gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "displaced-stepping.h"
22 #include "gdbcore.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "regcache.h"
26 #include "regset.h"
27 #include "inferior.h"
28 #include "osabi.h"
29 #include "reggroups.h"
30 #include "dwarf2/frame.h"
31 #include "i386-tdep.h"
32 #include "i386-linux-tdep.h"
33 #include "linux-tdep.h"
34 #include "utils.h"
35 #include "glibc-tdep.h"
36 #include "solib-svr4.h"
37 #include "symtab.h"
38 #include "arch-utils.h"
39 #include "xml-syscall.h"
40 #include "infrun.h"
41
42 #include "i387-tdep.h"
43 #include "gdbsupport/x86-xstate.h"
44
45 /* The syscall's XML filename for i386. */
46 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
47
48 #include "record-full.h"
49 #include "linux-record.h"
50
51 #include "arch/i386.h"
52 #include "target-descriptions.h"
53
54 /* Return non-zero, when the register is in the corresponding register
55 group. Put the LINUX_ORIG_EAX register in the system group. */
56 static int
57 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
58 struct reggroup *group)
59 {
60 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
61 return (group == system_reggroup
62 || group == save_reggroup
63 || group == restore_reggroup);
64 return i386_register_reggroup_p (gdbarch, regnum, group);
65 }
66
67 \f
68 /* Recognizing signal handler frames. */
69
70 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
71 "realtime" (RT) signals. The RT signals can provide additional
72 information to the signal handler if the SA_SIGINFO flag is set
73 when establishing a signal handler using `sigaction'. It is not
74 unlikely that future versions of GNU/Linux will support SA_SIGINFO
75 for normal signals too. */
76
77 /* When the i386 Linux kernel calls a signal handler and the
78 SA_RESTORER flag isn't set, the return address points to a bit of
79 code on the stack. This function returns whether the PC appears to
80 be within this bit of code.
81
82 The instruction sequence for normal signals is
83 pop %eax
84 mov $0x77, %eax
85 int $0x80
86 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
87
88 Checking for the code sequence should be somewhat reliable, because
89 the effect is to call the system call sigreturn. This is unlikely
90 to occur anywhere other than in a signal trampoline.
91
92 It kind of sucks that we have to read memory from the process in
93 order to identify a signal trampoline, but there doesn't seem to be
94 any other way. Therefore we only do the memory reads if no
95 function name could be identified, which should be the case since
96 the code is on the stack.
97
98 Detection of signal trampolines for handlers that set the
99 SA_RESTORER flag is in general not possible. Unfortunately this is
100 what the GNU C Library has been doing for quite some time now.
101 However, as of version 2.1.2, the GNU C Library uses signal
102 trampolines (named __restore and __restore_rt) that are identical
103 to the ones used by the kernel. Therefore, these trampolines are
104 supported too. */
105
106 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
107 #define LINUX_SIGTRAMP_OFFSET0 0
108 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
109 #define LINUX_SIGTRAMP_OFFSET1 1
110 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
111 #define LINUX_SIGTRAMP_OFFSET2 6
112
113 static const gdb_byte linux_sigtramp_code[] =
114 {
115 LINUX_SIGTRAMP_INSN0, /* pop %eax */
116 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
117 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
118 };
119
120 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
121
122 /* If THIS_FRAME is a sigtramp routine, return the address of the
123 start of the routine. Otherwise, return 0. */
124
125 static CORE_ADDR
126 i386_linux_sigtramp_start (struct frame_info *this_frame)
127 {
128 CORE_ADDR pc = get_frame_pc (this_frame);
129 gdb_byte buf[LINUX_SIGTRAMP_LEN];
130
131 /* We only recognize a signal trampoline if PC is at the start of
132 one of the three instructions. We optimize for finding the PC at
133 the start, as will be the case when the trampoline is not the
134 first frame on the stack. We assume that in the case where the
135 PC is not at the start of the instruction sequence, there will be
136 a few trailing readable bytes on the stack. */
137
138 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
139 return 0;
140
141 if (buf[0] != LINUX_SIGTRAMP_INSN0)
142 {
143 int adjust;
144
145 switch (buf[0])
146 {
147 case LINUX_SIGTRAMP_INSN1:
148 adjust = LINUX_SIGTRAMP_OFFSET1;
149 break;
150 case LINUX_SIGTRAMP_INSN2:
151 adjust = LINUX_SIGTRAMP_OFFSET2;
152 break;
153 default:
154 return 0;
155 }
156
157 pc -= adjust;
158
159 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
160 return 0;
161 }
162
163 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
164 return 0;
165
166 return pc;
167 }
168
169 /* This function does the same for RT signals. Here the instruction
170 sequence is
171 mov $0xad, %eax
172 int $0x80
173 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
174
175 The effect is to call the system call rt_sigreturn. */
176
177 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
178 #define LINUX_RT_SIGTRAMP_OFFSET0 0
179 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
180 #define LINUX_RT_SIGTRAMP_OFFSET1 5
181
182 static const gdb_byte linux_rt_sigtramp_code[] =
183 {
184 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
185 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
186 };
187
188 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
189
190 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
191 start of the routine. Otherwise, return 0. */
192
193 static CORE_ADDR
194 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
195 {
196 CORE_ADDR pc = get_frame_pc (this_frame);
197 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
198
199 /* We only recognize a signal trampoline if PC is at the start of
200 one of the two instructions. We optimize for finding the PC at
201 the start, as will be the case when the trampoline is not the
202 first frame on the stack. We assume that in the case where the
203 PC is not at the start of the instruction sequence, there will be
204 a few trailing readable bytes on the stack. */
205
206 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
207 return 0;
208
209 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
210 {
211 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
212 return 0;
213
214 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
215
216 if (!safe_frame_unwind_memory (this_frame, pc, buf,
217 LINUX_RT_SIGTRAMP_LEN))
218 return 0;
219 }
220
221 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
222 return 0;
223
224 return pc;
225 }
226
227 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
228 routine. */
229
230 static int
231 i386_linux_sigtramp_p (struct frame_info *this_frame)
232 {
233 CORE_ADDR pc = get_frame_pc (this_frame);
234 const char *name;
235
236 find_pc_partial_function (pc, &name, NULL, NULL);
237
238 /* If we have NAME, we can optimize the search. The trampolines are
239 named __restore and __restore_rt. However, they aren't dynamically
240 exported from the shared C library, so the trampoline may appear to
241 be part of the preceding function. This should always be sigaction,
242 __sigaction, or __libc_sigaction (all aliases to the same function). */
243 if (name == NULL || strstr (name, "sigaction") != NULL)
244 return (i386_linux_sigtramp_start (this_frame) != 0
245 || i386_linux_rt_sigtramp_start (this_frame) != 0);
246
247 return (strcmp ("__restore", name) == 0
248 || strcmp ("__restore_rt", name) == 0);
249 }
250
251 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
252 may have DWARF-2 CFI. */
253
254 static int
255 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
256 struct frame_info *this_frame)
257 {
258 CORE_ADDR pc = get_frame_pc (this_frame);
259 const char *name;
260
261 find_pc_partial_function (pc, &name, NULL, NULL);
262
263 /* If a vsyscall DSO is in use, the signal trampolines may have these
264 names. */
265 if (name && (strcmp (name, "__kernel_sigreturn") == 0
266 || strcmp (name, "__kernel_rt_sigreturn") == 0))
267 return 1;
268
269 return 0;
270 }
271
272 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
273 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
274
275 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
276 address of the associated sigcontext structure. */
277
278 static CORE_ADDR
279 i386_linux_sigcontext_addr (struct frame_info *this_frame)
280 {
281 struct gdbarch *gdbarch = get_frame_arch (this_frame);
282 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
283 CORE_ADDR pc;
284 CORE_ADDR sp;
285 gdb_byte buf[4];
286
287 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
288 sp = extract_unsigned_integer (buf, 4, byte_order);
289
290 pc = i386_linux_sigtramp_start (this_frame);
291 if (pc)
292 {
293 /* The sigcontext structure lives on the stack, right after
294 the signum argument. We determine the address of the
295 sigcontext structure by looking at the frame's stack
296 pointer. Keep in mind that the first instruction of the
297 sigtramp code is "pop %eax". If the PC is after this
298 instruction, adjust the returned value accordingly. */
299 if (pc == get_frame_pc (this_frame))
300 return sp + 4;
301 return sp;
302 }
303
304 pc = i386_linux_rt_sigtramp_start (this_frame);
305 if (pc)
306 {
307 CORE_ADDR ucontext_addr;
308
309 /* The sigcontext structure is part of the user context. A
310 pointer to the user context is passed as the third argument
311 to the signal handler. */
312 read_memory (sp + 8, buf, 4);
313 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
314 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
315 }
316
317 error (_("Couldn't recognize signal trampoline."));
318 return 0;
319 }
320
321 /* Set the program counter for process PTID to PC. */
322
323 static void
324 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
325 {
326 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
327
328 /* We must be careful with modifying the program counter. If we
329 just interrupted a system call, the kernel might try to restart
330 it when we resume the inferior. On restarting the system call,
331 the kernel will try backing up the program counter even though it
332 no longer points at the system call. This typically results in a
333 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
334 "orig_eax" pseudo-register.
335
336 Note that "orig_eax" is saved when setting up a dummy call frame.
337 This means that it is properly restored when that frame is
338 popped, and that the interrupted system call will be restarted
339 when we resume the inferior on return from a function call from
340 within GDB. In all other cases the system call will not be
341 restarted. */
342 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
343 }
344
345 /* Record all registers but IP register for process-record. */
346
347 static int
348 i386_all_but_ip_registers_record (struct regcache *regcache)
349 {
350 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
351 return -1;
352 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
353 return -1;
354 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
355 return -1;
356 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
357 return -1;
358 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
359 return -1;
360 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
361 return -1;
362 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
363 return -1;
364 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
365 return -1;
366 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
367 return -1;
368
369 return 0;
370 }
371
372 /* i386_canonicalize_syscall maps from the native i386 Linux set
373 of syscall ids into a canonical set of syscall ids used by
374 process record (a mostly trivial mapping, since the canonical
375 set was originally taken from the i386 set). */
376
377 static enum gdb_syscall
378 i386_canonicalize_syscall (int syscall)
379 {
380 enum { i386_syscall_max = 499 };
381
382 if (syscall <= i386_syscall_max)
383 return (enum gdb_syscall) syscall;
384 else
385 return gdb_sys_no_syscall;
386 }
387
388 /* Value of the sigcode in case of a boundary fault. */
389
390 #define SIG_CODE_BONDARY_FAULT 3
391
392 /* i386 GNU/Linux implementation of the handle_segmentation_fault
393 gdbarch hook. Displays information related to MPX bound
394 violations. */
395 void
396 i386_linux_handle_segmentation_fault (struct gdbarch *gdbarch,
397 struct ui_out *uiout)
398 {
399 /* -Wmaybe-uninitialized */
400 CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
401 int is_upper;
402 long sig_code = 0;
403
404 if (!i386_mpx_enabled ())
405 return;
406
407 try
408 {
409 /* Sigcode evaluates if the actual segfault is a boundary violation. */
410 sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
411
412 lower_bound
413 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
414 upper_bound
415 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
416 access
417 = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
418 }
419 catch (const gdb_exception &exception)
420 {
421 return;
422 }
423
424 /* If this is not a boundary violation just return. */
425 if (sig_code != SIG_CODE_BONDARY_FAULT)
426 return;
427
428 is_upper = (access > upper_bound ? 1 : 0);
429
430 uiout->text ("\n");
431 if (is_upper)
432 uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
433 else
434 uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
435
436 uiout->text (_(" while accessing address "));
437 uiout->field_core_addr ("bound-access", gdbarch, access);
438
439 uiout->text (_("\nBounds: [lower = "));
440 uiout->field_core_addr ("lower-bound", gdbarch, lower_bound);
441
442 uiout->text (_(", upper = "));
443 uiout->field_core_addr ("upper-bound", gdbarch, upper_bound);
444
445 uiout->text (_("]"));
446 }
447
448 /* Parse the arguments of current system call instruction and record
449 the values of the registers and memory that will be changed into
450 "record_arch_list". This instruction is "int 0x80" (Linux
451 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
452
453 Return -1 if something wrong. */
454
455 static struct linux_record_tdep i386_linux_record_tdep;
456
457 static int
458 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
459 {
460 int ret;
461 LONGEST syscall_native;
462 enum gdb_syscall syscall_gdb;
463
464 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
465
466 syscall_gdb = i386_canonicalize_syscall (syscall_native);
467
468 if (syscall_gdb < 0)
469 {
470 printf_unfiltered (_("Process record and replay target doesn't "
471 "support syscall number %s\n"),
472 plongest (syscall_native));
473 return -1;
474 }
475
476 if (syscall_gdb == gdb_sys_sigreturn
477 || syscall_gdb == gdb_sys_rt_sigreturn)
478 {
479 if (i386_all_but_ip_registers_record (regcache))
480 return -1;
481 return 0;
482 }
483
484 ret = record_linux_system_call (syscall_gdb, regcache,
485 &i386_linux_record_tdep);
486 if (ret)
487 return ret;
488
489 /* Record the return value of the system call. */
490 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
491 return -1;
492
493 return 0;
494 }
495
496 #define I386_LINUX_xstate 270
497 #define I386_LINUX_frame_size 732
498
499 static int
500 i386_linux_record_signal (struct gdbarch *gdbarch,
501 struct regcache *regcache,
502 enum gdb_signal signal)
503 {
504 ULONGEST esp;
505
506 if (i386_all_but_ip_registers_record (regcache))
507 return -1;
508
509 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
510 return -1;
511
512 /* Record the change in the stack. */
513 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
514 /* This is for xstate.
515 sp -= sizeof (struct _fpstate); */
516 esp -= I386_LINUX_xstate;
517 /* This is for frame_size.
518 sp -= sizeof (struct rt_sigframe); */
519 esp -= I386_LINUX_frame_size;
520 if (record_full_arch_list_add_mem (esp,
521 I386_LINUX_xstate + I386_LINUX_frame_size))
522 return -1;
523
524 if (record_full_arch_list_add_end ())
525 return -1;
526
527 return 0;
528 }
529 \f
530
531 /* Core of the implementation for gdbarch get_syscall_number. Get pending
532 syscall number from REGCACHE. If there is no pending syscall -1 will be
533 returned. Pending syscall means ptrace has stepped into the syscall but
534 another ptrace call will step out. PC is right after the int $0x80
535 / syscall / sysenter instruction in both cases, PC does not change during
536 the second ptrace step. */
537
538 static LONGEST
539 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
540 {
541 struct gdbarch *gdbarch = regcache->arch ();
542 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
543 /* The content of a register. */
544 gdb_byte buf[4];
545 /* The result. */
546 LONGEST ret;
547
548 /* Getting the system call number from the register.
549 When dealing with x86 architecture, this information
550 is stored at %eax register. */
551 regcache->cooked_read (I386_LINUX_ORIG_EAX_REGNUM, buf);
552
553 ret = extract_signed_integer (buf, 4, byte_order);
554
555 return ret;
556 }
557
558 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
559 compatible with gdbarch get_syscall_number method prototype. */
560
561 static LONGEST
562 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
563 thread_info *thread)
564 {
565 struct regcache *regcache = get_thread_regcache (thread);
566
567 return i386_linux_get_syscall_number_from_regcache (regcache);
568 }
569
570 /* The register sets used in GNU/Linux ELF core-dumps are identical to
571 the register sets in `struct user' that are used for a.out
572 core-dumps. These are also used by ptrace(2). The corresponding
573 types are `elf_gregset_t' for the general-purpose registers (with
574 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
575 for the floating-point registers.
576
577 Those types used to be available under the names `gregset_t' and
578 `fpregset_t' too, and GDB used those names in the past. But those
579 names are now used for the register sets used in the `mcontext_t'
580 type, which have a different size and layout. */
581
582 /* Mapping between the general-purpose registers in `struct user'
583 format and GDB's register cache layout. */
584
585 /* From <sys/reg.h>. */
586 int i386_linux_gregset_reg_offset[] =
587 {
588 6 * 4, /* %eax */
589 1 * 4, /* %ecx */
590 2 * 4, /* %edx */
591 0 * 4, /* %ebx */
592 15 * 4, /* %esp */
593 5 * 4, /* %ebp */
594 3 * 4, /* %esi */
595 4 * 4, /* %edi */
596 12 * 4, /* %eip */
597 14 * 4, /* %eflags */
598 13 * 4, /* %cs */
599 16 * 4, /* %ss */
600 7 * 4, /* %ds */
601 8 * 4, /* %es */
602 9 * 4, /* %fs */
603 10 * 4, /* %gs */
604 -1, -1, -1, -1, -1, -1, -1, -1,
605 -1, -1, -1, -1, -1, -1, -1, -1,
606 -1, -1, -1, -1, -1, -1, -1, -1,
607 -1,
608 -1, -1, -1, -1, -1, -1, -1, -1,
609 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
610 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
611 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
612 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
613 -1, /* PKRU register */
614 11 * 4, /* "orig_eax" */
615 };
616
617 /* Mapping between the general-purpose registers in `struct
618 sigcontext' format and GDB's register cache layout. */
619
620 /* From <asm/sigcontext.h>. */
621 static int i386_linux_sc_reg_offset[] =
622 {
623 11 * 4, /* %eax */
624 10 * 4, /* %ecx */
625 9 * 4, /* %edx */
626 8 * 4, /* %ebx */
627 7 * 4, /* %esp */
628 6 * 4, /* %ebp */
629 5 * 4, /* %esi */
630 4 * 4, /* %edi */
631 14 * 4, /* %eip */
632 16 * 4, /* %eflags */
633 15 * 4, /* %cs */
634 18 * 4, /* %ss */
635 3 * 4, /* %ds */
636 2 * 4, /* %es */
637 1 * 4, /* %fs */
638 0 * 4 /* %gs */
639 };
640
641 /* Get XSAVE extended state xcr0 from core dump. */
642
643 uint64_t
644 i386_linux_core_read_xcr0 (bfd *abfd)
645 {
646 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
647 uint64_t xcr0;
648
649 if (xstate)
650 {
651 size_t size = bfd_section_size (xstate);
652
653 /* Check extended state size. */
654 if (size < X86_XSTATE_AVX_SIZE)
655 xcr0 = X86_XSTATE_SSE_MASK;
656 else
657 {
658 char contents[8];
659
660 if (! bfd_get_section_contents (abfd, xstate, contents,
661 I386_LINUX_XSAVE_XCR0_OFFSET,
662 8))
663 {
664 warning (_("Couldn't read `xcr0' bytes from "
665 "`.reg-xstate' section in core file."));
666 return 0;
667 }
668
669 xcr0 = bfd_get_64 (abfd, contents);
670 }
671 }
672 else
673 xcr0 = 0;
674
675 return xcr0;
676 }
677
678 /* See i386-linux-tdep.h. */
679
680 const struct target_desc *
681 i386_linux_read_description (uint64_t xcr0)
682 {
683 if (xcr0 == 0)
684 return NULL;
685
686 static struct target_desc *i386_linux_tdescs \
687 [2/*X87*/][2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
688 struct target_desc **tdesc;
689
690 tdesc = &i386_linux_tdescs[(xcr0 & X86_XSTATE_X87) ? 1 : 0]
691 [(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
692 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
693 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
694 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
695 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
696
697 if (*tdesc == NULL)
698 *tdesc = i386_create_target_description (xcr0, true, false);
699
700 return *tdesc;
701 }
702
703 /* Get Linux/x86 target description from core dump. */
704
705 static const struct target_desc *
706 i386_linux_core_read_description (struct gdbarch *gdbarch,
707 struct target_ops *target,
708 bfd *abfd)
709 {
710 /* Linux/i386. */
711 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
712 const struct target_desc *tdesc = i386_linux_read_description (xcr0);
713
714 if (tdesc != NULL)
715 return tdesc;
716
717 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
718 return i386_linux_read_description (X86_XSTATE_SSE_MASK);
719 else
720 return i386_linux_read_description (X86_XSTATE_X87_MASK);
721 }
722
723 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
724
725 static void
726 i386_linux_supply_xstateregset (const struct regset *regset,
727 struct regcache *regcache, int regnum,
728 const void *xstateregs, size_t len)
729 {
730 i387_supply_xsave (regcache, regnum, xstateregs);
731 }
732
733 struct type *
734 x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
735 {
736 return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
737 }
738
739 /* Similar to i386_collect_fpregset, but use XSAVE extended state. */
740
741 static void
742 i386_linux_collect_xstateregset (const struct regset *regset,
743 const struct regcache *regcache,
744 int regnum, void *xstateregs, size_t len)
745 {
746 i387_collect_xsave (regcache, regnum, xstateregs, 1);
747 }
748
749 /* Register set definitions. */
750
751 static const struct regset i386_linux_xstateregset =
752 {
753 NULL,
754 i386_linux_supply_xstateregset,
755 i386_linux_collect_xstateregset
756 };
757
758 /* Iterate over core file register note sections. */
759
760 static void
761 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
762 iterate_over_regset_sections_cb *cb,
763 void *cb_data,
764 const struct regcache *regcache)
765 {
766 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
767
768 cb (".reg", 68, 68, &i386_gregset, NULL, cb_data);
769
770 if (tdep->xcr0 & X86_XSTATE_AVX)
771 cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
772 X86_XSTATE_SIZE (tdep->xcr0), &i386_linux_xstateregset,
773 "XSAVE extended state", cb_data);
774 else if (tdep->xcr0 & X86_XSTATE_SSE)
775 cb (".reg-xfp", 512, 512, &i386_fpregset, "extended floating-point",
776 cb_data);
777 else
778 cb (".reg2", 108, 108, &i386_fpregset, NULL, cb_data);
779 }
780
781 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
782 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
783 finish the syscall but PC will not change.
784
785 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
786 i386_displaced_step_fixup would keep PC at the displaced pad location.
787 As PC is pointing to the 'ret' instruction before the step
788 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
789 and PC should not be adjusted. In reality it finished syscall instead and
790 PC should get relocated back to its vDSO address. Hide the 'ret'
791 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
792
793 It is not fully correct as the bytes in struct displaced_step_copy_insn_closure will
794 not match the inferior code. But we would need some new flag in
795 displaced_step_copy_insn_closure otherwise to keep the state that syscall is finishing
796 for the later i386_displaced_step_fixup execution as the syscall execution
797 is already no longer detectable there. The new flag field would mean
798 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
799 which does not seem worth it. The same effect is achieved by patching that
800 'nop' instruction there instead. */
801
802 static displaced_step_copy_insn_closure_up
803 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
804 CORE_ADDR from, CORE_ADDR to,
805 struct regcache *regs)
806 {
807 displaced_step_copy_insn_closure_up closure_
808 = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
809
810 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
811 {
812 /* The closure returned by i386_displaced_step_copy_insn is simply a
813 buffer with a copy of the instruction. */
814 i386_displaced_step_copy_insn_closure *closure
815 = (i386_displaced_step_copy_insn_closure *) closure_.get ();
816
817 /* Fake nop. */
818 closure->buf[0] = 0x90;
819 }
820
821 return closure_;
822 }
823
824 static displaced_step_prepare_status
825 i386_displaced_step_prepare (gdbarch *arch, thread_info *thread)
826 {
827 gdb_assert (false);
828 return DISPLACED_STEP_PREPARE_STATUS_OK;
829 }
830
831 static displaced_step_finish_status
832 i386_displaced_step_finish (gdbarch *arch, thread_info *thread, gdb_signal sig)
833 {
834 gdb_assert (false);
835 return DISPLACED_STEP_FINISH_STATUS_OK;
836 }
837
838 static void
839 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
840 {
841 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
842 const struct target_desc *tdesc = info.target_desc;
843 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
844 const struct tdesc_feature *feature;
845 int valid_p;
846
847 gdb_assert (tdesc_data);
848
849 linux_init_abi (info, gdbarch);
850
851 /* GNU/Linux uses ELF. */
852 i386_elf_init_abi (info, gdbarch);
853
854 /* Reserve a number for orig_eax. */
855 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
856
857 if (! tdesc_has_registers (tdesc))
858 tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK);
859 tdep->tdesc = tdesc;
860
861 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
862 if (feature == NULL)
863 return;
864
865 valid_p = tdesc_numbered_register (feature, tdesc_data,
866 I386_LINUX_ORIG_EAX_REGNUM,
867 "orig_eax");
868 if (!valid_p)
869 return;
870
871 /* Add the %orig_eax register used for syscall restarting. */
872 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
873
874 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
875
876 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
877 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
878 tdep->sizeof_gregset = 17 * 4;
879
880 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
881
882 tdep->sigtramp_p = i386_linux_sigtramp_p;
883 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
884 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
885 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
886
887 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
888
889 set_gdbarch_process_record (gdbarch, i386_process_record);
890 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
891
892 /* Initialize the i386_linux_record_tdep. */
893 /* These values are the size of the type that will be used in a system
894 call. They are obtained from Linux Kernel source. */
895 i386_linux_record_tdep.size_pointer
896 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
897 i386_linux_record_tdep.size__old_kernel_stat = 32;
898 i386_linux_record_tdep.size_tms = 16;
899 i386_linux_record_tdep.size_loff_t = 8;
900 i386_linux_record_tdep.size_flock = 16;
901 i386_linux_record_tdep.size_oldold_utsname = 45;
902 i386_linux_record_tdep.size_ustat = 20;
903 i386_linux_record_tdep.size_old_sigaction = 16;
904 i386_linux_record_tdep.size_old_sigset_t = 4;
905 i386_linux_record_tdep.size_rlimit = 8;
906 i386_linux_record_tdep.size_rusage = 72;
907 i386_linux_record_tdep.size_timeval = 8;
908 i386_linux_record_tdep.size_timezone = 8;
909 i386_linux_record_tdep.size_old_gid_t = 2;
910 i386_linux_record_tdep.size_old_uid_t = 2;
911 i386_linux_record_tdep.size_fd_set = 128;
912 i386_linux_record_tdep.size_old_dirent = 268;
913 i386_linux_record_tdep.size_statfs = 64;
914 i386_linux_record_tdep.size_statfs64 = 84;
915 i386_linux_record_tdep.size_sockaddr = 16;
916 i386_linux_record_tdep.size_int
917 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
918 i386_linux_record_tdep.size_long
919 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
920 i386_linux_record_tdep.size_ulong
921 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
922 i386_linux_record_tdep.size_msghdr = 28;
923 i386_linux_record_tdep.size_itimerval = 16;
924 i386_linux_record_tdep.size_stat = 88;
925 i386_linux_record_tdep.size_old_utsname = 325;
926 i386_linux_record_tdep.size_sysinfo = 64;
927 i386_linux_record_tdep.size_msqid_ds = 88;
928 i386_linux_record_tdep.size_shmid_ds = 84;
929 i386_linux_record_tdep.size_new_utsname = 390;
930 i386_linux_record_tdep.size_timex = 128;
931 i386_linux_record_tdep.size_mem_dqinfo = 24;
932 i386_linux_record_tdep.size_if_dqblk = 68;
933 i386_linux_record_tdep.size_fs_quota_stat = 68;
934 i386_linux_record_tdep.size_timespec = 8;
935 i386_linux_record_tdep.size_pollfd = 8;
936 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
937 i386_linux_record_tdep.size_knfsd_fh = 132;
938 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
939 i386_linux_record_tdep.size_sigaction = 20;
940 i386_linux_record_tdep.size_sigset_t = 8;
941 i386_linux_record_tdep.size_siginfo_t = 128;
942 i386_linux_record_tdep.size_cap_user_data_t = 12;
943 i386_linux_record_tdep.size_stack_t = 12;
944 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
945 i386_linux_record_tdep.size_stat64 = 96;
946 i386_linux_record_tdep.size_gid_t = 4;
947 i386_linux_record_tdep.size_uid_t = 4;
948 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
949 i386_linux_record_tdep.size_flock64 = 24;
950 i386_linux_record_tdep.size_user_desc = 16;
951 i386_linux_record_tdep.size_io_event = 32;
952 i386_linux_record_tdep.size_iocb = 64;
953 i386_linux_record_tdep.size_epoll_event = 12;
954 i386_linux_record_tdep.size_itimerspec
955 = i386_linux_record_tdep.size_timespec * 2;
956 i386_linux_record_tdep.size_mq_attr = 32;
957 i386_linux_record_tdep.size_termios = 36;
958 i386_linux_record_tdep.size_termios2 = 44;
959 i386_linux_record_tdep.size_pid_t = 4;
960 i386_linux_record_tdep.size_winsize = 8;
961 i386_linux_record_tdep.size_serial_struct = 60;
962 i386_linux_record_tdep.size_serial_icounter_struct = 80;
963 i386_linux_record_tdep.size_hayes_esp_config = 12;
964 i386_linux_record_tdep.size_size_t = 4;
965 i386_linux_record_tdep.size_iovec = 8;
966 i386_linux_record_tdep.size_time_t = 4;
967
968 /* These values are the second argument of system call "sys_ioctl".
969 They are obtained from Linux Kernel source. */
970 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
971 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
972 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
973 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
974 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
975 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
976 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
977 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
978 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
979 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
980 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
981 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
982 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
983 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
984 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
985 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
986 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
987 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
988 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
989 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
990 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
991 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
992 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
993 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
994 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
995 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
996 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
997 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
998 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
999 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
1000 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
1001 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
1002 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1003 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1004 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1005 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1006 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1007 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1008 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1009 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1010 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1011 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1012 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1013 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1014 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1015 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1016 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1017 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1018 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1019 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1020 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1021 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1022 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1023 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1024 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1025 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1026 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1027 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1028 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1029 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1030 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1031 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1032 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1033 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1034 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1035
1036 /* These values are the second argument of system call "sys_fcntl"
1037 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1038 i386_linux_record_tdep.fcntl_F_GETLK = 5;
1039 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1040 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1041 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1042
1043 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1044 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1045 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1046 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1047 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
1048 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
1049
1050 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1051 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1052 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
1053
1054 /* N_FUN symbols in shared libraries have 0 for their values and need
1055 to be relocated. */
1056 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1057
1058 /* GNU/Linux uses SVR4-style shared libraries. */
1059 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1060 set_solib_svr4_fetch_link_map_offsets
1061 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1062
1063 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
1064 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1065
1066 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
1067
1068 /* Enable TLS support. */
1069 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1070 svr4_fetch_objfile_link_map);
1071
1072 /* Core file support. */
1073 set_gdbarch_iterate_over_regset_sections
1074 (gdbarch, i386_linux_iterate_over_regset_sections);
1075 set_gdbarch_core_read_description (gdbarch,
1076 i386_linux_core_read_description);
1077
1078 /* Displaced stepping. */
1079 set_gdbarch_displaced_step_copy_insn (gdbarch,
1080 i386_linux_displaced_step_copy_insn);
1081 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
1082 set_gdbarch_displaced_step_prepare (gdbarch, i386_displaced_step_prepare);
1083 set_gdbarch_displaced_step_finish (gdbarch, i386_displaced_step_finish);
1084
1085 /* Functions for 'catch syscall'. */
1086 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
1087 set_gdbarch_get_syscall_number (gdbarch,
1088 i386_linux_get_syscall_number);
1089
1090 set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
1091 set_gdbarch_handle_segmentation_fault (gdbarch,
1092 i386_linux_handle_segmentation_fault);
1093 }
1094
1095 void _initialize_i386_linux_tdep ();
1096 void
1097 _initialize_i386_linux_tdep ()
1098 {
1099 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1100 i386_linux_init_abi);
1101 }
This page took 0.051836 seconds and 4 git commands to generate.