7b7a581963e54d36c648d63dd5e7b128fa4eb048
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5 Copyright (C) 2019-2020 Advanced Micro Devices, Inc. All rights reserved.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "infrun.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67
68 /* Prototypes for local functions */
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static int follow_fork (void);
75
76 static int follow_fork_inferior (int follow_child, int detach_fork);
77
78 static void follow_inferior_reset_breakpoints (void);
79
80 static int currently_stepping (struct thread_info *tp);
81
82 void nullify_last_target_wait_ptid (void);
83
84 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
85
86 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
88 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
90 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
92 static void resume (gdb_signal sig);
93
94 /* Asynchronous signal handler registered as event loop source for
95 when we have pending events ready to be passed to the core. */
96 static struct async_event_handler *infrun_async_inferior_event_token;
97
98 /* Stores whether infrun_async was previously enabled or disabled.
99 Starts off as -1, indicating "never enabled/disabled". */
100 static int infrun_is_async = -1;
101
102 /* See infrun.h. */
103
104 void
105 infrun_async (int enable)
106 {
107 if (infrun_is_async != enable)
108 {
109 infrun_is_async = enable;
110
111 if (debug_infrun)
112 fprintf_unfiltered (gdb_stdlog,
113 "infrun: infrun_async(%d)\n",
114 enable);
115
116 if (enable)
117 mark_async_event_handler (infrun_async_inferior_event_token);
118 else
119 clear_async_event_handler (infrun_async_inferior_event_token);
120 }
121 }
122
123 /* See infrun.h. */
124
125 void
126 mark_infrun_async_event_handler (void)
127 {
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 }
130
131 /* When set, stop the 'step' command if we enter a function which has
132 no line number information. The normal behavior is that we step
133 over such function. */
134 bool step_stop_if_no_debug = false;
135 static void
136 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
140 }
141
142 /* proceed and normal_stop use this to notify the user when the
143 inferior stopped in a different thread than it had been running
144 in. */
145
146 static ptid_t previous_inferior_ptid;
147
148 /* If set (default for legacy reasons), when following a fork, GDB
149 will detach from one of the fork branches, child or parent.
150 Exactly which branch is detached depends on 'set follow-fork-mode'
151 setting. */
152
153 static bool detach_fork = true;
154
155 bool debug_displaced = false;
156 static void
157 show_debug_displaced (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
161 }
162
163 unsigned int debug_infrun = 0;
164 static void
165 show_debug_infrun (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
169 }
170
171
172 /* Support for disabling address space randomization. */
173
174 bool disable_randomization = true;
175
176 static void
177 show_disable_randomization (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179 {
180 if (target_supports_disable_randomization ())
181 fprintf_filtered (file,
182 _("Disabling randomization of debuggee's "
183 "virtual address space is %s.\n"),
184 value);
185 else
186 fputs_filtered (_("Disabling randomization of debuggee's "
187 "virtual address space is unsupported on\n"
188 "this platform.\n"), file);
189 }
190
191 static void
192 set_disable_randomization (const char *args, int from_tty,
193 struct cmd_list_element *c)
194 {
195 if (!target_supports_disable_randomization ())
196 error (_("Disabling randomization of debuggee's "
197 "virtual address space is unsupported on\n"
198 "this platform."));
199 }
200
201 /* User interface for non-stop mode. */
202
203 bool non_stop = false;
204 static bool non_stop_1 = false;
205
206 static void
207 set_non_stop (const char *args, int from_tty,
208 struct cmd_list_element *c)
209 {
210 if (target_has_execution)
211 {
212 non_stop_1 = non_stop;
213 error (_("Cannot change this setting while the inferior is running."));
214 }
215
216 non_stop = non_stop_1;
217 }
218
219 static void
220 show_non_stop (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file,
224 _("Controlling the inferior in non-stop mode is %s.\n"),
225 value);
226 }
227
228 /* "Observer mode" is somewhat like a more extreme version of
229 non-stop, in which all GDB operations that might affect the
230 target's execution have been disabled. */
231
232 bool observer_mode = false;
233 static bool observer_mode_1 = false;
234
235 static void
236 set_observer_mode (const char *args, int from_tty,
237 struct cmd_list_element *c)
238 {
239 if (target_has_execution)
240 {
241 observer_mode_1 = observer_mode;
242 error (_("Cannot change this setting while the inferior is running."));
243 }
244
245 observer_mode = observer_mode_1;
246
247 may_write_registers = !observer_mode;
248 may_write_memory = !observer_mode;
249 may_insert_breakpoints = !observer_mode;
250 may_insert_tracepoints = !observer_mode;
251 /* We can insert fast tracepoints in or out of observer mode,
252 but enable them if we're going into this mode. */
253 if (observer_mode)
254 may_insert_fast_tracepoints = true;
255 may_stop = !observer_mode;
256 update_target_permissions ();
257
258 /* Going *into* observer mode we must force non-stop, then
259 going out we leave it that way. */
260 if (observer_mode)
261 {
262 pagination_enabled = 0;
263 non_stop = non_stop_1 = true;
264 }
265
266 if (from_tty)
267 printf_filtered (_("Observer mode is now %s.\n"),
268 (observer_mode ? "on" : "off"));
269 }
270
271 static void
272 show_observer_mode (struct ui_file *file, int from_tty,
273 struct cmd_list_element *c, const char *value)
274 {
275 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
276 }
277
278 /* This updates the value of observer mode based on changes in
279 permissions. Note that we are deliberately ignoring the values of
280 may-write-registers and may-write-memory, since the user may have
281 reason to enable these during a session, for instance to turn on a
282 debugging-related global. */
283
284 void
285 update_observer_mode (void)
286 {
287 bool newval = (!may_insert_breakpoints
288 && !may_insert_tracepoints
289 && may_insert_fast_tracepoints
290 && !may_stop
291 && non_stop);
292
293 /* Let the user know if things change. */
294 if (newval != observer_mode)
295 printf_filtered (_("Observer mode is now %s.\n"),
296 (newval ? "on" : "off"));
297
298 observer_mode = observer_mode_1 = newval;
299 }
300
301 /* Tables of how to react to signals; the user sets them. */
302
303 static unsigned char signal_stop[GDB_SIGNAL_LAST];
304 static unsigned char signal_print[GDB_SIGNAL_LAST];
305 static unsigned char signal_program[GDB_SIGNAL_LAST];
306
307 /* Table of signals that are registered with "catch signal". A
308 non-zero entry indicates that the signal is caught by some "catch
309 signal" command. */
310 static unsigned char signal_catch[GDB_SIGNAL_LAST];
311
312 /* Table of signals that the target may silently handle.
313 This is automatically determined from the flags above,
314 and simply cached here. */
315 static unsigned char signal_pass[GDB_SIGNAL_LAST];
316
317 #define SET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 1; \
323 } while (0)
324
325 #define UNSET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 0; \
331 } while (0)
332
333 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
334 this function is to avoid exporting `signal_program'. */
335
336 void
337 update_signals_program_target (void)
338 {
339 target_program_signals (signal_program);
340 }
341
342 /* Value to pass to target_resume() to cause all threads to resume. */
343
344 #define RESUME_ALL minus_one_ptid
345
346 /* Command list pointer for the "stop" placeholder. */
347
348 static struct cmd_list_element *stop_command;
349
350 /* Nonzero if we want to give control to the user when we're notified
351 of shared library events by the dynamic linker. */
352 int stop_on_solib_events;
353
354 /* Enable or disable optional shared library event breakpoints
355 as appropriate when the above flag is changed. */
356
357 static void
358 set_stop_on_solib_events (const char *args,
359 int from_tty, struct cmd_list_element *c)
360 {
361 update_solib_breakpoints ();
362 }
363
364 static void
365 show_stop_on_solib_events (struct ui_file *file, int from_tty,
366 struct cmd_list_element *c, const char *value)
367 {
368 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
369 value);
370 }
371
372 /* Nonzero after stop if current stack frame should be printed. */
373
374 static int stop_print_frame;
375
376 /* This is a cached copy of the pid/waitstatus of the last event
377 returned by target_wait()/deprecated_target_wait_hook(). This
378 information is returned by get_last_target_status(). */
379 static ptid_t target_last_wait_ptid;
380 static struct target_waitstatus target_last_waitstatus;
381
382 void init_thread_stepping_state (struct thread_info *tss);
383
384 static const char follow_fork_mode_child[] = "child";
385 static const char follow_fork_mode_parent[] = "parent";
386
387 static const char *const follow_fork_mode_kind_names[] = {
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
391 };
392
393 static const char *follow_fork_mode_string = follow_fork_mode_parent;
394 static void
395 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397 {
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
401 value);
402 }
403 \f
404
405 /* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
411 static int
412 follow_fork_inferior (int follow_child, int detach_fork)
413 {
414 int has_vforked;
415 ptid_t parent_ptid, child_ptid;
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
424 && current_ui->prompt_state == PROMPT_BLOCKED
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433 Can not resume the parent process over vfork in the foreground while\n\
434 holding the child stopped. Try \"set detach-on-fork\" or \
435 \"set schedule-multiple\".\n"));
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
454 remove_breakpoints_inf (current_inferior ());
455 }
456
457 if (print_inferior_events)
458 {
459 /* Ensure that we have a process ptid. */
460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
461
462 target_terminal::ours_for_output ();
463 fprintf_filtered (gdb_stdlog,
464 _("[Detaching after %s from child %s]\n"),
465 has_vforked ? "vfork" : "fork",
466 target_pid_to_str (process_ptid).c_str ());
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472
473 /* Add process to GDB's tables. */
474 child_inf = add_inferior (child_ptid.pid ());
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
483
484 inferior_ptid = child_ptid;
485 add_thread_silent (inferior_ptid);
486 set_current_inferior (child_inf);
487 child_inf->symfile_flags = SYMFILE_NO_READ;
488
489 /* If this is a vfork child, then the address-space is
490 shared with the parent. */
491 if (has_vforked)
492 {
493 child_inf->pspace = parent_inf->pspace;
494 child_inf->aspace = parent_inf->aspace;
495
496 /* The parent will be frozen until the child is done
497 with the shared region. Keep track of the
498 parent. */
499 child_inf->vfork_parent = parent_inf;
500 child_inf->pending_detach = 0;
501 parent_inf->vfork_child = child_inf;
502 parent_inf->pending_detach = 0;
503 }
504 else
505 {
506 child_inf->aspace = new_address_space ();
507 child_inf->pspace = new program_space (child_inf->aspace);
508 child_inf->removable = 1;
509 set_current_program_space (child_inf->pspace);
510 clone_program_space (child_inf->pspace, parent_inf->pspace);
511
512 /* Let the shared library layer (e.g., solib-svr4) learn
513 about this new process, relocate the cloned exec, pull
514 in shared libraries, and install the solib event
515 breakpoint. If a "cloned-VM" event was propagated
516 better throughout the core, this wouldn't be
517 required. */
518 solib_create_inferior_hook (0);
519 }
520 }
521
522 if (has_vforked)
523 {
524 struct inferior *parent_inf;
525
526 parent_inf = current_inferior ();
527
528 /* If we detached from the child, then we have to be careful
529 to not insert breakpoints in the parent until the child
530 is done with the shared memory region. However, if we're
531 staying attached to the child, then we can and should
532 insert breakpoints, so that we can debug it. A
533 subsequent child exec or exit is enough to know when does
534 the child stops using the parent's address space. */
535 parent_inf->waiting_for_vfork_done = detach_fork;
536 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
537 }
538 }
539 else
540 {
541 /* Follow the child. */
542 struct inferior *parent_inf, *child_inf;
543 struct program_space *parent_pspace;
544
545 if (print_inferior_events)
546 {
547 std::string parent_pid = target_pid_to_str (parent_ptid);
548 std::string child_pid = target_pid_to_str (child_ptid);
549
550 target_terminal::ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("[Attaching after %s %s to child %s]\n"),
553 parent_pid.c_str (),
554 has_vforked ? "vfork" : "fork",
555 child_pid.c_str ());
556 }
557
558 /* Add the new inferior first, so that the target_detach below
559 doesn't unpush the target. */
560
561 child_inf = add_inferior (child_ptid.pid ());
562
563 parent_inf = current_inferior ();
564 child_inf->attach_flag = parent_inf->attach_flag;
565 copy_terminal_info (child_inf, parent_inf);
566 child_inf->gdbarch = parent_inf->gdbarch;
567 copy_inferior_target_desc_info (child_inf, parent_inf);
568
569 parent_pspace = parent_inf->pspace;
570
571 /* If we're vforking, we want to hold on to the parent until the
572 child exits or execs. At child exec or exit time we can
573 remove the old breakpoints from the parent and detach or
574 resume debugging it. Otherwise, detach the parent now; we'll
575 want to reuse it's program/address spaces, but we can't set
576 them to the child before removing breakpoints from the
577 parent, otherwise, the breakpoints module could decide to
578 remove breakpoints from the wrong process (since they'd be
579 assigned to the same address space). */
580
581 if (has_vforked)
582 {
583 gdb_assert (child_inf->vfork_parent == NULL);
584 gdb_assert (parent_inf->vfork_child == NULL);
585 child_inf->vfork_parent = parent_inf;
586 child_inf->pending_detach = 0;
587 parent_inf->vfork_child = child_inf;
588 parent_inf->pending_detach = detach_fork;
589 parent_inf->waiting_for_vfork_done = 0;
590 }
591 else if (detach_fork)
592 {
593 if (print_inferior_events)
594 {
595 /* Ensure that we have a process ptid. */
596 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
597
598 target_terminal::ours_for_output ();
599 fprintf_filtered (gdb_stdlog,
600 _("[Detaching after fork from "
601 "parent %s]\n"),
602 target_pid_to_str (process_ptid).c_str ());
603 }
604
605 target_detach (parent_inf, 0);
606 }
607
608 /* Note that the detach above makes PARENT_INF dangling. */
609
610 /* Add the child thread to the appropriate lists, and switch to
611 this new thread, before cloning the program space, and
612 informing the solib layer about this new process. */
613
614 inferior_ptid = child_ptid;
615 add_thread_silent (inferior_ptid);
616 set_current_inferior (child_inf);
617
618 /* If this is a vfork child, then the address-space is shared
619 with the parent. If we detached from the parent, then we can
620 reuse the parent's program/address spaces. */
621 if (has_vforked || detach_fork)
622 {
623 child_inf->pspace = parent_pspace;
624 child_inf->aspace = child_inf->pspace->aspace;
625 }
626 else
627 {
628 child_inf->aspace = new_address_space ();
629 child_inf->pspace = new program_space (child_inf->aspace);
630 child_inf->removable = 1;
631 child_inf->symfile_flags = SYMFILE_NO_READ;
632 set_current_program_space (child_inf->pspace);
633 clone_program_space (child_inf->pspace, parent_pspace);
634
635 /* Let the shared library layer (e.g., solib-svr4) learn
636 about this new process, relocate the cloned exec, pull in
637 shared libraries, and install the solib event breakpoint.
638 If a "cloned-VM" event was propagated better throughout
639 the core, this wouldn't be required. */
640 solib_create_inferior_hook (0);
641 }
642 }
643
644 return target_follow_fork (follow_child, detach_fork);
645 }
646
647 /* Tell the target to follow the fork we're stopped at. Returns true
648 if the inferior should be resumed; false, if the target for some
649 reason decided it's best not to resume. */
650
651 static int
652 follow_fork (void)
653 {
654 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
655 int should_resume = 1;
656 struct thread_info *tp;
657
658 /* Copy user stepping state to the new inferior thread. FIXME: the
659 followed fork child thread should have a copy of most of the
660 parent thread structure's run control related fields, not just these.
661 Initialized to avoid "may be used uninitialized" warnings from gcc. */
662 struct breakpoint *step_resume_breakpoint = NULL;
663 struct breakpoint *exception_resume_breakpoint = NULL;
664 CORE_ADDR step_range_start = 0;
665 CORE_ADDR step_range_end = 0;
666 struct frame_id step_frame_id = { 0 };
667 struct thread_fsm *thread_fsm = NULL;
668
669 if (!non_stop)
670 {
671 ptid_t wait_ptid;
672 struct target_waitstatus wait_status;
673
674 /* Get the last target status returned by target_wait(). */
675 get_last_target_status (&wait_ptid, &wait_status);
676
677 /* If not stopped at a fork event, then there's nothing else to
678 do. */
679 if (wait_status.kind != TARGET_WAITKIND_FORKED
680 && wait_status.kind != TARGET_WAITKIND_VFORKED)
681 return 1;
682
683 /* Check if we switched over from WAIT_PTID, since the event was
684 reported. */
685 if (wait_ptid != minus_one_ptid
686 && inferior_ptid != wait_ptid)
687 {
688 /* We did. Switch back to WAIT_PTID thread, to tell the
689 target to follow it (in either direction). We'll
690 afterwards refuse to resume, and inform the user what
691 happened. */
692 thread_info *wait_thread
693 = find_thread_ptid (wait_ptid);
694 switch_to_thread (wait_thread);
695 should_resume = 0;
696 }
697 }
698
699 tp = inferior_thread ();
700
701 /* If there were any forks/vforks that were caught and are now to be
702 followed, then do so now. */
703 switch (tp->pending_follow.kind)
704 {
705 case TARGET_WAITKIND_FORKED:
706 case TARGET_WAITKIND_VFORKED:
707 {
708 ptid_t parent, child;
709
710 /* If the user did a next/step, etc, over a fork call,
711 preserve the stepping state in the fork child. */
712 if (follow_child && should_resume)
713 {
714 step_resume_breakpoint = clone_momentary_breakpoint
715 (tp->control.step_resume_breakpoint);
716 step_range_start = tp->control.step_range_start;
717 step_range_end = tp->control.step_range_end;
718 step_frame_id = tp->control.step_frame_id;
719 exception_resume_breakpoint
720 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
721 thread_fsm = tp->thread_fsm;
722
723 /* For now, delete the parent's sr breakpoint, otherwise,
724 parent/child sr breakpoints are considered duplicates,
725 and the child version will not be installed. Remove
726 this when the breakpoints module becomes aware of
727 inferiors and address spaces. */
728 delete_step_resume_breakpoint (tp);
729 tp->control.step_range_start = 0;
730 tp->control.step_range_end = 0;
731 tp->control.step_frame_id = null_frame_id;
732 delete_exception_resume_breakpoint (tp);
733 tp->thread_fsm = NULL;
734 }
735
736 parent = inferior_ptid;
737 child = tp->pending_follow.value.related_pid;
738
739 /* Set up inferior(s) as specified by the caller, and tell the
740 target to do whatever is necessary to follow either parent
741 or child. */
742 if (follow_fork_inferior (follow_child, detach_fork))
743 {
744 /* Target refused to follow, or there's some other reason
745 we shouldn't resume. */
746 should_resume = 0;
747 }
748 else
749 {
750 /* This pending follow fork event is now handled, one way
751 or another. The previous selected thread may be gone
752 from the lists by now, but if it is still around, need
753 to clear the pending follow request. */
754 tp = find_thread_ptid (parent);
755 if (tp)
756 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
757
758 /* This makes sure we don't try to apply the "Switched
759 over from WAIT_PID" logic above. */
760 nullify_last_target_wait_ptid ();
761
762 /* If we followed the child, switch to it... */
763 if (follow_child)
764 {
765 thread_info *child_thr = find_thread_ptid (child);
766 switch_to_thread (child_thr);
767
768 /* ... and preserve the stepping state, in case the
769 user was stepping over the fork call. */
770 if (should_resume)
771 {
772 tp = inferior_thread ();
773 tp->control.step_resume_breakpoint
774 = step_resume_breakpoint;
775 tp->control.step_range_start = step_range_start;
776 tp->control.step_range_end = step_range_end;
777 tp->control.step_frame_id = step_frame_id;
778 tp->control.exception_resume_breakpoint
779 = exception_resume_breakpoint;
780 tp->thread_fsm = thread_fsm;
781 }
782 else
783 {
784 /* If we get here, it was because we're trying to
785 resume from a fork catchpoint, but, the user
786 has switched threads away from the thread that
787 forked. In that case, the resume command
788 issued is most likely not applicable to the
789 child, so just warn, and refuse to resume. */
790 warning (_("Not resuming: switched threads "
791 "before following fork child."));
792 }
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
797 }
798 }
799 break;
800 case TARGET_WAITKIND_SPURIOUS:
801 /* Nothing to follow. */
802 break;
803 default:
804 internal_error (__FILE__, __LINE__,
805 "Unexpected pending_follow.kind %d\n",
806 tp->pending_follow.kind);
807 break;
808 }
809
810 return should_resume;
811 }
812
813 static void
814 follow_inferior_reset_breakpoints (void)
815 {
816 struct thread_info *tp = inferior_thread ();
817
818 /* Was there a step_resume breakpoint? (There was if the user
819 did a "next" at the fork() call.) If so, explicitly reset its
820 thread number. Cloned step_resume breakpoints are disabled on
821 creation, so enable it here now that it is associated with the
822 correct thread.
823
824 step_resumes are a form of bp that are made to be per-thread.
825 Since we created the step_resume bp when the parent process
826 was being debugged, and now are switching to the child process,
827 from the breakpoint package's viewpoint, that's a switch of
828 "threads". We must update the bp's notion of which thread
829 it is for, or it'll be ignored when it triggers. */
830
831 if (tp->control.step_resume_breakpoint)
832 {
833 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
834 tp->control.step_resume_breakpoint->loc->enabled = 1;
835 }
836
837 /* Treat exception_resume breakpoints like step_resume breakpoints. */
838 if (tp->control.exception_resume_breakpoint)
839 {
840 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
841 tp->control.exception_resume_breakpoint->loc->enabled = 1;
842 }
843
844 /* Reinsert all breakpoints in the child. The user may have set
845 breakpoints after catching the fork, in which case those
846 were never set in the child, but only in the parent. This makes
847 sure the inserted breakpoints match the breakpoint list. */
848
849 breakpoint_re_set ();
850 insert_breakpoints ();
851 }
852
853 /* The child has exited or execed: resume threads of the parent the
854 user wanted to be executing. */
855
856 static int
857 proceed_after_vfork_done (struct thread_info *thread,
858 void *arg)
859 {
860 int pid = * (int *) arg;
861
862 if (thread->ptid.pid () == pid
863 && thread->state == THREAD_RUNNING
864 && !thread->executing
865 && !thread->stop_requested
866 && thread->suspend.stop_signal == GDB_SIGNAL_0)
867 {
868 if (debug_infrun)
869 fprintf_unfiltered (gdb_stdlog,
870 "infrun: resuming vfork parent thread %s\n",
871 target_pid_to_str (thread->ptid).c_str ());
872
873 switch_to_thread (thread);
874 clear_proceed_status (0);
875 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
876 }
877
878 return 0;
879 }
880
881 /* Save/restore inferior_ptid, current program space and current
882 inferior. Only use this if the current context points at an exited
883 inferior (and therefore there's no current thread to save). */
884 class scoped_restore_exited_inferior
885 {
886 public:
887 scoped_restore_exited_inferior ()
888 : m_saved_ptid (&inferior_ptid)
889 {}
890
891 private:
892 scoped_restore_tmpl<ptid_t> m_saved_ptid;
893 scoped_restore_current_program_space m_pspace;
894 scoped_restore_current_inferior m_inferior;
895 };
896
897 /* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900 static void
901 handle_vfork_child_exec_or_exit (int exec)
902 {
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. Break the bonds. */
911 inferior *vfork_parent = inf->vfork_parent;
912 inf->vfork_parent->vfork_child = NULL;
913 inf->vfork_parent = NULL;
914
915 /* If the user wanted to detach from the parent, now is the
916 time. */
917 if (vfork_parent->pending_detach)
918 {
919 struct thread_info *tp;
920 struct program_space *pspace;
921 struct address_space *aspace;
922
923 /* follow-fork child, detach-on-fork on. */
924
925 vfork_parent->pending_detach = 0;
926
927 gdb::optional<scoped_restore_exited_inferior>
928 maybe_restore_inferior;
929 gdb::optional<scoped_restore_current_pspace_and_thread>
930 maybe_restore_thread;
931
932 /* If we're handling a child exit, then inferior_ptid points
933 at the inferior's pid, not to a thread. */
934 if (!exec)
935 maybe_restore_inferior.emplace ();
936 else
937 maybe_restore_thread.emplace ();
938
939 /* We're letting loose of the parent. */
940 tp = any_live_thread_of_inferior (vfork_parent);
941 switch_to_thread (tp);
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
960 if (print_inferior_events)
961 {
962 std::string pidstr
963 = target_pid_to_str (ptid_t (vfork_parent->pid));
964
965 target_terminal::ours_for_output ();
966
967 if (exec)
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("[Detaching vfork parent %s "
971 "after child exec]\n"), pidstr.c_str ());
972 }
973 else
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("[Detaching vfork parent %s "
977 "after child exit]\n"), pidstr.c_str ());
978 }
979 }
980
981 target_detach (vfork_parent, 0);
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
991 inf->pspace = new program_space (maybe_new_address_space ());
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
996 resume_parent = vfork_parent->pid;
997 }
998 else
999 {
1000 struct program_space *pspace;
1001
1002 /* If this is a vfork child exiting, then the pspace and
1003 aspaces were shared with the parent. Since we're
1004 reporting the process exit, we'll be mourning all that is
1005 found in the address space, and switching to null_ptid,
1006 preparing to start a new inferior. But, since we don't
1007 want to clobber the parent's address/program spaces, we
1008 go ahead and create a new one for this exiting
1009 inferior. */
1010
1011 /* Switch to null_ptid while running clone_program_space, so
1012 that clone_program_space doesn't want to read the
1013 selected frame of a dead process. */
1014 scoped_restore restore_ptid
1015 = make_scoped_restore (&inferior_ptid, null_ptid);
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = new program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
1025 inf->symfile_flags = SYMFILE_NO_READ;
1026 clone_program_space (pspace, vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 resume_parent = vfork_parent->pid;
1031 }
1032
1033 gdb_assert (current_program_space == inf->pspace);
1034
1035 if (non_stop && resume_parent != -1)
1036 {
1037 /* If the user wanted the parent to be running, let it go
1038 free now. */
1039 scoped_restore_current_thread restore_thread;
1040
1041 if (debug_infrun)
1042 fprintf_unfiltered (gdb_stdlog,
1043 "infrun: resuming vfork parent process %d\n",
1044 resume_parent);
1045
1046 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1047 }
1048 }
1049 }
1050
1051 /* Enum strings for "set|show follow-exec-mode". */
1052
1053 static const char follow_exec_mode_new[] = "new";
1054 static const char follow_exec_mode_same[] = "same";
1055 static const char *const follow_exec_mode_names[] =
1056 {
1057 follow_exec_mode_new,
1058 follow_exec_mode_same,
1059 NULL,
1060 };
1061
1062 static const char *follow_exec_mode_string = follow_exec_mode_same;
1063 static void
1064 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1065 struct cmd_list_element *c, const char *value)
1066 {
1067 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1068 }
1069
1070 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1071
1072 static void
1073 follow_exec (ptid_t ptid, const char *exec_file_target)
1074 {
1075 struct inferior *inf = current_inferior ();
1076 int pid = ptid.pid ();
1077 ptid_t process_ptid;
1078
1079 /* Switch terminal for any messages produced e.g. by
1080 breakpoint_re_set. */
1081 target_terminal::ours_for_output ();
1082
1083 /* This is an exec event that we actually wish to pay attention to.
1084 Refresh our symbol table to the newly exec'd program, remove any
1085 momentary bp's, etc.
1086
1087 If there are breakpoints, they aren't really inserted now,
1088 since the exec() transformed our inferior into a fresh set
1089 of instructions.
1090
1091 We want to preserve symbolic breakpoints on the list, since
1092 we have hopes that they can be reset after the new a.out's
1093 symbol table is read.
1094
1095 However, any "raw" breakpoints must be removed from the list
1096 (e.g., the solib bp's), since their address is probably invalid
1097 now.
1098
1099 And, we DON'T want to call delete_breakpoints() here, since
1100 that may write the bp's "shadow contents" (the instruction
1101 value that was overwritten with a TRAP instruction). Since
1102 we now have a new a.out, those shadow contents aren't valid. */
1103
1104 mark_breakpoints_out ();
1105
1106 /* The target reports the exec event to the main thread, even if
1107 some other thread does the exec, and even if the main thread was
1108 stopped or already gone. We may still have non-leader threads of
1109 the process on our list. E.g., on targets that don't have thread
1110 exit events (like remote); or on native Linux in non-stop mode if
1111 there were only two threads in the inferior and the non-leader
1112 one is the one that execs (and nothing forces an update of the
1113 thread list up to here). When debugging remotely, it's best to
1114 avoid extra traffic, when possible, so avoid syncing the thread
1115 list with the target, and instead go ahead and delete all threads
1116 of the process but one that reported the event. Note this must
1117 be done before calling update_breakpoints_after_exec, as
1118 otherwise clearing the threads' resources would reference stale
1119 thread breakpoints -- it may have been one of these threads that
1120 stepped across the exec. We could just clear their stepping
1121 states, but as long as we're iterating, might as well delete
1122 them. Deleting them now rather than at the next user-visible
1123 stop provides a nicer sequence of events for user and MI
1124 notifications. */
1125 for (thread_info *th : all_threads_safe ())
1126 if (th->ptid.pid () == pid && th->ptid != ptid)
1127 delete_thread (th);
1128
1129 /* We also need to clear any left over stale state for the
1130 leader/event thread. E.g., if there was any step-resume
1131 breakpoint or similar, it's gone now. We cannot truly
1132 step-to-next statement through an exec(). */
1133 thread_info *th = inferior_thread ();
1134 th->control.step_resume_breakpoint = NULL;
1135 th->control.exception_resume_breakpoint = NULL;
1136 th->control.single_step_breakpoints = NULL;
1137 th->control.step_range_start = 0;
1138 th->control.step_range_end = 0;
1139
1140 /* The user may have had the main thread held stopped in the
1141 previous image (e.g., schedlock on, or non-stop). Release
1142 it now. */
1143 th->stop_requested = 0;
1144
1145 update_breakpoints_after_exec ();
1146
1147 /* What is this a.out's name? */
1148 process_ptid = ptid_t (pid);
1149 printf_unfiltered (_("%s is executing new program: %s\n"),
1150 target_pid_to_str (process_ptid).c_str (),
1151 exec_file_target);
1152
1153 /* We've followed the inferior through an exec. Therefore, the
1154 inferior has essentially been killed & reborn. */
1155
1156 breakpoint_init_inferior (inf_execd);
1157
1158 gdb::unique_xmalloc_ptr<char> exec_file_host
1159 = exec_file_find (exec_file_target, NULL);
1160
1161 /* If we were unable to map the executable target pathname onto a host
1162 pathname, tell the user that. Otherwise GDB's subsequent behavior
1163 is confusing. Maybe it would even be better to stop at this point
1164 so that the user can specify a file manually before continuing. */
1165 if (exec_file_host == NULL)
1166 warning (_("Could not load symbols for executable %s.\n"
1167 "Do you need \"set sysroot\"?"),
1168 exec_file_target);
1169
1170 /* Reset the shared library package. This ensures that we get a
1171 shlib event when the child reaches "_start", at which point the
1172 dld will have had a chance to initialize the child. */
1173 /* Also, loading a symbol file below may trigger symbol lookups, and
1174 we don't want those to be satisfied by the libraries of the
1175 previous incarnation of this process. */
1176 no_shared_libraries (NULL, 0);
1177
1178 if (follow_exec_mode_string == follow_exec_mode_new)
1179 {
1180 /* The user wants to keep the old inferior and program spaces
1181 around. Create a new fresh one, and switch to it. */
1182
1183 /* Do exit processing for the original inferior before setting the new
1184 inferior's pid. Having two inferiors with the same pid would confuse
1185 find_inferior_p(t)id. Transfer the terminal state and info from the
1186 old to the new inferior. */
1187 inf = add_inferior_with_spaces ();
1188 swap_terminal_info (inf, current_inferior ());
1189 exit_inferior_silent (current_inferior ());
1190
1191 inf->pid = pid;
1192 target_follow_exec (inf, exec_file_target);
1193
1194 set_current_inferior (inf);
1195 set_current_program_space (inf->pspace);
1196 add_thread (ptid);
1197 }
1198 else
1199 {
1200 /* The old description may no longer be fit for the new image.
1201 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1202 old description; we'll read a new one below. No need to do
1203 this on "follow-exec-mode new", as the old inferior stays
1204 around (its description is later cleared/refetched on
1205 restart). */
1206 target_clear_description ();
1207 }
1208
1209 gdb_assert (current_program_space == inf->pspace);
1210
1211 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1212 because the proper displacement for a PIE (Position Independent
1213 Executable) main symbol file will only be computed by
1214 solib_create_inferior_hook below. breakpoint_re_set would fail
1215 to insert the breakpoints with the zero displacement. */
1216 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1217
1218 /* If the target can specify a description, read it. Must do this
1219 after flipping to the new executable (because the target supplied
1220 description must be compatible with the executable's
1221 architecture, and the old executable may e.g., be 32-bit, while
1222 the new one 64-bit), and before anything involving memory or
1223 registers. */
1224 target_find_description ();
1225
1226 solib_create_inferior_hook (0);
1227
1228 jit_inferior_created_hook ();
1229
1230 breakpoint_re_set ();
1231
1232 /* Reinsert all breakpoints. (Those which were symbolic have
1233 been reset to the proper address in the new a.out, thanks
1234 to symbol_file_command...). */
1235 insert_breakpoints ();
1236
1237 /* The next resume of this inferior should bring it to the shlib
1238 startup breakpoints. (If the user had also set bp's on
1239 "main" from the old (parent) process, then they'll auto-
1240 matically get reset there in the new process.). */
1241 }
1242
1243 /* The queue of threads that need to do a step-over operation to get
1244 past e.g., a breakpoint. What technique is used to step over the
1245 breakpoint/watchpoint does not matter -- all threads end up in the
1246 same queue, to maintain rough temporal order of execution, in order
1247 to avoid starvation, otherwise, we could e.g., find ourselves
1248 constantly stepping the same couple threads past their breakpoints
1249 over and over, if the single-step finish fast enough. */
1250 struct thread_info *step_over_queue_head;
1251
1252 /* Bit flags indicating what the thread needs to step over. */
1253
1254 enum step_over_what_flag
1255 {
1256 /* Step over a breakpoint. */
1257 STEP_OVER_BREAKPOINT = 1,
1258
1259 /* Step past a non-continuable watchpoint, in order to let the
1260 instruction execute so we can evaluate the watchpoint
1261 expression. */
1262 STEP_OVER_WATCHPOINT = 2
1263 };
1264 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1265
1266 /* Info about an instruction that is being stepped over. */
1267
1268 struct step_over_info
1269 {
1270 /* If we're stepping past a breakpoint, this is the address space
1271 and address of the instruction the breakpoint is set at. We'll
1272 skip inserting all breakpoints here. Valid iff ASPACE is
1273 non-NULL. */
1274 const address_space *aspace;
1275 CORE_ADDR address;
1276
1277 /* The instruction being stepped over triggers a nonsteppable
1278 watchpoint. If true, we'll skip inserting watchpoints. */
1279 int nonsteppable_watchpoint_p;
1280
1281 /* The thread's global number. */
1282 int thread;
1283 };
1284
1285 /* The step-over info of the location that is being stepped over.
1286
1287 Note that with async/breakpoint always-inserted mode, a user might
1288 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1289 being stepped over. As setting a new breakpoint inserts all
1290 breakpoints, we need to make sure the breakpoint being stepped over
1291 isn't inserted then. We do that by only clearing the step-over
1292 info when the step-over is actually finished (or aborted).
1293
1294 Presently GDB can only step over one breakpoint at any given time.
1295 Given threads that can't run code in the same address space as the
1296 breakpoint's can't really miss the breakpoint, GDB could be taught
1297 to step-over at most one breakpoint per address space (so this info
1298 could move to the address space object if/when GDB is extended).
1299 The set of breakpoints being stepped over will normally be much
1300 smaller than the set of all breakpoints, so a flag in the
1301 breakpoint location structure would be wasteful. A separate list
1302 also saves complexity and run-time, as otherwise we'd have to go
1303 through all breakpoint locations clearing their flag whenever we
1304 start a new sequence. Similar considerations weigh against storing
1305 this info in the thread object. Plus, not all step overs actually
1306 have breakpoint locations -- e.g., stepping past a single-step
1307 breakpoint, or stepping to complete a non-continuable
1308 watchpoint. */
1309 static struct step_over_info step_over_info;
1310
1311 /* Record the address of the breakpoint/instruction we're currently
1312 stepping over.
1313 N.B. We record the aspace and address now, instead of say just the thread,
1314 because when we need the info later the thread may be running. */
1315
1316 static void
1317 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1318 int nonsteppable_watchpoint_p,
1319 int thread)
1320 {
1321 step_over_info.aspace = aspace;
1322 step_over_info.address = address;
1323 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1324 step_over_info.thread = thread;
1325 }
1326
1327 /* Called when we're not longer stepping over a breakpoint / an
1328 instruction, so all breakpoints are free to be (re)inserted. */
1329
1330 static void
1331 clear_step_over_info (void)
1332 {
1333 if (debug_infrun)
1334 fprintf_unfiltered (gdb_stdlog,
1335 "infrun: clear_step_over_info\n");
1336 step_over_info.aspace = NULL;
1337 step_over_info.address = 0;
1338 step_over_info.nonsteppable_watchpoint_p = 0;
1339 step_over_info.thread = -1;
1340 }
1341
1342 /* See infrun.h. */
1343
1344 int
1345 stepping_past_instruction_at (struct address_space *aspace,
1346 CORE_ADDR address)
1347 {
1348 return (step_over_info.aspace != NULL
1349 && breakpoint_address_match (aspace, address,
1350 step_over_info.aspace,
1351 step_over_info.address));
1352 }
1353
1354 /* See infrun.h. */
1355
1356 int
1357 thread_is_stepping_over_breakpoint (int thread)
1358 {
1359 return (step_over_info.thread != -1
1360 && thread == step_over_info.thread);
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 stepping_past_nonsteppable_watchpoint (void)
1367 {
1368 return step_over_info.nonsteppable_watchpoint_p;
1369 }
1370
1371 /* Returns true if step-over info is valid. */
1372
1373 static int
1374 step_over_info_valid_p (void)
1375 {
1376 return (step_over_info.aspace != NULL
1377 || stepping_past_nonsteppable_watchpoint ());
1378 }
1379
1380 \f
1381 /* Displaced stepping. */
1382
1383 /* In non-stop debugging mode, we must take special care to manage
1384 breakpoints properly; in particular, the traditional strategy for
1385 stepping a thread past a breakpoint it has hit is unsuitable.
1386 'Displaced stepping' is a tactic for stepping one thread past a
1387 breakpoint it has hit while ensuring that other threads running
1388 concurrently will hit the breakpoint as they should.
1389
1390 The traditional way to step a thread T off a breakpoint in a
1391 multi-threaded program in all-stop mode is as follows:
1392
1393 a0) Initially, all threads are stopped, and breakpoints are not
1394 inserted.
1395 a1) We single-step T, leaving breakpoints uninserted.
1396 a2) We insert breakpoints, and resume all threads.
1397
1398 In non-stop debugging, however, this strategy is unsuitable: we
1399 don't want to have to stop all threads in the system in order to
1400 continue or step T past a breakpoint. Instead, we use displaced
1401 stepping:
1402
1403 n0) Initially, T is stopped, other threads are running, and
1404 breakpoints are inserted.
1405 n1) We copy the instruction "under" the breakpoint to a separate
1406 location, outside the main code stream, making any adjustments
1407 to the instruction, register, and memory state as directed by
1408 T's architecture.
1409 n2) We single-step T over the instruction at its new location.
1410 n3) We adjust the resulting register and memory state as directed
1411 by T's architecture. This includes resetting T's PC to point
1412 back into the main instruction stream.
1413 n4) We resume T.
1414
1415 This approach depends on the following gdbarch methods:
1416
1417 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1418 indicate where to copy the instruction, and how much space must
1419 be reserved there. We use these in step n1.
1420
1421 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1422 address, and makes any necessary adjustments to the instruction,
1423 register contents, and memory. We use this in step n1.
1424
1425 - gdbarch_displaced_step_fixup adjusts registers and memory after
1426 we have successfully single-stepped the instruction, to yield the
1427 same effect the instruction would have had if we had executed it
1428 at its original address. We use this in step n3.
1429
1430 The gdbarch_displaced_step_copy_insn and
1431 gdbarch_displaced_step_fixup functions must be written so that
1432 copying an instruction with gdbarch_displaced_step_copy_insn,
1433 single-stepping across the copied instruction, and then applying
1434 gdbarch_displaced_insn_fixup should have the same effects on the
1435 thread's memory and registers as stepping the instruction in place
1436 would have. Exactly which responsibilities fall to the copy and
1437 which fall to the fixup is up to the author of those functions.
1438
1439 See the comments in gdbarch.sh for details.
1440
1441 Note that displaced stepping and software single-step cannot
1442 currently be used in combination, although with some care I think
1443 they could be made to. Software single-step works by placing
1444 breakpoints on all possible subsequent instructions; if the
1445 displaced instruction is a PC-relative jump, those breakpoints
1446 could fall in very strange places --- on pages that aren't
1447 executable, or at addresses that are not proper instruction
1448 boundaries. (We do generally let other threads run while we wait
1449 to hit the software single-step breakpoint, and they might
1450 encounter such a corrupted instruction.) One way to work around
1451 this would be to have gdbarch_displaced_step_copy_insn fully
1452 simulate the effect of PC-relative instructions (and return NULL)
1453 on architectures that use software single-stepping.
1454
1455 In non-stop mode, we can have independent and simultaneous step
1456 requests, so more than one thread may need to simultaneously step
1457 over a breakpoint. The current implementation assumes there is
1458 only one scratch space per process. In this case, we have to
1459 serialize access to the scratch space. If thread A wants to step
1460 over a breakpoint, but we are currently waiting for some other
1461 thread to complete a displaced step, we leave thread A stopped and
1462 place it in the displaced_step_request_queue. Whenever a displaced
1463 step finishes, we pick the next thread in the queue and start a new
1464 displaced step operation on it. See displaced_step_prepare and
1465 displaced_step_fixup for details. */
1466
1467 /* Default destructor for displaced_step_closure. */
1468
1469 displaced_step_closure::~displaced_step_closure () = default;
1470
1471 /* Get the displaced stepping state of process PID. */
1472
1473 static displaced_step_inferior_state *
1474 get_displaced_stepping_state (inferior *inf)
1475 {
1476 return &inf->displaced_step_state;
1477 }
1478
1479 /* Returns true if any inferior has a thread doing a displaced
1480 step. */
1481
1482 static bool
1483 displaced_step_in_progress_any_inferior ()
1484 {
1485 for (inferior *i : all_inferiors ())
1486 {
1487 if (i->displaced_step_state.step_thread != nullptr)
1488 return true;
1489 }
1490
1491 return false;
1492 }
1493
1494 /* Return true if thread represented by PTID is doing a displaced
1495 step. */
1496
1497 static int
1498 displaced_step_in_progress_thread (thread_info *thread)
1499 {
1500 gdb_assert (thread != NULL);
1501
1502 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1503 }
1504
1505 /* Return true if process PID has a thread doing a displaced step. */
1506
1507 static int
1508 displaced_step_in_progress (inferior *inf)
1509 {
1510 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1511 }
1512
1513 /* If inferior is in displaced stepping, and ADDR equals to starting address
1514 of copy area, return corresponding displaced_step_closure. Otherwise,
1515 return NULL. */
1516
1517 struct displaced_step_closure*
1518 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1519 {
1520 displaced_step_inferior_state *displaced
1521 = get_displaced_stepping_state (current_inferior ());
1522
1523 /* If checking the mode of displaced instruction in copy area. */
1524 if (displaced->step_thread != nullptr
1525 && displaced->step_copy == addr)
1526 return displaced->step_closure;
1527
1528 return NULL;
1529 }
1530
1531 static void
1532 infrun_inferior_exit (struct inferior *inf)
1533 {
1534 inf->displaced_step_state.reset ();
1535 }
1536
1537 /* If ON, and the architecture supports it, GDB will use displaced
1538 stepping to step over breakpoints. If OFF, or if the architecture
1539 doesn't support it, GDB will instead use the traditional
1540 hold-and-step approach. If AUTO (which is the default), GDB will
1541 decide which technique to use to step over breakpoints depending on
1542 which of all-stop or non-stop mode is active --- displaced stepping
1543 in non-stop mode; hold-and-step in all-stop mode. */
1544
1545 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1546
1547 static void
1548 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1549 struct cmd_list_element *c,
1550 const char *value)
1551 {
1552 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1553 fprintf_filtered (file,
1554 _("Debugger's willingness to use displaced stepping "
1555 "to step over breakpoints is %s (currently %s).\n"),
1556 value, target_is_non_stop_p () ? "on" : "off");
1557 else
1558 fprintf_filtered (file,
1559 _("Debugger's willingness to use displaced stepping "
1560 "to step over breakpoints is %s.\n"), value);
1561 }
1562
1563 /* Return non-zero if displaced stepping can/should be used to step
1564 over breakpoints of thread TP. */
1565
1566 static int
1567 use_displaced_stepping (struct thread_info *tp)
1568 {
1569 struct regcache *regcache = get_thread_regcache (tp);
1570 struct gdbarch *gdbarch = regcache->arch ();
1571 displaced_step_inferior_state *displaced_state
1572 = get_displaced_stepping_state (tp->inf);
1573
1574 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1575 && target_is_non_stop_p ())
1576 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1577 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1578 && find_record_target () == NULL
1579 && !displaced_state->failed_before);
1580 }
1581
1582 /* Clean out any stray displaced stepping state. */
1583 static void
1584 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1585 {
1586 /* Indicate that there is no cleanup pending. */
1587 displaced->step_thread = nullptr;
1588
1589 delete displaced->step_closure;
1590 displaced->step_closure = NULL;
1591 }
1592
1593 /* A cleanup that wraps displaced_step_clear. */
1594 using displaced_step_clear_cleanup
1595 = FORWARD_SCOPE_EXIT (displaced_step_clear);
1596
1597 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1598 void
1599 displaced_step_dump_bytes (struct ui_file *file,
1600 const gdb_byte *buf,
1601 size_t len)
1602 {
1603 int i;
1604
1605 for (i = 0; i < len; i++)
1606 fprintf_unfiltered (file, "%02x ", buf[i]);
1607 fputs_unfiltered ("\n", file);
1608 }
1609
1610 /* Prepare to single-step, using displaced stepping.
1611
1612 Note that we cannot use displaced stepping when we have a signal to
1613 deliver. If we have a signal to deliver and an instruction to step
1614 over, then after the step, there will be no indication from the
1615 target whether the thread entered a signal handler or ignored the
1616 signal and stepped over the instruction successfully --- both cases
1617 result in a simple SIGTRAP. In the first case we mustn't do a
1618 fixup, and in the second case we must --- but we can't tell which.
1619 Comments in the code for 'random signals' in handle_inferior_event
1620 explain how we handle this case instead.
1621
1622 Returns 1 if preparing was successful -- this thread is going to be
1623 stepped now; 0 if displaced stepping this thread got queued; or -1
1624 if this instruction can't be displaced stepped. */
1625
1626 static int
1627 displaced_step_prepare_throw (thread_info *tp)
1628 {
1629 regcache *regcache = get_thread_regcache (tp);
1630 struct gdbarch *gdbarch = regcache->arch ();
1631 const address_space *aspace = regcache->aspace ();
1632 CORE_ADDR original, copy;
1633 ULONGEST len;
1634 struct displaced_step_closure *closure;
1635 int status;
1636
1637 /* We should never reach this function if the architecture does not
1638 support displaced stepping. */
1639 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1640
1641 /* Nor if the thread isn't meant to step over a breakpoint. */
1642 gdb_assert (tp->control.trap_expected);
1643
1644 /* Disable range stepping while executing in the scratch pad. We
1645 want a single-step even if executing the displaced instruction in
1646 the scratch buffer lands within the stepping range (e.g., a
1647 jump/branch). */
1648 tp->control.may_range_step = 0;
1649
1650 /* We have to displaced step one thread at a time, as we only have
1651 access to a single scratch space per inferior. */
1652
1653 displaced_step_inferior_state *displaced
1654 = get_displaced_stepping_state (tp->inf);
1655
1656 if (displaced->step_thread != nullptr)
1657 {
1658 /* Already waiting for a displaced step to finish. Defer this
1659 request and place in queue. */
1660
1661 if (debug_displaced)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "displaced: deferring step of %s\n",
1664 target_pid_to_str (tp->ptid).c_str ());
1665
1666 thread_step_over_chain_enqueue (tp);
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
1674 target_pid_to_str (tp->ptid).c_str ());
1675 }
1676
1677 displaced_step_clear (displaced);
1678
1679 scoped_restore_current_thread restore_thread;
1680
1681 switch_to_thread (tp);
1682
1683 original = regcache_read_pc (regcache);
1684
1685 copy = gdbarch_displaced_step_location (gdbarch);
1686 len = gdbarch_max_insn_length (gdbarch);
1687
1688 if (breakpoint_in_range_p (aspace, copy, len))
1689 {
1690 /* There's a breakpoint set in the scratch pad location range
1691 (which is usually around the entry point). We'd either
1692 install it before resuming, which would overwrite/corrupt the
1693 scratch pad, or if it was already inserted, this displaced
1694 step would overwrite it. The latter is OK in the sense that
1695 we already assume that no thread is going to execute the code
1696 in the scratch pad range (after initial startup) anyway, but
1697 the former is unacceptable. Simply punt and fallback to
1698 stepping over this breakpoint in-line. */
1699 if (debug_displaced)
1700 {
1701 fprintf_unfiltered (gdb_stdlog,
1702 "displaced: breakpoint set in scratch pad. "
1703 "Stepping over breakpoint in-line instead.\n");
1704 }
1705
1706 return -1;
1707 }
1708
1709 /* Save the original contents of the copy area. */
1710 displaced->step_saved_copy.resize (len);
1711 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1712 if (status != 0)
1713 throw_error (MEMORY_ERROR,
1714 _("Error accessing memory address %s (%s) for "
1715 "displaced-stepping scratch space."),
1716 paddress (gdbarch, copy), safe_strerror (status));
1717 if (debug_displaced)
1718 {
1719 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1720 paddress (gdbarch, copy));
1721 displaced_step_dump_bytes (gdb_stdlog,
1722 displaced->step_saved_copy.data (),
1723 len);
1724 };
1725
1726 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1727 original, copy, regcache);
1728 if (closure == NULL)
1729 {
1730 /* The architecture doesn't know how or want to displaced step
1731 this instruction or instruction sequence. Fallback to
1732 stepping over the breakpoint in-line. */
1733 return -1;
1734 }
1735
1736 /* Save the information we need to fix things up if the step
1737 succeeds. */
1738 displaced->step_thread = tp;
1739 displaced->step_gdbarch = gdbarch;
1740 displaced->step_closure = closure;
1741 displaced->step_original = original;
1742 displaced->step_copy = copy;
1743
1744 {
1745 displaced_step_clear_cleanup cleanup (displaced);
1746
1747 /* Resume execution at the copy. */
1748 regcache_write_pc (regcache, copy);
1749
1750 cleanup.release ();
1751 }
1752
1753 if (debug_displaced)
1754 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1755 paddress (gdbarch, copy));
1756
1757 return 1;
1758 }
1759
1760 /* Wrapper for displaced_step_prepare_throw that disabled further
1761 attempts at displaced stepping if we get a memory error. */
1762
1763 static int
1764 displaced_step_prepare (thread_info *thread)
1765 {
1766 int prepared = -1;
1767
1768 try
1769 {
1770 prepared = displaced_step_prepare_throw (thread);
1771 }
1772 catch (const gdb_exception_error &ex)
1773 {
1774 struct displaced_step_inferior_state *displaced_state;
1775
1776 if (ex.error != MEMORY_ERROR
1777 && ex.error != NOT_SUPPORTED_ERROR)
1778 throw;
1779
1780 if (debug_infrun)
1781 {
1782 fprintf_unfiltered (gdb_stdlog,
1783 "infrun: disabling displaced stepping: %s\n",
1784 ex.what ());
1785 }
1786
1787 /* Be verbose if "set displaced-stepping" is "on", silent if
1788 "auto". */
1789 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1790 {
1791 warning (_("disabling displaced stepping: %s"),
1792 ex.what ());
1793 }
1794
1795 /* Disable further displaced stepping attempts. */
1796 displaced_state
1797 = get_displaced_stepping_state (thread->inf);
1798 displaced_state->failed_before = 1;
1799 }
1800
1801 return prepared;
1802 }
1803
1804 static void
1805 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1806 const gdb_byte *myaddr, int len)
1807 {
1808 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1809
1810 inferior_ptid = ptid;
1811 write_memory (memaddr, myaddr, len);
1812 }
1813
1814 /* Restore the contents of the copy area for thread PTID. */
1815
1816 static void
1817 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1818 ptid_t ptid)
1819 {
1820 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1821
1822 write_memory_ptid (ptid, displaced->step_copy,
1823 displaced->step_saved_copy.data (), len);
1824 if (debug_displaced)
1825 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1826 target_pid_to_str (ptid).c_str (),
1827 paddress (displaced->step_gdbarch,
1828 displaced->step_copy));
1829 }
1830
1831 /* If we displaced stepped an instruction successfully, adjust
1832 registers and memory to yield the same effect the instruction would
1833 have had if we had executed it at its original address, and return
1834 1. If the instruction didn't complete, relocate the PC and return
1835 -1. If the thread wasn't displaced stepping, return 0. */
1836
1837 static int
1838 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1839 {
1840 struct displaced_step_inferior_state *displaced
1841 = get_displaced_stepping_state (event_thread->inf);
1842 int ret;
1843
1844 /* Was this event for the thread we displaced? */
1845 if (displaced->step_thread != event_thread)
1846 return 0;
1847
1848 displaced_step_clear_cleanup cleanup (displaced);
1849
1850 displaced_step_restore (displaced, displaced->step_thread->ptid);
1851
1852 /* Fixup may need to read memory/registers. Switch to the thread
1853 that we're fixing up. Also, target_stopped_by_watchpoint checks
1854 the current thread. */
1855 switch_to_thread (event_thread);
1856
1857 /* Did the instruction complete successfully? */
1858 if (signal == GDB_SIGNAL_TRAP
1859 && !(target_stopped_by_watchpoint ()
1860 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1861 || target_have_steppable_watchpoint)))
1862 {
1863 /* Fix up the resulting state. */
1864 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1865 displaced->step_closure,
1866 displaced->step_original,
1867 displaced->step_copy,
1868 get_thread_regcache (displaced->step_thread));
1869 ret = 1;
1870 }
1871 else
1872 {
1873 /* Since the instruction didn't complete, all we can do is
1874 relocate the PC. */
1875 struct regcache *regcache = get_thread_regcache (event_thread);
1876 CORE_ADDR pc = regcache_read_pc (regcache);
1877
1878 pc = displaced->step_original + (pc - displaced->step_copy);
1879 regcache_write_pc (regcache, pc);
1880 ret = -1;
1881 }
1882
1883 return ret;
1884 }
1885
1886 /* Data to be passed around while handling an event. This data is
1887 discarded between events. */
1888 struct execution_control_state
1889 {
1890 ptid_t ptid;
1891 /* The thread that got the event, if this was a thread event; NULL
1892 otherwise. */
1893 struct thread_info *event_thread;
1894
1895 struct target_waitstatus ws;
1896 int stop_func_filled_in;
1897 CORE_ADDR stop_func_start;
1898 CORE_ADDR stop_func_end;
1899 const char *stop_func_name;
1900 int wait_some_more;
1901
1902 /* True if the event thread hit the single-step breakpoint of
1903 another thread. Thus the event doesn't cause a stop, the thread
1904 needs to be single-stepped past the single-step breakpoint before
1905 we can switch back to the original stepping thread. */
1906 int hit_singlestep_breakpoint;
1907 };
1908
1909 /* Clear ECS and set it to point at TP. */
1910
1911 static void
1912 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1913 {
1914 memset (ecs, 0, sizeof (*ecs));
1915 ecs->event_thread = tp;
1916 ecs->ptid = tp->ptid;
1917 }
1918
1919 static void keep_going_pass_signal (struct execution_control_state *ecs);
1920 static void prepare_to_wait (struct execution_control_state *ecs);
1921 static int keep_going_stepped_thread (struct thread_info *tp);
1922 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1923
1924 /* Are there any pending step-over requests? If so, run all we can
1925 now and return true. Otherwise, return false. */
1926
1927 static int
1928 start_step_over (void)
1929 {
1930 struct thread_info *tp, *next;
1931
1932 /* Don't start a new step-over if we already have an in-line
1933 step-over operation ongoing. */
1934 if (step_over_info_valid_p ())
1935 return 0;
1936
1937 for (tp = step_over_queue_head; tp != NULL; tp = next)
1938 {
1939 struct execution_control_state ecss;
1940 struct execution_control_state *ecs = &ecss;
1941 step_over_what step_what;
1942 int must_be_in_line;
1943
1944 gdb_assert (!tp->stop_requested);
1945
1946 next = thread_step_over_chain_next (tp);
1947
1948 /* If this inferior already has a displaced step in process,
1949 don't start a new one. */
1950 if (displaced_step_in_progress (tp->inf))
1951 continue;
1952
1953 step_what = thread_still_needs_step_over (tp);
1954 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1955 || ((step_what & STEP_OVER_BREAKPOINT)
1956 && !use_displaced_stepping (tp)));
1957
1958 /* We currently stop all threads of all processes to step-over
1959 in-line. If we need to start a new in-line step-over, let
1960 any pending displaced steps finish first. */
1961 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1962 return 0;
1963
1964 thread_step_over_chain_remove (tp);
1965
1966 if (step_over_queue_head == NULL)
1967 {
1968 if (debug_infrun)
1969 fprintf_unfiltered (gdb_stdlog,
1970 "infrun: step-over queue now empty\n");
1971 }
1972
1973 if (tp->control.trap_expected
1974 || tp->resumed
1975 || tp->executing)
1976 {
1977 internal_error (__FILE__, __LINE__,
1978 "[%s] has inconsistent state: "
1979 "trap_expected=%d, resumed=%d, executing=%d\n",
1980 target_pid_to_str (tp->ptid).c_str (),
1981 tp->control.trap_expected,
1982 tp->resumed,
1983 tp->executing);
1984 }
1985
1986 if (debug_infrun)
1987 fprintf_unfiltered (gdb_stdlog,
1988 "infrun: resuming [%s] for step-over\n",
1989 target_pid_to_str (tp->ptid).c_str ());
1990
1991 /* keep_going_pass_signal skips the step-over if the breakpoint
1992 is no longer inserted. In all-stop, we want to keep looking
1993 for a thread that needs a step-over instead of resuming TP,
1994 because we wouldn't be able to resume anything else until the
1995 target stops again. In non-stop, the resume always resumes
1996 only TP, so it's OK to let the thread resume freely. */
1997 if (!target_is_non_stop_p () && !step_what)
1998 continue;
1999
2000 switch_to_thread (tp);
2001 reset_ecs (ecs, tp);
2002 keep_going_pass_signal (ecs);
2003
2004 if (!ecs->wait_some_more)
2005 error (_("Command aborted."));
2006
2007 gdb_assert (tp->resumed);
2008
2009 /* If we started a new in-line step-over, we're done. */
2010 if (step_over_info_valid_p ())
2011 {
2012 gdb_assert (tp->control.trap_expected);
2013 return 1;
2014 }
2015
2016 if (!target_is_non_stop_p ())
2017 {
2018 /* On all-stop, shouldn't have resumed unless we needed a
2019 step over. */
2020 gdb_assert (tp->control.trap_expected
2021 || tp->step_after_step_resume_breakpoint);
2022
2023 /* With remote targets (at least), in all-stop, we can't
2024 issue any further remote commands until the program stops
2025 again. */
2026 return 1;
2027 }
2028
2029 /* Either the thread no longer needed a step-over, or a new
2030 displaced stepping sequence started. Even in the latter
2031 case, continue looking. Maybe we can also start another
2032 displaced step on a thread of other process. */
2033 }
2034
2035 return 0;
2036 }
2037
2038 /* Update global variables holding ptids to hold NEW_PTID if they were
2039 holding OLD_PTID. */
2040 static void
2041 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2042 {
2043 if (inferior_ptid == old_ptid)
2044 inferior_ptid = new_ptid;
2045 }
2046
2047 \f
2048
2049 static const char schedlock_off[] = "off";
2050 static const char schedlock_on[] = "on";
2051 static const char schedlock_step[] = "step";
2052 static const char schedlock_replay[] = "replay";
2053 static const char *const scheduler_enums[] = {
2054 schedlock_off,
2055 schedlock_on,
2056 schedlock_step,
2057 schedlock_replay,
2058 NULL
2059 };
2060 static const char *scheduler_mode = schedlock_replay;
2061 static void
2062 show_scheduler_mode (struct ui_file *file, int from_tty,
2063 struct cmd_list_element *c, const char *value)
2064 {
2065 fprintf_filtered (file,
2066 _("Mode for locking scheduler "
2067 "during execution is \"%s\".\n"),
2068 value);
2069 }
2070
2071 static void
2072 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2073 {
2074 if (!target_can_lock_scheduler)
2075 {
2076 scheduler_mode = schedlock_off;
2077 error (_("Target '%s' cannot support this command."), target_shortname);
2078 }
2079 }
2080
2081 /* True if execution commands resume all threads of all processes by
2082 default; otherwise, resume only threads of the current inferior
2083 process. */
2084 bool sched_multi = false;
2085
2086 /* Try to setup for software single stepping over the specified location.
2087 Return 1 if target_resume() should use hardware single step.
2088
2089 GDBARCH the current gdbarch.
2090 PC the location to step over. */
2091
2092 static int
2093 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2094 {
2095 int hw_step = 1;
2096
2097 if (execution_direction == EXEC_FORWARD
2098 && gdbarch_software_single_step_p (gdbarch))
2099 hw_step = !insert_single_step_breakpoints (gdbarch);
2100
2101 return hw_step;
2102 }
2103
2104 /* See infrun.h. */
2105
2106 ptid_t
2107 user_visible_resume_ptid (int step)
2108 {
2109 ptid_t resume_ptid;
2110
2111 if (non_stop)
2112 {
2113 /* With non-stop mode on, threads are always handled
2114 individually. */
2115 resume_ptid = inferior_ptid;
2116 }
2117 else if ((scheduler_mode == schedlock_on)
2118 || (scheduler_mode == schedlock_step && step))
2119 {
2120 /* User-settable 'scheduler' mode requires solo thread
2121 resume. */
2122 resume_ptid = inferior_ptid;
2123 }
2124 else if ((scheduler_mode == schedlock_replay)
2125 && target_record_will_replay (minus_one_ptid, execution_direction))
2126 {
2127 /* User-settable 'scheduler' mode requires solo thread resume in replay
2128 mode. */
2129 resume_ptid = inferior_ptid;
2130 }
2131 else if (!sched_multi && target_supports_multi_process ())
2132 {
2133 /* Resume all threads of the current process (and none of other
2134 processes). */
2135 resume_ptid = ptid_t (inferior_ptid.pid ());
2136 }
2137 else
2138 {
2139 /* Resume all threads of all processes. */
2140 resume_ptid = RESUME_ALL;
2141 }
2142
2143 return resume_ptid;
2144 }
2145
2146 /* Return a ptid representing the set of threads that we will resume,
2147 in the perspective of the target, assuming run control handling
2148 does not require leaving some threads stopped (e.g., stepping past
2149 breakpoint). USER_STEP indicates whether we're about to start the
2150 target for a stepping command. */
2151
2152 static ptid_t
2153 internal_resume_ptid (int user_step)
2154 {
2155 /* In non-stop, we always control threads individually. Note that
2156 the target may always work in non-stop mode even with "set
2157 non-stop off", in which case user_visible_resume_ptid could
2158 return a wildcard ptid. */
2159 if (target_is_non_stop_p ())
2160 return inferior_ptid;
2161 else
2162 return user_visible_resume_ptid (user_step);
2163 }
2164
2165 /* Wrapper for target_resume, that handles infrun-specific
2166 bookkeeping. */
2167
2168 static void
2169 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2170 {
2171 struct thread_info *tp = inferior_thread ();
2172
2173 gdb_assert (!tp->stop_requested);
2174
2175 /* Install inferior's terminal modes. */
2176 target_terminal::inferior ();
2177
2178 /* Avoid confusing the next resume, if the next stop/resume
2179 happens to apply to another thread. */
2180 tp->suspend.stop_signal = GDB_SIGNAL_0;
2181
2182 /* Advise target which signals may be handled silently.
2183
2184 If we have removed breakpoints because we are stepping over one
2185 in-line (in any thread), we need to receive all signals to avoid
2186 accidentally skipping a breakpoint during execution of a signal
2187 handler.
2188
2189 Likewise if we're displaced stepping, otherwise a trap for a
2190 breakpoint in a signal handler might be confused with the
2191 displaced step finishing. We don't make the displaced_step_fixup
2192 step distinguish the cases instead, because:
2193
2194 - a backtrace while stopped in the signal handler would show the
2195 scratch pad as frame older than the signal handler, instead of
2196 the real mainline code.
2197
2198 - when the thread is later resumed, the signal handler would
2199 return to the scratch pad area, which would no longer be
2200 valid. */
2201 if (step_over_info_valid_p ()
2202 || displaced_step_in_progress (tp->inf))
2203 target_pass_signals ({});
2204 else
2205 target_pass_signals (signal_pass);
2206
2207 target_resume (resume_ptid, step, sig);
2208
2209 target_commit_resume ();
2210 }
2211
2212 /* Resume the inferior. SIG is the signal to give the inferior
2213 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2214 call 'resume', which handles exceptions. */
2215
2216 static void
2217 resume_1 (enum gdb_signal sig)
2218 {
2219 struct regcache *regcache = get_current_regcache ();
2220 struct gdbarch *gdbarch = regcache->arch ();
2221 struct thread_info *tp = inferior_thread ();
2222 CORE_ADDR pc = regcache_read_pc (regcache);
2223 const address_space *aspace = regcache->aspace ();
2224 ptid_t resume_ptid;
2225 /* This represents the user's step vs continue request. When
2226 deciding whether "set scheduler-locking step" applies, it's the
2227 user's intention that counts. */
2228 const int user_step = tp->control.stepping_command;
2229 /* This represents what we'll actually request the target to do.
2230 This can decay from a step to a continue, if e.g., we need to
2231 implement single-stepping with breakpoints (software
2232 single-step). */
2233 int step;
2234
2235 gdb_assert (!tp->stop_requested);
2236 gdb_assert (!thread_is_in_step_over_chain (tp));
2237
2238 if (tp->suspend.waitstatus_pending_p)
2239 {
2240 if (debug_infrun)
2241 {
2242 std::string statstr
2243 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2244
2245 fprintf_unfiltered (gdb_stdlog,
2246 "infrun: resume: thread %s has pending wait "
2247 "status %s (currently_stepping=%d).\n",
2248 target_pid_to_str (tp->ptid).c_str (),
2249 statstr.c_str (),
2250 currently_stepping (tp));
2251 }
2252
2253 tp->resumed = 1;
2254
2255 /* FIXME: What should we do if we are supposed to resume this
2256 thread with a signal? Maybe we should maintain a queue of
2257 pending signals to deliver. */
2258 if (sig != GDB_SIGNAL_0)
2259 {
2260 warning (_("Couldn't deliver signal %s to %s."),
2261 gdb_signal_to_name (sig),
2262 target_pid_to_str (tp->ptid).c_str ());
2263 }
2264
2265 tp->suspend.stop_signal = GDB_SIGNAL_0;
2266
2267 if (target_can_async_p ())
2268 {
2269 target_async (1);
2270 /* Tell the event loop we have an event to process. */
2271 mark_async_event_handler (infrun_async_inferior_event_token);
2272 }
2273 return;
2274 }
2275
2276 tp->stepped_breakpoint = 0;
2277
2278 /* Depends on stepped_breakpoint. */
2279 step = currently_stepping (tp);
2280
2281 if (current_inferior ()->waiting_for_vfork_done)
2282 {
2283 /* Don't try to single-step a vfork parent that is waiting for
2284 the child to get out of the shared memory region (by exec'ing
2285 or exiting). This is particularly important on software
2286 single-step archs, as the child process would trip on the
2287 software single step breakpoint inserted for the parent
2288 process. Since the parent will not actually execute any
2289 instruction until the child is out of the shared region (such
2290 are vfork's semantics), it is safe to simply continue it.
2291 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2292 the parent, and tell it to `keep_going', which automatically
2293 re-sets it stepping. */
2294 if (debug_infrun)
2295 fprintf_unfiltered (gdb_stdlog,
2296 "infrun: resume : clear step\n");
2297 step = 0;
2298 }
2299
2300 if (debug_infrun)
2301 fprintf_unfiltered (gdb_stdlog,
2302 "infrun: resume (step=%d, signal=%s), "
2303 "trap_expected=%d, current thread [%s] at %s\n",
2304 step, gdb_signal_to_symbol_string (sig),
2305 tp->control.trap_expected,
2306 target_pid_to_str (inferior_ptid).c_str (),
2307 paddress (gdbarch, pc));
2308
2309 /* Normally, by the time we reach `resume', the breakpoints are either
2310 removed or inserted, as appropriate. The exception is if we're sitting
2311 at a permanent breakpoint; we need to step over it, but permanent
2312 breakpoints can't be removed. So we have to test for it here. */
2313 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2314 {
2315 if (sig != GDB_SIGNAL_0)
2316 {
2317 /* We have a signal to pass to the inferior. The resume
2318 may, or may not take us to the signal handler. If this
2319 is a step, we'll need to stop in the signal handler, if
2320 there's one, (if the target supports stepping into
2321 handlers), or in the next mainline instruction, if
2322 there's no handler. If this is a continue, we need to be
2323 sure to run the handler with all breakpoints inserted.
2324 In all cases, set a breakpoint at the current address
2325 (where the handler returns to), and once that breakpoint
2326 is hit, resume skipping the permanent breakpoint. If
2327 that breakpoint isn't hit, then we've stepped into the
2328 signal handler (or hit some other event). We'll delete
2329 the step-resume breakpoint then. */
2330
2331 if (debug_infrun)
2332 fprintf_unfiltered (gdb_stdlog,
2333 "infrun: resume: skipping permanent breakpoint, "
2334 "deliver signal first\n");
2335
2336 clear_step_over_info ();
2337 tp->control.trap_expected = 0;
2338
2339 if (tp->control.step_resume_breakpoint == NULL)
2340 {
2341 /* Set a "high-priority" step-resume, as we don't want
2342 user breakpoints at PC to trigger (again) when this
2343 hits. */
2344 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2345 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2346
2347 tp->step_after_step_resume_breakpoint = step;
2348 }
2349
2350 insert_breakpoints ();
2351 }
2352 else
2353 {
2354 /* There's no signal to pass, we can go ahead and skip the
2355 permanent breakpoint manually. */
2356 if (debug_infrun)
2357 fprintf_unfiltered (gdb_stdlog,
2358 "infrun: resume: skipping permanent breakpoint\n");
2359 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2360 /* Update pc to reflect the new address from which we will
2361 execute instructions. */
2362 pc = regcache_read_pc (regcache);
2363
2364 if (step)
2365 {
2366 /* We've already advanced the PC, so the stepping part
2367 is done. Now we need to arrange for a trap to be
2368 reported to handle_inferior_event. Set a breakpoint
2369 at the current PC, and run to it. Don't update
2370 prev_pc, because if we end in
2371 switch_back_to_stepped_thread, we want the "expected
2372 thread advanced also" branch to be taken. IOW, we
2373 don't want this thread to step further from PC
2374 (overstep). */
2375 gdb_assert (!step_over_info_valid_p ());
2376 insert_single_step_breakpoint (gdbarch, aspace, pc);
2377 insert_breakpoints ();
2378
2379 resume_ptid = internal_resume_ptid (user_step);
2380 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2381 tp->resumed = 1;
2382 return;
2383 }
2384 }
2385 }
2386
2387 /* If we have a breakpoint to step over, make sure to do a single
2388 step only. Same if we have software watchpoints. */
2389 if (tp->control.trap_expected || bpstat_should_step ())
2390 tp->control.may_range_step = 0;
2391
2392 /* If enabled, step over breakpoints by executing a copy of the
2393 instruction at a different address.
2394
2395 We can't use displaced stepping when we have a signal to deliver;
2396 the comments for displaced_step_prepare explain why. The
2397 comments in the handle_inferior event for dealing with 'random
2398 signals' explain what we do instead.
2399
2400 We can't use displaced stepping when we are waiting for vfork_done
2401 event, displaced stepping breaks the vfork child similarly as single
2402 step software breakpoint. */
2403 if (tp->control.trap_expected
2404 && use_displaced_stepping (tp)
2405 && !step_over_info_valid_p ()
2406 && sig == GDB_SIGNAL_0
2407 && !current_inferior ()->waiting_for_vfork_done)
2408 {
2409 int prepared = displaced_step_prepare (tp);
2410
2411 if (prepared == 0)
2412 {
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "Got placed in step-over queue\n");
2416
2417 tp->control.trap_expected = 0;
2418 return;
2419 }
2420 else if (prepared < 0)
2421 {
2422 /* Fallback to stepping over the breakpoint in-line. */
2423
2424 if (target_is_non_stop_p ())
2425 stop_all_threads ();
2426
2427 set_step_over_info (regcache->aspace (),
2428 regcache_read_pc (regcache), 0, tp->global_num);
2429
2430 step = maybe_software_singlestep (gdbarch, pc);
2431
2432 insert_breakpoints ();
2433 }
2434 else if (prepared > 0)
2435 {
2436 struct displaced_step_inferior_state *displaced;
2437
2438 /* Update pc to reflect the new address from which we will
2439 execute instructions due to displaced stepping. */
2440 pc = regcache_read_pc (get_thread_regcache (tp));
2441
2442 displaced = get_displaced_stepping_state (tp->inf);
2443 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2444 displaced->step_closure);
2445 }
2446 }
2447
2448 /* Do we need to do it the hard way, w/temp breakpoints? */
2449 else if (step)
2450 step = maybe_software_singlestep (gdbarch, pc);
2451
2452 /* Currently, our software single-step implementation leads to different
2453 results than hardware single-stepping in one situation: when stepping
2454 into delivering a signal which has an associated signal handler,
2455 hardware single-step will stop at the first instruction of the handler,
2456 while software single-step will simply skip execution of the handler.
2457
2458 For now, this difference in behavior is accepted since there is no
2459 easy way to actually implement single-stepping into a signal handler
2460 without kernel support.
2461
2462 However, there is one scenario where this difference leads to follow-on
2463 problems: if we're stepping off a breakpoint by removing all breakpoints
2464 and then single-stepping. In this case, the software single-step
2465 behavior means that even if there is a *breakpoint* in the signal
2466 handler, GDB still would not stop.
2467
2468 Fortunately, we can at least fix this particular issue. We detect
2469 here the case where we are about to deliver a signal while software
2470 single-stepping with breakpoints removed. In this situation, we
2471 revert the decisions to remove all breakpoints and insert single-
2472 step breakpoints, and instead we install a step-resume breakpoint
2473 at the current address, deliver the signal without stepping, and
2474 once we arrive back at the step-resume breakpoint, actually step
2475 over the breakpoint we originally wanted to step over. */
2476 if (thread_has_single_step_breakpoints_set (tp)
2477 && sig != GDB_SIGNAL_0
2478 && step_over_info_valid_p ())
2479 {
2480 /* If we have nested signals or a pending signal is delivered
2481 immediately after a handler returns, might might already have
2482 a step-resume breakpoint set on the earlier handler. We cannot
2483 set another step-resume breakpoint; just continue on until the
2484 original breakpoint is hit. */
2485 if (tp->control.step_resume_breakpoint == NULL)
2486 {
2487 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2488 tp->step_after_step_resume_breakpoint = 1;
2489 }
2490
2491 delete_single_step_breakpoints (tp);
2492
2493 clear_step_over_info ();
2494 tp->control.trap_expected = 0;
2495
2496 insert_breakpoints ();
2497 }
2498
2499 /* If STEP is set, it's a request to use hardware stepping
2500 facilities. But in that case, we should never
2501 use singlestep breakpoint. */
2502 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2503
2504 /* Decide the set of threads to ask the target to resume. */
2505 if (tp->control.trap_expected)
2506 {
2507 /* We're allowing a thread to run past a breakpoint it has
2508 hit, either by single-stepping the thread with the breakpoint
2509 removed, or by displaced stepping, with the breakpoint inserted.
2510 In the former case, we need to single-step only this thread,
2511 and keep others stopped, as they can miss this breakpoint if
2512 allowed to run. That's not really a problem for displaced
2513 stepping, but, we still keep other threads stopped, in case
2514 another thread is also stopped for a breakpoint waiting for
2515 its turn in the displaced stepping queue. */
2516 resume_ptid = inferior_ptid;
2517 }
2518 else
2519 resume_ptid = internal_resume_ptid (user_step);
2520
2521 if (execution_direction != EXEC_REVERSE
2522 && step && breakpoint_inserted_here_p (aspace, pc))
2523 {
2524 /* There are two cases where we currently need to step a
2525 breakpoint instruction when we have a signal to deliver:
2526
2527 - See handle_signal_stop where we handle random signals that
2528 could take out us out of the stepping range. Normally, in
2529 that case we end up continuing (instead of stepping) over the
2530 signal handler with a breakpoint at PC, but there are cases
2531 where we should _always_ single-step, even if we have a
2532 step-resume breakpoint, like when a software watchpoint is
2533 set. Assuming single-stepping and delivering a signal at the
2534 same time would takes us to the signal handler, then we could
2535 have removed the breakpoint at PC to step over it. However,
2536 some hardware step targets (like e.g., Mac OS) can't step
2537 into signal handlers, and for those, we need to leave the
2538 breakpoint at PC inserted, as otherwise if the handler
2539 recurses and executes PC again, it'll miss the breakpoint.
2540 So we leave the breakpoint inserted anyway, but we need to
2541 record that we tried to step a breakpoint instruction, so
2542 that adjust_pc_after_break doesn't end up confused.
2543
2544 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2545 in one thread after another thread that was stepping had been
2546 momentarily paused for a step-over. When we re-resume the
2547 stepping thread, it may be resumed from that address with a
2548 breakpoint that hasn't trapped yet. Seen with
2549 gdb.threads/non-stop-fair-events.exp, on targets that don't
2550 do displaced stepping. */
2551
2552 if (debug_infrun)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "infrun: resume: [%s] stepped breakpoint\n",
2555 target_pid_to_str (tp->ptid).c_str ());
2556
2557 tp->stepped_breakpoint = 1;
2558
2559 /* Most targets can step a breakpoint instruction, thus
2560 executing it normally. But if this one cannot, just
2561 continue and we will hit it anyway. */
2562 if (gdbarch_cannot_step_breakpoint (gdbarch))
2563 step = 0;
2564 }
2565
2566 if (debug_displaced
2567 && tp->control.trap_expected
2568 && use_displaced_stepping (tp)
2569 && !step_over_info_valid_p ())
2570 {
2571 struct regcache *resume_regcache = get_thread_regcache (tp);
2572 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2573 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2574 gdb_byte buf[4];
2575
2576 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2577 paddress (resume_gdbarch, actual_pc));
2578 read_memory (actual_pc, buf, sizeof (buf));
2579 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2580 }
2581
2582 if (tp->control.may_range_step)
2583 {
2584 /* If we're resuming a thread with the PC out of the step
2585 range, then we're doing some nested/finer run control
2586 operation, like stepping the thread out of the dynamic
2587 linker or the displaced stepping scratch pad. We
2588 shouldn't have allowed a range step then. */
2589 gdb_assert (pc_in_thread_step_range (pc, tp));
2590 }
2591
2592 do_target_resume (resume_ptid, step, sig);
2593 tp->resumed = 1;
2594 }
2595
2596 /* Resume the inferior. SIG is the signal to give the inferior
2597 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2598 rolls back state on error. */
2599
2600 static void
2601 resume (gdb_signal sig)
2602 {
2603 try
2604 {
2605 resume_1 (sig);
2606 }
2607 catch (const gdb_exception &ex)
2608 {
2609 /* If resuming is being aborted for any reason, delete any
2610 single-step breakpoint resume_1 may have created, to avoid
2611 confusing the following resumption, and to avoid leaving
2612 single-step breakpoints perturbing other threads, in case
2613 we're running in non-stop mode. */
2614 if (inferior_ptid != null_ptid)
2615 delete_single_step_breakpoints (inferior_thread ());
2616 throw;
2617 }
2618 }
2619
2620 \f
2621 /* Proceeding. */
2622
2623 /* See infrun.h. */
2624
2625 /* Counter that tracks number of user visible stops. This can be used
2626 to tell whether a command has proceeded the inferior past the
2627 current location. This allows e.g., inferior function calls in
2628 breakpoint commands to not interrupt the command list. When the
2629 call finishes successfully, the inferior is standing at the same
2630 breakpoint as if nothing happened (and so we don't call
2631 normal_stop). */
2632 static ULONGEST current_stop_id;
2633
2634 /* See infrun.h. */
2635
2636 ULONGEST
2637 get_stop_id (void)
2638 {
2639 return current_stop_id;
2640 }
2641
2642 /* Called when we report a user visible stop. */
2643
2644 static void
2645 new_stop_id (void)
2646 {
2647 current_stop_id++;
2648 }
2649
2650 /* Clear out all variables saying what to do when inferior is continued.
2651 First do this, then set the ones you want, then call `proceed'. */
2652
2653 static void
2654 clear_proceed_status_thread (struct thread_info *tp)
2655 {
2656 if (debug_infrun)
2657 fprintf_unfiltered (gdb_stdlog,
2658 "infrun: clear_proceed_status_thread (%s)\n",
2659 target_pid_to_str (tp->ptid).c_str ());
2660
2661 /* If we're starting a new sequence, then the previous finished
2662 single-step is no longer relevant. */
2663 if (tp->suspend.waitstatus_pending_p)
2664 {
2665 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2666 {
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog,
2669 "infrun: clear_proceed_status: pending "
2670 "event of %s was a finished step. "
2671 "Discarding.\n",
2672 target_pid_to_str (tp->ptid).c_str ());
2673
2674 tp->suspend.waitstatus_pending_p = 0;
2675 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2676 }
2677 else if (debug_infrun)
2678 {
2679 std::string statstr
2680 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2681
2682 fprintf_unfiltered (gdb_stdlog,
2683 "infrun: clear_proceed_status_thread: thread %s "
2684 "has pending wait status %s "
2685 "(currently_stepping=%d).\n",
2686 target_pid_to_str (tp->ptid).c_str (),
2687 statstr.c_str (),
2688 currently_stepping (tp));
2689 }
2690 }
2691
2692 /* If this signal should not be seen by program, give it zero.
2693 Used for debugging signals. */
2694 if (!signal_pass_state (tp->suspend.stop_signal))
2695 tp->suspend.stop_signal = GDB_SIGNAL_0;
2696
2697 delete tp->thread_fsm;
2698 tp->thread_fsm = NULL;
2699
2700 tp->control.trap_expected = 0;
2701 tp->control.step_range_start = 0;
2702 tp->control.step_range_end = 0;
2703 tp->control.may_range_step = 0;
2704 tp->control.step_frame_id = null_frame_id;
2705 tp->control.step_stack_frame_id = null_frame_id;
2706 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2707 tp->control.step_start_function = NULL;
2708 tp->stop_requested = 0;
2709
2710 tp->control.stop_step = 0;
2711
2712 tp->control.proceed_to_finish = 0;
2713
2714 tp->control.stepping_command = 0;
2715
2716 /* Discard any remaining commands or status from previous stop. */
2717 bpstat_clear (&tp->control.stop_bpstat);
2718 }
2719
2720 void
2721 clear_proceed_status (int step)
2722 {
2723 /* With scheduler-locking replay, stop replaying other threads if we're
2724 not replaying the user-visible resume ptid.
2725
2726 This is a convenience feature to not require the user to explicitly
2727 stop replaying the other threads. We're assuming that the user's
2728 intent is to resume tracing the recorded process. */
2729 if (!non_stop && scheduler_mode == schedlock_replay
2730 && target_record_is_replaying (minus_one_ptid)
2731 && !target_record_will_replay (user_visible_resume_ptid (step),
2732 execution_direction))
2733 target_record_stop_replaying ();
2734
2735 if (!non_stop && inferior_ptid != null_ptid)
2736 {
2737 ptid_t resume_ptid = user_visible_resume_ptid (step);
2738
2739 /* In all-stop mode, delete the per-thread status of all threads
2740 we're about to resume, implicitly and explicitly. */
2741 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2742 clear_proceed_status_thread (tp);
2743 }
2744
2745 if (inferior_ptid != null_ptid)
2746 {
2747 struct inferior *inferior;
2748
2749 if (non_stop)
2750 {
2751 /* If in non-stop mode, only delete the per-thread status of
2752 the current thread. */
2753 clear_proceed_status_thread (inferior_thread ());
2754 }
2755
2756 inferior = current_inferior ();
2757 inferior->control.stop_soon = NO_STOP_QUIETLY;
2758 }
2759
2760 gdb::observers::about_to_proceed.notify ();
2761 }
2762
2763 /* Returns true if TP is still stopped at a breakpoint that needs
2764 stepping-over in order to make progress. If the breakpoint is gone
2765 meanwhile, we can skip the whole step-over dance. */
2766
2767 static int
2768 thread_still_needs_step_over_bp (struct thread_info *tp)
2769 {
2770 if (tp->stepping_over_breakpoint)
2771 {
2772 struct regcache *regcache = get_thread_regcache (tp);
2773
2774 if (breakpoint_here_p (regcache->aspace (),
2775 regcache_read_pc (regcache))
2776 == ordinary_breakpoint_here)
2777 return 1;
2778
2779 tp->stepping_over_breakpoint = 0;
2780 }
2781
2782 return 0;
2783 }
2784
2785 /* Check whether thread TP still needs to start a step-over in order
2786 to make progress when resumed. Returns an bitwise or of enum
2787 step_over_what bits, indicating what needs to be stepped over. */
2788
2789 static step_over_what
2790 thread_still_needs_step_over (struct thread_info *tp)
2791 {
2792 step_over_what what = 0;
2793
2794 if (thread_still_needs_step_over_bp (tp))
2795 what |= STEP_OVER_BREAKPOINT;
2796
2797 if (tp->stepping_over_watchpoint
2798 && !target_have_steppable_watchpoint)
2799 what |= STEP_OVER_WATCHPOINT;
2800
2801 return what;
2802 }
2803
2804 /* Returns true if scheduler locking applies. STEP indicates whether
2805 we're about to do a step/next-like command to a thread. */
2806
2807 static int
2808 schedlock_applies (struct thread_info *tp)
2809 {
2810 return (scheduler_mode == schedlock_on
2811 || (scheduler_mode == schedlock_step
2812 && tp->control.stepping_command)
2813 || (scheduler_mode == schedlock_replay
2814 && target_record_will_replay (minus_one_ptid,
2815 execution_direction)));
2816 }
2817
2818 /* Basic routine for continuing the program in various fashions.
2819
2820 ADDR is the address to resume at, or -1 for resume where stopped.
2821 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2822 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2823
2824 You should call clear_proceed_status before calling proceed. */
2825
2826 void
2827 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2828 {
2829 struct regcache *regcache;
2830 struct gdbarch *gdbarch;
2831 CORE_ADDR pc;
2832 ptid_t resume_ptid;
2833 struct execution_control_state ecss;
2834 struct execution_control_state *ecs = &ecss;
2835 int started;
2836
2837 /* If we're stopped at a fork/vfork, follow the branch set by the
2838 "set follow-fork-mode" command; otherwise, we'll just proceed
2839 resuming the current thread. */
2840 if (!follow_fork ())
2841 {
2842 /* The target for some reason decided not to resume. */
2843 normal_stop ();
2844 if (target_can_async_p ())
2845 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2846 return;
2847 }
2848
2849 /* We'll update this if & when we switch to a new thread. */
2850 previous_inferior_ptid = inferior_ptid;
2851
2852 regcache = get_current_regcache ();
2853 gdbarch = regcache->arch ();
2854 const address_space *aspace = regcache->aspace ();
2855
2856 pc = regcache_read_pc (regcache);
2857 thread_info *cur_thr = inferior_thread ();
2858
2859 /* Fill in with reasonable starting values. */
2860 init_thread_stepping_state (cur_thr);
2861
2862 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2863
2864 if (addr == (CORE_ADDR) -1)
2865 {
2866 if (pc == cur_thr->suspend.stop_pc
2867 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2868 && execution_direction != EXEC_REVERSE)
2869 /* There is a breakpoint at the address we will resume at,
2870 step one instruction before inserting breakpoints so that
2871 we do not stop right away (and report a second hit at this
2872 breakpoint).
2873
2874 Note, we don't do this in reverse, because we won't
2875 actually be executing the breakpoint insn anyway.
2876 We'll be (un-)executing the previous instruction. */
2877 cur_thr->stepping_over_breakpoint = 1;
2878 else if (gdbarch_single_step_through_delay_p (gdbarch)
2879 && gdbarch_single_step_through_delay (gdbarch,
2880 get_current_frame ()))
2881 /* We stepped onto an instruction that needs to be stepped
2882 again before re-inserting the breakpoint, do so. */
2883 cur_thr->stepping_over_breakpoint = 1;
2884 }
2885 else
2886 {
2887 regcache_write_pc (regcache, addr);
2888 }
2889
2890 if (siggnal != GDB_SIGNAL_DEFAULT)
2891 cur_thr->suspend.stop_signal = siggnal;
2892
2893 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2894
2895 /* If an exception is thrown from this point on, make sure to
2896 propagate GDB's knowledge of the executing state to the
2897 frontend/user running state. */
2898 scoped_finish_thread_state finish_state (resume_ptid);
2899
2900 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2901 threads (e.g., we might need to set threads stepping over
2902 breakpoints first), from the user/frontend's point of view, all
2903 threads in RESUME_PTID are now running. Unless we're calling an
2904 inferior function, as in that case we pretend the inferior
2905 doesn't run at all. */
2906 if (!cur_thr->control.in_infcall)
2907 set_running (resume_ptid, 1);
2908
2909 if (debug_infrun)
2910 fprintf_unfiltered (gdb_stdlog,
2911 "infrun: proceed (addr=%s, signal=%s)\n",
2912 paddress (gdbarch, addr),
2913 gdb_signal_to_symbol_string (siggnal));
2914
2915 annotate_starting ();
2916
2917 /* Make sure that output from GDB appears before output from the
2918 inferior. */
2919 gdb_flush (gdb_stdout);
2920
2921 /* Since we've marked the inferior running, give it the terminal. A
2922 QUIT/Ctrl-C from here on is forwarded to the target (which can
2923 still detect attempts to unblock a stuck connection with repeated
2924 Ctrl-C from within target_pass_ctrlc). */
2925 target_terminal::inferior ();
2926
2927 /* In a multi-threaded task we may select another thread and
2928 then continue or step.
2929
2930 But if a thread that we're resuming had stopped at a breakpoint,
2931 it will immediately cause another breakpoint stop without any
2932 execution (i.e. it will report a breakpoint hit incorrectly). So
2933 we must step over it first.
2934
2935 Look for threads other than the current (TP) that reported a
2936 breakpoint hit and haven't been resumed yet since. */
2937
2938 /* If scheduler locking applies, we can avoid iterating over all
2939 threads. */
2940 if (!non_stop && !schedlock_applies (cur_thr))
2941 {
2942 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2943 {
2944 /* Ignore the current thread here. It's handled
2945 afterwards. */
2946 if (tp == cur_thr)
2947 continue;
2948
2949 if (!thread_still_needs_step_over (tp))
2950 continue;
2951
2952 gdb_assert (!thread_is_in_step_over_chain (tp));
2953
2954 if (debug_infrun)
2955 fprintf_unfiltered (gdb_stdlog,
2956 "infrun: need to step-over [%s] first\n",
2957 target_pid_to_str (tp->ptid).c_str ());
2958
2959 thread_step_over_chain_enqueue (tp);
2960 }
2961 }
2962
2963 /* Enqueue the current thread last, so that we move all other
2964 threads over their breakpoints first. */
2965 if (cur_thr->stepping_over_breakpoint)
2966 thread_step_over_chain_enqueue (cur_thr);
2967
2968 /* If the thread isn't started, we'll still need to set its prev_pc,
2969 so that switch_back_to_stepped_thread knows the thread hasn't
2970 advanced. Must do this before resuming any thread, as in
2971 all-stop/remote, once we resume we can't send any other packet
2972 until the target stops again. */
2973 cur_thr->prev_pc = regcache_read_pc (regcache);
2974
2975 {
2976 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2977
2978 started = start_step_over ();
2979
2980 if (step_over_info_valid_p ())
2981 {
2982 /* Either this thread started a new in-line step over, or some
2983 other thread was already doing one. In either case, don't
2984 resume anything else until the step-over is finished. */
2985 }
2986 else if (started && !target_is_non_stop_p ())
2987 {
2988 /* A new displaced stepping sequence was started. In all-stop,
2989 we can't talk to the target anymore until it next stops. */
2990 }
2991 else if (!non_stop && target_is_non_stop_p ())
2992 {
2993 /* In all-stop, but the target is always in non-stop mode.
2994 Start all other threads that are implicitly resumed too. */
2995 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2996 {
2997 if (tp->resumed)
2998 {
2999 if (debug_infrun)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "infrun: proceed: [%s] resumed\n",
3002 target_pid_to_str (tp->ptid).c_str ());
3003 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3004 continue;
3005 }
3006
3007 if (thread_is_in_step_over_chain (tp))
3008 {
3009 if (debug_infrun)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "infrun: proceed: [%s] needs step-over\n",
3012 target_pid_to_str (tp->ptid).c_str ());
3013 continue;
3014 }
3015
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: proceed: resuming %s\n",
3019 target_pid_to_str (tp->ptid).c_str ());
3020
3021 reset_ecs (ecs, tp);
3022 switch_to_thread (tp);
3023 keep_going_pass_signal (ecs);
3024 if (!ecs->wait_some_more)
3025 error (_("Command aborted."));
3026 }
3027 }
3028 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3029 {
3030 /* The thread wasn't started, and isn't queued, run it now. */
3031 reset_ecs (ecs, cur_thr);
3032 switch_to_thread (cur_thr);
3033 keep_going_pass_signal (ecs);
3034 if (!ecs->wait_some_more)
3035 error (_("Command aborted."));
3036 }
3037 }
3038
3039 target_commit_resume ();
3040
3041 finish_state.release ();
3042
3043 /* Tell the event loop to wait for it to stop. If the target
3044 supports asynchronous execution, it'll do this from within
3045 target_resume. */
3046 if (!target_can_async_p ())
3047 mark_async_event_handler (infrun_async_inferior_event_token);
3048 }
3049 \f
3050
3051 /* Start remote-debugging of a machine over a serial link. */
3052
3053 void
3054 start_remote (int from_tty)
3055 {
3056 struct inferior *inferior;
3057
3058 inferior = current_inferior ();
3059 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3060
3061 /* Always go on waiting for the target, regardless of the mode. */
3062 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3063 indicate to wait_for_inferior that a target should timeout if
3064 nothing is returned (instead of just blocking). Because of this,
3065 targets expecting an immediate response need to, internally, set
3066 things up so that the target_wait() is forced to eventually
3067 timeout. */
3068 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3069 differentiate to its caller what the state of the target is after
3070 the initial open has been performed. Here we're assuming that
3071 the target has stopped. It should be possible to eventually have
3072 target_open() return to the caller an indication that the target
3073 is currently running and GDB state should be set to the same as
3074 for an async run. */
3075 wait_for_inferior ();
3076
3077 /* Now that the inferior has stopped, do any bookkeeping like
3078 loading shared libraries. We want to do this before normal_stop,
3079 so that the displayed frame is up to date. */
3080 post_create_inferior (current_top_target (), from_tty);
3081
3082 normal_stop ();
3083 }
3084
3085 /* Initialize static vars when a new inferior begins. */
3086
3087 void
3088 init_wait_for_inferior (void)
3089 {
3090 /* These are meaningless until the first time through wait_for_inferior. */
3091
3092 breakpoint_init_inferior (inf_starting);
3093
3094 clear_proceed_status (0);
3095
3096 target_last_wait_ptid = minus_one_ptid;
3097
3098 previous_inferior_ptid = inferior_ptid;
3099 }
3100
3101 \f
3102
3103 static void handle_inferior_event (struct execution_control_state *ecs);
3104
3105 static void handle_step_into_function (struct gdbarch *gdbarch,
3106 struct execution_control_state *ecs);
3107 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3108 struct execution_control_state *ecs);
3109 static void handle_signal_stop (struct execution_control_state *ecs);
3110 static void check_exception_resume (struct execution_control_state *,
3111 struct frame_info *);
3112
3113 static void end_stepping_range (struct execution_control_state *ecs);
3114 static void stop_waiting (struct execution_control_state *ecs);
3115 static void keep_going (struct execution_control_state *ecs);
3116 static void process_event_stop_test (struct execution_control_state *ecs);
3117 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3118
3119 /* This function is attached as a "thread_stop_requested" observer.
3120 Cleanup local state that assumed the PTID was to be resumed, and
3121 report the stop to the frontend. */
3122
3123 static void
3124 infrun_thread_stop_requested (ptid_t ptid)
3125 {
3126 /* PTID was requested to stop. If the thread was already stopped,
3127 but the user/frontend doesn't know about that yet (e.g., the
3128 thread had been temporarily paused for some step-over), set up
3129 for reporting the stop now. */
3130 for (thread_info *tp : all_threads (ptid))
3131 {
3132 if (tp->state != THREAD_RUNNING)
3133 continue;
3134 if (tp->executing)
3135 continue;
3136
3137 /* Remove matching threads from the step-over queue, so
3138 start_step_over doesn't try to resume them
3139 automatically. */
3140 if (thread_is_in_step_over_chain (tp))
3141 thread_step_over_chain_remove (tp);
3142
3143 /* If the thread is stopped, but the user/frontend doesn't
3144 know about that yet, queue a pending event, as if the
3145 thread had just stopped now. Unless the thread already had
3146 a pending event. */
3147 if (!tp->suspend.waitstatus_pending_p)
3148 {
3149 tp->suspend.waitstatus_pending_p = 1;
3150 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3151 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3152 }
3153
3154 /* Clear the inline-frame state, since we're re-processing the
3155 stop. */
3156 clear_inline_frame_state (tp->ptid);
3157
3158 /* If this thread was paused because some other thread was
3159 doing an inline-step over, let that finish first. Once
3160 that happens, we'll restart all threads and consume pending
3161 stop events then. */
3162 if (step_over_info_valid_p ())
3163 continue;
3164
3165 /* Otherwise we can process the (new) pending event now. Set
3166 it so this pending event is considered by
3167 do_target_wait. */
3168 tp->resumed = 1;
3169 }
3170 }
3171
3172 static void
3173 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3174 {
3175 if (target_last_wait_ptid == tp->ptid)
3176 nullify_last_target_wait_ptid ();
3177 }
3178
3179 /* Delete the step resume, single-step and longjmp/exception resume
3180 breakpoints of TP. */
3181
3182 static void
3183 delete_thread_infrun_breakpoints (struct thread_info *tp)
3184 {
3185 delete_step_resume_breakpoint (tp);
3186 delete_exception_resume_breakpoint (tp);
3187 delete_single_step_breakpoints (tp);
3188 }
3189
3190 /* If the target still has execution, call FUNC for each thread that
3191 just stopped. In all-stop, that's all the non-exited threads; in
3192 non-stop, that's the current thread, only. */
3193
3194 typedef void (*for_each_just_stopped_thread_callback_func)
3195 (struct thread_info *tp);
3196
3197 static void
3198 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3199 {
3200 if (!target_has_execution || inferior_ptid == null_ptid)
3201 return;
3202
3203 if (target_is_non_stop_p ())
3204 {
3205 /* If in non-stop mode, only the current thread stopped. */
3206 func (inferior_thread ());
3207 }
3208 else
3209 {
3210 /* In all-stop mode, all threads have stopped. */
3211 for (thread_info *tp : all_non_exited_threads ())
3212 func (tp);
3213 }
3214 }
3215
3216 /* Delete the step resume and longjmp/exception resume breakpoints of
3217 the threads that just stopped. */
3218
3219 static void
3220 delete_just_stopped_threads_infrun_breakpoints (void)
3221 {
3222 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3223 }
3224
3225 /* Delete the single-step breakpoints of the threads that just
3226 stopped. */
3227
3228 static void
3229 delete_just_stopped_threads_single_step_breakpoints (void)
3230 {
3231 for_each_just_stopped_thread (delete_single_step_breakpoints);
3232 }
3233
3234 /* See infrun.h. */
3235
3236 void
3237 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3238 const struct target_waitstatus *ws)
3239 {
3240 std::string status_string = target_waitstatus_to_string (ws);
3241 string_file stb;
3242
3243 /* The text is split over several lines because it was getting too long.
3244 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3245 output as a unit; we want only one timestamp printed if debug_timestamp
3246 is set. */
3247
3248 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3249 waiton_ptid.pid (),
3250 waiton_ptid.lwp (),
3251 waiton_ptid.tid ());
3252 if (waiton_ptid.pid () != -1)
3253 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3254 stb.printf (", status) =\n");
3255 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3256 result_ptid.pid (),
3257 result_ptid.lwp (),
3258 result_ptid.tid (),
3259 target_pid_to_str (result_ptid).c_str ());
3260 stb.printf ("infrun: %s\n", status_string.c_str ());
3261
3262 /* This uses %s in part to handle %'s in the text, but also to avoid
3263 a gcc error: the format attribute requires a string literal. */
3264 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3265 }
3266
3267 /* Select a thread at random, out of those which are resumed and have
3268 had events. */
3269
3270 static struct thread_info *
3271 random_pending_event_thread (ptid_t waiton_ptid)
3272 {
3273 int num_events = 0;
3274
3275 auto has_event = [] (thread_info *tp)
3276 {
3277 return (tp->resumed
3278 && tp->suspend.waitstatus_pending_p);
3279 };
3280
3281 /* First see how many events we have. Count only resumed threads
3282 that have an event pending. */
3283 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3284 if (has_event (tp))
3285 num_events++;
3286
3287 if (num_events == 0)
3288 return NULL;
3289
3290 /* Now randomly pick a thread out of those that have had events. */
3291 int random_selector = (int) ((num_events * (double) rand ())
3292 / (RAND_MAX + 1.0));
3293
3294 if (debug_infrun && num_events > 1)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: Found %d events, selecting #%d\n",
3297 num_events, random_selector);
3298
3299 /* Select the Nth thread that has had an event. */
3300 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3301 if (has_event (tp))
3302 if (random_selector-- == 0)
3303 return tp;
3304
3305 gdb_assert_not_reached ("event thread not found");
3306 }
3307
3308 /* Wrapper for target_wait that first checks whether threads have
3309 pending statuses to report before actually asking the target for
3310 more events. */
3311
3312 static ptid_t
3313 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3314 {
3315 ptid_t event_ptid;
3316 struct thread_info *tp;
3317
3318 /* First check if there is a resumed thread with a wait status
3319 pending. */
3320 if (ptid == minus_one_ptid || ptid.is_pid ())
3321 {
3322 tp = random_pending_event_thread (ptid);
3323 }
3324 else
3325 {
3326 if (debug_infrun)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "infrun: Waiting for specific thread %s.\n",
3329 target_pid_to_str (ptid).c_str ());
3330
3331 /* We have a specific thread to check. */
3332 tp = find_thread_ptid (ptid);
3333 gdb_assert (tp != NULL);
3334 if (!tp->suspend.waitstatus_pending_p)
3335 tp = NULL;
3336 }
3337
3338 if (tp != NULL
3339 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3340 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3341 {
3342 struct regcache *regcache = get_thread_regcache (tp);
3343 struct gdbarch *gdbarch = regcache->arch ();
3344 CORE_ADDR pc;
3345 int discard = 0;
3346
3347 pc = regcache_read_pc (regcache);
3348
3349 if (pc != tp->suspend.stop_pc)
3350 {
3351 if (debug_infrun)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "infrun: PC of %s changed. was=%s, now=%s\n",
3354 target_pid_to_str (tp->ptid).c_str (),
3355 paddress (gdbarch, tp->suspend.stop_pc),
3356 paddress (gdbarch, pc));
3357 discard = 1;
3358 }
3359 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3360 {
3361 if (debug_infrun)
3362 fprintf_unfiltered (gdb_stdlog,
3363 "infrun: previous breakpoint of %s, at %s gone\n",
3364 target_pid_to_str (tp->ptid).c_str (),
3365 paddress (gdbarch, pc));
3366
3367 discard = 1;
3368 }
3369
3370 if (discard)
3371 {
3372 if (debug_infrun)
3373 fprintf_unfiltered (gdb_stdlog,
3374 "infrun: pending event of %s cancelled.\n",
3375 target_pid_to_str (tp->ptid).c_str ());
3376
3377 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3378 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3379 }
3380 }
3381
3382 if (tp != NULL)
3383 {
3384 if (debug_infrun)
3385 {
3386 std::string statstr
3387 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3388
3389 fprintf_unfiltered (gdb_stdlog,
3390 "infrun: Using pending wait status %s for %s.\n",
3391 statstr.c_str (),
3392 target_pid_to_str (tp->ptid).c_str ());
3393 }
3394
3395 /* Now that we've selected our final event LWP, un-adjust its PC
3396 if it was a software breakpoint (and the target doesn't
3397 always adjust the PC itself). */
3398 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3399 && !target_supports_stopped_by_sw_breakpoint ())
3400 {
3401 struct regcache *regcache;
3402 struct gdbarch *gdbarch;
3403 int decr_pc;
3404
3405 regcache = get_thread_regcache (tp);
3406 gdbarch = regcache->arch ();
3407
3408 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3409 if (decr_pc != 0)
3410 {
3411 CORE_ADDR pc;
3412
3413 pc = regcache_read_pc (regcache);
3414 regcache_write_pc (regcache, pc + decr_pc);
3415 }
3416 }
3417
3418 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3419 *status = tp->suspend.waitstatus;
3420 tp->suspend.waitstatus_pending_p = 0;
3421
3422 /* Wake up the event loop again, until all pending events are
3423 processed. */
3424 if (target_is_async_p ())
3425 mark_async_event_handler (infrun_async_inferior_event_token);
3426 return tp->ptid;
3427 }
3428
3429 /* But if we don't find one, we'll have to wait. */
3430
3431 if (deprecated_target_wait_hook)
3432 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3433 else
3434 event_ptid = target_wait (ptid, status, options);
3435
3436 return event_ptid;
3437 }
3438
3439 /* Prepare and stabilize the inferior for detaching it. E.g.,
3440 detaching while a thread is displaced stepping is a recipe for
3441 crashing it, as nothing would readjust the PC out of the scratch
3442 pad. */
3443
3444 void
3445 prepare_for_detach (void)
3446 {
3447 struct inferior *inf = current_inferior ();
3448 ptid_t pid_ptid = ptid_t (inf->pid);
3449
3450 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3451
3452 /* Is any thread of this process displaced stepping? If not,
3453 there's nothing else to do. */
3454 if (displaced->step_thread == nullptr)
3455 return;
3456
3457 if (debug_infrun)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "displaced-stepping in-process while detaching");
3460
3461 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3462
3463 while (displaced->step_thread != nullptr)
3464 {
3465 struct execution_control_state ecss;
3466 struct execution_control_state *ecs;
3467
3468 ecs = &ecss;
3469 memset (ecs, 0, sizeof (*ecs));
3470
3471 overlay_cache_invalid = 1;
3472 /* Flush target cache before starting to handle each event.
3473 Target was running and cache could be stale. This is just a
3474 heuristic. Running threads may modify target memory, but we
3475 don't get any event. */
3476 target_dcache_invalidate ();
3477
3478 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3479
3480 if (debug_infrun)
3481 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3482
3483 /* If an error happens while handling the event, propagate GDB's
3484 knowledge of the executing state to the frontend/user running
3485 state. */
3486 scoped_finish_thread_state finish_state (minus_one_ptid);
3487
3488 /* Now figure out what to do with the result of the result. */
3489 handle_inferior_event (ecs);
3490
3491 /* No error, don't finish the state yet. */
3492 finish_state.release ();
3493
3494 /* Breakpoints and watchpoints are not installed on the target
3495 at this point, and signals are passed directly to the
3496 inferior, so this must mean the process is gone. */
3497 if (!ecs->wait_some_more)
3498 {
3499 restore_detaching.release ();
3500 error (_("Program exited while detaching"));
3501 }
3502 }
3503
3504 restore_detaching.release ();
3505 }
3506
3507 /* Wait for control to return from inferior to debugger.
3508
3509 If inferior gets a signal, we may decide to start it up again
3510 instead of returning. That is why there is a loop in this function.
3511 When this function actually returns it means the inferior
3512 should be left stopped and GDB should read more commands. */
3513
3514 void
3515 wait_for_inferior (void)
3516 {
3517 if (debug_infrun)
3518 fprintf_unfiltered
3519 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3520
3521 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3522
3523 /* If an error happens while handling the event, propagate GDB's
3524 knowledge of the executing state to the frontend/user running
3525 state. */
3526 scoped_finish_thread_state finish_state (minus_one_ptid);
3527
3528 while (1)
3529 {
3530 struct execution_control_state ecss;
3531 struct execution_control_state *ecs = &ecss;
3532 ptid_t waiton_ptid = minus_one_ptid;
3533
3534 memset (ecs, 0, sizeof (*ecs));
3535
3536 overlay_cache_invalid = 1;
3537
3538 /* Flush target cache before starting to handle each event.
3539 Target was running and cache could be stale. This is just a
3540 heuristic. Running threads may modify target memory, but we
3541 don't get any event. */
3542 target_dcache_invalidate ();
3543
3544 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3545
3546 if (debug_infrun)
3547 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3548
3549 /* Now figure out what to do with the result of the result. */
3550 handle_inferior_event (ecs);
3551
3552 if (!ecs->wait_some_more)
3553 break;
3554 }
3555
3556 /* No error, don't finish the state yet. */
3557 finish_state.release ();
3558 }
3559
3560 /* Cleanup that reinstalls the readline callback handler, if the
3561 target is running in the background. If while handling the target
3562 event something triggered a secondary prompt, like e.g., a
3563 pagination prompt, we'll have removed the callback handler (see
3564 gdb_readline_wrapper_line). Need to do this as we go back to the
3565 event loop, ready to process further input. Note this has no
3566 effect if the handler hasn't actually been removed, because calling
3567 rl_callback_handler_install resets the line buffer, thus losing
3568 input. */
3569
3570 static void
3571 reinstall_readline_callback_handler_cleanup ()
3572 {
3573 struct ui *ui = current_ui;
3574
3575 if (!ui->async)
3576 {
3577 /* We're not going back to the top level event loop yet. Don't
3578 install the readline callback, as it'd prep the terminal,
3579 readline-style (raw, noecho) (e.g., --batch). We'll install
3580 it the next time the prompt is displayed, when we're ready
3581 for input. */
3582 return;
3583 }
3584
3585 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3586 gdb_rl_callback_handler_reinstall ();
3587 }
3588
3589 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3590 that's just the event thread. In all-stop, that's all threads. */
3591
3592 static void
3593 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3594 {
3595 if (ecs->event_thread != NULL
3596 && ecs->event_thread->thread_fsm != NULL)
3597 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3598
3599 if (!non_stop)
3600 {
3601 for (thread_info *thr : all_non_exited_threads ())
3602 {
3603 if (thr->thread_fsm == NULL)
3604 continue;
3605 if (thr == ecs->event_thread)
3606 continue;
3607
3608 switch_to_thread (thr);
3609 thr->thread_fsm->clean_up (thr);
3610 }
3611
3612 if (ecs->event_thread != NULL)
3613 switch_to_thread (ecs->event_thread);
3614 }
3615 }
3616
3617 /* Helper for all_uis_check_sync_execution_done that works on the
3618 current UI. */
3619
3620 static void
3621 check_curr_ui_sync_execution_done (void)
3622 {
3623 struct ui *ui = current_ui;
3624
3625 if (ui->prompt_state == PROMPT_NEEDED
3626 && ui->async
3627 && !gdb_in_secondary_prompt_p (ui))
3628 {
3629 target_terminal::ours ();
3630 gdb::observers::sync_execution_done.notify ();
3631 ui_register_input_event_handler (ui);
3632 }
3633 }
3634
3635 /* See infrun.h. */
3636
3637 void
3638 all_uis_check_sync_execution_done (void)
3639 {
3640 SWITCH_THRU_ALL_UIS ()
3641 {
3642 check_curr_ui_sync_execution_done ();
3643 }
3644 }
3645
3646 /* See infrun.h. */
3647
3648 void
3649 all_uis_on_sync_execution_starting (void)
3650 {
3651 SWITCH_THRU_ALL_UIS ()
3652 {
3653 if (current_ui->prompt_state == PROMPT_NEEDED)
3654 async_disable_stdin ();
3655 }
3656 }
3657
3658 /* Asynchronous version of wait_for_inferior. It is called by the
3659 event loop whenever a change of state is detected on the file
3660 descriptor corresponding to the target. It can be called more than
3661 once to complete a single execution command. In such cases we need
3662 to keep the state in a global variable ECSS. If it is the last time
3663 that this function is called for a single execution command, then
3664 report to the user that the inferior has stopped, and do the
3665 necessary cleanups. */
3666
3667 void
3668 fetch_inferior_event (void *client_data)
3669 {
3670 struct execution_control_state ecss;
3671 struct execution_control_state *ecs = &ecss;
3672 int cmd_done = 0;
3673 ptid_t waiton_ptid = minus_one_ptid;
3674
3675 memset (ecs, 0, sizeof (*ecs));
3676
3677 /* Events are always processed with the main UI as current UI. This
3678 way, warnings, debug output, etc. are always consistently sent to
3679 the main console. */
3680 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3681
3682 /* End up with readline processing input, if necessary. */
3683 {
3684 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3685
3686 /* We're handling a live event, so make sure we're doing live
3687 debugging. If we're looking at traceframes while the target is
3688 running, we're going to need to get back to that mode after
3689 handling the event. */
3690 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3691 if (non_stop)
3692 {
3693 maybe_restore_traceframe.emplace ();
3694 set_current_traceframe (-1);
3695 }
3696
3697 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3698
3699 if (non_stop)
3700 /* In non-stop mode, the user/frontend should not notice a thread
3701 switch due to internal events. Make sure we reverse to the
3702 user selected thread and frame after handling the event and
3703 running any breakpoint commands. */
3704 maybe_restore_thread.emplace ();
3705
3706 overlay_cache_invalid = 1;
3707 /* Flush target cache before starting to handle each event. Target
3708 was running and cache could be stale. This is just a heuristic.
3709 Running threads may modify target memory, but we don't get any
3710 event. */
3711 target_dcache_invalidate ();
3712
3713 scoped_restore save_exec_dir
3714 = make_scoped_restore (&execution_direction,
3715 target_execution_direction ());
3716
3717 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3718 target_can_async_p () ? TARGET_WNOHANG : 0);
3719
3720 if (debug_infrun)
3721 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3722
3723 /* If an error happens while handling the event, propagate GDB's
3724 knowledge of the executing state to the frontend/user running
3725 state. */
3726 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3727 scoped_finish_thread_state finish_state (finish_ptid);
3728
3729 /* Get executed before scoped_restore_current_thread above to apply
3730 still for the thread which has thrown the exception. */
3731 auto defer_bpstat_clear
3732 = make_scope_exit (bpstat_clear_actions);
3733 auto defer_delete_threads
3734 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3735
3736 /* Now figure out what to do with the result of the result. */
3737 handle_inferior_event (ecs);
3738
3739 if (!ecs->wait_some_more)
3740 {
3741 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3742 int should_stop = 1;
3743 struct thread_info *thr = ecs->event_thread;
3744
3745 delete_just_stopped_threads_infrun_breakpoints ();
3746
3747 if (thr != NULL)
3748 {
3749 struct thread_fsm *thread_fsm = thr->thread_fsm;
3750
3751 if (thread_fsm != NULL)
3752 should_stop = thread_fsm->should_stop (thr);
3753 }
3754
3755 if (!should_stop)
3756 {
3757 keep_going (ecs);
3758 }
3759 else
3760 {
3761 bool should_notify_stop = true;
3762 int proceeded = 0;
3763
3764 clean_up_just_stopped_threads_fsms (ecs);
3765
3766 if (thr != NULL && thr->thread_fsm != NULL)
3767 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3768
3769 if (should_notify_stop)
3770 {
3771 /* We may not find an inferior if this was a process exit. */
3772 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3773 proceeded = normal_stop ();
3774 }
3775
3776 if (!proceeded)
3777 {
3778 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3779 cmd_done = 1;
3780 }
3781 }
3782 }
3783
3784 defer_delete_threads.release ();
3785 defer_bpstat_clear.release ();
3786
3787 /* No error, don't finish the thread states yet. */
3788 finish_state.release ();
3789
3790 /* This scope is used to ensure that readline callbacks are
3791 reinstalled here. */
3792 }
3793
3794 /* If a UI was in sync execution mode, and now isn't, restore its
3795 prompt (a synchronous execution command has finished, and we're
3796 ready for input). */
3797 all_uis_check_sync_execution_done ();
3798
3799 if (cmd_done
3800 && exec_done_display_p
3801 && (inferior_ptid == null_ptid
3802 || inferior_thread ()->state != THREAD_RUNNING))
3803 printf_unfiltered (_("completed.\n"));
3804 }
3805
3806 /* Record the frame and location we're currently stepping through. */
3807 void
3808 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3809 {
3810 struct thread_info *tp = inferior_thread ();
3811
3812 tp->control.step_frame_id = get_frame_id (frame);
3813 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3814
3815 tp->current_symtab = sal.symtab;
3816 tp->current_line = sal.line;
3817 }
3818
3819 /* Clear context switchable stepping state. */
3820
3821 void
3822 init_thread_stepping_state (struct thread_info *tss)
3823 {
3824 tss->stepped_breakpoint = 0;
3825 tss->stepping_over_breakpoint = 0;
3826 tss->stepping_over_watchpoint = 0;
3827 tss->step_after_step_resume_breakpoint = 0;
3828 }
3829
3830 /* Set the cached copy of the last ptid/waitstatus. */
3831
3832 void
3833 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3834 {
3835 target_last_wait_ptid = ptid;
3836 target_last_waitstatus = status;
3837 }
3838
3839 /* Return the cached copy of the last pid/waitstatus returned by
3840 target_wait()/deprecated_target_wait_hook(). The data is actually
3841 cached by handle_inferior_event(), which gets called immediately
3842 after target_wait()/deprecated_target_wait_hook(). */
3843
3844 void
3845 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3846 {
3847 *ptidp = target_last_wait_ptid;
3848 *status = target_last_waitstatus;
3849 }
3850
3851 void
3852 nullify_last_target_wait_ptid (void)
3853 {
3854 target_last_wait_ptid = minus_one_ptid;
3855 }
3856
3857 /* Switch thread contexts. */
3858
3859 static void
3860 context_switch (execution_control_state *ecs)
3861 {
3862 if (debug_infrun
3863 && ecs->ptid != inferior_ptid
3864 && ecs->event_thread != inferior_thread ())
3865 {
3866 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3867 target_pid_to_str (inferior_ptid).c_str ());
3868 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3869 target_pid_to_str (ecs->ptid).c_str ());
3870 }
3871
3872 switch_to_thread (ecs->event_thread);
3873 }
3874
3875 /* If the target can't tell whether we've hit breakpoints
3876 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3877 check whether that could have been caused by a breakpoint. If so,
3878 adjust the PC, per gdbarch_decr_pc_after_break. */
3879
3880 static void
3881 adjust_pc_after_break (struct thread_info *thread,
3882 struct target_waitstatus *ws)
3883 {
3884 struct regcache *regcache;
3885 struct gdbarch *gdbarch;
3886 CORE_ADDR breakpoint_pc, decr_pc;
3887
3888 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3889 we aren't, just return.
3890
3891 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3892 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3893 implemented by software breakpoints should be handled through the normal
3894 breakpoint layer.
3895
3896 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3897 different signals (SIGILL or SIGEMT for instance), but it is less
3898 clear where the PC is pointing afterwards. It may not match
3899 gdbarch_decr_pc_after_break. I don't know any specific target that
3900 generates these signals at breakpoints (the code has been in GDB since at
3901 least 1992) so I can not guess how to handle them here.
3902
3903 In earlier versions of GDB, a target with
3904 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3905 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3906 target with both of these set in GDB history, and it seems unlikely to be
3907 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3908
3909 if (ws->kind != TARGET_WAITKIND_STOPPED)
3910 return;
3911
3912 if (ws->value.sig != GDB_SIGNAL_TRAP)
3913 return;
3914
3915 /* In reverse execution, when a breakpoint is hit, the instruction
3916 under it has already been de-executed. The reported PC always
3917 points at the breakpoint address, so adjusting it further would
3918 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3919 architecture:
3920
3921 B1 0x08000000 : INSN1
3922 B2 0x08000001 : INSN2
3923 0x08000002 : INSN3
3924 PC -> 0x08000003 : INSN4
3925
3926 Say you're stopped at 0x08000003 as above. Reverse continuing
3927 from that point should hit B2 as below. Reading the PC when the
3928 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3929 been de-executed already.
3930
3931 B1 0x08000000 : INSN1
3932 B2 PC -> 0x08000001 : INSN2
3933 0x08000002 : INSN3
3934 0x08000003 : INSN4
3935
3936 We can't apply the same logic as for forward execution, because
3937 we would wrongly adjust the PC to 0x08000000, since there's a
3938 breakpoint at PC - 1. We'd then report a hit on B1, although
3939 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3940 behaviour. */
3941 if (execution_direction == EXEC_REVERSE)
3942 return;
3943
3944 /* If the target can tell whether the thread hit a SW breakpoint,
3945 trust it. Targets that can tell also adjust the PC
3946 themselves. */
3947 if (target_supports_stopped_by_sw_breakpoint ())
3948 return;
3949
3950 /* Note that relying on whether a breakpoint is planted in memory to
3951 determine this can fail. E.g,. the breakpoint could have been
3952 removed since. Or the thread could have been told to step an
3953 instruction the size of a breakpoint instruction, and only
3954 _after_ was a breakpoint inserted at its address. */
3955
3956 /* If this target does not decrement the PC after breakpoints, then
3957 we have nothing to do. */
3958 regcache = get_thread_regcache (thread);
3959 gdbarch = regcache->arch ();
3960
3961 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3962 if (decr_pc == 0)
3963 return;
3964
3965 const address_space *aspace = regcache->aspace ();
3966
3967 /* Find the location where (if we've hit a breakpoint) the
3968 breakpoint would be. */
3969 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3970
3971 /* If the target can't tell whether a software breakpoint triggered,
3972 fallback to figuring it out based on breakpoints we think were
3973 inserted in the target, and on whether the thread was stepped or
3974 continued. */
3975
3976 /* Check whether there actually is a software breakpoint inserted at
3977 that location.
3978
3979 If in non-stop mode, a race condition is possible where we've
3980 removed a breakpoint, but stop events for that breakpoint were
3981 already queued and arrive later. To suppress those spurious
3982 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3983 and retire them after a number of stop events are reported. Note
3984 this is an heuristic and can thus get confused. The real fix is
3985 to get the "stopped by SW BP and needs adjustment" info out of
3986 the target/kernel (and thus never reach here; see above). */
3987 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3988 || (target_is_non_stop_p ()
3989 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3990 {
3991 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
3992
3993 if (record_full_is_used ())
3994 restore_operation_disable.emplace
3995 (record_full_gdb_operation_disable_set ());
3996
3997 /* When using hardware single-step, a SIGTRAP is reported for both
3998 a completed single-step and a software breakpoint. Need to
3999 differentiate between the two, as the latter needs adjusting
4000 but the former does not.
4001
4002 The SIGTRAP can be due to a completed hardware single-step only if
4003 - we didn't insert software single-step breakpoints
4004 - this thread is currently being stepped
4005
4006 If any of these events did not occur, we must have stopped due
4007 to hitting a software breakpoint, and have to back up to the
4008 breakpoint address.
4009
4010 As a special case, we could have hardware single-stepped a
4011 software breakpoint. In this case (prev_pc == breakpoint_pc),
4012 we also need to back up to the breakpoint address. */
4013
4014 if (thread_has_single_step_breakpoints_set (thread)
4015 || !currently_stepping (thread)
4016 || (thread->stepped_breakpoint
4017 && thread->prev_pc == breakpoint_pc))
4018 regcache_write_pc (regcache, breakpoint_pc);
4019 }
4020 }
4021
4022 static int
4023 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4024 {
4025 for (frame = get_prev_frame (frame);
4026 frame != NULL;
4027 frame = get_prev_frame (frame))
4028 {
4029 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4030 return 1;
4031 if (get_frame_type (frame) != INLINE_FRAME)
4032 break;
4033 }
4034
4035 return 0;
4036 }
4037
4038 /* If the event thread has the stop requested flag set, pretend it
4039 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4040 target_stop). */
4041
4042 static bool
4043 handle_stop_requested (struct execution_control_state *ecs)
4044 {
4045 if (ecs->event_thread->stop_requested)
4046 {
4047 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4048 ecs->ws.value.sig = GDB_SIGNAL_0;
4049 handle_signal_stop (ecs);
4050 return true;
4051 }
4052 return false;
4053 }
4054
4055 /* Auxiliary function that handles syscall entry/return events.
4056 It returns 1 if the inferior should keep going (and GDB
4057 should ignore the event), or 0 if the event deserves to be
4058 processed. */
4059
4060 static int
4061 handle_syscall_event (struct execution_control_state *ecs)
4062 {
4063 struct regcache *regcache;
4064 int syscall_number;
4065
4066 context_switch (ecs);
4067
4068 regcache = get_thread_regcache (ecs->event_thread);
4069 syscall_number = ecs->ws.value.syscall_number;
4070 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4071
4072 if (catch_syscall_enabled () > 0
4073 && catching_syscall_number (syscall_number) > 0)
4074 {
4075 if (debug_infrun)
4076 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4077 syscall_number);
4078
4079 ecs->event_thread->control.stop_bpstat
4080 = bpstat_stop_status (regcache->aspace (),
4081 ecs->event_thread->suspend.stop_pc,
4082 ecs->event_thread, &ecs->ws);
4083
4084 if (handle_stop_requested (ecs))
4085 return 0;
4086
4087 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4088 {
4089 /* Catchpoint hit. */
4090 return 0;
4091 }
4092 }
4093
4094 if (handle_stop_requested (ecs))
4095 return 0;
4096
4097 /* If no catchpoint triggered for this, then keep going. */
4098 keep_going (ecs);
4099 return 1;
4100 }
4101
4102 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4103
4104 static void
4105 fill_in_stop_func (struct gdbarch *gdbarch,
4106 struct execution_control_state *ecs)
4107 {
4108 if (!ecs->stop_func_filled_in)
4109 {
4110 const block *block;
4111
4112 /* Don't care about return value; stop_func_start and stop_func_name
4113 will both be 0 if it doesn't work. */
4114 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4115 &ecs->stop_func_name,
4116 &ecs->stop_func_start,
4117 &ecs->stop_func_end,
4118 &block);
4119
4120 /* The call to find_pc_partial_function, above, will set
4121 stop_func_start and stop_func_end to the start and end
4122 of the range containing the stop pc. If this range
4123 contains the entry pc for the block (which is always the
4124 case for contiguous blocks), advance stop_func_start past
4125 the function's start offset and entrypoint. Note that
4126 stop_func_start is NOT advanced when in a range of a
4127 non-contiguous block that does not contain the entry pc. */
4128 if (block != nullptr
4129 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4130 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4131 {
4132 ecs->stop_func_start
4133 += gdbarch_deprecated_function_start_offset (gdbarch);
4134
4135 if (gdbarch_skip_entrypoint_p (gdbarch))
4136 ecs->stop_func_start
4137 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4138 }
4139
4140 ecs->stop_func_filled_in = 1;
4141 }
4142 }
4143
4144
4145 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4146
4147 static enum stop_kind
4148 get_inferior_stop_soon (execution_control_state *ecs)
4149 {
4150 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4151
4152 gdb_assert (inf != NULL);
4153 return inf->control.stop_soon;
4154 }
4155
4156 /* Wait for one event. Store the resulting waitstatus in WS, and
4157 return the event ptid. */
4158
4159 static ptid_t
4160 wait_one (struct target_waitstatus *ws)
4161 {
4162 ptid_t event_ptid;
4163 ptid_t wait_ptid = minus_one_ptid;
4164
4165 overlay_cache_invalid = 1;
4166
4167 /* Flush target cache before starting to handle each event.
4168 Target was running and cache could be stale. This is just a
4169 heuristic. Running threads may modify target memory, but we
4170 don't get any event. */
4171 target_dcache_invalidate ();
4172
4173 if (deprecated_target_wait_hook)
4174 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4175 else
4176 event_ptid = target_wait (wait_ptid, ws, 0);
4177
4178 if (debug_infrun)
4179 print_target_wait_results (wait_ptid, event_ptid, ws);
4180
4181 return event_ptid;
4182 }
4183
4184 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4185 instead of the current thread. */
4186 #define THREAD_STOPPED_BY(REASON) \
4187 static int \
4188 thread_stopped_by_ ## REASON (ptid_t ptid) \
4189 { \
4190 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4191 inferior_ptid = ptid; \
4192 \
4193 return target_stopped_by_ ## REASON (); \
4194 }
4195
4196 /* Generate thread_stopped_by_watchpoint. */
4197 THREAD_STOPPED_BY (watchpoint)
4198 /* Generate thread_stopped_by_sw_breakpoint. */
4199 THREAD_STOPPED_BY (sw_breakpoint)
4200 /* Generate thread_stopped_by_hw_breakpoint. */
4201 THREAD_STOPPED_BY (hw_breakpoint)
4202
4203 /* Save the thread's event and stop reason to process it later. */
4204
4205 static void
4206 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4207 {
4208 if (debug_infrun)
4209 {
4210 std::string statstr = target_waitstatus_to_string (ws);
4211
4212 fprintf_unfiltered (gdb_stdlog,
4213 "infrun: saving status %s for %d.%ld.%ld\n",
4214 statstr.c_str (),
4215 tp->ptid.pid (),
4216 tp->ptid.lwp (),
4217 tp->ptid.tid ());
4218 }
4219
4220 /* Record for later. */
4221 tp->suspend.waitstatus = *ws;
4222 tp->suspend.waitstatus_pending_p = 1;
4223
4224 struct regcache *regcache = get_thread_regcache (tp);
4225 const address_space *aspace = regcache->aspace ();
4226
4227 if (ws->kind == TARGET_WAITKIND_STOPPED
4228 && ws->value.sig == GDB_SIGNAL_TRAP)
4229 {
4230 CORE_ADDR pc = regcache_read_pc (regcache);
4231
4232 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4233
4234 if (thread_stopped_by_watchpoint (tp->ptid))
4235 {
4236 tp->suspend.stop_reason
4237 = TARGET_STOPPED_BY_WATCHPOINT;
4238 }
4239 else if (target_supports_stopped_by_sw_breakpoint ()
4240 && thread_stopped_by_sw_breakpoint (tp->ptid))
4241 {
4242 tp->suspend.stop_reason
4243 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4244 }
4245 else if (target_supports_stopped_by_hw_breakpoint ()
4246 && thread_stopped_by_hw_breakpoint (tp->ptid))
4247 {
4248 tp->suspend.stop_reason
4249 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4250 }
4251 else if (!target_supports_stopped_by_hw_breakpoint ()
4252 && hardware_breakpoint_inserted_here_p (aspace,
4253 pc))
4254 {
4255 tp->suspend.stop_reason
4256 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4257 }
4258 else if (!target_supports_stopped_by_sw_breakpoint ()
4259 && software_breakpoint_inserted_here_p (aspace,
4260 pc))
4261 {
4262 tp->suspend.stop_reason
4263 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4264 }
4265 else if (!thread_has_single_step_breakpoints_set (tp)
4266 && currently_stepping (tp))
4267 {
4268 tp->suspend.stop_reason
4269 = TARGET_STOPPED_BY_SINGLE_STEP;
4270 }
4271 }
4272 }
4273
4274 /* See infrun.h. */
4275
4276 void
4277 stop_all_threads (void)
4278 {
4279 /* We may need multiple passes to discover all threads. */
4280 int pass;
4281 int iterations = 0;
4282
4283 gdb_assert (target_is_non_stop_p ());
4284
4285 if (debug_infrun)
4286 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4287
4288 scoped_restore_current_thread restore_thread;
4289
4290 target_thread_events (1);
4291 SCOPE_EXIT { target_thread_events (0); };
4292
4293 /* Request threads to stop, and then wait for the stops. Because
4294 threads we already know about can spawn more threads while we're
4295 trying to stop them, and we only learn about new threads when we
4296 update the thread list, do this in a loop, and keep iterating
4297 until two passes find no threads that need to be stopped. */
4298 for (pass = 0; pass < 2; pass++, iterations++)
4299 {
4300 if (debug_infrun)
4301 fprintf_unfiltered (gdb_stdlog,
4302 "infrun: stop_all_threads, pass=%d, "
4303 "iterations=%d\n", pass, iterations);
4304 while (1)
4305 {
4306 ptid_t event_ptid;
4307 struct target_waitstatus ws;
4308 int need_wait = 0;
4309
4310 update_thread_list ();
4311
4312 /* Go through all threads looking for threads that we need
4313 to tell the target to stop. */
4314 for (thread_info *t : all_non_exited_threads ())
4315 {
4316 if (t->executing)
4317 {
4318 /* If already stopping, don't request a stop again.
4319 We just haven't seen the notification yet. */
4320 if (!t->stop_requested)
4321 {
4322 if (debug_infrun)
4323 fprintf_unfiltered (gdb_stdlog,
4324 "infrun: %s executing, "
4325 "need stop\n",
4326 target_pid_to_str (t->ptid).c_str ());
4327 target_stop (t->ptid);
4328 t->stop_requested = 1;
4329 }
4330 else
4331 {
4332 if (debug_infrun)
4333 fprintf_unfiltered (gdb_stdlog,
4334 "infrun: %s executing, "
4335 "already stopping\n",
4336 target_pid_to_str (t->ptid).c_str ());
4337 }
4338
4339 if (t->stop_requested)
4340 need_wait = 1;
4341 }
4342 else
4343 {
4344 if (debug_infrun)
4345 fprintf_unfiltered (gdb_stdlog,
4346 "infrun: %s not executing\n",
4347 target_pid_to_str (t->ptid).c_str ());
4348
4349 /* The thread may be not executing, but still be
4350 resumed with a pending status to process. */
4351 t->resumed = 0;
4352 }
4353 }
4354
4355 if (!need_wait)
4356 break;
4357
4358 /* If we find new threads on the second iteration, restart
4359 over. We want to see two iterations in a row with all
4360 threads stopped. */
4361 if (pass > 0)
4362 pass = -1;
4363
4364 event_ptid = wait_one (&ws);
4365 if (debug_infrun)
4366 {
4367 fprintf_unfiltered (gdb_stdlog,
4368 "infrun: stop_all_threads %s %s\n",
4369 target_waitstatus_to_string (&ws).c_str (),
4370 target_pid_to_str (event_ptid).c_str ());
4371 }
4372
4373 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4374 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4375 || ws.kind == TARGET_WAITKIND_EXITED
4376 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4377 {
4378 /* All resumed threads exited
4379 or one thread/process exited/signalled. */
4380 }
4381 else
4382 {
4383 thread_info *t = find_thread_ptid (event_ptid);
4384 if (t == NULL)
4385 t = add_thread (event_ptid);
4386
4387 t->stop_requested = 0;
4388 t->executing = 0;
4389 t->resumed = 0;
4390 t->control.may_range_step = 0;
4391
4392 /* This may be the first time we see the inferior report
4393 a stop. */
4394 inferior *inf = find_inferior_ptid (event_ptid);
4395 if (inf->needs_setup)
4396 {
4397 switch_to_thread_no_regs (t);
4398 setup_inferior (0);
4399 }
4400
4401 if (ws.kind == TARGET_WAITKIND_STOPPED
4402 && ws.value.sig == GDB_SIGNAL_0)
4403 {
4404 /* We caught the event that we intended to catch, so
4405 there's no event pending. */
4406 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4407 t->suspend.waitstatus_pending_p = 0;
4408
4409 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4410 {
4411 /* Add it back to the step-over queue. */
4412 if (debug_infrun)
4413 {
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: displaced-step of %s "
4416 "canceled: adding back to the "
4417 "step-over queue\n",
4418 target_pid_to_str (t->ptid).c_str ());
4419 }
4420 t->control.trap_expected = 0;
4421 thread_step_over_chain_enqueue (t);
4422 }
4423 }
4424 else
4425 {
4426 enum gdb_signal sig;
4427 struct regcache *regcache;
4428
4429 if (debug_infrun)
4430 {
4431 std::string statstr = target_waitstatus_to_string (&ws);
4432
4433 fprintf_unfiltered (gdb_stdlog,
4434 "infrun: target_wait %s, saving "
4435 "status for %d.%ld.%ld\n",
4436 statstr.c_str (),
4437 t->ptid.pid (),
4438 t->ptid.lwp (),
4439 t->ptid.tid ());
4440 }
4441
4442 /* Record for later. */
4443 save_waitstatus (t, &ws);
4444
4445 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4446 ? ws.value.sig : GDB_SIGNAL_0);
4447
4448 if (displaced_step_fixup (t, sig) < 0)
4449 {
4450 /* Add it back to the step-over queue. */
4451 t->control.trap_expected = 0;
4452 thread_step_over_chain_enqueue (t);
4453 }
4454
4455 regcache = get_thread_regcache (t);
4456 t->suspend.stop_pc = regcache_read_pc (regcache);
4457
4458 if (debug_infrun)
4459 {
4460 fprintf_unfiltered (gdb_stdlog,
4461 "infrun: saved stop_pc=%s for %s "
4462 "(currently_stepping=%d)\n",
4463 paddress (target_gdbarch (),
4464 t->suspend.stop_pc),
4465 target_pid_to_str (t->ptid).c_str (),
4466 currently_stepping (t));
4467 }
4468 }
4469 }
4470 }
4471 }
4472
4473 if (debug_infrun)
4474 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4475 }
4476
4477 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4478
4479 static int
4480 handle_no_resumed (struct execution_control_state *ecs)
4481 {
4482 if (target_can_async_p ())
4483 {
4484 struct ui *ui;
4485 int any_sync = 0;
4486
4487 ALL_UIS (ui)
4488 {
4489 if (ui->prompt_state == PROMPT_BLOCKED)
4490 {
4491 any_sync = 1;
4492 break;
4493 }
4494 }
4495 if (!any_sync)
4496 {
4497 /* There were no unwaited-for children left in the target, but,
4498 we're not synchronously waiting for events either. Just
4499 ignore. */
4500
4501 if (debug_infrun)
4502 fprintf_unfiltered (gdb_stdlog,
4503 "infrun: TARGET_WAITKIND_NO_RESUMED "
4504 "(ignoring: bg)\n");
4505 prepare_to_wait (ecs);
4506 return 1;
4507 }
4508 }
4509
4510 /* Otherwise, if we were running a synchronous execution command, we
4511 may need to cancel it and give the user back the terminal.
4512
4513 In non-stop mode, the target can't tell whether we've already
4514 consumed previous stop events, so it can end up sending us a
4515 no-resumed event like so:
4516
4517 #0 - thread 1 is left stopped
4518
4519 #1 - thread 2 is resumed and hits breakpoint
4520 -> TARGET_WAITKIND_STOPPED
4521
4522 #2 - thread 3 is resumed and exits
4523 this is the last resumed thread, so
4524 -> TARGET_WAITKIND_NO_RESUMED
4525
4526 #3 - gdb processes stop for thread 2 and decides to re-resume
4527 it.
4528
4529 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4530 thread 2 is now resumed, so the event should be ignored.
4531
4532 IOW, if the stop for thread 2 doesn't end a foreground command,
4533 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4534 event. But it could be that the event meant that thread 2 itself
4535 (or whatever other thread was the last resumed thread) exited.
4536
4537 To address this we refresh the thread list and check whether we
4538 have resumed threads _now_. In the example above, this removes
4539 thread 3 from the thread list. If thread 2 was re-resumed, we
4540 ignore this event. If we find no thread resumed, then we cancel
4541 the synchronous command show "no unwaited-for " to the user. */
4542 update_thread_list ();
4543
4544 for (thread_info *thread : all_non_exited_threads ())
4545 {
4546 if (thread->executing
4547 || thread->suspend.waitstatus_pending_p)
4548 {
4549 /* There were no unwaited-for children left in the target at
4550 some point, but there are now. Just ignore. */
4551 if (debug_infrun)
4552 fprintf_unfiltered (gdb_stdlog,
4553 "infrun: TARGET_WAITKIND_NO_RESUMED "
4554 "(ignoring: found resumed)\n");
4555 prepare_to_wait (ecs);
4556 return 1;
4557 }
4558 }
4559
4560 /* Note however that we may find no resumed thread because the whole
4561 process exited meanwhile (thus updating the thread list results
4562 in an empty thread list). In this case we know we'll be getting
4563 a process exit event shortly. */
4564 for (inferior *inf : all_inferiors ())
4565 {
4566 if (inf->pid == 0)
4567 continue;
4568
4569 thread_info *thread = any_live_thread_of_inferior (inf);
4570 if (thread == NULL)
4571 {
4572 if (debug_infrun)
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: TARGET_WAITKIND_NO_RESUMED "
4575 "(expect process exit)\n");
4576 prepare_to_wait (ecs);
4577 return 1;
4578 }
4579 }
4580
4581 /* Go ahead and report the event. */
4582 return 0;
4583 }
4584
4585 /* Given an execution control state that has been freshly filled in by
4586 an event from the inferior, figure out what it means and take
4587 appropriate action.
4588
4589 The alternatives are:
4590
4591 1) stop_waiting and return; to really stop and return to the
4592 debugger.
4593
4594 2) keep_going and return; to wait for the next event (set
4595 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4596 once). */
4597
4598 static void
4599 handle_inferior_event (struct execution_control_state *ecs)
4600 {
4601 /* Make sure that all temporary struct value objects that were
4602 created during the handling of the event get deleted at the
4603 end. */
4604 scoped_value_mark free_values;
4605
4606 enum stop_kind stop_soon;
4607
4608 if (debug_infrun)
4609 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4610 target_waitstatus_to_string (&ecs->ws).c_str ());
4611
4612 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4613 {
4614 /* We had an event in the inferior, but we are not interested in
4615 handling it at this level. The lower layers have already
4616 done what needs to be done, if anything.
4617
4618 One of the possible circumstances for this is when the
4619 inferior produces output for the console. The inferior has
4620 not stopped, and we are ignoring the event. Another possible
4621 circumstance is any event which the lower level knows will be
4622 reported multiple times without an intervening resume. */
4623 prepare_to_wait (ecs);
4624 return;
4625 }
4626
4627 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4628 {
4629 prepare_to_wait (ecs);
4630 return;
4631 }
4632
4633 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4634 && handle_no_resumed (ecs))
4635 return;
4636
4637 /* Cache the last pid/waitstatus. */
4638 set_last_target_status (ecs->ptid, ecs->ws);
4639
4640 /* Always clear state belonging to the previous time we stopped. */
4641 stop_stack_dummy = STOP_NONE;
4642
4643 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4644 {
4645 /* No unwaited-for children left. IOW, all resumed children
4646 have exited. */
4647 stop_print_frame = 0;
4648 stop_waiting (ecs);
4649 return;
4650 }
4651
4652 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4653 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4654 {
4655 ecs->event_thread = find_thread_ptid (ecs->ptid);
4656 /* If it's a new thread, add it to the thread database. */
4657 if (ecs->event_thread == NULL)
4658 ecs->event_thread = add_thread (ecs->ptid);
4659
4660 /* Disable range stepping. If the next step request could use a
4661 range, this will be end up re-enabled then. */
4662 ecs->event_thread->control.may_range_step = 0;
4663 }
4664
4665 /* Dependent on valid ECS->EVENT_THREAD. */
4666 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4667
4668 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4669 reinit_frame_cache ();
4670
4671 breakpoint_retire_moribund ();
4672
4673 /* First, distinguish signals caused by the debugger from signals
4674 that have to do with the program's own actions. Note that
4675 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4676 on the operating system version. Here we detect when a SIGILL or
4677 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4678 something similar for SIGSEGV, since a SIGSEGV will be generated
4679 when we're trying to execute a breakpoint instruction on a
4680 non-executable stack. This happens for call dummy breakpoints
4681 for architectures like SPARC that place call dummies on the
4682 stack. */
4683 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4684 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4685 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4686 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4687 {
4688 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4689
4690 if (breakpoint_inserted_here_p (regcache->aspace (),
4691 regcache_read_pc (regcache)))
4692 {
4693 if (debug_infrun)
4694 fprintf_unfiltered (gdb_stdlog,
4695 "infrun: Treating signal as SIGTRAP\n");
4696 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4697 }
4698 }
4699
4700 /* Mark the non-executing threads accordingly. In all-stop, all
4701 threads of all processes are stopped when we get any event
4702 reported. In non-stop mode, only the event thread stops. */
4703 {
4704 ptid_t mark_ptid;
4705
4706 if (!target_is_non_stop_p ())
4707 mark_ptid = minus_one_ptid;
4708 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4709 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4710 {
4711 /* If we're handling a process exit in non-stop mode, even
4712 though threads haven't been deleted yet, one would think
4713 that there is nothing to do, as threads of the dead process
4714 will be soon deleted, and threads of any other process were
4715 left running. However, on some targets, threads survive a
4716 process exit event. E.g., for the "checkpoint" command,
4717 when the current checkpoint/fork exits, linux-fork.c
4718 automatically switches to another fork from within
4719 target_mourn_inferior, by associating the same
4720 inferior/thread to another fork. We haven't mourned yet at
4721 this point, but we must mark any threads left in the
4722 process as not-executing so that finish_thread_state marks
4723 them stopped (in the user's perspective) if/when we present
4724 the stop to the user. */
4725 mark_ptid = ptid_t (ecs->ptid.pid ());
4726 }
4727 else
4728 mark_ptid = ecs->ptid;
4729
4730 set_executing (mark_ptid, 0);
4731
4732 /* Likewise the resumed flag. */
4733 set_resumed (mark_ptid, 0);
4734 }
4735
4736 switch (ecs->ws.kind)
4737 {
4738 case TARGET_WAITKIND_LOADED:
4739 context_switch (ecs);
4740 /* Ignore gracefully during startup of the inferior, as it might
4741 be the shell which has just loaded some objects, otherwise
4742 add the symbols for the newly loaded objects. Also ignore at
4743 the beginning of an attach or remote session; we will query
4744 the full list of libraries once the connection is
4745 established. */
4746
4747 stop_soon = get_inferior_stop_soon (ecs);
4748 if (stop_soon == NO_STOP_QUIETLY)
4749 {
4750 struct regcache *regcache;
4751
4752 regcache = get_thread_regcache (ecs->event_thread);
4753
4754 handle_solib_event ();
4755
4756 ecs->event_thread->control.stop_bpstat
4757 = bpstat_stop_status (regcache->aspace (),
4758 ecs->event_thread->suspend.stop_pc,
4759 ecs->event_thread, &ecs->ws);
4760
4761 if (handle_stop_requested (ecs))
4762 return;
4763
4764 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4765 {
4766 /* A catchpoint triggered. */
4767 process_event_stop_test (ecs);
4768 return;
4769 }
4770
4771 /* If requested, stop when the dynamic linker notifies
4772 gdb of events. This allows the user to get control
4773 and place breakpoints in initializer routines for
4774 dynamically loaded objects (among other things). */
4775 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4776 if (stop_on_solib_events)
4777 {
4778 /* Make sure we print "Stopped due to solib-event" in
4779 normal_stop. */
4780 stop_print_frame = 1;
4781
4782 stop_waiting (ecs);
4783 return;
4784 }
4785 }
4786
4787 /* If we are skipping through a shell, or through shared library
4788 loading that we aren't interested in, resume the program. If
4789 we're running the program normally, also resume. */
4790 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4791 {
4792 /* Loading of shared libraries might have changed breakpoint
4793 addresses. Make sure new breakpoints are inserted. */
4794 if (stop_soon == NO_STOP_QUIETLY)
4795 insert_breakpoints ();
4796 resume (GDB_SIGNAL_0);
4797 prepare_to_wait (ecs);
4798 return;
4799 }
4800
4801 /* But stop if we're attaching or setting up a remote
4802 connection. */
4803 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4804 || stop_soon == STOP_QUIETLY_REMOTE)
4805 {
4806 if (debug_infrun)
4807 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4808 stop_waiting (ecs);
4809 return;
4810 }
4811
4812 internal_error (__FILE__, __LINE__,
4813 _("unhandled stop_soon: %d"), (int) stop_soon);
4814
4815 case TARGET_WAITKIND_SPURIOUS:
4816 if (handle_stop_requested (ecs))
4817 return;
4818 context_switch (ecs);
4819 resume (GDB_SIGNAL_0);
4820 prepare_to_wait (ecs);
4821 return;
4822
4823 case TARGET_WAITKIND_THREAD_CREATED:
4824 if (handle_stop_requested (ecs))
4825 return;
4826 context_switch (ecs);
4827 if (!switch_back_to_stepped_thread (ecs))
4828 keep_going (ecs);
4829 return;
4830
4831 case TARGET_WAITKIND_EXITED:
4832 case TARGET_WAITKIND_SIGNALLED:
4833 inferior_ptid = ecs->ptid;
4834 set_current_inferior (find_inferior_ptid (ecs->ptid));
4835 set_current_program_space (current_inferior ()->pspace);
4836 handle_vfork_child_exec_or_exit (0);
4837 target_terminal::ours (); /* Must do this before mourn anyway. */
4838
4839 /* Clearing any previous state of convenience variables. */
4840 clear_exit_convenience_vars ();
4841
4842 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4843 {
4844 /* Record the exit code in the convenience variable $_exitcode, so
4845 that the user can inspect this again later. */
4846 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4847 (LONGEST) ecs->ws.value.integer);
4848
4849 /* Also record this in the inferior itself. */
4850 current_inferior ()->has_exit_code = 1;
4851 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4852
4853 /* Support the --return-child-result option. */
4854 return_child_result_value = ecs->ws.value.integer;
4855
4856 gdb::observers::exited.notify (ecs->ws.value.integer);
4857 }
4858 else
4859 {
4860 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4861
4862 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4863 {
4864 /* Set the value of the internal variable $_exitsignal,
4865 which holds the signal uncaught by the inferior. */
4866 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4867 gdbarch_gdb_signal_to_target (gdbarch,
4868 ecs->ws.value.sig));
4869 }
4870 else
4871 {
4872 /* We don't have access to the target's method used for
4873 converting between signal numbers (GDB's internal
4874 representation <-> target's representation).
4875 Therefore, we cannot do a good job at displaying this
4876 information to the user. It's better to just warn
4877 her about it (if infrun debugging is enabled), and
4878 give up. */
4879 if (debug_infrun)
4880 fprintf_filtered (gdb_stdlog, _("\
4881 Cannot fill $_exitsignal with the correct signal number.\n"));
4882 }
4883
4884 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4885 }
4886
4887 gdb_flush (gdb_stdout);
4888 target_mourn_inferior (inferior_ptid);
4889 stop_print_frame = 0;
4890 stop_waiting (ecs);
4891 return;
4892
4893 /* The following are the only cases in which we keep going;
4894 the above cases end in a continue or goto. */
4895 case TARGET_WAITKIND_FORKED:
4896 case TARGET_WAITKIND_VFORKED:
4897 /* Check whether the inferior is displaced stepping. */
4898 {
4899 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4900 struct gdbarch *gdbarch = regcache->arch ();
4901
4902 /* If checking displaced stepping is supported, and thread
4903 ecs->ptid is displaced stepping. */
4904 if (displaced_step_in_progress_thread (ecs->event_thread))
4905 {
4906 struct inferior *parent_inf
4907 = find_inferior_ptid (ecs->ptid);
4908 struct regcache *child_regcache;
4909 CORE_ADDR parent_pc;
4910
4911 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4912 indicating that the displaced stepping of syscall instruction
4913 has been done. Perform cleanup for parent process here. Note
4914 that this operation also cleans up the child process for vfork,
4915 because their pages are shared. */
4916 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4917 /* Start a new step-over in another thread if there's one
4918 that needs it. */
4919 start_step_over ();
4920
4921 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4922 {
4923 struct displaced_step_inferior_state *displaced
4924 = get_displaced_stepping_state (parent_inf);
4925
4926 /* Restore scratch pad for child process. */
4927 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4928 }
4929
4930 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4931 the child's PC is also within the scratchpad. Set the child's PC
4932 to the parent's PC value, which has already been fixed up.
4933 FIXME: we use the parent's aspace here, although we're touching
4934 the child, because the child hasn't been added to the inferior
4935 list yet at this point. */
4936
4937 child_regcache
4938 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4939 gdbarch,
4940 parent_inf->aspace);
4941 /* Read PC value of parent process. */
4942 parent_pc = regcache_read_pc (regcache);
4943
4944 if (debug_displaced)
4945 fprintf_unfiltered (gdb_stdlog,
4946 "displaced: write child pc from %s to %s\n",
4947 paddress (gdbarch,
4948 regcache_read_pc (child_regcache)),
4949 paddress (gdbarch, parent_pc));
4950
4951 regcache_write_pc (child_regcache, parent_pc);
4952 }
4953 }
4954
4955 context_switch (ecs);
4956
4957 /* Immediately detach breakpoints from the child before there's
4958 any chance of letting the user delete breakpoints from the
4959 breakpoint lists. If we don't do this early, it's easy to
4960 leave left over traps in the child, vis: "break foo; catch
4961 fork; c; <fork>; del; c; <child calls foo>". We only follow
4962 the fork on the last `continue', and by that time the
4963 breakpoint at "foo" is long gone from the breakpoint table.
4964 If we vforked, then we don't need to unpatch here, since both
4965 parent and child are sharing the same memory pages; we'll
4966 need to unpatch at follow/detach time instead to be certain
4967 that new breakpoints added between catchpoint hit time and
4968 vfork follow are detached. */
4969 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4970 {
4971 /* This won't actually modify the breakpoint list, but will
4972 physically remove the breakpoints from the child. */
4973 detach_breakpoints (ecs->ws.value.related_pid);
4974 }
4975
4976 delete_just_stopped_threads_single_step_breakpoints ();
4977
4978 /* In case the event is caught by a catchpoint, remember that
4979 the event is to be followed at the next resume of the thread,
4980 and not immediately. */
4981 ecs->event_thread->pending_follow = ecs->ws;
4982
4983 ecs->event_thread->suspend.stop_pc
4984 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
4985
4986 ecs->event_thread->control.stop_bpstat
4987 = bpstat_stop_status (get_current_regcache ()->aspace (),
4988 ecs->event_thread->suspend.stop_pc,
4989 ecs->event_thread, &ecs->ws);
4990
4991 if (handle_stop_requested (ecs))
4992 return;
4993
4994 /* If no catchpoint triggered for this, then keep going. Note
4995 that we're interested in knowing the bpstat actually causes a
4996 stop, not just if it may explain the signal. Software
4997 watchpoints, for example, always appear in the bpstat. */
4998 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4999 {
5000 int should_resume;
5001 int follow_child
5002 = (follow_fork_mode_string == follow_fork_mode_child);
5003
5004 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5005
5006 should_resume = follow_fork ();
5007
5008 thread_info *parent = ecs->event_thread;
5009 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5010
5011 /* At this point, the parent is marked running, and the
5012 child is marked stopped. */
5013
5014 /* If not resuming the parent, mark it stopped. */
5015 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5016 parent->set_running (false);
5017
5018 /* If resuming the child, mark it running. */
5019 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5020 child->set_running (true);
5021
5022 /* In non-stop mode, also resume the other branch. */
5023 if (!detach_fork && (non_stop
5024 || (sched_multi && target_is_non_stop_p ())))
5025 {
5026 if (follow_child)
5027 switch_to_thread (parent);
5028 else
5029 switch_to_thread (child);
5030
5031 ecs->event_thread = inferior_thread ();
5032 ecs->ptid = inferior_ptid;
5033 keep_going (ecs);
5034 }
5035
5036 if (follow_child)
5037 switch_to_thread (child);
5038 else
5039 switch_to_thread (parent);
5040
5041 ecs->event_thread = inferior_thread ();
5042 ecs->ptid = inferior_ptid;
5043
5044 if (should_resume)
5045 keep_going (ecs);
5046 else
5047 stop_waiting (ecs);
5048 return;
5049 }
5050 process_event_stop_test (ecs);
5051 return;
5052
5053 case TARGET_WAITKIND_VFORK_DONE:
5054 /* Done with the shared memory region. Re-insert breakpoints in
5055 the parent, and keep going. */
5056
5057 context_switch (ecs);
5058
5059 current_inferior ()->waiting_for_vfork_done = 0;
5060 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5061
5062 if (handle_stop_requested (ecs))
5063 return;
5064
5065 /* This also takes care of reinserting breakpoints in the
5066 previously locked inferior. */
5067 keep_going (ecs);
5068 return;
5069
5070 case TARGET_WAITKIND_EXECD:
5071
5072 /* Note we can't read registers yet (the stop_pc), because we
5073 don't yet know the inferior's post-exec architecture.
5074 'stop_pc' is explicitly read below instead. */
5075 switch_to_thread_no_regs (ecs->event_thread);
5076
5077 /* Do whatever is necessary to the parent branch of the vfork. */
5078 handle_vfork_child_exec_or_exit (1);
5079
5080 /* This causes the eventpoints and symbol table to be reset.
5081 Must do this now, before trying to determine whether to
5082 stop. */
5083 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5084
5085 /* In follow_exec we may have deleted the original thread and
5086 created a new one. Make sure that the event thread is the
5087 execd thread for that case (this is a nop otherwise). */
5088 ecs->event_thread = inferior_thread ();
5089
5090 ecs->event_thread->suspend.stop_pc
5091 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5092
5093 ecs->event_thread->control.stop_bpstat
5094 = bpstat_stop_status (get_current_regcache ()->aspace (),
5095 ecs->event_thread->suspend.stop_pc,
5096 ecs->event_thread, &ecs->ws);
5097
5098 /* Note that this may be referenced from inside
5099 bpstat_stop_status above, through inferior_has_execd. */
5100 xfree (ecs->ws.value.execd_pathname);
5101 ecs->ws.value.execd_pathname = NULL;
5102
5103 if (handle_stop_requested (ecs))
5104 return;
5105
5106 /* If no catchpoint triggered for this, then keep going. */
5107 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5108 {
5109 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5110 keep_going (ecs);
5111 return;
5112 }
5113 process_event_stop_test (ecs);
5114 return;
5115
5116 /* Be careful not to try to gather much state about a thread
5117 that's in a syscall. It's frequently a losing proposition. */
5118 case TARGET_WAITKIND_SYSCALL_ENTRY:
5119 /* Getting the current syscall number. */
5120 if (handle_syscall_event (ecs) == 0)
5121 process_event_stop_test (ecs);
5122 return;
5123
5124 /* Before examining the threads further, step this thread to
5125 get it entirely out of the syscall. (We get notice of the
5126 event when the thread is just on the verge of exiting a
5127 syscall. Stepping one instruction seems to get it back
5128 into user code.) */
5129 case TARGET_WAITKIND_SYSCALL_RETURN:
5130 if (handle_syscall_event (ecs) == 0)
5131 process_event_stop_test (ecs);
5132 return;
5133
5134 case TARGET_WAITKIND_STOPPED:
5135 handle_signal_stop (ecs);
5136 return;
5137
5138 case TARGET_WAITKIND_NO_HISTORY:
5139 /* Reverse execution: target ran out of history info. */
5140
5141 /* Switch to the stopped thread. */
5142 context_switch (ecs);
5143 if (debug_infrun)
5144 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5145
5146 delete_just_stopped_threads_single_step_breakpoints ();
5147 ecs->event_thread->suspend.stop_pc
5148 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5149
5150 if (handle_stop_requested (ecs))
5151 return;
5152
5153 gdb::observers::no_history.notify ();
5154 stop_waiting (ecs);
5155 return;
5156 }
5157 }
5158
5159 /* Restart threads back to what they were trying to do back when we
5160 paused them for an in-line step-over. The EVENT_THREAD thread is
5161 ignored. */
5162
5163 static void
5164 restart_threads (struct thread_info *event_thread)
5165 {
5166 /* In case the instruction just stepped spawned a new thread. */
5167 update_thread_list ();
5168
5169 for (thread_info *tp : all_non_exited_threads ())
5170 {
5171 if (tp == event_thread)
5172 {
5173 if (debug_infrun)
5174 fprintf_unfiltered (gdb_stdlog,
5175 "infrun: restart threads: "
5176 "[%s] is event thread\n",
5177 target_pid_to_str (tp->ptid).c_str ());
5178 continue;
5179 }
5180
5181 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5182 {
5183 if (debug_infrun)
5184 fprintf_unfiltered (gdb_stdlog,
5185 "infrun: restart threads: "
5186 "[%s] not meant to be running\n",
5187 target_pid_to_str (tp->ptid).c_str ());
5188 continue;
5189 }
5190
5191 if (tp->resumed)
5192 {
5193 if (debug_infrun)
5194 fprintf_unfiltered (gdb_stdlog,
5195 "infrun: restart threads: [%s] resumed\n",
5196 target_pid_to_str (tp->ptid).c_str ());
5197 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5198 continue;
5199 }
5200
5201 if (thread_is_in_step_over_chain (tp))
5202 {
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog,
5205 "infrun: restart threads: "
5206 "[%s] needs step-over\n",
5207 target_pid_to_str (tp->ptid).c_str ());
5208 gdb_assert (!tp->resumed);
5209 continue;
5210 }
5211
5212
5213 if (tp->suspend.waitstatus_pending_p)
5214 {
5215 if (debug_infrun)
5216 fprintf_unfiltered (gdb_stdlog,
5217 "infrun: restart threads: "
5218 "[%s] has pending status\n",
5219 target_pid_to_str (tp->ptid).c_str ());
5220 tp->resumed = 1;
5221 continue;
5222 }
5223
5224 gdb_assert (!tp->stop_requested);
5225
5226 /* If some thread needs to start a step-over at this point, it
5227 should still be in the step-over queue, and thus skipped
5228 above. */
5229 if (thread_still_needs_step_over (tp))
5230 {
5231 internal_error (__FILE__, __LINE__,
5232 "thread [%s] needs a step-over, but not in "
5233 "step-over queue\n",
5234 target_pid_to_str (tp->ptid).c_str ());
5235 }
5236
5237 if (currently_stepping (tp))
5238 {
5239 if (debug_infrun)
5240 fprintf_unfiltered (gdb_stdlog,
5241 "infrun: restart threads: [%s] was stepping\n",
5242 target_pid_to_str (tp->ptid).c_str ());
5243 keep_going_stepped_thread (tp);
5244 }
5245 else
5246 {
5247 struct execution_control_state ecss;
5248 struct execution_control_state *ecs = &ecss;
5249
5250 if (debug_infrun)
5251 fprintf_unfiltered (gdb_stdlog,
5252 "infrun: restart threads: [%s] continuing\n",
5253 target_pid_to_str (tp->ptid).c_str ());
5254 reset_ecs (ecs, tp);
5255 switch_to_thread (tp);
5256 keep_going_pass_signal (ecs);
5257 }
5258 }
5259 }
5260
5261 /* Callback for iterate_over_threads. Find a resumed thread that has
5262 a pending waitstatus. */
5263
5264 static int
5265 resumed_thread_with_pending_status (struct thread_info *tp,
5266 void *arg)
5267 {
5268 return (tp->resumed
5269 && tp->suspend.waitstatus_pending_p);
5270 }
5271
5272 /* Called when we get an event that may finish an in-line or
5273 out-of-line (displaced stepping) step-over started previously.
5274 Return true if the event is processed and we should go back to the
5275 event loop; false if the caller should continue processing the
5276 event. */
5277
5278 static int
5279 finish_step_over (struct execution_control_state *ecs)
5280 {
5281 int had_step_over_info;
5282
5283 displaced_step_fixup (ecs->event_thread,
5284 ecs->event_thread->suspend.stop_signal);
5285
5286 had_step_over_info = step_over_info_valid_p ();
5287
5288 if (had_step_over_info)
5289 {
5290 /* If we're stepping over a breakpoint with all threads locked,
5291 then only the thread that was stepped should be reporting
5292 back an event. */
5293 gdb_assert (ecs->event_thread->control.trap_expected);
5294
5295 clear_step_over_info ();
5296 }
5297
5298 if (!target_is_non_stop_p ())
5299 return 0;
5300
5301 /* Start a new step-over in another thread if there's one that
5302 needs it. */
5303 start_step_over ();
5304
5305 /* If we were stepping over a breakpoint before, and haven't started
5306 a new in-line step-over sequence, then restart all other threads
5307 (except the event thread). We can't do this in all-stop, as then
5308 e.g., we wouldn't be able to issue any other remote packet until
5309 these other threads stop. */
5310 if (had_step_over_info && !step_over_info_valid_p ())
5311 {
5312 struct thread_info *pending;
5313
5314 /* If we only have threads with pending statuses, the restart
5315 below won't restart any thread and so nothing re-inserts the
5316 breakpoint we just stepped over. But we need it inserted
5317 when we later process the pending events, otherwise if
5318 another thread has a pending event for this breakpoint too,
5319 we'd discard its event (because the breakpoint that
5320 originally caused the event was no longer inserted). */
5321 context_switch (ecs);
5322 insert_breakpoints ();
5323
5324 {
5325 scoped_restore save_defer_tc
5326 = make_scoped_defer_target_commit_resume ();
5327 restart_threads (ecs->event_thread);
5328 }
5329 target_commit_resume ();
5330
5331 /* If we have events pending, go through handle_inferior_event
5332 again, picking up a pending event at random. This avoids
5333 thread starvation. */
5334
5335 /* But not if we just stepped over a watchpoint in order to let
5336 the instruction execute so we can evaluate its expression.
5337 The set of watchpoints that triggered is recorded in the
5338 breakpoint objects themselves (see bp->watchpoint_triggered).
5339 If we processed another event first, that other event could
5340 clobber this info. */
5341 if (ecs->event_thread->stepping_over_watchpoint)
5342 return 0;
5343
5344 pending = iterate_over_threads (resumed_thread_with_pending_status,
5345 NULL);
5346 if (pending != NULL)
5347 {
5348 struct thread_info *tp = ecs->event_thread;
5349 struct regcache *regcache;
5350
5351 if (debug_infrun)
5352 {
5353 fprintf_unfiltered (gdb_stdlog,
5354 "infrun: found resumed threads with "
5355 "pending events, saving status\n");
5356 }
5357
5358 gdb_assert (pending != tp);
5359
5360 /* Record the event thread's event for later. */
5361 save_waitstatus (tp, &ecs->ws);
5362 /* This was cleared early, by handle_inferior_event. Set it
5363 so this pending event is considered by
5364 do_target_wait. */
5365 tp->resumed = 1;
5366
5367 gdb_assert (!tp->executing);
5368
5369 regcache = get_thread_regcache (tp);
5370 tp->suspend.stop_pc = regcache_read_pc (regcache);
5371
5372 if (debug_infrun)
5373 {
5374 fprintf_unfiltered (gdb_stdlog,
5375 "infrun: saved stop_pc=%s for %s "
5376 "(currently_stepping=%d)\n",
5377 paddress (target_gdbarch (),
5378 tp->suspend.stop_pc),
5379 target_pid_to_str (tp->ptid).c_str (),
5380 currently_stepping (tp));
5381 }
5382
5383 /* This in-line step-over finished; clear this so we won't
5384 start a new one. This is what handle_signal_stop would
5385 do, if we returned false. */
5386 tp->stepping_over_breakpoint = 0;
5387
5388 /* Wake up the event loop again. */
5389 mark_async_event_handler (infrun_async_inferior_event_token);
5390
5391 prepare_to_wait (ecs);
5392 return 1;
5393 }
5394 }
5395
5396 return 0;
5397 }
5398
5399 /* Come here when the program has stopped with a signal. */
5400
5401 static void
5402 handle_signal_stop (struct execution_control_state *ecs)
5403 {
5404 struct frame_info *frame;
5405 struct gdbarch *gdbarch;
5406 int stopped_by_watchpoint;
5407 enum stop_kind stop_soon;
5408 int random_signal;
5409
5410 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5411
5412 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5413
5414 /* Do we need to clean up the state of a thread that has
5415 completed a displaced single-step? (Doing so usually affects
5416 the PC, so do it here, before we set stop_pc.) */
5417 if (finish_step_over (ecs))
5418 return;
5419
5420 /* If we either finished a single-step or hit a breakpoint, but
5421 the user wanted this thread to be stopped, pretend we got a
5422 SIG0 (generic unsignaled stop). */
5423 if (ecs->event_thread->stop_requested
5424 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5425 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5426
5427 ecs->event_thread->suspend.stop_pc
5428 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5429
5430 if (debug_infrun)
5431 {
5432 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5433 struct gdbarch *reg_gdbarch = regcache->arch ();
5434 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5435
5436 inferior_ptid = ecs->ptid;
5437
5438 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5439 paddress (reg_gdbarch,
5440 ecs->event_thread->suspend.stop_pc));
5441 if (target_stopped_by_watchpoint ())
5442 {
5443 CORE_ADDR addr;
5444
5445 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5446
5447 if (target_stopped_data_address (current_top_target (), &addr))
5448 fprintf_unfiltered (gdb_stdlog,
5449 "infrun: stopped data address = %s\n",
5450 paddress (reg_gdbarch, addr));
5451 else
5452 fprintf_unfiltered (gdb_stdlog,
5453 "infrun: (no data address available)\n");
5454 }
5455 }
5456
5457 /* This is originated from start_remote(), start_inferior() and
5458 shared libraries hook functions. */
5459 stop_soon = get_inferior_stop_soon (ecs);
5460 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5461 {
5462 context_switch (ecs);
5463 if (debug_infrun)
5464 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5465 stop_print_frame = 1;
5466 stop_waiting (ecs);
5467 return;
5468 }
5469
5470 /* This originates from attach_command(). We need to overwrite
5471 the stop_signal here, because some kernels don't ignore a
5472 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5473 See more comments in inferior.h. On the other hand, if we
5474 get a non-SIGSTOP, report it to the user - assume the backend
5475 will handle the SIGSTOP if it should show up later.
5476
5477 Also consider that the attach is complete when we see a
5478 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5479 target extended-remote report it instead of a SIGSTOP
5480 (e.g. gdbserver). We already rely on SIGTRAP being our
5481 signal, so this is no exception.
5482
5483 Also consider that the attach is complete when we see a
5484 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5485 the target to stop all threads of the inferior, in case the
5486 low level attach operation doesn't stop them implicitly. If
5487 they weren't stopped implicitly, then the stub will report a
5488 GDB_SIGNAL_0, meaning: stopped for no particular reason
5489 other than GDB's request. */
5490 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5491 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5492 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5493 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5494 {
5495 stop_print_frame = 1;
5496 stop_waiting (ecs);
5497 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5498 return;
5499 }
5500
5501 /* See if something interesting happened to the non-current thread. If
5502 so, then switch to that thread. */
5503 if (ecs->ptid != inferior_ptid)
5504 {
5505 if (debug_infrun)
5506 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5507
5508 context_switch (ecs);
5509
5510 if (deprecated_context_hook)
5511 deprecated_context_hook (ecs->event_thread->global_num);
5512 }
5513
5514 /* At this point, get hold of the now-current thread's frame. */
5515 frame = get_current_frame ();
5516 gdbarch = get_frame_arch (frame);
5517
5518 /* Pull the single step breakpoints out of the target. */
5519 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5520 {
5521 struct regcache *regcache;
5522 CORE_ADDR pc;
5523
5524 regcache = get_thread_regcache (ecs->event_thread);
5525 const address_space *aspace = regcache->aspace ();
5526
5527 pc = regcache_read_pc (regcache);
5528
5529 /* However, before doing so, if this single-step breakpoint was
5530 actually for another thread, set this thread up for moving
5531 past it. */
5532 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5533 aspace, pc))
5534 {
5535 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5536 {
5537 if (debug_infrun)
5538 {
5539 fprintf_unfiltered (gdb_stdlog,
5540 "infrun: [%s] hit another thread's "
5541 "single-step breakpoint\n",
5542 target_pid_to_str (ecs->ptid).c_str ());
5543 }
5544 ecs->hit_singlestep_breakpoint = 1;
5545 }
5546 }
5547 else
5548 {
5549 if (debug_infrun)
5550 {
5551 fprintf_unfiltered (gdb_stdlog,
5552 "infrun: [%s] hit its "
5553 "single-step breakpoint\n",
5554 target_pid_to_str (ecs->ptid).c_str ());
5555 }
5556 }
5557 }
5558 delete_just_stopped_threads_single_step_breakpoints ();
5559
5560 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5561 && ecs->event_thread->control.trap_expected
5562 && ecs->event_thread->stepping_over_watchpoint)
5563 stopped_by_watchpoint = 0;
5564 else
5565 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5566
5567 /* If necessary, step over this watchpoint. We'll be back to display
5568 it in a moment. */
5569 if (stopped_by_watchpoint
5570 && (target_have_steppable_watchpoint
5571 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5572 {
5573 /* At this point, we are stopped at an instruction which has
5574 attempted to write to a piece of memory under control of
5575 a watchpoint. The instruction hasn't actually executed
5576 yet. If we were to evaluate the watchpoint expression
5577 now, we would get the old value, and therefore no change
5578 would seem to have occurred.
5579
5580 In order to make watchpoints work `right', we really need
5581 to complete the memory write, and then evaluate the
5582 watchpoint expression. We do this by single-stepping the
5583 target.
5584
5585 It may not be necessary to disable the watchpoint to step over
5586 it. For example, the PA can (with some kernel cooperation)
5587 single step over a watchpoint without disabling the watchpoint.
5588
5589 It is far more common to need to disable a watchpoint to step
5590 the inferior over it. If we have non-steppable watchpoints,
5591 we must disable the current watchpoint; it's simplest to
5592 disable all watchpoints.
5593
5594 Any breakpoint at PC must also be stepped over -- if there's
5595 one, it will have already triggered before the watchpoint
5596 triggered, and we either already reported it to the user, or
5597 it didn't cause a stop and we called keep_going. In either
5598 case, if there was a breakpoint at PC, we must be trying to
5599 step past it. */
5600 ecs->event_thread->stepping_over_watchpoint = 1;
5601 keep_going (ecs);
5602 return;
5603 }
5604
5605 ecs->event_thread->stepping_over_breakpoint = 0;
5606 ecs->event_thread->stepping_over_watchpoint = 0;
5607 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5608 ecs->event_thread->control.stop_step = 0;
5609 stop_print_frame = 1;
5610 stopped_by_random_signal = 0;
5611 bpstat stop_chain = NULL;
5612
5613 /* Hide inlined functions starting here, unless we just performed stepi or
5614 nexti. After stepi and nexti, always show the innermost frame (not any
5615 inline function call sites). */
5616 if (ecs->event_thread->control.step_range_end != 1)
5617 {
5618 const address_space *aspace
5619 = get_thread_regcache (ecs->event_thread)->aspace ();
5620
5621 /* skip_inline_frames is expensive, so we avoid it if we can
5622 determine that the address is one where functions cannot have
5623 been inlined. This improves performance with inferiors that
5624 load a lot of shared libraries, because the solib event
5625 breakpoint is defined as the address of a function (i.e. not
5626 inline). Note that we have to check the previous PC as well
5627 as the current one to catch cases when we have just
5628 single-stepped off a breakpoint prior to reinstating it.
5629 Note that we're assuming that the code we single-step to is
5630 not inline, but that's not definitive: there's nothing
5631 preventing the event breakpoint function from containing
5632 inlined code, and the single-step ending up there. If the
5633 user had set a breakpoint on that inlined code, the missing
5634 skip_inline_frames call would break things. Fortunately
5635 that's an extremely unlikely scenario. */
5636 if (!pc_at_non_inline_function (aspace,
5637 ecs->event_thread->suspend.stop_pc,
5638 &ecs->ws)
5639 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5640 && ecs->event_thread->control.trap_expected
5641 && pc_at_non_inline_function (aspace,
5642 ecs->event_thread->prev_pc,
5643 &ecs->ws)))
5644 {
5645 stop_chain = build_bpstat_chain (aspace,
5646 ecs->event_thread->suspend.stop_pc,
5647 &ecs->ws);
5648 skip_inline_frames (ecs->event_thread, stop_chain);
5649
5650 /* Re-fetch current thread's frame in case that invalidated
5651 the frame cache. */
5652 frame = get_current_frame ();
5653 gdbarch = get_frame_arch (frame);
5654 }
5655 }
5656
5657 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5658 && ecs->event_thread->control.trap_expected
5659 && gdbarch_single_step_through_delay_p (gdbarch)
5660 && currently_stepping (ecs->event_thread))
5661 {
5662 /* We're trying to step off a breakpoint. Turns out that we're
5663 also on an instruction that needs to be stepped multiple
5664 times before it's been fully executing. E.g., architectures
5665 with a delay slot. It needs to be stepped twice, once for
5666 the instruction and once for the delay slot. */
5667 int step_through_delay
5668 = gdbarch_single_step_through_delay (gdbarch, frame);
5669
5670 if (debug_infrun && step_through_delay)
5671 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5672 if (ecs->event_thread->control.step_range_end == 0
5673 && step_through_delay)
5674 {
5675 /* The user issued a continue when stopped at a breakpoint.
5676 Set up for another trap and get out of here. */
5677 ecs->event_thread->stepping_over_breakpoint = 1;
5678 keep_going (ecs);
5679 return;
5680 }
5681 else if (step_through_delay)
5682 {
5683 /* The user issued a step when stopped at a breakpoint.
5684 Maybe we should stop, maybe we should not - the delay
5685 slot *might* correspond to a line of source. In any
5686 case, don't decide that here, just set
5687 ecs->stepping_over_breakpoint, making sure we
5688 single-step again before breakpoints are re-inserted. */
5689 ecs->event_thread->stepping_over_breakpoint = 1;
5690 }
5691 }
5692
5693 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5694 handles this event. */
5695 ecs->event_thread->control.stop_bpstat
5696 = bpstat_stop_status (get_current_regcache ()->aspace (),
5697 ecs->event_thread->suspend.stop_pc,
5698 ecs->event_thread, &ecs->ws, stop_chain);
5699
5700 /* Following in case break condition called a
5701 function. */
5702 stop_print_frame = 1;
5703
5704 /* This is where we handle "moribund" watchpoints. Unlike
5705 software breakpoints traps, hardware watchpoint traps are
5706 always distinguishable from random traps. If no high-level
5707 watchpoint is associated with the reported stop data address
5708 anymore, then the bpstat does not explain the signal ---
5709 simply make sure to ignore it if `stopped_by_watchpoint' is
5710 set. */
5711
5712 if (debug_infrun
5713 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5714 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5715 GDB_SIGNAL_TRAP)
5716 && stopped_by_watchpoint)
5717 fprintf_unfiltered (gdb_stdlog,
5718 "infrun: no user watchpoint explains "
5719 "watchpoint SIGTRAP, ignoring\n");
5720
5721 /* NOTE: cagney/2003-03-29: These checks for a random signal
5722 at one stage in the past included checks for an inferior
5723 function call's call dummy's return breakpoint. The original
5724 comment, that went with the test, read:
5725
5726 ``End of a stack dummy. Some systems (e.g. Sony news) give
5727 another signal besides SIGTRAP, so check here as well as
5728 above.''
5729
5730 If someone ever tries to get call dummys on a
5731 non-executable stack to work (where the target would stop
5732 with something like a SIGSEGV), then those tests might need
5733 to be re-instated. Given, however, that the tests were only
5734 enabled when momentary breakpoints were not being used, I
5735 suspect that it won't be the case.
5736
5737 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5738 be necessary for call dummies on a non-executable stack on
5739 SPARC. */
5740
5741 /* See if the breakpoints module can explain the signal. */
5742 random_signal
5743 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5744 ecs->event_thread->suspend.stop_signal);
5745
5746 /* Maybe this was a trap for a software breakpoint that has since
5747 been removed. */
5748 if (random_signal && target_stopped_by_sw_breakpoint ())
5749 {
5750 if (program_breakpoint_here_p (gdbarch,
5751 ecs->event_thread->suspend.stop_pc))
5752 {
5753 struct regcache *regcache;
5754 int decr_pc;
5755
5756 /* Re-adjust PC to what the program would see if GDB was not
5757 debugging it. */
5758 regcache = get_thread_regcache (ecs->event_thread);
5759 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5760 if (decr_pc != 0)
5761 {
5762 gdb::optional<scoped_restore_tmpl<int>>
5763 restore_operation_disable;
5764
5765 if (record_full_is_used ())
5766 restore_operation_disable.emplace
5767 (record_full_gdb_operation_disable_set ());
5768
5769 regcache_write_pc (regcache,
5770 ecs->event_thread->suspend.stop_pc + decr_pc);
5771 }
5772 }
5773 else
5774 {
5775 /* A delayed software breakpoint event. Ignore the trap. */
5776 if (debug_infrun)
5777 fprintf_unfiltered (gdb_stdlog,
5778 "infrun: delayed software breakpoint "
5779 "trap, ignoring\n");
5780 random_signal = 0;
5781 }
5782 }
5783
5784 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5785 has since been removed. */
5786 if (random_signal && target_stopped_by_hw_breakpoint ())
5787 {
5788 /* A delayed hardware breakpoint event. Ignore the trap. */
5789 if (debug_infrun)
5790 fprintf_unfiltered (gdb_stdlog,
5791 "infrun: delayed hardware breakpoint/watchpoint "
5792 "trap, ignoring\n");
5793 random_signal = 0;
5794 }
5795
5796 /* If not, perhaps stepping/nexting can. */
5797 if (random_signal)
5798 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5799 && currently_stepping (ecs->event_thread));
5800
5801 /* Perhaps the thread hit a single-step breakpoint of _another_
5802 thread. Single-step breakpoints are transparent to the
5803 breakpoints module. */
5804 if (random_signal)
5805 random_signal = !ecs->hit_singlestep_breakpoint;
5806
5807 /* No? Perhaps we got a moribund watchpoint. */
5808 if (random_signal)
5809 random_signal = !stopped_by_watchpoint;
5810
5811 /* Always stop if the user explicitly requested this thread to
5812 remain stopped. */
5813 if (ecs->event_thread->stop_requested)
5814 {
5815 random_signal = 1;
5816 if (debug_infrun)
5817 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5818 }
5819
5820 /* For the program's own signals, act according to
5821 the signal handling tables. */
5822
5823 if (random_signal)
5824 {
5825 /* Signal not for debugging purposes. */
5826 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5827 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5828
5829 if (debug_infrun)
5830 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5831 gdb_signal_to_symbol_string (stop_signal));
5832
5833 stopped_by_random_signal = 1;
5834
5835 /* Always stop on signals if we're either just gaining control
5836 of the program, or the user explicitly requested this thread
5837 to remain stopped. */
5838 if (stop_soon != NO_STOP_QUIETLY
5839 || ecs->event_thread->stop_requested
5840 || (!inf->detaching
5841 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5842 {
5843 stop_waiting (ecs);
5844 return;
5845 }
5846
5847 /* Notify observers the signal has "handle print" set. Note we
5848 returned early above if stopping; normal_stop handles the
5849 printing in that case. */
5850 if (signal_print[ecs->event_thread->suspend.stop_signal])
5851 {
5852 /* The signal table tells us to print about this signal. */
5853 target_terminal::ours_for_output ();
5854 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5855 target_terminal::inferior ();
5856 }
5857
5858 /* Clear the signal if it should not be passed. */
5859 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5860 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5861
5862 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5863 && ecs->event_thread->control.trap_expected
5864 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5865 {
5866 /* We were just starting a new sequence, attempting to
5867 single-step off of a breakpoint and expecting a SIGTRAP.
5868 Instead this signal arrives. This signal will take us out
5869 of the stepping range so GDB needs to remember to, when
5870 the signal handler returns, resume stepping off that
5871 breakpoint. */
5872 /* To simplify things, "continue" is forced to use the same
5873 code paths as single-step - set a breakpoint at the
5874 signal return address and then, once hit, step off that
5875 breakpoint. */
5876 if (debug_infrun)
5877 fprintf_unfiltered (gdb_stdlog,
5878 "infrun: signal arrived while stepping over "
5879 "breakpoint\n");
5880
5881 insert_hp_step_resume_breakpoint_at_frame (frame);
5882 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5883 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5884 ecs->event_thread->control.trap_expected = 0;
5885
5886 /* If we were nexting/stepping some other thread, switch to
5887 it, so that we don't continue it, losing control. */
5888 if (!switch_back_to_stepped_thread (ecs))
5889 keep_going (ecs);
5890 return;
5891 }
5892
5893 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5894 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5895 ecs->event_thread)
5896 || ecs->event_thread->control.step_range_end == 1)
5897 && frame_id_eq (get_stack_frame_id (frame),
5898 ecs->event_thread->control.step_stack_frame_id)
5899 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5900 {
5901 /* The inferior is about to take a signal that will take it
5902 out of the single step range. Set a breakpoint at the
5903 current PC (which is presumably where the signal handler
5904 will eventually return) and then allow the inferior to
5905 run free.
5906
5907 Note that this is only needed for a signal delivered
5908 while in the single-step range. Nested signals aren't a
5909 problem as they eventually all return. */
5910 if (debug_infrun)
5911 fprintf_unfiltered (gdb_stdlog,
5912 "infrun: signal may take us out of "
5913 "single-step range\n");
5914
5915 clear_step_over_info ();
5916 insert_hp_step_resume_breakpoint_at_frame (frame);
5917 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5918 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5919 ecs->event_thread->control.trap_expected = 0;
5920 keep_going (ecs);
5921 return;
5922 }
5923
5924 /* Note: step_resume_breakpoint may be non-NULL. This occurs
5925 when either there's a nested signal, or when there's a
5926 pending signal enabled just as the signal handler returns
5927 (leaving the inferior at the step-resume-breakpoint without
5928 actually executing it). Either way continue until the
5929 breakpoint is really hit. */
5930
5931 if (!switch_back_to_stepped_thread (ecs))
5932 {
5933 if (debug_infrun)
5934 fprintf_unfiltered (gdb_stdlog,
5935 "infrun: random signal, keep going\n");
5936
5937 keep_going (ecs);
5938 }
5939 return;
5940 }
5941
5942 process_event_stop_test (ecs);
5943 }
5944
5945 /* Come here when we've got some debug event / signal we can explain
5946 (IOW, not a random signal), and test whether it should cause a
5947 stop, or whether we should resume the inferior (transparently).
5948 E.g., could be a breakpoint whose condition evaluates false; we
5949 could be still stepping within the line; etc. */
5950
5951 static void
5952 process_event_stop_test (struct execution_control_state *ecs)
5953 {
5954 struct symtab_and_line stop_pc_sal;
5955 struct frame_info *frame;
5956 struct gdbarch *gdbarch;
5957 CORE_ADDR jmp_buf_pc;
5958 struct bpstat_what what;
5959
5960 /* Handle cases caused by hitting a breakpoint. */
5961
5962 frame = get_current_frame ();
5963 gdbarch = get_frame_arch (frame);
5964
5965 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
5966
5967 if (what.call_dummy)
5968 {
5969 stop_stack_dummy = what.call_dummy;
5970 }
5971
5972 /* A few breakpoint types have callbacks associated (e.g.,
5973 bp_jit_event). Run them now. */
5974 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
5975
5976 /* If we hit an internal event that triggers symbol changes, the
5977 current frame will be invalidated within bpstat_what (e.g., if we
5978 hit an internal solib event). Re-fetch it. */
5979 frame = get_current_frame ();
5980 gdbarch = get_frame_arch (frame);
5981
5982 switch (what.main_action)
5983 {
5984 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
5985 /* If we hit the breakpoint at longjmp while stepping, we
5986 install a momentary breakpoint at the target of the
5987 jmp_buf. */
5988
5989 if (debug_infrun)
5990 fprintf_unfiltered (gdb_stdlog,
5991 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
5992
5993 ecs->event_thread->stepping_over_breakpoint = 1;
5994
5995 if (what.is_longjmp)
5996 {
5997 struct value *arg_value;
5998
5999 /* If we set the longjmp breakpoint via a SystemTap probe,
6000 then use it to extract the arguments. The destination PC
6001 is the third argument to the probe. */
6002 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6003 if (arg_value)
6004 {
6005 jmp_buf_pc = value_as_address (arg_value);
6006 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6007 }
6008 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6009 || !gdbarch_get_longjmp_target (gdbarch,
6010 frame, &jmp_buf_pc))
6011 {
6012 if (debug_infrun)
6013 fprintf_unfiltered (gdb_stdlog,
6014 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6015 "(!gdbarch_get_longjmp_target)\n");
6016 keep_going (ecs);
6017 return;
6018 }
6019
6020 /* Insert a breakpoint at resume address. */
6021 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6022 }
6023 else
6024 check_exception_resume (ecs, frame);
6025 keep_going (ecs);
6026 return;
6027
6028 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6029 {
6030 struct frame_info *init_frame;
6031
6032 /* There are several cases to consider.
6033
6034 1. The initiating frame no longer exists. In this case we
6035 must stop, because the exception or longjmp has gone too
6036 far.
6037
6038 2. The initiating frame exists, and is the same as the
6039 current frame. We stop, because the exception or longjmp
6040 has been caught.
6041
6042 3. The initiating frame exists and is different from the
6043 current frame. This means the exception or longjmp has
6044 been caught beneath the initiating frame, so keep going.
6045
6046 4. longjmp breakpoint has been placed just to protect
6047 against stale dummy frames and user is not interested in
6048 stopping around longjmps. */
6049
6050 if (debug_infrun)
6051 fprintf_unfiltered (gdb_stdlog,
6052 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6053
6054 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6055 != NULL);
6056 delete_exception_resume_breakpoint (ecs->event_thread);
6057
6058 if (what.is_longjmp)
6059 {
6060 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6061
6062 if (!frame_id_p (ecs->event_thread->initiating_frame))
6063 {
6064 /* Case 4. */
6065 keep_going (ecs);
6066 return;
6067 }
6068 }
6069
6070 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6071
6072 if (init_frame)
6073 {
6074 struct frame_id current_id
6075 = get_frame_id (get_current_frame ());
6076 if (frame_id_eq (current_id,
6077 ecs->event_thread->initiating_frame))
6078 {
6079 /* Case 2. Fall through. */
6080 }
6081 else
6082 {
6083 /* Case 3. */
6084 keep_going (ecs);
6085 return;
6086 }
6087 }
6088
6089 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6090 exists. */
6091 delete_step_resume_breakpoint (ecs->event_thread);
6092
6093 end_stepping_range (ecs);
6094 }
6095 return;
6096
6097 case BPSTAT_WHAT_SINGLE:
6098 if (debug_infrun)
6099 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6100 ecs->event_thread->stepping_over_breakpoint = 1;
6101 /* Still need to check other stuff, at least the case where we
6102 are stepping and step out of the right range. */
6103 break;
6104
6105 case BPSTAT_WHAT_STEP_RESUME:
6106 if (debug_infrun)
6107 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6108
6109 delete_step_resume_breakpoint (ecs->event_thread);
6110 if (ecs->event_thread->control.proceed_to_finish
6111 && execution_direction == EXEC_REVERSE)
6112 {
6113 struct thread_info *tp = ecs->event_thread;
6114
6115 /* We are finishing a function in reverse, and just hit the
6116 step-resume breakpoint at the start address of the
6117 function, and we're almost there -- just need to back up
6118 by one more single-step, which should take us back to the
6119 function call. */
6120 tp->control.step_range_start = tp->control.step_range_end = 1;
6121 keep_going (ecs);
6122 return;
6123 }
6124 fill_in_stop_func (gdbarch, ecs);
6125 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6126 && execution_direction == EXEC_REVERSE)
6127 {
6128 /* We are stepping over a function call in reverse, and just
6129 hit the step-resume breakpoint at the start address of
6130 the function. Go back to single-stepping, which should
6131 take us back to the function call. */
6132 ecs->event_thread->stepping_over_breakpoint = 1;
6133 keep_going (ecs);
6134 return;
6135 }
6136 break;
6137
6138 case BPSTAT_WHAT_STOP_NOISY:
6139 if (debug_infrun)
6140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6141 stop_print_frame = 1;
6142
6143 /* Assume the thread stopped for a breapoint. We'll still check
6144 whether a/the breakpoint is there when the thread is next
6145 resumed. */
6146 ecs->event_thread->stepping_over_breakpoint = 1;
6147
6148 stop_waiting (ecs);
6149 return;
6150
6151 case BPSTAT_WHAT_STOP_SILENT:
6152 if (debug_infrun)
6153 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6154 stop_print_frame = 0;
6155
6156 /* Assume the thread stopped for a breapoint. We'll still check
6157 whether a/the breakpoint is there when the thread is next
6158 resumed. */
6159 ecs->event_thread->stepping_over_breakpoint = 1;
6160 stop_waiting (ecs);
6161 return;
6162
6163 case BPSTAT_WHAT_HP_STEP_RESUME:
6164 if (debug_infrun)
6165 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6166
6167 delete_step_resume_breakpoint (ecs->event_thread);
6168 if (ecs->event_thread->step_after_step_resume_breakpoint)
6169 {
6170 /* Back when the step-resume breakpoint was inserted, we
6171 were trying to single-step off a breakpoint. Go back to
6172 doing that. */
6173 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6174 ecs->event_thread->stepping_over_breakpoint = 1;
6175 keep_going (ecs);
6176 return;
6177 }
6178 break;
6179
6180 case BPSTAT_WHAT_KEEP_CHECKING:
6181 break;
6182 }
6183
6184 /* If we stepped a permanent breakpoint and we had a high priority
6185 step-resume breakpoint for the address we stepped, but we didn't
6186 hit it, then we must have stepped into the signal handler. The
6187 step-resume was only necessary to catch the case of _not_
6188 stepping into the handler, so delete it, and fall through to
6189 checking whether the step finished. */
6190 if (ecs->event_thread->stepped_breakpoint)
6191 {
6192 struct breakpoint *sr_bp
6193 = ecs->event_thread->control.step_resume_breakpoint;
6194
6195 if (sr_bp != NULL
6196 && sr_bp->loc->permanent
6197 && sr_bp->type == bp_hp_step_resume
6198 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6199 {
6200 if (debug_infrun)
6201 fprintf_unfiltered (gdb_stdlog,
6202 "infrun: stepped permanent breakpoint, stopped in "
6203 "handler\n");
6204 delete_step_resume_breakpoint (ecs->event_thread);
6205 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6206 }
6207 }
6208
6209 /* We come here if we hit a breakpoint but should not stop for it.
6210 Possibly we also were stepping and should stop for that. So fall
6211 through and test for stepping. But, if not stepping, do not
6212 stop. */
6213
6214 /* In all-stop mode, if we're currently stepping but have stopped in
6215 some other thread, we need to switch back to the stepped thread. */
6216 if (switch_back_to_stepped_thread (ecs))
6217 return;
6218
6219 if (ecs->event_thread->control.step_resume_breakpoint)
6220 {
6221 if (debug_infrun)
6222 fprintf_unfiltered (gdb_stdlog,
6223 "infrun: step-resume breakpoint is inserted\n");
6224
6225 /* Having a step-resume breakpoint overrides anything
6226 else having to do with stepping commands until
6227 that breakpoint is reached. */
6228 keep_going (ecs);
6229 return;
6230 }
6231
6232 if (ecs->event_thread->control.step_range_end == 0)
6233 {
6234 if (debug_infrun)
6235 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6236 /* Likewise if we aren't even stepping. */
6237 keep_going (ecs);
6238 return;
6239 }
6240
6241 /* Re-fetch current thread's frame in case the code above caused
6242 the frame cache to be re-initialized, making our FRAME variable
6243 a dangling pointer. */
6244 frame = get_current_frame ();
6245 gdbarch = get_frame_arch (frame);
6246 fill_in_stop_func (gdbarch, ecs);
6247
6248 /* If stepping through a line, keep going if still within it.
6249
6250 Note that step_range_end is the address of the first instruction
6251 beyond the step range, and NOT the address of the last instruction
6252 within it!
6253
6254 Note also that during reverse execution, we may be stepping
6255 through a function epilogue and therefore must detect when
6256 the current-frame changes in the middle of a line. */
6257
6258 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6259 ecs->event_thread)
6260 && (execution_direction != EXEC_REVERSE
6261 || frame_id_eq (get_frame_id (frame),
6262 ecs->event_thread->control.step_frame_id)))
6263 {
6264 if (debug_infrun)
6265 fprintf_unfiltered
6266 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6267 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6268 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6269
6270 /* Tentatively re-enable range stepping; `resume' disables it if
6271 necessary (e.g., if we're stepping over a breakpoint or we
6272 have software watchpoints). */
6273 ecs->event_thread->control.may_range_step = 1;
6274
6275 /* When stepping backward, stop at beginning of line range
6276 (unless it's the function entry point, in which case
6277 keep going back to the call point). */
6278 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6279 if (stop_pc == ecs->event_thread->control.step_range_start
6280 && stop_pc != ecs->stop_func_start
6281 && execution_direction == EXEC_REVERSE)
6282 end_stepping_range (ecs);
6283 else
6284 keep_going (ecs);
6285
6286 return;
6287 }
6288
6289 /* We stepped out of the stepping range. */
6290
6291 /* If we are stepping at the source level and entered the runtime
6292 loader dynamic symbol resolution code...
6293
6294 EXEC_FORWARD: we keep on single stepping until we exit the run
6295 time loader code and reach the callee's address.
6296
6297 EXEC_REVERSE: we've already executed the callee (backward), and
6298 the runtime loader code is handled just like any other
6299 undebuggable function call. Now we need only keep stepping
6300 backward through the trampoline code, and that's handled further
6301 down, so there is nothing for us to do here. */
6302
6303 if (execution_direction != EXEC_REVERSE
6304 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6305 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6306 {
6307 CORE_ADDR pc_after_resolver =
6308 gdbarch_skip_solib_resolver (gdbarch,
6309 ecs->event_thread->suspend.stop_pc);
6310
6311 if (debug_infrun)
6312 fprintf_unfiltered (gdb_stdlog,
6313 "infrun: stepped into dynsym resolve code\n");
6314
6315 if (pc_after_resolver)
6316 {
6317 /* Set up a step-resume breakpoint at the address
6318 indicated by SKIP_SOLIB_RESOLVER. */
6319 symtab_and_line sr_sal;
6320 sr_sal.pc = pc_after_resolver;
6321 sr_sal.pspace = get_frame_program_space (frame);
6322
6323 insert_step_resume_breakpoint_at_sal (gdbarch,
6324 sr_sal, null_frame_id);
6325 }
6326
6327 keep_going (ecs);
6328 return;
6329 }
6330
6331 /* Step through an indirect branch thunk. */
6332 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6333 && gdbarch_in_indirect_branch_thunk (gdbarch,
6334 ecs->event_thread->suspend.stop_pc))
6335 {
6336 if (debug_infrun)
6337 fprintf_unfiltered (gdb_stdlog,
6338 "infrun: stepped into indirect branch thunk\n");
6339 keep_going (ecs);
6340 return;
6341 }
6342
6343 if (ecs->event_thread->control.step_range_end != 1
6344 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6345 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6346 && get_frame_type (frame) == SIGTRAMP_FRAME)
6347 {
6348 if (debug_infrun)
6349 fprintf_unfiltered (gdb_stdlog,
6350 "infrun: stepped into signal trampoline\n");
6351 /* The inferior, while doing a "step" or "next", has ended up in
6352 a signal trampoline (either by a signal being delivered or by
6353 the signal handler returning). Just single-step until the
6354 inferior leaves the trampoline (either by calling the handler
6355 or returning). */
6356 keep_going (ecs);
6357 return;
6358 }
6359
6360 /* If we're in the return path from a shared library trampoline,
6361 we want to proceed through the trampoline when stepping. */
6362 /* macro/2012-04-25: This needs to come before the subroutine
6363 call check below as on some targets return trampolines look
6364 like subroutine calls (MIPS16 return thunks). */
6365 if (gdbarch_in_solib_return_trampoline (gdbarch,
6366 ecs->event_thread->suspend.stop_pc,
6367 ecs->stop_func_name)
6368 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6369 {
6370 /* Determine where this trampoline returns. */
6371 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6372 CORE_ADDR real_stop_pc
6373 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6374
6375 if (debug_infrun)
6376 fprintf_unfiltered (gdb_stdlog,
6377 "infrun: stepped into solib return tramp\n");
6378
6379 /* Only proceed through if we know where it's going. */
6380 if (real_stop_pc)
6381 {
6382 /* And put the step-breakpoint there and go until there. */
6383 symtab_and_line sr_sal;
6384 sr_sal.pc = real_stop_pc;
6385 sr_sal.section = find_pc_overlay (sr_sal.pc);
6386 sr_sal.pspace = get_frame_program_space (frame);
6387
6388 /* Do not specify what the fp should be when we stop since
6389 on some machines the prologue is where the new fp value
6390 is established. */
6391 insert_step_resume_breakpoint_at_sal (gdbarch,
6392 sr_sal, null_frame_id);
6393
6394 /* Restart without fiddling with the step ranges or
6395 other state. */
6396 keep_going (ecs);
6397 return;
6398 }
6399 }
6400
6401 /* Check for subroutine calls. The check for the current frame
6402 equalling the step ID is not necessary - the check of the
6403 previous frame's ID is sufficient - but it is a common case and
6404 cheaper than checking the previous frame's ID.
6405
6406 NOTE: frame_id_eq will never report two invalid frame IDs as
6407 being equal, so to get into this block, both the current and
6408 previous frame must have valid frame IDs. */
6409 /* The outer_frame_id check is a heuristic to detect stepping
6410 through startup code. If we step over an instruction which
6411 sets the stack pointer from an invalid value to a valid value,
6412 we may detect that as a subroutine call from the mythical
6413 "outermost" function. This could be fixed by marking
6414 outermost frames as !stack_p,code_p,special_p. Then the
6415 initial outermost frame, before sp was valid, would
6416 have code_addr == &_start. See the comment in frame_id_eq
6417 for more. */
6418 if (!frame_id_eq (get_stack_frame_id (frame),
6419 ecs->event_thread->control.step_stack_frame_id)
6420 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6421 ecs->event_thread->control.step_stack_frame_id)
6422 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6423 outer_frame_id)
6424 || (ecs->event_thread->control.step_start_function
6425 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6426 {
6427 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6428 CORE_ADDR real_stop_pc;
6429
6430 if (debug_infrun)
6431 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6432
6433 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6434 {
6435 /* I presume that step_over_calls is only 0 when we're
6436 supposed to be stepping at the assembly language level
6437 ("stepi"). Just stop. */
6438 /* And this works the same backward as frontward. MVS */
6439 end_stepping_range (ecs);
6440 return;
6441 }
6442
6443 /* Reverse stepping through solib trampolines. */
6444
6445 if (execution_direction == EXEC_REVERSE
6446 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6447 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6448 || (ecs->stop_func_start == 0
6449 && in_solib_dynsym_resolve_code (stop_pc))))
6450 {
6451 /* Any solib trampoline code can be handled in reverse
6452 by simply continuing to single-step. We have already
6453 executed the solib function (backwards), and a few
6454 steps will take us back through the trampoline to the
6455 caller. */
6456 keep_going (ecs);
6457 return;
6458 }
6459
6460 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6461 {
6462 /* We're doing a "next".
6463
6464 Normal (forward) execution: set a breakpoint at the
6465 callee's return address (the address at which the caller
6466 will resume).
6467
6468 Reverse (backward) execution. set the step-resume
6469 breakpoint at the start of the function that we just
6470 stepped into (backwards), and continue to there. When we
6471 get there, we'll need to single-step back to the caller. */
6472
6473 if (execution_direction == EXEC_REVERSE)
6474 {
6475 /* If we're already at the start of the function, we've either
6476 just stepped backward into a single instruction function,
6477 or stepped back out of a signal handler to the first instruction
6478 of the function. Just keep going, which will single-step back
6479 to the caller. */
6480 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6481 {
6482 /* Normal function call return (static or dynamic). */
6483 symtab_and_line sr_sal;
6484 sr_sal.pc = ecs->stop_func_start;
6485 sr_sal.pspace = get_frame_program_space (frame);
6486 insert_step_resume_breakpoint_at_sal (gdbarch,
6487 sr_sal, null_frame_id);
6488 }
6489 }
6490 else
6491 insert_step_resume_breakpoint_at_caller (frame);
6492
6493 keep_going (ecs);
6494 return;
6495 }
6496
6497 /* If we are in a function call trampoline (a stub between the
6498 calling routine and the real function), locate the real
6499 function. That's what tells us (a) whether we want to step
6500 into it at all, and (b) what prologue we want to run to the
6501 end of, if we do step into it. */
6502 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6503 if (real_stop_pc == 0)
6504 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6505 if (real_stop_pc != 0)
6506 ecs->stop_func_start = real_stop_pc;
6507
6508 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6509 {
6510 symtab_and_line sr_sal;
6511 sr_sal.pc = ecs->stop_func_start;
6512 sr_sal.pspace = get_frame_program_space (frame);
6513
6514 insert_step_resume_breakpoint_at_sal (gdbarch,
6515 sr_sal, null_frame_id);
6516 keep_going (ecs);
6517 return;
6518 }
6519
6520 /* If we have line number information for the function we are
6521 thinking of stepping into and the function isn't on the skip
6522 list, step into it.
6523
6524 If there are several symtabs at that PC (e.g. with include
6525 files), just want to know whether *any* of them have line
6526 numbers. find_pc_line handles this. */
6527 {
6528 struct symtab_and_line tmp_sal;
6529
6530 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6531 if (tmp_sal.line != 0
6532 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6533 tmp_sal))
6534 {
6535 if (execution_direction == EXEC_REVERSE)
6536 handle_step_into_function_backward (gdbarch, ecs);
6537 else
6538 handle_step_into_function (gdbarch, ecs);
6539 return;
6540 }
6541 }
6542
6543 /* If we have no line number and the step-stop-if-no-debug is
6544 set, we stop the step so that the user has a chance to switch
6545 in assembly mode. */
6546 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6547 && step_stop_if_no_debug)
6548 {
6549 end_stepping_range (ecs);
6550 return;
6551 }
6552
6553 if (execution_direction == EXEC_REVERSE)
6554 {
6555 /* If we're already at the start of the function, we've either just
6556 stepped backward into a single instruction function without line
6557 number info, or stepped back out of a signal handler to the first
6558 instruction of the function without line number info. Just keep
6559 going, which will single-step back to the caller. */
6560 if (ecs->stop_func_start != stop_pc)
6561 {
6562 /* Set a breakpoint at callee's start address.
6563 From there we can step once and be back in the caller. */
6564 symtab_and_line sr_sal;
6565 sr_sal.pc = ecs->stop_func_start;
6566 sr_sal.pspace = get_frame_program_space (frame);
6567 insert_step_resume_breakpoint_at_sal (gdbarch,
6568 sr_sal, null_frame_id);
6569 }
6570 }
6571 else
6572 /* Set a breakpoint at callee's return address (the address
6573 at which the caller will resume). */
6574 insert_step_resume_breakpoint_at_caller (frame);
6575
6576 keep_going (ecs);
6577 return;
6578 }
6579
6580 /* Reverse stepping through solib trampolines. */
6581
6582 if (execution_direction == EXEC_REVERSE
6583 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6584 {
6585 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6586
6587 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6588 || (ecs->stop_func_start == 0
6589 && in_solib_dynsym_resolve_code (stop_pc)))
6590 {
6591 /* Any solib trampoline code can be handled in reverse
6592 by simply continuing to single-step. We have already
6593 executed the solib function (backwards), and a few
6594 steps will take us back through the trampoline to the
6595 caller. */
6596 keep_going (ecs);
6597 return;
6598 }
6599 else if (in_solib_dynsym_resolve_code (stop_pc))
6600 {
6601 /* Stepped backward into the solib dynsym resolver.
6602 Set a breakpoint at its start and continue, then
6603 one more step will take us out. */
6604 symtab_and_line sr_sal;
6605 sr_sal.pc = ecs->stop_func_start;
6606 sr_sal.pspace = get_frame_program_space (frame);
6607 insert_step_resume_breakpoint_at_sal (gdbarch,
6608 sr_sal, null_frame_id);
6609 keep_going (ecs);
6610 return;
6611 }
6612 }
6613
6614 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6615
6616 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6617 the trampoline processing logic, however, there are some trampolines
6618 that have no names, so we should do trampoline handling first. */
6619 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6620 && ecs->stop_func_name == NULL
6621 && stop_pc_sal.line == 0)
6622 {
6623 if (debug_infrun)
6624 fprintf_unfiltered (gdb_stdlog,
6625 "infrun: stepped into undebuggable function\n");
6626
6627 /* The inferior just stepped into, or returned to, an
6628 undebuggable function (where there is no debugging information
6629 and no line number corresponding to the address where the
6630 inferior stopped). Since we want to skip this kind of code,
6631 we keep going until the inferior returns from this
6632 function - unless the user has asked us not to (via
6633 set step-mode) or we no longer know how to get back
6634 to the call site. */
6635 if (step_stop_if_no_debug
6636 || !frame_id_p (frame_unwind_caller_id (frame)))
6637 {
6638 /* If we have no line number and the step-stop-if-no-debug
6639 is set, we stop the step so that the user has a chance to
6640 switch in assembly mode. */
6641 end_stepping_range (ecs);
6642 return;
6643 }
6644 else
6645 {
6646 /* Set a breakpoint at callee's return address (the address
6647 at which the caller will resume). */
6648 insert_step_resume_breakpoint_at_caller (frame);
6649 keep_going (ecs);
6650 return;
6651 }
6652 }
6653
6654 if (ecs->event_thread->control.step_range_end == 1)
6655 {
6656 /* It is stepi or nexti. We always want to stop stepping after
6657 one instruction. */
6658 if (debug_infrun)
6659 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6660 end_stepping_range (ecs);
6661 return;
6662 }
6663
6664 if (stop_pc_sal.line == 0)
6665 {
6666 /* We have no line number information. That means to stop
6667 stepping (does this always happen right after one instruction,
6668 when we do "s" in a function with no line numbers,
6669 or can this happen as a result of a return or longjmp?). */
6670 if (debug_infrun)
6671 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6672 end_stepping_range (ecs);
6673 return;
6674 }
6675
6676 /* Look for "calls" to inlined functions, part one. If the inline
6677 frame machinery detected some skipped call sites, we have entered
6678 a new inline function. */
6679
6680 if (frame_id_eq (get_frame_id (get_current_frame ()),
6681 ecs->event_thread->control.step_frame_id)
6682 && inline_skipped_frames (ecs->event_thread))
6683 {
6684 if (debug_infrun)
6685 fprintf_unfiltered (gdb_stdlog,
6686 "infrun: stepped into inlined function\n");
6687
6688 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6689
6690 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6691 {
6692 /* For "step", we're going to stop. But if the call site
6693 for this inlined function is on the same source line as
6694 we were previously stepping, go down into the function
6695 first. Otherwise stop at the call site. */
6696
6697 if (call_sal.line == ecs->event_thread->current_line
6698 && call_sal.symtab == ecs->event_thread->current_symtab)
6699 step_into_inline_frame (ecs->event_thread);
6700
6701 end_stepping_range (ecs);
6702 return;
6703 }
6704 else
6705 {
6706 /* For "next", we should stop at the call site if it is on a
6707 different source line. Otherwise continue through the
6708 inlined function. */
6709 if (call_sal.line == ecs->event_thread->current_line
6710 && call_sal.symtab == ecs->event_thread->current_symtab)
6711 keep_going (ecs);
6712 else
6713 end_stepping_range (ecs);
6714 return;
6715 }
6716 }
6717
6718 /* Look for "calls" to inlined functions, part two. If we are still
6719 in the same real function we were stepping through, but we have
6720 to go further up to find the exact frame ID, we are stepping
6721 through a more inlined call beyond its call site. */
6722
6723 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6724 && !frame_id_eq (get_frame_id (get_current_frame ()),
6725 ecs->event_thread->control.step_frame_id)
6726 && stepped_in_from (get_current_frame (),
6727 ecs->event_thread->control.step_frame_id))
6728 {
6729 if (debug_infrun)
6730 fprintf_unfiltered (gdb_stdlog,
6731 "infrun: stepping through inlined function\n");
6732
6733 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6734 keep_going (ecs);
6735 else
6736 end_stepping_range (ecs);
6737 return;
6738 }
6739
6740 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6741 && (ecs->event_thread->current_line != stop_pc_sal.line
6742 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6743 {
6744 /* We are at the start of a different line. So stop. Note that
6745 we don't stop if we step into the middle of a different line.
6746 That is said to make things like for (;;) statements work
6747 better. */
6748 if (debug_infrun)
6749 fprintf_unfiltered (gdb_stdlog,
6750 "infrun: stepped to a different line\n");
6751 end_stepping_range (ecs);
6752 return;
6753 }
6754
6755 /* We aren't done stepping.
6756
6757 Optimize by setting the stepping range to the line.
6758 (We might not be in the original line, but if we entered a
6759 new line in mid-statement, we continue stepping. This makes
6760 things like for(;;) statements work better.) */
6761
6762 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6763 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6764 ecs->event_thread->control.may_range_step = 1;
6765 set_step_info (frame, stop_pc_sal);
6766
6767 if (debug_infrun)
6768 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6769 keep_going (ecs);
6770 }
6771
6772 /* In all-stop mode, if we're currently stepping but have stopped in
6773 some other thread, we may need to switch back to the stepped
6774 thread. Returns true we set the inferior running, false if we left
6775 it stopped (and the event needs further processing). */
6776
6777 static int
6778 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6779 {
6780 if (!target_is_non_stop_p ())
6781 {
6782 struct thread_info *stepping_thread;
6783
6784 /* If any thread is blocked on some internal breakpoint, and we
6785 simply need to step over that breakpoint to get it going
6786 again, do that first. */
6787
6788 /* However, if we see an event for the stepping thread, then we
6789 know all other threads have been moved past their breakpoints
6790 already. Let the caller check whether the step is finished,
6791 etc., before deciding to move it past a breakpoint. */
6792 if (ecs->event_thread->control.step_range_end != 0)
6793 return 0;
6794
6795 /* Check if the current thread is blocked on an incomplete
6796 step-over, interrupted by a random signal. */
6797 if (ecs->event_thread->control.trap_expected
6798 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6799 {
6800 if (debug_infrun)
6801 {
6802 fprintf_unfiltered (gdb_stdlog,
6803 "infrun: need to finish step-over of [%s]\n",
6804 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6805 }
6806 keep_going (ecs);
6807 return 1;
6808 }
6809
6810 /* Check if the current thread is blocked by a single-step
6811 breakpoint of another thread. */
6812 if (ecs->hit_singlestep_breakpoint)
6813 {
6814 if (debug_infrun)
6815 {
6816 fprintf_unfiltered (gdb_stdlog,
6817 "infrun: need to step [%s] over single-step "
6818 "breakpoint\n",
6819 target_pid_to_str (ecs->ptid).c_str ());
6820 }
6821 keep_going (ecs);
6822 return 1;
6823 }
6824
6825 /* If this thread needs yet another step-over (e.g., stepping
6826 through a delay slot), do it first before moving on to
6827 another thread. */
6828 if (thread_still_needs_step_over (ecs->event_thread))
6829 {
6830 if (debug_infrun)
6831 {
6832 fprintf_unfiltered (gdb_stdlog,
6833 "infrun: thread [%s] still needs step-over\n",
6834 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6835 }
6836 keep_going (ecs);
6837 return 1;
6838 }
6839
6840 /* If scheduler locking applies even if not stepping, there's no
6841 need to walk over threads. Above we've checked whether the
6842 current thread is stepping. If some other thread not the
6843 event thread is stepping, then it must be that scheduler
6844 locking is not in effect. */
6845 if (schedlock_applies (ecs->event_thread))
6846 return 0;
6847
6848 /* Otherwise, we no longer expect a trap in the current thread.
6849 Clear the trap_expected flag before switching back -- this is
6850 what keep_going does as well, if we call it. */
6851 ecs->event_thread->control.trap_expected = 0;
6852
6853 /* Likewise, clear the signal if it should not be passed. */
6854 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6855 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6856
6857 /* Do all pending step-overs before actually proceeding with
6858 step/next/etc. */
6859 if (start_step_over ())
6860 {
6861 prepare_to_wait (ecs);
6862 return 1;
6863 }
6864
6865 /* Look for the stepping/nexting thread. */
6866 stepping_thread = NULL;
6867
6868 for (thread_info *tp : all_non_exited_threads ())
6869 {
6870 /* Ignore threads of processes the caller is not
6871 resuming. */
6872 if (!sched_multi
6873 && tp->ptid.pid () != ecs->ptid.pid ())
6874 continue;
6875
6876 /* When stepping over a breakpoint, we lock all threads
6877 except the one that needs to move past the breakpoint.
6878 If a non-event thread has this set, the "incomplete
6879 step-over" check above should have caught it earlier. */
6880 if (tp->control.trap_expected)
6881 {
6882 internal_error (__FILE__, __LINE__,
6883 "[%s] has inconsistent state: "
6884 "trap_expected=%d\n",
6885 target_pid_to_str (tp->ptid).c_str (),
6886 tp->control.trap_expected);
6887 }
6888
6889 /* Did we find the stepping thread? */
6890 if (tp->control.step_range_end)
6891 {
6892 /* Yep. There should only one though. */
6893 gdb_assert (stepping_thread == NULL);
6894
6895 /* The event thread is handled at the top, before we
6896 enter this loop. */
6897 gdb_assert (tp != ecs->event_thread);
6898
6899 /* If some thread other than the event thread is
6900 stepping, then scheduler locking can't be in effect,
6901 otherwise we wouldn't have resumed the current event
6902 thread in the first place. */
6903 gdb_assert (!schedlock_applies (tp));
6904
6905 stepping_thread = tp;
6906 }
6907 }
6908
6909 if (stepping_thread != NULL)
6910 {
6911 if (debug_infrun)
6912 fprintf_unfiltered (gdb_stdlog,
6913 "infrun: switching back to stepped thread\n");
6914
6915 if (keep_going_stepped_thread (stepping_thread))
6916 {
6917 prepare_to_wait (ecs);
6918 return 1;
6919 }
6920 }
6921 }
6922
6923 return 0;
6924 }
6925
6926 /* Set a previously stepped thread back to stepping. Returns true on
6927 success, false if the resume is not possible (e.g., the thread
6928 vanished). */
6929
6930 static int
6931 keep_going_stepped_thread (struct thread_info *tp)
6932 {
6933 struct frame_info *frame;
6934 struct execution_control_state ecss;
6935 struct execution_control_state *ecs = &ecss;
6936
6937 /* If the stepping thread exited, then don't try to switch back and
6938 resume it, which could fail in several different ways depending
6939 on the target. Instead, just keep going.
6940
6941 We can find a stepping dead thread in the thread list in two
6942 cases:
6943
6944 - The target supports thread exit events, and when the target
6945 tries to delete the thread from the thread list, inferior_ptid
6946 pointed at the exiting thread. In such case, calling
6947 delete_thread does not really remove the thread from the list;
6948 instead, the thread is left listed, with 'exited' state.
6949
6950 - The target's debug interface does not support thread exit
6951 events, and so we have no idea whatsoever if the previously
6952 stepping thread is still alive. For that reason, we need to
6953 synchronously query the target now. */
6954
6955 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
6956 {
6957 if (debug_infrun)
6958 fprintf_unfiltered (gdb_stdlog,
6959 "infrun: not resuming previously "
6960 "stepped thread, it has vanished\n");
6961
6962 delete_thread (tp);
6963 return 0;
6964 }
6965
6966 if (debug_infrun)
6967 fprintf_unfiltered (gdb_stdlog,
6968 "infrun: resuming previously stepped thread\n");
6969
6970 reset_ecs (ecs, tp);
6971 switch_to_thread (tp);
6972
6973 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
6974 frame = get_current_frame ();
6975
6976 /* If the PC of the thread we were trying to single-step has
6977 changed, then that thread has trapped or been signaled, but the
6978 event has not been reported to GDB yet. Re-poll the target
6979 looking for this particular thread's event (i.e. temporarily
6980 enable schedlock) by:
6981
6982 - setting a break at the current PC
6983 - resuming that particular thread, only (by setting trap
6984 expected)
6985
6986 This prevents us continuously moving the single-step breakpoint
6987 forward, one instruction at a time, overstepping. */
6988
6989 if (tp->suspend.stop_pc != tp->prev_pc)
6990 {
6991 ptid_t resume_ptid;
6992
6993 if (debug_infrun)
6994 fprintf_unfiltered (gdb_stdlog,
6995 "infrun: expected thread advanced also (%s -> %s)\n",
6996 paddress (target_gdbarch (), tp->prev_pc),
6997 paddress (target_gdbarch (), tp->suspend.stop_pc));
6998
6999 /* Clear the info of the previous step-over, as it's no longer
7000 valid (if the thread was trying to step over a breakpoint, it
7001 has already succeeded). It's what keep_going would do too,
7002 if we called it. Do this before trying to insert the sss
7003 breakpoint, otherwise if we were previously trying to step
7004 over this exact address in another thread, the breakpoint is
7005 skipped. */
7006 clear_step_over_info ();
7007 tp->control.trap_expected = 0;
7008
7009 insert_single_step_breakpoint (get_frame_arch (frame),
7010 get_frame_address_space (frame),
7011 tp->suspend.stop_pc);
7012
7013 tp->resumed = 1;
7014 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7015 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7016 }
7017 else
7018 {
7019 if (debug_infrun)
7020 fprintf_unfiltered (gdb_stdlog,
7021 "infrun: expected thread still hasn't advanced\n");
7022
7023 keep_going_pass_signal (ecs);
7024 }
7025 return 1;
7026 }
7027
7028 /* Is thread TP in the middle of (software or hardware)
7029 single-stepping? (Note the result of this function must never be
7030 passed directly as target_resume's STEP parameter.) */
7031
7032 static int
7033 currently_stepping (struct thread_info *tp)
7034 {
7035 return ((tp->control.step_range_end
7036 && tp->control.step_resume_breakpoint == NULL)
7037 || tp->control.trap_expected
7038 || tp->stepped_breakpoint
7039 || bpstat_should_step ());
7040 }
7041
7042 /* Inferior has stepped into a subroutine call with source code that
7043 we should not step over. Do step to the first line of code in
7044 it. */
7045
7046 static void
7047 handle_step_into_function (struct gdbarch *gdbarch,
7048 struct execution_control_state *ecs)
7049 {
7050 fill_in_stop_func (gdbarch, ecs);
7051
7052 compunit_symtab *cust
7053 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7054 if (cust != NULL && compunit_language (cust) != language_asm)
7055 ecs->stop_func_start
7056 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7057
7058 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7059 /* Use the step_resume_break to step until the end of the prologue,
7060 even if that involves jumps (as it seems to on the vax under
7061 4.2). */
7062 /* If the prologue ends in the middle of a source line, continue to
7063 the end of that source line (if it is still within the function).
7064 Otherwise, just go to end of prologue. */
7065 if (stop_func_sal.end
7066 && stop_func_sal.pc != ecs->stop_func_start
7067 && stop_func_sal.end < ecs->stop_func_end)
7068 ecs->stop_func_start = stop_func_sal.end;
7069
7070 /* Architectures which require breakpoint adjustment might not be able
7071 to place a breakpoint at the computed address. If so, the test
7072 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7073 ecs->stop_func_start to an address at which a breakpoint may be
7074 legitimately placed.
7075
7076 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7077 made, GDB will enter an infinite loop when stepping through
7078 optimized code consisting of VLIW instructions which contain
7079 subinstructions corresponding to different source lines. On
7080 FR-V, it's not permitted to place a breakpoint on any but the
7081 first subinstruction of a VLIW instruction. When a breakpoint is
7082 set, GDB will adjust the breakpoint address to the beginning of
7083 the VLIW instruction. Thus, we need to make the corresponding
7084 adjustment here when computing the stop address. */
7085
7086 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7087 {
7088 ecs->stop_func_start
7089 = gdbarch_adjust_breakpoint_address (gdbarch,
7090 ecs->stop_func_start);
7091 }
7092
7093 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7094 {
7095 /* We are already there: stop now. */
7096 end_stepping_range (ecs);
7097 return;
7098 }
7099 else
7100 {
7101 /* Put the step-breakpoint there and go until there. */
7102 symtab_and_line sr_sal;
7103 sr_sal.pc = ecs->stop_func_start;
7104 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7105 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7106
7107 /* Do not specify what the fp should be when we stop since on
7108 some machines the prologue is where the new fp value is
7109 established. */
7110 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7111
7112 /* And make sure stepping stops right away then. */
7113 ecs->event_thread->control.step_range_end
7114 = ecs->event_thread->control.step_range_start;
7115 }
7116 keep_going (ecs);
7117 }
7118
7119 /* Inferior has stepped backward into a subroutine call with source
7120 code that we should not step over. Do step to the beginning of the
7121 last line of code in it. */
7122
7123 static void
7124 handle_step_into_function_backward (struct gdbarch *gdbarch,
7125 struct execution_control_state *ecs)
7126 {
7127 struct compunit_symtab *cust;
7128 struct symtab_and_line stop_func_sal;
7129
7130 fill_in_stop_func (gdbarch, ecs);
7131
7132 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7133 if (cust != NULL && compunit_language (cust) != language_asm)
7134 ecs->stop_func_start
7135 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7136
7137 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7138
7139 /* OK, we're just going to keep stepping here. */
7140 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7141 {
7142 /* We're there already. Just stop stepping now. */
7143 end_stepping_range (ecs);
7144 }
7145 else
7146 {
7147 /* Else just reset the step range and keep going.
7148 No step-resume breakpoint, they don't work for
7149 epilogues, which can have multiple entry paths. */
7150 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7151 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7152 keep_going (ecs);
7153 }
7154 return;
7155 }
7156
7157 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7158 This is used to both functions and to skip over code. */
7159
7160 static void
7161 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7162 struct symtab_and_line sr_sal,
7163 struct frame_id sr_id,
7164 enum bptype sr_type)
7165 {
7166 /* There should never be more than one step-resume or longjmp-resume
7167 breakpoint per thread, so we should never be setting a new
7168 step_resume_breakpoint when one is already active. */
7169 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7170 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7171
7172 if (debug_infrun)
7173 fprintf_unfiltered (gdb_stdlog,
7174 "infrun: inserting step-resume breakpoint at %s\n",
7175 paddress (gdbarch, sr_sal.pc));
7176
7177 inferior_thread ()->control.step_resume_breakpoint
7178 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7179 }
7180
7181 void
7182 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7183 struct symtab_and_line sr_sal,
7184 struct frame_id sr_id)
7185 {
7186 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7187 sr_sal, sr_id,
7188 bp_step_resume);
7189 }
7190
7191 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7192 This is used to skip a potential signal handler.
7193
7194 This is called with the interrupted function's frame. The signal
7195 handler, when it returns, will resume the interrupted function at
7196 RETURN_FRAME.pc. */
7197
7198 static void
7199 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7200 {
7201 gdb_assert (return_frame != NULL);
7202
7203 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7204
7205 symtab_and_line sr_sal;
7206 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7207 sr_sal.section = find_pc_overlay (sr_sal.pc);
7208 sr_sal.pspace = get_frame_program_space (return_frame);
7209
7210 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7211 get_stack_frame_id (return_frame),
7212 bp_hp_step_resume);
7213 }
7214
7215 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7216 is used to skip a function after stepping into it (for "next" or if
7217 the called function has no debugging information).
7218
7219 The current function has almost always been reached by single
7220 stepping a call or return instruction. NEXT_FRAME belongs to the
7221 current function, and the breakpoint will be set at the caller's
7222 resume address.
7223
7224 This is a separate function rather than reusing
7225 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7226 get_prev_frame, which may stop prematurely (see the implementation
7227 of frame_unwind_caller_id for an example). */
7228
7229 static void
7230 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7231 {
7232 /* We shouldn't have gotten here if we don't know where the call site
7233 is. */
7234 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7235
7236 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7237
7238 symtab_and_line sr_sal;
7239 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7240 frame_unwind_caller_pc (next_frame));
7241 sr_sal.section = find_pc_overlay (sr_sal.pc);
7242 sr_sal.pspace = frame_unwind_program_space (next_frame);
7243
7244 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7245 frame_unwind_caller_id (next_frame));
7246 }
7247
7248 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7249 new breakpoint at the target of a jmp_buf. The handling of
7250 longjmp-resume uses the same mechanisms used for handling
7251 "step-resume" breakpoints. */
7252
7253 static void
7254 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7255 {
7256 /* There should never be more than one longjmp-resume breakpoint per
7257 thread, so we should never be setting a new
7258 longjmp_resume_breakpoint when one is already active. */
7259 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7260
7261 if (debug_infrun)
7262 fprintf_unfiltered (gdb_stdlog,
7263 "infrun: inserting longjmp-resume breakpoint at %s\n",
7264 paddress (gdbarch, pc));
7265
7266 inferior_thread ()->control.exception_resume_breakpoint =
7267 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7268 }
7269
7270 /* Insert an exception resume breakpoint. TP is the thread throwing
7271 the exception. The block B is the block of the unwinder debug hook
7272 function. FRAME is the frame corresponding to the call to this
7273 function. SYM is the symbol of the function argument holding the
7274 target PC of the exception. */
7275
7276 static void
7277 insert_exception_resume_breakpoint (struct thread_info *tp,
7278 const struct block *b,
7279 struct frame_info *frame,
7280 struct symbol *sym)
7281 {
7282 try
7283 {
7284 struct block_symbol vsym;
7285 struct value *value;
7286 CORE_ADDR handler;
7287 struct breakpoint *bp;
7288
7289 vsym = lookup_symbol_search_name (sym->search_name (),
7290 b, VAR_DOMAIN);
7291 value = read_var_value (vsym.symbol, vsym.block, frame);
7292 /* If the value was optimized out, revert to the old behavior. */
7293 if (! value_optimized_out (value))
7294 {
7295 handler = value_as_address (value);
7296
7297 if (debug_infrun)
7298 fprintf_unfiltered (gdb_stdlog,
7299 "infrun: exception resume at %lx\n",
7300 (unsigned long) handler);
7301
7302 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7303 handler,
7304 bp_exception_resume).release ();
7305
7306 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7307 frame = NULL;
7308
7309 bp->thread = tp->global_num;
7310 inferior_thread ()->control.exception_resume_breakpoint = bp;
7311 }
7312 }
7313 catch (const gdb_exception_error &e)
7314 {
7315 /* We want to ignore errors here. */
7316 }
7317 }
7318
7319 /* A helper for check_exception_resume that sets an
7320 exception-breakpoint based on a SystemTap probe. */
7321
7322 static void
7323 insert_exception_resume_from_probe (struct thread_info *tp,
7324 const struct bound_probe *probe,
7325 struct frame_info *frame)
7326 {
7327 struct value *arg_value;
7328 CORE_ADDR handler;
7329 struct breakpoint *bp;
7330
7331 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7332 if (!arg_value)
7333 return;
7334
7335 handler = value_as_address (arg_value);
7336
7337 if (debug_infrun)
7338 fprintf_unfiltered (gdb_stdlog,
7339 "infrun: exception resume at %s\n",
7340 paddress (get_objfile_arch (probe->objfile),
7341 handler));
7342
7343 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7344 handler, bp_exception_resume).release ();
7345 bp->thread = tp->global_num;
7346 inferior_thread ()->control.exception_resume_breakpoint = bp;
7347 }
7348
7349 /* This is called when an exception has been intercepted. Check to
7350 see whether the exception's destination is of interest, and if so,
7351 set an exception resume breakpoint there. */
7352
7353 static void
7354 check_exception_resume (struct execution_control_state *ecs,
7355 struct frame_info *frame)
7356 {
7357 struct bound_probe probe;
7358 struct symbol *func;
7359
7360 /* First see if this exception unwinding breakpoint was set via a
7361 SystemTap probe point. If so, the probe has two arguments: the
7362 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7363 set a breakpoint there. */
7364 probe = find_probe_by_pc (get_frame_pc (frame));
7365 if (probe.prob)
7366 {
7367 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7368 return;
7369 }
7370
7371 func = get_frame_function (frame);
7372 if (!func)
7373 return;
7374
7375 try
7376 {
7377 const struct block *b;
7378 struct block_iterator iter;
7379 struct symbol *sym;
7380 int argno = 0;
7381
7382 /* The exception breakpoint is a thread-specific breakpoint on
7383 the unwinder's debug hook, declared as:
7384
7385 void _Unwind_DebugHook (void *cfa, void *handler);
7386
7387 The CFA argument indicates the frame to which control is
7388 about to be transferred. HANDLER is the destination PC.
7389
7390 We ignore the CFA and set a temporary breakpoint at HANDLER.
7391 This is not extremely efficient but it avoids issues in gdb
7392 with computing the DWARF CFA, and it also works even in weird
7393 cases such as throwing an exception from inside a signal
7394 handler. */
7395
7396 b = SYMBOL_BLOCK_VALUE (func);
7397 ALL_BLOCK_SYMBOLS (b, iter, sym)
7398 {
7399 if (!SYMBOL_IS_ARGUMENT (sym))
7400 continue;
7401
7402 if (argno == 0)
7403 ++argno;
7404 else
7405 {
7406 insert_exception_resume_breakpoint (ecs->event_thread,
7407 b, frame, sym);
7408 break;
7409 }
7410 }
7411 }
7412 catch (const gdb_exception_error &e)
7413 {
7414 }
7415 }
7416
7417 static void
7418 stop_waiting (struct execution_control_state *ecs)
7419 {
7420 if (debug_infrun)
7421 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7422
7423 /* Let callers know we don't want to wait for the inferior anymore. */
7424 ecs->wait_some_more = 0;
7425
7426 /* If all-stop, but the target is always in non-stop mode, stop all
7427 threads now that we're presenting the stop to the user. */
7428 if (!non_stop && target_is_non_stop_p ())
7429 stop_all_threads ();
7430 }
7431
7432 /* Like keep_going, but passes the signal to the inferior, even if the
7433 signal is set to nopass. */
7434
7435 static void
7436 keep_going_pass_signal (struct execution_control_state *ecs)
7437 {
7438 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7439 gdb_assert (!ecs->event_thread->resumed);
7440
7441 /* Save the pc before execution, to compare with pc after stop. */
7442 ecs->event_thread->prev_pc
7443 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7444
7445 if (ecs->event_thread->control.trap_expected)
7446 {
7447 struct thread_info *tp = ecs->event_thread;
7448
7449 if (debug_infrun)
7450 fprintf_unfiltered (gdb_stdlog,
7451 "infrun: %s has trap_expected set, "
7452 "resuming to collect trap\n",
7453 target_pid_to_str (tp->ptid).c_str ());
7454
7455 /* We haven't yet gotten our trap, and either: intercepted a
7456 non-signal event (e.g., a fork); or took a signal which we
7457 are supposed to pass through to the inferior. Simply
7458 continue. */
7459 resume (ecs->event_thread->suspend.stop_signal);
7460 }
7461 else if (step_over_info_valid_p ())
7462 {
7463 /* Another thread is stepping over a breakpoint in-line. If
7464 this thread needs a step-over too, queue the request. In
7465 either case, this resume must be deferred for later. */
7466 struct thread_info *tp = ecs->event_thread;
7467
7468 if (ecs->hit_singlestep_breakpoint
7469 || thread_still_needs_step_over (tp))
7470 {
7471 if (debug_infrun)
7472 fprintf_unfiltered (gdb_stdlog,
7473 "infrun: step-over already in progress: "
7474 "step-over for %s deferred\n",
7475 target_pid_to_str (tp->ptid).c_str ());
7476 thread_step_over_chain_enqueue (tp);
7477 }
7478 else
7479 {
7480 if (debug_infrun)
7481 fprintf_unfiltered (gdb_stdlog,
7482 "infrun: step-over in progress: "
7483 "resume of %s deferred\n",
7484 target_pid_to_str (tp->ptid).c_str ());
7485 }
7486 }
7487 else
7488 {
7489 struct regcache *regcache = get_current_regcache ();
7490 int remove_bp;
7491 int remove_wps;
7492 step_over_what step_what;
7493
7494 /* Either the trap was not expected, but we are continuing
7495 anyway (if we got a signal, the user asked it be passed to
7496 the child)
7497 -- or --
7498 We got our expected trap, but decided we should resume from
7499 it.
7500
7501 We're going to run this baby now!
7502
7503 Note that insert_breakpoints won't try to re-insert
7504 already inserted breakpoints. Therefore, we don't
7505 care if breakpoints were already inserted, or not. */
7506
7507 /* If we need to step over a breakpoint, and we're not using
7508 displaced stepping to do so, insert all breakpoints
7509 (watchpoints, etc.) but the one we're stepping over, step one
7510 instruction, and then re-insert the breakpoint when that step
7511 is finished. */
7512
7513 step_what = thread_still_needs_step_over (ecs->event_thread);
7514
7515 remove_bp = (ecs->hit_singlestep_breakpoint
7516 || (step_what & STEP_OVER_BREAKPOINT));
7517 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7518
7519 /* We can't use displaced stepping if we need to step past a
7520 watchpoint. The instruction copied to the scratch pad would
7521 still trigger the watchpoint. */
7522 if (remove_bp
7523 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7524 {
7525 set_step_over_info (regcache->aspace (),
7526 regcache_read_pc (regcache), remove_wps,
7527 ecs->event_thread->global_num);
7528 }
7529 else if (remove_wps)
7530 set_step_over_info (NULL, 0, remove_wps, -1);
7531
7532 /* If we now need to do an in-line step-over, we need to stop
7533 all other threads. Note this must be done before
7534 insert_breakpoints below, because that removes the breakpoint
7535 we're about to step over, otherwise other threads could miss
7536 it. */
7537 if (step_over_info_valid_p () && target_is_non_stop_p ())
7538 stop_all_threads ();
7539
7540 /* Stop stepping if inserting breakpoints fails. */
7541 try
7542 {
7543 insert_breakpoints ();
7544 }
7545 catch (const gdb_exception_error &e)
7546 {
7547 exception_print (gdb_stderr, e);
7548 stop_waiting (ecs);
7549 clear_step_over_info ();
7550 return;
7551 }
7552
7553 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7554
7555 resume (ecs->event_thread->suspend.stop_signal);
7556 }
7557
7558 prepare_to_wait (ecs);
7559 }
7560
7561 /* Called when we should continue running the inferior, because the
7562 current event doesn't cause a user visible stop. This does the
7563 resuming part; waiting for the next event is done elsewhere. */
7564
7565 static void
7566 keep_going (struct execution_control_state *ecs)
7567 {
7568 if (ecs->event_thread->control.trap_expected
7569 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7570 ecs->event_thread->control.trap_expected = 0;
7571
7572 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7573 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7574 keep_going_pass_signal (ecs);
7575 }
7576
7577 /* This function normally comes after a resume, before
7578 handle_inferior_event exits. It takes care of any last bits of
7579 housekeeping, and sets the all-important wait_some_more flag. */
7580
7581 static void
7582 prepare_to_wait (struct execution_control_state *ecs)
7583 {
7584 if (debug_infrun)
7585 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7586
7587 ecs->wait_some_more = 1;
7588
7589 if (!target_is_async_p ())
7590 mark_infrun_async_event_handler ();
7591 }
7592
7593 /* We are done with the step range of a step/next/si/ni command.
7594 Called once for each n of a "step n" operation. */
7595
7596 static void
7597 end_stepping_range (struct execution_control_state *ecs)
7598 {
7599 ecs->event_thread->control.stop_step = 1;
7600 stop_waiting (ecs);
7601 }
7602
7603 /* Several print_*_reason functions to print why the inferior has stopped.
7604 We always print something when the inferior exits, or receives a signal.
7605 The rest of the cases are dealt with later on in normal_stop and
7606 print_it_typical. Ideally there should be a call to one of these
7607 print_*_reason functions functions from handle_inferior_event each time
7608 stop_waiting is called.
7609
7610 Note that we don't call these directly, instead we delegate that to
7611 the interpreters, through observers. Interpreters then call these
7612 with whatever uiout is right. */
7613
7614 void
7615 print_end_stepping_range_reason (struct ui_out *uiout)
7616 {
7617 /* For CLI-like interpreters, print nothing. */
7618
7619 if (uiout->is_mi_like_p ())
7620 {
7621 uiout->field_string ("reason",
7622 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7623 }
7624 }
7625
7626 void
7627 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7628 {
7629 annotate_signalled ();
7630 if (uiout->is_mi_like_p ())
7631 uiout->field_string
7632 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7633 uiout->text ("\nProgram terminated with signal ");
7634 annotate_signal_name ();
7635 uiout->field_string ("signal-name",
7636 gdb_signal_to_name (siggnal));
7637 annotate_signal_name_end ();
7638 uiout->text (", ");
7639 annotate_signal_string ();
7640 uiout->field_string ("signal-meaning",
7641 gdb_signal_to_string (siggnal));
7642 annotate_signal_string_end ();
7643 uiout->text (".\n");
7644 uiout->text ("The program no longer exists.\n");
7645 }
7646
7647 void
7648 print_exited_reason (struct ui_out *uiout, int exitstatus)
7649 {
7650 struct inferior *inf = current_inferior ();
7651 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7652
7653 annotate_exited (exitstatus);
7654 if (exitstatus)
7655 {
7656 if (uiout->is_mi_like_p ())
7657 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7658 std::string exit_code_str
7659 = string_printf ("0%o", (unsigned int) exitstatus);
7660 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7661 plongest (inf->num), pidstr.c_str (),
7662 string_field ("exit-code", exit_code_str.c_str ()));
7663 }
7664 else
7665 {
7666 if (uiout->is_mi_like_p ())
7667 uiout->field_string
7668 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7669 uiout->message ("[Inferior %s (%s) exited normally]\n",
7670 plongest (inf->num), pidstr.c_str ());
7671 }
7672 }
7673
7674 /* Some targets/architectures can do extra processing/display of
7675 segmentation faults. E.g., Intel MPX boundary faults.
7676 Call the architecture dependent function to handle the fault. */
7677
7678 static void
7679 handle_segmentation_fault (struct ui_out *uiout)
7680 {
7681 struct regcache *regcache = get_current_regcache ();
7682 struct gdbarch *gdbarch = regcache->arch ();
7683
7684 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7685 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7686 }
7687
7688 void
7689 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7690 {
7691 struct thread_info *thr = inferior_thread ();
7692
7693 annotate_signal ();
7694
7695 if (uiout->is_mi_like_p ())
7696 ;
7697 else if (show_thread_that_caused_stop ())
7698 {
7699 const char *name;
7700
7701 uiout->text ("\nThread ");
7702 uiout->field_string ("thread-id", print_thread_id (thr));
7703
7704 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7705 if (name != NULL)
7706 {
7707 uiout->text (" \"");
7708 uiout->field_string ("name", name);
7709 uiout->text ("\"");
7710 }
7711 }
7712 else
7713 uiout->text ("\nProgram");
7714
7715 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7716 uiout->text (" stopped");
7717 else
7718 {
7719 uiout->text (" received signal ");
7720 annotate_signal_name ();
7721 if (uiout->is_mi_like_p ())
7722 uiout->field_string
7723 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7724 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7725 annotate_signal_name_end ();
7726 uiout->text (", ");
7727 annotate_signal_string ();
7728 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7729
7730 if (siggnal == GDB_SIGNAL_SEGV)
7731 handle_segmentation_fault (uiout);
7732
7733 annotate_signal_string_end ();
7734 }
7735 uiout->text (".\n");
7736 }
7737
7738 void
7739 print_no_history_reason (struct ui_out *uiout)
7740 {
7741 uiout->text ("\nNo more reverse-execution history.\n");
7742 }
7743
7744 /* Print current location without a level number, if we have changed
7745 functions or hit a breakpoint. Print source line if we have one.
7746 bpstat_print contains the logic deciding in detail what to print,
7747 based on the event(s) that just occurred. */
7748
7749 static void
7750 print_stop_location (struct target_waitstatus *ws)
7751 {
7752 int bpstat_ret;
7753 enum print_what source_flag;
7754 int do_frame_printing = 1;
7755 struct thread_info *tp = inferior_thread ();
7756
7757 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7758 switch (bpstat_ret)
7759 {
7760 case PRINT_UNKNOWN:
7761 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7762 should) carry around the function and does (or should) use
7763 that when doing a frame comparison. */
7764 if (tp->control.stop_step
7765 && frame_id_eq (tp->control.step_frame_id,
7766 get_frame_id (get_current_frame ()))
7767 && (tp->control.step_start_function
7768 == find_pc_function (tp->suspend.stop_pc)))
7769 {
7770 /* Finished step, just print source line. */
7771 source_flag = SRC_LINE;
7772 }
7773 else
7774 {
7775 /* Print location and source line. */
7776 source_flag = SRC_AND_LOC;
7777 }
7778 break;
7779 case PRINT_SRC_AND_LOC:
7780 /* Print location and source line. */
7781 source_flag = SRC_AND_LOC;
7782 break;
7783 case PRINT_SRC_ONLY:
7784 source_flag = SRC_LINE;
7785 break;
7786 case PRINT_NOTHING:
7787 /* Something bogus. */
7788 source_flag = SRC_LINE;
7789 do_frame_printing = 0;
7790 break;
7791 default:
7792 internal_error (__FILE__, __LINE__, _("Unknown value."));
7793 }
7794
7795 /* The behavior of this routine with respect to the source
7796 flag is:
7797 SRC_LINE: Print only source line
7798 LOCATION: Print only location
7799 SRC_AND_LOC: Print location and source line. */
7800 if (do_frame_printing)
7801 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7802 }
7803
7804 /* See infrun.h. */
7805
7806 void
7807 print_stop_event (struct ui_out *uiout, bool displays)
7808 {
7809 struct target_waitstatus last;
7810 ptid_t last_ptid;
7811 struct thread_info *tp;
7812
7813 get_last_target_status (&last_ptid, &last);
7814
7815 {
7816 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7817
7818 print_stop_location (&last);
7819
7820 /* Display the auto-display expressions. */
7821 if (displays)
7822 do_displays ();
7823 }
7824
7825 tp = inferior_thread ();
7826 if (tp->thread_fsm != NULL
7827 && tp->thread_fsm->finished_p ())
7828 {
7829 struct return_value_info *rv;
7830
7831 rv = tp->thread_fsm->return_value ();
7832 if (rv != NULL)
7833 print_return_value (uiout, rv);
7834 }
7835 }
7836
7837 /* See infrun.h. */
7838
7839 void
7840 maybe_remove_breakpoints (void)
7841 {
7842 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7843 {
7844 if (remove_breakpoints ())
7845 {
7846 target_terminal::ours_for_output ();
7847 printf_filtered (_("Cannot remove breakpoints because "
7848 "program is no longer writable.\nFurther "
7849 "execution is probably impossible.\n"));
7850 }
7851 }
7852 }
7853
7854 /* The execution context that just caused a normal stop. */
7855
7856 struct stop_context
7857 {
7858 stop_context ();
7859 ~stop_context ();
7860
7861 DISABLE_COPY_AND_ASSIGN (stop_context);
7862
7863 bool changed () const;
7864
7865 /* The stop ID. */
7866 ULONGEST stop_id;
7867
7868 /* The event PTID. */
7869
7870 ptid_t ptid;
7871
7872 /* If stopp for a thread event, this is the thread that caused the
7873 stop. */
7874 struct thread_info *thread;
7875
7876 /* The inferior that caused the stop. */
7877 int inf_num;
7878 };
7879
7880 /* Initializes a new stop context. If stopped for a thread event, this
7881 takes a strong reference to the thread. */
7882
7883 stop_context::stop_context ()
7884 {
7885 stop_id = get_stop_id ();
7886 ptid = inferior_ptid;
7887 inf_num = current_inferior ()->num;
7888
7889 if (inferior_ptid != null_ptid)
7890 {
7891 /* Take a strong reference so that the thread can't be deleted
7892 yet. */
7893 thread = inferior_thread ();
7894 thread->incref ();
7895 }
7896 else
7897 thread = NULL;
7898 }
7899
7900 /* Release a stop context previously created with save_stop_context.
7901 Releases the strong reference to the thread as well. */
7902
7903 stop_context::~stop_context ()
7904 {
7905 if (thread != NULL)
7906 thread->decref ();
7907 }
7908
7909 /* Return true if the current context no longer matches the saved stop
7910 context. */
7911
7912 bool
7913 stop_context::changed () const
7914 {
7915 if (ptid != inferior_ptid)
7916 return true;
7917 if (inf_num != current_inferior ()->num)
7918 return true;
7919 if (thread != NULL && thread->state != THREAD_STOPPED)
7920 return true;
7921 if (get_stop_id () != stop_id)
7922 return true;
7923 return false;
7924 }
7925
7926 /* See infrun.h. */
7927
7928 int
7929 normal_stop (void)
7930 {
7931 struct target_waitstatus last;
7932 ptid_t last_ptid;
7933
7934 get_last_target_status (&last_ptid, &last);
7935
7936 new_stop_id ();
7937
7938 /* If an exception is thrown from this point on, make sure to
7939 propagate GDB's knowledge of the executing state to the
7940 frontend/user running state. A QUIT is an easy exception to see
7941 here, so do this before any filtered output. */
7942
7943 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
7944
7945 if (!non_stop)
7946 maybe_finish_thread_state.emplace (minus_one_ptid);
7947 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7948 || last.kind == TARGET_WAITKIND_EXITED)
7949 {
7950 /* On some targets, we may still have live threads in the
7951 inferior when we get a process exit event. E.g., for
7952 "checkpoint", when the current checkpoint/fork exits,
7953 linux-fork.c automatically switches to another fork from
7954 within target_mourn_inferior. */
7955 if (inferior_ptid != null_ptid)
7956 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
7957 }
7958 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
7959 maybe_finish_thread_state.emplace (inferior_ptid);
7960
7961 /* As we're presenting a stop, and potentially removing breakpoints,
7962 update the thread list so we can tell whether there are threads
7963 running on the target. With target remote, for example, we can
7964 only learn about new threads when we explicitly update the thread
7965 list. Do this before notifying the interpreters about signal
7966 stops, end of stepping ranges, etc., so that the "new thread"
7967 output is emitted before e.g., "Program received signal FOO",
7968 instead of after. */
7969 update_thread_list ();
7970
7971 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
7972 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
7973
7974 /* As with the notification of thread events, we want to delay
7975 notifying the user that we've switched thread context until
7976 the inferior actually stops.
7977
7978 There's no point in saying anything if the inferior has exited.
7979 Note that SIGNALLED here means "exited with a signal", not
7980 "received a signal".
7981
7982 Also skip saying anything in non-stop mode. In that mode, as we
7983 don't want GDB to switch threads behind the user's back, to avoid
7984 races where the user is typing a command to apply to thread x,
7985 but GDB switches to thread y before the user finishes entering
7986 the command, fetch_inferior_event installs a cleanup to restore
7987 the current thread back to the thread the user had selected right
7988 after this event is handled, so we're not really switching, only
7989 informing of a stop. */
7990 if (!non_stop
7991 && previous_inferior_ptid != inferior_ptid
7992 && target_has_execution
7993 && last.kind != TARGET_WAITKIND_SIGNALLED
7994 && last.kind != TARGET_WAITKIND_EXITED
7995 && last.kind != TARGET_WAITKIND_NO_RESUMED)
7996 {
7997 SWITCH_THRU_ALL_UIS ()
7998 {
7999 target_terminal::ours_for_output ();
8000 printf_filtered (_("[Switching to %s]\n"),
8001 target_pid_to_str (inferior_ptid).c_str ());
8002 annotate_thread_changed ();
8003 }
8004 previous_inferior_ptid = inferior_ptid;
8005 }
8006
8007 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8008 {
8009 SWITCH_THRU_ALL_UIS ()
8010 if (current_ui->prompt_state == PROMPT_BLOCKED)
8011 {
8012 target_terminal::ours_for_output ();
8013 printf_filtered (_("No unwaited-for children left.\n"));
8014 }
8015 }
8016
8017 /* Note: this depends on the update_thread_list call above. */
8018 maybe_remove_breakpoints ();
8019
8020 /* If an auto-display called a function and that got a signal,
8021 delete that auto-display to avoid an infinite recursion. */
8022
8023 if (stopped_by_random_signal)
8024 disable_current_display ();
8025
8026 SWITCH_THRU_ALL_UIS ()
8027 {
8028 async_enable_stdin ();
8029 }
8030
8031 /* Let the user/frontend see the threads as stopped. */
8032 maybe_finish_thread_state.reset ();
8033
8034 /* Select innermost stack frame - i.e., current frame is frame 0,
8035 and current location is based on that. Handle the case where the
8036 dummy call is returning after being stopped. E.g. the dummy call
8037 previously hit a breakpoint. (If the dummy call returns
8038 normally, we won't reach here.) Do this before the stop hook is
8039 run, so that it doesn't get to see the temporary dummy frame,
8040 which is not where we'll present the stop. */
8041 if (has_stack_frames ())
8042 {
8043 if (stop_stack_dummy == STOP_STACK_DUMMY)
8044 {
8045 /* Pop the empty frame that contains the stack dummy. This
8046 also restores inferior state prior to the call (struct
8047 infcall_suspend_state). */
8048 struct frame_info *frame = get_current_frame ();
8049
8050 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8051 frame_pop (frame);
8052 /* frame_pop calls reinit_frame_cache as the last thing it
8053 does which means there's now no selected frame. */
8054 }
8055
8056 select_frame (get_current_frame ());
8057
8058 /* Set the current source location. */
8059 set_current_sal_from_frame (get_current_frame ());
8060 }
8061
8062 /* Look up the hook_stop and run it (CLI internally handles problem
8063 of stop_command's pre-hook not existing). */
8064 if (stop_command != NULL)
8065 {
8066 stop_context saved_context;
8067
8068 try
8069 {
8070 execute_cmd_pre_hook (stop_command);
8071 }
8072 catch (const gdb_exception &ex)
8073 {
8074 exception_fprintf (gdb_stderr, ex,
8075 "Error while running hook_stop:\n");
8076 }
8077
8078 /* If the stop hook resumes the target, then there's no point in
8079 trying to notify about the previous stop; its context is
8080 gone. Likewise if the command switches thread or inferior --
8081 the observers would print a stop for the wrong
8082 thread/inferior. */
8083 if (saved_context.changed ())
8084 return 1;
8085 }
8086
8087 /* Notify observers about the stop. This is where the interpreters
8088 print the stop event. */
8089 if (inferior_ptid != null_ptid)
8090 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8091 stop_print_frame);
8092 else
8093 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8094
8095 annotate_stopped ();
8096
8097 if (target_has_execution)
8098 {
8099 if (last.kind != TARGET_WAITKIND_SIGNALLED
8100 && last.kind != TARGET_WAITKIND_EXITED
8101 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8102 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8103 Delete any breakpoint that is to be deleted at the next stop. */
8104 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8105 }
8106
8107 /* Try to get rid of automatically added inferiors that are no
8108 longer needed. Keeping those around slows down things linearly.
8109 Note that this never removes the current inferior. */
8110 prune_inferiors ();
8111
8112 return 0;
8113 }
8114 \f
8115 int
8116 signal_stop_state (int signo)
8117 {
8118 return signal_stop[signo];
8119 }
8120
8121 int
8122 signal_print_state (int signo)
8123 {
8124 return signal_print[signo];
8125 }
8126
8127 int
8128 signal_pass_state (int signo)
8129 {
8130 return signal_program[signo];
8131 }
8132
8133 static void
8134 signal_cache_update (int signo)
8135 {
8136 if (signo == -1)
8137 {
8138 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8139 signal_cache_update (signo);
8140
8141 return;
8142 }
8143
8144 signal_pass[signo] = (signal_stop[signo] == 0
8145 && signal_print[signo] == 0
8146 && signal_program[signo] == 1
8147 && signal_catch[signo] == 0);
8148 }
8149
8150 int
8151 signal_stop_update (int signo, int state)
8152 {
8153 int ret = signal_stop[signo];
8154
8155 signal_stop[signo] = state;
8156 signal_cache_update (signo);
8157 return ret;
8158 }
8159
8160 int
8161 signal_print_update (int signo, int state)
8162 {
8163 int ret = signal_print[signo];
8164
8165 signal_print[signo] = state;
8166 signal_cache_update (signo);
8167 return ret;
8168 }
8169
8170 int
8171 signal_pass_update (int signo, int state)
8172 {
8173 int ret = signal_program[signo];
8174
8175 signal_program[signo] = state;
8176 signal_cache_update (signo);
8177 return ret;
8178 }
8179
8180 /* Update the global 'signal_catch' from INFO and notify the
8181 target. */
8182
8183 void
8184 signal_catch_update (const unsigned int *info)
8185 {
8186 int i;
8187
8188 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8189 signal_catch[i] = info[i] > 0;
8190 signal_cache_update (-1);
8191 target_pass_signals (signal_pass);
8192 }
8193
8194 static void
8195 sig_print_header (void)
8196 {
8197 printf_filtered (_("Signal Stop\tPrint\tPass "
8198 "to program\tDescription\n"));
8199 }
8200
8201 static void
8202 sig_print_info (enum gdb_signal oursig)
8203 {
8204 const char *name = gdb_signal_to_name (oursig);
8205 int name_padding = 13 - strlen (name);
8206
8207 if (name_padding <= 0)
8208 name_padding = 0;
8209
8210 printf_filtered ("%s", name);
8211 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8212 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8213 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8214 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8215 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8216 }
8217
8218 /* Specify how various signals in the inferior should be handled. */
8219
8220 static void
8221 handle_command (const char *args, int from_tty)
8222 {
8223 int digits, wordlen;
8224 int sigfirst, siglast;
8225 enum gdb_signal oursig;
8226 int allsigs;
8227
8228 if (args == NULL)
8229 {
8230 error_no_arg (_("signal to handle"));
8231 }
8232
8233 /* Allocate and zero an array of flags for which signals to handle. */
8234
8235 const size_t nsigs = GDB_SIGNAL_LAST;
8236 unsigned char sigs[nsigs] {};
8237
8238 /* Break the command line up into args. */
8239
8240 gdb_argv built_argv (args);
8241
8242 /* Walk through the args, looking for signal oursigs, signal names, and
8243 actions. Signal numbers and signal names may be interspersed with
8244 actions, with the actions being performed for all signals cumulatively
8245 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8246
8247 for (char *arg : built_argv)
8248 {
8249 wordlen = strlen (arg);
8250 for (digits = 0; isdigit (arg[digits]); digits++)
8251 {;
8252 }
8253 allsigs = 0;
8254 sigfirst = siglast = -1;
8255
8256 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8257 {
8258 /* Apply action to all signals except those used by the
8259 debugger. Silently skip those. */
8260 allsigs = 1;
8261 sigfirst = 0;
8262 siglast = nsigs - 1;
8263 }
8264 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8265 {
8266 SET_SIGS (nsigs, sigs, signal_stop);
8267 SET_SIGS (nsigs, sigs, signal_print);
8268 }
8269 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8270 {
8271 UNSET_SIGS (nsigs, sigs, signal_program);
8272 }
8273 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8274 {
8275 SET_SIGS (nsigs, sigs, signal_print);
8276 }
8277 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8278 {
8279 SET_SIGS (nsigs, sigs, signal_program);
8280 }
8281 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8282 {
8283 UNSET_SIGS (nsigs, sigs, signal_stop);
8284 }
8285 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8286 {
8287 SET_SIGS (nsigs, sigs, signal_program);
8288 }
8289 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8290 {
8291 UNSET_SIGS (nsigs, sigs, signal_print);
8292 UNSET_SIGS (nsigs, sigs, signal_stop);
8293 }
8294 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8295 {
8296 UNSET_SIGS (nsigs, sigs, signal_program);
8297 }
8298 else if (digits > 0)
8299 {
8300 /* It is numeric. The numeric signal refers to our own
8301 internal signal numbering from target.h, not to host/target
8302 signal number. This is a feature; users really should be
8303 using symbolic names anyway, and the common ones like
8304 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8305
8306 sigfirst = siglast = (int)
8307 gdb_signal_from_command (atoi (arg));
8308 if (arg[digits] == '-')
8309 {
8310 siglast = (int)
8311 gdb_signal_from_command (atoi (arg + digits + 1));
8312 }
8313 if (sigfirst > siglast)
8314 {
8315 /* Bet he didn't figure we'd think of this case... */
8316 std::swap (sigfirst, siglast);
8317 }
8318 }
8319 else
8320 {
8321 oursig = gdb_signal_from_name (arg);
8322 if (oursig != GDB_SIGNAL_UNKNOWN)
8323 {
8324 sigfirst = siglast = (int) oursig;
8325 }
8326 else
8327 {
8328 /* Not a number and not a recognized flag word => complain. */
8329 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8330 }
8331 }
8332
8333 /* If any signal numbers or symbol names were found, set flags for
8334 which signals to apply actions to. */
8335
8336 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8337 {
8338 switch ((enum gdb_signal) signum)
8339 {
8340 case GDB_SIGNAL_TRAP:
8341 case GDB_SIGNAL_INT:
8342 if (!allsigs && !sigs[signum])
8343 {
8344 if (query (_("%s is used by the debugger.\n\
8345 Are you sure you want to change it? "),
8346 gdb_signal_to_name ((enum gdb_signal) signum)))
8347 {
8348 sigs[signum] = 1;
8349 }
8350 else
8351 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8352 }
8353 break;
8354 case GDB_SIGNAL_0:
8355 case GDB_SIGNAL_DEFAULT:
8356 case GDB_SIGNAL_UNKNOWN:
8357 /* Make sure that "all" doesn't print these. */
8358 break;
8359 default:
8360 sigs[signum] = 1;
8361 break;
8362 }
8363 }
8364 }
8365
8366 for (int signum = 0; signum < nsigs; signum++)
8367 if (sigs[signum])
8368 {
8369 signal_cache_update (-1);
8370 target_pass_signals (signal_pass);
8371 target_program_signals (signal_program);
8372
8373 if (from_tty)
8374 {
8375 /* Show the results. */
8376 sig_print_header ();
8377 for (; signum < nsigs; signum++)
8378 if (sigs[signum])
8379 sig_print_info ((enum gdb_signal) signum);
8380 }
8381
8382 break;
8383 }
8384 }
8385
8386 /* Complete the "handle" command. */
8387
8388 static void
8389 handle_completer (struct cmd_list_element *ignore,
8390 completion_tracker &tracker,
8391 const char *text, const char *word)
8392 {
8393 static const char * const keywords[] =
8394 {
8395 "all",
8396 "stop",
8397 "ignore",
8398 "print",
8399 "pass",
8400 "nostop",
8401 "noignore",
8402 "noprint",
8403 "nopass",
8404 NULL,
8405 };
8406
8407 signal_completer (ignore, tracker, text, word);
8408 complete_on_enum (tracker, keywords, word, word);
8409 }
8410
8411 enum gdb_signal
8412 gdb_signal_from_command (int num)
8413 {
8414 if (num >= 1 && num <= 15)
8415 return (enum gdb_signal) num;
8416 error (_("Only signals 1-15 are valid as numeric signals.\n\
8417 Use \"info signals\" for a list of symbolic signals."));
8418 }
8419
8420 /* Print current contents of the tables set by the handle command.
8421 It is possible we should just be printing signals actually used
8422 by the current target (but for things to work right when switching
8423 targets, all signals should be in the signal tables). */
8424
8425 static void
8426 info_signals_command (const char *signum_exp, int from_tty)
8427 {
8428 enum gdb_signal oursig;
8429
8430 sig_print_header ();
8431
8432 if (signum_exp)
8433 {
8434 /* First see if this is a symbol name. */
8435 oursig = gdb_signal_from_name (signum_exp);
8436 if (oursig == GDB_SIGNAL_UNKNOWN)
8437 {
8438 /* No, try numeric. */
8439 oursig =
8440 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8441 }
8442 sig_print_info (oursig);
8443 return;
8444 }
8445
8446 printf_filtered ("\n");
8447 /* These ugly casts brought to you by the native VAX compiler. */
8448 for (oursig = GDB_SIGNAL_FIRST;
8449 (int) oursig < (int) GDB_SIGNAL_LAST;
8450 oursig = (enum gdb_signal) ((int) oursig + 1))
8451 {
8452 QUIT;
8453
8454 if (oursig != GDB_SIGNAL_UNKNOWN
8455 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8456 sig_print_info (oursig);
8457 }
8458
8459 printf_filtered (_("\nUse the \"handle\" command "
8460 "to change these tables.\n"));
8461 }
8462
8463 /* The $_siginfo convenience variable is a bit special. We don't know
8464 for sure the type of the value until we actually have a chance to
8465 fetch the data. The type can change depending on gdbarch, so it is
8466 also dependent on which thread you have selected.
8467
8468 1. making $_siginfo be an internalvar that creates a new value on
8469 access.
8470
8471 2. making the value of $_siginfo be an lval_computed value. */
8472
8473 /* This function implements the lval_computed support for reading a
8474 $_siginfo value. */
8475
8476 static void
8477 siginfo_value_read (struct value *v)
8478 {
8479 LONGEST transferred;
8480
8481 /* If we can access registers, so can we access $_siginfo. Likewise
8482 vice versa. */
8483 validate_registers_access ();
8484
8485 transferred =
8486 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8487 NULL,
8488 value_contents_all_raw (v),
8489 value_offset (v),
8490 TYPE_LENGTH (value_type (v)));
8491
8492 if (transferred != TYPE_LENGTH (value_type (v)))
8493 error (_("Unable to read siginfo"));
8494 }
8495
8496 /* This function implements the lval_computed support for writing a
8497 $_siginfo value. */
8498
8499 static void
8500 siginfo_value_write (struct value *v, struct value *fromval)
8501 {
8502 LONGEST transferred;
8503
8504 /* If we can access registers, so can we access $_siginfo. Likewise
8505 vice versa. */
8506 validate_registers_access ();
8507
8508 transferred = target_write (current_top_target (),
8509 TARGET_OBJECT_SIGNAL_INFO,
8510 NULL,
8511 value_contents_all_raw (fromval),
8512 value_offset (v),
8513 TYPE_LENGTH (value_type (fromval)));
8514
8515 if (transferred != TYPE_LENGTH (value_type (fromval)))
8516 error (_("Unable to write siginfo"));
8517 }
8518
8519 static const struct lval_funcs siginfo_value_funcs =
8520 {
8521 siginfo_value_read,
8522 siginfo_value_write
8523 };
8524
8525 /* Return a new value with the correct type for the siginfo object of
8526 the current thread using architecture GDBARCH. Return a void value
8527 if there's no object available. */
8528
8529 static struct value *
8530 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8531 void *ignore)
8532 {
8533 if (target_has_stack
8534 && inferior_ptid != null_ptid
8535 && gdbarch_get_siginfo_type_p (gdbarch))
8536 {
8537 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8538
8539 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8540 }
8541
8542 return allocate_value (builtin_type (gdbarch)->builtin_void);
8543 }
8544
8545 \f
8546 /* infcall_suspend_state contains state about the program itself like its
8547 registers and any signal it received when it last stopped.
8548 This state must be restored regardless of how the inferior function call
8549 ends (either successfully, or after it hits a breakpoint or signal)
8550 if the program is to properly continue where it left off. */
8551
8552 class infcall_suspend_state
8553 {
8554 public:
8555 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8556 once the inferior function call has finished. */
8557 infcall_suspend_state (struct gdbarch *gdbarch,
8558 const struct thread_info *tp,
8559 struct regcache *regcache)
8560 : m_thread_suspend (tp->suspend),
8561 m_registers (new readonly_detached_regcache (*regcache))
8562 {
8563 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8564
8565 if (gdbarch_get_siginfo_type_p (gdbarch))
8566 {
8567 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8568 size_t len = TYPE_LENGTH (type);
8569
8570 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8571
8572 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8573 siginfo_data.get (), 0, len) != len)
8574 {
8575 /* Errors ignored. */
8576 siginfo_data.reset (nullptr);
8577 }
8578 }
8579
8580 if (siginfo_data)
8581 {
8582 m_siginfo_gdbarch = gdbarch;
8583 m_siginfo_data = std::move (siginfo_data);
8584 }
8585 }
8586
8587 /* Return a pointer to the stored register state. */
8588
8589 readonly_detached_regcache *registers () const
8590 {
8591 return m_registers.get ();
8592 }
8593
8594 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8595
8596 void restore (struct gdbarch *gdbarch,
8597 struct thread_info *tp,
8598 struct regcache *regcache) const
8599 {
8600 tp->suspend = m_thread_suspend;
8601
8602 if (m_siginfo_gdbarch == gdbarch)
8603 {
8604 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8605
8606 /* Errors ignored. */
8607 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8608 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8609 }
8610
8611 /* The inferior can be gone if the user types "print exit(0)"
8612 (and perhaps other times). */
8613 if (target_has_execution)
8614 /* NB: The register write goes through to the target. */
8615 regcache->restore (registers ());
8616 }
8617
8618 private:
8619 /* How the current thread stopped before the inferior function call was
8620 executed. */
8621 struct thread_suspend_state m_thread_suspend;
8622
8623 /* The registers before the inferior function call was executed. */
8624 std::unique_ptr<readonly_detached_regcache> m_registers;
8625
8626 /* Format of SIGINFO_DATA or NULL if it is not present. */
8627 struct gdbarch *m_siginfo_gdbarch = nullptr;
8628
8629 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8630 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8631 content would be invalid. */
8632 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8633 };
8634
8635 infcall_suspend_state_up
8636 save_infcall_suspend_state ()
8637 {
8638 struct thread_info *tp = inferior_thread ();
8639 struct regcache *regcache = get_current_regcache ();
8640 struct gdbarch *gdbarch = regcache->arch ();
8641
8642 infcall_suspend_state_up inf_state
8643 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8644
8645 /* Having saved the current state, adjust the thread state, discarding
8646 any stop signal information. The stop signal is not useful when
8647 starting an inferior function call, and run_inferior_call will not use
8648 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8649 tp->suspend.stop_signal = GDB_SIGNAL_0;
8650
8651 return inf_state;
8652 }
8653
8654 /* Restore inferior session state to INF_STATE. */
8655
8656 void
8657 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8658 {
8659 struct thread_info *tp = inferior_thread ();
8660 struct regcache *regcache = get_current_regcache ();
8661 struct gdbarch *gdbarch = regcache->arch ();
8662
8663 inf_state->restore (gdbarch, tp, regcache);
8664 discard_infcall_suspend_state (inf_state);
8665 }
8666
8667 void
8668 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8669 {
8670 delete inf_state;
8671 }
8672
8673 readonly_detached_regcache *
8674 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8675 {
8676 return inf_state->registers ();
8677 }
8678
8679 /* infcall_control_state contains state regarding gdb's control of the
8680 inferior itself like stepping control. It also contains session state like
8681 the user's currently selected frame. */
8682
8683 struct infcall_control_state
8684 {
8685 struct thread_control_state thread_control;
8686 struct inferior_control_state inferior_control;
8687
8688 /* Other fields: */
8689 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8690 int stopped_by_random_signal = 0;
8691
8692 /* ID if the selected frame when the inferior function call was made. */
8693 struct frame_id selected_frame_id {};
8694 };
8695
8696 /* Save all of the information associated with the inferior<==>gdb
8697 connection. */
8698
8699 infcall_control_state_up
8700 save_infcall_control_state ()
8701 {
8702 infcall_control_state_up inf_status (new struct infcall_control_state);
8703 struct thread_info *tp = inferior_thread ();
8704 struct inferior *inf = current_inferior ();
8705
8706 inf_status->thread_control = tp->control;
8707 inf_status->inferior_control = inf->control;
8708
8709 tp->control.step_resume_breakpoint = NULL;
8710 tp->control.exception_resume_breakpoint = NULL;
8711
8712 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8713 chain. If caller's caller is walking the chain, they'll be happier if we
8714 hand them back the original chain when restore_infcall_control_state is
8715 called. */
8716 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8717
8718 /* Other fields: */
8719 inf_status->stop_stack_dummy = stop_stack_dummy;
8720 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8721
8722 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8723
8724 return inf_status;
8725 }
8726
8727 static void
8728 restore_selected_frame (const frame_id &fid)
8729 {
8730 frame_info *frame = frame_find_by_id (fid);
8731
8732 /* If inf_status->selected_frame_id is NULL, there was no previously
8733 selected frame. */
8734 if (frame == NULL)
8735 {
8736 warning (_("Unable to restore previously selected frame."));
8737 return;
8738 }
8739
8740 select_frame (frame);
8741 }
8742
8743 /* Restore inferior session state to INF_STATUS. */
8744
8745 void
8746 restore_infcall_control_state (struct infcall_control_state *inf_status)
8747 {
8748 struct thread_info *tp = inferior_thread ();
8749 struct inferior *inf = current_inferior ();
8750
8751 if (tp->control.step_resume_breakpoint)
8752 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8753
8754 if (tp->control.exception_resume_breakpoint)
8755 tp->control.exception_resume_breakpoint->disposition
8756 = disp_del_at_next_stop;
8757
8758 /* Handle the bpstat_copy of the chain. */
8759 bpstat_clear (&tp->control.stop_bpstat);
8760
8761 tp->control = inf_status->thread_control;
8762 inf->control = inf_status->inferior_control;
8763
8764 /* Other fields: */
8765 stop_stack_dummy = inf_status->stop_stack_dummy;
8766 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8767
8768 if (target_has_stack)
8769 {
8770 /* The point of the try/catch is that if the stack is clobbered,
8771 walking the stack might encounter a garbage pointer and
8772 error() trying to dereference it. */
8773 try
8774 {
8775 restore_selected_frame (inf_status->selected_frame_id);
8776 }
8777 catch (const gdb_exception_error &ex)
8778 {
8779 exception_fprintf (gdb_stderr, ex,
8780 "Unable to restore previously selected frame:\n");
8781 /* Error in restoring the selected frame. Select the
8782 innermost frame. */
8783 select_frame (get_current_frame ());
8784 }
8785 }
8786
8787 delete inf_status;
8788 }
8789
8790 void
8791 discard_infcall_control_state (struct infcall_control_state *inf_status)
8792 {
8793 if (inf_status->thread_control.step_resume_breakpoint)
8794 inf_status->thread_control.step_resume_breakpoint->disposition
8795 = disp_del_at_next_stop;
8796
8797 if (inf_status->thread_control.exception_resume_breakpoint)
8798 inf_status->thread_control.exception_resume_breakpoint->disposition
8799 = disp_del_at_next_stop;
8800
8801 /* See save_infcall_control_state for info on stop_bpstat. */
8802 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8803
8804 delete inf_status;
8805 }
8806 \f
8807 /* See infrun.h. */
8808
8809 void
8810 clear_exit_convenience_vars (void)
8811 {
8812 clear_internalvar (lookup_internalvar ("_exitsignal"));
8813 clear_internalvar (lookup_internalvar ("_exitcode"));
8814 }
8815 \f
8816
8817 /* User interface for reverse debugging:
8818 Set exec-direction / show exec-direction commands
8819 (returns error unless target implements to_set_exec_direction method). */
8820
8821 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8822 static const char exec_forward[] = "forward";
8823 static const char exec_reverse[] = "reverse";
8824 static const char *exec_direction = exec_forward;
8825 static const char *const exec_direction_names[] = {
8826 exec_forward,
8827 exec_reverse,
8828 NULL
8829 };
8830
8831 static void
8832 set_exec_direction_func (const char *args, int from_tty,
8833 struct cmd_list_element *cmd)
8834 {
8835 if (target_can_execute_reverse)
8836 {
8837 if (!strcmp (exec_direction, exec_forward))
8838 execution_direction = EXEC_FORWARD;
8839 else if (!strcmp (exec_direction, exec_reverse))
8840 execution_direction = EXEC_REVERSE;
8841 }
8842 else
8843 {
8844 exec_direction = exec_forward;
8845 error (_("Target does not support this operation."));
8846 }
8847 }
8848
8849 static void
8850 show_exec_direction_func (struct ui_file *out, int from_tty,
8851 struct cmd_list_element *cmd, const char *value)
8852 {
8853 switch (execution_direction) {
8854 case EXEC_FORWARD:
8855 fprintf_filtered (out, _("Forward.\n"));
8856 break;
8857 case EXEC_REVERSE:
8858 fprintf_filtered (out, _("Reverse.\n"));
8859 break;
8860 default:
8861 internal_error (__FILE__, __LINE__,
8862 _("bogus execution_direction value: %d"),
8863 (int) execution_direction);
8864 }
8865 }
8866
8867 static void
8868 show_schedule_multiple (struct ui_file *file, int from_tty,
8869 struct cmd_list_element *c, const char *value)
8870 {
8871 fprintf_filtered (file, _("Resuming the execution of threads "
8872 "of all processes is %s.\n"), value);
8873 }
8874
8875 /* Implementation of `siginfo' variable. */
8876
8877 static const struct internalvar_funcs siginfo_funcs =
8878 {
8879 siginfo_make_value,
8880 NULL,
8881 NULL
8882 };
8883
8884 /* Callback for infrun's target events source. This is marked when a
8885 thread has a pending status to process. */
8886
8887 static void
8888 infrun_async_inferior_event_handler (gdb_client_data data)
8889 {
8890 inferior_event_handler (INF_REG_EVENT, NULL);
8891 }
8892
8893 void
8894 _initialize_infrun (void)
8895 {
8896 struct cmd_list_element *c;
8897
8898 /* Register extra event sources in the event loop. */
8899 infrun_async_inferior_event_token
8900 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8901
8902 add_info ("signals", info_signals_command, _("\
8903 What debugger does when program gets various signals.\n\
8904 Specify a signal as argument to print info on that signal only."));
8905 add_info_alias ("handle", "signals", 0);
8906
8907 c = add_com ("handle", class_run, handle_command, _("\
8908 Specify how to handle signals.\n\
8909 Usage: handle SIGNAL [ACTIONS]\n\
8910 Args are signals and actions to apply to those signals.\n\
8911 If no actions are specified, the current settings for the specified signals\n\
8912 will be displayed instead.\n\
8913 \n\
8914 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8915 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8916 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8917 The special arg \"all\" is recognized to mean all signals except those\n\
8918 used by the debugger, typically SIGTRAP and SIGINT.\n\
8919 \n\
8920 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8921 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8922 Stop means reenter debugger if this signal happens (implies print).\n\
8923 Print means print a message if this signal happens.\n\
8924 Pass means let program see this signal; otherwise program doesn't know.\n\
8925 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8926 Pass and Stop may be combined.\n\
8927 \n\
8928 Multiple signals may be specified. Signal numbers and signal names\n\
8929 may be interspersed with actions, with the actions being performed for\n\
8930 all signals cumulatively specified."));
8931 set_cmd_completer (c, handle_completer);
8932
8933 if (!dbx_commands)
8934 stop_command = add_cmd ("stop", class_obscure,
8935 not_just_help_class_command, _("\
8936 There is no `stop' command, but you can set a hook on `stop'.\n\
8937 This allows you to set a list of commands to be run each time execution\n\
8938 of the program stops."), &cmdlist);
8939
8940 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8941 Set inferior debugging."), _("\
8942 Show inferior debugging."), _("\
8943 When non-zero, inferior specific debugging is enabled."),
8944 NULL,
8945 show_debug_infrun,
8946 &setdebuglist, &showdebuglist);
8947
8948 add_setshow_boolean_cmd ("displaced", class_maintenance,
8949 &debug_displaced, _("\
8950 Set displaced stepping debugging."), _("\
8951 Show displaced stepping debugging."), _("\
8952 When non-zero, displaced stepping specific debugging is enabled."),
8953 NULL,
8954 show_debug_displaced,
8955 &setdebuglist, &showdebuglist);
8956
8957 add_setshow_boolean_cmd ("non-stop", no_class,
8958 &non_stop_1, _("\
8959 Set whether gdb controls the inferior in non-stop mode."), _("\
8960 Show whether gdb controls the inferior in non-stop mode."), _("\
8961 When debugging a multi-threaded program and this setting is\n\
8962 off (the default, also called all-stop mode), when one thread stops\n\
8963 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
8964 all other threads in the program while you interact with the thread of\n\
8965 interest. When you continue or step a thread, you can allow the other\n\
8966 threads to run, or have them remain stopped, but while you inspect any\n\
8967 thread's state, all threads stop.\n\
8968 \n\
8969 In non-stop mode, when one thread stops, other threads can continue\n\
8970 to run freely. You'll be able to step each thread independently,\n\
8971 leave it stopped or free to run as needed."),
8972 set_non_stop,
8973 show_non_stop,
8974 &setlist,
8975 &showlist);
8976
8977 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
8978 {
8979 signal_stop[i] = 1;
8980 signal_print[i] = 1;
8981 signal_program[i] = 1;
8982 signal_catch[i] = 0;
8983 }
8984
8985 /* Signals caused by debugger's own actions should not be given to
8986 the program afterwards.
8987
8988 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
8989 explicitly specifies that it should be delivered to the target
8990 program. Typically, that would occur when a user is debugging a
8991 target monitor on a simulator: the target monitor sets a
8992 breakpoint; the simulator encounters this breakpoint and halts
8993 the simulation handing control to GDB; GDB, noting that the stop
8994 address doesn't map to any known breakpoint, returns control back
8995 to the simulator; the simulator then delivers the hardware
8996 equivalent of a GDB_SIGNAL_TRAP to the program being
8997 debugged. */
8998 signal_program[GDB_SIGNAL_TRAP] = 0;
8999 signal_program[GDB_SIGNAL_INT] = 0;
9000
9001 /* Signals that are not errors should not normally enter the debugger. */
9002 signal_stop[GDB_SIGNAL_ALRM] = 0;
9003 signal_print[GDB_SIGNAL_ALRM] = 0;
9004 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9005 signal_print[GDB_SIGNAL_VTALRM] = 0;
9006 signal_stop[GDB_SIGNAL_PROF] = 0;
9007 signal_print[GDB_SIGNAL_PROF] = 0;
9008 signal_stop[GDB_SIGNAL_CHLD] = 0;
9009 signal_print[GDB_SIGNAL_CHLD] = 0;
9010 signal_stop[GDB_SIGNAL_IO] = 0;
9011 signal_print[GDB_SIGNAL_IO] = 0;
9012 signal_stop[GDB_SIGNAL_POLL] = 0;
9013 signal_print[GDB_SIGNAL_POLL] = 0;
9014 signal_stop[GDB_SIGNAL_URG] = 0;
9015 signal_print[GDB_SIGNAL_URG] = 0;
9016 signal_stop[GDB_SIGNAL_WINCH] = 0;
9017 signal_print[GDB_SIGNAL_WINCH] = 0;
9018 signal_stop[GDB_SIGNAL_PRIO] = 0;
9019 signal_print[GDB_SIGNAL_PRIO] = 0;
9020
9021 /* These signals are used internally by user-level thread
9022 implementations. (See signal(5) on Solaris.) Like the above
9023 signals, a healthy program receives and handles them as part of
9024 its normal operation. */
9025 signal_stop[GDB_SIGNAL_LWP] = 0;
9026 signal_print[GDB_SIGNAL_LWP] = 0;
9027 signal_stop[GDB_SIGNAL_WAITING] = 0;
9028 signal_print[GDB_SIGNAL_WAITING] = 0;
9029 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9030 signal_print[GDB_SIGNAL_CANCEL] = 0;
9031 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9032 signal_print[GDB_SIGNAL_LIBRT] = 0;
9033
9034 /* Update cached state. */
9035 signal_cache_update (-1);
9036
9037 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9038 &stop_on_solib_events, _("\
9039 Set stopping for shared library events."), _("\
9040 Show stopping for shared library events."), _("\
9041 If nonzero, gdb will give control to the user when the dynamic linker\n\
9042 notifies gdb of shared library events. The most common event of interest\n\
9043 to the user would be loading/unloading of a new library."),
9044 set_stop_on_solib_events,
9045 show_stop_on_solib_events,
9046 &setlist, &showlist);
9047
9048 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9049 follow_fork_mode_kind_names,
9050 &follow_fork_mode_string, _("\
9051 Set debugger response to a program call of fork or vfork."), _("\
9052 Show debugger response to a program call of fork or vfork."), _("\
9053 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9054 parent - the original process is debugged after a fork\n\
9055 child - the new process is debugged after a fork\n\
9056 The unfollowed process will continue to run.\n\
9057 By default, the debugger will follow the parent process."),
9058 NULL,
9059 show_follow_fork_mode_string,
9060 &setlist, &showlist);
9061
9062 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9063 follow_exec_mode_names,
9064 &follow_exec_mode_string, _("\
9065 Set debugger response to a program call of exec."), _("\
9066 Show debugger response to a program call of exec."), _("\
9067 An exec call replaces the program image of a process.\n\
9068 \n\
9069 follow-exec-mode can be:\n\
9070 \n\
9071 new - the debugger creates a new inferior and rebinds the process\n\
9072 to this new inferior. The program the process was running before\n\
9073 the exec call can be restarted afterwards by restarting the original\n\
9074 inferior.\n\
9075 \n\
9076 same - the debugger keeps the process bound to the same inferior.\n\
9077 The new executable image replaces the previous executable loaded in\n\
9078 the inferior. Restarting the inferior after the exec call restarts\n\
9079 the executable the process was running after the exec call.\n\
9080 \n\
9081 By default, the debugger will use the same inferior."),
9082 NULL,
9083 show_follow_exec_mode_string,
9084 &setlist, &showlist);
9085
9086 add_setshow_enum_cmd ("scheduler-locking", class_run,
9087 scheduler_enums, &scheduler_mode, _("\
9088 Set mode for locking scheduler during execution."), _("\
9089 Show mode for locking scheduler during execution."), _("\
9090 off == no locking (threads may preempt at any time)\n\
9091 on == full locking (no thread except the current thread may run)\n\
9092 This applies to both normal execution and replay mode.\n\
9093 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9094 In this mode, other threads may run during other commands.\n\
9095 This applies to both normal execution and replay mode.\n\
9096 replay == scheduler locked in replay mode and unlocked during normal execution."),
9097 set_schedlock_func, /* traps on target vector */
9098 show_scheduler_mode,
9099 &setlist, &showlist);
9100
9101 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9102 Set mode for resuming threads of all processes."), _("\
9103 Show mode for resuming threads of all processes."), _("\
9104 When on, execution commands (such as 'continue' or 'next') resume all\n\
9105 threads of all processes. When off (which is the default), execution\n\
9106 commands only resume the threads of the current process. The set of\n\
9107 threads that are resumed is further refined by the scheduler-locking\n\
9108 mode (see help set scheduler-locking)."),
9109 NULL,
9110 show_schedule_multiple,
9111 &setlist, &showlist);
9112
9113 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9114 Set mode of the step operation."), _("\
9115 Show mode of the step operation."), _("\
9116 When set, doing a step over a function without debug line information\n\
9117 will stop at the first instruction of that function. Otherwise, the\n\
9118 function is skipped and the step command stops at a different source line."),
9119 NULL,
9120 show_step_stop_if_no_debug,
9121 &setlist, &showlist);
9122
9123 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9124 &can_use_displaced_stepping, _("\
9125 Set debugger's willingness to use displaced stepping."), _("\
9126 Show debugger's willingness to use displaced stepping."), _("\
9127 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9128 supported by the target architecture. If off, gdb will not use displaced\n\
9129 stepping to step over breakpoints, even if such is supported by the target\n\
9130 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9131 if the target architecture supports it and non-stop mode is active, but will not\n\
9132 use it in all-stop mode (see help set non-stop)."),
9133 NULL,
9134 show_can_use_displaced_stepping,
9135 &setlist, &showlist);
9136
9137 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9138 &exec_direction, _("Set direction of execution.\n\
9139 Options are 'forward' or 'reverse'."),
9140 _("Show direction of execution (forward/reverse)."),
9141 _("Tells gdb whether to execute forward or backward."),
9142 set_exec_direction_func, show_exec_direction_func,
9143 &setlist, &showlist);
9144
9145 /* Set/show detach-on-fork: user-settable mode. */
9146
9147 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9148 Set whether gdb will detach the child of a fork."), _("\
9149 Show whether gdb will detach the child of a fork."), _("\
9150 Tells gdb whether to detach the child of a fork."),
9151 NULL, NULL, &setlist, &showlist);
9152
9153 /* Set/show disable address space randomization mode. */
9154
9155 add_setshow_boolean_cmd ("disable-randomization", class_support,
9156 &disable_randomization, _("\
9157 Set disabling of debuggee's virtual address space randomization."), _("\
9158 Show disabling of debuggee's virtual address space randomization."), _("\
9159 When this mode is on (which is the default), randomization of the virtual\n\
9160 address space is disabled. Standalone programs run with the randomization\n\
9161 enabled by default on some platforms."),
9162 &set_disable_randomization,
9163 &show_disable_randomization,
9164 &setlist, &showlist);
9165
9166 /* ptid initializations */
9167 inferior_ptid = null_ptid;
9168 target_last_wait_ptid = minus_one_ptid;
9169
9170 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9171 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9172 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9173 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9174
9175 /* Explicitly create without lookup, since that tries to create a
9176 value with a void typed value, and when we get here, gdbarch
9177 isn't initialized yet. At this point, we're quite sure there
9178 isn't another convenience variable of the same name. */
9179 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9180
9181 add_setshow_boolean_cmd ("observer", no_class,
9182 &observer_mode_1, _("\
9183 Set whether gdb controls the inferior in observer mode."), _("\
9184 Show whether gdb controls the inferior in observer mode."), _("\
9185 In observer mode, GDB can get data from the inferior, but not\n\
9186 affect its execution. Registers and memory may not be changed,\n\
9187 breakpoints may not be set, and the program cannot be interrupted\n\
9188 or signalled."),
9189 set_observer_mode,
9190 show_observer_mode,
9191 &setlist,
9192 &showlist);
9193 }
This page took 0.200564 seconds and 3 git commands to generate.