2fa5cd89b4181363d98c09b944afa8364225bb91
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "gdbthread.h"
32 #include "annotate.h"
33 #include "symfile.h"
34 #include "top.h"
35 #include "inf-loop.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "observable.h"
39 #include "language.h"
40 #include "solib.h"
41 #include "main.h"
42 #include "block.h"
43 #include "mi/mi-common.h"
44 #include "event-top.h"
45 #include "record.h"
46 #include "record-full.h"
47 #include "inline-frame.h"
48 #include "jit.h"
49 #include "tracepoint.h"
50 #include "skip.h"
51 #include "probe.h"
52 #include "objfiles.h"
53 #include "completer.h"
54 #include "target-descriptions.h"
55 #include "target-dcache.h"
56 #include "terminal.h"
57 #include "solist.h"
58 #include "event-loop.h"
59 #include "thread-fsm.h"
60 #include "gdbsupport/enum-flags.h"
61 #include "progspace-and-thread.h"
62 #include "gdbsupport/gdb_optional.h"
63 #include "arch-utils.h"
64 #include "gdbsupport/scope-exit.h"
65 #include "gdbsupport/forward-scope-exit.h"
66
67 /* Prototypes for local functions */
68
69 static void sig_print_info (enum gdb_signal);
70
71 static void sig_print_header (void);
72
73 static int follow_fork (void);
74
75 static int follow_fork_inferior (int follow_child, int detach_fork);
76
77 static void follow_inferior_reset_breakpoints (void);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 void nullify_last_target_wait_ptid (void);
82
83 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
84
85 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
86
87 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
88
89 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
90
91 static void resume (gdb_signal sig);
92
93 /* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95 static struct async_event_handler *infrun_async_inferior_event_token;
96
97 /* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99 static int infrun_is_async = -1;
100
101 /* See infrun.h. */
102
103 void
104 infrun_async (int enable)
105 {
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120 }
121
122 /* See infrun.h. */
123
124 void
125 mark_infrun_async_event_handler (void)
126 {
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 }
129
130 /* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
133 bool step_stop_if_no_debug = false;
134 static void
135 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139 }
140
141 /* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
144
145 static ptid_t previous_inferior_ptid;
146
147 /* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
152 static bool detach_fork = true;
153
154 bool debug_displaced = false;
155 static void
156 show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160 }
161
162 unsigned int debug_infrun = 0;
163 static void
164 show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168 }
169
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* Nonzero after stop if current stack frame should be printed. */
372
373 static int stop_print_frame;
374
375 /* This is a cached copy of the pid/waitstatus of the last event
376 returned by target_wait()/deprecated_target_wait_hook(). This
377 information is returned by get_last_target_status(). */
378 static ptid_t target_last_wait_ptid;
379 static struct target_waitstatus target_last_waitstatus;
380
381 void init_thread_stepping_state (struct thread_info *tss);
382
383 static const char follow_fork_mode_child[] = "child";
384 static const char follow_fork_mode_parent[] = "parent";
385
386 static const char *const follow_fork_mode_kind_names[] = {
387 follow_fork_mode_child,
388 follow_fork_mode_parent,
389 NULL
390 };
391
392 static const char *follow_fork_mode_string = follow_fork_mode_parent;
393 static void
394 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
395 struct cmd_list_element *c, const char *value)
396 {
397 fprintf_filtered (file,
398 _("Debugger response to a program "
399 "call of fork or vfork is \"%s\".\n"),
400 value);
401 }
402 \f
403
404 /* Handle changes to the inferior list based on the type of fork,
405 which process is being followed, and whether the other process
406 should be detached. On entry inferior_ptid must be the ptid of
407 the fork parent. At return inferior_ptid is the ptid of the
408 followed inferior. */
409
410 static int
411 follow_fork_inferior (int follow_child, int detach_fork)
412 {
413 int has_vforked;
414 ptid_t parent_ptid, child_ptid;
415
416 has_vforked = (inferior_thread ()->pending_follow.kind
417 == TARGET_WAITKIND_VFORKED);
418 parent_ptid = inferior_ptid;
419 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && current_ui->prompt_state == PROMPT_BLOCKED
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432 Can not resume the parent process over vfork in the foreground while\n\
433 holding the child stopped. Try \"set detach-on-fork\" or \
434 \"set schedule-multiple\".\n"));
435 return 1;
436 }
437
438 if (!follow_child)
439 {
440 /* Detach new forked process? */
441 if (detach_fork)
442 {
443 /* Before detaching from the child, remove all breakpoints
444 from it. If we forked, then this has already been taken
445 care of by infrun.c. If we vforked however, any
446 breakpoint inserted in the parent is visible in the
447 child, even those added while stopped in a vfork
448 catchpoint. This will remove the breakpoints from the
449 parent also, but they'll be reinserted below. */
450 if (has_vforked)
451 {
452 /* Keep breakpoints list in sync. */
453 remove_breakpoints_inf (current_inferior ());
454 }
455
456 if (print_inferior_events)
457 {
458 /* Ensure that we have a process ptid. */
459 ptid_t process_ptid = ptid_t (child_ptid.pid ());
460
461 target_terminal::ours_for_output ();
462 fprintf_filtered (gdb_stdlog,
463 _("[Detaching after %s from child %s]\n"),
464 has_vforked ? "vfork" : "fork",
465 target_pid_to_str (process_ptid).c_str ());
466 }
467 }
468 else
469 {
470 struct inferior *parent_inf, *child_inf;
471
472 /* Add process to GDB's tables. */
473 child_inf = add_inferior (child_ptid.pid ());
474
475 parent_inf = current_inferior ();
476 child_inf->attach_flag = parent_inf->attach_flag;
477 copy_terminal_info (child_inf, parent_inf);
478 child_inf->gdbarch = parent_inf->gdbarch;
479 copy_inferior_target_desc_info (child_inf, parent_inf);
480
481 scoped_restore_current_pspace_and_thread restore_pspace_thread;
482
483 inferior_ptid = child_ptid;
484 add_thread_silent (inferior_ptid);
485 set_current_inferior (child_inf);
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487
488 /* If this is a vfork child, then the address-space is
489 shared with the parent. */
490 if (has_vforked)
491 {
492 child_inf->pspace = parent_inf->pspace;
493 child_inf->aspace = parent_inf->aspace;
494
495 /* The parent will be frozen until the child is done
496 with the shared region. Keep track of the
497 parent. */
498 child_inf->vfork_parent = parent_inf;
499 child_inf->pending_detach = 0;
500 parent_inf->vfork_child = child_inf;
501 parent_inf->pending_detach = 0;
502 }
503 else
504 {
505 child_inf->aspace = new_address_space ();
506 child_inf->pspace = new program_space (child_inf->aspace);
507 child_inf->removable = 1;
508 set_current_program_space (child_inf->pspace);
509 clone_program_space (child_inf->pspace, parent_inf->pspace);
510
511 /* Let the shared library layer (e.g., solib-svr4) learn
512 about this new process, relocate the cloned exec, pull
513 in shared libraries, and install the solib event
514 breakpoint. If a "cloned-VM" event was propagated
515 better throughout the core, this wouldn't be
516 required. */
517 solib_create_inferior_hook (0);
518 }
519 }
520
521 if (has_vforked)
522 {
523 struct inferior *parent_inf;
524
525 parent_inf = current_inferior ();
526
527 /* If we detached from the child, then we have to be careful
528 to not insert breakpoints in the parent until the child
529 is done with the shared memory region. However, if we're
530 staying attached to the child, then we can and should
531 insert breakpoints, so that we can debug it. A
532 subsequent child exec or exit is enough to know when does
533 the child stops using the parent's address space. */
534 parent_inf->waiting_for_vfork_done = detach_fork;
535 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
536 }
537 }
538 else
539 {
540 /* Follow the child. */
541 struct inferior *parent_inf, *child_inf;
542 struct program_space *parent_pspace;
543
544 if (print_inferior_events)
545 {
546 std::string parent_pid = target_pid_to_str (parent_ptid);
547 std::string child_pid = target_pid_to_str (child_ptid);
548
549 target_terminal::ours_for_output ();
550 fprintf_filtered (gdb_stdlog,
551 _("[Attaching after %s %s to child %s]\n"),
552 parent_pid.c_str (),
553 has_vforked ? "vfork" : "fork",
554 child_pid.c_str ());
555 }
556
557 /* Add the new inferior first, so that the target_detach below
558 doesn't unpush the target. */
559
560 child_inf = add_inferior (child_ptid.pid ());
561
562 parent_inf = current_inferior ();
563 child_inf->attach_flag = parent_inf->attach_flag;
564 copy_terminal_info (child_inf, parent_inf);
565 child_inf->gdbarch = parent_inf->gdbarch;
566 copy_inferior_target_desc_info (child_inf, parent_inf);
567
568 parent_pspace = parent_inf->pspace;
569
570 /* If we're vforking, we want to hold on to the parent until the
571 child exits or execs. At child exec or exit time we can
572 remove the old breakpoints from the parent and detach or
573 resume debugging it. Otherwise, detach the parent now; we'll
574 want to reuse it's program/address spaces, but we can't set
575 them to the child before removing breakpoints from the
576 parent, otherwise, the breakpoints module could decide to
577 remove breakpoints from the wrong process (since they'd be
578 assigned to the same address space). */
579
580 if (has_vforked)
581 {
582 gdb_assert (child_inf->vfork_parent == NULL);
583 gdb_assert (parent_inf->vfork_child == NULL);
584 child_inf->vfork_parent = parent_inf;
585 child_inf->pending_detach = 0;
586 parent_inf->vfork_child = child_inf;
587 parent_inf->pending_detach = detach_fork;
588 parent_inf->waiting_for_vfork_done = 0;
589 }
590 else if (detach_fork)
591 {
592 if (print_inferior_events)
593 {
594 /* Ensure that we have a process ptid. */
595 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
596
597 target_terminal::ours_for_output ();
598 fprintf_filtered (gdb_stdlog,
599 _("[Detaching after fork from "
600 "parent %s]\n"),
601 target_pid_to_str (process_ptid).c_str ());
602 }
603
604 target_detach (parent_inf, 0);
605 }
606
607 /* Note that the detach above makes PARENT_INF dangling. */
608
609 /* Add the child thread to the appropriate lists, and switch to
610 this new thread, before cloning the program space, and
611 informing the solib layer about this new process. */
612
613 inferior_ptid = child_ptid;
614 add_thread_silent (inferior_ptid);
615 set_current_inferior (child_inf);
616
617 /* If this is a vfork child, then the address-space is shared
618 with the parent. If we detached from the parent, then we can
619 reuse the parent's program/address spaces. */
620 if (has_vforked || detach_fork)
621 {
622 child_inf->pspace = parent_pspace;
623 child_inf->aspace = child_inf->pspace->aspace;
624 }
625 else
626 {
627 child_inf->aspace = new_address_space ();
628 child_inf->pspace = new program_space (child_inf->aspace);
629 child_inf->removable = 1;
630 child_inf->symfile_flags = SYMFILE_NO_READ;
631 set_current_program_space (child_inf->pspace);
632 clone_program_space (child_inf->pspace, parent_pspace);
633
634 /* Let the shared library layer (e.g., solib-svr4) learn
635 about this new process, relocate the cloned exec, pull in
636 shared libraries, and install the solib event breakpoint.
637 If a "cloned-VM" event was propagated better throughout
638 the core, this wouldn't be required. */
639 solib_create_inferior_hook (0);
640 }
641 }
642
643 return target_follow_fork (follow_child, detach_fork);
644 }
645
646 /* Tell the target to follow the fork we're stopped at. Returns true
647 if the inferior should be resumed; false, if the target for some
648 reason decided it's best not to resume. */
649
650 static int
651 follow_fork (void)
652 {
653 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
654 int should_resume = 1;
655 struct thread_info *tp;
656
657 /* Copy user stepping state to the new inferior thread. FIXME: the
658 followed fork child thread should have a copy of most of the
659 parent thread structure's run control related fields, not just these.
660 Initialized to avoid "may be used uninitialized" warnings from gcc. */
661 struct breakpoint *step_resume_breakpoint = NULL;
662 struct breakpoint *exception_resume_breakpoint = NULL;
663 CORE_ADDR step_range_start = 0;
664 CORE_ADDR step_range_end = 0;
665 struct frame_id step_frame_id = { 0 };
666 struct thread_fsm *thread_fsm = NULL;
667
668 if (!non_stop)
669 {
670 ptid_t wait_ptid;
671 struct target_waitstatus wait_status;
672
673 /* Get the last target status returned by target_wait(). */
674 get_last_target_status (&wait_ptid, &wait_status);
675
676 /* If not stopped at a fork event, then there's nothing else to
677 do. */
678 if (wait_status.kind != TARGET_WAITKIND_FORKED
679 && wait_status.kind != TARGET_WAITKIND_VFORKED)
680 return 1;
681
682 /* Check if we switched over from WAIT_PTID, since the event was
683 reported. */
684 if (wait_ptid != minus_one_ptid
685 && inferior_ptid != wait_ptid)
686 {
687 /* We did. Switch back to WAIT_PTID thread, to tell the
688 target to follow it (in either direction). We'll
689 afterwards refuse to resume, and inform the user what
690 happened. */
691 thread_info *wait_thread
692 = find_thread_ptid (wait_ptid);
693 switch_to_thread (wait_thread);
694 should_resume = 0;
695 }
696 }
697
698 tp = inferior_thread ();
699
700 /* If there were any forks/vforks that were caught and are now to be
701 followed, then do so now. */
702 switch (tp->pending_follow.kind)
703 {
704 case TARGET_WAITKIND_FORKED:
705 case TARGET_WAITKIND_VFORKED:
706 {
707 ptid_t parent, child;
708
709 /* If the user did a next/step, etc, over a fork call,
710 preserve the stepping state in the fork child. */
711 if (follow_child && should_resume)
712 {
713 step_resume_breakpoint = clone_momentary_breakpoint
714 (tp->control.step_resume_breakpoint);
715 step_range_start = tp->control.step_range_start;
716 step_range_end = tp->control.step_range_end;
717 step_frame_id = tp->control.step_frame_id;
718 exception_resume_breakpoint
719 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
720 thread_fsm = tp->thread_fsm;
721
722 /* For now, delete the parent's sr breakpoint, otherwise,
723 parent/child sr breakpoints are considered duplicates,
724 and the child version will not be installed. Remove
725 this when the breakpoints module becomes aware of
726 inferiors and address spaces. */
727 delete_step_resume_breakpoint (tp);
728 tp->control.step_range_start = 0;
729 tp->control.step_range_end = 0;
730 tp->control.step_frame_id = null_frame_id;
731 delete_exception_resume_breakpoint (tp);
732 tp->thread_fsm = NULL;
733 }
734
735 parent = inferior_ptid;
736 child = tp->pending_follow.value.related_pid;
737
738 /* Set up inferior(s) as specified by the caller, and tell the
739 target to do whatever is necessary to follow either parent
740 or child. */
741 if (follow_fork_inferior (follow_child, detach_fork))
742 {
743 /* Target refused to follow, or there's some other reason
744 we shouldn't resume. */
745 should_resume = 0;
746 }
747 else
748 {
749 /* This pending follow fork event is now handled, one way
750 or another. The previous selected thread may be gone
751 from the lists by now, but if it is still around, need
752 to clear the pending follow request. */
753 tp = find_thread_ptid (parent);
754 if (tp)
755 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
756
757 /* This makes sure we don't try to apply the "Switched
758 over from WAIT_PID" logic above. */
759 nullify_last_target_wait_ptid ();
760
761 /* If we followed the child, switch to it... */
762 if (follow_child)
763 {
764 thread_info *child_thr = find_thread_ptid (child);
765 switch_to_thread (child_thr);
766
767 /* ... and preserve the stepping state, in case the
768 user was stepping over the fork call. */
769 if (should_resume)
770 {
771 tp = inferior_thread ();
772 tp->control.step_resume_breakpoint
773 = step_resume_breakpoint;
774 tp->control.step_range_start = step_range_start;
775 tp->control.step_range_end = step_range_end;
776 tp->control.step_frame_id = step_frame_id;
777 tp->control.exception_resume_breakpoint
778 = exception_resume_breakpoint;
779 tp->thread_fsm = thread_fsm;
780 }
781 else
782 {
783 /* If we get here, it was because we're trying to
784 resume from a fork catchpoint, but, the user
785 has switched threads away from the thread that
786 forked. In that case, the resume command
787 issued is most likely not applicable to the
788 child, so just warn, and refuse to resume. */
789 warning (_("Not resuming: switched threads "
790 "before following fork child."));
791 }
792
793 /* Reset breakpoints in the child as appropriate. */
794 follow_inferior_reset_breakpoints ();
795 }
796 }
797 }
798 break;
799 case TARGET_WAITKIND_SPURIOUS:
800 /* Nothing to follow. */
801 break;
802 default:
803 internal_error (__FILE__, __LINE__,
804 "Unexpected pending_follow.kind %d\n",
805 tp->pending_follow.kind);
806 break;
807 }
808
809 return should_resume;
810 }
811
812 static void
813 follow_inferior_reset_breakpoints (void)
814 {
815 struct thread_info *tp = inferior_thread ();
816
817 /* Was there a step_resume breakpoint? (There was if the user
818 did a "next" at the fork() call.) If so, explicitly reset its
819 thread number. Cloned step_resume breakpoints are disabled on
820 creation, so enable it here now that it is associated with the
821 correct thread.
822
823 step_resumes are a form of bp that are made to be per-thread.
824 Since we created the step_resume bp when the parent process
825 was being debugged, and now are switching to the child process,
826 from the breakpoint package's viewpoint, that's a switch of
827 "threads". We must update the bp's notion of which thread
828 it is for, or it'll be ignored when it triggers. */
829
830 if (tp->control.step_resume_breakpoint)
831 {
832 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
833 tp->control.step_resume_breakpoint->loc->enabled = 1;
834 }
835
836 /* Treat exception_resume breakpoints like step_resume breakpoints. */
837 if (tp->control.exception_resume_breakpoint)
838 {
839 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
840 tp->control.exception_resume_breakpoint->loc->enabled = 1;
841 }
842
843 /* Reinsert all breakpoints in the child. The user may have set
844 breakpoints after catching the fork, in which case those
845 were never set in the child, but only in the parent. This makes
846 sure the inserted breakpoints match the breakpoint list. */
847
848 breakpoint_re_set ();
849 insert_breakpoints ();
850 }
851
852 /* The child has exited or execed: resume threads of the parent the
853 user wanted to be executing. */
854
855 static int
856 proceed_after_vfork_done (struct thread_info *thread,
857 void *arg)
858 {
859 int pid = * (int *) arg;
860
861 if (thread->ptid.pid () == pid
862 && thread->state == THREAD_RUNNING
863 && !thread->executing
864 && !thread->stop_requested
865 && thread->suspend.stop_signal == GDB_SIGNAL_0)
866 {
867 if (debug_infrun)
868 fprintf_unfiltered (gdb_stdlog,
869 "infrun: resuming vfork parent thread %s\n",
870 target_pid_to_str (thread->ptid).c_str ());
871
872 switch_to_thread (thread);
873 clear_proceed_status (0);
874 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
875 }
876
877 return 0;
878 }
879
880 /* Save/restore inferior_ptid, current program space and current
881 inferior. Only use this if the current context points at an exited
882 inferior (and therefore there's no current thread to save). */
883 class scoped_restore_exited_inferior
884 {
885 public:
886 scoped_restore_exited_inferior ()
887 : m_saved_ptid (&inferior_ptid)
888 {}
889
890 private:
891 scoped_restore_tmpl<ptid_t> m_saved_ptid;
892 scoped_restore_current_program_space m_pspace;
893 scoped_restore_current_inferior m_inferior;
894 };
895
896 /* Called whenever we notice an exec or exit event, to handle
897 detaching or resuming a vfork parent. */
898
899 static void
900 handle_vfork_child_exec_or_exit (int exec)
901 {
902 struct inferior *inf = current_inferior ();
903
904 if (inf->vfork_parent)
905 {
906 int resume_parent = -1;
907
908 /* This exec or exit marks the end of the shared memory region
909 between the parent and the child. Break the bonds. */
910 inferior *vfork_parent = inf->vfork_parent;
911 inf->vfork_parent->vfork_child = NULL;
912 inf->vfork_parent = NULL;
913
914 /* If the user wanted to detach from the parent, now is the
915 time. */
916 if (vfork_parent->pending_detach)
917 {
918 struct thread_info *tp;
919 struct program_space *pspace;
920 struct address_space *aspace;
921
922 /* follow-fork child, detach-on-fork on. */
923
924 vfork_parent->pending_detach = 0;
925
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
933 if (!exec)
934 maybe_restore_inferior.emplace ();
935 else
936 maybe_restore_thread.emplace ();
937
938 /* We're letting loose of the parent. */
939 tp = any_live_thread_of_inferior (vfork_parent);
940 switch_to_thread (tp);
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
959 if (print_inferior_events)
960 {
961 std::string pidstr
962 = target_pid_to_str (ptid_t (vfork_parent->pid));
963
964 target_terminal::ours_for_output ();
965
966 if (exec)
967 {
968 fprintf_filtered (gdb_stdlog,
969 _("[Detaching vfork parent %s "
970 "after child exec]\n"), pidstr.c_str ());
971 }
972 else
973 {
974 fprintf_filtered (gdb_stdlog,
975 _("[Detaching vfork parent %s "
976 "after child exit]\n"), pidstr.c_str ());
977 }
978 }
979
980 target_detach (vfork_parent, 0);
981
982 /* Put it back. */
983 inf->pspace = pspace;
984 inf->aspace = aspace;
985 }
986 else if (exec)
987 {
988 /* We're staying attached to the parent, so, really give the
989 child a new address space. */
990 inf->pspace = new program_space (maybe_new_address_space ());
991 inf->aspace = inf->pspace->aspace;
992 inf->removable = 1;
993 set_current_program_space (inf->pspace);
994
995 resume_parent = vfork_parent->pid;
996 }
997 else
998 {
999 struct program_space *pspace;
1000
1001 /* If this is a vfork child exiting, then the pspace and
1002 aspaces were shared with the parent. Since we're
1003 reporting the process exit, we'll be mourning all that is
1004 found in the address space, and switching to null_ptid,
1005 preparing to start a new inferior. But, since we don't
1006 want to clobber the parent's address/program spaces, we
1007 go ahead and create a new one for this exiting
1008 inferior. */
1009
1010 /* Switch to null_ptid while running clone_program_space, so
1011 that clone_program_space doesn't want to read the
1012 selected frame of a dead process. */
1013 scoped_restore restore_ptid
1014 = make_scoped_restore (&inferior_ptid, null_ptid);
1015
1016 /* This inferior is dead, so avoid giving the breakpoints
1017 module the option to write through to it (cloning a
1018 program space resets breakpoints). */
1019 inf->aspace = NULL;
1020 inf->pspace = NULL;
1021 pspace = new program_space (maybe_new_address_space ());
1022 set_current_program_space (pspace);
1023 inf->removable = 1;
1024 inf->symfile_flags = SYMFILE_NO_READ;
1025 clone_program_space (pspace, vfork_parent->pspace);
1026 inf->pspace = pspace;
1027 inf->aspace = pspace->aspace;
1028
1029 resume_parent = vfork_parent->pid;
1030 }
1031
1032 gdb_assert (current_program_space == inf->pspace);
1033
1034 if (non_stop && resume_parent != -1)
1035 {
1036 /* If the user wanted the parent to be running, let it go
1037 free now. */
1038 scoped_restore_current_thread restore_thread;
1039
1040 if (debug_infrun)
1041 fprintf_unfiltered (gdb_stdlog,
1042 "infrun: resuming vfork parent process %d\n",
1043 resume_parent);
1044
1045 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1046 }
1047 }
1048 }
1049
1050 /* Enum strings for "set|show follow-exec-mode". */
1051
1052 static const char follow_exec_mode_new[] = "new";
1053 static const char follow_exec_mode_same[] = "same";
1054 static const char *const follow_exec_mode_names[] =
1055 {
1056 follow_exec_mode_new,
1057 follow_exec_mode_same,
1058 NULL,
1059 };
1060
1061 static const char *follow_exec_mode_string = follow_exec_mode_same;
1062 static void
1063 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1064 struct cmd_list_element *c, const char *value)
1065 {
1066 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1067 }
1068
1069 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1070
1071 static void
1072 follow_exec (ptid_t ptid, const char *exec_file_target)
1073 {
1074 struct inferior *inf = current_inferior ();
1075 int pid = ptid.pid ();
1076 ptid_t process_ptid;
1077
1078 /* Switch terminal for any messages produced e.g. by
1079 breakpoint_re_set. */
1080 target_terminal::ours_for_output ();
1081
1082 /* This is an exec event that we actually wish to pay attention to.
1083 Refresh our symbol table to the newly exec'd program, remove any
1084 momentary bp's, etc.
1085
1086 If there are breakpoints, they aren't really inserted now,
1087 since the exec() transformed our inferior into a fresh set
1088 of instructions.
1089
1090 We want to preserve symbolic breakpoints on the list, since
1091 we have hopes that they can be reset after the new a.out's
1092 symbol table is read.
1093
1094 However, any "raw" breakpoints must be removed from the list
1095 (e.g., the solib bp's), since their address is probably invalid
1096 now.
1097
1098 And, we DON'T want to call delete_breakpoints() here, since
1099 that may write the bp's "shadow contents" (the instruction
1100 value that was overwritten with a TRAP instruction). Since
1101 we now have a new a.out, those shadow contents aren't valid. */
1102
1103 mark_breakpoints_out ();
1104
1105 /* The target reports the exec event to the main thread, even if
1106 some other thread does the exec, and even if the main thread was
1107 stopped or already gone. We may still have non-leader threads of
1108 the process on our list. E.g., on targets that don't have thread
1109 exit events (like remote); or on native Linux in non-stop mode if
1110 there were only two threads in the inferior and the non-leader
1111 one is the one that execs (and nothing forces an update of the
1112 thread list up to here). When debugging remotely, it's best to
1113 avoid extra traffic, when possible, so avoid syncing the thread
1114 list with the target, and instead go ahead and delete all threads
1115 of the process but one that reported the event. Note this must
1116 be done before calling update_breakpoints_after_exec, as
1117 otherwise clearing the threads' resources would reference stale
1118 thread breakpoints -- it may have been one of these threads that
1119 stepped across the exec. We could just clear their stepping
1120 states, but as long as we're iterating, might as well delete
1121 them. Deleting them now rather than at the next user-visible
1122 stop provides a nicer sequence of events for user and MI
1123 notifications. */
1124 for (thread_info *th : all_threads_safe ())
1125 if (th->ptid.pid () == pid && th->ptid != ptid)
1126 delete_thread (th);
1127
1128 /* We also need to clear any left over stale state for the
1129 leader/event thread. E.g., if there was any step-resume
1130 breakpoint or similar, it's gone now. We cannot truly
1131 step-to-next statement through an exec(). */
1132 thread_info *th = inferior_thread ();
1133 th->control.step_resume_breakpoint = NULL;
1134 th->control.exception_resume_breakpoint = NULL;
1135 th->control.single_step_breakpoints = NULL;
1136 th->control.step_range_start = 0;
1137 th->control.step_range_end = 0;
1138
1139 /* The user may have had the main thread held stopped in the
1140 previous image (e.g., schedlock on, or non-stop). Release
1141 it now. */
1142 th->stop_requested = 0;
1143
1144 update_breakpoints_after_exec ();
1145
1146 /* What is this a.out's name? */
1147 process_ptid = ptid_t (pid);
1148 printf_unfiltered (_("%s is executing new program: %s\n"),
1149 target_pid_to_str (process_ptid).c_str (),
1150 exec_file_target);
1151
1152 /* We've followed the inferior through an exec. Therefore, the
1153 inferior has essentially been killed & reborn. */
1154
1155 breakpoint_init_inferior (inf_execd);
1156
1157 gdb::unique_xmalloc_ptr<char> exec_file_host
1158 = exec_file_find (exec_file_target, NULL);
1159
1160 /* If we were unable to map the executable target pathname onto a host
1161 pathname, tell the user that. Otherwise GDB's subsequent behavior
1162 is confusing. Maybe it would even be better to stop at this point
1163 so that the user can specify a file manually before continuing. */
1164 if (exec_file_host == NULL)
1165 warning (_("Could not load symbols for executable %s.\n"
1166 "Do you need \"set sysroot\"?"),
1167 exec_file_target);
1168
1169 /* Reset the shared library package. This ensures that we get a
1170 shlib event when the child reaches "_start", at which point the
1171 dld will have had a chance to initialize the child. */
1172 /* Also, loading a symbol file below may trigger symbol lookups, and
1173 we don't want those to be satisfied by the libraries of the
1174 previous incarnation of this process. */
1175 no_shared_libraries (NULL, 0);
1176
1177 if (follow_exec_mode_string == follow_exec_mode_new)
1178 {
1179 /* The user wants to keep the old inferior and program spaces
1180 around. Create a new fresh one, and switch to it. */
1181
1182 /* Do exit processing for the original inferior before setting the new
1183 inferior's pid. Having two inferiors with the same pid would confuse
1184 find_inferior_p(t)id. Transfer the terminal state and info from the
1185 old to the new inferior. */
1186 inf = add_inferior_with_spaces ();
1187 swap_terminal_info (inf, current_inferior ());
1188 exit_inferior_silent (current_inferior ());
1189
1190 inf->pid = pid;
1191 target_follow_exec (inf, exec_file_target);
1192
1193 set_current_inferior (inf);
1194 set_current_program_space (inf->pspace);
1195 add_thread (ptid);
1196 }
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
1206 }
1207
1208 gdb_assert (current_program_space == inf->pspace);
1209
1210 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1211 because the proper displacement for a PIE (Position Independent
1212 Executable) main symbol file will only be computed by
1213 solib_create_inferior_hook below. breakpoint_re_set would fail
1214 to insert the breakpoints with the zero displacement. */
1215 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1216
1217 /* If the target can specify a description, read it. Must do this
1218 after flipping to the new executable (because the target supplied
1219 description must be compatible with the executable's
1220 architecture, and the old executable may e.g., be 32-bit, while
1221 the new one 64-bit), and before anything involving memory or
1222 registers. */
1223 target_find_description ();
1224
1225 solib_create_inferior_hook (0);
1226
1227 jit_inferior_created_hook ();
1228
1229 breakpoint_re_set ();
1230
1231 /* Reinsert all breakpoints. (Those which were symbolic have
1232 been reset to the proper address in the new a.out, thanks
1233 to symbol_file_command...). */
1234 insert_breakpoints ();
1235
1236 /* The next resume of this inferior should bring it to the shlib
1237 startup breakpoints. (If the user had also set bp's on
1238 "main" from the old (parent) process, then they'll auto-
1239 matically get reset there in the new process.). */
1240 }
1241
1242 /* The queue of threads that need to do a step-over operation to get
1243 past e.g., a breakpoint. What technique is used to step over the
1244 breakpoint/watchpoint does not matter -- all threads end up in the
1245 same queue, to maintain rough temporal order of execution, in order
1246 to avoid starvation, otherwise, we could e.g., find ourselves
1247 constantly stepping the same couple threads past their breakpoints
1248 over and over, if the single-step finish fast enough. */
1249 struct thread_info *step_over_queue_head;
1250
1251 /* Bit flags indicating what the thread needs to step over. */
1252
1253 enum step_over_what_flag
1254 {
1255 /* Step over a breakpoint. */
1256 STEP_OVER_BREAKPOINT = 1,
1257
1258 /* Step past a non-continuable watchpoint, in order to let the
1259 instruction execute so we can evaluate the watchpoint
1260 expression. */
1261 STEP_OVER_WATCHPOINT = 2
1262 };
1263 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1264
1265 /* Info about an instruction that is being stepped over. */
1266
1267 struct step_over_info
1268 {
1269 /* If we're stepping past a breakpoint, this is the address space
1270 and address of the instruction the breakpoint is set at. We'll
1271 skip inserting all breakpoints here. Valid iff ASPACE is
1272 non-NULL. */
1273 const address_space *aspace;
1274 CORE_ADDR address;
1275
1276 /* The instruction being stepped over triggers a nonsteppable
1277 watchpoint. If true, we'll skip inserting watchpoints. */
1278 int nonsteppable_watchpoint_p;
1279
1280 /* The thread's global number. */
1281 int thread;
1282 };
1283
1284 /* The step-over info of the location that is being stepped over.
1285
1286 Note that with async/breakpoint always-inserted mode, a user might
1287 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1288 being stepped over. As setting a new breakpoint inserts all
1289 breakpoints, we need to make sure the breakpoint being stepped over
1290 isn't inserted then. We do that by only clearing the step-over
1291 info when the step-over is actually finished (or aborted).
1292
1293 Presently GDB can only step over one breakpoint at any given time.
1294 Given threads that can't run code in the same address space as the
1295 breakpoint's can't really miss the breakpoint, GDB could be taught
1296 to step-over at most one breakpoint per address space (so this info
1297 could move to the address space object if/when GDB is extended).
1298 The set of breakpoints being stepped over will normally be much
1299 smaller than the set of all breakpoints, so a flag in the
1300 breakpoint location structure would be wasteful. A separate list
1301 also saves complexity and run-time, as otherwise we'd have to go
1302 through all breakpoint locations clearing their flag whenever we
1303 start a new sequence. Similar considerations weigh against storing
1304 this info in the thread object. Plus, not all step overs actually
1305 have breakpoint locations -- e.g., stepping past a single-step
1306 breakpoint, or stepping to complete a non-continuable
1307 watchpoint. */
1308 static struct step_over_info step_over_info;
1309
1310 /* Record the address of the breakpoint/instruction we're currently
1311 stepping over.
1312 N.B. We record the aspace and address now, instead of say just the thread,
1313 because when we need the info later the thread may be running. */
1314
1315 static void
1316 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1317 int nonsteppable_watchpoint_p,
1318 int thread)
1319 {
1320 step_over_info.aspace = aspace;
1321 step_over_info.address = address;
1322 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1323 step_over_info.thread = thread;
1324 }
1325
1326 /* Called when we're not longer stepping over a breakpoint / an
1327 instruction, so all breakpoints are free to be (re)inserted. */
1328
1329 static void
1330 clear_step_over_info (void)
1331 {
1332 if (debug_infrun)
1333 fprintf_unfiltered (gdb_stdlog,
1334 "infrun: clear_step_over_info\n");
1335 step_over_info.aspace = NULL;
1336 step_over_info.address = 0;
1337 step_over_info.nonsteppable_watchpoint_p = 0;
1338 step_over_info.thread = -1;
1339 }
1340
1341 /* See infrun.h. */
1342
1343 int
1344 stepping_past_instruction_at (struct address_space *aspace,
1345 CORE_ADDR address)
1346 {
1347 return (step_over_info.aspace != NULL
1348 && breakpoint_address_match (aspace, address,
1349 step_over_info.aspace,
1350 step_over_info.address));
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 thread_is_stepping_over_breakpoint (int thread)
1357 {
1358 return (step_over_info.thread != -1
1359 && thread == step_over_info.thread);
1360 }
1361
1362 /* See infrun.h. */
1363
1364 int
1365 stepping_past_nonsteppable_watchpoint (void)
1366 {
1367 return step_over_info.nonsteppable_watchpoint_p;
1368 }
1369
1370 /* Returns true if step-over info is valid. */
1371
1372 static int
1373 step_over_info_valid_p (void)
1374 {
1375 return (step_over_info.aspace != NULL
1376 || stepping_past_nonsteppable_watchpoint ());
1377 }
1378
1379 \f
1380 /* Displaced stepping. */
1381
1382 /* In non-stop debugging mode, we must take special care to manage
1383 breakpoints properly; in particular, the traditional strategy for
1384 stepping a thread past a breakpoint it has hit is unsuitable.
1385 'Displaced stepping' is a tactic for stepping one thread past a
1386 breakpoint it has hit while ensuring that other threads running
1387 concurrently will hit the breakpoint as they should.
1388
1389 The traditional way to step a thread T off a breakpoint in a
1390 multi-threaded program in all-stop mode is as follows:
1391
1392 a0) Initially, all threads are stopped, and breakpoints are not
1393 inserted.
1394 a1) We single-step T, leaving breakpoints uninserted.
1395 a2) We insert breakpoints, and resume all threads.
1396
1397 In non-stop debugging, however, this strategy is unsuitable: we
1398 don't want to have to stop all threads in the system in order to
1399 continue or step T past a breakpoint. Instead, we use displaced
1400 stepping:
1401
1402 n0) Initially, T is stopped, other threads are running, and
1403 breakpoints are inserted.
1404 n1) We copy the instruction "under" the breakpoint to a separate
1405 location, outside the main code stream, making any adjustments
1406 to the instruction, register, and memory state as directed by
1407 T's architecture.
1408 n2) We single-step T over the instruction at its new location.
1409 n3) We adjust the resulting register and memory state as directed
1410 by T's architecture. This includes resetting T's PC to point
1411 back into the main instruction stream.
1412 n4) We resume T.
1413
1414 This approach depends on the following gdbarch methods:
1415
1416 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1417 indicate where to copy the instruction, and how much space must
1418 be reserved there. We use these in step n1.
1419
1420 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1421 address, and makes any necessary adjustments to the instruction,
1422 register contents, and memory. We use this in step n1.
1423
1424 - gdbarch_displaced_step_fixup adjusts registers and memory after
1425 we have successfully single-stepped the instruction, to yield the
1426 same effect the instruction would have had if we had executed it
1427 at its original address. We use this in step n3.
1428
1429 The gdbarch_displaced_step_copy_insn and
1430 gdbarch_displaced_step_fixup functions must be written so that
1431 copying an instruction with gdbarch_displaced_step_copy_insn,
1432 single-stepping across the copied instruction, and then applying
1433 gdbarch_displaced_insn_fixup should have the same effects on the
1434 thread's memory and registers as stepping the instruction in place
1435 would have. Exactly which responsibilities fall to the copy and
1436 which fall to the fixup is up to the author of those functions.
1437
1438 See the comments in gdbarch.sh for details.
1439
1440 Note that displaced stepping and software single-step cannot
1441 currently be used in combination, although with some care I think
1442 they could be made to. Software single-step works by placing
1443 breakpoints on all possible subsequent instructions; if the
1444 displaced instruction is a PC-relative jump, those breakpoints
1445 could fall in very strange places --- on pages that aren't
1446 executable, or at addresses that are not proper instruction
1447 boundaries. (We do generally let other threads run while we wait
1448 to hit the software single-step breakpoint, and they might
1449 encounter such a corrupted instruction.) One way to work around
1450 this would be to have gdbarch_displaced_step_copy_insn fully
1451 simulate the effect of PC-relative instructions (and return NULL)
1452 on architectures that use software single-stepping.
1453
1454 In non-stop mode, we can have independent and simultaneous step
1455 requests, so more than one thread may need to simultaneously step
1456 over a breakpoint. The current implementation assumes there is
1457 only one scratch space per process. In this case, we have to
1458 serialize access to the scratch space. If thread A wants to step
1459 over a breakpoint, but we are currently waiting for some other
1460 thread to complete a displaced step, we leave thread A stopped and
1461 place it in the displaced_step_request_queue. Whenever a displaced
1462 step finishes, we pick the next thread in the queue and start a new
1463 displaced step operation on it. See displaced_step_prepare and
1464 displaced_step_fixup for details. */
1465
1466 /* Default destructor for displaced_step_closure. */
1467
1468 displaced_step_closure::~displaced_step_closure () = default;
1469
1470 /* Get the displaced stepping state of process PID. */
1471
1472 static displaced_step_inferior_state *
1473 get_displaced_stepping_state (inferior *inf)
1474 {
1475 return &inf->displaced_step_state;
1476 }
1477
1478 /* Returns true if any inferior has a thread doing a displaced
1479 step. */
1480
1481 static bool
1482 displaced_step_in_progress_any_inferior ()
1483 {
1484 for (inferior *i : all_inferiors ())
1485 {
1486 if (i->displaced_step_state.step_thread != nullptr)
1487 return true;
1488 }
1489
1490 return false;
1491 }
1492
1493 /* Return true if thread represented by PTID is doing a displaced
1494 step. */
1495
1496 static int
1497 displaced_step_in_progress_thread (thread_info *thread)
1498 {
1499 gdb_assert (thread != NULL);
1500
1501 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1502 }
1503
1504 /* Return true if process PID has a thread doing a displaced step. */
1505
1506 static int
1507 displaced_step_in_progress (inferior *inf)
1508 {
1509 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1510 }
1511
1512 /* If inferior is in displaced stepping, and ADDR equals to starting address
1513 of copy area, return corresponding displaced_step_closure. Otherwise,
1514 return NULL. */
1515
1516 struct displaced_step_closure*
1517 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1518 {
1519 displaced_step_inferior_state *displaced
1520 = get_displaced_stepping_state (current_inferior ());
1521
1522 /* If checking the mode of displaced instruction in copy area. */
1523 if (displaced->step_thread != nullptr
1524 && displaced->step_copy == addr)
1525 return displaced->step_closure;
1526
1527 return NULL;
1528 }
1529
1530 static void
1531 infrun_inferior_exit (struct inferior *inf)
1532 {
1533 inf->displaced_step_state.reset ();
1534 }
1535
1536 /* If ON, and the architecture supports it, GDB will use displaced
1537 stepping to step over breakpoints. If OFF, or if the architecture
1538 doesn't support it, GDB will instead use the traditional
1539 hold-and-step approach. If AUTO (which is the default), GDB will
1540 decide which technique to use to step over breakpoints depending on
1541 which of all-stop or non-stop mode is active --- displaced stepping
1542 in non-stop mode; hold-and-step in all-stop mode. */
1543
1544 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1545
1546 static void
1547 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1548 struct cmd_list_element *c,
1549 const char *value)
1550 {
1551 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1552 fprintf_filtered (file,
1553 _("Debugger's willingness to use displaced stepping "
1554 "to step over breakpoints is %s (currently %s).\n"),
1555 value, target_is_non_stop_p () ? "on" : "off");
1556 else
1557 fprintf_filtered (file,
1558 _("Debugger's willingness to use displaced stepping "
1559 "to step over breakpoints is %s.\n"), value);
1560 }
1561
1562 /* Return non-zero if displaced stepping can/should be used to step
1563 over breakpoints of thread TP. */
1564
1565 static int
1566 use_displaced_stepping (struct thread_info *tp)
1567 {
1568 struct regcache *regcache = get_thread_regcache (tp);
1569 struct gdbarch *gdbarch = regcache->arch ();
1570 displaced_step_inferior_state *displaced_state
1571 = get_displaced_stepping_state (tp->inf);
1572
1573 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1574 && target_is_non_stop_p ())
1575 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1576 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1577 && find_record_target () == NULL
1578 && !displaced_state->failed_before);
1579 }
1580
1581 /* Clean out any stray displaced stepping state. */
1582 static void
1583 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1584 {
1585 /* Indicate that there is no cleanup pending. */
1586 displaced->step_thread = nullptr;
1587
1588 delete displaced->step_closure;
1589 displaced->step_closure = NULL;
1590 }
1591
1592 /* A cleanup that wraps displaced_step_clear. */
1593 using displaced_step_clear_cleanup
1594 = FORWARD_SCOPE_EXIT (displaced_step_clear);
1595
1596 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1597 void
1598 displaced_step_dump_bytes (struct ui_file *file,
1599 const gdb_byte *buf,
1600 size_t len)
1601 {
1602 int i;
1603
1604 for (i = 0; i < len; i++)
1605 fprintf_unfiltered (file, "%02x ", buf[i]);
1606 fputs_unfiltered ("\n", file);
1607 }
1608
1609 /* Prepare to single-step, using displaced stepping.
1610
1611 Note that we cannot use displaced stepping when we have a signal to
1612 deliver. If we have a signal to deliver and an instruction to step
1613 over, then after the step, there will be no indication from the
1614 target whether the thread entered a signal handler or ignored the
1615 signal and stepped over the instruction successfully --- both cases
1616 result in a simple SIGTRAP. In the first case we mustn't do a
1617 fixup, and in the second case we must --- but we can't tell which.
1618 Comments in the code for 'random signals' in handle_inferior_event
1619 explain how we handle this case instead.
1620
1621 Returns 1 if preparing was successful -- this thread is going to be
1622 stepped now; 0 if displaced stepping this thread got queued; or -1
1623 if this instruction can't be displaced stepped. */
1624
1625 static int
1626 displaced_step_prepare_throw (thread_info *tp)
1627 {
1628 regcache *regcache = get_thread_regcache (tp);
1629 struct gdbarch *gdbarch = regcache->arch ();
1630 const address_space *aspace = regcache->aspace ();
1631 CORE_ADDR original, copy;
1632 ULONGEST len;
1633 struct displaced_step_closure *closure;
1634 int status;
1635
1636 /* We should never reach this function if the architecture does not
1637 support displaced stepping. */
1638 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1639
1640 /* Nor if the thread isn't meant to step over a breakpoint. */
1641 gdb_assert (tp->control.trap_expected);
1642
1643 /* Disable range stepping while executing in the scratch pad. We
1644 want a single-step even if executing the displaced instruction in
1645 the scratch buffer lands within the stepping range (e.g., a
1646 jump/branch). */
1647 tp->control.may_range_step = 0;
1648
1649 /* We have to displaced step one thread at a time, as we only have
1650 access to a single scratch space per inferior. */
1651
1652 displaced_step_inferior_state *displaced
1653 = get_displaced_stepping_state (tp->inf);
1654
1655 if (displaced->step_thread != nullptr)
1656 {
1657 /* Already waiting for a displaced step to finish. Defer this
1658 request and place in queue. */
1659
1660 if (debug_displaced)
1661 fprintf_unfiltered (gdb_stdlog,
1662 "displaced: deferring step of %s\n",
1663 target_pid_to_str (tp->ptid).c_str ());
1664
1665 thread_step_over_chain_enqueue (tp);
1666 return 0;
1667 }
1668 else
1669 {
1670 if (debug_displaced)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "displaced: stepping %s now\n",
1673 target_pid_to_str (tp->ptid).c_str ());
1674 }
1675
1676 displaced_step_clear (displaced);
1677
1678 scoped_restore_current_thread restore_thread;
1679
1680 switch_to_thread (tp);
1681
1682 original = regcache_read_pc (regcache);
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
1687 if (breakpoint_in_range_p (aspace, copy, len))
1688 {
1689 /* There's a breakpoint set in the scratch pad location range
1690 (which is usually around the entry point). We'd either
1691 install it before resuming, which would overwrite/corrupt the
1692 scratch pad, or if it was already inserted, this displaced
1693 step would overwrite it. The latter is OK in the sense that
1694 we already assume that no thread is going to execute the code
1695 in the scratch pad range (after initial startup) anyway, but
1696 the former is unacceptable. Simply punt and fallback to
1697 stepping over this breakpoint in-line. */
1698 if (debug_displaced)
1699 {
1700 fprintf_unfiltered (gdb_stdlog,
1701 "displaced: breakpoint set in scratch pad. "
1702 "Stepping over breakpoint in-line instead.\n");
1703 }
1704
1705 return -1;
1706 }
1707
1708 /* Save the original contents of the copy area. */
1709 displaced->step_saved_copy.resize (len);
1710 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1711 if (status != 0)
1712 throw_error (MEMORY_ERROR,
1713 _("Error accessing memory address %s (%s) for "
1714 "displaced-stepping scratch space."),
1715 paddress (gdbarch, copy), safe_strerror (status));
1716 if (debug_displaced)
1717 {
1718 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1719 paddress (gdbarch, copy));
1720 displaced_step_dump_bytes (gdb_stdlog,
1721 displaced->step_saved_copy.data (),
1722 len);
1723 };
1724
1725 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1726 original, copy, regcache);
1727 if (closure == NULL)
1728 {
1729 /* The architecture doesn't know how or want to displaced step
1730 this instruction or instruction sequence. Fallback to
1731 stepping over the breakpoint in-line. */
1732 return -1;
1733 }
1734
1735 /* Save the information we need to fix things up if the step
1736 succeeds. */
1737 displaced->step_thread = tp;
1738 displaced->step_gdbarch = gdbarch;
1739 displaced->step_closure = closure;
1740 displaced->step_original = original;
1741 displaced->step_copy = copy;
1742
1743 {
1744 displaced_step_clear_cleanup cleanup (displaced);
1745
1746 /* Resume execution at the copy. */
1747 regcache_write_pc (regcache, copy);
1748
1749 cleanup.release ();
1750 }
1751
1752 if (debug_displaced)
1753 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1754 paddress (gdbarch, copy));
1755
1756 return 1;
1757 }
1758
1759 /* Wrapper for displaced_step_prepare_throw that disabled further
1760 attempts at displaced stepping if we get a memory error. */
1761
1762 static int
1763 displaced_step_prepare (thread_info *thread)
1764 {
1765 int prepared = -1;
1766
1767 try
1768 {
1769 prepared = displaced_step_prepare_throw (thread);
1770 }
1771 catch (const gdb_exception_error &ex)
1772 {
1773 struct displaced_step_inferior_state *displaced_state;
1774
1775 if (ex.error != MEMORY_ERROR
1776 && ex.error != NOT_SUPPORTED_ERROR)
1777 throw;
1778
1779 if (debug_infrun)
1780 {
1781 fprintf_unfiltered (gdb_stdlog,
1782 "infrun: disabling displaced stepping: %s\n",
1783 ex.what ());
1784 }
1785
1786 /* Be verbose if "set displaced-stepping" is "on", silent if
1787 "auto". */
1788 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1789 {
1790 warning (_("disabling displaced stepping: %s"),
1791 ex.what ());
1792 }
1793
1794 /* Disable further displaced stepping attempts. */
1795 displaced_state
1796 = get_displaced_stepping_state (thread->inf);
1797 displaced_state->failed_before = 1;
1798 }
1799
1800 return prepared;
1801 }
1802
1803 static void
1804 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1805 const gdb_byte *myaddr, int len)
1806 {
1807 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1808
1809 inferior_ptid = ptid;
1810 write_memory (memaddr, myaddr, len);
1811 }
1812
1813 /* Restore the contents of the copy area for thread PTID. */
1814
1815 static void
1816 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1817 ptid_t ptid)
1818 {
1819 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1820
1821 write_memory_ptid (ptid, displaced->step_copy,
1822 displaced->step_saved_copy.data (), len);
1823 if (debug_displaced)
1824 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1825 target_pid_to_str (ptid).c_str (),
1826 paddress (displaced->step_gdbarch,
1827 displaced->step_copy));
1828 }
1829
1830 /* If we displaced stepped an instruction successfully, adjust
1831 registers and memory to yield the same effect the instruction would
1832 have had if we had executed it at its original address, and return
1833 1. If the instruction didn't complete, relocate the PC and return
1834 -1. If the thread wasn't displaced stepping, return 0. */
1835
1836 static int
1837 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1838 {
1839 struct displaced_step_inferior_state *displaced
1840 = get_displaced_stepping_state (event_thread->inf);
1841 int ret;
1842
1843 /* Was this event for the thread we displaced? */
1844 if (displaced->step_thread != event_thread)
1845 return 0;
1846
1847 displaced_step_clear_cleanup cleanup (displaced);
1848
1849 displaced_step_restore (displaced, displaced->step_thread->ptid);
1850
1851 /* Fixup may need to read memory/registers. Switch to the thread
1852 that we're fixing up. Also, target_stopped_by_watchpoint checks
1853 the current thread. */
1854 switch_to_thread (event_thread);
1855
1856 /* Did the instruction complete successfully? */
1857 if (signal == GDB_SIGNAL_TRAP
1858 && !(target_stopped_by_watchpoint ()
1859 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1860 || target_have_steppable_watchpoint)))
1861 {
1862 /* Fix up the resulting state. */
1863 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1864 displaced->step_closure,
1865 displaced->step_original,
1866 displaced->step_copy,
1867 get_thread_regcache (displaced->step_thread));
1868 ret = 1;
1869 }
1870 else
1871 {
1872 /* Since the instruction didn't complete, all we can do is
1873 relocate the PC. */
1874 struct regcache *regcache = get_thread_regcache (event_thread);
1875 CORE_ADDR pc = regcache_read_pc (regcache);
1876
1877 pc = displaced->step_original + (pc - displaced->step_copy);
1878 regcache_write_pc (regcache, pc);
1879 ret = -1;
1880 }
1881
1882 return ret;
1883 }
1884
1885 /* Data to be passed around while handling an event. This data is
1886 discarded between events. */
1887 struct execution_control_state
1888 {
1889 ptid_t ptid;
1890 /* The thread that got the event, if this was a thread event; NULL
1891 otherwise. */
1892 struct thread_info *event_thread;
1893
1894 struct target_waitstatus ws;
1895 int stop_func_filled_in;
1896 CORE_ADDR stop_func_start;
1897 CORE_ADDR stop_func_end;
1898 const char *stop_func_name;
1899 int wait_some_more;
1900
1901 /* True if the event thread hit the single-step breakpoint of
1902 another thread. Thus the event doesn't cause a stop, the thread
1903 needs to be single-stepped past the single-step breakpoint before
1904 we can switch back to the original stepping thread. */
1905 int hit_singlestep_breakpoint;
1906 };
1907
1908 /* Clear ECS and set it to point at TP. */
1909
1910 static void
1911 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1912 {
1913 memset (ecs, 0, sizeof (*ecs));
1914 ecs->event_thread = tp;
1915 ecs->ptid = tp->ptid;
1916 }
1917
1918 static void keep_going_pass_signal (struct execution_control_state *ecs);
1919 static void prepare_to_wait (struct execution_control_state *ecs);
1920 static int keep_going_stepped_thread (struct thread_info *tp);
1921 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1922
1923 /* Are there any pending step-over requests? If so, run all we can
1924 now and return true. Otherwise, return false. */
1925
1926 static int
1927 start_step_over (void)
1928 {
1929 struct thread_info *tp, *next;
1930
1931 /* Don't start a new step-over if we already have an in-line
1932 step-over operation ongoing. */
1933 if (step_over_info_valid_p ())
1934 return 0;
1935
1936 for (tp = step_over_queue_head; tp != NULL; tp = next)
1937 {
1938 struct execution_control_state ecss;
1939 struct execution_control_state *ecs = &ecss;
1940 step_over_what step_what;
1941 int must_be_in_line;
1942
1943 gdb_assert (!tp->stop_requested);
1944
1945 next = thread_step_over_chain_next (tp);
1946
1947 /* If this inferior already has a displaced step in process,
1948 don't start a new one. */
1949 if (displaced_step_in_progress (tp->inf))
1950 continue;
1951
1952 step_what = thread_still_needs_step_over (tp);
1953 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1954 || ((step_what & STEP_OVER_BREAKPOINT)
1955 && !use_displaced_stepping (tp)));
1956
1957 /* We currently stop all threads of all processes to step-over
1958 in-line. If we need to start a new in-line step-over, let
1959 any pending displaced steps finish first. */
1960 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1961 return 0;
1962
1963 thread_step_over_chain_remove (tp);
1964
1965 if (step_over_queue_head == NULL)
1966 {
1967 if (debug_infrun)
1968 fprintf_unfiltered (gdb_stdlog,
1969 "infrun: step-over queue now empty\n");
1970 }
1971
1972 if (tp->control.trap_expected
1973 || tp->resumed
1974 || tp->executing)
1975 {
1976 internal_error (__FILE__, __LINE__,
1977 "[%s] has inconsistent state: "
1978 "trap_expected=%d, resumed=%d, executing=%d\n",
1979 target_pid_to_str (tp->ptid).c_str (),
1980 tp->control.trap_expected,
1981 tp->resumed,
1982 tp->executing);
1983 }
1984
1985 if (debug_infrun)
1986 fprintf_unfiltered (gdb_stdlog,
1987 "infrun: resuming [%s] for step-over\n",
1988 target_pid_to_str (tp->ptid).c_str ());
1989
1990 /* keep_going_pass_signal skips the step-over if the breakpoint
1991 is no longer inserted. In all-stop, we want to keep looking
1992 for a thread that needs a step-over instead of resuming TP,
1993 because we wouldn't be able to resume anything else until the
1994 target stops again. In non-stop, the resume always resumes
1995 only TP, so it's OK to let the thread resume freely. */
1996 if (!target_is_non_stop_p () && !step_what)
1997 continue;
1998
1999 switch_to_thread (tp);
2000 reset_ecs (ecs, tp);
2001 keep_going_pass_signal (ecs);
2002
2003 if (!ecs->wait_some_more)
2004 error (_("Command aborted."));
2005
2006 gdb_assert (tp->resumed);
2007
2008 /* If we started a new in-line step-over, we're done. */
2009 if (step_over_info_valid_p ())
2010 {
2011 gdb_assert (tp->control.trap_expected);
2012 return 1;
2013 }
2014
2015 if (!target_is_non_stop_p ())
2016 {
2017 /* On all-stop, shouldn't have resumed unless we needed a
2018 step over. */
2019 gdb_assert (tp->control.trap_expected
2020 || tp->step_after_step_resume_breakpoint);
2021
2022 /* With remote targets (at least), in all-stop, we can't
2023 issue any further remote commands until the program stops
2024 again. */
2025 return 1;
2026 }
2027
2028 /* Either the thread no longer needed a step-over, or a new
2029 displaced stepping sequence started. Even in the latter
2030 case, continue looking. Maybe we can also start another
2031 displaced step on a thread of other process. */
2032 }
2033
2034 return 0;
2035 }
2036
2037 /* Update global variables holding ptids to hold NEW_PTID if they were
2038 holding OLD_PTID. */
2039 static void
2040 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2041 {
2042 if (inferior_ptid == old_ptid)
2043 inferior_ptid = new_ptid;
2044 }
2045
2046 \f
2047
2048 static const char schedlock_off[] = "off";
2049 static const char schedlock_on[] = "on";
2050 static const char schedlock_step[] = "step";
2051 static const char schedlock_replay[] = "replay";
2052 static const char *const scheduler_enums[] = {
2053 schedlock_off,
2054 schedlock_on,
2055 schedlock_step,
2056 schedlock_replay,
2057 NULL
2058 };
2059 static const char *scheduler_mode = schedlock_replay;
2060 static void
2061 show_scheduler_mode (struct ui_file *file, int from_tty,
2062 struct cmd_list_element *c, const char *value)
2063 {
2064 fprintf_filtered (file,
2065 _("Mode for locking scheduler "
2066 "during execution is \"%s\".\n"),
2067 value);
2068 }
2069
2070 static void
2071 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2072 {
2073 if (!target_can_lock_scheduler)
2074 {
2075 scheduler_mode = schedlock_off;
2076 error (_("Target '%s' cannot support this command."), target_shortname);
2077 }
2078 }
2079
2080 /* True if execution commands resume all threads of all processes by
2081 default; otherwise, resume only threads of the current inferior
2082 process. */
2083 bool sched_multi = false;
2084
2085 /* Try to setup for software single stepping over the specified location.
2086 Return 1 if target_resume() should use hardware single step.
2087
2088 GDBARCH the current gdbarch.
2089 PC the location to step over. */
2090
2091 static int
2092 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2093 {
2094 int hw_step = 1;
2095
2096 if (execution_direction == EXEC_FORWARD
2097 && gdbarch_software_single_step_p (gdbarch))
2098 hw_step = !insert_single_step_breakpoints (gdbarch);
2099
2100 return hw_step;
2101 }
2102
2103 /* See infrun.h. */
2104
2105 ptid_t
2106 user_visible_resume_ptid (int step)
2107 {
2108 ptid_t resume_ptid;
2109
2110 if (non_stop)
2111 {
2112 /* With non-stop mode on, threads are always handled
2113 individually. */
2114 resume_ptid = inferior_ptid;
2115 }
2116 else if ((scheduler_mode == schedlock_on)
2117 || (scheduler_mode == schedlock_step && step))
2118 {
2119 /* User-settable 'scheduler' mode requires solo thread
2120 resume. */
2121 resume_ptid = inferior_ptid;
2122 }
2123 else if ((scheduler_mode == schedlock_replay)
2124 && target_record_will_replay (minus_one_ptid, execution_direction))
2125 {
2126 /* User-settable 'scheduler' mode requires solo thread resume in replay
2127 mode. */
2128 resume_ptid = inferior_ptid;
2129 }
2130 else if (!sched_multi && target_supports_multi_process ())
2131 {
2132 /* Resume all threads of the current process (and none of other
2133 processes). */
2134 resume_ptid = ptid_t (inferior_ptid.pid ());
2135 }
2136 else
2137 {
2138 /* Resume all threads of all processes. */
2139 resume_ptid = RESUME_ALL;
2140 }
2141
2142 return resume_ptid;
2143 }
2144
2145 /* Return a ptid representing the set of threads that we will resume,
2146 in the perspective of the target, assuming run control handling
2147 does not require leaving some threads stopped (e.g., stepping past
2148 breakpoint). USER_STEP indicates whether we're about to start the
2149 target for a stepping command. */
2150
2151 static ptid_t
2152 internal_resume_ptid (int user_step)
2153 {
2154 /* In non-stop, we always control threads individually. Note that
2155 the target may always work in non-stop mode even with "set
2156 non-stop off", in which case user_visible_resume_ptid could
2157 return a wildcard ptid. */
2158 if (target_is_non_stop_p ())
2159 return inferior_ptid;
2160 else
2161 return user_visible_resume_ptid (user_step);
2162 }
2163
2164 /* Wrapper for target_resume, that handles infrun-specific
2165 bookkeeping. */
2166
2167 static void
2168 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2169 {
2170 struct thread_info *tp = inferior_thread ();
2171
2172 gdb_assert (!tp->stop_requested);
2173
2174 /* Install inferior's terminal modes. */
2175 target_terminal::inferior ();
2176
2177 /* Avoid confusing the next resume, if the next stop/resume
2178 happens to apply to another thread. */
2179 tp->suspend.stop_signal = GDB_SIGNAL_0;
2180
2181 /* Advise target which signals may be handled silently.
2182
2183 If we have removed breakpoints because we are stepping over one
2184 in-line (in any thread), we need to receive all signals to avoid
2185 accidentally skipping a breakpoint during execution of a signal
2186 handler.
2187
2188 Likewise if we're displaced stepping, otherwise a trap for a
2189 breakpoint in a signal handler might be confused with the
2190 displaced step finishing. We don't make the displaced_step_fixup
2191 step distinguish the cases instead, because:
2192
2193 - a backtrace while stopped in the signal handler would show the
2194 scratch pad as frame older than the signal handler, instead of
2195 the real mainline code.
2196
2197 - when the thread is later resumed, the signal handler would
2198 return to the scratch pad area, which would no longer be
2199 valid. */
2200 if (step_over_info_valid_p ()
2201 || displaced_step_in_progress (tp->inf))
2202 target_pass_signals ({});
2203 else
2204 target_pass_signals (signal_pass);
2205
2206 target_resume (resume_ptid, step, sig);
2207
2208 target_commit_resume ();
2209 }
2210
2211 /* Resume the inferior. SIG is the signal to give the inferior
2212 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2213 call 'resume', which handles exceptions. */
2214
2215 static void
2216 resume_1 (enum gdb_signal sig)
2217 {
2218 struct regcache *regcache = get_current_regcache ();
2219 struct gdbarch *gdbarch = regcache->arch ();
2220 struct thread_info *tp = inferior_thread ();
2221 CORE_ADDR pc = regcache_read_pc (regcache);
2222 const address_space *aspace = regcache->aspace ();
2223 ptid_t resume_ptid;
2224 /* This represents the user's step vs continue request. When
2225 deciding whether "set scheduler-locking step" applies, it's the
2226 user's intention that counts. */
2227 const int user_step = tp->control.stepping_command;
2228 /* This represents what we'll actually request the target to do.
2229 This can decay from a step to a continue, if e.g., we need to
2230 implement single-stepping with breakpoints (software
2231 single-step). */
2232 int step;
2233
2234 gdb_assert (!tp->stop_requested);
2235 gdb_assert (!thread_is_in_step_over_chain (tp));
2236
2237 if (tp->suspend.waitstatus_pending_p)
2238 {
2239 if (debug_infrun)
2240 {
2241 std::string statstr
2242 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2243
2244 fprintf_unfiltered (gdb_stdlog,
2245 "infrun: resume: thread %s has pending wait "
2246 "status %s (currently_stepping=%d).\n",
2247 target_pid_to_str (tp->ptid).c_str (),
2248 statstr.c_str (),
2249 currently_stepping (tp));
2250 }
2251
2252 tp->resumed = 1;
2253
2254 /* FIXME: What should we do if we are supposed to resume this
2255 thread with a signal? Maybe we should maintain a queue of
2256 pending signals to deliver. */
2257 if (sig != GDB_SIGNAL_0)
2258 {
2259 warning (_("Couldn't deliver signal %s to %s."),
2260 gdb_signal_to_name (sig),
2261 target_pid_to_str (tp->ptid).c_str ());
2262 }
2263
2264 tp->suspend.stop_signal = GDB_SIGNAL_0;
2265
2266 if (target_can_async_p ())
2267 {
2268 target_async (1);
2269 /* Tell the event loop we have an event to process. */
2270 mark_async_event_handler (infrun_async_inferior_event_token);
2271 }
2272 return;
2273 }
2274
2275 tp->stepped_breakpoint = 0;
2276
2277 /* Depends on stepped_breakpoint. */
2278 step = currently_stepping (tp);
2279
2280 if (current_inferior ()->waiting_for_vfork_done)
2281 {
2282 /* Don't try to single-step a vfork parent that is waiting for
2283 the child to get out of the shared memory region (by exec'ing
2284 or exiting). This is particularly important on software
2285 single-step archs, as the child process would trip on the
2286 software single step breakpoint inserted for the parent
2287 process. Since the parent will not actually execute any
2288 instruction until the child is out of the shared region (such
2289 are vfork's semantics), it is safe to simply continue it.
2290 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2291 the parent, and tell it to `keep_going', which automatically
2292 re-sets it stepping. */
2293 if (debug_infrun)
2294 fprintf_unfiltered (gdb_stdlog,
2295 "infrun: resume : clear step\n");
2296 step = 0;
2297 }
2298
2299 if (debug_infrun)
2300 fprintf_unfiltered (gdb_stdlog,
2301 "infrun: resume (step=%d, signal=%s), "
2302 "trap_expected=%d, current thread [%s] at %s\n",
2303 step, gdb_signal_to_symbol_string (sig),
2304 tp->control.trap_expected,
2305 target_pid_to_str (inferior_ptid).c_str (),
2306 paddress (gdbarch, pc));
2307
2308 /* Normally, by the time we reach `resume', the breakpoints are either
2309 removed or inserted, as appropriate. The exception is if we're sitting
2310 at a permanent breakpoint; we need to step over it, but permanent
2311 breakpoints can't be removed. So we have to test for it here. */
2312 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2313 {
2314 if (sig != GDB_SIGNAL_0)
2315 {
2316 /* We have a signal to pass to the inferior. The resume
2317 may, or may not take us to the signal handler. If this
2318 is a step, we'll need to stop in the signal handler, if
2319 there's one, (if the target supports stepping into
2320 handlers), or in the next mainline instruction, if
2321 there's no handler. If this is a continue, we need to be
2322 sure to run the handler with all breakpoints inserted.
2323 In all cases, set a breakpoint at the current address
2324 (where the handler returns to), and once that breakpoint
2325 is hit, resume skipping the permanent breakpoint. If
2326 that breakpoint isn't hit, then we've stepped into the
2327 signal handler (or hit some other event). We'll delete
2328 the step-resume breakpoint then. */
2329
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "infrun: resume: skipping permanent breakpoint, "
2333 "deliver signal first\n");
2334
2335 clear_step_over_info ();
2336 tp->control.trap_expected = 0;
2337
2338 if (tp->control.step_resume_breakpoint == NULL)
2339 {
2340 /* Set a "high-priority" step-resume, as we don't want
2341 user breakpoints at PC to trigger (again) when this
2342 hits. */
2343 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2344 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2345
2346 tp->step_after_step_resume_breakpoint = step;
2347 }
2348
2349 insert_breakpoints ();
2350 }
2351 else
2352 {
2353 /* There's no signal to pass, we can go ahead and skip the
2354 permanent breakpoint manually. */
2355 if (debug_infrun)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume: skipping permanent breakpoint\n");
2358 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2359 /* Update pc to reflect the new address from which we will
2360 execute instructions. */
2361 pc = regcache_read_pc (regcache);
2362
2363 if (step)
2364 {
2365 /* We've already advanced the PC, so the stepping part
2366 is done. Now we need to arrange for a trap to be
2367 reported to handle_inferior_event. Set a breakpoint
2368 at the current PC, and run to it. Don't update
2369 prev_pc, because if we end in
2370 switch_back_to_stepped_thread, we want the "expected
2371 thread advanced also" branch to be taken. IOW, we
2372 don't want this thread to step further from PC
2373 (overstep). */
2374 gdb_assert (!step_over_info_valid_p ());
2375 insert_single_step_breakpoint (gdbarch, aspace, pc);
2376 insert_breakpoints ();
2377
2378 resume_ptid = internal_resume_ptid (user_step);
2379 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2380 tp->resumed = 1;
2381 return;
2382 }
2383 }
2384 }
2385
2386 /* If we have a breakpoint to step over, make sure to do a single
2387 step only. Same if we have software watchpoints. */
2388 if (tp->control.trap_expected || bpstat_should_step ())
2389 tp->control.may_range_step = 0;
2390
2391 /* If enabled, step over breakpoints by executing a copy of the
2392 instruction at a different address.
2393
2394 We can't use displaced stepping when we have a signal to deliver;
2395 the comments for displaced_step_prepare explain why. The
2396 comments in the handle_inferior event for dealing with 'random
2397 signals' explain what we do instead.
2398
2399 We can't use displaced stepping when we are waiting for vfork_done
2400 event, displaced stepping breaks the vfork child similarly as single
2401 step software breakpoint. */
2402 if (tp->control.trap_expected
2403 && use_displaced_stepping (tp)
2404 && !step_over_info_valid_p ()
2405 && sig == GDB_SIGNAL_0
2406 && !current_inferior ()->waiting_for_vfork_done)
2407 {
2408 int prepared = displaced_step_prepare (tp);
2409
2410 if (prepared == 0)
2411 {
2412 if (debug_infrun)
2413 fprintf_unfiltered (gdb_stdlog,
2414 "Got placed in step-over queue\n");
2415
2416 tp->control.trap_expected = 0;
2417 return;
2418 }
2419 else if (prepared < 0)
2420 {
2421 /* Fallback to stepping over the breakpoint in-line. */
2422
2423 if (target_is_non_stop_p ())
2424 stop_all_threads ();
2425
2426 set_step_over_info (regcache->aspace (),
2427 regcache_read_pc (regcache), 0, tp->global_num);
2428
2429 step = maybe_software_singlestep (gdbarch, pc);
2430
2431 insert_breakpoints ();
2432 }
2433 else if (prepared > 0)
2434 {
2435 struct displaced_step_inferior_state *displaced;
2436
2437 /* Update pc to reflect the new address from which we will
2438 execute instructions due to displaced stepping. */
2439 pc = regcache_read_pc (get_thread_regcache (tp));
2440
2441 displaced = get_displaced_stepping_state (tp->inf);
2442 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2443 displaced->step_closure);
2444 }
2445 }
2446
2447 /* Do we need to do it the hard way, w/temp breakpoints? */
2448 else if (step)
2449 step = maybe_software_singlestep (gdbarch, pc);
2450
2451 /* Currently, our software single-step implementation leads to different
2452 results than hardware single-stepping in one situation: when stepping
2453 into delivering a signal which has an associated signal handler,
2454 hardware single-step will stop at the first instruction of the handler,
2455 while software single-step will simply skip execution of the handler.
2456
2457 For now, this difference in behavior is accepted since there is no
2458 easy way to actually implement single-stepping into a signal handler
2459 without kernel support.
2460
2461 However, there is one scenario where this difference leads to follow-on
2462 problems: if we're stepping off a breakpoint by removing all breakpoints
2463 and then single-stepping. In this case, the software single-step
2464 behavior means that even if there is a *breakpoint* in the signal
2465 handler, GDB still would not stop.
2466
2467 Fortunately, we can at least fix this particular issue. We detect
2468 here the case where we are about to deliver a signal while software
2469 single-stepping with breakpoints removed. In this situation, we
2470 revert the decisions to remove all breakpoints and insert single-
2471 step breakpoints, and instead we install a step-resume breakpoint
2472 at the current address, deliver the signal without stepping, and
2473 once we arrive back at the step-resume breakpoint, actually step
2474 over the breakpoint we originally wanted to step over. */
2475 if (thread_has_single_step_breakpoints_set (tp)
2476 && sig != GDB_SIGNAL_0
2477 && step_over_info_valid_p ())
2478 {
2479 /* If we have nested signals or a pending signal is delivered
2480 immediately after a handler returns, might might already have
2481 a step-resume breakpoint set on the earlier handler. We cannot
2482 set another step-resume breakpoint; just continue on until the
2483 original breakpoint is hit. */
2484 if (tp->control.step_resume_breakpoint == NULL)
2485 {
2486 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2487 tp->step_after_step_resume_breakpoint = 1;
2488 }
2489
2490 delete_single_step_breakpoints (tp);
2491
2492 clear_step_over_info ();
2493 tp->control.trap_expected = 0;
2494
2495 insert_breakpoints ();
2496 }
2497
2498 /* If STEP is set, it's a request to use hardware stepping
2499 facilities. But in that case, we should never
2500 use singlestep breakpoint. */
2501 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2502
2503 /* Decide the set of threads to ask the target to resume. */
2504 if (tp->control.trap_expected)
2505 {
2506 /* We're allowing a thread to run past a breakpoint it has
2507 hit, either by single-stepping the thread with the breakpoint
2508 removed, or by displaced stepping, with the breakpoint inserted.
2509 In the former case, we need to single-step only this thread,
2510 and keep others stopped, as they can miss this breakpoint if
2511 allowed to run. That's not really a problem for displaced
2512 stepping, but, we still keep other threads stopped, in case
2513 another thread is also stopped for a breakpoint waiting for
2514 its turn in the displaced stepping queue. */
2515 resume_ptid = inferior_ptid;
2516 }
2517 else
2518 resume_ptid = internal_resume_ptid (user_step);
2519
2520 if (execution_direction != EXEC_REVERSE
2521 && step && breakpoint_inserted_here_p (aspace, pc))
2522 {
2523 /* There are two cases where we currently need to step a
2524 breakpoint instruction when we have a signal to deliver:
2525
2526 - See handle_signal_stop where we handle random signals that
2527 could take out us out of the stepping range. Normally, in
2528 that case we end up continuing (instead of stepping) over the
2529 signal handler with a breakpoint at PC, but there are cases
2530 where we should _always_ single-step, even if we have a
2531 step-resume breakpoint, like when a software watchpoint is
2532 set. Assuming single-stepping and delivering a signal at the
2533 same time would takes us to the signal handler, then we could
2534 have removed the breakpoint at PC to step over it. However,
2535 some hardware step targets (like e.g., Mac OS) can't step
2536 into signal handlers, and for those, we need to leave the
2537 breakpoint at PC inserted, as otherwise if the handler
2538 recurses and executes PC again, it'll miss the breakpoint.
2539 So we leave the breakpoint inserted anyway, but we need to
2540 record that we tried to step a breakpoint instruction, so
2541 that adjust_pc_after_break doesn't end up confused.
2542
2543 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2544 in one thread after another thread that was stepping had been
2545 momentarily paused for a step-over. When we re-resume the
2546 stepping thread, it may be resumed from that address with a
2547 breakpoint that hasn't trapped yet. Seen with
2548 gdb.threads/non-stop-fair-events.exp, on targets that don't
2549 do displaced stepping. */
2550
2551 if (debug_infrun)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "infrun: resume: [%s] stepped breakpoint\n",
2554 target_pid_to_str (tp->ptid).c_str ());
2555
2556 tp->stepped_breakpoint = 1;
2557
2558 /* Most targets can step a breakpoint instruction, thus
2559 executing it normally. But if this one cannot, just
2560 continue and we will hit it anyway. */
2561 if (gdbarch_cannot_step_breakpoint (gdbarch))
2562 step = 0;
2563 }
2564
2565 if (debug_displaced
2566 && tp->control.trap_expected
2567 && use_displaced_stepping (tp)
2568 && !step_over_info_valid_p ())
2569 {
2570 struct regcache *resume_regcache = get_thread_regcache (tp);
2571 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2572 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2573 gdb_byte buf[4];
2574
2575 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2576 paddress (resume_gdbarch, actual_pc));
2577 read_memory (actual_pc, buf, sizeof (buf));
2578 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2579 }
2580
2581 if (tp->control.may_range_step)
2582 {
2583 /* If we're resuming a thread with the PC out of the step
2584 range, then we're doing some nested/finer run control
2585 operation, like stepping the thread out of the dynamic
2586 linker or the displaced stepping scratch pad. We
2587 shouldn't have allowed a range step then. */
2588 gdb_assert (pc_in_thread_step_range (pc, tp));
2589 }
2590
2591 do_target_resume (resume_ptid, step, sig);
2592 tp->resumed = 1;
2593 }
2594
2595 /* Resume the inferior. SIG is the signal to give the inferior
2596 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2597 rolls back state on error. */
2598
2599 static void
2600 resume (gdb_signal sig)
2601 {
2602 try
2603 {
2604 resume_1 (sig);
2605 }
2606 catch (const gdb_exception &ex)
2607 {
2608 /* If resuming is being aborted for any reason, delete any
2609 single-step breakpoint resume_1 may have created, to avoid
2610 confusing the following resumption, and to avoid leaving
2611 single-step breakpoints perturbing other threads, in case
2612 we're running in non-stop mode. */
2613 if (inferior_ptid != null_ptid)
2614 delete_single_step_breakpoints (inferior_thread ());
2615 throw;
2616 }
2617 }
2618
2619 \f
2620 /* Proceeding. */
2621
2622 /* See infrun.h. */
2623
2624 /* Counter that tracks number of user visible stops. This can be used
2625 to tell whether a command has proceeded the inferior past the
2626 current location. This allows e.g., inferior function calls in
2627 breakpoint commands to not interrupt the command list. When the
2628 call finishes successfully, the inferior is standing at the same
2629 breakpoint as if nothing happened (and so we don't call
2630 normal_stop). */
2631 static ULONGEST current_stop_id;
2632
2633 /* See infrun.h. */
2634
2635 ULONGEST
2636 get_stop_id (void)
2637 {
2638 return current_stop_id;
2639 }
2640
2641 /* Called when we report a user visible stop. */
2642
2643 static void
2644 new_stop_id (void)
2645 {
2646 current_stop_id++;
2647 }
2648
2649 /* Clear out all variables saying what to do when inferior is continued.
2650 First do this, then set the ones you want, then call `proceed'. */
2651
2652 static void
2653 clear_proceed_status_thread (struct thread_info *tp)
2654 {
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "infrun: clear_proceed_status_thread (%s)\n",
2658 target_pid_to_str (tp->ptid).c_str ());
2659
2660 /* If we're starting a new sequence, then the previous finished
2661 single-step is no longer relevant. */
2662 if (tp->suspend.waitstatus_pending_p)
2663 {
2664 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2665 {
2666 if (debug_infrun)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "infrun: clear_proceed_status: pending "
2669 "event of %s was a finished step. "
2670 "Discarding.\n",
2671 target_pid_to_str (tp->ptid).c_str ());
2672
2673 tp->suspend.waitstatus_pending_p = 0;
2674 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2675 }
2676 else if (debug_infrun)
2677 {
2678 std::string statstr
2679 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2680
2681 fprintf_unfiltered (gdb_stdlog,
2682 "infrun: clear_proceed_status_thread: thread %s "
2683 "has pending wait status %s "
2684 "(currently_stepping=%d).\n",
2685 target_pid_to_str (tp->ptid).c_str (),
2686 statstr.c_str (),
2687 currently_stepping (tp));
2688 }
2689 }
2690
2691 /* If this signal should not be seen by program, give it zero.
2692 Used for debugging signals. */
2693 if (!signal_pass_state (tp->suspend.stop_signal))
2694 tp->suspend.stop_signal = GDB_SIGNAL_0;
2695
2696 delete tp->thread_fsm;
2697 tp->thread_fsm = NULL;
2698
2699 tp->control.trap_expected = 0;
2700 tp->control.step_range_start = 0;
2701 tp->control.step_range_end = 0;
2702 tp->control.may_range_step = 0;
2703 tp->control.step_frame_id = null_frame_id;
2704 tp->control.step_stack_frame_id = null_frame_id;
2705 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2706 tp->control.step_start_function = NULL;
2707 tp->stop_requested = 0;
2708
2709 tp->control.stop_step = 0;
2710
2711 tp->control.proceed_to_finish = 0;
2712
2713 tp->control.stepping_command = 0;
2714
2715 /* Discard any remaining commands or status from previous stop. */
2716 bpstat_clear (&tp->control.stop_bpstat);
2717 }
2718
2719 void
2720 clear_proceed_status (int step)
2721 {
2722 /* With scheduler-locking replay, stop replaying other threads if we're
2723 not replaying the user-visible resume ptid.
2724
2725 This is a convenience feature to not require the user to explicitly
2726 stop replaying the other threads. We're assuming that the user's
2727 intent is to resume tracing the recorded process. */
2728 if (!non_stop && scheduler_mode == schedlock_replay
2729 && target_record_is_replaying (minus_one_ptid)
2730 && !target_record_will_replay (user_visible_resume_ptid (step),
2731 execution_direction))
2732 target_record_stop_replaying ();
2733
2734 if (!non_stop && inferior_ptid != null_ptid)
2735 {
2736 ptid_t resume_ptid = user_visible_resume_ptid (step);
2737
2738 /* In all-stop mode, delete the per-thread status of all threads
2739 we're about to resume, implicitly and explicitly. */
2740 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2741 clear_proceed_status_thread (tp);
2742 }
2743
2744 if (inferior_ptid != null_ptid)
2745 {
2746 struct inferior *inferior;
2747
2748 if (non_stop)
2749 {
2750 /* If in non-stop mode, only delete the per-thread status of
2751 the current thread. */
2752 clear_proceed_status_thread (inferior_thread ());
2753 }
2754
2755 inferior = current_inferior ();
2756 inferior->control.stop_soon = NO_STOP_QUIETLY;
2757 }
2758
2759 gdb::observers::about_to_proceed.notify ();
2760 }
2761
2762 /* Returns true if TP is still stopped at a breakpoint that needs
2763 stepping-over in order to make progress. If the breakpoint is gone
2764 meanwhile, we can skip the whole step-over dance. */
2765
2766 static int
2767 thread_still_needs_step_over_bp (struct thread_info *tp)
2768 {
2769 if (tp->stepping_over_breakpoint)
2770 {
2771 struct regcache *regcache = get_thread_regcache (tp);
2772
2773 if (breakpoint_here_p (regcache->aspace (),
2774 regcache_read_pc (regcache))
2775 == ordinary_breakpoint_here)
2776 return 1;
2777
2778 tp->stepping_over_breakpoint = 0;
2779 }
2780
2781 return 0;
2782 }
2783
2784 /* Check whether thread TP still needs to start a step-over in order
2785 to make progress when resumed. Returns an bitwise or of enum
2786 step_over_what bits, indicating what needs to be stepped over. */
2787
2788 static step_over_what
2789 thread_still_needs_step_over (struct thread_info *tp)
2790 {
2791 step_over_what what = 0;
2792
2793 if (thread_still_needs_step_over_bp (tp))
2794 what |= STEP_OVER_BREAKPOINT;
2795
2796 if (tp->stepping_over_watchpoint
2797 && !target_have_steppable_watchpoint)
2798 what |= STEP_OVER_WATCHPOINT;
2799
2800 return what;
2801 }
2802
2803 /* Returns true if scheduler locking applies. STEP indicates whether
2804 we're about to do a step/next-like command to a thread. */
2805
2806 static int
2807 schedlock_applies (struct thread_info *tp)
2808 {
2809 return (scheduler_mode == schedlock_on
2810 || (scheduler_mode == schedlock_step
2811 && tp->control.stepping_command)
2812 || (scheduler_mode == schedlock_replay
2813 && target_record_will_replay (minus_one_ptid,
2814 execution_direction)));
2815 }
2816
2817 /* Basic routine for continuing the program in various fashions.
2818
2819 ADDR is the address to resume at, or -1 for resume where stopped.
2820 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2821 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2822
2823 You should call clear_proceed_status before calling proceed. */
2824
2825 void
2826 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2827 {
2828 struct regcache *regcache;
2829 struct gdbarch *gdbarch;
2830 CORE_ADDR pc;
2831 ptid_t resume_ptid;
2832 struct execution_control_state ecss;
2833 struct execution_control_state *ecs = &ecss;
2834 int started;
2835
2836 /* If we're stopped at a fork/vfork, follow the branch set by the
2837 "set follow-fork-mode" command; otherwise, we'll just proceed
2838 resuming the current thread. */
2839 if (!follow_fork ())
2840 {
2841 /* The target for some reason decided not to resume. */
2842 normal_stop ();
2843 if (target_can_async_p ())
2844 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2845 return;
2846 }
2847
2848 /* We'll update this if & when we switch to a new thread. */
2849 previous_inferior_ptid = inferior_ptid;
2850
2851 regcache = get_current_regcache ();
2852 gdbarch = regcache->arch ();
2853 const address_space *aspace = regcache->aspace ();
2854
2855 pc = regcache_read_pc (regcache);
2856 thread_info *cur_thr = inferior_thread ();
2857
2858 /* Fill in with reasonable starting values. */
2859 init_thread_stepping_state (cur_thr);
2860
2861 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2862
2863 if (addr == (CORE_ADDR) -1)
2864 {
2865 if (pc == cur_thr->suspend.stop_pc
2866 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2867 && execution_direction != EXEC_REVERSE)
2868 /* There is a breakpoint at the address we will resume at,
2869 step one instruction before inserting breakpoints so that
2870 we do not stop right away (and report a second hit at this
2871 breakpoint).
2872
2873 Note, we don't do this in reverse, because we won't
2874 actually be executing the breakpoint insn anyway.
2875 We'll be (un-)executing the previous instruction. */
2876 cur_thr->stepping_over_breakpoint = 1;
2877 else if (gdbarch_single_step_through_delay_p (gdbarch)
2878 && gdbarch_single_step_through_delay (gdbarch,
2879 get_current_frame ()))
2880 /* We stepped onto an instruction that needs to be stepped
2881 again before re-inserting the breakpoint, do so. */
2882 cur_thr->stepping_over_breakpoint = 1;
2883 }
2884 else
2885 {
2886 regcache_write_pc (regcache, addr);
2887 }
2888
2889 if (siggnal != GDB_SIGNAL_DEFAULT)
2890 cur_thr->suspend.stop_signal = siggnal;
2891
2892 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2893
2894 /* If an exception is thrown from this point on, make sure to
2895 propagate GDB's knowledge of the executing state to the
2896 frontend/user running state. */
2897 scoped_finish_thread_state finish_state (resume_ptid);
2898
2899 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2900 threads (e.g., we might need to set threads stepping over
2901 breakpoints first), from the user/frontend's point of view, all
2902 threads in RESUME_PTID are now running. Unless we're calling an
2903 inferior function, as in that case we pretend the inferior
2904 doesn't run at all. */
2905 if (!cur_thr->control.in_infcall)
2906 set_running (resume_ptid, 1);
2907
2908 if (debug_infrun)
2909 fprintf_unfiltered (gdb_stdlog,
2910 "infrun: proceed (addr=%s, signal=%s)\n",
2911 paddress (gdbarch, addr),
2912 gdb_signal_to_symbol_string (siggnal));
2913
2914 annotate_starting ();
2915
2916 /* Make sure that output from GDB appears before output from the
2917 inferior. */
2918 gdb_flush (gdb_stdout);
2919
2920 /* Since we've marked the inferior running, give it the terminal. A
2921 QUIT/Ctrl-C from here on is forwarded to the target (which can
2922 still detect attempts to unblock a stuck connection with repeated
2923 Ctrl-C from within target_pass_ctrlc). */
2924 target_terminal::inferior ();
2925
2926 /* In a multi-threaded task we may select another thread and
2927 then continue or step.
2928
2929 But if a thread that we're resuming had stopped at a breakpoint,
2930 it will immediately cause another breakpoint stop without any
2931 execution (i.e. it will report a breakpoint hit incorrectly). So
2932 we must step over it first.
2933
2934 Look for threads other than the current (TP) that reported a
2935 breakpoint hit and haven't been resumed yet since. */
2936
2937 /* If scheduler locking applies, we can avoid iterating over all
2938 threads. */
2939 if (!non_stop && !schedlock_applies (cur_thr))
2940 {
2941 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2942 {
2943 switch_to_thread_no_regs (tp);
2944
2945 /* Ignore the current thread here. It's handled
2946 afterwards. */
2947 if (tp == cur_thr)
2948 continue;
2949
2950 if (!thread_still_needs_step_over (tp))
2951 continue;
2952
2953 gdb_assert (!thread_is_in_step_over_chain (tp));
2954
2955 if (debug_infrun)
2956 fprintf_unfiltered (gdb_stdlog,
2957 "infrun: need to step-over [%s] first\n",
2958 target_pid_to_str (tp->ptid).c_str ());
2959
2960 thread_step_over_chain_enqueue (tp);
2961 }
2962
2963 switch_to_thread (cur_thr);
2964 }
2965
2966 /* Enqueue the current thread last, so that we move all other
2967 threads over their breakpoints first. */
2968 if (cur_thr->stepping_over_breakpoint)
2969 thread_step_over_chain_enqueue (cur_thr);
2970
2971 /* If the thread isn't started, we'll still need to set its prev_pc,
2972 so that switch_back_to_stepped_thread knows the thread hasn't
2973 advanced. Must do this before resuming any thread, as in
2974 all-stop/remote, once we resume we can't send any other packet
2975 until the target stops again. */
2976 cur_thr->prev_pc = regcache_read_pc (regcache);
2977
2978 {
2979 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2980
2981 started = start_step_over ();
2982
2983 if (step_over_info_valid_p ())
2984 {
2985 /* Either this thread started a new in-line step over, or some
2986 other thread was already doing one. In either case, don't
2987 resume anything else until the step-over is finished. */
2988 }
2989 else if (started && !target_is_non_stop_p ())
2990 {
2991 /* A new displaced stepping sequence was started. In all-stop,
2992 we can't talk to the target anymore until it next stops. */
2993 }
2994 else if (!non_stop && target_is_non_stop_p ())
2995 {
2996 /* In all-stop, but the target is always in non-stop mode.
2997 Start all other threads that are implicitly resumed too. */
2998 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2999 {
3000 switch_to_thread_no_regs (tp);
3001
3002 if (tp->resumed)
3003 {
3004 if (debug_infrun)
3005 fprintf_unfiltered (gdb_stdlog,
3006 "infrun: proceed: [%s] resumed\n",
3007 target_pid_to_str (tp->ptid).c_str ());
3008 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3009 continue;
3010 }
3011
3012 if (thread_is_in_step_over_chain (tp))
3013 {
3014 if (debug_infrun)
3015 fprintf_unfiltered (gdb_stdlog,
3016 "infrun: proceed: [%s] needs step-over\n",
3017 target_pid_to_str (tp->ptid).c_str ());
3018 continue;
3019 }
3020
3021 if (debug_infrun)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "infrun: proceed: resuming %s\n",
3024 target_pid_to_str (tp->ptid).c_str ());
3025
3026 reset_ecs (ecs, tp);
3027 switch_to_thread (tp);
3028 keep_going_pass_signal (ecs);
3029 if (!ecs->wait_some_more)
3030 error (_("Command aborted."));
3031 }
3032 }
3033 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3034 {
3035 /* The thread wasn't started, and isn't queued, run it now. */
3036 reset_ecs (ecs, cur_thr);
3037 switch_to_thread (cur_thr);
3038 keep_going_pass_signal (ecs);
3039 if (!ecs->wait_some_more)
3040 error (_("Command aborted."));
3041 }
3042 }
3043
3044 target_commit_resume ();
3045
3046 finish_state.release ();
3047
3048 /* If we've switched threads above, switch back to the previously
3049 current thread. We don't want the user to see a different
3050 selected thread. */
3051 switch_to_thread (cur_thr);
3052
3053 /* Tell the event loop to wait for it to stop. If the target
3054 supports asynchronous execution, it'll do this from within
3055 target_resume. */
3056 if (!target_can_async_p ())
3057 mark_async_event_handler (infrun_async_inferior_event_token);
3058 }
3059 \f
3060
3061 /* Start remote-debugging of a machine over a serial link. */
3062
3063 void
3064 start_remote (int from_tty)
3065 {
3066 struct inferior *inferior;
3067
3068 inferior = current_inferior ();
3069 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3070
3071 /* Always go on waiting for the target, regardless of the mode. */
3072 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3073 indicate to wait_for_inferior that a target should timeout if
3074 nothing is returned (instead of just blocking). Because of this,
3075 targets expecting an immediate response need to, internally, set
3076 things up so that the target_wait() is forced to eventually
3077 timeout. */
3078 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3079 differentiate to its caller what the state of the target is after
3080 the initial open has been performed. Here we're assuming that
3081 the target has stopped. It should be possible to eventually have
3082 target_open() return to the caller an indication that the target
3083 is currently running and GDB state should be set to the same as
3084 for an async run. */
3085 wait_for_inferior ();
3086
3087 /* Now that the inferior has stopped, do any bookkeeping like
3088 loading shared libraries. We want to do this before normal_stop,
3089 so that the displayed frame is up to date. */
3090 post_create_inferior (current_top_target (), from_tty);
3091
3092 normal_stop ();
3093 }
3094
3095 /* Initialize static vars when a new inferior begins. */
3096
3097 void
3098 init_wait_for_inferior (void)
3099 {
3100 /* These are meaningless until the first time through wait_for_inferior. */
3101
3102 breakpoint_init_inferior (inf_starting);
3103
3104 clear_proceed_status (0);
3105
3106 target_last_wait_ptid = minus_one_ptid;
3107
3108 previous_inferior_ptid = inferior_ptid;
3109 }
3110
3111 \f
3112
3113 static void handle_inferior_event (struct execution_control_state *ecs);
3114
3115 static void handle_step_into_function (struct gdbarch *gdbarch,
3116 struct execution_control_state *ecs);
3117 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3118 struct execution_control_state *ecs);
3119 static void handle_signal_stop (struct execution_control_state *ecs);
3120 static void check_exception_resume (struct execution_control_state *,
3121 struct frame_info *);
3122
3123 static void end_stepping_range (struct execution_control_state *ecs);
3124 static void stop_waiting (struct execution_control_state *ecs);
3125 static void keep_going (struct execution_control_state *ecs);
3126 static void process_event_stop_test (struct execution_control_state *ecs);
3127 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3128
3129 /* This function is attached as a "thread_stop_requested" observer.
3130 Cleanup local state that assumed the PTID was to be resumed, and
3131 report the stop to the frontend. */
3132
3133 static void
3134 infrun_thread_stop_requested (ptid_t ptid)
3135 {
3136 /* PTID was requested to stop. If the thread was already stopped,
3137 but the user/frontend doesn't know about that yet (e.g., the
3138 thread had been temporarily paused for some step-over), set up
3139 for reporting the stop now. */
3140 for (thread_info *tp : all_threads (ptid))
3141 {
3142 if (tp->state != THREAD_RUNNING)
3143 continue;
3144 if (tp->executing)
3145 continue;
3146
3147 /* Remove matching threads from the step-over queue, so
3148 start_step_over doesn't try to resume them
3149 automatically. */
3150 if (thread_is_in_step_over_chain (tp))
3151 thread_step_over_chain_remove (tp);
3152
3153 /* If the thread is stopped, but the user/frontend doesn't
3154 know about that yet, queue a pending event, as if the
3155 thread had just stopped now. Unless the thread already had
3156 a pending event. */
3157 if (!tp->suspend.waitstatus_pending_p)
3158 {
3159 tp->suspend.waitstatus_pending_p = 1;
3160 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3161 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3162 }
3163
3164 /* Clear the inline-frame state, since we're re-processing the
3165 stop. */
3166 clear_inline_frame_state (tp->ptid);
3167
3168 /* If this thread was paused because some other thread was
3169 doing an inline-step over, let that finish first. Once
3170 that happens, we'll restart all threads and consume pending
3171 stop events then. */
3172 if (step_over_info_valid_p ())
3173 continue;
3174
3175 /* Otherwise we can process the (new) pending event now. Set
3176 it so this pending event is considered by
3177 do_target_wait. */
3178 tp->resumed = 1;
3179 }
3180 }
3181
3182 static void
3183 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3184 {
3185 if (target_last_wait_ptid == tp->ptid)
3186 nullify_last_target_wait_ptid ();
3187 }
3188
3189 /* Delete the step resume, single-step and longjmp/exception resume
3190 breakpoints of TP. */
3191
3192 static void
3193 delete_thread_infrun_breakpoints (struct thread_info *tp)
3194 {
3195 delete_step_resume_breakpoint (tp);
3196 delete_exception_resume_breakpoint (tp);
3197 delete_single_step_breakpoints (tp);
3198 }
3199
3200 /* If the target still has execution, call FUNC for each thread that
3201 just stopped. In all-stop, that's all the non-exited threads; in
3202 non-stop, that's the current thread, only. */
3203
3204 typedef void (*for_each_just_stopped_thread_callback_func)
3205 (struct thread_info *tp);
3206
3207 static void
3208 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3209 {
3210 if (!target_has_execution || inferior_ptid == null_ptid)
3211 return;
3212
3213 if (target_is_non_stop_p ())
3214 {
3215 /* If in non-stop mode, only the current thread stopped. */
3216 func (inferior_thread ());
3217 }
3218 else
3219 {
3220 /* In all-stop mode, all threads have stopped. */
3221 for (thread_info *tp : all_non_exited_threads ())
3222 func (tp);
3223 }
3224 }
3225
3226 /* Delete the step resume and longjmp/exception resume breakpoints of
3227 the threads that just stopped. */
3228
3229 static void
3230 delete_just_stopped_threads_infrun_breakpoints (void)
3231 {
3232 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3233 }
3234
3235 /* Delete the single-step breakpoints of the threads that just
3236 stopped. */
3237
3238 static void
3239 delete_just_stopped_threads_single_step_breakpoints (void)
3240 {
3241 for_each_just_stopped_thread (delete_single_step_breakpoints);
3242 }
3243
3244 /* See infrun.h. */
3245
3246 void
3247 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3248 const struct target_waitstatus *ws)
3249 {
3250 std::string status_string = target_waitstatus_to_string (ws);
3251 string_file stb;
3252
3253 /* The text is split over several lines because it was getting too long.
3254 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3255 output as a unit; we want only one timestamp printed if debug_timestamp
3256 is set. */
3257
3258 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3259 waiton_ptid.pid (),
3260 waiton_ptid.lwp (),
3261 waiton_ptid.tid ());
3262 if (waiton_ptid.pid () != -1)
3263 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3264 stb.printf (", status) =\n");
3265 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3266 result_ptid.pid (),
3267 result_ptid.lwp (),
3268 result_ptid.tid (),
3269 target_pid_to_str (result_ptid).c_str ());
3270 stb.printf ("infrun: %s\n", status_string.c_str ());
3271
3272 /* This uses %s in part to handle %'s in the text, but also to avoid
3273 a gcc error: the format attribute requires a string literal. */
3274 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3275 }
3276
3277 /* Select a thread at random, out of those which are resumed and have
3278 had events. */
3279
3280 static struct thread_info *
3281 random_pending_event_thread (ptid_t waiton_ptid)
3282 {
3283 int num_events = 0;
3284
3285 auto has_event = [] (thread_info *tp)
3286 {
3287 return (tp->resumed
3288 && tp->suspend.waitstatus_pending_p);
3289 };
3290
3291 /* First see how many events we have. Count only resumed threads
3292 that have an event pending. */
3293 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3294 if (has_event (tp))
3295 num_events++;
3296
3297 if (num_events == 0)
3298 return NULL;
3299
3300 /* Now randomly pick a thread out of those that have had events. */
3301 int random_selector = (int) ((num_events * (double) rand ())
3302 / (RAND_MAX + 1.0));
3303
3304 if (debug_infrun && num_events > 1)
3305 fprintf_unfiltered (gdb_stdlog,
3306 "infrun: Found %d events, selecting #%d\n",
3307 num_events, random_selector);
3308
3309 /* Select the Nth thread that has had an event. */
3310 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3311 if (has_event (tp))
3312 if (random_selector-- == 0)
3313 return tp;
3314
3315 gdb_assert_not_reached ("event thread not found");
3316 }
3317
3318 /* Wrapper for target_wait that first checks whether threads have
3319 pending statuses to report before actually asking the target for
3320 more events. */
3321
3322 static ptid_t
3323 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3324 {
3325 ptid_t event_ptid;
3326 struct thread_info *tp;
3327
3328 /* First check if there is a resumed thread with a wait status
3329 pending. */
3330 if (ptid == minus_one_ptid || ptid.is_pid ())
3331 {
3332 tp = random_pending_event_thread (ptid);
3333 }
3334 else
3335 {
3336 if (debug_infrun)
3337 fprintf_unfiltered (gdb_stdlog,
3338 "infrun: Waiting for specific thread %s.\n",
3339 target_pid_to_str (ptid).c_str ());
3340
3341 /* We have a specific thread to check. */
3342 tp = find_thread_ptid (ptid);
3343 gdb_assert (tp != NULL);
3344 if (!tp->suspend.waitstatus_pending_p)
3345 tp = NULL;
3346 }
3347
3348 if (tp != NULL
3349 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3350 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3351 {
3352 struct regcache *regcache = get_thread_regcache (tp);
3353 struct gdbarch *gdbarch = regcache->arch ();
3354 CORE_ADDR pc;
3355 int discard = 0;
3356
3357 pc = regcache_read_pc (regcache);
3358
3359 if (pc != tp->suspend.stop_pc)
3360 {
3361 if (debug_infrun)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "infrun: PC of %s changed. was=%s, now=%s\n",
3364 target_pid_to_str (tp->ptid).c_str (),
3365 paddress (gdbarch, tp->suspend.stop_pc),
3366 paddress (gdbarch, pc));
3367 discard = 1;
3368 }
3369 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3370 {
3371 if (debug_infrun)
3372 fprintf_unfiltered (gdb_stdlog,
3373 "infrun: previous breakpoint of %s, at %s gone\n",
3374 target_pid_to_str (tp->ptid).c_str (),
3375 paddress (gdbarch, pc));
3376
3377 discard = 1;
3378 }
3379
3380 if (discard)
3381 {
3382 if (debug_infrun)
3383 fprintf_unfiltered (gdb_stdlog,
3384 "infrun: pending event of %s cancelled.\n",
3385 target_pid_to_str (tp->ptid).c_str ());
3386
3387 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3388 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3389 }
3390 }
3391
3392 if (tp != NULL)
3393 {
3394 if (debug_infrun)
3395 {
3396 std::string statstr
3397 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3398
3399 fprintf_unfiltered (gdb_stdlog,
3400 "infrun: Using pending wait status %s for %s.\n",
3401 statstr.c_str (),
3402 target_pid_to_str (tp->ptid).c_str ());
3403 }
3404
3405 /* Now that we've selected our final event LWP, un-adjust its PC
3406 if it was a software breakpoint (and the target doesn't
3407 always adjust the PC itself). */
3408 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3409 && !target_supports_stopped_by_sw_breakpoint ())
3410 {
3411 struct regcache *regcache;
3412 struct gdbarch *gdbarch;
3413 int decr_pc;
3414
3415 regcache = get_thread_regcache (tp);
3416 gdbarch = regcache->arch ();
3417
3418 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3419 if (decr_pc != 0)
3420 {
3421 CORE_ADDR pc;
3422
3423 pc = regcache_read_pc (regcache);
3424 regcache_write_pc (regcache, pc + decr_pc);
3425 }
3426 }
3427
3428 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3429 *status = tp->suspend.waitstatus;
3430 tp->suspend.waitstatus_pending_p = 0;
3431
3432 /* Wake up the event loop again, until all pending events are
3433 processed. */
3434 if (target_is_async_p ())
3435 mark_async_event_handler (infrun_async_inferior_event_token);
3436 return tp->ptid;
3437 }
3438
3439 /* But if we don't find one, we'll have to wait. */
3440
3441 if (deprecated_target_wait_hook)
3442 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3443 else
3444 event_ptid = target_wait (ptid, status, options);
3445
3446 return event_ptid;
3447 }
3448
3449 /* Prepare and stabilize the inferior for detaching it. E.g.,
3450 detaching while a thread is displaced stepping is a recipe for
3451 crashing it, as nothing would readjust the PC out of the scratch
3452 pad. */
3453
3454 void
3455 prepare_for_detach (void)
3456 {
3457 struct inferior *inf = current_inferior ();
3458 ptid_t pid_ptid = ptid_t (inf->pid);
3459
3460 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3461
3462 /* Is any thread of this process displaced stepping? If not,
3463 there's nothing else to do. */
3464 if (displaced->step_thread == nullptr)
3465 return;
3466
3467 if (debug_infrun)
3468 fprintf_unfiltered (gdb_stdlog,
3469 "displaced-stepping in-process while detaching");
3470
3471 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3472
3473 while (displaced->step_thread != nullptr)
3474 {
3475 struct execution_control_state ecss;
3476 struct execution_control_state *ecs;
3477
3478 ecs = &ecss;
3479 memset (ecs, 0, sizeof (*ecs));
3480
3481 overlay_cache_invalid = 1;
3482 /* Flush target cache before starting to handle each event.
3483 Target was running and cache could be stale. This is just a
3484 heuristic. Running threads may modify target memory, but we
3485 don't get any event. */
3486 target_dcache_invalidate ();
3487
3488 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3489
3490 if (debug_infrun)
3491 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3492
3493 /* If an error happens while handling the event, propagate GDB's
3494 knowledge of the executing state to the frontend/user running
3495 state. */
3496 scoped_finish_thread_state finish_state (minus_one_ptid);
3497
3498 /* Now figure out what to do with the result of the result. */
3499 handle_inferior_event (ecs);
3500
3501 /* No error, don't finish the state yet. */
3502 finish_state.release ();
3503
3504 /* Breakpoints and watchpoints are not installed on the target
3505 at this point, and signals are passed directly to the
3506 inferior, so this must mean the process is gone. */
3507 if (!ecs->wait_some_more)
3508 {
3509 restore_detaching.release ();
3510 error (_("Program exited while detaching"));
3511 }
3512 }
3513
3514 restore_detaching.release ();
3515 }
3516
3517 /* Wait for control to return from inferior to debugger.
3518
3519 If inferior gets a signal, we may decide to start it up again
3520 instead of returning. That is why there is a loop in this function.
3521 When this function actually returns it means the inferior
3522 should be left stopped and GDB should read more commands. */
3523
3524 void
3525 wait_for_inferior (void)
3526 {
3527 if (debug_infrun)
3528 fprintf_unfiltered
3529 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3530
3531 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3532
3533 /* If an error happens while handling the event, propagate GDB's
3534 knowledge of the executing state to the frontend/user running
3535 state. */
3536 scoped_finish_thread_state finish_state (minus_one_ptid);
3537
3538 while (1)
3539 {
3540 struct execution_control_state ecss;
3541 struct execution_control_state *ecs = &ecss;
3542 ptid_t waiton_ptid = minus_one_ptid;
3543
3544 memset (ecs, 0, sizeof (*ecs));
3545
3546 overlay_cache_invalid = 1;
3547
3548 /* Flush target cache before starting to handle each event.
3549 Target was running and cache could be stale. This is just a
3550 heuristic. Running threads may modify target memory, but we
3551 don't get any event. */
3552 target_dcache_invalidate ();
3553
3554 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3555
3556 if (debug_infrun)
3557 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3558
3559 /* Now figure out what to do with the result of the result. */
3560 handle_inferior_event (ecs);
3561
3562 if (!ecs->wait_some_more)
3563 break;
3564 }
3565
3566 /* No error, don't finish the state yet. */
3567 finish_state.release ();
3568 }
3569
3570 /* Cleanup that reinstalls the readline callback handler, if the
3571 target is running in the background. If while handling the target
3572 event something triggered a secondary prompt, like e.g., a
3573 pagination prompt, we'll have removed the callback handler (see
3574 gdb_readline_wrapper_line). Need to do this as we go back to the
3575 event loop, ready to process further input. Note this has no
3576 effect if the handler hasn't actually been removed, because calling
3577 rl_callback_handler_install resets the line buffer, thus losing
3578 input. */
3579
3580 static void
3581 reinstall_readline_callback_handler_cleanup ()
3582 {
3583 struct ui *ui = current_ui;
3584
3585 if (!ui->async)
3586 {
3587 /* We're not going back to the top level event loop yet. Don't
3588 install the readline callback, as it'd prep the terminal,
3589 readline-style (raw, noecho) (e.g., --batch). We'll install
3590 it the next time the prompt is displayed, when we're ready
3591 for input. */
3592 return;
3593 }
3594
3595 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3596 gdb_rl_callback_handler_reinstall ();
3597 }
3598
3599 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3600 that's just the event thread. In all-stop, that's all threads. */
3601
3602 static void
3603 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3604 {
3605 if (ecs->event_thread != NULL
3606 && ecs->event_thread->thread_fsm != NULL)
3607 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3608
3609 if (!non_stop)
3610 {
3611 for (thread_info *thr : all_non_exited_threads ())
3612 {
3613 if (thr->thread_fsm == NULL)
3614 continue;
3615 if (thr == ecs->event_thread)
3616 continue;
3617
3618 switch_to_thread (thr);
3619 thr->thread_fsm->clean_up (thr);
3620 }
3621
3622 if (ecs->event_thread != NULL)
3623 switch_to_thread (ecs->event_thread);
3624 }
3625 }
3626
3627 /* Helper for all_uis_check_sync_execution_done that works on the
3628 current UI. */
3629
3630 static void
3631 check_curr_ui_sync_execution_done (void)
3632 {
3633 struct ui *ui = current_ui;
3634
3635 if (ui->prompt_state == PROMPT_NEEDED
3636 && ui->async
3637 && !gdb_in_secondary_prompt_p (ui))
3638 {
3639 target_terminal::ours ();
3640 gdb::observers::sync_execution_done.notify ();
3641 ui_register_input_event_handler (ui);
3642 }
3643 }
3644
3645 /* See infrun.h. */
3646
3647 void
3648 all_uis_check_sync_execution_done (void)
3649 {
3650 SWITCH_THRU_ALL_UIS ()
3651 {
3652 check_curr_ui_sync_execution_done ();
3653 }
3654 }
3655
3656 /* See infrun.h. */
3657
3658 void
3659 all_uis_on_sync_execution_starting (void)
3660 {
3661 SWITCH_THRU_ALL_UIS ()
3662 {
3663 if (current_ui->prompt_state == PROMPT_NEEDED)
3664 async_disable_stdin ();
3665 }
3666 }
3667
3668 /* Asynchronous version of wait_for_inferior. It is called by the
3669 event loop whenever a change of state is detected on the file
3670 descriptor corresponding to the target. It can be called more than
3671 once to complete a single execution command. In such cases we need
3672 to keep the state in a global variable ECSS. If it is the last time
3673 that this function is called for a single execution command, then
3674 report to the user that the inferior has stopped, and do the
3675 necessary cleanups. */
3676
3677 void
3678 fetch_inferior_event (void *client_data)
3679 {
3680 struct execution_control_state ecss;
3681 struct execution_control_state *ecs = &ecss;
3682 int cmd_done = 0;
3683 ptid_t waiton_ptid = minus_one_ptid;
3684
3685 memset (ecs, 0, sizeof (*ecs));
3686
3687 /* Events are always processed with the main UI as current UI. This
3688 way, warnings, debug output, etc. are always consistently sent to
3689 the main console. */
3690 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3691
3692 /* End up with readline processing input, if necessary. */
3693 {
3694 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3695
3696 /* We're handling a live event, so make sure we're doing live
3697 debugging. If we're looking at traceframes while the target is
3698 running, we're going to need to get back to that mode after
3699 handling the event. */
3700 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3701 if (non_stop)
3702 {
3703 maybe_restore_traceframe.emplace ();
3704 set_current_traceframe (-1);
3705 }
3706
3707 /* The user/frontend should not notice a thread switch due to
3708 internal events. Make sure we revert to the user selected
3709 thread and frame after handling the event and running any
3710 breakpoint commands. */
3711 scoped_restore_current_thread restore_thread;
3712
3713 overlay_cache_invalid = 1;
3714 /* Flush target cache before starting to handle each event. Target
3715 was running and cache could be stale. This is just a heuristic.
3716 Running threads may modify target memory, but we don't get any
3717 event. */
3718 target_dcache_invalidate ();
3719
3720 scoped_restore save_exec_dir
3721 = make_scoped_restore (&execution_direction,
3722 target_execution_direction ());
3723
3724 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3725 target_can_async_p () ? TARGET_WNOHANG : 0);
3726
3727 if (debug_infrun)
3728 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3729
3730 /* If an error happens while handling the event, propagate GDB's
3731 knowledge of the executing state to the frontend/user running
3732 state. */
3733 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3734 scoped_finish_thread_state finish_state (finish_ptid);
3735
3736 /* Get executed before scoped_restore_current_thread above to apply
3737 still for the thread which has thrown the exception. */
3738 auto defer_bpstat_clear
3739 = make_scope_exit (bpstat_clear_actions);
3740 auto defer_delete_threads
3741 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3742
3743 /* Now figure out what to do with the result of the result. */
3744 handle_inferior_event (ecs);
3745
3746 if (!ecs->wait_some_more)
3747 {
3748 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3749 int should_stop = 1;
3750 struct thread_info *thr = ecs->event_thread;
3751
3752 delete_just_stopped_threads_infrun_breakpoints ();
3753
3754 if (thr != NULL)
3755 {
3756 struct thread_fsm *thread_fsm = thr->thread_fsm;
3757
3758 if (thread_fsm != NULL)
3759 should_stop = thread_fsm->should_stop (thr);
3760 }
3761
3762 if (!should_stop)
3763 {
3764 keep_going (ecs);
3765 }
3766 else
3767 {
3768 bool should_notify_stop = true;
3769 int proceeded = 0;
3770
3771 clean_up_just_stopped_threads_fsms (ecs);
3772
3773 if (thr != NULL && thr->thread_fsm != NULL)
3774 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3775
3776 if (should_notify_stop)
3777 {
3778 /* We may not find an inferior if this was a process exit. */
3779 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3780 proceeded = normal_stop ();
3781 }
3782
3783 if (!proceeded)
3784 {
3785 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3786 cmd_done = 1;
3787 }
3788
3789 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3790 previously selected thread is gone. We have two
3791 choices - switch to no thread selected, or restore the
3792 previously selected thread (now exited). We chose the
3793 later, just because that's what GDB used to do. After
3794 this, "info threads" says "The current thread <Thread
3795 ID 2> has terminated." instead of "No thread
3796 selected.". */
3797 if (!non_stop
3798 && cmd_done
3799 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3800 restore_thread.dont_restore ();
3801 }
3802 }
3803
3804 defer_delete_threads.release ();
3805 defer_bpstat_clear.release ();
3806
3807 /* No error, don't finish the thread states yet. */
3808 finish_state.release ();
3809
3810 /* This scope is used to ensure that readline callbacks are
3811 reinstalled here. */
3812 }
3813
3814 /* If a UI was in sync execution mode, and now isn't, restore its
3815 prompt (a synchronous execution command has finished, and we're
3816 ready for input). */
3817 all_uis_check_sync_execution_done ();
3818
3819 if (cmd_done
3820 && exec_done_display_p
3821 && (inferior_ptid == null_ptid
3822 || inferior_thread ()->state != THREAD_RUNNING))
3823 printf_unfiltered (_("completed.\n"));
3824 }
3825
3826 /* Record the frame and location we're currently stepping through. */
3827 void
3828 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3829 {
3830 struct thread_info *tp = inferior_thread ();
3831
3832 tp->control.step_frame_id = get_frame_id (frame);
3833 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3834
3835 tp->current_symtab = sal.symtab;
3836 tp->current_line = sal.line;
3837 }
3838
3839 /* Clear context switchable stepping state. */
3840
3841 void
3842 init_thread_stepping_state (struct thread_info *tss)
3843 {
3844 tss->stepped_breakpoint = 0;
3845 tss->stepping_over_breakpoint = 0;
3846 tss->stepping_over_watchpoint = 0;
3847 tss->step_after_step_resume_breakpoint = 0;
3848 }
3849
3850 /* Set the cached copy of the last ptid/waitstatus. */
3851
3852 void
3853 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3854 {
3855 target_last_wait_ptid = ptid;
3856 target_last_waitstatus = status;
3857 }
3858
3859 /* Return the cached copy of the last pid/waitstatus returned by
3860 target_wait()/deprecated_target_wait_hook(). The data is actually
3861 cached by handle_inferior_event(), which gets called immediately
3862 after target_wait()/deprecated_target_wait_hook(). */
3863
3864 void
3865 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3866 {
3867 *ptidp = target_last_wait_ptid;
3868 *status = target_last_waitstatus;
3869 }
3870
3871 void
3872 nullify_last_target_wait_ptid (void)
3873 {
3874 target_last_wait_ptid = minus_one_ptid;
3875 }
3876
3877 /* Switch thread contexts. */
3878
3879 static void
3880 context_switch (execution_control_state *ecs)
3881 {
3882 if (debug_infrun
3883 && ecs->ptid != inferior_ptid
3884 && ecs->event_thread != inferior_thread ())
3885 {
3886 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3887 target_pid_to_str (inferior_ptid).c_str ());
3888 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3889 target_pid_to_str (ecs->ptid).c_str ());
3890 }
3891
3892 switch_to_thread (ecs->event_thread);
3893 }
3894
3895 /* If the target can't tell whether we've hit breakpoints
3896 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3897 check whether that could have been caused by a breakpoint. If so,
3898 adjust the PC, per gdbarch_decr_pc_after_break. */
3899
3900 static void
3901 adjust_pc_after_break (struct thread_info *thread,
3902 struct target_waitstatus *ws)
3903 {
3904 struct regcache *regcache;
3905 struct gdbarch *gdbarch;
3906 CORE_ADDR breakpoint_pc, decr_pc;
3907
3908 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3909 we aren't, just return.
3910
3911 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3912 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3913 implemented by software breakpoints should be handled through the normal
3914 breakpoint layer.
3915
3916 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3917 different signals (SIGILL or SIGEMT for instance), but it is less
3918 clear where the PC is pointing afterwards. It may not match
3919 gdbarch_decr_pc_after_break. I don't know any specific target that
3920 generates these signals at breakpoints (the code has been in GDB since at
3921 least 1992) so I can not guess how to handle them here.
3922
3923 In earlier versions of GDB, a target with
3924 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3925 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3926 target with both of these set in GDB history, and it seems unlikely to be
3927 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3928
3929 if (ws->kind != TARGET_WAITKIND_STOPPED)
3930 return;
3931
3932 if (ws->value.sig != GDB_SIGNAL_TRAP)
3933 return;
3934
3935 /* In reverse execution, when a breakpoint is hit, the instruction
3936 under it has already been de-executed. The reported PC always
3937 points at the breakpoint address, so adjusting it further would
3938 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3939 architecture:
3940
3941 B1 0x08000000 : INSN1
3942 B2 0x08000001 : INSN2
3943 0x08000002 : INSN3
3944 PC -> 0x08000003 : INSN4
3945
3946 Say you're stopped at 0x08000003 as above. Reverse continuing
3947 from that point should hit B2 as below. Reading the PC when the
3948 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3949 been de-executed already.
3950
3951 B1 0x08000000 : INSN1
3952 B2 PC -> 0x08000001 : INSN2
3953 0x08000002 : INSN3
3954 0x08000003 : INSN4
3955
3956 We can't apply the same logic as for forward execution, because
3957 we would wrongly adjust the PC to 0x08000000, since there's a
3958 breakpoint at PC - 1. We'd then report a hit on B1, although
3959 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3960 behaviour. */
3961 if (execution_direction == EXEC_REVERSE)
3962 return;
3963
3964 /* If the target can tell whether the thread hit a SW breakpoint,
3965 trust it. Targets that can tell also adjust the PC
3966 themselves. */
3967 if (target_supports_stopped_by_sw_breakpoint ())
3968 return;
3969
3970 /* Note that relying on whether a breakpoint is planted in memory to
3971 determine this can fail. E.g,. the breakpoint could have been
3972 removed since. Or the thread could have been told to step an
3973 instruction the size of a breakpoint instruction, and only
3974 _after_ was a breakpoint inserted at its address. */
3975
3976 /* If this target does not decrement the PC after breakpoints, then
3977 we have nothing to do. */
3978 regcache = get_thread_regcache (thread);
3979 gdbarch = regcache->arch ();
3980
3981 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3982 if (decr_pc == 0)
3983 return;
3984
3985 const address_space *aspace = regcache->aspace ();
3986
3987 /* Find the location where (if we've hit a breakpoint) the
3988 breakpoint would be. */
3989 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3990
3991 /* If the target can't tell whether a software breakpoint triggered,
3992 fallback to figuring it out based on breakpoints we think were
3993 inserted in the target, and on whether the thread was stepped or
3994 continued. */
3995
3996 /* Check whether there actually is a software breakpoint inserted at
3997 that location.
3998
3999 If in non-stop mode, a race condition is possible where we've
4000 removed a breakpoint, but stop events for that breakpoint were
4001 already queued and arrive later. To suppress those spurious
4002 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4003 and retire them after a number of stop events are reported. Note
4004 this is an heuristic and can thus get confused. The real fix is
4005 to get the "stopped by SW BP and needs adjustment" info out of
4006 the target/kernel (and thus never reach here; see above). */
4007 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4008 || (target_is_non_stop_p ()
4009 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4010 {
4011 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4012
4013 if (record_full_is_used ())
4014 restore_operation_disable.emplace
4015 (record_full_gdb_operation_disable_set ());
4016
4017 /* When using hardware single-step, a SIGTRAP is reported for both
4018 a completed single-step and a software breakpoint. Need to
4019 differentiate between the two, as the latter needs adjusting
4020 but the former does not.
4021
4022 The SIGTRAP can be due to a completed hardware single-step only if
4023 - we didn't insert software single-step breakpoints
4024 - this thread is currently being stepped
4025
4026 If any of these events did not occur, we must have stopped due
4027 to hitting a software breakpoint, and have to back up to the
4028 breakpoint address.
4029
4030 As a special case, we could have hardware single-stepped a
4031 software breakpoint. In this case (prev_pc == breakpoint_pc),
4032 we also need to back up to the breakpoint address. */
4033
4034 if (thread_has_single_step_breakpoints_set (thread)
4035 || !currently_stepping (thread)
4036 || (thread->stepped_breakpoint
4037 && thread->prev_pc == breakpoint_pc))
4038 regcache_write_pc (regcache, breakpoint_pc);
4039 }
4040 }
4041
4042 static int
4043 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4044 {
4045 for (frame = get_prev_frame (frame);
4046 frame != NULL;
4047 frame = get_prev_frame (frame))
4048 {
4049 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4050 return 1;
4051 if (get_frame_type (frame) != INLINE_FRAME)
4052 break;
4053 }
4054
4055 return 0;
4056 }
4057
4058 /* Look for an inline frame that is marked for skip.
4059 If PREV_FRAME is TRUE start at the previous frame,
4060 otherwise start at the current frame. Stop at the
4061 first non-inline frame, or at the frame where the
4062 step started. */
4063
4064 static bool
4065 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4066 {
4067 struct frame_info *frame = get_current_frame ();
4068
4069 if (prev_frame)
4070 frame = get_prev_frame (frame);
4071
4072 for (; frame != NULL; frame = get_prev_frame (frame))
4073 {
4074 const char *fn = NULL;
4075 symtab_and_line sal;
4076 struct symbol *sym;
4077
4078 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4079 break;
4080 if (get_frame_type (frame) != INLINE_FRAME)
4081 break;
4082
4083 sal = find_frame_sal (frame);
4084 sym = get_frame_function (frame);
4085
4086 if (sym != NULL)
4087 fn = sym->print_name ();
4088
4089 if (sal.line != 0
4090 && function_name_is_marked_for_skip (fn, sal))
4091 return true;
4092 }
4093
4094 return false;
4095 }
4096
4097 /* If the event thread has the stop requested flag set, pretend it
4098 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4099 target_stop). */
4100
4101 static bool
4102 handle_stop_requested (struct execution_control_state *ecs)
4103 {
4104 if (ecs->event_thread->stop_requested)
4105 {
4106 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4107 ecs->ws.value.sig = GDB_SIGNAL_0;
4108 handle_signal_stop (ecs);
4109 return true;
4110 }
4111 return false;
4112 }
4113
4114 /* Auxiliary function that handles syscall entry/return events.
4115 It returns 1 if the inferior should keep going (and GDB
4116 should ignore the event), or 0 if the event deserves to be
4117 processed. */
4118
4119 static int
4120 handle_syscall_event (struct execution_control_state *ecs)
4121 {
4122 struct regcache *regcache;
4123 int syscall_number;
4124
4125 context_switch (ecs);
4126
4127 regcache = get_thread_regcache (ecs->event_thread);
4128 syscall_number = ecs->ws.value.syscall_number;
4129 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4130
4131 if (catch_syscall_enabled () > 0
4132 && catching_syscall_number (syscall_number) > 0)
4133 {
4134 if (debug_infrun)
4135 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4136 syscall_number);
4137
4138 ecs->event_thread->control.stop_bpstat
4139 = bpstat_stop_status (regcache->aspace (),
4140 ecs->event_thread->suspend.stop_pc,
4141 ecs->event_thread, &ecs->ws);
4142
4143 if (handle_stop_requested (ecs))
4144 return 0;
4145
4146 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4147 {
4148 /* Catchpoint hit. */
4149 return 0;
4150 }
4151 }
4152
4153 if (handle_stop_requested (ecs))
4154 return 0;
4155
4156 /* If no catchpoint triggered for this, then keep going. */
4157 keep_going (ecs);
4158 return 1;
4159 }
4160
4161 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4162
4163 static void
4164 fill_in_stop_func (struct gdbarch *gdbarch,
4165 struct execution_control_state *ecs)
4166 {
4167 if (!ecs->stop_func_filled_in)
4168 {
4169 const block *block;
4170
4171 /* Don't care about return value; stop_func_start and stop_func_name
4172 will both be 0 if it doesn't work. */
4173 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4174 &ecs->stop_func_name,
4175 &ecs->stop_func_start,
4176 &ecs->stop_func_end,
4177 &block);
4178
4179 /* The call to find_pc_partial_function, above, will set
4180 stop_func_start and stop_func_end to the start and end
4181 of the range containing the stop pc. If this range
4182 contains the entry pc for the block (which is always the
4183 case for contiguous blocks), advance stop_func_start past
4184 the function's start offset and entrypoint. Note that
4185 stop_func_start is NOT advanced when in a range of a
4186 non-contiguous block that does not contain the entry pc. */
4187 if (block != nullptr
4188 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4189 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4190 {
4191 ecs->stop_func_start
4192 += gdbarch_deprecated_function_start_offset (gdbarch);
4193
4194 if (gdbarch_skip_entrypoint_p (gdbarch))
4195 ecs->stop_func_start
4196 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4197 }
4198
4199 ecs->stop_func_filled_in = 1;
4200 }
4201 }
4202
4203
4204 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4205
4206 static enum stop_kind
4207 get_inferior_stop_soon (execution_control_state *ecs)
4208 {
4209 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4210
4211 gdb_assert (inf != NULL);
4212 return inf->control.stop_soon;
4213 }
4214
4215 /* Wait for one event. Store the resulting waitstatus in WS, and
4216 return the event ptid. */
4217
4218 static ptid_t
4219 wait_one (struct target_waitstatus *ws)
4220 {
4221 ptid_t event_ptid;
4222 ptid_t wait_ptid = minus_one_ptid;
4223
4224 overlay_cache_invalid = 1;
4225
4226 /* Flush target cache before starting to handle each event.
4227 Target was running and cache could be stale. This is just a
4228 heuristic. Running threads may modify target memory, but we
4229 don't get any event. */
4230 target_dcache_invalidate ();
4231
4232 if (deprecated_target_wait_hook)
4233 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4234 else
4235 event_ptid = target_wait (wait_ptid, ws, 0);
4236
4237 if (debug_infrun)
4238 print_target_wait_results (wait_ptid, event_ptid, ws);
4239
4240 return event_ptid;
4241 }
4242
4243 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4244 instead of the current thread. */
4245 #define THREAD_STOPPED_BY(REASON) \
4246 static int \
4247 thread_stopped_by_ ## REASON (ptid_t ptid) \
4248 { \
4249 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4250 inferior_ptid = ptid; \
4251 \
4252 return target_stopped_by_ ## REASON (); \
4253 }
4254
4255 /* Generate thread_stopped_by_watchpoint. */
4256 THREAD_STOPPED_BY (watchpoint)
4257 /* Generate thread_stopped_by_sw_breakpoint. */
4258 THREAD_STOPPED_BY (sw_breakpoint)
4259 /* Generate thread_stopped_by_hw_breakpoint. */
4260 THREAD_STOPPED_BY (hw_breakpoint)
4261
4262 /* Save the thread's event and stop reason to process it later. */
4263
4264 static void
4265 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4266 {
4267 if (debug_infrun)
4268 {
4269 std::string statstr = target_waitstatus_to_string (ws);
4270
4271 fprintf_unfiltered (gdb_stdlog,
4272 "infrun: saving status %s for %d.%ld.%ld\n",
4273 statstr.c_str (),
4274 tp->ptid.pid (),
4275 tp->ptid.lwp (),
4276 tp->ptid.tid ());
4277 }
4278
4279 /* Record for later. */
4280 tp->suspend.waitstatus = *ws;
4281 tp->suspend.waitstatus_pending_p = 1;
4282
4283 struct regcache *regcache = get_thread_regcache (tp);
4284 const address_space *aspace = regcache->aspace ();
4285
4286 if (ws->kind == TARGET_WAITKIND_STOPPED
4287 && ws->value.sig == GDB_SIGNAL_TRAP)
4288 {
4289 CORE_ADDR pc = regcache_read_pc (regcache);
4290
4291 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4292
4293 if (thread_stopped_by_watchpoint (tp->ptid))
4294 {
4295 tp->suspend.stop_reason
4296 = TARGET_STOPPED_BY_WATCHPOINT;
4297 }
4298 else if (target_supports_stopped_by_sw_breakpoint ()
4299 && thread_stopped_by_sw_breakpoint (tp->ptid))
4300 {
4301 tp->suspend.stop_reason
4302 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4303 }
4304 else if (target_supports_stopped_by_hw_breakpoint ()
4305 && thread_stopped_by_hw_breakpoint (tp->ptid))
4306 {
4307 tp->suspend.stop_reason
4308 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4309 }
4310 else if (!target_supports_stopped_by_hw_breakpoint ()
4311 && hardware_breakpoint_inserted_here_p (aspace,
4312 pc))
4313 {
4314 tp->suspend.stop_reason
4315 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4316 }
4317 else if (!target_supports_stopped_by_sw_breakpoint ()
4318 && software_breakpoint_inserted_here_p (aspace,
4319 pc))
4320 {
4321 tp->suspend.stop_reason
4322 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4323 }
4324 else if (!thread_has_single_step_breakpoints_set (tp)
4325 && currently_stepping (tp))
4326 {
4327 tp->suspend.stop_reason
4328 = TARGET_STOPPED_BY_SINGLE_STEP;
4329 }
4330 }
4331 }
4332
4333 /* See infrun.h. */
4334
4335 void
4336 stop_all_threads (void)
4337 {
4338 /* We may need multiple passes to discover all threads. */
4339 int pass;
4340 int iterations = 0;
4341
4342 gdb_assert (target_is_non_stop_p ());
4343
4344 if (debug_infrun)
4345 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4346
4347 scoped_restore_current_thread restore_thread;
4348
4349 target_thread_events (1);
4350 SCOPE_EXIT { target_thread_events (0); };
4351
4352 /* Request threads to stop, and then wait for the stops. Because
4353 threads we already know about can spawn more threads while we're
4354 trying to stop them, and we only learn about new threads when we
4355 update the thread list, do this in a loop, and keep iterating
4356 until two passes find no threads that need to be stopped. */
4357 for (pass = 0; pass < 2; pass++, iterations++)
4358 {
4359 if (debug_infrun)
4360 fprintf_unfiltered (gdb_stdlog,
4361 "infrun: stop_all_threads, pass=%d, "
4362 "iterations=%d\n", pass, iterations);
4363 while (1)
4364 {
4365 ptid_t event_ptid;
4366 struct target_waitstatus ws;
4367 int need_wait = 0;
4368
4369 update_thread_list ();
4370
4371 /* Go through all threads looking for threads that we need
4372 to tell the target to stop. */
4373 for (thread_info *t : all_non_exited_threads ())
4374 {
4375 if (t->executing)
4376 {
4377 /* If already stopping, don't request a stop again.
4378 We just haven't seen the notification yet. */
4379 if (!t->stop_requested)
4380 {
4381 if (debug_infrun)
4382 fprintf_unfiltered (gdb_stdlog,
4383 "infrun: %s executing, "
4384 "need stop\n",
4385 target_pid_to_str (t->ptid).c_str ());
4386 switch_to_thread_no_regs (t);
4387 target_stop (t->ptid);
4388 t->stop_requested = 1;
4389 }
4390 else
4391 {
4392 if (debug_infrun)
4393 fprintf_unfiltered (gdb_stdlog,
4394 "infrun: %s executing, "
4395 "already stopping\n",
4396 target_pid_to_str (t->ptid).c_str ());
4397 }
4398
4399 if (t->stop_requested)
4400 need_wait = 1;
4401 }
4402 else
4403 {
4404 if (debug_infrun)
4405 fprintf_unfiltered (gdb_stdlog,
4406 "infrun: %s not executing\n",
4407 target_pid_to_str (t->ptid).c_str ());
4408
4409 /* The thread may be not executing, but still be
4410 resumed with a pending status to process. */
4411 t->resumed = 0;
4412 }
4413 }
4414
4415 if (!need_wait)
4416 break;
4417
4418 /* If we find new threads on the second iteration, restart
4419 over. We want to see two iterations in a row with all
4420 threads stopped. */
4421 if (pass > 0)
4422 pass = -1;
4423
4424 event_ptid = wait_one (&ws);
4425 if (debug_infrun)
4426 {
4427 fprintf_unfiltered (gdb_stdlog,
4428 "infrun: stop_all_threads %s %s\n",
4429 target_waitstatus_to_string (&ws).c_str (),
4430 target_pid_to_str (event_ptid).c_str ());
4431 }
4432
4433 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4434 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4435 || ws.kind == TARGET_WAITKIND_EXITED
4436 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4437 {
4438 /* All resumed threads exited
4439 or one thread/process exited/signalled. */
4440 }
4441 else
4442 {
4443 thread_info *t = find_thread_ptid (event_ptid);
4444 if (t == NULL)
4445 t = add_thread (event_ptid);
4446
4447 t->stop_requested = 0;
4448 t->executing = 0;
4449 t->resumed = 0;
4450 t->control.may_range_step = 0;
4451
4452 /* This may be the first time we see the inferior report
4453 a stop. */
4454 inferior *inf = find_inferior_ptid (event_ptid);
4455 if (inf->needs_setup)
4456 {
4457 switch_to_thread_no_regs (t);
4458 setup_inferior (0);
4459 }
4460
4461 if (ws.kind == TARGET_WAITKIND_STOPPED
4462 && ws.value.sig == GDB_SIGNAL_0)
4463 {
4464 /* We caught the event that we intended to catch, so
4465 there's no event pending. */
4466 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4467 t->suspend.waitstatus_pending_p = 0;
4468
4469 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4470 {
4471 /* Add it back to the step-over queue. */
4472 if (debug_infrun)
4473 {
4474 fprintf_unfiltered (gdb_stdlog,
4475 "infrun: displaced-step of %s "
4476 "canceled: adding back to the "
4477 "step-over queue\n",
4478 target_pid_to_str (t->ptid).c_str ());
4479 }
4480 t->control.trap_expected = 0;
4481 thread_step_over_chain_enqueue (t);
4482 }
4483 }
4484 else
4485 {
4486 enum gdb_signal sig;
4487 struct regcache *regcache;
4488
4489 if (debug_infrun)
4490 {
4491 std::string statstr = target_waitstatus_to_string (&ws);
4492
4493 fprintf_unfiltered (gdb_stdlog,
4494 "infrun: target_wait %s, saving "
4495 "status for %d.%ld.%ld\n",
4496 statstr.c_str (),
4497 t->ptid.pid (),
4498 t->ptid.lwp (),
4499 t->ptid.tid ());
4500 }
4501
4502 /* Record for later. */
4503 save_waitstatus (t, &ws);
4504
4505 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4506 ? ws.value.sig : GDB_SIGNAL_0);
4507
4508 if (displaced_step_fixup (t, sig) < 0)
4509 {
4510 /* Add it back to the step-over queue. */
4511 t->control.trap_expected = 0;
4512 thread_step_over_chain_enqueue (t);
4513 }
4514
4515 regcache = get_thread_regcache (t);
4516 t->suspend.stop_pc = regcache_read_pc (regcache);
4517
4518 if (debug_infrun)
4519 {
4520 fprintf_unfiltered (gdb_stdlog,
4521 "infrun: saved stop_pc=%s for %s "
4522 "(currently_stepping=%d)\n",
4523 paddress (target_gdbarch (),
4524 t->suspend.stop_pc),
4525 target_pid_to_str (t->ptid).c_str (),
4526 currently_stepping (t));
4527 }
4528 }
4529 }
4530 }
4531 }
4532
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4535 }
4536
4537 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4538
4539 static int
4540 handle_no_resumed (struct execution_control_state *ecs)
4541 {
4542 if (target_can_async_p ())
4543 {
4544 struct ui *ui;
4545 int any_sync = 0;
4546
4547 ALL_UIS (ui)
4548 {
4549 if (ui->prompt_state == PROMPT_BLOCKED)
4550 {
4551 any_sync = 1;
4552 break;
4553 }
4554 }
4555 if (!any_sync)
4556 {
4557 /* There were no unwaited-for children left in the target, but,
4558 we're not synchronously waiting for events either. Just
4559 ignore. */
4560
4561 if (debug_infrun)
4562 fprintf_unfiltered (gdb_stdlog,
4563 "infrun: TARGET_WAITKIND_NO_RESUMED "
4564 "(ignoring: bg)\n");
4565 prepare_to_wait (ecs);
4566 return 1;
4567 }
4568 }
4569
4570 /* Otherwise, if we were running a synchronous execution command, we
4571 may need to cancel it and give the user back the terminal.
4572
4573 In non-stop mode, the target can't tell whether we've already
4574 consumed previous stop events, so it can end up sending us a
4575 no-resumed event like so:
4576
4577 #0 - thread 1 is left stopped
4578
4579 #1 - thread 2 is resumed and hits breakpoint
4580 -> TARGET_WAITKIND_STOPPED
4581
4582 #2 - thread 3 is resumed and exits
4583 this is the last resumed thread, so
4584 -> TARGET_WAITKIND_NO_RESUMED
4585
4586 #3 - gdb processes stop for thread 2 and decides to re-resume
4587 it.
4588
4589 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4590 thread 2 is now resumed, so the event should be ignored.
4591
4592 IOW, if the stop for thread 2 doesn't end a foreground command,
4593 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4594 event. But it could be that the event meant that thread 2 itself
4595 (or whatever other thread was the last resumed thread) exited.
4596
4597 To address this we refresh the thread list and check whether we
4598 have resumed threads _now_. In the example above, this removes
4599 thread 3 from the thread list. If thread 2 was re-resumed, we
4600 ignore this event. If we find no thread resumed, then we cancel
4601 the synchronous command show "no unwaited-for " to the user. */
4602 update_thread_list ();
4603
4604 for (thread_info *thread : all_non_exited_threads ())
4605 {
4606 if (thread->executing
4607 || thread->suspend.waitstatus_pending_p)
4608 {
4609 /* There were no unwaited-for children left in the target at
4610 some point, but there are now. Just ignore. */
4611 if (debug_infrun)
4612 fprintf_unfiltered (gdb_stdlog,
4613 "infrun: TARGET_WAITKIND_NO_RESUMED "
4614 "(ignoring: found resumed)\n");
4615 prepare_to_wait (ecs);
4616 return 1;
4617 }
4618 }
4619
4620 /* Note however that we may find no resumed thread because the whole
4621 process exited meanwhile (thus updating the thread list results
4622 in an empty thread list). In this case we know we'll be getting
4623 a process exit event shortly. */
4624 for (inferior *inf : all_inferiors ())
4625 {
4626 if (inf->pid == 0)
4627 continue;
4628
4629 thread_info *thread = any_live_thread_of_inferior (inf);
4630 if (thread == NULL)
4631 {
4632 if (debug_infrun)
4633 fprintf_unfiltered (gdb_stdlog,
4634 "infrun: TARGET_WAITKIND_NO_RESUMED "
4635 "(expect process exit)\n");
4636 prepare_to_wait (ecs);
4637 return 1;
4638 }
4639 }
4640
4641 /* Go ahead and report the event. */
4642 return 0;
4643 }
4644
4645 /* Given an execution control state that has been freshly filled in by
4646 an event from the inferior, figure out what it means and take
4647 appropriate action.
4648
4649 The alternatives are:
4650
4651 1) stop_waiting and return; to really stop and return to the
4652 debugger.
4653
4654 2) keep_going and return; to wait for the next event (set
4655 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4656 once). */
4657
4658 static void
4659 handle_inferior_event (struct execution_control_state *ecs)
4660 {
4661 /* Make sure that all temporary struct value objects that were
4662 created during the handling of the event get deleted at the
4663 end. */
4664 scoped_value_mark free_values;
4665
4666 enum stop_kind stop_soon;
4667
4668 if (debug_infrun)
4669 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4670 target_waitstatus_to_string (&ecs->ws).c_str ());
4671
4672 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4673 {
4674 /* We had an event in the inferior, but we are not interested in
4675 handling it at this level. The lower layers have already
4676 done what needs to be done, if anything.
4677
4678 One of the possible circumstances for this is when the
4679 inferior produces output for the console. The inferior has
4680 not stopped, and we are ignoring the event. Another possible
4681 circumstance is any event which the lower level knows will be
4682 reported multiple times without an intervening resume. */
4683 prepare_to_wait (ecs);
4684 return;
4685 }
4686
4687 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4688 {
4689 prepare_to_wait (ecs);
4690 return;
4691 }
4692
4693 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4694 && handle_no_resumed (ecs))
4695 return;
4696
4697 /* Cache the last pid/waitstatus. */
4698 set_last_target_status (ecs->ptid, ecs->ws);
4699
4700 /* Always clear state belonging to the previous time we stopped. */
4701 stop_stack_dummy = STOP_NONE;
4702
4703 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4704 {
4705 /* No unwaited-for children left. IOW, all resumed children
4706 have exited. */
4707 stop_print_frame = 0;
4708 stop_waiting (ecs);
4709 return;
4710 }
4711
4712 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4713 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4714 {
4715 ecs->event_thread = find_thread_ptid (ecs->ptid);
4716 /* If it's a new thread, add it to the thread database. */
4717 if (ecs->event_thread == NULL)
4718 ecs->event_thread = add_thread (ecs->ptid);
4719
4720 /* Disable range stepping. If the next step request could use a
4721 range, this will be end up re-enabled then. */
4722 ecs->event_thread->control.may_range_step = 0;
4723 }
4724
4725 /* Dependent on valid ECS->EVENT_THREAD. */
4726 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4727
4728 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4729 reinit_frame_cache ();
4730
4731 breakpoint_retire_moribund ();
4732
4733 /* First, distinguish signals caused by the debugger from signals
4734 that have to do with the program's own actions. Note that
4735 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4736 on the operating system version. Here we detect when a SIGILL or
4737 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4738 something similar for SIGSEGV, since a SIGSEGV will be generated
4739 when we're trying to execute a breakpoint instruction on a
4740 non-executable stack. This happens for call dummy breakpoints
4741 for architectures like SPARC that place call dummies on the
4742 stack. */
4743 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4744 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4745 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4746 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4747 {
4748 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4749
4750 if (breakpoint_inserted_here_p (regcache->aspace (),
4751 regcache_read_pc (regcache)))
4752 {
4753 if (debug_infrun)
4754 fprintf_unfiltered (gdb_stdlog,
4755 "infrun: Treating signal as SIGTRAP\n");
4756 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4757 }
4758 }
4759
4760 /* Mark the non-executing threads accordingly. In all-stop, all
4761 threads of all processes are stopped when we get any event
4762 reported. In non-stop mode, only the event thread stops. */
4763 {
4764 ptid_t mark_ptid;
4765
4766 if (!target_is_non_stop_p ())
4767 mark_ptid = minus_one_ptid;
4768 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4769 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4770 {
4771 /* If we're handling a process exit in non-stop mode, even
4772 though threads haven't been deleted yet, one would think
4773 that there is nothing to do, as threads of the dead process
4774 will be soon deleted, and threads of any other process were
4775 left running. However, on some targets, threads survive a
4776 process exit event. E.g., for the "checkpoint" command,
4777 when the current checkpoint/fork exits, linux-fork.c
4778 automatically switches to another fork from within
4779 target_mourn_inferior, by associating the same
4780 inferior/thread to another fork. We haven't mourned yet at
4781 this point, but we must mark any threads left in the
4782 process as not-executing so that finish_thread_state marks
4783 them stopped (in the user's perspective) if/when we present
4784 the stop to the user. */
4785 mark_ptid = ptid_t (ecs->ptid.pid ());
4786 }
4787 else
4788 mark_ptid = ecs->ptid;
4789
4790 set_executing (mark_ptid, 0);
4791
4792 /* Likewise the resumed flag. */
4793 set_resumed (mark_ptid, 0);
4794 }
4795
4796 switch (ecs->ws.kind)
4797 {
4798 case TARGET_WAITKIND_LOADED:
4799 context_switch (ecs);
4800 /* Ignore gracefully during startup of the inferior, as it might
4801 be the shell which has just loaded some objects, otherwise
4802 add the symbols for the newly loaded objects. Also ignore at
4803 the beginning of an attach or remote session; we will query
4804 the full list of libraries once the connection is
4805 established. */
4806
4807 stop_soon = get_inferior_stop_soon (ecs);
4808 if (stop_soon == NO_STOP_QUIETLY)
4809 {
4810 struct regcache *regcache;
4811
4812 regcache = get_thread_regcache (ecs->event_thread);
4813
4814 handle_solib_event ();
4815
4816 ecs->event_thread->control.stop_bpstat
4817 = bpstat_stop_status (regcache->aspace (),
4818 ecs->event_thread->suspend.stop_pc,
4819 ecs->event_thread, &ecs->ws);
4820
4821 if (handle_stop_requested (ecs))
4822 return;
4823
4824 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4825 {
4826 /* A catchpoint triggered. */
4827 process_event_stop_test (ecs);
4828 return;
4829 }
4830
4831 /* If requested, stop when the dynamic linker notifies
4832 gdb of events. This allows the user to get control
4833 and place breakpoints in initializer routines for
4834 dynamically loaded objects (among other things). */
4835 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4836 if (stop_on_solib_events)
4837 {
4838 /* Make sure we print "Stopped due to solib-event" in
4839 normal_stop. */
4840 stop_print_frame = 1;
4841
4842 stop_waiting (ecs);
4843 return;
4844 }
4845 }
4846
4847 /* If we are skipping through a shell, or through shared library
4848 loading that we aren't interested in, resume the program. If
4849 we're running the program normally, also resume. */
4850 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4851 {
4852 /* Loading of shared libraries might have changed breakpoint
4853 addresses. Make sure new breakpoints are inserted. */
4854 if (stop_soon == NO_STOP_QUIETLY)
4855 insert_breakpoints ();
4856 resume (GDB_SIGNAL_0);
4857 prepare_to_wait (ecs);
4858 return;
4859 }
4860
4861 /* But stop if we're attaching or setting up a remote
4862 connection. */
4863 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4864 || stop_soon == STOP_QUIETLY_REMOTE)
4865 {
4866 if (debug_infrun)
4867 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4868 stop_waiting (ecs);
4869 return;
4870 }
4871
4872 internal_error (__FILE__, __LINE__,
4873 _("unhandled stop_soon: %d"), (int) stop_soon);
4874
4875 case TARGET_WAITKIND_SPURIOUS:
4876 if (handle_stop_requested (ecs))
4877 return;
4878 context_switch (ecs);
4879 resume (GDB_SIGNAL_0);
4880 prepare_to_wait (ecs);
4881 return;
4882
4883 case TARGET_WAITKIND_THREAD_CREATED:
4884 if (handle_stop_requested (ecs))
4885 return;
4886 context_switch (ecs);
4887 if (!switch_back_to_stepped_thread (ecs))
4888 keep_going (ecs);
4889 return;
4890
4891 case TARGET_WAITKIND_EXITED:
4892 case TARGET_WAITKIND_SIGNALLED:
4893 inferior_ptid = ecs->ptid;
4894 set_current_inferior (find_inferior_ptid (ecs->ptid));
4895 set_current_program_space (current_inferior ()->pspace);
4896 handle_vfork_child_exec_or_exit (0);
4897 target_terminal::ours (); /* Must do this before mourn anyway. */
4898
4899 /* Clearing any previous state of convenience variables. */
4900 clear_exit_convenience_vars ();
4901
4902 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4903 {
4904 /* Record the exit code in the convenience variable $_exitcode, so
4905 that the user can inspect this again later. */
4906 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4907 (LONGEST) ecs->ws.value.integer);
4908
4909 /* Also record this in the inferior itself. */
4910 current_inferior ()->has_exit_code = 1;
4911 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4912
4913 /* Support the --return-child-result option. */
4914 return_child_result_value = ecs->ws.value.integer;
4915
4916 gdb::observers::exited.notify (ecs->ws.value.integer);
4917 }
4918 else
4919 {
4920 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4921
4922 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4923 {
4924 /* Set the value of the internal variable $_exitsignal,
4925 which holds the signal uncaught by the inferior. */
4926 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4927 gdbarch_gdb_signal_to_target (gdbarch,
4928 ecs->ws.value.sig));
4929 }
4930 else
4931 {
4932 /* We don't have access to the target's method used for
4933 converting between signal numbers (GDB's internal
4934 representation <-> target's representation).
4935 Therefore, we cannot do a good job at displaying this
4936 information to the user. It's better to just warn
4937 her about it (if infrun debugging is enabled), and
4938 give up. */
4939 if (debug_infrun)
4940 fprintf_filtered (gdb_stdlog, _("\
4941 Cannot fill $_exitsignal with the correct signal number.\n"));
4942 }
4943
4944 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4945 }
4946
4947 gdb_flush (gdb_stdout);
4948 target_mourn_inferior (inferior_ptid);
4949 stop_print_frame = 0;
4950 stop_waiting (ecs);
4951 return;
4952
4953 /* The following are the only cases in which we keep going;
4954 the above cases end in a continue or goto. */
4955 case TARGET_WAITKIND_FORKED:
4956 case TARGET_WAITKIND_VFORKED:
4957 /* Check whether the inferior is displaced stepping. */
4958 {
4959 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4960 struct gdbarch *gdbarch = regcache->arch ();
4961
4962 /* If checking displaced stepping is supported, and thread
4963 ecs->ptid is displaced stepping. */
4964 if (displaced_step_in_progress_thread (ecs->event_thread))
4965 {
4966 struct inferior *parent_inf
4967 = find_inferior_ptid (ecs->ptid);
4968 struct regcache *child_regcache;
4969 CORE_ADDR parent_pc;
4970
4971 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4972 indicating that the displaced stepping of syscall instruction
4973 has been done. Perform cleanup for parent process here. Note
4974 that this operation also cleans up the child process for vfork,
4975 because their pages are shared. */
4976 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4977 /* Start a new step-over in another thread if there's one
4978 that needs it. */
4979 start_step_over ();
4980
4981 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4982 {
4983 struct displaced_step_inferior_state *displaced
4984 = get_displaced_stepping_state (parent_inf);
4985
4986 /* Restore scratch pad for child process. */
4987 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4988 }
4989
4990 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4991 the child's PC is also within the scratchpad. Set the child's PC
4992 to the parent's PC value, which has already been fixed up.
4993 FIXME: we use the parent's aspace here, although we're touching
4994 the child, because the child hasn't been added to the inferior
4995 list yet at this point. */
4996
4997 child_regcache
4998 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4999 gdbarch,
5000 parent_inf->aspace);
5001 /* Read PC value of parent process. */
5002 parent_pc = regcache_read_pc (regcache);
5003
5004 if (debug_displaced)
5005 fprintf_unfiltered (gdb_stdlog,
5006 "displaced: write child pc from %s to %s\n",
5007 paddress (gdbarch,
5008 regcache_read_pc (child_regcache)),
5009 paddress (gdbarch, parent_pc));
5010
5011 regcache_write_pc (child_regcache, parent_pc);
5012 }
5013 }
5014
5015 context_switch (ecs);
5016
5017 /* Immediately detach breakpoints from the child before there's
5018 any chance of letting the user delete breakpoints from the
5019 breakpoint lists. If we don't do this early, it's easy to
5020 leave left over traps in the child, vis: "break foo; catch
5021 fork; c; <fork>; del; c; <child calls foo>". We only follow
5022 the fork on the last `continue', and by that time the
5023 breakpoint at "foo" is long gone from the breakpoint table.
5024 If we vforked, then we don't need to unpatch here, since both
5025 parent and child are sharing the same memory pages; we'll
5026 need to unpatch at follow/detach time instead to be certain
5027 that new breakpoints added between catchpoint hit time and
5028 vfork follow are detached. */
5029 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5030 {
5031 /* This won't actually modify the breakpoint list, but will
5032 physically remove the breakpoints from the child. */
5033 detach_breakpoints (ecs->ws.value.related_pid);
5034 }
5035
5036 delete_just_stopped_threads_single_step_breakpoints ();
5037
5038 /* In case the event is caught by a catchpoint, remember that
5039 the event is to be followed at the next resume of the thread,
5040 and not immediately. */
5041 ecs->event_thread->pending_follow = ecs->ws;
5042
5043 ecs->event_thread->suspend.stop_pc
5044 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5045
5046 ecs->event_thread->control.stop_bpstat
5047 = bpstat_stop_status (get_current_regcache ()->aspace (),
5048 ecs->event_thread->suspend.stop_pc,
5049 ecs->event_thread, &ecs->ws);
5050
5051 if (handle_stop_requested (ecs))
5052 return;
5053
5054 /* If no catchpoint triggered for this, then keep going. Note
5055 that we're interested in knowing the bpstat actually causes a
5056 stop, not just if it may explain the signal. Software
5057 watchpoints, for example, always appear in the bpstat. */
5058 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5059 {
5060 int should_resume;
5061 int follow_child
5062 = (follow_fork_mode_string == follow_fork_mode_child);
5063
5064 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5065
5066 should_resume = follow_fork ();
5067
5068 thread_info *parent = ecs->event_thread;
5069 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5070
5071 /* At this point, the parent is marked running, and the
5072 child is marked stopped. */
5073
5074 /* If not resuming the parent, mark it stopped. */
5075 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5076 parent->set_running (false);
5077
5078 /* If resuming the child, mark it running. */
5079 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5080 child->set_running (true);
5081
5082 /* In non-stop mode, also resume the other branch. */
5083 if (!detach_fork && (non_stop
5084 || (sched_multi && target_is_non_stop_p ())))
5085 {
5086 if (follow_child)
5087 switch_to_thread (parent);
5088 else
5089 switch_to_thread (child);
5090
5091 ecs->event_thread = inferior_thread ();
5092 ecs->ptid = inferior_ptid;
5093 keep_going (ecs);
5094 }
5095
5096 if (follow_child)
5097 switch_to_thread (child);
5098 else
5099 switch_to_thread (parent);
5100
5101 ecs->event_thread = inferior_thread ();
5102 ecs->ptid = inferior_ptid;
5103
5104 if (should_resume)
5105 keep_going (ecs);
5106 else
5107 stop_waiting (ecs);
5108 return;
5109 }
5110 process_event_stop_test (ecs);
5111 return;
5112
5113 case TARGET_WAITKIND_VFORK_DONE:
5114 /* Done with the shared memory region. Re-insert breakpoints in
5115 the parent, and keep going. */
5116
5117 context_switch (ecs);
5118
5119 current_inferior ()->waiting_for_vfork_done = 0;
5120 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5121
5122 if (handle_stop_requested (ecs))
5123 return;
5124
5125 /* This also takes care of reinserting breakpoints in the
5126 previously locked inferior. */
5127 keep_going (ecs);
5128 return;
5129
5130 case TARGET_WAITKIND_EXECD:
5131
5132 /* Note we can't read registers yet (the stop_pc), because we
5133 don't yet know the inferior's post-exec architecture.
5134 'stop_pc' is explicitly read below instead. */
5135 switch_to_thread_no_regs (ecs->event_thread);
5136
5137 /* Do whatever is necessary to the parent branch of the vfork. */
5138 handle_vfork_child_exec_or_exit (1);
5139
5140 /* This causes the eventpoints and symbol table to be reset.
5141 Must do this now, before trying to determine whether to
5142 stop. */
5143 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5144
5145 /* In follow_exec we may have deleted the original thread and
5146 created a new one. Make sure that the event thread is the
5147 execd thread for that case (this is a nop otherwise). */
5148 ecs->event_thread = inferior_thread ();
5149
5150 ecs->event_thread->suspend.stop_pc
5151 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5152
5153 ecs->event_thread->control.stop_bpstat
5154 = bpstat_stop_status (get_current_regcache ()->aspace (),
5155 ecs->event_thread->suspend.stop_pc,
5156 ecs->event_thread, &ecs->ws);
5157
5158 /* Note that this may be referenced from inside
5159 bpstat_stop_status above, through inferior_has_execd. */
5160 xfree (ecs->ws.value.execd_pathname);
5161 ecs->ws.value.execd_pathname = NULL;
5162
5163 if (handle_stop_requested (ecs))
5164 return;
5165
5166 /* If no catchpoint triggered for this, then keep going. */
5167 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5168 {
5169 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5170 keep_going (ecs);
5171 return;
5172 }
5173 process_event_stop_test (ecs);
5174 return;
5175
5176 /* Be careful not to try to gather much state about a thread
5177 that's in a syscall. It's frequently a losing proposition. */
5178 case TARGET_WAITKIND_SYSCALL_ENTRY:
5179 /* Getting the current syscall number. */
5180 if (handle_syscall_event (ecs) == 0)
5181 process_event_stop_test (ecs);
5182 return;
5183
5184 /* Before examining the threads further, step this thread to
5185 get it entirely out of the syscall. (We get notice of the
5186 event when the thread is just on the verge of exiting a
5187 syscall. Stepping one instruction seems to get it back
5188 into user code.) */
5189 case TARGET_WAITKIND_SYSCALL_RETURN:
5190 if (handle_syscall_event (ecs) == 0)
5191 process_event_stop_test (ecs);
5192 return;
5193
5194 case TARGET_WAITKIND_STOPPED:
5195 handle_signal_stop (ecs);
5196 return;
5197
5198 case TARGET_WAITKIND_NO_HISTORY:
5199 /* Reverse execution: target ran out of history info. */
5200
5201 /* Switch to the stopped thread. */
5202 context_switch (ecs);
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5205
5206 delete_just_stopped_threads_single_step_breakpoints ();
5207 ecs->event_thread->suspend.stop_pc
5208 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5209
5210 if (handle_stop_requested (ecs))
5211 return;
5212
5213 gdb::observers::no_history.notify ();
5214 stop_waiting (ecs);
5215 return;
5216 }
5217 }
5218
5219 /* Restart threads back to what they were trying to do back when we
5220 paused them for an in-line step-over. The EVENT_THREAD thread is
5221 ignored. */
5222
5223 static void
5224 restart_threads (struct thread_info *event_thread)
5225 {
5226 /* In case the instruction just stepped spawned a new thread. */
5227 update_thread_list ();
5228
5229 for (thread_info *tp : all_non_exited_threads ())
5230 {
5231 switch_to_thread_no_regs (tp);
5232
5233 if (tp == event_thread)
5234 {
5235 if (debug_infrun)
5236 fprintf_unfiltered (gdb_stdlog,
5237 "infrun: restart threads: "
5238 "[%s] is event thread\n",
5239 target_pid_to_str (tp->ptid).c_str ());
5240 continue;
5241 }
5242
5243 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5244 {
5245 if (debug_infrun)
5246 fprintf_unfiltered (gdb_stdlog,
5247 "infrun: restart threads: "
5248 "[%s] not meant to be running\n",
5249 target_pid_to_str (tp->ptid).c_str ());
5250 continue;
5251 }
5252
5253 if (tp->resumed)
5254 {
5255 if (debug_infrun)
5256 fprintf_unfiltered (gdb_stdlog,
5257 "infrun: restart threads: [%s] resumed\n",
5258 target_pid_to_str (tp->ptid).c_str ());
5259 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5260 continue;
5261 }
5262
5263 if (thread_is_in_step_over_chain (tp))
5264 {
5265 if (debug_infrun)
5266 fprintf_unfiltered (gdb_stdlog,
5267 "infrun: restart threads: "
5268 "[%s] needs step-over\n",
5269 target_pid_to_str (tp->ptid).c_str ());
5270 gdb_assert (!tp->resumed);
5271 continue;
5272 }
5273
5274
5275 if (tp->suspend.waitstatus_pending_p)
5276 {
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog,
5279 "infrun: restart threads: "
5280 "[%s] has pending status\n",
5281 target_pid_to_str (tp->ptid).c_str ());
5282 tp->resumed = 1;
5283 continue;
5284 }
5285
5286 gdb_assert (!tp->stop_requested);
5287
5288 /* If some thread needs to start a step-over at this point, it
5289 should still be in the step-over queue, and thus skipped
5290 above. */
5291 if (thread_still_needs_step_over (tp))
5292 {
5293 internal_error (__FILE__, __LINE__,
5294 "thread [%s] needs a step-over, but not in "
5295 "step-over queue\n",
5296 target_pid_to_str (tp->ptid).c_str ());
5297 }
5298
5299 if (currently_stepping (tp))
5300 {
5301 if (debug_infrun)
5302 fprintf_unfiltered (gdb_stdlog,
5303 "infrun: restart threads: [%s] was stepping\n",
5304 target_pid_to_str (tp->ptid).c_str ());
5305 keep_going_stepped_thread (tp);
5306 }
5307 else
5308 {
5309 struct execution_control_state ecss;
5310 struct execution_control_state *ecs = &ecss;
5311
5312 if (debug_infrun)
5313 fprintf_unfiltered (gdb_stdlog,
5314 "infrun: restart threads: [%s] continuing\n",
5315 target_pid_to_str (tp->ptid).c_str ());
5316 reset_ecs (ecs, tp);
5317 switch_to_thread (tp);
5318 keep_going_pass_signal (ecs);
5319 }
5320 }
5321 }
5322
5323 /* Callback for iterate_over_threads. Find a resumed thread that has
5324 a pending waitstatus. */
5325
5326 static int
5327 resumed_thread_with_pending_status (struct thread_info *tp,
5328 void *arg)
5329 {
5330 return (tp->resumed
5331 && tp->suspend.waitstatus_pending_p);
5332 }
5333
5334 /* Called when we get an event that may finish an in-line or
5335 out-of-line (displaced stepping) step-over started previously.
5336 Return true if the event is processed and we should go back to the
5337 event loop; false if the caller should continue processing the
5338 event. */
5339
5340 static int
5341 finish_step_over (struct execution_control_state *ecs)
5342 {
5343 int had_step_over_info;
5344
5345 displaced_step_fixup (ecs->event_thread,
5346 ecs->event_thread->suspend.stop_signal);
5347
5348 had_step_over_info = step_over_info_valid_p ();
5349
5350 if (had_step_over_info)
5351 {
5352 /* If we're stepping over a breakpoint with all threads locked,
5353 then only the thread that was stepped should be reporting
5354 back an event. */
5355 gdb_assert (ecs->event_thread->control.trap_expected);
5356
5357 clear_step_over_info ();
5358 }
5359
5360 if (!target_is_non_stop_p ())
5361 return 0;
5362
5363 /* Start a new step-over in another thread if there's one that
5364 needs it. */
5365 start_step_over ();
5366
5367 /* If we were stepping over a breakpoint before, and haven't started
5368 a new in-line step-over sequence, then restart all other threads
5369 (except the event thread). We can't do this in all-stop, as then
5370 e.g., we wouldn't be able to issue any other remote packet until
5371 these other threads stop. */
5372 if (had_step_over_info && !step_over_info_valid_p ())
5373 {
5374 struct thread_info *pending;
5375
5376 /* If we only have threads with pending statuses, the restart
5377 below won't restart any thread and so nothing re-inserts the
5378 breakpoint we just stepped over. But we need it inserted
5379 when we later process the pending events, otherwise if
5380 another thread has a pending event for this breakpoint too,
5381 we'd discard its event (because the breakpoint that
5382 originally caused the event was no longer inserted). */
5383 context_switch (ecs);
5384 insert_breakpoints ();
5385
5386 restart_threads (ecs->event_thread);
5387
5388 /* If we have events pending, go through handle_inferior_event
5389 again, picking up a pending event at random. This avoids
5390 thread starvation. */
5391
5392 /* But not if we just stepped over a watchpoint in order to let
5393 the instruction execute so we can evaluate its expression.
5394 The set of watchpoints that triggered is recorded in the
5395 breakpoint objects themselves (see bp->watchpoint_triggered).
5396 If we processed another event first, that other event could
5397 clobber this info. */
5398 if (ecs->event_thread->stepping_over_watchpoint)
5399 return 0;
5400
5401 pending = iterate_over_threads (resumed_thread_with_pending_status,
5402 NULL);
5403 if (pending != NULL)
5404 {
5405 struct thread_info *tp = ecs->event_thread;
5406 struct regcache *regcache;
5407
5408 if (debug_infrun)
5409 {
5410 fprintf_unfiltered (gdb_stdlog,
5411 "infrun: found resumed threads with "
5412 "pending events, saving status\n");
5413 }
5414
5415 gdb_assert (pending != tp);
5416
5417 /* Record the event thread's event for later. */
5418 save_waitstatus (tp, &ecs->ws);
5419 /* This was cleared early, by handle_inferior_event. Set it
5420 so this pending event is considered by
5421 do_target_wait. */
5422 tp->resumed = 1;
5423
5424 gdb_assert (!tp->executing);
5425
5426 regcache = get_thread_regcache (tp);
5427 tp->suspend.stop_pc = regcache_read_pc (regcache);
5428
5429 if (debug_infrun)
5430 {
5431 fprintf_unfiltered (gdb_stdlog,
5432 "infrun: saved stop_pc=%s for %s "
5433 "(currently_stepping=%d)\n",
5434 paddress (target_gdbarch (),
5435 tp->suspend.stop_pc),
5436 target_pid_to_str (tp->ptid).c_str (),
5437 currently_stepping (tp));
5438 }
5439
5440 /* This in-line step-over finished; clear this so we won't
5441 start a new one. This is what handle_signal_stop would
5442 do, if we returned false. */
5443 tp->stepping_over_breakpoint = 0;
5444
5445 /* Wake up the event loop again. */
5446 mark_async_event_handler (infrun_async_inferior_event_token);
5447
5448 prepare_to_wait (ecs);
5449 return 1;
5450 }
5451 }
5452
5453 return 0;
5454 }
5455
5456 /* Come here when the program has stopped with a signal. */
5457
5458 static void
5459 handle_signal_stop (struct execution_control_state *ecs)
5460 {
5461 struct frame_info *frame;
5462 struct gdbarch *gdbarch;
5463 int stopped_by_watchpoint;
5464 enum stop_kind stop_soon;
5465 int random_signal;
5466
5467 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5468
5469 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5470
5471 /* Do we need to clean up the state of a thread that has
5472 completed a displaced single-step? (Doing so usually affects
5473 the PC, so do it here, before we set stop_pc.) */
5474 if (finish_step_over (ecs))
5475 return;
5476
5477 /* If we either finished a single-step or hit a breakpoint, but
5478 the user wanted this thread to be stopped, pretend we got a
5479 SIG0 (generic unsignaled stop). */
5480 if (ecs->event_thread->stop_requested
5481 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5482 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5483
5484 ecs->event_thread->suspend.stop_pc
5485 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5486
5487 if (debug_infrun)
5488 {
5489 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5490 struct gdbarch *reg_gdbarch = regcache->arch ();
5491
5492 switch_to_thread (ecs->event_thread);
5493
5494 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5495 paddress (reg_gdbarch,
5496 ecs->event_thread->suspend.stop_pc));
5497 if (target_stopped_by_watchpoint ())
5498 {
5499 CORE_ADDR addr;
5500
5501 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5502
5503 if (target_stopped_data_address (current_top_target (), &addr))
5504 fprintf_unfiltered (gdb_stdlog,
5505 "infrun: stopped data address = %s\n",
5506 paddress (reg_gdbarch, addr));
5507 else
5508 fprintf_unfiltered (gdb_stdlog,
5509 "infrun: (no data address available)\n");
5510 }
5511 }
5512
5513 /* This is originated from start_remote(), start_inferior() and
5514 shared libraries hook functions. */
5515 stop_soon = get_inferior_stop_soon (ecs);
5516 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5517 {
5518 context_switch (ecs);
5519 if (debug_infrun)
5520 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5521 stop_print_frame = 1;
5522 stop_waiting (ecs);
5523 return;
5524 }
5525
5526 /* This originates from attach_command(). We need to overwrite
5527 the stop_signal here, because some kernels don't ignore a
5528 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5529 See more comments in inferior.h. On the other hand, if we
5530 get a non-SIGSTOP, report it to the user - assume the backend
5531 will handle the SIGSTOP if it should show up later.
5532
5533 Also consider that the attach is complete when we see a
5534 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5535 target extended-remote report it instead of a SIGSTOP
5536 (e.g. gdbserver). We already rely on SIGTRAP being our
5537 signal, so this is no exception.
5538
5539 Also consider that the attach is complete when we see a
5540 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5541 the target to stop all threads of the inferior, in case the
5542 low level attach operation doesn't stop them implicitly. If
5543 they weren't stopped implicitly, then the stub will report a
5544 GDB_SIGNAL_0, meaning: stopped for no particular reason
5545 other than GDB's request. */
5546 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5547 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5548 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5549 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5550 {
5551 stop_print_frame = 1;
5552 stop_waiting (ecs);
5553 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5554 return;
5555 }
5556
5557 /* See if something interesting happened to the non-current thread. If
5558 so, then switch to that thread. */
5559 if (ecs->ptid != inferior_ptid)
5560 {
5561 if (debug_infrun)
5562 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5563
5564 context_switch (ecs);
5565
5566 if (deprecated_context_hook)
5567 deprecated_context_hook (ecs->event_thread->global_num);
5568 }
5569
5570 /* At this point, get hold of the now-current thread's frame. */
5571 frame = get_current_frame ();
5572 gdbarch = get_frame_arch (frame);
5573
5574 /* Pull the single step breakpoints out of the target. */
5575 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5576 {
5577 struct regcache *regcache;
5578 CORE_ADDR pc;
5579
5580 regcache = get_thread_regcache (ecs->event_thread);
5581 const address_space *aspace = regcache->aspace ();
5582
5583 pc = regcache_read_pc (regcache);
5584
5585 /* However, before doing so, if this single-step breakpoint was
5586 actually for another thread, set this thread up for moving
5587 past it. */
5588 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5589 aspace, pc))
5590 {
5591 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5592 {
5593 if (debug_infrun)
5594 {
5595 fprintf_unfiltered (gdb_stdlog,
5596 "infrun: [%s] hit another thread's "
5597 "single-step breakpoint\n",
5598 target_pid_to_str (ecs->ptid).c_str ());
5599 }
5600 ecs->hit_singlestep_breakpoint = 1;
5601 }
5602 }
5603 else
5604 {
5605 if (debug_infrun)
5606 {
5607 fprintf_unfiltered (gdb_stdlog,
5608 "infrun: [%s] hit its "
5609 "single-step breakpoint\n",
5610 target_pid_to_str (ecs->ptid).c_str ());
5611 }
5612 }
5613 }
5614 delete_just_stopped_threads_single_step_breakpoints ();
5615
5616 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5617 && ecs->event_thread->control.trap_expected
5618 && ecs->event_thread->stepping_over_watchpoint)
5619 stopped_by_watchpoint = 0;
5620 else
5621 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5622
5623 /* If necessary, step over this watchpoint. We'll be back to display
5624 it in a moment. */
5625 if (stopped_by_watchpoint
5626 && (target_have_steppable_watchpoint
5627 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5628 {
5629 /* At this point, we are stopped at an instruction which has
5630 attempted to write to a piece of memory under control of
5631 a watchpoint. The instruction hasn't actually executed
5632 yet. If we were to evaluate the watchpoint expression
5633 now, we would get the old value, and therefore no change
5634 would seem to have occurred.
5635
5636 In order to make watchpoints work `right', we really need
5637 to complete the memory write, and then evaluate the
5638 watchpoint expression. We do this by single-stepping the
5639 target.
5640
5641 It may not be necessary to disable the watchpoint to step over
5642 it. For example, the PA can (with some kernel cooperation)
5643 single step over a watchpoint without disabling the watchpoint.
5644
5645 It is far more common to need to disable a watchpoint to step
5646 the inferior over it. If we have non-steppable watchpoints,
5647 we must disable the current watchpoint; it's simplest to
5648 disable all watchpoints.
5649
5650 Any breakpoint at PC must also be stepped over -- if there's
5651 one, it will have already triggered before the watchpoint
5652 triggered, and we either already reported it to the user, or
5653 it didn't cause a stop and we called keep_going. In either
5654 case, if there was a breakpoint at PC, we must be trying to
5655 step past it. */
5656 ecs->event_thread->stepping_over_watchpoint = 1;
5657 keep_going (ecs);
5658 return;
5659 }
5660
5661 ecs->event_thread->stepping_over_breakpoint = 0;
5662 ecs->event_thread->stepping_over_watchpoint = 0;
5663 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5664 ecs->event_thread->control.stop_step = 0;
5665 stop_print_frame = 1;
5666 stopped_by_random_signal = 0;
5667 bpstat stop_chain = NULL;
5668
5669 /* Hide inlined functions starting here, unless we just performed stepi or
5670 nexti. After stepi and nexti, always show the innermost frame (not any
5671 inline function call sites). */
5672 if (ecs->event_thread->control.step_range_end != 1)
5673 {
5674 const address_space *aspace
5675 = get_thread_regcache (ecs->event_thread)->aspace ();
5676
5677 /* skip_inline_frames is expensive, so we avoid it if we can
5678 determine that the address is one where functions cannot have
5679 been inlined. This improves performance with inferiors that
5680 load a lot of shared libraries, because the solib event
5681 breakpoint is defined as the address of a function (i.e. not
5682 inline). Note that we have to check the previous PC as well
5683 as the current one to catch cases when we have just
5684 single-stepped off a breakpoint prior to reinstating it.
5685 Note that we're assuming that the code we single-step to is
5686 not inline, but that's not definitive: there's nothing
5687 preventing the event breakpoint function from containing
5688 inlined code, and the single-step ending up there. If the
5689 user had set a breakpoint on that inlined code, the missing
5690 skip_inline_frames call would break things. Fortunately
5691 that's an extremely unlikely scenario. */
5692 if (!pc_at_non_inline_function (aspace,
5693 ecs->event_thread->suspend.stop_pc,
5694 &ecs->ws)
5695 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5696 && ecs->event_thread->control.trap_expected
5697 && pc_at_non_inline_function (aspace,
5698 ecs->event_thread->prev_pc,
5699 &ecs->ws)))
5700 {
5701 stop_chain = build_bpstat_chain (aspace,
5702 ecs->event_thread->suspend.stop_pc,
5703 &ecs->ws);
5704 skip_inline_frames (ecs->event_thread, stop_chain);
5705
5706 /* Re-fetch current thread's frame in case that invalidated
5707 the frame cache. */
5708 frame = get_current_frame ();
5709 gdbarch = get_frame_arch (frame);
5710 }
5711 }
5712
5713 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5714 && ecs->event_thread->control.trap_expected
5715 && gdbarch_single_step_through_delay_p (gdbarch)
5716 && currently_stepping (ecs->event_thread))
5717 {
5718 /* We're trying to step off a breakpoint. Turns out that we're
5719 also on an instruction that needs to be stepped multiple
5720 times before it's been fully executing. E.g., architectures
5721 with a delay slot. It needs to be stepped twice, once for
5722 the instruction and once for the delay slot. */
5723 int step_through_delay
5724 = gdbarch_single_step_through_delay (gdbarch, frame);
5725
5726 if (debug_infrun && step_through_delay)
5727 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5728 if (ecs->event_thread->control.step_range_end == 0
5729 && step_through_delay)
5730 {
5731 /* The user issued a continue when stopped at a breakpoint.
5732 Set up for another trap and get out of here. */
5733 ecs->event_thread->stepping_over_breakpoint = 1;
5734 keep_going (ecs);
5735 return;
5736 }
5737 else if (step_through_delay)
5738 {
5739 /* The user issued a step when stopped at a breakpoint.
5740 Maybe we should stop, maybe we should not - the delay
5741 slot *might* correspond to a line of source. In any
5742 case, don't decide that here, just set
5743 ecs->stepping_over_breakpoint, making sure we
5744 single-step again before breakpoints are re-inserted. */
5745 ecs->event_thread->stepping_over_breakpoint = 1;
5746 }
5747 }
5748
5749 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5750 handles this event. */
5751 ecs->event_thread->control.stop_bpstat
5752 = bpstat_stop_status (get_current_regcache ()->aspace (),
5753 ecs->event_thread->suspend.stop_pc,
5754 ecs->event_thread, &ecs->ws, stop_chain);
5755
5756 /* Following in case break condition called a
5757 function. */
5758 stop_print_frame = 1;
5759
5760 /* This is where we handle "moribund" watchpoints. Unlike
5761 software breakpoints traps, hardware watchpoint traps are
5762 always distinguishable from random traps. If no high-level
5763 watchpoint is associated with the reported stop data address
5764 anymore, then the bpstat does not explain the signal ---
5765 simply make sure to ignore it if `stopped_by_watchpoint' is
5766 set. */
5767
5768 if (debug_infrun
5769 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5770 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5771 GDB_SIGNAL_TRAP)
5772 && stopped_by_watchpoint)
5773 fprintf_unfiltered (gdb_stdlog,
5774 "infrun: no user watchpoint explains "
5775 "watchpoint SIGTRAP, ignoring\n");
5776
5777 /* NOTE: cagney/2003-03-29: These checks for a random signal
5778 at one stage in the past included checks for an inferior
5779 function call's call dummy's return breakpoint. The original
5780 comment, that went with the test, read:
5781
5782 ``End of a stack dummy. Some systems (e.g. Sony news) give
5783 another signal besides SIGTRAP, so check here as well as
5784 above.''
5785
5786 If someone ever tries to get call dummys on a
5787 non-executable stack to work (where the target would stop
5788 with something like a SIGSEGV), then those tests might need
5789 to be re-instated. Given, however, that the tests were only
5790 enabled when momentary breakpoints were not being used, I
5791 suspect that it won't be the case.
5792
5793 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5794 be necessary for call dummies on a non-executable stack on
5795 SPARC. */
5796
5797 /* See if the breakpoints module can explain the signal. */
5798 random_signal
5799 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5800 ecs->event_thread->suspend.stop_signal);
5801
5802 /* Maybe this was a trap for a software breakpoint that has since
5803 been removed. */
5804 if (random_signal && target_stopped_by_sw_breakpoint ())
5805 {
5806 if (program_breakpoint_here_p (gdbarch,
5807 ecs->event_thread->suspend.stop_pc))
5808 {
5809 struct regcache *regcache;
5810 int decr_pc;
5811
5812 /* Re-adjust PC to what the program would see if GDB was not
5813 debugging it. */
5814 regcache = get_thread_regcache (ecs->event_thread);
5815 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5816 if (decr_pc != 0)
5817 {
5818 gdb::optional<scoped_restore_tmpl<int>>
5819 restore_operation_disable;
5820
5821 if (record_full_is_used ())
5822 restore_operation_disable.emplace
5823 (record_full_gdb_operation_disable_set ());
5824
5825 regcache_write_pc (regcache,
5826 ecs->event_thread->suspend.stop_pc + decr_pc);
5827 }
5828 }
5829 else
5830 {
5831 /* A delayed software breakpoint event. Ignore the trap. */
5832 if (debug_infrun)
5833 fprintf_unfiltered (gdb_stdlog,
5834 "infrun: delayed software breakpoint "
5835 "trap, ignoring\n");
5836 random_signal = 0;
5837 }
5838 }
5839
5840 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5841 has since been removed. */
5842 if (random_signal && target_stopped_by_hw_breakpoint ())
5843 {
5844 /* A delayed hardware breakpoint event. Ignore the trap. */
5845 if (debug_infrun)
5846 fprintf_unfiltered (gdb_stdlog,
5847 "infrun: delayed hardware breakpoint/watchpoint "
5848 "trap, ignoring\n");
5849 random_signal = 0;
5850 }
5851
5852 /* If not, perhaps stepping/nexting can. */
5853 if (random_signal)
5854 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5855 && currently_stepping (ecs->event_thread));
5856
5857 /* Perhaps the thread hit a single-step breakpoint of _another_
5858 thread. Single-step breakpoints are transparent to the
5859 breakpoints module. */
5860 if (random_signal)
5861 random_signal = !ecs->hit_singlestep_breakpoint;
5862
5863 /* No? Perhaps we got a moribund watchpoint. */
5864 if (random_signal)
5865 random_signal = !stopped_by_watchpoint;
5866
5867 /* Always stop if the user explicitly requested this thread to
5868 remain stopped. */
5869 if (ecs->event_thread->stop_requested)
5870 {
5871 random_signal = 1;
5872 if (debug_infrun)
5873 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5874 }
5875
5876 /* For the program's own signals, act according to
5877 the signal handling tables. */
5878
5879 if (random_signal)
5880 {
5881 /* Signal not for debugging purposes. */
5882 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5883 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5884
5885 if (debug_infrun)
5886 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5887 gdb_signal_to_symbol_string (stop_signal));
5888
5889 stopped_by_random_signal = 1;
5890
5891 /* Always stop on signals if we're either just gaining control
5892 of the program, or the user explicitly requested this thread
5893 to remain stopped. */
5894 if (stop_soon != NO_STOP_QUIETLY
5895 || ecs->event_thread->stop_requested
5896 || (!inf->detaching
5897 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5898 {
5899 stop_waiting (ecs);
5900 return;
5901 }
5902
5903 /* Notify observers the signal has "handle print" set. Note we
5904 returned early above if stopping; normal_stop handles the
5905 printing in that case. */
5906 if (signal_print[ecs->event_thread->suspend.stop_signal])
5907 {
5908 /* The signal table tells us to print about this signal. */
5909 target_terminal::ours_for_output ();
5910 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5911 target_terminal::inferior ();
5912 }
5913
5914 /* Clear the signal if it should not be passed. */
5915 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5916 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5917
5918 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5919 && ecs->event_thread->control.trap_expected
5920 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5921 {
5922 /* We were just starting a new sequence, attempting to
5923 single-step off of a breakpoint and expecting a SIGTRAP.
5924 Instead this signal arrives. This signal will take us out
5925 of the stepping range so GDB needs to remember to, when
5926 the signal handler returns, resume stepping off that
5927 breakpoint. */
5928 /* To simplify things, "continue" is forced to use the same
5929 code paths as single-step - set a breakpoint at the
5930 signal return address and then, once hit, step off that
5931 breakpoint. */
5932 if (debug_infrun)
5933 fprintf_unfiltered (gdb_stdlog,
5934 "infrun: signal arrived while stepping over "
5935 "breakpoint\n");
5936
5937 insert_hp_step_resume_breakpoint_at_frame (frame);
5938 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5939 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5940 ecs->event_thread->control.trap_expected = 0;
5941
5942 /* If we were nexting/stepping some other thread, switch to
5943 it, so that we don't continue it, losing control. */
5944 if (!switch_back_to_stepped_thread (ecs))
5945 keep_going (ecs);
5946 return;
5947 }
5948
5949 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5950 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5951 ecs->event_thread)
5952 || ecs->event_thread->control.step_range_end == 1)
5953 && frame_id_eq (get_stack_frame_id (frame),
5954 ecs->event_thread->control.step_stack_frame_id)
5955 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5956 {
5957 /* The inferior is about to take a signal that will take it
5958 out of the single step range. Set a breakpoint at the
5959 current PC (which is presumably where the signal handler
5960 will eventually return) and then allow the inferior to
5961 run free.
5962
5963 Note that this is only needed for a signal delivered
5964 while in the single-step range. Nested signals aren't a
5965 problem as they eventually all return. */
5966 if (debug_infrun)
5967 fprintf_unfiltered (gdb_stdlog,
5968 "infrun: signal may take us out of "
5969 "single-step range\n");
5970
5971 clear_step_over_info ();
5972 insert_hp_step_resume_breakpoint_at_frame (frame);
5973 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5974 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5975 ecs->event_thread->control.trap_expected = 0;
5976 keep_going (ecs);
5977 return;
5978 }
5979
5980 /* Note: step_resume_breakpoint may be non-NULL. This occurs
5981 when either there's a nested signal, or when there's a
5982 pending signal enabled just as the signal handler returns
5983 (leaving the inferior at the step-resume-breakpoint without
5984 actually executing it). Either way continue until the
5985 breakpoint is really hit. */
5986
5987 if (!switch_back_to_stepped_thread (ecs))
5988 {
5989 if (debug_infrun)
5990 fprintf_unfiltered (gdb_stdlog,
5991 "infrun: random signal, keep going\n");
5992
5993 keep_going (ecs);
5994 }
5995 return;
5996 }
5997
5998 process_event_stop_test (ecs);
5999 }
6000
6001 /* Come here when we've got some debug event / signal we can explain
6002 (IOW, not a random signal), and test whether it should cause a
6003 stop, or whether we should resume the inferior (transparently).
6004 E.g., could be a breakpoint whose condition evaluates false; we
6005 could be still stepping within the line; etc. */
6006
6007 static void
6008 process_event_stop_test (struct execution_control_state *ecs)
6009 {
6010 struct symtab_and_line stop_pc_sal;
6011 struct frame_info *frame;
6012 struct gdbarch *gdbarch;
6013 CORE_ADDR jmp_buf_pc;
6014 struct bpstat_what what;
6015
6016 /* Handle cases caused by hitting a breakpoint. */
6017
6018 frame = get_current_frame ();
6019 gdbarch = get_frame_arch (frame);
6020
6021 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6022
6023 if (what.call_dummy)
6024 {
6025 stop_stack_dummy = what.call_dummy;
6026 }
6027
6028 /* A few breakpoint types have callbacks associated (e.g.,
6029 bp_jit_event). Run them now. */
6030 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6031
6032 /* If we hit an internal event that triggers symbol changes, the
6033 current frame will be invalidated within bpstat_what (e.g., if we
6034 hit an internal solib event). Re-fetch it. */
6035 frame = get_current_frame ();
6036 gdbarch = get_frame_arch (frame);
6037
6038 switch (what.main_action)
6039 {
6040 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6041 /* If we hit the breakpoint at longjmp while stepping, we
6042 install a momentary breakpoint at the target of the
6043 jmp_buf. */
6044
6045 if (debug_infrun)
6046 fprintf_unfiltered (gdb_stdlog,
6047 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6048
6049 ecs->event_thread->stepping_over_breakpoint = 1;
6050
6051 if (what.is_longjmp)
6052 {
6053 struct value *arg_value;
6054
6055 /* If we set the longjmp breakpoint via a SystemTap probe,
6056 then use it to extract the arguments. The destination PC
6057 is the third argument to the probe. */
6058 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6059 if (arg_value)
6060 {
6061 jmp_buf_pc = value_as_address (arg_value);
6062 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6063 }
6064 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6065 || !gdbarch_get_longjmp_target (gdbarch,
6066 frame, &jmp_buf_pc))
6067 {
6068 if (debug_infrun)
6069 fprintf_unfiltered (gdb_stdlog,
6070 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6071 "(!gdbarch_get_longjmp_target)\n");
6072 keep_going (ecs);
6073 return;
6074 }
6075
6076 /* Insert a breakpoint at resume address. */
6077 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6078 }
6079 else
6080 check_exception_resume (ecs, frame);
6081 keep_going (ecs);
6082 return;
6083
6084 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6085 {
6086 struct frame_info *init_frame;
6087
6088 /* There are several cases to consider.
6089
6090 1. The initiating frame no longer exists. In this case we
6091 must stop, because the exception or longjmp has gone too
6092 far.
6093
6094 2. The initiating frame exists, and is the same as the
6095 current frame. We stop, because the exception or longjmp
6096 has been caught.
6097
6098 3. The initiating frame exists and is different from the
6099 current frame. This means the exception or longjmp has
6100 been caught beneath the initiating frame, so keep going.
6101
6102 4. longjmp breakpoint has been placed just to protect
6103 against stale dummy frames and user is not interested in
6104 stopping around longjmps. */
6105
6106 if (debug_infrun)
6107 fprintf_unfiltered (gdb_stdlog,
6108 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6109
6110 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6111 != NULL);
6112 delete_exception_resume_breakpoint (ecs->event_thread);
6113
6114 if (what.is_longjmp)
6115 {
6116 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6117
6118 if (!frame_id_p (ecs->event_thread->initiating_frame))
6119 {
6120 /* Case 4. */
6121 keep_going (ecs);
6122 return;
6123 }
6124 }
6125
6126 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6127
6128 if (init_frame)
6129 {
6130 struct frame_id current_id
6131 = get_frame_id (get_current_frame ());
6132 if (frame_id_eq (current_id,
6133 ecs->event_thread->initiating_frame))
6134 {
6135 /* Case 2. Fall through. */
6136 }
6137 else
6138 {
6139 /* Case 3. */
6140 keep_going (ecs);
6141 return;
6142 }
6143 }
6144
6145 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6146 exists. */
6147 delete_step_resume_breakpoint (ecs->event_thread);
6148
6149 end_stepping_range (ecs);
6150 }
6151 return;
6152
6153 case BPSTAT_WHAT_SINGLE:
6154 if (debug_infrun)
6155 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6156 ecs->event_thread->stepping_over_breakpoint = 1;
6157 /* Still need to check other stuff, at least the case where we
6158 are stepping and step out of the right range. */
6159 break;
6160
6161 case BPSTAT_WHAT_STEP_RESUME:
6162 if (debug_infrun)
6163 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6164
6165 delete_step_resume_breakpoint (ecs->event_thread);
6166 if (ecs->event_thread->control.proceed_to_finish
6167 && execution_direction == EXEC_REVERSE)
6168 {
6169 struct thread_info *tp = ecs->event_thread;
6170
6171 /* We are finishing a function in reverse, and just hit the
6172 step-resume breakpoint at the start address of the
6173 function, and we're almost there -- just need to back up
6174 by one more single-step, which should take us back to the
6175 function call. */
6176 tp->control.step_range_start = tp->control.step_range_end = 1;
6177 keep_going (ecs);
6178 return;
6179 }
6180 fill_in_stop_func (gdbarch, ecs);
6181 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6182 && execution_direction == EXEC_REVERSE)
6183 {
6184 /* We are stepping over a function call in reverse, and just
6185 hit the step-resume breakpoint at the start address of
6186 the function. Go back to single-stepping, which should
6187 take us back to the function call. */
6188 ecs->event_thread->stepping_over_breakpoint = 1;
6189 keep_going (ecs);
6190 return;
6191 }
6192 break;
6193
6194 case BPSTAT_WHAT_STOP_NOISY:
6195 if (debug_infrun)
6196 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6197 stop_print_frame = 1;
6198
6199 /* Assume the thread stopped for a breapoint. We'll still check
6200 whether a/the breakpoint is there when the thread is next
6201 resumed. */
6202 ecs->event_thread->stepping_over_breakpoint = 1;
6203
6204 stop_waiting (ecs);
6205 return;
6206
6207 case BPSTAT_WHAT_STOP_SILENT:
6208 if (debug_infrun)
6209 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6210 stop_print_frame = 0;
6211
6212 /* Assume the thread stopped for a breapoint. We'll still check
6213 whether a/the breakpoint is there when the thread is next
6214 resumed. */
6215 ecs->event_thread->stepping_over_breakpoint = 1;
6216 stop_waiting (ecs);
6217 return;
6218
6219 case BPSTAT_WHAT_HP_STEP_RESUME:
6220 if (debug_infrun)
6221 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6222
6223 delete_step_resume_breakpoint (ecs->event_thread);
6224 if (ecs->event_thread->step_after_step_resume_breakpoint)
6225 {
6226 /* Back when the step-resume breakpoint was inserted, we
6227 were trying to single-step off a breakpoint. Go back to
6228 doing that. */
6229 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6230 ecs->event_thread->stepping_over_breakpoint = 1;
6231 keep_going (ecs);
6232 return;
6233 }
6234 break;
6235
6236 case BPSTAT_WHAT_KEEP_CHECKING:
6237 break;
6238 }
6239
6240 /* If we stepped a permanent breakpoint and we had a high priority
6241 step-resume breakpoint for the address we stepped, but we didn't
6242 hit it, then we must have stepped into the signal handler. The
6243 step-resume was only necessary to catch the case of _not_
6244 stepping into the handler, so delete it, and fall through to
6245 checking whether the step finished. */
6246 if (ecs->event_thread->stepped_breakpoint)
6247 {
6248 struct breakpoint *sr_bp
6249 = ecs->event_thread->control.step_resume_breakpoint;
6250
6251 if (sr_bp != NULL
6252 && sr_bp->loc->permanent
6253 && sr_bp->type == bp_hp_step_resume
6254 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6255 {
6256 if (debug_infrun)
6257 fprintf_unfiltered (gdb_stdlog,
6258 "infrun: stepped permanent breakpoint, stopped in "
6259 "handler\n");
6260 delete_step_resume_breakpoint (ecs->event_thread);
6261 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6262 }
6263 }
6264
6265 /* We come here if we hit a breakpoint but should not stop for it.
6266 Possibly we also were stepping and should stop for that. So fall
6267 through and test for stepping. But, if not stepping, do not
6268 stop. */
6269
6270 /* In all-stop mode, if we're currently stepping but have stopped in
6271 some other thread, we need to switch back to the stepped thread. */
6272 if (switch_back_to_stepped_thread (ecs))
6273 return;
6274
6275 if (ecs->event_thread->control.step_resume_breakpoint)
6276 {
6277 if (debug_infrun)
6278 fprintf_unfiltered (gdb_stdlog,
6279 "infrun: step-resume breakpoint is inserted\n");
6280
6281 /* Having a step-resume breakpoint overrides anything
6282 else having to do with stepping commands until
6283 that breakpoint is reached. */
6284 keep_going (ecs);
6285 return;
6286 }
6287
6288 if (ecs->event_thread->control.step_range_end == 0)
6289 {
6290 if (debug_infrun)
6291 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6292 /* Likewise if we aren't even stepping. */
6293 keep_going (ecs);
6294 return;
6295 }
6296
6297 /* Re-fetch current thread's frame in case the code above caused
6298 the frame cache to be re-initialized, making our FRAME variable
6299 a dangling pointer. */
6300 frame = get_current_frame ();
6301 gdbarch = get_frame_arch (frame);
6302 fill_in_stop_func (gdbarch, ecs);
6303
6304 /* If stepping through a line, keep going if still within it.
6305
6306 Note that step_range_end is the address of the first instruction
6307 beyond the step range, and NOT the address of the last instruction
6308 within it!
6309
6310 Note also that during reverse execution, we may be stepping
6311 through a function epilogue and therefore must detect when
6312 the current-frame changes in the middle of a line. */
6313
6314 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6315 ecs->event_thread)
6316 && (execution_direction != EXEC_REVERSE
6317 || frame_id_eq (get_frame_id (frame),
6318 ecs->event_thread->control.step_frame_id)))
6319 {
6320 if (debug_infrun)
6321 fprintf_unfiltered
6322 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6323 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6324 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6325
6326 /* Tentatively re-enable range stepping; `resume' disables it if
6327 necessary (e.g., if we're stepping over a breakpoint or we
6328 have software watchpoints). */
6329 ecs->event_thread->control.may_range_step = 1;
6330
6331 /* When stepping backward, stop at beginning of line range
6332 (unless it's the function entry point, in which case
6333 keep going back to the call point). */
6334 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6335 if (stop_pc == ecs->event_thread->control.step_range_start
6336 && stop_pc != ecs->stop_func_start
6337 && execution_direction == EXEC_REVERSE)
6338 end_stepping_range (ecs);
6339 else
6340 keep_going (ecs);
6341
6342 return;
6343 }
6344
6345 /* We stepped out of the stepping range. */
6346
6347 /* If we are stepping at the source level and entered the runtime
6348 loader dynamic symbol resolution code...
6349
6350 EXEC_FORWARD: we keep on single stepping until we exit the run
6351 time loader code and reach the callee's address.
6352
6353 EXEC_REVERSE: we've already executed the callee (backward), and
6354 the runtime loader code is handled just like any other
6355 undebuggable function call. Now we need only keep stepping
6356 backward through the trampoline code, and that's handled further
6357 down, so there is nothing for us to do here. */
6358
6359 if (execution_direction != EXEC_REVERSE
6360 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6361 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6362 {
6363 CORE_ADDR pc_after_resolver =
6364 gdbarch_skip_solib_resolver (gdbarch,
6365 ecs->event_thread->suspend.stop_pc);
6366
6367 if (debug_infrun)
6368 fprintf_unfiltered (gdb_stdlog,
6369 "infrun: stepped into dynsym resolve code\n");
6370
6371 if (pc_after_resolver)
6372 {
6373 /* Set up a step-resume breakpoint at the address
6374 indicated by SKIP_SOLIB_RESOLVER. */
6375 symtab_and_line sr_sal;
6376 sr_sal.pc = pc_after_resolver;
6377 sr_sal.pspace = get_frame_program_space (frame);
6378
6379 insert_step_resume_breakpoint_at_sal (gdbarch,
6380 sr_sal, null_frame_id);
6381 }
6382
6383 keep_going (ecs);
6384 return;
6385 }
6386
6387 /* Step through an indirect branch thunk. */
6388 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6389 && gdbarch_in_indirect_branch_thunk (gdbarch,
6390 ecs->event_thread->suspend.stop_pc))
6391 {
6392 if (debug_infrun)
6393 fprintf_unfiltered (gdb_stdlog,
6394 "infrun: stepped into indirect branch thunk\n");
6395 keep_going (ecs);
6396 return;
6397 }
6398
6399 if (ecs->event_thread->control.step_range_end != 1
6400 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6401 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6402 && get_frame_type (frame) == SIGTRAMP_FRAME)
6403 {
6404 if (debug_infrun)
6405 fprintf_unfiltered (gdb_stdlog,
6406 "infrun: stepped into signal trampoline\n");
6407 /* The inferior, while doing a "step" or "next", has ended up in
6408 a signal trampoline (either by a signal being delivered or by
6409 the signal handler returning). Just single-step until the
6410 inferior leaves the trampoline (either by calling the handler
6411 or returning). */
6412 keep_going (ecs);
6413 return;
6414 }
6415
6416 /* If we're in the return path from a shared library trampoline,
6417 we want to proceed through the trampoline when stepping. */
6418 /* macro/2012-04-25: This needs to come before the subroutine
6419 call check below as on some targets return trampolines look
6420 like subroutine calls (MIPS16 return thunks). */
6421 if (gdbarch_in_solib_return_trampoline (gdbarch,
6422 ecs->event_thread->suspend.stop_pc,
6423 ecs->stop_func_name)
6424 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6425 {
6426 /* Determine where this trampoline returns. */
6427 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6428 CORE_ADDR real_stop_pc
6429 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6430
6431 if (debug_infrun)
6432 fprintf_unfiltered (gdb_stdlog,
6433 "infrun: stepped into solib return tramp\n");
6434
6435 /* Only proceed through if we know where it's going. */
6436 if (real_stop_pc)
6437 {
6438 /* And put the step-breakpoint there and go until there. */
6439 symtab_and_line sr_sal;
6440 sr_sal.pc = real_stop_pc;
6441 sr_sal.section = find_pc_overlay (sr_sal.pc);
6442 sr_sal.pspace = get_frame_program_space (frame);
6443
6444 /* Do not specify what the fp should be when we stop since
6445 on some machines the prologue is where the new fp value
6446 is established. */
6447 insert_step_resume_breakpoint_at_sal (gdbarch,
6448 sr_sal, null_frame_id);
6449
6450 /* Restart without fiddling with the step ranges or
6451 other state. */
6452 keep_going (ecs);
6453 return;
6454 }
6455 }
6456
6457 /* Check for subroutine calls. The check for the current frame
6458 equalling the step ID is not necessary - the check of the
6459 previous frame's ID is sufficient - but it is a common case and
6460 cheaper than checking the previous frame's ID.
6461
6462 NOTE: frame_id_eq will never report two invalid frame IDs as
6463 being equal, so to get into this block, both the current and
6464 previous frame must have valid frame IDs. */
6465 /* The outer_frame_id check is a heuristic to detect stepping
6466 through startup code. If we step over an instruction which
6467 sets the stack pointer from an invalid value to a valid value,
6468 we may detect that as a subroutine call from the mythical
6469 "outermost" function. This could be fixed by marking
6470 outermost frames as !stack_p,code_p,special_p. Then the
6471 initial outermost frame, before sp was valid, would
6472 have code_addr == &_start. See the comment in frame_id_eq
6473 for more. */
6474 if (!frame_id_eq (get_stack_frame_id (frame),
6475 ecs->event_thread->control.step_stack_frame_id)
6476 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6477 ecs->event_thread->control.step_stack_frame_id)
6478 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6479 outer_frame_id)
6480 || (ecs->event_thread->control.step_start_function
6481 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6482 {
6483 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6484 CORE_ADDR real_stop_pc;
6485
6486 if (debug_infrun)
6487 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6488
6489 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6490 {
6491 /* I presume that step_over_calls is only 0 when we're
6492 supposed to be stepping at the assembly language level
6493 ("stepi"). Just stop. */
6494 /* And this works the same backward as frontward. MVS */
6495 end_stepping_range (ecs);
6496 return;
6497 }
6498
6499 /* Reverse stepping through solib trampolines. */
6500
6501 if (execution_direction == EXEC_REVERSE
6502 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6503 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6504 || (ecs->stop_func_start == 0
6505 && in_solib_dynsym_resolve_code (stop_pc))))
6506 {
6507 /* Any solib trampoline code can be handled in reverse
6508 by simply continuing to single-step. We have already
6509 executed the solib function (backwards), and a few
6510 steps will take us back through the trampoline to the
6511 caller. */
6512 keep_going (ecs);
6513 return;
6514 }
6515
6516 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6517 {
6518 /* We're doing a "next".
6519
6520 Normal (forward) execution: set a breakpoint at the
6521 callee's return address (the address at which the caller
6522 will resume).
6523
6524 Reverse (backward) execution. set the step-resume
6525 breakpoint at the start of the function that we just
6526 stepped into (backwards), and continue to there. When we
6527 get there, we'll need to single-step back to the caller. */
6528
6529 if (execution_direction == EXEC_REVERSE)
6530 {
6531 /* If we're already at the start of the function, we've either
6532 just stepped backward into a single instruction function,
6533 or stepped back out of a signal handler to the first instruction
6534 of the function. Just keep going, which will single-step back
6535 to the caller. */
6536 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6537 {
6538 /* Normal function call return (static or dynamic). */
6539 symtab_and_line sr_sal;
6540 sr_sal.pc = ecs->stop_func_start;
6541 sr_sal.pspace = get_frame_program_space (frame);
6542 insert_step_resume_breakpoint_at_sal (gdbarch,
6543 sr_sal, null_frame_id);
6544 }
6545 }
6546 else
6547 insert_step_resume_breakpoint_at_caller (frame);
6548
6549 keep_going (ecs);
6550 return;
6551 }
6552
6553 /* If we are in a function call trampoline (a stub between the
6554 calling routine and the real function), locate the real
6555 function. That's what tells us (a) whether we want to step
6556 into it at all, and (b) what prologue we want to run to the
6557 end of, if we do step into it. */
6558 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6559 if (real_stop_pc == 0)
6560 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6561 if (real_stop_pc != 0)
6562 ecs->stop_func_start = real_stop_pc;
6563
6564 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6565 {
6566 symtab_and_line sr_sal;
6567 sr_sal.pc = ecs->stop_func_start;
6568 sr_sal.pspace = get_frame_program_space (frame);
6569
6570 insert_step_resume_breakpoint_at_sal (gdbarch,
6571 sr_sal, null_frame_id);
6572 keep_going (ecs);
6573 return;
6574 }
6575
6576 /* If we have line number information for the function we are
6577 thinking of stepping into and the function isn't on the skip
6578 list, step into it.
6579
6580 If there are several symtabs at that PC (e.g. with include
6581 files), just want to know whether *any* of them have line
6582 numbers. find_pc_line handles this. */
6583 {
6584 struct symtab_and_line tmp_sal;
6585
6586 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6587 if (tmp_sal.line != 0
6588 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6589 tmp_sal)
6590 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6591 {
6592 if (execution_direction == EXEC_REVERSE)
6593 handle_step_into_function_backward (gdbarch, ecs);
6594 else
6595 handle_step_into_function (gdbarch, ecs);
6596 return;
6597 }
6598 }
6599
6600 /* If we have no line number and the step-stop-if-no-debug is
6601 set, we stop the step so that the user has a chance to switch
6602 in assembly mode. */
6603 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6604 && step_stop_if_no_debug)
6605 {
6606 end_stepping_range (ecs);
6607 return;
6608 }
6609
6610 if (execution_direction == EXEC_REVERSE)
6611 {
6612 /* If we're already at the start of the function, we've either just
6613 stepped backward into a single instruction function without line
6614 number info, or stepped back out of a signal handler to the first
6615 instruction of the function without line number info. Just keep
6616 going, which will single-step back to the caller. */
6617 if (ecs->stop_func_start != stop_pc)
6618 {
6619 /* Set a breakpoint at callee's start address.
6620 From there we can step once and be back in the caller. */
6621 symtab_and_line sr_sal;
6622 sr_sal.pc = ecs->stop_func_start;
6623 sr_sal.pspace = get_frame_program_space (frame);
6624 insert_step_resume_breakpoint_at_sal (gdbarch,
6625 sr_sal, null_frame_id);
6626 }
6627 }
6628 else
6629 /* Set a breakpoint at callee's return address (the address
6630 at which the caller will resume). */
6631 insert_step_resume_breakpoint_at_caller (frame);
6632
6633 keep_going (ecs);
6634 return;
6635 }
6636
6637 /* Reverse stepping through solib trampolines. */
6638
6639 if (execution_direction == EXEC_REVERSE
6640 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6641 {
6642 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6643
6644 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6645 || (ecs->stop_func_start == 0
6646 && in_solib_dynsym_resolve_code (stop_pc)))
6647 {
6648 /* Any solib trampoline code can be handled in reverse
6649 by simply continuing to single-step. We have already
6650 executed the solib function (backwards), and a few
6651 steps will take us back through the trampoline to the
6652 caller. */
6653 keep_going (ecs);
6654 return;
6655 }
6656 else if (in_solib_dynsym_resolve_code (stop_pc))
6657 {
6658 /* Stepped backward into the solib dynsym resolver.
6659 Set a breakpoint at its start and continue, then
6660 one more step will take us out. */
6661 symtab_and_line sr_sal;
6662 sr_sal.pc = ecs->stop_func_start;
6663 sr_sal.pspace = get_frame_program_space (frame);
6664 insert_step_resume_breakpoint_at_sal (gdbarch,
6665 sr_sal, null_frame_id);
6666 keep_going (ecs);
6667 return;
6668 }
6669 }
6670
6671 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6672
6673 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6674 the trampoline processing logic, however, there are some trampolines
6675 that have no names, so we should do trampoline handling first. */
6676 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6677 && ecs->stop_func_name == NULL
6678 && stop_pc_sal.line == 0)
6679 {
6680 if (debug_infrun)
6681 fprintf_unfiltered (gdb_stdlog,
6682 "infrun: stepped into undebuggable function\n");
6683
6684 /* The inferior just stepped into, or returned to, an
6685 undebuggable function (where there is no debugging information
6686 and no line number corresponding to the address where the
6687 inferior stopped). Since we want to skip this kind of code,
6688 we keep going until the inferior returns from this
6689 function - unless the user has asked us not to (via
6690 set step-mode) or we no longer know how to get back
6691 to the call site. */
6692 if (step_stop_if_no_debug
6693 || !frame_id_p (frame_unwind_caller_id (frame)))
6694 {
6695 /* If we have no line number and the step-stop-if-no-debug
6696 is set, we stop the step so that the user has a chance to
6697 switch in assembly mode. */
6698 end_stepping_range (ecs);
6699 return;
6700 }
6701 else
6702 {
6703 /* Set a breakpoint at callee's return address (the address
6704 at which the caller will resume). */
6705 insert_step_resume_breakpoint_at_caller (frame);
6706 keep_going (ecs);
6707 return;
6708 }
6709 }
6710
6711 if (ecs->event_thread->control.step_range_end == 1)
6712 {
6713 /* It is stepi or nexti. We always want to stop stepping after
6714 one instruction. */
6715 if (debug_infrun)
6716 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6717 end_stepping_range (ecs);
6718 return;
6719 }
6720
6721 if (stop_pc_sal.line == 0)
6722 {
6723 /* We have no line number information. That means to stop
6724 stepping (does this always happen right after one instruction,
6725 when we do "s" in a function with no line numbers,
6726 or can this happen as a result of a return or longjmp?). */
6727 if (debug_infrun)
6728 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6729 end_stepping_range (ecs);
6730 return;
6731 }
6732
6733 /* Look for "calls" to inlined functions, part one. If the inline
6734 frame machinery detected some skipped call sites, we have entered
6735 a new inline function. */
6736
6737 if (frame_id_eq (get_frame_id (get_current_frame ()),
6738 ecs->event_thread->control.step_frame_id)
6739 && inline_skipped_frames (ecs->event_thread))
6740 {
6741 if (debug_infrun)
6742 fprintf_unfiltered (gdb_stdlog,
6743 "infrun: stepped into inlined function\n");
6744
6745 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6746
6747 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6748 {
6749 /* For "step", we're going to stop. But if the call site
6750 for this inlined function is on the same source line as
6751 we were previously stepping, go down into the function
6752 first. Otherwise stop at the call site. */
6753
6754 if (call_sal.line == ecs->event_thread->current_line
6755 && call_sal.symtab == ecs->event_thread->current_symtab)
6756 {
6757 step_into_inline_frame (ecs->event_thread);
6758 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
6759 {
6760 keep_going (ecs);
6761 return;
6762 }
6763 }
6764
6765 end_stepping_range (ecs);
6766 return;
6767 }
6768 else
6769 {
6770 /* For "next", we should stop at the call site if it is on a
6771 different source line. Otherwise continue through the
6772 inlined function. */
6773 if (call_sal.line == ecs->event_thread->current_line
6774 && call_sal.symtab == ecs->event_thread->current_symtab)
6775 keep_going (ecs);
6776 else
6777 end_stepping_range (ecs);
6778 return;
6779 }
6780 }
6781
6782 /* Look for "calls" to inlined functions, part two. If we are still
6783 in the same real function we were stepping through, but we have
6784 to go further up to find the exact frame ID, we are stepping
6785 through a more inlined call beyond its call site. */
6786
6787 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6788 && !frame_id_eq (get_frame_id (get_current_frame ()),
6789 ecs->event_thread->control.step_frame_id)
6790 && stepped_in_from (get_current_frame (),
6791 ecs->event_thread->control.step_frame_id))
6792 {
6793 if (debug_infrun)
6794 fprintf_unfiltered (gdb_stdlog,
6795 "infrun: stepping through inlined function\n");
6796
6797 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
6798 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
6799 keep_going (ecs);
6800 else
6801 end_stepping_range (ecs);
6802 return;
6803 }
6804
6805 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6806 && (ecs->event_thread->current_line != stop_pc_sal.line
6807 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6808 {
6809 /* We are at the start of a different line. So stop. Note that
6810 we don't stop if we step into the middle of a different line.
6811 That is said to make things like for (;;) statements work
6812 better. */
6813 if (debug_infrun)
6814 fprintf_unfiltered (gdb_stdlog,
6815 "infrun: stepped to a different line\n");
6816 end_stepping_range (ecs);
6817 return;
6818 }
6819
6820 /* We aren't done stepping.
6821
6822 Optimize by setting the stepping range to the line.
6823 (We might not be in the original line, but if we entered a
6824 new line in mid-statement, we continue stepping. This makes
6825 things like for(;;) statements work better.) */
6826
6827 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6828 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6829 ecs->event_thread->control.may_range_step = 1;
6830 set_step_info (frame, stop_pc_sal);
6831
6832 if (debug_infrun)
6833 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6834 keep_going (ecs);
6835 }
6836
6837 /* In all-stop mode, if we're currently stepping but have stopped in
6838 some other thread, we may need to switch back to the stepped
6839 thread. Returns true we set the inferior running, false if we left
6840 it stopped (and the event needs further processing). */
6841
6842 static int
6843 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6844 {
6845 if (!target_is_non_stop_p ())
6846 {
6847 struct thread_info *stepping_thread;
6848
6849 /* If any thread is blocked on some internal breakpoint, and we
6850 simply need to step over that breakpoint to get it going
6851 again, do that first. */
6852
6853 /* However, if we see an event for the stepping thread, then we
6854 know all other threads have been moved past their breakpoints
6855 already. Let the caller check whether the step is finished,
6856 etc., before deciding to move it past a breakpoint. */
6857 if (ecs->event_thread->control.step_range_end != 0)
6858 return 0;
6859
6860 /* Check if the current thread is blocked on an incomplete
6861 step-over, interrupted by a random signal. */
6862 if (ecs->event_thread->control.trap_expected
6863 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6864 {
6865 if (debug_infrun)
6866 {
6867 fprintf_unfiltered (gdb_stdlog,
6868 "infrun: need to finish step-over of [%s]\n",
6869 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6870 }
6871 keep_going (ecs);
6872 return 1;
6873 }
6874
6875 /* Check if the current thread is blocked by a single-step
6876 breakpoint of another thread. */
6877 if (ecs->hit_singlestep_breakpoint)
6878 {
6879 if (debug_infrun)
6880 {
6881 fprintf_unfiltered (gdb_stdlog,
6882 "infrun: need to step [%s] over single-step "
6883 "breakpoint\n",
6884 target_pid_to_str (ecs->ptid).c_str ());
6885 }
6886 keep_going (ecs);
6887 return 1;
6888 }
6889
6890 /* If this thread needs yet another step-over (e.g., stepping
6891 through a delay slot), do it first before moving on to
6892 another thread. */
6893 if (thread_still_needs_step_over (ecs->event_thread))
6894 {
6895 if (debug_infrun)
6896 {
6897 fprintf_unfiltered (gdb_stdlog,
6898 "infrun: thread [%s] still needs step-over\n",
6899 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6900 }
6901 keep_going (ecs);
6902 return 1;
6903 }
6904
6905 /* If scheduler locking applies even if not stepping, there's no
6906 need to walk over threads. Above we've checked whether the
6907 current thread is stepping. If some other thread not the
6908 event thread is stepping, then it must be that scheduler
6909 locking is not in effect. */
6910 if (schedlock_applies (ecs->event_thread))
6911 return 0;
6912
6913 /* Otherwise, we no longer expect a trap in the current thread.
6914 Clear the trap_expected flag before switching back -- this is
6915 what keep_going does as well, if we call it. */
6916 ecs->event_thread->control.trap_expected = 0;
6917
6918 /* Likewise, clear the signal if it should not be passed. */
6919 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6920 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6921
6922 /* Do all pending step-overs before actually proceeding with
6923 step/next/etc. */
6924 if (start_step_over ())
6925 {
6926 prepare_to_wait (ecs);
6927 return 1;
6928 }
6929
6930 /* Look for the stepping/nexting thread. */
6931 stepping_thread = NULL;
6932
6933 for (thread_info *tp : all_non_exited_threads ())
6934 {
6935 switch_to_thread_no_regs (tp);
6936
6937 /* Ignore threads of processes the caller is not
6938 resuming. */
6939 if (!sched_multi
6940 && tp->ptid.pid () != ecs->ptid.pid ())
6941 continue;
6942
6943 /* When stepping over a breakpoint, we lock all threads
6944 except the one that needs to move past the breakpoint.
6945 If a non-event thread has this set, the "incomplete
6946 step-over" check above should have caught it earlier. */
6947 if (tp->control.trap_expected)
6948 {
6949 internal_error (__FILE__, __LINE__,
6950 "[%s] has inconsistent state: "
6951 "trap_expected=%d\n",
6952 target_pid_to_str (tp->ptid).c_str (),
6953 tp->control.trap_expected);
6954 }
6955
6956 /* Did we find the stepping thread? */
6957 if (tp->control.step_range_end)
6958 {
6959 /* Yep. There should only one though. */
6960 gdb_assert (stepping_thread == NULL);
6961
6962 /* The event thread is handled at the top, before we
6963 enter this loop. */
6964 gdb_assert (tp != ecs->event_thread);
6965
6966 /* If some thread other than the event thread is
6967 stepping, then scheduler locking can't be in effect,
6968 otherwise we wouldn't have resumed the current event
6969 thread in the first place. */
6970 gdb_assert (!schedlock_applies (tp));
6971
6972 stepping_thread = tp;
6973 }
6974 }
6975
6976 if (stepping_thread != NULL)
6977 {
6978 if (debug_infrun)
6979 fprintf_unfiltered (gdb_stdlog,
6980 "infrun: switching back to stepped thread\n");
6981
6982 if (keep_going_stepped_thread (stepping_thread))
6983 {
6984 prepare_to_wait (ecs);
6985 return 1;
6986 }
6987 }
6988
6989 switch_to_thread (ecs->event_thread);
6990 }
6991
6992 return 0;
6993 }
6994
6995 /* Set a previously stepped thread back to stepping. Returns true on
6996 success, false if the resume is not possible (e.g., the thread
6997 vanished). */
6998
6999 static int
7000 keep_going_stepped_thread (struct thread_info *tp)
7001 {
7002 struct frame_info *frame;
7003 struct execution_control_state ecss;
7004 struct execution_control_state *ecs = &ecss;
7005
7006 /* If the stepping thread exited, then don't try to switch back and
7007 resume it, which could fail in several different ways depending
7008 on the target. Instead, just keep going.
7009
7010 We can find a stepping dead thread in the thread list in two
7011 cases:
7012
7013 - The target supports thread exit events, and when the target
7014 tries to delete the thread from the thread list, inferior_ptid
7015 pointed at the exiting thread. In such case, calling
7016 delete_thread does not really remove the thread from the list;
7017 instead, the thread is left listed, with 'exited' state.
7018
7019 - The target's debug interface does not support thread exit
7020 events, and so we have no idea whatsoever if the previously
7021 stepping thread is still alive. For that reason, we need to
7022 synchronously query the target now. */
7023
7024 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7025 {
7026 if (debug_infrun)
7027 fprintf_unfiltered (gdb_stdlog,
7028 "infrun: not resuming previously "
7029 "stepped thread, it has vanished\n");
7030
7031 delete_thread (tp);
7032 return 0;
7033 }
7034
7035 if (debug_infrun)
7036 fprintf_unfiltered (gdb_stdlog,
7037 "infrun: resuming previously stepped thread\n");
7038
7039 reset_ecs (ecs, tp);
7040 switch_to_thread (tp);
7041
7042 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7043 frame = get_current_frame ();
7044
7045 /* If the PC of the thread we were trying to single-step has
7046 changed, then that thread has trapped or been signaled, but the
7047 event has not been reported to GDB yet. Re-poll the target
7048 looking for this particular thread's event (i.e. temporarily
7049 enable schedlock) by:
7050
7051 - setting a break at the current PC
7052 - resuming that particular thread, only (by setting trap
7053 expected)
7054
7055 This prevents us continuously moving the single-step breakpoint
7056 forward, one instruction at a time, overstepping. */
7057
7058 if (tp->suspend.stop_pc != tp->prev_pc)
7059 {
7060 ptid_t resume_ptid;
7061
7062 if (debug_infrun)
7063 fprintf_unfiltered (gdb_stdlog,
7064 "infrun: expected thread advanced also (%s -> %s)\n",
7065 paddress (target_gdbarch (), tp->prev_pc),
7066 paddress (target_gdbarch (), tp->suspend.stop_pc));
7067
7068 /* Clear the info of the previous step-over, as it's no longer
7069 valid (if the thread was trying to step over a breakpoint, it
7070 has already succeeded). It's what keep_going would do too,
7071 if we called it. Do this before trying to insert the sss
7072 breakpoint, otherwise if we were previously trying to step
7073 over this exact address in another thread, the breakpoint is
7074 skipped. */
7075 clear_step_over_info ();
7076 tp->control.trap_expected = 0;
7077
7078 insert_single_step_breakpoint (get_frame_arch (frame),
7079 get_frame_address_space (frame),
7080 tp->suspend.stop_pc);
7081
7082 tp->resumed = 1;
7083 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7084 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7085 }
7086 else
7087 {
7088 if (debug_infrun)
7089 fprintf_unfiltered (gdb_stdlog,
7090 "infrun: expected thread still hasn't advanced\n");
7091
7092 keep_going_pass_signal (ecs);
7093 }
7094 return 1;
7095 }
7096
7097 /* Is thread TP in the middle of (software or hardware)
7098 single-stepping? (Note the result of this function must never be
7099 passed directly as target_resume's STEP parameter.) */
7100
7101 static int
7102 currently_stepping (struct thread_info *tp)
7103 {
7104 return ((tp->control.step_range_end
7105 && tp->control.step_resume_breakpoint == NULL)
7106 || tp->control.trap_expected
7107 || tp->stepped_breakpoint
7108 || bpstat_should_step ());
7109 }
7110
7111 /* Inferior has stepped into a subroutine call with source code that
7112 we should not step over. Do step to the first line of code in
7113 it. */
7114
7115 static void
7116 handle_step_into_function (struct gdbarch *gdbarch,
7117 struct execution_control_state *ecs)
7118 {
7119 fill_in_stop_func (gdbarch, ecs);
7120
7121 compunit_symtab *cust
7122 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7123 if (cust != NULL && compunit_language (cust) != language_asm)
7124 ecs->stop_func_start
7125 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7126
7127 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7128 /* Use the step_resume_break to step until the end of the prologue,
7129 even if that involves jumps (as it seems to on the vax under
7130 4.2). */
7131 /* If the prologue ends in the middle of a source line, continue to
7132 the end of that source line (if it is still within the function).
7133 Otherwise, just go to end of prologue. */
7134 if (stop_func_sal.end
7135 && stop_func_sal.pc != ecs->stop_func_start
7136 && stop_func_sal.end < ecs->stop_func_end)
7137 ecs->stop_func_start = stop_func_sal.end;
7138
7139 /* Architectures which require breakpoint adjustment might not be able
7140 to place a breakpoint at the computed address. If so, the test
7141 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7142 ecs->stop_func_start to an address at which a breakpoint may be
7143 legitimately placed.
7144
7145 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7146 made, GDB will enter an infinite loop when stepping through
7147 optimized code consisting of VLIW instructions which contain
7148 subinstructions corresponding to different source lines. On
7149 FR-V, it's not permitted to place a breakpoint on any but the
7150 first subinstruction of a VLIW instruction. When a breakpoint is
7151 set, GDB will adjust the breakpoint address to the beginning of
7152 the VLIW instruction. Thus, we need to make the corresponding
7153 adjustment here when computing the stop address. */
7154
7155 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7156 {
7157 ecs->stop_func_start
7158 = gdbarch_adjust_breakpoint_address (gdbarch,
7159 ecs->stop_func_start);
7160 }
7161
7162 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7163 {
7164 /* We are already there: stop now. */
7165 end_stepping_range (ecs);
7166 return;
7167 }
7168 else
7169 {
7170 /* Put the step-breakpoint there and go until there. */
7171 symtab_and_line sr_sal;
7172 sr_sal.pc = ecs->stop_func_start;
7173 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7174 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7175
7176 /* Do not specify what the fp should be when we stop since on
7177 some machines the prologue is where the new fp value is
7178 established. */
7179 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7180
7181 /* And make sure stepping stops right away then. */
7182 ecs->event_thread->control.step_range_end
7183 = ecs->event_thread->control.step_range_start;
7184 }
7185 keep_going (ecs);
7186 }
7187
7188 /* Inferior has stepped backward into a subroutine call with source
7189 code that we should not step over. Do step to the beginning of the
7190 last line of code in it. */
7191
7192 static void
7193 handle_step_into_function_backward (struct gdbarch *gdbarch,
7194 struct execution_control_state *ecs)
7195 {
7196 struct compunit_symtab *cust;
7197 struct symtab_and_line stop_func_sal;
7198
7199 fill_in_stop_func (gdbarch, ecs);
7200
7201 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7202 if (cust != NULL && compunit_language (cust) != language_asm)
7203 ecs->stop_func_start
7204 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7205
7206 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7207
7208 /* OK, we're just going to keep stepping here. */
7209 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7210 {
7211 /* We're there already. Just stop stepping now. */
7212 end_stepping_range (ecs);
7213 }
7214 else
7215 {
7216 /* Else just reset the step range and keep going.
7217 No step-resume breakpoint, they don't work for
7218 epilogues, which can have multiple entry paths. */
7219 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7220 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7221 keep_going (ecs);
7222 }
7223 return;
7224 }
7225
7226 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7227 This is used to both functions and to skip over code. */
7228
7229 static void
7230 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7231 struct symtab_and_line sr_sal,
7232 struct frame_id sr_id,
7233 enum bptype sr_type)
7234 {
7235 /* There should never be more than one step-resume or longjmp-resume
7236 breakpoint per thread, so we should never be setting a new
7237 step_resume_breakpoint when one is already active. */
7238 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7239 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7240
7241 if (debug_infrun)
7242 fprintf_unfiltered (gdb_stdlog,
7243 "infrun: inserting step-resume breakpoint at %s\n",
7244 paddress (gdbarch, sr_sal.pc));
7245
7246 inferior_thread ()->control.step_resume_breakpoint
7247 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7248 }
7249
7250 void
7251 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7252 struct symtab_and_line sr_sal,
7253 struct frame_id sr_id)
7254 {
7255 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7256 sr_sal, sr_id,
7257 bp_step_resume);
7258 }
7259
7260 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7261 This is used to skip a potential signal handler.
7262
7263 This is called with the interrupted function's frame. The signal
7264 handler, when it returns, will resume the interrupted function at
7265 RETURN_FRAME.pc. */
7266
7267 static void
7268 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7269 {
7270 gdb_assert (return_frame != NULL);
7271
7272 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7273
7274 symtab_and_line sr_sal;
7275 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7276 sr_sal.section = find_pc_overlay (sr_sal.pc);
7277 sr_sal.pspace = get_frame_program_space (return_frame);
7278
7279 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7280 get_stack_frame_id (return_frame),
7281 bp_hp_step_resume);
7282 }
7283
7284 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7285 is used to skip a function after stepping into it (for "next" or if
7286 the called function has no debugging information).
7287
7288 The current function has almost always been reached by single
7289 stepping a call or return instruction. NEXT_FRAME belongs to the
7290 current function, and the breakpoint will be set at the caller's
7291 resume address.
7292
7293 This is a separate function rather than reusing
7294 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7295 get_prev_frame, which may stop prematurely (see the implementation
7296 of frame_unwind_caller_id for an example). */
7297
7298 static void
7299 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7300 {
7301 /* We shouldn't have gotten here if we don't know where the call site
7302 is. */
7303 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7304
7305 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7306
7307 symtab_and_line sr_sal;
7308 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7309 frame_unwind_caller_pc (next_frame));
7310 sr_sal.section = find_pc_overlay (sr_sal.pc);
7311 sr_sal.pspace = frame_unwind_program_space (next_frame);
7312
7313 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7314 frame_unwind_caller_id (next_frame));
7315 }
7316
7317 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7318 new breakpoint at the target of a jmp_buf. The handling of
7319 longjmp-resume uses the same mechanisms used for handling
7320 "step-resume" breakpoints. */
7321
7322 static void
7323 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7324 {
7325 /* There should never be more than one longjmp-resume breakpoint per
7326 thread, so we should never be setting a new
7327 longjmp_resume_breakpoint when one is already active. */
7328 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7329
7330 if (debug_infrun)
7331 fprintf_unfiltered (gdb_stdlog,
7332 "infrun: inserting longjmp-resume breakpoint at %s\n",
7333 paddress (gdbarch, pc));
7334
7335 inferior_thread ()->control.exception_resume_breakpoint =
7336 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7337 }
7338
7339 /* Insert an exception resume breakpoint. TP is the thread throwing
7340 the exception. The block B is the block of the unwinder debug hook
7341 function. FRAME is the frame corresponding to the call to this
7342 function. SYM is the symbol of the function argument holding the
7343 target PC of the exception. */
7344
7345 static void
7346 insert_exception_resume_breakpoint (struct thread_info *tp,
7347 const struct block *b,
7348 struct frame_info *frame,
7349 struct symbol *sym)
7350 {
7351 try
7352 {
7353 struct block_symbol vsym;
7354 struct value *value;
7355 CORE_ADDR handler;
7356 struct breakpoint *bp;
7357
7358 vsym = lookup_symbol_search_name (sym->search_name (),
7359 b, VAR_DOMAIN);
7360 value = read_var_value (vsym.symbol, vsym.block, frame);
7361 /* If the value was optimized out, revert to the old behavior. */
7362 if (! value_optimized_out (value))
7363 {
7364 handler = value_as_address (value);
7365
7366 if (debug_infrun)
7367 fprintf_unfiltered (gdb_stdlog,
7368 "infrun: exception resume at %lx\n",
7369 (unsigned long) handler);
7370
7371 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7372 handler,
7373 bp_exception_resume).release ();
7374
7375 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7376 frame = NULL;
7377
7378 bp->thread = tp->global_num;
7379 inferior_thread ()->control.exception_resume_breakpoint = bp;
7380 }
7381 }
7382 catch (const gdb_exception_error &e)
7383 {
7384 /* We want to ignore errors here. */
7385 }
7386 }
7387
7388 /* A helper for check_exception_resume that sets an
7389 exception-breakpoint based on a SystemTap probe. */
7390
7391 static void
7392 insert_exception_resume_from_probe (struct thread_info *tp,
7393 const struct bound_probe *probe,
7394 struct frame_info *frame)
7395 {
7396 struct value *arg_value;
7397 CORE_ADDR handler;
7398 struct breakpoint *bp;
7399
7400 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7401 if (!arg_value)
7402 return;
7403
7404 handler = value_as_address (arg_value);
7405
7406 if (debug_infrun)
7407 fprintf_unfiltered (gdb_stdlog,
7408 "infrun: exception resume at %s\n",
7409 paddress (get_objfile_arch (probe->objfile),
7410 handler));
7411
7412 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7413 handler, bp_exception_resume).release ();
7414 bp->thread = tp->global_num;
7415 inferior_thread ()->control.exception_resume_breakpoint = bp;
7416 }
7417
7418 /* This is called when an exception has been intercepted. Check to
7419 see whether the exception's destination is of interest, and if so,
7420 set an exception resume breakpoint there. */
7421
7422 static void
7423 check_exception_resume (struct execution_control_state *ecs,
7424 struct frame_info *frame)
7425 {
7426 struct bound_probe probe;
7427 struct symbol *func;
7428
7429 /* First see if this exception unwinding breakpoint was set via a
7430 SystemTap probe point. If so, the probe has two arguments: the
7431 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7432 set a breakpoint there. */
7433 probe = find_probe_by_pc (get_frame_pc (frame));
7434 if (probe.prob)
7435 {
7436 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7437 return;
7438 }
7439
7440 func = get_frame_function (frame);
7441 if (!func)
7442 return;
7443
7444 try
7445 {
7446 const struct block *b;
7447 struct block_iterator iter;
7448 struct symbol *sym;
7449 int argno = 0;
7450
7451 /* The exception breakpoint is a thread-specific breakpoint on
7452 the unwinder's debug hook, declared as:
7453
7454 void _Unwind_DebugHook (void *cfa, void *handler);
7455
7456 The CFA argument indicates the frame to which control is
7457 about to be transferred. HANDLER is the destination PC.
7458
7459 We ignore the CFA and set a temporary breakpoint at HANDLER.
7460 This is not extremely efficient but it avoids issues in gdb
7461 with computing the DWARF CFA, and it also works even in weird
7462 cases such as throwing an exception from inside a signal
7463 handler. */
7464
7465 b = SYMBOL_BLOCK_VALUE (func);
7466 ALL_BLOCK_SYMBOLS (b, iter, sym)
7467 {
7468 if (!SYMBOL_IS_ARGUMENT (sym))
7469 continue;
7470
7471 if (argno == 0)
7472 ++argno;
7473 else
7474 {
7475 insert_exception_resume_breakpoint (ecs->event_thread,
7476 b, frame, sym);
7477 break;
7478 }
7479 }
7480 }
7481 catch (const gdb_exception_error &e)
7482 {
7483 }
7484 }
7485
7486 static void
7487 stop_waiting (struct execution_control_state *ecs)
7488 {
7489 if (debug_infrun)
7490 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7491
7492 /* Let callers know we don't want to wait for the inferior anymore. */
7493 ecs->wait_some_more = 0;
7494
7495 /* If all-stop, but the target is always in non-stop mode, stop all
7496 threads now that we're presenting the stop to the user. */
7497 if (!non_stop && target_is_non_stop_p ())
7498 stop_all_threads ();
7499 }
7500
7501 /* Like keep_going, but passes the signal to the inferior, even if the
7502 signal is set to nopass. */
7503
7504 static void
7505 keep_going_pass_signal (struct execution_control_state *ecs)
7506 {
7507 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7508 gdb_assert (!ecs->event_thread->resumed);
7509
7510 /* Save the pc before execution, to compare with pc after stop. */
7511 ecs->event_thread->prev_pc
7512 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7513
7514 if (ecs->event_thread->control.trap_expected)
7515 {
7516 struct thread_info *tp = ecs->event_thread;
7517
7518 if (debug_infrun)
7519 fprintf_unfiltered (gdb_stdlog,
7520 "infrun: %s has trap_expected set, "
7521 "resuming to collect trap\n",
7522 target_pid_to_str (tp->ptid).c_str ());
7523
7524 /* We haven't yet gotten our trap, and either: intercepted a
7525 non-signal event (e.g., a fork); or took a signal which we
7526 are supposed to pass through to the inferior. Simply
7527 continue. */
7528 resume (ecs->event_thread->suspend.stop_signal);
7529 }
7530 else if (step_over_info_valid_p ())
7531 {
7532 /* Another thread is stepping over a breakpoint in-line. If
7533 this thread needs a step-over too, queue the request. In
7534 either case, this resume must be deferred for later. */
7535 struct thread_info *tp = ecs->event_thread;
7536
7537 if (ecs->hit_singlestep_breakpoint
7538 || thread_still_needs_step_over (tp))
7539 {
7540 if (debug_infrun)
7541 fprintf_unfiltered (gdb_stdlog,
7542 "infrun: step-over already in progress: "
7543 "step-over for %s deferred\n",
7544 target_pid_to_str (tp->ptid).c_str ());
7545 thread_step_over_chain_enqueue (tp);
7546 }
7547 else
7548 {
7549 if (debug_infrun)
7550 fprintf_unfiltered (gdb_stdlog,
7551 "infrun: step-over in progress: "
7552 "resume of %s deferred\n",
7553 target_pid_to_str (tp->ptid).c_str ());
7554 }
7555 }
7556 else
7557 {
7558 struct regcache *regcache = get_current_regcache ();
7559 int remove_bp;
7560 int remove_wps;
7561 step_over_what step_what;
7562
7563 /* Either the trap was not expected, but we are continuing
7564 anyway (if we got a signal, the user asked it be passed to
7565 the child)
7566 -- or --
7567 We got our expected trap, but decided we should resume from
7568 it.
7569
7570 We're going to run this baby now!
7571
7572 Note that insert_breakpoints won't try to re-insert
7573 already inserted breakpoints. Therefore, we don't
7574 care if breakpoints were already inserted, or not. */
7575
7576 /* If we need to step over a breakpoint, and we're not using
7577 displaced stepping to do so, insert all breakpoints
7578 (watchpoints, etc.) but the one we're stepping over, step one
7579 instruction, and then re-insert the breakpoint when that step
7580 is finished. */
7581
7582 step_what = thread_still_needs_step_over (ecs->event_thread);
7583
7584 remove_bp = (ecs->hit_singlestep_breakpoint
7585 || (step_what & STEP_OVER_BREAKPOINT));
7586 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7587
7588 /* We can't use displaced stepping if we need to step past a
7589 watchpoint. The instruction copied to the scratch pad would
7590 still trigger the watchpoint. */
7591 if (remove_bp
7592 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7593 {
7594 set_step_over_info (regcache->aspace (),
7595 regcache_read_pc (regcache), remove_wps,
7596 ecs->event_thread->global_num);
7597 }
7598 else if (remove_wps)
7599 set_step_over_info (NULL, 0, remove_wps, -1);
7600
7601 /* If we now need to do an in-line step-over, we need to stop
7602 all other threads. Note this must be done before
7603 insert_breakpoints below, because that removes the breakpoint
7604 we're about to step over, otherwise other threads could miss
7605 it. */
7606 if (step_over_info_valid_p () && target_is_non_stop_p ())
7607 stop_all_threads ();
7608
7609 /* Stop stepping if inserting breakpoints fails. */
7610 try
7611 {
7612 insert_breakpoints ();
7613 }
7614 catch (const gdb_exception_error &e)
7615 {
7616 exception_print (gdb_stderr, e);
7617 stop_waiting (ecs);
7618 clear_step_over_info ();
7619 return;
7620 }
7621
7622 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7623
7624 resume (ecs->event_thread->suspend.stop_signal);
7625 }
7626
7627 prepare_to_wait (ecs);
7628 }
7629
7630 /* Called when we should continue running the inferior, because the
7631 current event doesn't cause a user visible stop. This does the
7632 resuming part; waiting for the next event is done elsewhere. */
7633
7634 static void
7635 keep_going (struct execution_control_state *ecs)
7636 {
7637 if (ecs->event_thread->control.trap_expected
7638 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7639 ecs->event_thread->control.trap_expected = 0;
7640
7641 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7642 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7643 keep_going_pass_signal (ecs);
7644 }
7645
7646 /* This function normally comes after a resume, before
7647 handle_inferior_event exits. It takes care of any last bits of
7648 housekeeping, and sets the all-important wait_some_more flag. */
7649
7650 static void
7651 prepare_to_wait (struct execution_control_state *ecs)
7652 {
7653 if (debug_infrun)
7654 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7655
7656 ecs->wait_some_more = 1;
7657
7658 if (!target_is_async_p ())
7659 mark_infrun_async_event_handler ();
7660 }
7661
7662 /* We are done with the step range of a step/next/si/ni command.
7663 Called once for each n of a "step n" operation. */
7664
7665 static void
7666 end_stepping_range (struct execution_control_state *ecs)
7667 {
7668 ecs->event_thread->control.stop_step = 1;
7669 stop_waiting (ecs);
7670 }
7671
7672 /* Several print_*_reason functions to print why the inferior has stopped.
7673 We always print something when the inferior exits, or receives a signal.
7674 The rest of the cases are dealt with later on in normal_stop and
7675 print_it_typical. Ideally there should be a call to one of these
7676 print_*_reason functions functions from handle_inferior_event each time
7677 stop_waiting is called.
7678
7679 Note that we don't call these directly, instead we delegate that to
7680 the interpreters, through observers. Interpreters then call these
7681 with whatever uiout is right. */
7682
7683 void
7684 print_end_stepping_range_reason (struct ui_out *uiout)
7685 {
7686 /* For CLI-like interpreters, print nothing. */
7687
7688 if (uiout->is_mi_like_p ())
7689 {
7690 uiout->field_string ("reason",
7691 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7692 }
7693 }
7694
7695 void
7696 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7697 {
7698 annotate_signalled ();
7699 if (uiout->is_mi_like_p ())
7700 uiout->field_string
7701 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7702 uiout->text ("\nProgram terminated with signal ");
7703 annotate_signal_name ();
7704 uiout->field_string ("signal-name",
7705 gdb_signal_to_name (siggnal));
7706 annotate_signal_name_end ();
7707 uiout->text (", ");
7708 annotate_signal_string ();
7709 uiout->field_string ("signal-meaning",
7710 gdb_signal_to_string (siggnal));
7711 annotate_signal_string_end ();
7712 uiout->text (".\n");
7713 uiout->text ("The program no longer exists.\n");
7714 }
7715
7716 void
7717 print_exited_reason (struct ui_out *uiout, int exitstatus)
7718 {
7719 struct inferior *inf = current_inferior ();
7720 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7721
7722 annotate_exited (exitstatus);
7723 if (exitstatus)
7724 {
7725 if (uiout->is_mi_like_p ())
7726 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7727 std::string exit_code_str
7728 = string_printf ("0%o", (unsigned int) exitstatus);
7729 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7730 plongest (inf->num), pidstr.c_str (),
7731 string_field ("exit-code", exit_code_str.c_str ()));
7732 }
7733 else
7734 {
7735 if (uiout->is_mi_like_p ())
7736 uiout->field_string
7737 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7738 uiout->message ("[Inferior %s (%s) exited normally]\n",
7739 plongest (inf->num), pidstr.c_str ());
7740 }
7741 }
7742
7743 /* Some targets/architectures can do extra processing/display of
7744 segmentation faults. E.g., Intel MPX boundary faults.
7745 Call the architecture dependent function to handle the fault. */
7746
7747 static void
7748 handle_segmentation_fault (struct ui_out *uiout)
7749 {
7750 struct regcache *regcache = get_current_regcache ();
7751 struct gdbarch *gdbarch = regcache->arch ();
7752
7753 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7754 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7755 }
7756
7757 void
7758 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7759 {
7760 struct thread_info *thr = inferior_thread ();
7761
7762 annotate_signal ();
7763
7764 if (uiout->is_mi_like_p ())
7765 ;
7766 else if (show_thread_that_caused_stop ())
7767 {
7768 const char *name;
7769
7770 uiout->text ("\nThread ");
7771 uiout->field_string ("thread-id", print_thread_id (thr));
7772
7773 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7774 if (name != NULL)
7775 {
7776 uiout->text (" \"");
7777 uiout->field_string ("name", name);
7778 uiout->text ("\"");
7779 }
7780 }
7781 else
7782 uiout->text ("\nProgram");
7783
7784 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7785 uiout->text (" stopped");
7786 else
7787 {
7788 uiout->text (" received signal ");
7789 annotate_signal_name ();
7790 if (uiout->is_mi_like_p ())
7791 uiout->field_string
7792 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7793 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7794 annotate_signal_name_end ();
7795 uiout->text (", ");
7796 annotate_signal_string ();
7797 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7798
7799 if (siggnal == GDB_SIGNAL_SEGV)
7800 handle_segmentation_fault (uiout);
7801
7802 annotate_signal_string_end ();
7803 }
7804 uiout->text (".\n");
7805 }
7806
7807 void
7808 print_no_history_reason (struct ui_out *uiout)
7809 {
7810 uiout->text ("\nNo more reverse-execution history.\n");
7811 }
7812
7813 /* Print current location without a level number, if we have changed
7814 functions or hit a breakpoint. Print source line if we have one.
7815 bpstat_print contains the logic deciding in detail what to print,
7816 based on the event(s) that just occurred. */
7817
7818 static void
7819 print_stop_location (struct target_waitstatus *ws)
7820 {
7821 int bpstat_ret;
7822 enum print_what source_flag;
7823 int do_frame_printing = 1;
7824 struct thread_info *tp = inferior_thread ();
7825
7826 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7827 switch (bpstat_ret)
7828 {
7829 case PRINT_UNKNOWN:
7830 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7831 should) carry around the function and does (or should) use
7832 that when doing a frame comparison. */
7833 if (tp->control.stop_step
7834 && frame_id_eq (tp->control.step_frame_id,
7835 get_frame_id (get_current_frame ()))
7836 && (tp->control.step_start_function
7837 == find_pc_function (tp->suspend.stop_pc)))
7838 {
7839 /* Finished step, just print source line. */
7840 source_flag = SRC_LINE;
7841 }
7842 else
7843 {
7844 /* Print location and source line. */
7845 source_flag = SRC_AND_LOC;
7846 }
7847 break;
7848 case PRINT_SRC_AND_LOC:
7849 /* Print location and source line. */
7850 source_flag = SRC_AND_LOC;
7851 break;
7852 case PRINT_SRC_ONLY:
7853 source_flag = SRC_LINE;
7854 break;
7855 case PRINT_NOTHING:
7856 /* Something bogus. */
7857 source_flag = SRC_LINE;
7858 do_frame_printing = 0;
7859 break;
7860 default:
7861 internal_error (__FILE__, __LINE__, _("Unknown value."));
7862 }
7863
7864 /* The behavior of this routine with respect to the source
7865 flag is:
7866 SRC_LINE: Print only source line
7867 LOCATION: Print only location
7868 SRC_AND_LOC: Print location and source line. */
7869 if (do_frame_printing)
7870 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7871 }
7872
7873 /* See infrun.h. */
7874
7875 void
7876 print_stop_event (struct ui_out *uiout, bool displays)
7877 {
7878 struct target_waitstatus last;
7879 ptid_t last_ptid;
7880 struct thread_info *tp;
7881
7882 get_last_target_status (&last_ptid, &last);
7883
7884 {
7885 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7886
7887 print_stop_location (&last);
7888
7889 /* Display the auto-display expressions. */
7890 if (displays)
7891 do_displays ();
7892 }
7893
7894 tp = inferior_thread ();
7895 if (tp->thread_fsm != NULL
7896 && tp->thread_fsm->finished_p ())
7897 {
7898 struct return_value_info *rv;
7899
7900 rv = tp->thread_fsm->return_value ();
7901 if (rv != NULL)
7902 print_return_value (uiout, rv);
7903 }
7904 }
7905
7906 /* See infrun.h. */
7907
7908 void
7909 maybe_remove_breakpoints (void)
7910 {
7911 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7912 {
7913 if (remove_breakpoints ())
7914 {
7915 target_terminal::ours_for_output ();
7916 printf_filtered (_("Cannot remove breakpoints because "
7917 "program is no longer writable.\nFurther "
7918 "execution is probably impossible.\n"));
7919 }
7920 }
7921 }
7922
7923 /* The execution context that just caused a normal stop. */
7924
7925 struct stop_context
7926 {
7927 stop_context ();
7928 ~stop_context ();
7929
7930 DISABLE_COPY_AND_ASSIGN (stop_context);
7931
7932 bool changed () const;
7933
7934 /* The stop ID. */
7935 ULONGEST stop_id;
7936
7937 /* The event PTID. */
7938
7939 ptid_t ptid;
7940
7941 /* If stopp for a thread event, this is the thread that caused the
7942 stop. */
7943 struct thread_info *thread;
7944
7945 /* The inferior that caused the stop. */
7946 int inf_num;
7947 };
7948
7949 /* Initializes a new stop context. If stopped for a thread event, this
7950 takes a strong reference to the thread. */
7951
7952 stop_context::stop_context ()
7953 {
7954 stop_id = get_stop_id ();
7955 ptid = inferior_ptid;
7956 inf_num = current_inferior ()->num;
7957
7958 if (inferior_ptid != null_ptid)
7959 {
7960 /* Take a strong reference so that the thread can't be deleted
7961 yet. */
7962 thread = inferior_thread ();
7963 thread->incref ();
7964 }
7965 else
7966 thread = NULL;
7967 }
7968
7969 /* Release a stop context previously created with save_stop_context.
7970 Releases the strong reference to the thread as well. */
7971
7972 stop_context::~stop_context ()
7973 {
7974 if (thread != NULL)
7975 thread->decref ();
7976 }
7977
7978 /* Return true if the current context no longer matches the saved stop
7979 context. */
7980
7981 bool
7982 stop_context::changed () const
7983 {
7984 if (ptid != inferior_ptid)
7985 return true;
7986 if (inf_num != current_inferior ()->num)
7987 return true;
7988 if (thread != NULL && thread->state != THREAD_STOPPED)
7989 return true;
7990 if (get_stop_id () != stop_id)
7991 return true;
7992 return false;
7993 }
7994
7995 /* See infrun.h. */
7996
7997 int
7998 normal_stop (void)
7999 {
8000 struct target_waitstatus last;
8001 ptid_t last_ptid;
8002
8003 get_last_target_status (&last_ptid, &last);
8004
8005 new_stop_id ();
8006
8007 /* If an exception is thrown from this point on, make sure to
8008 propagate GDB's knowledge of the executing state to the
8009 frontend/user running state. A QUIT is an easy exception to see
8010 here, so do this before any filtered output. */
8011
8012 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8013
8014 if (!non_stop)
8015 maybe_finish_thread_state.emplace (minus_one_ptid);
8016 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8017 || last.kind == TARGET_WAITKIND_EXITED)
8018 {
8019 /* On some targets, we may still have live threads in the
8020 inferior when we get a process exit event. E.g., for
8021 "checkpoint", when the current checkpoint/fork exits,
8022 linux-fork.c automatically switches to another fork from
8023 within target_mourn_inferior. */
8024 if (inferior_ptid != null_ptid)
8025 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8026 }
8027 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8028 maybe_finish_thread_state.emplace (inferior_ptid);
8029
8030 /* As we're presenting a stop, and potentially removing breakpoints,
8031 update the thread list so we can tell whether there are threads
8032 running on the target. With target remote, for example, we can
8033 only learn about new threads when we explicitly update the thread
8034 list. Do this before notifying the interpreters about signal
8035 stops, end of stepping ranges, etc., so that the "new thread"
8036 output is emitted before e.g., "Program received signal FOO",
8037 instead of after. */
8038 update_thread_list ();
8039
8040 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8041 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8042
8043 /* As with the notification of thread events, we want to delay
8044 notifying the user that we've switched thread context until
8045 the inferior actually stops.
8046
8047 There's no point in saying anything if the inferior has exited.
8048 Note that SIGNALLED here means "exited with a signal", not
8049 "received a signal".
8050
8051 Also skip saying anything in non-stop mode. In that mode, as we
8052 don't want GDB to switch threads behind the user's back, to avoid
8053 races where the user is typing a command to apply to thread x,
8054 but GDB switches to thread y before the user finishes entering
8055 the command, fetch_inferior_event installs a cleanup to restore
8056 the current thread back to the thread the user had selected right
8057 after this event is handled, so we're not really switching, only
8058 informing of a stop. */
8059 if (!non_stop
8060 && previous_inferior_ptid != inferior_ptid
8061 && target_has_execution
8062 && last.kind != TARGET_WAITKIND_SIGNALLED
8063 && last.kind != TARGET_WAITKIND_EXITED
8064 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8065 {
8066 SWITCH_THRU_ALL_UIS ()
8067 {
8068 target_terminal::ours_for_output ();
8069 printf_filtered (_("[Switching to %s]\n"),
8070 target_pid_to_str (inferior_ptid).c_str ());
8071 annotate_thread_changed ();
8072 }
8073 previous_inferior_ptid = inferior_ptid;
8074 }
8075
8076 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8077 {
8078 SWITCH_THRU_ALL_UIS ()
8079 if (current_ui->prompt_state == PROMPT_BLOCKED)
8080 {
8081 target_terminal::ours_for_output ();
8082 printf_filtered (_("No unwaited-for children left.\n"));
8083 }
8084 }
8085
8086 /* Note: this depends on the update_thread_list call above. */
8087 maybe_remove_breakpoints ();
8088
8089 /* If an auto-display called a function and that got a signal,
8090 delete that auto-display to avoid an infinite recursion. */
8091
8092 if (stopped_by_random_signal)
8093 disable_current_display ();
8094
8095 SWITCH_THRU_ALL_UIS ()
8096 {
8097 async_enable_stdin ();
8098 }
8099
8100 /* Let the user/frontend see the threads as stopped. */
8101 maybe_finish_thread_state.reset ();
8102
8103 /* Select innermost stack frame - i.e., current frame is frame 0,
8104 and current location is based on that. Handle the case where the
8105 dummy call is returning after being stopped. E.g. the dummy call
8106 previously hit a breakpoint. (If the dummy call returns
8107 normally, we won't reach here.) Do this before the stop hook is
8108 run, so that it doesn't get to see the temporary dummy frame,
8109 which is not where we'll present the stop. */
8110 if (has_stack_frames ())
8111 {
8112 if (stop_stack_dummy == STOP_STACK_DUMMY)
8113 {
8114 /* Pop the empty frame that contains the stack dummy. This
8115 also restores inferior state prior to the call (struct
8116 infcall_suspend_state). */
8117 struct frame_info *frame = get_current_frame ();
8118
8119 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8120 frame_pop (frame);
8121 /* frame_pop calls reinit_frame_cache as the last thing it
8122 does which means there's now no selected frame. */
8123 }
8124
8125 select_frame (get_current_frame ());
8126
8127 /* Set the current source location. */
8128 set_current_sal_from_frame (get_current_frame ());
8129 }
8130
8131 /* Look up the hook_stop and run it (CLI internally handles problem
8132 of stop_command's pre-hook not existing). */
8133 if (stop_command != NULL)
8134 {
8135 stop_context saved_context;
8136
8137 try
8138 {
8139 execute_cmd_pre_hook (stop_command);
8140 }
8141 catch (const gdb_exception &ex)
8142 {
8143 exception_fprintf (gdb_stderr, ex,
8144 "Error while running hook_stop:\n");
8145 }
8146
8147 /* If the stop hook resumes the target, then there's no point in
8148 trying to notify about the previous stop; its context is
8149 gone. Likewise if the command switches thread or inferior --
8150 the observers would print a stop for the wrong
8151 thread/inferior. */
8152 if (saved_context.changed ())
8153 return 1;
8154 }
8155
8156 /* Notify observers about the stop. This is where the interpreters
8157 print the stop event. */
8158 if (inferior_ptid != null_ptid)
8159 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8160 stop_print_frame);
8161 else
8162 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8163
8164 annotate_stopped ();
8165
8166 if (target_has_execution)
8167 {
8168 if (last.kind != TARGET_WAITKIND_SIGNALLED
8169 && last.kind != TARGET_WAITKIND_EXITED
8170 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8171 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8172 Delete any breakpoint that is to be deleted at the next stop. */
8173 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8174 }
8175
8176 /* Try to get rid of automatically added inferiors that are no
8177 longer needed. Keeping those around slows down things linearly.
8178 Note that this never removes the current inferior. */
8179 prune_inferiors ();
8180
8181 return 0;
8182 }
8183 \f
8184 int
8185 signal_stop_state (int signo)
8186 {
8187 return signal_stop[signo];
8188 }
8189
8190 int
8191 signal_print_state (int signo)
8192 {
8193 return signal_print[signo];
8194 }
8195
8196 int
8197 signal_pass_state (int signo)
8198 {
8199 return signal_program[signo];
8200 }
8201
8202 static void
8203 signal_cache_update (int signo)
8204 {
8205 if (signo == -1)
8206 {
8207 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8208 signal_cache_update (signo);
8209
8210 return;
8211 }
8212
8213 signal_pass[signo] = (signal_stop[signo] == 0
8214 && signal_print[signo] == 0
8215 && signal_program[signo] == 1
8216 && signal_catch[signo] == 0);
8217 }
8218
8219 int
8220 signal_stop_update (int signo, int state)
8221 {
8222 int ret = signal_stop[signo];
8223
8224 signal_stop[signo] = state;
8225 signal_cache_update (signo);
8226 return ret;
8227 }
8228
8229 int
8230 signal_print_update (int signo, int state)
8231 {
8232 int ret = signal_print[signo];
8233
8234 signal_print[signo] = state;
8235 signal_cache_update (signo);
8236 return ret;
8237 }
8238
8239 int
8240 signal_pass_update (int signo, int state)
8241 {
8242 int ret = signal_program[signo];
8243
8244 signal_program[signo] = state;
8245 signal_cache_update (signo);
8246 return ret;
8247 }
8248
8249 /* Update the global 'signal_catch' from INFO and notify the
8250 target. */
8251
8252 void
8253 signal_catch_update (const unsigned int *info)
8254 {
8255 int i;
8256
8257 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8258 signal_catch[i] = info[i] > 0;
8259 signal_cache_update (-1);
8260 target_pass_signals (signal_pass);
8261 }
8262
8263 static void
8264 sig_print_header (void)
8265 {
8266 printf_filtered (_("Signal Stop\tPrint\tPass "
8267 "to program\tDescription\n"));
8268 }
8269
8270 static void
8271 sig_print_info (enum gdb_signal oursig)
8272 {
8273 const char *name = gdb_signal_to_name (oursig);
8274 int name_padding = 13 - strlen (name);
8275
8276 if (name_padding <= 0)
8277 name_padding = 0;
8278
8279 printf_filtered ("%s", name);
8280 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8281 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8282 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8283 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8284 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8285 }
8286
8287 /* Specify how various signals in the inferior should be handled. */
8288
8289 static void
8290 handle_command (const char *args, int from_tty)
8291 {
8292 int digits, wordlen;
8293 int sigfirst, siglast;
8294 enum gdb_signal oursig;
8295 int allsigs;
8296
8297 if (args == NULL)
8298 {
8299 error_no_arg (_("signal to handle"));
8300 }
8301
8302 /* Allocate and zero an array of flags for which signals to handle. */
8303
8304 const size_t nsigs = GDB_SIGNAL_LAST;
8305 unsigned char sigs[nsigs] {};
8306
8307 /* Break the command line up into args. */
8308
8309 gdb_argv built_argv (args);
8310
8311 /* Walk through the args, looking for signal oursigs, signal names, and
8312 actions. Signal numbers and signal names may be interspersed with
8313 actions, with the actions being performed for all signals cumulatively
8314 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8315
8316 for (char *arg : built_argv)
8317 {
8318 wordlen = strlen (arg);
8319 for (digits = 0; isdigit (arg[digits]); digits++)
8320 {;
8321 }
8322 allsigs = 0;
8323 sigfirst = siglast = -1;
8324
8325 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8326 {
8327 /* Apply action to all signals except those used by the
8328 debugger. Silently skip those. */
8329 allsigs = 1;
8330 sigfirst = 0;
8331 siglast = nsigs - 1;
8332 }
8333 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8334 {
8335 SET_SIGS (nsigs, sigs, signal_stop);
8336 SET_SIGS (nsigs, sigs, signal_print);
8337 }
8338 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8339 {
8340 UNSET_SIGS (nsigs, sigs, signal_program);
8341 }
8342 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8343 {
8344 SET_SIGS (nsigs, sigs, signal_print);
8345 }
8346 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8347 {
8348 SET_SIGS (nsigs, sigs, signal_program);
8349 }
8350 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8351 {
8352 UNSET_SIGS (nsigs, sigs, signal_stop);
8353 }
8354 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8355 {
8356 SET_SIGS (nsigs, sigs, signal_program);
8357 }
8358 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8359 {
8360 UNSET_SIGS (nsigs, sigs, signal_print);
8361 UNSET_SIGS (nsigs, sigs, signal_stop);
8362 }
8363 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8364 {
8365 UNSET_SIGS (nsigs, sigs, signal_program);
8366 }
8367 else if (digits > 0)
8368 {
8369 /* It is numeric. The numeric signal refers to our own
8370 internal signal numbering from target.h, not to host/target
8371 signal number. This is a feature; users really should be
8372 using symbolic names anyway, and the common ones like
8373 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8374
8375 sigfirst = siglast = (int)
8376 gdb_signal_from_command (atoi (arg));
8377 if (arg[digits] == '-')
8378 {
8379 siglast = (int)
8380 gdb_signal_from_command (atoi (arg + digits + 1));
8381 }
8382 if (sigfirst > siglast)
8383 {
8384 /* Bet he didn't figure we'd think of this case... */
8385 std::swap (sigfirst, siglast);
8386 }
8387 }
8388 else
8389 {
8390 oursig = gdb_signal_from_name (arg);
8391 if (oursig != GDB_SIGNAL_UNKNOWN)
8392 {
8393 sigfirst = siglast = (int) oursig;
8394 }
8395 else
8396 {
8397 /* Not a number and not a recognized flag word => complain. */
8398 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8399 }
8400 }
8401
8402 /* If any signal numbers or symbol names were found, set flags for
8403 which signals to apply actions to. */
8404
8405 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8406 {
8407 switch ((enum gdb_signal) signum)
8408 {
8409 case GDB_SIGNAL_TRAP:
8410 case GDB_SIGNAL_INT:
8411 if (!allsigs && !sigs[signum])
8412 {
8413 if (query (_("%s is used by the debugger.\n\
8414 Are you sure you want to change it? "),
8415 gdb_signal_to_name ((enum gdb_signal) signum)))
8416 {
8417 sigs[signum] = 1;
8418 }
8419 else
8420 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8421 }
8422 break;
8423 case GDB_SIGNAL_0:
8424 case GDB_SIGNAL_DEFAULT:
8425 case GDB_SIGNAL_UNKNOWN:
8426 /* Make sure that "all" doesn't print these. */
8427 break;
8428 default:
8429 sigs[signum] = 1;
8430 break;
8431 }
8432 }
8433 }
8434
8435 for (int signum = 0; signum < nsigs; signum++)
8436 if (sigs[signum])
8437 {
8438 signal_cache_update (-1);
8439 target_pass_signals (signal_pass);
8440 target_program_signals (signal_program);
8441
8442 if (from_tty)
8443 {
8444 /* Show the results. */
8445 sig_print_header ();
8446 for (; signum < nsigs; signum++)
8447 if (sigs[signum])
8448 sig_print_info ((enum gdb_signal) signum);
8449 }
8450
8451 break;
8452 }
8453 }
8454
8455 /* Complete the "handle" command. */
8456
8457 static void
8458 handle_completer (struct cmd_list_element *ignore,
8459 completion_tracker &tracker,
8460 const char *text, const char *word)
8461 {
8462 static const char * const keywords[] =
8463 {
8464 "all",
8465 "stop",
8466 "ignore",
8467 "print",
8468 "pass",
8469 "nostop",
8470 "noignore",
8471 "noprint",
8472 "nopass",
8473 NULL,
8474 };
8475
8476 signal_completer (ignore, tracker, text, word);
8477 complete_on_enum (tracker, keywords, word, word);
8478 }
8479
8480 enum gdb_signal
8481 gdb_signal_from_command (int num)
8482 {
8483 if (num >= 1 && num <= 15)
8484 return (enum gdb_signal) num;
8485 error (_("Only signals 1-15 are valid as numeric signals.\n\
8486 Use \"info signals\" for a list of symbolic signals."));
8487 }
8488
8489 /* Print current contents of the tables set by the handle command.
8490 It is possible we should just be printing signals actually used
8491 by the current target (but for things to work right when switching
8492 targets, all signals should be in the signal tables). */
8493
8494 static void
8495 info_signals_command (const char *signum_exp, int from_tty)
8496 {
8497 enum gdb_signal oursig;
8498
8499 sig_print_header ();
8500
8501 if (signum_exp)
8502 {
8503 /* First see if this is a symbol name. */
8504 oursig = gdb_signal_from_name (signum_exp);
8505 if (oursig == GDB_SIGNAL_UNKNOWN)
8506 {
8507 /* No, try numeric. */
8508 oursig =
8509 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8510 }
8511 sig_print_info (oursig);
8512 return;
8513 }
8514
8515 printf_filtered ("\n");
8516 /* These ugly casts brought to you by the native VAX compiler. */
8517 for (oursig = GDB_SIGNAL_FIRST;
8518 (int) oursig < (int) GDB_SIGNAL_LAST;
8519 oursig = (enum gdb_signal) ((int) oursig + 1))
8520 {
8521 QUIT;
8522
8523 if (oursig != GDB_SIGNAL_UNKNOWN
8524 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8525 sig_print_info (oursig);
8526 }
8527
8528 printf_filtered (_("\nUse the \"handle\" command "
8529 "to change these tables.\n"));
8530 }
8531
8532 /* The $_siginfo convenience variable is a bit special. We don't know
8533 for sure the type of the value until we actually have a chance to
8534 fetch the data. The type can change depending on gdbarch, so it is
8535 also dependent on which thread you have selected.
8536
8537 1. making $_siginfo be an internalvar that creates a new value on
8538 access.
8539
8540 2. making the value of $_siginfo be an lval_computed value. */
8541
8542 /* This function implements the lval_computed support for reading a
8543 $_siginfo value. */
8544
8545 static void
8546 siginfo_value_read (struct value *v)
8547 {
8548 LONGEST transferred;
8549
8550 /* If we can access registers, so can we access $_siginfo. Likewise
8551 vice versa. */
8552 validate_registers_access ();
8553
8554 transferred =
8555 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8556 NULL,
8557 value_contents_all_raw (v),
8558 value_offset (v),
8559 TYPE_LENGTH (value_type (v)));
8560
8561 if (transferred != TYPE_LENGTH (value_type (v)))
8562 error (_("Unable to read siginfo"));
8563 }
8564
8565 /* This function implements the lval_computed support for writing a
8566 $_siginfo value. */
8567
8568 static void
8569 siginfo_value_write (struct value *v, struct value *fromval)
8570 {
8571 LONGEST transferred;
8572
8573 /* If we can access registers, so can we access $_siginfo. Likewise
8574 vice versa. */
8575 validate_registers_access ();
8576
8577 transferred = target_write (current_top_target (),
8578 TARGET_OBJECT_SIGNAL_INFO,
8579 NULL,
8580 value_contents_all_raw (fromval),
8581 value_offset (v),
8582 TYPE_LENGTH (value_type (fromval)));
8583
8584 if (transferred != TYPE_LENGTH (value_type (fromval)))
8585 error (_("Unable to write siginfo"));
8586 }
8587
8588 static const struct lval_funcs siginfo_value_funcs =
8589 {
8590 siginfo_value_read,
8591 siginfo_value_write
8592 };
8593
8594 /* Return a new value with the correct type for the siginfo object of
8595 the current thread using architecture GDBARCH. Return a void value
8596 if there's no object available. */
8597
8598 static struct value *
8599 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8600 void *ignore)
8601 {
8602 if (target_has_stack
8603 && inferior_ptid != null_ptid
8604 && gdbarch_get_siginfo_type_p (gdbarch))
8605 {
8606 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8607
8608 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8609 }
8610
8611 return allocate_value (builtin_type (gdbarch)->builtin_void);
8612 }
8613
8614 \f
8615 /* infcall_suspend_state contains state about the program itself like its
8616 registers and any signal it received when it last stopped.
8617 This state must be restored regardless of how the inferior function call
8618 ends (either successfully, or after it hits a breakpoint or signal)
8619 if the program is to properly continue where it left off. */
8620
8621 class infcall_suspend_state
8622 {
8623 public:
8624 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8625 once the inferior function call has finished. */
8626 infcall_suspend_state (struct gdbarch *gdbarch,
8627 const struct thread_info *tp,
8628 struct regcache *regcache)
8629 : m_thread_suspend (tp->suspend),
8630 m_registers (new readonly_detached_regcache (*regcache))
8631 {
8632 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8633
8634 if (gdbarch_get_siginfo_type_p (gdbarch))
8635 {
8636 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8637 size_t len = TYPE_LENGTH (type);
8638
8639 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8640
8641 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8642 siginfo_data.get (), 0, len) != len)
8643 {
8644 /* Errors ignored. */
8645 siginfo_data.reset (nullptr);
8646 }
8647 }
8648
8649 if (siginfo_data)
8650 {
8651 m_siginfo_gdbarch = gdbarch;
8652 m_siginfo_data = std::move (siginfo_data);
8653 }
8654 }
8655
8656 /* Return a pointer to the stored register state. */
8657
8658 readonly_detached_regcache *registers () const
8659 {
8660 return m_registers.get ();
8661 }
8662
8663 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8664
8665 void restore (struct gdbarch *gdbarch,
8666 struct thread_info *tp,
8667 struct regcache *regcache) const
8668 {
8669 tp->suspend = m_thread_suspend;
8670
8671 if (m_siginfo_gdbarch == gdbarch)
8672 {
8673 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8674
8675 /* Errors ignored. */
8676 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8677 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8678 }
8679
8680 /* The inferior can be gone if the user types "print exit(0)"
8681 (and perhaps other times). */
8682 if (target_has_execution)
8683 /* NB: The register write goes through to the target. */
8684 regcache->restore (registers ());
8685 }
8686
8687 private:
8688 /* How the current thread stopped before the inferior function call was
8689 executed. */
8690 struct thread_suspend_state m_thread_suspend;
8691
8692 /* The registers before the inferior function call was executed. */
8693 std::unique_ptr<readonly_detached_regcache> m_registers;
8694
8695 /* Format of SIGINFO_DATA or NULL if it is not present. */
8696 struct gdbarch *m_siginfo_gdbarch = nullptr;
8697
8698 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8699 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8700 content would be invalid. */
8701 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8702 };
8703
8704 infcall_suspend_state_up
8705 save_infcall_suspend_state ()
8706 {
8707 struct thread_info *tp = inferior_thread ();
8708 struct regcache *regcache = get_current_regcache ();
8709 struct gdbarch *gdbarch = regcache->arch ();
8710
8711 infcall_suspend_state_up inf_state
8712 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8713
8714 /* Having saved the current state, adjust the thread state, discarding
8715 any stop signal information. The stop signal is not useful when
8716 starting an inferior function call, and run_inferior_call will not use
8717 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8718 tp->suspend.stop_signal = GDB_SIGNAL_0;
8719
8720 return inf_state;
8721 }
8722
8723 /* Restore inferior session state to INF_STATE. */
8724
8725 void
8726 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8727 {
8728 struct thread_info *tp = inferior_thread ();
8729 struct regcache *regcache = get_current_regcache ();
8730 struct gdbarch *gdbarch = regcache->arch ();
8731
8732 inf_state->restore (gdbarch, tp, regcache);
8733 discard_infcall_suspend_state (inf_state);
8734 }
8735
8736 void
8737 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8738 {
8739 delete inf_state;
8740 }
8741
8742 readonly_detached_regcache *
8743 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8744 {
8745 return inf_state->registers ();
8746 }
8747
8748 /* infcall_control_state contains state regarding gdb's control of the
8749 inferior itself like stepping control. It also contains session state like
8750 the user's currently selected frame. */
8751
8752 struct infcall_control_state
8753 {
8754 struct thread_control_state thread_control;
8755 struct inferior_control_state inferior_control;
8756
8757 /* Other fields: */
8758 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8759 int stopped_by_random_signal = 0;
8760
8761 /* ID if the selected frame when the inferior function call was made. */
8762 struct frame_id selected_frame_id {};
8763 };
8764
8765 /* Save all of the information associated with the inferior<==>gdb
8766 connection. */
8767
8768 infcall_control_state_up
8769 save_infcall_control_state ()
8770 {
8771 infcall_control_state_up inf_status (new struct infcall_control_state);
8772 struct thread_info *tp = inferior_thread ();
8773 struct inferior *inf = current_inferior ();
8774
8775 inf_status->thread_control = tp->control;
8776 inf_status->inferior_control = inf->control;
8777
8778 tp->control.step_resume_breakpoint = NULL;
8779 tp->control.exception_resume_breakpoint = NULL;
8780
8781 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8782 chain. If caller's caller is walking the chain, they'll be happier if we
8783 hand them back the original chain when restore_infcall_control_state is
8784 called. */
8785 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8786
8787 /* Other fields: */
8788 inf_status->stop_stack_dummy = stop_stack_dummy;
8789 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8790
8791 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8792
8793 return inf_status;
8794 }
8795
8796 static void
8797 restore_selected_frame (const frame_id &fid)
8798 {
8799 frame_info *frame = frame_find_by_id (fid);
8800
8801 /* If inf_status->selected_frame_id is NULL, there was no previously
8802 selected frame. */
8803 if (frame == NULL)
8804 {
8805 warning (_("Unable to restore previously selected frame."));
8806 return;
8807 }
8808
8809 select_frame (frame);
8810 }
8811
8812 /* Restore inferior session state to INF_STATUS. */
8813
8814 void
8815 restore_infcall_control_state (struct infcall_control_state *inf_status)
8816 {
8817 struct thread_info *tp = inferior_thread ();
8818 struct inferior *inf = current_inferior ();
8819
8820 if (tp->control.step_resume_breakpoint)
8821 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8822
8823 if (tp->control.exception_resume_breakpoint)
8824 tp->control.exception_resume_breakpoint->disposition
8825 = disp_del_at_next_stop;
8826
8827 /* Handle the bpstat_copy of the chain. */
8828 bpstat_clear (&tp->control.stop_bpstat);
8829
8830 tp->control = inf_status->thread_control;
8831 inf->control = inf_status->inferior_control;
8832
8833 /* Other fields: */
8834 stop_stack_dummy = inf_status->stop_stack_dummy;
8835 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8836
8837 if (target_has_stack)
8838 {
8839 /* The point of the try/catch is that if the stack is clobbered,
8840 walking the stack might encounter a garbage pointer and
8841 error() trying to dereference it. */
8842 try
8843 {
8844 restore_selected_frame (inf_status->selected_frame_id);
8845 }
8846 catch (const gdb_exception_error &ex)
8847 {
8848 exception_fprintf (gdb_stderr, ex,
8849 "Unable to restore previously selected frame:\n");
8850 /* Error in restoring the selected frame. Select the
8851 innermost frame. */
8852 select_frame (get_current_frame ());
8853 }
8854 }
8855
8856 delete inf_status;
8857 }
8858
8859 void
8860 discard_infcall_control_state (struct infcall_control_state *inf_status)
8861 {
8862 if (inf_status->thread_control.step_resume_breakpoint)
8863 inf_status->thread_control.step_resume_breakpoint->disposition
8864 = disp_del_at_next_stop;
8865
8866 if (inf_status->thread_control.exception_resume_breakpoint)
8867 inf_status->thread_control.exception_resume_breakpoint->disposition
8868 = disp_del_at_next_stop;
8869
8870 /* See save_infcall_control_state for info on stop_bpstat. */
8871 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8872
8873 delete inf_status;
8874 }
8875 \f
8876 /* See infrun.h. */
8877
8878 void
8879 clear_exit_convenience_vars (void)
8880 {
8881 clear_internalvar (lookup_internalvar ("_exitsignal"));
8882 clear_internalvar (lookup_internalvar ("_exitcode"));
8883 }
8884 \f
8885
8886 /* User interface for reverse debugging:
8887 Set exec-direction / show exec-direction commands
8888 (returns error unless target implements to_set_exec_direction method). */
8889
8890 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8891 static const char exec_forward[] = "forward";
8892 static const char exec_reverse[] = "reverse";
8893 static const char *exec_direction = exec_forward;
8894 static const char *const exec_direction_names[] = {
8895 exec_forward,
8896 exec_reverse,
8897 NULL
8898 };
8899
8900 static void
8901 set_exec_direction_func (const char *args, int from_tty,
8902 struct cmd_list_element *cmd)
8903 {
8904 if (target_can_execute_reverse)
8905 {
8906 if (!strcmp (exec_direction, exec_forward))
8907 execution_direction = EXEC_FORWARD;
8908 else if (!strcmp (exec_direction, exec_reverse))
8909 execution_direction = EXEC_REVERSE;
8910 }
8911 else
8912 {
8913 exec_direction = exec_forward;
8914 error (_("Target does not support this operation."));
8915 }
8916 }
8917
8918 static void
8919 show_exec_direction_func (struct ui_file *out, int from_tty,
8920 struct cmd_list_element *cmd, const char *value)
8921 {
8922 switch (execution_direction) {
8923 case EXEC_FORWARD:
8924 fprintf_filtered (out, _("Forward.\n"));
8925 break;
8926 case EXEC_REVERSE:
8927 fprintf_filtered (out, _("Reverse.\n"));
8928 break;
8929 default:
8930 internal_error (__FILE__, __LINE__,
8931 _("bogus execution_direction value: %d"),
8932 (int) execution_direction);
8933 }
8934 }
8935
8936 static void
8937 show_schedule_multiple (struct ui_file *file, int from_tty,
8938 struct cmd_list_element *c, const char *value)
8939 {
8940 fprintf_filtered (file, _("Resuming the execution of threads "
8941 "of all processes is %s.\n"), value);
8942 }
8943
8944 /* Implementation of `siginfo' variable. */
8945
8946 static const struct internalvar_funcs siginfo_funcs =
8947 {
8948 siginfo_make_value,
8949 NULL,
8950 NULL
8951 };
8952
8953 /* Callback for infrun's target events source. This is marked when a
8954 thread has a pending status to process. */
8955
8956 static void
8957 infrun_async_inferior_event_handler (gdb_client_data data)
8958 {
8959 inferior_event_handler (INF_REG_EVENT, NULL);
8960 }
8961
8962 void
8963 _initialize_infrun (void)
8964 {
8965 struct cmd_list_element *c;
8966
8967 /* Register extra event sources in the event loop. */
8968 infrun_async_inferior_event_token
8969 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8970
8971 add_info ("signals", info_signals_command, _("\
8972 What debugger does when program gets various signals.\n\
8973 Specify a signal as argument to print info on that signal only."));
8974 add_info_alias ("handle", "signals", 0);
8975
8976 c = add_com ("handle", class_run, handle_command, _("\
8977 Specify how to handle signals.\n\
8978 Usage: handle SIGNAL [ACTIONS]\n\
8979 Args are signals and actions to apply to those signals.\n\
8980 If no actions are specified, the current settings for the specified signals\n\
8981 will be displayed instead.\n\
8982 \n\
8983 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8984 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8985 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8986 The special arg \"all\" is recognized to mean all signals except those\n\
8987 used by the debugger, typically SIGTRAP and SIGINT.\n\
8988 \n\
8989 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8990 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8991 Stop means reenter debugger if this signal happens (implies print).\n\
8992 Print means print a message if this signal happens.\n\
8993 Pass means let program see this signal; otherwise program doesn't know.\n\
8994 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8995 Pass and Stop may be combined.\n\
8996 \n\
8997 Multiple signals may be specified. Signal numbers and signal names\n\
8998 may be interspersed with actions, with the actions being performed for\n\
8999 all signals cumulatively specified."));
9000 set_cmd_completer (c, handle_completer);
9001
9002 if (!dbx_commands)
9003 stop_command = add_cmd ("stop", class_obscure,
9004 not_just_help_class_command, _("\
9005 There is no `stop' command, but you can set a hook on `stop'.\n\
9006 This allows you to set a list of commands to be run each time execution\n\
9007 of the program stops."), &cmdlist);
9008
9009 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9010 Set inferior debugging."), _("\
9011 Show inferior debugging."), _("\
9012 When non-zero, inferior specific debugging is enabled."),
9013 NULL,
9014 show_debug_infrun,
9015 &setdebuglist, &showdebuglist);
9016
9017 add_setshow_boolean_cmd ("displaced", class_maintenance,
9018 &debug_displaced, _("\
9019 Set displaced stepping debugging."), _("\
9020 Show displaced stepping debugging."), _("\
9021 When non-zero, displaced stepping specific debugging is enabled."),
9022 NULL,
9023 show_debug_displaced,
9024 &setdebuglist, &showdebuglist);
9025
9026 add_setshow_boolean_cmd ("non-stop", no_class,
9027 &non_stop_1, _("\
9028 Set whether gdb controls the inferior in non-stop mode."), _("\
9029 Show whether gdb controls the inferior in non-stop mode."), _("\
9030 When debugging a multi-threaded program and this setting is\n\
9031 off (the default, also called all-stop mode), when one thread stops\n\
9032 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9033 all other threads in the program while you interact with the thread of\n\
9034 interest. When you continue or step a thread, you can allow the other\n\
9035 threads to run, or have them remain stopped, but while you inspect any\n\
9036 thread's state, all threads stop.\n\
9037 \n\
9038 In non-stop mode, when one thread stops, other threads can continue\n\
9039 to run freely. You'll be able to step each thread independently,\n\
9040 leave it stopped or free to run as needed."),
9041 set_non_stop,
9042 show_non_stop,
9043 &setlist,
9044 &showlist);
9045
9046 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9047 {
9048 signal_stop[i] = 1;
9049 signal_print[i] = 1;
9050 signal_program[i] = 1;
9051 signal_catch[i] = 0;
9052 }
9053
9054 /* Signals caused by debugger's own actions should not be given to
9055 the program afterwards.
9056
9057 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9058 explicitly specifies that it should be delivered to the target
9059 program. Typically, that would occur when a user is debugging a
9060 target monitor on a simulator: the target monitor sets a
9061 breakpoint; the simulator encounters this breakpoint and halts
9062 the simulation handing control to GDB; GDB, noting that the stop
9063 address doesn't map to any known breakpoint, returns control back
9064 to the simulator; the simulator then delivers the hardware
9065 equivalent of a GDB_SIGNAL_TRAP to the program being
9066 debugged. */
9067 signal_program[GDB_SIGNAL_TRAP] = 0;
9068 signal_program[GDB_SIGNAL_INT] = 0;
9069
9070 /* Signals that are not errors should not normally enter the debugger. */
9071 signal_stop[GDB_SIGNAL_ALRM] = 0;
9072 signal_print[GDB_SIGNAL_ALRM] = 0;
9073 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9074 signal_print[GDB_SIGNAL_VTALRM] = 0;
9075 signal_stop[GDB_SIGNAL_PROF] = 0;
9076 signal_print[GDB_SIGNAL_PROF] = 0;
9077 signal_stop[GDB_SIGNAL_CHLD] = 0;
9078 signal_print[GDB_SIGNAL_CHLD] = 0;
9079 signal_stop[GDB_SIGNAL_IO] = 0;
9080 signal_print[GDB_SIGNAL_IO] = 0;
9081 signal_stop[GDB_SIGNAL_POLL] = 0;
9082 signal_print[GDB_SIGNAL_POLL] = 0;
9083 signal_stop[GDB_SIGNAL_URG] = 0;
9084 signal_print[GDB_SIGNAL_URG] = 0;
9085 signal_stop[GDB_SIGNAL_WINCH] = 0;
9086 signal_print[GDB_SIGNAL_WINCH] = 0;
9087 signal_stop[GDB_SIGNAL_PRIO] = 0;
9088 signal_print[GDB_SIGNAL_PRIO] = 0;
9089
9090 /* These signals are used internally by user-level thread
9091 implementations. (See signal(5) on Solaris.) Like the above
9092 signals, a healthy program receives and handles them as part of
9093 its normal operation. */
9094 signal_stop[GDB_SIGNAL_LWP] = 0;
9095 signal_print[GDB_SIGNAL_LWP] = 0;
9096 signal_stop[GDB_SIGNAL_WAITING] = 0;
9097 signal_print[GDB_SIGNAL_WAITING] = 0;
9098 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9099 signal_print[GDB_SIGNAL_CANCEL] = 0;
9100 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9101 signal_print[GDB_SIGNAL_LIBRT] = 0;
9102
9103 /* Update cached state. */
9104 signal_cache_update (-1);
9105
9106 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9107 &stop_on_solib_events, _("\
9108 Set stopping for shared library events."), _("\
9109 Show stopping for shared library events."), _("\
9110 If nonzero, gdb will give control to the user when the dynamic linker\n\
9111 notifies gdb of shared library events. The most common event of interest\n\
9112 to the user would be loading/unloading of a new library."),
9113 set_stop_on_solib_events,
9114 show_stop_on_solib_events,
9115 &setlist, &showlist);
9116
9117 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9118 follow_fork_mode_kind_names,
9119 &follow_fork_mode_string, _("\
9120 Set debugger response to a program call of fork or vfork."), _("\
9121 Show debugger response to a program call of fork or vfork."), _("\
9122 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9123 parent - the original process is debugged after a fork\n\
9124 child - the new process is debugged after a fork\n\
9125 The unfollowed process will continue to run.\n\
9126 By default, the debugger will follow the parent process."),
9127 NULL,
9128 show_follow_fork_mode_string,
9129 &setlist, &showlist);
9130
9131 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9132 follow_exec_mode_names,
9133 &follow_exec_mode_string, _("\
9134 Set debugger response to a program call of exec."), _("\
9135 Show debugger response to a program call of exec."), _("\
9136 An exec call replaces the program image of a process.\n\
9137 \n\
9138 follow-exec-mode can be:\n\
9139 \n\
9140 new - the debugger creates a new inferior and rebinds the process\n\
9141 to this new inferior. The program the process was running before\n\
9142 the exec call can be restarted afterwards by restarting the original\n\
9143 inferior.\n\
9144 \n\
9145 same - the debugger keeps the process bound to the same inferior.\n\
9146 The new executable image replaces the previous executable loaded in\n\
9147 the inferior. Restarting the inferior after the exec call restarts\n\
9148 the executable the process was running after the exec call.\n\
9149 \n\
9150 By default, the debugger will use the same inferior."),
9151 NULL,
9152 show_follow_exec_mode_string,
9153 &setlist, &showlist);
9154
9155 add_setshow_enum_cmd ("scheduler-locking", class_run,
9156 scheduler_enums, &scheduler_mode, _("\
9157 Set mode for locking scheduler during execution."), _("\
9158 Show mode for locking scheduler during execution."), _("\
9159 off == no locking (threads may preempt at any time)\n\
9160 on == full locking (no thread except the current thread may run)\n\
9161 This applies to both normal execution and replay mode.\n\
9162 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9163 In this mode, other threads may run during other commands.\n\
9164 This applies to both normal execution and replay mode.\n\
9165 replay == scheduler locked in replay mode and unlocked during normal execution."),
9166 set_schedlock_func, /* traps on target vector */
9167 show_scheduler_mode,
9168 &setlist, &showlist);
9169
9170 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9171 Set mode for resuming threads of all processes."), _("\
9172 Show mode for resuming threads of all processes."), _("\
9173 When on, execution commands (such as 'continue' or 'next') resume all\n\
9174 threads of all processes. When off (which is the default), execution\n\
9175 commands only resume the threads of the current process. The set of\n\
9176 threads that are resumed is further refined by the scheduler-locking\n\
9177 mode (see help set scheduler-locking)."),
9178 NULL,
9179 show_schedule_multiple,
9180 &setlist, &showlist);
9181
9182 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9183 Set mode of the step operation."), _("\
9184 Show mode of the step operation."), _("\
9185 When set, doing a step over a function without debug line information\n\
9186 will stop at the first instruction of that function. Otherwise, the\n\
9187 function is skipped and the step command stops at a different source line."),
9188 NULL,
9189 show_step_stop_if_no_debug,
9190 &setlist, &showlist);
9191
9192 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9193 &can_use_displaced_stepping, _("\
9194 Set debugger's willingness to use displaced stepping."), _("\
9195 Show debugger's willingness to use displaced stepping."), _("\
9196 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9197 supported by the target architecture. If off, gdb will not use displaced\n\
9198 stepping to step over breakpoints, even if such is supported by the target\n\
9199 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9200 if the target architecture supports it and non-stop mode is active, but will not\n\
9201 use it in all-stop mode (see help set non-stop)."),
9202 NULL,
9203 show_can_use_displaced_stepping,
9204 &setlist, &showlist);
9205
9206 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9207 &exec_direction, _("Set direction of execution.\n\
9208 Options are 'forward' or 'reverse'."),
9209 _("Show direction of execution (forward/reverse)."),
9210 _("Tells gdb whether to execute forward or backward."),
9211 set_exec_direction_func, show_exec_direction_func,
9212 &setlist, &showlist);
9213
9214 /* Set/show detach-on-fork: user-settable mode. */
9215
9216 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9217 Set whether gdb will detach the child of a fork."), _("\
9218 Show whether gdb will detach the child of a fork."), _("\
9219 Tells gdb whether to detach the child of a fork."),
9220 NULL, NULL, &setlist, &showlist);
9221
9222 /* Set/show disable address space randomization mode. */
9223
9224 add_setshow_boolean_cmd ("disable-randomization", class_support,
9225 &disable_randomization, _("\
9226 Set disabling of debuggee's virtual address space randomization."), _("\
9227 Show disabling of debuggee's virtual address space randomization."), _("\
9228 When this mode is on (which is the default), randomization of the virtual\n\
9229 address space is disabled. Standalone programs run with the randomization\n\
9230 enabled by default on some platforms."),
9231 &set_disable_randomization,
9232 &show_disable_randomization,
9233 &setlist, &showlist);
9234
9235 /* ptid initializations */
9236 inferior_ptid = null_ptid;
9237 target_last_wait_ptid = minus_one_ptid;
9238
9239 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9240 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9241 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9242 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9243
9244 /* Explicitly create without lookup, since that tries to create a
9245 value with a void typed value, and when we get here, gdbarch
9246 isn't initialized yet. At this point, we're quite sure there
9247 isn't another convenience variable of the same name. */
9248 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9249
9250 add_setshow_boolean_cmd ("observer", no_class,
9251 &observer_mode_1, _("\
9252 Set whether gdb controls the inferior in observer mode."), _("\
9253 Show whether gdb controls the inferior in observer mode."), _("\
9254 In observer mode, GDB can get data from the inferior, but not\n\
9255 affect its execution. Registers and memory may not be changed,\n\
9256 breakpoints may not be set, and the program cannot be interrupted\n\
9257 or signalled."),
9258 set_observer_mode,
9259 show_observer_mode,
9260 &setlist,
9261 &showlist);
9262 }
This page took 0.317917 seconds and 3 git commands to generate.