6a346d6aefe3f0bd3566a83be2c3a184c4598d0c
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "gdbthread.h"
32 #include "annotate.h"
33 #include "symfile.h"
34 #include "top.h"
35 #include "inf-loop.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "observable.h"
39 #include "language.h"
40 #include "solib.h"
41 #include "main.h"
42 #include "block.h"
43 #include "mi/mi-common.h"
44 #include "event-top.h"
45 #include "record.h"
46 #include "record-full.h"
47 #include "inline-frame.h"
48 #include "jit.h"
49 #include "tracepoint.h"
50 #include "skip.h"
51 #include "probe.h"
52 #include "objfiles.h"
53 #include "completer.h"
54 #include "target-descriptions.h"
55 #include "target-dcache.h"
56 #include "terminal.h"
57 #include "solist.h"
58 #include "event-loop.h"
59 #include "thread-fsm.h"
60 #include "gdbsupport/enum-flags.h"
61 #include "progspace-and-thread.h"
62 #include "gdbsupport/gdb_optional.h"
63 #include "arch-utils.h"
64 #include "gdbsupport/scope-exit.h"
65 #include "gdbsupport/forward-scope-exit.h"
66
67 /* Prototypes for local functions */
68
69 static void sig_print_info (enum gdb_signal);
70
71 static void sig_print_header (void);
72
73 static int follow_fork (void);
74
75 static int follow_fork_inferior (int follow_child, int detach_fork);
76
77 static void follow_inferior_reset_breakpoints (void);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 void nullify_last_target_wait_ptid (void);
82
83 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
84
85 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
86
87 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
88
89 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
90
91 static void resume (gdb_signal sig);
92
93 /* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95 static struct async_event_handler *infrun_async_inferior_event_token;
96
97 /* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99 static int infrun_is_async = -1;
100
101 /* See infrun.h. */
102
103 void
104 infrun_async (int enable)
105 {
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120 }
121
122 /* See infrun.h. */
123
124 void
125 mark_infrun_async_event_handler (void)
126 {
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 }
129
130 /* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
133 bool step_stop_if_no_debug = false;
134 static void
135 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139 }
140
141 /* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
144
145 static ptid_t previous_inferior_ptid;
146
147 /* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
152 static bool detach_fork = true;
153
154 bool debug_displaced = false;
155 static void
156 show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160 }
161
162 unsigned int debug_infrun = 0;
163 static void
164 show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168 }
169
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* Nonzero after stop if current stack frame should be printed. */
372
373 static int stop_print_frame;
374
375 /* This is a cached copy of the pid/waitstatus of the last event
376 returned by target_wait()/deprecated_target_wait_hook(). This
377 information is returned by get_last_target_status(). */
378 static ptid_t target_last_wait_ptid;
379 static struct target_waitstatus target_last_waitstatus;
380
381 void init_thread_stepping_state (struct thread_info *tss);
382
383 static const char follow_fork_mode_child[] = "child";
384 static const char follow_fork_mode_parent[] = "parent";
385
386 static const char *const follow_fork_mode_kind_names[] = {
387 follow_fork_mode_child,
388 follow_fork_mode_parent,
389 NULL
390 };
391
392 static const char *follow_fork_mode_string = follow_fork_mode_parent;
393 static void
394 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
395 struct cmd_list_element *c, const char *value)
396 {
397 fprintf_filtered (file,
398 _("Debugger response to a program "
399 "call of fork or vfork is \"%s\".\n"),
400 value);
401 }
402 \f
403
404 /* Handle changes to the inferior list based on the type of fork,
405 which process is being followed, and whether the other process
406 should be detached. On entry inferior_ptid must be the ptid of
407 the fork parent. At return inferior_ptid is the ptid of the
408 followed inferior. */
409
410 static int
411 follow_fork_inferior (int follow_child, int detach_fork)
412 {
413 int has_vforked;
414 ptid_t parent_ptid, child_ptid;
415
416 has_vforked = (inferior_thread ()->pending_follow.kind
417 == TARGET_WAITKIND_VFORKED);
418 parent_ptid = inferior_ptid;
419 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && current_ui->prompt_state == PROMPT_BLOCKED
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432 Can not resume the parent process over vfork in the foreground while\n\
433 holding the child stopped. Try \"set detach-on-fork\" or \
434 \"set schedule-multiple\".\n"));
435 return 1;
436 }
437
438 if (!follow_child)
439 {
440 /* Detach new forked process? */
441 if (detach_fork)
442 {
443 /* Before detaching from the child, remove all breakpoints
444 from it. If we forked, then this has already been taken
445 care of by infrun.c. If we vforked however, any
446 breakpoint inserted in the parent is visible in the
447 child, even those added while stopped in a vfork
448 catchpoint. This will remove the breakpoints from the
449 parent also, but they'll be reinserted below. */
450 if (has_vforked)
451 {
452 /* Keep breakpoints list in sync. */
453 remove_breakpoints_inf (current_inferior ());
454 }
455
456 if (print_inferior_events)
457 {
458 /* Ensure that we have a process ptid. */
459 ptid_t process_ptid = ptid_t (child_ptid.pid ());
460
461 target_terminal::ours_for_output ();
462 fprintf_filtered (gdb_stdlog,
463 _("[Detaching after %s from child %s]\n"),
464 has_vforked ? "vfork" : "fork",
465 target_pid_to_str (process_ptid).c_str ());
466 }
467 }
468 else
469 {
470 struct inferior *parent_inf, *child_inf;
471
472 /* Add process to GDB's tables. */
473 child_inf = add_inferior (child_ptid.pid ());
474
475 parent_inf = current_inferior ();
476 child_inf->attach_flag = parent_inf->attach_flag;
477 copy_terminal_info (child_inf, parent_inf);
478 child_inf->gdbarch = parent_inf->gdbarch;
479 copy_inferior_target_desc_info (child_inf, parent_inf);
480
481 scoped_restore_current_pspace_and_thread restore_pspace_thread;
482
483 inferior_ptid = child_ptid;
484 add_thread_silent (inferior_ptid);
485 set_current_inferior (child_inf);
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487
488 /* If this is a vfork child, then the address-space is
489 shared with the parent. */
490 if (has_vforked)
491 {
492 child_inf->pspace = parent_inf->pspace;
493 child_inf->aspace = parent_inf->aspace;
494
495 /* The parent will be frozen until the child is done
496 with the shared region. Keep track of the
497 parent. */
498 child_inf->vfork_parent = parent_inf;
499 child_inf->pending_detach = 0;
500 parent_inf->vfork_child = child_inf;
501 parent_inf->pending_detach = 0;
502 }
503 else
504 {
505 child_inf->aspace = new_address_space ();
506 child_inf->pspace = new program_space (child_inf->aspace);
507 child_inf->removable = 1;
508 set_current_program_space (child_inf->pspace);
509 clone_program_space (child_inf->pspace, parent_inf->pspace);
510
511 /* Let the shared library layer (e.g., solib-svr4) learn
512 about this new process, relocate the cloned exec, pull
513 in shared libraries, and install the solib event
514 breakpoint. If a "cloned-VM" event was propagated
515 better throughout the core, this wouldn't be
516 required. */
517 solib_create_inferior_hook (0);
518 }
519 }
520
521 if (has_vforked)
522 {
523 struct inferior *parent_inf;
524
525 parent_inf = current_inferior ();
526
527 /* If we detached from the child, then we have to be careful
528 to not insert breakpoints in the parent until the child
529 is done with the shared memory region. However, if we're
530 staying attached to the child, then we can and should
531 insert breakpoints, so that we can debug it. A
532 subsequent child exec or exit is enough to know when does
533 the child stops using the parent's address space. */
534 parent_inf->waiting_for_vfork_done = detach_fork;
535 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
536 }
537 }
538 else
539 {
540 /* Follow the child. */
541 struct inferior *parent_inf, *child_inf;
542 struct program_space *parent_pspace;
543
544 if (print_inferior_events)
545 {
546 std::string parent_pid = target_pid_to_str (parent_ptid);
547 std::string child_pid = target_pid_to_str (child_ptid);
548
549 target_terminal::ours_for_output ();
550 fprintf_filtered (gdb_stdlog,
551 _("[Attaching after %s %s to child %s]\n"),
552 parent_pid.c_str (),
553 has_vforked ? "vfork" : "fork",
554 child_pid.c_str ());
555 }
556
557 /* Add the new inferior first, so that the target_detach below
558 doesn't unpush the target. */
559
560 child_inf = add_inferior (child_ptid.pid ());
561
562 parent_inf = current_inferior ();
563 child_inf->attach_flag = parent_inf->attach_flag;
564 copy_terminal_info (child_inf, parent_inf);
565 child_inf->gdbarch = parent_inf->gdbarch;
566 copy_inferior_target_desc_info (child_inf, parent_inf);
567
568 parent_pspace = parent_inf->pspace;
569
570 /* If we're vforking, we want to hold on to the parent until the
571 child exits or execs. At child exec or exit time we can
572 remove the old breakpoints from the parent and detach or
573 resume debugging it. Otherwise, detach the parent now; we'll
574 want to reuse it's program/address spaces, but we can't set
575 them to the child before removing breakpoints from the
576 parent, otherwise, the breakpoints module could decide to
577 remove breakpoints from the wrong process (since they'd be
578 assigned to the same address space). */
579
580 if (has_vforked)
581 {
582 gdb_assert (child_inf->vfork_parent == NULL);
583 gdb_assert (parent_inf->vfork_child == NULL);
584 child_inf->vfork_parent = parent_inf;
585 child_inf->pending_detach = 0;
586 parent_inf->vfork_child = child_inf;
587 parent_inf->pending_detach = detach_fork;
588 parent_inf->waiting_for_vfork_done = 0;
589 }
590 else if (detach_fork)
591 {
592 if (print_inferior_events)
593 {
594 /* Ensure that we have a process ptid. */
595 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
596
597 target_terminal::ours_for_output ();
598 fprintf_filtered (gdb_stdlog,
599 _("[Detaching after fork from "
600 "parent %s]\n"),
601 target_pid_to_str (process_ptid).c_str ());
602 }
603
604 target_detach (parent_inf, 0);
605 }
606
607 /* Note that the detach above makes PARENT_INF dangling. */
608
609 /* Add the child thread to the appropriate lists, and switch to
610 this new thread, before cloning the program space, and
611 informing the solib layer about this new process. */
612
613 inferior_ptid = child_ptid;
614 add_thread_silent (inferior_ptid);
615 set_current_inferior (child_inf);
616
617 /* If this is a vfork child, then the address-space is shared
618 with the parent. If we detached from the parent, then we can
619 reuse the parent's program/address spaces. */
620 if (has_vforked || detach_fork)
621 {
622 child_inf->pspace = parent_pspace;
623 child_inf->aspace = child_inf->pspace->aspace;
624 }
625 else
626 {
627 child_inf->aspace = new_address_space ();
628 child_inf->pspace = new program_space (child_inf->aspace);
629 child_inf->removable = 1;
630 child_inf->symfile_flags = SYMFILE_NO_READ;
631 set_current_program_space (child_inf->pspace);
632 clone_program_space (child_inf->pspace, parent_pspace);
633
634 /* Let the shared library layer (e.g., solib-svr4) learn
635 about this new process, relocate the cloned exec, pull in
636 shared libraries, and install the solib event breakpoint.
637 If a "cloned-VM" event was propagated better throughout
638 the core, this wouldn't be required. */
639 solib_create_inferior_hook (0);
640 }
641 }
642
643 return target_follow_fork (follow_child, detach_fork);
644 }
645
646 /* Tell the target to follow the fork we're stopped at. Returns true
647 if the inferior should be resumed; false, if the target for some
648 reason decided it's best not to resume. */
649
650 static int
651 follow_fork (void)
652 {
653 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
654 int should_resume = 1;
655 struct thread_info *tp;
656
657 /* Copy user stepping state to the new inferior thread. FIXME: the
658 followed fork child thread should have a copy of most of the
659 parent thread structure's run control related fields, not just these.
660 Initialized to avoid "may be used uninitialized" warnings from gcc. */
661 struct breakpoint *step_resume_breakpoint = NULL;
662 struct breakpoint *exception_resume_breakpoint = NULL;
663 CORE_ADDR step_range_start = 0;
664 CORE_ADDR step_range_end = 0;
665 struct frame_id step_frame_id = { 0 };
666 struct thread_fsm *thread_fsm = NULL;
667
668 if (!non_stop)
669 {
670 ptid_t wait_ptid;
671 struct target_waitstatus wait_status;
672
673 /* Get the last target status returned by target_wait(). */
674 get_last_target_status (&wait_ptid, &wait_status);
675
676 /* If not stopped at a fork event, then there's nothing else to
677 do. */
678 if (wait_status.kind != TARGET_WAITKIND_FORKED
679 && wait_status.kind != TARGET_WAITKIND_VFORKED)
680 return 1;
681
682 /* Check if we switched over from WAIT_PTID, since the event was
683 reported. */
684 if (wait_ptid != minus_one_ptid
685 && inferior_ptid != wait_ptid)
686 {
687 /* We did. Switch back to WAIT_PTID thread, to tell the
688 target to follow it (in either direction). We'll
689 afterwards refuse to resume, and inform the user what
690 happened. */
691 thread_info *wait_thread
692 = find_thread_ptid (wait_ptid);
693 switch_to_thread (wait_thread);
694 should_resume = 0;
695 }
696 }
697
698 tp = inferior_thread ();
699
700 /* If there were any forks/vforks that were caught and are now to be
701 followed, then do so now. */
702 switch (tp->pending_follow.kind)
703 {
704 case TARGET_WAITKIND_FORKED:
705 case TARGET_WAITKIND_VFORKED:
706 {
707 ptid_t parent, child;
708
709 /* If the user did a next/step, etc, over a fork call,
710 preserve the stepping state in the fork child. */
711 if (follow_child && should_resume)
712 {
713 step_resume_breakpoint = clone_momentary_breakpoint
714 (tp->control.step_resume_breakpoint);
715 step_range_start = tp->control.step_range_start;
716 step_range_end = tp->control.step_range_end;
717 step_frame_id = tp->control.step_frame_id;
718 exception_resume_breakpoint
719 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
720 thread_fsm = tp->thread_fsm;
721
722 /* For now, delete the parent's sr breakpoint, otherwise,
723 parent/child sr breakpoints are considered duplicates,
724 and the child version will not be installed. Remove
725 this when the breakpoints module becomes aware of
726 inferiors and address spaces. */
727 delete_step_resume_breakpoint (tp);
728 tp->control.step_range_start = 0;
729 tp->control.step_range_end = 0;
730 tp->control.step_frame_id = null_frame_id;
731 delete_exception_resume_breakpoint (tp);
732 tp->thread_fsm = NULL;
733 }
734
735 parent = inferior_ptid;
736 child = tp->pending_follow.value.related_pid;
737
738 /* Set up inferior(s) as specified by the caller, and tell the
739 target to do whatever is necessary to follow either parent
740 or child. */
741 if (follow_fork_inferior (follow_child, detach_fork))
742 {
743 /* Target refused to follow, or there's some other reason
744 we shouldn't resume. */
745 should_resume = 0;
746 }
747 else
748 {
749 /* This pending follow fork event is now handled, one way
750 or another. The previous selected thread may be gone
751 from the lists by now, but if it is still around, need
752 to clear the pending follow request. */
753 tp = find_thread_ptid (parent);
754 if (tp)
755 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
756
757 /* This makes sure we don't try to apply the "Switched
758 over from WAIT_PID" logic above. */
759 nullify_last_target_wait_ptid ();
760
761 /* If we followed the child, switch to it... */
762 if (follow_child)
763 {
764 thread_info *child_thr = find_thread_ptid (child);
765 switch_to_thread (child_thr);
766
767 /* ... and preserve the stepping state, in case the
768 user was stepping over the fork call. */
769 if (should_resume)
770 {
771 tp = inferior_thread ();
772 tp->control.step_resume_breakpoint
773 = step_resume_breakpoint;
774 tp->control.step_range_start = step_range_start;
775 tp->control.step_range_end = step_range_end;
776 tp->control.step_frame_id = step_frame_id;
777 tp->control.exception_resume_breakpoint
778 = exception_resume_breakpoint;
779 tp->thread_fsm = thread_fsm;
780 }
781 else
782 {
783 /* If we get here, it was because we're trying to
784 resume from a fork catchpoint, but, the user
785 has switched threads away from the thread that
786 forked. In that case, the resume command
787 issued is most likely not applicable to the
788 child, so just warn, and refuse to resume. */
789 warning (_("Not resuming: switched threads "
790 "before following fork child."));
791 }
792
793 /* Reset breakpoints in the child as appropriate. */
794 follow_inferior_reset_breakpoints ();
795 }
796 }
797 }
798 break;
799 case TARGET_WAITKIND_SPURIOUS:
800 /* Nothing to follow. */
801 break;
802 default:
803 internal_error (__FILE__, __LINE__,
804 "Unexpected pending_follow.kind %d\n",
805 tp->pending_follow.kind);
806 break;
807 }
808
809 return should_resume;
810 }
811
812 static void
813 follow_inferior_reset_breakpoints (void)
814 {
815 struct thread_info *tp = inferior_thread ();
816
817 /* Was there a step_resume breakpoint? (There was if the user
818 did a "next" at the fork() call.) If so, explicitly reset its
819 thread number. Cloned step_resume breakpoints are disabled on
820 creation, so enable it here now that it is associated with the
821 correct thread.
822
823 step_resumes are a form of bp that are made to be per-thread.
824 Since we created the step_resume bp when the parent process
825 was being debugged, and now are switching to the child process,
826 from the breakpoint package's viewpoint, that's a switch of
827 "threads". We must update the bp's notion of which thread
828 it is for, or it'll be ignored when it triggers. */
829
830 if (tp->control.step_resume_breakpoint)
831 {
832 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
833 tp->control.step_resume_breakpoint->loc->enabled = 1;
834 }
835
836 /* Treat exception_resume breakpoints like step_resume breakpoints. */
837 if (tp->control.exception_resume_breakpoint)
838 {
839 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
840 tp->control.exception_resume_breakpoint->loc->enabled = 1;
841 }
842
843 /* Reinsert all breakpoints in the child. The user may have set
844 breakpoints after catching the fork, in which case those
845 were never set in the child, but only in the parent. This makes
846 sure the inserted breakpoints match the breakpoint list. */
847
848 breakpoint_re_set ();
849 insert_breakpoints ();
850 }
851
852 /* The child has exited or execed: resume threads of the parent the
853 user wanted to be executing. */
854
855 static int
856 proceed_after_vfork_done (struct thread_info *thread,
857 void *arg)
858 {
859 int pid = * (int *) arg;
860
861 if (thread->ptid.pid () == pid
862 && thread->state == THREAD_RUNNING
863 && !thread->executing
864 && !thread->stop_requested
865 && thread->suspend.stop_signal == GDB_SIGNAL_0)
866 {
867 if (debug_infrun)
868 fprintf_unfiltered (gdb_stdlog,
869 "infrun: resuming vfork parent thread %s\n",
870 target_pid_to_str (thread->ptid).c_str ());
871
872 switch_to_thread (thread);
873 clear_proceed_status (0);
874 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
875 }
876
877 return 0;
878 }
879
880 /* Save/restore inferior_ptid, current program space and current
881 inferior. Only use this if the current context points at an exited
882 inferior (and therefore there's no current thread to save). */
883 class scoped_restore_exited_inferior
884 {
885 public:
886 scoped_restore_exited_inferior ()
887 : m_saved_ptid (&inferior_ptid)
888 {}
889
890 private:
891 scoped_restore_tmpl<ptid_t> m_saved_ptid;
892 scoped_restore_current_program_space m_pspace;
893 scoped_restore_current_inferior m_inferior;
894 };
895
896 /* Called whenever we notice an exec or exit event, to handle
897 detaching or resuming a vfork parent. */
898
899 static void
900 handle_vfork_child_exec_or_exit (int exec)
901 {
902 struct inferior *inf = current_inferior ();
903
904 if (inf->vfork_parent)
905 {
906 int resume_parent = -1;
907
908 /* This exec or exit marks the end of the shared memory region
909 between the parent and the child. Break the bonds. */
910 inferior *vfork_parent = inf->vfork_parent;
911 inf->vfork_parent->vfork_child = NULL;
912 inf->vfork_parent = NULL;
913
914 /* If the user wanted to detach from the parent, now is the
915 time. */
916 if (vfork_parent->pending_detach)
917 {
918 struct thread_info *tp;
919 struct program_space *pspace;
920 struct address_space *aspace;
921
922 /* follow-fork child, detach-on-fork on. */
923
924 vfork_parent->pending_detach = 0;
925
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
933 if (!exec)
934 maybe_restore_inferior.emplace ();
935 else
936 maybe_restore_thread.emplace ();
937
938 /* We're letting loose of the parent. */
939 tp = any_live_thread_of_inferior (vfork_parent);
940 switch_to_thread (tp);
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
959 if (print_inferior_events)
960 {
961 std::string pidstr
962 = target_pid_to_str (ptid_t (vfork_parent->pid));
963
964 target_terminal::ours_for_output ();
965
966 if (exec)
967 {
968 fprintf_filtered (gdb_stdlog,
969 _("[Detaching vfork parent %s "
970 "after child exec]\n"), pidstr.c_str ());
971 }
972 else
973 {
974 fprintf_filtered (gdb_stdlog,
975 _("[Detaching vfork parent %s "
976 "after child exit]\n"), pidstr.c_str ());
977 }
978 }
979
980 target_detach (vfork_parent, 0);
981
982 /* Put it back. */
983 inf->pspace = pspace;
984 inf->aspace = aspace;
985 }
986 else if (exec)
987 {
988 /* We're staying attached to the parent, so, really give the
989 child a new address space. */
990 inf->pspace = new program_space (maybe_new_address_space ());
991 inf->aspace = inf->pspace->aspace;
992 inf->removable = 1;
993 set_current_program_space (inf->pspace);
994
995 resume_parent = vfork_parent->pid;
996 }
997 else
998 {
999 struct program_space *pspace;
1000
1001 /* If this is a vfork child exiting, then the pspace and
1002 aspaces were shared with the parent. Since we're
1003 reporting the process exit, we'll be mourning all that is
1004 found in the address space, and switching to null_ptid,
1005 preparing to start a new inferior. But, since we don't
1006 want to clobber the parent's address/program spaces, we
1007 go ahead and create a new one for this exiting
1008 inferior. */
1009
1010 /* Switch to null_ptid while running clone_program_space, so
1011 that clone_program_space doesn't want to read the
1012 selected frame of a dead process. */
1013 scoped_restore restore_ptid
1014 = make_scoped_restore (&inferior_ptid, null_ptid);
1015
1016 /* This inferior is dead, so avoid giving the breakpoints
1017 module the option to write through to it (cloning a
1018 program space resets breakpoints). */
1019 inf->aspace = NULL;
1020 inf->pspace = NULL;
1021 pspace = new program_space (maybe_new_address_space ());
1022 set_current_program_space (pspace);
1023 inf->removable = 1;
1024 inf->symfile_flags = SYMFILE_NO_READ;
1025 clone_program_space (pspace, vfork_parent->pspace);
1026 inf->pspace = pspace;
1027 inf->aspace = pspace->aspace;
1028
1029 resume_parent = vfork_parent->pid;
1030 }
1031
1032 gdb_assert (current_program_space == inf->pspace);
1033
1034 if (non_stop && resume_parent != -1)
1035 {
1036 /* If the user wanted the parent to be running, let it go
1037 free now. */
1038 scoped_restore_current_thread restore_thread;
1039
1040 if (debug_infrun)
1041 fprintf_unfiltered (gdb_stdlog,
1042 "infrun: resuming vfork parent process %d\n",
1043 resume_parent);
1044
1045 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1046 }
1047 }
1048 }
1049
1050 /* Enum strings for "set|show follow-exec-mode". */
1051
1052 static const char follow_exec_mode_new[] = "new";
1053 static const char follow_exec_mode_same[] = "same";
1054 static const char *const follow_exec_mode_names[] =
1055 {
1056 follow_exec_mode_new,
1057 follow_exec_mode_same,
1058 NULL,
1059 };
1060
1061 static const char *follow_exec_mode_string = follow_exec_mode_same;
1062 static void
1063 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1064 struct cmd_list_element *c, const char *value)
1065 {
1066 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1067 }
1068
1069 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1070
1071 static void
1072 follow_exec (ptid_t ptid, const char *exec_file_target)
1073 {
1074 struct inferior *inf = current_inferior ();
1075 int pid = ptid.pid ();
1076 ptid_t process_ptid;
1077
1078 /* Switch terminal for any messages produced e.g. by
1079 breakpoint_re_set. */
1080 target_terminal::ours_for_output ();
1081
1082 /* This is an exec event that we actually wish to pay attention to.
1083 Refresh our symbol table to the newly exec'd program, remove any
1084 momentary bp's, etc.
1085
1086 If there are breakpoints, they aren't really inserted now,
1087 since the exec() transformed our inferior into a fresh set
1088 of instructions.
1089
1090 We want to preserve symbolic breakpoints on the list, since
1091 we have hopes that they can be reset after the new a.out's
1092 symbol table is read.
1093
1094 However, any "raw" breakpoints must be removed from the list
1095 (e.g., the solib bp's), since their address is probably invalid
1096 now.
1097
1098 And, we DON'T want to call delete_breakpoints() here, since
1099 that may write the bp's "shadow contents" (the instruction
1100 value that was overwritten with a TRAP instruction). Since
1101 we now have a new a.out, those shadow contents aren't valid. */
1102
1103 mark_breakpoints_out ();
1104
1105 /* The target reports the exec event to the main thread, even if
1106 some other thread does the exec, and even if the main thread was
1107 stopped or already gone. We may still have non-leader threads of
1108 the process on our list. E.g., on targets that don't have thread
1109 exit events (like remote); or on native Linux in non-stop mode if
1110 there were only two threads in the inferior and the non-leader
1111 one is the one that execs (and nothing forces an update of the
1112 thread list up to here). When debugging remotely, it's best to
1113 avoid extra traffic, when possible, so avoid syncing the thread
1114 list with the target, and instead go ahead and delete all threads
1115 of the process but one that reported the event. Note this must
1116 be done before calling update_breakpoints_after_exec, as
1117 otherwise clearing the threads' resources would reference stale
1118 thread breakpoints -- it may have been one of these threads that
1119 stepped across the exec. We could just clear their stepping
1120 states, but as long as we're iterating, might as well delete
1121 them. Deleting them now rather than at the next user-visible
1122 stop provides a nicer sequence of events for user and MI
1123 notifications. */
1124 for (thread_info *th : all_threads_safe ())
1125 if (th->ptid.pid () == pid && th->ptid != ptid)
1126 delete_thread (th);
1127
1128 /* We also need to clear any left over stale state for the
1129 leader/event thread. E.g., if there was any step-resume
1130 breakpoint or similar, it's gone now. We cannot truly
1131 step-to-next statement through an exec(). */
1132 thread_info *th = inferior_thread ();
1133 th->control.step_resume_breakpoint = NULL;
1134 th->control.exception_resume_breakpoint = NULL;
1135 th->control.single_step_breakpoints = NULL;
1136 th->control.step_range_start = 0;
1137 th->control.step_range_end = 0;
1138
1139 /* The user may have had the main thread held stopped in the
1140 previous image (e.g., schedlock on, or non-stop). Release
1141 it now. */
1142 th->stop_requested = 0;
1143
1144 update_breakpoints_after_exec ();
1145
1146 /* What is this a.out's name? */
1147 process_ptid = ptid_t (pid);
1148 printf_unfiltered (_("%s is executing new program: %s\n"),
1149 target_pid_to_str (process_ptid).c_str (),
1150 exec_file_target);
1151
1152 /* We've followed the inferior through an exec. Therefore, the
1153 inferior has essentially been killed & reborn. */
1154
1155 breakpoint_init_inferior (inf_execd);
1156
1157 gdb::unique_xmalloc_ptr<char> exec_file_host
1158 = exec_file_find (exec_file_target, NULL);
1159
1160 /* If we were unable to map the executable target pathname onto a host
1161 pathname, tell the user that. Otherwise GDB's subsequent behavior
1162 is confusing. Maybe it would even be better to stop at this point
1163 so that the user can specify a file manually before continuing. */
1164 if (exec_file_host == NULL)
1165 warning (_("Could not load symbols for executable %s.\n"
1166 "Do you need \"set sysroot\"?"),
1167 exec_file_target);
1168
1169 /* Reset the shared library package. This ensures that we get a
1170 shlib event when the child reaches "_start", at which point the
1171 dld will have had a chance to initialize the child. */
1172 /* Also, loading a symbol file below may trigger symbol lookups, and
1173 we don't want those to be satisfied by the libraries of the
1174 previous incarnation of this process. */
1175 no_shared_libraries (NULL, 0);
1176
1177 if (follow_exec_mode_string == follow_exec_mode_new)
1178 {
1179 /* The user wants to keep the old inferior and program spaces
1180 around. Create a new fresh one, and switch to it. */
1181
1182 /* Do exit processing for the original inferior before setting the new
1183 inferior's pid. Having two inferiors with the same pid would confuse
1184 find_inferior_p(t)id. Transfer the terminal state and info from the
1185 old to the new inferior. */
1186 inf = add_inferior_with_spaces ();
1187 swap_terminal_info (inf, current_inferior ());
1188 exit_inferior_silent (current_inferior ());
1189
1190 inf->pid = pid;
1191 target_follow_exec (inf, exec_file_target);
1192
1193 set_current_inferior (inf);
1194 set_current_program_space (inf->pspace);
1195 add_thread (ptid);
1196 }
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
1206 }
1207
1208 gdb_assert (current_program_space == inf->pspace);
1209
1210 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1211 because the proper displacement for a PIE (Position Independent
1212 Executable) main symbol file will only be computed by
1213 solib_create_inferior_hook below. breakpoint_re_set would fail
1214 to insert the breakpoints with the zero displacement. */
1215 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1216
1217 /* If the target can specify a description, read it. Must do this
1218 after flipping to the new executable (because the target supplied
1219 description must be compatible with the executable's
1220 architecture, and the old executable may e.g., be 32-bit, while
1221 the new one 64-bit), and before anything involving memory or
1222 registers. */
1223 target_find_description ();
1224
1225 solib_create_inferior_hook (0);
1226
1227 jit_inferior_created_hook ();
1228
1229 breakpoint_re_set ();
1230
1231 /* Reinsert all breakpoints. (Those which were symbolic have
1232 been reset to the proper address in the new a.out, thanks
1233 to symbol_file_command...). */
1234 insert_breakpoints ();
1235
1236 /* The next resume of this inferior should bring it to the shlib
1237 startup breakpoints. (If the user had also set bp's on
1238 "main" from the old (parent) process, then they'll auto-
1239 matically get reset there in the new process.). */
1240 }
1241
1242 /* The queue of threads that need to do a step-over operation to get
1243 past e.g., a breakpoint. What technique is used to step over the
1244 breakpoint/watchpoint does not matter -- all threads end up in the
1245 same queue, to maintain rough temporal order of execution, in order
1246 to avoid starvation, otherwise, we could e.g., find ourselves
1247 constantly stepping the same couple threads past their breakpoints
1248 over and over, if the single-step finish fast enough. */
1249 struct thread_info *step_over_queue_head;
1250
1251 /* Bit flags indicating what the thread needs to step over. */
1252
1253 enum step_over_what_flag
1254 {
1255 /* Step over a breakpoint. */
1256 STEP_OVER_BREAKPOINT = 1,
1257
1258 /* Step past a non-continuable watchpoint, in order to let the
1259 instruction execute so we can evaluate the watchpoint
1260 expression. */
1261 STEP_OVER_WATCHPOINT = 2
1262 };
1263 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1264
1265 /* Info about an instruction that is being stepped over. */
1266
1267 struct step_over_info
1268 {
1269 /* If we're stepping past a breakpoint, this is the address space
1270 and address of the instruction the breakpoint is set at. We'll
1271 skip inserting all breakpoints here. Valid iff ASPACE is
1272 non-NULL. */
1273 const address_space *aspace;
1274 CORE_ADDR address;
1275
1276 /* The instruction being stepped over triggers a nonsteppable
1277 watchpoint. If true, we'll skip inserting watchpoints. */
1278 int nonsteppable_watchpoint_p;
1279
1280 /* The thread's global number. */
1281 int thread;
1282 };
1283
1284 /* The step-over info of the location that is being stepped over.
1285
1286 Note that with async/breakpoint always-inserted mode, a user might
1287 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1288 being stepped over. As setting a new breakpoint inserts all
1289 breakpoints, we need to make sure the breakpoint being stepped over
1290 isn't inserted then. We do that by only clearing the step-over
1291 info when the step-over is actually finished (or aborted).
1292
1293 Presently GDB can only step over one breakpoint at any given time.
1294 Given threads that can't run code in the same address space as the
1295 breakpoint's can't really miss the breakpoint, GDB could be taught
1296 to step-over at most one breakpoint per address space (so this info
1297 could move to the address space object if/when GDB is extended).
1298 The set of breakpoints being stepped over will normally be much
1299 smaller than the set of all breakpoints, so a flag in the
1300 breakpoint location structure would be wasteful. A separate list
1301 also saves complexity and run-time, as otherwise we'd have to go
1302 through all breakpoint locations clearing their flag whenever we
1303 start a new sequence. Similar considerations weigh against storing
1304 this info in the thread object. Plus, not all step overs actually
1305 have breakpoint locations -- e.g., stepping past a single-step
1306 breakpoint, or stepping to complete a non-continuable
1307 watchpoint. */
1308 static struct step_over_info step_over_info;
1309
1310 /* Record the address of the breakpoint/instruction we're currently
1311 stepping over.
1312 N.B. We record the aspace and address now, instead of say just the thread,
1313 because when we need the info later the thread may be running. */
1314
1315 static void
1316 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1317 int nonsteppable_watchpoint_p,
1318 int thread)
1319 {
1320 step_over_info.aspace = aspace;
1321 step_over_info.address = address;
1322 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1323 step_over_info.thread = thread;
1324 }
1325
1326 /* Called when we're not longer stepping over a breakpoint / an
1327 instruction, so all breakpoints are free to be (re)inserted. */
1328
1329 static void
1330 clear_step_over_info (void)
1331 {
1332 if (debug_infrun)
1333 fprintf_unfiltered (gdb_stdlog,
1334 "infrun: clear_step_over_info\n");
1335 step_over_info.aspace = NULL;
1336 step_over_info.address = 0;
1337 step_over_info.nonsteppable_watchpoint_p = 0;
1338 step_over_info.thread = -1;
1339 }
1340
1341 /* See infrun.h. */
1342
1343 int
1344 stepping_past_instruction_at (struct address_space *aspace,
1345 CORE_ADDR address)
1346 {
1347 return (step_over_info.aspace != NULL
1348 && breakpoint_address_match (aspace, address,
1349 step_over_info.aspace,
1350 step_over_info.address));
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 thread_is_stepping_over_breakpoint (int thread)
1357 {
1358 return (step_over_info.thread != -1
1359 && thread == step_over_info.thread);
1360 }
1361
1362 /* See infrun.h. */
1363
1364 int
1365 stepping_past_nonsteppable_watchpoint (void)
1366 {
1367 return step_over_info.nonsteppable_watchpoint_p;
1368 }
1369
1370 /* Returns true if step-over info is valid. */
1371
1372 static int
1373 step_over_info_valid_p (void)
1374 {
1375 return (step_over_info.aspace != NULL
1376 || stepping_past_nonsteppable_watchpoint ());
1377 }
1378
1379 \f
1380 /* Displaced stepping. */
1381
1382 /* In non-stop debugging mode, we must take special care to manage
1383 breakpoints properly; in particular, the traditional strategy for
1384 stepping a thread past a breakpoint it has hit is unsuitable.
1385 'Displaced stepping' is a tactic for stepping one thread past a
1386 breakpoint it has hit while ensuring that other threads running
1387 concurrently will hit the breakpoint as they should.
1388
1389 The traditional way to step a thread T off a breakpoint in a
1390 multi-threaded program in all-stop mode is as follows:
1391
1392 a0) Initially, all threads are stopped, and breakpoints are not
1393 inserted.
1394 a1) We single-step T, leaving breakpoints uninserted.
1395 a2) We insert breakpoints, and resume all threads.
1396
1397 In non-stop debugging, however, this strategy is unsuitable: we
1398 don't want to have to stop all threads in the system in order to
1399 continue or step T past a breakpoint. Instead, we use displaced
1400 stepping:
1401
1402 n0) Initially, T is stopped, other threads are running, and
1403 breakpoints are inserted.
1404 n1) We copy the instruction "under" the breakpoint to a separate
1405 location, outside the main code stream, making any adjustments
1406 to the instruction, register, and memory state as directed by
1407 T's architecture.
1408 n2) We single-step T over the instruction at its new location.
1409 n3) We adjust the resulting register and memory state as directed
1410 by T's architecture. This includes resetting T's PC to point
1411 back into the main instruction stream.
1412 n4) We resume T.
1413
1414 This approach depends on the following gdbarch methods:
1415
1416 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1417 indicate where to copy the instruction, and how much space must
1418 be reserved there. We use these in step n1.
1419
1420 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1421 address, and makes any necessary adjustments to the instruction,
1422 register contents, and memory. We use this in step n1.
1423
1424 - gdbarch_displaced_step_fixup adjusts registers and memory after
1425 we have successfully single-stepped the instruction, to yield the
1426 same effect the instruction would have had if we had executed it
1427 at its original address. We use this in step n3.
1428
1429 The gdbarch_displaced_step_copy_insn and
1430 gdbarch_displaced_step_fixup functions must be written so that
1431 copying an instruction with gdbarch_displaced_step_copy_insn,
1432 single-stepping across the copied instruction, and then applying
1433 gdbarch_displaced_insn_fixup should have the same effects on the
1434 thread's memory and registers as stepping the instruction in place
1435 would have. Exactly which responsibilities fall to the copy and
1436 which fall to the fixup is up to the author of those functions.
1437
1438 See the comments in gdbarch.sh for details.
1439
1440 Note that displaced stepping and software single-step cannot
1441 currently be used in combination, although with some care I think
1442 they could be made to. Software single-step works by placing
1443 breakpoints on all possible subsequent instructions; if the
1444 displaced instruction is a PC-relative jump, those breakpoints
1445 could fall in very strange places --- on pages that aren't
1446 executable, or at addresses that are not proper instruction
1447 boundaries. (We do generally let other threads run while we wait
1448 to hit the software single-step breakpoint, and they might
1449 encounter such a corrupted instruction.) One way to work around
1450 this would be to have gdbarch_displaced_step_copy_insn fully
1451 simulate the effect of PC-relative instructions (and return NULL)
1452 on architectures that use software single-stepping.
1453
1454 In non-stop mode, we can have independent and simultaneous step
1455 requests, so more than one thread may need to simultaneously step
1456 over a breakpoint. The current implementation assumes there is
1457 only one scratch space per process. In this case, we have to
1458 serialize access to the scratch space. If thread A wants to step
1459 over a breakpoint, but we are currently waiting for some other
1460 thread to complete a displaced step, we leave thread A stopped and
1461 place it in the displaced_step_request_queue. Whenever a displaced
1462 step finishes, we pick the next thread in the queue and start a new
1463 displaced step operation on it. See displaced_step_prepare and
1464 displaced_step_fixup for details. */
1465
1466 /* Default destructor for displaced_step_closure. */
1467
1468 displaced_step_closure::~displaced_step_closure () = default;
1469
1470 /* Get the displaced stepping state of process PID. */
1471
1472 static displaced_step_inferior_state *
1473 get_displaced_stepping_state (inferior *inf)
1474 {
1475 return &inf->displaced_step_state;
1476 }
1477
1478 /* Returns true if any inferior has a thread doing a displaced
1479 step. */
1480
1481 static bool
1482 displaced_step_in_progress_any_inferior ()
1483 {
1484 for (inferior *i : all_inferiors ())
1485 {
1486 if (i->displaced_step_state.step_thread != nullptr)
1487 return true;
1488 }
1489
1490 return false;
1491 }
1492
1493 /* Return true if thread represented by PTID is doing a displaced
1494 step. */
1495
1496 static int
1497 displaced_step_in_progress_thread (thread_info *thread)
1498 {
1499 gdb_assert (thread != NULL);
1500
1501 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1502 }
1503
1504 /* Return true if process PID has a thread doing a displaced step. */
1505
1506 static int
1507 displaced_step_in_progress (inferior *inf)
1508 {
1509 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1510 }
1511
1512 /* If inferior is in displaced stepping, and ADDR equals to starting address
1513 of copy area, return corresponding displaced_step_closure. Otherwise,
1514 return NULL. */
1515
1516 struct displaced_step_closure*
1517 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1518 {
1519 displaced_step_inferior_state *displaced
1520 = get_displaced_stepping_state (current_inferior ());
1521
1522 /* If checking the mode of displaced instruction in copy area. */
1523 if (displaced->step_thread != nullptr
1524 && displaced->step_copy == addr)
1525 return displaced->step_closure;
1526
1527 return NULL;
1528 }
1529
1530 static void
1531 infrun_inferior_exit (struct inferior *inf)
1532 {
1533 inf->displaced_step_state.reset ();
1534 }
1535
1536 /* If ON, and the architecture supports it, GDB will use displaced
1537 stepping to step over breakpoints. If OFF, or if the architecture
1538 doesn't support it, GDB will instead use the traditional
1539 hold-and-step approach. If AUTO (which is the default), GDB will
1540 decide which technique to use to step over breakpoints depending on
1541 which of all-stop or non-stop mode is active --- displaced stepping
1542 in non-stop mode; hold-and-step in all-stop mode. */
1543
1544 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1545
1546 static void
1547 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1548 struct cmd_list_element *c,
1549 const char *value)
1550 {
1551 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1552 fprintf_filtered (file,
1553 _("Debugger's willingness to use displaced stepping "
1554 "to step over breakpoints is %s (currently %s).\n"),
1555 value, target_is_non_stop_p () ? "on" : "off");
1556 else
1557 fprintf_filtered (file,
1558 _("Debugger's willingness to use displaced stepping "
1559 "to step over breakpoints is %s.\n"), value);
1560 }
1561
1562 /* Return non-zero if displaced stepping can/should be used to step
1563 over breakpoints of thread TP. */
1564
1565 static int
1566 use_displaced_stepping (struct thread_info *tp)
1567 {
1568 struct regcache *regcache = get_thread_regcache (tp);
1569 struct gdbarch *gdbarch = regcache->arch ();
1570 displaced_step_inferior_state *displaced_state
1571 = get_displaced_stepping_state (tp->inf);
1572
1573 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1574 && target_is_non_stop_p ())
1575 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1576 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1577 && find_record_target () == NULL
1578 && !displaced_state->failed_before);
1579 }
1580
1581 /* Clean out any stray displaced stepping state. */
1582 static void
1583 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1584 {
1585 /* Indicate that there is no cleanup pending. */
1586 displaced->step_thread = nullptr;
1587
1588 delete displaced->step_closure;
1589 displaced->step_closure = NULL;
1590 }
1591
1592 /* A cleanup that wraps displaced_step_clear. */
1593 using displaced_step_clear_cleanup
1594 = FORWARD_SCOPE_EXIT (displaced_step_clear);
1595
1596 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1597 void
1598 displaced_step_dump_bytes (struct ui_file *file,
1599 const gdb_byte *buf,
1600 size_t len)
1601 {
1602 int i;
1603
1604 for (i = 0; i < len; i++)
1605 fprintf_unfiltered (file, "%02x ", buf[i]);
1606 fputs_unfiltered ("\n", file);
1607 }
1608
1609 /* Prepare to single-step, using displaced stepping.
1610
1611 Note that we cannot use displaced stepping when we have a signal to
1612 deliver. If we have a signal to deliver and an instruction to step
1613 over, then after the step, there will be no indication from the
1614 target whether the thread entered a signal handler or ignored the
1615 signal and stepped over the instruction successfully --- both cases
1616 result in a simple SIGTRAP. In the first case we mustn't do a
1617 fixup, and in the second case we must --- but we can't tell which.
1618 Comments in the code for 'random signals' in handle_inferior_event
1619 explain how we handle this case instead.
1620
1621 Returns 1 if preparing was successful -- this thread is going to be
1622 stepped now; 0 if displaced stepping this thread got queued; or -1
1623 if this instruction can't be displaced stepped. */
1624
1625 static int
1626 displaced_step_prepare_throw (thread_info *tp)
1627 {
1628 regcache *regcache = get_thread_regcache (tp);
1629 struct gdbarch *gdbarch = regcache->arch ();
1630 const address_space *aspace = regcache->aspace ();
1631 CORE_ADDR original, copy;
1632 ULONGEST len;
1633 struct displaced_step_closure *closure;
1634 int status;
1635
1636 /* We should never reach this function if the architecture does not
1637 support displaced stepping. */
1638 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1639
1640 /* Nor if the thread isn't meant to step over a breakpoint. */
1641 gdb_assert (tp->control.trap_expected);
1642
1643 /* Disable range stepping while executing in the scratch pad. We
1644 want a single-step even if executing the displaced instruction in
1645 the scratch buffer lands within the stepping range (e.g., a
1646 jump/branch). */
1647 tp->control.may_range_step = 0;
1648
1649 /* We have to displaced step one thread at a time, as we only have
1650 access to a single scratch space per inferior. */
1651
1652 displaced_step_inferior_state *displaced
1653 = get_displaced_stepping_state (tp->inf);
1654
1655 if (displaced->step_thread != nullptr)
1656 {
1657 /* Already waiting for a displaced step to finish. Defer this
1658 request and place in queue. */
1659
1660 if (debug_displaced)
1661 fprintf_unfiltered (gdb_stdlog,
1662 "displaced: deferring step of %s\n",
1663 target_pid_to_str (tp->ptid).c_str ());
1664
1665 thread_step_over_chain_enqueue (tp);
1666 return 0;
1667 }
1668 else
1669 {
1670 if (debug_displaced)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "displaced: stepping %s now\n",
1673 target_pid_to_str (tp->ptid).c_str ());
1674 }
1675
1676 displaced_step_clear (displaced);
1677
1678 scoped_restore_current_thread restore_thread;
1679
1680 switch_to_thread (tp);
1681
1682 original = regcache_read_pc (regcache);
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
1687 if (breakpoint_in_range_p (aspace, copy, len))
1688 {
1689 /* There's a breakpoint set in the scratch pad location range
1690 (which is usually around the entry point). We'd either
1691 install it before resuming, which would overwrite/corrupt the
1692 scratch pad, or if it was already inserted, this displaced
1693 step would overwrite it. The latter is OK in the sense that
1694 we already assume that no thread is going to execute the code
1695 in the scratch pad range (after initial startup) anyway, but
1696 the former is unacceptable. Simply punt and fallback to
1697 stepping over this breakpoint in-line. */
1698 if (debug_displaced)
1699 {
1700 fprintf_unfiltered (gdb_stdlog,
1701 "displaced: breakpoint set in scratch pad. "
1702 "Stepping over breakpoint in-line instead.\n");
1703 }
1704
1705 return -1;
1706 }
1707
1708 /* Save the original contents of the copy area. */
1709 displaced->step_saved_copy.resize (len);
1710 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1711 if (status != 0)
1712 throw_error (MEMORY_ERROR,
1713 _("Error accessing memory address %s (%s) for "
1714 "displaced-stepping scratch space."),
1715 paddress (gdbarch, copy), safe_strerror (status));
1716 if (debug_displaced)
1717 {
1718 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1719 paddress (gdbarch, copy));
1720 displaced_step_dump_bytes (gdb_stdlog,
1721 displaced->step_saved_copy.data (),
1722 len);
1723 };
1724
1725 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1726 original, copy, regcache);
1727 if (closure == NULL)
1728 {
1729 /* The architecture doesn't know how or want to displaced step
1730 this instruction or instruction sequence. Fallback to
1731 stepping over the breakpoint in-line. */
1732 return -1;
1733 }
1734
1735 /* Save the information we need to fix things up if the step
1736 succeeds. */
1737 displaced->step_thread = tp;
1738 displaced->step_gdbarch = gdbarch;
1739 displaced->step_closure = closure;
1740 displaced->step_original = original;
1741 displaced->step_copy = copy;
1742
1743 {
1744 displaced_step_clear_cleanup cleanup (displaced);
1745
1746 /* Resume execution at the copy. */
1747 regcache_write_pc (regcache, copy);
1748
1749 cleanup.release ();
1750 }
1751
1752 if (debug_displaced)
1753 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1754 paddress (gdbarch, copy));
1755
1756 return 1;
1757 }
1758
1759 /* Wrapper for displaced_step_prepare_throw that disabled further
1760 attempts at displaced stepping if we get a memory error. */
1761
1762 static int
1763 displaced_step_prepare (thread_info *thread)
1764 {
1765 int prepared = -1;
1766
1767 try
1768 {
1769 prepared = displaced_step_prepare_throw (thread);
1770 }
1771 catch (const gdb_exception_error &ex)
1772 {
1773 struct displaced_step_inferior_state *displaced_state;
1774
1775 if (ex.error != MEMORY_ERROR
1776 && ex.error != NOT_SUPPORTED_ERROR)
1777 throw;
1778
1779 if (debug_infrun)
1780 {
1781 fprintf_unfiltered (gdb_stdlog,
1782 "infrun: disabling displaced stepping: %s\n",
1783 ex.what ());
1784 }
1785
1786 /* Be verbose if "set displaced-stepping" is "on", silent if
1787 "auto". */
1788 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1789 {
1790 warning (_("disabling displaced stepping: %s"),
1791 ex.what ());
1792 }
1793
1794 /* Disable further displaced stepping attempts. */
1795 displaced_state
1796 = get_displaced_stepping_state (thread->inf);
1797 displaced_state->failed_before = 1;
1798 }
1799
1800 return prepared;
1801 }
1802
1803 static void
1804 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1805 const gdb_byte *myaddr, int len)
1806 {
1807 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1808
1809 inferior_ptid = ptid;
1810 write_memory (memaddr, myaddr, len);
1811 }
1812
1813 /* Restore the contents of the copy area for thread PTID. */
1814
1815 static void
1816 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1817 ptid_t ptid)
1818 {
1819 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1820
1821 write_memory_ptid (ptid, displaced->step_copy,
1822 displaced->step_saved_copy.data (), len);
1823 if (debug_displaced)
1824 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1825 target_pid_to_str (ptid).c_str (),
1826 paddress (displaced->step_gdbarch,
1827 displaced->step_copy));
1828 }
1829
1830 /* If we displaced stepped an instruction successfully, adjust
1831 registers and memory to yield the same effect the instruction would
1832 have had if we had executed it at its original address, and return
1833 1. If the instruction didn't complete, relocate the PC and return
1834 -1. If the thread wasn't displaced stepping, return 0. */
1835
1836 static int
1837 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1838 {
1839 struct displaced_step_inferior_state *displaced
1840 = get_displaced_stepping_state (event_thread->inf);
1841 int ret;
1842
1843 /* Was this event for the thread we displaced? */
1844 if (displaced->step_thread != event_thread)
1845 return 0;
1846
1847 displaced_step_clear_cleanup cleanup (displaced);
1848
1849 displaced_step_restore (displaced, displaced->step_thread->ptid);
1850
1851 /* Fixup may need to read memory/registers. Switch to the thread
1852 that we're fixing up. Also, target_stopped_by_watchpoint checks
1853 the current thread. */
1854 switch_to_thread (event_thread);
1855
1856 /* Did the instruction complete successfully? */
1857 if (signal == GDB_SIGNAL_TRAP
1858 && !(target_stopped_by_watchpoint ()
1859 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1860 || target_have_steppable_watchpoint)))
1861 {
1862 /* Fix up the resulting state. */
1863 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1864 displaced->step_closure,
1865 displaced->step_original,
1866 displaced->step_copy,
1867 get_thread_regcache (displaced->step_thread));
1868 ret = 1;
1869 }
1870 else
1871 {
1872 /* Since the instruction didn't complete, all we can do is
1873 relocate the PC. */
1874 struct regcache *regcache = get_thread_regcache (event_thread);
1875 CORE_ADDR pc = regcache_read_pc (regcache);
1876
1877 pc = displaced->step_original + (pc - displaced->step_copy);
1878 regcache_write_pc (regcache, pc);
1879 ret = -1;
1880 }
1881
1882 return ret;
1883 }
1884
1885 /* Data to be passed around while handling an event. This data is
1886 discarded between events. */
1887 struct execution_control_state
1888 {
1889 ptid_t ptid;
1890 /* The thread that got the event, if this was a thread event; NULL
1891 otherwise. */
1892 struct thread_info *event_thread;
1893
1894 struct target_waitstatus ws;
1895 int stop_func_filled_in;
1896 CORE_ADDR stop_func_start;
1897 CORE_ADDR stop_func_end;
1898 const char *stop_func_name;
1899 int wait_some_more;
1900
1901 /* True if the event thread hit the single-step breakpoint of
1902 another thread. Thus the event doesn't cause a stop, the thread
1903 needs to be single-stepped past the single-step breakpoint before
1904 we can switch back to the original stepping thread. */
1905 int hit_singlestep_breakpoint;
1906 };
1907
1908 /* Clear ECS and set it to point at TP. */
1909
1910 static void
1911 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1912 {
1913 memset (ecs, 0, sizeof (*ecs));
1914 ecs->event_thread = tp;
1915 ecs->ptid = tp->ptid;
1916 }
1917
1918 static void keep_going_pass_signal (struct execution_control_state *ecs);
1919 static void prepare_to_wait (struct execution_control_state *ecs);
1920 static int keep_going_stepped_thread (struct thread_info *tp);
1921 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1922
1923 /* Are there any pending step-over requests? If so, run all we can
1924 now and return true. Otherwise, return false. */
1925
1926 static int
1927 start_step_over (void)
1928 {
1929 struct thread_info *tp, *next;
1930
1931 /* Don't start a new step-over if we already have an in-line
1932 step-over operation ongoing. */
1933 if (step_over_info_valid_p ())
1934 return 0;
1935
1936 for (tp = step_over_queue_head; tp != NULL; tp = next)
1937 {
1938 struct execution_control_state ecss;
1939 struct execution_control_state *ecs = &ecss;
1940 step_over_what step_what;
1941 int must_be_in_line;
1942
1943 gdb_assert (!tp->stop_requested);
1944
1945 next = thread_step_over_chain_next (tp);
1946
1947 /* If this inferior already has a displaced step in process,
1948 don't start a new one. */
1949 if (displaced_step_in_progress (tp->inf))
1950 continue;
1951
1952 step_what = thread_still_needs_step_over (tp);
1953 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1954 || ((step_what & STEP_OVER_BREAKPOINT)
1955 && !use_displaced_stepping (tp)));
1956
1957 /* We currently stop all threads of all processes to step-over
1958 in-line. If we need to start a new in-line step-over, let
1959 any pending displaced steps finish first. */
1960 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1961 return 0;
1962
1963 thread_step_over_chain_remove (tp);
1964
1965 if (step_over_queue_head == NULL)
1966 {
1967 if (debug_infrun)
1968 fprintf_unfiltered (gdb_stdlog,
1969 "infrun: step-over queue now empty\n");
1970 }
1971
1972 if (tp->control.trap_expected
1973 || tp->resumed
1974 || tp->executing)
1975 {
1976 internal_error (__FILE__, __LINE__,
1977 "[%s] has inconsistent state: "
1978 "trap_expected=%d, resumed=%d, executing=%d\n",
1979 target_pid_to_str (tp->ptid).c_str (),
1980 tp->control.trap_expected,
1981 tp->resumed,
1982 tp->executing);
1983 }
1984
1985 if (debug_infrun)
1986 fprintf_unfiltered (gdb_stdlog,
1987 "infrun: resuming [%s] for step-over\n",
1988 target_pid_to_str (tp->ptid).c_str ());
1989
1990 /* keep_going_pass_signal skips the step-over if the breakpoint
1991 is no longer inserted. In all-stop, we want to keep looking
1992 for a thread that needs a step-over instead of resuming TP,
1993 because we wouldn't be able to resume anything else until the
1994 target stops again. In non-stop, the resume always resumes
1995 only TP, so it's OK to let the thread resume freely. */
1996 if (!target_is_non_stop_p () && !step_what)
1997 continue;
1998
1999 switch_to_thread (tp);
2000 reset_ecs (ecs, tp);
2001 keep_going_pass_signal (ecs);
2002
2003 if (!ecs->wait_some_more)
2004 error (_("Command aborted."));
2005
2006 gdb_assert (tp->resumed);
2007
2008 /* If we started a new in-line step-over, we're done. */
2009 if (step_over_info_valid_p ())
2010 {
2011 gdb_assert (tp->control.trap_expected);
2012 return 1;
2013 }
2014
2015 if (!target_is_non_stop_p ())
2016 {
2017 /* On all-stop, shouldn't have resumed unless we needed a
2018 step over. */
2019 gdb_assert (tp->control.trap_expected
2020 || tp->step_after_step_resume_breakpoint);
2021
2022 /* With remote targets (at least), in all-stop, we can't
2023 issue any further remote commands until the program stops
2024 again. */
2025 return 1;
2026 }
2027
2028 /* Either the thread no longer needed a step-over, or a new
2029 displaced stepping sequence started. Even in the latter
2030 case, continue looking. Maybe we can also start another
2031 displaced step on a thread of other process. */
2032 }
2033
2034 return 0;
2035 }
2036
2037 /* Update global variables holding ptids to hold NEW_PTID if they were
2038 holding OLD_PTID. */
2039 static void
2040 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2041 {
2042 if (inferior_ptid == old_ptid)
2043 inferior_ptid = new_ptid;
2044 }
2045
2046 \f
2047
2048 static const char schedlock_off[] = "off";
2049 static const char schedlock_on[] = "on";
2050 static const char schedlock_step[] = "step";
2051 static const char schedlock_replay[] = "replay";
2052 static const char *const scheduler_enums[] = {
2053 schedlock_off,
2054 schedlock_on,
2055 schedlock_step,
2056 schedlock_replay,
2057 NULL
2058 };
2059 static const char *scheduler_mode = schedlock_replay;
2060 static void
2061 show_scheduler_mode (struct ui_file *file, int from_tty,
2062 struct cmd_list_element *c, const char *value)
2063 {
2064 fprintf_filtered (file,
2065 _("Mode for locking scheduler "
2066 "during execution is \"%s\".\n"),
2067 value);
2068 }
2069
2070 static void
2071 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2072 {
2073 if (!target_can_lock_scheduler)
2074 {
2075 scheduler_mode = schedlock_off;
2076 error (_("Target '%s' cannot support this command."), target_shortname);
2077 }
2078 }
2079
2080 /* True if execution commands resume all threads of all processes by
2081 default; otherwise, resume only threads of the current inferior
2082 process. */
2083 bool sched_multi = false;
2084
2085 /* Try to setup for software single stepping over the specified location.
2086 Return 1 if target_resume() should use hardware single step.
2087
2088 GDBARCH the current gdbarch.
2089 PC the location to step over. */
2090
2091 static int
2092 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2093 {
2094 int hw_step = 1;
2095
2096 if (execution_direction == EXEC_FORWARD
2097 && gdbarch_software_single_step_p (gdbarch))
2098 hw_step = !insert_single_step_breakpoints (gdbarch);
2099
2100 return hw_step;
2101 }
2102
2103 /* See infrun.h. */
2104
2105 ptid_t
2106 user_visible_resume_ptid (int step)
2107 {
2108 ptid_t resume_ptid;
2109
2110 if (non_stop)
2111 {
2112 /* With non-stop mode on, threads are always handled
2113 individually. */
2114 resume_ptid = inferior_ptid;
2115 }
2116 else if ((scheduler_mode == schedlock_on)
2117 || (scheduler_mode == schedlock_step && step))
2118 {
2119 /* User-settable 'scheduler' mode requires solo thread
2120 resume. */
2121 resume_ptid = inferior_ptid;
2122 }
2123 else if ((scheduler_mode == schedlock_replay)
2124 && target_record_will_replay (minus_one_ptid, execution_direction))
2125 {
2126 /* User-settable 'scheduler' mode requires solo thread resume in replay
2127 mode. */
2128 resume_ptid = inferior_ptid;
2129 }
2130 else if (!sched_multi && target_supports_multi_process ())
2131 {
2132 /* Resume all threads of the current process (and none of other
2133 processes). */
2134 resume_ptid = ptid_t (inferior_ptid.pid ());
2135 }
2136 else
2137 {
2138 /* Resume all threads of all processes. */
2139 resume_ptid = RESUME_ALL;
2140 }
2141
2142 return resume_ptid;
2143 }
2144
2145 /* Return a ptid representing the set of threads that we will resume,
2146 in the perspective of the target, assuming run control handling
2147 does not require leaving some threads stopped (e.g., stepping past
2148 breakpoint). USER_STEP indicates whether we're about to start the
2149 target for a stepping command. */
2150
2151 static ptid_t
2152 internal_resume_ptid (int user_step)
2153 {
2154 /* In non-stop, we always control threads individually. Note that
2155 the target may always work in non-stop mode even with "set
2156 non-stop off", in which case user_visible_resume_ptid could
2157 return a wildcard ptid. */
2158 if (target_is_non_stop_p ())
2159 return inferior_ptid;
2160 else
2161 return user_visible_resume_ptid (user_step);
2162 }
2163
2164 /* Wrapper for target_resume, that handles infrun-specific
2165 bookkeeping. */
2166
2167 static void
2168 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2169 {
2170 struct thread_info *tp = inferior_thread ();
2171
2172 gdb_assert (!tp->stop_requested);
2173
2174 /* Install inferior's terminal modes. */
2175 target_terminal::inferior ();
2176
2177 /* Avoid confusing the next resume, if the next stop/resume
2178 happens to apply to another thread. */
2179 tp->suspend.stop_signal = GDB_SIGNAL_0;
2180
2181 /* Advise target which signals may be handled silently.
2182
2183 If we have removed breakpoints because we are stepping over one
2184 in-line (in any thread), we need to receive all signals to avoid
2185 accidentally skipping a breakpoint during execution of a signal
2186 handler.
2187
2188 Likewise if we're displaced stepping, otherwise a trap for a
2189 breakpoint in a signal handler might be confused with the
2190 displaced step finishing. We don't make the displaced_step_fixup
2191 step distinguish the cases instead, because:
2192
2193 - a backtrace while stopped in the signal handler would show the
2194 scratch pad as frame older than the signal handler, instead of
2195 the real mainline code.
2196
2197 - when the thread is later resumed, the signal handler would
2198 return to the scratch pad area, which would no longer be
2199 valid. */
2200 if (step_over_info_valid_p ()
2201 || displaced_step_in_progress (tp->inf))
2202 target_pass_signals ({});
2203 else
2204 target_pass_signals (signal_pass);
2205
2206 target_resume (resume_ptid, step, sig);
2207
2208 target_commit_resume ();
2209 }
2210
2211 /* Resume the inferior. SIG is the signal to give the inferior
2212 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2213 call 'resume', which handles exceptions. */
2214
2215 static void
2216 resume_1 (enum gdb_signal sig)
2217 {
2218 struct regcache *regcache = get_current_regcache ();
2219 struct gdbarch *gdbarch = regcache->arch ();
2220 struct thread_info *tp = inferior_thread ();
2221 CORE_ADDR pc = regcache_read_pc (regcache);
2222 const address_space *aspace = regcache->aspace ();
2223 ptid_t resume_ptid;
2224 /* This represents the user's step vs continue request. When
2225 deciding whether "set scheduler-locking step" applies, it's the
2226 user's intention that counts. */
2227 const int user_step = tp->control.stepping_command;
2228 /* This represents what we'll actually request the target to do.
2229 This can decay from a step to a continue, if e.g., we need to
2230 implement single-stepping with breakpoints (software
2231 single-step). */
2232 int step;
2233
2234 gdb_assert (!tp->stop_requested);
2235 gdb_assert (!thread_is_in_step_over_chain (tp));
2236
2237 if (tp->suspend.waitstatus_pending_p)
2238 {
2239 if (debug_infrun)
2240 {
2241 std::string statstr
2242 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2243
2244 fprintf_unfiltered (gdb_stdlog,
2245 "infrun: resume: thread %s has pending wait "
2246 "status %s (currently_stepping=%d).\n",
2247 target_pid_to_str (tp->ptid).c_str (),
2248 statstr.c_str (),
2249 currently_stepping (tp));
2250 }
2251
2252 tp->resumed = 1;
2253
2254 /* FIXME: What should we do if we are supposed to resume this
2255 thread with a signal? Maybe we should maintain a queue of
2256 pending signals to deliver. */
2257 if (sig != GDB_SIGNAL_0)
2258 {
2259 warning (_("Couldn't deliver signal %s to %s."),
2260 gdb_signal_to_name (sig),
2261 target_pid_to_str (tp->ptid).c_str ());
2262 }
2263
2264 tp->suspend.stop_signal = GDB_SIGNAL_0;
2265
2266 if (target_can_async_p ())
2267 {
2268 target_async (1);
2269 /* Tell the event loop we have an event to process. */
2270 mark_async_event_handler (infrun_async_inferior_event_token);
2271 }
2272 return;
2273 }
2274
2275 tp->stepped_breakpoint = 0;
2276
2277 /* Depends on stepped_breakpoint. */
2278 step = currently_stepping (tp);
2279
2280 if (current_inferior ()->waiting_for_vfork_done)
2281 {
2282 /* Don't try to single-step a vfork parent that is waiting for
2283 the child to get out of the shared memory region (by exec'ing
2284 or exiting). This is particularly important on software
2285 single-step archs, as the child process would trip on the
2286 software single step breakpoint inserted for the parent
2287 process. Since the parent will not actually execute any
2288 instruction until the child is out of the shared region (such
2289 are vfork's semantics), it is safe to simply continue it.
2290 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2291 the parent, and tell it to `keep_going', which automatically
2292 re-sets it stepping. */
2293 if (debug_infrun)
2294 fprintf_unfiltered (gdb_stdlog,
2295 "infrun: resume : clear step\n");
2296 step = 0;
2297 }
2298
2299 if (debug_infrun)
2300 fprintf_unfiltered (gdb_stdlog,
2301 "infrun: resume (step=%d, signal=%s), "
2302 "trap_expected=%d, current thread [%s] at %s\n",
2303 step, gdb_signal_to_symbol_string (sig),
2304 tp->control.trap_expected,
2305 target_pid_to_str (inferior_ptid).c_str (),
2306 paddress (gdbarch, pc));
2307
2308 /* Normally, by the time we reach `resume', the breakpoints are either
2309 removed or inserted, as appropriate. The exception is if we're sitting
2310 at a permanent breakpoint; we need to step over it, but permanent
2311 breakpoints can't be removed. So we have to test for it here. */
2312 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2313 {
2314 if (sig != GDB_SIGNAL_0)
2315 {
2316 /* We have a signal to pass to the inferior. The resume
2317 may, or may not take us to the signal handler. If this
2318 is a step, we'll need to stop in the signal handler, if
2319 there's one, (if the target supports stepping into
2320 handlers), or in the next mainline instruction, if
2321 there's no handler. If this is a continue, we need to be
2322 sure to run the handler with all breakpoints inserted.
2323 In all cases, set a breakpoint at the current address
2324 (where the handler returns to), and once that breakpoint
2325 is hit, resume skipping the permanent breakpoint. If
2326 that breakpoint isn't hit, then we've stepped into the
2327 signal handler (or hit some other event). We'll delete
2328 the step-resume breakpoint then. */
2329
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "infrun: resume: skipping permanent breakpoint, "
2333 "deliver signal first\n");
2334
2335 clear_step_over_info ();
2336 tp->control.trap_expected = 0;
2337
2338 if (tp->control.step_resume_breakpoint == NULL)
2339 {
2340 /* Set a "high-priority" step-resume, as we don't want
2341 user breakpoints at PC to trigger (again) when this
2342 hits. */
2343 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2344 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2345
2346 tp->step_after_step_resume_breakpoint = step;
2347 }
2348
2349 insert_breakpoints ();
2350 }
2351 else
2352 {
2353 /* There's no signal to pass, we can go ahead and skip the
2354 permanent breakpoint manually. */
2355 if (debug_infrun)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume: skipping permanent breakpoint\n");
2358 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2359 /* Update pc to reflect the new address from which we will
2360 execute instructions. */
2361 pc = regcache_read_pc (regcache);
2362
2363 if (step)
2364 {
2365 /* We've already advanced the PC, so the stepping part
2366 is done. Now we need to arrange for a trap to be
2367 reported to handle_inferior_event. Set a breakpoint
2368 at the current PC, and run to it. Don't update
2369 prev_pc, because if we end in
2370 switch_back_to_stepped_thread, we want the "expected
2371 thread advanced also" branch to be taken. IOW, we
2372 don't want this thread to step further from PC
2373 (overstep). */
2374 gdb_assert (!step_over_info_valid_p ());
2375 insert_single_step_breakpoint (gdbarch, aspace, pc);
2376 insert_breakpoints ();
2377
2378 resume_ptid = internal_resume_ptid (user_step);
2379 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2380 tp->resumed = 1;
2381 return;
2382 }
2383 }
2384 }
2385
2386 /* If we have a breakpoint to step over, make sure to do a single
2387 step only. Same if we have software watchpoints. */
2388 if (tp->control.trap_expected || bpstat_should_step ())
2389 tp->control.may_range_step = 0;
2390
2391 /* If enabled, step over breakpoints by executing a copy of the
2392 instruction at a different address.
2393
2394 We can't use displaced stepping when we have a signal to deliver;
2395 the comments for displaced_step_prepare explain why. The
2396 comments in the handle_inferior event for dealing with 'random
2397 signals' explain what we do instead.
2398
2399 We can't use displaced stepping when we are waiting for vfork_done
2400 event, displaced stepping breaks the vfork child similarly as single
2401 step software breakpoint. */
2402 if (tp->control.trap_expected
2403 && use_displaced_stepping (tp)
2404 && !step_over_info_valid_p ()
2405 && sig == GDB_SIGNAL_0
2406 && !current_inferior ()->waiting_for_vfork_done)
2407 {
2408 int prepared = displaced_step_prepare (tp);
2409
2410 if (prepared == 0)
2411 {
2412 if (debug_infrun)
2413 fprintf_unfiltered (gdb_stdlog,
2414 "Got placed in step-over queue\n");
2415
2416 tp->control.trap_expected = 0;
2417 return;
2418 }
2419 else if (prepared < 0)
2420 {
2421 /* Fallback to stepping over the breakpoint in-line. */
2422
2423 if (target_is_non_stop_p ())
2424 stop_all_threads ();
2425
2426 set_step_over_info (regcache->aspace (),
2427 regcache_read_pc (regcache), 0, tp->global_num);
2428
2429 step = maybe_software_singlestep (gdbarch, pc);
2430
2431 insert_breakpoints ();
2432 }
2433 else if (prepared > 0)
2434 {
2435 struct displaced_step_inferior_state *displaced;
2436
2437 /* Update pc to reflect the new address from which we will
2438 execute instructions due to displaced stepping. */
2439 pc = regcache_read_pc (get_thread_regcache (tp));
2440
2441 displaced = get_displaced_stepping_state (tp->inf);
2442 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2443 displaced->step_closure);
2444 }
2445 }
2446
2447 /* Do we need to do it the hard way, w/temp breakpoints? */
2448 else if (step)
2449 step = maybe_software_singlestep (gdbarch, pc);
2450
2451 /* Currently, our software single-step implementation leads to different
2452 results than hardware single-stepping in one situation: when stepping
2453 into delivering a signal which has an associated signal handler,
2454 hardware single-step will stop at the first instruction of the handler,
2455 while software single-step will simply skip execution of the handler.
2456
2457 For now, this difference in behavior is accepted since there is no
2458 easy way to actually implement single-stepping into a signal handler
2459 without kernel support.
2460
2461 However, there is one scenario where this difference leads to follow-on
2462 problems: if we're stepping off a breakpoint by removing all breakpoints
2463 and then single-stepping. In this case, the software single-step
2464 behavior means that even if there is a *breakpoint* in the signal
2465 handler, GDB still would not stop.
2466
2467 Fortunately, we can at least fix this particular issue. We detect
2468 here the case where we are about to deliver a signal while software
2469 single-stepping with breakpoints removed. In this situation, we
2470 revert the decisions to remove all breakpoints and insert single-
2471 step breakpoints, and instead we install a step-resume breakpoint
2472 at the current address, deliver the signal without stepping, and
2473 once we arrive back at the step-resume breakpoint, actually step
2474 over the breakpoint we originally wanted to step over. */
2475 if (thread_has_single_step_breakpoints_set (tp)
2476 && sig != GDB_SIGNAL_0
2477 && step_over_info_valid_p ())
2478 {
2479 /* If we have nested signals or a pending signal is delivered
2480 immediately after a handler returns, might might already have
2481 a step-resume breakpoint set on the earlier handler. We cannot
2482 set another step-resume breakpoint; just continue on until the
2483 original breakpoint is hit. */
2484 if (tp->control.step_resume_breakpoint == NULL)
2485 {
2486 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2487 tp->step_after_step_resume_breakpoint = 1;
2488 }
2489
2490 delete_single_step_breakpoints (tp);
2491
2492 clear_step_over_info ();
2493 tp->control.trap_expected = 0;
2494
2495 insert_breakpoints ();
2496 }
2497
2498 /* If STEP is set, it's a request to use hardware stepping
2499 facilities. But in that case, we should never
2500 use singlestep breakpoint. */
2501 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2502
2503 /* Decide the set of threads to ask the target to resume. */
2504 if (tp->control.trap_expected)
2505 {
2506 /* We're allowing a thread to run past a breakpoint it has
2507 hit, either by single-stepping the thread with the breakpoint
2508 removed, or by displaced stepping, with the breakpoint inserted.
2509 In the former case, we need to single-step only this thread,
2510 and keep others stopped, as they can miss this breakpoint if
2511 allowed to run. That's not really a problem for displaced
2512 stepping, but, we still keep other threads stopped, in case
2513 another thread is also stopped for a breakpoint waiting for
2514 its turn in the displaced stepping queue. */
2515 resume_ptid = inferior_ptid;
2516 }
2517 else
2518 resume_ptid = internal_resume_ptid (user_step);
2519
2520 if (execution_direction != EXEC_REVERSE
2521 && step && breakpoint_inserted_here_p (aspace, pc))
2522 {
2523 /* There are two cases where we currently need to step a
2524 breakpoint instruction when we have a signal to deliver:
2525
2526 - See handle_signal_stop where we handle random signals that
2527 could take out us out of the stepping range. Normally, in
2528 that case we end up continuing (instead of stepping) over the
2529 signal handler with a breakpoint at PC, but there are cases
2530 where we should _always_ single-step, even if we have a
2531 step-resume breakpoint, like when a software watchpoint is
2532 set. Assuming single-stepping and delivering a signal at the
2533 same time would takes us to the signal handler, then we could
2534 have removed the breakpoint at PC to step over it. However,
2535 some hardware step targets (like e.g., Mac OS) can't step
2536 into signal handlers, and for those, we need to leave the
2537 breakpoint at PC inserted, as otherwise if the handler
2538 recurses and executes PC again, it'll miss the breakpoint.
2539 So we leave the breakpoint inserted anyway, but we need to
2540 record that we tried to step a breakpoint instruction, so
2541 that adjust_pc_after_break doesn't end up confused.
2542
2543 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2544 in one thread after another thread that was stepping had been
2545 momentarily paused for a step-over. When we re-resume the
2546 stepping thread, it may be resumed from that address with a
2547 breakpoint that hasn't trapped yet. Seen with
2548 gdb.threads/non-stop-fair-events.exp, on targets that don't
2549 do displaced stepping. */
2550
2551 if (debug_infrun)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "infrun: resume: [%s] stepped breakpoint\n",
2554 target_pid_to_str (tp->ptid).c_str ());
2555
2556 tp->stepped_breakpoint = 1;
2557
2558 /* Most targets can step a breakpoint instruction, thus
2559 executing it normally. But if this one cannot, just
2560 continue and we will hit it anyway. */
2561 if (gdbarch_cannot_step_breakpoint (gdbarch))
2562 step = 0;
2563 }
2564
2565 if (debug_displaced
2566 && tp->control.trap_expected
2567 && use_displaced_stepping (tp)
2568 && !step_over_info_valid_p ())
2569 {
2570 struct regcache *resume_regcache = get_thread_regcache (tp);
2571 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2572 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2573 gdb_byte buf[4];
2574
2575 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2576 paddress (resume_gdbarch, actual_pc));
2577 read_memory (actual_pc, buf, sizeof (buf));
2578 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2579 }
2580
2581 if (tp->control.may_range_step)
2582 {
2583 /* If we're resuming a thread with the PC out of the step
2584 range, then we're doing some nested/finer run control
2585 operation, like stepping the thread out of the dynamic
2586 linker or the displaced stepping scratch pad. We
2587 shouldn't have allowed a range step then. */
2588 gdb_assert (pc_in_thread_step_range (pc, tp));
2589 }
2590
2591 do_target_resume (resume_ptid, step, sig);
2592 tp->resumed = 1;
2593 }
2594
2595 /* Resume the inferior. SIG is the signal to give the inferior
2596 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2597 rolls back state on error. */
2598
2599 static void
2600 resume (gdb_signal sig)
2601 {
2602 try
2603 {
2604 resume_1 (sig);
2605 }
2606 catch (const gdb_exception &ex)
2607 {
2608 /* If resuming is being aborted for any reason, delete any
2609 single-step breakpoint resume_1 may have created, to avoid
2610 confusing the following resumption, and to avoid leaving
2611 single-step breakpoints perturbing other threads, in case
2612 we're running in non-stop mode. */
2613 if (inferior_ptid != null_ptid)
2614 delete_single_step_breakpoints (inferior_thread ());
2615 throw;
2616 }
2617 }
2618
2619 \f
2620 /* Proceeding. */
2621
2622 /* See infrun.h. */
2623
2624 /* Counter that tracks number of user visible stops. This can be used
2625 to tell whether a command has proceeded the inferior past the
2626 current location. This allows e.g., inferior function calls in
2627 breakpoint commands to not interrupt the command list. When the
2628 call finishes successfully, the inferior is standing at the same
2629 breakpoint as if nothing happened (and so we don't call
2630 normal_stop). */
2631 static ULONGEST current_stop_id;
2632
2633 /* See infrun.h. */
2634
2635 ULONGEST
2636 get_stop_id (void)
2637 {
2638 return current_stop_id;
2639 }
2640
2641 /* Called when we report a user visible stop. */
2642
2643 static void
2644 new_stop_id (void)
2645 {
2646 current_stop_id++;
2647 }
2648
2649 /* Clear out all variables saying what to do when inferior is continued.
2650 First do this, then set the ones you want, then call `proceed'. */
2651
2652 static void
2653 clear_proceed_status_thread (struct thread_info *tp)
2654 {
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "infrun: clear_proceed_status_thread (%s)\n",
2658 target_pid_to_str (tp->ptid).c_str ());
2659
2660 /* If we're starting a new sequence, then the previous finished
2661 single-step is no longer relevant. */
2662 if (tp->suspend.waitstatus_pending_p)
2663 {
2664 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2665 {
2666 if (debug_infrun)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "infrun: clear_proceed_status: pending "
2669 "event of %s was a finished step. "
2670 "Discarding.\n",
2671 target_pid_to_str (tp->ptid).c_str ());
2672
2673 tp->suspend.waitstatus_pending_p = 0;
2674 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2675 }
2676 else if (debug_infrun)
2677 {
2678 std::string statstr
2679 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2680
2681 fprintf_unfiltered (gdb_stdlog,
2682 "infrun: clear_proceed_status_thread: thread %s "
2683 "has pending wait status %s "
2684 "(currently_stepping=%d).\n",
2685 target_pid_to_str (tp->ptid).c_str (),
2686 statstr.c_str (),
2687 currently_stepping (tp));
2688 }
2689 }
2690
2691 /* If this signal should not be seen by program, give it zero.
2692 Used for debugging signals. */
2693 if (!signal_pass_state (tp->suspend.stop_signal))
2694 tp->suspend.stop_signal = GDB_SIGNAL_0;
2695
2696 delete tp->thread_fsm;
2697 tp->thread_fsm = NULL;
2698
2699 tp->control.trap_expected = 0;
2700 tp->control.step_range_start = 0;
2701 tp->control.step_range_end = 0;
2702 tp->control.may_range_step = 0;
2703 tp->control.step_frame_id = null_frame_id;
2704 tp->control.step_stack_frame_id = null_frame_id;
2705 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2706 tp->control.step_start_function = NULL;
2707 tp->stop_requested = 0;
2708
2709 tp->control.stop_step = 0;
2710
2711 tp->control.proceed_to_finish = 0;
2712
2713 tp->control.stepping_command = 0;
2714
2715 /* Discard any remaining commands or status from previous stop. */
2716 bpstat_clear (&tp->control.stop_bpstat);
2717 }
2718
2719 void
2720 clear_proceed_status (int step)
2721 {
2722 /* With scheduler-locking replay, stop replaying other threads if we're
2723 not replaying the user-visible resume ptid.
2724
2725 This is a convenience feature to not require the user to explicitly
2726 stop replaying the other threads. We're assuming that the user's
2727 intent is to resume tracing the recorded process. */
2728 if (!non_stop && scheduler_mode == schedlock_replay
2729 && target_record_is_replaying (minus_one_ptid)
2730 && !target_record_will_replay (user_visible_resume_ptid (step),
2731 execution_direction))
2732 target_record_stop_replaying ();
2733
2734 if (!non_stop && inferior_ptid != null_ptid)
2735 {
2736 ptid_t resume_ptid = user_visible_resume_ptid (step);
2737
2738 /* In all-stop mode, delete the per-thread status of all threads
2739 we're about to resume, implicitly and explicitly. */
2740 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2741 clear_proceed_status_thread (tp);
2742 }
2743
2744 if (inferior_ptid != null_ptid)
2745 {
2746 struct inferior *inferior;
2747
2748 if (non_stop)
2749 {
2750 /* If in non-stop mode, only delete the per-thread status of
2751 the current thread. */
2752 clear_proceed_status_thread (inferior_thread ());
2753 }
2754
2755 inferior = current_inferior ();
2756 inferior->control.stop_soon = NO_STOP_QUIETLY;
2757 }
2758
2759 gdb::observers::about_to_proceed.notify ();
2760 }
2761
2762 /* Returns true if TP is still stopped at a breakpoint that needs
2763 stepping-over in order to make progress. If the breakpoint is gone
2764 meanwhile, we can skip the whole step-over dance. */
2765
2766 static int
2767 thread_still_needs_step_over_bp (struct thread_info *tp)
2768 {
2769 if (tp->stepping_over_breakpoint)
2770 {
2771 struct regcache *regcache = get_thread_regcache (tp);
2772
2773 if (breakpoint_here_p (regcache->aspace (),
2774 regcache_read_pc (regcache))
2775 == ordinary_breakpoint_here)
2776 return 1;
2777
2778 tp->stepping_over_breakpoint = 0;
2779 }
2780
2781 return 0;
2782 }
2783
2784 /* Check whether thread TP still needs to start a step-over in order
2785 to make progress when resumed. Returns an bitwise or of enum
2786 step_over_what bits, indicating what needs to be stepped over. */
2787
2788 static step_over_what
2789 thread_still_needs_step_over (struct thread_info *tp)
2790 {
2791 step_over_what what = 0;
2792
2793 if (thread_still_needs_step_over_bp (tp))
2794 what |= STEP_OVER_BREAKPOINT;
2795
2796 if (tp->stepping_over_watchpoint
2797 && !target_have_steppable_watchpoint)
2798 what |= STEP_OVER_WATCHPOINT;
2799
2800 return what;
2801 }
2802
2803 /* Returns true if scheduler locking applies. STEP indicates whether
2804 we're about to do a step/next-like command to a thread. */
2805
2806 static int
2807 schedlock_applies (struct thread_info *tp)
2808 {
2809 return (scheduler_mode == schedlock_on
2810 || (scheduler_mode == schedlock_step
2811 && tp->control.stepping_command)
2812 || (scheduler_mode == schedlock_replay
2813 && target_record_will_replay (minus_one_ptid,
2814 execution_direction)));
2815 }
2816
2817 /* Basic routine for continuing the program in various fashions.
2818
2819 ADDR is the address to resume at, or -1 for resume where stopped.
2820 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2821 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2822
2823 You should call clear_proceed_status before calling proceed. */
2824
2825 void
2826 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2827 {
2828 struct regcache *regcache;
2829 struct gdbarch *gdbarch;
2830 CORE_ADDR pc;
2831 ptid_t resume_ptid;
2832 struct execution_control_state ecss;
2833 struct execution_control_state *ecs = &ecss;
2834 int started;
2835
2836 /* If we're stopped at a fork/vfork, follow the branch set by the
2837 "set follow-fork-mode" command; otherwise, we'll just proceed
2838 resuming the current thread. */
2839 if (!follow_fork ())
2840 {
2841 /* The target for some reason decided not to resume. */
2842 normal_stop ();
2843 if (target_can_async_p ())
2844 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2845 return;
2846 }
2847
2848 /* We'll update this if & when we switch to a new thread. */
2849 previous_inferior_ptid = inferior_ptid;
2850
2851 regcache = get_current_regcache ();
2852 gdbarch = regcache->arch ();
2853 const address_space *aspace = regcache->aspace ();
2854
2855 pc = regcache_read_pc (regcache);
2856 thread_info *cur_thr = inferior_thread ();
2857
2858 /* Fill in with reasonable starting values. */
2859 init_thread_stepping_state (cur_thr);
2860
2861 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2862
2863 if (addr == (CORE_ADDR) -1)
2864 {
2865 if (pc == cur_thr->suspend.stop_pc
2866 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2867 && execution_direction != EXEC_REVERSE)
2868 /* There is a breakpoint at the address we will resume at,
2869 step one instruction before inserting breakpoints so that
2870 we do not stop right away (and report a second hit at this
2871 breakpoint).
2872
2873 Note, we don't do this in reverse, because we won't
2874 actually be executing the breakpoint insn anyway.
2875 We'll be (un-)executing the previous instruction. */
2876 cur_thr->stepping_over_breakpoint = 1;
2877 else if (gdbarch_single_step_through_delay_p (gdbarch)
2878 && gdbarch_single_step_through_delay (gdbarch,
2879 get_current_frame ()))
2880 /* We stepped onto an instruction that needs to be stepped
2881 again before re-inserting the breakpoint, do so. */
2882 cur_thr->stepping_over_breakpoint = 1;
2883 }
2884 else
2885 {
2886 regcache_write_pc (regcache, addr);
2887 }
2888
2889 if (siggnal != GDB_SIGNAL_DEFAULT)
2890 cur_thr->suspend.stop_signal = siggnal;
2891
2892 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2893
2894 /* If an exception is thrown from this point on, make sure to
2895 propagate GDB's knowledge of the executing state to the
2896 frontend/user running state. */
2897 scoped_finish_thread_state finish_state (resume_ptid);
2898
2899 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2900 threads (e.g., we might need to set threads stepping over
2901 breakpoints first), from the user/frontend's point of view, all
2902 threads in RESUME_PTID are now running. Unless we're calling an
2903 inferior function, as in that case we pretend the inferior
2904 doesn't run at all. */
2905 if (!cur_thr->control.in_infcall)
2906 set_running (resume_ptid, 1);
2907
2908 if (debug_infrun)
2909 fprintf_unfiltered (gdb_stdlog,
2910 "infrun: proceed (addr=%s, signal=%s)\n",
2911 paddress (gdbarch, addr),
2912 gdb_signal_to_symbol_string (siggnal));
2913
2914 annotate_starting ();
2915
2916 /* Make sure that output from GDB appears before output from the
2917 inferior. */
2918 gdb_flush (gdb_stdout);
2919
2920 /* Since we've marked the inferior running, give it the terminal. A
2921 QUIT/Ctrl-C from here on is forwarded to the target (which can
2922 still detect attempts to unblock a stuck connection with repeated
2923 Ctrl-C from within target_pass_ctrlc). */
2924 target_terminal::inferior ();
2925
2926 /* In a multi-threaded task we may select another thread and
2927 then continue or step.
2928
2929 But if a thread that we're resuming had stopped at a breakpoint,
2930 it will immediately cause another breakpoint stop without any
2931 execution (i.e. it will report a breakpoint hit incorrectly). So
2932 we must step over it first.
2933
2934 Look for threads other than the current (TP) that reported a
2935 breakpoint hit and haven't been resumed yet since. */
2936
2937 /* If scheduler locking applies, we can avoid iterating over all
2938 threads. */
2939 if (!non_stop && !schedlock_applies (cur_thr))
2940 {
2941 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2942 {
2943 /* Ignore the current thread here. It's handled
2944 afterwards. */
2945 if (tp == cur_thr)
2946 continue;
2947
2948 if (!thread_still_needs_step_over (tp))
2949 continue;
2950
2951 gdb_assert (!thread_is_in_step_over_chain (tp));
2952
2953 if (debug_infrun)
2954 fprintf_unfiltered (gdb_stdlog,
2955 "infrun: need to step-over [%s] first\n",
2956 target_pid_to_str (tp->ptid).c_str ());
2957
2958 thread_step_over_chain_enqueue (tp);
2959 }
2960 }
2961
2962 /* Enqueue the current thread last, so that we move all other
2963 threads over their breakpoints first. */
2964 if (cur_thr->stepping_over_breakpoint)
2965 thread_step_over_chain_enqueue (cur_thr);
2966
2967 /* If the thread isn't started, we'll still need to set its prev_pc,
2968 so that switch_back_to_stepped_thread knows the thread hasn't
2969 advanced. Must do this before resuming any thread, as in
2970 all-stop/remote, once we resume we can't send any other packet
2971 until the target stops again. */
2972 cur_thr->prev_pc = regcache_read_pc (regcache);
2973
2974 {
2975 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2976
2977 started = start_step_over ();
2978
2979 if (step_over_info_valid_p ())
2980 {
2981 /* Either this thread started a new in-line step over, or some
2982 other thread was already doing one. In either case, don't
2983 resume anything else until the step-over is finished. */
2984 }
2985 else if (started && !target_is_non_stop_p ())
2986 {
2987 /* A new displaced stepping sequence was started. In all-stop,
2988 we can't talk to the target anymore until it next stops. */
2989 }
2990 else if (!non_stop && target_is_non_stop_p ())
2991 {
2992 /* In all-stop, but the target is always in non-stop mode.
2993 Start all other threads that are implicitly resumed too. */
2994 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2995 {
2996 if (tp->resumed)
2997 {
2998 if (debug_infrun)
2999 fprintf_unfiltered (gdb_stdlog,
3000 "infrun: proceed: [%s] resumed\n",
3001 target_pid_to_str (tp->ptid).c_str ());
3002 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3003 continue;
3004 }
3005
3006 if (thread_is_in_step_over_chain (tp))
3007 {
3008 if (debug_infrun)
3009 fprintf_unfiltered (gdb_stdlog,
3010 "infrun: proceed: [%s] needs step-over\n",
3011 target_pid_to_str (tp->ptid).c_str ());
3012 continue;
3013 }
3014
3015 if (debug_infrun)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "infrun: proceed: resuming %s\n",
3018 target_pid_to_str (tp->ptid).c_str ());
3019
3020 reset_ecs (ecs, tp);
3021 switch_to_thread (tp);
3022 keep_going_pass_signal (ecs);
3023 if (!ecs->wait_some_more)
3024 error (_("Command aborted."));
3025 }
3026 }
3027 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3028 {
3029 /* The thread wasn't started, and isn't queued, run it now. */
3030 reset_ecs (ecs, cur_thr);
3031 switch_to_thread (cur_thr);
3032 keep_going_pass_signal (ecs);
3033 if (!ecs->wait_some_more)
3034 error (_("Command aborted."));
3035 }
3036 }
3037
3038 target_commit_resume ();
3039
3040 finish_state.release ();
3041
3042 /* Tell the event loop to wait for it to stop. If the target
3043 supports asynchronous execution, it'll do this from within
3044 target_resume. */
3045 if (!target_can_async_p ())
3046 mark_async_event_handler (infrun_async_inferior_event_token);
3047 }
3048 \f
3049
3050 /* Start remote-debugging of a machine over a serial link. */
3051
3052 void
3053 start_remote (int from_tty)
3054 {
3055 struct inferior *inferior;
3056
3057 inferior = current_inferior ();
3058 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3059
3060 /* Always go on waiting for the target, regardless of the mode. */
3061 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3062 indicate to wait_for_inferior that a target should timeout if
3063 nothing is returned (instead of just blocking). Because of this,
3064 targets expecting an immediate response need to, internally, set
3065 things up so that the target_wait() is forced to eventually
3066 timeout. */
3067 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3068 differentiate to its caller what the state of the target is after
3069 the initial open has been performed. Here we're assuming that
3070 the target has stopped. It should be possible to eventually have
3071 target_open() return to the caller an indication that the target
3072 is currently running and GDB state should be set to the same as
3073 for an async run. */
3074 wait_for_inferior ();
3075
3076 /* Now that the inferior has stopped, do any bookkeeping like
3077 loading shared libraries. We want to do this before normal_stop,
3078 so that the displayed frame is up to date. */
3079 post_create_inferior (current_top_target (), from_tty);
3080
3081 normal_stop ();
3082 }
3083
3084 /* Initialize static vars when a new inferior begins. */
3085
3086 void
3087 init_wait_for_inferior (void)
3088 {
3089 /* These are meaningless until the first time through wait_for_inferior. */
3090
3091 breakpoint_init_inferior (inf_starting);
3092
3093 clear_proceed_status (0);
3094
3095 target_last_wait_ptid = minus_one_ptid;
3096
3097 previous_inferior_ptid = inferior_ptid;
3098 }
3099
3100 \f
3101
3102 static void handle_inferior_event (struct execution_control_state *ecs);
3103
3104 static void handle_step_into_function (struct gdbarch *gdbarch,
3105 struct execution_control_state *ecs);
3106 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3107 struct execution_control_state *ecs);
3108 static void handle_signal_stop (struct execution_control_state *ecs);
3109 static void check_exception_resume (struct execution_control_state *,
3110 struct frame_info *);
3111
3112 static void end_stepping_range (struct execution_control_state *ecs);
3113 static void stop_waiting (struct execution_control_state *ecs);
3114 static void keep_going (struct execution_control_state *ecs);
3115 static void process_event_stop_test (struct execution_control_state *ecs);
3116 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3117
3118 /* This function is attached as a "thread_stop_requested" observer.
3119 Cleanup local state that assumed the PTID was to be resumed, and
3120 report the stop to the frontend. */
3121
3122 static void
3123 infrun_thread_stop_requested (ptid_t ptid)
3124 {
3125 /* PTID was requested to stop. If the thread was already stopped,
3126 but the user/frontend doesn't know about that yet (e.g., the
3127 thread had been temporarily paused for some step-over), set up
3128 for reporting the stop now. */
3129 for (thread_info *tp : all_threads (ptid))
3130 {
3131 if (tp->state != THREAD_RUNNING)
3132 continue;
3133 if (tp->executing)
3134 continue;
3135
3136 /* Remove matching threads from the step-over queue, so
3137 start_step_over doesn't try to resume them
3138 automatically. */
3139 if (thread_is_in_step_over_chain (tp))
3140 thread_step_over_chain_remove (tp);
3141
3142 /* If the thread is stopped, but the user/frontend doesn't
3143 know about that yet, queue a pending event, as if the
3144 thread had just stopped now. Unless the thread already had
3145 a pending event. */
3146 if (!tp->suspend.waitstatus_pending_p)
3147 {
3148 tp->suspend.waitstatus_pending_p = 1;
3149 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3150 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3151 }
3152
3153 /* Clear the inline-frame state, since we're re-processing the
3154 stop. */
3155 clear_inline_frame_state (tp->ptid);
3156
3157 /* If this thread was paused because some other thread was
3158 doing an inline-step over, let that finish first. Once
3159 that happens, we'll restart all threads and consume pending
3160 stop events then. */
3161 if (step_over_info_valid_p ())
3162 continue;
3163
3164 /* Otherwise we can process the (new) pending event now. Set
3165 it so this pending event is considered by
3166 do_target_wait. */
3167 tp->resumed = 1;
3168 }
3169 }
3170
3171 static void
3172 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3173 {
3174 if (target_last_wait_ptid == tp->ptid)
3175 nullify_last_target_wait_ptid ();
3176 }
3177
3178 /* Delete the step resume, single-step and longjmp/exception resume
3179 breakpoints of TP. */
3180
3181 static void
3182 delete_thread_infrun_breakpoints (struct thread_info *tp)
3183 {
3184 delete_step_resume_breakpoint (tp);
3185 delete_exception_resume_breakpoint (tp);
3186 delete_single_step_breakpoints (tp);
3187 }
3188
3189 /* If the target still has execution, call FUNC for each thread that
3190 just stopped. In all-stop, that's all the non-exited threads; in
3191 non-stop, that's the current thread, only. */
3192
3193 typedef void (*for_each_just_stopped_thread_callback_func)
3194 (struct thread_info *tp);
3195
3196 static void
3197 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3198 {
3199 if (!target_has_execution || inferior_ptid == null_ptid)
3200 return;
3201
3202 if (target_is_non_stop_p ())
3203 {
3204 /* If in non-stop mode, only the current thread stopped. */
3205 func (inferior_thread ());
3206 }
3207 else
3208 {
3209 /* In all-stop mode, all threads have stopped. */
3210 for (thread_info *tp : all_non_exited_threads ())
3211 func (tp);
3212 }
3213 }
3214
3215 /* Delete the step resume and longjmp/exception resume breakpoints of
3216 the threads that just stopped. */
3217
3218 static void
3219 delete_just_stopped_threads_infrun_breakpoints (void)
3220 {
3221 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3222 }
3223
3224 /* Delete the single-step breakpoints of the threads that just
3225 stopped. */
3226
3227 static void
3228 delete_just_stopped_threads_single_step_breakpoints (void)
3229 {
3230 for_each_just_stopped_thread (delete_single_step_breakpoints);
3231 }
3232
3233 /* See infrun.h. */
3234
3235 void
3236 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3237 const struct target_waitstatus *ws)
3238 {
3239 std::string status_string = target_waitstatus_to_string (ws);
3240 string_file stb;
3241
3242 /* The text is split over several lines because it was getting too long.
3243 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3244 output as a unit; we want only one timestamp printed if debug_timestamp
3245 is set. */
3246
3247 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3248 waiton_ptid.pid (),
3249 waiton_ptid.lwp (),
3250 waiton_ptid.tid ());
3251 if (waiton_ptid.pid () != -1)
3252 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3253 stb.printf (", status) =\n");
3254 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3255 result_ptid.pid (),
3256 result_ptid.lwp (),
3257 result_ptid.tid (),
3258 target_pid_to_str (result_ptid).c_str ());
3259 stb.printf ("infrun: %s\n", status_string.c_str ());
3260
3261 /* This uses %s in part to handle %'s in the text, but also to avoid
3262 a gcc error: the format attribute requires a string literal. */
3263 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3264 }
3265
3266 /* Select a thread at random, out of those which are resumed and have
3267 had events. */
3268
3269 static struct thread_info *
3270 random_pending_event_thread (ptid_t waiton_ptid)
3271 {
3272 int num_events = 0;
3273
3274 auto has_event = [] (thread_info *tp)
3275 {
3276 return (tp->resumed
3277 && tp->suspend.waitstatus_pending_p);
3278 };
3279
3280 /* First see how many events we have. Count only resumed threads
3281 that have an event pending. */
3282 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3283 if (has_event (tp))
3284 num_events++;
3285
3286 if (num_events == 0)
3287 return NULL;
3288
3289 /* Now randomly pick a thread out of those that have had events. */
3290 int random_selector = (int) ((num_events * (double) rand ())
3291 / (RAND_MAX + 1.0));
3292
3293 if (debug_infrun && num_events > 1)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "infrun: Found %d events, selecting #%d\n",
3296 num_events, random_selector);
3297
3298 /* Select the Nth thread that has had an event. */
3299 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3300 if (has_event (tp))
3301 if (random_selector-- == 0)
3302 return tp;
3303
3304 gdb_assert_not_reached ("event thread not found");
3305 }
3306
3307 /* Wrapper for target_wait that first checks whether threads have
3308 pending statuses to report before actually asking the target for
3309 more events. */
3310
3311 static ptid_t
3312 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3313 {
3314 ptid_t event_ptid;
3315 struct thread_info *tp;
3316
3317 /* First check if there is a resumed thread with a wait status
3318 pending. */
3319 if (ptid == minus_one_ptid || ptid.is_pid ())
3320 {
3321 tp = random_pending_event_thread (ptid);
3322 }
3323 else
3324 {
3325 if (debug_infrun)
3326 fprintf_unfiltered (gdb_stdlog,
3327 "infrun: Waiting for specific thread %s.\n",
3328 target_pid_to_str (ptid).c_str ());
3329
3330 /* We have a specific thread to check. */
3331 tp = find_thread_ptid (ptid);
3332 gdb_assert (tp != NULL);
3333 if (!tp->suspend.waitstatus_pending_p)
3334 tp = NULL;
3335 }
3336
3337 if (tp != NULL
3338 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3339 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3340 {
3341 struct regcache *regcache = get_thread_regcache (tp);
3342 struct gdbarch *gdbarch = regcache->arch ();
3343 CORE_ADDR pc;
3344 int discard = 0;
3345
3346 pc = regcache_read_pc (regcache);
3347
3348 if (pc != tp->suspend.stop_pc)
3349 {
3350 if (debug_infrun)
3351 fprintf_unfiltered (gdb_stdlog,
3352 "infrun: PC of %s changed. was=%s, now=%s\n",
3353 target_pid_to_str (tp->ptid).c_str (),
3354 paddress (gdbarch, tp->suspend.stop_pc),
3355 paddress (gdbarch, pc));
3356 discard = 1;
3357 }
3358 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3359 {
3360 if (debug_infrun)
3361 fprintf_unfiltered (gdb_stdlog,
3362 "infrun: previous breakpoint of %s, at %s gone\n",
3363 target_pid_to_str (tp->ptid).c_str (),
3364 paddress (gdbarch, pc));
3365
3366 discard = 1;
3367 }
3368
3369 if (discard)
3370 {
3371 if (debug_infrun)
3372 fprintf_unfiltered (gdb_stdlog,
3373 "infrun: pending event of %s cancelled.\n",
3374 target_pid_to_str (tp->ptid).c_str ());
3375
3376 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3377 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3378 }
3379 }
3380
3381 if (tp != NULL)
3382 {
3383 if (debug_infrun)
3384 {
3385 std::string statstr
3386 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3387
3388 fprintf_unfiltered (gdb_stdlog,
3389 "infrun: Using pending wait status %s for %s.\n",
3390 statstr.c_str (),
3391 target_pid_to_str (tp->ptid).c_str ());
3392 }
3393
3394 /* Now that we've selected our final event LWP, un-adjust its PC
3395 if it was a software breakpoint (and the target doesn't
3396 always adjust the PC itself). */
3397 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3398 && !target_supports_stopped_by_sw_breakpoint ())
3399 {
3400 struct regcache *regcache;
3401 struct gdbarch *gdbarch;
3402 int decr_pc;
3403
3404 regcache = get_thread_regcache (tp);
3405 gdbarch = regcache->arch ();
3406
3407 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3408 if (decr_pc != 0)
3409 {
3410 CORE_ADDR pc;
3411
3412 pc = regcache_read_pc (regcache);
3413 regcache_write_pc (regcache, pc + decr_pc);
3414 }
3415 }
3416
3417 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3418 *status = tp->suspend.waitstatus;
3419 tp->suspend.waitstatus_pending_p = 0;
3420
3421 /* Wake up the event loop again, until all pending events are
3422 processed. */
3423 if (target_is_async_p ())
3424 mark_async_event_handler (infrun_async_inferior_event_token);
3425 return tp->ptid;
3426 }
3427
3428 /* But if we don't find one, we'll have to wait. */
3429
3430 if (deprecated_target_wait_hook)
3431 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3432 else
3433 event_ptid = target_wait (ptid, status, options);
3434
3435 return event_ptid;
3436 }
3437
3438 /* Prepare and stabilize the inferior for detaching it. E.g.,
3439 detaching while a thread is displaced stepping is a recipe for
3440 crashing it, as nothing would readjust the PC out of the scratch
3441 pad. */
3442
3443 void
3444 prepare_for_detach (void)
3445 {
3446 struct inferior *inf = current_inferior ();
3447 ptid_t pid_ptid = ptid_t (inf->pid);
3448
3449 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3450
3451 /* Is any thread of this process displaced stepping? If not,
3452 there's nothing else to do. */
3453 if (displaced->step_thread == nullptr)
3454 return;
3455
3456 if (debug_infrun)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "displaced-stepping in-process while detaching");
3459
3460 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3461
3462 while (displaced->step_thread != nullptr)
3463 {
3464 struct execution_control_state ecss;
3465 struct execution_control_state *ecs;
3466
3467 ecs = &ecss;
3468 memset (ecs, 0, sizeof (*ecs));
3469
3470 overlay_cache_invalid = 1;
3471 /* Flush target cache before starting to handle each event.
3472 Target was running and cache could be stale. This is just a
3473 heuristic. Running threads may modify target memory, but we
3474 don't get any event. */
3475 target_dcache_invalidate ();
3476
3477 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3478
3479 if (debug_infrun)
3480 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3481
3482 /* If an error happens while handling the event, propagate GDB's
3483 knowledge of the executing state to the frontend/user running
3484 state. */
3485 scoped_finish_thread_state finish_state (minus_one_ptid);
3486
3487 /* Now figure out what to do with the result of the result. */
3488 handle_inferior_event (ecs);
3489
3490 /* No error, don't finish the state yet. */
3491 finish_state.release ();
3492
3493 /* Breakpoints and watchpoints are not installed on the target
3494 at this point, and signals are passed directly to the
3495 inferior, so this must mean the process is gone. */
3496 if (!ecs->wait_some_more)
3497 {
3498 restore_detaching.release ();
3499 error (_("Program exited while detaching"));
3500 }
3501 }
3502
3503 restore_detaching.release ();
3504 }
3505
3506 /* Wait for control to return from inferior to debugger.
3507
3508 If inferior gets a signal, we may decide to start it up again
3509 instead of returning. That is why there is a loop in this function.
3510 When this function actually returns it means the inferior
3511 should be left stopped and GDB should read more commands. */
3512
3513 void
3514 wait_for_inferior (void)
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered
3518 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3519
3520 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3521
3522 /* If an error happens while handling the event, propagate GDB's
3523 knowledge of the executing state to the frontend/user running
3524 state. */
3525 scoped_finish_thread_state finish_state (minus_one_ptid);
3526
3527 while (1)
3528 {
3529 struct execution_control_state ecss;
3530 struct execution_control_state *ecs = &ecss;
3531 ptid_t waiton_ptid = minus_one_ptid;
3532
3533 memset (ecs, 0, sizeof (*ecs));
3534
3535 overlay_cache_invalid = 1;
3536
3537 /* Flush target cache before starting to handle each event.
3538 Target was running and cache could be stale. This is just a
3539 heuristic. Running threads may modify target memory, but we
3540 don't get any event. */
3541 target_dcache_invalidate ();
3542
3543 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3544
3545 if (debug_infrun)
3546 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3547
3548 /* Now figure out what to do with the result of the result. */
3549 handle_inferior_event (ecs);
3550
3551 if (!ecs->wait_some_more)
3552 break;
3553 }
3554
3555 /* No error, don't finish the state yet. */
3556 finish_state.release ();
3557 }
3558
3559 /* Cleanup that reinstalls the readline callback handler, if the
3560 target is running in the background. If while handling the target
3561 event something triggered a secondary prompt, like e.g., a
3562 pagination prompt, we'll have removed the callback handler (see
3563 gdb_readline_wrapper_line). Need to do this as we go back to the
3564 event loop, ready to process further input. Note this has no
3565 effect if the handler hasn't actually been removed, because calling
3566 rl_callback_handler_install resets the line buffer, thus losing
3567 input. */
3568
3569 static void
3570 reinstall_readline_callback_handler_cleanup ()
3571 {
3572 struct ui *ui = current_ui;
3573
3574 if (!ui->async)
3575 {
3576 /* We're not going back to the top level event loop yet. Don't
3577 install the readline callback, as it'd prep the terminal,
3578 readline-style (raw, noecho) (e.g., --batch). We'll install
3579 it the next time the prompt is displayed, when we're ready
3580 for input. */
3581 return;
3582 }
3583
3584 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3585 gdb_rl_callback_handler_reinstall ();
3586 }
3587
3588 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3589 that's just the event thread. In all-stop, that's all threads. */
3590
3591 static void
3592 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3593 {
3594 if (ecs->event_thread != NULL
3595 && ecs->event_thread->thread_fsm != NULL)
3596 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3597
3598 if (!non_stop)
3599 {
3600 for (thread_info *thr : all_non_exited_threads ())
3601 {
3602 if (thr->thread_fsm == NULL)
3603 continue;
3604 if (thr == ecs->event_thread)
3605 continue;
3606
3607 switch_to_thread (thr);
3608 thr->thread_fsm->clean_up (thr);
3609 }
3610
3611 if (ecs->event_thread != NULL)
3612 switch_to_thread (ecs->event_thread);
3613 }
3614 }
3615
3616 /* Helper for all_uis_check_sync_execution_done that works on the
3617 current UI. */
3618
3619 static void
3620 check_curr_ui_sync_execution_done (void)
3621 {
3622 struct ui *ui = current_ui;
3623
3624 if (ui->prompt_state == PROMPT_NEEDED
3625 && ui->async
3626 && !gdb_in_secondary_prompt_p (ui))
3627 {
3628 target_terminal::ours ();
3629 gdb::observers::sync_execution_done.notify ();
3630 ui_register_input_event_handler (ui);
3631 }
3632 }
3633
3634 /* See infrun.h. */
3635
3636 void
3637 all_uis_check_sync_execution_done (void)
3638 {
3639 SWITCH_THRU_ALL_UIS ()
3640 {
3641 check_curr_ui_sync_execution_done ();
3642 }
3643 }
3644
3645 /* See infrun.h. */
3646
3647 void
3648 all_uis_on_sync_execution_starting (void)
3649 {
3650 SWITCH_THRU_ALL_UIS ()
3651 {
3652 if (current_ui->prompt_state == PROMPT_NEEDED)
3653 async_disable_stdin ();
3654 }
3655 }
3656
3657 /* Asynchronous version of wait_for_inferior. It is called by the
3658 event loop whenever a change of state is detected on the file
3659 descriptor corresponding to the target. It can be called more than
3660 once to complete a single execution command. In such cases we need
3661 to keep the state in a global variable ECSS. If it is the last time
3662 that this function is called for a single execution command, then
3663 report to the user that the inferior has stopped, and do the
3664 necessary cleanups. */
3665
3666 void
3667 fetch_inferior_event (void *client_data)
3668 {
3669 struct execution_control_state ecss;
3670 struct execution_control_state *ecs = &ecss;
3671 int cmd_done = 0;
3672 ptid_t waiton_ptid = minus_one_ptid;
3673
3674 memset (ecs, 0, sizeof (*ecs));
3675
3676 /* Events are always processed with the main UI as current UI. This
3677 way, warnings, debug output, etc. are always consistently sent to
3678 the main console. */
3679 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3680
3681 /* End up with readline processing input, if necessary. */
3682 {
3683 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3684
3685 /* We're handling a live event, so make sure we're doing live
3686 debugging. If we're looking at traceframes while the target is
3687 running, we're going to need to get back to that mode after
3688 handling the event. */
3689 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3690 if (non_stop)
3691 {
3692 maybe_restore_traceframe.emplace ();
3693 set_current_traceframe (-1);
3694 }
3695
3696 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3697
3698 if (non_stop)
3699 /* In non-stop mode, the user/frontend should not notice a thread
3700 switch due to internal events. Make sure we reverse to the
3701 user selected thread and frame after handling the event and
3702 running any breakpoint commands. */
3703 maybe_restore_thread.emplace ();
3704
3705 overlay_cache_invalid = 1;
3706 /* Flush target cache before starting to handle each event. Target
3707 was running and cache could be stale. This is just a heuristic.
3708 Running threads may modify target memory, but we don't get any
3709 event. */
3710 target_dcache_invalidate ();
3711
3712 scoped_restore save_exec_dir
3713 = make_scoped_restore (&execution_direction,
3714 target_execution_direction ());
3715
3716 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3717 target_can_async_p () ? TARGET_WNOHANG : 0);
3718
3719 if (debug_infrun)
3720 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3721
3722 /* If an error happens while handling the event, propagate GDB's
3723 knowledge of the executing state to the frontend/user running
3724 state. */
3725 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3726 scoped_finish_thread_state finish_state (finish_ptid);
3727
3728 /* Get executed before scoped_restore_current_thread above to apply
3729 still for the thread which has thrown the exception. */
3730 auto defer_bpstat_clear
3731 = make_scope_exit (bpstat_clear_actions);
3732 auto defer_delete_threads
3733 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3734
3735 /* Now figure out what to do with the result of the result. */
3736 handle_inferior_event (ecs);
3737
3738 if (!ecs->wait_some_more)
3739 {
3740 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3741 int should_stop = 1;
3742 struct thread_info *thr = ecs->event_thread;
3743
3744 delete_just_stopped_threads_infrun_breakpoints ();
3745
3746 if (thr != NULL)
3747 {
3748 struct thread_fsm *thread_fsm = thr->thread_fsm;
3749
3750 if (thread_fsm != NULL)
3751 should_stop = thread_fsm->should_stop (thr);
3752 }
3753
3754 if (!should_stop)
3755 {
3756 keep_going (ecs);
3757 }
3758 else
3759 {
3760 bool should_notify_stop = true;
3761 int proceeded = 0;
3762
3763 clean_up_just_stopped_threads_fsms (ecs);
3764
3765 if (thr != NULL && thr->thread_fsm != NULL)
3766 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3767
3768 if (should_notify_stop)
3769 {
3770 /* We may not find an inferior if this was a process exit. */
3771 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3772 proceeded = normal_stop ();
3773 }
3774
3775 if (!proceeded)
3776 {
3777 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3778 cmd_done = 1;
3779 }
3780 }
3781 }
3782
3783 defer_delete_threads.release ();
3784 defer_bpstat_clear.release ();
3785
3786 /* No error, don't finish the thread states yet. */
3787 finish_state.release ();
3788
3789 /* This scope is used to ensure that readline callbacks are
3790 reinstalled here. */
3791 }
3792
3793 /* If a UI was in sync execution mode, and now isn't, restore its
3794 prompt (a synchronous execution command has finished, and we're
3795 ready for input). */
3796 all_uis_check_sync_execution_done ();
3797
3798 if (cmd_done
3799 && exec_done_display_p
3800 && (inferior_ptid == null_ptid
3801 || inferior_thread ()->state != THREAD_RUNNING))
3802 printf_unfiltered (_("completed.\n"));
3803 }
3804
3805 /* Record the frame and location we're currently stepping through. */
3806 void
3807 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3808 {
3809 struct thread_info *tp = inferior_thread ();
3810
3811 tp->control.step_frame_id = get_frame_id (frame);
3812 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3813
3814 tp->current_symtab = sal.symtab;
3815 tp->current_line = sal.line;
3816 }
3817
3818 /* Clear context switchable stepping state. */
3819
3820 void
3821 init_thread_stepping_state (struct thread_info *tss)
3822 {
3823 tss->stepped_breakpoint = 0;
3824 tss->stepping_over_breakpoint = 0;
3825 tss->stepping_over_watchpoint = 0;
3826 tss->step_after_step_resume_breakpoint = 0;
3827 }
3828
3829 /* Set the cached copy of the last ptid/waitstatus. */
3830
3831 void
3832 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3833 {
3834 target_last_wait_ptid = ptid;
3835 target_last_waitstatus = status;
3836 }
3837
3838 /* Return the cached copy of the last pid/waitstatus returned by
3839 target_wait()/deprecated_target_wait_hook(). The data is actually
3840 cached by handle_inferior_event(), which gets called immediately
3841 after target_wait()/deprecated_target_wait_hook(). */
3842
3843 void
3844 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3845 {
3846 *ptidp = target_last_wait_ptid;
3847 *status = target_last_waitstatus;
3848 }
3849
3850 void
3851 nullify_last_target_wait_ptid (void)
3852 {
3853 target_last_wait_ptid = minus_one_ptid;
3854 }
3855
3856 /* Switch thread contexts. */
3857
3858 static void
3859 context_switch (execution_control_state *ecs)
3860 {
3861 if (debug_infrun
3862 && ecs->ptid != inferior_ptid
3863 && ecs->event_thread != inferior_thread ())
3864 {
3865 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3866 target_pid_to_str (inferior_ptid).c_str ());
3867 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3868 target_pid_to_str (ecs->ptid).c_str ());
3869 }
3870
3871 switch_to_thread (ecs->event_thread);
3872 }
3873
3874 /* If the target can't tell whether we've hit breakpoints
3875 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3876 check whether that could have been caused by a breakpoint. If so,
3877 adjust the PC, per gdbarch_decr_pc_after_break. */
3878
3879 static void
3880 adjust_pc_after_break (struct thread_info *thread,
3881 struct target_waitstatus *ws)
3882 {
3883 struct regcache *regcache;
3884 struct gdbarch *gdbarch;
3885 CORE_ADDR breakpoint_pc, decr_pc;
3886
3887 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3888 we aren't, just return.
3889
3890 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3891 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3892 implemented by software breakpoints should be handled through the normal
3893 breakpoint layer.
3894
3895 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3896 different signals (SIGILL or SIGEMT for instance), but it is less
3897 clear where the PC is pointing afterwards. It may not match
3898 gdbarch_decr_pc_after_break. I don't know any specific target that
3899 generates these signals at breakpoints (the code has been in GDB since at
3900 least 1992) so I can not guess how to handle them here.
3901
3902 In earlier versions of GDB, a target with
3903 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3904 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3905 target with both of these set in GDB history, and it seems unlikely to be
3906 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3907
3908 if (ws->kind != TARGET_WAITKIND_STOPPED)
3909 return;
3910
3911 if (ws->value.sig != GDB_SIGNAL_TRAP)
3912 return;
3913
3914 /* In reverse execution, when a breakpoint is hit, the instruction
3915 under it has already been de-executed. The reported PC always
3916 points at the breakpoint address, so adjusting it further would
3917 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3918 architecture:
3919
3920 B1 0x08000000 : INSN1
3921 B2 0x08000001 : INSN2
3922 0x08000002 : INSN3
3923 PC -> 0x08000003 : INSN4
3924
3925 Say you're stopped at 0x08000003 as above. Reverse continuing
3926 from that point should hit B2 as below. Reading the PC when the
3927 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3928 been de-executed already.
3929
3930 B1 0x08000000 : INSN1
3931 B2 PC -> 0x08000001 : INSN2
3932 0x08000002 : INSN3
3933 0x08000003 : INSN4
3934
3935 We can't apply the same logic as for forward execution, because
3936 we would wrongly adjust the PC to 0x08000000, since there's a
3937 breakpoint at PC - 1. We'd then report a hit on B1, although
3938 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3939 behaviour. */
3940 if (execution_direction == EXEC_REVERSE)
3941 return;
3942
3943 /* If the target can tell whether the thread hit a SW breakpoint,
3944 trust it. Targets that can tell also adjust the PC
3945 themselves. */
3946 if (target_supports_stopped_by_sw_breakpoint ())
3947 return;
3948
3949 /* Note that relying on whether a breakpoint is planted in memory to
3950 determine this can fail. E.g,. the breakpoint could have been
3951 removed since. Or the thread could have been told to step an
3952 instruction the size of a breakpoint instruction, and only
3953 _after_ was a breakpoint inserted at its address. */
3954
3955 /* If this target does not decrement the PC after breakpoints, then
3956 we have nothing to do. */
3957 regcache = get_thread_regcache (thread);
3958 gdbarch = regcache->arch ();
3959
3960 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3961 if (decr_pc == 0)
3962 return;
3963
3964 const address_space *aspace = regcache->aspace ();
3965
3966 /* Find the location where (if we've hit a breakpoint) the
3967 breakpoint would be. */
3968 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3969
3970 /* If the target can't tell whether a software breakpoint triggered,
3971 fallback to figuring it out based on breakpoints we think were
3972 inserted in the target, and on whether the thread was stepped or
3973 continued. */
3974
3975 /* Check whether there actually is a software breakpoint inserted at
3976 that location.
3977
3978 If in non-stop mode, a race condition is possible where we've
3979 removed a breakpoint, but stop events for that breakpoint were
3980 already queued and arrive later. To suppress those spurious
3981 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3982 and retire them after a number of stop events are reported. Note
3983 this is an heuristic and can thus get confused. The real fix is
3984 to get the "stopped by SW BP and needs adjustment" info out of
3985 the target/kernel (and thus never reach here; see above). */
3986 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3987 || (target_is_non_stop_p ()
3988 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3989 {
3990 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
3991
3992 if (record_full_is_used ())
3993 restore_operation_disable.emplace
3994 (record_full_gdb_operation_disable_set ());
3995
3996 /* When using hardware single-step, a SIGTRAP is reported for both
3997 a completed single-step and a software breakpoint. Need to
3998 differentiate between the two, as the latter needs adjusting
3999 but the former does not.
4000
4001 The SIGTRAP can be due to a completed hardware single-step only if
4002 - we didn't insert software single-step breakpoints
4003 - this thread is currently being stepped
4004
4005 If any of these events did not occur, we must have stopped due
4006 to hitting a software breakpoint, and have to back up to the
4007 breakpoint address.
4008
4009 As a special case, we could have hardware single-stepped a
4010 software breakpoint. In this case (prev_pc == breakpoint_pc),
4011 we also need to back up to the breakpoint address. */
4012
4013 if (thread_has_single_step_breakpoints_set (thread)
4014 || !currently_stepping (thread)
4015 || (thread->stepped_breakpoint
4016 && thread->prev_pc == breakpoint_pc))
4017 regcache_write_pc (regcache, breakpoint_pc);
4018 }
4019 }
4020
4021 static int
4022 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4023 {
4024 for (frame = get_prev_frame (frame);
4025 frame != NULL;
4026 frame = get_prev_frame (frame))
4027 {
4028 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4029 return 1;
4030 if (get_frame_type (frame) != INLINE_FRAME)
4031 break;
4032 }
4033
4034 return 0;
4035 }
4036
4037 /* If the event thread has the stop requested flag set, pretend it
4038 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4039 target_stop). */
4040
4041 static bool
4042 handle_stop_requested (struct execution_control_state *ecs)
4043 {
4044 if (ecs->event_thread->stop_requested)
4045 {
4046 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4047 ecs->ws.value.sig = GDB_SIGNAL_0;
4048 handle_signal_stop (ecs);
4049 return true;
4050 }
4051 return false;
4052 }
4053
4054 /* Auxiliary function that handles syscall entry/return events.
4055 It returns 1 if the inferior should keep going (and GDB
4056 should ignore the event), or 0 if the event deserves to be
4057 processed. */
4058
4059 static int
4060 handle_syscall_event (struct execution_control_state *ecs)
4061 {
4062 struct regcache *regcache;
4063 int syscall_number;
4064
4065 context_switch (ecs);
4066
4067 regcache = get_thread_regcache (ecs->event_thread);
4068 syscall_number = ecs->ws.value.syscall_number;
4069 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4070
4071 if (catch_syscall_enabled () > 0
4072 && catching_syscall_number (syscall_number) > 0)
4073 {
4074 if (debug_infrun)
4075 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4076 syscall_number);
4077
4078 ecs->event_thread->control.stop_bpstat
4079 = bpstat_stop_status (regcache->aspace (),
4080 ecs->event_thread->suspend.stop_pc,
4081 ecs->event_thread, &ecs->ws);
4082
4083 if (handle_stop_requested (ecs))
4084 return 0;
4085
4086 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4087 {
4088 /* Catchpoint hit. */
4089 return 0;
4090 }
4091 }
4092
4093 if (handle_stop_requested (ecs))
4094 return 0;
4095
4096 /* If no catchpoint triggered for this, then keep going. */
4097 keep_going (ecs);
4098 return 1;
4099 }
4100
4101 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4102
4103 static void
4104 fill_in_stop_func (struct gdbarch *gdbarch,
4105 struct execution_control_state *ecs)
4106 {
4107 if (!ecs->stop_func_filled_in)
4108 {
4109 const block *block;
4110
4111 /* Don't care about return value; stop_func_start and stop_func_name
4112 will both be 0 if it doesn't work. */
4113 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4114 &ecs->stop_func_name,
4115 &ecs->stop_func_start,
4116 &ecs->stop_func_end,
4117 &block);
4118
4119 /* The call to find_pc_partial_function, above, will set
4120 stop_func_start and stop_func_end to the start and end
4121 of the range containing the stop pc. If this range
4122 contains the entry pc for the block (which is always the
4123 case for contiguous blocks), advance stop_func_start past
4124 the function's start offset and entrypoint. Note that
4125 stop_func_start is NOT advanced when in a range of a
4126 non-contiguous block that does not contain the entry pc. */
4127 if (block != nullptr
4128 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4129 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4130 {
4131 ecs->stop_func_start
4132 += gdbarch_deprecated_function_start_offset (gdbarch);
4133
4134 if (gdbarch_skip_entrypoint_p (gdbarch))
4135 ecs->stop_func_start
4136 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4137 }
4138
4139 ecs->stop_func_filled_in = 1;
4140 }
4141 }
4142
4143
4144 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4145
4146 static enum stop_kind
4147 get_inferior_stop_soon (execution_control_state *ecs)
4148 {
4149 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4150
4151 gdb_assert (inf != NULL);
4152 return inf->control.stop_soon;
4153 }
4154
4155 /* Wait for one event. Store the resulting waitstatus in WS, and
4156 return the event ptid. */
4157
4158 static ptid_t
4159 wait_one (struct target_waitstatus *ws)
4160 {
4161 ptid_t event_ptid;
4162 ptid_t wait_ptid = minus_one_ptid;
4163
4164 overlay_cache_invalid = 1;
4165
4166 /* Flush target cache before starting to handle each event.
4167 Target was running and cache could be stale. This is just a
4168 heuristic. Running threads may modify target memory, but we
4169 don't get any event. */
4170 target_dcache_invalidate ();
4171
4172 if (deprecated_target_wait_hook)
4173 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4174 else
4175 event_ptid = target_wait (wait_ptid, ws, 0);
4176
4177 if (debug_infrun)
4178 print_target_wait_results (wait_ptid, event_ptid, ws);
4179
4180 return event_ptid;
4181 }
4182
4183 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4184 instead of the current thread. */
4185 #define THREAD_STOPPED_BY(REASON) \
4186 static int \
4187 thread_stopped_by_ ## REASON (ptid_t ptid) \
4188 { \
4189 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4190 inferior_ptid = ptid; \
4191 \
4192 return target_stopped_by_ ## REASON (); \
4193 }
4194
4195 /* Generate thread_stopped_by_watchpoint. */
4196 THREAD_STOPPED_BY (watchpoint)
4197 /* Generate thread_stopped_by_sw_breakpoint. */
4198 THREAD_STOPPED_BY (sw_breakpoint)
4199 /* Generate thread_stopped_by_hw_breakpoint. */
4200 THREAD_STOPPED_BY (hw_breakpoint)
4201
4202 /* Save the thread's event and stop reason to process it later. */
4203
4204 static void
4205 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4206 {
4207 if (debug_infrun)
4208 {
4209 std::string statstr = target_waitstatus_to_string (ws);
4210
4211 fprintf_unfiltered (gdb_stdlog,
4212 "infrun: saving status %s for %d.%ld.%ld\n",
4213 statstr.c_str (),
4214 tp->ptid.pid (),
4215 tp->ptid.lwp (),
4216 tp->ptid.tid ());
4217 }
4218
4219 /* Record for later. */
4220 tp->suspend.waitstatus = *ws;
4221 tp->suspend.waitstatus_pending_p = 1;
4222
4223 struct regcache *regcache = get_thread_regcache (tp);
4224 const address_space *aspace = regcache->aspace ();
4225
4226 if (ws->kind == TARGET_WAITKIND_STOPPED
4227 && ws->value.sig == GDB_SIGNAL_TRAP)
4228 {
4229 CORE_ADDR pc = regcache_read_pc (regcache);
4230
4231 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4232
4233 if (thread_stopped_by_watchpoint (tp->ptid))
4234 {
4235 tp->suspend.stop_reason
4236 = TARGET_STOPPED_BY_WATCHPOINT;
4237 }
4238 else if (target_supports_stopped_by_sw_breakpoint ()
4239 && thread_stopped_by_sw_breakpoint (tp->ptid))
4240 {
4241 tp->suspend.stop_reason
4242 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4243 }
4244 else if (target_supports_stopped_by_hw_breakpoint ()
4245 && thread_stopped_by_hw_breakpoint (tp->ptid))
4246 {
4247 tp->suspend.stop_reason
4248 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4249 }
4250 else if (!target_supports_stopped_by_hw_breakpoint ()
4251 && hardware_breakpoint_inserted_here_p (aspace,
4252 pc))
4253 {
4254 tp->suspend.stop_reason
4255 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4256 }
4257 else if (!target_supports_stopped_by_sw_breakpoint ()
4258 && software_breakpoint_inserted_here_p (aspace,
4259 pc))
4260 {
4261 tp->suspend.stop_reason
4262 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4263 }
4264 else if (!thread_has_single_step_breakpoints_set (tp)
4265 && currently_stepping (tp))
4266 {
4267 tp->suspend.stop_reason
4268 = TARGET_STOPPED_BY_SINGLE_STEP;
4269 }
4270 }
4271 }
4272
4273 /* See infrun.h. */
4274
4275 void
4276 stop_all_threads (void)
4277 {
4278 /* We may need multiple passes to discover all threads. */
4279 int pass;
4280 int iterations = 0;
4281
4282 gdb_assert (target_is_non_stop_p ());
4283
4284 if (debug_infrun)
4285 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4286
4287 scoped_restore_current_thread restore_thread;
4288
4289 target_thread_events (1);
4290 SCOPE_EXIT { target_thread_events (0); };
4291
4292 /* Request threads to stop, and then wait for the stops. Because
4293 threads we already know about can spawn more threads while we're
4294 trying to stop them, and we only learn about new threads when we
4295 update the thread list, do this in a loop, and keep iterating
4296 until two passes find no threads that need to be stopped. */
4297 for (pass = 0; pass < 2; pass++, iterations++)
4298 {
4299 if (debug_infrun)
4300 fprintf_unfiltered (gdb_stdlog,
4301 "infrun: stop_all_threads, pass=%d, "
4302 "iterations=%d\n", pass, iterations);
4303 while (1)
4304 {
4305 ptid_t event_ptid;
4306 struct target_waitstatus ws;
4307 int need_wait = 0;
4308
4309 update_thread_list ();
4310
4311 /* Go through all threads looking for threads that we need
4312 to tell the target to stop. */
4313 for (thread_info *t : all_non_exited_threads ())
4314 {
4315 if (t->executing)
4316 {
4317 /* If already stopping, don't request a stop again.
4318 We just haven't seen the notification yet. */
4319 if (!t->stop_requested)
4320 {
4321 if (debug_infrun)
4322 fprintf_unfiltered (gdb_stdlog,
4323 "infrun: %s executing, "
4324 "need stop\n",
4325 target_pid_to_str (t->ptid).c_str ());
4326 target_stop (t->ptid);
4327 t->stop_requested = 1;
4328 }
4329 else
4330 {
4331 if (debug_infrun)
4332 fprintf_unfiltered (gdb_stdlog,
4333 "infrun: %s executing, "
4334 "already stopping\n",
4335 target_pid_to_str (t->ptid).c_str ());
4336 }
4337
4338 if (t->stop_requested)
4339 need_wait = 1;
4340 }
4341 else
4342 {
4343 if (debug_infrun)
4344 fprintf_unfiltered (gdb_stdlog,
4345 "infrun: %s not executing\n",
4346 target_pid_to_str (t->ptid).c_str ());
4347
4348 /* The thread may be not executing, but still be
4349 resumed with a pending status to process. */
4350 t->resumed = 0;
4351 }
4352 }
4353
4354 if (!need_wait)
4355 break;
4356
4357 /* If we find new threads on the second iteration, restart
4358 over. We want to see two iterations in a row with all
4359 threads stopped. */
4360 if (pass > 0)
4361 pass = -1;
4362
4363 event_ptid = wait_one (&ws);
4364 if (debug_infrun)
4365 {
4366 fprintf_unfiltered (gdb_stdlog,
4367 "infrun: stop_all_threads %s %s\n",
4368 target_waitstatus_to_string (&ws).c_str (),
4369 target_pid_to_str (event_ptid).c_str ());
4370 }
4371
4372 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4373 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4374 || ws.kind == TARGET_WAITKIND_EXITED
4375 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4376 {
4377 /* All resumed threads exited
4378 or one thread/process exited/signalled. */
4379 }
4380 else
4381 {
4382 thread_info *t = find_thread_ptid (event_ptid);
4383 if (t == NULL)
4384 t = add_thread (event_ptid);
4385
4386 t->stop_requested = 0;
4387 t->executing = 0;
4388 t->resumed = 0;
4389 t->control.may_range_step = 0;
4390
4391 /* This may be the first time we see the inferior report
4392 a stop. */
4393 inferior *inf = find_inferior_ptid (event_ptid);
4394 if (inf->needs_setup)
4395 {
4396 switch_to_thread_no_regs (t);
4397 setup_inferior (0);
4398 }
4399
4400 if (ws.kind == TARGET_WAITKIND_STOPPED
4401 && ws.value.sig == GDB_SIGNAL_0)
4402 {
4403 /* We caught the event that we intended to catch, so
4404 there's no event pending. */
4405 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4406 t->suspend.waitstatus_pending_p = 0;
4407
4408 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4409 {
4410 /* Add it back to the step-over queue. */
4411 if (debug_infrun)
4412 {
4413 fprintf_unfiltered (gdb_stdlog,
4414 "infrun: displaced-step of %s "
4415 "canceled: adding back to the "
4416 "step-over queue\n",
4417 target_pid_to_str (t->ptid).c_str ());
4418 }
4419 t->control.trap_expected = 0;
4420 thread_step_over_chain_enqueue (t);
4421 }
4422 }
4423 else
4424 {
4425 enum gdb_signal sig;
4426 struct regcache *regcache;
4427
4428 if (debug_infrun)
4429 {
4430 std::string statstr = target_waitstatus_to_string (&ws);
4431
4432 fprintf_unfiltered (gdb_stdlog,
4433 "infrun: target_wait %s, saving "
4434 "status for %d.%ld.%ld\n",
4435 statstr.c_str (),
4436 t->ptid.pid (),
4437 t->ptid.lwp (),
4438 t->ptid.tid ());
4439 }
4440
4441 /* Record for later. */
4442 save_waitstatus (t, &ws);
4443
4444 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4445 ? ws.value.sig : GDB_SIGNAL_0);
4446
4447 if (displaced_step_fixup (t, sig) < 0)
4448 {
4449 /* Add it back to the step-over queue. */
4450 t->control.trap_expected = 0;
4451 thread_step_over_chain_enqueue (t);
4452 }
4453
4454 regcache = get_thread_regcache (t);
4455 t->suspend.stop_pc = regcache_read_pc (regcache);
4456
4457 if (debug_infrun)
4458 {
4459 fprintf_unfiltered (gdb_stdlog,
4460 "infrun: saved stop_pc=%s for %s "
4461 "(currently_stepping=%d)\n",
4462 paddress (target_gdbarch (),
4463 t->suspend.stop_pc),
4464 target_pid_to_str (t->ptid).c_str (),
4465 currently_stepping (t));
4466 }
4467 }
4468 }
4469 }
4470 }
4471
4472 if (debug_infrun)
4473 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4474 }
4475
4476 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4477
4478 static int
4479 handle_no_resumed (struct execution_control_state *ecs)
4480 {
4481 if (target_can_async_p ())
4482 {
4483 struct ui *ui;
4484 int any_sync = 0;
4485
4486 ALL_UIS (ui)
4487 {
4488 if (ui->prompt_state == PROMPT_BLOCKED)
4489 {
4490 any_sync = 1;
4491 break;
4492 }
4493 }
4494 if (!any_sync)
4495 {
4496 /* There were no unwaited-for children left in the target, but,
4497 we're not synchronously waiting for events either. Just
4498 ignore. */
4499
4500 if (debug_infrun)
4501 fprintf_unfiltered (gdb_stdlog,
4502 "infrun: TARGET_WAITKIND_NO_RESUMED "
4503 "(ignoring: bg)\n");
4504 prepare_to_wait (ecs);
4505 return 1;
4506 }
4507 }
4508
4509 /* Otherwise, if we were running a synchronous execution command, we
4510 may need to cancel it and give the user back the terminal.
4511
4512 In non-stop mode, the target can't tell whether we've already
4513 consumed previous stop events, so it can end up sending us a
4514 no-resumed event like so:
4515
4516 #0 - thread 1 is left stopped
4517
4518 #1 - thread 2 is resumed and hits breakpoint
4519 -> TARGET_WAITKIND_STOPPED
4520
4521 #2 - thread 3 is resumed and exits
4522 this is the last resumed thread, so
4523 -> TARGET_WAITKIND_NO_RESUMED
4524
4525 #3 - gdb processes stop for thread 2 and decides to re-resume
4526 it.
4527
4528 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4529 thread 2 is now resumed, so the event should be ignored.
4530
4531 IOW, if the stop for thread 2 doesn't end a foreground command,
4532 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4533 event. But it could be that the event meant that thread 2 itself
4534 (or whatever other thread was the last resumed thread) exited.
4535
4536 To address this we refresh the thread list and check whether we
4537 have resumed threads _now_. In the example above, this removes
4538 thread 3 from the thread list. If thread 2 was re-resumed, we
4539 ignore this event. If we find no thread resumed, then we cancel
4540 the synchronous command show "no unwaited-for " to the user. */
4541 update_thread_list ();
4542
4543 for (thread_info *thread : all_non_exited_threads ())
4544 {
4545 if (thread->executing
4546 || thread->suspend.waitstatus_pending_p)
4547 {
4548 /* There were no unwaited-for children left in the target at
4549 some point, but there are now. Just ignore. */
4550 if (debug_infrun)
4551 fprintf_unfiltered (gdb_stdlog,
4552 "infrun: TARGET_WAITKIND_NO_RESUMED "
4553 "(ignoring: found resumed)\n");
4554 prepare_to_wait (ecs);
4555 return 1;
4556 }
4557 }
4558
4559 /* Note however that we may find no resumed thread because the whole
4560 process exited meanwhile (thus updating the thread list results
4561 in an empty thread list). In this case we know we'll be getting
4562 a process exit event shortly. */
4563 for (inferior *inf : all_inferiors ())
4564 {
4565 if (inf->pid == 0)
4566 continue;
4567
4568 thread_info *thread = any_live_thread_of_inferior (inf);
4569 if (thread == NULL)
4570 {
4571 if (debug_infrun)
4572 fprintf_unfiltered (gdb_stdlog,
4573 "infrun: TARGET_WAITKIND_NO_RESUMED "
4574 "(expect process exit)\n");
4575 prepare_to_wait (ecs);
4576 return 1;
4577 }
4578 }
4579
4580 /* Go ahead and report the event. */
4581 return 0;
4582 }
4583
4584 /* Given an execution control state that has been freshly filled in by
4585 an event from the inferior, figure out what it means and take
4586 appropriate action.
4587
4588 The alternatives are:
4589
4590 1) stop_waiting and return; to really stop and return to the
4591 debugger.
4592
4593 2) keep_going and return; to wait for the next event (set
4594 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4595 once). */
4596
4597 static void
4598 handle_inferior_event (struct execution_control_state *ecs)
4599 {
4600 /* Make sure that all temporary struct value objects that were
4601 created during the handling of the event get deleted at the
4602 end. */
4603 scoped_value_mark free_values;
4604
4605 enum stop_kind stop_soon;
4606
4607 if (debug_infrun)
4608 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4609 target_waitstatus_to_string (&ecs->ws).c_str ());
4610
4611 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4612 {
4613 /* We had an event in the inferior, but we are not interested in
4614 handling it at this level. The lower layers have already
4615 done what needs to be done, if anything.
4616
4617 One of the possible circumstances for this is when the
4618 inferior produces output for the console. The inferior has
4619 not stopped, and we are ignoring the event. Another possible
4620 circumstance is any event which the lower level knows will be
4621 reported multiple times without an intervening resume. */
4622 prepare_to_wait (ecs);
4623 return;
4624 }
4625
4626 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4627 {
4628 prepare_to_wait (ecs);
4629 return;
4630 }
4631
4632 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4633 && handle_no_resumed (ecs))
4634 return;
4635
4636 /* Cache the last pid/waitstatus. */
4637 set_last_target_status (ecs->ptid, ecs->ws);
4638
4639 /* Always clear state belonging to the previous time we stopped. */
4640 stop_stack_dummy = STOP_NONE;
4641
4642 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4643 {
4644 /* No unwaited-for children left. IOW, all resumed children
4645 have exited. */
4646 stop_print_frame = 0;
4647 stop_waiting (ecs);
4648 return;
4649 }
4650
4651 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4652 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4653 {
4654 ecs->event_thread = find_thread_ptid (ecs->ptid);
4655 /* If it's a new thread, add it to the thread database. */
4656 if (ecs->event_thread == NULL)
4657 ecs->event_thread = add_thread (ecs->ptid);
4658
4659 /* Disable range stepping. If the next step request could use a
4660 range, this will be end up re-enabled then. */
4661 ecs->event_thread->control.may_range_step = 0;
4662 }
4663
4664 /* Dependent on valid ECS->EVENT_THREAD. */
4665 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4666
4667 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4668 reinit_frame_cache ();
4669
4670 breakpoint_retire_moribund ();
4671
4672 /* First, distinguish signals caused by the debugger from signals
4673 that have to do with the program's own actions. Note that
4674 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4675 on the operating system version. Here we detect when a SIGILL or
4676 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4677 something similar for SIGSEGV, since a SIGSEGV will be generated
4678 when we're trying to execute a breakpoint instruction on a
4679 non-executable stack. This happens for call dummy breakpoints
4680 for architectures like SPARC that place call dummies on the
4681 stack. */
4682 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4683 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4684 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4685 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4686 {
4687 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4688
4689 if (breakpoint_inserted_here_p (regcache->aspace (),
4690 regcache_read_pc (regcache)))
4691 {
4692 if (debug_infrun)
4693 fprintf_unfiltered (gdb_stdlog,
4694 "infrun: Treating signal as SIGTRAP\n");
4695 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4696 }
4697 }
4698
4699 /* Mark the non-executing threads accordingly. In all-stop, all
4700 threads of all processes are stopped when we get any event
4701 reported. In non-stop mode, only the event thread stops. */
4702 {
4703 ptid_t mark_ptid;
4704
4705 if (!target_is_non_stop_p ())
4706 mark_ptid = minus_one_ptid;
4707 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4708 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4709 {
4710 /* If we're handling a process exit in non-stop mode, even
4711 though threads haven't been deleted yet, one would think
4712 that there is nothing to do, as threads of the dead process
4713 will be soon deleted, and threads of any other process were
4714 left running. However, on some targets, threads survive a
4715 process exit event. E.g., for the "checkpoint" command,
4716 when the current checkpoint/fork exits, linux-fork.c
4717 automatically switches to another fork from within
4718 target_mourn_inferior, by associating the same
4719 inferior/thread to another fork. We haven't mourned yet at
4720 this point, but we must mark any threads left in the
4721 process as not-executing so that finish_thread_state marks
4722 them stopped (in the user's perspective) if/when we present
4723 the stop to the user. */
4724 mark_ptid = ptid_t (ecs->ptid.pid ());
4725 }
4726 else
4727 mark_ptid = ecs->ptid;
4728
4729 set_executing (mark_ptid, 0);
4730
4731 /* Likewise the resumed flag. */
4732 set_resumed (mark_ptid, 0);
4733 }
4734
4735 switch (ecs->ws.kind)
4736 {
4737 case TARGET_WAITKIND_LOADED:
4738 context_switch (ecs);
4739 /* Ignore gracefully during startup of the inferior, as it might
4740 be the shell which has just loaded some objects, otherwise
4741 add the symbols for the newly loaded objects. Also ignore at
4742 the beginning of an attach or remote session; we will query
4743 the full list of libraries once the connection is
4744 established. */
4745
4746 stop_soon = get_inferior_stop_soon (ecs);
4747 if (stop_soon == NO_STOP_QUIETLY)
4748 {
4749 struct regcache *regcache;
4750
4751 regcache = get_thread_regcache (ecs->event_thread);
4752
4753 handle_solib_event ();
4754
4755 ecs->event_thread->control.stop_bpstat
4756 = bpstat_stop_status (regcache->aspace (),
4757 ecs->event_thread->suspend.stop_pc,
4758 ecs->event_thread, &ecs->ws);
4759
4760 if (handle_stop_requested (ecs))
4761 return;
4762
4763 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4764 {
4765 /* A catchpoint triggered. */
4766 process_event_stop_test (ecs);
4767 return;
4768 }
4769
4770 /* If requested, stop when the dynamic linker notifies
4771 gdb of events. This allows the user to get control
4772 and place breakpoints in initializer routines for
4773 dynamically loaded objects (among other things). */
4774 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4775 if (stop_on_solib_events)
4776 {
4777 /* Make sure we print "Stopped due to solib-event" in
4778 normal_stop. */
4779 stop_print_frame = 1;
4780
4781 stop_waiting (ecs);
4782 return;
4783 }
4784 }
4785
4786 /* If we are skipping through a shell, or through shared library
4787 loading that we aren't interested in, resume the program. If
4788 we're running the program normally, also resume. */
4789 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4790 {
4791 /* Loading of shared libraries might have changed breakpoint
4792 addresses. Make sure new breakpoints are inserted. */
4793 if (stop_soon == NO_STOP_QUIETLY)
4794 insert_breakpoints ();
4795 resume (GDB_SIGNAL_0);
4796 prepare_to_wait (ecs);
4797 return;
4798 }
4799
4800 /* But stop if we're attaching or setting up a remote
4801 connection. */
4802 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4803 || stop_soon == STOP_QUIETLY_REMOTE)
4804 {
4805 if (debug_infrun)
4806 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4807 stop_waiting (ecs);
4808 return;
4809 }
4810
4811 internal_error (__FILE__, __LINE__,
4812 _("unhandled stop_soon: %d"), (int) stop_soon);
4813
4814 case TARGET_WAITKIND_SPURIOUS:
4815 if (handle_stop_requested (ecs))
4816 return;
4817 context_switch (ecs);
4818 resume (GDB_SIGNAL_0);
4819 prepare_to_wait (ecs);
4820 return;
4821
4822 case TARGET_WAITKIND_THREAD_CREATED:
4823 if (handle_stop_requested (ecs))
4824 return;
4825 context_switch (ecs);
4826 if (!switch_back_to_stepped_thread (ecs))
4827 keep_going (ecs);
4828 return;
4829
4830 case TARGET_WAITKIND_EXITED:
4831 case TARGET_WAITKIND_SIGNALLED:
4832 inferior_ptid = ecs->ptid;
4833 set_current_inferior (find_inferior_ptid (ecs->ptid));
4834 set_current_program_space (current_inferior ()->pspace);
4835 handle_vfork_child_exec_or_exit (0);
4836 target_terminal::ours (); /* Must do this before mourn anyway. */
4837
4838 /* Clearing any previous state of convenience variables. */
4839 clear_exit_convenience_vars ();
4840
4841 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4842 {
4843 /* Record the exit code in the convenience variable $_exitcode, so
4844 that the user can inspect this again later. */
4845 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4846 (LONGEST) ecs->ws.value.integer);
4847
4848 /* Also record this in the inferior itself. */
4849 current_inferior ()->has_exit_code = 1;
4850 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4851
4852 /* Support the --return-child-result option. */
4853 return_child_result_value = ecs->ws.value.integer;
4854
4855 gdb::observers::exited.notify (ecs->ws.value.integer);
4856 }
4857 else
4858 {
4859 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4860
4861 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4862 {
4863 /* Set the value of the internal variable $_exitsignal,
4864 which holds the signal uncaught by the inferior. */
4865 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4866 gdbarch_gdb_signal_to_target (gdbarch,
4867 ecs->ws.value.sig));
4868 }
4869 else
4870 {
4871 /* We don't have access to the target's method used for
4872 converting between signal numbers (GDB's internal
4873 representation <-> target's representation).
4874 Therefore, we cannot do a good job at displaying this
4875 information to the user. It's better to just warn
4876 her about it (if infrun debugging is enabled), and
4877 give up. */
4878 if (debug_infrun)
4879 fprintf_filtered (gdb_stdlog, _("\
4880 Cannot fill $_exitsignal with the correct signal number.\n"));
4881 }
4882
4883 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4884 }
4885
4886 gdb_flush (gdb_stdout);
4887 target_mourn_inferior (inferior_ptid);
4888 stop_print_frame = 0;
4889 stop_waiting (ecs);
4890 return;
4891
4892 /* The following are the only cases in which we keep going;
4893 the above cases end in a continue or goto. */
4894 case TARGET_WAITKIND_FORKED:
4895 case TARGET_WAITKIND_VFORKED:
4896 /* Check whether the inferior is displaced stepping. */
4897 {
4898 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4899 struct gdbarch *gdbarch = regcache->arch ();
4900
4901 /* If checking displaced stepping is supported, and thread
4902 ecs->ptid is displaced stepping. */
4903 if (displaced_step_in_progress_thread (ecs->event_thread))
4904 {
4905 struct inferior *parent_inf
4906 = find_inferior_ptid (ecs->ptid);
4907 struct regcache *child_regcache;
4908 CORE_ADDR parent_pc;
4909
4910 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4911 indicating that the displaced stepping of syscall instruction
4912 has been done. Perform cleanup for parent process here. Note
4913 that this operation also cleans up the child process for vfork,
4914 because their pages are shared. */
4915 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4916 /* Start a new step-over in another thread if there's one
4917 that needs it. */
4918 start_step_over ();
4919
4920 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4921 {
4922 struct displaced_step_inferior_state *displaced
4923 = get_displaced_stepping_state (parent_inf);
4924
4925 /* Restore scratch pad for child process. */
4926 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4927 }
4928
4929 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4930 the child's PC is also within the scratchpad. Set the child's PC
4931 to the parent's PC value, which has already been fixed up.
4932 FIXME: we use the parent's aspace here, although we're touching
4933 the child, because the child hasn't been added to the inferior
4934 list yet at this point. */
4935
4936 child_regcache
4937 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4938 gdbarch,
4939 parent_inf->aspace);
4940 /* Read PC value of parent process. */
4941 parent_pc = regcache_read_pc (regcache);
4942
4943 if (debug_displaced)
4944 fprintf_unfiltered (gdb_stdlog,
4945 "displaced: write child pc from %s to %s\n",
4946 paddress (gdbarch,
4947 regcache_read_pc (child_regcache)),
4948 paddress (gdbarch, parent_pc));
4949
4950 regcache_write_pc (child_regcache, parent_pc);
4951 }
4952 }
4953
4954 context_switch (ecs);
4955
4956 /* Immediately detach breakpoints from the child before there's
4957 any chance of letting the user delete breakpoints from the
4958 breakpoint lists. If we don't do this early, it's easy to
4959 leave left over traps in the child, vis: "break foo; catch
4960 fork; c; <fork>; del; c; <child calls foo>". We only follow
4961 the fork on the last `continue', and by that time the
4962 breakpoint at "foo" is long gone from the breakpoint table.
4963 If we vforked, then we don't need to unpatch here, since both
4964 parent and child are sharing the same memory pages; we'll
4965 need to unpatch at follow/detach time instead to be certain
4966 that new breakpoints added between catchpoint hit time and
4967 vfork follow are detached. */
4968 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4969 {
4970 /* This won't actually modify the breakpoint list, but will
4971 physically remove the breakpoints from the child. */
4972 detach_breakpoints (ecs->ws.value.related_pid);
4973 }
4974
4975 delete_just_stopped_threads_single_step_breakpoints ();
4976
4977 /* In case the event is caught by a catchpoint, remember that
4978 the event is to be followed at the next resume of the thread,
4979 and not immediately. */
4980 ecs->event_thread->pending_follow = ecs->ws;
4981
4982 ecs->event_thread->suspend.stop_pc
4983 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
4984
4985 ecs->event_thread->control.stop_bpstat
4986 = bpstat_stop_status (get_current_regcache ()->aspace (),
4987 ecs->event_thread->suspend.stop_pc,
4988 ecs->event_thread, &ecs->ws);
4989
4990 if (handle_stop_requested (ecs))
4991 return;
4992
4993 /* If no catchpoint triggered for this, then keep going. Note
4994 that we're interested in knowing the bpstat actually causes a
4995 stop, not just if it may explain the signal. Software
4996 watchpoints, for example, always appear in the bpstat. */
4997 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4998 {
4999 int should_resume;
5000 int follow_child
5001 = (follow_fork_mode_string == follow_fork_mode_child);
5002
5003 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5004
5005 should_resume = follow_fork ();
5006
5007 thread_info *parent = ecs->event_thread;
5008 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5009
5010 /* At this point, the parent is marked running, and the
5011 child is marked stopped. */
5012
5013 /* If not resuming the parent, mark it stopped. */
5014 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5015 parent->set_running (false);
5016
5017 /* If resuming the child, mark it running. */
5018 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5019 child->set_running (true);
5020
5021 /* In non-stop mode, also resume the other branch. */
5022 if (!detach_fork && (non_stop
5023 || (sched_multi && target_is_non_stop_p ())))
5024 {
5025 if (follow_child)
5026 switch_to_thread (parent);
5027 else
5028 switch_to_thread (child);
5029
5030 ecs->event_thread = inferior_thread ();
5031 ecs->ptid = inferior_ptid;
5032 keep_going (ecs);
5033 }
5034
5035 if (follow_child)
5036 switch_to_thread (child);
5037 else
5038 switch_to_thread (parent);
5039
5040 ecs->event_thread = inferior_thread ();
5041 ecs->ptid = inferior_ptid;
5042
5043 if (should_resume)
5044 keep_going (ecs);
5045 else
5046 stop_waiting (ecs);
5047 return;
5048 }
5049 process_event_stop_test (ecs);
5050 return;
5051
5052 case TARGET_WAITKIND_VFORK_DONE:
5053 /* Done with the shared memory region. Re-insert breakpoints in
5054 the parent, and keep going. */
5055
5056 context_switch (ecs);
5057
5058 current_inferior ()->waiting_for_vfork_done = 0;
5059 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5060
5061 if (handle_stop_requested (ecs))
5062 return;
5063
5064 /* This also takes care of reinserting breakpoints in the
5065 previously locked inferior. */
5066 keep_going (ecs);
5067 return;
5068
5069 case TARGET_WAITKIND_EXECD:
5070
5071 /* Note we can't read registers yet (the stop_pc), because we
5072 don't yet know the inferior's post-exec architecture.
5073 'stop_pc' is explicitly read below instead. */
5074 switch_to_thread_no_regs (ecs->event_thread);
5075
5076 /* Do whatever is necessary to the parent branch of the vfork. */
5077 handle_vfork_child_exec_or_exit (1);
5078
5079 /* This causes the eventpoints and symbol table to be reset.
5080 Must do this now, before trying to determine whether to
5081 stop. */
5082 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5083
5084 /* In follow_exec we may have deleted the original thread and
5085 created a new one. Make sure that the event thread is the
5086 execd thread for that case (this is a nop otherwise). */
5087 ecs->event_thread = inferior_thread ();
5088
5089 ecs->event_thread->suspend.stop_pc
5090 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5091
5092 ecs->event_thread->control.stop_bpstat
5093 = bpstat_stop_status (get_current_regcache ()->aspace (),
5094 ecs->event_thread->suspend.stop_pc,
5095 ecs->event_thread, &ecs->ws);
5096
5097 /* Note that this may be referenced from inside
5098 bpstat_stop_status above, through inferior_has_execd. */
5099 xfree (ecs->ws.value.execd_pathname);
5100 ecs->ws.value.execd_pathname = NULL;
5101
5102 if (handle_stop_requested (ecs))
5103 return;
5104
5105 /* If no catchpoint triggered for this, then keep going. */
5106 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5107 {
5108 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5109 keep_going (ecs);
5110 return;
5111 }
5112 process_event_stop_test (ecs);
5113 return;
5114
5115 /* Be careful not to try to gather much state about a thread
5116 that's in a syscall. It's frequently a losing proposition. */
5117 case TARGET_WAITKIND_SYSCALL_ENTRY:
5118 /* Getting the current syscall number. */
5119 if (handle_syscall_event (ecs) == 0)
5120 process_event_stop_test (ecs);
5121 return;
5122
5123 /* Before examining the threads further, step this thread to
5124 get it entirely out of the syscall. (We get notice of the
5125 event when the thread is just on the verge of exiting a
5126 syscall. Stepping one instruction seems to get it back
5127 into user code.) */
5128 case TARGET_WAITKIND_SYSCALL_RETURN:
5129 if (handle_syscall_event (ecs) == 0)
5130 process_event_stop_test (ecs);
5131 return;
5132
5133 case TARGET_WAITKIND_STOPPED:
5134 handle_signal_stop (ecs);
5135 return;
5136
5137 case TARGET_WAITKIND_NO_HISTORY:
5138 /* Reverse execution: target ran out of history info. */
5139
5140 /* Switch to the stopped thread. */
5141 context_switch (ecs);
5142 if (debug_infrun)
5143 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5144
5145 delete_just_stopped_threads_single_step_breakpoints ();
5146 ecs->event_thread->suspend.stop_pc
5147 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5148
5149 if (handle_stop_requested (ecs))
5150 return;
5151
5152 gdb::observers::no_history.notify ();
5153 stop_waiting (ecs);
5154 return;
5155 }
5156 }
5157
5158 /* Restart threads back to what they were trying to do back when we
5159 paused them for an in-line step-over. The EVENT_THREAD thread is
5160 ignored. */
5161
5162 static void
5163 restart_threads (struct thread_info *event_thread)
5164 {
5165 /* In case the instruction just stepped spawned a new thread. */
5166 update_thread_list ();
5167
5168 for (thread_info *tp : all_non_exited_threads ())
5169 {
5170 if (tp == event_thread)
5171 {
5172 if (debug_infrun)
5173 fprintf_unfiltered (gdb_stdlog,
5174 "infrun: restart threads: "
5175 "[%s] is event thread\n",
5176 target_pid_to_str (tp->ptid).c_str ());
5177 continue;
5178 }
5179
5180 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5181 {
5182 if (debug_infrun)
5183 fprintf_unfiltered (gdb_stdlog,
5184 "infrun: restart threads: "
5185 "[%s] not meant to be running\n",
5186 target_pid_to_str (tp->ptid).c_str ());
5187 continue;
5188 }
5189
5190 if (tp->resumed)
5191 {
5192 if (debug_infrun)
5193 fprintf_unfiltered (gdb_stdlog,
5194 "infrun: restart threads: [%s] resumed\n",
5195 target_pid_to_str (tp->ptid).c_str ());
5196 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5197 continue;
5198 }
5199
5200 if (thread_is_in_step_over_chain (tp))
5201 {
5202 if (debug_infrun)
5203 fprintf_unfiltered (gdb_stdlog,
5204 "infrun: restart threads: "
5205 "[%s] needs step-over\n",
5206 target_pid_to_str (tp->ptid).c_str ());
5207 gdb_assert (!tp->resumed);
5208 continue;
5209 }
5210
5211
5212 if (tp->suspend.waitstatus_pending_p)
5213 {
5214 if (debug_infrun)
5215 fprintf_unfiltered (gdb_stdlog,
5216 "infrun: restart threads: "
5217 "[%s] has pending status\n",
5218 target_pid_to_str (tp->ptid).c_str ());
5219 tp->resumed = 1;
5220 continue;
5221 }
5222
5223 gdb_assert (!tp->stop_requested);
5224
5225 /* If some thread needs to start a step-over at this point, it
5226 should still be in the step-over queue, and thus skipped
5227 above. */
5228 if (thread_still_needs_step_over (tp))
5229 {
5230 internal_error (__FILE__, __LINE__,
5231 "thread [%s] needs a step-over, but not in "
5232 "step-over queue\n",
5233 target_pid_to_str (tp->ptid).c_str ());
5234 }
5235
5236 if (currently_stepping (tp))
5237 {
5238 if (debug_infrun)
5239 fprintf_unfiltered (gdb_stdlog,
5240 "infrun: restart threads: [%s] was stepping\n",
5241 target_pid_to_str (tp->ptid).c_str ());
5242 keep_going_stepped_thread (tp);
5243 }
5244 else
5245 {
5246 struct execution_control_state ecss;
5247 struct execution_control_state *ecs = &ecss;
5248
5249 if (debug_infrun)
5250 fprintf_unfiltered (gdb_stdlog,
5251 "infrun: restart threads: [%s] continuing\n",
5252 target_pid_to_str (tp->ptid).c_str ());
5253 reset_ecs (ecs, tp);
5254 switch_to_thread (tp);
5255 keep_going_pass_signal (ecs);
5256 }
5257 }
5258 }
5259
5260 /* Callback for iterate_over_threads. Find a resumed thread that has
5261 a pending waitstatus. */
5262
5263 static int
5264 resumed_thread_with_pending_status (struct thread_info *tp,
5265 void *arg)
5266 {
5267 return (tp->resumed
5268 && tp->suspend.waitstatus_pending_p);
5269 }
5270
5271 /* Called when we get an event that may finish an in-line or
5272 out-of-line (displaced stepping) step-over started previously.
5273 Return true if the event is processed and we should go back to the
5274 event loop; false if the caller should continue processing the
5275 event. */
5276
5277 static int
5278 finish_step_over (struct execution_control_state *ecs)
5279 {
5280 int had_step_over_info;
5281
5282 displaced_step_fixup (ecs->event_thread,
5283 ecs->event_thread->suspend.stop_signal);
5284
5285 had_step_over_info = step_over_info_valid_p ();
5286
5287 if (had_step_over_info)
5288 {
5289 /* If we're stepping over a breakpoint with all threads locked,
5290 then only the thread that was stepped should be reporting
5291 back an event. */
5292 gdb_assert (ecs->event_thread->control.trap_expected);
5293
5294 clear_step_over_info ();
5295 }
5296
5297 if (!target_is_non_stop_p ())
5298 return 0;
5299
5300 /* Start a new step-over in another thread if there's one that
5301 needs it. */
5302 start_step_over ();
5303
5304 /* If we were stepping over a breakpoint before, and haven't started
5305 a new in-line step-over sequence, then restart all other threads
5306 (except the event thread). We can't do this in all-stop, as then
5307 e.g., we wouldn't be able to issue any other remote packet until
5308 these other threads stop. */
5309 if (had_step_over_info && !step_over_info_valid_p ())
5310 {
5311 struct thread_info *pending;
5312
5313 /* If we only have threads with pending statuses, the restart
5314 below won't restart any thread and so nothing re-inserts the
5315 breakpoint we just stepped over. But we need it inserted
5316 when we later process the pending events, otherwise if
5317 another thread has a pending event for this breakpoint too,
5318 we'd discard its event (because the breakpoint that
5319 originally caused the event was no longer inserted). */
5320 context_switch (ecs);
5321 insert_breakpoints ();
5322
5323 restart_threads (ecs->event_thread);
5324
5325 /* If we have events pending, go through handle_inferior_event
5326 again, picking up a pending event at random. This avoids
5327 thread starvation. */
5328
5329 /* But not if we just stepped over a watchpoint in order to let
5330 the instruction execute so we can evaluate its expression.
5331 The set of watchpoints that triggered is recorded in the
5332 breakpoint objects themselves (see bp->watchpoint_triggered).
5333 If we processed another event first, that other event could
5334 clobber this info. */
5335 if (ecs->event_thread->stepping_over_watchpoint)
5336 return 0;
5337
5338 pending = iterate_over_threads (resumed_thread_with_pending_status,
5339 NULL);
5340 if (pending != NULL)
5341 {
5342 struct thread_info *tp = ecs->event_thread;
5343 struct regcache *regcache;
5344
5345 if (debug_infrun)
5346 {
5347 fprintf_unfiltered (gdb_stdlog,
5348 "infrun: found resumed threads with "
5349 "pending events, saving status\n");
5350 }
5351
5352 gdb_assert (pending != tp);
5353
5354 /* Record the event thread's event for later. */
5355 save_waitstatus (tp, &ecs->ws);
5356 /* This was cleared early, by handle_inferior_event. Set it
5357 so this pending event is considered by
5358 do_target_wait. */
5359 tp->resumed = 1;
5360
5361 gdb_assert (!tp->executing);
5362
5363 regcache = get_thread_regcache (tp);
5364 tp->suspend.stop_pc = regcache_read_pc (regcache);
5365
5366 if (debug_infrun)
5367 {
5368 fprintf_unfiltered (gdb_stdlog,
5369 "infrun: saved stop_pc=%s for %s "
5370 "(currently_stepping=%d)\n",
5371 paddress (target_gdbarch (),
5372 tp->suspend.stop_pc),
5373 target_pid_to_str (tp->ptid).c_str (),
5374 currently_stepping (tp));
5375 }
5376
5377 /* This in-line step-over finished; clear this so we won't
5378 start a new one. This is what handle_signal_stop would
5379 do, if we returned false. */
5380 tp->stepping_over_breakpoint = 0;
5381
5382 /* Wake up the event loop again. */
5383 mark_async_event_handler (infrun_async_inferior_event_token);
5384
5385 prepare_to_wait (ecs);
5386 return 1;
5387 }
5388 }
5389
5390 return 0;
5391 }
5392
5393 /* Come here when the program has stopped with a signal. */
5394
5395 static void
5396 handle_signal_stop (struct execution_control_state *ecs)
5397 {
5398 struct frame_info *frame;
5399 struct gdbarch *gdbarch;
5400 int stopped_by_watchpoint;
5401 enum stop_kind stop_soon;
5402 int random_signal;
5403
5404 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5405
5406 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5407
5408 /* Do we need to clean up the state of a thread that has
5409 completed a displaced single-step? (Doing so usually affects
5410 the PC, so do it here, before we set stop_pc.) */
5411 if (finish_step_over (ecs))
5412 return;
5413
5414 /* If we either finished a single-step or hit a breakpoint, but
5415 the user wanted this thread to be stopped, pretend we got a
5416 SIG0 (generic unsignaled stop). */
5417 if (ecs->event_thread->stop_requested
5418 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5419 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5420
5421 ecs->event_thread->suspend.stop_pc
5422 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5423
5424 if (debug_infrun)
5425 {
5426 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5427 struct gdbarch *reg_gdbarch = regcache->arch ();
5428 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5429
5430 inferior_ptid = ecs->ptid;
5431
5432 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5433 paddress (reg_gdbarch,
5434 ecs->event_thread->suspend.stop_pc));
5435 if (target_stopped_by_watchpoint ())
5436 {
5437 CORE_ADDR addr;
5438
5439 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5440
5441 if (target_stopped_data_address (current_top_target (), &addr))
5442 fprintf_unfiltered (gdb_stdlog,
5443 "infrun: stopped data address = %s\n",
5444 paddress (reg_gdbarch, addr));
5445 else
5446 fprintf_unfiltered (gdb_stdlog,
5447 "infrun: (no data address available)\n");
5448 }
5449 }
5450
5451 /* This is originated from start_remote(), start_inferior() and
5452 shared libraries hook functions. */
5453 stop_soon = get_inferior_stop_soon (ecs);
5454 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5455 {
5456 context_switch (ecs);
5457 if (debug_infrun)
5458 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5459 stop_print_frame = 1;
5460 stop_waiting (ecs);
5461 return;
5462 }
5463
5464 /* This originates from attach_command(). We need to overwrite
5465 the stop_signal here, because some kernels don't ignore a
5466 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5467 See more comments in inferior.h. On the other hand, if we
5468 get a non-SIGSTOP, report it to the user - assume the backend
5469 will handle the SIGSTOP if it should show up later.
5470
5471 Also consider that the attach is complete when we see a
5472 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5473 target extended-remote report it instead of a SIGSTOP
5474 (e.g. gdbserver). We already rely on SIGTRAP being our
5475 signal, so this is no exception.
5476
5477 Also consider that the attach is complete when we see a
5478 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5479 the target to stop all threads of the inferior, in case the
5480 low level attach operation doesn't stop them implicitly. If
5481 they weren't stopped implicitly, then the stub will report a
5482 GDB_SIGNAL_0, meaning: stopped for no particular reason
5483 other than GDB's request. */
5484 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5485 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5486 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5487 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5488 {
5489 stop_print_frame = 1;
5490 stop_waiting (ecs);
5491 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5492 return;
5493 }
5494
5495 /* See if something interesting happened to the non-current thread. If
5496 so, then switch to that thread. */
5497 if (ecs->ptid != inferior_ptid)
5498 {
5499 if (debug_infrun)
5500 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5501
5502 context_switch (ecs);
5503
5504 if (deprecated_context_hook)
5505 deprecated_context_hook (ecs->event_thread->global_num);
5506 }
5507
5508 /* At this point, get hold of the now-current thread's frame. */
5509 frame = get_current_frame ();
5510 gdbarch = get_frame_arch (frame);
5511
5512 /* Pull the single step breakpoints out of the target. */
5513 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5514 {
5515 struct regcache *regcache;
5516 CORE_ADDR pc;
5517
5518 regcache = get_thread_regcache (ecs->event_thread);
5519 const address_space *aspace = regcache->aspace ();
5520
5521 pc = regcache_read_pc (regcache);
5522
5523 /* However, before doing so, if this single-step breakpoint was
5524 actually for another thread, set this thread up for moving
5525 past it. */
5526 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5527 aspace, pc))
5528 {
5529 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5530 {
5531 if (debug_infrun)
5532 {
5533 fprintf_unfiltered (gdb_stdlog,
5534 "infrun: [%s] hit another thread's "
5535 "single-step breakpoint\n",
5536 target_pid_to_str (ecs->ptid).c_str ());
5537 }
5538 ecs->hit_singlestep_breakpoint = 1;
5539 }
5540 }
5541 else
5542 {
5543 if (debug_infrun)
5544 {
5545 fprintf_unfiltered (gdb_stdlog,
5546 "infrun: [%s] hit its "
5547 "single-step breakpoint\n",
5548 target_pid_to_str (ecs->ptid).c_str ());
5549 }
5550 }
5551 }
5552 delete_just_stopped_threads_single_step_breakpoints ();
5553
5554 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5555 && ecs->event_thread->control.trap_expected
5556 && ecs->event_thread->stepping_over_watchpoint)
5557 stopped_by_watchpoint = 0;
5558 else
5559 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5560
5561 /* If necessary, step over this watchpoint. We'll be back to display
5562 it in a moment. */
5563 if (stopped_by_watchpoint
5564 && (target_have_steppable_watchpoint
5565 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5566 {
5567 /* At this point, we are stopped at an instruction which has
5568 attempted to write to a piece of memory under control of
5569 a watchpoint. The instruction hasn't actually executed
5570 yet. If we were to evaluate the watchpoint expression
5571 now, we would get the old value, and therefore no change
5572 would seem to have occurred.
5573
5574 In order to make watchpoints work `right', we really need
5575 to complete the memory write, and then evaluate the
5576 watchpoint expression. We do this by single-stepping the
5577 target.
5578
5579 It may not be necessary to disable the watchpoint to step over
5580 it. For example, the PA can (with some kernel cooperation)
5581 single step over a watchpoint without disabling the watchpoint.
5582
5583 It is far more common to need to disable a watchpoint to step
5584 the inferior over it. If we have non-steppable watchpoints,
5585 we must disable the current watchpoint; it's simplest to
5586 disable all watchpoints.
5587
5588 Any breakpoint at PC must also be stepped over -- if there's
5589 one, it will have already triggered before the watchpoint
5590 triggered, and we either already reported it to the user, or
5591 it didn't cause a stop and we called keep_going. In either
5592 case, if there was a breakpoint at PC, we must be trying to
5593 step past it. */
5594 ecs->event_thread->stepping_over_watchpoint = 1;
5595 keep_going (ecs);
5596 return;
5597 }
5598
5599 ecs->event_thread->stepping_over_breakpoint = 0;
5600 ecs->event_thread->stepping_over_watchpoint = 0;
5601 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5602 ecs->event_thread->control.stop_step = 0;
5603 stop_print_frame = 1;
5604 stopped_by_random_signal = 0;
5605 bpstat stop_chain = NULL;
5606
5607 /* Hide inlined functions starting here, unless we just performed stepi or
5608 nexti. After stepi and nexti, always show the innermost frame (not any
5609 inline function call sites). */
5610 if (ecs->event_thread->control.step_range_end != 1)
5611 {
5612 const address_space *aspace
5613 = get_thread_regcache (ecs->event_thread)->aspace ();
5614
5615 /* skip_inline_frames is expensive, so we avoid it if we can
5616 determine that the address is one where functions cannot have
5617 been inlined. This improves performance with inferiors that
5618 load a lot of shared libraries, because the solib event
5619 breakpoint is defined as the address of a function (i.e. not
5620 inline). Note that we have to check the previous PC as well
5621 as the current one to catch cases when we have just
5622 single-stepped off a breakpoint prior to reinstating it.
5623 Note that we're assuming that the code we single-step to is
5624 not inline, but that's not definitive: there's nothing
5625 preventing the event breakpoint function from containing
5626 inlined code, and the single-step ending up there. If the
5627 user had set a breakpoint on that inlined code, the missing
5628 skip_inline_frames call would break things. Fortunately
5629 that's an extremely unlikely scenario. */
5630 if (!pc_at_non_inline_function (aspace,
5631 ecs->event_thread->suspend.stop_pc,
5632 &ecs->ws)
5633 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5634 && ecs->event_thread->control.trap_expected
5635 && pc_at_non_inline_function (aspace,
5636 ecs->event_thread->prev_pc,
5637 &ecs->ws)))
5638 {
5639 stop_chain = build_bpstat_chain (aspace,
5640 ecs->event_thread->suspend.stop_pc,
5641 &ecs->ws);
5642 skip_inline_frames (ecs->event_thread, stop_chain);
5643
5644 /* Re-fetch current thread's frame in case that invalidated
5645 the frame cache. */
5646 frame = get_current_frame ();
5647 gdbarch = get_frame_arch (frame);
5648 }
5649 }
5650
5651 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5652 && ecs->event_thread->control.trap_expected
5653 && gdbarch_single_step_through_delay_p (gdbarch)
5654 && currently_stepping (ecs->event_thread))
5655 {
5656 /* We're trying to step off a breakpoint. Turns out that we're
5657 also on an instruction that needs to be stepped multiple
5658 times before it's been fully executing. E.g., architectures
5659 with a delay slot. It needs to be stepped twice, once for
5660 the instruction and once for the delay slot. */
5661 int step_through_delay
5662 = gdbarch_single_step_through_delay (gdbarch, frame);
5663
5664 if (debug_infrun && step_through_delay)
5665 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5666 if (ecs->event_thread->control.step_range_end == 0
5667 && step_through_delay)
5668 {
5669 /* The user issued a continue when stopped at a breakpoint.
5670 Set up for another trap and get out of here. */
5671 ecs->event_thread->stepping_over_breakpoint = 1;
5672 keep_going (ecs);
5673 return;
5674 }
5675 else if (step_through_delay)
5676 {
5677 /* The user issued a step when stopped at a breakpoint.
5678 Maybe we should stop, maybe we should not - the delay
5679 slot *might* correspond to a line of source. In any
5680 case, don't decide that here, just set
5681 ecs->stepping_over_breakpoint, making sure we
5682 single-step again before breakpoints are re-inserted. */
5683 ecs->event_thread->stepping_over_breakpoint = 1;
5684 }
5685 }
5686
5687 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5688 handles this event. */
5689 ecs->event_thread->control.stop_bpstat
5690 = bpstat_stop_status (get_current_regcache ()->aspace (),
5691 ecs->event_thread->suspend.stop_pc,
5692 ecs->event_thread, &ecs->ws, stop_chain);
5693
5694 /* Following in case break condition called a
5695 function. */
5696 stop_print_frame = 1;
5697
5698 /* This is where we handle "moribund" watchpoints. Unlike
5699 software breakpoints traps, hardware watchpoint traps are
5700 always distinguishable from random traps. If no high-level
5701 watchpoint is associated with the reported stop data address
5702 anymore, then the bpstat does not explain the signal ---
5703 simply make sure to ignore it if `stopped_by_watchpoint' is
5704 set. */
5705
5706 if (debug_infrun
5707 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5708 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5709 GDB_SIGNAL_TRAP)
5710 && stopped_by_watchpoint)
5711 fprintf_unfiltered (gdb_stdlog,
5712 "infrun: no user watchpoint explains "
5713 "watchpoint SIGTRAP, ignoring\n");
5714
5715 /* NOTE: cagney/2003-03-29: These checks for a random signal
5716 at one stage in the past included checks for an inferior
5717 function call's call dummy's return breakpoint. The original
5718 comment, that went with the test, read:
5719
5720 ``End of a stack dummy. Some systems (e.g. Sony news) give
5721 another signal besides SIGTRAP, so check here as well as
5722 above.''
5723
5724 If someone ever tries to get call dummys on a
5725 non-executable stack to work (where the target would stop
5726 with something like a SIGSEGV), then those tests might need
5727 to be re-instated. Given, however, that the tests were only
5728 enabled when momentary breakpoints were not being used, I
5729 suspect that it won't be the case.
5730
5731 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5732 be necessary for call dummies on a non-executable stack on
5733 SPARC. */
5734
5735 /* See if the breakpoints module can explain the signal. */
5736 random_signal
5737 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5738 ecs->event_thread->suspend.stop_signal);
5739
5740 /* Maybe this was a trap for a software breakpoint that has since
5741 been removed. */
5742 if (random_signal && target_stopped_by_sw_breakpoint ())
5743 {
5744 if (program_breakpoint_here_p (gdbarch,
5745 ecs->event_thread->suspend.stop_pc))
5746 {
5747 struct regcache *regcache;
5748 int decr_pc;
5749
5750 /* Re-adjust PC to what the program would see if GDB was not
5751 debugging it. */
5752 regcache = get_thread_regcache (ecs->event_thread);
5753 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5754 if (decr_pc != 0)
5755 {
5756 gdb::optional<scoped_restore_tmpl<int>>
5757 restore_operation_disable;
5758
5759 if (record_full_is_used ())
5760 restore_operation_disable.emplace
5761 (record_full_gdb_operation_disable_set ());
5762
5763 regcache_write_pc (regcache,
5764 ecs->event_thread->suspend.stop_pc + decr_pc);
5765 }
5766 }
5767 else
5768 {
5769 /* A delayed software breakpoint event. Ignore the trap. */
5770 if (debug_infrun)
5771 fprintf_unfiltered (gdb_stdlog,
5772 "infrun: delayed software breakpoint "
5773 "trap, ignoring\n");
5774 random_signal = 0;
5775 }
5776 }
5777
5778 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5779 has since been removed. */
5780 if (random_signal && target_stopped_by_hw_breakpoint ())
5781 {
5782 /* A delayed hardware breakpoint event. Ignore the trap. */
5783 if (debug_infrun)
5784 fprintf_unfiltered (gdb_stdlog,
5785 "infrun: delayed hardware breakpoint/watchpoint "
5786 "trap, ignoring\n");
5787 random_signal = 0;
5788 }
5789
5790 /* If not, perhaps stepping/nexting can. */
5791 if (random_signal)
5792 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5793 && currently_stepping (ecs->event_thread));
5794
5795 /* Perhaps the thread hit a single-step breakpoint of _another_
5796 thread. Single-step breakpoints are transparent to the
5797 breakpoints module. */
5798 if (random_signal)
5799 random_signal = !ecs->hit_singlestep_breakpoint;
5800
5801 /* No? Perhaps we got a moribund watchpoint. */
5802 if (random_signal)
5803 random_signal = !stopped_by_watchpoint;
5804
5805 /* Always stop if the user explicitly requested this thread to
5806 remain stopped. */
5807 if (ecs->event_thread->stop_requested)
5808 {
5809 random_signal = 1;
5810 if (debug_infrun)
5811 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5812 }
5813
5814 /* For the program's own signals, act according to
5815 the signal handling tables. */
5816
5817 if (random_signal)
5818 {
5819 /* Signal not for debugging purposes. */
5820 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5821 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5822
5823 if (debug_infrun)
5824 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5825 gdb_signal_to_symbol_string (stop_signal));
5826
5827 stopped_by_random_signal = 1;
5828
5829 /* Always stop on signals if we're either just gaining control
5830 of the program, or the user explicitly requested this thread
5831 to remain stopped. */
5832 if (stop_soon != NO_STOP_QUIETLY
5833 || ecs->event_thread->stop_requested
5834 || (!inf->detaching
5835 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5836 {
5837 stop_waiting (ecs);
5838 return;
5839 }
5840
5841 /* Notify observers the signal has "handle print" set. Note we
5842 returned early above if stopping; normal_stop handles the
5843 printing in that case. */
5844 if (signal_print[ecs->event_thread->suspend.stop_signal])
5845 {
5846 /* The signal table tells us to print about this signal. */
5847 target_terminal::ours_for_output ();
5848 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5849 target_terminal::inferior ();
5850 }
5851
5852 /* Clear the signal if it should not be passed. */
5853 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5854 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5855
5856 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5857 && ecs->event_thread->control.trap_expected
5858 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5859 {
5860 /* We were just starting a new sequence, attempting to
5861 single-step off of a breakpoint and expecting a SIGTRAP.
5862 Instead this signal arrives. This signal will take us out
5863 of the stepping range so GDB needs to remember to, when
5864 the signal handler returns, resume stepping off that
5865 breakpoint. */
5866 /* To simplify things, "continue" is forced to use the same
5867 code paths as single-step - set a breakpoint at the
5868 signal return address and then, once hit, step off that
5869 breakpoint. */
5870 if (debug_infrun)
5871 fprintf_unfiltered (gdb_stdlog,
5872 "infrun: signal arrived while stepping over "
5873 "breakpoint\n");
5874
5875 insert_hp_step_resume_breakpoint_at_frame (frame);
5876 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5877 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5878 ecs->event_thread->control.trap_expected = 0;
5879
5880 /* If we were nexting/stepping some other thread, switch to
5881 it, so that we don't continue it, losing control. */
5882 if (!switch_back_to_stepped_thread (ecs))
5883 keep_going (ecs);
5884 return;
5885 }
5886
5887 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5888 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5889 ecs->event_thread)
5890 || ecs->event_thread->control.step_range_end == 1)
5891 && frame_id_eq (get_stack_frame_id (frame),
5892 ecs->event_thread->control.step_stack_frame_id)
5893 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5894 {
5895 /* The inferior is about to take a signal that will take it
5896 out of the single step range. Set a breakpoint at the
5897 current PC (which is presumably where the signal handler
5898 will eventually return) and then allow the inferior to
5899 run free.
5900
5901 Note that this is only needed for a signal delivered
5902 while in the single-step range. Nested signals aren't a
5903 problem as they eventually all return. */
5904 if (debug_infrun)
5905 fprintf_unfiltered (gdb_stdlog,
5906 "infrun: signal may take us out of "
5907 "single-step range\n");
5908
5909 clear_step_over_info ();
5910 insert_hp_step_resume_breakpoint_at_frame (frame);
5911 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5912 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5913 ecs->event_thread->control.trap_expected = 0;
5914 keep_going (ecs);
5915 return;
5916 }
5917
5918 /* Note: step_resume_breakpoint may be non-NULL. This occurs
5919 when either there's a nested signal, or when there's a
5920 pending signal enabled just as the signal handler returns
5921 (leaving the inferior at the step-resume-breakpoint without
5922 actually executing it). Either way continue until the
5923 breakpoint is really hit. */
5924
5925 if (!switch_back_to_stepped_thread (ecs))
5926 {
5927 if (debug_infrun)
5928 fprintf_unfiltered (gdb_stdlog,
5929 "infrun: random signal, keep going\n");
5930
5931 keep_going (ecs);
5932 }
5933 return;
5934 }
5935
5936 process_event_stop_test (ecs);
5937 }
5938
5939 /* Come here when we've got some debug event / signal we can explain
5940 (IOW, not a random signal), and test whether it should cause a
5941 stop, or whether we should resume the inferior (transparently).
5942 E.g., could be a breakpoint whose condition evaluates false; we
5943 could be still stepping within the line; etc. */
5944
5945 static void
5946 process_event_stop_test (struct execution_control_state *ecs)
5947 {
5948 struct symtab_and_line stop_pc_sal;
5949 struct frame_info *frame;
5950 struct gdbarch *gdbarch;
5951 CORE_ADDR jmp_buf_pc;
5952 struct bpstat_what what;
5953
5954 /* Handle cases caused by hitting a breakpoint. */
5955
5956 frame = get_current_frame ();
5957 gdbarch = get_frame_arch (frame);
5958
5959 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
5960
5961 if (what.call_dummy)
5962 {
5963 stop_stack_dummy = what.call_dummy;
5964 }
5965
5966 /* A few breakpoint types have callbacks associated (e.g.,
5967 bp_jit_event). Run them now. */
5968 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5969
5970 /* If we hit an internal event that triggers symbol changes, the
5971 current frame will be invalidated within bpstat_what (e.g., if we
5972 hit an internal solib event). Re-fetch it. */
5973 frame = get_current_frame ();
5974 gdbarch = get_frame_arch (frame);
5975
5976 switch (what.main_action)
5977 {
5978 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5979 /* If we hit the breakpoint at longjmp while stepping, we
5980 install a momentary breakpoint at the target of the
5981 jmp_buf. */
5982
5983 if (debug_infrun)
5984 fprintf_unfiltered (gdb_stdlog,
5985 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
5986
5987 ecs->event_thread->stepping_over_breakpoint = 1;
5988
5989 if (what.is_longjmp)
5990 {
5991 struct value *arg_value;
5992
5993 /* If we set the longjmp breakpoint via a SystemTap probe,
5994 then use it to extract the arguments. The destination PC
5995 is the third argument to the probe. */
5996 arg_value = probe_safe_evaluate_at_pc (frame, 2);
5997 if (arg_value)
5998 {
5999 jmp_buf_pc = value_as_address (arg_value);
6000 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6001 }
6002 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6003 || !gdbarch_get_longjmp_target (gdbarch,
6004 frame, &jmp_buf_pc))
6005 {
6006 if (debug_infrun)
6007 fprintf_unfiltered (gdb_stdlog,
6008 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6009 "(!gdbarch_get_longjmp_target)\n");
6010 keep_going (ecs);
6011 return;
6012 }
6013
6014 /* Insert a breakpoint at resume address. */
6015 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6016 }
6017 else
6018 check_exception_resume (ecs, frame);
6019 keep_going (ecs);
6020 return;
6021
6022 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6023 {
6024 struct frame_info *init_frame;
6025
6026 /* There are several cases to consider.
6027
6028 1. The initiating frame no longer exists. In this case we
6029 must stop, because the exception or longjmp has gone too
6030 far.
6031
6032 2. The initiating frame exists, and is the same as the
6033 current frame. We stop, because the exception or longjmp
6034 has been caught.
6035
6036 3. The initiating frame exists and is different from the
6037 current frame. This means the exception or longjmp has
6038 been caught beneath the initiating frame, so keep going.
6039
6040 4. longjmp breakpoint has been placed just to protect
6041 against stale dummy frames and user is not interested in
6042 stopping around longjmps. */
6043
6044 if (debug_infrun)
6045 fprintf_unfiltered (gdb_stdlog,
6046 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6047
6048 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6049 != NULL);
6050 delete_exception_resume_breakpoint (ecs->event_thread);
6051
6052 if (what.is_longjmp)
6053 {
6054 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6055
6056 if (!frame_id_p (ecs->event_thread->initiating_frame))
6057 {
6058 /* Case 4. */
6059 keep_going (ecs);
6060 return;
6061 }
6062 }
6063
6064 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6065
6066 if (init_frame)
6067 {
6068 struct frame_id current_id
6069 = get_frame_id (get_current_frame ());
6070 if (frame_id_eq (current_id,
6071 ecs->event_thread->initiating_frame))
6072 {
6073 /* Case 2. Fall through. */
6074 }
6075 else
6076 {
6077 /* Case 3. */
6078 keep_going (ecs);
6079 return;
6080 }
6081 }
6082
6083 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6084 exists. */
6085 delete_step_resume_breakpoint (ecs->event_thread);
6086
6087 end_stepping_range (ecs);
6088 }
6089 return;
6090
6091 case BPSTAT_WHAT_SINGLE:
6092 if (debug_infrun)
6093 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6094 ecs->event_thread->stepping_over_breakpoint = 1;
6095 /* Still need to check other stuff, at least the case where we
6096 are stepping and step out of the right range. */
6097 break;
6098
6099 case BPSTAT_WHAT_STEP_RESUME:
6100 if (debug_infrun)
6101 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6102
6103 delete_step_resume_breakpoint (ecs->event_thread);
6104 if (ecs->event_thread->control.proceed_to_finish
6105 && execution_direction == EXEC_REVERSE)
6106 {
6107 struct thread_info *tp = ecs->event_thread;
6108
6109 /* We are finishing a function in reverse, and just hit the
6110 step-resume breakpoint at the start address of the
6111 function, and we're almost there -- just need to back up
6112 by one more single-step, which should take us back to the
6113 function call. */
6114 tp->control.step_range_start = tp->control.step_range_end = 1;
6115 keep_going (ecs);
6116 return;
6117 }
6118 fill_in_stop_func (gdbarch, ecs);
6119 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6120 && execution_direction == EXEC_REVERSE)
6121 {
6122 /* We are stepping over a function call in reverse, and just
6123 hit the step-resume breakpoint at the start address of
6124 the function. Go back to single-stepping, which should
6125 take us back to the function call. */
6126 ecs->event_thread->stepping_over_breakpoint = 1;
6127 keep_going (ecs);
6128 return;
6129 }
6130 break;
6131
6132 case BPSTAT_WHAT_STOP_NOISY:
6133 if (debug_infrun)
6134 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6135 stop_print_frame = 1;
6136
6137 /* Assume the thread stopped for a breapoint. We'll still check
6138 whether a/the breakpoint is there when the thread is next
6139 resumed. */
6140 ecs->event_thread->stepping_over_breakpoint = 1;
6141
6142 stop_waiting (ecs);
6143 return;
6144
6145 case BPSTAT_WHAT_STOP_SILENT:
6146 if (debug_infrun)
6147 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6148 stop_print_frame = 0;
6149
6150 /* Assume the thread stopped for a breapoint. We'll still check
6151 whether a/the breakpoint is there when the thread is next
6152 resumed. */
6153 ecs->event_thread->stepping_over_breakpoint = 1;
6154 stop_waiting (ecs);
6155 return;
6156
6157 case BPSTAT_WHAT_HP_STEP_RESUME:
6158 if (debug_infrun)
6159 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6160
6161 delete_step_resume_breakpoint (ecs->event_thread);
6162 if (ecs->event_thread->step_after_step_resume_breakpoint)
6163 {
6164 /* Back when the step-resume breakpoint was inserted, we
6165 were trying to single-step off a breakpoint. Go back to
6166 doing that. */
6167 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6168 ecs->event_thread->stepping_over_breakpoint = 1;
6169 keep_going (ecs);
6170 return;
6171 }
6172 break;
6173
6174 case BPSTAT_WHAT_KEEP_CHECKING:
6175 break;
6176 }
6177
6178 /* If we stepped a permanent breakpoint and we had a high priority
6179 step-resume breakpoint for the address we stepped, but we didn't
6180 hit it, then we must have stepped into the signal handler. The
6181 step-resume was only necessary to catch the case of _not_
6182 stepping into the handler, so delete it, and fall through to
6183 checking whether the step finished. */
6184 if (ecs->event_thread->stepped_breakpoint)
6185 {
6186 struct breakpoint *sr_bp
6187 = ecs->event_thread->control.step_resume_breakpoint;
6188
6189 if (sr_bp != NULL
6190 && sr_bp->loc->permanent
6191 && sr_bp->type == bp_hp_step_resume
6192 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6193 {
6194 if (debug_infrun)
6195 fprintf_unfiltered (gdb_stdlog,
6196 "infrun: stepped permanent breakpoint, stopped in "
6197 "handler\n");
6198 delete_step_resume_breakpoint (ecs->event_thread);
6199 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6200 }
6201 }
6202
6203 /* We come here if we hit a breakpoint but should not stop for it.
6204 Possibly we also were stepping and should stop for that. So fall
6205 through and test for stepping. But, if not stepping, do not
6206 stop. */
6207
6208 /* In all-stop mode, if we're currently stepping but have stopped in
6209 some other thread, we need to switch back to the stepped thread. */
6210 if (switch_back_to_stepped_thread (ecs))
6211 return;
6212
6213 if (ecs->event_thread->control.step_resume_breakpoint)
6214 {
6215 if (debug_infrun)
6216 fprintf_unfiltered (gdb_stdlog,
6217 "infrun: step-resume breakpoint is inserted\n");
6218
6219 /* Having a step-resume breakpoint overrides anything
6220 else having to do with stepping commands until
6221 that breakpoint is reached. */
6222 keep_going (ecs);
6223 return;
6224 }
6225
6226 if (ecs->event_thread->control.step_range_end == 0)
6227 {
6228 if (debug_infrun)
6229 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6230 /* Likewise if we aren't even stepping. */
6231 keep_going (ecs);
6232 return;
6233 }
6234
6235 /* Re-fetch current thread's frame in case the code above caused
6236 the frame cache to be re-initialized, making our FRAME variable
6237 a dangling pointer. */
6238 frame = get_current_frame ();
6239 gdbarch = get_frame_arch (frame);
6240 fill_in_stop_func (gdbarch, ecs);
6241
6242 /* If stepping through a line, keep going if still within it.
6243
6244 Note that step_range_end is the address of the first instruction
6245 beyond the step range, and NOT the address of the last instruction
6246 within it!
6247
6248 Note also that during reverse execution, we may be stepping
6249 through a function epilogue and therefore must detect when
6250 the current-frame changes in the middle of a line. */
6251
6252 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6253 ecs->event_thread)
6254 && (execution_direction != EXEC_REVERSE
6255 || frame_id_eq (get_frame_id (frame),
6256 ecs->event_thread->control.step_frame_id)))
6257 {
6258 if (debug_infrun)
6259 fprintf_unfiltered
6260 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6261 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6262 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6263
6264 /* Tentatively re-enable range stepping; `resume' disables it if
6265 necessary (e.g., if we're stepping over a breakpoint or we
6266 have software watchpoints). */
6267 ecs->event_thread->control.may_range_step = 1;
6268
6269 /* When stepping backward, stop at beginning of line range
6270 (unless it's the function entry point, in which case
6271 keep going back to the call point). */
6272 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6273 if (stop_pc == ecs->event_thread->control.step_range_start
6274 && stop_pc != ecs->stop_func_start
6275 && execution_direction == EXEC_REVERSE)
6276 end_stepping_range (ecs);
6277 else
6278 keep_going (ecs);
6279
6280 return;
6281 }
6282
6283 /* We stepped out of the stepping range. */
6284
6285 /* If we are stepping at the source level and entered the runtime
6286 loader dynamic symbol resolution code...
6287
6288 EXEC_FORWARD: we keep on single stepping until we exit the run
6289 time loader code and reach the callee's address.
6290
6291 EXEC_REVERSE: we've already executed the callee (backward), and
6292 the runtime loader code is handled just like any other
6293 undebuggable function call. Now we need only keep stepping
6294 backward through the trampoline code, and that's handled further
6295 down, so there is nothing for us to do here. */
6296
6297 if (execution_direction != EXEC_REVERSE
6298 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6299 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6300 {
6301 CORE_ADDR pc_after_resolver =
6302 gdbarch_skip_solib_resolver (gdbarch,
6303 ecs->event_thread->suspend.stop_pc);
6304
6305 if (debug_infrun)
6306 fprintf_unfiltered (gdb_stdlog,
6307 "infrun: stepped into dynsym resolve code\n");
6308
6309 if (pc_after_resolver)
6310 {
6311 /* Set up a step-resume breakpoint at the address
6312 indicated by SKIP_SOLIB_RESOLVER. */
6313 symtab_and_line sr_sal;
6314 sr_sal.pc = pc_after_resolver;
6315 sr_sal.pspace = get_frame_program_space (frame);
6316
6317 insert_step_resume_breakpoint_at_sal (gdbarch,
6318 sr_sal, null_frame_id);
6319 }
6320
6321 keep_going (ecs);
6322 return;
6323 }
6324
6325 /* Step through an indirect branch thunk. */
6326 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6327 && gdbarch_in_indirect_branch_thunk (gdbarch,
6328 ecs->event_thread->suspend.stop_pc))
6329 {
6330 if (debug_infrun)
6331 fprintf_unfiltered (gdb_stdlog,
6332 "infrun: stepped into indirect branch thunk\n");
6333 keep_going (ecs);
6334 return;
6335 }
6336
6337 if (ecs->event_thread->control.step_range_end != 1
6338 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6339 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6340 && get_frame_type (frame) == SIGTRAMP_FRAME)
6341 {
6342 if (debug_infrun)
6343 fprintf_unfiltered (gdb_stdlog,
6344 "infrun: stepped into signal trampoline\n");
6345 /* The inferior, while doing a "step" or "next", has ended up in
6346 a signal trampoline (either by a signal being delivered or by
6347 the signal handler returning). Just single-step until the
6348 inferior leaves the trampoline (either by calling the handler
6349 or returning). */
6350 keep_going (ecs);
6351 return;
6352 }
6353
6354 /* If we're in the return path from a shared library trampoline,
6355 we want to proceed through the trampoline when stepping. */
6356 /* macro/2012-04-25: This needs to come before the subroutine
6357 call check below as on some targets return trampolines look
6358 like subroutine calls (MIPS16 return thunks). */
6359 if (gdbarch_in_solib_return_trampoline (gdbarch,
6360 ecs->event_thread->suspend.stop_pc,
6361 ecs->stop_func_name)
6362 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6363 {
6364 /* Determine where this trampoline returns. */
6365 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6366 CORE_ADDR real_stop_pc
6367 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6368
6369 if (debug_infrun)
6370 fprintf_unfiltered (gdb_stdlog,
6371 "infrun: stepped into solib return tramp\n");
6372
6373 /* Only proceed through if we know where it's going. */
6374 if (real_stop_pc)
6375 {
6376 /* And put the step-breakpoint there and go until there. */
6377 symtab_and_line sr_sal;
6378 sr_sal.pc = real_stop_pc;
6379 sr_sal.section = find_pc_overlay (sr_sal.pc);
6380 sr_sal.pspace = get_frame_program_space (frame);
6381
6382 /* Do not specify what the fp should be when we stop since
6383 on some machines the prologue is where the new fp value
6384 is established. */
6385 insert_step_resume_breakpoint_at_sal (gdbarch,
6386 sr_sal, null_frame_id);
6387
6388 /* Restart without fiddling with the step ranges or
6389 other state. */
6390 keep_going (ecs);
6391 return;
6392 }
6393 }
6394
6395 /* Check for subroutine calls. The check for the current frame
6396 equalling the step ID is not necessary - the check of the
6397 previous frame's ID is sufficient - but it is a common case and
6398 cheaper than checking the previous frame's ID.
6399
6400 NOTE: frame_id_eq will never report two invalid frame IDs as
6401 being equal, so to get into this block, both the current and
6402 previous frame must have valid frame IDs. */
6403 /* The outer_frame_id check is a heuristic to detect stepping
6404 through startup code. If we step over an instruction which
6405 sets the stack pointer from an invalid value to a valid value,
6406 we may detect that as a subroutine call from the mythical
6407 "outermost" function. This could be fixed by marking
6408 outermost frames as !stack_p,code_p,special_p. Then the
6409 initial outermost frame, before sp was valid, would
6410 have code_addr == &_start. See the comment in frame_id_eq
6411 for more. */
6412 if (!frame_id_eq (get_stack_frame_id (frame),
6413 ecs->event_thread->control.step_stack_frame_id)
6414 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6415 ecs->event_thread->control.step_stack_frame_id)
6416 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6417 outer_frame_id)
6418 || (ecs->event_thread->control.step_start_function
6419 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6420 {
6421 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6422 CORE_ADDR real_stop_pc;
6423
6424 if (debug_infrun)
6425 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6426
6427 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6428 {
6429 /* I presume that step_over_calls is only 0 when we're
6430 supposed to be stepping at the assembly language level
6431 ("stepi"). Just stop. */
6432 /* And this works the same backward as frontward. MVS */
6433 end_stepping_range (ecs);
6434 return;
6435 }
6436
6437 /* Reverse stepping through solib trampolines. */
6438
6439 if (execution_direction == EXEC_REVERSE
6440 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6441 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6442 || (ecs->stop_func_start == 0
6443 && in_solib_dynsym_resolve_code (stop_pc))))
6444 {
6445 /* Any solib trampoline code can be handled in reverse
6446 by simply continuing to single-step. We have already
6447 executed the solib function (backwards), and a few
6448 steps will take us back through the trampoline to the
6449 caller. */
6450 keep_going (ecs);
6451 return;
6452 }
6453
6454 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6455 {
6456 /* We're doing a "next".
6457
6458 Normal (forward) execution: set a breakpoint at the
6459 callee's return address (the address at which the caller
6460 will resume).
6461
6462 Reverse (backward) execution. set the step-resume
6463 breakpoint at the start of the function that we just
6464 stepped into (backwards), and continue to there. When we
6465 get there, we'll need to single-step back to the caller. */
6466
6467 if (execution_direction == EXEC_REVERSE)
6468 {
6469 /* If we're already at the start of the function, we've either
6470 just stepped backward into a single instruction function,
6471 or stepped back out of a signal handler to the first instruction
6472 of the function. Just keep going, which will single-step back
6473 to the caller. */
6474 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6475 {
6476 /* Normal function call return (static or dynamic). */
6477 symtab_and_line sr_sal;
6478 sr_sal.pc = ecs->stop_func_start;
6479 sr_sal.pspace = get_frame_program_space (frame);
6480 insert_step_resume_breakpoint_at_sal (gdbarch,
6481 sr_sal, null_frame_id);
6482 }
6483 }
6484 else
6485 insert_step_resume_breakpoint_at_caller (frame);
6486
6487 keep_going (ecs);
6488 return;
6489 }
6490
6491 /* If we are in a function call trampoline (a stub between the
6492 calling routine and the real function), locate the real
6493 function. That's what tells us (a) whether we want to step
6494 into it at all, and (b) what prologue we want to run to the
6495 end of, if we do step into it. */
6496 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6497 if (real_stop_pc == 0)
6498 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6499 if (real_stop_pc != 0)
6500 ecs->stop_func_start = real_stop_pc;
6501
6502 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6503 {
6504 symtab_and_line sr_sal;
6505 sr_sal.pc = ecs->stop_func_start;
6506 sr_sal.pspace = get_frame_program_space (frame);
6507
6508 insert_step_resume_breakpoint_at_sal (gdbarch,
6509 sr_sal, null_frame_id);
6510 keep_going (ecs);
6511 return;
6512 }
6513
6514 /* If we have line number information for the function we are
6515 thinking of stepping into and the function isn't on the skip
6516 list, step into it.
6517
6518 If there are several symtabs at that PC (e.g. with include
6519 files), just want to know whether *any* of them have line
6520 numbers. find_pc_line handles this. */
6521 {
6522 struct symtab_and_line tmp_sal;
6523
6524 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6525 if (tmp_sal.line != 0
6526 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6527 tmp_sal))
6528 {
6529 if (execution_direction == EXEC_REVERSE)
6530 handle_step_into_function_backward (gdbarch, ecs);
6531 else
6532 handle_step_into_function (gdbarch, ecs);
6533 return;
6534 }
6535 }
6536
6537 /* If we have no line number and the step-stop-if-no-debug is
6538 set, we stop the step so that the user has a chance to switch
6539 in assembly mode. */
6540 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6541 && step_stop_if_no_debug)
6542 {
6543 end_stepping_range (ecs);
6544 return;
6545 }
6546
6547 if (execution_direction == EXEC_REVERSE)
6548 {
6549 /* If we're already at the start of the function, we've either just
6550 stepped backward into a single instruction function without line
6551 number info, or stepped back out of a signal handler to the first
6552 instruction of the function without line number info. Just keep
6553 going, which will single-step back to the caller. */
6554 if (ecs->stop_func_start != stop_pc)
6555 {
6556 /* Set a breakpoint at callee's start address.
6557 From there we can step once and be back in the caller. */
6558 symtab_and_line sr_sal;
6559 sr_sal.pc = ecs->stop_func_start;
6560 sr_sal.pspace = get_frame_program_space (frame);
6561 insert_step_resume_breakpoint_at_sal (gdbarch,
6562 sr_sal, null_frame_id);
6563 }
6564 }
6565 else
6566 /* Set a breakpoint at callee's return address (the address
6567 at which the caller will resume). */
6568 insert_step_resume_breakpoint_at_caller (frame);
6569
6570 keep_going (ecs);
6571 return;
6572 }
6573
6574 /* Reverse stepping through solib trampolines. */
6575
6576 if (execution_direction == EXEC_REVERSE
6577 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6578 {
6579 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6580
6581 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6582 || (ecs->stop_func_start == 0
6583 && in_solib_dynsym_resolve_code (stop_pc)))
6584 {
6585 /* Any solib trampoline code can be handled in reverse
6586 by simply continuing to single-step. We have already
6587 executed the solib function (backwards), and a few
6588 steps will take us back through the trampoline to the
6589 caller. */
6590 keep_going (ecs);
6591 return;
6592 }
6593 else if (in_solib_dynsym_resolve_code (stop_pc))
6594 {
6595 /* Stepped backward into the solib dynsym resolver.
6596 Set a breakpoint at its start and continue, then
6597 one more step will take us out. */
6598 symtab_and_line sr_sal;
6599 sr_sal.pc = ecs->stop_func_start;
6600 sr_sal.pspace = get_frame_program_space (frame);
6601 insert_step_resume_breakpoint_at_sal (gdbarch,
6602 sr_sal, null_frame_id);
6603 keep_going (ecs);
6604 return;
6605 }
6606 }
6607
6608 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6609
6610 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6611 the trampoline processing logic, however, there are some trampolines
6612 that have no names, so we should do trampoline handling first. */
6613 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6614 && ecs->stop_func_name == NULL
6615 && stop_pc_sal.line == 0)
6616 {
6617 if (debug_infrun)
6618 fprintf_unfiltered (gdb_stdlog,
6619 "infrun: stepped into undebuggable function\n");
6620
6621 /* The inferior just stepped into, or returned to, an
6622 undebuggable function (where there is no debugging information
6623 and no line number corresponding to the address where the
6624 inferior stopped). Since we want to skip this kind of code,
6625 we keep going until the inferior returns from this
6626 function - unless the user has asked us not to (via
6627 set step-mode) or we no longer know how to get back
6628 to the call site. */
6629 if (step_stop_if_no_debug
6630 || !frame_id_p (frame_unwind_caller_id (frame)))
6631 {
6632 /* If we have no line number and the step-stop-if-no-debug
6633 is set, we stop the step so that the user has a chance to
6634 switch in assembly mode. */
6635 end_stepping_range (ecs);
6636 return;
6637 }
6638 else
6639 {
6640 /* Set a breakpoint at callee's return address (the address
6641 at which the caller will resume). */
6642 insert_step_resume_breakpoint_at_caller (frame);
6643 keep_going (ecs);
6644 return;
6645 }
6646 }
6647
6648 if (ecs->event_thread->control.step_range_end == 1)
6649 {
6650 /* It is stepi or nexti. We always want to stop stepping after
6651 one instruction. */
6652 if (debug_infrun)
6653 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6654 end_stepping_range (ecs);
6655 return;
6656 }
6657
6658 if (stop_pc_sal.line == 0)
6659 {
6660 /* We have no line number information. That means to stop
6661 stepping (does this always happen right after one instruction,
6662 when we do "s" in a function with no line numbers,
6663 or can this happen as a result of a return or longjmp?). */
6664 if (debug_infrun)
6665 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6666 end_stepping_range (ecs);
6667 return;
6668 }
6669
6670 /* Look for "calls" to inlined functions, part one. If the inline
6671 frame machinery detected some skipped call sites, we have entered
6672 a new inline function. */
6673
6674 if (frame_id_eq (get_frame_id (get_current_frame ()),
6675 ecs->event_thread->control.step_frame_id)
6676 && inline_skipped_frames (ecs->event_thread))
6677 {
6678 if (debug_infrun)
6679 fprintf_unfiltered (gdb_stdlog,
6680 "infrun: stepped into inlined function\n");
6681
6682 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6683
6684 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6685 {
6686 /* For "step", we're going to stop. But if the call site
6687 for this inlined function is on the same source line as
6688 we were previously stepping, go down into the function
6689 first. Otherwise stop at the call site. */
6690
6691 if (call_sal.line == ecs->event_thread->current_line
6692 && call_sal.symtab == ecs->event_thread->current_symtab)
6693 step_into_inline_frame (ecs->event_thread);
6694
6695 end_stepping_range (ecs);
6696 return;
6697 }
6698 else
6699 {
6700 /* For "next", we should stop at the call site if it is on a
6701 different source line. Otherwise continue through the
6702 inlined function. */
6703 if (call_sal.line == ecs->event_thread->current_line
6704 && call_sal.symtab == ecs->event_thread->current_symtab)
6705 keep_going (ecs);
6706 else
6707 end_stepping_range (ecs);
6708 return;
6709 }
6710 }
6711
6712 /* Look for "calls" to inlined functions, part two. If we are still
6713 in the same real function we were stepping through, but we have
6714 to go further up to find the exact frame ID, we are stepping
6715 through a more inlined call beyond its call site. */
6716
6717 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6718 && !frame_id_eq (get_frame_id (get_current_frame ()),
6719 ecs->event_thread->control.step_frame_id)
6720 && stepped_in_from (get_current_frame (),
6721 ecs->event_thread->control.step_frame_id))
6722 {
6723 if (debug_infrun)
6724 fprintf_unfiltered (gdb_stdlog,
6725 "infrun: stepping through inlined function\n");
6726
6727 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6728 keep_going (ecs);
6729 else
6730 end_stepping_range (ecs);
6731 return;
6732 }
6733
6734 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6735 && (ecs->event_thread->current_line != stop_pc_sal.line
6736 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6737 {
6738 /* We are at the start of a different line. So stop. Note that
6739 we don't stop if we step into the middle of a different line.
6740 That is said to make things like for (;;) statements work
6741 better. */
6742 if (debug_infrun)
6743 fprintf_unfiltered (gdb_stdlog,
6744 "infrun: stepped to a different line\n");
6745 end_stepping_range (ecs);
6746 return;
6747 }
6748
6749 /* We aren't done stepping.
6750
6751 Optimize by setting the stepping range to the line.
6752 (We might not be in the original line, but if we entered a
6753 new line in mid-statement, we continue stepping. This makes
6754 things like for(;;) statements work better.) */
6755
6756 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6757 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6758 ecs->event_thread->control.may_range_step = 1;
6759 set_step_info (frame, stop_pc_sal);
6760
6761 if (debug_infrun)
6762 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6763 keep_going (ecs);
6764 }
6765
6766 /* In all-stop mode, if we're currently stepping but have stopped in
6767 some other thread, we may need to switch back to the stepped
6768 thread. Returns true we set the inferior running, false if we left
6769 it stopped (and the event needs further processing). */
6770
6771 static int
6772 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6773 {
6774 if (!target_is_non_stop_p ())
6775 {
6776 struct thread_info *stepping_thread;
6777
6778 /* If any thread is blocked on some internal breakpoint, and we
6779 simply need to step over that breakpoint to get it going
6780 again, do that first. */
6781
6782 /* However, if we see an event for the stepping thread, then we
6783 know all other threads have been moved past their breakpoints
6784 already. Let the caller check whether the step is finished,
6785 etc., before deciding to move it past a breakpoint. */
6786 if (ecs->event_thread->control.step_range_end != 0)
6787 return 0;
6788
6789 /* Check if the current thread is blocked on an incomplete
6790 step-over, interrupted by a random signal. */
6791 if (ecs->event_thread->control.trap_expected
6792 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6793 {
6794 if (debug_infrun)
6795 {
6796 fprintf_unfiltered (gdb_stdlog,
6797 "infrun: need to finish step-over of [%s]\n",
6798 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6799 }
6800 keep_going (ecs);
6801 return 1;
6802 }
6803
6804 /* Check if the current thread is blocked by a single-step
6805 breakpoint of another thread. */
6806 if (ecs->hit_singlestep_breakpoint)
6807 {
6808 if (debug_infrun)
6809 {
6810 fprintf_unfiltered (gdb_stdlog,
6811 "infrun: need to step [%s] over single-step "
6812 "breakpoint\n",
6813 target_pid_to_str (ecs->ptid).c_str ());
6814 }
6815 keep_going (ecs);
6816 return 1;
6817 }
6818
6819 /* If this thread needs yet another step-over (e.g., stepping
6820 through a delay slot), do it first before moving on to
6821 another thread. */
6822 if (thread_still_needs_step_over (ecs->event_thread))
6823 {
6824 if (debug_infrun)
6825 {
6826 fprintf_unfiltered (gdb_stdlog,
6827 "infrun: thread [%s] still needs step-over\n",
6828 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6829 }
6830 keep_going (ecs);
6831 return 1;
6832 }
6833
6834 /* If scheduler locking applies even if not stepping, there's no
6835 need to walk over threads. Above we've checked whether the
6836 current thread is stepping. If some other thread not the
6837 event thread is stepping, then it must be that scheduler
6838 locking is not in effect. */
6839 if (schedlock_applies (ecs->event_thread))
6840 return 0;
6841
6842 /* Otherwise, we no longer expect a trap in the current thread.
6843 Clear the trap_expected flag before switching back -- this is
6844 what keep_going does as well, if we call it. */
6845 ecs->event_thread->control.trap_expected = 0;
6846
6847 /* Likewise, clear the signal if it should not be passed. */
6848 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6849 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6850
6851 /* Do all pending step-overs before actually proceeding with
6852 step/next/etc. */
6853 if (start_step_over ())
6854 {
6855 prepare_to_wait (ecs);
6856 return 1;
6857 }
6858
6859 /* Look for the stepping/nexting thread. */
6860 stepping_thread = NULL;
6861
6862 for (thread_info *tp : all_non_exited_threads ())
6863 {
6864 /* Ignore threads of processes the caller is not
6865 resuming. */
6866 if (!sched_multi
6867 && tp->ptid.pid () != ecs->ptid.pid ())
6868 continue;
6869
6870 /* When stepping over a breakpoint, we lock all threads
6871 except the one that needs to move past the breakpoint.
6872 If a non-event thread has this set, the "incomplete
6873 step-over" check above should have caught it earlier. */
6874 if (tp->control.trap_expected)
6875 {
6876 internal_error (__FILE__, __LINE__,
6877 "[%s] has inconsistent state: "
6878 "trap_expected=%d\n",
6879 target_pid_to_str (tp->ptid).c_str (),
6880 tp->control.trap_expected);
6881 }
6882
6883 /* Did we find the stepping thread? */
6884 if (tp->control.step_range_end)
6885 {
6886 /* Yep. There should only one though. */
6887 gdb_assert (stepping_thread == NULL);
6888
6889 /* The event thread is handled at the top, before we
6890 enter this loop. */
6891 gdb_assert (tp != ecs->event_thread);
6892
6893 /* If some thread other than the event thread is
6894 stepping, then scheduler locking can't be in effect,
6895 otherwise we wouldn't have resumed the current event
6896 thread in the first place. */
6897 gdb_assert (!schedlock_applies (tp));
6898
6899 stepping_thread = tp;
6900 }
6901 }
6902
6903 if (stepping_thread != NULL)
6904 {
6905 if (debug_infrun)
6906 fprintf_unfiltered (gdb_stdlog,
6907 "infrun: switching back to stepped thread\n");
6908
6909 if (keep_going_stepped_thread (stepping_thread))
6910 {
6911 prepare_to_wait (ecs);
6912 return 1;
6913 }
6914 }
6915 }
6916
6917 return 0;
6918 }
6919
6920 /* Set a previously stepped thread back to stepping. Returns true on
6921 success, false if the resume is not possible (e.g., the thread
6922 vanished). */
6923
6924 static int
6925 keep_going_stepped_thread (struct thread_info *tp)
6926 {
6927 struct frame_info *frame;
6928 struct execution_control_state ecss;
6929 struct execution_control_state *ecs = &ecss;
6930
6931 /* If the stepping thread exited, then don't try to switch back and
6932 resume it, which could fail in several different ways depending
6933 on the target. Instead, just keep going.
6934
6935 We can find a stepping dead thread in the thread list in two
6936 cases:
6937
6938 - The target supports thread exit events, and when the target
6939 tries to delete the thread from the thread list, inferior_ptid
6940 pointed at the exiting thread. In such case, calling
6941 delete_thread does not really remove the thread from the list;
6942 instead, the thread is left listed, with 'exited' state.
6943
6944 - The target's debug interface does not support thread exit
6945 events, and so we have no idea whatsoever if the previously
6946 stepping thread is still alive. For that reason, we need to
6947 synchronously query the target now. */
6948
6949 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
6950 {
6951 if (debug_infrun)
6952 fprintf_unfiltered (gdb_stdlog,
6953 "infrun: not resuming previously "
6954 "stepped thread, it has vanished\n");
6955
6956 delete_thread (tp);
6957 return 0;
6958 }
6959
6960 if (debug_infrun)
6961 fprintf_unfiltered (gdb_stdlog,
6962 "infrun: resuming previously stepped thread\n");
6963
6964 reset_ecs (ecs, tp);
6965 switch_to_thread (tp);
6966
6967 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
6968 frame = get_current_frame ();
6969
6970 /* If the PC of the thread we were trying to single-step has
6971 changed, then that thread has trapped or been signaled, but the
6972 event has not been reported to GDB yet. Re-poll the target
6973 looking for this particular thread's event (i.e. temporarily
6974 enable schedlock) by:
6975
6976 - setting a break at the current PC
6977 - resuming that particular thread, only (by setting trap
6978 expected)
6979
6980 This prevents us continuously moving the single-step breakpoint
6981 forward, one instruction at a time, overstepping. */
6982
6983 if (tp->suspend.stop_pc != tp->prev_pc)
6984 {
6985 ptid_t resume_ptid;
6986
6987 if (debug_infrun)
6988 fprintf_unfiltered (gdb_stdlog,
6989 "infrun: expected thread advanced also (%s -> %s)\n",
6990 paddress (target_gdbarch (), tp->prev_pc),
6991 paddress (target_gdbarch (), tp->suspend.stop_pc));
6992
6993 /* Clear the info of the previous step-over, as it's no longer
6994 valid (if the thread was trying to step over a breakpoint, it
6995 has already succeeded). It's what keep_going would do too,
6996 if we called it. Do this before trying to insert the sss
6997 breakpoint, otherwise if we were previously trying to step
6998 over this exact address in another thread, the breakpoint is
6999 skipped. */
7000 clear_step_over_info ();
7001 tp->control.trap_expected = 0;
7002
7003 insert_single_step_breakpoint (get_frame_arch (frame),
7004 get_frame_address_space (frame),
7005 tp->suspend.stop_pc);
7006
7007 tp->resumed = 1;
7008 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7009 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7010 }
7011 else
7012 {
7013 if (debug_infrun)
7014 fprintf_unfiltered (gdb_stdlog,
7015 "infrun: expected thread still hasn't advanced\n");
7016
7017 keep_going_pass_signal (ecs);
7018 }
7019 return 1;
7020 }
7021
7022 /* Is thread TP in the middle of (software or hardware)
7023 single-stepping? (Note the result of this function must never be
7024 passed directly as target_resume's STEP parameter.) */
7025
7026 static int
7027 currently_stepping (struct thread_info *tp)
7028 {
7029 return ((tp->control.step_range_end
7030 && tp->control.step_resume_breakpoint == NULL)
7031 || tp->control.trap_expected
7032 || tp->stepped_breakpoint
7033 || bpstat_should_step ());
7034 }
7035
7036 /* Inferior has stepped into a subroutine call with source code that
7037 we should not step over. Do step to the first line of code in
7038 it. */
7039
7040 static void
7041 handle_step_into_function (struct gdbarch *gdbarch,
7042 struct execution_control_state *ecs)
7043 {
7044 fill_in_stop_func (gdbarch, ecs);
7045
7046 compunit_symtab *cust
7047 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7048 if (cust != NULL && compunit_language (cust) != language_asm)
7049 ecs->stop_func_start
7050 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7051
7052 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7053 /* Use the step_resume_break to step until the end of the prologue,
7054 even if that involves jumps (as it seems to on the vax under
7055 4.2). */
7056 /* If the prologue ends in the middle of a source line, continue to
7057 the end of that source line (if it is still within the function).
7058 Otherwise, just go to end of prologue. */
7059 if (stop_func_sal.end
7060 && stop_func_sal.pc != ecs->stop_func_start
7061 && stop_func_sal.end < ecs->stop_func_end)
7062 ecs->stop_func_start = stop_func_sal.end;
7063
7064 /* Architectures which require breakpoint adjustment might not be able
7065 to place a breakpoint at the computed address. If so, the test
7066 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7067 ecs->stop_func_start to an address at which a breakpoint may be
7068 legitimately placed.
7069
7070 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7071 made, GDB will enter an infinite loop when stepping through
7072 optimized code consisting of VLIW instructions which contain
7073 subinstructions corresponding to different source lines. On
7074 FR-V, it's not permitted to place a breakpoint on any but the
7075 first subinstruction of a VLIW instruction. When a breakpoint is
7076 set, GDB will adjust the breakpoint address to the beginning of
7077 the VLIW instruction. Thus, we need to make the corresponding
7078 adjustment here when computing the stop address. */
7079
7080 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7081 {
7082 ecs->stop_func_start
7083 = gdbarch_adjust_breakpoint_address (gdbarch,
7084 ecs->stop_func_start);
7085 }
7086
7087 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7088 {
7089 /* We are already there: stop now. */
7090 end_stepping_range (ecs);
7091 return;
7092 }
7093 else
7094 {
7095 /* Put the step-breakpoint there and go until there. */
7096 symtab_and_line sr_sal;
7097 sr_sal.pc = ecs->stop_func_start;
7098 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7099 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7100
7101 /* Do not specify what the fp should be when we stop since on
7102 some machines the prologue is where the new fp value is
7103 established. */
7104 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7105
7106 /* And make sure stepping stops right away then. */
7107 ecs->event_thread->control.step_range_end
7108 = ecs->event_thread->control.step_range_start;
7109 }
7110 keep_going (ecs);
7111 }
7112
7113 /* Inferior has stepped backward into a subroutine call with source
7114 code that we should not step over. Do step to the beginning of the
7115 last line of code in it. */
7116
7117 static void
7118 handle_step_into_function_backward (struct gdbarch *gdbarch,
7119 struct execution_control_state *ecs)
7120 {
7121 struct compunit_symtab *cust;
7122 struct symtab_and_line stop_func_sal;
7123
7124 fill_in_stop_func (gdbarch, ecs);
7125
7126 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7127 if (cust != NULL && compunit_language (cust) != language_asm)
7128 ecs->stop_func_start
7129 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7130
7131 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7132
7133 /* OK, we're just going to keep stepping here. */
7134 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7135 {
7136 /* We're there already. Just stop stepping now. */
7137 end_stepping_range (ecs);
7138 }
7139 else
7140 {
7141 /* Else just reset the step range and keep going.
7142 No step-resume breakpoint, they don't work for
7143 epilogues, which can have multiple entry paths. */
7144 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7145 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7146 keep_going (ecs);
7147 }
7148 return;
7149 }
7150
7151 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7152 This is used to both functions and to skip over code. */
7153
7154 static void
7155 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7156 struct symtab_and_line sr_sal,
7157 struct frame_id sr_id,
7158 enum bptype sr_type)
7159 {
7160 /* There should never be more than one step-resume or longjmp-resume
7161 breakpoint per thread, so we should never be setting a new
7162 step_resume_breakpoint when one is already active. */
7163 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7164 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7165
7166 if (debug_infrun)
7167 fprintf_unfiltered (gdb_stdlog,
7168 "infrun: inserting step-resume breakpoint at %s\n",
7169 paddress (gdbarch, sr_sal.pc));
7170
7171 inferior_thread ()->control.step_resume_breakpoint
7172 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7173 }
7174
7175 void
7176 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7177 struct symtab_and_line sr_sal,
7178 struct frame_id sr_id)
7179 {
7180 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7181 sr_sal, sr_id,
7182 bp_step_resume);
7183 }
7184
7185 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7186 This is used to skip a potential signal handler.
7187
7188 This is called with the interrupted function's frame. The signal
7189 handler, when it returns, will resume the interrupted function at
7190 RETURN_FRAME.pc. */
7191
7192 static void
7193 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7194 {
7195 gdb_assert (return_frame != NULL);
7196
7197 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7198
7199 symtab_and_line sr_sal;
7200 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7201 sr_sal.section = find_pc_overlay (sr_sal.pc);
7202 sr_sal.pspace = get_frame_program_space (return_frame);
7203
7204 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7205 get_stack_frame_id (return_frame),
7206 bp_hp_step_resume);
7207 }
7208
7209 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7210 is used to skip a function after stepping into it (for "next" or if
7211 the called function has no debugging information).
7212
7213 The current function has almost always been reached by single
7214 stepping a call or return instruction. NEXT_FRAME belongs to the
7215 current function, and the breakpoint will be set at the caller's
7216 resume address.
7217
7218 This is a separate function rather than reusing
7219 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7220 get_prev_frame, which may stop prematurely (see the implementation
7221 of frame_unwind_caller_id for an example). */
7222
7223 static void
7224 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7225 {
7226 /* We shouldn't have gotten here if we don't know where the call site
7227 is. */
7228 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7229
7230 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7231
7232 symtab_and_line sr_sal;
7233 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7234 frame_unwind_caller_pc (next_frame));
7235 sr_sal.section = find_pc_overlay (sr_sal.pc);
7236 sr_sal.pspace = frame_unwind_program_space (next_frame);
7237
7238 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7239 frame_unwind_caller_id (next_frame));
7240 }
7241
7242 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7243 new breakpoint at the target of a jmp_buf. The handling of
7244 longjmp-resume uses the same mechanisms used for handling
7245 "step-resume" breakpoints. */
7246
7247 static void
7248 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7249 {
7250 /* There should never be more than one longjmp-resume breakpoint per
7251 thread, so we should never be setting a new
7252 longjmp_resume_breakpoint when one is already active. */
7253 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7254
7255 if (debug_infrun)
7256 fprintf_unfiltered (gdb_stdlog,
7257 "infrun: inserting longjmp-resume breakpoint at %s\n",
7258 paddress (gdbarch, pc));
7259
7260 inferior_thread ()->control.exception_resume_breakpoint =
7261 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7262 }
7263
7264 /* Insert an exception resume breakpoint. TP is the thread throwing
7265 the exception. The block B is the block of the unwinder debug hook
7266 function. FRAME is the frame corresponding to the call to this
7267 function. SYM is the symbol of the function argument holding the
7268 target PC of the exception. */
7269
7270 static void
7271 insert_exception_resume_breakpoint (struct thread_info *tp,
7272 const struct block *b,
7273 struct frame_info *frame,
7274 struct symbol *sym)
7275 {
7276 try
7277 {
7278 struct block_symbol vsym;
7279 struct value *value;
7280 CORE_ADDR handler;
7281 struct breakpoint *bp;
7282
7283 vsym = lookup_symbol_search_name (sym->search_name (),
7284 b, VAR_DOMAIN);
7285 value = read_var_value (vsym.symbol, vsym.block, frame);
7286 /* If the value was optimized out, revert to the old behavior. */
7287 if (! value_optimized_out (value))
7288 {
7289 handler = value_as_address (value);
7290
7291 if (debug_infrun)
7292 fprintf_unfiltered (gdb_stdlog,
7293 "infrun: exception resume at %lx\n",
7294 (unsigned long) handler);
7295
7296 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7297 handler,
7298 bp_exception_resume).release ();
7299
7300 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7301 frame = NULL;
7302
7303 bp->thread = tp->global_num;
7304 inferior_thread ()->control.exception_resume_breakpoint = bp;
7305 }
7306 }
7307 catch (const gdb_exception_error &e)
7308 {
7309 /* We want to ignore errors here. */
7310 }
7311 }
7312
7313 /* A helper for check_exception_resume that sets an
7314 exception-breakpoint based on a SystemTap probe. */
7315
7316 static void
7317 insert_exception_resume_from_probe (struct thread_info *tp,
7318 const struct bound_probe *probe,
7319 struct frame_info *frame)
7320 {
7321 struct value *arg_value;
7322 CORE_ADDR handler;
7323 struct breakpoint *bp;
7324
7325 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7326 if (!arg_value)
7327 return;
7328
7329 handler = value_as_address (arg_value);
7330
7331 if (debug_infrun)
7332 fprintf_unfiltered (gdb_stdlog,
7333 "infrun: exception resume at %s\n",
7334 paddress (get_objfile_arch (probe->objfile),
7335 handler));
7336
7337 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7338 handler, bp_exception_resume).release ();
7339 bp->thread = tp->global_num;
7340 inferior_thread ()->control.exception_resume_breakpoint = bp;
7341 }
7342
7343 /* This is called when an exception has been intercepted. Check to
7344 see whether the exception's destination is of interest, and if so,
7345 set an exception resume breakpoint there. */
7346
7347 static void
7348 check_exception_resume (struct execution_control_state *ecs,
7349 struct frame_info *frame)
7350 {
7351 struct bound_probe probe;
7352 struct symbol *func;
7353
7354 /* First see if this exception unwinding breakpoint was set via a
7355 SystemTap probe point. If so, the probe has two arguments: the
7356 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7357 set a breakpoint there. */
7358 probe = find_probe_by_pc (get_frame_pc (frame));
7359 if (probe.prob)
7360 {
7361 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7362 return;
7363 }
7364
7365 func = get_frame_function (frame);
7366 if (!func)
7367 return;
7368
7369 try
7370 {
7371 const struct block *b;
7372 struct block_iterator iter;
7373 struct symbol *sym;
7374 int argno = 0;
7375
7376 /* The exception breakpoint is a thread-specific breakpoint on
7377 the unwinder's debug hook, declared as:
7378
7379 void _Unwind_DebugHook (void *cfa, void *handler);
7380
7381 The CFA argument indicates the frame to which control is
7382 about to be transferred. HANDLER is the destination PC.
7383
7384 We ignore the CFA and set a temporary breakpoint at HANDLER.
7385 This is not extremely efficient but it avoids issues in gdb
7386 with computing the DWARF CFA, and it also works even in weird
7387 cases such as throwing an exception from inside a signal
7388 handler. */
7389
7390 b = SYMBOL_BLOCK_VALUE (func);
7391 ALL_BLOCK_SYMBOLS (b, iter, sym)
7392 {
7393 if (!SYMBOL_IS_ARGUMENT (sym))
7394 continue;
7395
7396 if (argno == 0)
7397 ++argno;
7398 else
7399 {
7400 insert_exception_resume_breakpoint (ecs->event_thread,
7401 b, frame, sym);
7402 break;
7403 }
7404 }
7405 }
7406 catch (const gdb_exception_error &e)
7407 {
7408 }
7409 }
7410
7411 static void
7412 stop_waiting (struct execution_control_state *ecs)
7413 {
7414 if (debug_infrun)
7415 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7416
7417 /* Let callers know we don't want to wait for the inferior anymore. */
7418 ecs->wait_some_more = 0;
7419
7420 /* If all-stop, but the target is always in non-stop mode, stop all
7421 threads now that we're presenting the stop to the user. */
7422 if (!non_stop && target_is_non_stop_p ())
7423 stop_all_threads ();
7424 }
7425
7426 /* Like keep_going, but passes the signal to the inferior, even if the
7427 signal is set to nopass. */
7428
7429 static void
7430 keep_going_pass_signal (struct execution_control_state *ecs)
7431 {
7432 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7433 gdb_assert (!ecs->event_thread->resumed);
7434
7435 /* Save the pc before execution, to compare with pc after stop. */
7436 ecs->event_thread->prev_pc
7437 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7438
7439 if (ecs->event_thread->control.trap_expected)
7440 {
7441 struct thread_info *tp = ecs->event_thread;
7442
7443 if (debug_infrun)
7444 fprintf_unfiltered (gdb_stdlog,
7445 "infrun: %s has trap_expected set, "
7446 "resuming to collect trap\n",
7447 target_pid_to_str (tp->ptid).c_str ());
7448
7449 /* We haven't yet gotten our trap, and either: intercepted a
7450 non-signal event (e.g., a fork); or took a signal which we
7451 are supposed to pass through to the inferior. Simply
7452 continue. */
7453 resume (ecs->event_thread->suspend.stop_signal);
7454 }
7455 else if (step_over_info_valid_p ())
7456 {
7457 /* Another thread is stepping over a breakpoint in-line. If
7458 this thread needs a step-over too, queue the request. In
7459 either case, this resume must be deferred for later. */
7460 struct thread_info *tp = ecs->event_thread;
7461
7462 if (ecs->hit_singlestep_breakpoint
7463 || thread_still_needs_step_over (tp))
7464 {
7465 if (debug_infrun)
7466 fprintf_unfiltered (gdb_stdlog,
7467 "infrun: step-over already in progress: "
7468 "step-over for %s deferred\n",
7469 target_pid_to_str (tp->ptid).c_str ());
7470 thread_step_over_chain_enqueue (tp);
7471 }
7472 else
7473 {
7474 if (debug_infrun)
7475 fprintf_unfiltered (gdb_stdlog,
7476 "infrun: step-over in progress: "
7477 "resume of %s deferred\n",
7478 target_pid_to_str (tp->ptid).c_str ());
7479 }
7480 }
7481 else
7482 {
7483 struct regcache *regcache = get_current_regcache ();
7484 int remove_bp;
7485 int remove_wps;
7486 step_over_what step_what;
7487
7488 /* Either the trap was not expected, but we are continuing
7489 anyway (if we got a signal, the user asked it be passed to
7490 the child)
7491 -- or --
7492 We got our expected trap, but decided we should resume from
7493 it.
7494
7495 We're going to run this baby now!
7496
7497 Note that insert_breakpoints won't try to re-insert
7498 already inserted breakpoints. Therefore, we don't
7499 care if breakpoints were already inserted, or not. */
7500
7501 /* If we need to step over a breakpoint, and we're not using
7502 displaced stepping to do so, insert all breakpoints
7503 (watchpoints, etc.) but the one we're stepping over, step one
7504 instruction, and then re-insert the breakpoint when that step
7505 is finished. */
7506
7507 step_what = thread_still_needs_step_over (ecs->event_thread);
7508
7509 remove_bp = (ecs->hit_singlestep_breakpoint
7510 || (step_what & STEP_OVER_BREAKPOINT));
7511 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7512
7513 /* We can't use displaced stepping if we need to step past a
7514 watchpoint. The instruction copied to the scratch pad would
7515 still trigger the watchpoint. */
7516 if (remove_bp
7517 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7518 {
7519 set_step_over_info (regcache->aspace (),
7520 regcache_read_pc (regcache), remove_wps,
7521 ecs->event_thread->global_num);
7522 }
7523 else if (remove_wps)
7524 set_step_over_info (NULL, 0, remove_wps, -1);
7525
7526 /* If we now need to do an in-line step-over, we need to stop
7527 all other threads. Note this must be done before
7528 insert_breakpoints below, because that removes the breakpoint
7529 we're about to step over, otherwise other threads could miss
7530 it. */
7531 if (step_over_info_valid_p () && target_is_non_stop_p ())
7532 stop_all_threads ();
7533
7534 /* Stop stepping if inserting breakpoints fails. */
7535 try
7536 {
7537 insert_breakpoints ();
7538 }
7539 catch (const gdb_exception_error &e)
7540 {
7541 exception_print (gdb_stderr, e);
7542 stop_waiting (ecs);
7543 clear_step_over_info ();
7544 return;
7545 }
7546
7547 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7548
7549 resume (ecs->event_thread->suspend.stop_signal);
7550 }
7551
7552 prepare_to_wait (ecs);
7553 }
7554
7555 /* Called when we should continue running the inferior, because the
7556 current event doesn't cause a user visible stop. This does the
7557 resuming part; waiting for the next event is done elsewhere. */
7558
7559 static void
7560 keep_going (struct execution_control_state *ecs)
7561 {
7562 if (ecs->event_thread->control.trap_expected
7563 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7564 ecs->event_thread->control.trap_expected = 0;
7565
7566 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7567 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7568 keep_going_pass_signal (ecs);
7569 }
7570
7571 /* This function normally comes after a resume, before
7572 handle_inferior_event exits. It takes care of any last bits of
7573 housekeeping, and sets the all-important wait_some_more flag. */
7574
7575 static void
7576 prepare_to_wait (struct execution_control_state *ecs)
7577 {
7578 if (debug_infrun)
7579 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7580
7581 ecs->wait_some_more = 1;
7582
7583 if (!target_is_async_p ())
7584 mark_infrun_async_event_handler ();
7585 }
7586
7587 /* We are done with the step range of a step/next/si/ni command.
7588 Called once for each n of a "step n" operation. */
7589
7590 static void
7591 end_stepping_range (struct execution_control_state *ecs)
7592 {
7593 ecs->event_thread->control.stop_step = 1;
7594 stop_waiting (ecs);
7595 }
7596
7597 /* Several print_*_reason functions to print why the inferior has stopped.
7598 We always print something when the inferior exits, or receives a signal.
7599 The rest of the cases are dealt with later on in normal_stop and
7600 print_it_typical. Ideally there should be a call to one of these
7601 print_*_reason functions functions from handle_inferior_event each time
7602 stop_waiting is called.
7603
7604 Note that we don't call these directly, instead we delegate that to
7605 the interpreters, through observers. Interpreters then call these
7606 with whatever uiout is right. */
7607
7608 void
7609 print_end_stepping_range_reason (struct ui_out *uiout)
7610 {
7611 /* For CLI-like interpreters, print nothing. */
7612
7613 if (uiout->is_mi_like_p ())
7614 {
7615 uiout->field_string ("reason",
7616 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7617 }
7618 }
7619
7620 void
7621 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7622 {
7623 annotate_signalled ();
7624 if (uiout->is_mi_like_p ())
7625 uiout->field_string
7626 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7627 uiout->text ("\nProgram terminated with signal ");
7628 annotate_signal_name ();
7629 uiout->field_string ("signal-name",
7630 gdb_signal_to_name (siggnal));
7631 annotate_signal_name_end ();
7632 uiout->text (", ");
7633 annotate_signal_string ();
7634 uiout->field_string ("signal-meaning",
7635 gdb_signal_to_string (siggnal));
7636 annotate_signal_string_end ();
7637 uiout->text (".\n");
7638 uiout->text ("The program no longer exists.\n");
7639 }
7640
7641 void
7642 print_exited_reason (struct ui_out *uiout, int exitstatus)
7643 {
7644 struct inferior *inf = current_inferior ();
7645 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7646
7647 annotate_exited (exitstatus);
7648 if (exitstatus)
7649 {
7650 if (uiout->is_mi_like_p ())
7651 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7652 std::string exit_code_str
7653 = string_printf ("0%o", (unsigned int) exitstatus);
7654 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7655 plongest (inf->num), pidstr.c_str (),
7656 string_field ("exit-code", exit_code_str.c_str ()));
7657 }
7658 else
7659 {
7660 if (uiout->is_mi_like_p ())
7661 uiout->field_string
7662 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7663 uiout->message ("[Inferior %s (%s) exited normally]\n",
7664 plongest (inf->num), pidstr.c_str ());
7665 }
7666 }
7667
7668 /* Some targets/architectures can do extra processing/display of
7669 segmentation faults. E.g., Intel MPX boundary faults.
7670 Call the architecture dependent function to handle the fault. */
7671
7672 static void
7673 handle_segmentation_fault (struct ui_out *uiout)
7674 {
7675 struct regcache *regcache = get_current_regcache ();
7676 struct gdbarch *gdbarch = regcache->arch ();
7677
7678 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7679 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7680 }
7681
7682 void
7683 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7684 {
7685 struct thread_info *thr = inferior_thread ();
7686
7687 annotate_signal ();
7688
7689 if (uiout->is_mi_like_p ())
7690 ;
7691 else if (show_thread_that_caused_stop ())
7692 {
7693 const char *name;
7694
7695 uiout->text ("\nThread ");
7696 uiout->field_string ("thread-id", print_thread_id (thr));
7697
7698 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7699 if (name != NULL)
7700 {
7701 uiout->text (" \"");
7702 uiout->field_string ("name", name);
7703 uiout->text ("\"");
7704 }
7705 }
7706 else
7707 uiout->text ("\nProgram");
7708
7709 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7710 uiout->text (" stopped");
7711 else
7712 {
7713 uiout->text (" received signal ");
7714 annotate_signal_name ();
7715 if (uiout->is_mi_like_p ())
7716 uiout->field_string
7717 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7718 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7719 annotate_signal_name_end ();
7720 uiout->text (", ");
7721 annotate_signal_string ();
7722 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7723
7724 if (siggnal == GDB_SIGNAL_SEGV)
7725 handle_segmentation_fault (uiout);
7726
7727 annotate_signal_string_end ();
7728 }
7729 uiout->text (".\n");
7730 }
7731
7732 void
7733 print_no_history_reason (struct ui_out *uiout)
7734 {
7735 uiout->text ("\nNo more reverse-execution history.\n");
7736 }
7737
7738 /* Print current location without a level number, if we have changed
7739 functions or hit a breakpoint. Print source line if we have one.
7740 bpstat_print contains the logic deciding in detail what to print,
7741 based on the event(s) that just occurred. */
7742
7743 static void
7744 print_stop_location (struct target_waitstatus *ws)
7745 {
7746 int bpstat_ret;
7747 enum print_what source_flag;
7748 int do_frame_printing = 1;
7749 struct thread_info *tp = inferior_thread ();
7750
7751 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7752 switch (bpstat_ret)
7753 {
7754 case PRINT_UNKNOWN:
7755 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7756 should) carry around the function and does (or should) use
7757 that when doing a frame comparison. */
7758 if (tp->control.stop_step
7759 && frame_id_eq (tp->control.step_frame_id,
7760 get_frame_id (get_current_frame ()))
7761 && (tp->control.step_start_function
7762 == find_pc_function (tp->suspend.stop_pc)))
7763 {
7764 /* Finished step, just print source line. */
7765 source_flag = SRC_LINE;
7766 }
7767 else
7768 {
7769 /* Print location and source line. */
7770 source_flag = SRC_AND_LOC;
7771 }
7772 break;
7773 case PRINT_SRC_AND_LOC:
7774 /* Print location and source line. */
7775 source_flag = SRC_AND_LOC;
7776 break;
7777 case PRINT_SRC_ONLY:
7778 source_flag = SRC_LINE;
7779 break;
7780 case PRINT_NOTHING:
7781 /* Something bogus. */
7782 source_flag = SRC_LINE;
7783 do_frame_printing = 0;
7784 break;
7785 default:
7786 internal_error (__FILE__, __LINE__, _("Unknown value."));
7787 }
7788
7789 /* The behavior of this routine with respect to the source
7790 flag is:
7791 SRC_LINE: Print only source line
7792 LOCATION: Print only location
7793 SRC_AND_LOC: Print location and source line. */
7794 if (do_frame_printing)
7795 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7796 }
7797
7798 /* See infrun.h. */
7799
7800 void
7801 print_stop_event (struct ui_out *uiout, bool displays)
7802 {
7803 struct target_waitstatus last;
7804 ptid_t last_ptid;
7805 struct thread_info *tp;
7806
7807 get_last_target_status (&last_ptid, &last);
7808
7809 {
7810 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7811
7812 print_stop_location (&last);
7813
7814 /* Display the auto-display expressions. */
7815 if (displays)
7816 do_displays ();
7817 }
7818
7819 tp = inferior_thread ();
7820 if (tp->thread_fsm != NULL
7821 && tp->thread_fsm->finished_p ())
7822 {
7823 struct return_value_info *rv;
7824
7825 rv = tp->thread_fsm->return_value ();
7826 if (rv != NULL)
7827 print_return_value (uiout, rv);
7828 }
7829 }
7830
7831 /* See infrun.h. */
7832
7833 void
7834 maybe_remove_breakpoints (void)
7835 {
7836 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7837 {
7838 if (remove_breakpoints ())
7839 {
7840 target_terminal::ours_for_output ();
7841 printf_filtered (_("Cannot remove breakpoints because "
7842 "program is no longer writable.\nFurther "
7843 "execution is probably impossible.\n"));
7844 }
7845 }
7846 }
7847
7848 /* The execution context that just caused a normal stop. */
7849
7850 struct stop_context
7851 {
7852 stop_context ();
7853 ~stop_context ();
7854
7855 DISABLE_COPY_AND_ASSIGN (stop_context);
7856
7857 bool changed () const;
7858
7859 /* The stop ID. */
7860 ULONGEST stop_id;
7861
7862 /* The event PTID. */
7863
7864 ptid_t ptid;
7865
7866 /* If stopp for a thread event, this is the thread that caused the
7867 stop. */
7868 struct thread_info *thread;
7869
7870 /* The inferior that caused the stop. */
7871 int inf_num;
7872 };
7873
7874 /* Initializes a new stop context. If stopped for a thread event, this
7875 takes a strong reference to the thread. */
7876
7877 stop_context::stop_context ()
7878 {
7879 stop_id = get_stop_id ();
7880 ptid = inferior_ptid;
7881 inf_num = current_inferior ()->num;
7882
7883 if (inferior_ptid != null_ptid)
7884 {
7885 /* Take a strong reference so that the thread can't be deleted
7886 yet. */
7887 thread = inferior_thread ();
7888 thread->incref ();
7889 }
7890 else
7891 thread = NULL;
7892 }
7893
7894 /* Release a stop context previously created with save_stop_context.
7895 Releases the strong reference to the thread as well. */
7896
7897 stop_context::~stop_context ()
7898 {
7899 if (thread != NULL)
7900 thread->decref ();
7901 }
7902
7903 /* Return true if the current context no longer matches the saved stop
7904 context. */
7905
7906 bool
7907 stop_context::changed () const
7908 {
7909 if (ptid != inferior_ptid)
7910 return true;
7911 if (inf_num != current_inferior ()->num)
7912 return true;
7913 if (thread != NULL && thread->state != THREAD_STOPPED)
7914 return true;
7915 if (get_stop_id () != stop_id)
7916 return true;
7917 return false;
7918 }
7919
7920 /* See infrun.h. */
7921
7922 int
7923 normal_stop (void)
7924 {
7925 struct target_waitstatus last;
7926 ptid_t last_ptid;
7927
7928 get_last_target_status (&last_ptid, &last);
7929
7930 new_stop_id ();
7931
7932 /* If an exception is thrown from this point on, make sure to
7933 propagate GDB's knowledge of the executing state to the
7934 frontend/user running state. A QUIT is an easy exception to see
7935 here, so do this before any filtered output. */
7936
7937 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7938
7939 if (!non_stop)
7940 maybe_finish_thread_state.emplace (minus_one_ptid);
7941 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7942 || last.kind == TARGET_WAITKIND_EXITED)
7943 {
7944 /* On some targets, we may still have live threads in the
7945 inferior when we get a process exit event. E.g., for
7946 "checkpoint", when the current checkpoint/fork exits,
7947 linux-fork.c automatically switches to another fork from
7948 within target_mourn_inferior. */
7949 if (inferior_ptid != null_ptid)
7950 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
7951 }
7952 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
7953 maybe_finish_thread_state.emplace (inferior_ptid);
7954
7955 /* As we're presenting a stop, and potentially removing breakpoints,
7956 update the thread list so we can tell whether there are threads
7957 running on the target. With target remote, for example, we can
7958 only learn about new threads when we explicitly update the thread
7959 list. Do this before notifying the interpreters about signal
7960 stops, end of stepping ranges, etc., so that the "new thread"
7961 output is emitted before e.g., "Program received signal FOO",
7962 instead of after. */
7963 update_thread_list ();
7964
7965 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7966 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
7967
7968 /* As with the notification of thread events, we want to delay
7969 notifying the user that we've switched thread context until
7970 the inferior actually stops.
7971
7972 There's no point in saying anything if the inferior has exited.
7973 Note that SIGNALLED here means "exited with a signal", not
7974 "received a signal".
7975
7976 Also skip saying anything in non-stop mode. In that mode, as we
7977 don't want GDB to switch threads behind the user's back, to avoid
7978 races where the user is typing a command to apply to thread x,
7979 but GDB switches to thread y before the user finishes entering
7980 the command, fetch_inferior_event installs a cleanup to restore
7981 the current thread back to the thread the user had selected right
7982 after this event is handled, so we're not really switching, only
7983 informing of a stop. */
7984 if (!non_stop
7985 && previous_inferior_ptid != inferior_ptid
7986 && target_has_execution
7987 && last.kind != TARGET_WAITKIND_SIGNALLED
7988 && last.kind != TARGET_WAITKIND_EXITED
7989 && last.kind != TARGET_WAITKIND_NO_RESUMED)
7990 {
7991 SWITCH_THRU_ALL_UIS ()
7992 {
7993 target_terminal::ours_for_output ();
7994 printf_filtered (_("[Switching to %s]\n"),
7995 target_pid_to_str (inferior_ptid).c_str ());
7996 annotate_thread_changed ();
7997 }
7998 previous_inferior_ptid = inferior_ptid;
7999 }
8000
8001 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8002 {
8003 SWITCH_THRU_ALL_UIS ()
8004 if (current_ui->prompt_state == PROMPT_BLOCKED)
8005 {
8006 target_terminal::ours_for_output ();
8007 printf_filtered (_("No unwaited-for children left.\n"));
8008 }
8009 }
8010
8011 /* Note: this depends on the update_thread_list call above. */
8012 maybe_remove_breakpoints ();
8013
8014 /* If an auto-display called a function and that got a signal,
8015 delete that auto-display to avoid an infinite recursion. */
8016
8017 if (stopped_by_random_signal)
8018 disable_current_display ();
8019
8020 SWITCH_THRU_ALL_UIS ()
8021 {
8022 async_enable_stdin ();
8023 }
8024
8025 /* Let the user/frontend see the threads as stopped. */
8026 maybe_finish_thread_state.reset ();
8027
8028 /* Select innermost stack frame - i.e., current frame is frame 0,
8029 and current location is based on that. Handle the case where the
8030 dummy call is returning after being stopped. E.g. the dummy call
8031 previously hit a breakpoint. (If the dummy call returns
8032 normally, we won't reach here.) Do this before the stop hook is
8033 run, so that it doesn't get to see the temporary dummy frame,
8034 which is not where we'll present the stop. */
8035 if (has_stack_frames ())
8036 {
8037 if (stop_stack_dummy == STOP_STACK_DUMMY)
8038 {
8039 /* Pop the empty frame that contains the stack dummy. This
8040 also restores inferior state prior to the call (struct
8041 infcall_suspend_state). */
8042 struct frame_info *frame = get_current_frame ();
8043
8044 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8045 frame_pop (frame);
8046 /* frame_pop calls reinit_frame_cache as the last thing it
8047 does which means there's now no selected frame. */
8048 }
8049
8050 select_frame (get_current_frame ());
8051
8052 /* Set the current source location. */
8053 set_current_sal_from_frame (get_current_frame ());
8054 }
8055
8056 /* Look up the hook_stop and run it (CLI internally handles problem
8057 of stop_command's pre-hook not existing). */
8058 if (stop_command != NULL)
8059 {
8060 stop_context saved_context;
8061
8062 try
8063 {
8064 execute_cmd_pre_hook (stop_command);
8065 }
8066 catch (const gdb_exception &ex)
8067 {
8068 exception_fprintf (gdb_stderr, ex,
8069 "Error while running hook_stop:\n");
8070 }
8071
8072 /* If the stop hook resumes the target, then there's no point in
8073 trying to notify about the previous stop; its context is
8074 gone. Likewise if the command switches thread or inferior --
8075 the observers would print a stop for the wrong
8076 thread/inferior. */
8077 if (saved_context.changed ())
8078 return 1;
8079 }
8080
8081 /* Notify observers about the stop. This is where the interpreters
8082 print the stop event. */
8083 if (inferior_ptid != null_ptid)
8084 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8085 stop_print_frame);
8086 else
8087 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8088
8089 annotate_stopped ();
8090
8091 if (target_has_execution)
8092 {
8093 if (last.kind != TARGET_WAITKIND_SIGNALLED
8094 && last.kind != TARGET_WAITKIND_EXITED
8095 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8096 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8097 Delete any breakpoint that is to be deleted at the next stop. */
8098 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8099 }
8100
8101 /* Try to get rid of automatically added inferiors that are no
8102 longer needed. Keeping those around slows down things linearly.
8103 Note that this never removes the current inferior. */
8104 prune_inferiors ();
8105
8106 return 0;
8107 }
8108 \f
8109 int
8110 signal_stop_state (int signo)
8111 {
8112 return signal_stop[signo];
8113 }
8114
8115 int
8116 signal_print_state (int signo)
8117 {
8118 return signal_print[signo];
8119 }
8120
8121 int
8122 signal_pass_state (int signo)
8123 {
8124 return signal_program[signo];
8125 }
8126
8127 static void
8128 signal_cache_update (int signo)
8129 {
8130 if (signo == -1)
8131 {
8132 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8133 signal_cache_update (signo);
8134
8135 return;
8136 }
8137
8138 signal_pass[signo] = (signal_stop[signo] == 0
8139 && signal_print[signo] == 0
8140 && signal_program[signo] == 1
8141 && signal_catch[signo] == 0);
8142 }
8143
8144 int
8145 signal_stop_update (int signo, int state)
8146 {
8147 int ret = signal_stop[signo];
8148
8149 signal_stop[signo] = state;
8150 signal_cache_update (signo);
8151 return ret;
8152 }
8153
8154 int
8155 signal_print_update (int signo, int state)
8156 {
8157 int ret = signal_print[signo];
8158
8159 signal_print[signo] = state;
8160 signal_cache_update (signo);
8161 return ret;
8162 }
8163
8164 int
8165 signal_pass_update (int signo, int state)
8166 {
8167 int ret = signal_program[signo];
8168
8169 signal_program[signo] = state;
8170 signal_cache_update (signo);
8171 return ret;
8172 }
8173
8174 /* Update the global 'signal_catch' from INFO and notify the
8175 target. */
8176
8177 void
8178 signal_catch_update (const unsigned int *info)
8179 {
8180 int i;
8181
8182 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8183 signal_catch[i] = info[i] > 0;
8184 signal_cache_update (-1);
8185 target_pass_signals (signal_pass);
8186 }
8187
8188 static void
8189 sig_print_header (void)
8190 {
8191 printf_filtered (_("Signal Stop\tPrint\tPass "
8192 "to program\tDescription\n"));
8193 }
8194
8195 static void
8196 sig_print_info (enum gdb_signal oursig)
8197 {
8198 const char *name = gdb_signal_to_name (oursig);
8199 int name_padding = 13 - strlen (name);
8200
8201 if (name_padding <= 0)
8202 name_padding = 0;
8203
8204 printf_filtered ("%s", name);
8205 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8206 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8207 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8208 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8209 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8210 }
8211
8212 /* Specify how various signals in the inferior should be handled. */
8213
8214 static void
8215 handle_command (const char *args, int from_tty)
8216 {
8217 int digits, wordlen;
8218 int sigfirst, siglast;
8219 enum gdb_signal oursig;
8220 int allsigs;
8221
8222 if (args == NULL)
8223 {
8224 error_no_arg (_("signal to handle"));
8225 }
8226
8227 /* Allocate and zero an array of flags for which signals to handle. */
8228
8229 const size_t nsigs = GDB_SIGNAL_LAST;
8230 unsigned char sigs[nsigs] {};
8231
8232 /* Break the command line up into args. */
8233
8234 gdb_argv built_argv (args);
8235
8236 /* Walk through the args, looking for signal oursigs, signal names, and
8237 actions. Signal numbers and signal names may be interspersed with
8238 actions, with the actions being performed for all signals cumulatively
8239 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8240
8241 for (char *arg : built_argv)
8242 {
8243 wordlen = strlen (arg);
8244 for (digits = 0; isdigit (arg[digits]); digits++)
8245 {;
8246 }
8247 allsigs = 0;
8248 sigfirst = siglast = -1;
8249
8250 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8251 {
8252 /* Apply action to all signals except those used by the
8253 debugger. Silently skip those. */
8254 allsigs = 1;
8255 sigfirst = 0;
8256 siglast = nsigs - 1;
8257 }
8258 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8259 {
8260 SET_SIGS (nsigs, sigs, signal_stop);
8261 SET_SIGS (nsigs, sigs, signal_print);
8262 }
8263 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8264 {
8265 UNSET_SIGS (nsigs, sigs, signal_program);
8266 }
8267 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8268 {
8269 SET_SIGS (nsigs, sigs, signal_print);
8270 }
8271 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8272 {
8273 SET_SIGS (nsigs, sigs, signal_program);
8274 }
8275 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8276 {
8277 UNSET_SIGS (nsigs, sigs, signal_stop);
8278 }
8279 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8280 {
8281 SET_SIGS (nsigs, sigs, signal_program);
8282 }
8283 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8284 {
8285 UNSET_SIGS (nsigs, sigs, signal_print);
8286 UNSET_SIGS (nsigs, sigs, signal_stop);
8287 }
8288 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8289 {
8290 UNSET_SIGS (nsigs, sigs, signal_program);
8291 }
8292 else if (digits > 0)
8293 {
8294 /* It is numeric. The numeric signal refers to our own
8295 internal signal numbering from target.h, not to host/target
8296 signal number. This is a feature; users really should be
8297 using symbolic names anyway, and the common ones like
8298 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8299
8300 sigfirst = siglast = (int)
8301 gdb_signal_from_command (atoi (arg));
8302 if (arg[digits] == '-')
8303 {
8304 siglast = (int)
8305 gdb_signal_from_command (atoi (arg + digits + 1));
8306 }
8307 if (sigfirst > siglast)
8308 {
8309 /* Bet he didn't figure we'd think of this case... */
8310 std::swap (sigfirst, siglast);
8311 }
8312 }
8313 else
8314 {
8315 oursig = gdb_signal_from_name (arg);
8316 if (oursig != GDB_SIGNAL_UNKNOWN)
8317 {
8318 sigfirst = siglast = (int) oursig;
8319 }
8320 else
8321 {
8322 /* Not a number and not a recognized flag word => complain. */
8323 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8324 }
8325 }
8326
8327 /* If any signal numbers or symbol names were found, set flags for
8328 which signals to apply actions to. */
8329
8330 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8331 {
8332 switch ((enum gdb_signal) signum)
8333 {
8334 case GDB_SIGNAL_TRAP:
8335 case GDB_SIGNAL_INT:
8336 if (!allsigs && !sigs[signum])
8337 {
8338 if (query (_("%s is used by the debugger.\n\
8339 Are you sure you want to change it? "),
8340 gdb_signal_to_name ((enum gdb_signal) signum)))
8341 {
8342 sigs[signum] = 1;
8343 }
8344 else
8345 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8346 }
8347 break;
8348 case GDB_SIGNAL_0:
8349 case GDB_SIGNAL_DEFAULT:
8350 case GDB_SIGNAL_UNKNOWN:
8351 /* Make sure that "all" doesn't print these. */
8352 break;
8353 default:
8354 sigs[signum] = 1;
8355 break;
8356 }
8357 }
8358 }
8359
8360 for (int signum = 0; signum < nsigs; signum++)
8361 if (sigs[signum])
8362 {
8363 signal_cache_update (-1);
8364 target_pass_signals (signal_pass);
8365 target_program_signals (signal_program);
8366
8367 if (from_tty)
8368 {
8369 /* Show the results. */
8370 sig_print_header ();
8371 for (; signum < nsigs; signum++)
8372 if (sigs[signum])
8373 sig_print_info ((enum gdb_signal) signum);
8374 }
8375
8376 break;
8377 }
8378 }
8379
8380 /* Complete the "handle" command. */
8381
8382 static void
8383 handle_completer (struct cmd_list_element *ignore,
8384 completion_tracker &tracker,
8385 const char *text, const char *word)
8386 {
8387 static const char * const keywords[] =
8388 {
8389 "all",
8390 "stop",
8391 "ignore",
8392 "print",
8393 "pass",
8394 "nostop",
8395 "noignore",
8396 "noprint",
8397 "nopass",
8398 NULL,
8399 };
8400
8401 signal_completer (ignore, tracker, text, word);
8402 complete_on_enum (tracker, keywords, word, word);
8403 }
8404
8405 enum gdb_signal
8406 gdb_signal_from_command (int num)
8407 {
8408 if (num >= 1 && num <= 15)
8409 return (enum gdb_signal) num;
8410 error (_("Only signals 1-15 are valid as numeric signals.\n\
8411 Use \"info signals\" for a list of symbolic signals."));
8412 }
8413
8414 /* Print current contents of the tables set by the handle command.
8415 It is possible we should just be printing signals actually used
8416 by the current target (but for things to work right when switching
8417 targets, all signals should be in the signal tables). */
8418
8419 static void
8420 info_signals_command (const char *signum_exp, int from_tty)
8421 {
8422 enum gdb_signal oursig;
8423
8424 sig_print_header ();
8425
8426 if (signum_exp)
8427 {
8428 /* First see if this is a symbol name. */
8429 oursig = gdb_signal_from_name (signum_exp);
8430 if (oursig == GDB_SIGNAL_UNKNOWN)
8431 {
8432 /* No, try numeric. */
8433 oursig =
8434 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8435 }
8436 sig_print_info (oursig);
8437 return;
8438 }
8439
8440 printf_filtered ("\n");
8441 /* These ugly casts brought to you by the native VAX compiler. */
8442 for (oursig = GDB_SIGNAL_FIRST;
8443 (int) oursig < (int) GDB_SIGNAL_LAST;
8444 oursig = (enum gdb_signal) ((int) oursig + 1))
8445 {
8446 QUIT;
8447
8448 if (oursig != GDB_SIGNAL_UNKNOWN
8449 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8450 sig_print_info (oursig);
8451 }
8452
8453 printf_filtered (_("\nUse the \"handle\" command "
8454 "to change these tables.\n"));
8455 }
8456
8457 /* The $_siginfo convenience variable is a bit special. We don't know
8458 for sure the type of the value until we actually have a chance to
8459 fetch the data. The type can change depending on gdbarch, so it is
8460 also dependent on which thread you have selected.
8461
8462 1. making $_siginfo be an internalvar that creates a new value on
8463 access.
8464
8465 2. making the value of $_siginfo be an lval_computed value. */
8466
8467 /* This function implements the lval_computed support for reading a
8468 $_siginfo value. */
8469
8470 static void
8471 siginfo_value_read (struct value *v)
8472 {
8473 LONGEST transferred;
8474
8475 /* If we can access registers, so can we access $_siginfo. Likewise
8476 vice versa. */
8477 validate_registers_access ();
8478
8479 transferred =
8480 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8481 NULL,
8482 value_contents_all_raw (v),
8483 value_offset (v),
8484 TYPE_LENGTH (value_type (v)));
8485
8486 if (transferred != TYPE_LENGTH (value_type (v)))
8487 error (_("Unable to read siginfo"));
8488 }
8489
8490 /* This function implements the lval_computed support for writing a
8491 $_siginfo value. */
8492
8493 static void
8494 siginfo_value_write (struct value *v, struct value *fromval)
8495 {
8496 LONGEST transferred;
8497
8498 /* If we can access registers, so can we access $_siginfo. Likewise
8499 vice versa. */
8500 validate_registers_access ();
8501
8502 transferred = target_write (current_top_target (),
8503 TARGET_OBJECT_SIGNAL_INFO,
8504 NULL,
8505 value_contents_all_raw (fromval),
8506 value_offset (v),
8507 TYPE_LENGTH (value_type (fromval)));
8508
8509 if (transferred != TYPE_LENGTH (value_type (fromval)))
8510 error (_("Unable to write siginfo"));
8511 }
8512
8513 static const struct lval_funcs siginfo_value_funcs =
8514 {
8515 siginfo_value_read,
8516 siginfo_value_write
8517 };
8518
8519 /* Return a new value with the correct type for the siginfo object of
8520 the current thread using architecture GDBARCH. Return a void value
8521 if there's no object available. */
8522
8523 static struct value *
8524 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8525 void *ignore)
8526 {
8527 if (target_has_stack
8528 && inferior_ptid != null_ptid
8529 && gdbarch_get_siginfo_type_p (gdbarch))
8530 {
8531 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8532
8533 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8534 }
8535
8536 return allocate_value (builtin_type (gdbarch)->builtin_void);
8537 }
8538
8539 \f
8540 /* infcall_suspend_state contains state about the program itself like its
8541 registers and any signal it received when it last stopped.
8542 This state must be restored regardless of how the inferior function call
8543 ends (either successfully, or after it hits a breakpoint or signal)
8544 if the program is to properly continue where it left off. */
8545
8546 class infcall_suspend_state
8547 {
8548 public:
8549 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8550 once the inferior function call has finished. */
8551 infcall_suspend_state (struct gdbarch *gdbarch,
8552 const struct thread_info *tp,
8553 struct regcache *regcache)
8554 : m_thread_suspend (tp->suspend),
8555 m_registers (new readonly_detached_regcache (*regcache))
8556 {
8557 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8558
8559 if (gdbarch_get_siginfo_type_p (gdbarch))
8560 {
8561 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8562 size_t len = TYPE_LENGTH (type);
8563
8564 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8565
8566 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8567 siginfo_data.get (), 0, len) != len)
8568 {
8569 /* Errors ignored. */
8570 siginfo_data.reset (nullptr);
8571 }
8572 }
8573
8574 if (siginfo_data)
8575 {
8576 m_siginfo_gdbarch = gdbarch;
8577 m_siginfo_data = std::move (siginfo_data);
8578 }
8579 }
8580
8581 /* Return a pointer to the stored register state. */
8582
8583 readonly_detached_regcache *registers () const
8584 {
8585 return m_registers.get ();
8586 }
8587
8588 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8589
8590 void restore (struct gdbarch *gdbarch,
8591 struct thread_info *tp,
8592 struct regcache *regcache) const
8593 {
8594 tp->suspend = m_thread_suspend;
8595
8596 if (m_siginfo_gdbarch == gdbarch)
8597 {
8598 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8599
8600 /* Errors ignored. */
8601 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8602 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8603 }
8604
8605 /* The inferior can be gone if the user types "print exit(0)"
8606 (and perhaps other times). */
8607 if (target_has_execution)
8608 /* NB: The register write goes through to the target. */
8609 regcache->restore (registers ());
8610 }
8611
8612 private:
8613 /* How the current thread stopped before the inferior function call was
8614 executed. */
8615 struct thread_suspend_state m_thread_suspend;
8616
8617 /* The registers before the inferior function call was executed. */
8618 std::unique_ptr<readonly_detached_regcache> m_registers;
8619
8620 /* Format of SIGINFO_DATA or NULL if it is not present. */
8621 struct gdbarch *m_siginfo_gdbarch = nullptr;
8622
8623 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8624 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8625 content would be invalid. */
8626 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8627 };
8628
8629 infcall_suspend_state_up
8630 save_infcall_suspend_state ()
8631 {
8632 struct thread_info *tp = inferior_thread ();
8633 struct regcache *regcache = get_current_regcache ();
8634 struct gdbarch *gdbarch = regcache->arch ();
8635
8636 infcall_suspend_state_up inf_state
8637 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8638
8639 /* Having saved the current state, adjust the thread state, discarding
8640 any stop signal information. The stop signal is not useful when
8641 starting an inferior function call, and run_inferior_call will not use
8642 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8643 tp->suspend.stop_signal = GDB_SIGNAL_0;
8644
8645 return inf_state;
8646 }
8647
8648 /* Restore inferior session state to INF_STATE. */
8649
8650 void
8651 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8652 {
8653 struct thread_info *tp = inferior_thread ();
8654 struct regcache *regcache = get_current_regcache ();
8655 struct gdbarch *gdbarch = regcache->arch ();
8656
8657 inf_state->restore (gdbarch, tp, regcache);
8658 discard_infcall_suspend_state (inf_state);
8659 }
8660
8661 void
8662 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8663 {
8664 delete inf_state;
8665 }
8666
8667 readonly_detached_regcache *
8668 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8669 {
8670 return inf_state->registers ();
8671 }
8672
8673 /* infcall_control_state contains state regarding gdb's control of the
8674 inferior itself like stepping control. It also contains session state like
8675 the user's currently selected frame. */
8676
8677 struct infcall_control_state
8678 {
8679 struct thread_control_state thread_control;
8680 struct inferior_control_state inferior_control;
8681
8682 /* Other fields: */
8683 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8684 int stopped_by_random_signal = 0;
8685
8686 /* ID if the selected frame when the inferior function call was made. */
8687 struct frame_id selected_frame_id {};
8688 };
8689
8690 /* Save all of the information associated with the inferior<==>gdb
8691 connection. */
8692
8693 infcall_control_state_up
8694 save_infcall_control_state ()
8695 {
8696 infcall_control_state_up inf_status (new struct infcall_control_state);
8697 struct thread_info *tp = inferior_thread ();
8698 struct inferior *inf = current_inferior ();
8699
8700 inf_status->thread_control = tp->control;
8701 inf_status->inferior_control = inf->control;
8702
8703 tp->control.step_resume_breakpoint = NULL;
8704 tp->control.exception_resume_breakpoint = NULL;
8705
8706 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8707 chain. If caller's caller is walking the chain, they'll be happier if we
8708 hand them back the original chain when restore_infcall_control_state is
8709 called. */
8710 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8711
8712 /* Other fields: */
8713 inf_status->stop_stack_dummy = stop_stack_dummy;
8714 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8715
8716 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8717
8718 return inf_status;
8719 }
8720
8721 static void
8722 restore_selected_frame (const frame_id &fid)
8723 {
8724 frame_info *frame = frame_find_by_id (fid);
8725
8726 /* If inf_status->selected_frame_id is NULL, there was no previously
8727 selected frame. */
8728 if (frame == NULL)
8729 {
8730 warning (_("Unable to restore previously selected frame."));
8731 return;
8732 }
8733
8734 select_frame (frame);
8735 }
8736
8737 /* Restore inferior session state to INF_STATUS. */
8738
8739 void
8740 restore_infcall_control_state (struct infcall_control_state *inf_status)
8741 {
8742 struct thread_info *tp = inferior_thread ();
8743 struct inferior *inf = current_inferior ();
8744
8745 if (tp->control.step_resume_breakpoint)
8746 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8747
8748 if (tp->control.exception_resume_breakpoint)
8749 tp->control.exception_resume_breakpoint->disposition
8750 = disp_del_at_next_stop;
8751
8752 /* Handle the bpstat_copy of the chain. */
8753 bpstat_clear (&tp->control.stop_bpstat);
8754
8755 tp->control = inf_status->thread_control;
8756 inf->control = inf_status->inferior_control;
8757
8758 /* Other fields: */
8759 stop_stack_dummy = inf_status->stop_stack_dummy;
8760 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8761
8762 if (target_has_stack)
8763 {
8764 /* The point of the try/catch is that if the stack is clobbered,
8765 walking the stack might encounter a garbage pointer and
8766 error() trying to dereference it. */
8767 try
8768 {
8769 restore_selected_frame (inf_status->selected_frame_id);
8770 }
8771 catch (const gdb_exception_error &ex)
8772 {
8773 exception_fprintf (gdb_stderr, ex,
8774 "Unable to restore previously selected frame:\n");
8775 /* Error in restoring the selected frame. Select the
8776 innermost frame. */
8777 select_frame (get_current_frame ());
8778 }
8779 }
8780
8781 delete inf_status;
8782 }
8783
8784 void
8785 discard_infcall_control_state (struct infcall_control_state *inf_status)
8786 {
8787 if (inf_status->thread_control.step_resume_breakpoint)
8788 inf_status->thread_control.step_resume_breakpoint->disposition
8789 = disp_del_at_next_stop;
8790
8791 if (inf_status->thread_control.exception_resume_breakpoint)
8792 inf_status->thread_control.exception_resume_breakpoint->disposition
8793 = disp_del_at_next_stop;
8794
8795 /* See save_infcall_control_state for info on stop_bpstat. */
8796 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8797
8798 delete inf_status;
8799 }
8800 \f
8801 /* See infrun.h. */
8802
8803 void
8804 clear_exit_convenience_vars (void)
8805 {
8806 clear_internalvar (lookup_internalvar ("_exitsignal"));
8807 clear_internalvar (lookup_internalvar ("_exitcode"));
8808 }
8809 \f
8810
8811 /* User interface for reverse debugging:
8812 Set exec-direction / show exec-direction commands
8813 (returns error unless target implements to_set_exec_direction method). */
8814
8815 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8816 static const char exec_forward[] = "forward";
8817 static const char exec_reverse[] = "reverse";
8818 static const char *exec_direction = exec_forward;
8819 static const char *const exec_direction_names[] = {
8820 exec_forward,
8821 exec_reverse,
8822 NULL
8823 };
8824
8825 static void
8826 set_exec_direction_func (const char *args, int from_tty,
8827 struct cmd_list_element *cmd)
8828 {
8829 if (target_can_execute_reverse)
8830 {
8831 if (!strcmp (exec_direction, exec_forward))
8832 execution_direction = EXEC_FORWARD;
8833 else if (!strcmp (exec_direction, exec_reverse))
8834 execution_direction = EXEC_REVERSE;
8835 }
8836 else
8837 {
8838 exec_direction = exec_forward;
8839 error (_("Target does not support this operation."));
8840 }
8841 }
8842
8843 static void
8844 show_exec_direction_func (struct ui_file *out, int from_tty,
8845 struct cmd_list_element *cmd, const char *value)
8846 {
8847 switch (execution_direction) {
8848 case EXEC_FORWARD:
8849 fprintf_filtered (out, _("Forward.\n"));
8850 break;
8851 case EXEC_REVERSE:
8852 fprintf_filtered (out, _("Reverse.\n"));
8853 break;
8854 default:
8855 internal_error (__FILE__, __LINE__,
8856 _("bogus execution_direction value: %d"),
8857 (int) execution_direction);
8858 }
8859 }
8860
8861 static void
8862 show_schedule_multiple (struct ui_file *file, int from_tty,
8863 struct cmd_list_element *c, const char *value)
8864 {
8865 fprintf_filtered (file, _("Resuming the execution of threads "
8866 "of all processes is %s.\n"), value);
8867 }
8868
8869 /* Implementation of `siginfo' variable. */
8870
8871 static const struct internalvar_funcs siginfo_funcs =
8872 {
8873 siginfo_make_value,
8874 NULL,
8875 NULL
8876 };
8877
8878 /* Callback for infrun's target events source. This is marked when a
8879 thread has a pending status to process. */
8880
8881 static void
8882 infrun_async_inferior_event_handler (gdb_client_data data)
8883 {
8884 inferior_event_handler (INF_REG_EVENT, NULL);
8885 }
8886
8887 void
8888 _initialize_infrun (void)
8889 {
8890 struct cmd_list_element *c;
8891
8892 /* Register extra event sources in the event loop. */
8893 infrun_async_inferior_event_token
8894 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8895
8896 add_info ("signals", info_signals_command, _("\
8897 What debugger does when program gets various signals.\n\
8898 Specify a signal as argument to print info on that signal only."));
8899 add_info_alias ("handle", "signals", 0);
8900
8901 c = add_com ("handle", class_run, handle_command, _("\
8902 Specify how to handle signals.\n\
8903 Usage: handle SIGNAL [ACTIONS]\n\
8904 Args are signals and actions to apply to those signals.\n\
8905 If no actions are specified, the current settings for the specified signals\n\
8906 will be displayed instead.\n\
8907 \n\
8908 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8909 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8910 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8911 The special arg \"all\" is recognized to mean all signals except those\n\
8912 used by the debugger, typically SIGTRAP and SIGINT.\n\
8913 \n\
8914 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8915 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8916 Stop means reenter debugger if this signal happens (implies print).\n\
8917 Print means print a message if this signal happens.\n\
8918 Pass means let program see this signal; otherwise program doesn't know.\n\
8919 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8920 Pass and Stop may be combined.\n\
8921 \n\
8922 Multiple signals may be specified. Signal numbers and signal names\n\
8923 may be interspersed with actions, with the actions being performed for\n\
8924 all signals cumulatively specified."));
8925 set_cmd_completer (c, handle_completer);
8926
8927 if (!dbx_commands)
8928 stop_command = add_cmd ("stop", class_obscure,
8929 not_just_help_class_command, _("\
8930 There is no `stop' command, but you can set a hook on `stop'.\n\
8931 This allows you to set a list of commands to be run each time execution\n\
8932 of the program stops."), &cmdlist);
8933
8934 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8935 Set inferior debugging."), _("\
8936 Show inferior debugging."), _("\
8937 When non-zero, inferior specific debugging is enabled."),
8938 NULL,
8939 show_debug_infrun,
8940 &setdebuglist, &showdebuglist);
8941
8942 add_setshow_boolean_cmd ("displaced", class_maintenance,
8943 &debug_displaced, _("\
8944 Set displaced stepping debugging."), _("\
8945 Show displaced stepping debugging."), _("\
8946 When non-zero, displaced stepping specific debugging is enabled."),
8947 NULL,
8948 show_debug_displaced,
8949 &setdebuglist, &showdebuglist);
8950
8951 add_setshow_boolean_cmd ("non-stop", no_class,
8952 &non_stop_1, _("\
8953 Set whether gdb controls the inferior in non-stop mode."), _("\
8954 Show whether gdb controls the inferior in non-stop mode."), _("\
8955 When debugging a multi-threaded program and this setting is\n\
8956 off (the default, also called all-stop mode), when one thread stops\n\
8957 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8958 all other threads in the program while you interact with the thread of\n\
8959 interest. When you continue or step a thread, you can allow the other\n\
8960 threads to run, or have them remain stopped, but while you inspect any\n\
8961 thread's state, all threads stop.\n\
8962 \n\
8963 In non-stop mode, when one thread stops, other threads can continue\n\
8964 to run freely. You'll be able to step each thread independently,\n\
8965 leave it stopped or free to run as needed."),
8966 set_non_stop,
8967 show_non_stop,
8968 &setlist,
8969 &showlist);
8970
8971 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
8972 {
8973 signal_stop[i] = 1;
8974 signal_print[i] = 1;
8975 signal_program[i] = 1;
8976 signal_catch[i] = 0;
8977 }
8978
8979 /* Signals caused by debugger's own actions should not be given to
8980 the program afterwards.
8981
8982 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8983 explicitly specifies that it should be delivered to the target
8984 program. Typically, that would occur when a user is debugging a
8985 target monitor on a simulator: the target monitor sets a
8986 breakpoint; the simulator encounters this breakpoint and halts
8987 the simulation handing control to GDB; GDB, noting that the stop
8988 address doesn't map to any known breakpoint, returns control back
8989 to the simulator; the simulator then delivers the hardware
8990 equivalent of a GDB_SIGNAL_TRAP to the program being
8991 debugged. */
8992 signal_program[GDB_SIGNAL_TRAP] = 0;
8993 signal_program[GDB_SIGNAL_INT] = 0;
8994
8995 /* Signals that are not errors should not normally enter the debugger. */
8996 signal_stop[GDB_SIGNAL_ALRM] = 0;
8997 signal_print[GDB_SIGNAL_ALRM] = 0;
8998 signal_stop[GDB_SIGNAL_VTALRM] = 0;
8999 signal_print[GDB_SIGNAL_VTALRM] = 0;
9000 signal_stop[GDB_SIGNAL_PROF] = 0;
9001 signal_print[GDB_SIGNAL_PROF] = 0;
9002 signal_stop[GDB_SIGNAL_CHLD] = 0;
9003 signal_print[GDB_SIGNAL_CHLD] = 0;
9004 signal_stop[GDB_SIGNAL_IO] = 0;
9005 signal_print[GDB_SIGNAL_IO] = 0;
9006 signal_stop[GDB_SIGNAL_POLL] = 0;
9007 signal_print[GDB_SIGNAL_POLL] = 0;
9008 signal_stop[GDB_SIGNAL_URG] = 0;
9009 signal_print[GDB_SIGNAL_URG] = 0;
9010 signal_stop[GDB_SIGNAL_WINCH] = 0;
9011 signal_print[GDB_SIGNAL_WINCH] = 0;
9012 signal_stop[GDB_SIGNAL_PRIO] = 0;
9013 signal_print[GDB_SIGNAL_PRIO] = 0;
9014
9015 /* These signals are used internally by user-level thread
9016 implementations. (See signal(5) on Solaris.) Like the above
9017 signals, a healthy program receives and handles them as part of
9018 its normal operation. */
9019 signal_stop[GDB_SIGNAL_LWP] = 0;
9020 signal_print[GDB_SIGNAL_LWP] = 0;
9021 signal_stop[GDB_SIGNAL_WAITING] = 0;
9022 signal_print[GDB_SIGNAL_WAITING] = 0;
9023 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9024 signal_print[GDB_SIGNAL_CANCEL] = 0;
9025 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9026 signal_print[GDB_SIGNAL_LIBRT] = 0;
9027
9028 /* Update cached state. */
9029 signal_cache_update (-1);
9030
9031 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9032 &stop_on_solib_events, _("\
9033 Set stopping for shared library events."), _("\
9034 Show stopping for shared library events."), _("\
9035 If nonzero, gdb will give control to the user when the dynamic linker\n\
9036 notifies gdb of shared library events. The most common event of interest\n\
9037 to the user would be loading/unloading of a new library."),
9038 set_stop_on_solib_events,
9039 show_stop_on_solib_events,
9040 &setlist, &showlist);
9041
9042 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9043 follow_fork_mode_kind_names,
9044 &follow_fork_mode_string, _("\
9045 Set debugger response to a program call of fork or vfork."), _("\
9046 Show debugger response to a program call of fork or vfork."), _("\
9047 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9048 parent - the original process is debugged after a fork\n\
9049 child - the new process is debugged after a fork\n\
9050 The unfollowed process will continue to run.\n\
9051 By default, the debugger will follow the parent process."),
9052 NULL,
9053 show_follow_fork_mode_string,
9054 &setlist, &showlist);
9055
9056 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9057 follow_exec_mode_names,
9058 &follow_exec_mode_string, _("\
9059 Set debugger response to a program call of exec."), _("\
9060 Show debugger response to a program call of exec."), _("\
9061 An exec call replaces the program image of a process.\n\
9062 \n\
9063 follow-exec-mode can be:\n\
9064 \n\
9065 new - the debugger creates a new inferior and rebinds the process\n\
9066 to this new inferior. The program the process was running before\n\
9067 the exec call can be restarted afterwards by restarting the original\n\
9068 inferior.\n\
9069 \n\
9070 same - the debugger keeps the process bound to the same inferior.\n\
9071 The new executable image replaces the previous executable loaded in\n\
9072 the inferior. Restarting the inferior after the exec call restarts\n\
9073 the executable the process was running after the exec call.\n\
9074 \n\
9075 By default, the debugger will use the same inferior."),
9076 NULL,
9077 show_follow_exec_mode_string,
9078 &setlist, &showlist);
9079
9080 add_setshow_enum_cmd ("scheduler-locking", class_run,
9081 scheduler_enums, &scheduler_mode, _("\
9082 Set mode for locking scheduler during execution."), _("\
9083 Show mode for locking scheduler during execution."), _("\
9084 off == no locking (threads may preempt at any time)\n\
9085 on == full locking (no thread except the current thread may run)\n\
9086 This applies to both normal execution and replay mode.\n\
9087 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9088 In this mode, other threads may run during other commands.\n\
9089 This applies to both normal execution and replay mode.\n\
9090 replay == scheduler locked in replay mode and unlocked during normal execution."),
9091 set_schedlock_func, /* traps on target vector */
9092 show_scheduler_mode,
9093 &setlist, &showlist);
9094
9095 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9096 Set mode for resuming threads of all processes."), _("\
9097 Show mode for resuming threads of all processes."), _("\
9098 When on, execution commands (such as 'continue' or 'next') resume all\n\
9099 threads of all processes. When off (which is the default), execution\n\
9100 commands only resume the threads of the current process. The set of\n\
9101 threads that are resumed is further refined by the scheduler-locking\n\
9102 mode (see help set scheduler-locking)."),
9103 NULL,
9104 show_schedule_multiple,
9105 &setlist, &showlist);
9106
9107 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9108 Set mode of the step operation."), _("\
9109 Show mode of the step operation."), _("\
9110 When set, doing a step over a function without debug line information\n\
9111 will stop at the first instruction of that function. Otherwise, the\n\
9112 function is skipped and the step command stops at a different source line."),
9113 NULL,
9114 show_step_stop_if_no_debug,
9115 &setlist, &showlist);
9116
9117 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9118 &can_use_displaced_stepping, _("\
9119 Set debugger's willingness to use displaced stepping."), _("\
9120 Show debugger's willingness to use displaced stepping."), _("\
9121 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9122 supported by the target architecture. If off, gdb will not use displaced\n\
9123 stepping to step over breakpoints, even if such is supported by the target\n\
9124 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9125 if the target architecture supports it and non-stop mode is active, but will not\n\
9126 use it in all-stop mode (see help set non-stop)."),
9127 NULL,
9128 show_can_use_displaced_stepping,
9129 &setlist, &showlist);
9130
9131 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9132 &exec_direction, _("Set direction of execution.\n\
9133 Options are 'forward' or 'reverse'."),
9134 _("Show direction of execution (forward/reverse)."),
9135 _("Tells gdb whether to execute forward or backward."),
9136 set_exec_direction_func, show_exec_direction_func,
9137 &setlist, &showlist);
9138
9139 /* Set/show detach-on-fork: user-settable mode. */
9140
9141 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9142 Set whether gdb will detach the child of a fork."), _("\
9143 Show whether gdb will detach the child of a fork."), _("\
9144 Tells gdb whether to detach the child of a fork."),
9145 NULL, NULL, &setlist, &showlist);
9146
9147 /* Set/show disable address space randomization mode. */
9148
9149 add_setshow_boolean_cmd ("disable-randomization", class_support,
9150 &disable_randomization, _("\
9151 Set disabling of debuggee's virtual address space randomization."), _("\
9152 Show disabling of debuggee's virtual address space randomization."), _("\
9153 When this mode is on (which is the default), randomization of the virtual\n\
9154 address space is disabled. Standalone programs run with the randomization\n\
9155 enabled by default on some platforms."),
9156 &set_disable_randomization,
9157 &show_disable_randomization,
9158 &setlist, &showlist);
9159
9160 /* ptid initializations */
9161 inferior_ptid = null_ptid;
9162 target_last_wait_ptid = minus_one_ptid;
9163
9164 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9165 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9166 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9167 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9168
9169 /* Explicitly create without lookup, since that tries to create a
9170 value with a void typed value, and when we get here, gdbarch
9171 isn't initialized yet. At this point, we're quite sure there
9172 isn't another convenience variable of the same name. */
9173 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9174
9175 add_setshow_boolean_cmd ("observer", no_class,
9176 &observer_mode_1, _("\
9177 Set whether gdb controls the inferior in observer mode."), _("\
9178 Show whether gdb controls the inferior in observer mode."), _("\
9179 In observer mode, GDB can get data from the inferior, but not\n\
9180 affect its execution. Registers and memory may not be changed,\n\
9181 breakpoints may not be set, and the program cannot be interrupted\n\
9182 or signalled."),
9183 set_observer_mode,
9184 show_observer_mode,
9185 &setlist,
9186 &showlist);
9187 }
This page took 0.26586 seconds and 3 git commands to generate.