483
1484 if (sel <= 0)
1485 retval = 0;
1486 else
1487 {
1488 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1489 size_t segment_limit = len - 1;
1490
1491 /* Make sure the crucial bits in the descriptor access
1492 rights are set correctly. Some DPMI providers might barf
1493 if we set the segment limit to something that is not an
1494 integral multiple of 4KB pages if the granularity bit is
1495 not set to byte-granular, even though the DPMI spec says
1496 it's the host's responsibility to set that bit correctly. */
1497 if (len > 1024 * 1024)
1498 {
1499 access_rights |= 0x8000;
1500 /* Page-granular segments should have the low 12 bits of
1501 the limit set. */
1502 segment_limit |= 0xfff;
1503 }
1504 else
1505 access_rights &= ~0x8000;
1506
1507 if (__dpmi_set_segment_base_address (sel, addr) != -1
1508 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1509 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1510 /* W2K silently fails to set the segment limit, leaving
1511 it at zero; this test avoids the resulting crash. */
1512 && __dpmi_get_segment_limit (sel) >= segment_limit)
1513 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1514 else
1515 retval = 0;
1516
1517 __dpmi_free_ldt_descriptor (sel);
1518 }
1519 }
1520 return retval;
1521 }
1522
1523 /* Get a segment descriptor stored at index IDX in the descriptor
1524 table whose base address is TABLE_BASE. Return the descriptor
1525 type, or -1 if failure. */
1526 static int
1527 get_descriptor (unsigned long table_base, int idx, void *descr)
1528 {
1529 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1530
1531 if (read_memory_region (addr, descr, 8))
1532 return (int)((struct seg_descr *)descr)->stype;
1533 return -1;
1534 }
1535
1536 struct dtr_reg {
1537 unsigned short limit __attribute__((packed));
1538 unsigned long base __attribute__((packed));
1539 };
1540
1541 /* Display a segment descriptor stored at index IDX in a descriptor
1542 table whose type is TYPE and whose base address is BASE_ADDR. If
1543 FORCE is non-zero, display even invalid descriptors. */
1544 static void
1545 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1546 {
1547 struct seg_descr descr;
1548 struct gate_descr gate;
1549
1550 /* Get the descriptor from the table. */
1551 if (idx == 0 && type == 0)
1552 puts_filtered ("0x000: null descriptor\n");
1553 else if (get_descriptor (base_addr, idx, &descr) != -1)
1554 {
1555 /* For each type of descriptor table, this has a bit set if the
1556 corresponding type of selectors is valid in that table. */
1557 static unsigned allowed_descriptors[] = {
1558 0xffffdafeL, /* GDT */
1559 0x0000c0e0L, /* IDT */
1560 0xffffdafaL /* LDT */
1561 };
1562
1563 /* If the program hasn't started yet, assume the debuggee will
1564 have the same CPL as the debugger. */
1565 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1566 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1567
1568 if (descr.present
1569 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1570 {
1571 printf_filtered ("0x%03x: ",
1572 type == 1
1573 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1574 if (descr.page_granular)
1575 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1576 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1577 || descr.stype == 9 || descr.stype == 11
1578 || (descr.stype >= 16 && descr.stype < 32))
1579 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1580 descr.base2, descr.base1, descr.base0, limit);
1581
1582 switch (descr.stype)
1583 {
1584 case 1:
1585 case 3:
1586 printf_filtered (" 16-bit TSS (task %sactive)",
1587 descr.stype == 3 ? "" : "in");
1588 break;
1589 case 2:
1590 puts_filtered (" LDT");
1591 break;
1592 case 4:
1593 memcpy (&gate, &descr, sizeof gate);
1594 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1595 gate.selector, gate.offset1, gate.offset0);
1596 printf_filtered (" 16-bit Call Gate (params=%d)",
1597 gate.param_count);
1598 break;
1599 case 5:
1600 printf_filtered ("TSS selector=0x%04x", descr.base0);
1601 printfi_filtered (16, "Task Gate");
1602 break;
1603 case 6:
1604 case 7:
1605 memcpy (&gate, &descr, sizeof gate);
1606 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1607 gate.selector, gate.offset1, gate.offset0);
1608 printf_filtered (" 16-bit %s Gate",
1609 descr.stype == 6 ? "Interrupt" : "Trap");
1610 break;
1611 case 9:
1612 case 11:
1613 printf_filtered (" 32-bit TSS (task %sactive)",
1614 descr.stype == 3 ? "" : "in");
1615 break;
1616 case 12:
1617 memcpy (&gate, &descr, sizeof gate);
1618 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1619 gate.selector, gate.offset1, gate.offset0);
1620 printf_filtered (" 32-bit Call Gate (params=%d)",
1621 gate.param_count);
1622 break;
1623 case 14:
1624 case 15:
1625 memcpy (&gate, &descr, sizeof gate);
1626 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1627 gate.selector, gate.offset1, gate.offset0);
1628 printf_filtered (" 32-bit %s Gate",
1629 descr.stype == 14 ? "Interrupt" : "Trap");
1630 break;
1631 case 16: /* data segments */
1632 case 17:
1633 case 18:
1634 case 19:
1635 case 20:
1636 case 21:
1637 case 22:
1638 case 23:
1639 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1640 descr.bit32 ? "32" : "16",
1641 descr.stype & 2
1642 ? "Read/Write," : "Read-Only, ",
1643 descr.stype & 4 ? "down" : "up",
1644 descr.stype & 1 ? "" : ", N.Acc");
1645 break;
1646 case 24: /* code segments */
1647 case 25:
1648 case 26:
1649 case 27:
1650 case 28:
1651 case 29:
1652 case 30:
1653 case 31:
1654 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1655 descr.bit32 ? "32" : "16",
1656 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1657 descr.stype & 4 ? "" : "N.",
1658 descr.stype & 1 ? "" : ", N.Acc");
1659 break;
1660 default:
1661 printf_filtered ("Unknown type 0x%02x", descr.stype);
1662 break;
1663 }
1664 puts_filtered ("\n");
1665 }
1666 else if (force)
1667 {
1668 printf_filtered ("0x%03x: ",
1669 type == 1
1670 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1671 if (!descr.present)
1672 puts_filtered ("Segment not present\n");
1673 else
1674 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1675 descr.stype);
1676 }
1677 }
1678 else if (force)
1679 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1680 }
1681
1682 static void
1683 go32_sldt (const char *arg, int from_tty)
1684 {
1685 struct dtr_reg gdtr;
1686 unsigned short ldtr = 0;
1687 int ldt_idx;
1688 struct seg_descr ldt_descr;
1689 long ldt_entry = -1L;
1690 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1691
1692 if (arg && *arg)
1693 {
1694 arg = skip_spaces (arg);
1695
1696 if (*arg)
1697 {
1698 ldt_entry = parse_and_eval_long (arg);
1699 if (ldt_entry < 0
1700 || (ldt_entry & 4) == 0
1701 || (ldt_entry & 3) != (cpl & 3))
1702 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1703 }
1704 }
1705
1706 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1707 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1708 ldt_idx = ldtr / 8;
1709 if (ldt_idx == 0)
1710 puts_filtered ("There is no LDT.\n");
1711 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1712 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1713 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1714 ldt_descr.base0
1715 | (ldt_descr.base1 << 16)
1716 | (ldt_descr.base2 << 24));
1717 else
1718 {
1719 unsigned base =
1720 ldt_descr.base0
1721 | (ldt_descr.base1 << 16)
1722 | (ldt_descr.base2 << 24);
1723 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1724 int max_entry;
1725
1726 if (ldt_descr.page_granular)
1727 /* Page-granular segments must have the low 12 bits of their
1728 limit set. */
1729 limit = (limit << 12) | 0xfff;
1730 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1731 64KB. */
1732 if (limit > 0xffff)
1733 limit = 0xffff;
1734
1735 max_entry = (limit + 1) / 8;
1736
1737 if (ldt_entry >= 0)
1738 {
1739 if (ldt_entry > limit)
1740 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1741 (unsigned long)ldt_entry, limit);
1742
1743 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1744 }
1745 else
1746 {
1747 int i;
1748
1749 for (i = 0; i < max_entry; i++)
1750 display_descriptor (ldt_descr.stype, base, i, 0);
1751 }
1752 }
1753 }
1754
1755 static void
1756 go32_sgdt (const char *arg, int from_tty)
1757 {
1758 struct dtr_reg gdtr;
1759 long gdt_entry = -1L;
1760 int max_entry;
1761
1762 if (arg && *arg)
1763 {
1764 arg = skip_spaces (arg);
1765
1766 if (*arg)
1767 {
1768 gdt_entry = parse_and_eval_long (arg);
1769 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1770 error (_("Invalid GDT entry 0x%03lx: "
1771 "not an integral multiple of 8."),
1772 (unsigned long)gdt_entry);
1773 }
1774 }
1775
1776 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1777 max_entry = (gdtr.limit + 1) / 8;
1778
1779 if (gdt_entry >= 0)
1780 {
1781 if (gdt_entry > gdtr.limit)
1782 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1783 (unsigned long)gdt_entry, gdtr.limit);
1784
1785 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1786 }
1787 else
1788 {
1789 int i;
1790
1791 for (i = 0; i < max_entry; i++)
1792 display_descriptor (0, gdtr.base, i, 0);
1793 }
1794 }
1795
1796 static void
1797 go32_sidt (const char *arg, int from_tty)
1798 {
1799 struct dtr_reg idtr;
1800 long idt_entry = -1L;
1801 int max_entry;
1802
1803 if (arg && *arg)
1804 {
1805 arg = skip_spaces (arg);
1806
1807 if (*arg)
1808 {
1809 idt_entry = parse_and_eval_long (arg);
1810 if (idt_entry < 0)
1811 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1812 }
1813 }
1814
1815 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1816 max_entry = (idtr.limit + 1) / 8;
1817 if (max_entry > 0x100) /* No more than 256 entries. */
1818 max_entry = 0x100;
1819
1820 if (idt_entry >= 0)
1821 {
1822 if (idt_entry > idtr.limit)
1823 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1824 (unsigned long)idt_entry, idtr.limit);
1825
1826 display_descriptor (1, idtr.base, idt_entry, 1);
1827 }
1828 else
1829 {
1830 int i;
1831
1832 for (i = 0; i < max_entry; i++)
1833 display_descriptor (1, idtr.base, i, 0);
1834 }
1835 }
1836
1837 /* Cached linear address of the base of the page directory. For
1838 now, available only under CWSDPMI. Code based on ideas and
1839 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1840 static unsigned long pdbr;
1841
1842 static unsigned long
1843 get_cr3 (void)
1844 {
1845 unsigned offset;
1846 unsigned taskreg;
1847 unsigned long taskbase, cr3;
1848 struct dtr_reg gdtr;
1849
1850 if (pdbr > 0 && pdbr <= 0xfffff)
1851 return pdbr;
1852
1853 /* Get the linear address of GDT and the Task Register. */
1854 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1855 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1856
1857 /* Task Register is a segment selector for the TSS of the current
1858 task. Therefore, it can be used as an index into the GDT to get
1859 at the segment descriptor for the TSS. To get the index, reset
1860 the low 3 bits of the selector (which give the CPL). Add 2 to the
1861 offset to point to the 3 low bytes of the base address. */
1862 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1863
1864
1865 /* CWSDPMI's task base is always under the 1MB mark. */
1866 if (offset > 0xfffff)
1867 return 0;
1868
1869 _farsetsel (_dos_ds);
1870 taskbase = _farnspeekl (offset) & 0xffffffU;
1871 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1872 if (taskbase > 0xfffff)
1873 return 0;
1874
1875 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1876 offset 1Ch in the TSS. */
1877 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1878 if (cr3 > 0xfffff)
1879 {
1880 #if 0 /* Not fully supported yet. */
1881 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1882 the first Page Table right below the Page Directory. Thus,
1883 the first Page Table's entry for its own address and the Page
1884 Directory entry for that Page Table will hold the same
1885 physical address. The loop below searches the entire UMB
1886 range of addresses for such an occurrence. */
1887 unsigned long addr, pte_idx;
1888
1889 for (addr = 0xb0000, pte_idx = 0xb0;
1890 pte_idx < 0xff;
1891 addr += 0x1000, pte_idx++)
1892 {
1893 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1894 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1895 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1896 {
1897 cr3 = addr + 0x1000;
1898 break;
1899 }
1900 }
1901 #endif
1902
1903 if (cr3 > 0xfffff)
1904 cr3 = 0;
1905 }
1906
1907 return cr3;
1908 }
1909
1910 /* Return the N'th Page Directory entry. */
1911 static unsigned long
1912 get_pde (int n)
1913 {
1914 unsigned long pde = 0;
1915
1916 if (pdbr && n >= 0 && n < 1024)
1917 {
1918 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1919 }
1920 return pde;
1921 }
1922
1923 /* Return the N'th entry of the Page Table whose Page Directory entry
1924 is PDE. */
1925 static unsigned long
1926 get_pte (unsigned long pde, int n)
1927 {
1928 unsigned long pte = 0;
1929
1930 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1931 page tables, for now. */
1932 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1933 {
1934 pde &= ~0xfff; /* Clear non-address bits. */
1935 pte = _farpeekl (_dos_ds, pde + 4*n);
1936 }
1937 return pte;
1938 }
1939
1940 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1941 says this is a Page Directory entry. If FORCE is non-zero, display
1942 the entry even if its Present flag is off. OFF is the offset of the
1943 address from the page's base address. */
1944 static void
1945 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1946 {
1947 if ((entry & 1) != 0)
1948 {
1949 printf_filtered ("Base=0x%05lx000", entry >> 12);
1950 if ((entry & 0x100) && !is_dir)
1951 puts_filtered (" Global");
1952 if ((entry & 0x40) && !is_dir)
1953 puts_filtered (" Dirty");
1954 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1955 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1956 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1957 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1958 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1959 if (off)
1960 printf_filtered (" +0x%x", off);
1961 puts_filtered ("\n");
1962 }
1963 else if (force)
1964 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1965 is_dir ? " Table" : "", entry >> 1);
1966 }
1967
1968 static void
1969 go32_pde (const char *arg, int from_tty)
1970 {
1971 long pde_idx = -1, i;
1972
1973 if (arg && *arg)
1974 {
1975 arg = skip_spaces (arg);
1976
1977 if (*arg)
1978 {
1979 pde_idx = parse_and_eval_long (arg);
1980 if (pde_idx < 0 || pde_idx >= 1024)
1981 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1982 }
1983 }
1984
1985 pdbr = get_cr3 ();
1986 if (!pdbr)
1987 puts_filtered ("Access to Page Directories is "
1988 "not supported on this system.\n");
1989 else if (pde_idx >= 0)
1990 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1991 else
1992 for (i = 0; i < 1024; i++)
1993 display_ptable_entry (get_pde (i), 1, 0, 0);
1994 }
1995
1996 /* A helper function to display entries in a Page Table pointed to by
1997 the N'th entry in the Page Directory. If FORCE is non-zero, say
1998 something even if the Page Table is not accessible. */
1999 static void
2000 display_page_table (long n, int force)
2001 {
2002 unsigned long pde = get_pde (n);
2003
2004 if ((pde & 1) != 0)
2005 {
2006 int i;
2007
2008 printf_filtered ("Page Table pointed to by "
2009 "Page Directory entry 0x%lx:\n", n);
2010 for (i = 0; i < 1024; i++)
2011 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2012 puts_filtered ("\n");
2013 }
2014 else if (force)
2015 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2016 }
2017
2018 static void
2019 go32_pte (const char *arg, int from_tty)
2020 {
2021 long pde_idx = -1L, i;
2022
2023 if (arg && *arg)
2024 {
2025 arg = skip_spaces (arg);
2026
2027 if (*arg)
2028 {
2029 pde_idx = parse_and_eval_long (arg);
2030 if (pde_idx < 0 || pde_idx >= 1024)
2031 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2032 }
2033 }
2034
2035 pdbr = get_cr3 ();
2036 if (!pdbr)
2037 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2038 else if (pde_idx >= 0)
2039 display_page_table (pde_idx, 1);
2040 else
2041 for (i = 0; i < 1024; i++)
2042 display_page_table (i, 0);
2043 }
2044
2045 static void
2046 go32_pte_for_address (const char *arg, int from_tty)
2047 {
2048 CORE_ADDR addr = 0, i;
2049
2050 if (arg && *arg)
2051 {
2052 arg = skip_spaces (arg);
2053
2054 if (*arg)
2055 addr = parse_and_eval_address (arg);
2056 }
2057 if (!addr)
2058 error_no_arg (_("linear address"));
2059
2060 pdbr = get_cr3 ();
2061 if (!pdbr)
2062 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2063 else
2064 {
2065 int pde_idx = (addr >> 22) & 0x3ff;
2066 int pte_idx = (addr >> 12) & 0x3ff;
2067 unsigned offs = addr & 0xfff;
2068
2069 printf_filtered ("Page Table entry for address %s:\n",
2070 hex_string(addr));
2071 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2072 }
2073 }
2074
2075 static struct cmd_list_element *info_dos_cmdlist = NULL;
2076
2077 static void
2078 go32_info_dos_command (const char *args, int from_tty)
2079 {
2080 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2081 }
2082
2083 void
2084 _initialize_go32_nat (void)
2085 {
2086 x86_dr_low.set_control = go32_set_dr7;
2087 x86_dr_low.set_addr = go32_set_dr;
2088 x86_dr_low.get_status = go32_get_dr6;
2089 x86_dr_low.get_control = go32_get_dr7;
2090 x86_dr_low.get_addr = go32_get_dr;
2091 x86_set_debug_register_length (4);
2092
2093 add_inf_child_target (&the_go32_nat_target);
2094
2095 /* Initialize child's cwd as empty to be initialized when starting
2096 the child. */
2097 *child_cwd = 0;
2098
2099 /* Initialize child's command line storage. */
2100 if (redir_debug_init (&child_cmd) == -1)
2101 internal_error (__FILE__, __LINE__,
2102 _("Cannot allocate redirection storage: "
2103 "not enough memory.\n"));
2104
2105 /* We are always processing GCC-compiled programs. */
2106 processing_gcc_compilation = 2;
2107
2108 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2109 Print information specific to DJGPP (aka MS-DOS) debugging."),
2110 &info_dos_cmdlist, "info dos ", 0, &infolist);
2111
2112 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2113 Display information about the target system, including CPU, OS, DPMI, etc."),
2114 &info_dos_cmdlist);
2115 add_cmd ("ldt", class_info, go32_sldt, _("\
2116 Display entries in the LDT (Local Descriptor Table).\n\
2117 Entry number (an expression) as an argument means display only that entry."),
2118 &info_dos_cmdlist);
2119 add_cmd ("gdt", class_info, go32_sgdt, _("\
2120 Display entries in the GDT (Global Descriptor Table).\n\
2121 Entry number (an expression) as an argument means display only that entry."),
2122 &info_dos_cmdlist);
2123 add_cmd ("idt", class_info, go32_sidt, _("\
2124 Display entries in the IDT (Interrupt Descriptor Table).\n\
2125 Entry number (an expression) as an argument means display only that entry."),
2126 &info_dos_cmdlist);
2127 add_cmd ("pde", class_info, go32_pde, _("\
2128 Display entries in the Page Directory.\n\
2129 Entry number (an expression) as an argument means display only that entry."),
2130 &info_dos_cmdlist);
2131 add_cmd ("pte", class_info, go32_pte, _("\
2132 Display entries in Page Tables.\n\
2133 Entry number (an expression) as an argument means display only entries\n\
2134 from the Page Table pointed to by the specified Page Directory entry."),
2135 &info_dos_cmdlist);
2136 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2137 Display a Page Table entry for a linear address.\n\
2138 The address argument must be a linear address, after adding to\n\
2139 it the base address of the appropriate segment.\n\
2140 The base address of variables and functions in the debuggee's data\n\
2141 or code segment is stored in the variable __djgpp_base_address,\n\
2142 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2143 For other segments, look up their base address in the output of\n\
2144 the `info dos ldt' command."),
2145 &info_dos_cmdlist);
2146 }
2147
2148 pid_t
2149 tcgetpgrp (int fd)
2150 {
2151 if (isatty (fd))
2152 return SOME_PID;
2153 errno = ENOTTY;
2154 return -1;
2155 }
2156
2157 int
2158 tcsetpgrp (int fd, pid_t pgid)
2159 {
2160 if (isatty (fd) && pgid == SOME_PID)
2161 return 0;
2162 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2163 return -1;
2164 }
This page took 0.116205 seconds and 3 git commands to generate.