gdb: add target_ops methods for displaced stepping
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "gdbsupport/common-defs.h"
24 #include "gdbsupport/common-utils.h"
25 #include "infrun.h"
26 #include <ctype.h>
27 #include "symtab.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "breakpoint.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "target-connection.h"
35 #include "gdbthread.h"
36 #include "annotate.h"
37 #include "symfile.h"
38 #include "top.h"
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "utils.h"
42 #include "value.h"
43 #include "observable.h"
44 #include "language.h"
45 #include "solib.h"
46 #include "main.h"
47 #include "block.h"
48 #include "mi/mi-common.h"
49 #include "event-top.h"
50 #include "record.h"
51 #include "record-full.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "skip.h"
56 #include "probe.h"
57 #include "objfiles.h"
58 #include "completer.h"
59 #include "target-descriptions.h"
60 #include "target-dcache.h"
61 #include "terminal.h"
62 #include "solist.h"
63 #include "gdbsupport/event-loop.h"
64 #include "thread-fsm.h"
65 #include "gdbsupport/enum-flags.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "arch-utils.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/forward-scope-exit.h"
71 #include "gdbsupport/gdb_select.h"
72 #include <unordered_map>
73 #include "async-event.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 #define infrun_log_debug(fmt, args...) \
106 infrun_log_debug_1 (__LINE__, __func__, fmt, ##args)
107
108 static void ATTRIBUTE_PRINTF(3, 4)
109 infrun_log_debug_1 (int line, const char *func,
110 const char *fmt, ...)
111 {
112 if (debug_infrun)
113 {
114 va_list args;
115 va_start (args, fmt);
116 std::string msg = string_vprintf (fmt, args);
117 va_end (args);
118
119 fprintf_unfiltered (gdb_stdout, "infrun: %s: %s\n", func, msg.c_str ());
120 }
121 }
122
123 /* See infrun.h. */
124
125 void
126 infrun_async (int enable)
127 {
128 if (infrun_is_async != enable)
129 {
130 infrun_is_async = enable;
131
132 infrun_log_debug ("enable=%d", enable);
133
134 if (enable)
135 mark_async_event_handler (infrun_async_inferior_event_token);
136 else
137 clear_async_event_handler (infrun_async_inferior_event_token);
138 }
139 }
140
141 /* See infrun.h. */
142
143 void
144 mark_infrun_async_event_handler (void)
145 {
146 mark_async_event_handler (infrun_async_inferior_event_token);
147 }
148
149 /* When set, stop the 'step' command if we enter a function which has
150 no line number information. The normal behavior is that we step
151 over such function. */
152 bool step_stop_if_no_debug = false;
153 static void
154 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
158 }
159
160 /* proceed and normal_stop use this to notify the user when the
161 inferior stopped in a different thread than it had been running
162 in. */
163
164 static ptid_t previous_inferior_ptid;
165
166 /* If set (default for legacy reasons), when following a fork, GDB
167 will detach from one of the fork branches, child or parent.
168 Exactly which branch is detached depends on 'set follow-fork-mode'
169 setting. */
170
171 static bool detach_fork = true;
172
173 bool debug_displaced = false;
174 static void
175 show_debug_displaced (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
179 }
180
181 unsigned int debug_infrun = 0;
182 static void
183 show_debug_infrun (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
187 }
188
189
190 /* Support for disabling address space randomization. */
191
192 bool disable_randomization = true;
193
194 static void
195 show_disable_randomization (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 if (target_supports_disable_randomization ())
199 fprintf_filtered (file,
200 _("Disabling randomization of debuggee's "
201 "virtual address space is %s.\n"),
202 value);
203 else
204 fputs_filtered (_("Disabling randomization of debuggee's "
205 "virtual address space is unsupported on\n"
206 "this platform.\n"), file);
207 }
208
209 static void
210 set_disable_randomization (const char *args, int from_tty,
211 struct cmd_list_element *c)
212 {
213 if (!target_supports_disable_randomization ())
214 error (_("Disabling randomization of debuggee's "
215 "virtual address space is unsupported on\n"
216 "this platform."));
217 }
218
219 /* User interface for non-stop mode. */
220
221 bool non_stop = false;
222 static bool non_stop_1 = false;
223
224 static void
225 set_non_stop (const char *args, int from_tty,
226 struct cmd_list_element *c)
227 {
228 if (target_has_execution)
229 {
230 non_stop_1 = non_stop;
231 error (_("Cannot change this setting while the inferior is running."));
232 }
233
234 non_stop = non_stop_1;
235 }
236
237 static void
238 show_non_stop (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file,
242 _("Controlling the inferior in non-stop mode is %s.\n"),
243 value);
244 }
245
246 /* "Observer mode" is somewhat like a more extreme version of
247 non-stop, in which all GDB operations that might affect the
248 target's execution have been disabled. */
249
250 bool observer_mode = false;
251 static bool observer_mode_1 = false;
252
253 static void
254 set_observer_mode (const char *args, int from_tty,
255 struct cmd_list_element *c)
256 {
257 if (target_has_execution)
258 {
259 observer_mode_1 = observer_mode;
260 error (_("Cannot change this setting while the inferior is running."));
261 }
262
263 observer_mode = observer_mode_1;
264
265 may_write_registers = !observer_mode;
266 may_write_memory = !observer_mode;
267 may_insert_breakpoints = !observer_mode;
268 may_insert_tracepoints = !observer_mode;
269 /* We can insert fast tracepoints in or out of observer mode,
270 but enable them if we're going into this mode. */
271 if (observer_mode)
272 may_insert_fast_tracepoints = true;
273 may_stop = !observer_mode;
274 update_target_permissions ();
275
276 /* Going *into* observer mode we must force non-stop, then
277 going out we leave it that way. */
278 if (observer_mode)
279 {
280 pagination_enabled = 0;
281 non_stop = non_stop_1 = true;
282 }
283
284 if (from_tty)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (observer_mode ? "on" : "off"));
287 }
288
289 static void
290 show_observer_mode (struct ui_file *file, int from_tty,
291 struct cmd_list_element *c, const char *value)
292 {
293 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
294 }
295
296 /* This updates the value of observer mode based on changes in
297 permissions. Note that we are deliberately ignoring the values of
298 may-write-registers and may-write-memory, since the user may have
299 reason to enable these during a session, for instance to turn on a
300 debugging-related global. */
301
302 void
303 update_observer_mode (void)
304 {
305 bool newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317 }
318
319 /* Tables of how to react to signals; the user sets them. */
320
321 static unsigned char signal_stop[GDB_SIGNAL_LAST];
322 static unsigned char signal_print[GDB_SIGNAL_LAST];
323 static unsigned char signal_program[GDB_SIGNAL_LAST];
324
325 /* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. */
328 static unsigned char signal_catch[GDB_SIGNAL_LAST];
329
330 /* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
333 static unsigned char signal_pass[GDB_SIGNAL_LAST];
334
335 #define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343 #define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
351 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354 void
355 update_signals_program_target (void)
356 {
357 target_program_signals (signal_program);
358 }
359
360 /* Value to pass to target_resume() to cause all threads to resume. */
361
362 #define RESUME_ALL minus_one_ptid
363
364 /* Command list pointer for the "stop" placeholder. */
365
366 static struct cmd_list_element *stop_command;
367
368 /* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
370 int stop_on_solib_events;
371
372 /* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375 static void
376 set_stop_on_solib_events (const char *args,
377 int from_tty, struct cmd_list_element *c)
378 {
379 update_solib_breakpoints ();
380 }
381
382 static void
383 show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388 }
389
390 /* Nonzero after stop if current stack frame should be printed. */
391
392 static int stop_print_frame;
393
394 /* This is a cached copy of the target/ptid/waitstatus of the last
395 event returned by target_wait()/deprecated_target_wait_hook().
396 This information is returned by get_last_target_status(). */
397 static process_stratum_target *target_last_proc_target;
398 static ptid_t target_last_wait_ptid;
399 static struct target_waitstatus target_last_waitstatus;
400
401 void init_thread_stepping_state (struct thread_info *tss);
402
403 static const char follow_fork_mode_child[] = "child";
404 static const char follow_fork_mode_parent[] = "parent";
405
406 static const char *const follow_fork_mode_kind_names[] = {
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
410 };
411
412 static const char *follow_fork_mode_string = follow_fork_mode_parent;
413 static void
414 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c, const char *value)
416 {
417 fprintf_filtered (file,
418 _("Debugger response to a program "
419 "call of fork or vfork is \"%s\".\n"),
420 value);
421 }
422 \f
423
424 /* Handle changes to the inferior list based on the type of fork,
425 which process is being followed, and whether the other process
426 should be detached. On entry inferior_ptid must be the ptid of
427 the fork parent. At return inferior_ptid is the ptid of the
428 followed inferior. */
429
430 static bool
431 follow_fork_inferior (bool follow_child, bool detach_fork)
432 {
433 int has_vforked;
434 ptid_t parent_ptid, child_ptid;
435
436 has_vforked = (inferior_thread ()->pending_follow.kind
437 == TARGET_WAITKIND_VFORKED);
438 parent_ptid = inferior_ptid;
439 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
440
441 if (has_vforked
442 && !non_stop /* Non-stop always resumes both branches. */
443 && current_ui->prompt_state == PROMPT_BLOCKED
444 && !(follow_child || detach_fork || sched_multi))
445 {
446 /* The parent stays blocked inside the vfork syscall until the
447 child execs or exits. If we don't let the child run, then
448 the parent stays blocked. If we're telling the parent to run
449 in the foreground, the user will not be able to ctrl-c to get
450 back the terminal, effectively hanging the debug session. */
451 fprintf_filtered (gdb_stderr, _("\
452 Can not resume the parent process over vfork in the foreground while\n\
453 holding the child stopped. Try \"set detach-on-fork\" or \
454 \"set schedule-multiple\".\n"));
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_inf (current_inferior ());
474 }
475
476 if (print_inferior_events)
477 {
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = ptid_t (child_ptid.pid ());
480
481 target_terminal::ours_for_output ();
482 fprintf_filtered (gdb_stdlog,
483 _("[Detaching after %s from child %s]\n"),
484 has_vforked ? "vfork" : "fork",
485 target_pid_to_str (process_ptid).c_str ());
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (child_ptid.pid ());
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
502
503 set_current_inferior (child_inf);
504 switch_to_no_thread ();
505 child_inf->symfile_flags = SYMFILE_NO_READ;
506 push_target (parent_inf->process_target ());
507 add_thread_silent (child_inf->process_target (), child_ptid);
508 inferior_ptid = child_ptid;
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
517 exec_on_vfork ();
518
519 /* The parent will be frozen until the child is done
520 with the shared region. Keep track of the
521 parent. */
522 child_inf->vfork_parent = parent_inf;
523 child_inf->pending_detach = 0;
524 parent_inf->vfork_child = child_inf;
525 parent_inf->pending_detach = 0;
526 }
527 else
528 {
529 child_inf->aspace = new_address_space ();
530 child_inf->pspace = new program_space (child_inf->aspace);
531 child_inf->removable = 1;
532 set_current_program_space (child_inf->pspace);
533 clone_program_space (child_inf->pspace, parent_inf->pspace);
534
535 /* Let the shared library layer (e.g., solib-svr4) learn
536 about this new process, relocate the cloned exec, pull
537 in shared libraries, and install the solib event
538 breakpoint. If a "cloned-VM" event was propagated
539 better throughout the core, this wouldn't be
540 required. */
541 solib_create_inferior_hook (0);
542 }
543 }
544
545 if (has_vforked)
546 {
547 struct inferior *parent_inf;
548
549 parent_inf = current_inferior ();
550
551 /* If we detached from the child, then we have to be careful
552 to not insert breakpoints in the parent until the child
553 is done with the shared memory region. However, if we're
554 staying attached to the child, then we can and should
555 insert breakpoints, so that we can debug it. A
556 subsequent child exec or exit is enough to know when does
557 the child stops using the parent's address space. */
558 parent_inf->waiting_for_vfork_done = detach_fork;
559 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
560 }
561 }
562 else
563 {
564 /* Follow the child. */
565 struct inferior *parent_inf, *child_inf;
566 struct program_space *parent_pspace;
567
568 if (print_inferior_events)
569 {
570 std::string parent_pid = target_pid_to_str (parent_ptid);
571 std::string child_pid = target_pid_to_str (child_ptid);
572
573 target_terminal::ours_for_output ();
574 fprintf_filtered (gdb_stdlog,
575 _("[Attaching after %s %s to child %s]\n"),
576 parent_pid.c_str (),
577 has_vforked ? "vfork" : "fork",
578 child_pid.c_str ());
579 }
580
581 /* Add the new inferior first, so that the target_detach below
582 doesn't unpush the target. */
583
584 child_inf = add_inferior (child_ptid.pid ());
585
586 parent_inf = current_inferior ();
587 child_inf->attach_flag = parent_inf->attach_flag;
588 copy_terminal_info (child_inf, parent_inf);
589 child_inf->gdbarch = parent_inf->gdbarch;
590 copy_inferior_target_desc_info (child_inf, parent_inf);
591
592 parent_pspace = parent_inf->pspace;
593
594 process_stratum_target *target = parent_inf->process_target ();
595
596 {
597 /* Hold a strong reference to the target while (maybe)
598 detaching the parent. Otherwise detaching could close the
599 target. */
600 auto target_ref = target_ops_ref::new_reference (target);
601
602 /* If we're vforking, we want to hold on to the parent until
603 the child exits or execs. At child exec or exit time we
604 can remove the old breakpoints from the parent and detach
605 or resume debugging it. Otherwise, detach the parent now;
606 we'll want to reuse it's program/address spaces, but we
607 can't set them to the child before removing breakpoints
608 from the parent, otherwise, the breakpoints module could
609 decide to remove breakpoints from the wrong process (since
610 they'd be assigned to the same address space). */
611
612 if (has_vforked)
613 {
614 gdb_assert (child_inf->vfork_parent == NULL);
615 gdb_assert (parent_inf->vfork_child == NULL);
616 child_inf->vfork_parent = parent_inf;
617 child_inf->pending_detach = 0;
618 parent_inf->vfork_child = child_inf;
619 parent_inf->pending_detach = detach_fork;
620 parent_inf->waiting_for_vfork_done = 0;
621 }
622 else if (detach_fork)
623 {
624 if (print_inferior_events)
625 {
626 /* Ensure that we have a process ptid. */
627 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
628
629 target_terminal::ours_for_output ();
630 fprintf_filtered (gdb_stdlog,
631 _("[Detaching after fork from "
632 "parent %s]\n"),
633 target_pid_to_str (process_ptid).c_str ());
634 }
635
636 target_detach (parent_inf, 0);
637 parent_inf = NULL;
638 }
639
640 /* Note that the detach above makes PARENT_INF dangling. */
641
642 /* Add the child thread to the appropriate lists, and switch
643 to this new thread, before cloning the program space, and
644 informing the solib layer about this new process. */
645
646 set_current_inferior (child_inf);
647 push_target (target);
648 }
649
650 add_thread_silent (target, child_ptid);
651 inferior_ptid = child_ptid;
652
653 /* If this is a vfork child, then the address-space is shared
654 with the parent. If we detached from the parent, then we can
655 reuse the parent's program/address spaces. */
656 if (has_vforked || detach_fork)
657 {
658 child_inf->pspace = parent_pspace;
659 child_inf->aspace = child_inf->pspace->aspace;
660
661 exec_on_vfork ();
662 }
663 else
664 {
665 child_inf->aspace = new_address_space ();
666 child_inf->pspace = new program_space (child_inf->aspace);
667 child_inf->removable = 1;
668 child_inf->symfile_flags = SYMFILE_NO_READ;
669 set_current_program_space (child_inf->pspace);
670 clone_program_space (child_inf->pspace, parent_pspace);
671
672 /* Let the shared library layer (e.g., solib-svr4) learn
673 about this new process, relocate the cloned exec, pull in
674 shared libraries, and install the solib event breakpoint.
675 If a "cloned-VM" event was propagated better throughout
676 the core, this wouldn't be required. */
677 solib_create_inferior_hook (0);
678 }
679 }
680
681 return target_follow_fork (follow_child, detach_fork);
682 }
683
684 /* Tell the target to follow the fork we're stopped at. Returns true
685 if the inferior should be resumed; false, if the target for some
686 reason decided it's best not to resume. */
687
688 static bool
689 follow_fork ()
690 {
691 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
692 bool should_resume = true;
693 struct thread_info *tp;
694
695 /* Copy user stepping state to the new inferior thread. FIXME: the
696 followed fork child thread should have a copy of most of the
697 parent thread structure's run control related fields, not just these.
698 Initialized to avoid "may be used uninitialized" warnings from gcc. */
699 struct breakpoint *step_resume_breakpoint = NULL;
700 struct breakpoint *exception_resume_breakpoint = NULL;
701 CORE_ADDR step_range_start = 0;
702 CORE_ADDR step_range_end = 0;
703 int current_line = 0;
704 symtab *current_symtab = NULL;
705 struct frame_id step_frame_id = { 0 };
706 struct thread_fsm *thread_fsm = NULL;
707
708 if (!non_stop)
709 {
710 process_stratum_target *wait_target;
711 ptid_t wait_ptid;
712 struct target_waitstatus wait_status;
713
714 /* Get the last target status returned by target_wait(). */
715 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
716
717 /* If not stopped at a fork event, then there's nothing else to
718 do. */
719 if (wait_status.kind != TARGET_WAITKIND_FORKED
720 && wait_status.kind != TARGET_WAITKIND_VFORKED)
721 return 1;
722
723 /* Check if we switched over from WAIT_PTID, since the event was
724 reported. */
725 if (wait_ptid != minus_one_ptid
726 && (current_inferior ()->process_target () != wait_target
727 || inferior_ptid != wait_ptid))
728 {
729 /* We did. Switch back to WAIT_PTID thread, to tell the
730 target to follow it (in either direction). We'll
731 afterwards refuse to resume, and inform the user what
732 happened. */
733 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
734 switch_to_thread (wait_thread);
735 should_resume = false;
736 }
737 }
738
739 tp = inferior_thread ();
740
741 /* If there were any forks/vforks that were caught and are now to be
742 followed, then do so now. */
743 switch (tp->pending_follow.kind)
744 {
745 case TARGET_WAITKIND_FORKED:
746 case TARGET_WAITKIND_VFORKED:
747 {
748 ptid_t parent, child;
749
750 /* If the user did a next/step, etc, over a fork call,
751 preserve the stepping state in the fork child. */
752 if (follow_child && should_resume)
753 {
754 step_resume_breakpoint = clone_momentary_breakpoint
755 (tp->control.step_resume_breakpoint);
756 step_range_start = tp->control.step_range_start;
757 step_range_end = tp->control.step_range_end;
758 current_line = tp->current_line;
759 current_symtab = tp->current_symtab;
760 step_frame_id = tp->control.step_frame_id;
761 exception_resume_breakpoint
762 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
763 thread_fsm = tp->thread_fsm;
764
765 /* For now, delete the parent's sr breakpoint, otherwise,
766 parent/child sr breakpoints are considered duplicates,
767 and the child version will not be installed. Remove
768 this when the breakpoints module becomes aware of
769 inferiors and address spaces. */
770 delete_step_resume_breakpoint (tp);
771 tp->control.step_range_start = 0;
772 tp->control.step_range_end = 0;
773 tp->control.step_frame_id = null_frame_id;
774 delete_exception_resume_breakpoint (tp);
775 tp->thread_fsm = NULL;
776 }
777
778 parent = inferior_ptid;
779 child = tp->pending_follow.value.related_pid;
780
781 process_stratum_target *parent_targ = tp->inf->process_target ();
782 /* Set up inferior(s) as specified by the caller, and tell the
783 target to do whatever is necessary to follow either parent
784 or child. */
785 if (follow_fork_inferior (follow_child, detach_fork))
786 {
787 /* Target refused to follow, or there's some other reason
788 we shouldn't resume. */
789 should_resume = 0;
790 }
791 else
792 {
793 /* This pending follow fork event is now handled, one way
794 or another. The previous selected thread may be gone
795 from the lists by now, but if it is still around, need
796 to clear the pending follow request. */
797 tp = find_thread_ptid (parent_targ, parent);
798 if (tp)
799 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
800
801 /* This makes sure we don't try to apply the "Switched
802 over from WAIT_PID" logic above. */
803 nullify_last_target_wait_ptid ();
804
805 /* If we followed the child, switch to it... */
806 if (follow_child)
807 {
808 thread_info *child_thr = find_thread_ptid (parent_targ, child);
809 switch_to_thread (child_thr);
810
811 /* ... and preserve the stepping state, in case the
812 user was stepping over the fork call. */
813 if (should_resume)
814 {
815 tp = inferior_thread ();
816 tp->control.step_resume_breakpoint
817 = step_resume_breakpoint;
818 tp->control.step_range_start = step_range_start;
819 tp->control.step_range_end = step_range_end;
820 tp->current_line = current_line;
821 tp->current_symtab = current_symtab;
822 tp->control.step_frame_id = step_frame_id;
823 tp->control.exception_resume_breakpoint
824 = exception_resume_breakpoint;
825 tp->thread_fsm = thread_fsm;
826 }
827 else
828 {
829 /* If we get here, it was because we're trying to
830 resume from a fork catchpoint, but, the user
831 has switched threads away from the thread that
832 forked. In that case, the resume command
833 issued is most likely not applicable to the
834 child, so just warn, and refuse to resume. */
835 warning (_("Not resuming: switched threads "
836 "before following fork child."));
837 }
838
839 /* Reset breakpoints in the child as appropriate. */
840 follow_inferior_reset_breakpoints ();
841 }
842 }
843 }
844 break;
845 case TARGET_WAITKIND_SPURIOUS:
846 /* Nothing to follow. */
847 break;
848 default:
849 internal_error (__FILE__, __LINE__,
850 "Unexpected pending_follow.kind %d\n",
851 tp->pending_follow.kind);
852 break;
853 }
854
855 return should_resume;
856 }
857
858 static void
859 follow_inferior_reset_breakpoints (void)
860 {
861 struct thread_info *tp = inferior_thread ();
862
863 /* Was there a step_resume breakpoint? (There was if the user
864 did a "next" at the fork() call.) If so, explicitly reset its
865 thread number. Cloned step_resume breakpoints are disabled on
866 creation, so enable it here now that it is associated with the
867 correct thread.
868
869 step_resumes are a form of bp that are made to be per-thread.
870 Since we created the step_resume bp when the parent process
871 was being debugged, and now are switching to the child process,
872 from the breakpoint package's viewpoint, that's a switch of
873 "threads". We must update the bp's notion of which thread
874 it is for, or it'll be ignored when it triggers. */
875
876 if (tp->control.step_resume_breakpoint)
877 {
878 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
879 tp->control.step_resume_breakpoint->loc->enabled = 1;
880 }
881
882 /* Treat exception_resume breakpoints like step_resume breakpoints. */
883 if (tp->control.exception_resume_breakpoint)
884 {
885 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
886 tp->control.exception_resume_breakpoint->loc->enabled = 1;
887 }
888
889 /* Reinsert all breakpoints in the child. The user may have set
890 breakpoints after catching the fork, in which case those
891 were never set in the child, but only in the parent. This makes
892 sure the inserted breakpoints match the breakpoint list. */
893
894 breakpoint_re_set ();
895 insert_breakpoints ();
896 }
897
898 /* The child has exited or execed: resume threads of the parent the
899 user wanted to be executing. */
900
901 static int
902 proceed_after_vfork_done (struct thread_info *thread,
903 void *arg)
904 {
905 int pid = * (int *) arg;
906
907 if (thread->ptid.pid () == pid
908 && thread->state == THREAD_RUNNING
909 && !thread->executing
910 && !thread->stop_requested
911 && thread->suspend.stop_signal == GDB_SIGNAL_0)
912 {
913 infrun_log_debug ("resuming vfork parent thread %s",
914 target_pid_to_str (thread->ptid).c_str ());
915
916 switch_to_thread (thread);
917 clear_proceed_status (0);
918 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
919 }
920
921 return 0;
922 }
923
924 /* Save/restore inferior_ptid, current program space and current
925 inferior. Only use this if the current context points at an exited
926 inferior (and therefore there's no current thread to save). */
927 class scoped_restore_exited_inferior
928 {
929 public:
930 scoped_restore_exited_inferior ()
931 : m_saved_ptid (&inferior_ptid)
932 {}
933
934 private:
935 scoped_restore_tmpl<ptid_t> m_saved_ptid;
936 scoped_restore_current_program_space m_pspace;
937 scoped_restore_current_inferior m_inferior;
938 };
939
940 /* Called whenever we notice an exec or exit event, to handle
941 detaching or resuming a vfork parent. */
942
943 static void
944 handle_vfork_child_exec_or_exit (int exec)
945 {
946 struct inferior *inf = current_inferior ();
947
948 if (inf->vfork_parent)
949 {
950 int resume_parent = -1;
951
952 /* This exec or exit marks the end of the shared memory region
953 between the parent and the child. Break the bonds. */
954 inferior *vfork_parent = inf->vfork_parent;
955 inf->vfork_parent->vfork_child = NULL;
956 inf->vfork_parent = NULL;
957
958 /* If the user wanted to detach from the parent, now is the
959 time. */
960 if (vfork_parent->pending_detach)
961 {
962 struct thread_info *tp;
963 struct program_space *pspace;
964 struct address_space *aspace;
965
966 /* follow-fork child, detach-on-fork on. */
967
968 vfork_parent->pending_detach = 0;
969
970 gdb::optional<scoped_restore_exited_inferior>
971 maybe_restore_inferior;
972 gdb::optional<scoped_restore_current_pspace_and_thread>
973 maybe_restore_thread;
974
975 /* If we're handling a child exit, then inferior_ptid points
976 at the inferior's pid, not to a thread. */
977 if (!exec)
978 maybe_restore_inferior.emplace ();
979 else
980 maybe_restore_thread.emplace ();
981
982 /* We're letting loose of the parent. */
983 tp = any_live_thread_of_inferior (vfork_parent);
984 switch_to_thread (tp);
985
986 /* We're about to detach from the parent, which implicitly
987 removes breakpoints from its address space. There's a
988 catch here: we want to reuse the spaces for the child,
989 but, parent/child are still sharing the pspace at this
990 point, although the exec in reality makes the kernel give
991 the child a fresh set of new pages. The problem here is
992 that the breakpoints module being unaware of this, would
993 likely chose the child process to write to the parent
994 address space. Swapping the child temporarily away from
995 the spaces has the desired effect. Yes, this is "sort
996 of" a hack. */
997
998 pspace = inf->pspace;
999 aspace = inf->aspace;
1000 inf->aspace = NULL;
1001 inf->pspace = NULL;
1002
1003 if (print_inferior_events)
1004 {
1005 std::string pidstr
1006 = target_pid_to_str (ptid_t (vfork_parent->pid));
1007
1008 target_terminal::ours_for_output ();
1009
1010 if (exec)
1011 {
1012 fprintf_filtered (gdb_stdlog,
1013 _("[Detaching vfork parent %s "
1014 "after child exec]\n"), pidstr.c_str ());
1015 }
1016 else
1017 {
1018 fprintf_filtered (gdb_stdlog,
1019 _("[Detaching vfork parent %s "
1020 "after child exit]\n"), pidstr.c_str ());
1021 }
1022 }
1023
1024 target_detach (vfork_parent, 0);
1025
1026 /* Put it back. */
1027 inf->pspace = pspace;
1028 inf->aspace = aspace;
1029 }
1030 else if (exec)
1031 {
1032 /* We're staying attached to the parent, so, really give the
1033 child a new address space. */
1034 inf->pspace = new program_space (maybe_new_address_space ());
1035 inf->aspace = inf->pspace->aspace;
1036 inf->removable = 1;
1037 set_current_program_space (inf->pspace);
1038
1039 resume_parent = vfork_parent->pid;
1040 }
1041 else
1042 {
1043 /* If this is a vfork child exiting, then the pspace and
1044 aspaces were shared with the parent. Since we're
1045 reporting the process exit, we'll be mourning all that is
1046 found in the address space, and switching to null_ptid,
1047 preparing to start a new inferior. But, since we don't
1048 want to clobber the parent's address/program spaces, we
1049 go ahead and create a new one for this exiting
1050 inferior. */
1051
1052 /* Switch to null_ptid while running clone_program_space, so
1053 that clone_program_space doesn't want to read the
1054 selected frame of a dead process. */
1055 scoped_restore restore_ptid
1056 = make_scoped_restore (&inferior_ptid, null_ptid);
1057
1058 inf->pspace = new program_space (maybe_new_address_space ());
1059 inf->aspace = inf->pspace->aspace;
1060 set_current_program_space (inf->pspace);
1061 inf->removable = 1;
1062 inf->symfile_flags = SYMFILE_NO_READ;
1063 clone_program_space (inf->pspace, vfork_parent->pspace);
1064
1065 resume_parent = vfork_parent->pid;
1066 }
1067
1068 gdb_assert (current_program_space == inf->pspace);
1069
1070 if (non_stop && resume_parent != -1)
1071 {
1072 /* If the user wanted the parent to be running, let it go
1073 free now. */
1074 scoped_restore_current_thread restore_thread;
1075
1076 infrun_log_debug ("resuming vfork parent process %d",
1077 resume_parent);
1078
1079 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1080 }
1081 }
1082 }
1083
1084 /* Enum strings for "set|show follow-exec-mode". */
1085
1086 static const char follow_exec_mode_new[] = "new";
1087 static const char follow_exec_mode_same[] = "same";
1088 static const char *const follow_exec_mode_names[] =
1089 {
1090 follow_exec_mode_new,
1091 follow_exec_mode_same,
1092 NULL,
1093 };
1094
1095 static const char *follow_exec_mode_string = follow_exec_mode_same;
1096 static void
1097 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1098 struct cmd_list_element *c, const char *value)
1099 {
1100 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1101 }
1102
1103 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1104
1105 static void
1106 follow_exec (ptid_t ptid, const char *exec_file_target)
1107 {
1108 struct inferior *inf = current_inferior ();
1109 int pid = ptid.pid ();
1110 ptid_t process_ptid;
1111
1112 /* Switch terminal for any messages produced e.g. by
1113 breakpoint_re_set. */
1114 target_terminal::ours_for_output ();
1115
1116 /* This is an exec event that we actually wish to pay attention to.
1117 Refresh our symbol table to the newly exec'd program, remove any
1118 momentary bp's, etc.
1119
1120 If there are breakpoints, they aren't really inserted now,
1121 since the exec() transformed our inferior into a fresh set
1122 of instructions.
1123
1124 We want to preserve symbolic breakpoints on the list, since
1125 we have hopes that they can be reset after the new a.out's
1126 symbol table is read.
1127
1128 However, any "raw" breakpoints must be removed from the list
1129 (e.g., the solib bp's), since their address is probably invalid
1130 now.
1131
1132 And, we DON'T want to call delete_breakpoints() here, since
1133 that may write the bp's "shadow contents" (the instruction
1134 value that was overwritten with a TRAP instruction). Since
1135 we now have a new a.out, those shadow contents aren't valid. */
1136
1137 mark_breakpoints_out ();
1138
1139 /* The target reports the exec event to the main thread, even if
1140 some other thread does the exec, and even if the main thread was
1141 stopped or already gone. We may still have non-leader threads of
1142 the process on our list. E.g., on targets that don't have thread
1143 exit events (like remote); or on native Linux in non-stop mode if
1144 there were only two threads in the inferior and the non-leader
1145 one is the one that execs (and nothing forces an update of the
1146 thread list up to here). When debugging remotely, it's best to
1147 avoid extra traffic, when possible, so avoid syncing the thread
1148 list with the target, and instead go ahead and delete all threads
1149 of the process but one that reported the event. Note this must
1150 be done before calling update_breakpoints_after_exec, as
1151 otherwise clearing the threads' resources would reference stale
1152 thread breakpoints -- it may have been one of these threads that
1153 stepped across the exec. We could just clear their stepping
1154 states, but as long as we're iterating, might as well delete
1155 them. Deleting them now rather than at the next user-visible
1156 stop provides a nicer sequence of events for user and MI
1157 notifications. */
1158 for (thread_info *th : all_threads_safe ())
1159 if (th->ptid.pid () == pid && th->ptid != ptid)
1160 delete_thread (th);
1161
1162 /* We also need to clear any left over stale state for the
1163 leader/event thread. E.g., if there was any step-resume
1164 breakpoint or similar, it's gone now. We cannot truly
1165 step-to-next statement through an exec(). */
1166 thread_info *th = inferior_thread ();
1167 th->control.step_resume_breakpoint = NULL;
1168 th->control.exception_resume_breakpoint = NULL;
1169 th->control.single_step_breakpoints = NULL;
1170 th->control.step_range_start = 0;
1171 th->control.step_range_end = 0;
1172
1173 /* The user may have had the main thread held stopped in the
1174 previous image (e.g., schedlock on, or non-stop). Release
1175 it now. */
1176 th->stop_requested = 0;
1177
1178 update_breakpoints_after_exec ();
1179
1180 /* What is this a.out's name? */
1181 process_ptid = ptid_t (pid);
1182 printf_unfiltered (_("%s is executing new program: %s\n"),
1183 target_pid_to_str (process_ptid).c_str (),
1184 exec_file_target);
1185
1186 /* We've followed the inferior through an exec. Therefore, the
1187 inferior has essentially been killed & reborn. */
1188
1189 breakpoint_init_inferior (inf_execd);
1190
1191 gdb::unique_xmalloc_ptr<char> exec_file_host
1192 = exec_file_find (exec_file_target, NULL);
1193
1194 /* If we were unable to map the executable target pathname onto a host
1195 pathname, tell the user that. Otherwise GDB's subsequent behavior
1196 is confusing. Maybe it would even be better to stop at this point
1197 so that the user can specify a file manually before continuing. */
1198 if (exec_file_host == NULL)
1199 warning (_("Could not load symbols for executable %s.\n"
1200 "Do you need \"set sysroot\"?"),
1201 exec_file_target);
1202
1203 /* Reset the shared library package. This ensures that we get a
1204 shlib event when the child reaches "_start", at which point the
1205 dld will have had a chance to initialize the child. */
1206 /* Also, loading a symbol file below may trigger symbol lookups, and
1207 we don't want those to be satisfied by the libraries of the
1208 previous incarnation of this process. */
1209 no_shared_libraries (NULL, 0);
1210
1211 if (follow_exec_mode_string == follow_exec_mode_new)
1212 {
1213 /* The user wants to keep the old inferior and program spaces
1214 around. Create a new fresh one, and switch to it. */
1215
1216 /* Do exit processing for the original inferior before setting the new
1217 inferior's pid. Having two inferiors with the same pid would confuse
1218 find_inferior_p(t)id. Transfer the terminal state and info from the
1219 old to the new inferior. */
1220 inf = add_inferior_with_spaces ();
1221 swap_terminal_info (inf, current_inferior ());
1222 exit_inferior_silent (current_inferior ());
1223
1224 inf->pid = pid;
1225 target_follow_exec (inf, exec_file_target);
1226
1227 inferior *org_inferior = current_inferior ();
1228 switch_to_inferior_no_thread (inf);
1229 push_target (org_inferior->process_target ());
1230 thread_info *thr = add_thread (inf->process_target (), ptid);
1231 switch_to_thread (thr);
1232 }
1233 else
1234 {
1235 /* The old description may no longer be fit for the new image.
1236 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1237 old description; we'll read a new one below. No need to do
1238 this on "follow-exec-mode new", as the old inferior stays
1239 around (its description is later cleared/refetched on
1240 restart). */
1241 target_clear_description ();
1242 }
1243
1244 gdb_assert (current_program_space == inf->pspace);
1245
1246 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1247 because the proper displacement for a PIE (Position Independent
1248 Executable) main symbol file will only be computed by
1249 solib_create_inferior_hook below. breakpoint_re_set would fail
1250 to insert the breakpoints with the zero displacement. */
1251 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1252
1253 /* If the target can specify a description, read it. Must do this
1254 after flipping to the new executable (because the target supplied
1255 description must be compatible with the executable's
1256 architecture, and the old executable may e.g., be 32-bit, while
1257 the new one 64-bit), and before anything involving memory or
1258 registers. */
1259 target_find_description ();
1260
1261 solib_create_inferior_hook (0);
1262
1263 jit_inferior_created_hook ();
1264
1265 breakpoint_re_set ();
1266
1267 /* Reinsert all breakpoints. (Those which were symbolic have
1268 been reset to the proper address in the new a.out, thanks
1269 to symbol_file_command...). */
1270 insert_breakpoints ();
1271
1272 gdb::observers::inferior_execd.notify (inf);
1273
1274 /* The next resume of this inferior should bring it to the shlib
1275 startup breakpoints. (If the user had also set bp's on
1276 "main" from the old (parent) process, then they'll auto-
1277 matically get reset there in the new process.). */
1278 }
1279
1280 /* The queue of threads that need to do a step-over operation to get
1281 past e.g., a breakpoint. What technique is used to step over the
1282 breakpoint/watchpoint does not matter -- all threads end up in the
1283 same queue, to maintain rough temporal order of execution, in order
1284 to avoid starvation, otherwise, we could e.g., find ourselves
1285 constantly stepping the same couple threads past their breakpoints
1286 over and over, if the single-step finish fast enough. */
1287 struct thread_info *global_thread_step_over_chain_head;
1288
1289 /* Bit flags indicating what the thread needs to step over. */
1290
1291 enum step_over_what_flag
1292 {
1293 /* Step over a breakpoint. */
1294 STEP_OVER_BREAKPOINT = 1,
1295
1296 /* Step past a non-continuable watchpoint, in order to let the
1297 instruction execute so we can evaluate the watchpoint
1298 expression. */
1299 STEP_OVER_WATCHPOINT = 2
1300 };
1301 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1302
1303 /* Info about an instruction that is being stepped over. */
1304
1305 struct step_over_info
1306 {
1307 /* If we're stepping past a breakpoint, this is the address space
1308 and address of the instruction the breakpoint is set at. We'll
1309 skip inserting all breakpoints here. Valid iff ASPACE is
1310 non-NULL. */
1311 const address_space *aspace;
1312 CORE_ADDR address;
1313
1314 /* The instruction being stepped over triggers a nonsteppable
1315 watchpoint. If true, we'll skip inserting watchpoints. */
1316 int nonsteppable_watchpoint_p;
1317
1318 /* The thread's global number. */
1319 int thread;
1320 };
1321
1322 /* The step-over info of the location that is being stepped over.
1323
1324 Note that with async/breakpoint always-inserted mode, a user might
1325 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1326 being stepped over. As setting a new breakpoint inserts all
1327 breakpoints, we need to make sure the breakpoint being stepped over
1328 isn't inserted then. We do that by only clearing the step-over
1329 info when the step-over is actually finished (or aborted).
1330
1331 Presently GDB can only step over one breakpoint at any given time.
1332 Given threads that can't run code in the same address space as the
1333 breakpoint's can't really miss the breakpoint, GDB could be taught
1334 to step-over at most one breakpoint per address space (so this info
1335 could move to the address space object if/when GDB is extended).
1336 The set of breakpoints being stepped over will normally be much
1337 smaller than the set of all breakpoints, so a flag in the
1338 breakpoint location structure would be wasteful. A separate list
1339 also saves complexity and run-time, as otherwise we'd have to go
1340 through all breakpoint locations clearing their flag whenever we
1341 start a new sequence. Similar considerations weigh against storing
1342 this info in the thread object. Plus, not all step overs actually
1343 have breakpoint locations -- e.g., stepping past a single-step
1344 breakpoint, or stepping to complete a non-continuable
1345 watchpoint. */
1346 static struct step_over_info step_over_info;
1347
1348 /* Record the address of the breakpoint/instruction we're currently
1349 stepping over.
1350 N.B. We record the aspace and address now, instead of say just the thread,
1351 because when we need the info later the thread may be running. */
1352
1353 static void
1354 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1355 int nonsteppable_watchpoint_p,
1356 int thread)
1357 {
1358 step_over_info.aspace = aspace;
1359 step_over_info.address = address;
1360 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1361 step_over_info.thread = thread;
1362 }
1363
1364 /* Called when we're not longer stepping over a breakpoint / an
1365 instruction, so all breakpoints are free to be (re)inserted. */
1366
1367 static void
1368 clear_step_over_info (void)
1369 {
1370 infrun_log_debug ("clearing step over info");
1371 step_over_info.aspace = NULL;
1372 step_over_info.address = 0;
1373 step_over_info.nonsteppable_watchpoint_p = 0;
1374 step_over_info.thread = -1;
1375 }
1376
1377 /* See infrun.h. */
1378
1379 int
1380 stepping_past_instruction_at (struct address_space *aspace,
1381 CORE_ADDR address)
1382 {
1383 return (step_over_info.aspace != NULL
1384 && breakpoint_address_match (aspace, address,
1385 step_over_info.aspace,
1386 step_over_info.address));
1387 }
1388
1389 /* See infrun.h. */
1390
1391 int
1392 thread_is_stepping_over_breakpoint (int thread)
1393 {
1394 return (step_over_info.thread != -1
1395 && thread == step_over_info.thread);
1396 }
1397
1398 /* See infrun.h. */
1399
1400 int
1401 stepping_past_nonsteppable_watchpoint (void)
1402 {
1403 return step_over_info.nonsteppable_watchpoint_p;
1404 }
1405
1406 /* Returns true if step-over info is valid. */
1407
1408 static int
1409 step_over_info_valid_p (void)
1410 {
1411 return (step_over_info.aspace != NULL
1412 || stepping_past_nonsteppable_watchpoint ());
1413 }
1414
1415 \f
1416 /* Displaced stepping. */
1417
1418 /* In non-stop debugging mode, we must take special care to manage
1419 breakpoints properly; in particular, the traditional strategy for
1420 stepping a thread past a breakpoint it has hit is unsuitable.
1421 'Displaced stepping' is a tactic for stepping one thread past a
1422 breakpoint it has hit while ensuring that other threads running
1423 concurrently will hit the breakpoint as they should.
1424
1425 The traditional way to step a thread T off a breakpoint in a
1426 multi-threaded program in all-stop mode is as follows:
1427
1428 a0) Initially, all threads are stopped, and breakpoints are not
1429 inserted.
1430 a1) We single-step T, leaving breakpoints uninserted.
1431 a2) We insert breakpoints, and resume all threads.
1432
1433 In non-stop debugging, however, this strategy is unsuitable: we
1434 don't want to have to stop all threads in the system in order to
1435 continue or step T past a breakpoint. Instead, we use displaced
1436 stepping:
1437
1438 n0) Initially, T is stopped, other threads are running, and
1439 breakpoints are inserted.
1440 n1) We copy the instruction "under" the breakpoint to a separate
1441 location, outside the main code stream, making any adjustments
1442 to the instruction, register, and memory state as directed by
1443 T's architecture.
1444 n2) We single-step T over the instruction at its new location.
1445 n3) We adjust the resulting register and memory state as directed
1446 by T's architecture. This includes resetting T's PC to point
1447 back into the main instruction stream.
1448 n4) We resume T.
1449
1450 This approach depends on the following gdbarch methods:
1451
1452 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1453 indicate where to copy the instruction, and how much space must
1454 be reserved there. We use these in step n1.
1455
1456 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1457 address, and makes any necessary adjustments to the instruction,
1458 register contents, and memory. We use this in step n1.
1459
1460 - gdbarch_displaced_step_fixup adjusts registers and memory after
1461 we have successfully single-stepped the instruction, to yield the
1462 same effect the instruction would have had if we had executed it
1463 at its original address. We use this in step n3.
1464
1465 The gdbarch_displaced_step_copy_insn and
1466 gdbarch_displaced_step_fixup functions must be written so that
1467 copying an instruction with gdbarch_displaced_step_copy_insn,
1468 single-stepping across the copied instruction, and then applying
1469 gdbarch_displaced_insn_fixup should have the same effects on the
1470 thread's memory and registers as stepping the instruction in place
1471 would have. Exactly which responsibilities fall to the copy and
1472 which fall to the fixup is up to the author of those functions.
1473
1474 See the comments in gdbarch.sh for details.
1475
1476 Note that displaced stepping and software single-step cannot
1477 currently be used in combination, although with some care I think
1478 they could be made to. Software single-step works by placing
1479 breakpoints on all possible subsequent instructions; if the
1480 displaced instruction is a PC-relative jump, those breakpoints
1481 could fall in very strange places --- on pages that aren't
1482 executable, or at addresses that are not proper instruction
1483 boundaries. (We do generally let other threads run while we wait
1484 to hit the software single-step breakpoint, and they might
1485 encounter such a corrupted instruction.) One way to work around
1486 this would be to have gdbarch_displaced_step_copy_insn fully
1487 simulate the effect of PC-relative instructions (and return NULL)
1488 on architectures that use software single-stepping.
1489
1490 In non-stop mode, we can have independent and simultaneous step
1491 requests, so more than one thread may need to simultaneously step
1492 over a breakpoint. The current implementation assumes there is
1493 only one scratch space per process. In this case, we have to
1494 serialize access to the scratch space. If thread A wants to step
1495 over a breakpoint, but we are currently waiting for some other
1496 thread to complete a displaced step, we leave thread A stopped and
1497 place it in the displaced_step_request_queue. Whenever a displaced
1498 step finishes, we pick the next thread in the queue and start a new
1499 displaced step operation on it. See displaced_step_prepare and
1500 displaced_step_fixup for details. */
1501
1502 /* Get the displaced stepping state of inferior INF. */
1503
1504 static displaced_step_inferior_state *
1505 get_displaced_stepping_state (inferior *inf)
1506 {
1507 return &inf->displaced_step_state;
1508 }
1509
1510 /* Get the displaced stepping state of thread THREAD. */
1511
1512 static displaced_step_thread_state *
1513 get_displaced_stepping_state (thread_info *thread)
1514 {
1515 return &thread->displaced_step_state;
1516 }
1517
1518 /* Return true if the given thread is doing a displaced step. */
1519
1520 static bool
1521 displaced_step_in_progress (thread_info *thread)
1522 {
1523 gdb_assert (thread != NULL);
1524
1525 return get_displaced_stepping_state (thread)->in_progress ();
1526 }
1527
1528 /* Return true if any thread of this inferior is doing a displaced step. */
1529
1530 static bool
1531 displaced_step_in_progress (inferior *inf)
1532 {
1533 for (thread_info *thread : inf->non_exited_threads ())
1534 {
1535 if (displaced_step_in_progress (thread))
1536 return true;
1537 }
1538
1539 return false;
1540 }
1541
1542 /* Return true if any thread is doing a displaced step. */
1543
1544 static bool
1545 displaced_step_in_progress_any_thread ()
1546 {
1547 for (thread_info *thread : all_non_exited_threads ())
1548 {
1549 if (displaced_step_in_progress (thread))
1550 return true;
1551 }
1552
1553 return false;
1554 }
1555
1556 /* If inferior is in displaced stepping, and ADDR equals to starting address
1557 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
1558 return NULL. */
1559
1560 struct displaced_step_copy_insn_closure *
1561 get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
1562 {
1563 // FIXME: implement me (only needed on ARM).
1564 // displaced_step_inferior_state *displaced
1565 // = get_displaced_stepping_state (current_inferior ());
1566 //
1567 // /* If checking the mode of displaced instruction in copy area. */
1568 // if (displaced->step_thread != nullptr
1569 // && displaced->step_copy == addr)
1570 // return displaced->step_closure.get ();
1571 //
1572 return NULL;
1573 }
1574
1575 static void
1576 infrun_inferior_exit (struct inferior *inf)
1577 {
1578 inf->displaced_step_state.reset ();
1579 }
1580
1581 /* If ON, and the architecture supports it, GDB will use displaced
1582 stepping to step over breakpoints. If OFF, or if the architecture
1583 doesn't support it, GDB will instead use the traditional
1584 hold-and-step approach. If AUTO (which is the default), GDB will
1585 decide which technique to use to step over breakpoints depending on
1586 whether the target works in a non-stop way (see use_displaced_stepping). */
1587
1588 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1589
1590 static void
1591 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1592 struct cmd_list_element *c,
1593 const char *value)
1594 {
1595 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1596 fprintf_filtered (file,
1597 _("Debugger's willingness to use displaced stepping "
1598 "to step over breakpoints is %s (currently %s).\n"),
1599 value, target_is_non_stop_p () ? "on" : "off");
1600 else
1601 fprintf_filtered (file,
1602 _("Debugger's willingness to use displaced stepping "
1603 "to step over breakpoints is %s.\n"), value);
1604 }
1605
1606 /* Return true if the gdbarch implements the required methods to use
1607 displaced stepping. */
1608
1609 static bool
1610 gdbarch_supports_displaced_stepping (gdbarch *arch)
1611 {
1612 /* Only check for the presence of copy_insn. Other required methods
1613 are checked by the gdbarch validation to be provided if copy_insn is
1614 provided. */
1615 return gdbarch_displaced_step_copy_insn_p (arch);
1616 }
1617
1618 /* Return non-zero if displaced stepping can/should be used to step
1619 over breakpoints of thread TP. */
1620
1621 static bool
1622 use_displaced_stepping (thread_info *tp)
1623 {
1624 /* If the user disabled it explicitly, don't use displaced stepping. */
1625 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1626 return false;
1627
1628 /* If "auto", only use displaced stepping if the target operates in a non-stop
1629 way. */
1630 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1631 && !target_is_non_stop_p ())
1632 return false;
1633
1634 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1635
1636 /* If the architecture doesn't implement displaced stepping, don't use
1637 it. */
1638 if (!gdbarch_supports_displaced_stepping (gdbarch))
1639 return false;
1640
1641 /* If recording, don't use displaced stepping. */
1642 if (find_record_target () != nullptr)
1643 return false;
1644
1645 displaced_step_inferior_state *displaced_state
1646 = get_displaced_stepping_state (tp->inf);
1647
1648 /* If displaced stepping failed before for this inferior, don't bother trying
1649 again. */
1650 if (displaced_state->failed_before)
1651 return false;
1652
1653 return true;
1654 }
1655
1656 /* Simple function wrapper around displaced_step_thread_state::reset. */
1657
1658 static void
1659 displaced_step_reset (displaced_step_thread_state *displaced)
1660 {
1661 displaced->reset ();
1662 }
1663
1664 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1665 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1666
1667 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1668
1669 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1670 void
1671 displaced_step_dump_bytes (struct ui_file *file,
1672 const gdb_byte *buf,
1673 size_t len)
1674 {
1675 int i;
1676
1677 for (i = 0; i < len; i++)
1678 fprintf_unfiltered (file, "%02x ", buf[i]);
1679 fputs_unfiltered ("\n", file);
1680 }
1681
1682 /* Prepare to single-step, using displaced stepping.
1683
1684 Note that we cannot use displaced stepping when we have a signal to
1685 deliver. If we have a signal to deliver and an instruction to step
1686 over, then after the step, there will be no indication from the
1687 target whether the thread entered a signal handler or ignored the
1688 signal and stepped over the instruction successfully --- both cases
1689 result in a simple SIGTRAP. In the first case we mustn't do a
1690 fixup, and in the second case we must --- but we can't tell which.
1691 Comments in the code for 'random signals' in handle_inferior_event
1692 explain how we handle this case instead.
1693
1694 Returns 1 if preparing was successful -- this thread is going to be
1695 stepped now; 0 if displaced stepping this thread got queued; or -1
1696 if this instruction can't be displaced stepped. */
1697
1698 static displaced_step_prepare_status
1699 displaced_step_prepare_throw (thread_info *tp)
1700 {
1701 regcache *regcache = get_thread_regcache (tp);
1702 struct gdbarch *gdbarch = regcache->arch ();
1703 displaced_step_thread_state *thread_disp_step_state
1704 = get_displaced_stepping_state (tp);
1705
1706 /* We should never reach this function if the architecture does not
1707 support displaced stepping. */
1708 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1709
1710 /* Nor if the thread isn't meant to step over a breakpoint. */
1711 gdb_assert (tp->control.trap_expected);
1712
1713 /* Disable range stepping while executing in the scratch pad. We
1714 want a single-step even if executing the displaced instruction in
1715 the scratch buffer lands within the stepping range (e.g., a
1716 jump/branch). */
1717 tp->control.may_range_step = 0;
1718
1719 /* We are about to start a displaced step for this thread, if one is already
1720 in progress, we goofed up somewhere. */
1721 gdb_assert (!thread_disp_step_state->in_progress ());
1722
1723 scoped_restore_current_thread restore_thread;
1724
1725 switch_to_thread (tp);
1726
1727 CORE_ADDR original_pc = regcache_read_pc (regcache);
1728
1729 displaced_step_prepare_status status =
1730 tp->inf->top_target ()->displaced_step_prepare (tp);
1731
1732 if (status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
1733 {
1734 if (debug_displaced)
1735 fprintf_unfiltered (gdb_stdlog,
1736 "displaced: failed to prepare (%s)",
1737 target_pid_to_str (tp->ptid).c_str ());
1738
1739 return DISPLACED_STEP_PREPARE_STATUS_ERROR;
1740 }
1741 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1742 {
1743 /* Not enough displaced stepping resources available, defer this
1744 request by placing it the queue. */
1745
1746 if (debug_displaced)
1747 fprintf_unfiltered (gdb_stdlog,
1748 "displaced: not enough resources available, "
1749 "deferring step of %s\n",
1750 target_pid_to_str (tp->ptid).c_str ());
1751
1752 global_thread_step_over_chain_enqueue (tp);
1753 tp->inf->displaced_step_state.unavailable = true;
1754
1755 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1756 }
1757
1758 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1759
1760 // FIXME: Should probably replicated in the arch implementation now.
1761 //
1762 // if (breakpoint_in_range_p (aspace, copy, len))
1763 // {
1764 // /* There's a breakpoint set in the scratch pad location range
1765 // (which is usually around the entry point). We'd either
1766 // install it before resuming, which would overwrite/corrupt the
1767 // scratch pad, or if it was already inserted, this displaced
1768 // step would overwrite it. The latter is OK in the sense that
1769 // we already assume that no thread is going to execute the code
1770 // in the scratch pad range (after initial startup) anyway, but
1771 // the former is unacceptable. Simply punt and fallback to
1772 // stepping over this breakpoint in-line. */
1773 // if (debug_displaced)
1774 // {
1775 // fprintf_unfiltered (gdb_stdlog,
1776 // "displaced: breakpoint set in scratch pad. "
1777 // "Stepping over breakpoint in-line instead.\n");
1778 // }
1779 //
1780 // gdb_assert (false);
1781 // gdbarch_displaced_step_release_location (gdbarch, copy);
1782 //
1783 // return -1;
1784 // }
1785
1786 /* Save the information we need to fix things up if the step
1787 succeeds. */
1788 thread_disp_step_state->set (gdbarch);
1789
1790 // FIXME: get it from _prepare?
1791 CORE_ADDR displaced_pc = 0;
1792
1793 if (debug_displaced)
1794 fprintf_unfiltered (gdb_stdlog,
1795 "displaced: prepared successfully thread=%s, "
1796 "original_pc=%s, displaced_pc=%s\n",
1797 target_pid_to_str (tp->ptid).c_str (),
1798 paddress (gdbarch, original_pc),
1799 paddress (gdbarch, displaced_pc));
1800
1801 return DISPLACED_STEP_PREPARE_STATUS_OK;
1802 }
1803
1804 /* Wrapper for displaced_step_prepare_throw that disabled further
1805 attempts at displaced stepping if we get a memory error. */
1806
1807 static displaced_step_prepare_status
1808 displaced_step_prepare (thread_info *thread)
1809 {
1810 displaced_step_prepare_status status
1811 = DISPLACED_STEP_PREPARE_STATUS_ERROR;
1812
1813 try
1814 {
1815 status = displaced_step_prepare_throw (thread);
1816 }
1817 catch (const gdb_exception_error &ex)
1818 {
1819 struct displaced_step_inferior_state *displaced_state;
1820
1821 if (ex.error != MEMORY_ERROR
1822 && ex.error != NOT_SUPPORTED_ERROR)
1823 throw;
1824
1825 infrun_log_debug ("caught exception, disabling displaced stepping: %s",
1826 ex.what ());
1827
1828 /* Be verbose if "set displaced-stepping" is "on", silent if
1829 "auto". */
1830 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1831 {
1832 warning (_("disabling displaced stepping: %s"),
1833 ex.what ());
1834 }
1835
1836 /* Disable further displaced stepping attempts. */
1837 displaced_state
1838 = get_displaced_stepping_state (thread->inf);
1839 displaced_state->failed_before = 1;
1840 }
1841
1842 return status;
1843 }
1844
1845 /* If we displaced stepped an instruction successfully, adjust
1846 registers and memory to yield the same effect the instruction would
1847 have had if we had executed it at its original address, and return
1848 1. If the instruction didn't complete, relocate the PC and return
1849 -1. If the thread wasn't displaced stepping, return 0. */
1850
1851 static int
1852 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1853 {
1854 displaced_step_thread_state *displaced
1855 = get_displaced_stepping_state (event_thread);
1856
1857 /* Was this thread performing a displaced step? */
1858 if (!displaced->in_progress ())
1859 return 0;
1860
1861 displaced_step_reset_cleanup cleanup (displaced);
1862
1863 /* Fixup may need to read memory/registers. Switch to the thread
1864 that we're fixing up. Also, target_stopped_by_watchpoint checks
1865 the current thread, and displaced_step_restore performs ptid-dependent
1866 memory accesses using current_inferior() and current_top_target(). */
1867 switch_to_thread (event_thread);
1868
1869 /* Do the fixup, and release the resources acquired to do the displaced
1870 step. */
1871 displaced_step_finish_status finish_status =
1872 event_thread->inf->top_target ()->displaced_step_finish (event_thread,
1873 signal);
1874
1875 if (finish_status == DISPLACED_STEP_FINISH_STATUS_OK)
1876 return 1;
1877 else
1878 return -1;
1879 }
1880
1881 /* Data to be passed around while handling an event. This data is
1882 discarded between events. */
1883 struct execution_control_state
1884 {
1885 process_stratum_target *target;
1886 ptid_t ptid;
1887 /* The thread that got the event, if this was a thread event; NULL
1888 otherwise. */
1889 struct thread_info *event_thread;
1890
1891 struct target_waitstatus ws;
1892 int stop_func_filled_in;
1893 CORE_ADDR stop_func_start;
1894 CORE_ADDR stop_func_end;
1895 const char *stop_func_name;
1896 int wait_some_more;
1897
1898 /* True if the event thread hit the single-step breakpoint of
1899 another thread. Thus the event doesn't cause a stop, the thread
1900 needs to be single-stepped past the single-step breakpoint before
1901 we can switch back to the original stepping thread. */
1902 int hit_singlestep_breakpoint;
1903 };
1904
1905 /* Clear ECS and set it to point at TP. */
1906
1907 static void
1908 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1909 {
1910 memset (ecs, 0, sizeof (*ecs));
1911 ecs->event_thread = tp;
1912 ecs->ptid = tp->ptid;
1913 }
1914
1915 static void keep_going_pass_signal (struct execution_control_state *ecs);
1916 static void prepare_to_wait (struct execution_control_state *ecs);
1917 static int keep_going_stepped_thread (struct thread_info *tp);
1918 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1919
1920 /* Are there any pending step-over requests? If so, run all we can
1921 now and return true. Otherwise, return false. */
1922
1923 static int
1924 start_step_over (void)
1925 {
1926 struct thread_info *tp, *next;
1927 int started = 0;
1928
1929 /* Don't start a new step-over if we already have an in-line
1930 step-over operation ongoing. */
1931 if (step_over_info_valid_p ())
1932 return started;
1933
1934 /* Steal the global thread step over chain. */
1935 thread_info *threads_to_step = global_thread_step_over_chain_head;
1936 global_thread_step_over_chain_head = NULL;
1937
1938 if (debug_infrun)
1939 fprintf_unfiltered (gdb_stdlog,
1940 "infrun: stealing list of %d threads to step from global queue\n",
1941 thread_step_over_chain_length (threads_to_step));
1942
1943 for (inferior *inf : all_inferiors ())
1944 inf->displaced_step_state.unavailable = false;
1945
1946 for (tp = threads_to_step; tp != NULL; tp = next)
1947 {
1948 struct execution_control_state ecss;
1949 struct execution_control_state *ecs = &ecss;
1950 step_over_what step_what;
1951 int must_be_in_line;
1952
1953 gdb_assert (!tp->stop_requested);
1954
1955 next = thread_step_over_chain_next (threads_to_step, tp);
1956
1957 step_what = thread_still_needs_step_over (tp);
1958 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1959 || ((step_what & STEP_OVER_BREAKPOINT)
1960 && !use_displaced_stepping (tp)));
1961
1962 /* We currently stop all threads of all processes to step-over
1963 in-line. If we need to start a new in-line step-over, let
1964 any pending displaced steps finish first. */
1965 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1966 continue;
1967
1968 thread_step_over_chain_remove (&threads_to_step, tp);
1969
1970 if (tp->control.trap_expected
1971 || tp->resumed
1972 || tp->executing)
1973 {
1974 internal_error (__FILE__, __LINE__,
1975 "[%s] has inconsistent state: "
1976 "trap_expected=%d, resumed=%d, executing=%d\n",
1977 target_pid_to_str (tp->ptid).c_str (),
1978 tp->control.trap_expected,
1979 tp->resumed,
1980 tp->executing);
1981 }
1982
1983 infrun_log_debug ("resuming [%s] for step-over",
1984 target_pid_to_str (tp->ptid).c_str ());
1985
1986 /* keep_going_pass_signal skips the step-over if the breakpoint
1987 is no longer inserted. In all-stop, we want to keep looking
1988 for a thread that needs a step-over instead of resuming TP,
1989 because we wouldn't be able to resume anything else until the
1990 target stops again. In non-stop, the resume always resumes
1991 only TP, so it's OK to let the thread resume freely. */
1992 if (!target_is_non_stop_p () && !step_what)
1993 continue;
1994
1995 if (tp->inf->displaced_step_state.unavailable)
1996 {
1997 global_thread_step_over_chain_enqueue (tp);
1998 continue;
1999 }
2000
2001 switch_to_thread (tp);
2002 reset_ecs (ecs, tp);
2003 keep_going_pass_signal (ecs);
2004
2005 if (!ecs->wait_some_more)
2006 error (_("Command aborted."));
2007
2008 /* If the thread's step over could not be initiated, it was re-added
2009 to the global step over chain. */
2010 if (tp->resumed)
2011 {
2012 infrun_log_debug ("start_step_over: [%s] was resumed.\n",
2013 target_pid_to_str (tp->ptid).c_str ());
2014 gdb_assert (!thread_is_in_step_over_chain (tp));
2015 }
2016 else
2017 {
2018 infrun_log_debug ("infrun: start_step_over: [%s] was NOT resumed.\n",
2019 target_pid_to_str (tp->ptid).c_str ());
2020 gdb_assert (thread_is_in_step_over_chain (tp));
2021
2022 }
2023
2024 /* If we started a new in-line step-over, we're done. */
2025 if (step_over_info_valid_p ())
2026 {
2027 gdb_assert (tp->control.trap_expected);
2028 started = 1;
2029 break;
2030 }
2031
2032 if (!target_is_non_stop_p ())
2033 {
2034 /* On all-stop, shouldn't have resumed unless we needed a
2035 step over. */
2036 gdb_assert (tp->control.trap_expected
2037 || tp->step_after_step_resume_breakpoint);
2038
2039 /* With remote targets (at least), in all-stop, we can't
2040 issue any further remote commands until the program stops
2041 again. */
2042 started = 1;
2043 break;
2044 }
2045
2046 /* Either the thread no longer needed a step-over, or a new
2047 displaced stepping sequence started. Even in the latter
2048 case, continue looking. Maybe we can also start another
2049 displaced step on a thread of other process. */
2050 }
2051
2052 /* If there are threads left in the THREADS_TO_STEP list, but we have
2053 detected that we can't start anything more, put back these threads
2054 in the global list. */
2055 if (threads_to_step == NULL)
2056 {
2057 if (debug_infrun)
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: step-over queue now empty\n");
2060 }
2061 else
2062 {
2063 if (debug_infrun)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "infrun: putting back %d threads to step in global queue\n",
2066 thread_step_over_chain_length (threads_to_step));
2067 while (threads_to_step != nullptr)
2068 {
2069 thread_info *thread = threads_to_step;
2070
2071 /* Remove from that list. */
2072 thread_step_over_chain_remove (&threads_to_step, thread);
2073
2074 /* Add to global list. */
2075 global_thread_step_over_chain_enqueue (thread);
2076
2077 }
2078 }
2079
2080 return started;
2081 }
2082
2083 /* Update global variables holding ptids to hold NEW_PTID if they were
2084 holding OLD_PTID. */
2085 static void
2086 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2087 {
2088 if (inferior_ptid == old_ptid)
2089 inferior_ptid = new_ptid;
2090 }
2091
2092 \f
2093
2094 static const char schedlock_off[] = "off";
2095 static const char schedlock_on[] = "on";
2096 static const char schedlock_step[] = "step";
2097 static const char schedlock_replay[] = "replay";
2098 static const char *const scheduler_enums[] = {
2099 schedlock_off,
2100 schedlock_on,
2101 schedlock_step,
2102 schedlock_replay,
2103 NULL
2104 };
2105 static const char *scheduler_mode = schedlock_replay;
2106 static void
2107 show_scheduler_mode (struct ui_file *file, int from_tty,
2108 struct cmd_list_element *c, const char *value)
2109 {
2110 fprintf_filtered (file,
2111 _("Mode for locking scheduler "
2112 "during execution is \"%s\".\n"),
2113 value);
2114 }
2115
2116 static void
2117 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2118 {
2119 if (!target_can_lock_scheduler)
2120 {
2121 scheduler_mode = schedlock_off;
2122 error (_("Target '%s' cannot support this command."), target_shortname);
2123 }
2124 }
2125
2126 /* True if execution commands resume all threads of all processes by
2127 default; otherwise, resume only threads of the current inferior
2128 process. */
2129 bool sched_multi = false;
2130
2131 /* Try to setup for software single stepping over the specified location.
2132 Return 1 if target_resume() should use hardware single step.
2133
2134 GDBARCH the current gdbarch.
2135 PC the location to step over. */
2136
2137 static int
2138 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2139 {
2140 int hw_step = 1;
2141
2142 if (execution_direction == EXEC_FORWARD
2143 && gdbarch_software_single_step_p (gdbarch))
2144 hw_step = !insert_single_step_breakpoints (gdbarch);
2145
2146 return hw_step;
2147 }
2148
2149 /* See infrun.h. */
2150
2151 ptid_t
2152 user_visible_resume_ptid (int step)
2153 {
2154 ptid_t resume_ptid;
2155
2156 if (non_stop)
2157 {
2158 /* With non-stop mode on, threads are always handled
2159 individually. */
2160 resume_ptid = inferior_ptid;
2161 }
2162 else if ((scheduler_mode == schedlock_on)
2163 || (scheduler_mode == schedlock_step && step))
2164 {
2165 /* User-settable 'scheduler' mode requires solo thread
2166 resume. */
2167 resume_ptid = inferior_ptid;
2168 }
2169 else if ((scheduler_mode == schedlock_replay)
2170 && target_record_will_replay (minus_one_ptid, execution_direction))
2171 {
2172 /* User-settable 'scheduler' mode requires solo thread resume in replay
2173 mode. */
2174 resume_ptid = inferior_ptid;
2175 }
2176 else if (!sched_multi && target_supports_multi_process ())
2177 {
2178 /* Resume all threads of the current process (and none of other
2179 processes). */
2180 resume_ptid = ptid_t (inferior_ptid.pid ());
2181 }
2182 else
2183 {
2184 /* Resume all threads of all processes. */
2185 resume_ptid = RESUME_ALL;
2186 }
2187
2188 return resume_ptid;
2189 }
2190
2191 /* See infrun.h. */
2192
2193 process_stratum_target *
2194 user_visible_resume_target (ptid_t resume_ptid)
2195 {
2196 return (resume_ptid == minus_one_ptid && sched_multi
2197 ? NULL
2198 : current_inferior ()->process_target ());
2199 }
2200
2201 /* Return a ptid representing the set of threads that we will resume,
2202 in the perspective of the target, assuming run control handling
2203 does not require leaving some threads stopped (e.g., stepping past
2204 breakpoint). USER_STEP indicates whether we're about to start the
2205 target for a stepping command. */
2206
2207 static ptid_t
2208 internal_resume_ptid (int user_step)
2209 {
2210 /* In non-stop, we always control threads individually. Note that
2211 the target may always work in non-stop mode even with "set
2212 non-stop off", in which case user_visible_resume_ptid could
2213 return a wildcard ptid. */
2214 if (target_is_non_stop_p ())
2215 return inferior_ptid;
2216 else
2217 return user_visible_resume_ptid (user_step);
2218 }
2219
2220 /* Wrapper for target_resume, that handles infrun-specific
2221 bookkeeping. */
2222
2223 static void
2224 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2225 {
2226 struct thread_info *tp = inferior_thread ();
2227
2228 gdb_assert (!tp->stop_requested);
2229
2230 /* Install inferior's terminal modes. */
2231 target_terminal::inferior ();
2232
2233 /* Avoid confusing the next resume, if the next stop/resume
2234 happens to apply to another thread. */
2235 tp->suspend.stop_signal = GDB_SIGNAL_0;
2236
2237 /* Advise target which signals may be handled silently.
2238
2239 If we have removed breakpoints because we are stepping over one
2240 in-line (in any thread), we need to receive all signals to avoid
2241 accidentally skipping a breakpoint during execution of a signal
2242 handler.
2243
2244 Likewise if we're displaced stepping, otherwise a trap for a
2245 breakpoint in a signal handler might be confused with the
2246 displaced step finishing. We don't make the displaced_step_fixup
2247 step distinguish the cases instead, because:
2248
2249 - a backtrace while stopped in the signal handler would show the
2250 scratch pad as frame older than the signal handler, instead of
2251 the real mainline code.
2252
2253 - when the thread is later resumed, the signal handler would
2254 return to the scratch pad area, which would no longer be
2255 valid. */
2256 if (step_over_info_valid_p ()
2257 || displaced_step_in_progress (tp->inf))
2258 target_pass_signals ({});
2259 else
2260 target_pass_signals (signal_pass);
2261
2262 target_resume (resume_ptid, step, sig);
2263
2264 target_commit_resume ();
2265
2266 if (target_can_async_p ())
2267 target_async (1);
2268 }
2269
2270 /* Resume the inferior. SIG is the signal to give the inferior
2271 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2272 call 'resume', which handles exceptions. */
2273
2274 static void
2275 resume_1 (enum gdb_signal sig)
2276 {
2277 struct regcache *regcache = get_current_regcache ();
2278 struct gdbarch *gdbarch = regcache->arch ();
2279 struct thread_info *tp = inferior_thread ();
2280 const address_space *aspace = regcache->aspace ();
2281 ptid_t resume_ptid;
2282 /* This represents the user's step vs continue request. When
2283 deciding whether "set scheduler-locking step" applies, it's the
2284 user's intention that counts. */
2285 const int user_step = tp->control.stepping_command;
2286 /* This represents what we'll actually request the target to do.
2287 This can decay from a step to a continue, if e.g., we need to
2288 implement single-stepping with breakpoints (software
2289 single-step). */
2290 int step;
2291
2292 gdb_assert (!tp->stop_requested);
2293 gdb_assert (!thread_is_in_step_over_chain (tp));
2294
2295 if (tp->suspend.waitstatus_pending_p)
2296 {
2297 infrun_log_debug
2298 ("thread %s has pending wait "
2299 "status %s (currently_stepping=%d).",
2300 target_pid_to_str (tp->ptid).c_str (),
2301 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2302 currently_stepping (tp));
2303
2304 tp->inf->process_target ()->threads_executing = true;
2305 tp->resumed = true;
2306
2307 /* FIXME: What should we do if we are supposed to resume this
2308 thread with a signal? Maybe we should maintain a queue of
2309 pending signals to deliver. */
2310 if (sig != GDB_SIGNAL_0)
2311 {
2312 warning (_("Couldn't deliver signal %s to %s."),
2313 gdb_signal_to_name (sig),
2314 target_pid_to_str (tp->ptid).c_str ());
2315 }
2316
2317 tp->suspend.stop_signal = GDB_SIGNAL_0;
2318
2319 if (target_can_async_p ())
2320 {
2321 target_async (1);
2322 /* Tell the event loop we have an event to process. */
2323 mark_async_event_handler (infrun_async_inferior_event_token);
2324 }
2325 return;
2326 }
2327
2328 tp->stepped_breakpoint = 0;
2329
2330 /* Depends on stepped_breakpoint. */
2331 step = currently_stepping (tp);
2332
2333 if (current_inferior ()->waiting_for_vfork_done)
2334 {
2335 /* Don't try to single-step a vfork parent that is waiting for
2336 the child to get out of the shared memory region (by exec'ing
2337 or exiting). This is particularly important on software
2338 single-step archs, as the child process would trip on the
2339 software single step breakpoint inserted for the parent
2340 process. Since the parent will not actually execute any
2341 instruction until the child is out of the shared region (such
2342 are vfork's semantics), it is safe to simply continue it.
2343 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2344 the parent, and tell it to `keep_going', which automatically
2345 re-sets it stepping. */
2346 infrun_log_debug ("resume : clear step");
2347 step = 0;
2348 }
2349
2350 CORE_ADDR pc = regcache_read_pc (regcache);
2351
2352 infrun_log_debug ("step=%d, signal=%s, trap_expected=%d, "
2353 "current thread [%s] at %s",
2354 step, gdb_signal_to_symbol_string (sig),
2355 tp->control.trap_expected,
2356 target_pid_to_str (inferior_ptid).c_str (),
2357 paddress (gdbarch, pc));
2358
2359 /* Normally, by the time we reach `resume', the breakpoints are either
2360 removed or inserted, as appropriate. The exception is if we're sitting
2361 at a permanent breakpoint; we need to step over it, but permanent
2362 breakpoints can't be removed. So we have to test for it here. */
2363 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2364 {
2365 if (sig != GDB_SIGNAL_0)
2366 {
2367 /* We have a signal to pass to the inferior. The resume
2368 may, or may not take us to the signal handler. If this
2369 is a step, we'll need to stop in the signal handler, if
2370 there's one, (if the target supports stepping into
2371 handlers), or in the next mainline instruction, if
2372 there's no handler. If this is a continue, we need to be
2373 sure to run the handler with all breakpoints inserted.
2374 In all cases, set a breakpoint at the current address
2375 (where the handler returns to), and once that breakpoint
2376 is hit, resume skipping the permanent breakpoint. If
2377 that breakpoint isn't hit, then we've stepped into the
2378 signal handler (or hit some other event). We'll delete
2379 the step-resume breakpoint then. */
2380
2381 infrun_log_debug ("resume: skipping permanent breakpoint, "
2382 "deliver signal first");
2383
2384 clear_step_over_info ();
2385 tp->control.trap_expected = 0;
2386
2387 if (tp->control.step_resume_breakpoint == NULL)
2388 {
2389 /* Set a "high-priority" step-resume, as we don't want
2390 user breakpoints at PC to trigger (again) when this
2391 hits. */
2392 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2393 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2394
2395 tp->step_after_step_resume_breakpoint = step;
2396 }
2397
2398 insert_breakpoints ();
2399 }
2400 else
2401 {
2402 /* There's no signal to pass, we can go ahead and skip the
2403 permanent breakpoint manually. */
2404 infrun_log_debug ("skipping permanent breakpoint");
2405 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2406 /* Update pc to reflect the new address from which we will
2407 execute instructions. */
2408 pc = regcache_read_pc (regcache);
2409
2410 if (step)
2411 {
2412 /* We've already advanced the PC, so the stepping part
2413 is done. Now we need to arrange for a trap to be
2414 reported to handle_inferior_event. Set a breakpoint
2415 at the current PC, and run to it. Don't update
2416 prev_pc, because if we end in
2417 switch_back_to_stepped_thread, we want the "expected
2418 thread advanced also" branch to be taken. IOW, we
2419 don't want this thread to step further from PC
2420 (overstep). */
2421 gdb_assert (!step_over_info_valid_p ());
2422 insert_single_step_breakpoint (gdbarch, aspace, pc);
2423 insert_breakpoints ();
2424
2425 resume_ptid = internal_resume_ptid (user_step);
2426 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2427 tp->resumed = true;
2428 return;
2429 }
2430 }
2431 }
2432
2433 /* If we have a breakpoint to step over, make sure to do a single
2434 step only. Same if we have software watchpoints. */
2435 if (tp->control.trap_expected || bpstat_should_step ())
2436 tp->control.may_range_step = 0;
2437
2438 /* If displaced stepping is enabled, step over breakpoints by executing a
2439 copy of the instruction at a different address.
2440
2441 We can't use displaced stepping when we have a signal to deliver;
2442 the comments for displaced_step_prepare explain why. The
2443 comments in the handle_inferior event for dealing with 'random
2444 signals' explain what we do instead.
2445
2446 We can't use displaced stepping when we are waiting for vfork_done
2447 event, displaced stepping breaks the vfork child similarly as single
2448 step software breakpoint. */
2449 if (tp->control.trap_expected
2450 && use_displaced_stepping (tp)
2451 && !step_over_info_valid_p ()
2452 && sig == GDB_SIGNAL_0
2453 && !current_inferior ()->waiting_for_vfork_done)
2454 {
2455 displaced_step_prepare_status prepare_status
2456 = displaced_step_prepare (tp);
2457
2458 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2459 {
2460 infrun_log_debug ("Got placed in step-over queue");
2461
2462 tp->control.trap_expected = 0;
2463 return;
2464 }
2465 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
2466 {
2467 /* Fallback to stepping over the breakpoint in-line. */
2468
2469 if (target_is_non_stop_p ())
2470 stop_all_threads ();
2471
2472 set_step_over_info (regcache->aspace (),
2473 regcache_read_pc (regcache), 0, tp->global_num);
2474
2475 step = maybe_software_singlestep (gdbarch, pc);
2476
2477 insert_breakpoints ();
2478 }
2479 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2480 {
2481 step = gdbarch_displaced_step_hw_singlestep (gdbarch, NULL);
2482 }
2483 else
2484 gdb_assert_not_reached ("invalid displaced_step_prepare_status value");
2485 }
2486
2487 /* Do we need to do it the hard way, w/temp breakpoints? */
2488 else if (step)
2489 step = maybe_software_singlestep (gdbarch, pc);
2490
2491 /* Currently, our software single-step implementation leads to different
2492 results than hardware single-stepping in one situation: when stepping
2493 into delivering a signal which has an associated signal handler,
2494 hardware single-step will stop at the first instruction of the handler,
2495 while software single-step will simply skip execution of the handler.
2496
2497 For now, this difference in behavior is accepted since there is no
2498 easy way to actually implement single-stepping into a signal handler
2499 without kernel support.
2500
2501 However, there is one scenario where this difference leads to follow-on
2502 problems: if we're stepping off a breakpoint by removing all breakpoints
2503 and then single-stepping. In this case, the software single-step
2504 behavior means that even if there is a *breakpoint* in the signal
2505 handler, GDB still would not stop.
2506
2507 Fortunately, we can at least fix this particular issue. We detect
2508 here the case where we are about to deliver a signal while software
2509 single-stepping with breakpoints removed. In this situation, we
2510 revert the decisions to remove all breakpoints and insert single-
2511 step breakpoints, and instead we install a step-resume breakpoint
2512 at the current address, deliver the signal without stepping, and
2513 once we arrive back at the step-resume breakpoint, actually step
2514 over the breakpoint we originally wanted to step over. */
2515 if (thread_has_single_step_breakpoints_set (tp)
2516 && sig != GDB_SIGNAL_0
2517 && step_over_info_valid_p ())
2518 {
2519 /* If we have nested signals or a pending signal is delivered
2520 immediately after a handler returns, might already have
2521 a step-resume breakpoint set on the earlier handler. We cannot
2522 set another step-resume breakpoint; just continue on until the
2523 original breakpoint is hit. */
2524 if (tp->control.step_resume_breakpoint == NULL)
2525 {
2526 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2527 tp->step_after_step_resume_breakpoint = 1;
2528 }
2529
2530 delete_single_step_breakpoints (tp);
2531
2532 clear_step_over_info ();
2533 tp->control.trap_expected = 0;
2534
2535 insert_breakpoints ();
2536 }
2537
2538 /* If STEP is set, it's a request to use hardware stepping
2539 facilities. But in that case, we should never
2540 use singlestep breakpoint. */
2541 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2542
2543 /* Decide the set of threads to ask the target to resume. */
2544 if (tp->control.trap_expected)
2545 {
2546 /* We're allowing a thread to run past a breakpoint it has
2547 hit, either by single-stepping the thread with the breakpoint
2548 removed, or by displaced stepping, with the breakpoint inserted.
2549 In the former case, we need to single-step only this thread,
2550 and keep others stopped, as they can miss this breakpoint if
2551 allowed to run. That's not really a problem for displaced
2552 stepping, but, we still keep other threads stopped, in case
2553 another thread is also stopped for a breakpoint waiting for
2554 its turn in the displaced stepping queue. */
2555 resume_ptid = inferior_ptid;
2556 }
2557 else
2558 resume_ptid = internal_resume_ptid (user_step);
2559
2560 if (execution_direction != EXEC_REVERSE
2561 && step && breakpoint_inserted_here_p (aspace, pc))
2562 {
2563 /* There are two cases where we currently need to step a
2564 breakpoint instruction when we have a signal to deliver:
2565
2566 - See handle_signal_stop where we handle random signals that
2567 could take out us out of the stepping range. Normally, in
2568 that case we end up continuing (instead of stepping) over the
2569 signal handler with a breakpoint at PC, but there are cases
2570 where we should _always_ single-step, even if we have a
2571 step-resume breakpoint, like when a software watchpoint is
2572 set. Assuming single-stepping and delivering a signal at the
2573 same time would takes us to the signal handler, then we could
2574 have removed the breakpoint at PC to step over it. However,
2575 some hardware step targets (like e.g., Mac OS) can't step
2576 into signal handlers, and for those, we need to leave the
2577 breakpoint at PC inserted, as otherwise if the handler
2578 recurses and executes PC again, it'll miss the breakpoint.
2579 So we leave the breakpoint inserted anyway, but we need to
2580 record that we tried to step a breakpoint instruction, so
2581 that adjust_pc_after_break doesn't end up confused.
2582
2583 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2584 in one thread after another thread that was stepping had been
2585 momentarily paused for a step-over. When we re-resume the
2586 stepping thread, it may be resumed from that address with a
2587 breakpoint that hasn't trapped yet. Seen with
2588 gdb.threads/non-stop-fair-events.exp, on targets that don't
2589 do displaced stepping. */
2590
2591 infrun_log_debug ("resume: [%s] stepped breakpoint",
2592 target_pid_to_str (tp->ptid).c_str ());
2593
2594 tp->stepped_breakpoint = 1;
2595
2596 /* Most targets can step a breakpoint instruction, thus
2597 executing it normally. But if this one cannot, just
2598 continue and we will hit it anyway. */
2599 if (gdbarch_cannot_step_breakpoint (gdbarch))
2600 step = 0;
2601 }
2602
2603 if (debug_displaced
2604 && tp->control.trap_expected
2605 && use_displaced_stepping (tp)
2606 && !step_over_info_valid_p ())
2607 {
2608 struct regcache *resume_regcache = get_thread_regcache (tp);
2609 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2610 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2611 gdb_byte buf[4];
2612
2613 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2614 paddress (resume_gdbarch, actual_pc));
2615 read_memory (actual_pc, buf, sizeof (buf));
2616 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2617 }
2618
2619 if (tp->control.may_range_step)
2620 {
2621 /* If we're resuming a thread with the PC out of the step
2622 range, then we're doing some nested/finer run control
2623 operation, like stepping the thread out of the dynamic
2624 linker or the displaced stepping scratch pad. We
2625 shouldn't have allowed a range step then. */
2626 gdb_assert (pc_in_thread_step_range (pc, tp));
2627 }
2628
2629 do_target_resume (resume_ptid, step, sig);
2630 tp->resumed = true;
2631 }
2632
2633 /* Resume the inferior. SIG is the signal to give the inferior
2634 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2635 rolls back state on error. */
2636
2637 static void
2638 resume (gdb_signal sig)
2639 {
2640 try
2641 {
2642 resume_1 (sig);
2643 }
2644 catch (const gdb_exception &ex)
2645 {
2646 /* If resuming is being aborted for any reason, delete any
2647 single-step breakpoint resume_1 may have created, to avoid
2648 confusing the following resumption, and to avoid leaving
2649 single-step breakpoints perturbing other threads, in case
2650 we're running in non-stop mode. */
2651 if (inferior_ptid != null_ptid)
2652 delete_single_step_breakpoints (inferior_thread ());
2653 throw;
2654 }
2655 }
2656
2657 \f
2658 /* Proceeding. */
2659
2660 /* See infrun.h. */
2661
2662 /* Counter that tracks number of user visible stops. This can be used
2663 to tell whether a command has proceeded the inferior past the
2664 current location. This allows e.g., inferior function calls in
2665 breakpoint commands to not interrupt the command list. When the
2666 call finishes successfully, the inferior is standing at the same
2667 breakpoint as if nothing happened (and so we don't call
2668 normal_stop). */
2669 static ULONGEST current_stop_id;
2670
2671 /* See infrun.h. */
2672
2673 ULONGEST
2674 get_stop_id (void)
2675 {
2676 return current_stop_id;
2677 }
2678
2679 /* Called when we report a user visible stop. */
2680
2681 static void
2682 new_stop_id (void)
2683 {
2684 current_stop_id++;
2685 }
2686
2687 /* Clear out all variables saying what to do when inferior is continued.
2688 First do this, then set the ones you want, then call `proceed'. */
2689
2690 static void
2691 clear_proceed_status_thread (struct thread_info *tp)
2692 {
2693 infrun_log_debug ("%s", target_pid_to_str (tp->ptid).c_str ());
2694
2695 /* If we're starting a new sequence, then the previous finished
2696 single-step is no longer relevant. */
2697 if (tp->suspend.waitstatus_pending_p)
2698 {
2699 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2700 {
2701 infrun_log_debug ("pending event of %s was a finished step. "
2702 "Discarding.",
2703 target_pid_to_str (tp->ptid).c_str ());
2704
2705 tp->suspend.waitstatus_pending_p = 0;
2706 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2707 }
2708 else
2709 {
2710 infrun_log_debug
2711 ("thread %s has pending wait status %s (currently_stepping=%d).",
2712 target_pid_to_str (tp->ptid).c_str (),
2713 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2714 currently_stepping (tp));
2715 }
2716 }
2717
2718 /* If this signal should not be seen by program, give it zero.
2719 Used for debugging signals. */
2720 if (!signal_pass_state (tp->suspend.stop_signal))
2721 tp->suspend.stop_signal = GDB_SIGNAL_0;
2722
2723 delete tp->thread_fsm;
2724 tp->thread_fsm = NULL;
2725
2726 tp->control.trap_expected = 0;
2727 tp->control.step_range_start = 0;
2728 tp->control.step_range_end = 0;
2729 tp->control.may_range_step = 0;
2730 tp->control.step_frame_id = null_frame_id;
2731 tp->control.step_stack_frame_id = null_frame_id;
2732 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2733 tp->control.step_start_function = NULL;
2734 tp->stop_requested = 0;
2735
2736 tp->control.stop_step = 0;
2737
2738 tp->control.proceed_to_finish = 0;
2739
2740 tp->control.stepping_command = 0;
2741
2742 /* Discard any remaining commands or status from previous stop. */
2743 bpstat_clear (&tp->control.stop_bpstat);
2744 }
2745
2746 void
2747 clear_proceed_status (int step)
2748 {
2749 /* With scheduler-locking replay, stop replaying other threads if we're
2750 not replaying the user-visible resume ptid.
2751
2752 This is a convenience feature to not require the user to explicitly
2753 stop replaying the other threads. We're assuming that the user's
2754 intent is to resume tracing the recorded process. */
2755 if (!non_stop && scheduler_mode == schedlock_replay
2756 && target_record_is_replaying (minus_one_ptid)
2757 && !target_record_will_replay (user_visible_resume_ptid (step),
2758 execution_direction))
2759 target_record_stop_replaying ();
2760
2761 if (!non_stop && inferior_ptid != null_ptid)
2762 {
2763 ptid_t resume_ptid = user_visible_resume_ptid (step);
2764 process_stratum_target *resume_target
2765 = user_visible_resume_target (resume_ptid);
2766
2767 /* In all-stop mode, delete the per-thread status of all threads
2768 we're about to resume, implicitly and explicitly. */
2769 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2770 clear_proceed_status_thread (tp);
2771 }
2772
2773 if (inferior_ptid != null_ptid)
2774 {
2775 struct inferior *inferior;
2776
2777 if (non_stop)
2778 {
2779 /* If in non-stop mode, only delete the per-thread status of
2780 the current thread. */
2781 clear_proceed_status_thread (inferior_thread ());
2782 }
2783
2784 inferior = current_inferior ();
2785 inferior->control.stop_soon = NO_STOP_QUIETLY;
2786 }
2787
2788 gdb::observers::about_to_proceed.notify ();
2789 }
2790
2791 /* Returns true if TP is still stopped at a breakpoint that needs
2792 stepping-over in order to make progress. If the breakpoint is gone
2793 meanwhile, we can skip the whole step-over dance. */
2794
2795 static int
2796 thread_still_needs_step_over_bp (struct thread_info *tp)
2797 {
2798 if (tp->stepping_over_breakpoint)
2799 {
2800 struct regcache *regcache = get_thread_regcache (tp);
2801
2802 if (breakpoint_here_p (regcache->aspace (),
2803 regcache_read_pc (regcache))
2804 == ordinary_breakpoint_here)
2805 return 1;
2806
2807 tp->stepping_over_breakpoint = 0;
2808 }
2809
2810 return 0;
2811 }
2812
2813 /* Check whether thread TP still needs to start a step-over in order
2814 to make progress when resumed. Returns an bitwise or of enum
2815 step_over_what bits, indicating what needs to be stepped over. */
2816
2817 static step_over_what
2818 thread_still_needs_step_over (struct thread_info *tp)
2819 {
2820 step_over_what what = 0;
2821
2822 if (thread_still_needs_step_over_bp (tp))
2823 what |= STEP_OVER_BREAKPOINT;
2824
2825 if (tp->stepping_over_watchpoint
2826 && !target_have_steppable_watchpoint)
2827 what |= STEP_OVER_WATCHPOINT;
2828
2829 return what;
2830 }
2831
2832 /* Returns true if scheduler locking applies. STEP indicates whether
2833 we're about to do a step/next-like command to a thread. */
2834
2835 static int
2836 schedlock_applies (struct thread_info *tp)
2837 {
2838 return (scheduler_mode == schedlock_on
2839 || (scheduler_mode == schedlock_step
2840 && tp->control.stepping_command)
2841 || (scheduler_mode == schedlock_replay
2842 && target_record_will_replay (minus_one_ptid,
2843 execution_direction)));
2844 }
2845
2846 /* Calls target_commit_resume on all targets. */
2847
2848 static void
2849 commit_resume_all_targets ()
2850 {
2851 scoped_restore_current_thread restore_thread;
2852
2853 /* Map between process_target and a representative inferior. This
2854 is to avoid committing a resume in the same target more than
2855 once. Resumptions must be idempotent, so this is an
2856 optimization. */
2857 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2858
2859 for (inferior *inf : all_non_exited_inferiors ())
2860 if (inf->has_execution ())
2861 conn_inf[inf->process_target ()] = inf;
2862
2863 for (const auto &ci : conn_inf)
2864 {
2865 inferior *inf = ci.second;
2866 switch_to_inferior_no_thread (inf);
2867 target_commit_resume ();
2868 }
2869 }
2870
2871 /* Check that all the targets we're about to resume are in non-stop
2872 mode. Ideally, we'd only care whether all targets support
2873 target-async, but we're not there yet. E.g., stop_all_threads
2874 doesn't know how to handle all-stop targets. Also, the remote
2875 protocol in all-stop mode is synchronous, irrespective of
2876 target-async, which means that things like a breakpoint re-set
2877 triggered by one target would try to read memory from all targets
2878 and fail. */
2879
2880 static void
2881 check_multi_target_resumption (process_stratum_target *resume_target)
2882 {
2883 if (!non_stop && resume_target == nullptr)
2884 {
2885 scoped_restore_current_thread restore_thread;
2886
2887 /* This is used to track whether we're resuming more than one
2888 target. */
2889 process_stratum_target *first_connection = nullptr;
2890
2891 /* The first inferior we see with a target that does not work in
2892 always-non-stop mode. */
2893 inferior *first_not_non_stop = nullptr;
2894
2895 for (inferior *inf : all_non_exited_inferiors (resume_target))
2896 {
2897 switch_to_inferior_no_thread (inf);
2898
2899 if (!target_has_execution)
2900 continue;
2901
2902 process_stratum_target *proc_target
2903 = current_inferior ()->process_target();
2904
2905 if (!target_is_non_stop_p ())
2906 first_not_non_stop = inf;
2907
2908 if (first_connection == nullptr)
2909 first_connection = proc_target;
2910 else if (first_connection != proc_target
2911 && first_not_non_stop != nullptr)
2912 {
2913 switch_to_inferior_no_thread (first_not_non_stop);
2914
2915 proc_target = current_inferior ()->process_target();
2916
2917 error (_("Connection %d (%s) does not support "
2918 "multi-target resumption."),
2919 proc_target->connection_number,
2920 make_target_connection_string (proc_target).c_str ());
2921 }
2922 }
2923 }
2924 }
2925
2926 /* Basic routine for continuing the program in various fashions.
2927
2928 ADDR is the address to resume at, or -1 for resume where stopped.
2929 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2930 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2931
2932 You should call clear_proceed_status before calling proceed. */
2933
2934 void
2935 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2936 {
2937 struct regcache *regcache;
2938 struct gdbarch *gdbarch;
2939 CORE_ADDR pc;
2940 struct execution_control_state ecss;
2941 struct execution_control_state *ecs = &ecss;
2942 int started;
2943
2944 /* If we're stopped at a fork/vfork, follow the branch set by the
2945 "set follow-fork-mode" command; otherwise, we'll just proceed
2946 resuming the current thread. */
2947 if (!follow_fork ())
2948 {
2949 /* The target for some reason decided not to resume. */
2950 normal_stop ();
2951 if (target_can_async_p ())
2952 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2953 return;
2954 }
2955
2956 /* We'll update this if & when we switch to a new thread. */
2957 previous_inferior_ptid = inferior_ptid;
2958
2959 regcache = get_current_regcache ();
2960 gdbarch = regcache->arch ();
2961 const address_space *aspace = regcache->aspace ();
2962
2963 pc = regcache_read_pc_protected (regcache);
2964
2965 thread_info *cur_thr = inferior_thread ();
2966
2967 /* Fill in with reasonable starting values. */
2968 init_thread_stepping_state (cur_thr);
2969
2970 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2971
2972 ptid_t resume_ptid
2973 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2974 process_stratum_target *resume_target
2975 = user_visible_resume_target (resume_ptid);
2976
2977 check_multi_target_resumption (resume_target);
2978
2979 if (addr == (CORE_ADDR) -1)
2980 {
2981 if (pc == cur_thr->suspend.stop_pc
2982 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2983 && execution_direction != EXEC_REVERSE)
2984 /* There is a breakpoint at the address we will resume at,
2985 step one instruction before inserting breakpoints so that
2986 we do not stop right away (and report a second hit at this
2987 breakpoint).
2988
2989 Note, we don't do this in reverse, because we won't
2990 actually be executing the breakpoint insn anyway.
2991 We'll be (un-)executing the previous instruction. */
2992 cur_thr->stepping_over_breakpoint = 1;
2993 else if (gdbarch_single_step_through_delay_p (gdbarch)
2994 && gdbarch_single_step_through_delay (gdbarch,
2995 get_current_frame ()))
2996 /* We stepped onto an instruction that needs to be stepped
2997 again before re-inserting the breakpoint, do so. */
2998 cur_thr->stepping_over_breakpoint = 1;
2999 }
3000 else
3001 {
3002 regcache_write_pc (regcache, addr);
3003 }
3004
3005 if (siggnal != GDB_SIGNAL_DEFAULT)
3006 cur_thr->suspend.stop_signal = siggnal;
3007
3008 /* If an exception is thrown from this point on, make sure to
3009 propagate GDB's knowledge of the executing state to the
3010 frontend/user running state. */
3011 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3012
3013 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3014 threads (e.g., we might need to set threads stepping over
3015 breakpoints first), from the user/frontend's point of view, all
3016 threads in RESUME_PTID are now running. Unless we're calling an
3017 inferior function, as in that case we pretend the inferior
3018 doesn't run at all. */
3019 if (!cur_thr->control.in_infcall)
3020 set_running (resume_target, resume_ptid, true);
3021
3022 infrun_log_debug ("addr=%s, signal=%s", paddress (gdbarch, addr),
3023 gdb_signal_to_symbol_string (siggnal));
3024
3025 annotate_starting ();
3026
3027 /* Make sure that output from GDB appears before output from the
3028 inferior. */
3029 gdb_flush (gdb_stdout);
3030
3031 /* Since we've marked the inferior running, give it the terminal. A
3032 QUIT/Ctrl-C from here on is forwarded to the target (which can
3033 still detect attempts to unblock a stuck connection with repeated
3034 Ctrl-C from within target_pass_ctrlc). */
3035 target_terminal::inferior ();
3036
3037 /* In a multi-threaded task we may select another thread and
3038 then continue or step.
3039
3040 But if a thread that we're resuming had stopped at a breakpoint,
3041 it will immediately cause another breakpoint stop without any
3042 execution (i.e. it will report a breakpoint hit incorrectly). So
3043 we must step over it first.
3044
3045 Look for threads other than the current (TP) that reported a
3046 breakpoint hit and haven't been resumed yet since. */
3047
3048 /* If scheduler locking applies, we can avoid iterating over all
3049 threads. */
3050 if (!non_stop && !schedlock_applies (cur_thr))
3051 {
3052 for (thread_info *tp : all_non_exited_threads (resume_target,
3053 resume_ptid))
3054 {
3055 switch_to_thread_no_regs (tp);
3056
3057 /* Ignore the current thread here. It's handled
3058 afterwards. */
3059 if (tp == cur_thr)
3060 continue;
3061
3062 if (!thread_still_needs_step_over (tp))
3063 continue;
3064
3065 gdb_assert (!thread_is_in_step_over_chain (tp));
3066
3067 infrun_log_debug ("need to step-over [%s] first",
3068 target_pid_to_str (tp->ptid).c_str ());
3069
3070 global_thread_step_over_chain_enqueue (tp);
3071 }
3072
3073 switch_to_thread (cur_thr);
3074 }
3075
3076 /* Enqueue the current thread last, so that we move all other
3077 threads over their breakpoints first. */
3078 if (cur_thr->stepping_over_breakpoint)
3079 global_thread_step_over_chain_enqueue (cur_thr);
3080
3081 /* If the thread isn't started, we'll still need to set its prev_pc,
3082 so that switch_back_to_stepped_thread knows the thread hasn't
3083 advanced. Must do this before resuming any thread, as in
3084 all-stop/remote, once we resume we can't send any other packet
3085 until the target stops again. */
3086 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3087
3088 {
3089 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3090
3091 started = start_step_over ();
3092
3093 if (step_over_info_valid_p ())
3094 {
3095 /* Either this thread started a new in-line step over, or some
3096 other thread was already doing one. In either case, don't
3097 resume anything else until the step-over is finished. */
3098 }
3099 else if (started && !target_is_non_stop_p ())
3100 {
3101 /* A new displaced stepping sequence was started. In all-stop,
3102 we can't talk to the target anymore until it next stops. */
3103 }
3104 else if (!non_stop && target_is_non_stop_p ())
3105 {
3106 /* In all-stop, but the target is always in non-stop mode.
3107 Start all other threads that are implicitly resumed too. */
3108 for (thread_info *tp : all_non_exited_threads (resume_target,
3109 resume_ptid))
3110 {
3111 switch_to_thread_no_regs (tp);
3112
3113 if (!tp->inf->has_execution ())
3114 {
3115 infrun_log_debug ("[%s] target has no execution",
3116 target_pid_to_str (tp->ptid).c_str ());
3117 continue;
3118 }
3119
3120 if (tp->resumed)
3121 {
3122 infrun_log_debug ("[%s] resumed",
3123 target_pid_to_str (tp->ptid).c_str ());
3124 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3125 continue;
3126 }
3127
3128 if (thread_is_in_step_over_chain (tp))
3129 {
3130 infrun_log_debug ("[%s] needs step-over",
3131 target_pid_to_str (tp->ptid).c_str ());
3132 continue;
3133 }
3134
3135 infrun_log_debug ("resuming %s",
3136 target_pid_to_str (tp->ptid).c_str ());
3137
3138 reset_ecs (ecs, tp);
3139 switch_to_thread (tp);
3140 keep_going_pass_signal (ecs);
3141 if (!ecs->wait_some_more)
3142 error (_("Command aborted."));
3143 }
3144 }
3145 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3146 {
3147 /* The thread wasn't started, and isn't queued, run it now. */
3148 reset_ecs (ecs, cur_thr);
3149 switch_to_thread (cur_thr);
3150 keep_going_pass_signal (ecs);
3151 if (!ecs->wait_some_more)
3152 error (_("Command aborted."));
3153 }
3154 }
3155
3156 commit_resume_all_targets ();
3157
3158 finish_state.release ();
3159
3160 /* If we've switched threads above, switch back to the previously
3161 current thread. We don't want the user to see a different
3162 selected thread. */
3163 switch_to_thread (cur_thr);
3164
3165 /* Tell the event loop to wait for it to stop. If the target
3166 supports asynchronous execution, it'll do this from within
3167 target_resume. */
3168 if (!target_can_async_p ())
3169 mark_async_event_handler (infrun_async_inferior_event_token);
3170 }
3171 \f
3172
3173 /* Start remote-debugging of a machine over a serial link. */
3174
3175 void
3176 start_remote (int from_tty)
3177 {
3178 inferior *inf = current_inferior ();
3179 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3180
3181 /* Always go on waiting for the target, regardless of the mode. */
3182 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3183 indicate to wait_for_inferior that a target should timeout if
3184 nothing is returned (instead of just blocking). Because of this,
3185 targets expecting an immediate response need to, internally, set
3186 things up so that the target_wait() is forced to eventually
3187 timeout. */
3188 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3189 differentiate to its caller what the state of the target is after
3190 the initial open has been performed. Here we're assuming that
3191 the target has stopped. It should be possible to eventually have
3192 target_open() return to the caller an indication that the target
3193 is currently running and GDB state should be set to the same as
3194 for an async run. */
3195 wait_for_inferior (inf);
3196
3197 /* Now that the inferior has stopped, do any bookkeeping like
3198 loading shared libraries. We want to do this before normal_stop,
3199 so that the displayed frame is up to date. */
3200 post_create_inferior (current_top_target (), from_tty);
3201
3202 normal_stop ();
3203 }
3204
3205 /* Initialize static vars when a new inferior begins. */
3206
3207 void
3208 init_wait_for_inferior (void)
3209 {
3210 /* These are meaningless until the first time through wait_for_inferior. */
3211
3212 breakpoint_init_inferior (inf_starting);
3213
3214 clear_proceed_status (0);
3215
3216 nullify_last_target_wait_ptid ();
3217
3218 previous_inferior_ptid = inferior_ptid;
3219 }
3220
3221 \f
3222
3223 static void handle_inferior_event (struct execution_control_state *ecs);
3224
3225 static void handle_step_into_function (struct gdbarch *gdbarch,
3226 struct execution_control_state *ecs);
3227 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3228 struct execution_control_state *ecs);
3229 static void handle_signal_stop (struct execution_control_state *ecs);
3230 static void check_exception_resume (struct execution_control_state *,
3231 struct frame_info *);
3232
3233 static void end_stepping_range (struct execution_control_state *ecs);
3234 static void stop_waiting (struct execution_control_state *ecs);
3235 static void keep_going (struct execution_control_state *ecs);
3236 static void process_event_stop_test (struct execution_control_state *ecs);
3237 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3238
3239 /* This function is attached as a "thread_stop_requested" observer.
3240 Cleanup local state that assumed the PTID was to be resumed, and
3241 report the stop to the frontend. */
3242
3243 static void
3244 infrun_thread_stop_requested (ptid_t ptid)
3245 {
3246 process_stratum_target *curr_target = current_inferior ()->process_target ();
3247
3248 /* PTID was requested to stop. If the thread was already stopped,
3249 but the user/frontend doesn't know about that yet (e.g., the
3250 thread had been temporarily paused for some step-over), set up
3251 for reporting the stop now. */
3252 for (thread_info *tp : all_threads (curr_target, ptid))
3253 {
3254 if (tp->state != THREAD_RUNNING)
3255 continue;
3256 if (tp->executing)
3257 continue;
3258
3259 /* Remove matching threads from the step-over queue, so
3260 start_step_over doesn't try to resume them
3261 automatically. */
3262 if (thread_is_in_step_over_chain (tp))
3263 global_thread_step_over_chain_remove (tp);
3264
3265 /* If the thread is stopped, but the user/frontend doesn't
3266 know about that yet, queue a pending event, as if the
3267 thread had just stopped now. Unless the thread already had
3268 a pending event. */
3269 if (!tp->suspend.waitstatus_pending_p)
3270 {
3271 tp->suspend.waitstatus_pending_p = 1;
3272 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3273 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3274 }
3275
3276 /* Clear the inline-frame state, since we're re-processing the
3277 stop. */
3278 clear_inline_frame_state (tp);
3279
3280 /* If this thread was paused because some other thread was
3281 doing an inline-step over, let that finish first. Once
3282 that happens, we'll restart all threads and consume pending
3283 stop events then. */
3284 if (step_over_info_valid_p ())
3285 continue;
3286
3287 /* Otherwise we can process the (new) pending event now. Set
3288 it so this pending event is considered by
3289 do_target_wait. */
3290 tp->resumed = true;
3291 }
3292 }
3293
3294 static void
3295 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3296 {
3297 if (target_last_proc_target == tp->inf->process_target ()
3298 && target_last_wait_ptid == tp->ptid)
3299 nullify_last_target_wait_ptid ();
3300 }
3301
3302 /* Delete the step resume, single-step and longjmp/exception resume
3303 breakpoints of TP. */
3304
3305 static void
3306 delete_thread_infrun_breakpoints (struct thread_info *tp)
3307 {
3308 delete_step_resume_breakpoint (tp);
3309 delete_exception_resume_breakpoint (tp);
3310 delete_single_step_breakpoints (tp);
3311 }
3312
3313 /* If the target still has execution, call FUNC for each thread that
3314 just stopped. In all-stop, that's all the non-exited threads; in
3315 non-stop, that's the current thread, only. */
3316
3317 typedef void (*for_each_just_stopped_thread_callback_func)
3318 (struct thread_info *tp);
3319
3320 static void
3321 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3322 {
3323 if (!target_has_execution || inferior_ptid == null_ptid)
3324 return;
3325
3326 if (target_is_non_stop_p ())
3327 {
3328 /* If in non-stop mode, only the current thread stopped. */
3329 func (inferior_thread ());
3330 }
3331 else
3332 {
3333 /* In all-stop mode, all threads have stopped. */
3334 for (thread_info *tp : all_non_exited_threads ())
3335 func (tp);
3336 }
3337 }
3338
3339 /* Delete the step resume and longjmp/exception resume breakpoints of
3340 the threads that just stopped. */
3341
3342 static void
3343 delete_just_stopped_threads_infrun_breakpoints (void)
3344 {
3345 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3346 }
3347
3348 /* Delete the single-step breakpoints of the threads that just
3349 stopped. */
3350
3351 static void
3352 delete_just_stopped_threads_single_step_breakpoints (void)
3353 {
3354 for_each_just_stopped_thread (delete_single_step_breakpoints);
3355 }
3356
3357 /* See infrun.h. */
3358
3359 void
3360 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3361 const struct target_waitstatus *ws)
3362 {
3363 std::string status_string = target_waitstatus_to_string (ws);
3364 string_file stb;
3365
3366 /* The text is split over several lines because it was getting too long.
3367 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3368 output as a unit; we want only one timestamp printed if debug_timestamp
3369 is set. */
3370
3371 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3372 waiton_ptid.pid (),
3373 waiton_ptid.lwp (),
3374 waiton_ptid.tid ());
3375 if (waiton_ptid.pid () != -1)
3376 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3377 stb.printf (", status) =\n");
3378 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3379 result_ptid.pid (),
3380 result_ptid.lwp (),
3381 result_ptid.tid (),
3382 target_pid_to_str (result_ptid).c_str ());
3383 stb.printf ("infrun: %s\n", status_string.c_str ());
3384
3385 /* This uses %s in part to handle %'s in the text, but also to avoid
3386 a gcc error: the format attribute requires a string literal. */
3387 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3388 }
3389
3390 /* Select a thread at random, out of those which are resumed and have
3391 had events. */
3392
3393 static struct thread_info *
3394 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3395 {
3396 int num_events = 0;
3397
3398 auto has_event = [&] (thread_info *tp)
3399 {
3400 return (tp->ptid.matches (waiton_ptid)
3401 && tp->resumed
3402 && tp->suspend.waitstatus_pending_p);
3403 };
3404
3405 /* First see how many events we have. Count only resumed threads
3406 that have an event pending. */
3407 for (thread_info *tp : inf->non_exited_threads ())
3408 if (has_event (tp))
3409 num_events++;
3410
3411 if (num_events == 0)
3412 return NULL;
3413
3414 /* Now randomly pick a thread out of those that have had events. */
3415 int random_selector = (int) ((num_events * (double) rand ())
3416 / (RAND_MAX + 1.0));
3417
3418 if (num_events > 1)
3419 infrun_log_debug ("Found %d events, selecting #%d",
3420 num_events, random_selector);
3421
3422 /* Select the Nth thread that has had an event. */
3423 for (thread_info *tp : inf->non_exited_threads ())
3424 if (has_event (tp))
3425 if (random_selector-- == 0)
3426 return tp;
3427
3428 gdb_assert_not_reached ("event thread not found");
3429 }
3430
3431 /* Wrapper for target_wait that first checks whether threads have
3432 pending statuses to report before actually asking the target for
3433 more events. INF is the inferior we're using to call target_wait
3434 on. */
3435
3436 static ptid_t
3437 do_target_wait_1 (inferior *inf, ptid_t ptid,
3438 target_waitstatus *status, int options)
3439 {
3440 ptid_t event_ptid;
3441 struct thread_info *tp;
3442
3443 /* We know that we are looking for an event in the target of inferior
3444 INF, but we don't know which thread the event might come from. As
3445 such we want to make sure that INFERIOR_PTID is reset so that none of
3446 the wait code relies on it - doing so is always a mistake. */
3447 switch_to_inferior_no_thread (inf);
3448
3449 /* First check if there is a resumed thread with a wait status
3450 pending. */
3451 if (ptid == minus_one_ptid || ptid.is_pid ())
3452 {
3453 tp = random_pending_event_thread (inf, ptid);
3454 }
3455 else
3456 {
3457 infrun_log_debug ("Waiting for specific thread %s.",
3458 target_pid_to_str (ptid).c_str ());
3459
3460 /* We have a specific thread to check. */
3461 tp = find_thread_ptid (inf, ptid);
3462 gdb_assert (tp != NULL);
3463 if (!tp->suspend.waitstatus_pending_p)
3464 tp = NULL;
3465 }
3466
3467 if (tp != NULL
3468 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3469 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3470 {
3471 struct regcache *regcache = get_thread_regcache (tp);
3472 struct gdbarch *gdbarch = regcache->arch ();
3473 CORE_ADDR pc;
3474 int discard = 0;
3475
3476 pc = regcache_read_pc (regcache);
3477
3478 if (pc != tp->suspend.stop_pc)
3479 {
3480 infrun_log_debug ("PC of %s changed. was=%s, now=%s",
3481 target_pid_to_str (tp->ptid).c_str (),
3482 paddress (gdbarch, tp->suspend.stop_pc),
3483 paddress (gdbarch, pc));
3484 discard = 1;
3485 }
3486 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3487 {
3488 infrun_log_debug ("previous breakpoint of %s, at %s gone",
3489 target_pid_to_str (tp->ptid).c_str (),
3490 paddress (gdbarch, pc));
3491
3492 discard = 1;
3493 }
3494
3495 if (discard)
3496 {
3497 infrun_log_debug ("pending event of %s cancelled.",
3498 target_pid_to_str (tp->ptid).c_str ());
3499
3500 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3501 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3502 }
3503 }
3504
3505 if (tp != NULL)
3506 {
3507 infrun_log_debug ("Using pending wait status %s for %s.",
3508 target_waitstatus_to_string
3509 (&tp->suspend.waitstatus).c_str (),
3510 target_pid_to_str (tp->ptid).c_str ());
3511
3512 /* Now that we've selected our final event LWP, un-adjust its PC
3513 if it was a software breakpoint (and the target doesn't
3514 always adjust the PC itself). */
3515 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3516 && !target_supports_stopped_by_sw_breakpoint ())
3517 {
3518 struct regcache *regcache;
3519 struct gdbarch *gdbarch;
3520 int decr_pc;
3521
3522 regcache = get_thread_regcache (tp);
3523 gdbarch = regcache->arch ();
3524
3525 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3526 if (decr_pc != 0)
3527 {
3528 CORE_ADDR pc;
3529
3530 pc = regcache_read_pc (regcache);
3531 regcache_write_pc (regcache, pc + decr_pc);
3532 }
3533 }
3534
3535 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3536 *status = tp->suspend.waitstatus;
3537 tp->suspend.waitstatus_pending_p = 0;
3538
3539 /* Wake up the event loop again, until all pending events are
3540 processed. */
3541 if (target_is_async_p ())
3542 mark_async_event_handler (infrun_async_inferior_event_token);
3543 return tp->ptid;
3544 }
3545
3546 /* But if we don't find one, we'll have to wait. */
3547
3548 if (deprecated_target_wait_hook)
3549 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3550 else
3551 event_ptid = target_wait (ptid, status, options);
3552
3553 return event_ptid;
3554 }
3555
3556 /* Returns true if INF has any resumed thread with a status
3557 pending. */
3558
3559 static bool
3560 threads_are_resumed_pending_p (inferior *inf)
3561 {
3562 for (thread_info *tp : inf->non_exited_threads ())
3563 if (tp->resumed
3564 && tp->suspend.waitstatus_pending_p)
3565 return true;
3566
3567 return false;
3568 }
3569
3570 /* Wrapper for target_wait that first checks whether threads have
3571 pending statuses to report before actually asking the target for
3572 more events. Polls for events from all inferiors/targets. */
3573
3574 static bool
3575 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3576 {
3577 int num_inferiors = 0;
3578 int random_selector;
3579
3580 /* For fairness, we pick the first inferior/target to poll at
3581 random, and then continue polling the rest of the inferior list
3582 starting from that one in a circular fashion until the whole list
3583 is polled once. */
3584
3585 auto inferior_matches = [&wait_ptid] (inferior *inf)
3586 {
3587 return (inf->process_target () != NULL
3588 && (threads_are_executing (inf->process_target ())
3589 || threads_are_resumed_pending_p (inf))
3590 && ptid_t (inf->pid).matches (wait_ptid));
3591 };
3592
3593 /* First see how many resumed inferiors we have. */
3594 for (inferior *inf : all_inferiors ())
3595 if (inferior_matches (inf))
3596 num_inferiors++;
3597
3598 if (num_inferiors == 0)
3599 {
3600 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3601 return false;
3602 }
3603
3604 /* Now randomly pick an inferior out of those that were resumed. */
3605 random_selector = (int)
3606 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3607
3608 if (num_inferiors > 1)
3609 infrun_log_debug ("Found %d inferiors, starting at #%d",
3610 num_inferiors, random_selector);
3611
3612 /* Select the Nth inferior that was resumed. */
3613
3614 inferior *selected = nullptr;
3615
3616 for (inferior *inf : all_inferiors ())
3617 if (inferior_matches (inf))
3618 if (random_selector-- == 0)
3619 {
3620 selected = inf;
3621 break;
3622 }
3623
3624 /* Now poll for events out of each of the resumed inferior's
3625 targets, starting from the selected one. */
3626
3627 auto do_wait = [&] (inferior *inf)
3628 {
3629 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3630 ecs->target = inf->process_target ();
3631 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3632 };
3633
3634 /* Needed in all-stop+target-non-stop mode, because we end up here
3635 spuriously after the target is all stopped and we've already
3636 reported the stop to the user, polling for events. */
3637 scoped_restore_current_thread restore_thread;
3638
3639 int inf_num = selected->num;
3640 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3641 if (inferior_matches (inf))
3642 if (do_wait (inf))
3643 return true;
3644
3645 for (inferior *inf = inferior_list;
3646 inf != NULL && inf->num < inf_num;
3647 inf = inf->next)
3648 if (inferior_matches (inf))
3649 if (do_wait (inf))
3650 return true;
3651
3652 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3653 return false;
3654 }
3655
3656 /* Prepare and stabilize the inferior for detaching it. E.g.,
3657 detaching while a thread is displaced stepping is a recipe for
3658 crashing it, as nothing would readjust the PC out of the scratch
3659 pad. */
3660
3661 void
3662 prepare_for_detach (void)
3663 {
3664 struct inferior *inf = current_inferior ();
3665 ptid_t pid_ptid = ptid_t (inf->pid);
3666
3667 // displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3668
3669 /* Is any thread of this process displaced stepping? If not,
3670 there's nothing else to do. */
3671 if (displaced_step_in_progress (inf))
3672 return;
3673
3674 infrun_log_debug ("displaced-stepping in-process while detaching");
3675
3676 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3677
3678 // FIXME
3679 while (false)
3680 {
3681 struct execution_control_state ecss;
3682 struct execution_control_state *ecs;
3683
3684 ecs = &ecss;
3685 memset (ecs, 0, sizeof (*ecs));
3686
3687 overlay_cache_invalid = 1;
3688 /* Flush target cache before starting to handle each event.
3689 Target was running and cache could be stale. This is just a
3690 heuristic. Running threads may modify target memory, but we
3691 don't get any event. */
3692 target_dcache_invalidate ();
3693
3694 do_target_wait (pid_ptid, ecs, 0);
3695
3696 if (debug_infrun)
3697 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3698
3699 /* If an error happens while handling the event, propagate GDB's
3700 knowledge of the executing state to the frontend/user running
3701 state. */
3702 scoped_finish_thread_state finish_state (inf->process_target (),
3703 minus_one_ptid);
3704
3705 /* Now figure out what to do with the result of the result. */
3706 handle_inferior_event (ecs);
3707
3708 /* No error, don't finish the state yet. */
3709 finish_state.release ();
3710
3711 /* Breakpoints and watchpoints are not installed on the target
3712 at this point, and signals are passed directly to the
3713 inferior, so this must mean the process is gone. */
3714 if (!ecs->wait_some_more)
3715 {
3716 restore_detaching.release ();
3717 error (_("Program exited while detaching"));
3718 }
3719 }
3720
3721 restore_detaching.release ();
3722 }
3723
3724 /* Wait for control to return from inferior to debugger.
3725
3726 If inferior gets a signal, we may decide to start it up again
3727 instead of returning. That is why there is a loop in this function.
3728 When this function actually returns it means the inferior
3729 should be left stopped and GDB should read more commands. */
3730
3731 static void
3732 wait_for_inferior (inferior *inf)
3733 {
3734 infrun_log_debug ("wait_for_inferior ()");
3735
3736 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3737
3738 /* If an error happens while handling the event, propagate GDB's
3739 knowledge of the executing state to the frontend/user running
3740 state. */
3741 scoped_finish_thread_state finish_state
3742 (inf->process_target (), minus_one_ptid);
3743
3744 while (1)
3745 {
3746 struct execution_control_state ecss;
3747 struct execution_control_state *ecs = &ecss;
3748
3749 memset (ecs, 0, sizeof (*ecs));
3750
3751 overlay_cache_invalid = 1;
3752
3753 /* Flush target cache before starting to handle each event.
3754 Target was running and cache could be stale. This is just a
3755 heuristic. Running threads may modify target memory, but we
3756 don't get any event. */
3757 target_dcache_invalidate ();
3758
3759 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3760 ecs->target = inf->process_target ();
3761
3762 if (debug_infrun)
3763 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3764
3765 /* Now figure out what to do with the result of the result. */
3766 handle_inferior_event (ecs);
3767
3768 if (!ecs->wait_some_more)
3769 break;
3770 }
3771
3772 /* No error, don't finish the state yet. */
3773 finish_state.release ();
3774 }
3775
3776 /* Cleanup that reinstalls the readline callback handler, if the
3777 target is running in the background. If while handling the target
3778 event something triggered a secondary prompt, like e.g., a
3779 pagination prompt, we'll have removed the callback handler (see
3780 gdb_readline_wrapper_line). Need to do this as we go back to the
3781 event loop, ready to process further input. Note this has no
3782 effect if the handler hasn't actually been removed, because calling
3783 rl_callback_handler_install resets the line buffer, thus losing
3784 input. */
3785
3786 static void
3787 reinstall_readline_callback_handler_cleanup ()
3788 {
3789 struct ui *ui = current_ui;
3790
3791 if (!ui->async)
3792 {
3793 /* We're not going back to the top level event loop yet. Don't
3794 install the readline callback, as it'd prep the terminal,
3795 readline-style (raw, noecho) (e.g., --batch). We'll install
3796 it the next time the prompt is displayed, when we're ready
3797 for input. */
3798 return;
3799 }
3800
3801 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3802 gdb_rl_callback_handler_reinstall ();
3803 }
3804
3805 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3806 that's just the event thread. In all-stop, that's all threads. */
3807
3808 static void
3809 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3810 {
3811 if (ecs->event_thread != NULL
3812 && ecs->event_thread->thread_fsm != NULL)
3813 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3814
3815 if (!non_stop)
3816 {
3817 for (thread_info *thr : all_non_exited_threads ())
3818 {
3819 if (thr->thread_fsm == NULL)
3820 continue;
3821 if (thr == ecs->event_thread)
3822 continue;
3823
3824 switch_to_thread (thr);
3825 thr->thread_fsm->clean_up (thr);
3826 }
3827
3828 if (ecs->event_thread != NULL)
3829 switch_to_thread (ecs->event_thread);
3830 }
3831 }
3832
3833 /* Helper for all_uis_check_sync_execution_done that works on the
3834 current UI. */
3835
3836 static void
3837 check_curr_ui_sync_execution_done (void)
3838 {
3839 struct ui *ui = current_ui;
3840
3841 if (ui->prompt_state == PROMPT_NEEDED
3842 && ui->async
3843 && !gdb_in_secondary_prompt_p (ui))
3844 {
3845 target_terminal::ours ();
3846 gdb::observers::sync_execution_done.notify ();
3847 ui_register_input_event_handler (ui);
3848 }
3849 }
3850
3851 /* See infrun.h. */
3852
3853 void
3854 all_uis_check_sync_execution_done (void)
3855 {
3856 SWITCH_THRU_ALL_UIS ()
3857 {
3858 check_curr_ui_sync_execution_done ();
3859 }
3860 }
3861
3862 /* See infrun.h. */
3863
3864 void
3865 all_uis_on_sync_execution_starting (void)
3866 {
3867 SWITCH_THRU_ALL_UIS ()
3868 {
3869 if (current_ui->prompt_state == PROMPT_NEEDED)
3870 async_disable_stdin ();
3871 }
3872 }
3873
3874 /* Asynchronous version of wait_for_inferior. It is called by the
3875 event loop whenever a change of state is detected on the file
3876 descriptor corresponding to the target. It can be called more than
3877 once to complete a single execution command. In such cases we need
3878 to keep the state in a global variable ECSS. If it is the last time
3879 that this function is called for a single execution command, then
3880 report to the user that the inferior has stopped, and do the
3881 necessary cleanups. */
3882
3883 void
3884 fetch_inferior_event (void *client_data)
3885 {
3886 struct execution_control_state ecss;
3887 struct execution_control_state *ecs = &ecss;
3888 int cmd_done = 0;
3889
3890 memset (ecs, 0, sizeof (*ecs));
3891
3892 /* Events are always processed with the main UI as current UI. This
3893 way, warnings, debug output, etc. are always consistently sent to
3894 the main console. */
3895 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3896
3897 /* End up with readline processing input, if necessary. */
3898 {
3899 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3900
3901 /* We're handling a live event, so make sure we're doing live
3902 debugging. If we're looking at traceframes while the target is
3903 running, we're going to need to get back to that mode after
3904 handling the event. */
3905 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3906 if (non_stop)
3907 {
3908 maybe_restore_traceframe.emplace ();
3909 set_current_traceframe (-1);
3910 }
3911
3912 /* The user/frontend should not notice a thread switch due to
3913 internal events. Make sure we revert to the user selected
3914 thread and frame after handling the event and running any
3915 breakpoint commands. */
3916 scoped_restore_current_thread restore_thread;
3917
3918 overlay_cache_invalid = 1;
3919 /* Flush target cache before starting to handle each event. Target
3920 was running and cache could be stale. This is just a heuristic.
3921 Running threads may modify target memory, but we don't get any
3922 event. */
3923 target_dcache_invalidate ();
3924
3925 scoped_restore save_exec_dir
3926 = make_scoped_restore (&execution_direction,
3927 target_execution_direction ());
3928
3929 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3930 return;
3931
3932 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3933
3934 /* Switch to the target that generated the event, so we can do
3935 target calls. Any inferior bound to the target will do, so we
3936 just switch to the first we find. */
3937 for (inferior *inf : all_inferiors (ecs->target))
3938 {
3939 switch_to_inferior_no_thread (inf);
3940 break;
3941 }
3942
3943 if (debug_infrun)
3944 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3945
3946 /* If an error happens while handling the event, propagate GDB's
3947 knowledge of the executing state to the frontend/user running
3948 state. */
3949 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3950 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3951
3952 /* Get executed before scoped_restore_current_thread above to apply
3953 still for the thread which has thrown the exception. */
3954 auto defer_bpstat_clear
3955 = make_scope_exit (bpstat_clear_actions);
3956 auto defer_delete_threads
3957 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3958
3959 /* Now figure out what to do with the result of the result. */
3960 handle_inferior_event (ecs);
3961
3962 if (!ecs->wait_some_more)
3963 {
3964 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3965 int should_stop = 1;
3966 struct thread_info *thr = ecs->event_thread;
3967
3968 delete_just_stopped_threads_infrun_breakpoints ();
3969
3970 if (thr != NULL)
3971 {
3972 struct thread_fsm *thread_fsm = thr->thread_fsm;
3973
3974 if (thread_fsm != NULL)
3975 should_stop = thread_fsm->should_stop (thr);
3976 }
3977
3978 if (!should_stop)
3979 {
3980 keep_going (ecs);
3981 }
3982 else
3983 {
3984 bool should_notify_stop = true;
3985 int proceeded = 0;
3986
3987 clean_up_just_stopped_threads_fsms (ecs);
3988
3989 if (thr != NULL && thr->thread_fsm != NULL)
3990 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3991
3992 if (should_notify_stop)
3993 {
3994 /* We may not find an inferior if this was a process exit. */
3995 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3996 proceeded = normal_stop ();
3997 }
3998
3999 if (!proceeded)
4000 {
4001 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4002 cmd_done = 1;
4003 }
4004
4005 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4006 previously selected thread is gone. We have two
4007 choices - switch to no thread selected, or restore the
4008 previously selected thread (now exited). We chose the
4009 later, just because that's what GDB used to do. After
4010 this, "info threads" says "The current thread <Thread
4011 ID 2> has terminated." instead of "No thread
4012 selected.". */
4013 if (!non_stop
4014 && cmd_done
4015 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4016 restore_thread.dont_restore ();
4017 }
4018 }
4019
4020 defer_delete_threads.release ();
4021 defer_bpstat_clear.release ();
4022
4023 /* No error, don't finish the thread states yet. */
4024 finish_state.release ();
4025
4026 /* This scope is used to ensure that readline callbacks are
4027 reinstalled here. */
4028 }
4029
4030 /* If a UI was in sync execution mode, and now isn't, restore its
4031 prompt (a synchronous execution command has finished, and we're
4032 ready for input). */
4033 all_uis_check_sync_execution_done ();
4034
4035 if (cmd_done
4036 && exec_done_display_p
4037 && (inferior_ptid == null_ptid
4038 || inferior_thread ()->state != THREAD_RUNNING))
4039 printf_unfiltered (_("completed.\n"));
4040 }
4041
4042 /* See infrun.h. */
4043
4044 void
4045 set_step_info (thread_info *tp, struct frame_info *frame,
4046 struct symtab_and_line sal)
4047 {
4048 /* This can be removed once this function no longer implicitly relies on the
4049 inferior_ptid value. */
4050 gdb_assert (inferior_ptid == tp->ptid);
4051
4052 tp->control.step_frame_id = get_frame_id (frame);
4053 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4054
4055 tp->current_symtab = sal.symtab;
4056 tp->current_line = sal.line;
4057 }
4058
4059 /* Clear context switchable stepping state. */
4060
4061 void
4062 init_thread_stepping_state (struct thread_info *tss)
4063 {
4064 tss->stepped_breakpoint = 0;
4065 tss->stepping_over_breakpoint = 0;
4066 tss->stepping_over_watchpoint = 0;
4067 tss->step_after_step_resume_breakpoint = 0;
4068 }
4069
4070 /* See infrun.h. */
4071
4072 void
4073 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4074 target_waitstatus status)
4075 {
4076 target_last_proc_target = target;
4077 target_last_wait_ptid = ptid;
4078 target_last_waitstatus = status;
4079 }
4080
4081 /* See infrun.h. */
4082
4083 void
4084 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4085 target_waitstatus *status)
4086 {
4087 if (target != nullptr)
4088 *target = target_last_proc_target;
4089 if (ptid != nullptr)
4090 *ptid = target_last_wait_ptid;
4091 if (status != nullptr)
4092 *status = target_last_waitstatus;
4093 }
4094
4095 /* See infrun.h. */
4096
4097 void
4098 nullify_last_target_wait_ptid (void)
4099 {
4100 target_last_proc_target = nullptr;
4101 target_last_wait_ptid = minus_one_ptid;
4102 target_last_waitstatus = {};
4103 }
4104
4105 /* Switch thread contexts. */
4106
4107 static void
4108 context_switch (execution_control_state *ecs)
4109 {
4110 if (ecs->ptid != inferior_ptid
4111 && (inferior_ptid == null_ptid
4112 || ecs->event_thread != inferior_thread ()))
4113 {
4114 infrun_log_debug ("Switching context from %s to %s",
4115 target_pid_to_str (inferior_ptid).c_str (),
4116 target_pid_to_str (ecs->ptid).c_str ());
4117 }
4118
4119 switch_to_thread (ecs->event_thread);
4120 }
4121
4122 /* If the target can't tell whether we've hit breakpoints
4123 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4124 check whether that could have been caused by a breakpoint. If so,
4125 adjust the PC, per gdbarch_decr_pc_after_break. */
4126
4127 static void
4128 adjust_pc_after_break (struct thread_info *thread,
4129 struct target_waitstatus *ws)
4130 {
4131 struct regcache *regcache;
4132 struct gdbarch *gdbarch;
4133 CORE_ADDR breakpoint_pc, decr_pc;
4134
4135 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4136 we aren't, just return.
4137
4138 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4139 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4140 implemented by software breakpoints should be handled through the normal
4141 breakpoint layer.
4142
4143 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4144 different signals (SIGILL or SIGEMT for instance), but it is less
4145 clear where the PC is pointing afterwards. It may not match
4146 gdbarch_decr_pc_after_break. I don't know any specific target that
4147 generates these signals at breakpoints (the code has been in GDB since at
4148 least 1992) so I can not guess how to handle them here.
4149
4150 In earlier versions of GDB, a target with
4151 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4152 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4153 target with both of these set in GDB history, and it seems unlikely to be
4154 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4155
4156 if (ws->kind != TARGET_WAITKIND_STOPPED)
4157 return;
4158
4159 if (ws->value.sig != GDB_SIGNAL_TRAP)
4160 return;
4161
4162 /* In reverse execution, when a breakpoint is hit, the instruction
4163 under it has already been de-executed. The reported PC always
4164 points at the breakpoint address, so adjusting it further would
4165 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4166 architecture:
4167
4168 B1 0x08000000 : INSN1
4169 B2 0x08000001 : INSN2
4170 0x08000002 : INSN3
4171 PC -> 0x08000003 : INSN4
4172
4173 Say you're stopped at 0x08000003 as above. Reverse continuing
4174 from that point should hit B2 as below. Reading the PC when the
4175 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4176 been de-executed already.
4177
4178 B1 0x08000000 : INSN1
4179 B2 PC -> 0x08000001 : INSN2
4180 0x08000002 : INSN3
4181 0x08000003 : INSN4
4182
4183 We can't apply the same logic as for forward execution, because
4184 we would wrongly adjust the PC to 0x08000000, since there's a
4185 breakpoint at PC - 1. We'd then report a hit on B1, although
4186 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4187 behaviour. */
4188 if (execution_direction == EXEC_REVERSE)
4189 return;
4190
4191 /* If the target can tell whether the thread hit a SW breakpoint,
4192 trust it. Targets that can tell also adjust the PC
4193 themselves. */
4194 if (target_supports_stopped_by_sw_breakpoint ())
4195 return;
4196
4197 /* Note that relying on whether a breakpoint is planted in memory to
4198 determine this can fail. E.g,. the breakpoint could have been
4199 removed since. Or the thread could have been told to step an
4200 instruction the size of a breakpoint instruction, and only
4201 _after_ was a breakpoint inserted at its address. */
4202
4203 /* If this target does not decrement the PC after breakpoints, then
4204 we have nothing to do. */
4205 regcache = get_thread_regcache (thread);
4206 gdbarch = regcache->arch ();
4207
4208 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4209 if (decr_pc == 0)
4210 return;
4211
4212 const address_space *aspace = regcache->aspace ();
4213
4214 /* Find the location where (if we've hit a breakpoint) the
4215 breakpoint would be. */
4216 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4217
4218 /* If the target can't tell whether a software breakpoint triggered,
4219 fallback to figuring it out based on breakpoints we think were
4220 inserted in the target, and on whether the thread was stepped or
4221 continued. */
4222
4223 /* Check whether there actually is a software breakpoint inserted at
4224 that location.
4225
4226 If in non-stop mode, a race condition is possible where we've
4227 removed a breakpoint, but stop events for that breakpoint were
4228 already queued and arrive later. To suppress those spurious
4229 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4230 and retire them after a number of stop events are reported. Note
4231 this is an heuristic and can thus get confused. The real fix is
4232 to get the "stopped by SW BP and needs adjustment" info out of
4233 the target/kernel (and thus never reach here; see above). */
4234 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4235 || (target_is_non_stop_p ()
4236 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4237 {
4238 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4239
4240 if (record_full_is_used ())
4241 restore_operation_disable.emplace
4242 (record_full_gdb_operation_disable_set ());
4243
4244 /* When using hardware single-step, a SIGTRAP is reported for both
4245 a completed single-step and a software breakpoint. Need to
4246 differentiate between the two, as the latter needs adjusting
4247 but the former does not.
4248
4249 The SIGTRAP can be due to a completed hardware single-step only if
4250 - we didn't insert software single-step breakpoints
4251 - this thread is currently being stepped
4252
4253 If any of these events did not occur, we must have stopped due
4254 to hitting a software breakpoint, and have to back up to the
4255 breakpoint address.
4256
4257 As a special case, we could have hardware single-stepped a
4258 software breakpoint. In this case (prev_pc == breakpoint_pc),
4259 we also need to back up to the breakpoint address. */
4260
4261 if (thread_has_single_step_breakpoints_set (thread)
4262 || !currently_stepping (thread)
4263 || (thread->stepped_breakpoint
4264 && thread->prev_pc == breakpoint_pc))
4265 regcache_write_pc (regcache, breakpoint_pc);
4266 }
4267 }
4268
4269 static int
4270 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4271 {
4272 for (frame = get_prev_frame (frame);
4273 frame != NULL;
4274 frame = get_prev_frame (frame))
4275 {
4276 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4277 return 1;
4278 if (get_frame_type (frame) != INLINE_FRAME)
4279 break;
4280 }
4281
4282 return 0;
4283 }
4284
4285 /* Look for an inline frame that is marked for skip.
4286 If PREV_FRAME is TRUE start at the previous frame,
4287 otherwise start at the current frame. Stop at the
4288 first non-inline frame, or at the frame where the
4289 step started. */
4290
4291 static bool
4292 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4293 {
4294 struct frame_info *frame = get_current_frame ();
4295
4296 if (prev_frame)
4297 frame = get_prev_frame (frame);
4298
4299 for (; frame != NULL; frame = get_prev_frame (frame))
4300 {
4301 const char *fn = NULL;
4302 symtab_and_line sal;
4303 struct symbol *sym;
4304
4305 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4306 break;
4307 if (get_frame_type (frame) != INLINE_FRAME)
4308 break;
4309
4310 sal = find_frame_sal (frame);
4311 sym = get_frame_function (frame);
4312
4313 if (sym != NULL)
4314 fn = sym->print_name ();
4315
4316 if (sal.line != 0
4317 && function_name_is_marked_for_skip (fn, sal))
4318 return true;
4319 }
4320
4321 return false;
4322 }
4323
4324 /* If the event thread has the stop requested flag set, pretend it
4325 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4326 target_stop). */
4327
4328 static bool
4329 handle_stop_requested (struct execution_control_state *ecs)
4330 {
4331 if (ecs->event_thread->stop_requested)
4332 {
4333 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4334 ecs->ws.value.sig = GDB_SIGNAL_0;
4335 handle_signal_stop (ecs);
4336 return true;
4337 }
4338 return false;
4339 }
4340
4341 /* Auxiliary function that handles syscall entry/return events.
4342 It returns 1 if the inferior should keep going (and GDB
4343 should ignore the event), or 0 if the event deserves to be
4344 processed. */
4345
4346 static int
4347 handle_syscall_event (struct execution_control_state *ecs)
4348 {
4349 struct regcache *regcache;
4350 int syscall_number;
4351
4352 context_switch (ecs);
4353
4354 regcache = get_thread_regcache (ecs->event_thread);
4355 syscall_number = ecs->ws.value.syscall_number;
4356 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4357
4358 if (catch_syscall_enabled () > 0
4359 && catching_syscall_number (syscall_number) > 0)
4360 {
4361 infrun_log_debug ("syscall number=%d", syscall_number);
4362
4363 ecs->event_thread->control.stop_bpstat
4364 = bpstat_stop_status (regcache->aspace (),
4365 ecs->event_thread->suspend.stop_pc,
4366 ecs->event_thread, &ecs->ws);
4367
4368 if (handle_stop_requested (ecs))
4369 return 0;
4370
4371 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4372 {
4373 /* Catchpoint hit. */
4374 return 0;
4375 }
4376 }
4377
4378 if (handle_stop_requested (ecs))
4379 return 0;
4380
4381 /* If no catchpoint triggered for this, then keep going. */
4382 keep_going (ecs);
4383 return 1;
4384 }
4385
4386 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4387
4388 static void
4389 fill_in_stop_func (struct gdbarch *gdbarch,
4390 struct execution_control_state *ecs)
4391 {
4392 if (!ecs->stop_func_filled_in)
4393 {
4394 const block *block;
4395
4396 /* Don't care about return value; stop_func_start and stop_func_name
4397 will both be 0 if it doesn't work. */
4398 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4399 &ecs->stop_func_name,
4400 &ecs->stop_func_start,
4401 &ecs->stop_func_end,
4402 &block);
4403
4404 /* The call to find_pc_partial_function, above, will set
4405 stop_func_start and stop_func_end to the start and end
4406 of the range containing the stop pc. If this range
4407 contains the entry pc for the block (which is always the
4408 case for contiguous blocks), advance stop_func_start past
4409 the function's start offset and entrypoint. Note that
4410 stop_func_start is NOT advanced when in a range of a
4411 non-contiguous block that does not contain the entry pc. */
4412 if (block != nullptr
4413 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4414 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4415 {
4416 ecs->stop_func_start
4417 += gdbarch_deprecated_function_start_offset (gdbarch);
4418
4419 if (gdbarch_skip_entrypoint_p (gdbarch))
4420 ecs->stop_func_start
4421 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4422 }
4423
4424 ecs->stop_func_filled_in = 1;
4425 }
4426 }
4427
4428
4429 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4430
4431 static enum stop_kind
4432 get_inferior_stop_soon (execution_control_state *ecs)
4433 {
4434 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4435
4436 gdb_assert (inf != NULL);
4437 return inf->control.stop_soon;
4438 }
4439
4440 /* Poll for one event out of the current target. Store the resulting
4441 waitstatus in WS, and return the event ptid. Does not block. */
4442
4443 static ptid_t
4444 poll_one_curr_target (struct target_waitstatus *ws)
4445 {
4446 ptid_t event_ptid;
4447
4448 overlay_cache_invalid = 1;
4449
4450 /* Flush target cache before starting to handle each event.
4451 Target was running and cache could be stale. This is just a
4452 heuristic. Running threads may modify target memory, but we
4453 don't get any event. */
4454 target_dcache_invalidate ();
4455
4456 if (deprecated_target_wait_hook)
4457 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4458 else
4459 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4460
4461 if (debug_infrun)
4462 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4463
4464 return event_ptid;
4465 }
4466
4467 /* An event reported by wait_one. */
4468
4469 struct wait_one_event
4470 {
4471 /* The target the event came out of. */
4472 process_stratum_target *target;
4473
4474 /* The PTID the event was for. */
4475 ptid_t ptid;
4476
4477 /* The waitstatus. */
4478 target_waitstatus ws;
4479 };
4480
4481 /* Wait for one event out of any target. */
4482
4483 static wait_one_event
4484 wait_one ()
4485 {
4486 while (1)
4487 {
4488 for (inferior *inf : all_inferiors ())
4489 {
4490 process_stratum_target *target = inf->process_target ();
4491 if (target == NULL
4492 || !target->is_async_p ()
4493 || !target->threads_executing)
4494 continue;
4495
4496 switch_to_inferior_no_thread (inf);
4497
4498 wait_one_event event;
4499 event.target = target;
4500 event.ptid = poll_one_curr_target (&event.ws);
4501
4502 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4503 {
4504 /* If nothing is resumed, remove the target from the
4505 event loop. */
4506 target_async (0);
4507 }
4508 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4509 return event;
4510 }
4511
4512 /* Block waiting for some event. */
4513
4514 fd_set readfds;
4515 int nfds = 0;
4516
4517 FD_ZERO (&readfds);
4518
4519 for (inferior *inf : all_inferiors ())
4520 {
4521 process_stratum_target *target = inf->process_target ();
4522 if (target == NULL
4523 || !target->is_async_p ()
4524 || !target->threads_executing)
4525 continue;
4526
4527 int fd = target->async_wait_fd ();
4528 FD_SET (fd, &readfds);
4529 if (nfds <= fd)
4530 nfds = fd + 1;
4531 }
4532
4533 if (nfds == 0)
4534 {
4535 /* No waitable targets left. All must be stopped. */
4536 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4537 }
4538
4539 QUIT;
4540
4541 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4542 if (numfds < 0)
4543 {
4544 if (errno == EINTR)
4545 continue;
4546 else
4547 perror_with_name ("interruptible_select");
4548 }
4549 }
4550 }
4551
4552 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4553 instead of the current thread. */
4554 #define THREAD_STOPPED_BY(REASON) \
4555 static int \
4556 thread_stopped_by_ ## REASON (ptid_t ptid) \
4557 { \
4558 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4559 inferior_ptid = ptid; \
4560 \
4561 return target_stopped_by_ ## REASON (); \
4562 }
4563
4564 /* Generate thread_stopped_by_watchpoint. */
4565 THREAD_STOPPED_BY (watchpoint)
4566 /* Generate thread_stopped_by_sw_breakpoint. */
4567 THREAD_STOPPED_BY (sw_breakpoint)
4568 /* Generate thread_stopped_by_hw_breakpoint. */
4569 THREAD_STOPPED_BY (hw_breakpoint)
4570
4571 /* Save the thread's event and stop reason to process it later. */
4572
4573 static void
4574 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4575 {
4576 infrun_log_debug ("saving status %s for %d.%ld.%ld",
4577 target_waitstatus_to_string (ws).c_str (),
4578 tp->ptid.pid (),
4579 tp->ptid.lwp (),
4580 tp->ptid.tid ());
4581
4582 /* Record for later. */
4583 tp->suspend.waitstatus = *ws;
4584 tp->suspend.waitstatus_pending_p = 1;
4585
4586 struct regcache *regcache = get_thread_regcache (tp);
4587 const address_space *aspace = regcache->aspace ();
4588
4589 if (ws->kind == TARGET_WAITKIND_STOPPED
4590 && ws->value.sig == GDB_SIGNAL_TRAP)
4591 {
4592 CORE_ADDR pc = regcache_read_pc (regcache);
4593
4594 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4595
4596 if (thread_stopped_by_watchpoint (tp->ptid))
4597 {
4598 tp->suspend.stop_reason
4599 = TARGET_STOPPED_BY_WATCHPOINT;
4600 }
4601 else if (target_supports_stopped_by_sw_breakpoint ()
4602 && thread_stopped_by_sw_breakpoint (tp->ptid))
4603 {
4604 tp->suspend.stop_reason
4605 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4606 }
4607 else if (target_supports_stopped_by_hw_breakpoint ()
4608 && thread_stopped_by_hw_breakpoint (tp->ptid))
4609 {
4610 tp->suspend.stop_reason
4611 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4612 }
4613 else if (!target_supports_stopped_by_hw_breakpoint ()
4614 && hardware_breakpoint_inserted_here_p (aspace,
4615 pc))
4616 {
4617 tp->suspend.stop_reason
4618 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4619 }
4620 else if (!target_supports_stopped_by_sw_breakpoint ()
4621 && software_breakpoint_inserted_here_p (aspace,
4622 pc))
4623 {
4624 tp->suspend.stop_reason
4625 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4626 }
4627 else if (!thread_has_single_step_breakpoints_set (tp)
4628 && currently_stepping (tp))
4629 {
4630 tp->suspend.stop_reason
4631 = TARGET_STOPPED_BY_SINGLE_STEP;
4632 }
4633 }
4634 }
4635
4636 /* Mark the non-executing threads accordingly. In all-stop, all
4637 threads of all processes are stopped when we get any event
4638 reported. In non-stop mode, only the event thread stops. */
4639
4640 static void
4641 mark_non_executing_threads (process_stratum_target *target,
4642 ptid_t event_ptid,
4643 struct target_waitstatus ws)
4644 {
4645 ptid_t mark_ptid;
4646
4647 if (!target_is_non_stop_p ())
4648 mark_ptid = minus_one_ptid;
4649 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4650 || ws.kind == TARGET_WAITKIND_EXITED)
4651 {
4652 /* If we're handling a process exit in non-stop mode, even
4653 though threads haven't been deleted yet, one would think
4654 that there is nothing to do, as threads of the dead process
4655 will be soon deleted, and threads of any other process were
4656 left running. However, on some targets, threads survive a
4657 process exit event. E.g., for the "checkpoint" command,
4658 when the current checkpoint/fork exits, linux-fork.c
4659 automatically switches to another fork from within
4660 target_mourn_inferior, by associating the same
4661 inferior/thread to another fork. We haven't mourned yet at
4662 this point, but we must mark any threads left in the
4663 process as not-executing so that finish_thread_state marks
4664 them stopped (in the user's perspective) if/when we present
4665 the stop to the user. */
4666 mark_ptid = ptid_t (event_ptid.pid ());
4667 }
4668 else
4669 mark_ptid = event_ptid;
4670
4671 set_executing (target, mark_ptid, false);
4672
4673 /* Likewise the resumed flag. */
4674 set_resumed (target, mark_ptid, false);
4675 }
4676
4677 /* See infrun.h. */
4678
4679 void
4680 stop_all_threads (void)
4681 {
4682 /* We may need multiple passes to discover all threads. */
4683 int pass;
4684 int iterations = 0;
4685
4686 gdb_assert (exists_non_stop_target ());
4687
4688 infrun_log_debug ("stop_all_threads");
4689
4690 scoped_restore_current_thread restore_thread;
4691
4692 /* Enable thread events of all targets. */
4693 for (auto *target : all_non_exited_process_targets ())
4694 {
4695 switch_to_target_no_thread (target);
4696 target_thread_events (true);
4697 }
4698
4699 SCOPE_EXIT
4700 {
4701 /* Disable thread events of all targets. */
4702 for (auto *target : all_non_exited_process_targets ())
4703 {
4704 switch_to_target_no_thread (target);
4705 target_thread_events (false);
4706 }
4707
4708
4709 infrun_log_debug ("stop_all_threads done");
4710 };
4711
4712 /* Request threads to stop, and then wait for the stops. Because
4713 threads we already know about can spawn more threads while we're
4714 trying to stop them, and we only learn about new threads when we
4715 update the thread list, do this in a loop, and keep iterating
4716 until two passes find no threads that need to be stopped. */
4717 for (pass = 0; pass < 2; pass++, iterations++)
4718 {
4719 infrun_log_debug ("stop_all_threads, pass=%d, iterations=%d",
4720 pass, iterations);
4721 while (1)
4722 {
4723 int waits_needed = 0;
4724
4725 for (auto *target : all_non_exited_process_targets ())
4726 {
4727 switch_to_target_no_thread (target);
4728 update_thread_list ();
4729 }
4730
4731 /* Go through all threads looking for threads that we need
4732 to tell the target to stop. */
4733 for (thread_info *t : all_non_exited_threads ())
4734 {
4735 /* For a single-target setting with an all-stop target,
4736 we would not even arrive here. For a multi-target
4737 setting, until GDB is able to handle a mixture of
4738 all-stop and non-stop targets, simply skip all-stop
4739 targets' threads. This should be fine due to the
4740 protection of 'check_multi_target_resumption'. */
4741
4742 switch_to_thread_no_regs (t);
4743 if (!target_is_non_stop_p ())
4744 continue;
4745
4746 if (t->executing)
4747 {
4748 /* If already stopping, don't request a stop again.
4749 We just haven't seen the notification yet. */
4750 if (!t->stop_requested)
4751 {
4752 infrun_log_debug (" %s executing, need stop",
4753 target_pid_to_str (t->ptid).c_str ());
4754 target_stop (t->ptid);
4755 t->stop_requested = 1;
4756 }
4757 else
4758 {
4759 infrun_log_debug (" %s executing, already stopping",
4760 target_pid_to_str (t->ptid).c_str ());
4761 }
4762
4763 if (t->stop_requested)
4764 waits_needed++;
4765 }
4766 else
4767 {
4768 infrun_log_debug (" %s not executing",
4769 target_pid_to_str (t->ptid).c_str ());
4770
4771 /* The thread may be not executing, but still be
4772 resumed with a pending status to process. */
4773 t->resumed = false;
4774 }
4775 }
4776
4777 if (waits_needed == 0)
4778 break;
4779
4780 /* If we find new threads on the second iteration, restart
4781 over. We want to see two iterations in a row with all
4782 threads stopped. */
4783 if (pass > 0)
4784 pass = -1;
4785
4786 for (int i = 0; i < waits_needed; i++)
4787 {
4788 wait_one_event event = wait_one ();
4789
4790 infrun_log_debug ("%s %s\n",
4791 target_waitstatus_to_string (&event.ws).c_str (),
4792 target_pid_to_str (event.ptid).c_str ());
4793
4794 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4795 {
4796 /* All resumed threads exited. */
4797 break;
4798 }
4799 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4800 || event.ws.kind == TARGET_WAITKIND_EXITED
4801 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4802 {
4803 /* One thread/process exited/signalled. */
4804
4805 thread_info *t = nullptr;
4806
4807 /* The target may have reported just a pid. If so, try
4808 the first non-exited thread. */
4809 if (event.ptid.is_pid ())
4810 {
4811 int pid = event.ptid.pid ();
4812 inferior *inf = find_inferior_pid (event.target, pid);
4813 for (thread_info *tp : inf->non_exited_threads ())
4814 {
4815 t = tp;
4816 break;
4817 }
4818
4819 /* If there is no available thread, the event would
4820 have to be appended to a per-inferior event list,
4821 which does not exist (and if it did, we'd have
4822 to adjust run control command to be able to
4823 resume such an inferior). We assert here instead
4824 of going into an infinite loop. */
4825 gdb_assert (t != nullptr);
4826
4827 infrun_log_debug ("using %s\n",
4828 target_pid_to_str (t->ptid).c_str ());
4829 }
4830 else
4831 {
4832 t = find_thread_ptid (event.target, event.ptid);
4833 /* Check if this is the first time we see this thread.
4834 Don't bother adding if it individually exited. */
4835 if (t == nullptr
4836 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4837 t = add_thread (event.target, event.ptid);
4838 }
4839
4840 if (t != nullptr)
4841 {
4842 /* Set the threads as non-executing to avoid
4843 another stop attempt on them. */
4844 switch_to_thread_no_regs (t);
4845 mark_non_executing_threads (event.target, event.ptid,
4846 event.ws);
4847 save_waitstatus (t, &event.ws);
4848 t->stop_requested = false;
4849 }
4850 }
4851 else
4852 {
4853 thread_info *t = find_thread_ptid (event.target, event.ptid);
4854 if (t == NULL)
4855 t = add_thread (event.target, event.ptid);
4856
4857 t->stop_requested = 0;
4858 t->executing = 0;
4859 t->resumed = false;
4860 t->control.may_range_step = 0;
4861
4862 /* This may be the first time we see the inferior report
4863 a stop. */
4864 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4865 if (inf->needs_setup)
4866 {
4867 switch_to_thread_no_regs (t);
4868 setup_inferior (0);
4869 }
4870
4871 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4872 && event.ws.value.sig == GDB_SIGNAL_0)
4873 {
4874 /* We caught the event that we intended to catch, so
4875 there's no event pending. */
4876 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4877 t->suspend.waitstatus_pending_p = 0;
4878
4879 if (displaced_step_finish (t, GDB_SIGNAL_0) < 0)
4880 {
4881 /* Add it back to the step-over queue. */
4882 infrun_log_debug ("displaced-step of %s "
4883 "canceled: adding back to the "
4884 "step-over queue\n",
4885 target_pid_to_str (t->ptid).c_str ());
4886
4887 t->control.trap_expected = 0;
4888 global_thread_step_over_chain_enqueue (t);
4889 }
4890 }
4891 else
4892 {
4893 enum gdb_signal sig;
4894 struct regcache *regcache;
4895
4896 if (debug_infrun)
4897 {
4898 std::string statstr = target_waitstatus_to_string (&event.ws);
4899
4900 infrun_log_debug ("target_wait %s, saving "
4901 "status for %d.%ld.%ld\n",
4902 statstr.c_str (),
4903 t->ptid.pid (),
4904 t->ptid.lwp (),
4905 t->ptid.tid ());
4906 }
4907
4908 /* Record for later. */
4909 save_waitstatus (t, &event.ws);
4910
4911 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4912 ? event.ws.value.sig : GDB_SIGNAL_0);
4913
4914 if (displaced_step_finish (t, sig) < 0)
4915 {
4916 /* Add it back to the step-over queue. */
4917 t->control.trap_expected = 0;
4918 global_thread_step_over_chain_enqueue (t);
4919 }
4920
4921 regcache = get_thread_regcache (t);
4922 t->suspend.stop_pc = regcache_read_pc (regcache);
4923
4924 infrun_log_debug ("saved stop_pc=%s for %s "
4925 "(currently_stepping=%d)\n",
4926 paddress (target_gdbarch (),
4927 t->suspend.stop_pc),
4928 target_pid_to_str (t->ptid).c_str (),
4929 currently_stepping (t));
4930 }
4931 }
4932 }
4933 }
4934 }
4935 }
4936
4937 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4938
4939 static int
4940 handle_no_resumed (struct execution_control_state *ecs)
4941 {
4942 if (target_can_async_p ())
4943 {
4944 int any_sync = 0;
4945
4946 for (ui *ui : all_uis ())
4947 {
4948 if (ui->prompt_state == PROMPT_BLOCKED)
4949 {
4950 any_sync = 1;
4951 break;
4952 }
4953 }
4954 if (!any_sync)
4955 {
4956 /* There were no unwaited-for children left in the target, but,
4957 we're not synchronously waiting for events either. Just
4958 ignore. */
4959
4960 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4961 prepare_to_wait (ecs);
4962 return 1;
4963 }
4964 }
4965
4966 /* Otherwise, if we were running a synchronous execution command, we
4967 may need to cancel it and give the user back the terminal.
4968
4969 In non-stop mode, the target can't tell whether we've already
4970 consumed previous stop events, so it can end up sending us a
4971 no-resumed event like so:
4972
4973 #0 - thread 1 is left stopped
4974
4975 #1 - thread 2 is resumed and hits breakpoint
4976 -> TARGET_WAITKIND_STOPPED
4977
4978 #2 - thread 3 is resumed and exits
4979 this is the last resumed thread, so
4980 -> TARGET_WAITKIND_NO_RESUMED
4981
4982 #3 - gdb processes stop for thread 2 and decides to re-resume
4983 it.
4984
4985 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4986 thread 2 is now resumed, so the event should be ignored.
4987
4988 IOW, if the stop for thread 2 doesn't end a foreground command,
4989 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4990 event. But it could be that the event meant that thread 2 itself
4991 (or whatever other thread was the last resumed thread) exited.
4992
4993 To address this we refresh the thread list and check whether we
4994 have resumed threads _now_. In the example above, this removes
4995 thread 3 from the thread list. If thread 2 was re-resumed, we
4996 ignore this event. If we find no thread resumed, then we cancel
4997 the synchronous command show "no unwaited-for " to the user. */
4998 update_thread_list ();
4999
5000 for (thread_info *thread : all_non_exited_threads (ecs->target))
5001 {
5002 if (thread->executing
5003 || thread->suspend.waitstatus_pending_p)
5004 {
5005 /* There were no unwaited-for children left in the target at
5006 some point, but there are now. Just ignore. */
5007 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED "
5008 "(ignoring: found resumed)");
5009 prepare_to_wait (ecs);
5010 return 1;
5011 }
5012 }
5013
5014 /* Go ahead and report the event. */
5015 return 0;
5016 }
5017
5018 /* Given an execution control state that has been freshly filled in by
5019 an event from the inferior, figure out what it means and take
5020 appropriate action.
5021
5022 The alternatives are:
5023
5024 1) stop_waiting and return; to really stop and return to the
5025 debugger.
5026
5027 2) keep_going and return; to wait for the next event (set
5028 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5029 once). */
5030
5031 static void
5032 handle_inferior_event (struct execution_control_state *ecs)
5033 {
5034 /* Make sure that all temporary struct value objects that were
5035 created during the handling of the event get deleted at the
5036 end. */
5037 scoped_value_mark free_values;
5038
5039 enum stop_kind stop_soon;
5040
5041 infrun_log_debug ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5042
5043 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5044 {
5045 /* We had an event in the inferior, but we are not interested in
5046 handling it at this level. The lower layers have already
5047 done what needs to be done, if anything.
5048
5049 One of the possible circumstances for this is when the
5050 inferior produces output for the console. The inferior has
5051 not stopped, and we are ignoring the event. Another possible
5052 circumstance is any event which the lower level knows will be
5053 reported multiple times without an intervening resume. */
5054 prepare_to_wait (ecs);
5055 return;
5056 }
5057
5058 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5059 {
5060 prepare_to_wait (ecs);
5061 return;
5062 }
5063
5064 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5065 && handle_no_resumed (ecs))
5066 return;
5067
5068 /* Cache the last target/ptid/waitstatus. */
5069 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5070
5071 /* Always clear state belonging to the previous time we stopped. */
5072 stop_stack_dummy = STOP_NONE;
5073
5074 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5075 {
5076 /* No unwaited-for children left. IOW, all resumed children
5077 have exited. */
5078 stop_print_frame = 0;
5079 stop_waiting (ecs);
5080 return;
5081 }
5082
5083 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5084 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5085 {
5086 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5087 /* If it's a new thread, add it to the thread database. */
5088 if (ecs->event_thread == NULL)
5089 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5090
5091 /* Disable range stepping. If the next step request could use a
5092 range, this will be end up re-enabled then. */
5093 ecs->event_thread->control.may_range_step = 0;
5094 }
5095
5096 /* Dependent on valid ECS->EVENT_THREAD. */
5097 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5098
5099 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5100 reinit_frame_cache ();
5101
5102 breakpoint_retire_moribund ();
5103
5104 /* First, distinguish signals caused by the debugger from signals
5105 that have to do with the program's own actions. Note that
5106 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5107 on the operating system version. Here we detect when a SIGILL or
5108 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5109 something similar for SIGSEGV, since a SIGSEGV will be generated
5110 when we're trying to execute a breakpoint instruction on a
5111 non-executable stack. This happens for call dummy breakpoints
5112 for architectures like SPARC that place call dummies on the
5113 stack. */
5114 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5115 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5116 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5117 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5118 {
5119 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5120
5121 if (breakpoint_inserted_here_p (regcache->aspace (),
5122 regcache_read_pc (regcache)))
5123 {
5124 infrun_log_debug ("Treating signal as SIGTRAP");
5125 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5126 }
5127 }
5128
5129 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5130
5131 switch (ecs->ws.kind)
5132 {
5133 case TARGET_WAITKIND_LOADED:
5134 context_switch (ecs);
5135 /* Ignore gracefully during startup of the inferior, as it might
5136 be the shell which has just loaded some objects, otherwise
5137 add the symbols for the newly loaded objects. Also ignore at
5138 the beginning of an attach or remote session; we will query
5139 the full list of libraries once the connection is
5140 established. */
5141
5142 stop_soon = get_inferior_stop_soon (ecs);
5143 if (stop_soon == NO_STOP_QUIETLY)
5144 {
5145 struct regcache *regcache;
5146
5147 regcache = get_thread_regcache (ecs->event_thread);
5148
5149 handle_solib_event ();
5150
5151 ecs->event_thread->control.stop_bpstat
5152 = bpstat_stop_status (regcache->aspace (),
5153 ecs->event_thread->suspend.stop_pc,
5154 ecs->event_thread, &ecs->ws);
5155
5156 if (handle_stop_requested (ecs))
5157 return;
5158
5159 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5160 {
5161 /* A catchpoint triggered. */
5162 process_event_stop_test (ecs);
5163 return;
5164 }
5165
5166 /* If requested, stop when the dynamic linker notifies
5167 gdb of events. This allows the user to get control
5168 and place breakpoints in initializer routines for
5169 dynamically loaded objects (among other things). */
5170 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5171 if (stop_on_solib_events)
5172 {
5173 /* Make sure we print "Stopped due to solib-event" in
5174 normal_stop. */
5175 stop_print_frame = 1;
5176
5177 stop_waiting (ecs);
5178 return;
5179 }
5180 }
5181
5182 /* If we are skipping through a shell, or through shared library
5183 loading that we aren't interested in, resume the program. If
5184 we're running the program normally, also resume. */
5185 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5186 {
5187 /* Loading of shared libraries might have changed breakpoint
5188 addresses. Make sure new breakpoints are inserted. */
5189 if (stop_soon == NO_STOP_QUIETLY)
5190 insert_breakpoints ();
5191 resume (GDB_SIGNAL_0);
5192 prepare_to_wait (ecs);
5193 return;
5194 }
5195
5196 /* But stop if we're attaching or setting up a remote
5197 connection. */
5198 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5199 || stop_soon == STOP_QUIETLY_REMOTE)
5200 {
5201 infrun_log_debug ("quietly stopped");
5202 stop_waiting (ecs);
5203 return;
5204 }
5205
5206 internal_error (__FILE__, __LINE__,
5207 _("unhandled stop_soon: %d"), (int) stop_soon);
5208
5209 case TARGET_WAITKIND_SPURIOUS:
5210 if (handle_stop_requested (ecs))
5211 return;
5212 context_switch (ecs);
5213 resume (GDB_SIGNAL_0);
5214 prepare_to_wait (ecs);
5215 return;
5216
5217 case TARGET_WAITKIND_THREAD_CREATED:
5218 if (handle_stop_requested (ecs))
5219 return;
5220 context_switch (ecs);
5221 if (!switch_back_to_stepped_thread (ecs))
5222 keep_going (ecs);
5223 return;
5224
5225 case TARGET_WAITKIND_EXITED:
5226 case TARGET_WAITKIND_SIGNALLED:
5227 inferior_ptid = ecs->ptid;
5228 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
5229 set_current_program_space (current_inferior ()->pspace);
5230 handle_vfork_child_exec_or_exit (0);
5231 target_terminal::ours (); /* Must do this before mourn anyway. */
5232
5233 /* Clearing any previous state of convenience variables. */
5234 clear_exit_convenience_vars ();
5235
5236 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5237 {
5238 /* Record the exit code in the convenience variable $_exitcode, so
5239 that the user can inspect this again later. */
5240 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5241 (LONGEST) ecs->ws.value.integer);
5242
5243 /* Also record this in the inferior itself. */
5244 current_inferior ()->has_exit_code = 1;
5245 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5246
5247 /* Support the --return-child-result option. */
5248 return_child_result_value = ecs->ws.value.integer;
5249
5250 gdb::observers::exited.notify (ecs->ws.value.integer);
5251 }
5252 else
5253 {
5254 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5255
5256 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5257 {
5258 /* Set the value of the internal variable $_exitsignal,
5259 which holds the signal uncaught by the inferior. */
5260 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5261 gdbarch_gdb_signal_to_target (gdbarch,
5262 ecs->ws.value.sig));
5263 }
5264 else
5265 {
5266 /* We don't have access to the target's method used for
5267 converting between signal numbers (GDB's internal
5268 representation <-> target's representation).
5269 Therefore, we cannot do a good job at displaying this
5270 information to the user. It's better to just warn
5271 her about it (if infrun debugging is enabled), and
5272 give up. */
5273 infrun_log_debug ("Cannot fill $_exitsignal with the correct "
5274 "signal number.");
5275 }
5276
5277 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5278 }
5279
5280 gdb_flush (gdb_stdout);
5281 target_mourn_inferior (inferior_ptid);
5282 stop_print_frame = 0;
5283 stop_waiting (ecs);
5284 return;
5285
5286 case TARGET_WAITKIND_FORKED:
5287 case TARGET_WAITKIND_VFORKED:
5288 /* Check whether the inferior is displaced stepping. */
5289 {
5290 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5291 struct gdbarch *gdbarch = regcache->arch ();
5292
5293 /* If checking displaced stepping is supported, and thread
5294 ecs->ptid is displaced stepping. */
5295 if (displaced_step_in_progress (ecs->event_thread))
5296 {
5297 struct inferior *parent_inf
5298 = find_inferior_ptid (ecs->target, ecs->ptid);
5299 struct regcache *child_regcache;
5300 CORE_ADDR parent_pc;
5301
5302 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5303 {
5304 // struct displaced_step_inferior_state *displaced
5305 // = get_displaced_stepping_state (parent_inf);
5306
5307 /* Restore scratch pad for child process. */
5308 //displaced_step_restore (displaced, ecs->ws.value.related_pid);
5309 // FIXME: we should restore all the buffers that were currently in use
5310 }
5311
5312 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5313 indicating that the displaced stepping of syscall instruction
5314 has been done. Perform cleanup for parent process here. Note
5315 that this operation also cleans up the child process for vfork,
5316 because their pages are shared. */
5317 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5318 /* Start a new step-over in another thread if there's one
5319 that needs it. */
5320 start_step_over ();
5321
5322 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5323 the child's PC is also within the scratchpad. Set the child's PC
5324 to the parent's PC value, which has already been fixed up.
5325 FIXME: we use the parent's aspace here, although we're touching
5326 the child, because the child hasn't been added to the inferior
5327 list yet at this point. */
5328
5329 child_regcache
5330 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5331 ecs->ws.value.related_pid,
5332 gdbarch,
5333 parent_inf->aspace);
5334 /* Read PC value of parent process. */
5335 parent_pc = regcache_read_pc (regcache);
5336
5337 if (debug_displaced)
5338 fprintf_unfiltered (gdb_stdlog,
5339 "displaced: write child pc from %s to %s\n",
5340 paddress (gdbarch,
5341 regcache_read_pc (child_regcache)),
5342 paddress (gdbarch, parent_pc));
5343
5344 regcache_write_pc (child_regcache, parent_pc);
5345 }
5346 }
5347
5348 context_switch (ecs);
5349
5350 /* Immediately detach breakpoints from the child before there's
5351 any chance of letting the user delete breakpoints from the
5352 breakpoint lists. If we don't do this early, it's easy to
5353 leave left over traps in the child, vis: "break foo; catch
5354 fork; c; <fork>; del; c; <child calls foo>". We only follow
5355 the fork on the last `continue', and by that time the
5356 breakpoint at "foo" is long gone from the breakpoint table.
5357 If we vforked, then we don't need to unpatch here, since both
5358 parent and child are sharing the same memory pages; we'll
5359 need to unpatch at follow/detach time instead to be certain
5360 that new breakpoints added between catchpoint hit time and
5361 vfork follow are detached. */
5362 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5363 {
5364 /* This won't actually modify the breakpoint list, but will
5365 physically remove the breakpoints from the child. */
5366 detach_breakpoints (ecs->ws.value.related_pid);
5367 }
5368
5369 delete_just_stopped_threads_single_step_breakpoints ();
5370
5371 /* In case the event is caught by a catchpoint, remember that
5372 the event is to be followed at the next resume of the thread,
5373 and not immediately. */
5374 ecs->event_thread->pending_follow = ecs->ws;
5375
5376 ecs->event_thread->suspend.stop_pc
5377 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5378
5379 ecs->event_thread->control.stop_bpstat
5380 = bpstat_stop_status (get_current_regcache ()->aspace (),
5381 ecs->event_thread->suspend.stop_pc,
5382 ecs->event_thread, &ecs->ws);
5383
5384 if (handle_stop_requested (ecs))
5385 return;
5386
5387 /* If no catchpoint triggered for this, then keep going. Note
5388 that we're interested in knowing the bpstat actually causes a
5389 stop, not just if it may explain the signal. Software
5390 watchpoints, for example, always appear in the bpstat. */
5391 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5392 {
5393 bool follow_child
5394 = (follow_fork_mode_string == follow_fork_mode_child);
5395
5396 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5397
5398 process_stratum_target *targ
5399 = ecs->event_thread->inf->process_target ();
5400
5401 bool should_resume = follow_fork ();
5402
5403 /* Note that one of these may be an invalid pointer,
5404 depending on detach_fork. */
5405 thread_info *parent = ecs->event_thread;
5406 thread_info *child
5407 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5408
5409 /* At this point, the parent is marked running, and the
5410 child is marked stopped. */
5411
5412 /* If not resuming the parent, mark it stopped. */
5413 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5414 parent->set_running (false);
5415
5416 /* If resuming the child, mark it running. */
5417 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5418 child->set_running (true);
5419
5420 /* In non-stop mode, also resume the other branch. */
5421 if (!detach_fork && (non_stop
5422 || (sched_multi && target_is_non_stop_p ())))
5423 {
5424 if (follow_child)
5425 switch_to_thread (parent);
5426 else
5427 switch_to_thread (child);
5428
5429 ecs->event_thread = inferior_thread ();
5430 ecs->ptid = inferior_ptid;
5431 keep_going (ecs);
5432 }
5433
5434 if (follow_child)
5435 switch_to_thread (child);
5436 else
5437 switch_to_thread (parent);
5438
5439 ecs->event_thread = inferior_thread ();
5440 ecs->ptid = inferior_ptid;
5441
5442 if (should_resume)
5443 keep_going (ecs);
5444 else
5445 stop_waiting (ecs);
5446 return;
5447 }
5448 process_event_stop_test (ecs);
5449 return;
5450
5451 case TARGET_WAITKIND_VFORK_DONE:
5452 /* Done with the shared memory region. Re-insert breakpoints in
5453 the parent, and keep going. */
5454
5455 context_switch (ecs);
5456
5457 current_inferior ()->waiting_for_vfork_done = 0;
5458 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5459
5460 if (handle_stop_requested (ecs))
5461 return;
5462
5463 /* This also takes care of reinserting breakpoints in the
5464 previously locked inferior. */
5465 keep_going (ecs);
5466 return;
5467
5468 case TARGET_WAITKIND_EXECD:
5469
5470 /* Note we can't read registers yet (the stop_pc), because we
5471 don't yet know the inferior's post-exec architecture.
5472 'stop_pc' is explicitly read below instead. */
5473 switch_to_thread_no_regs (ecs->event_thread);
5474
5475 /* Do whatever is necessary to the parent branch of the vfork. */
5476 handle_vfork_child_exec_or_exit (1);
5477
5478 /* This causes the eventpoints and symbol table to be reset.
5479 Must do this now, before trying to determine whether to
5480 stop. */
5481 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5482
5483 /* In follow_exec we may have deleted the original thread and
5484 created a new one. Make sure that the event thread is the
5485 execd thread for that case (this is a nop otherwise). */
5486 ecs->event_thread = inferior_thread ();
5487
5488 ecs->event_thread->suspend.stop_pc
5489 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5490
5491 ecs->event_thread->control.stop_bpstat
5492 = bpstat_stop_status (get_current_regcache ()->aspace (),
5493 ecs->event_thread->suspend.stop_pc,
5494 ecs->event_thread, &ecs->ws);
5495
5496 /* Note that this may be referenced from inside
5497 bpstat_stop_status above, through inferior_has_execd. */
5498 xfree (ecs->ws.value.execd_pathname);
5499 ecs->ws.value.execd_pathname = NULL;
5500
5501 if (handle_stop_requested (ecs))
5502 return;
5503
5504 /* If no catchpoint triggered for this, then keep going. */
5505 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5506 {
5507 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5508 keep_going (ecs);
5509 return;
5510 }
5511 process_event_stop_test (ecs);
5512 return;
5513
5514 /* Be careful not to try to gather much state about a thread
5515 that's in a syscall. It's frequently a losing proposition. */
5516 case TARGET_WAITKIND_SYSCALL_ENTRY:
5517 /* Getting the current syscall number. */
5518 if (handle_syscall_event (ecs) == 0)
5519 process_event_stop_test (ecs);
5520 return;
5521
5522 /* Before examining the threads further, step this thread to
5523 get it entirely out of the syscall. (We get notice of the
5524 event when the thread is just on the verge of exiting a
5525 syscall. Stepping one instruction seems to get it back
5526 into user code.) */
5527 case TARGET_WAITKIND_SYSCALL_RETURN:
5528 if (handle_syscall_event (ecs) == 0)
5529 process_event_stop_test (ecs);
5530 return;
5531
5532 case TARGET_WAITKIND_STOPPED:
5533 handle_signal_stop (ecs);
5534 return;
5535
5536 case TARGET_WAITKIND_NO_HISTORY:
5537 /* Reverse execution: target ran out of history info. */
5538
5539 /* Switch to the stopped thread. */
5540 context_switch (ecs);
5541 infrun_log_debug ("stopped");
5542
5543 delete_just_stopped_threads_single_step_breakpoints ();
5544 ecs->event_thread->suspend.stop_pc
5545 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5546
5547 if (handle_stop_requested (ecs))
5548 return;
5549
5550 gdb::observers::no_history.notify ();
5551 stop_waiting (ecs);
5552 return;
5553 }
5554 }
5555
5556 /* Restart threads back to what they were trying to do back when we
5557 paused them for an in-line step-over. The EVENT_THREAD thread is
5558 ignored. */
5559
5560 static void
5561 restart_threads (struct thread_info *event_thread)
5562 {
5563 /* In case the instruction just stepped spawned a new thread. */
5564 update_thread_list ();
5565
5566 for (thread_info *tp : all_non_exited_threads ())
5567 {
5568 switch_to_thread_no_regs (tp);
5569
5570 if (tp == event_thread)
5571 {
5572 infrun_log_debug ("restart threads: [%s] is event thread",
5573 target_pid_to_str (tp->ptid).c_str ());
5574 continue;
5575 }
5576
5577 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5578 {
5579 infrun_log_debug ("restart threads: [%s] not meant to be running",
5580 target_pid_to_str (tp->ptid).c_str ());
5581 continue;
5582 }
5583
5584 if (tp->resumed)
5585 {
5586 infrun_log_debug ("restart threads: [%s] resumed",
5587 target_pid_to_str (tp->ptid).c_str ());
5588 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5589 continue;
5590 }
5591
5592 if (thread_is_in_step_over_chain (tp))
5593 {
5594 infrun_log_debug ("restart threads: [%s] needs step-over",
5595 target_pid_to_str (tp->ptid).c_str ());
5596 gdb_assert (!tp->resumed);
5597 continue;
5598 }
5599
5600
5601 if (tp->suspend.waitstatus_pending_p)
5602 {
5603 infrun_log_debug ("restart threads: [%s] has pending status",
5604 target_pid_to_str (tp->ptid).c_str ());
5605 tp->resumed = true;
5606 continue;
5607 }
5608
5609 gdb_assert (!tp->stop_requested);
5610
5611 /* If some thread needs to start a step-over at this point, it
5612 should still be in the step-over queue, and thus skipped
5613 above. */
5614 if (thread_still_needs_step_over (tp))
5615 {
5616 internal_error (__FILE__, __LINE__,
5617 "thread [%s] needs a step-over, but not in "
5618 "step-over queue\n",
5619 target_pid_to_str (tp->ptid).c_str ());
5620 }
5621
5622 if (currently_stepping (tp))
5623 {
5624 infrun_log_debug ("restart threads: [%s] was stepping",
5625 target_pid_to_str (tp->ptid).c_str ());
5626 keep_going_stepped_thread (tp);
5627 }
5628 else
5629 {
5630 struct execution_control_state ecss;
5631 struct execution_control_state *ecs = &ecss;
5632
5633 infrun_log_debug ("restart threads: [%s] continuing",
5634 target_pid_to_str (tp->ptid).c_str ());
5635 reset_ecs (ecs, tp);
5636 switch_to_thread (tp);
5637 keep_going_pass_signal (ecs);
5638 }
5639 }
5640 }
5641
5642 /* Callback for iterate_over_threads. Find a resumed thread that has
5643 a pending waitstatus. */
5644
5645 static int
5646 resumed_thread_with_pending_status (struct thread_info *tp,
5647 void *arg)
5648 {
5649 return (tp->resumed
5650 && tp->suspend.waitstatus_pending_p);
5651 }
5652
5653 /* Called when we get an event that may finish an in-line or
5654 out-of-line (displaced stepping) step-over started previously.
5655 Return true if the event is processed and we should go back to the
5656 event loop; false if the caller should continue processing the
5657 event. */
5658
5659 static int
5660 finish_step_over (struct execution_control_state *ecs)
5661 {
5662 int had_step_over_info;
5663
5664 displaced_step_finish (ecs->event_thread,
5665 ecs->event_thread->suspend.stop_signal);
5666
5667 had_step_over_info = step_over_info_valid_p ();
5668
5669 if (had_step_over_info)
5670 {
5671 /* If we're stepping over a breakpoint with all threads locked,
5672 then only the thread that was stepped should be reporting
5673 back an event. */
5674 gdb_assert (ecs->event_thread->control.trap_expected);
5675
5676 clear_step_over_info ();
5677 }
5678
5679 if (!target_is_non_stop_p ())
5680 return 0;
5681
5682 /* Start a new step-over in another thread if there's one that
5683 needs it. */
5684 start_step_over ();
5685
5686 /* If we were stepping over a breakpoint before, and haven't started
5687 a new in-line step-over sequence, then restart all other threads
5688 (except the event thread). We can't do this in all-stop, as then
5689 e.g., we wouldn't be able to issue any other remote packet until
5690 these other threads stop. */
5691 if (had_step_over_info && !step_over_info_valid_p ())
5692 {
5693 struct thread_info *pending;
5694
5695 /* If we only have threads with pending statuses, the restart
5696 below won't restart any thread and so nothing re-inserts the
5697 breakpoint we just stepped over. But we need it inserted
5698 when we later process the pending events, otherwise if
5699 another thread has a pending event for this breakpoint too,
5700 we'd discard its event (because the breakpoint that
5701 originally caused the event was no longer inserted). */
5702 context_switch (ecs);
5703 insert_breakpoints ();
5704
5705 restart_threads (ecs->event_thread);
5706
5707 /* If we have events pending, go through handle_inferior_event
5708 again, picking up a pending event at random. This avoids
5709 thread starvation. */
5710
5711 /* But not if we just stepped over a watchpoint in order to let
5712 the instruction execute so we can evaluate its expression.
5713 The set of watchpoints that triggered is recorded in the
5714 breakpoint objects themselves (see bp->watchpoint_triggered).
5715 If we processed another event first, that other event could
5716 clobber this info. */
5717 if (ecs->event_thread->stepping_over_watchpoint)
5718 return 0;
5719
5720 pending = iterate_over_threads (resumed_thread_with_pending_status,
5721 NULL);
5722 if (pending != NULL)
5723 {
5724 struct thread_info *tp = ecs->event_thread;
5725 struct regcache *regcache;
5726
5727 infrun_log_debug ("found resumed threads with "
5728 "pending events, saving status");
5729
5730 gdb_assert (pending != tp);
5731
5732 /* Record the event thread's event for later. */
5733 save_waitstatus (tp, &ecs->ws);
5734 /* This was cleared early, by handle_inferior_event. Set it
5735 so this pending event is considered by
5736 do_target_wait. */
5737 tp->resumed = true;
5738
5739 gdb_assert (!tp->executing);
5740
5741 regcache = get_thread_regcache (tp);
5742 tp->suspend.stop_pc = regcache_read_pc (regcache);
5743
5744 infrun_log_debug ("saved stop_pc=%s for %s "
5745 "(currently_stepping=%d)\n",
5746 paddress (target_gdbarch (),
5747 tp->suspend.stop_pc),
5748 target_pid_to_str (tp->ptid).c_str (),
5749 currently_stepping (tp));
5750
5751 /* This in-line step-over finished; clear this so we won't
5752 start a new one. This is what handle_signal_stop would
5753 do, if we returned false. */
5754 tp->stepping_over_breakpoint = 0;
5755
5756 /* Wake up the event loop again. */
5757 mark_async_event_handler (infrun_async_inferior_event_token);
5758
5759 prepare_to_wait (ecs);
5760 return 1;
5761 }
5762 }
5763
5764 return 0;
5765 }
5766
5767 /* Come here when the program has stopped with a signal. */
5768
5769 static void
5770 handle_signal_stop (struct execution_control_state *ecs)
5771 {
5772 struct frame_info *frame;
5773 struct gdbarch *gdbarch;
5774 int stopped_by_watchpoint;
5775 enum stop_kind stop_soon;
5776 int random_signal;
5777
5778 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5779
5780 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5781
5782 /* Do we need to clean up the state of a thread that has
5783 completed a displaced single-step? (Doing so usually affects
5784 the PC, so do it here, before we set stop_pc.) */
5785 if (finish_step_over (ecs))
5786 return;
5787
5788 /* If we either finished a single-step or hit a breakpoint, but
5789 the user wanted this thread to be stopped, pretend we got a
5790 SIG0 (generic unsignaled stop). */
5791 if (ecs->event_thread->stop_requested
5792 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5793 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5794
5795 ecs->event_thread->suspend.stop_pc
5796 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5797
5798 if (debug_infrun)
5799 {
5800 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5801 struct gdbarch *reg_gdbarch = regcache->arch ();
5802
5803 switch_to_thread (ecs->event_thread);
5804
5805 infrun_log_debug ("stop_pc=%s",
5806 paddress (reg_gdbarch,
5807 ecs->event_thread->suspend.stop_pc));
5808 if (target_stopped_by_watchpoint ())
5809 {
5810 CORE_ADDR addr;
5811
5812 infrun_log_debug ("stopped by watchpoint");
5813
5814 if (target_stopped_data_address (current_top_target (), &addr))
5815 infrun_log_debug ("stopped data address=%s",
5816 paddress (reg_gdbarch, addr));
5817 else
5818 infrun_log_debug ("(no data address available)");
5819 }
5820 }
5821
5822 /* This is originated from start_remote(), start_inferior() and
5823 shared libraries hook functions. */
5824 stop_soon = get_inferior_stop_soon (ecs);
5825 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5826 {
5827 context_switch (ecs);
5828 infrun_log_debug ("quietly stopped");
5829 stop_print_frame = 1;
5830 stop_waiting (ecs);
5831 return;
5832 }
5833
5834 /* This originates from attach_command(). We need to overwrite
5835 the stop_signal here, because some kernels don't ignore a
5836 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5837 See more comments in inferior.h. On the other hand, if we
5838 get a non-SIGSTOP, report it to the user - assume the backend
5839 will handle the SIGSTOP if it should show up later.
5840
5841 Also consider that the attach is complete when we see a
5842 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5843 target extended-remote report it instead of a SIGSTOP
5844 (e.g. gdbserver). We already rely on SIGTRAP being our
5845 signal, so this is no exception.
5846
5847 Also consider that the attach is complete when we see a
5848 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5849 the target to stop all threads of the inferior, in case the
5850 low level attach operation doesn't stop them implicitly. If
5851 they weren't stopped implicitly, then the stub will report a
5852 GDB_SIGNAL_0, meaning: stopped for no particular reason
5853 other than GDB's request. */
5854 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5855 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5856 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5857 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5858 {
5859 stop_print_frame = 1;
5860 stop_waiting (ecs);
5861 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5862 return;
5863 }
5864
5865 /* See if something interesting happened to the non-current thread. If
5866 so, then switch to that thread. */
5867 if (ecs->ptid != inferior_ptid)
5868 {
5869 infrun_log_debug ("context switch");
5870
5871 context_switch (ecs);
5872
5873 if (deprecated_context_hook)
5874 deprecated_context_hook (ecs->event_thread->global_num);
5875 }
5876
5877 /* At this point, get hold of the now-current thread's frame. */
5878 frame = get_current_frame ();
5879 gdbarch = get_frame_arch (frame);
5880
5881 /* Pull the single step breakpoints out of the target. */
5882 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5883 {
5884 struct regcache *regcache;
5885 CORE_ADDR pc;
5886
5887 regcache = get_thread_regcache (ecs->event_thread);
5888 const address_space *aspace = regcache->aspace ();
5889
5890 pc = regcache_read_pc (regcache);
5891
5892 /* However, before doing so, if this single-step breakpoint was
5893 actually for another thread, set this thread up for moving
5894 past it. */
5895 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5896 aspace, pc))
5897 {
5898 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5899 {
5900 infrun_log_debug ("[%s] hit another thread's single-step "
5901 "breakpoint",
5902 target_pid_to_str (ecs->ptid).c_str ());
5903 ecs->hit_singlestep_breakpoint = 1;
5904 }
5905 }
5906 else
5907 {
5908 infrun_log_debug ("[%s] hit its single-step breakpoint",
5909 target_pid_to_str (ecs->ptid).c_str ());
5910 }
5911 }
5912 delete_just_stopped_threads_single_step_breakpoints ();
5913
5914 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5915 && ecs->event_thread->control.trap_expected
5916 && ecs->event_thread->stepping_over_watchpoint)
5917 stopped_by_watchpoint = 0;
5918 else
5919 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5920
5921 /* If necessary, step over this watchpoint. We'll be back to display
5922 it in a moment. */
5923 if (stopped_by_watchpoint
5924 && (target_have_steppable_watchpoint
5925 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5926 {
5927 /* At this point, we are stopped at an instruction which has
5928 attempted to write to a piece of memory under control of
5929 a watchpoint. The instruction hasn't actually executed
5930 yet. If we were to evaluate the watchpoint expression
5931 now, we would get the old value, and therefore no change
5932 would seem to have occurred.
5933
5934 In order to make watchpoints work `right', we really need
5935 to complete the memory write, and then evaluate the
5936 watchpoint expression. We do this by single-stepping the
5937 target.
5938
5939 It may not be necessary to disable the watchpoint to step over
5940 it. For example, the PA can (with some kernel cooperation)
5941 single step over a watchpoint without disabling the watchpoint.
5942
5943 It is far more common to need to disable a watchpoint to step
5944 the inferior over it. If we have non-steppable watchpoints,
5945 we must disable the current watchpoint; it's simplest to
5946 disable all watchpoints.
5947
5948 Any breakpoint at PC must also be stepped over -- if there's
5949 one, it will have already triggered before the watchpoint
5950 triggered, and we either already reported it to the user, or
5951 it didn't cause a stop and we called keep_going. In either
5952 case, if there was a breakpoint at PC, we must be trying to
5953 step past it. */
5954 ecs->event_thread->stepping_over_watchpoint = 1;
5955 keep_going (ecs);
5956 return;
5957 }
5958
5959 ecs->event_thread->stepping_over_breakpoint = 0;
5960 ecs->event_thread->stepping_over_watchpoint = 0;
5961 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5962 ecs->event_thread->control.stop_step = 0;
5963 stop_print_frame = 1;
5964 stopped_by_random_signal = 0;
5965 bpstat stop_chain = NULL;
5966
5967 /* Hide inlined functions starting here, unless we just performed stepi or
5968 nexti. After stepi and nexti, always show the innermost frame (not any
5969 inline function call sites). */
5970 if (ecs->event_thread->control.step_range_end != 1)
5971 {
5972 const address_space *aspace
5973 = get_thread_regcache (ecs->event_thread)->aspace ();
5974
5975 /* skip_inline_frames is expensive, so we avoid it if we can
5976 determine that the address is one where functions cannot have
5977 been inlined. This improves performance with inferiors that
5978 load a lot of shared libraries, because the solib event
5979 breakpoint is defined as the address of a function (i.e. not
5980 inline). Note that we have to check the previous PC as well
5981 as the current one to catch cases when we have just
5982 single-stepped off a breakpoint prior to reinstating it.
5983 Note that we're assuming that the code we single-step to is
5984 not inline, but that's not definitive: there's nothing
5985 preventing the event breakpoint function from containing
5986 inlined code, and the single-step ending up there. If the
5987 user had set a breakpoint on that inlined code, the missing
5988 skip_inline_frames call would break things. Fortunately
5989 that's an extremely unlikely scenario. */
5990 if (!pc_at_non_inline_function (aspace,
5991 ecs->event_thread->suspend.stop_pc,
5992 &ecs->ws)
5993 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5994 && ecs->event_thread->control.trap_expected
5995 && pc_at_non_inline_function (aspace,
5996 ecs->event_thread->prev_pc,
5997 &ecs->ws)))
5998 {
5999 stop_chain = build_bpstat_chain (aspace,
6000 ecs->event_thread->suspend.stop_pc,
6001 &ecs->ws);
6002 skip_inline_frames (ecs->event_thread, stop_chain);
6003
6004 /* Re-fetch current thread's frame in case that invalidated
6005 the frame cache. */
6006 frame = get_current_frame ();
6007 gdbarch = get_frame_arch (frame);
6008 }
6009 }
6010
6011 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6012 && ecs->event_thread->control.trap_expected
6013 && gdbarch_single_step_through_delay_p (gdbarch)
6014 && currently_stepping (ecs->event_thread))
6015 {
6016 /* We're trying to step off a breakpoint. Turns out that we're
6017 also on an instruction that needs to be stepped multiple
6018 times before it's been fully executing. E.g., architectures
6019 with a delay slot. It needs to be stepped twice, once for
6020 the instruction and once for the delay slot. */
6021 int step_through_delay
6022 = gdbarch_single_step_through_delay (gdbarch, frame);
6023
6024 if (step_through_delay)
6025 infrun_log_debug ("step through delay");
6026
6027 if (ecs->event_thread->control.step_range_end == 0
6028 && step_through_delay)
6029 {
6030 /* The user issued a continue when stopped at a breakpoint.
6031 Set up for another trap and get out of here. */
6032 ecs->event_thread->stepping_over_breakpoint = 1;
6033 keep_going (ecs);
6034 return;
6035 }
6036 else if (step_through_delay)
6037 {
6038 /* The user issued a step when stopped at a breakpoint.
6039 Maybe we should stop, maybe we should not - the delay
6040 slot *might* correspond to a line of source. In any
6041 case, don't decide that here, just set
6042 ecs->stepping_over_breakpoint, making sure we
6043 single-step again before breakpoints are re-inserted. */
6044 ecs->event_thread->stepping_over_breakpoint = 1;
6045 }
6046 }
6047
6048 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6049 handles this event. */
6050 ecs->event_thread->control.stop_bpstat
6051 = bpstat_stop_status (get_current_regcache ()->aspace (),
6052 ecs->event_thread->suspend.stop_pc,
6053 ecs->event_thread, &ecs->ws, stop_chain);
6054
6055 /* Following in case break condition called a
6056 function. */
6057 stop_print_frame = 1;
6058
6059 /* This is where we handle "moribund" watchpoints. Unlike
6060 software breakpoints traps, hardware watchpoint traps are
6061 always distinguishable from random traps. If no high-level
6062 watchpoint is associated with the reported stop data address
6063 anymore, then the bpstat does not explain the signal ---
6064 simply make sure to ignore it if `stopped_by_watchpoint' is
6065 set. */
6066
6067 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6068 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6069 GDB_SIGNAL_TRAP)
6070 && stopped_by_watchpoint)
6071 {
6072 infrun_log_debug ("no user watchpoint explains watchpoint SIGTRAP, "
6073 "ignoring");
6074 }
6075
6076 /* NOTE: cagney/2003-03-29: These checks for a random signal
6077 at one stage in the past included checks for an inferior
6078 function call's call dummy's return breakpoint. The original
6079 comment, that went with the test, read:
6080
6081 ``End of a stack dummy. Some systems (e.g. Sony news) give
6082 another signal besides SIGTRAP, so check here as well as
6083 above.''
6084
6085 If someone ever tries to get call dummys on a
6086 non-executable stack to work (where the target would stop
6087 with something like a SIGSEGV), then those tests might need
6088 to be re-instated. Given, however, that the tests were only
6089 enabled when momentary breakpoints were not being used, I
6090 suspect that it won't be the case.
6091
6092 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6093 be necessary for call dummies on a non-executable stack on
6094 SPARC. */
6095
6096 /* See if the breakpoints module can explain the signal. */
6097 random_signal
6098 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6099 ecs->event_thread->suspend.stop_signal);
6100
6101 /* Maybe this was a trap for a software breakpoint that has since
6102 been removed. */
6103 if (random_signal && target_stopped_by_sw_breakpoint ())
6104 {
6105 if (gdbarch_program_breakpoint_here_p (gdbarch,
6106 ecs->event_thread->suspend.stop_pc))
6107 {
6108 struct regcache *regcache;
6109 int decr_pc;
6110
6111 /* Re-adjust PC to what the program would see if GDB was not
6112 debugging it. */
6113 regcache = get_thread_regcache (ecs->event_thread);
6114 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6115 if (decr_pc != 0)
6116 {
6117 gdb::optional<scoped_restore_tmpl<int>>
6118 restore_operation_disable;
6119
6120 if (record_full_is_used ())
6121 restore_operation_disable.emplace
6122 (record_full_gdb_operation_disable_set ());
6123
6124 regcache_write_pc (regcache,
6125 ecs->event_thread->suspend.stop_pc + decr_pc);
6126 }
6127 }
6128 else
6129 {
6130 /* A delayed software breakpoint event. Ignore the trap. */
6131 infrun_log_debug ("delayed software breakpoint trap, ignoring");
6132 random_signal = 0;
6133 }
6134 }
6135
6136 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6137 has since been removed. */
6138 if (random_signal && target_stopped_by_hw_breakpoint ())
6139 {
6140 /* A delayed hardware breakpoint event. Ignore the trap. */
6141 infrun_log_debug ("delayed hardware breakpoint/watchpoint "
6142 "trap, ignoring");
6143 random_signal = 0;
6144 }
6145
6146 /* If not, perhaps stepping/nexting can. */
6147 if (random_signal)
6148 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6149 && currently_stepping (ecs->event_thread));
6150
6151 /* Perhaps the thread hit a single-step breakpoint of _another_
6152 thread. Single-step breakpoints are transparent to the
6153 breakpoints module. */
6154 if (random_signal)
6155 random_signal = !ecs->hit_singlestep_breakpoint;
6156
6157 /* No? Perhaps we got a moribund watchpoint. */
6158 if (random_signal)
6159 random_signal = !stopped_by_watchpoint;
6160
6161 /* Always stop if the user explicitly requested this thread to
6162 remain stopped. */
6163 if (ecs->event_thread->stop_requested)
6164 {
6165 random_signal = 1;
6166 infrun_log_debug ("user-requested stop");
6167 }
6168
6169 /* For the program's own signals, act according to
6170 the signal handling tables. */
6171
6172 if (random_signal)
6173 {
6174 /* Signal not for debugging purposes. */
6175 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6176 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6177
6178 infrun_log_debug ("random signal (%s)",
6179 gdb_signal_to_symbol_string (stop_signal));
6180
6181 stopped_by_random_signal = 1;
6182
6183 /* Always stop on signals if we're either just gaining control
6184 of the program, or the user explicitly requested this thread
6185 to remain stopped. */
6186 if (stop_soon != NO_STOP_QUIETLY
6187 || ecs->event_thread->stop_requested
6188 || (!inf->detaching
6189 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6190 {
6191 stop_waiting (ecs);
6192 return;
6193 }
6194
6195 /* Notify observers the signal has "handle print" set. Note we
6196 returned early above if stopping; normal_stop handles the
6197 printing in that case. */
6198 if (signal_print[ecs->event_thread->suspend.stop_signal])
6199 {
6200 /* The signal table tells us to print about this signal. */
6201 target_terminal::ours_for_output ();
6202 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6203 target_terminal::inferior ();
6204 }
6205
6206 /* Clear the signal if it should not be passed. */
6207 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6208 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6209
6210 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6211 && ecs->event_thread->control.trap_expected
6212 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6213 {
6214 /* We were just starting a new sequence, attempting to
6215 single-step off of a breakpoint and expecting a SIGTRAP.
6216 Instead this signal arrives. This signal will take us out
6217 of the stepping range so GDB needs to remember to, when
6218 the signal handler returns, resume stepping off that
6219 breakpoint. */
6220 /* To simplify things, "continue" is forced to use the same
6221 code paths as single-step - set a breakpoint at the
6222 signal return address and then, once hit, step off that
6223 breakpoint. */
6224 infrun_log_debug ("signal arrived while stepping over breakpoint");
6225
6226 insert_hp_step_resume_breakpoint_at_frame (frame);
6227 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6228 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6229 ecs->event_thread->control.trap_expected = 0;
6230
6231 /* If we were nexting/stepping some other thread, switch to
6232 it, so that we don't continue it, losing control. */
6233 if (!switch_back_to_stepped_thread (ecs))
6234 keep_going (ecs);
6235 return;
6236 }
6237
6238 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6239 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6240 ecs->event_thread)
6241 || ecs->event_thread->control.step_range_end == 1)
6242 && frame_id_eq (get_stack_frame_id (frame),
6243 ecs->event_thread->control.step_stack_frame_id)
6244 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6245 {
6246 /* The inferior is about to take a signal that will take it
6247 out of the single step range. Set a breakpoint at the
6248 current PC (which is presumably where the signal handler
6249 will eventually return) and then allow the inferior to
6250 run free.
6251
6252 Note that this is only needed for a signal delivered
6253 while in the single-step range. Nested signals aren't a
6254 problem as they eventually all return. */
6255 infrun_log_debug ("signal may take us out of single-step range");
6256
6257 clear_step_over_info ();
6258 insert_hp_step_resume_breakpoint_at_frame (frame);
6259 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6260 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6261 ecs->event_thread->control.trap_expected = 0;
6262 keep_going (ecs);
6263 return;
6264 }
6265
6266 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6267 when either there's a nested signal, or when there's a
6268 pending signal enabled just as the signal handler returns
6269 (leaving the inferior at the step-resume-breakpoint without
6270 actually executing it). Either way continue until the
6271 breakpoint is really hit. */
6272
6273 if (!switch_back_to_stepped_thread (ecs))
6274 {
6275 infrun_log_debug ("random signal, keep going");
6276
6277 keep_going (ecs);
6278 }
6279 return;
6280 }
6281
6282 process_event_stop_test (ecs);
6283 }
6284
6285 /* Come here when we've got some debug event / signal we can explain
6286 (IOW, not a random signal), and test whether it should cause a
6287 stop, or whether we should resume the inferior (transparently).
6288 E.g., could be a breakpoint whose condition evaluates false; we
6289 could be still stepping within the line; etc. */
6290
6291 static void
6292 process_event_stop_test (struct execution_control_state *ecs)
6293 {
6294 struct symtab_and_line stop_pc_sal;
6295 struct frame_info *frame;
6296 struct gdbarch *gdbarch;
6297 CORE_ADDR jmp_buf_pc;
6298 struct bpstat_what what;
6299
6300 /* Handle cases caused by hitting a breakpoint. */
6301
6302 frame = get_current_frame ();
6303 gdbarch = get_frame_arch (frame);
6304
6305 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6306
6307 if (what.call_dummy)
6308 {
6309 stop_stack_dummy = what.call_dummy;
6310 }
6311
6312 /* A few breakpoint types have callbacks associated (e.g.,
6313 bp_jit_event). Run them now. */
6314 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6315
6316 /* If we hit an internal event that triggers symbol changes, the
6317 current frame will be invalidated within bpstat_what (e.g., if we
6318 hit an internal solib event). Re-fetch it. */
6319 frame = get_current_frame ();
6320 gdbarch = get_frame_arch (frame);
6321
6322 switch (what.main_action)
6323 {
6324 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6325 /* If we hit the breakpoint at longjmp while stepping, we
6326 install a momentary breakpoint at the target of the
6327 jmp_buf. */
6328
6329 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6330
6331 ecs->event_thread->stepping_over_breakpoint = 1;
6332
6333 if (what.is_longjmp)
6334 {
6335 struct value *arg_value;
6336
6337 /* If we set the longjmp breakpoint via a SystemTap probe,
6338 then use it to extract the arguments. The destination PC
6339 is the third argument to the probe. */
6340 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6341 if (arg_value)
6342 {
6343 jmp_buf_pc = value_as_address (arg_value);
6344 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6345 }
6346 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6347 || !gdbarch_get_longjmp_target (gdbarch,
6348 frame, &jmp_buf_pc))
6349 {
6350 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6351 "(!gdbarch_get_longjmp_target)");
6352 keep_going (ecs);
6353 return;
6354 }
6355
6356 /* Insert a breakpoint at resume address. */
6357 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6358 }
6359 else
6360 check_exception_resume (ecs, frame);
6361 keep_going (ecs);
6362 return;
6363
6364 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6365 {
6366 struct frame_info *init_frame;
6367
6368 /* There are several cases to consider.
6369
6370 1. The initiating frame no longer exists. In this case we
6371 must stop, because the exception or longjmp has gone too
6372 far.
6373
6374 2. The initiating frame exists, and is the same as the
6375 current frame. We stop, because the exception or longjmp
6376 has been caught.
6377
6378 3. The initiating frame exists and is different from the
6379 current frame. This means the exception or longjmp has
6380 been caught beneath the initiating frame, so keep going.
6381
6382 4. longjmp breakpoint has been placed just to protect
6383 against stale dummy frames and user is not interested in
6384 stopping around longjmps. */
6385
6386 infrun_log_debug ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6387
6388 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6389 != NULL);
6390 delete_exception_resume_breakpoint (ecs->event_thread);
6391
6392 if (what.is_longjmp)
6393 {
6394 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6395
6396 if (!frame_id_p (ecs->event_thread->initiating_frame))
6397 {
6398 /* Case 4. */
6399 keep_going (ecs);
6400 return;
6401 }
6402 }
6403
6404 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6405
6406 if (init_frame)
6407 {
6408 struct frame_id current_id
6409 = get_frame_id (get_current_frame ());
6410 if (frame_id_eq (current_id,
6411 ecs->event_thread->initiating_frame))
6412 {
6413 /* Case 2. Fall through. */
6414 }
6415 else
6416 {
6417 /* Case 3. */
6418 keep_going (ecs);
6419 return;
6420 }
6421 }
6422
6423 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6424 exists. */
6425 delete_step_resume_breakpoint (ecs->event_thread);
6426
6427 end_stepping_range (ecs);
6428 }
6429 return;
6430
6431 case BPSTAT_WHAT_SINGLE:
6432 infrun_log_debug ("BPSTAT_WHAT_SINGLE");
6433 ecs->event_thread->stepping_over_breakpoint = 1;
6434 /* Still need to check other stuff, at least the case where we
6435 are stepping and step out of the right range. */
6436 break;
6437
6438 case BPSTAT_WHAT_STEP_RESUME:
6439 infrun_log_debug ("BPSTAT_WHAT_STEP_RESUME");
6440
6441 delete_step_resume_breakpoint (ecs->event_thread);
6442 if (ecs->event_thread->control.proceed_to_finish
6443 && execution_direction == EXEC_REVERSE)
6444 {
6445 struct thread_info *tp = ecs->event_thread;
6446
6447 /* We are finishing a function in reverse, and just hit the
6448 step-resume breakpoint at the start address of the
6449 function, and we're almost there -- just need to back up
6450 by one more single-step, which should take us back to the
6451 function call. */
6452 tp->control.step_range_start = tp->control.step_range_end = 1;
6453 keep_going (ecs);
6454 return;
6455 }
6456 fill_in_stop_func (gdbarch, ecs);
6457 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6458 && execution_direction == EXEC_REVERSE)
6459 {
6460 /* We are stepping over a function call in reverse, and just
6461 hit the step-resume breakpoint at the start address of
6462 the function. Go back to single-stepping, which should
6463 take us back to the function call. */
6464 ecs->event_thread->stepping_over_breakpoint = 1;
6465 keep_going (ecs);
6466 return;
6467 }
6468 break;
6469
6470 case BPSTAT_WHAT_STOP_NOISY:
6471 infrun_log_debug ("BPSTAT_WHAT_STOP_NOISY");
6472 stop_print_frame = 1;
6473
6474 /* Assume the thread stopped for a breapoint. We'll still check
6475 whether a/the breakpoint is there when the thread is next
6476 resumed. */
6477 ecs->event_thread->stepping_over_breakpoint = 1;
6478
6479 stop_waiting (ecs);
6480 return;
6481
6482 case BPSTAT_WHAT_STOP_SILENT:
6483 infrun_log_debug ("BPSTAT_WHAT_STOP_SILENT");
6484 stop_print_frame = 0;
6485
6486 /* Assume the thread stopped for a breapoint. We'll still check
6487 whether a/the breakpoint is there when the thread is next
6488 resumed. */
6489 ecs->event_thread->stepping_over_breakpoint = 1;
6490 stop_waiting (ecs);
6491 return;
6492
6493 case BPSTAT_WHAT_HP_STEP_RESUME:
6494 infrun_log_debug ("BPSTAT_WHAT_HP_STEP_RESUME");
6495
6496 delete_step_resume_breakpoint (ecs->event_thread);
6497 if (ecs->event_thread->step_after_step_resume_breakpoint)
6498 {
6499 /* Back when the step-resume breakpoint was inserted, we
6500 were trying to single-step off a breakpoint. Go back to
6501 doing that. */
6502 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6503 ecs->event_thread->stepping_over_breakpoint = 1;
6504 keep_going (ecs);
6505 return;
6506 }
6507 break;
6508
6509 case BPSTAT_WHAT_KEEP_CHECKING:
6510 break;
6511 }
6512
6513 /* If we stepped a permanent breakpoint and we had a high priority
6514 step-resume breakpoint for the address we stepped, but we didn't
6515 hit it, then we must have stepped into the signal handler. The
6516 step-resume was only necessary to catch the case of _not_
6517 stepping into the handler, so delete it, and fall through to
6518 checking whether the step finished. */
6519 if (ecs->event_thread->stepped_breakpoint)
6520 {
6521 struct breakpoint *sr_bp
6522 = ecs->event_thread->control.step_resume_breakpoint;
6523
6524 if (sr_bp != NULL
6525 && sr_bp->loc->permanent
6526 && sr_bp->type == bp_hp_step_resume
6527 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6528 {
6529 infrun_log_debug ("stepped permanent breakpoint, stopped in handler");
6530 delete_step_resume_breakpoint (ecs->event_thread);
6531 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6532 }
6533 }
6534
6535 /* We come here if we hit a breakpoint but should not stop for it.
6536 Possibly we also were stepping and should stop for that. So fall
6537 through and test for stepping. But, if not stepping, do not
6538 stop. */
6539
6540 /* In all-stop mode, if we're currently stepping but have stopped in
6541 some other thread, we need to switch back to the stepped thread. */
6542 if (switch_back_to_stepped_thread (ecs))
6543 return;
6544
6545 if (ecs->event_thread->control.step_resume_breakpoint)
6546 {
6547 infrun_log_debug ("step-resume breakpoint is inserted");
6548
6549 /* Having a step-resume breakpoint overrides anything
6550 else having to do with stepping commands until
6551 that breakpoint is reached. */
6552 keep_going (ecs);
6553 return;
6554 }
6555
6556 if (ecs->event_thread->control.step_range_end == 0)
6557 {
6558 infrun_log_debug ("no stepping, continue");
6559 /* Likewise if we aren't even stepping. */
6560 keep_going (ecs);
6561 return;
6562 }
6563
6564 /* Re-fetch current thread's frame in case the code above caused
6565 the frame cache to be re-initialized, making our FRAME variable
6566 a dangling pointer. */
6567 frame = get_current_frame ();
6568 gdbarch = get_frame_arch (frame);
6569 fill_in_stop_func (gdbarch, ecs);
6570
6571 /* If stepping through a line, keep going if still within it.
6572
6573 Note that step_range_end is the address of the first instruction
6574 beyond the step range, and NOT the address of the last instruction
6575 within it!
6576
6577 Note also that during reverse execution, we may be stepping
6578 through a function epilogue and therefore must detect when
6579 the current-frame changes in the middle of a line. */
6580
6581 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6582 ecs->event_thread)
6583 && (execution_direction != EXEC_REVERSE
6584 || frame_id_eq (get_frame_id (frame),
6585 ecs->event_thread->control.step_frame_id)))
6586 {
6587 infrun_log_debug
6588 ("stepping inside range [%s-%s]",
6589 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6590 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6591
6592 /* Tentatively re-enable range stepping; `resume' disables it if
6593 necessary (e.g., if we're stepping over a breakpoint or we
6594 have software watchpoints). */
6595 ecs->event_thread->control.may_range_step = 1;
6596
6597 /* When stepping backward, stop at beginning of line range
6598 (unless it's the function entry point, in which case
6599 keep going back to the call point). */
6600 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6601 if (stop_pc == ecs->event_thread->control.step_range_start
6602 && stop_pc != ecs->stop_func_start
6603 && execution_direction == EXEC_REVERSE)
6604 end_stepping_range (ecs);
6605 else
6606 keep_going (ecs);
6607
6608 return;
6609 }
6610
6611 /* We stepped out of the stepping range. */
6612
6613 /* If we are stepping at the source level and entered the runtime
6614 loader dynamic symbol resolution code...
6615
6616 EXEC_FORWARD: we keep on single stepping until we exit the run
6617 time loader code and reach the callee's address.
6618
6619 EXEC_REVERSE: we've already executed the callee (backward), and
6620 the runtime loader code is handled just like any other
6621 undebuggable function call. Now we need only keep stepping
6622 backward through the trampoline code, and that's handled further
6623 down, so there is nothing for us to do here. */
6624
6625 if (execution_direction != EXEC_REVERSE
6626 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6627 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6628 {
6629 CORE_ADDR pc_after_resolver =
6630 gdbarch_skip_solib_resolver (gdbarch,
6631 ecs->event_thread->suspend.stop_pc);
6632
6633 infrun_log_debug ("stepped into dynsym resolve code");
6634
6635 if (pc_after_resolver)
6636 {
6637 /* Set up a step-resume breakpoint at the address
6638 indicated by SKIP_SOLIB_RESOLVER. */
6639 symtab_and_line sr_sal;
6640 sr_sal.pc = pc_after_resolver;
6641 sr_sal.pspace = get_frame_program_space (frame);
6642
6643 insert_step_resume_breakpoint_at_sal (gdbarch,
6644 sr_sal, null_frame_id);
6645 }
6646
6647 keep_going (ecs);
6648 return;
6649 }
6650
6651 /* Step through an indirect branch thunk. */
6652 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6653 && gdbarch_in_indirect_branch_thunk (gdbarch,
6654 ecs->event_thread->suspend.stop_pc))
6655 {
6656 infrun_log_debug ("stepped into indirect branch thunk");
6657 keep_going (ecs);
6658 return;
6659 }
6660
6661 if (ecs->event_thread->control.step_range_end != 1
6662 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6663 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6664 && get_frame_type (frame) == SIGTRAMP_FRAME)
6665 {
6666 infrun_log_debug ("stepped into signal trampoline");
6667 /* The inferior, while doing a "step" or "next", has ended up in
6668 a signal trampoline (either by a signal being delivered or by
6669 the signal handler returning). Just single-step until the
6670 inferior leaves the trampoline (either by calling the handler
6671 or returning). */
6672 keep_going (ecs);
6673 return;
6674 }
6675
6676 /* If we're in the return path from a shared library trampoline,
6677 we want to proceed through the trampoline when stepping. */
6678 /* macro/2012-04-25: This needs to come before the subroutine
6679 call check below as on some targets return trampolines look
6680 like subroutine calls (MIPS16 return thunks). */
6681 if (gdbarch_in_solib_return_trampoline (gdbarch,
6682 ecs->event_thread->suspend.stop_pc,
6683 ecs->stop_func_name)
6684 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6685 {
6686 /* Determine where this trampoline returns. */
6687 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6688 CORE_ADDR real_stop_pc
6689 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6690
6691 infrun_log_debug ("stepped into solib return tramp");
6692
6693 /* Only proceed through if we know where it's going. */
6694 if (real_stop_pc)
6695 {
6696 /* And put the step-breakpoint there and go until there. */
6697 symtab_and_line sr_sal;
6698 sr_sal.pc = real_stop_pc;
6699 sr_sal.section = find_pc_overlay (sr_sal.pc);
6700 sr_sal.pspace = get_frame_program_space (frame);
6701
6702 /* Do not specify what the fp should be when we stop since
6703 on some machines the prologue is where the new fp value
6704 is established. */
6705 insert_step_resume_breakpoint_at_sal (gdbarch,
6706 sr_sal, null_frame_id);
6707
6708 /* Restart without fiddling with the step ranges or
6709 other state. */
6710 keep_going (ecs);
6711 return;
6712 }
6713 }
6714
6715 /* Check for subroutine calls. The check for the current frame
6716 equalling the step ID is not necessary - the check of the
6717 previous frame's ID is sufficient - but it is a common case and
6718 cheaper than checking the previous frame's ID.
6719
6720 NOTE: frame_id_eq will never report two invalid frame IDs as
6721 being equal, so to get into this block, both the current and
6722 previous frame must have valid frame IDs. */
6723 /* The outer_frame_id check is a heuristic to detect stepping
6724 through startup code. If we step over an instruction which
6725 sets the stack pointer from an invalid value to a valid value,
6726 we may detect that as a subroutine call from the mythical
6727 "outermost" function. This could be fixed by marking
6728 outermost frames as !stack_p,code_p,special_p. Then the
6729 initial outermost frame, before sp was valid, would
6730 have code_addr == &_start. See the comment in frame_id_eq
6731 for more. */
6732 if (!frame_id_eq (get_stack_frame_id (frame),
6733 ecs->event_thread->control.step_stack_frame_id)
6734 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6735 ecs->event_thread->control.step_stack_frame_id)
6736 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6737 outer_frame_id)
6738 || (ecs->event_thread->control.step_start_function
6739 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6740 {
6741 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6742 CORE_ADDR real_stop_pc;
6743
6744 infrun_log_debug ("stepped into subroutine");
6745
6746 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6747 {
6748 /* I presume that step_over_calls is only 0 when we're
6749 supposed to be stepping at the assembly language level
6750 ("stepi"). Just stop. */
6751 /* And this works the same backward as frontward. MVS */
6752 end_stepping_range (ecs);
6753 return;
6754 }
6755
6756 /* Reverse stepping through solib trampolines. */
6757
6758 if (execution_direction == EXEC_REVERSE
6759 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6760 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6761 || (ecs->stop_func_start == 0
6762 && in_solib_dynsym_resolve_code (stop_pc))))
6763 {
6764 /* Any solib trampoline code can be handled in reverse
6765 by simply continuing to single-step. We have already
6766 executed the solib function (backwards), and a few
6767 steps will take us back through the trampoline to the
6768 caller. */
6769 keep_going (ecs);
6770 return;
6771 }
6772
6773 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6774 {
6775 /* We're doing a "next".
6776
6777 Normal (forward) execution: set a breakpoint at the
6778 callee's return address (the address at which the caller
6779 will resume).
6780
6781 Reverse (backward) execution. set the step-resume
6782 breakpoint at the start of the function that we just
6783 stepped into (backwards), and continue to there. When we
6784 get there, we'll need to single-step back to the caller. */
6785
6786 if (execution_direction == EXEC_REVERSE)
6787 {
6788 /* If we're already at the start of the function, we've either
6789 just stepped backward into a single instruction function,
6790 or stepped back out of a signal handler to the first instruction
6791 of the function. Just keep going, which will single-step back
6792 to the caller. */
6793 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6794 {
6795 /* Normal function call return (static or dynamic). */
6796 symtab_and_line sr_sal;
6797 sr_sal.pc = ecs->stop_func_start;
6798 sr_sal.pspace = get_frame_program_space (frame);
6799 insert_step_resume_breakpoint_at_sal (gdbarch,
6800 sr_sal, null_frame_id);
6801 }
6802 }
6803 else
6804 insert_step_resume_breakpoint_at_caller (frame);
6805
6806 keep_going (ecs);
6807 return;
6808 }
6809
6810 /* If we are in a function call trampoline (a stub between the
6811 calling routine and the real function), locate the real
6812 function. That's what tells us (a) whether we want to step
6813 into it at all, and (b) what prologue we want to run to the
6814 end of, if we do step into it. */
6815 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6816 if (real_stop_pc == 0)
6817 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6818 if (real_stop_pc != 0)
6819 ecs->stop_func_start = real_stop_pc;
6820
6821 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6822 {
6823 symtab_and_line sr_sal;
6824 sr_sal.pc = ecs->stop_func_start;
6825 sr_sal.pspace = get_frame_program_space (frame);
6826
6827 insert_step_resume_breakpoint_at_sal (gdbarch,
6828 sr_sal, null_frame_id);
6829 keep_going (ecs);
6830 return;
6831 }
6832
6833 /* If we have line number information for the function we are
6834 thinking of stepping into and the function isn't on the skip
6835 list, step into it.
6836
6837 If there are several symtabs at that PC (e.g. with include
6838 files), just want to know whether *any* of them have line
6839 numbers. find_pc_line handles this. */
6840 {
6841 struct symtab_and_line tmp_sal;
6842
6843 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6844 if (tmp_sal.line != 0
6845 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6846 tmp_sal)
6847 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6848 {
6849 if (execution_direction == EXEC_REVERSE)
6850 handle_step_into_function_backward (gdbarch, ecs);
6851 else
6852 handle_step_into_function (gdbarch, ecs);
6853 return;
6854 }
6855 }
6856
6857 /* If we have no line number and the step-stop-if-no-debug is
6858 set, we stop the step so that the user has a chance to switch
6859 in assembly mode. */
6860 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6861 && step_stop_if_no_debug)
6862 {
6863 end_stepping_range (ecs);
6864 return;
6865 }
6866
6867 if (execution_direction == EXEC_REVERSE)
6868 {
6869 /* If we're already at the start of the function, we've either just
6870 stepped backward into a single instruction function without line
6871 number info, or stepped back out of a signal handler to the first
6872 instruction of the function without line number info. Just keep
6873 going, which will single-step back to the caller. */
6874 if (ecs->stop_func_start != stop_pc)
6875 {
6876 /* Set a breakpoint at callee's start address.
6877 From there we can step once and be back in the caller. */
6878 symtab_and_line sr_sal;
6879 sr_sal.pc = ecs->stop_func_start;
6880 sr_sal.pspace = get_frame_program_space (frame);
6881 insert_step_resume_breakpoint_at_sal (gdbarch,
6882 sr_sal, null_frame_id);
6883 }
6884 }
6885 else
6886 /* Set a breakpoint at callee's return address (the address
6887 at which the caller will resume). */
6888 insert_step_resume_breakpoint_at_caller (frame);
6889
6890 keep_going (ecs);
6891 return;
6892 }
6893
6894 /* Reverse stepping through solib trampolines. */
6895
6896 if (execution_direction == EXEC_REVERSE
6897 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6898 {
6899 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6900
6901 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6902 || (ecs->stop_func_start == 0
6903 && in_solib_dynsym_resolve_code (stop_pc)))
6904 {
6905 /* Any solib trampoline code can be handled in reverse
6906 by simply continuing to single-step. We have already
6907 executed the solib function (backwards), and a few
6908 steps will take us back through the trampoline to the
6909 caller. */
6910 keep_going (ecs);
6911 return;
6912 }
6913 else if (in_solib_dynsym_resolve_code (stop_pc))
6914 {
6915 /* Stepped backward into the solib dynsym resolver.
6916 Set a breakpoint at its start and continue, then
6917 one more step will take us out. */
6918 symtab_and_line sr_sal;
6919 sr_sal.pc = ecs->stop_func_start;
6920 sr_sal.pspace = get_frame_program_space (frame);
6921 insert_step_resume_breakpoint_at_sal (gdbarch,
6922 sr_sal, null_frame_id);
6923 keep_going (ecs);
6924 return;
6925 }
6926 }
6927
6928 /* This always returns the sal for the inner-most frame when we are in a
6929 stack of inlined frames, even if GDB actually believes that it is in a
6930 more outer frame. This is checked for below by calls to
6931 inline_skipped_frames. */
6932 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6933
6934 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6935 the trampoline processing logic, however, there are some trampolines
6936 that have no names, so we should do trampoline handling first. */
6937 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6938 && ecs->stop_func_name == NULL
6939 && stop_pc_sal.line == 0)
6940 {
6941 infrun_log_debug ("stepped into undebuggable function");
6942
6943 /* The inferior just stepped into, or returned to, an
6944 undebuggable function (where there is no debugging information
6945 and no line number corresponding to the address where the
6946 inferior stopped). Since we want to skip this kind of code,
6947 we keep going until the inferior returns from this
6948 function - unless the user has asked us not to (via
6949 set step-mode) or we no longer know how to get back
6950 to the call site. */
6951 if (step_stop_if_no_debug
6952 || !frame_id_p (frame_unwind_caller_id (frame)))
6953 {
6954 /* If we have no line number and the step-stop-if-no-debug
6955 is set, we stop the step so that the user has a chance to
6956 switch in assembly mode. */
6957 end_stepping_range (ecs);
6958 return;
6959 }
6960 else
6961 {
6962 /* Set a breakpoint at callee's return address (the address
6963 at which the caller will resume). */
6964 insert_step_resume_breakpoint_at_caller (frame);
6965 keep_going (ecs);
6966 return;
6967 }
6968 }
6969
6970 if (ecs->event_thread->control.step_range_end == 1)
6971 {
6972 /* It is stepi or nexti. We always want to stop stepping after
6973 one instruction. */
6974 infrun_log_debug ("stepi/nexti");
6975 end_stepping_range (ecs);
6976 return;
6977 }
6978
6979 if (stop_pc_sal.line == 0)
6980 {
6981 /* We have no line number information. That means to stop
6982 stepping (does this always happen right after one instruction,
6983 when we do "s" in a function with no line numbers,
6984 or can this happen as a result of a return or longjmp?). */
6985 infrun_log_debug ("line number info");
6986 end_stepping_range (ecs);
6987 return;
6988 }
6989
6990 /* Look for "calls" to inlined functions, part one. If the inline
6991 frame machinery detected some skipped call sites, we have entered
6992 a new inline function. */
6993
6994 if (frame_id_eq (get_frame_id (get_current_frame ()),
6995 ecs->event_thread->control.step_frame_id)
6996 && inline_skipped_frames (ecs->event_thread))
6997 {
6998 infrun_log_debug ("stepped into inlined function");
6999
7000 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7001
7002 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7003 {
7004 /* For "step", we're going to stop. But if the call site
7005 for this inlined function is on the same source line as
7006 we were previously stepping, go down into the function
7007 first. Otherwise stop at the call site. */
7008
7009 if (call_sal.line == ecs->event_thread->current_line
7010 && call_sal.symtab == ecs->event_thread->current_symtab)
7011 {
7012 step_into_inline_frame (ecs->event_thread);
7013 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7014 {
7015 keep_going (ecs);
7016 return;
7017 }
7018 }
7019
7020 end_stepping_range (ecs);
7021 return;
7022 }
7023 else
7024 {
7025 /* For "next", we should stop at the call site if it is on a
7026 different source line. Otherwise continue through the
7027 inlined function. */
7028 if (call_sal.line == ecs->event_thread->current_line
7029 && call_sal.symtab == ecs->event_thread->current_symtab)
7030 keep_going (ecs);
7031 else
7032 end_stepping_range (ecs);
7033 return;
7034 }
7035 }
7036
7037 /* Look for "calls" to inlined functions, part two. If we are still
7038 in the same real function we were stepping through, but we have
7039 to go further up to find the exact frame ID, we are stepping
7040 through a more inlined call beyond its call site. */
7041
7042 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7043 && !frame_id_eq (get_frame_id (get_current_frame ()),
7044 ecs->event_thread->control.step_frame_id)
7045 && stepped_in_from (get_current_frame (),
7046 ecs->event_thread->control.step_frame_id))
7047 {
7048 infrun_log_debug ("stepping through inlined function");
7049
7050 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7051 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7052 keep_going (ecs);
7053 else
7054 end_stepping_range (ecs);
7055 return;
7056 }
7057
7058 bool refresh_step_info = true;
7059 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7060 && (ecs->event_thread->current_line != stop_pc_sal.line
7061 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7062 {
7063 if (stop_pc_sal.is_stmt)
7064 {
7065 /* We are at the start of a different line. So stop. Note that
7066 we don't stop if we step into the middle of a different line.
7067 That is said to make things like for (;;) statements work
7068 better. */
7069 infrun_log_debug ("infrun: stepped to a different line\n");
7070 end_stepping_range (ecs);
7071 return;
7072 }
7073 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7074 ecs->event_thread->control.step_frame_id))
7075 {
7076 /* We are at the start of a different line, however, this line is
7077 not marked as a statement, and we have not changed frame. We
7078 ignore this line table entry, and continue stepping forward,
7079 looking for a better place to stop. */
7080 refresh_step_info = false;
7081 infrun_log_debug ("infrun: stepped to a different line, but "
7082 "it's not the start of a statement\n");
7083 }
7084 }
7085
7086 /* We aren't done stepping.
7087
7088 Optimize by setting the stepping range to the line.
7089 (We might not be in the original line, but if we entered a
7090 new line in mid-statement, we continue stepping. This makes
7091 things like for(;;) statements work better.)
7092
7093 If we entered a SAL that indicates a non-statement line table entry,
7094 then we update the stepping range, but we don't update the step info,
7095 which includes things like the line number we are stepping away from.
7096 This means we will stop when we find a line table entry that is marked
7097 as is-statement, even if it matches the non-statement one we just
7098 stepped into. */
7099
7100 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7101 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7102 ecs->event_thread->control.may_range_step = 1;
7103 if (refresh_step_info)
7104 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7105
7106 infrun_log_debug ("keep going");
7107 keep_going (ecs);
7108 }
7109
7110 /* In all-stop mode, if we're currently stepping but have stopped in
7111 some other thread, we may need to switch back to the stepped
7112 thread. Returns true we set the inferior running, false if we left
7113 it stopped (and the event needs further processing). */
7114
7115 static int
7116 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7117 {
7118 if (!target_is_non_stop_p ())
7119 {
7120 struct thread_info *stepping_thread;
7121
7122 /* If any thread is blocked on some internal breakpoint, and we
7123 simply need to step over that breakpoint to get it going
7124 again, do that first. */
7125
7126 /* However, if we see an event for the stepping thread, then we
7127 know all other threads have been moved past their breakpoints
7128 already. Let the caller check whether the step is finished,
7129 etc., before deciding to move it past a breakpoint. */
7130 if (ecs->event_thread->control.step_range_end != 0)
7131 return 0;
7132
7133 /* Check if the current thread is blocked on an incomplete
7134 step-over, interrupted by a random signal. */
7135 if (ecs->event_thread->control.trap_expected
7136 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7137 {
7138 infrun_log_debug ("need to finish step-over of [%s]",
7139 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7140 keep_going (ecs);
7141 return 1;
7142 }
7143
7144 /* Check if the current thread is blocked by a single-step
7145 breakpoint of another thread. */
7146 if (ecs->hit_singlestep_breakpoint)
7147 {
7148 infrun_log_debug ("need to step [%s] over single-step breakpoint",
7149 target_pid_to_str (ecs->ptid).c_str ());
7150 keep_going (ecs);
7151 return 1;
7152 }
7153
7154 /* If this thread needs yet another step-over (e.g., stepping
7155 through a delay slot), do it first before moving on to
7156 another thread. */
7157 if (thread_still_needs_step_over (ecs->event_thread))
7158 {
7159 infrun_log_debug
7160 ("thread [%s] still needs step-over",
7161 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7162 keep_going (ecs);
7163 return 1;
7164 }
7165
7166 /* If scheduler locking applies even if not stepping, there's no
7167 need to walk over threads. Above we've checked whether the
7168 current thread is stepping. If some other thread not the
7169 event thread is stepping, then it must be that scheduler
7170 locking is not in effect. */
7171 if (schedlock_applies (ecs->event_thread))
7172 return 0;
7173
7174 /* Otherwise, we no longer expect a trap in the current thread.
7175 Clear the trap_expected flag before switching back -- this is
7176 what keep_going does as well, if we call it. */
7177 ecs->event_thread->control.trap_expected = 0;
7178
7179 /* Likewise, clear the signal if it should not be passed. */
7180 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7181 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7182
7183 /* Do all pending step-overs before actually proceeding with
7184 step/next/etc. */
7185 if (start_step_over ())
7186 {
7187 prepare_to_wait (ecs);
7188 return 1;
7189 }
7190
7191 /* Look for the stepping/nexting thread. */
7192 stepping_thread = NULL;
7193
7194 for (thread_info *tp : all_non_exited_threads ())
7195 {
7196 switch_to_thread_no_regs (tp);
7197
7198 /* Ignore threads of processes the caller is not
7199 resuming. */
7200 if (!sched_multi
7201 && (tp->inf->process_target () != ecs->target
7202 || tp->inf->pid != ecs->ptid.pid ()))
7203 continue;
7204
7205 /* When stepping over a breakpoint, we lock all threads
7206 except the one that needs to move past the breakpoint.
7207 If a non-event thread has this set, the "incomplete
7208 step-over" check above should have caught it earlier. */
7209 if (tp->control.trap_expected)
7210 {
7211 internal_error (__FILE__, __LINE__,
7212 "[%s] has inconsistent state: "
7213 "trap_expected=%d\n",
7214 target_pid_to_str (tp->ptid).c_str (),
7215 tp->control.trap_expected);
7216 }
7217
7218 /* Did we find the stepping thread? */
7219 if (tp->control.step_range_end)
7220 {
7221 /* Yep. There should only one though. */
7222 gdb_assert (stepping_thread == NULL);
7223
7224 /* The event thread is handled at the top, before we
7225 enter this loop. */
7226 gdb_assert (tp != ecs->event_thread);
7227
7228 /* If some thread other than the event thread is
7229 stepping, then scheduler locking can't be in effect,
7230 otherwise we wouldn't have resumed the current event
7231 thread in the first place. */
7232 gdb_assert (!schedlock_applies (tp));
7233
7234 stepping_thread = tp;
7235 }
7236 }
7237
7238 if (stepping_thread != NULL)
7239 {
7240 infrun_log_debug ("switching back to stepped thread");
7241
7242 if (keep_going_stepped_thread (stepping_thread))
7243 {
7244 prepare_to_wait (ecs);
7245 return 1;
7246 }
7247 }
7248
7249 switch_to_thread (ecs->event_thread);
7250 }
7251
7252 return 0;
7253 }
7254
7255 /* Set a previously stepped thread back to stepping. Returns true on
7256 success, false if the resume is not possible (e.g., the thread
7257 vanished). */
7258
7259 static int
7260 keep_going_stepped_thread (struct thread_info *tp)
7261 {
7262 struct frame_info *frame;
7263 struct execution_control_state ecss;
7264 struct execution_control_state *ecs = &ecss;
7265
7266 /* If the stepping thread exited, then don't try to switch back and
7267 resume it, which could fail in several different ways depending
7268 on the target. Instead, just keep going.
7269
7270 We can find a stepping dead thread in the thread list in two
7271 cases:
7272
7273 - The target supports thread exit events, and when the target
7274 tries to delete the thread from the thread list, inferior_ptid
7275 pointed at the exiting thread. In such case, calling
7276 delete_thread does not really remove the thread from the list;
7277 instead, the thread is left listed, with 'exited' state.
7278
7279 - The target's debug interface does not support thread exit
7280 events, and so we have no idea whatsoever if the previously
7281 stepping thread is still alive. For that reason, we need to
7282 synchronously query the target now. */
7283
7284 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7285 {
7286 infrun_log_debug ("not resuming previously stepped thread, it has "
7287 "vanished");
7288
7289 delete_thread (tp);
7290 return 0;
7291 }
7292
7293 infrun_log_debug ("resuming previously stepped thread");
7294
7295 reset_ecs (ecs, tp);
7296 switch_to_thread (tp);
7297
7298 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7299 frame = get_current_frame ();
7300
7301 /* If the PC of the thread we were trying to single-step has
7302 changed, then that thread has trapped or been signaled, but the
7303 event has not been reported to GDB yet. Re-poll the target
7304 looking for this particular thread's event (i.e. temporarily
7305 enable schedlock) by:
7306
7307 - setting a break at the current PC
7308 - resuming that particular thread, only (by setting trap
7309 expected)
7310
7311 This prevents us continuously moving the single-step breakpoint
7312 forward, one instruction at a time, overstepping. */
7313
7314 if (tp->suspend.stop_pc != tp->prev_pc)
7315 {
7316 ptid_t resume_ptid;
7317
7318 infrun_log_debug ("expected thread advanced also (%s -> %s)",
7319 paddress (target_gdbarch (), tp->prev_pc),
7320 paddress (target_gdbarch (), tp->suspend.stop_pc));
7321
7322 /* Clear the info of the previous step-over, as it's no longer
7323 valid (if the thread was trying to step over a breakpoint, it
7324 has already succeeded). It's what keep_going would do too,
7325 if we called it. Do this before trying to insert the sss
7326 breakpoint, otherwise if we were previously trying to step
7327 over this exact address in another thread, the breakpoint is
7328 skipped. */
7329 clear_step_over_info ();
7330 tp->control.trap_expected = 0;
7331
7332 insert_single_step_breakpoint (get_frame_arch (frame),
7333 get_frame_address_space (frame),
7334 tp->suspend.stop_pc);
7335
7336 tp->resumed = true;
7337 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7338 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7339 }
7340 else
7341 {
7342 infrun_log_debug ("expected thread still hasn't advanced");
7343
7344 keep_going_pass_signal (ecs);
7345 }
7346 return 1;
7347 }
7348
7349 /* Is thread TP in the middle of (software or hardware)
7350 single-stepping? (Note the result of this function must never be
7351 passed directly as target_resume's STEP parameter.) */
7352
7353 static int
7354 currently_stepping (struct thread_info *tp)
7355 {
7356 return ((tp->control.step_range_end
7357 && tp->control.step_resume_breakpoint == NULL)
7358 || tp->control.trap_expected
7359 || tp->stepped_breakpoint
7360 || bpstat_should_step ());
7361 }
7362
7363 /* Inferior has stepped into a subroutine call with source code that
7364 we should not step over. Do step to the first line of code in
7365 it. */
7366
7367 static void
7368 handle_step_into_function (struct gdbarch *gdbarch,
7369 struct execution_control_state *ecs)
7370 {
7371 fill_in_stop_func (gdbarch, ecs);
7372
7373 compunit_symtab *cust
7374 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7375 if (cust != NULL && compunit_language (cust) != language_asm)
7376 ecs->stop_func_start
7377 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7378
7379 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7380 /* Use the step_resume_break to step until the end of the prologue,
7381 even if that involves jumps (as it seems to on the vax under
7382 4.2). */
7383 /* If the prologue ends in the middle of a source line, continue to
7384 the end of that source line (if it is still within the function).
7385 Otherwise, just go to end of prologue. */
7386 if (stop_func_sal.end
7387 && stop_func_sal.pc != ecs->stop_func_start
7388 && stop_func_sal.end < ecs->stop_func_end)
7389 ecs->stop_func_start = stop_func_sal.end;
7390
7391 /* Architectures which require breakpoint adjustment might not be able
7392 to place a breakpoint at the computed address. If so, the test
7393 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7394 ecs->stop_func_start to an address at which a breakpoint may be
7395 legitimately placed.
7396
7397 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7398 made, GDB will enter an infinite loop when stepping through
7399 optimized code consisting of VLIW instructions which contain
7400 subinstructions corresponding to different source lines. On
7401 FR-V, it's not permitted to place a breakpoint on any but the
7402 first subinstruction of a VLIW instruction. When a breakpoint is
7403 set, GDB will adjust the breakpoint address to the beginning of
7404 the VLIW instruction. Thus, we need to make the corresponding
7405 adjustment here when computing the stop address. */
7406
7407 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7408 {
7409 ecs->stop_func_start
7410 = gdbarch_adjust_breakpoint_address (gdbarch,
7411 ecs->stop_func_start);
7412 }
7413
7414 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7415 {
7416 /* We are already there: stop now. */
7417 end_stepping_range (ecs);
7418 return;
7419 }
7420 else
7421 {
7422 /* Put the step-breakpoint there and go until there. */
7423 symtab_and_line sr_sal;
7424 sr_sal.pc = ecs->stop_func_start;
7425 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7426 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7427
7428 /* Do not specify what the fp should be when we stop since on
7429 some machines the prologue is where the new fp value is
7430 established. */
7431 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7432
7433 /* And make sure stepping stops right away then. */
7434 ecs->event_thread->control.step_range_end
7435 = ecs->event_thread->control.step_range_start;
7436 }
7437 keep_going (ecs);
7438 }
7439
7440 /* Inferior has stepped backward into a subroutine call with source
7441 code that we should not step over. Do step to the beginning of the
7442 last line of code in it. */
7443
7444 static void
7445 handle_step_into_function_backward (struct gdbarch *gdbarch,
7446 struct execution_control_state *ecs)
7447 {
7448 struct compunit_symtab *cust;
7449 struct symtab_and_line stop_func_sal;
7450
7451 fill_in_stop_func (gdbarch, ecs);
7452
7453 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7454 if (cust != NULL && compunit_language (cust) != language_asm)
7455 ecs->stop_func_start
7456 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7457
7458 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7459
7460 /* OK, we're just going to keep stepping here. */
7461 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7462 {
7463 /* We're there already. Just stop stepping now. */
7464 end_stepping_range (ecs);
7465 }
7466 else
7467 {
7468 /* Else just reset the step range and keep going.
7469 No step-resume breakpoint, they don't work for
7470 epilogues, which can have multiple entry paths. */
7471 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7472 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7473 keep_going (ecs);
7474 }
7475 return;
7476 }
7477
7478 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7479 This is used to both functions and to skip over code. */
7480
7481 static void
7482 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7483 struct symtab_and_line sr_sal,
7484 struct frame_id sr_id,
7485 enum bptype sr_type)
7486 {
7487 /* There should never be more than one step-resume or longjmp-resume
7488 breakpoint per thread, so we should never be setting a new
7489 step_resume_breakpoint when one is already active. */
7490 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7491 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7492
7493 infrun_log_debug ("inserting step-resume breakpoint at %s",
7494 paddress (gdbarch, sr_sal.pc));
7495
7496 inferior_thread ()->control.step_resume_breakpoint
7497 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7498 }
7499
7500 void
7501 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7502 struct symtab_and_line sr_sal,
7503 struct frame_id sr_id)
7504 {
7505 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7506 sr_sal, sr_id,
7507 bp_step_resume);
7508 }
7509
7510 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7511 This is used to skip a potential signal handler.
7512
7513 This is called with the interrupted function's frame. The signal
7514 handler, when it returns, will resume the interrupted function at
7515 RETURN_FRAME.pc. */
7516
7517 static void
7518 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7519 {
7520 gdb_assert (return_frame != NULL);
7521
7522 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7523
7524 symtab_and_line sr_sal;
7525 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7526 sr_sal.section = find_pc_overlay (sr_sal.pc);
7527 sr_sal.pspace = get_frame_program_space (return_frame);
7528
7529 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7530 get_stack_frame_id (return_frame),
7531 bp_hp_step_resume);
7532 }
7533
7534 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7535 is used to skip a function after stepping into it (for "next" or if
7536 the called function has no debugging information).
7537
7538 The current function has almost always been reached by single
7539 stepping a call or return instruction. NEXT_FRAME belongs to the
7540 current function, and the breakpoint will be set at the caller's
7541 resume address.
7542
7543 This is a separate function rather than reusing
7544 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7545 get_prev_frame, which may stop prematurely (see the implementation
7546 of frame_unwind_caller_id for an example). */
7547
7548 static void
7549 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7550 {
7551 /* We shouldn't have gotten here if we don't know where the call site
7552 is. */
7553 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7554
7555 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7556
7557 symtab_and_line sr_sal;
7558 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7559 frame_unwind_caller_pc (next_frame));
7560 sr_sal.section = find_pc_overlay (sr_sal.pc);
7561 sr_sal.pspace = frame_unwind_program_space (next_frame);
7562
7563 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7564 frame_unwind_caller_id (next_frame));
7565 }
7566
7567 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7568 new breakpoint at the target of a jmp_buf. The handling of
7569 longjmp-resume uses the same mechanisms used for handling
7570 "step-resume" breakpoints. */
7571
7572 static void
7573 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7574 {
7575 /* There should never be more than one longjmp-resume breakpoint per
7576 thread, so we should never be setting a new
7577 longjmp_resume_breakpoint when one is already active. */
7578 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7579
7580 infrun_log_debug ("inserting longjmp-resume breakpoint at %s",
7581 paddress (gdbarch, pc));
7582
7583 inferior_thread ()->control.exception_resume_breakpoint =
7584 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7585 }
7586
7587 /* Insert an exception resume breakpoint. TP is the thread throwing
7588 the exception. The block B is the block of the unwinder debug hook
7589 function. FRAME is the frame corresponding to the call to this
7590 function. SYM is the symbol of the function argument holding the
7591 target PC of the exception. */
7592
7593 static void
7594 insert_exception_resume_breakpoint (struct thread_info *tp,
7595 const struct block *b,
7596 struct frame_info *frame,
7597 struct symbol *sym)
7598 {
7599 try
7600 {
7601 struct block_symbol vsym;
7602 struct value *value;
7603 CORE_ADDR handler;
7604 struct breakpoint *bp;
7605
7606 vsym = lookup_symbol_search_name (sym->search_name (),
7607 b, VAR_DOMAIN);
7608 value = read_var_value (vsym.symbol, vsym.block, frame);
7609 /* If the value was optimized out, revert to the old behavior. */
7610 if (! value_optimized_out (value))
7611 {
7612 handler = value_as_address (value);
7613
7614 infrun_log_debug ("exception resume at %lx",
7615 (unsigned long) handler);
7616
7617 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7618 handler,
7619 bp_exception_resume).release ();
7620
7621 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7622 frame = NULL;
7623
7624 bp->thread = tp->global_num;
7625 inferior_thread ()->control.exception_resume_breakpoint = bp;
7626 }
7627 }
7628 catch (const gdb_exception_error &e)
7629 {
7630 /* We want to ignore errors here. */
7631 }
7632 }
7633
7634 /* A helper for check_exception_resume that sets an
7635 exception-breakpoint based on a SystemTap probe. */
7636
7637 static void
7638 insert_exception_resume_from_probe (struct thread_info *tp,
7639 const struct bound_probe *probe,
7640 struct frame_info *frame)
7641 {
7642 struct value *arg_value;
7643 CORE_ADDR handler;
7644 struct breakpoint *bp;
7645
7646 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7647 if (!arg_value)
7648 return;
7649
7650 handler = value_as_address (arg_value);
7651
7652 infrun_log_debug ("exception resume at %s",
7653 paddress (probe->objfile->arch (), handler));
7654
7655 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7656 handler, bp_exception_resume).release ();
7657 bp->thread = tp->global_num;
7658 inferior_thread ()->control.exception_resume_breakpoint = bp;
7659 }
7660
7661 /* This is called when an exception has been intercepted. Check to
7662 see whether the exception's destination is of interest, and if so,
7663 set an exception resume breakpoint there. */
7664
7665 static void
7666 check_exception_resume (struct execution_control_state *ecs,
7667 struct frame_info *frame)
7668 {
7669 struct bound_probe probe;
7670 struct symbol *func;
7671
7672 /* First see if this exception unwinding breakpoint was set via a
7673 SystemTap probe point. If so, the probe has two arguments: the
7674 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7675 set a breakpoint there. */
7676 probe = find_probe_by_pc (get_frame_pc (frame));
7677 if (probe.prob)
7678 {
7679 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7680 return;
7681 }
7682
7683 func = get_frame_function (frame);
7684 if (!func)
7685 return;
7686
7687 try
7688 {
7689 const struct block *b;
7690 struct block_iterator iter;
7691 struct symbol *sym;
7692 int argno = 0;
7693
7694 /* The exception breakpoint is a thread-specific breakpoint on
7695 the unwinder's debug hook, declared as:
7696
7697 void _Unwind_DebugHook (void *cfa, void *handler);
7698
7699 The CFA argument indicates the frame to which control is
7700 about to be transferred. HANDLER is the destination PC.
7701
7702 We ignore the CFA and set a temporary breakpoint at HANDLER.
7703 This is not extremely efficient but it avoids issues in gdb
7704 with computing the DWARF CFA, and it also works even in weird
7705 cases such as throwing an exception from inside a signal
7706 handler. */
7707
7708 b = SYMBOL_BLOCK_VALUE (func);
7709 ALL_BLOCK_SYMBOLS (b, iter, sym)
7710 {
7711 if (!SYMBOL_IS_ARGUMENT (sym))
7712 continue;
7713
7714 if (argno == 0)
7715 ++argno;
7716 else
7717 {
7718 insert_exception_resume_breakpoint (ecs->event_thread,
7719 b, frame, sym);
7720 break;
7721 }
7722 }
7723 }
7724 catch (const gdb_exception_error &e)
7725 {
7726 }
7727 }
7728
7729 static void
7730 stop_waiting (struct execution_control_state *ecs)
7731 {
7732 infrun_log_debug ("stop_waiting");
7733
7734 /* Let callers know we don't want to wait for the inferior anymore. */
7735 ecs->wait_some_more = 0;
7736
7737 /* If all-stop, but there exists a non-stop target, stop all
7738 threads now that we're presenting the stop to the user. */
7739 if (!non_stop && exists_non_stop_target ())
7740 stop_all_threads ();
7741 }
7742
7743 /* Like keep_going, but passes the signal to the inferior, even if the
7744 signal is set to nopass. */
7745
7746 static void
7747 keep_going_pass_signal (struct execution_control_state *ecs)
7748 {
7749 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7750 gdb_assert (!ecs->event_thread->resumed);
7751
7752 /* Save the pc before execution, to compare with pc after stop. */
7753 ecs->event_thread->prev_pc
7754 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7755
7756 if (ecs->event_thread->control.trap_expected)
7757 {
7758 struct thread_info *tp = ecs->event_thread;
7759
7760 infrun_log_debug ("%s has trap_expected set, "
7761 "resuming to collect trap",
7762 target_pid_to_str (tp->ptid).c_str ());
7763
7764 /* We haven't yet gotten our trap, and either: intercepted a
7765 non-signal event (e.g., a fork); or took a signal which we
7766 are supposed to pass through to the inferior. Simply
7767 continue. */
7768 resume (ecs->event_thread->suspend.stop_signal);
7769 }
7770 else if (step_over_info_valid_p ())
7771 {
7772 /* Another thread is stepping over a breakpoint in-line. If
7773 this thread needs a step-over too, queue the request. In
7774 either case, this resume must be deferred for later. */
7775 struct thread_info *tp = ecs->event_thread;
7776
7777 if (ecs->hit_singlestep_breakpoint
7778 || thread_still_needs_step_over (tp))
7779 {
7780 infrun_log_debug ("step-over already in progress: "
7781 "step-over for %s deferred",
7782 target_pid_to_str (tp->ptid).c_str ());
7783 global_thread_step_over_chain_enqueue (tp);
7784 }
7785 else
7786 {
7787 infrun_log_debug ("step-over in progress: resume of %s deferred",
7788 target_pid_to_str (tp->ptid).c_str ());
7789 }
7790 }
7791 else
7792 {
7793 struct regcache *regcache = get_current_regcache ();
7794 int remove_bp;
7795 int remove_wps;
7796 step_over_what step_what;
7797
7798 /* Either the trap was not expected, but we are continuing
7799 anyway (if we got a signal, the user asked it be passed to
7800 the child)
7801 -- or --
7802 We got our expected trap, but decided we should resume from
7803 it.
7804
7805 We're going to run this baby now!
7806
7807 Note that insert_breakpoints won't try to re-insert
7808 already inserted breakpoints. Therefore, we don't
7809 care if breakpoints were already inserted, or not. */
7810
7811 /* If we need to step over a breakpoint, and we're not using
7812 displaced stepping to do so, insert all breakpoints
7813 (watchpoints, etc.) but the one we're stepping over, step one
7814 instruction, and then re-insert the breakpoint when that step
7815 is finished. */
7816
7817 step_what = thread_still_needs_step_over (ecs->event_thread);
7818
7819 remove_bp = (ecs->hit_singlestep_breakpoint
7820 || (step_what & STEP_OVER_BREAKPOINT));
7821 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7822
7823 /* We can't use displaced stepping if we need to step past a
7824 watchpoint. The instruction copied to the scratch pad would
7825 still trigger the watchpoint. */
7826 if (remove_bp
7827 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7828 {
7829 set_step_over_info (regcache->aspace (),
7830 regcache_read_pc (regcache), remove_wps,
7831 ecs->event_thread->global_num);
7832 }
7833 else if (remove_wps)
7834 set_step_over_info (NULL, 0, remove_wps, -1);
7835
7836 /* If we now need to do an in-line step-over, we need to stop
7837 all other threads. Note this must be done before
7838 insert_breakpoints below, because that removes the breakpoint
7839 we're about to step over, otherwise other threads could miss
7840 it. */
7841 if (step_over_info_valid_p () && target_is_non_stop_p ())
7842 stop_all_threads ();
7843
7844 /* Stop stepping if inserting breakpoints fails. */
7845 try
7846 {
7847 insert_breakpoints ();
7848 }
7849 catch (const gdb_exception_error &e)
7850 {
7851 exception_print (gdb_stderr, e);
7852 stop_waiting (ecs);
7853 clear_step_over_info ();
7854 return;
7855 }
7856
7857 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7858
7859 resume (ecs->event_thread->suspend.stop_signal);
7860 }
7861
7862 prepare_to_wait (ecs);
7863 }
7864
7865 /* Called when we should continue running the inferior, because the
7866 current event doesn't cause a user visible stop. This does the
7867 resuming part; waiting for the next event is done elsewhere. */
7868
7869 static void
7870 keep_going (struct execution_control_state *ecs)
7871 {
7872 if (ecs->event_thread->control.trap_expected
7873 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7874 ecs->event_thread->control.trap_expected = 0;
7875
7876 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7877 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7878 keep_going_pass_signal (ecs);
7879 }
7880
7881 /* This function normally comes after a resume, before
7882 handle_inferior_event exits. It takes care of any last bits of
7883 housekeeping, and sets the all-important wait_some_more flag. */
7884
7885 static void
7886 prepare_to_wait (struct execution_control_state *ecs)
7887 {
7888 infrun_log_debug ("prepare_to_wait");
7889
7890 ecs->wait_some_more = 1;
7891
7892 if (!target_is_async_p ())
7893 mark_infrun_async_event_handler ();
7894 }
7895
7896 /* We are done with the step range of a step/next/si/ni command.
7897 Called once for each n of a "step n" operation. */
7898
7899 static void
7900 end_stepping_range (struct execution_control_state *ecs)
7901 {
7902 ecs->event_thread->control.stop_step = 1;
7903 stop_waiting (ecs);
7904 }
7905
7906 /* Several print_*_reason functions to print why the inferior has stopped.
7907 We always print something when the inferior exits, or receives a signal.
7908 The rest of the cases are dealt with later on in normal_stop and
7909 print_it_typical. Ideally there should be a call to one of these
7910 print_*_reason functions functions from handle_inferior_event each time
7911 stop_waiting is called.
7912
7913 Note that we don't call these directly, instead we delegate that to
7914 the interpreters, through observers. Interpreters then call these
7915 with whatever uiout is right. */
7916
7917 void
7918 print_end_stepping_range_reason (struct ui_out *uiout)
7919 {
7920 /* For CLI-like interpreters, print nothing. */
7921
7922 if (uiout->is_mi_like_p ())
7923 {
7924 uiout->field_string ("reason",
7925 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7926 }
7927 }
7928
7929 void
7930 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7931 {
7932 annotate_signalled ();
7933 if (uiout->is_mi_like_p ())
7934 uiout->field_string
7935 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7936 uiout->text ("\nProgram terminated with signal ");
7937 annotate_signal_name ();
7938 uiout->field_string ("signal-name",
7939 gdb_signal_to_name (siggnal));
7940 annotate_signal_name_end ();
7941 uiout->text (", ");
7942 annotate_signal_string ();
7943 uiout->field_string ("signal-meaning",
7944 gdb_signal_to_string (siggnal));
7945 annotate_signal_string_end ();
7946 uiout->text (".\n");
7947 uiout->text ("The program no longer exists.\n");
7948 }
7949
7950 void
7951 print_exited_reason (struct ui_out *uiout, int exitstatus)
7952 {
7953 struct inferior *inf = current_inferior ();
7954 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7955
7956 annotate_exited (exitstatus);
7957 if (exitstatus)
7958 {
7959 if (uiout->is_mi_like_p ())
7960 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7961 std::string exit_code_str
7962 = string_printf ("0%o", (unsigned int) exitstatus);
7963 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7964 plongest (inf->num), pidstr.c_str (),
7965 string_field ("exit-code", exit_code_str.c_str ()));
7966 }
7967 else
7968 {
7969 if (uiout->is_mi_like_p ())
7970 uiout->field_string
7971 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7972 uiout->message ("[Inferior %s (%s) exited normally]\n",
7973 plongest (inf->num), pidstr.c_str ());
7974 }
7975 }
7976
7977 /* Some targets/architectures can do extra processing/display of
7978 segmentation faults. E.g., Intel MPX boundary faults.
7979 Call the architecture dependent function to handle the fault. */
7980
7981 static void
7982 handle_segmentation_fault (struct ui_out *uiout)
7983 {
7984 struct regcache *regcache = get_current_regcache ();
7985 struct gdbarch *gdbarch = regcache->arch ();
7986
7987 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7988 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7989 }
7990
7991 void
7992 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7993 {
7994 struct thread_info *thr = inferior_thread ();
7995
7996 annotate_signal ();
7997
7998 if (uiout->is_mi_like_p ())
7999 ;
8000 else if (show_thread_that_caused_stop ())
8001 {
8002 const char *name;
8003
8004 uiout->text ("\nThread ");
8005 uiout->field_string ("thread-id", print_thread_id (thr));
8006
8007 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8008 if (name != NULL)
8009 {
8010 uiout->text (" \"");
8011 uiout->field_string ("name", name);
8012 uiout->text ("\"");
8013 }
8014 }
8015 else
8016 uiout->text ("\nProgram");
8017
8018 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8019 uiout->text (" stopped");
8020 else
8021 {
8022 uiout->text (" received signal ");
8023 annotate_signal_name ();
8024 if (uiout->is_mi_like_p ())
8025 uiout->field_string
8026 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8027 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8028 annotate_signal_name_end ();
8029 uiout->text (", ");
8030 annotate_signal_string ();
8031 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8032
8033 if (siggnal == GDB_SIGNAL_SEGV)
8034 handle_segmentation_fault (uiout);
8035
8036 annotate_signal_string_end ();
8037 }
8038 uiout->text (".\n");
8039 }
8040
8041 void
8042 print_no_history_reason (struct ui_out *uiout)
8043 {
8044 uiout->text ("\nNo more reverse-execution history.\n");
8045 }
8046
8047 /* Print current location without a level number, if we have changed
8048 functions or hit a breakpoint. Print source line if we have one.
8049 bpstat_print contains the logic deciding in detail what to print,
8050 based on the event(s) that just occurred. */
8051
8052 static void
8053 print_stop_location (struct target_waitstatus *ws)
8054 {
8055 int bpstat_ret;
8056 enum print_what source_flag;
8057 int do_frame_printing = 1;
8058 struct thread_info *tp = inferior_thread ();
8059
8060 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8061 switch (bpstat_ret)
8062 {
8063 case PRINT_UNKNOWN:
8064 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8065 should) carry around the function and does (or should) use
8066 that when doing a frame comparison. */
8067 if (tp->control.stop_step
8068 && frame_id_eq (tp->control.step_frame_id,
8069 get_frame_id (get_current_frame ()))
8070 && (tp->control.step_start_function
8071 == find_pc_function (tp->suspend.stop_pc)))
8072 {
8073 /* Finished step, just print source line. */
8074 source_flag = SRC_LINE;
8075 }
8076 else
8077 {
8078 /* Print location and source line. */
8079 source_flag = SRC_AND_LOC;
8080 }
8081 break;
8082 case PRINT_SRC_AND_LOC:
8083 /* Print location and source line. */
8084 source_flag = SRC_AND_LOC;
8085 break;
8086 case PRINT_SRC_ONLY:
8087 source_flag = SRC_LINE;
8088 break;
8089 case PRINT_NOTHING:
8090 /* Something bogus. */
8091 source_flag = SRC_LINE;
8092 do_frame_printing = 0;
8093 break;
8094 default:
8095 internal_error (__FILE__, __LINE__, _("Unknown value."));
8096 }
8097
8098 /* The behavior of this routine with respect to the source
8099 flag is:
8100 SRC_LINE: Print only source line
8101 LOCATION: Print only location
8102 SRC_AND_LOC: Print location and source line. */
8103 if (do_frame_printing)
8104 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8105 }
8106
8107 /* See infrun.h. */
8108
8109 void
8110 print_stop_event (struct ui_out *uiout, bool displays)
8111 {
8112 struct target_waitstatus last;
8113 struct thread_info *tp;
8114
8115 get_last_target_status (nullptr, nullptr, &last);
8116
8117 {
8118 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8119
8120 print_stop_location (&last);
8121
8122 /* Display the auto-display expressions. */
8123 if (displays)
8124 do_displays ();
8125 }
8126
8127 tp = inferior_thread ();
8128 if (tp->thread_fsm != NULL
8129 && tp->thread_fsm->finished_p ())
8130 {
8131 struct return_value_info *rv;
8132
8133 rv = tp->thread_fsm->return_value ();
8134 if (rv != NULL)
8135 print_return_value (uiout, rv);
8136 }
8137 }
8138
8139 /* See infrun.h. */
8140
8141 void
8142 maybe_remove_breakpoints (void)
8143 {
8144 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8145 {
8146 if (remove_breakpoints ())
8147 {
8148 target_terminal::ours_for_output ();
8149 printf_filtered (_("Cannot remove breakpoints because "
8150 "program is no longer writable.\nFurther "
8151 "execution is probably impossible.\n"));
8152 }
8153 }
8154 }
8155
8156 /* The execution context that just caused a normal stop. */
8157
8158 struct stop_context
8159 {
8160 stop_context ();
8161 ~stop_context ();
8162
8163 DISABLE_COPY_AND_ASSIGN (stop_context);
8164
8165 bool changed () const;
8166
8167 /* The stop ID. */
8168 ULONGEST stop_id;
8169
8170 /* The event PTID. */
8171
8172 ptid_t ptid;
8173
8174 /* If stopp for a thread event, this is the thread that caused the
8175 stop. */
8176 struct thread_info *thread;
8177
8178 /* The inferior that caused the stop. */
8179 int inf_num;
8180 };
8181
8182 /* Initializes a new stop context. If stopped for a thread event, this
8183 takes a strong reference to the thread. */
8184
8185 stop_context::stop_context ()
8186 {
8187 stop_id = get_stop_id ();
8188 ptid = inferior_ptid;
8189 inf_num = current_inferior ()->num;
8190
8191 if (inferior_ptid != null_ptid)
8192 {
8193 /* Take a strong reference so that the thread can't be deleted
8194 yet. */
8195 thread = inferior_thread ();
8196 thread->incref ();
8197 }
8198 else
8199 thread = NULL;
8200 }
8201
8202 /* Release a stop context previously created with save_stop_context.
8203 Releases the strong reference to the thread as well. */
8204
8205 stop_context::~stop_context ()
8206 {
8207 if (thread != NULL)
8208 thread->decref ();
8209 }
8210
8211 /* Return true if the current context no longer matches the saved stop
8212 context. */
8213
8214 bool
8215 stop_context::changed () const
8216 {
8217 if (ptid != inferior_ptid)
8218 return true;
8219 if (inf_num != current_inferior ()->num)
8220 return true;
8221 if (thread != NULL && thread->state != THREAD_STOPPED)
8222 return true;
8223 if (get_stop_id () != stop_id)
8224 return true;
8225 return false;
8226 }
8227
8228 /* See infrun.h. */
8229
8230 int
8231 normal_stop (void)
8232 {
8233 struct target_waitstatus last;
8234
8235 get_last_target_status (nullptr, nullptr, &last);
8236
8237 new_stop_id ();
8238
8239 /* If an exception is thrown from this point on, make sure to
8240 propagate GDB's knowledge of the executing state to the
8241 frontend/user running state. A QUIT is an easy exception to see
8242 here, so do this before any filtered output. */
8243
8244 ptid_t finish_ptid = null_ptid;
8245
8246 if (!non_stop)
8247 finish_ptid = minus_one_ptid;
8248 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8249 || last.kind == TARGET_WAITKIND_EXITED)
8250 {
8251 /* On some targets, we may still have live threads in the
8252 inferior when we get a process exit event. E.g., for
8253 "checkpoint", when the current checkpoint/fork exits,
8254 linux-fork.c automatically switches to another fork from
8255 within target_mourn_inferior. */
8256 if (inferior_ptid != null_ptid)
8257 finish_ptid = ptid_t (inferior_ptid.pid ());
8258 }
8259 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8260 finish_ptid = inferior_ptid;
8261
8262 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8263 if (finish_ptid != null_ptid)
8264 {
8265 maybe_finish_thread_state.emplace
8266 (user_visible_resume_target (finish_ptid), finish_ptid);
8267 }
8268
8269 /* As we're presenting a stop, and potentially removing breakpoints,
8270 update the thread list so we can tell whether there are threads
8271 running on the target. With target remote, for example, we can
8272 only learn about new threads when we explicitly update the thread
8273 list. Do this before notifying the interpreters about signal
8274 stops, end of stepping ranges, etc., so that the "new thread"
8275 output is emitted before e.g., "Program received signal FOO",
8276 instead of after. */
8277 update_thread_list ();
8278
8279 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8280 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8281
8282 /* As with the notification of thread events, we want to delay
8283 notifying the user that we've switched thread context until
8284 the inferior actually stops.
8285
8286 There's no point in saying anything if the inferior has exited.
8287 Note that SIGNALLED here means "exited with a signal", not
8288 "received a signal".
8289
8290 Also skip saying anything in non-stop mode. In that mode, as we
8291 don't want GDB to switch threads behind the user's back, to avoid
8292 races where the user is typing a command to apply to thread x,
8293 but GDB switches to thread y before the user finishes entering
8294 the command, fetch_inferior_event installs a cleanup to restore
8295 the current thread back to the thread the user had selected right
8296 after this event is handled, so we're not really switching, only
8297 informing of a stop. */
8298 if (!non_stop
8299 && previous_inferior_ptid != inferior_ptid
8300 && target_has_execution
8301 && last.kind != TARGET_WAITKIND_SIGNALLED
8302 && last.kind != TARGET_WAITKIND_EXITED
8303 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8304 {
8305 SWITCH_THRU_ALL_UIS ()
8306 {
8307 target_terminal::ours_for_output ();
8308 printf_filtered (_("[Switching to %s]\n"),
8309 target_pid_to_str (inferior_ptid).c_str ());
8310 annotate_thread_changed ();
8311 }
8312 previous_inferior_ptid = inferior_ptid;
8313 }
8314
8315 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8316 {
8317 SWITCH_THRU_ALL_UIS ()
8318 if (current_ui->prompt_state == PROMPT_BLOCKED)
8319 {
8320 target_terminal::ours_for_output ();
8321 printf_filtered (_("No unwaited-for children left.\n"));
8322 }
8323 }
8324
8325 /* Note: this depends on the update_thread_list call above. */
8326 maybe_remove_breakpoints ();
8327
8328 /* If an auto-display called a function and that got a signal,
8329 delete that auto-display to avoid an infinite recursion. */
8330
8331 if (stopped_by_random_signal)
8332 disable_current_display ();
8333
8334 SWITCH_THRU_ALL_UIS ()
8335 {
8336 async_enable_stdin ();
8337 }
8338
8339 /* Let the user/frontend see the threads as stopped. */
8340 maybe_finish_thread_state.reset ();
8341
8342 /* Select innermost stack frame - i.e., current frame is frame 0,
8343 and current location is based on that. Handle the case where the
8344 dummy call is returning after being stopped. E.g. the dummy call
8345 previously hit a breakpoint. (If the dummy call returns
8346 normally, we won't reach here.) Do this before the stop hook is
8347 run, so that it doesn't get to see the temporary dummy frame,
8348 which is not where we'll present the stop. */
8349 if (has_stack_frames ())
8350 {
8351 if (stop_stack_dummy == STOP_STACK_DUMMY)
8352 {
8353 /* Pop the empty frame that contains the stack dummy. This
8354 also restores inferior state prior to the call (struct
8355 infcall_suspend_state). */
8356 struct frame_info *frame = get_current_frame ();
8357
8358 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8359 frame_pop (frame);
8360 /* frame_pop calls reinit_frame_cache as the last thing it
8361 does which means there's now no selected frame. */
8362 }
8363
8364 select_frame (get_current_frame ());
8365
8366 /* Set the current source location. */
8367 set_current_sal_from_frame (get_current_frame ());
8368 }
8369
8370 /* Look up the hook_stop and run it (CLI internally handles problem
8371 of stop_command's pre-hook not existing). */
8372 if (stop_command != NULL)
8373 {
8374 stop_context saved_context;
8375
8376 try
8377 {
8378 execute_cmd_pre_hook (stop_command);
8379 }
8380 catch (const gdb_exception &ex)
8381 {
8382 exception_fprintf (gdb_stderr, ex,
8383 "Error while running hook_stop:\n");
8384 }
8385
8386 /* If the stop hook resumes the target, then there's no point in
8387 trying to notify about the previous stop; its context is
8388 gone. Likewise if the command switches thread or inferior --
8389 the observers would print a stop for the wrong
8390 thread/inferior. */
8391 if (saved_context.changed ())
8392 return 1;
8393 }
8394
8395 /* Notify observers about the stop. This is where the interpreters
8396 print the stop event. */
8397 if (inferior_ptid != null_ptid)
8398 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8399 stop_print_frame);
8400 else
8401 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8402
8403 annotate_stopped ();
8404
8405 if (target_has_execution)
8406 {
8407 if (last.kind != TARGET_WAITKIND_SIGNALLED
8408 && last.kind != TARGET_WAITKIND_EXITED
8409 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8410 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8411 Delete any breakpoint that is to be deleted at the next stop. */
8412 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8413 }
8414
8415 /* Try to get rid of automatically added inferiors that are no
8416 longer needed. Keeping those around slows down things linearly.
8417 Note that this never removes the current inferior. */
8418 prune_inferiors ();
8419
8420 return 0;
8421 }
8422 \f
8423 int
8424 signal_stop_state (int signo)
8425 {
8426 return signal_stop[signo];
8427 }
8428
8429 int
8430 signal_print_state (int signo)
8431 {
8432 return signal_print[signo];
8433 }
8434
8435 int
8436 signal_pass_state (int signo)
8437 {
8438 return signal_program[signo];
8439 }
8440
8441 static void
8442 signal_cache_update (int signo)
8443 {
8444 if (signo == -1)
8445 {
8446 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8447 signal_cache_update (signo);
8448
8449 return;
8450 }
8451
8452 signal_pass[signo] = (signal_stop[signo] == 0
8453 && signal_print[signo] == 0
8454 && signal_program[signo] == 1
8455 && signal_catch[signo] == 0);
8456 }
8457
8458 int
8459 signal_stop_update (int signo, int state)
8460 {
8461 int ret = signal_stop[signo];
8462
8463 signal_stop[signo] = state;
8464 signal_cache_update (signo);
8465 return ret;
8466 }
8467
8468 int
8469 signal_print_update (int signo, int state)
8470 {
8471 int ret = signal_print[signo];
8472
8473 signal_print[signo] = state;
8474 signal_cache_update (signo);
8475 return ret;
8476 }
8477
8478 int
8479 signal_pass_update (int signo, int state)
8480 {
8481 int ret = signal_program[signo];
8482
8483 signal_program[signo] = state;
8484 signal_cache_update (signo);
8485 return ret;
8486 }
8487
8488 /* Update the global 'signal_catch' from INFO and notify the
8489 target. */
8490
8491 void
8492 signal_catch_update (const unsigned int *info)
8493 {
8494 int i;
8495
8496 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8497 signal_catch[i] = info[i] > 0;
8498 signal_cache_update (-1);
8499 target_pass_signals (signal_pass);
8500 }
8501
8502 static void
8503 sig_print_header (void)
8504 {
8505 printf_filtered (_("Signal Stop\tPrint\tPass "
8506 "to program\tDescription\n"));
8507 }
8508
8509 static void
8510 sig_print_info (enum gdb_signal oursig)
8511 {
8512 const char *name = gdb_signal_to_name (oursig);
8513 int name_padding = 13 - strlen (name);
8514
8515 if (name_padding <= 0)
8516 name_padding = 0;
8517
8518 printf_filtered ("%s", name);
8519 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8520 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8521 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8522 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8523 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8524 }
8525
8526 /* Specify how various signals in the inferior should be handled. */
8527
8528 static void
8529 handle_command (const char *args, int from_tty)
8530 {
8531 int digits, wordlen;
8532 int sigfirst, siglast;
8533 enum gdb_signal oursig;
8534 int allsigs;
8535
8536 if (args == NULL)
8537 {
8538 error_no_arg (_("signal to handle"));
8539 }
8540
8541 /* Allocate and zero an array of flags for which signals to handle. */
8542
8543 const size_t nsigs = GDB_SIGNAL_LAST;
8544 unsigned char sigs[nsigs] {};
8545
8546 /* Break the command line up into args. */
8547
8548 gdb_argv built_argv (args);
8549
8550 /* Walk through the args, looking for signal oursigs, signal names, and
8551 actions. Signal numbers and signal names may be interspersed with
8552 actions, with the actions being performed for all signals cumulatively
8553 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8554
8555 for (char *arg : built_argv)
8556 {
8557 wordlen = strlen (arg);
8558 for (digits = 0; isdigit (arg[digits]); digits++)
8559 {;
8560 }
8561 allsigs = 0;
8562 sigfirst = siglast = -1;
8563
8564 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8565 {
8566 /* Apply action to all signals except those used by the
8567 debugger. Silently skip those. */
8568 allsigs = 1;
8569 sigfirst = 0;
8570 siglast = nsigs - 1;
8571 }
8572 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8573 {
8574 SET_SIGS (nsigs, sigs, signal_stop);
8575 SET_SIGS (nsigs, sigs, signal_print);
8576 }
8577 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8578 {
8579 UNSET_SIGS (nsigs, sigs, signal_program);
8580 }
8581 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8582 {
8583 SET_SIGS (nsigs, sigs, signal_print);
8584 }
8585 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8586 {
8587 SET_SIGS (nsigs, sigs, signal_program);
8588 }
8589 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8590 {
8591 UNSET_SIGS (nsigs, sigs, signal_stop);
8592 }
8593 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8594 {
8595 SET_SIGS (nsigs, sigs, signal_program);
8596 }
8597 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8598 {
8599 UNSET_SIGS (nsigs, sigs, signal_print);
8600 UNSET_SIGS (nsigs, sigs, signal_stop);
8601 }
8602 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8603 {
8604 UNSET_SIGS (nsigs, sigs, signal_program);
8605 }
8606 else if (digits > 0)
8607 {
8608 /* It is numeric. The numeric signal refers to our own
8609 internal signal numbering from target.h, not to host/target
8610 signal number. This is a feature; users really should be
8611 using symbolic names anyway, and the common ones like
8612 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8613
8614 sigfirst = siglast = (int)
8615 gdb_signal_from_command (atoi (arg));
8616 if (arg[digits] == '-')
8617 {
8618 siglast = (int)
8619 gdb_signal_from_command (atoi (arg + digits + 1));
8620 }
8621 if (sigfirst > siglast)
8622 {
8623 /* Bet he didn't figure we'd think of this case... */
8624 std::swap (sigfirst, siglast);
8625 }
8626 }
8627 else
8628 {
8629 oursig = gdb_signal_from_name (arg);
8630 if (oursig != GDB_SIGNAL_UNKNOWN)
8631 {
8632 sigfirst = siglast = (int) oursig;
8633 }
8634 else
8635 {
8636 /* Not a number and not a recognized flag word => complain. */
8637 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8638 }
8639 }
8640
8641 /* If any signal numbers or symbol names were found, set flags for
8642 which signals to apply actions to. */
8643
8644 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8645 {
8646 switch ((enum gdb_signal) signum)
8647 {
8648 case GDB_SIGNAL_TRAP:
8649 case GDB_SIGNAL_INT:
8650 if (!allsigs && !sigs[signum])
8651 {
8652 if (query (_("%s is used by the debugger.\n\
8653 Are you sure you want to change it? "),
8654 gdb_signal_to_name ((enum gdb_signal) signum)))
8655 {
8656 sigs[signum] = 1;
8657 }
8658 else
8659 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8660 }
8661 break;
8662 case GDB_SIGNAL_0:
8663 case GDB_SIGNAL_DEFAULT:
8664 case GDB_SIGNAL_UNKNOWN:
8665 /* Make sure that "all" doesn't print these. */
8666 break;
8667 default:
8668 sigs[signum] = 1;
8669 break;
8670 }
8671 }
8672 }
8673
8674 for (int signum = 0; signum < nsigs; signum++)
8675 if (sigs[signum])
8676 {
8677 signal_cache_update (-1);
8678 target_pass_signals (signal_pass);
8679 target_program_signals (signal_program);
8680
8681 if (from_tty)
8682 {
8683 /* Show the results. */
8684 sig_print_header ();
8685 for (; signum < nsigs; signum++)
8686 if (sigs[signum])
8687 sig_print_info ((enum gdb_signal) signum);
8688 }
8689
8690 break;
8691 }
8692 }
8693
8694 /* Complete the "handle" command. */
8695
8696 static void
8697 handle_completer (struct cmd_list_element *ignore,
8698 completion_tracker &tracker,
8699 const char *text, const char *word)
8700 {
8701 static const char * const keywords[] =
8702 {
8703 "all",
8704 "stop",
8705 "ignore",
8706 "print",
8707 "pass",
8708 "nostop",
8709 "noignore",
8710 "noprint",
8711 "nopass",
8712 NULL,
8713 };
8714
8715 signal_completer (ignore, tracker, text, word);
8716 complete_on_enum (tracker, keywords, word, word);
8717 }
8718
8719 enum gdb_signal
8720 gdb_signal_from_command (int num)
8721 {
8722 if (num >= 1 && num <= 15)
8723 return (enum gdb_signal) num;
8724 error (_("Only signals 1-15 are valid as numeric signals.\n\
8725 Use \"info signals\" for a list of symbolic signals."));
8726 }
8727
8728 /* Print current contents of the tables set by the handle command.
8729 It is possible we should just be printing signals actually used
8730 by the current target (but for things to work right when switching
8731 targets, all signals should be in the signal tables). */
8732
8733 static void
8734 info_signals_command (const char *signum_exp, int from_tty)
8735 {
8736 enum gdb_signal oursig;
8737
8738 sig_print_header ();
8739
8740 if (signum_exp)
8741 {
8742 /* First see if this is a symbol name. */
8743 oursig = gdb_signal_from_name (signum_exp);
8744 if (oursig == GDB_SIGNAL_UNKNOWN)
8745 {
8746 /* No, try numeric. */
8747 oursig =
8748 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8749 }
8750 sig_print_info (oursig);
8751 return;
8752 }
8753
8754 printf_filtered ("\n");
8755 /* These ugly casts brought to you by the native VAX compiler. */
8756 for (oursig = GDB_SIGNAL_FIRST;
8757 (int) oursig < (int) GDB_SIGNAL_LAST;
8758 oursig = (enum gdb_signal) ((int) oursig + 1))
8759 {
8760 QUIT;
8761
8762 if (oursig != GDB_SIGNAL_UNKNOWN
8763 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8764 sig_print_info (oursig);
8765 }
8766
8767 printf_filtered (_("\nUse the \"handle\" command "
8768 "to change these tables.\n"));
8769 }
8770
8771 /* The $_siginfo convenience variable is a bit special. We don't know
8772 for sure the type of the value until we actually have a chance to
8773 fetch the data. The type can change depending on gdbarch, so it is
8774 also dependent on which thread you have selected.
8775
8776 1. making $_siginfo be an internalvar that creates a new value on
8777 access.
8778
8779 2. making the value of $_siginfo be an lval_computed value. */
8780
8781 /* This function implements the lval_computed support for reading a
8782 $_siginfo value. */
8783
8784 static void
8785 siginfo_value_read (struct value *v)
8786 {
8787 LONGEST transferred;
8788
8789 /* If we can access registers, so can we access $_siginfo. Likewise
8790 vice versa. */
8791 validate_registers_access ();
8792
8793 transferred =
8794 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8795 NULL,
8796 value_contents_all_raw (v),
8797 value_offset (v),
8798 TYPE_LENGTH (value_type (v)));
8799
8800 if (transferred != TYPE_LENGTH (value_type (v)))
8801 error (_("Unable to read siginfo"));
8802 }
8803
8804 /* This function implements the lval_computed support for writing a
8805 $_siginfo value. */
8806
8807 static void
8808 siginfo_value_write (struct value *v, struct value *fromval)
8809 {
8810 LONGEST transferred;
8811
8812 /* If we can access registers, so can we access $_siginfo. Likewise
8813 vice versa. */
8814 validate_registers_access ();
8815
8816 transferred = target_write (current_top_target (),
8817 TARGET_OBJECT_SIGNAL_INFO,
8818 NULL,
8819 value_contents_all_raw (fromval),
8820 value_offset (v),
8821 TYPE_LENGTH (value_type (fromval)));
8822
8823 if (transferred != TYPE_LENGTH (value_type (fromval)))
8824 error (_("Unable to write siginfo"));
8825 }
8826
8827 static const struct lval_funcs siginfo_value_funcs =
8828 {
8829 siginfo_value_read,
8830 siginfo_value_write
8831 };
8832
8833 /* Return a new value with the correct type for the siginfo object of
8834 the current thread using architecture GDBARCH. Return a void value
8835 if there's no object available. */
8836
8837 static struct value *
8838 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8839 void *ignore)
8840 {
8841 if (target_has_stack
8842 && inferior_ptid != null_ptid
8843 && gdbarch_get_siginfo_type_p (gdbarch))
8844 {
8845 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8846
8847 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8848 }
8849
8850 return allocate_value (builtin_type (gdbarch)->builtin_void);
8851 }
8852
8853 \f
8854 /* infcall_suspend_state contains state about the program itself like its
8855 registers and any signal it received when it last stopped.
8856 This state must be restored regardless of how the inferior function call
8857 ends (either successfully, or after it hits a breakpoint or signal)
8858 if the program is to properly continue where it left off. */
8859
8860 class infcall_suspend_state
8861 {
8862 public:
8863 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8864 once the inferior function call has finished. */
8865 infcall_suspend_state (struct gdbarch *gdbarch,
8866 const struct thread_info *tp,
8867 struct regcache *regcache)
8868 : m_thread_suspend (tp->suspend),
8869 m_registers (new readonly_detached_regcache (*regcache))
8870 {
8871 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8872
8873 if (gdbarch_get_siginfo_type_p (gdbarch))
8874 {
8875 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8876 size_t len = TYPE_LENGTH (type);
8877
8878 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8879
8880 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8881 siginfo_data.get (), 0, len) != len)
8882 {
8883 /* Errors ignored. */
8884 siginfo_data.reset (nullptr);
8885 }
8886 }
8887
8888 if (siginfo_data)
8889 {
8890 m_siginfo_gdbarch = gdbarch;
8891 m_siginfo_data = std::move (siginfo_data);
8892 }
8893 }
8894
8895 /* Return a pointer to the stored register state. */
8896
8897 readonly_detached_regcache *registers () const
8898 {
8899 return m_registers.get ();
8900 }
8901
8902 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8903
8904 void restore (struct gdbarch *gdbarch,
8905 struct thread_info *tp,
8906 struct regcache *regcache) const
8907 {
8908 tp->suspend = m_thread_suspend;
8909
8910 if (m_siginfo_gdbarch == gdbarch)
8911 {
8912 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8913
8914 /* Errors ignored. */
8915 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8916 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8917 }
8918
8919 /* The inferior can be gone if the user types "print exit(0)"
8920 (and perhaps other times). */
8921 if (target_has_execution)
8922 /* NB: The register write goes through to the target. */
8923 regcache->restore (registers ());
8924 }
8925
8926 private:
8927 /* How the current thread stopped before the inferior function call was
8928 executed. */
8929 struct thread_suspend_state m_thread_suspend;
8930
8931 /* The registers before the inferior function call was executed. */
8932 std::unique_ptr<readonly_detached_regcache> m_registers;
8933
8934 /* Format of SIGINFO_DATA or NULL if it is not present. */
8935 struct gdbarch *m_siginfo_gdbarch = nullptr;
8936
8937 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8938 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8939 content would be invalid. */
8940 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8941 };
8942
8943 infcall_suspend_state_up
8944 save_infcall_suspend_state ()
8945 {
8946 struct thread_info *tp = inferior_thread ();
8947 struct regcache *regcache = get_current_regcache ();
8948 struct gdbarch *gdbarch = regcache->arch ();
8949
8950 infcall_suspend_state_up inf_state
8951 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8952
8953 /* Having saved the current state, adjust the thread state, discarding
8954 any stop signal information. The stop signal is not useful when
8955 starting an inferior function call, and run_inferior_call will not use
8956 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8957 tp->suspend.stop_signal = GDB_SIGNAL_0;
8958
8959 return inf_state;
8960 }
8961
8962 /* Restore inferior session state to INF_STATE. */
8963
8964 void
8965 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8966 {
8967 struct thread_info *tp = inferior_thread ();
8968 struct regcache *regcache = get_current_regcache ();
8969 struct gdbarch *gdbarch = regcache->arch ();
8970
8971 inf_state->restore (gdbarch, tp, regcache);
8972 discard_infcall_suspend_state (inf_state);
8973 }
8974
8975 void
8976 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8977 {
8978 delete inf_state;
8979 }
8980
8981 readonly_detached_regcache *
8982 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8983 {
8984 return inf_state->registers ();
8985 }
8986
8987 /* infcall_control_state contains state regarding gdb's control of the
8988 inferior itself like stepping control. It also contains session state like
8989 the user's currently selected frame. */
8990
8991 struct infcall_control_state
8992 {
8993 struct thread_control_state thread_control;
8994 struct inferior_control_state inferior_control;
8995
8996 /* Other fields: */
8997 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8998 int stopped_by_random_signal = 0;
8999
9000 /* ID if the selected frame when the inferior function call was made. */
9001 struct frame_id selected_frame_id {};
9002 };
9003
9004 /* Save all of the information associated with the inferior<==>gdb
9005 connection. */
9006
9007 infcall_control_state_up
9008 save_infcall_control_state ()
9009 {
9010 infcall_control_state_up inf_status (new struct infcall_control_state);
9011 struct thread_info *tp = inferior_thread ();
9012 struct inferior *inf = current_inferior ();
9013
9014 inf_status->thread_control = tp->control;
9015 inf_status->inferior_control = inf->control;
9016
9017 tp->control.step_resume_breakpoint = NULL;
9018 tp->control.exception_resume_breakpoint = NULL;
9019
9020 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9021 chain. If caller's caller is walking the chain, they'll be happier if we
9022 hand them back the original chain when restore_infcall_control_state is
9023 called. */
9024 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9025
9026 /* Other fields: */
9027 inf_status->stop_stack_dummy = stop_stack_dummy;
9028 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9029
9030 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9031
9032 return inf_status;
9033 }
9034
9035 static void
9036 restore_selected_frame (const frame_id &fid)
9037 {
9038 frame_info *frame = frame_find_by_id (fid);
9039
9040 /* If inf_status->selected_frame_id is NULL, there was no previously
9041 selected frame. */
9042 if (frame == NULL)
9043 {
9044 warning (_("Unable to restore previously selected frame."));
9045 return;
9046 }
9047
9048 select_frame (frame);
9049 }
9050
9051 /* Restore inferior session state to INF_STATUS. */
9052
9053 void
9054 restore_infcall_control_state (struct infcall_control_state *inf_status)
9055 {
9056 struct thread_info *tp = inferior_thread ();
9057 struct inferior *inf = current_inferior ();
9058
9059 if (tp->control.step_resume_breakpoint)
9060 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9061
9062 if (tp->control.exception_resume_breakpoint)
9063 tp->control.exception_resume_breakpoint->disposition
9064 = disp_del_at_next_stop;
9065
9066 /* Handle the bpstat_copy of the chain. */
9067 bpstat_clear (&tp->control.stop_bpstat);
9068
9069 tp->control = inf_status->thread_control;
9070 inf->control = inf_status->inferior_control;
9071
9072 /* Other fields: */
9073 stop_stack_dummy = inf_status->stop_stack_dummy;
9074 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9075
9076 if (target_has_stack)
9077 {
9078 /* The point of the try/catch is that if the stack is clobbered,
9079 walking the stack might encounter a garbage pointer and
9080 error() trying to dereference it. */
9081 try
9082 {
9083 restore_selected_frame (inf_status->selected_frame_id);
9084 }
9085 catch (const gdb_exception_error &ex)
9086 {
9087 exception_fprintf (gdb_stderr, ex,
9088 "Unable to restore previously selected frame:\n");
9089 /* Error in restoring the selected frame. Select the
9090 innermost frame. */
9091 select_frame (get_current_frame ());
9092 }
9093 }
9094
9095 delete inf_status;
9096 }
9097
9098 void
9099 discard_infcall_control_state (struct infcall_control_state *inf_status)
9100 {
9101 if (inf_status->thread_control.step_resume_breakpoint)
9102 inf_status->thread_control.step_resume_breakpoint->disposition
9103 = disp_del_at_next_stop;
9104
9105 if (inf_status->thread_control.exception_resume_breakpoint)
9106 inf_status->thread_control.exception_resume_breakpoint->disposition
9107 = disp_del_at_next_stop;
9108
9109 /* See save_infcall_control_state for info on stop_bpstat. */
9110 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9111
9112 delete inf_status;
9113 }
9114 \f
9115 /* See infrun.h. */
9116
9117 void
9118 clear_exit_convenience_vars (void)
9119 {
9120 clear_internalvar (lookup_internalvar ("_exitsignal"));
9121 clear_internalvar (lookup_internalvar ("_exitcode"));
9122 }
9123 \f
9124
9125 /* User interface for reverse debugging:
9126 Set exec-direction / show exec-direction commands
9127 (returns error unless target implements to_set_exec_direction method). */
9128
9129 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9130 static const char exec_forward[] = "forward";
9131 static const char exec_reverse[] = "reverse";
9132 static const char *exec_direction = exec_forward;
9133 static const char *const exec_direction_names[] = {
9134 exec_forward,
9135 exec_reverse,
9136 NULL
9137 };
9138
9139 static void
9140 set_exec_direction_func (const char *args, int from_tty,
9141 struct cmd_list_element *cmd)
9142 {
9143 if (target_can_execute_reverse)
9144 {
9145 if (!strcmp (exec_direction, exec_forward))
9146 execution_direction = EXEC_FORWARD;
9147 else if (!strcmp (exec_direction, exec_reverse))
9148 execution_direction = EXEC_REVERSE;
9149 }
9150 else
9151 {
9152 exec_direction = exec_forward;
9153 error (_("Target does not support this operation."));
9154 }
9155 }
9156
9157 static void
9158 show_exec_direction_func (struct ui_file *out, int from_tty,
9159 struct cmd_list_element *cmd, const char *value)
9160 {
9161 switch (execution_direction) {
9162 case EXEC_FORWARD:
9163 fprintf_filtered (out, _("Forward.\n"));
9164 break;
9165 case EXEC_REVERSE:
9166 fprintf_filtered (out, _("Reverse.\n"));
9167 break;
9168 default:
9169 internal_error (__FILE__, __LINE__,
9170 _("bogus execution_direction value: %d"),
9171 (int) execution_direction);
9172 }
9173 }
9174
9175 static void
9176 show_schedule_multiple (struct ui_file *file, int from_tty,
9177 struct cmd_list_element *c, const char *value)
9178 {
9179 fprintf_filtered (file, _("Resuming the execution of threads "
9180 "of all processes is %s.\n"), value);
9181 }
9182
9183 /* Implementation of `siginfo' variable. */
9184
9185 static const struct internalvar_funcs siginfo_funcs =
9186 {
9187 siginfo_make_value,
9188 NULL,
9189 NULL
9190 };
9191
9192 /* Callback for infrun's target events source. This is marked when a
9193 thread has a pending status to process. */
9194
9195 static void
9196 infrun_async_inferior_event_handler (gdb_client_data data)
9197 {
9198 inferior_event_handler (INF_REG_EVENT, NULL);
9199 }
9200
9201 void _initialize_infrun ();
9202 void
9203 _initialize_infrun ()
9204 {
9205 struct cmd_list_element *c;
9206
9207 /* Register extra event sources in the event loop. */
9208 infrun_async_inferior_event_token
9209 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9210
9211 add_info ("signals", info_signals_command, _("\
9212 What debugger does when program gets various signals.\n\
9213 Specify a signal as argument to print info on that signal only."));
9214 add_info_alias ("handle", "signals", 0);
9215
9216 c = add_com ("handle", class_run, handle_command, _("\
9217 Specify how to handle signals.\n\
9218 Usage: handle SIGNAL [ACTIONS]\n\
9219 Args are signals and actions to apply to those signals.\n\
9220 If no actions are specified, the current settings for the specified signals\n\
9221 will be displayed instead.\n\
9222 \n\
9223 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9224 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9225 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9226 The special arg \"all\" is recognized to mean all signals except those\n\
9227 used by the debugger, typically SIGTRAP and SIGINT.\n\
9228 \n\
9229 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9230 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9231 Stop means reenter debugger if this signal happens (implies print).\n\
9232 Print means print a message if this signal happens.\n\
9233 Pass means let program see this signal; otherwise program doesn't know.\n\
9234 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9235 Pass and Stop may be combined.\n\
9236 \n\
9237 Multiple signals may be specified. Signal numbers and signal names\n\
9238 may be interspersed with actions, with the actions being performed for\n\
9239 all signals cumulatively specified."));
9240 set_cmd_completer (c, handle_completer);
9241
9242 if (!dbx_commands)
9243 stop_command = add_cmd ("stop", class_obscure,
9244 not_just_help_class_command, _("\
9245 There is no `stop' command, but you can set a hook on `stop'.\n\
9246 This allows you to set a list of commands to be run each time execution\n\
9247 of the program stops."), &cmdlist);
9248
9249 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9250 Set inferior debugging."), _("\
9251 Show inferior debugging."), _("\
9252 When non-zero, inferior specific debugging is enabled."),
9253 NULL,
9254 show_debug_infrun,
9255 &setdebuglist, &showdebuglist);
9256
9257 add_setshow_boolean_cmd ("displaced", class_maintenance,
9258 &debug_displaced, _("\
9259 Set displaced stepping debugging."), _("\
9260 Show displaced stepping debugging."), _("\
9261 When non-zero, displaced stepping specific debugging is enabled."),
9262 NULL,
9263 show_debug_displaced,
9264 &setdebuglist, &showdebuglist);
9265
9266 add_setshow_boolean_cmd ("non-stop", no_class,
9267 &non_stop_1, _("\
9268 Set whether gdb controls the inferior in non-stop mode."), _("\
9269 Show whether gdb controls the inferior in non-stop mode."), _("\
9270 When debugging a multi-threaded program and this setting is\n\
9271 off (the default, also called all-stop mode), when one thread stops\n\
9272 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9273 all other threads in the program while you interact with the thread of\n\
9274 interest. When you continue or step a thread, you can allow the other\n\
9275 threads to run, or have them remain stopped, but while you inspect any\n\
9276 thread's state, all threads stop.\n\
9277 \n\
9278 In non-stop mode, when one thread stops, other threads can continue\n\
9279 to run freely. You'll be able to step each thread independently,\n\
9280 leave it stopped or free to run as needed."),
9281 set_non_stop,
9282 show_non_stop,
9283 &setlist,
9284 &showlist);
9285
9286 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9287 {
9288 signal_stop[i] = 1;
9289 signal_print[i] = 1;
9290 signal_program[i] = 1;
9291 signal_catch[i] = 0;
9292 }
9293
9294 /* Signals caused by debugger's own actions should not be given to
9295 the program afterwards.
9296
9297 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9298 explicitly specifies that it should be delivered to the target
9299 program. Typically, that would occur when a user is debugging a
9300 target monitor on a simulator: the target monitor sets a
9301 breakpoint; the simulator encounters this breakpoint and halts
9302 the simulation handing control to GDB; GDB, noting that the stop
9303 address doesn't map to any known breakpoint, returns control back
9304 to the simulator; the simulator then delivers the hardware
9305 equivalent of a GDB_SIGNAL_TRAP to the program being
9306 debugged. */
9307 signal_program[GDB_SIGNAL_TRAP] = 0;
9308 signal_program[GDB_SIGNAL_INT] = 0;
9309
9310 /* Signals that are not errors should not normally enter the debugger. */
9311 signal_stop[GDB_SIGNAL_ALRM] = 0;
9312 signal_print[GDB_SIGNAL_ALRM] = 0;
9313 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9314 signal_print[GDB_SIGNAL_VTALRM] = 0;
9315 signal_stop[GDB_SIGNAL_PROF] = 0;
9316 signal_print[GDB_SIGNAL_PROF] = 0;
9317 signal_stop[GDB_SIGNAL_CHLD] = 0;
9318 signal_print[GDB_SIGNAL_CHLD] = 0;
9319 signal_stop[GDB_SIGNAL_IO] = 0;
9320 signal_print[GDB_SIGNAL_IO] = 0;
9321 signal_stop[GDB_SIGNAL_POLL] = 0;
9322 signal_print[GDB_SIGNAL_POLL] = 0;
9323 signal_stop[GDB_SIGNAL_URG] = 0;
9324 signal_print[GDB_SIGNAL_URG] = 0;
9325 signal_stop[GDB_SIGNAL_WINCH] = 0;
9326 signal_print[GDB_SIGNAL_WINCH] = 0;
9327 signal_stop[GDB_SIGNAL_PRIO] = 0;
9328 signal_print[GDB_SIGNAL_PRIO] = 0;
9329
9330 /* These signals are used internally by user-level thread
9331 implementations. (See signal(5) on Solaris.) Like the above
9332 signals, a healthy program receives and handles them as part of
9333 its normal operation. */
9334 signal_stop[GDB_SIGNAL_LWP] = 0;
9335 signal_print[GDB_SIGNAL_LWP] = 0;
9336 signal_stop[GDB_SIGNAL_WAITING] = 0;
9337 signal_print[GDB_SIGNAL_WAITING] = 0;
9338 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9339 signal_print[GDB_SIGNAL_CANCEL] = 0;
9340 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9341 signal_print[GDB_SIGNAL_LIBRT] = 0;
9342
9343 /* Update cached state. */
9344 signal_cache_update (-1);
9345
9346 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9347 &stop_on_solib_events, _("\
9348 Set stopping for shared library events."), _("\
9349 Show stopping for shared library events."), _("\
9350 If nonzero, gdb will give control to the user when the dynamic linker\n\
9351 notifies gdb of shared library events. The most common event of interest\n\
9352 to the user would be loading/unloading of a new library."),
9353 set_stop_on_solib_events,
9354 show_stop_on_solib_events,
9355 &setlist, &showlist);
9356
9357 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9358 follow_fork_mode_kind_names,
9359 &follow_fork_mode_string, _("\
9360 Set debugger response to a program call of fork or vfork."), _("\
9361 Show debugger response to a program call of fork or vfork."), _("\
9362 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9363 parent - the original process is debugged after a fork\n\
9364 child - the new process is debugged after a fork\n\
9365 The unfollowed process will continue to run.\n\
9366 By default, the debugger will follow the parent process."),
9367 NULL,
9368 show_follow_fork_mode_string,
9369 &setlist, &showlist);
9370
9371 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9372 follow_exec_mode_names,
9373 &follow_exec_mode_string, _("\
9374 Set debugger response to a program call of exec."), _("\
9375 Show debugger response to a program call of exec."), _("\
9376 An exec call replaces the program image of a process.\n\
9377 \n\
9378 follow-exec-mode can be:\n\
9379 \n\
9380 new - the debugger creates a new inferior and rebinds the process\n\
9381 to this new inferior. The program the process was running before\n\
9382 the exec call can be restarted afterwards by restarting the original\n\
9383 inferior.\n\
9384 \n\
9385 same - the debugger keeps the process bound to the same inferior.\n\
9386 The new executable image replaces the previous executable loaded in\n\
9387 the inferior. Restarting the inferior after the exec call restarts\n\
9388 the executable the process was running after the exec call.\n\
9389 \n\
9390 By default, the debugger will use the same inferior."),
9391 NULL,
9392 show_follow_exec_mode_string,
9393 &setlist, &showlist);
9394
9395 add_setshow_enum_cmd ("scheduler-locking", class_run,
9396 scheduler_enums, &scheduler_mode, _("\
9397 Set mode for locking scheduler during execution."), _("\
9398 Show mode for locking scheduler during execution."), _("\
9399 off == no locking (threads may preempt at any time)\n\
9400 on == full locking (no thread except the current thread may run)\n\
9401 This applies to both normal execution and replay mode.\n\
9402 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9403 In this mode, other threads may run during other commands.\n\
9404 This applies to both normal execution and replay mode.\n\
9405 replay == scheduler locked in replay mode and unlocked during normal execution."),
9406 set_schedlock_func, /* traps on target vector */
9407 show_scheduler_mode,
9408 &setlist, &showlist);
9409
9410 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9411 Set mode for resuming threads of all processes."), _("\
9412 Show mode for resuming threads of all processes."), _("\
9413 When on, execution commands (such as 'continue' or 'next') resume all\n\
9414 threads of all processes. When off (which is the default), execution\n\
9415 commands only resume the threads of the current process. The set of\n\
9416 threads that are resumed is further refined by the scheduler-locking\n\
9417 mode (see help set scheduler-locking)."),
9418 NULL,
9419 show_schedule_multiple,
9420 &setlist, &showlist);
9421
9422 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9423 Set mode of the step operation."), _("\
9424 Show mode of the step operation."), _("\
9425 When set, doing a step over a function without debug line information\n\
9426 will stop at the first instruction of that function. Otherwise, the\n\
9427 function is skipped and the step command stops at a different source line."),
9428 NULL,
9429 show_step_stop_if_no_debug,
9430 &setlist, &showlist);
9431
9432 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9433 &can_use_displaced_stepping, _("\
9434 Set debugger's willingness to use displaced stepping."), _("\
9435 Show debugger's willingness to use displaced stepping."), _("\
9436 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9437 supported by the target architecture. If off, gdb will not use displaced\n\
9438 stepping to step over breakpoints, even if such is supported by the target\n\
9439 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9440 if the target architecture supports it and non-stop mode is active, but will not\n\
9441 use it in all-stop mode (see help set non-stop)."),
9442 NULL,
9443 show_can_use_displaced_stepping,
9444 &setlist, &showlist);
9445
9446 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9447 &exec_direction, _("Set direction of execution.\n\
9448 Options are 'forward' or 'reverse'."),
9449 _("Show direction of execution (forward/reverse)."),
9450 _("Tells gdb whether to execute forward or backward."),
9451 set_exec_direction_func, show_exec_direction_func,
9452 &setlist, &showlist);
9453
9454 /* Set/show detach-on-fork: user-settable mode. */
9455
9456 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9457 Set whether gdb will detach the child of a fork."), _("\
9458 Show whether gdb will detach the child of a fork."), _("\
9459 Tells gdb whether to detach the child of a fork."),
9460 NULL, NULL, &setlist, &showlist);
9461
9462 /* Set/show disable address space randomization mode. */
9463
9464 add_setshow_boolean_cmd ("disable-randomization", class_support,
9465 &disable_randomization, _("\
9466 Set disabling of debuggee's virtual address space randomization."), _("\
9467 Show disabling of debuggee's virtual address space randomization."), _("\
9468 When this mode is on (which is the default), randomization of the virtual\n\
9469 address space is disabled. Standalone programs run with the randomization\n\
9470 enabled by default on some platforms."),
9471 &set_disable_randomization,
9472 &show_disable_randomization,
9473 &setlist, &showlist);
9474
9475 /* ptid initializations */
9476 inferior_ptid = null_ptid;
9477 target_last_wait_ptid = minus_one_ptid;
9478
9479 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9480 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9481 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9482 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9483
9484 /* Explicitly create without lookup, since that tries to create a
9485 value with a void typed value, and when we get here, gdbarch
9486 isn't initialized yet. At this point, we're quite sure there
9487 isn't another convenience variable of the same name. */
9488 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9489
9490 add_setshow_boolean_cmd ("observer", no_class,
9491 &observer_mode_1, _("\
9492 Set whether gdb controls the inferior in observer mode."), _("\
9493 Show whether gdb controls the inferior in observer mode."), _("\
9494 In observer mode, GDB can get data from the inferior, but not\n\
9495 affect its execution. Registers and memory may not be changed,\n\
9496 breakpoints may not be set, and the program cannot be interrupted\n\
9497 or signalled."),
9498 set_observer_mode,
9499 show_observer_mode,
9500 &setlist,
9501 &showlist);
9502 }
This page took 0.222709 seconds and 4 git commands to generate.