Pass dwarf2_cu objects to dwo-related functions, instead of dwarf2_per_cu_data
[deliverable/binutils-gdb.git] / gdb / i386-linux-tdep.c
1 /* Target-dependent code for GNU/Linux i386.
2
3 Copyright (C) 2000-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "frame.h"
23 #include "value.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "inferior.h"
27 #include "osabi.h"
28 #include "reggroups.h"
29 #include "dwarf2/frame.h"
30 #include "i386-tdep.h"
31 #include "i386-linux-tdep.h"
32 #include "linux-tdep.h"
33 #include "utils.h"
34 #include "glibc-tdep.h"
35 #include "solib-svr4.h"
36 #include "symtab.h"
37 #include "arch-utils.h"
38 #include "xml-syscall.h"
39 #include "infrun.h"
40
41 #include "i387-tdep.h"
42 #include "gdbsupport/x86-xstate.h"
43
44 /* The syscall's XML filename for i386. */
45 #define XML_SYSCALL_FILENAME_I386 "syscalls/i386-linux.xml"
46
47 #include "record-full.h"
48 #include "linux-record.h"
49
50 #include "arch/i386.h"
51 #include "target-descriptions.h"
52
53 /* Return non-zero, when the register is in the corresponding register
54 group. Put the LINUX_ORIG_EAX register in the system group. */
55 static int
56 i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
57 struct reggroup *group)
58 {
59 if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
60 return (group == system_reggroup
61 || group == save_reggroup
62 || group == restore_reggroup);
63 return i386_register_reggroup_p (gdbarch, regnum, group);
64 }
65
66 \f
67 /* Recognizing signal handler frames. */
68
69 /* GNU/Linux has two flavors of signals. Normal signal handlers, and
70 "realtime" (RT) signals. The RT signals can provide additional
71 information to the signal handler if the SA_SIGINFO flag is set
72 when establishing a signal handler using `sigaction'. It is not
73 unlikely that future versions of GNU/Linux will support SA_SIGINFO
74 for normal signals too. */
75
76 /* When the i386 Linux kernel calls a signal handler and the
77 SA_RESTORER flag isn't set, the return address points to a bit of
78 code on the stack. This function returns whether the PC appears to
79 be within this bit of code.
80
81 The instruction sequence for normal signals is
82 pop %eax
83 mov $0x77, %eax
84 int $0x80
85 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
86
87 Checking for the code sequence should be somewhat reliable, because
88 the effect is to call the system call sigreturn. This is unlikely
89 to occur anywhere other than in a signal trampoline.
90
91 It kind of sucks that we have to read memory from the process in
92 order to identify a signal trampoline, but there doesn't seem to be
93 any other way. Therefore we only do the memory reads if no
94 function name could be identified, which should be the case since
95 the code is on the stack.
96
97 Detection of signal trampolines for handlers that set the
98 SA_RESTORER flag is in general not possible. Unfortunately this is
99 what the GNU C Library has been doing for quite some time now.
100 However, as of version 2.1.2, the GNU C Library uses signal
101 trampolines (named __restore and __restore_rt) that are identical
102 to the ones used by the kernel. Therefore, these trampolines are
103 supported too. */
104
105 #define LINUX_SIGTRAMP_INSN0 0x58 /* pop %eax */
106 #define LINUX_SIGTRAMP_OFFSET0 0
107 #define LINUX_SIGTRAMP_INSN1 0xb8 /* mov $NNNN, %eax */
108 #define LINUX_SIGTRAMP_OFFSET1 1
109 #define LINUX_SIGTRAMP_INSN2 0xcd /* int */
110 #define LINUX_SIGTRAMP_OFFSET2 6
111
112 static const gdb_byte linux_sigtramp_code[] =
113 {
114 LINUX_SIGTRAMP_INSN0, /* pop %eax */
115 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77, %eax */
116 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
117 };
118
119 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
120
121 /* If THIS_FRAME is a sigtramp routine, return the address of the
122 start of the routine. Otherwise, return 0. */
123
124 static CORE_ADDR
125 i386_linux_sigtramp_start (struct frame_info *this_frame)
126 {
127 CORE_ADDR pc = get_frame_pc (this_frame);
128 gdb_byte buf[LINUX_SIGTRAMP_LEN];
129
130 /* We only recognize a signal trampoline if PC is at the start of
131 one of the three instructions. We optimize for finding the PC at
132 the start, as will be the case when the trampoline is not the
133 first frame on the stack. We assume that in the case where the
134 PC is not at the start of the instruction sequence, there will be
135 a few trailing readable bytes on the stack. */
136
137 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
138 return 0;
139
140 if (buf[0] != LINUX_SIGTRAMP_INSN0)
141 {
142 int adjust;
143
144 switch (buf[0])
145 {
146 case LINUX_SIGTRAMP_INSN1:
147 adjust = LINUX_SIGTRAMP_OFFSET1;
148 break;
149 case LINUX_SIGTRAMP_INSN2:
150 adjust = LINUX_SIGTRAMP_OFFSET2;
151 break;
152 default:
153 return 0;
154 }
155
156 pc -= adjust;
157
158 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_SIGTRAMP_LEN))
159 return 0;
160 }
161
162 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
163 return 0;
164
165 return pc;
166 }
167
168 /* This function does the same for RT signals. Here the instruction
169 sequence is
170 mov $0xad, %eax
171 int $0x80
172 or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.
173
174 The effect is to call the system call rt_sigreturn. */
175
176 #define LINUX_RT_SIGTRAMP_INSN0 0xb8 /* mov $NNNN, %eax */
177 #define LINUX_RT_SIGTRAMP_OFFSET0 0
178 #define LINUX_RT_SIGTRAMP_INSN1 0xcd /* int */
179 #define LINUX_RT_SIGTRAMP_OFFSET1 5
180
181 static const gdb_byte linux_rt_sigtramp_code[] =
182 {
183 LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00, /* mov $0xad, %eax */
184 LINUX_RT_SIGTRAMP_INSN1, 0x80 /* int $0x80 */
185 };
186
187 #define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)
188
189 /* If THIS_FRAME is an RT sigtramp routine, return the address of the
190 start of the routine. Otherwise, return 0. */
191
192 static CORE_ADDR
193 i386_linux_rt_sigtramp_start (struct frame_info *this_frame)
194 {
195 CORE_ADDR pc = get_frame_pc (this_frame);
196 gdb_byte buf[LINUX_RT_SIGTRAMP_LEN];
197
198 /* We only recognize a signal trampoline if PC is at the start of
199 one of the two instructions. We optimize for finding the PC at
200 the start, as will be the case when the trampoline is not the
201 first frame on the stack. We assume that in the case where the
202 PC is not at the start of the instruction sequence, there will be
203 a few trailing readable bytes on the stack. */
204
205 if (!safe_frame_unwind_memory (this_frame, pc, buf, LINUX_RT_SIGTRAMP_LEN))
206 return 0;
207
208 if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
209 {
210 if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
211 return 0;
212
213 pc -= LINUX_RT_SIGTRAMP_OFFSET1;
214
215 if (!safe_frame_unwind_memory (this_frame, pc, buf,
216 LINUX_RT_SIGTRAMP_LEN))
217 return 0;
218 }
219
220 if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
221 return 0;
222
223 return pc;
224 }
225
226 /* Return whether THIS_FRAME corresponds to a GNU/Linux sigtramp
227 routine. */
228
229 static int
230 i386_linux_sigtramp_p (struct frame_info *this_frame)
231 {
232 CORE_ADDR pc = get_frame_pc (this_frame);
233 const char *name;
234
235 find_pc_partial_function (pc, &name, NULL, NULL);
236
237 /* If we have NAME, we can optimize the search. The trampolines are
238 named __restore and __restore_rt. However, they aren't dynamically
239 exported from the shared C library, so the trampoline may appear to
240 be part of the preceding function. This should always be sigaction,
241 __sigaction, or __libc_sigaction (all aliases to the same function). */
242 if (name == NULL || strstr (name, "sigaction") != NULL)
243 return (i386_linux_sigtramp_start (this_frame) != 0
244 || i386_linux_rt_sigtramp_start (this_frame) != 0);
245
246 return (strcmp ("__restore", name) == 0
247 || strcmp ("__restore_rt", name) == 0);
248 }
249
250 /* Return one if the PC of THIS_FRAME is in a signal trampoline which
251 may have DWARF-2 CFI. */
252
253 static int
254 i386_linux_dwarf_signal_frame_p (struct gdbarch *gdbarch,
255 struct frame_info *this_frame)
256 {
257 CORE_ADDR pc = get_frame_pc (this_frame);
258 const char *name;
259
260 find_pc_partial_function (pc, &name, NULL, NULL);
261
262 /* If a vsyscall DSO is in use, the signal trampolines may have these
263 names. */
264 if (name && (strcmp (name, "__kernel_sigreturn") == 0
265 || strcmp (name, "__kernel_rt_sigreturn") == 0))
266 return 1;
267
268 return 0;
269 }
270
271 /* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>. */
272 #define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20
273
274 /* Assuming THIS_FRAME is a GNU/Linux sigtramp routine, return the
275 address of the associated sigcontext structure. */
276
277 static CORE_ADDR
278 i386_linux_sigcontext_addr (struct frame_info *this_frame)
279 {
280 struct gdbarch *gdbarch = get_frame_arch (this_frame);
281 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
282 CORE_ADDR pc;
283 CORE_ADDR sp;
284 gdb_byte buf[4];
285
286 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
287 sp = extract_unsigned_integer (buf, 4, byte_order);
288
289 pc = i386_linux_sigtramp_start (this_frame);
290 if (pc)
291 {
292 /* The sigcontext structure lives on the stack, right after
293 the signum argument. We determine the address of the
294 sigcontext structure by looking at the frame's stack
295 pointer. Keep in mind that the first instruction of the
296 sigtramp code is "pop %eax". If the PC is after this
297 instruction, adjust the returned value accordingly. */
298 if (pc == get_frame_pc (this_frame))
299 return sp + 4;
300 return sp;
301 }
302
303 pc = i386_linux_rt_sigtramp_start (this_frame);
304 if (pc)
305 {
306 CORE_ADDR ucontext_addr;
307
308 /* The sigcontext structure is part of the user context. A
309 pointer to the user context is passed as the third argument
310 to the signal handler. */
311 read_memory (sp + 8, buf, 4);
312 ucontext_addr = extract_unsigned_integer (buf, 4, byte_order);
313 return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
314 }
315
316 error (_("Couldn't recognize signal trampoline."));
317 return 0;
318 }
319
320 /* Set the program counter for process PTID to PC. */
321
322 static void
323 i386_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
324 {
325 regcache_cooked_write_unsigned (regcache, I386_EIP_REGNUM, pc);
326
327 /* We must be careful with modifying the program counter. If we
328 just interrupted a system call, the kernel might try to restart
329 it when we resume the inferior. On restarting the system call,
330 the kernel will try backing up the program counter even though it
331 no longer points at the system call. This typically results in a
332 SIGSEGV or SIGILL. We can prevent this by writing `-1' in the
333 "orig_eax" pseudo-register.
334
335 Note that "orig_eax" is saved when setting up a dummy call frame.
336 This means that it is properly restored when that frame is
337 popped, and that the interrupted system call will be restarted
338 when we resume the inferior on return from a function call from
339 within GDB. In all other cases the system call will not be
340 restarted. */
341 regcache_cooked_write_unsigned (regcache, I386_LINUX_ORIG_EAX_REGNUM, -1);
342 }
343
344 /* Record all registers but IP register for process-record. */
345
346 static int
347 i386_all_but_ip_registers_record (struct regcache *regcache)
348 {
349 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
350 return -1;
351 if (record_full_arch_list_add_reg (regcache, I386_ECX_REGNUM))
352 return -1;
353 if (record_full_arch_list_add_reg (regcache, I386_EDX_REGNUM))
354 return -1;
355 if (record_full_arch_list_add_reg (regcache, I386_EBX_REGNUM))
356 return -1;
357 if (record_full_arch_list_add_reg (regcache, I386_ESP_REGNUM))
358 return -1;
359 if (record_full_arch_list_add_reg (regcache, I386_EBP_REGNUM))
360 return -1;
361 if (record_full_arch_list_add_reg (regcache, I386_ESI_REGNUM))
362 return -1;
363 if (record_full_arch_list_add_reg (regcache, I386_EDI_REGNUM))
364 return -1;
365 if (record_full_arch_list_add_reg (regcache, I386_EFLAGS_REGNUM))
366 return -1;
367
368 return 0;
369 }
370
371 /* i386_canonicalize_syscall maps from the native i386 Linux set
372 of syscall ids into a canonical set of syscall ids used by
373 process record (a mostly trivial mapping, since the canonical
374 set was originally taken from the i386 set). */
375
376 static enum gdb_syscall
377 i386_canonicalize_syscall (int syscall)
378 {
379 enum { i386_syscall_max = 499 };
380
381 if (syscall <= i386_syscall_max)
382 return (enum gdb_syscall) syscall;
383 else
384 return gdb_sys_no_syscall;
385 }
386
387 /* Value of the sigcode in case of a boundary fault. */
388
389 #define SIG_CODE_BONDARY_FAULT 3
390
391 /* i386 GNU/Linux implementation of the handle_segmentation_fault
392 gdbarch hook. Displays information related to MPX bound
393 violations. */
394 void
395 i386_linux_handle_segmentation_fault (struct gdbarch *gdbarch,
396 struct ui_out *uiout)
397 {
398 /* -Wmaybe-uninitialized */
399 CORE_ADDR lower_bound = 0, upper_bound = 0, access = 0;
400 int is_upper;
401 long sig_code = 0;
402
403 if (!i386_mpx_enabled ())
404 return;
405
406 try
407 {
408 /* Sigcode evaluates if the actual segfault is a boundary violation. */
409 sig_code = parse_and_eval_long ("$_siginfo.si_code\n");
410
411 lower_bound
412 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._lower");
413 upper_bound
414 = parse_and_eval_long ("$_siginfo._sifields._sigfault._addr_bnd._upper");
415 access
416 = parse_and_eval_long ("$_siginfo._sifields._sigfault.si_addr");
417 }
418 catch (const gdb_exception &exception)
419 {
420 return;
421 }
422
423 /* If this is not a boundary violation just return. */
424 if (sig_code != SIG_CODE_BONDARY_FAULT)
425 return;
426
427 is_upper = (access > upper_bound ? 1 : 0);
428
429 uiout->text ("\n");
430 if (is_upper)
431 uiout->field_string ("sigcode-meaning", _("Upper bound violation"));
432 else
433 uiout->field_string ("sigcode-meaning", _("Lower bound violation"));
434
435 uiout->text (_(" while accessing address "));
436 uiout->field_core_addr ("bound-access", gdbarch, access);
437
438 uiout->text (_("\nBounds: [lower = "));
439 uiout->field_core_addr ("lower-bound", gdbarch, lower_bound);
440
441 uiout->text (_(", upper = "));
442 uiout->field_core_addr ("upper-bound", gdbarch, upper_bound);
443
444 uiout->text (_("]"));
445 }
446
447 /* Parse the arguments of current system call instruction and record
448 the values of the registers and memory that will be changed into
449 "record_arch_list". This instruction is "int 0x80" (Linux
450 Kernel2.4) or "sysenter" (Linux Kernel 2.6).
451
452 Return -1 if something wrong. */
453
454 static struct linux_record_tdep i386_linux_record_tdep;
455
456 static int
457 i386_linux_intx80_sysenter_syscall_record (struct regcache *regcache)
458 {
459 int ret;
460 LONGEST syscall_native;
461 enum gdb_syscall syscall_gdb;
462
463 regcache_raw_read_signed (regcache, I386_EAX_REGNUM, &syscall_native);
464
465 syscall_gdb = i386_canonicalize_syscall (syscall_native);
466
467 if (syscall_gdb < 0)
468 {
469 printf_unfiltered (_("Process record and replay target doesn't "
470 "support syscall number %s\n"),
471 plongest (syscall_native));
472 return -1;
473 }
474
475 if (syscall_gdb == gdb_sys_sigreturn
476 || syscall_gdb == gdb_sys_rt_sigreturn)
477 {
478 if (i386_all_but_ip_registers_record (regcache))
479 return -1;
480 return 0;
481 }
482
483 ret = record_linux_system_call (syscall_gdb, regcache,
484 &i386_linux_record_tdep);
485 if (ret)
486 return ret;
487
488 /* Record the return value of the system call. */
489 if (record_full_arch_list_add_reg (regcache, I386_EAX_REGNUM))
490 return -1;
491
492 return 0;
493 }
494
495 #define I386_LINUX_xstate 270
496 #define I386_LINUX_frame_size 732
497
498 static int
499 i386_linux_record_signal (struct gdbarch *gdbarch,
500 struct regcache *regcache,
501 enum gdb_signal signal)
502 {
503 ULONGEST esp;
504
505 if (i386_all_but_ip_registers_record (regcache))
506 return -1;
507
508 if (record_full_arch_list_add_reg (regcache, I386_EIP_REGNUM))
509 return -1;
510
511 /* Record the change in the stack. */
512 regcache_raw_read_unsigned (regcache, I386_ESP_REGNUM, &esp);
513 /* This is for xstate.
514 sp -= sizeof (struct _fpstate); */
515 esp -= I386_LINUX_xstate;
516 /* This is for frame_size.
517 sp -= sizeof (struct rt_sigframe); */
518 esp -= I386_LINUX_frame_size;
519 if (record_full_arch_list_add_mem (esp,
520 I386_LINUX_xstate + I386_LINUX_frame_size))
521 return -1;
522
523 if (record_full_arch_list_add_end ())
524 return -1;
525
526 return 0;
527 }
528 \f
529
530 /* Core of the implementation for gdbarch get_syscall_number. Get pending
531 syscall number from REGCACHE. If there is no pending syscall -1 will be
532 returned. Pending syscall means ptrace has stepped into the syscall but
533 another ptrace call will step out. PC is right after the int $0x80
534 / syscall / sysenter instruction in both cases, PC does not change during
535 the second ptrace step. */
536
537 static LONGEST
538 i386_linux_get_syscall_number_from_regcache (struct regcache *regcache)
539 {
540 struct gdbarch *gdbarch = regcache->arch ();
541 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
542 /* The content of a register. */
543 gdb_byte buf[4];
544 /* The result. */
545 LONGEST ret;
546
547 /* Getting the system call number from the register.
548 When dealing with x86 architecture, this information
549 is stored at %eax register. */
550 regcache->cooked_read (I386_LINUX_ORIG_EAX_REGNUM, buf);
551
552 ret = extract_signed_integer (buf, 4, byte_order);
553
554 return ret;
555 }
556
557 /* Wrapper for i386_linux_get_syscall_number_from_regcache to make it
558 compatible with gdbarch get_syscall_number method prototype. */
559
560 static LONGEST
561 i386_linux_get_syscall_number (struct gdbarch *gdbarch,
562 thread_info *thread)
563 {
564 struct regcache *regcache = get_thread_regcache (thread);
565
566 return i386_linux_get_syscall_number_from_regcache (regcache);
567 }
568
569 /* The register sets used in GNU/Linux ELF core-dumps are identical to
570 the register sets in `struct user' that are used for a.out
571 core-dumps. These are also used by ptrace(2). The corresponding
572 types are `elf_gregset_t' for the general-purpose registers (with
573 `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
574 for the floating-point registers.
575
576 Those types used to be available under the names `gregset_t' and
577 `fpregset_t' too, and GDB used those names in the past. But those
578 names are now used for the register sets used in the `mcontext_t'
579 type, which have a different size and layout. */
580
581 /* Mapping between the general-purpose registers in `struct user'
582 format and GDB's register cache layout. */
583
584 /* From <sys/reg.h>. */
585 int i386_linux_gregset_reg_offset[] =
586 {
587 6 * 4, /* %eax */
588 1 * 4, /* %ecx */
589 2 * 4, /* %edx */
590 0 * 4, /* %ebx */
591 15 * 4, /* %esp */
592 5 * 4, /* %ebp */
593 3 * 4, /* %esi */
594 4 * 4, /* %edi */
595 12 * 4, /* %eip */
596 14 * 4, /* %eflags */
597 13 * 4, /* %cs */
598 16 * 4, /* %ss */
599 7 * 4, /* %ds */
600 8 * 4, /* %es */
601 9 * 4, /* %fs */
602 10 * 4, /* %gs */
603 -1, -1, -1, -1, -1, -1, -1, -1,
604 -1, -1, -1, -1, -1, -1, -1, -1,
605 -1, -1, -1, -1, -1, -1, -1, -1,
606 -1,
607 -1, -1, -1, -1, -1, -1, -1, -1,
608 -1, -1, -1, -1, /* MPX registers BND0 ... BND3. */
609 -1, -1, /* MPX registers BNDCFGU, BNDSTATUS. */
610 -1, -1, -1, -1, -1, -1, -1, -1, /* k0 ... k7 (AVX512) */
611 -1, -1, -1, -1, -1, -1, -1, -1, /* zmm0 ... zmm7 (AVX512) */
612 -1, /* PKRU register */
613 11 * 4, /* "orig_eax" */
614 };
615
616 /* Mapping between the general-purpose registers in `struct
617 sigcontext' format and GDB's register cache layout. */
618
619 /* From <asm/sigcontext.h>. */
620 static int i386_linux_sc_reg_offset[] =
621 {
622 11 * 4, /* %eax */
623 10 * 4, /* %ecx */
624 9 * 4, /* %edx */
625 8 * 4, /* %ebx */
626 7 * 4, /* %esp */
627 6 * 4, /* %ebp */
628 5 * 4, /* %esi */
629 4 * 4, /* %edi */
630 14 * 4, /* %eip */
631 16 * 4, /* %eflags */
632 15 * 4, /* %cs */
633 18 * 4, /* %ss */
634 3 * 4, /* %ds */
635 2 * 4, /* %es */
636 1 * 4, /* %fs */
637 0 * 4 /* %gs */
638 };
639
640 /* Get XSAVE extended state xcr0 from core dump. */
641
642 uint64_t
643 i386_linux_core_read_xcr0 (bfd *abfd)
644 {
645 asection *xstate = bfd_get_section_by_name (abfd, ".reg-xstate");
646 uint64_t xcr0;
647
648 if (xstate)
649 {
650 size_t size = bfd_section_size (xstate);
651
652 /* Check extended state size. */
653 if (size < X86_XSTATE_AVX_SIZE)
654 xcr0 = X86_XSTATE_SSE_MASK;
655 else
656 {
657 char contents[8];
658
659 if (! bfd_get_section_contents (abfd, xstate, contents,
660 I386_LINUX_XSAVE_XCR0_OFFSET,
661 8))
662 {
663 warning (_("Couldn't read `xcr0' bytes from "
664 "`.reg-xstate' section in core file."));
665 return 0;
666 }
667
668 xcr0 = bfd_get_64 (abfd, contents);
669 }
670 }
671 else
672 xcr0 = 0;
673
674 return xcr0;
675 }
676
677 /* See i386-linux-tdep.h. */
678
679 const struct target_desc *
680 i386_linux_read_description (uint64_t xcr0)
681 {
682 if (xcr0 == 0)
683 return NULL;
684
685 static struct target_desc *i386_linux_tdescs \
686 [2/*X87*/][2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
687 struct target_desc **tdesc;
688
689 tdesc = &i386_linux_tdescs[(xcr0 & X86_XSTATE_X87) ? 1 : 0]
690 [(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
691 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
692 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
693 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
694 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
695
696 if (*tdesc == NULL)
697 *tdesc = i386_create_target_description (xcr0, true, false);
698
699 return *tdesc;
700 }
701
702 /* Get Linux/x86 target description from core dump. */
703
704 static const struct target_desc *
705 i386_linux_core_read_description (struct gdbarch *gdbarch,
706 struct target_ops *target,
707 bfd *abfd)
708 {
709 /* Linux/i386. */
710 uint64_t xcr0 = i386_linux_core_read_xcr0 (abfd);
711 const struct target_desc *tdesc = i386_linux_read_description (xcr0);
712
713 if (tdesc != NULL)
714 return tdesc;
715
716 if (bfd_get_section_by_name (abfd, ".reg-xfp") != NULL)
717 return i386_linux_read_description (X86_XSTATE_SSE_MASK);
718 else
719 return i386_linux_read_description (X86_XSTATE_X87_MASK);
720 }
721
722 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
723
724 static void
725 i386_linux_supply_xstateregset (const struct regset *regset,
726 struct regcache *regcache, int regnum,
727 const void *xstateregs, size_t len)
728 {
729 i387_supply_xsave (regcache, regnum, xstateregs);
730 }
731
732 struct type *
733 x86_linux_get_siginfo_type (struct gdbarch *gdbarch)
734 {
735 return linux_get_siginfo_type_with_fields (gdbarch, LINUX_SIGINFO_FIELD_ADDR_BND);
736 }
737
738 /* Similar to i386_collect_fpregset, but use XSAVE extended state. */
739
740 static void
741 i386_linux_collect_xstateregset (const struct regset *regset,
742 const struct regcache *regcache,
743 int regnum, void *xstateregs, size_t len)
744 {
745 i387_collect_xsave (regcache, regnum, xstateregs, 1);
746 }
747
748 /* Register set definitions. */
749
750 static const struct regset i386_linux_xstateregset =
751 {
752 NULL,
753 i386_linux_supply_xstateregset,
754 i386_linux_collect_xstateregset
755 };
756
757 /* Iterate over core file register note sections. */
758
759 static void
760 i386_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
761 iterate_over_regset_sections_cb *cb,
762 void *cb_data,
763 const struct regcache *regcache)
764 {
765 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
766
767 cb (".reg", 68, 68, &i386_gregset, NULL, cb_data);
768
769 if (tdep->xcr0 & X86_XSTATE_AVX)
770 cb (".reg-xstate", X86_XSTATE_SIZE (tdep->xcr0),
771 X86_XSTATE_SIZE (tdep->xcr0), &i386_linux_xstateregset,
772 "XSAVE extended state", cb_data);
773 else if (tdep->xcr0 & X86_XSTATE_SSE)
774 cb (".reg-xfp", 512, 512, &i386_fpregset, "extended floating-point",
775 cb_data);
776 else
777 cb (".reg2", 108, 108, &i386_fpregset, NULL, cb_data);
778 }
779
780 /* Linux kernel shows PC value after the 'int $0x80' instruction even if
781 inferior is still inside the syscall. On next PTRACE_SINGLESTEP it will
782 finish the syscall but PC will not change.
783
784 Some vDSOs contain 'int $0x80; ret' and during stepping out of the syscall
785 i386_displaced_step_fixup would keep PC at the displaced pad location.
786 As PC is pointing to the 'ret' instruction before the step
787 i386_displaced_step_fixup would expect inferior has just executed that 'ret'
788 and PC should not be adjusted. In reality it finished syscall instead and
789 PC should get relocated back to its vDSO address. Hide the 'ret'
790 instruction by 'nop' so that i386_displaced_step_fixup is not confused.
791
792 It is not fully correct as the bytes in struct displaced_step_closure will
793 not match the inferior code. But we would need some new flag in
794 displaced_step_closure otherwise to keep the state that syscall is finishing
795 for the later i386_displaced_step_fixup execution as the syscall execution
796 is already no longer detectable there. The new flag field would mean
797 i386-linux-tdep.c needs to wrap all the displacement methods of i386-tdep.c
798 which does not seem worth it. The same effect is achieved by patching that
799 'nop' instruction there instead. */
800
801 static displaced_step_closure_up
802 i386_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 CORE_ADDR from, CORE_ADDR to,
804 struct regcache *regs)
805 {
806 displaced_step_closure_up closure_
807 = i386_displaced_step_copy_insn (gdbarch, from, to, regs);
808
809 if (i386_linux_get_syscall_number_from_regcache (regs) != -1)
810 {
811 /* The closure returned by i386_displaced_step_copy_insn is simply a
812 buffer with a copy of the instruction. */
813 i386_displaced_step_closure *closure
814 = (i386_displaced_step_closure *) closure_.get ();
815
816 /* Fake nop. */
817 closure->buf[0] = 0x90;
818 }
819
820 return closure_;
821 }
822
823 static void
824 i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
825 {
826 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
827 const struct target_desc *tdesc = info.target_desc;
828 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
829 const struct tdesc_feature *feature;
830 int valid_p;
831
832 gdb_assert (tdesc_data);
833
834 linux_init_abi (info, gdbarch);
835
836 /* GNU/Linux uses ELF. */
837 i386_elf_init_abi (info, gdbarch);
838
839 /* Reserve a number for orig_eax. */
840 set_gdbarch_num_regs (gdbarch, I386_LINUX_NUM_REGS);
841
842 if (! tdesc_has_registers (tdesc))
843 tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK);
844 tdep->tdesc = tdesc;
845
846 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.linux");
847 if (feature == NULL)
848 return;
849
850 valid_p = tdesc_numbered_register (feature, tdesc_data,
851 I386_LINUX_ORIG_EAX_REGNUM,
852 "orig_eax");
853 if (!valid_p)
854 return;
855
856 /* Add the %orig_eax register used for syscall restarting. */
857 set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
858
859 tdep->register_reggroup_p = i386_linux_register_reggroup_p;
860
861 tdep->gregset_reg_offset = i386_linux_gregset_reg_offset;
862 tdep->gregset_num_regs = ARRAY_SIZE (i386_linux_gregset_reg_offset);
863 tdep->sizeof_gregset = 17 * 4;
864
865 tdep->jb_pc_offset = 20; /* From <bits/setjmp.h>. */
866
867 tdep->sigtramp_p = i386_linux_sigtramp_p;
868 tdep->sigcontext_addr = i386_linux_sigcontext_addr;
869 tdep->sc_reg_offset = i386_linux_sc_reg_offset;
870 tdep->sc_num_regs = ARRAY_SIZE (i386_linux_sc_reg_offset);
871
872 tdep->xsave_xcr0_offset = I386_LINUX_XSAVE_XCR0_OFFSET;
873
874 set_gdbarch_process_record (gdbarch, i386_process_record);
875 set_gdbarch_process_record_signal (gdbarch, i386_linux_record_signal);
876
877 /* Initialize the i386_linux_record_tdep. */
878 /* These values are the size of the type that will be used in a system
879 call. They are obtained from Linux Kernel source. */
880 i386_linux_record_tdep.size_pointer
881 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
882 i386_linux_record_tdep.size__old_kernel_stat = 32;
883 i386_linux_record_tdep.size_tms = 16;
884 i386_linux_record_tdep.size_loff_t = 8;
885 i386_linux_record_tdep.size_flock = 16;
886 i386_linux_record_tdep.size_oldold_utsname = 45;
887 i386_linux_record_tdep.size_ustat = 20;
888 i386_linux_record_tdep.size_old_sigaction = 16;
889 i386_linux_record_tdep.size_old_sigset_t = 4;
890 i386_linux_record_tdep.size_rlimit = 8;
891 i386_linux_record_tdep.size_rusage = 72;
892 i386_linux_record_tdep.size_timeval = 8;
893 i386_linux_record_tdep.size_timezone = 8;
894 i386_linux_record_tdep.size_old_gid_t = 2;
895 i386_linux_record_tdep.size_old_uid_t = 2;
896 i386_linux_record_tdep.size_fd_set = 128;
897 i386_linux_record_tdep.size_old_dirent = 268;
898 i386_linux_record_tdep.size_statfs = 64;
899 i386_linux_record_tdep.size_statfs64 = 84;
900 i386_linux_record_tdep.size_sockaddr = 16;
901 i386_linux_record_tdep.size_int
902 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
903 i386_linux_record_tdep.size_long
904 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
905 i386_linux_record_tdep.size_ulong
906 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
907 i386_linux_record_tdep.size_msghdr = 28;
908 i386_linux_record_tdep.size_itimerval = 16;
909 i386_linux_record_tdep.size_stat = 88;
910 i386_linux_record_tdep.size_old_utsname = 325;
911 i386_linux_record_tdep.size_sysinfo = 64;
912 i386_linux_record_tdep.size_msqid_ds = 88;
913 i386_linux_record_tdep.size_shmid_ds = 84;
914 i386_linux_record_tdep.size_new_utsname = 390;
915 i386_linux_record_tdep.size_timex = 128;
916 i386_linux_record_tdep.size_mem_dqinfo = 24;
917 i386_linux_record_tdep.size_if_dqblk = 68;
918 i386_linux_record_tdep.size_fs_quota_stat = 68;
919 i386_linux_record_tdep.size_timespec = 8;
920 i386_linux_record_tdep.size_pollfd = 8;
921 i386_linux_record_tdep.size_NFS_FHSIZE = 32;
922 i386_linux_record_tdep.size_knfsd_fh = 132;
923 i386_linux_record_tdep.size_TASK_COMM_LEN = 16;
924 i386_linux_record_tdep.size_sigaction = 20;
925 i386_linux_record_tdep.size_sigset_t = 8;
926 i386_linux_record_tdep.size_siginfo_t = 128;
927 i386_linux_record_tdep.size_cap_user_data_t = 12;
928 i386_linux_record_tdep.size_stack_t = 12;
929 i386_linux_record_tdep.size_off_t = i386_linux_record_tdep.size_long;
930 i386_linux_record_tdep.size_stat64 = 96;
931 i386_linux_record_tdep.size_gid_t = 4;
932 i386_linux_record_tdep.size_uid_t = 4;
933 i386_linux_record_tdep.size_PAGE_SIZE = 4096;
934 i386_linux_record_tdep.size_flock64 = 24;
935 i386_linux_record_tdep.size_user_desc = 16;
936 i386_linux_record_tdep.size_io_event = 32;
937 i386_linux_record_tdep.size_iocb = 64;
938 i386_linux_record_tdep.size_epoll_event = 12;
939 i386_linux_record_tdep.size_itimerspec
940 = i386_linux_record_tdep.size_timespec * 2;
941 i386_linux_record_tdep.size_mq_attr = 32;
942 i386_linux_record_tdep.size_termios = 36;
943 i386_linux_record_tdep.size_termios2 = 44;
944 i386_linux_record_tdep.size_pid_t = 4;
945 i386_linux_record_tdep.size_winsize = 8;
946 i386_linux_record_tdep.size_serial_struct = 60;
947 i386_linux_record_tdep.size_serial_icounter_struct = 80;
948 i386_linux_record_tdep.size_hayes_esp_config = 12;
949 i386_linux_record_tdep.size_size_t = 4;
950 i386_linux_record_tdep.size_iovec = 8;
951 i386_linux_record_tdep.size_time_t = 4;
952
953 /* These values are the second argument of system call "sys_ioctl".
954 They are obtained from Linux Kernel source. */
955 i386_linux_record_tdep.ioctl_TCGETS = 0x5401;
956 i386_linux_record_tdep.ioctl_TCSETS = 0x5402;
957 i386_linux_record_tdep.ioctl_TCSETSW = 0x5403;
958 i386_linux_record_tdep.ioctl_TCSETSF = 0x5404;
959 i386_linux_record_tdep.ioctl_TCGETA = 0x5405;
960 i386_linux_record_tdep.ioctl_TCSETA = 0x5406;
961 i386_linux_record_tdep.ioctl_TCSETAW = 0x5407;
962 i386_linux_record_tdep.ioctl_TCSETAF = 0x5408;
963 i386_linux_record_tdep.ioctl_TCSBRK = 0x5409;
964 i386_linux_record_tdep.ioctl_TCXONC = 0x540A;
965 i386_linux_record_tdep.ioctl_TCFLSH = 0x540B;
966 i386_linux_record_tdep.ioctl_TIOCEXCL = 0x540C;
967 i386_linux_record_tdep.ioctl_TIOCNXCL = 0x540D;
968 i386_linux_record_tdep.ioctl_TIOCSCTTY = 0x540E;
969 i386_linux_record_tdep.ioctl_TIOCGPGRP = 0x540F;
970 i386_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
971 i386_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
972 i386_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
973 i386_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
974 i386_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
975 i386_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
976 i386_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
977 i386_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
978 i386_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
979 i386_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
980 i386_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541A;
981 i386_linux_record_tdep.ioctl_FIONREAD = 0x541B;
982 i386_linux_record_tdep.ioctl_TIOCINQ = i386_linux_record_tdep.ioctl_FIONREAD;
983 i386_linux_record_tdep.ioctl_TIOCLINUX = 0x541C;
984 i386_linux_record_tdep.ioctl_TIOCCONS = 0x541D;
985 i386_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541E;
986 i386_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541F;
987 i386_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
988 i386_linux_record_tdep.ioctl_FIONBIO = 0x5421;
989 i386_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
990 i386_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
991 i386_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
992 i386_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
993 i386_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
994 i386_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
995 i386_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
996 i386_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
997 i386_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
998 i386_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
999 i386_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1000 i386_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1001 i386_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1002 i386_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1003 i386_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1004 i386_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1005 i386_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1006 i386_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1007 i386_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1008 i386_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1009 i386_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1010 i386_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1011 i386_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1012 i386_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1013 i386_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545A;
1014 i386_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545B;
1015 i386_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545C;
1016 i386_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545D;
1017 i386_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545E;
1018 i386_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545F;
1019 i386_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1020
1021 /* These values are the second argument of system call "sys_fcntl"
1022 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1023 i386_linux_record_tdep.fcntl_F_GETLK = 5;
1024 i386_linux_record_tdep.fcntl_F_GETLK64 = 12;
1025 i386_linux_record_tdep.fcntl_F_SETLK64 = 13;
1026 i386_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1027
1028 i386_linux_record_tdep.arg1 = I386_EBX_REGNUM;
1029 i386_linux_record_tdep.arg2 = I386_ECX_REGNUM;
1030 i386_linux_record_tdep.arg3 = I386_EDX_REGNUM;
1031 i386_linux_record_tdep.arg4 = I386_ESI_REGNUM;
1032 i386_linux_record_tdep.arg5 = I386_EDI_REGNUM;
1033 i386_linux_record_tdep.arg6 = I386_EBP_REGNUM;
1034
1035 tdep->i386_intx80_record = i386_linux_intx80_sysenter_syscall_record;
1036 tdep->i386_sysenter_record = i386_linux_intx80_sysenter_syscall_record;
1037 tdep->i386_syscall_record = i386_linux_intx80_sysenter_syscall_record;
1038
1039 /* N_FUN symbols in shared libraries have 0 for their values and need
1040 to be relocated. */
1041 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
1042
1043 /* GNU/Linux uses SVR4-style shared libraries. */
1044 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1045 set_solib_svr4_fetch_link_map_offsets
1046 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1047
1048 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
1049 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1050
1051 dwarf2_frame_set_signal_frame_p (gdbarch, i386_linux_dwarf_signal_frame_p);
1052
1053 /* Enable TLS support. */
1054 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1055 svr4_fetch_objfile_link_map);
1056
1057 /* Core file support. */
1058 set_gdbarch_iterate_over_regset_sections
1059 (gdbarch, i386_linux_iterate_over_regset_sections);
1060 set_gdbarch_core_read_description (gdbarch,
1061 i386_linux_core_read_description);
1062
1063 /* Displaced stepping. */
1064 set_gdbarch_displaced_step_copy_insn (gdbarch,
1065 i386_linux_displaced_step_copy_insn);
1066 set_gdbarch_displaced_step_fixup (gdbarch, i386_displaced_step_fixup);
1067 set_gdbarch_displaced_step_location (gdbarch,
1068 linux_displaced_step_location);
1069
1070 /* Functions for 'catch syscall'. */
1071 set_xml_syscall_file_name (gdbarch, XML_SYSCALL_FILENAME_I386);
1072 set_gdbarch_get_syscall_number (gdbarch,
1073 i386_linux_get_syscall_number);
1074
1075 set_gdbarch_get_siginfo_type (gdbarch, x86_linux_get_siginfo_type);
1076 set_gdbarch_handle_segmentation_fault (gdbarch,
1077 i386_linux_handle_segmentation_fault);
1078 }
1079
1080 void _initialize_i386_linux_tdep ();
1081 void
1082 _initialize_i386_linux_tdep ()
1083 {
1084 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
1085 i386_linux_init_abi);
1086 }
This page took 0.052943 seconds and 4 git commands to generate.