gdb: defer commit resume until all available events are consumed
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "gdbsupport/common-defs.h"
24 #include "gdbsupport/common-utils.h"
25 #include "infrun.h"
26 #include <ctype.h>
27 #include "symtab.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "breakpoint.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "target-connection.h"
35 #include "gdbthread.h"
36 #include "annotate.h"
37 #include "symfile.h"
38 #include "top.h"
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "utils.h"
42 #include "value.h"
43 #include "observable.h"
44 #include "language.h"
45 #include "solib.h"
46 #include "main.h"
47 #include "block.h"
48 #include "mi/mi-common.h"
49 #include "event-top.h"
50 #include "record.h"
51 #include "record-full.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "skip.h"
56 #include "probe.h"
57 #include "objfiles.h"
58 #include "completer.h"
59 #include "target-descriptions.h"
60 #include "target-dcache.h"
61 #include "terminal.h"
62 #include "solist.h"
63 #include "gdbsupport/event-loop.h"
64 #include "thread-fsm.h"
65 #include "gdbsupport/enum-flags.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "arch-utils.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/forward-scope-exit.h"
71 #include "gdbsupport/gdb_select.h"
72 #include <unordered_map>
73 #include "async-event.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 #define infrun_log_debug(fmt, args...) \
106 infrun_log_debug_1 (__LINE__, __func__, fmt, ##args)
107
108 static void ATTRIBUTE_PRINTF(3, 4)
109 infrun_log_debug_1 (int line, const char *func,
110 const char *fmt, ...)
111 {
112 if (debug_infrun)
113 {
114 va_list args;
115 va_start (args, fmt);
116 std::string msg = string_vprintf (fmt, args);
117 va_end (args);
118
119 fprintf_unfiltered (gdb_stdout, "infrun: %s: %s\n", func, msg.c_str ());
120 }
121 }
122
123 /* See infrun.h. */
124
125 void
126 infrun_async (int enable)
127 {
128 if (infrun_is_async != enable)
129 {
130 infrun_is_async = enable;
131
132 infrun_log_debug ("enable=%d", enable);
133
134 if (enable)
135 mark_async_event_handler (infrun_async_inferior_event_token);
136 else
137 clear_async_event_handler (infrun_async_inferior_event_token);
138 }
139 }
140
141 /* See infrun.h. */
142
143 void
144 mark_infrun_async_event_handler (void)
145 {
146 mark_async_event_handler (infrun_async_inferior_event_token);
147 }
148
149 /* When set, stop the 'step' command if we enter a function which has
150 no line number information. The normal behavior is that we step
151 over such function. */
152 bool step_stop_if_no_debug = false;
153 static void
154 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156 {
157 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
158 }
159
160 /* proceed and normal_stop use this to notify the user when the
161 inferior stopped in a different thread than it had been running
162 in. */
163
164 static ptid_t previous_inferior_ptid;
165
166 /* If set (default for legacy reasons), when following a fork, GDB
167 will detach from one of the fork branches, child or parent.
168 Exactly which branch is detached depends on 'set follow-fork-mode'
169 setting. */
170
171 static bool detach_fork = true;
172
173 bool debug_displaced = false;
174 static void
175 show_debug_displaced (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177 {
178 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
179 }
180
181 unsigned int debug_infrun = 0;
182 static void
183 show_debug_infrun (struct ui_file *file, int from_tty,
184 struct cmd_list_element *c, const char *value)
185 {
186 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
187 }
188
189
190 /* Support for disabling address space randomization. */
191
192 bool disable_randomization = true;
193
194 static void
195 show_disable_randomization (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 if (target_supports_disable_randomization ())
199 fprintf_filtered (file,
200 _("Disabling randomization of debuggee's "
201 "virtual address space is %s.\n"),
202 value);
203 else
204 fputs_filtered (_("Disabling randomization of debuggee's "
205 "virtual address space is unsupported on\n"
206 "this platform.\n"), file);
207 }
208
209 static void
210 set_disable_randomization (const char *args, int from_tty,
211 struct cmd_list_element *c)
212 {
213 if (!target_supports_disable_randomization ())
214 error (_("Disabling randomization of debuggee's "
215 "virtual address space is unsupported on\n"
216 "this platform."));
217 }
218
219 /* User interface for non-stop mode. */
220
221 bool non_stop = false;
222 static bool non_stop_1 = false;
223
224 static void
225 set_non_stop (const char *args, int from_tty,
226 struct cmd_list_element *c)
227 {
228 if (target_has_execution)
229 {
230 non_stop_1 = non_stop;
231 error (_("Cannot change this setting while the inferior is running."));
232 }
233
234 non_stop = non_stop_1;
235 }
236
237 static void
238 show_non_stop (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file,
242 _("Controlling the inferior in non-stop mode is %s.\n"),
243 value);
244 }
245
246 /* "Observer mode" is somewhat like a more extreme version of
247 non-stop, in which all GDB operations that might affect the
248 target's execution have been disabled. */
249
250 bool observer_mode = false;
251 static bool observer_mode_1 = false;
252
253 static void
254 set_observer_mode (const char *args, int from_tty,
255 struct cmd_list_element *c)
256 {
257 if (target_has_execution)
258 {
259 observer_mode_1 = observer_mode;
260 error (_("Cannot change this setting while the inferior is running."));
261 }
262
263 observer_mode = observer_mode_1;
264
265 may_write_registers = !observer_mode;
266 may_write_memory = !observer_mode;
267 may_insert_breakpoints = !observer_mode;
268 may_insert_tracepoints = !observer_mode;
269 /* We can insert fast tracepoints in or out of observer mode,
270 but enable them if we're going into this mode. */
271 if (observer_mode)
272 may_insert_fast_tracepoints = true;
273 may_stop = !observer_mode;
274 update_target_permissions ();
275
276 /* Going *into* observer mode we must force non-stop, then
277 going out we leave it that way. */
278 if (observer_mode)
279 {
280 pagination_enabled = 0;
281 non_stop = non_stop_1 = true;
282 }
283
284 if (from_tty)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (observer_mode ? "on" : "off"));
287 }
288
289 static void
290 show_observer_mode (struct ui_file *file, int from_tty,
291 struct cmd_list_element *c, const char *value)
292 {
293 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
294 }
295
296 /* This updates the value of observer mode based on changes in
297 permissions. Note that we are deliberately ignoring the values of
298 may-write-registers and may-write-memory, since the user may have
299 reason to enable these during a session, for instance to turn on a
300 debugging-related global. */
301
302 void
303 update_observer_mode (void)
304 {
305 bool newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317 }
318
319 /* Tables of how to react to signals; the user sets them. */
320
321 static unsigned char signal_stop[GDB_SIGNAL_LAST];
322 static unsigned char signal_print[GDB_SIGNAL_LAST];
323 static unsigned char signal_program[GDB_SIGNAL_LAST];
324
325 /* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. */
328 static unsigned char signal_catch[GDB_SIGNAL_LAST];
329
330 /* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
333 static unsigned char signal_pass[GDB_SIGNAL_LAST];
334
335 #define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343 #define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
351 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354 void
355 update_signals_program_target (void)
356 {
357 target_program_signals (signal_program);
358 }
359
360 /* Value to pass to target_resume() to cause all threads to resume. */
361
362 #define RESUME_ALL minus_one_ptid
363
364 /* Command list pointer for the "stop" placeholder. */
365
366 static struct cmd_list_element *stop_command;
367
368 /* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
370 int stop_on_solib_events;
371
372 /* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375 static void
376 set_stop_on_solib_events (const char *args,
377 int from_tty, struct cmd_list_element *c)
378 {
379 update_solib_breakpoints ();
380 }
381
382 static void
383 show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388 }
389
390 /* Nonzero after stop if current stack frame should be printed. */
391
392 static int stop_print_frame;
393
394 /* This is a cached copy of the target/ptid/waitstatus of the last
395 event returned by target_wait()/deprecated_target_wait_hook().
396 This information is returned by get_last_target_status(). */
397 static process_stratum_target *target_last_proc_target;
398 static ptid_t target_last_wait_ptid;
399 static struct target_waitstatus target_last_waitstatus;
400
401 void init_thread_stepping_state (struct thread_info *tss);
402
403 static const char follow_fork_mode_child[] = "child";
404 static const char follow_fork_mode_parent[] = "parent";
405
406 static const char *const follow_fork_mode_kind_names[] = {
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
410 };
411
412 static const char *follow_fork_mode_string = follow_fork_mode_parent;
413 static void
414 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c, const char *value)
416 {
417 fprintf_filtered (file,
418 _("Debugger response to a program "
419 "call of fork or vfork is \"%s\".\n"),
420 value);
421 }
422 \f
423
424 /* Handle changes to the inferior list based on the type of fork,
425 which process is being followed, and whether the other process
426 should be detached. On entry inferior_ptid must be the ptid of
427 the fork parent. At return inferior_ptid is the ptid of the
428 followed inferior. */
429
430 static bool
431 follow_fork_inferior (bool follow_child, bool detach_fork)
432 {
433 int has_vforked;
434 ptid_t parent_ptid, child_ptid;
435
436 has_vforked = (inferior_thread ()->pending_follow.kind
437 == TARGET_WAITKIND_VFORKED);
438 parent_ptid = inferior_ptid;
439 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
440
441 if (has_vforked
442 && !non_stop /* Non-stop always resumes both branches. */
443 && current_ui->prompt_state == PROMPT_BLOCKED
444 && !(follow_child || detach_fork || sched_multi))
445 {
446 /* The parent stays blocked inside the vfork syscall until the
447 child execs or exits. If we don't let the child run, then
448 the parent stays blocked. If we're telling the parent to run
449 in the foreground, the user will not be able to ctrl-c to get
450 back the terminal, effectively hanging the debug session. */
451 fprintf_filtered (gdb_stderr, _("\
452 Can not resume the parent process over vfork in the foreground while\n\
453 holding the child stopped. Try \"set detach-on-fork\" or \
454 \"set schedule-multiple\".\n"));
455 return 1;
456 }
457
458 if (!follow_child)
459 {
460 /* Detach new forked process? */
461 if (detach_fork)
462 {
463 /* Before detaching from the child, remove all breakpoints
464 from it. If we forked, then this has already been taken
465 care of by infrun.c. If we vforked however, any
466 breakpoint inserted in the parent is visible in the
467 child, even those added while stopped in a vfork
468 catchpoint. This will remove the breakpoints from the
469 parent also, but they'll be reinserted below. */
470 if (has_vforked)
471 {
472 /* Keep breakpoints list in sync. */
473 remove_breakpoints_inf (current_inferior ());
474 }
475
476 if (print_inferior_events)
477 {
478 /* Ensure that we have a process ptid. */
479 ptid_t process_ptid = ptid_t (child_ptid.pid ());
480
481 target_terminal::ours_for_output ();
482 fprintf_filtered (gdb_stdlog,
483 _("[Detaching after %s from child %s]\n"),
484 has_vforked ? "vfork" : "fork",
485 target_pid_to_str (process_ptid).c_str ());
486 }
487 }
488 else
489 {
490 struct inferior *parent_inf, *child_inf;
491
492 /* Add process to GDB's tables. */
493 child_inf = add_inferior (child_ptid.pid ());
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
502
503 set_current_inferior (child_inf);
504 switch_to_no_thread ();
505 child_inf->symfile_flags = SYMFILE_NO_READ;
506 push_target (parent_inf->process_target ());
507 thread_info *child_thr
508 = add_thread_silent (child_inf->process_target (), child_ptid);
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
517 exec_on_vfork ();
518
519 /* The parent will be frozen until the child is done
520 with the shared region. Keep track of the
521 parent. */
522 child_inf->vfork_parent = parent_inf;
523 child_inf->pending_detach = 0;
524 parent_inf->vfork_child = child_inf;
525 parent_inf->pending_detach = 0;
526
527 /* Now that the inferiors and program spaces are all
528 wired up, we can switch to the child thread (which
529 switches inferior and program space too). */
530 switch_to_thread (child_thr);
531 }
532 else
533 {
534 child_inf->aspace = new_address_space ();
535 child_inf->pspace = new program_space (child_inf->aspace);
536 child_inf->removable = 1;
537 set_current_program_space (child_inf->pspace);
538 clone_program_space (child_inf->pspace, parent_inf->pspace);
539
540 /* solib_create_inferior_hook relies on the current
541 thread. */
542 switch_to_thread (child_thr);
543
544 /* Let the shared library layer (e.g., solib-svr4) learn
545 about this new process, relocate the cloned exec, pull
546 in shared libraries, and install the solib event
547 breakpoint. If a "cloned-VM" event was propagated
548 better throughout the core, this wouldn't be
549 required. */
550 solib_create_inferior_hook (0);
551 }
552 }
553
554 if (has_vforked)
555 {
556 struct inferior *parent_inf;
557
558 parent_inf = current_inferior ();
559
560 /* If we detached from the child, then we have to be careful
561 to not insert breakpoints in the parent until the child
562 is done with the shared memory region. However, if we're
563 staying attached to the child, then we can and should
564 insert breakpoints, so that we can debug it. A
565 subsequent child exec or exit is enough to know when does
566 the child stops using the parent's address space. */
567 parent_inf->waiting_for_vfork_done = detach_fork;
568 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
569 }
570 }
571 else
572 {
573 /* Follow the child. */
574 struct inferior *parent_inf, *child_inf;
575 struct program_space *parent_pspace;
576
577 if (print_inferior_events)
578 {
579 std::string parent_pid = target_pid_to_str (parent_ptid);
580 std::string child_pid = target_pid_to_str (child_ptid);
581
582 target_terminal::ours_for_output ();
583 fprintf_filtered (gdb_stdlog,
584 _("[Attaching after %s %s to child %s]\n"),
585 parent_pid.c_str (),
586 has_vforked ? "vfork" : "fork",
587 child_pid.c_str ());
588 }
589
590 /* Add the new inferior first, so that the target_detach below
591 doesn't unpush the target. */
592
593 child_inf = add_inferior (child_ptid.pid ());
594
595 parent_inf = current_inferior ();
596 child_inf->attach_flag = parent_inf->attach_flag;
597 copy_terminal_info (child_inf, parent_inf);
598 child_inf->gdbarch = parent_inf->gdbarch;
599 copy_inferior_target_desc_info (child_inf, parent_inf);
600
601 parent_pspace = parent_inf->pspace;
602
603 process_stratum_target *target = parent_inf->process_target ();
604
605 {
606 /* Hold a strong reference to the target while (maybe)
607 detaching the parent. Otherwise detaching could close the
608 target. */
609 auto target_ref = target_ops_ref::new_reference (target);
610
611 /* If we're vforking, we want to hold on to the parent until
612 the child exits or execs. At child exec or exit time we
613 can remove the old breakpoints from the parent and detach
614 or resume debugging it. Otherwise, detach the parent now;
615 we'll want to reuse it's program/address spaces, but we
616 can't set them to the child before removing breakpoints
617 from the parent, otherwise, the breakpoints module could
618 decide to remove breakpoints from the wrong process (since
619 they'd be assigned to the same address space). */
620
621 if (has_vforked)
622 {
623 gdb_assert (child_inf->vfork_parent == NULL);
624 gdb_assert (parent_inf->vfork_child == NULL);
625 child_inf->vfork_parent = parent_inf;
626 child_inf->pending_detach = 0;
627 parent_inf->vfork_child = child_inf;
628 parent_inf->pending_detach = detach_fork;
629 parent_inf->waiting_for_vfork_done = 0;
630 }
631 else if (detach_fork)
632 {
633 if (print_inferior_events)
634 {
635 /* Ensure that we have a process ptid. */
636 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
637
638 target_terminal::ours_for_output ();
639 fprintf_filtered (gdb_stdlog,
640 _("[Detaching after fork from "
641 "parent %s]\n"),
642 target_pid_to_str (process_ptid).c_str ());
643 }
644
645 target_detach (parent_inf, 0);
646 parent_inf = NULL;
647 }
648
649 /* Note that the detach above makes PARENT_INF dangling. */
650
651 /* Add the child thread to the appropriate lists, and switch
652 to this new thread, before cloning the program space, and
653 informing the solib layer about this new process. */
654
655 set_current_inferior (child_inf);
656 push_target (target);
657 }
658
659 thread_info *child_thr = add_thread_silent (target, child_ptid);
660
661 /* If this is a vfork child, then the address-space is shared
662 with the parent. If we detached from the parent, then we can
663 reuse the parent's program/address spaces. */
664 if (has_vforked || detach_fork)
665 {
666 child_inf->pspace = parent_pspace;
667 child_inf->aspace = child_inf->pspace->aspace;
668
669 exec_on_vfork ();
670 }
671 else
672 {
673 child_inf->aspace = new_address_space ();
674 child_inf->pspace = new program_space (child_inf->aspace);
675 child_inf->removable = 1;
676 child_inf->symfile_flags = SYMFILE_NO_READ;
677 set_current_program_space (child_inf->pspace);
678 clone_program_space (child_inf->pspace, parent_pspace);
679
680 /* Let the shared library layer (e.g., solib-svr4) learn
681 about this new process, relocate the cloned exec, pull in
682 shared libraries, and install the solib event breakpoint.
683 If a "cloned-VM" event was propagated better throughout
684 the core, this wouldn't be required. */
685 solib_create_inferior_hook (0);
686 }
687
688 switch_to_thread (child_thr);
689 }
690
691 return target_follow_fork (follow_child, detach_fork);
692 }
693
694 /* Tell the target to follow the fork we're stopped at. Returns true
695 if the inferior should be resumed; false, if the target for some
696 reason decided it's best not to resume. */
697
698 static bool
699 follow_fork ()
700 {
701 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
702 bool should_resume = true;
703 struct thread_info *tp;
704
705 /* Copy user stepping state to the new inferior thread. FIXME: the
706 followed fork child thread should have a copy of most of the
707 parent thread structure's run control related fields, not just these.
708 Initialized to avoid "may be used uninitialized" warnings from gcc. */
709 struct breakpoint *step_resume_breakpoint = NULL;
710 struct breakpoint *exception_resume_breakpoint = NULL;
711 CORE_ADDR step_range_start = 0;
712 CORE_ADDR step_range_end = 0;
713 int current_line = 0;
714 symtab *current_symtab = NULL;
715 struct frame_id step_frame_id = { 0 };
716 struct thread_fsm *thread_fsm = NULL;
717
718 if (!non_stop)
719 {
720 process_stratum_target *wait_target;
721 ptid_t wait_ptid;
722 struct target_waitstatus wait_status;
723
724 /* Get the last target status returned by target_wait(). */
725 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
726
727 /* If not stopped at a fork event, then there's nothing else to
728 do. */
729 if (wait_status.kind != TARGET_WAITKIND_FORKED
730 && wait_status.kind != TARGET_WAITKIND_VFORKED)
731 return 1;
732
733 /* Check if we switched over from WAIT_PTID, since the event was
734 reported. */
735 if (wait_ptid != minus_one_ptid
736 && (current_inferior ()->process_target () != wait_target
737 || inferior_ptid != wait_ptid))
738 {
739 /* We did. Switch back to WAIT_PTID thread, to tell the
740 target to follow it (in either direction). We'll
741 afterwards refuse to resume, and inform the user what
742 happened. */
743 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
744 switch_to_thread (wait_thread);
745 should_resume = false;
746 }
747 }
748
749 tp = inferior_thread ();
750
751 /* If there were any forks/vforks that were caught and are now to be
752 followed, then do so now. */
753 switch (tp->pending_follow.kind)
754 {
755 case TARGET_WAITKIND_FORKED:
756 case TARGET_WAITKIND_VFORKED:
757 {
758 ptid_t parent, child;
759
760 /* If the user did a next/step, etc, over a fork call,
761 preserve the stepping state in the fork child. */
762 if (follow_child && should_resume)
763 {
764 step_resume_breakpoint = clone_momentary_breakpoint
765 (tp->control.step_resume_breakpoint);
766 step_range_start = tp->control.step_range_start;
767 step_range_end = tp->control.step_range_end;
768 current_line = tp->current_line;
769 current_symtab = tp->current_symtab;
770 step_frame_id = tp->control.step_frame_id;
771 exception_resume_breakpoint
772 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
773 thread_fsm = tp->thread_fsm;
774
775 /* For now, delete the parent's sr breakpoint, otherwise,
776 parent/child sr breakpoints are considered duplicates,
777 and the child version will not be installed. Remove
778 this when the breakpoints module becomes aware of
779 inferiors and address spaces. */
780 delete_step_resume_breakpoint (tp);
781 tp->control.step_range_start = 0;
782 tp->control.step_range_end = 0;
783 tp->control.step_frame_id = null_frame_id;
784 delete_exception_resume_breakpoint (tp);
785 tp->thread_fsm = NULL;
786 }
787
788 parent = inferior_ptid;
789 child = tp->pending_follow.value.related_pid;
790
791 process_stratum_target *parent_targ = tp->inf->process_target ();
792 /* Set up inferior(s) as specified by the caller, and tell the
793 target to do whatever is necessary to follow either parent
794 or child. */
795 if (follow_fork_inferior (follow_child, detach_fork))
796 {
797 /* Target refused to follow, or there's some other reason
798 we shouldn't resume. */
799 should_resume = 0;
800 }
801 else
802 {
803 /* This pending follow fork event is now handled, one way
804 or another. The previous selected thread may be gone
805 from the lists by now, but if it is still around, need
806 to clear the pending follow request. */
807 tp = find_thread_ptid (parent_targ, parent);
808 if (tp)
809 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
810
811 /* This makes sure we don't try to apply the "Switched
812 over from WAIT_PID" logic above. */
813 nullify_last_target_wait_ptid ();
814
815 /* If we followed the child, switch to it... */
816 if (follow_child)
817 {
818 thread_info *child_thr = find_thread_ptid (parent_targ, child);
819 switch_to_thread (child_thr);
820
821 /* ... and preserve the stepping state, in case the
822 user was stepping over the fork call. */
823 if (should_resume)
824 {
825 tp = inferior_thread ();
826 tp->control.step_resume_breakpoint
827 = step_resume_breakpoint;
828 tp->control.step_range_start = step_range_start;
829 tp->control.step_range_end = step_range_end;
830 tp->current_line = current_line;
831 tp->current_symtab = current_symtab;
832 tp->control.step_frame_id = step_frame_id;
833 tp->control.exception_resume_breakpoint
834 = exception_resume_breakpoint;
835 tp->thread_fsm = thread_fsm;
836 }
837 else
838 {
839 /* If we get here, it was because we're trying to
840 resume from a fork catchpoint, but, the user
841 has switched threads away from the thread that
842 forked. In that case, the resume command
843 issued is most likely not applicable to the
844 child, so just warn, and refuse to resume. */
845 warning (_("Not resuming: switched threads "
846 "before following fork child."));
847 }
848
849 /* Reset breakpoints in the child as appropriate. */
850 follow_inferior_reset_breakpoints ();
851 }
852 }
853 }
854 break;
855 case TARGET_WAITKIND_SPURIOUS:
856 /* Nothing to follow. */
857 break;
858 default:
859 internal_error (__FILE__, __LINE__,
860 "Unexpected pending_follow.kind %d\n",
861 tp->pending_follow.kind);
862 break;
863 }
864
865 return should_resume;
866 }
867
868 static void
869 follow_inferior_reset_breakpoints (void)
870 {
871 struct thread_info *tp = inferior_thread ();
872
873 /* Was there a step_resume breakpoint? (There was if the user
874 did a "next" at the fork() call.) If so, explicitly reset its
875 thread number. Cloned step_resume breakpoints are disabled on
876 creation, so enable it here now that it is associated with the
877 correct thread.
878
879 step_resumes are a form of bp that are made to be per-thread.
880 Since we created the step_resume bp when the parent process
881 was being debugged, and now are switching to the child process,
882 from the breakpoint package's viewpoint, that's a switch of
883 "threads". We must update the bp's notion of which thread
884 it is for, or it'll be ignored when it triggers. */
885
886 if (tp->control.step_resume_breakpoint)
887 {
888 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
889 tp->control.step_resume_breakpoint->loc->enabled = 1;
890 }
891
892 /* Treat exception_resume breakpoints like step_resume breakpoints. */
893 if (tp->control.exception_resume_breakpoint)
894 {
895 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
896 tp->control.exception_resume_breakpoint->loc->enabled = 1;
897 }
898
899 /* Reinsert all breakpoints in the child. The user may have set
900 breakpoints after catching the fork, in which case those
901 were never set in the child, but only in the parent. This makes
902 sure the inserted breakpoints match the breakpoint list. */
903
904 breakpoint_re_set ();
905 insert_breakpoints ();
906 }
907
908 /* The child has exited or execed: resume threads of the parent the
909 user wanted to be executing. */
910
911 static int
912 proceed_after_vfork_done (struct thread_info *thread,
913 void *arg)
914 {
915 int pid = * (int *) arg;
916
917 if (thread->ptid.pid () == pid
918 && thread->state == THREAD_RUNNING
919 && !thread->executing
920 && !thread->stop_requested
921 && thread->suspend.stop_signal == GDB_SIGNAL_0)
922 {
923 infrun_log_debug ("resuming vfork parent thread %s",
924 target_pid_to_str (thread->ptid).c_str ());
925
926 switch_to_thread (thread);
927 clear_proceed_status (0);
928 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
929 }
930
931 return 0;
932 }
933
934 /* Called whenever we notice an exec or exit event, to handle
935 detaching or resuming a vfork parent. */
936
937 static void
938 handle_vfork_child_exec_or_exit (int exec)
939 {
940 struct inferior *inf = current_inferior ();
941
942 if (inf->vfork_parent)
943 {
944 int resume_parent = -1;
945
946 /* This exec or exit marks the end of the shared memory region
947 between the parent and the child. Break the bonds. */
948 inferior *vfork_parent = inf->vfork_parent;
949 inf->vfork_parent->vfork_child = NULL;
950 inf->vfork_parent = NULL;
951
952 /* If the user wanted to detach from the parent, now is the
953 time. */
954 if (vfork_parent->pending_detach)
955 {
956 struct program_space *pspace;
957 struct address_space *aspace;
958
959 /* follow-fork child, detach-on-fork on. */
960
961 vfork_parent->pending_detach = 0;
962
963 scoped_restore_current_pspace_and_thread restore_thread;
964
965 /* We're letting loose of the parent. */
966 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
967 switch_to_thread (tp);
968
969 /* We're about to detach from the parent, which implicitly
970 removes breakpoints from its address space. There's a
971 catch here: we want to reuse the spaces for the child,
972 but, parent/child are still sharing the pspace at this
973 point, although the exec in reality makes the kernel give
974 the child a fresh set of new pages. The problem here is
975 that the breakpoints module being unaware of this, would
976 likely chose the child process to write to the parent
977 address space. Swapping the child temporarily away from
978 the spaces has the desired effect. Yes, this is "sort
979 of" a hack. */
980
981 pspace = inf->pspace;
982 aspace = inf->aspace;
983 inf->aspace = NULL;
984 inf->pspace = NULL;
985
986 if (print_inferior_events)
987 {
988 std::string pidstr
989 = target_pid_to_str (ptid_t (vfork_parent->pid));
990
991 target_terminal::ours_for_output ();
992
993 if (exec)
994 {
995 fprintf_filtered (gdb_stdlog,
996 _("[Detaching vfork parent %s "
997 "after child exec]\n"), pidstr.c_str ());
998 }
999 else
1000 {
1001 fprintf_filtered (gdb_stdlog,
1002 _("[Detaching vfork parent %s "
1003 "after child exit]\n"), pidstr.c_str ());
1004 }
1005 }
1006
1007 target_detach (vfork_parent, 0);
1008
1009 /* Put it back. */
1010 inf->pspace = pspace;
1011 inf->aspace = aspace;
1012 }
1013 else if (exec)
1014 {
1015 /* We're staying attached to the parent, so, really give the
1016 child a new address space. */
1017 inf->pspace = new program_space (maybe_new_address_space ());
1018 inf->aspace = inf->pspace->aspace;
1019 inf->removable = 1;
1020 set_current_program_space (inf->pspace);
1021
1022 resume_parent = vfork_parent->pid;
1023 }
1024 else
1025 {
1026 /* If this is a vfork child exiting, then the pspace and
1027 aspaces were shared with the parent. Since we're
1028 reporting the process exit, we'll be mourning all that is
1029 found in the address space, and switching to null_ptid,
1030 preparing to start a new inferior. But, since we don't
1031 want to clobber the parent's address/program spaces, we
1032 go ahead and create a new one for this exiting
1033 inferior. */
1034
1035 /* Switch to no-thread while running clone_program_space, so
1036 that clone_program_space doesn't want to read the
1037 selected frame of a dead process. */
1038 scoped_restore_current_thread restore_thread;
1039 switch_to_no_thread ();
1040
1041 inf->pspace = new program_space (maybe_new_address_space ());
1042 inf->aspace = inf->pspace->aspace;
1043 set_current_program_space (inf->pspace);
1044 inf->removable = 1;
1045 inf->symfile_flags = SYMFILE_NO_READ;
1046 clone_program_space (inf->pspace, vfork_parent->pspace);
1047
1048 resume_parent = vfork_parent->pid;
1049 }
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 scoped_restore_current_thread restore_thread;
1058
1059 infrun_log_debug ("resuming vfork parent process %d",
1060 resume_parent);
1061
1062 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1063 }
1064 }
1065 }
1066
1067 /* Enum strings for "set|show follow-exec-mode". */
1068
1069 static const char follow_exec_mode_new[] = "new";
1070 static const char follow_exec_mode_same[] = "same";
1071 static const char *const follow_exec_mode_names[] =
1072 {
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076 };
1077
1078 static const char *follow_exec_mode_string = follow_exec_mode_same;
1079 static void
1080 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082 {
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084 }
1085
1086 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1087
1088 static void
1089 follow_exec (ptid_t ptid, const char *exec_file_target)
1090 {
1091 struct inferior *inf = current_inferior ();
1092 int pid = ptid.pid ();
1093 ptid_t process_ptid;
1094
1095 /* Switch terminal for any messages produced e.g. by
1096 breakpoint_re_set. */
1097 target_terminal::ours_for_output ();
1098
1099 /* This is an exec event that we actually wish to pay attention to.
1100 Refresh our symbol table to the newly exec'd program, remove any
1101 momentary bp's, etc.
1102
1103 If there are breakpoints, they aren't really inserted now,
1104 since the exec() transformed our inferior into a fresh set
1105 of instructions.
1106
1107 We want to preserve symbolic breakpoints on the list, since
1108 we have hopes that they can be reset after the new a.out's
1109 symbol table is read.
1110
1111 However, any "raw" breakpoints must be removed from the list
1112 (e.g., the solib bp's), since their address is probably invalid
1113 now.
1114
1115 And, we DON'T want to call delete_breakpoints() here, since
1116 that may write the bp's "shadow contents" (the instruction
1117 value that was overwritten with a TRAP instruction). Since
1118 we now have a new a.out, those shadow contents aren't valid. */
1119
1120 mark_breakpoints_out ();
1121
1122 /* The target reports the exec event to the main thread, even if
1123 some other thread does the exec, and even if the main thread was
1124 stopped or already gone. We may still have non-leader threads of
1125 the process on our list. E.g., on targets that don't have thread
1126 exit events (like remote); or on native Linux in non-stop mode if
1127 there were only two threads in the inferior and the non-leader
1128 one is the one that execs (and nothing forces an update of the
1129 thread list up to here). When debugging remotely, it's best to
1130 avoid extra traffic, when possible, so avoid syncing the thread
1131 list with the target, and instead go ahead and delete all threads
1132 of the process but one that reported the event. Note this must
1133 be done before calling update_breakpoints_after_exec, as
1134 otherwise clearing the threads' resources would reference stale
1135 thread breakpoints -- it may have been one of these threads that
1136 stepped across the exec. We could just clear their stepping
1137 states, but as long as we're iterating, might as well delete
1138 them. Deleting them now rather than at the next user-visible
1139 stop provides a nicer sequence of events for user and MI
1140 notifications. */
1141 for (thread_info *th : all_threads_safe ())
1142 if (th->ptid.pid () == pid && th->ptid != ptid)
1143 delete_thread (th);
1144
1145 /* We also need to clear any left over stale state for the
1146 leader/event thread. E.g., if there was any step-resume
1147 breakpoint or similar, it's gone now. We cannot truly
1148 step-to-next statement through an exec(). */
1149 thread_info *th = inferior_thread ();
1150 th->control.step_resume_breakpoint = NULL;
1151 th->control.exception_resume_breakpoint = NULL;
1152 th->control.single_step_breakpoints = NULL;
1153 th->control.step_range_start = 0;
1154 th->control.step_range_end = 0;
1155
1156 /* The user may have had the main thread held stopped in the
1157 previous image (e.g., schedlock on, or non-stop). Release
1158 it now. */
1159 th->stop_requested = 0;
1160
1161 update_breakpoints_after_exec ();
1162
1163 /* What is this a.out's name? */
1164 process_ptid = ptid_t (pid);
1165 printf_unfiltered (_("%s is executing new program: %s\n"),
1166 target_pid_to_str (process_ptid).c_str (),
1167 exec_file_target);
1168
1169 /* We've followed the inferior through an exec. Therefore, the
1170 inferior has essentially been killed & reborn. */
1171
1172 breakpoint_init_inferior (inf_execd);
1173
1174 gdb::unique_xmalloc_ptr<char> exec_file_host
1175 = exec_file_find (exec_file_target, NULL);
1176
1177 /* If we were unable to map the executable target pathname onto a host
1178 pathname, tell the user that. Otherwise GDB's subsequent behavior
1179 is confusing. Maybe it would even be better to stop at this point
1180 so that the user can specify a file manually before continuing. */
1181 if (exec_file_host == NULL)
1182 warning (_("Could not load symbols for executable %s.\n"
1183 "Do you need \"set sysroot\"?"),
1184 exec_file_target);
1185
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
1199 /* Do exit processing for the original inferior before setting the new
1200 inferior's pid. Having two inferiors with the same pid would confuse
1201 find_inferior_p(t)id. Transfer the terminal state and info from the
1202 old to the new inferior. */
1203 inf = add_inferior_with_spaces ();
1204 swap_terminal_info (inf, current_inferior ());
1205 exit_inferior_silent (current_inferior ());
1206
1207 inf->pid = pid;
1208 target_follow_exec (inf, exec_file_target);
1209
1210 inferior *org_inferior = current_inferior ();
1211 switch_to_inferior_no_thread (inf);
1212 push_target (org_inferior->process_target ());
1213 thread_info *thr = add_thread (inf->process_target (), ptid);
1214 switch_to_thread (thr);
1215 }
1216 else
1217 {
1218 /* The old description may no longer be fit for the new image.
1219 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1220 old description; we'll read a new one below. No need to do
1221 this on "follow-exec-mode new", as the old inferior stays
1222 around (its description is later cleared/refetched on
1223 restart). */
1224 target_clear_description ();
1225 }
1226
1227 gdb_assert (current_program_space == inf->pspace);
1228
1229 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1230 because the proper displacement for a PIE (Position Independent
1231 Executable) main symbol file will only be computed by
1232 solib_create_inferior_hook below. breakpoint_re_set would fail
1233 to insert the breakpoints with the zero displacement. */
1234 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1235
1236 /* If the target can specify a description, read it. Must do this
1237 after flipping to the new executable (because the target supplied
1238 description must be compatible with the executable's
1239 architecture, and the old executable may e.g., be 32-bit, while
1240 the new one 64-bit), and before anything involving memory or
1241 registers. */
1242 target_find_description ();
1243
1244 solib_create_inferior_hook (0);
1245
1246 jit_inferior_created_hook ();
1247
1248 breakpoint_re_set ();
1249
1250 /* Reinsert all breakpoints. (Those which were symbolic have
1251 been reset to the proper address in the new a.out, thanks
1252 to symbol_file_command...). */
1253 insert_breakpoints ();
1254
1255 gdb::observers::inferior_execd.notify (inf);
1256
1257 /* The next resume of this inferior should bring it to the shlib
1258 startup breakpoints. (If the user had also set bp's on
1259 "main" from the old (parent) process, then they'll auto-
1260 matically get reset there in the new process.). */
1261 }
1262
1263 /* The queue of threads that need to do a step-over operation to get
1264 past e.g., a breakpoint. What technique is used to step over the
1265 breakpoint/watchpoint does not matter -- all threads end up in the
1266 same queue, to maintain rough temporal order of execution, in order
1267 to avoid starvation, otherwise, we could e.g., find ourselves
1268 constantly stepping the same couple threads past their breakpoints
1269 over and over, if the single-step finish fast enough. */
1270 struct thread_info *global_thread_step_over_chain_head;
1271
1272 /* Bit flags indicating what the thread needs to step over. */
1273
1274 enum step_over_what_flag
1275 {
1276 /* Step over a breakpoint. */
1277 STEP_OVER_BREAKPOINT = 1,
1278
1279 /* Step past a non-continuable watchpoint, in order to let the
1280 instruction execute so we can evaluate the watchpoint
1281 expression. */
1282 STEP_OVER_WATCHPOINT = 2
1283 };
1284 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1285
1286 /* Info about an instruction that is being stepped over. */
1287
1288 struct step_over_info
1289 {
1290 /* If we're stepping past a breakpoint, this is the address space
1291 and address of the instruction the breakpoint is set at. We'll
1292 skip inserting all breakpoints here. Valid iff ASPACE is
1293 non-NULL. */
1294 const address_space *aspace;
1295 CORE_ADDR address;
1296
1297 /* The instruction being stepped over triggers a nonsteppable
1298 watchpoint. If true, we'll skip inserting watchpoints. */
1299 int nonsteppable_watchpoint_p;
1300
1301 /* The thread's global number. */
1302 int thread;
1303 };
1304
1305 /* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329 static struct step_over_info step_over_info;
1330
1331 /* Record the address of the breakpoint/instruction we're currently
1332 stepping over.
1333 N.B. We record the aspace and address now, instead of say just the thread,
1334 because when we need the info later the thread may be running. */
1335
1336 static void
1337 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1338 int nonsteppable_watchpoint_p,
1339 int thread)
1340 {
1341 step_over_info.aspace = aspace;
1342 step_over_info.address = address;
1343 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1344 step_over_info.thread = thread;
1345 }
1346
1347 /* Called when we're not longer stepping over a breakpoint / an
1348 instruction, so all breakpoints are free to be (re)inserted. */
1349
1350 static void
1351 clear_step_over_info (void)
1352 {
1353 infrun_log_debug ("clearing step over info");
1354 step_over_info.aspace = NULL;
1355 step_over_info.address = 0;
1356 step_over_info.nonsteppable_watchpoint_p = 0;
1357 step_over_info.thread = -1;
1358 }
1359
1360 /* See infrun.h. */
1361
1362 int
1363 stepping_past_instruction_at (struct address_space *aspace,
1364 CORE_ADDR address)
1365 {
1366 return (step_over_info.aspace != NULL
1367 && breakpoint_address_match (aspace, address,
1368 step_over_info.aspace,
1369 step_over_info.address));
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 thread_is_stepping_over_breakpoint (int thread)
1376 {
1377 return (step_over_info.thread != -1
1378 && thread == step_over_info.thread);
1379 }
1380
1381 /* See infrun.h. */
1382
1383 int
1384 stepping_past_nonsteppable_watchpoint (void)
1385 {
1386 return step_over_info.nonsteppable_watchpoint_p;
1387 }
1388
1389 /* Returns true if step-over info is valid. */
1390
1391 static int
1392 step_over_info_valid_p (void)
1393 {
1394 return (step_over_info.aspace != NULL
1395 || stepping_past_nonsteppable_watchpoint ());
1396 }
1397
1398 \f
1399 /* Displaced stepping. */
1400
1401 /* In non-stop debugging mode, we must take special care to manage
1402 breakpoints properly; in particular, the traditional strategy for
1403 stepping a thread past a breakpoint it has hit is unsuitable.
1404 'Displaced stepping' is a tactic for stepping one thread past a
1405 breakpoint it has hit while ensuring that other threads running
1406 concurrently will hit the breakpoint as they should.
1407
1408 The traditional way to step a thread T off a breakpoint in a
1409 multi-threaded program in all-stop mode is as follows:
1410
1411 a0) Initially, all threads are stopped, and breakpoints are not
1412 inserted.
1413 a1) We single-step T, leaving breakpoints uninserted.
1414 a2) We insert breakpoints, and resume all threads.
1415
1416 In non-stop debugging, however, this strategy is unsuitable: we
1417 don't want to have to stop all threads in the system in order to
1418 continue or step T past a breakpoint. Instead, we use displaced
1419 stepping:
1420
1421 n0) Initially, T is stopped, other threads are running, and
1422 breakpoints are inserted.
1423 n1) We copy the instruction "under" the breakpoint to a separate
1424 location, outside the main code stream, making any adjustments
1425 to the instruction, register, and memory state as directed by
1426 T's architecture.
1427 n2) We single-step T over the instruction at its new location.
1428 n3) We adjust the resulting register and memory state as directed
1429 by T's architecture. This includes resetting T's PC to point
1430 back into the main instruction stream.
1431 n4) We resume T.
1432
1433 This approach depends on the following gdbarch methods:
1434
1435 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1436 indicate where to copy the instruction, and how much space must
1437 be reserved there. We use these in step n1.
1438
1439 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1440 address, and makes any necessary adjustments to the instruction,
1441 register contents, and memory. We use this in step n1.
1442
1443 - gdbarch_displaced_step_fixup adjusts registers and memory after
1444 we have successfully single-stepped the instruction, to yield the
1445 same effect the instruction would have had if we had executed it
1446 at its original address. We use this in step n3.
1447
1448 The gdbarch_displaced_step_copy_insn and
1449 gdbarch_displaced_step_fixup functions must be written so that
1450 copying an instruction with gdbarch_displaced_step_copy_insn,
1451 single-stepping across the copied instruction, and then applying
1452 gdbarch_displaced_insn_fixup should have the same effects on the
1453 thread's memory and registers as stepping the instruction in place
1454 would have. Exactly which responsibilities fall to the copy and
1455 which fall to the fixup is up to the author of those functions.
1456
1457 See the comments in gdbarch.sh for details.
1458
1459 Note that displaced stepping and software single-step cannot
1460 currently be used in combination, although with some care I think
1461 they could be made to. Software single-step works by placing
1462 breakpoints on all possible subsequent instructions; if the
1463 displaced instruction is a PC-relative jump, those breakpoints
1464 could fall in very strange places --- on pages that aren't
1465 executable, or at addresses that are not proper instruction
1466 boundaries. (We do generally let other threads run while we wait
1467 to hit the software single-step breakpoint, and they might
1468 encounter such a corrupted instruction.) One way to work around
1469 this would be to have gdbarch_displaced_step_copy_insn fully
1470 simulate the effect of PC-relative instructions (and return NULL)
1471 on architectures that use software single-stepping.
1472
1473 In non-stop mode, we can have independent and simultaneous step
1474 requests, so more than one thread may need to simultaneously step
1475 over a breakpoint. The current implementation assumes there is
1476 only one scratch space per process. In this case, we have to
1477 serialize access to the scratch space. If thread A wants to step
1478 over a breakpoint, but we are currently waiting for some other
1479 thread to complete a displaced step, we leave thread A stopped and
1480 place it in the displaced_step_request_queue. Whenever a displaced
1481 step finishes, we pick the next thread in the queue and start a new
1482 displaced step operation on it. See displaced_step_prepare and
1483 displaced_step_fixup for details. */
1484
1485 /* Get the displaced stepping state of inferior INF. */
1486
1487 static displaced_step_inferior_state *
1488 get_displaced_stepping_state (inferior *inf)
1489 {
1490 return &inf->displaced_step_state;
1491 }
1492
1493 /* Get the displaced stepping state of thread THREAD. */
1494
1495 static displaced_step_thread_state *
1496 get_displaced_stepping_state (thread_info *thread)
1497 {
1498 return &thread->displaced_step_state;
1499 }
1500
1501 /* Return true if the given thread is doing a displaced step. */
1502
1503 static bool
1504 displaced_step_in_progress (thread_info *thread)
1505 {
1506 gdb_assert (thread != NULL);
1507
1508 return get_displaced_stepping_state (thread)->in_progress ();
1509 }
1510
1511 /* Return true if any thread of this inferior is doing a displaced step. */
1512
1513 static bool
1514 displaced_step_in_progress (inferior *inf)
1515 {
1516 for (thread_info *thread : inf->non_exited_threads ())
1517 {
1518 if (displaced_step_in_progress (thread))
1519 return true;
1520 }
1521
1522 return false;
1523 }
1524
1525 /* Return true if any thread is doing a displaced step. */
1526
1527 static bool
1528 displaced_step_in_progress_any_thread ()
1529 {
1530 for (thread_info *thread : all_non_exited_threads ())
1531 {
1532 if (displaced_step_in_progress (thread))
1533 return true;
1534 }
1535
1536 return false;
1537 }
1538
1539 /* If inferior is in displaced stepping, and ADDR equals to starting address
1540 of copy area, return corresponding displaced_step_copy_insn_closure. Otherwise,
1541 return NULL. */
1542
1543 struct displaced_step_copy_insn_closure *
1544 get_displaced_step_copy_insn_closure_by_addr (CORE_ADDR addr)
1545 {
1546 // FIXME: implement me (only needed on ARM).
1547 // displaced_step_inferior_state *displaced
1548 // = get_displaced_stepping_state (current_inferior ());
1549 //
1550 // /* If checking the mode of displaced instruction in copy area. */
1551 // if (displaced->step_thread != nullptr
1552 // && displaced->step_copy == addr)
1553 // return displaced->step_closure.get ();
1554 //
1555 return NULL;
1556 }
1557
1558 static void
1559 infrun_inferior_exit (struct inferior *inf)
1560 {
1561 inf->displaced_step_state.reset ();
1562 }
1563
1564 /* If ON, and the architecture supports it, GDB will use displaced
1565 stepping to step over breakpoints. If OFF, or if the architecture
1566 doesn't support it, GDB will instead use the traditional
1567 hold-and-step approach. If AUTO (which is the default), GDB will
1568 decide which technique to use to step over breakpoints depending on
1569 whether the target works in a non-stop way (see use_displaced_stepping). */
1570
1571 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1572
1573 static void
1574 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1575 struct cmd_list_element *c,
1576 const char *value)
1577 {
1578 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1579 fprintf_filtered (file,
1580 _("Debugger's willingness to use displaced stepping "
1581 "to step over breakpoints is %s (currently %s).\n"),
1582 value, target_is_non_stop_p () ? "on" : "off");
1583 else
1584 fprintf_filtered (file,
1585 _("Debugger's willingness to use displaced stepping "
1586 "to step over breakpoints is %s.\n"), value);
1587 }
1588
1589 /* Return true if the target behing THREAD supports displaced stepping. */
1590
1591 static bool
1592 target_supports_displaced_stepping (thread_info *thread)
1593 {
1594 inferior *inf = thread->inf;
1595 target_ops *target = inf->top_target ();
1596
1597 return target->supports_displaced_step (thread);
1598 }
1599
1600 /* Return non-zero if displaced stepping can/should be used to step
1601 over breakpoints of thread TP. */
1602
1603 static bool
1604 use_displaced_stepping (thread_info *tp)
1605 {
1606 /* If the user disabled it explicitly, don't use displaced stepping. */
1607 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1608 return false;
1609
1610 /* If "auto", only use displaced stepping if the target operates in a non-stop
1611 way. */
1612 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1613 && !target_is_non_stop_p ())
1614 return false;
1615
1616 /* If the target doesn't support displaced stepping, don't use it. */
1617 if (!target_supports_displaced_stepping (tp))
1618 return false;
1619
1620 /* If recording, don't use displaced stepping. */
1621 if (find_record_target () != nullptr)
1622 return false;
1623
1624 displaced_step_inferior_state *displaced_state
1625 = get_displaced_stepping_state (tp->inf);
1626
1627 /* If displaced stepping failed before for this inferior, don't bother trying
1628 again. */
1629 if (displaced_state->failed_before)
1630 return false;
1631
1632 return true;
1633 }
1634
1635 /* Simple function wrapper around displaced_step_thread_state::reset. */
1636
1637 static void
1638 displaced_step_reset (displaced_step_thread_state *displaced)
1639 {
1640 displaced->reset ();
1641 }
1642
1643 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1644 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1645
1646 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1647
1648 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1649 void
1650 displaced_step_dump_bytes (struct ui_file *file,
1651 const gdb_byte *buf,
1652 size_t len)
1653 {
1654 int i;
1655
1656 for (i = 0; i < len; i++)
1657 fprintf_unfiltered (file, "%02x ", buf[i]);
1658 fputs_unfiltered ("\n", file);
1659 }
1660
1661 /* Prepare to single-step, using displaced stepping.
1662
1663 Note that we cannot use displaced stepping when we have a signal to
1664 deliver. If we have a signal to deliver and an instruction to step
1665 over, then after the step, there will be no indication from the
1666 target whether the thread entered a signal handler or ignored the
1667 signal and stepped over the instruction successfully --- both cases
1668 result in a simple SIGTRAP. In the first case we mustn't do a
1669 fixup, and in the second case we must --- but we can't tell which.
1670 Comments in the code for 'random signals' in handle_inferior_event
1671 explain how we handle this case instead.
1672
1673 Returns 1 if preparing was successful -- this thread is going to be
1674 stepped now; 0 if displaced stepping this thread got queued; or -1
1675 if this instruction can't be displaced stepped. */
1676
1677 static displaced_step_prepare_status
1678 displaced_step_prepare_throw (thread_info *tp)
1679 {
1680 regcache *regcache = get_thread_regcache (tp);
1681 struct gdbarch *gdbarch = regcache->arch ();
1682 displaced_step_thread_state *thread_disp_step_state
1683 = get_displaced_stepping_state (tp);
1684
1685 /* We should never reach this function if the target does not
1686 support displaced stepping. */
1687 gdb_assert (target_supports_displaced_stepping (tp));
1688
1689 /* Nor if the thread isn't meant to step over a breakpoint. */
1690 gdb_assert (tp->control.trap_expected);
1691
1692 /* Disable range stepping while executing in the scratch pad. We
1693 want a single-step even if executing the displaced instruction in
1694 the scratch buffer lands within the stepping range (e.g., a
1695 jump/branch). */
1696 tp->control.may_range_step = 0;
1697
1698 /* We are about to start a displaced step for this thread, if one is already
1699 in progress, we goofed up somewhere. */
1700 gdb_assert (!thread_disp_step_state->in_progress ());
1701
1702 scoped_restore_current_thread restore_thread;
1703
1704 switch_to_thread (tp);
1705
1706 CORE_ADDR original_pc = regcache_read_pc (regcache);
1707
1708 displaced_step_prepare_status status =
1709 tp->inf->top_target ()->displaced_step_prepare (tp);
1710
1711 if (status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
1712 {
1713 if (debug_displaced)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "displaced: failed to prepare (%s)",
1716 target_pid_to_str (tp->ptid).c_str ());
1717
1718 return DISPLACED_STEP_PREPARE_STATUS_ERROR;
1719 }
1720 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1721 {
1722 /* Not enough displaced stepping resources available, defer this
1723 request by placing it the queue. */
1724
1725 if (debug_displaced)
1726 fprintf_unfiltered (gdb_stdlog,
1727 "displaced: not enough resources available, "
1728 "deferring step of %s\n",
1729 target_pid_to_str (tp->ptid).c_str ());
1730
1731 global_thread_step_over_chain_enqueue (tp);
1732 tp->inf->displaced_step_state.unavailable = true;
1733
1734 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1735 }
1736
1737 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1738
1739 // FIXME: Should probably replicated in the arch implementation now.
1740 //
1741 // if (breakpoint_in_range_p (aspace, copy, len))
1742 // {
1743 // /* There's a breakpoint set in the scratch pad location range
1744 // (which is usually around the entry point). We'd either
1745 // install it before resuming, which would overwrite/corrupt the
1746 // scratch pad, or if it was already inserted, this displaced
1747 // step would overwrite it. The latter is OK in the sense that
1748 // we already assume that no thread is going to execute the code
1749 // in the scratch pad range (after initial startup) anyway, but
1750 // the former is unacceptable. Simply punt and fallback to
1751 // stepping over this breakpoint in-line. */
1752 // if (debug_displaced)
1753 // {
1754 // fprintf_unfiltered (gdb_stdlog,
1755 // "displaced: breakpoint set in scratch pad. "
1756 // "Stepping over breakpoint in-line instead.\n");
1757 // }
1758 //
1759 // gdb_assert (false);
1760 // gdbarch_displaced_step_release_location (gdbarch, copy);
1761 //
1762 // return -1;
1763 // }
1764
1765 /* Save the information we need to fix things up if the step
1766 succeeds. */
1767 thread_disp_step_state->set (gdbarch);
1768
1769 // FIXME: get it from _prepare?
1770 CORE_ADDR displaced_pc = 0;
1771
1772 if (debug_displaced)
1773 fprintf_unfiltered (gdb_stdlog,
1774 "displaced: prepared successfully thread=%s, "
1775 "original_pc=%s, displaced_pc=%s\n",
1776 target_pid_to_str (tp->ptid).c_str (),
1777 paddress (gdbarch, original_pc),
1778 paddress (gdbarch, displaced_pc));
1779
1780 return DISPLACED_STEP_PREPARE_STATUS_OK;
1781 }
1782
1783 /* Wrapper for displaced_step_prepare_throw that disabled further
1784 attempts at displaced stepping if we get a memory error. */
1785
1786 static displaced_step_prepare_status
1787 displaced_step_prepare (thread_info *thread)
1788 {
1789 displaced_step_prepare_status status
1790 = DISPLACED_STEP_PREPARE_STATUS_ERROR;
1791
1792 try
1793 {
1794 status = displaced_step_prepare_throw (thread);
1795 }
1796 catch (const gdb_exception_error &ex)
1797 {
1798 struct displaced_step_inferior_state *displaced_state;
1799
1800 if (ex.error != MEMORY_ERROR
1801 && ex.error != NOT_SUPPORTED_ERROR)
1802 throw;
1803
1804 infrun_log_debug ("caught exception, disabling displaced stepping: %s",
1805 ex.what ());
1806
1807 /* Be verbose if "set displaced-stepping" is "on", silent if
1808 "auto". */
1809 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1810 {
1811 warning (_("disabling displaced stepping: %s"),
1812 ex.what ());
1813 }
1814
1815 /* Disable further displaced stepping attempts. */
1816 displaced_state
1817 = get_displaced_stepping_state (thread->inf);
1818 displaced_state->failed_before = 1;
1819 }
1820
1821 return status;
1822 }
1823
1824 /* If we displaced stepped an instruction successfully, adjust
1825 registers and memory to yield the same effect the instruction would
1826 have had if we had executed it at its original address, and return
1827 1. If the instruction didn't complete, relocate the PC and return
1828 -1. If the thread wasn't displaced stepping, return 0. */
1829
1830 static int
1831 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1832 {
1833 displaced_step_thread_state *displaced
1834 = get_displaced_stepping_state (event_thread);
1835
1836 /* Was this thread performing a displaced step? */
1837 if (!displaced->in_progress ())
1838 return 0;
1839
1840 displaced_step_reset_cleanup cleanup (displaced);
1841
1842 /* Fixup may need to read memory/registers. Switch to the thread
1843 that we're fixing up. Also, target_stopped_by_watchpoint checks
1844 the current thread, and displaced_step_restore performs ptid-dependent
1845 memory accesses using current_inferior() and current_top_target(). */
1846 switch_to_thread (event_thread);
1847
1848 /* Do the fixup, and release the resources acquired to do the displaced
1849 step. */
1850 displaced_step_finish_status finish_status =
1851 event_thread->inf->top_target ()->displaced_step_finish (event_thread,
1852 signal);
1853
1854 if (finish_status == DISPLACED_STEP_FINISH_STATUS_OK)
1855 return 1;
1856 else
1857 return -1;
1858 }
1859
1860 /* Data to be passed around while handling an event. This data is
1861 discarded between events. */
1862 struct execution_control_state
1863 {
1864 process_stratum_target *target;
1865 ptid_t ptid;
1866 /* The thread that got the event, if this was a thread event; NULL
1867 otherwise. */
1868 struct thread_info *event_thread;
1869
1870 struct target_waitstatus ws;
1871 int stop_func_filled_in;
1872 CORE_ADDR stop_func_start;
1873 CORE_ADDR stop_func_end;
1874 const char *stop_func_name;
1875 int wait_some_more;
1876
1877 /* True if the event thread hit the single-step breakpoint of
1878 another thread. Thus the event doesn't cause a stop, the thread
1879 needs to be single-stepped past the single-step breakpoint before
1880 we can switch back to the original stepping thread. */
1881 int hit_singlestep_breakpoint;
1882 };
1883
1884 /* Clear ECS and set it to point at TP. */
1885
1886 static void
1887 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1888 {
1889 memset (ecs, 0, sizeof (*ecs));
1890 ecs->event_thread = tp;
1891 ecs->ptid = tp->ptid;
1892 }
1893
1894 static void keep_going_pass_signal (struct execution_control_state *ecs);
1895 static void prepare_to_wait (struct execution_control_state *ecs);
1896 static int keep_going_stepped_thread (struct thread_info *tp);
1897 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1898
1899 /* Are there any pending step-over requests? If so, run all we can
1900 now and return true. Otherwise, return false. */
1901
1902 static int
1903 start_step_over (void)
1904 {
1905 struct thread_info *tp, *next;
1906 int started = 0;
1907
1908 /* Don't start a new step-over if we already have an in-line
1909 step-over operation ongoing. */
1910 if (step_over_info_valid_p ())
1911 return started;
1912
1913 /* Steal the global thread step over chain. */
1914 thread_info *threads_to_step = global_thread_step_over_chain_head;
1915 global_thread_step_over_chain_head = NULL;
1916
1917 if (debug_infrun)
1918 fprintf_unfiltered (gdb_stdlog,
1919 "infrun: stealing list of %d threads to step from global queue\n",
1920 thread_step_over_chain_length (threads_to_step));
1921
1922 for (inferior *inf : all_inferiors ())
1923 inf->displaced_step_state.unavailable = false;
1924
1925 for (tp = threads_to_step; tp != NULL; tp = next)
1926 {
1927 struct execution_control_state ecss;
1928 struct execution_control_state *ecs = &ecss;
1929 step_over_what step_what;
1930 int must_be_in_line;
1931
1932 gdb_assert (!tp->stop_requested);
1933
1934 next = thread_step_over_chain_next (threads_to_step, tp);
1935
1936 step_what = thread_still_needs_step_over (tp);
1937 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1938 || ((step_what & STEP_OVER_BREAKPOINT)
1939 && !use_displaced_stepping (tp)));
1940
1941 /* We currently stop all threads of all processes to step-over
1942 in-line. If we need to start a new in-line step-over, let
1943 any pending displaced steps finish first. */
1944 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1945 continue;
1946
1947 thread_step_over_chain_remove (&threads_to_step, tp);
1948
1949 if (tp->control.trap_expected
1950 || tp->resumed
1951 || tp->executing)
1952 {
1953 internal_error (__FILE__, __LINE__,
1954 "[%s] has inconsistent state: "
1955 "trap_expected=%d, resumed=%d, executing=%d\n",
1956 target_pid_to_str (tp->ptid).c_str (),
1957 tp->control.trap_expected,
1958 tp->resumed,
1959 tp->executing);
1960 }
1961
1962 infrun_log_debug ("resuming [%s] for step-over",
1963 target_pid_to_str (tp->ptid).c_str ());
1964
1965 /* keep_going_pass_signal skips the step-over if the breakpoint
1966 is no longer inserted. In all-stop, we want to keep looking
1967 for a thread that needs a step-over instead of resuming TP,
1968 because we wouldn't be able to resume anything else until the
1969 target stops again. In non-stop, the resume always resumes
1970 only TP, so it's OK to let the thread resume freely. */
1971 if (!target_is_non_stop_p () && !step_what)
1972 continue;
1973
1974 if (tp->inf->displaced_step_state.unavailable)
1975 {
1976 global_thread_step_over_chain_enqueue (tp);
1977 continue;
1978 }
1979
1980 switch_to_thread (tp);
1981 reset_ecs (ecs, tp);
1982 keep_going_pass_signal (ecs);
1983
1984 if (!ecs->wait_some_more)
1985 error (_("Command aborted."));
1986
1987 /* If the thread's step over could not be initiated, it was re-added
1988 to the global step over chain. */
1989 if (tp->resumed)
1990 {
1991 infrun_log_debug ("start_step_over: [%s] was resumed.\n",
1992 target_pid_to_str (tp->ptid).c_str ());
1993 gdb_assert (!thread_is_in_step_over_chain (tp));
1994 }
1995 else
1996 {
1997 infrun_log_debug ("infrun: start_step_over: [%s] was NOT resumed.\n",
1998 target_pid_to_str (tp->ptid).c_str ());
1999 gdb_assert (thread_is_in_step_over_chain (tp));
2000
2001 }
2002
2003 /* If we started a new in-line step-over, we're done. */
2004 if (step_over_info_valid_p ())
2005 {
2006 gdb_assert (tp->control.trap_expected);
2007 started = 1;
2008 break;
2009 }
2010
2011 if (!target_is_non_stop_p ())
2012 {
2013 /* On all-stop, shouldn't have resumed unless we needed a
2014 step over. */
2015 gdb_assert (tp->control.trap_expected
2016 || tp->step_after_step_resume_breakpoint);
2017
2018 /* With remote targets (at least), in all-stop, we can't
2019 issue any further remote commands until the program stops
2020 again. */
2021 started = 1;
2022 break;
2023 }
2024
2025 /* Either the thread no longer needed a step-over, or a new
2026 displaced stepping sequence started. Even in the latter
2027 case, continue looking. Maybe we can also start another
2028 displaced step on a thread of other process. */
2029 }
2030
2031 /* If there are threads left in the THREADS_TO_STEP list, but we have
2032 detected that we can't start anything more, put back these threads
2033 in the global list. */
2034 if (threads_to_step == NULL)
2035 {
2036 if (debug_infrun)
2037 fprintf_unfiltered (gdb_stdlog,
2038 "infrun: step-over queue now empty\n");
2039 }
2040 else
2041 {
2042 if (debug_infrun)
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: putting back %d threads to step in global queue\n",
2045 thread_step_over_chain_length (threads_to_step));
2046 while (threads_to_step != nullptr)
2047 {
2048 thread_info *thread = threads_to_step;
2049
2050 /* Remove from that list. */
2051 thread_step_over_chain_remove (&threads_to_step, thread);
2052
2053 /* Add to global list. */
2054 global_thread_step_over_chain_enqueue (thread);
2055
2056 }
2057 }
2058
2059 return started;
2060 }
2061
2062 /* Update global variables holding ptids to hold NEW_PTID if they were
2063 holding OLD_PTID. */
2064 static void
2065 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2066 {
2067 if (inferior_ptid == old_ptid)
2068 inferior_ptid = new_ptid;
2069 }
2070
2071 \f
2072
2073 static const char schedlock_off[] = "off";
2074 static const char schedlock_on[] = "on";
2075 static const char schedlock_step[] = "step";
2076 static const char schedlock_replay[] = "replay";
2077 static const char *const scheduler_enums[] = {
2078 schedlock_off,
2079 schedlock_on,
2080 schedlock_step,
2081 schedlock_replay,
2082 NULL
2083 };
2084 static const char *scheduler_mode = schedlock_replay;
2085 static void
2086 show_scheduler_mode (struct ui_file *file, int from_tty,
2087 struct cmd_list_element *c, const char *value)
2088 {
2089 fprintf_filtered (file,
2090 _("Mode for locking scheduler "
2091 "during execution is \"%s\".\n"),
2092 value);
2093 }
2094
2095 static void
2096 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2097 {
2098 if (!target_can_lock_scheduler)
2099 {
2100 scheduler_mode = schedlock_off;
2101 error (_("Target '%s' cannot support this command."), target_shortname);
2102 }
2103 }
2104
2105 /* True if execution commands resume all threads of all processes by
2106 default; otherwise, resume only threads of the current inferior
2107 process. */
2108 bool sched_multi = false;
2109
2110 /* Try to setup for software single stepping over the specified location.
2111 Return 1 if target_resume() should use hardware single step.
2112
2113 GDBARCH the current gdbarch.
2114 PC the location to step over. */
2115
2116 static int
2117 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2118 {
2119 int hw_step = 1;
2120
2121 if (execution_direction == EXEC_FORWARD
2122 && gdbarch_software_single_step_p (gdbarch))
2123 hw_step = !insert_single_step_breakpoints (gdbarch);
2124
2125 return hw_step;
2126 }
2127
2128 /* See infrun.h. */
2129
2130 ptid_t
2131 user_visible_resume_ptid (int step)
2132 {
2133 ptid_t resume_ptid;
2134
2135 if (non_stop)
2136 {
2137 /* With non-stop mode on, threads are always handled
2138 individually. */
2139 resume_ptid = inferior_ptid;
2140 }
2141 else if ((scheduler_mode == schedlock_on)
2142 || (scheduler_mode == schedlock_step && step))
2143 {
2144 /* User-settable 'scheduler' mode requires solo thread
2145 resume. */
2146 resume_ptid = inferior_ptid;
2147 }
2148 else if ((scheduler_mode == schedlock_replay)
2149 && target_record_will_replay (minus_one_ptid, execution_direction))
2150 {
2151 /* User-settable 'scheduler' mode requires solo thread resume in replay
2152 mode. */
2153 resume_ptid = inferior_ptid;
2154 }
2155 else if (!sched_multi && target_supports_multi_process ())
2156 {
2157 /* Resume all threads of the current process (and none of other
2158 processes). */
2159 resume_ptid = ptid_t (inferior_ptid.pid ());
2160 }
2161 else
2162 {
2163 /* Resume all threads of all processes. */
2164 resume_ptid = RESUME_ALL;
2165 }
2166
2167 return resume_ptid;
2168 }
2169
2170 /* See infrun.h. */
2171
2172 process_stratum_target *
2173 user_visible_resume_target (ptid_t resume_ptid)
2174 {
2175 return (resume_ptid == minus_one_ptid && sched_multi
2176 ? NULL
2177 : current_inferior ()->process_target ());
2178 }
2179
2180 /* Return a ptid representing the set of threads that we will resume,
2181 in the perspective of the target, assuming run control handling
2182 does not require leaving some threads stopped (e.g., stepping past
2183 breakpoint). USER_STEP indicates whether we're about to start the
2184 target for a stepping command. */
2185
2186 static ptid_t
2187 internal_resume_ptid (int user_step)
2188 {
2189 /* In non-stop, we always control threads individually. Note that
2190 the target may always work in non-stop mode even with "set
2191 non-stop off", in which case user_visible_resume_ptid could
2192 return a wildcard ptid. */
2193 if (target_is_non_stop_p ())
2194 return inferior_ptid;
2195 else
2196 return user_visible_resume_ptid (user_step);
2197 }
2198
2199 /* Wrapper for target_resume, that handles infrun-specific
2200 bookkeeping. */
2201
2202 static void
2203 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2204 {
2205 struct thread_info *tp = inferior_thread ();
2206
2207 gdb_assert (!tp->stop_requested);
2208
2209 /* Install inferior's terminal modes. */
2210 target_terminal::inferior ();
2211
2212 /* Avoid confusing the next resume, if the next stop/resume
2213 happens to apply to another thread. */
2214 tp->suspend.stop_signal = GDB_SIGNAL_0;
2215
2216 /* Advise target which signals may be handled silently.
2217
2218 If we have removed breakpoints because we are stepping over one
2219 in-line (in any thread), we need to receive all signals to avoid
2220 accidentally skipping a breakpoint during execution of a signal
2221 handler.
2222
2223 Likewise if we're displaced stepping, otherwise a trap for a
2224 breakpoint in a signal handler might be confused with the
2225 displaced step finishing. We don't make the displaced_step_fixup
2226 step distinguish the cases instead, because:
2227
2228 - a backtrace while stopped in the signal handler would show the
2229 scratch pad as frame older than the signal handler, instead of
2230 the real mainline code.
2231
2232 - when the thread is later resumed, the signal handler would
2233 return to the scratch pad area, which would no longer be
2234 valid. */
2235 if (step_over_info_valid_p ()
2236 || displaced_step_in_progress (tp->inf))
2237 target_pass_signals ({});
2238 else
2239 target_pass_signals (signal_pass);
2240
2241 target_resume (resume_ptid, step, sig);
2242
2243 target_commit_resume ();
2244
2245 if (target_can_async_p ())
2246 target_async (1);
2247 }
2248
2249 /* Resume the inferior. SIG is the signal to give the inferior
2250 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2251 call 'resume', which handles exceptions. */
2252
2253 static void
2254 resume_1 (enum gdb_signal sig)
2255 {
2256 struct regcache *regcache = get_current_regcache ();
2257 struct gdbarch *gdbarch = regcache->arch ();
2258 struct thread_info *tp = inferior_thread ();
2259 const address_space *aspace = regcache->aspace ();
2260 ptid_t resume_ptid;
2261 /* This represents the user's step vs continue request. When
2262 deciding whether "set scheduler-locking step" applies, it's the
2263 user's intention that counts. */
2264 const int user_step = tp->control.stepping_command;
2265 /* This represents what we'll actually request the target to do.
2266 This can decay from a step to a continue, if e.g., we need to
2267 implement single-stepping with breakpoints (software
2268 single-step). */
2269 int step;
2270
2271 gdb_assert (!tp->stop_requested);
2272 gdb_assert (!thread_is_in_step_over_chain (tp));
2273
2274 if (tp->suspend.waitstatus_pending_p)
2275 {
2276 infrun_log_debug
2277 ("thread %s has pending wait "
2278 "status %s (currently_stepping=%d).",
2279 target_pid_to_str (tp->ptid).c_str (),
2280 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2281 currently_stepping (tp));
2282
2283 tp->inf->process_target ()->threads_executing = true;
2284 tp->resumed = true;
2285
2286 /* FIXME: What should we do if we are supposed to resume this
2287 thread with a signal? Maybe we should maintain a queue of
2288 pending signals to deliver. */
2289 if (sig != GDB_SIGNAL_0)
2290 {
2291 warning (_("Couldn't deliver signal %s to %s."),
2292 gdb_signal_to_name (sig),
2293 target_pid_to_str (tp->ptid).c_str ());
2294 }
2295
2296 tp->suspend.stop_signal = GDB_SIGNAL_0;
2297
2298 if (target_can_async_p ())
2299 {
2300 target_async (1);
2301 /* Tell the event loop we have an event to process. */
2302 mark_async_event_handler (infrun_async_inferior_event_token);
2303 }
2304 return;
2305 }
2306
2307 tp->stepped_breakpoint = 0;
2308
2309 /* Depends on stepped_breakpoint. */
2310 step = currently_stepping (tp);
2311
2312 if (current_inferior ()->waiting_for_vfork_done)
2313 {
2314 /* Don't try to single-step a vfork parent that is waiting for
2315 the child to get out of the shared memory region (by exec'ing
2316 or exiting). This is particularly important on software
2317 single-step archs, as the child process would trip on the
2318 software single step breakpoint inserted for the parent
2319 process. Since the parent will not actually execute any
2320 instruction until the child is out of the shared region (such
2321 are vfork's semantics), it is safe to simply continue it.
2322 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2323 the parent, and tell it to `keep_going', which automatically
2324 re-sets it stepping. */
2325 infrun_log_debug ("resume : clear step");
2326 step = 0;
2327 }
2328
2329 CORE_ADDR pc = regcache_read_pc (regcache);
2330
2331 infrun_log_debug ("step=%d, signal=%s, trap_expected=%d, "
2332 "current thread [%s] at %s",
2333 step, gdb_signal_to_symbol_string (sig),
2334 tp->control.trap_expected,
2335 target_pid_to_str (inferior_ptid).c_str (),
2336 paddress (gdbarch, pc));
2337
2338 /* Normally, by the time we reach `resume', the breakpoints are either
2339 removed or inserted, as appropriate. The exception is if we're sitting
2340 at a permanent breakpoint; we need to step over it, but permanent
2341 breakpoints can't be removed. So we have to test for it here. */
2342 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2343 {
2344 if (sig != GDB_SIGNAL_0)
2345 {
2346 /* We have a signal to pass to the inferior. The resume
2347 may, or may not take us to the signal handler. If this
2348 is a step, we'll need to stop in the signal handler, if
2349 there's one, (if the target supports stepping into
2350 handlers), or in the next mainline instruction, if
2351 there's no handler. If this is a continue, we need to be
2352 sure to run the handler with all breakpoints inserted.
2353 In all cases, set a breakpoint at the current address
2354 (where the handler returns to), and once that breakpoint
2355 is hit, resume skipping the permanent breakpoint. If
2356 that breakpoint isn't hit, then we've stepped into the
2357 signal handler (or hit some other event). We'll delete
2358 the step-resume breakpoint then. */
2359
2360 infrun_log_debug ("resume: skipping permanent breakpoint, "
2361 "deliver signal first");
2362
2363 clear_step_over_info ();
2364 tp->control.trap_expected = 0;
2365
2366 if (tp->control.step_resume_breakpoint == NULL)
2367 {
2368 /* Set a "high-priority" step-resume, as we don't want
2369 user breakpoints at PC to trigger (again) when this
2370 hits. */
2371 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2372 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2373
2374 tp->step_after_step_resume_breakpoint = step;
2375 }
2376
2377 insert_breakpoints ();
2378 }
2379 else
2380 {
2381 /* There's no signal to pass, we can go ahead and skip the
2382 permanent breakpoint manually. */
2383 infrun_log_debug ("skipping permanent breakpoint");
2384 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2385 /* Update pc to reflect the new address from which we will
2386 execute instructions. */
2387 pc = regcache_read_pc (regcache);
2388
2389 if (step)
2390 {
2391 /* We've already advanced the PC, so the stepping part
2392 is done. Now we need to arrange for a trap to be
2393 reported to handle_inferior_event. Set a breakpoint
2394 at the current PC, and run to it. Don't update
2395 prev_pc, because if we end in
2396 switch_back_to_stepped_thread, we want the "expected
2397 thread advanced also" branch to be taken. IOW, we
2398 don't want this thread to step further from PC
2399 (overstep). */
2400 gdb_assert (!step_over_info_valid_p ());
2401 insert_single_step_breakpoint (gdbarch, aspace, pc);
2402 insert_breakpoints ();
2403
2404 resume_ptid = internal_resume_ptid (user_step);
2405 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2406 tp->resumed = true;
2407 return;
2408 }
2409 }
2410 }
2411
2412 /* If we have a breakpoint to step over, make sure to do a single
2413 step only. Same if we have software watchpoints. */
2414 if (tp->control.trap_expected || bpstat_should_step ())
2415 tp->control.may_range_step = 0;
2416
2417 /* If displaced stepping is enabled, step over breakpoints by executing a
2418 copy of the instruction at a different address.
2419
2420 We can't use displaced stepping when we have a signal to deliver;
2421 the comments for displaced_step_prepare explain why. The
2422 comments in the handle_inferior event for dealing with 'random
2423 signals' explain what we do instead.
2424
2425 We can't use displaced stepping when we are waiting for vfork_done
2426 event, displaced stepping breaks the vfork child similarly as single
2427 step software breakpoint. */
2428 if (tp->control.trap_expected
2429 && use_displaced_stepping (tp)
2430 && !step_over_info_valid_p ()
2431 && sig == GDB_SIGNAL_0
2432 && !current_inferior ()->waiting_for_vfork_done)
2433 {
2434 displaced_step_prepare_status prepare_status
2435 = displaced_step_prepare (tp);
2436
2437 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2438 {
2439 infrun_log_debug ("Got placed in step-over queue");
2440
2441 tp->control.trap_expected = 0;
2442 return;
2443 }
2444 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_ERROR)
2445 {
2446 /* Fallback to stepping over the breakpoint in-line. */
2447
2448 if (target_is_non_stop_p ())
2449 stop_all_threads ();
2450
2451 set_step_over_info (regcache->aspace (),
2452 regcache_read_pc (regcache), 0, tp->global_num);
2453
2454 step = maybe_software_singlestep (gdbarch, pc);
2455
2456 insert_breakpoints ();
2457 }
2458 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2459 {
2460 step = gdbarch_displaced_step_hw_singlestep (gdbarch, NULL);
2461 }
2462 else
2463 gdb_assert_not_reached ("invalid displaced_step_prepare_status value");
2464 }
2465
2466 /* Do we need to do it the hard way, w/temp breakpoints? */
2467 else if (step)
2468 step = maybe_software_singlestep (gdbarch, pc);
2469
2470 /* Currently, our software single-step implementation leads to different
2471 results than hardware single-stepping in one situation: when stepping
2472 into delivering a signal which has an associated signal handler,
2473 hardware single-step will stop at the first instruction of the handler,
2474 while software single-step will simply skip execution of the handler.
2475
2476 For now, this difference in behavior is accepted since there is no
2477 easy way to actually implement single-stepping into a signal handler
2478 without kernel support.
2479
2480 However, there is one scenario where this difference leads to follow-on
2481 problems: if we're stepping off a breakpoint by removing all breakpoints
2482 and then single-stepping. In this case, the software single-step
2483 behavior means that even if there is a *breakpoint* in the signal
2484 handler, GDB still would not stop.
2485
2486 Fortunately, we can at least fix this particular issue. We detect
2487 here the case where we are about to deliver a signal while software
2488 single-stepping with breakpoints removed. In this situation, we
2489 revert the decisions to remove all breakpoints and insert single-
2490 step breakpoints, and instead we install a step-resume breakpoint
2491 at the current address, deliver the signal without stepping, and
2492 once we arrive back at the step-resume breakpoint, actually step
2493 over the breakpoint we originally wanted to step over. */
2494 if (thread_has_single_step_breakpoints_set (tp)
2495 && sig != GDB_SIGNAL_0
2496 && step_over_info_valid_p ())
2497 {
2498 /* If we have nested signals or a pending signal is delivered
2499 immediately after a handler returns, might already have
2500 a step-resume breakpoint set on the earlier handler. We cannot
2501 set another step-resume breakpoint; just continue on until the
2502 original breakpoint is hit. */
2503 if (tp->control.step_resume_breakpoint == NULL)
2504 {
2505 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2506 tp->step_after_step_resume_breakpoint = 1;
2507 }
2508
2509 delete_single_step_breakpoints (tp);
2510
2511 clear_step_over_info ();
2512 tp->control.trap_expected = 0;
2513
2514 insert_breakpoints ();
2515 }
2516
2517 /* If STEP is set, it's a request to use hardware stepping
2518 facilities. But in that case, we should never
2519 use singlestep breakpoint. */
2520 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2521
2522 /* Decide the set of threads to ask the target to resume. */
2523 if (tp->control.trap_expected)
2524 {
2525 /* We're allowing a thread to run past a breakpoint it has
2526 hit, either by single-stepping the thread with the breakpoint
2527 removed, or by displaced stepping, with the breakpoint inserted.
2528 In the former case, we need to single-step only this thread,
2529 and keep others stopped, as they can miss this breakpoint if
2530 allowed to run. That's not really a problem for displaced
2531 stepping, but, we still keep other threads stopped, in case
2532 another thread is also stopped for a breakpoint waiting for
2533 its turn in the displaced stepping queue. */
2534 resume_ptid = inferior_ptid;
2535 }
2536 else
2537 resume_ptid = internal_resume_ptid (user_step);
2538
2539 if (execution_direction != EXEC_REVERSE
2540 && step && breakpoint_inserted_here_p (aspace, pc))
2541 {
2542 /* There are two cases where we currently need to step a
2543 breakpoint instruction when we have a signal to deliver:
2544
2545 - See handle_signal_stop where we handle random signals that
2546 could take out us out of the stepping range. Normally, in
2547 that case we end up continuing (instead of stepping) over the
2548 signal handler with a breakpoint at PC, but there are cases
2549 where we should _always_ single-step, even if we have a
2550 step-resume breakpoint, like when a software watchpoint is
2551 set. Assuming single-stepping and delivering a signal at the
2552 same time would takes us to the signal handler, then we could
2553 have removed the breakpoint at PC to step over it. However,
2554 some hardware step targets (like e.g., Mac OS) can't step
2555 into signal handlers, and for those, we need to leave the
2556 breakpoint at PC inserted, as otherwise if the handler
2557 recurses and executes PC again, it'll miss the breakpoint.
2558 So we leave the breakpoint inserted anyway, but we need to
2559 record that we tried to step a breakpoint instruction, so
2560 that adjust_pc_after_break doesn't end up confused.
2561
2562 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2563 in one thread after another thread that was stepping had been
2564 momentarily paused for a step-over. When we re-resume the
2565 stepping thread, it may be resumed from that address with a
2566 breakpoint that hasn't trapped yet. Seen with
2567 gdb.threads/non-stop-fair-events.exp, on targets that don't
2568 do displaced stepping. */
2569
2570 infrun_log_debug ("resume: [%s] stepped breakpoint",
2571 target_pid_to_str (tp->ptid).c_str ());
2572
2573 tp->stepped_breakpoint = 1;
2574
2575 /* Most targets can step a breakpoint instruction, thus
2576 executing it normally. But if this one cannot, just
2577 continue and we will hit it anyway. */
2578 if (gdbarch_cannot_step_breakpoint (gdbarch))
2579 step = 0;
2580 }
2581
2582 if (debug_displaced
2583 && tp->control.trap_expected
2584 && use_displaced_stepping (tp)
2585 && !step_over_info_valid_p ())
2586 {
2587 struct regcache *resume_regcache = get_thread_regcache (tp);
2588 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2589 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2590 gdb_byte buf[4];
2591
2592 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2593 paddress (resume_gdbarch, actual_pc));
2594 read_memory (actual_pc, buf, sizeof (buf));
2595 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2596 }
2597
2598 if (tp->control.may_range_step)
2599 {
2600 /* If we're resuming a thread with the PC out of the step
2601 range, then we're doing some nested/finer run control
2602 operation, like stepping the thread out of the dynamic
2603 linker or the displaced stepping scratch pad. We
2604 shouldn't have allowed a range step then. */
2605 gdb_assert (pc_in_thread_step_range (pc, tp));
2606 }
2607
2608 do_target_resume (resume_ptid, step, sig);
2609 tp->resumed = true;
2610 }
2611
2612 /* Resume the inferior. SIG is the signal to give the inferior
2613 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2614 rolls back state on error. */
2615
2616 static void
2617 resume (gdb_signal sig)
2618 {
2619 try
2620 {
2621 resume_1 (sig);
2622 }
2623 catch (const gdb_exception &ex)
2624 {
2625 /* If resuming is being aborted for any reason, delete any
2626 single-step breakpoint resume_1 may have created, to avoid
2627 confusing the following resumption, and to avoid leaving
2628 single-step breakpoints perturbing other threads, in case
2629 we're running in non-stop mode. */
2630 if (inferior_ptid != null_ptid)
2631 delete_single_step_breakpoints (inferior_thread ());
2632 throw;
2633 }
2634 }
2635
2636 \f
2637 /* Proceeding. */
2638
2639 /* See infrun.h. */
2640
2641 /* Counter that tracks number of user visible stops. This can be used
2642 to tell whether a command has proceeded the inferior past the
2643 current location. This allows e.g., inferior function calls in
2644 breakpoint commands to not interrupt the command list. When the
2645 call finishes successfully, the inferior is standing at the same
2646 breakpoint as if nothing happened (and so we don't call
2647 normal_stop). */
2648 static ULONGEST current_stop_id;
2649
2650 /* See infrun.h. */
2651
2652 ULONGEST
2653 get_stop_id (void)
2654 {
2655 return current_stop_id;
2656 }
2657
2658 /* Called when we report a user visible stop. */
2659
2660 static void
2661 new_stop_id (void)
2662 {
2663 current_stop_id++;
2664 }
2665
2666 /* Clear out all variables saying what to do when inferior is continued.
2667 First do this, then set the ones you want, then call `proceed'. */
2668
2669 static void
2670 clear_proceed_status_thread (struct thread_info *tp)
2671 {
2672 infrun_log_debug ("%s", target_pid_to_str (tp->ptid).c_str ());
2673
2674 /* If we're starting a new sequence, then the previous finished
2675 single-step is no longer relevant. */
2676 if (tp->suspend.waitstatus_pending_p)
2677 {
2678 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2679 {
2680 infrun_log_debug ("pending event of %s was a finished step. "
2681 "Discarding.",
2682 target_pid_to_str (tp->ptid).c_str ());
2683
2684 tp->suspend.waitstatus_pending_p = 0;
2685 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2686 }
2687 else
2688 {
2689 infrun_log_debug
2690 ("thread %s has pending wait status %s (currently_stepping=%d).",
2691 target_pid_to_str (tp->ptid).c_str (),
2692 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2693 currently_stepping (tp));
2694 }
2695 }
2696
2697 /* If this signal should not be seen by program, give it zero.
2698 Used for debugging signals. */
2699 if (!signal_pass_state (tp->suspend.stop_signal))
2700 tp->suspend.stop_signal = GDB_SIGNAL_0;
2701
2702 delete tp->thread_fsm;
2703 tp->thread_fsm = NULL;
2704
2705 tp->control.trap_expected = 0;
2706 tp->control.step_range_start = 0;
2707 tp->control.step_range_end = 0;
2708 tp->control.may_range_step = 0;
2709 tp->control.step_frame_id = null_frame_id;
2710 tp->control.step_stack_frame_id = null_frame_id;
2711 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2712 tp->control.step_start_function = NULL;
2713 tp->stop_requested = 0;
2714
2715 tp->control.stop_step = 0;
2716
2717 tp->control.proceed_to_finish = 0;
2718
2719 tp->control.stepping_command = 0;
2720
2721 /* Discard any remaining commands or status from previous stop. */
2722 bpstat_clear (&tp->control.stop_bpstat);
2723 }
2724
2725 void
2726 clear_proceed_status (int step)
2727 {
2728 /* With scheduler-locking replay, stop replaying other threads if we're
2729 not replaying the user-visible resume ptid.
2730
2731 This is a convenience feature to not require the user to explicitly
2732 stop replaying the other threads. We're assuming that the user's
2733 intent is to resume tracing the recorded process. */
2734 if (!non_stop && scheduler_mode == schedlock_replay
2735 && target_record_is_replaying (minus_one_ptid)
2736 && !target_record_will_replay (user_visible_resume_ptid (step),
2737 execution_direction))
2738 target_record_stop_replaying ();
2739
2740 if (!non_stop && inferior_ptid != null_ptid)
2741 {
2742 ptid_t resume_ptid = user_visible_resume_ptid (step);
2743 process_stratum_target *resume_target
2744 = user_visible_resume_target (resume_ptid);
2745
2746 /* In all-stop mode, delete the per-thread status of all threads
2747 we're about to resume, implicitly and explicitly. */
2748 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2749 clear_proceed_status_thread (tp);
2750 }
2751
2752 if (inferior_ptid != null_ptid)
2753 {
2754 struct inferior *inferior;
2755
2756 if (non_stop)
2757 {
2758 /* If in non-stop mode, only delete the per-thread status of
2759 the current thread. */
2760 clear_proceed_status_thread (inferior_thread ());
2761 }
2762
2763 inferior = current_inferior ();
2764 inferior->control.stop_soon = NO_STOP_QUIETLY;
2765 }
2766
2767 gdb::observers::about_to_proceed.notify ();
2768 }
2769
2770 /* Returns true if TP is still stopped at a breakpoint that needs
2771 stepping-over in order to make progress. If the breakpoint is gone
2772 meanwhile, we can skip the whole step-over dance. */
2773
2774 static int
2775 thread_still_needs_step_over_bp (struct thread_info *tp)
2776 {
2777 if (tp->stepping_over_breakpoint)
2778 {
2779 struct regcache *regcache = get_thread_regcache (tp);
2780
2781 if (breakpoint_here_p (regcache->aspace (),
2782 regcache_read_pc (regcache))
2783 == ordinary_breakpoint_here)
2784 return 1;
2785
2786 tp->stepping_over_breakpoint = 0;
2787 }
2788
2789 return 0;
2790 }
2791
2792 /* Check whether thread TP still needs to start a step-over in order
2793 to make progress when resumed. Returns an bitwise or of enum
2794 step_over_what bits, indicating what needs to be stepped over. */
2795
2796 static step_over_what
2797 thread_still_needs_step_over (struct thread_info *tp)
2798 {
2799 step_over_what what = 0;
2800
2801 if (thread_still_needs_step_over_bp (tp))
2802 what |= STEP_OVER_BREAKPOINT;
2803
2804 if (tp->stepping_over_watchpoint
2805 && !target_have_steppable_watchpoint)
2806 what |= STEP_OVER_WATCHPOINT;
2807
2808 return what;
2809 }
2810
2811 /* Returns true if scheduler locking applies. STEP indicates whether
2812 we're about to do a step/next-like command to a thread. */
2813
2814 static int
2815 schedlock_applies (struct thread_info *tp)
2816 {
2817 return (scheduler_mode == schedlock_on
2818 || (scheduler_mode == schedlock_step
2819 && tp->control.stepping_command)
2820 || (scheduler_mode == schedlock_replay
2821 && target_record_will_replay (minus_one_ptid,
2822 execution_direction)));
2823 }
2824
2825 /* Calls target_commit_resume on all targets. */
2826
2827 static void
2828 commit_resume_all_targets ()
2829 {
2830 scoped_restore_current_thread restore_thread;
2831
2832 /* Map between process_target and a representative inferior. This
2833 is to avoid committing a resume in the same target more than
2834 once. Resumptions must be idempotent, so this is an
2835 optimization. */
2836 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2837
2838 for (inferior *inf : all_non_exited_inferiors ())
2839 if (inf->has_execution ())
2840 conn_inf[inf->process_target ()] = inf;
2841
2842 for (const auto &ci : conn_inf)
2843 {
2844 inferior *inf = ci.second;
2845 switch_to_inferior_no_thread (inf);
2846 target_commit_resume ();
2847 }
2848 }
2849
2850 /* Check that all the targets we're about to resume are in non-stop
2851 mode. Ideally, we'd only care whether all targets support
2852 target-async, but we're not there yet. E.g., stop_all_threads
2853 doesn't know how to handle all-stop targets. Also, the remote
2854 protocol in all-stop mode is synchronous, irrespective of
2855 target-async, which means that things like a breakpoint re-set
2856 triggered by one target would try to read memory from all targets
2857 and fail. */
2858
2859 static void
2860 check_multi_target_resumption (process_stratum_target *resume_target)
2861 {
2862 if (!non_stop && resume_target == nullptr)
2863 {
2864 scoped_restore_current_thread restore_thread;
2865
2866 /* This is used to track whether we're resuming more than one
2867 target. */
2868 process_stratum_target *first_connection = nullptr;
2869
2870 /* The first inferior we see with a target that does not work in
2871 always-non-stop mode. */
2872 inferior *first_not_non_stop = nullptr;
2873
2874 for (inferior *inf : all_non_exited_inferiors (resume_target))
2875 {
2876 switch_to_inferior_no_thread (inf);
2877
2878 if (!target_has_execution)
2879 continue;
2880
2881 process_stratum_target *proc_target
2882 = current_inferior ()->process_target();
2883
2884 if (!target_is_non_stop_p ())
2885 first_not_non_stop = inf;
2886
2887 if (first_connection == nullptr)
2888 first_connection = proc_target;
2889 else if (first_connection != proc_target
2890 && first_not_non_stop != nullptr)
2891 {
2892 switch_to_inferior_no_thread (first_not_non_stop);
2893
2894 proc_target = current_inferior ()->process_target();
2895
2896 error (_("Connection %d (%s) does not support "
2897 "multi-target resumption."),
2898 proc_target->connection_number,
2899 make_target_connection_string (proc_target).c_str ());
2900 }
2901 }
2902 }
2903 }
2904
2905 /* Basic routine for continuing the program in various fashions.
2906
2907 ADDR is the address to resume at, or -1 for resume where stopped.
2908 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2909 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2910
2911 You should call clear_proceed_status before calling proceed. */
2912
2913 void
2914 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2915 {
2916 struct regcache *regcache;
2917 struct gdbarch *gdbarch;
2918 CORE_ADDR pc;
2919 struct execution_control_state ecss;
2920 struct execution_control_state *ecs = &ecss;
2921 int started;
2922
2923 /* If we're stopped at a fork/vfork, follow the branch set by the
2924 "set follow-fork-mode" command; otherwise, we'll just proceed
2925 resuming the current thread. */
2926 if (!follow_fork ())
2927 {
2928 /* The target for some reason decided not to resume. */
2929 normal_stop ();
2930 if (target_can_async_p ())
2931 inferior_event_handler (INF_EXEC_COMPLETE);
2932 return;
2933 }
2934
2935 /* We'll update this if & when we switch to a new thread. */
2936 previous_inferior_ptid = inferior_ptid;
2937
2938 regcache = get_current_regcache ();
2939 gdbarch = regcache->arch ();
2940 const address_space *aspace = regcache->aspace ();
2941
2942 pc = regcache_read_pc_protected (regcache);
2943
2944 thread_info *cur_thr = inferior_thread ();
2945
2946 /* Fill in with reasonable starting values. */
2947 init_thread_stepping_state (cur_thr);
2948
2949 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2950
2951 ptid_t resume_ptid
2952 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2953 process_stratum_target *resume_target
2954 = user_visible_resume_target (resume_ptid);
2955
2956 check_multi_target_resumption (resume_target);
2957
2958 if (addr == (CORE_ADDR) -1)
2959 {
2960 if (pc == cur_thr->suspend.stop_pc
2961 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2962 && execution_direction != EXEC_REVERSE)
2963 /* There is a breakpoint at the address we will resume at,
2964 step one instruction before inserting breakpoints so that
2965 we do not stop right away (and report a second hit at this
2966 breakpoint).
2967
2968 Note, we don't do this in reverse, because we won't
2969 actually be executing the breakpoint insn anyway.
2970 We'll be (un-)executing the previous instruction. */
2971 cur_thr->stepping_over_breakpoint = 1;
2972 else if (gdbarch_single_step_through_delay_p (gdbarch)
2973 && gdbarch_single_step_through_delay (gdbarch,
2974 get_current_frame ()))
2975 /* We stepped onto an instruction that needs to be stepped
2976 again before re-inserting the breakpoint, do so. */
2977 cur_thr->stepping_over_breakpoint = 1;
2978 }
2979 else
2980 {
2981 regcache_write_pc (regcache, addr);
2982 }
2983
2984 if (siggnal != GDB_SIGNAL_DEFAULT)
2985 cur_thr->suspend.stop_signal = siggnal;
2986
2987 /* If an exception is thrown from this point on, make sure to
2988 propagate GDB's knowledge of the executing state to the
2989 frontend/user running state. */
2990 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2991
2992 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2993 threads (e.g., we might need to set threads stepping over
2994 breakpoints first), from the user/frontend's point of view, all
2995 threads in RESUME_PTID are now running. Unless we're calling an
2996 inferior function, as in that case we pretend the inferior
2997 doesn't run at all. */
2998 if (!cur_thr->control.in_infcall)
2999 set_running (resume_target, resume_ptid, true);
3000
3001 infrun_log_debug ("addr=%s, signal=%s", paddress (gdbarch, addr),
3002 gdb_signal_to_symbol_string (siggnal));
3003
3004 annotate_starting ();
3005
3006 /* Make sure that output from GDB appears before output from the
3007 inferior. */
3008 gdb_flush (gdb_stdout);
3009
3010 /* Since we've marked the inferior running, give it the terminal. A
3011 QUIT/Ctrl-C from here on is forwarded to the target (which can
3012 still detect attempts to unblock a stuck connection with repeated
3013 Ctrl-C from within target_pass_ctrlc). */
3014 target_terminal::inferior ();
3015
3016 /* In a multi-threaded task we may select another thread and
3017 then continue or step.
3018
3019 But if a thread that we're resuming had stopped at a breakpoint,
3020 it will immediately cause another breakpoint stop without any
3021 execution (i.e. it will report a breakpoint hit incorrectly). So
3022 we must step over it first.
3023
3024 Look for threads other than the current (TP) that reported a
3025 breakpoint hit and haven't been resumed yet since. */
3026
3027 /* If scheduler locking applies, we can avoid iterating over all
3028 threads. */
3029 if (!non_stop && !schedlock_applies (cur_thr))
3030 {
3031 for (thread_info *tp : all_non_exited_threads (resume_target,
3032 resume_ptid))
3033 {
3034 switch_to_thread_no_regs (tp);
3035
3036 /* Ignore the current thread here. It's handled
3037 afterwards. */
3038 if (tp == cur_thr)
3039 continue;
3040
3041 if (!thread_still_needs_step_over (tp))
3042 continue;
3043
3044 gdb_assert (!thread_is_in_step_over_chain (tp));
3045
3046 infrun_log_debug ("need to step-over [%s] first",
3047 target_pid_to_str (tp->ptid).c_str ());
3048
3049 global_thread_step_over_chain_enqueue (tp);
3050 }
3051
3052 switch_to_thread (cur_thr);
3053 }
3054
3055 /* Enqueue the current thread last, so that we move all other
3056 threads over their breakpoints first. */
3057 if (cur_thr->stepping_over_breakpoint)
3058 global_thread_step_over_chain_enqueue (cur_thr);
3059
3060 /* If the thread isn't started, we'll still need to set its prev_pc,
3061 so that switch_back_to_stepped_thread knows the thread hasn't
3062 advanced. Must do this before resuming any thread, as in
3063 all-stop/remote, once we resume we can't send any other packet
3064 until the target stops again. */
3065 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3066
3067 {
3068 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3069
3070 started = start_step_over ();
3071
3072 if (step_over_info_valid_p ())
3073 {
3074 /* Either this thread started a new in-line step over, or some
3075 other thread was already doing one. In either case, don't
3076 resume anything else until the step-over is finished. */
3077 }
3078 else if (started && !target_is_non_stop_p ())
3079 {
3080 /* A new displaced stepping sequence was started. In all-stop,
3081 we can't talk to the target anymore until it next stops. */
3082 }
3083 else if (!non_stop && target_is_non_stop_p ())
3084 {
3085 /* In all-stop, but the target is always in non-stop mode.
3086 Start all other threads that are implicitly resumed too. */
3087 for (thread_info *tp : all_non_exited_threads (resume_target,
3088 resume_ptid))
3089 {
3090 switch_to_thread_no_regs (tp);
3091
3092 if (!tp->inf->has_execution ())
3093 {
3094 infrun_log_debug ("[%s] target has no execution",
3095 target_pid_to_str (tp->ptid).c_str ());
3096 continue;
3097 }
3098
3099 if (tp->resumed)
3100 {
3101 infrun_log_debug ("[%s] resumed",
3102 target_pid_to_str (tp->ptid).c_str ());
3103 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3104 continue;
3105 }
3106
3107 if (thread_is_in_step_over_chain (tp))
3108 {
3109 infrun_log_debug ("[%s] needs step-over",
3110 target_pid_to_str (tp->ptid).c_str ());
3111 continue;
3112 }
3113
3114 infrun_log_debug ("resuming %s",
3115 target_pid_to_str (tp->ptid).c_str ());
3116
3117 reset_ecs (ecs, tp);
3118 switch_to_thread (tp);
3119 keep_going_pass_signal (ecs);
3120 if (!ecs->wait_some_more)
3121 error (_("Command aborted."));
3122 }
3123 }
3124 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3125 {
3126 /* The thread wasn't started, and isn't queued, run it now. */
3127 reset_ecs (ecs, cur_thr);
3128 switch_to_thread (cur_thr);
3129 keep_going_pass_signal (ecs);
3130 if (!ecs->wait_some_more)
3131 error (_("Command aborted."));
3132 }
3133 }
3134
3135 commit_resume_all_targets ();
3136
3137 finish_state.release ();
3138
3139 /* If we've switched threads above, switch back to the previously
3140 current thread. We don't want the user to see a different
3141 selected thread. */
3142 switch_to_thread (cur_thr);
3143
3144 /* Tell the event loop to wait for it to stop. If the target
3145 supports asynchronous execution, it'll do this from within
3146 target_resume. */
3147 if (!target_can_async_p ())
3148 mark_async_event_handler (infrun_async_inferior_event_token);
3149 }
3150 \f
3151
3152 /* Start remote-debugging of a machine over a serial link. */
3153
3154 void
3155 start_remote (int from_tty)
3156 {
3157 inferior *inf = current_inferior ();
3158 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3159
3160 /* Always go on waiting for the target, regardless of the mode. */
3161 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3162 indicate to wait_for_inferior that a target should timeout if
3163 nothing is returned (instead of just blocking). Because of this,
3164 targets expecting an immediate response need to, internally, set
3165 things up so that the target_wait() is forced to eventually
3166 timeout. */
3167 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3168 differentiate to its caller what the state of the target is after
3169 the initial open has been performed. Here we're assuming that
3170 the target has stopped. It should be possible to eventually have
3171 target_open() return to the caller an indication that the target
3172 is currently running and GDB state should be set to the same as
3173 for an async run. */
3174 wait_for_inferior (inf);
3175
3176 /* Now that the inferior has stopped, do any bookkeeping like
3177 loading shared libraries. We want to do this before normal_stop,
3178 so that the displayed frame is up to date. */
3179 post_create_inferior (current_top_target (), from_tty);
3180
3181 normal_stop ();
3182 }
3183
3184 /* Initialize static vars when a new inferior begins. */
3185
3186 void
3187 init_wait_for_inferior (void)
3188 {
3189 /* These are meaningless until the first time through wait_for_inferior. */
3190
3191 breakpoint_init_inferior (inf_starting);
3192
3193 clear_proceed_status (0);
3194
3195 nullify_last_target_wait_ptid ();
3196
3197 previous_inferior_ptid = inferior_ptid;
3198 }
3199
3200 \f
3201
3202 static void handle_inferior_event (struct execution_control_state *ecs);
3203
3204 static void handle_step_into_function (struct gdbarch *gdbarch,
3205 struct execution_control_state *ecs);
3206 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3207 struct execution_control_state *ecs);
3208 static void handle_signal_stop (struct execution_control_state *ecs);
3209 static void check_exception_resume (struct execution_control_state *,
3210 struct frame_info *);
3211
3212 static void end_stepping_range (struct execution_control_state *ecs);
3213 static void stop_waiting (struct execution_control_state *ecs);
3214 static void keep_going (struct execution_control_state *ecs);
3215 static void process_event_stop_test (struct execution_control_state *ecs);
3216 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3217
3218 /* This function is attached as a "thread_stop_requested" observer.
3219 Cleanup local state that assumed the PTID was to be resumed, and
3220 report the stop to the frontend. */
3221
3222 static void
3223 infrun_thread_stop_requested (ptid_t ptid)
3224 {
3225 process_stratum_target *curr_target = current_inferior ()->process_target ();
3226
3227 /* PTID was requested to stop. If the thread was already stopped,
3228 but the user/frontend doesn't know about that yet (e.g., the
3229 thread had been temporarily paused for some step-over), set up
3230 for reporting the stop now. */
3231 for (thread_info *tp : all_threads (curr_target, ptid))
3232 {
3233 if (tp->state != THREAD_RUNNING)
3234 continue;
3235 if (tp->executing)
3236 continue;
3237
3238 /* Remove matching threads from the step-over queue, so
3239 start_step_over doesn't try to resume them
3240 automatically. */
3241 if (thread_is_in_step_over_chain (tp))
3242 global_thread_step_over_chain_remove (tp);
3243
3244 /* If the thread is stopped, but the user/frontend doesn't
3245 know about that yet, queue a pending event, as if the
3246 thread had just stopped now. Unless the thread already had
3247 a pending event. */
3248 if (!tp->suspend.waitstatus_pending_p)
3249 {
3250 tp->suspend.waitstatus_pending_p = 1;
3251 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3252 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3253 }
3254
3255 /* Clear the inline-frame state, since we're re-processing the
3256 stop. */
3257 clear_inline_frame_state (tp);
3258
3259 /* If this thread was paused because some other thread was
3260 doing an inline-step over, let that finish first. Once
3261 that happens, we'll restart all threads and consume pending
3262 stop events then. */
3263 if (step_over_info_valid_p ())
3264 continue;
3265
3266 /* Otherwise we can process the (new) pending event now. Set
3267 it so this pending event is considered by
3268 do_target_wait. */
3269 tp->resumed = true;
3270 }
3271 }
3272
3273 static void
3274 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3275 {
3276 if (target_last_proc_target == tp->inf->process_target ()
3277 && target_last_wait_ptid == tp->ptid)
3278 nullify_last_target_wait_ptid ();
3279 }
3280
3281 /* Delete the step resume, single-step and longjmp/exception resume
3282 breakpoints of TP. */
3283
3284 static void
3285 delete_thread_infrun_breakpoints (struct thread_info *tp)
3286 {
3287 delete_step_resume_breakpoint (tp);
3288 delete_exception_resume_breakpoint (tp);
3289 delete_single_step_breakpoints (tp);
3290 }
3291
3292 /* If the target still has execution, call FUNC for each thread that
3293 just stopped. In all-stop, that's all the non-exited threads; in
3294 non-stop, that's the current thread, only. */
3295
3296 typedef void (*for_each_just_stopped_thread_callback_func)
3297 (struct thread_info *tp);
3298
3299 static void
3300 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3301 {
3302 if (!target_has_execution || inferior_ptid == null_ptid)
3303 return;
3304
3305 if (target_is_non_stop_p ())
3306 {
3307 /* If in non-stop mode, only the current thread stopped. */
3308 func (inferior_thread ());
3309 }
3310 else
3311 {
3312 /* In all-stop mode, all threads have stopped. */
3313 for (thread_info *tp : all_non_exited_threads ())
3314 func (tp);
3315 }
3316 }
3317
3318 /* Delete the step resume and longjmp/exception resume breakpoints of
3319 the threads that just stopped. */
3320
3321 static void
3322 delete_just_stopped_threads_infrun_breakpoints (void)
3323 {
3324 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3325 }
3326
3327 /* Delete the single-step breakpoints of the threads that just
3328 stopped. */
3329
3330 static void
3331 delete_just_stopped_threads_single_step_breakpoints (void)
3332 {
3333 for_each_just_stopped_thread (delete_single_step_breakpoints);
3334 }
3335
3336 /* See infrun.h. */
3337
3338 void
3339 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3340 const struct target_waitstatus *ws)
3341 {
3342 std::string status_string = target_waitstatus_to_string (ws);
3343 string_file stb;
3344
3345 /* The text is split over several lines because it was getting too long.
3346 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3347 output as a unit; we want only one timestamp printed if debug_timestamp
3348 is set. */
3349
3350 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3351 waiton_ptid.pid (),
3352 waiton_ptid.lwp (),
3353 waiton_ptid.tid ());
3354 if (waiton_ptid.pid () != -1)
3355 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3356 stb.printf (", status) =\n");
3357 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3358 result_ptid.pid (),
3359 result_ptid.lwp (),
3360 result_ptid.tid (),
3361 target_pid_to_str (result_ptid).c_str ());
3362 stb.printf ("infrun: %s\n", status_string.c_str ());
3363
3364 /* This uses %s in part to handle %'s in the text, but also to avoid
3365 a gcc error: the format attribute requires a string literal. */
3366 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3367 }
3368
3369 /* Select a thread at random, out of those which are resumed and have
3370 had events. */
3371
3372 static struct thread_info *
3373 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3374 {
3375 int num_events = 0;
3376
3377 auto has_event = [&] (thread_info *tp)
3378 {
3379 return (tp->ptid.matches (waiton_ptid)
3380 && tp->resumed
3381 && tp->suspend.waitstatus_pending_p);
3382 };
3383
3384 /* First see how many events we have. Count only resumed threads
3385 that have an event pending. */
3386 for (thread_info *tp : inf->non_exited_threads ())
3387 if (has_event (tp))
3388 num_events++;
3389
3390 if (num_events == 0)
3391 return NULL;
3392
3393 /* Now randomly pick a thread out of those that have had events. */
3394 int random_selector = (int) ((num_events * (double) rand ())
3395 / (RAND_MAX + 1.0));
3396
3397 if (num_events > 1)
3398 infrun_log_debug ("Found %d events, selecting #%d",
3399 num_events, random_selector);
3400
3401 /* Select the Nth thread that has had an event. */
3402 for (thread_info *tp : inf->non_exited_threads ())
3403 if (has_event (tp))
3404 if (random_selector-- == 0)
3405 return tp;
3406
3407 gdb_assert_not_reached ("event thread not found");
3408 }
3409
3410 /* Wrapper for target_wait that first checks whether threads have
3411 pending statuses to report before actually asking the target for
3412 more events. INF is the inferior we're using to call target_wait
3413 on. */
3414
3415 static ptid_t
3416 do_target_wait_1 (inferior *inf, ptid_t ptid,
3417 target_waitstatus *status, int options)
3418 {
3419 ptid_t event_ptid;
3420 struct thread_info *tp;
3421
3422 /* We know that we are looking for an event in the target of inferior
3423 INF, but we don't know which thread the event might come from. As
3424 such we want to make sure that INFERIOR_PTID is reset so that none of
3425 the wait code relies on it - doing so is always a mistake. */
3426 switch_to_inferior_no_thread (inf);
3427
3428 /* First check if there is a resumed thread with a wait status
3429 pending. */
3430 if (ptid == minus_one_ptid || ptid.is_pid ())
3431 {
3432 tp = random_pending_event_thread (inf, ptid);
3433 }
3434 else
3435 {
3436 infrun_log_debug ("Waiting for specific thread %s.",
3437 target_pid_to_str (ptid).c_str ());
3438
3439 /* We have a specific thread to check. */
3440 tp = find_thread_ptid (inf, ptid);
3441 gdb_assert (tp != NULL);
3442 if (!tp->suspend.waitstatus_pending_p)
3443 tp = NULL;
3444 }
3445
3446 if (tp != NULL
3447 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3448 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3449 {
3450 struct regcache *regcache = get_thread_regcache (tp);
3451 struct gdbarch *gdbarch = regcache->arch ();
3452 CORE_ADDR pc;
3453 int discard = 0;
3454
3455 pc = regcache_read_pc (regcache);
3456
3457 if (pc != tp->suspend.stop_pc)
3458 {
3459 infrun_log_debug ("PC of %s changed. was=%s, now=%s",
3460 target_pid_to_str (tp->ptid).c_str (),
3461 paddress (gdbarch, tp->suspend.stop_pc),
3462 paddress (gdbarch, pc));
3463 discard = 1;
3464 }
3465 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3466 {
3467 infrun_log_debug ("previous breakpoint of %s, at %s gone",
3468 target_pid_to_str (tp->ptid).c_str (),
3469 paddress (gdbarch, pc));
3470
3471 discard = 1;
3472 }
3473
3474 if (discard)
3475 {
3476 infrun_log_debug ("pending event of %s cancelled.",
3477 target_pid_to_str (tp->ptid).c_str ());
3478
3479 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3480 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3481 }
3482 }
3483
3484 if (tp != NULL)
3485 {
3486 infrun_log_debug ("Using pending wait status %s for %s.",
3487 target_waitstatus_to_string
3488 (&tp->suspend.waitstatus).c_str (),
3489 target_pid_to_str (tp->ptid).c_str ());
3490
3491 /* Now that we've selected our final event LWP, un-adjust its PC
3492 if it was a software breakpoint (and the target doesn't
3493 always adjust the PC itself). */
3494 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3495 && !target_supports_stopped_by_sw_breakpoint ())
3496 {
3497 struct regcache *regcache;
3498 struct gdbarch *gdbarch;
3499 int decr_pc;
3500
3501 regcache = get_thread_regcache (tp);
3502 gdbarch = regcache->arch ();
3503
3504 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3505 if (decr_pc != 0)
3506 {
3507 CORE_ADDR pc;
3508
3509 pc = regcache_read_pc (regcache);
3510 regcache_write_pc (regcache, pc + decr_pc);
3511 }
3512 }
3513
3514 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3515 *status = tp->suspend.waitstatus;
3516 tp->suspend.waitstatus_pending_p = 0;
3517
3518 /* Wake up the event loop again, until all pending events are
3519 processed. */
3520 if (target_is_async_p ())
3521 mark_async_event_handler (infrun_async_inferior_event_token);
3522 return tp->ptid;
3523 }
3524
3525 /* But if we don't find one, we'll have to wait. */
3526
3527 if (deprecated_target_wait_hook)
3528 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3529 else
3530 event_ptid = target_wait (ptid, status, options);
3531
3532 return event_ptid;
3533 }
3534
3535 /* Wrapper for target_wait that first checks whether threads have
3536 pending statuses to report before actually asking the target for
3537 more events. Polls for events from all inferiors/targets. */
3538
3539 static bool
3540 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3541 {
3542 int num_inferiors = 0;
3543 int random_selector;
3544
3545 /* For fairness, we pick the first inferior/target to poll at random
3546 out of all inferiors that may report events, and then continue
3547 polling the rest of the inferior list starting from that one in a
3548 circular fashion until the whole list is polled once. */
3549
3550 auto inferior_matches = [&wait_ptid] (inferior *inf)
3551 {
3552 return (inf->process_target () != NULL
3553 && ptid_t (inf->pid).matches (wait_ptid));
3554 };
3555
3556 /* First see how many matching inferiors we have. */
3557 for (inferior *inf : all_inferiors ())
3558 if (inferior_matches (inf))
3559 num_inferiors++;
3560
3561 if (num_inferiors == 0)
3562 {
3563 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3564 return false;
3565 }
3566
3567 /* Now randomly pick an inferior out of those that matched. */
3568 random_selector = (int)
3569 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3570
3571 if (num_inferiors > 1)
3572 infrun_log_debug ("Found %d inferiors, starting at #%d",
3573 num_inferiors, random_selector);
3574
3575 /* Select the Nth inferior that matched. */
3576
3577 inferior *selected = nullptr;
3578
3579 for (inferior *inf : all_inferiors ())
3580 if (inferior_matches (inf))
3581 if (random_selector-- == 0)
3582 {
3583 selected = inf;
3584 break;
3585 }
3586
3587 /* Now poll for events out of each of the matching inferior's
3588 targets, starting from the selected one. */
3589
3590 auto do_wait = [&] (inferior *inf)
3591 {
3592 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3593 ecs->target = inf->process_target ();
3594 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3595 };
3596
3597 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3598 here spuriously after the target is all stopped and we've already
3599 reported the stop to the user, polling for events. */
3600 scoped_restore_current_thread restore_thread;
3601
3602 int inf_num = selected->num;
3603 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3604 if (inferior_matches (inf))
3605 if (do_wait (inf))
3606 return true;
3607
3608 for (inferior *inf = inferior_list;
3609 inf != NULL && inf->num < inf_num;
3610 inf = inf->next)
3611 if (inferior_matches (inf))
3612 if (do_wait (inf))
3613 return true;
3614
3615 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3616 return false;
3617 }
3618
3619 /* Prepare and stabilize the inferior for detaching it. E.g.,
3620 detaching while a thread is displaced stepping is a recipe for
3621 crashing it, as nothing would readjust the PC out of the scratch
3622 pad. */
3623
3624 void
3625 prepare_for_detach (void)
3626 {
3627 struct inferior *inf = current_inferior ();
3628 ptid_t pid_ptid = ptid_t (inf->pid);
3629
3630 // displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3631
3632 /* Is any thread of this process displaced stepping? If not,
3633 there's nothing else to do. */
3634 if (displaced_step_in_progress (inf))
3635 return;
3636
3637 infrun_log_debug ("displaced-stepping in-process while detaching");
3638
3639 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3640
3641 // FIXME
3642 while (false)
3643 {
3644 struct execution_control_state ecss;
3645 struct execution_control_state *ecs;
3646
3647 ecs = &ecss;
3648 memset (ecs, 0, sizeof (*ecs));
3649
3650 overlay_cache_invalid = 1;
3651 /* Flush target cache before starting to handle each event.
3652 Target was running and cache could be stale. This is just a
3653 heuristic. Running threads may modify target memory, but we
3654 don't get any event. */
3655 target_dcache_invalidate ();
3656
3657 do_target_wait (pid_ptid, ecs, 0);
3658
3659 if (debug_infrun)
3660 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3661
3662 /* If an error happens while handling the event, propagate GDB's
3663 knowledge of the executing state to the frontend/user running
3664 state. */
3665 scoped_finish_thread_state finish_state (inf->process_target (),
3666 minus_one_ptid);
3667
3668 /* Now figure out what to do with the result of the result. */
3669 handle_inferior_event (ecs);
3670
3671 /* No error, don't finish the state yet. */
3672 finish_state.release ();
3673
3674 /* Breakpoints and watchpoints are not installed on the target
3675 at this point, and signals are passed directly to the
3676 inferior, so this must mean the process is gone. */
3677 if (!ecs->wait_some_more)
3678 {
3679 restore_detaching.release ();
3680 error (_("Program exited while detaching"));
3681 }
3682 }
3683
3684 restore_detaching.release ();
3685 }
3686
3687 /* Wait for control to return from inferior to debugger.
3688
3689 If inferior gets a signal, we may decide to start it up again
3690 instead of returning. That is why there is a loop in this function.
3691 When this function actually returns it means the inferior
3692 should be left stopped and GDB should read more commands. */
3693
3694 static void
3695 wait_for_inferior (inferior *inf)
3696 {
3697 infrun_log_debug ("wait_for_inferior ()");
3698
3699 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3700
3701 /* If an error happens while handling the event, propagate GDB's
3702 knowledge of the executing state to the frontend/user running
3703 state. */
3704 scoped_finish_thread_state finish_state
3705 (inf->process_target (), minus_one_ptid);
3706
3707 while (1)
3708 {
3709 struct execution_control_state ecss;
3710 struct execution_control_state *ecs = &ecss;
3711
3712 memset (ecs, 0, sizeof (*ecs));
3713
3714 overlay_cache_invalid = 1;
3715
3716 /* Flush target cache before starting to handle each event.
3717 Target was running and cache could be stale. This is just a
3718 heuristic. Running threads may modify target memory, but we
3719 don't get any event. */
3720 target_dcache_invalidate ();
3721
3722 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3723 ecs->target = inf->process_target ();
3724
3725 if (debug_infrun)
3726 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3727
3728 /* Now figure out what to do with the result of the result. */
3729 handle_inferior_event (ecs);
3730
3731 if (!ecs->wait_some_more)
3732 break;
3733 }
3734
3735 /* No error, don't finish the state yet. */
3736 finish_state.release ();
3737 }
3738
3739 /* Cleanup that reinstalls the readline callback handler, if the
3740 target is running in the background. If while handling the target
3741 event something triggered a secondary prompt, like e.g., a
3742 pagination prompt, we'll have removed the callback handler (see
3743 gdb_readline_wrapper_line). Need to do this as we go back to the
3744 event loop, ready to process further input. Note this has no
3745 effect if the handler hasn't actually been removed, because calling
3746 rl_callback_handler_install resets the line buffer, thus losing
3747 input. */
3748
3749 static void
3750 reinstall_readline_callback_handler_cleanup ()
3751 {
3752 struct ui *ui = current_ui;
3753
3754 if (!ui->async)
3755 {
3756 /* We're not going back to the top level event loop yet. Don't
3757 install the readline callback, as it'd prep the terminal,
3758 readline-style (raw, noecho) (e.g., --batch). We'll install
3759 it the next time the prompt is displayed, when we're ready
3760 for input. */
3761 return;
3762 }
3763
3764 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3765 gdb_rl_callback_handler_reinstall ();
3766 }
3767
3768 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3769 that's just the event thread. In all-stop, that's all threads. */
3770
3771 static void
3772 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3773 {
3774 if (ecs->event_thread != NULL
3775 && ecs->event_thread->thread_fsm != NULL)
3776 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3777
3778 if (!non_stop)
3779 {
3780 for (thread_info *thr : all_non_exited_threads ())
3781 {
3782 if (thr->thread_fsm == NULL)
3783 continue;
3784 if (thr == ecs->event_thread)
3785 continue;
3786
3787 switch_to_thread (thr);
3788 thr->thread_fsm->clean_up (thr);
3789 }
3790
3791 if (ecs->event_thread != NULL)
3792 switch_to_thread (ecs->event_thread);
3793 }
3794 }
3795
3796 /* Helper for all_uis_check_sync_execution_done that works on the
3797 current UI. */
3798
3799 static void
3800 check_curr_ui_sync_execution_done (void)
3801 {
3802 struct ui *ui = current_ui;
3803
3804 if (ui->prompt_state == PROMPT_NEEDED
3805 && ui->async
3806 && !gdb_in_secondary_prompt_p (ui))
3807 {
3808 target_terminal::ours ();
3809 gdb::observers::sync_execution_done.notify ();
3810 ui_register_input_event_handler (ui);
3811 }
3812 }
3813
3814 /* See infrun.h. */
3815
3816 void
3817 all_uis_check_sync_execution_done (void)
3818 {
3819 SWITCH_THRU_ALL_UIS ()
3820 {
3821 check_curr_ui_sync_execution_done ();
3822 }
3823 }
3824
3825 /* See infrun.h. */
3826
3827 void
3828 all_uis_on_sync_execution_starting (void)
3829 {
3830 SWITCH_THRU_ALL_UIS ()
3831 {
3832 if (current_ui->prompt_state == PROMPT_NEEDED)
3833 async_disable_stdin ();
3834 }
3835 }
3836
3837 /* Asynchronous version of wait_for_inferior. It is called by the
3838 event loop whenever a change of state is detected on the file
3839 descriptor corresponding to the target. It can be called more than
3840 once to complete a single execution command. In such cases we need
3841 to keep the state in a global variable ECSS. If it is the last time
3842 that this function is called for a single execution command, then
3843 report to the user that the inferior has stopped, and do the
3844 necessary cleanups. */
3845
3846 void
3847 fetch_inferior_event ()
3848 {
3849 struct execution_control_state ecss;
3850 struct execution_control_state *ecs = &ecss;
3851 int cmd_done = 0;
3852
3853 memset (ecs, 0, sizeof (*ecs));
3854
3855 /* Events are always processed with the main UI as current UI. This
3856 way, warnings, debug output, etc. are always consistently sent to
3857 the main console. */
3858 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3859
3860 /* End up with readline processing input, if necessary. */
3861 {
3862 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3863
3864 /* We're handling a live event, so make sure we're doing live
3865 debugging. If we're looking at traceframes while the target is
3866 running, we're going to need to get back to that mode after
3867 handling the event. */
3868 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3869 if (non_stop)
3870 {
3871 maybe_restore_traceframe.emplace ();
3872 set_current_traceframe (-1);
3873 }
3874
3875 /* The user/frontend should not notice a thread switch due to
3876 internal events. Make sure we revert to the user selected
3877 thread and frame after handling the event and running any
3878 breakpoint commands. */
3879 scoped_restore_current_thread restore_thread;
3880
3881 overlay_cache_invalid = 1;
3882 /* Flush target cache before starting to handle each event. Target
3883 was running and cache could be stale. This is just a heuristic.
3884 Running threads may modify target memory, but we don't get any
3885 event. */
3886 target_dcache_invalidate ();
3887
3888 scoped_restore save_exec_dir
3889 = make_scoped_restore (&execution_direction,
3890 target_execution_direction ());
3891
3892 /* Hold the resume commands until we are done consuming all immediately
3893 available target events. */
3894 static gdb::optional<scoped_restore_tmpl<int>> restore_defer_commit_resume;
3895 if (!restore_defer_commit_resume.has_value ())
3896 restore_defer_commit_resume.emplace (make_scoped_defer_target_commit_resume ());
3897
3898 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3899 {
3900 infrun_log_debug ("do_target_wait returned false");
3901
3902 /* No more events to process, let the resume commands free. */
3903 restore_defer_commit_resume.reset ();
3904 commit_resume_all_targets();
3905 return;
3906 }
3907
3908 infrun_log_debug ("do_target_wait returned true");
3909
3910 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3911
3912 /* Switch to the target that generated the event, so we can do
3913 target calls. Any inferior bound to the target will do, so we
3914 just switch to the first we find. */
3915 for (inferior *inf : all_inferiors (ecs->target))
3916 {
3917 switch_to_inferior_no_thread (inf);
3918 break;
3919 }
3920
3921 if (debug_infrun)
3922 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3923
3924 /* If an error happens while handling the event, propagate GDB's
3925 knowledge of the executing state to the frontend/user running
3926 state. */
3927 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3928 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3929
3930 /* Get executed before scoped_restore_current_thread above to apply
3931 still for the thread which has thrown the exception. */
3932 auto defer_bpstat_clear
3933 = make_scope_exit (bpstat_clear_actions);
3934 auto defer_delete_threads
3935 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3936
3937 /* Now figure out what to do with the result of the result. */
3938 handle_inferior_event (ecs);
3939
3940 if (!ecs->wait_some_more)
3941 {
3942 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3943 int should_stop = 1;
3944 struct thread_info *thr = ecs->event_thread;
3945
3946 delete_just_stopped_threads_infrun_breakpoints ();
3947
3948 if (thr != NULL)
3949 {
3950 struct thread_fsm *thread_fsm = thr->thread_fsm;
3951
3952 if (thread_fsm != NULL)
3953 should_stop = thread_fsm->should_stop (thr);
3954 }
3955
3956 if (!should_stop)
3957 {
3958 keep_going (ecs);
3959 }
3960 else
3961 {
3962 bool should_notify_stop = true;
3963 int proceeded = 0;
3964
3965 clean_up_just_stopped_threads_fsms (ecs);
3966
3967 if (thr != NULL && thr->thread_fsm != NULL)
3968 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3969
3970 if (should_notify_stop)
3971 {
3972 /* We may not find an inferior if this was a process exit. */
3973 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3974 proceeded = normal_stop ();
3975 }
3976
3977 if (!proceeded)
3978 {
3979 inferior_event_handler (INF_EXEC_COMPLETE);
3980 cmd_done = 1;
3981 }
3982
3983 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3984 previously selected thread is gone. We have two
3985 choices - switch to no thread selected, or restore the
3986 previously selected thread (now exited). We chose the
3987 later, just because that's what GDB used to do. After
3988 this, "info threads" says "The current thread <Thread
3989 ID 2> has terminated." instead of "No thread
3990 selected.". */
3991 if (!non_stop
3992 && cmd_done
3993 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3994 restore_thread.dont_restore ();
3995 }
3996 }
3997
3998 defer_delete_threads.release ();
3999 defer_bpstat_clear.release ();
4000
4001 /* No error, don't finish the thread states yet. */
4002 finish_state.release ();
4003
4004 mark_infrun_async_event_handler ();
4005
4006 /* This scope is used to ensure that readline callbacks are
4007 reinstalled here. */
4008 }
4009
4010 /* If a UI was in sync execution mode, and now isn't, restore its
4011 prompt (a synchronous execution command has finished, and we're
4012 ready for input). */
4013 all_uis_check_sync_execution_done ();
4014
4015 if (cmd_done
4016 && exec_done_display_p
4017 && (inferior_ptid == null_ptid
4018 || inferior_thread ()->state != THREAD_RUNNING))
4019 printf_unfiltered (_("completed.\n"));
4020 }
4021
4022 /* See infrun.h. */
4023
4024 void
4025 set_step_info (thread_info *tp, struct frame_info *frame,
4026 struct symtab_and_line sal)
4027 {
4028 /* This can be removed once this function no longer implicitly relies on the
4029 inferior_ptid value. */
4030 gdb_assert (inferior_ptid == tp->ptid);
4031
4032 tp->control.step_frame_id = get_frame_id (frame);
4033 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4034
4035 tp->current_symtab = sal.symtab;
4036 tp->current_line = sal.line;
4037 }
4038
4039 /* Clear context switchable stepping state. */
4040
4041 void
4042 init_thread_stepping_state (struct thread_info *tss)
4043 {
4044 tss->stepped_breakpoint = 0;
4045 tss->stepping_over_breakpoint = 0;
4046 tss->stepping_over_watchpoint = 0;
4047 tss->step_after_step_resume_breakpoint = 0;
4048 }
4049
4050 /* See infrun.h. */
4051
4052 void
4053 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4054 target_waitstatus status)
4055 {
4056 target_last_proc_target = target;
4057 target_last_wait_ptid = ptid;
4058 target_last_waitstatus = status;
4059 }
4060
4061 /* See infrun.h. */
4062
4063 void
4064 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4065 target_waitstatus *status)
4066 {
4067 if (target != nullptr)
4068 *target = target_last_proc_target;
4069 if (ptid != nullptr)
4070 *ptid = target_last_wait_ptid;
4071 if (status != nullptr)
4072 *status = target_last_waitstatus;
4073 }
4074
4075 /* See infrun.h. */
4076
4077 void
4078 nullify_last_target_wait_ptid (void)
4079 {
4080 target_last_proc_target = nullptr;
4081 target_last_wait_ptid = minus_one_ptid;
4082 target_last_waitstatus = {};
4083 }
4084
4085 /* Switch thread contexts. */
4086
4087 static void
4088 context_switch (execution_control_state *ecs)
4089 {
4090 if (ecs->ptid != inferior_ptid
4091 && (inferior_ptid == null_ptid
4092 || ecs->event_thread != inferior_thread ()))
4093 {
4094 infrun_log_debug ("Switching context from %s to %s",
4095 target_pid_to_str (inferior_ptid).c_str (),
4096 target_pid_to_str (ecs->ptid).c_str ());
4097 }
4098
4099 switch_to_thread (ecs->event_thread);
4100 }
4101
4102 /* If the target can't tell whether we've hit breakpoints
4103 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4104 check whether that could have been caused by a breakpoint. If so,
4105 adjust the PC, per gdbarch_decr_pc_after_break. */
4106
4107 static void
4108 adjust_pc_after_break (struct thread_info *thread,
4109 struct target_waitstatus *ws)
4110 {
4111 struct regcache *regcache;
4112 struct gdbarch *gdbarch;
4113 CORE_ADDR breakpoint_pc, decr_pc;
4114
4115 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4116 we aren't, just return.
4117
4118 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4119 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4120 implemented by software breakpoints should be handled through the normal
4121 breakpoint layer.
4122
4123 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4124 different signals (SIGILL or SIGEMT for instance), but it is less
4125 clear where the PC is pointing afterwards. It may not match
4126 gdbarch_decr_pc_after_break. I don't know any specific target that
4127 generates these signals at breakpoints (the code has been in GDB since at
4128 least 1992) so I can not guess how to handle them here.
4129
4130 In earlier versions of GDB, a target with
4131 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4132 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4133 target with both of these set in GDB history, and it seems unlikely to be
4134 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4135
4136 if (ws->kind != TARGET_WAITKIND_STOPPED)
4137 return;
4138
4139 if (ws->value.sig != GDB_SIGNAL_TRAP)
4140 return;
4141
4142 /* In reverse execution, when a breakpoint is hit, the instruction
4143 under it has already been de-executed. The reported PC always
4144 points at the breakpoint address, so adjusting it further would
4145 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4146 architecture:
4147
4148 B1 0x08000000 : INSN1
4149 B2 0x08000001 : INSN2
4150 0x08000002 : INSN3
4151 PC -> 0x08000003 : INSN4
4152
4153 Say you're stopped at 0x08000003 as above. Reverse continuing
4154 from that point should hit B2 as below. Reading the PC when the
4155 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4156 been de-executed already.
4157
4158 B1 0x08000000 : INSN1
4159 B2 PC -> 0x08000001 : INSN2
4160 0x08000002 : INSN3
4161 0x08000003 : INSN4
4162
4163 We can't apply the same logic as for forward execution, because
4164 we would wrongly adjust the PC to 0x08000000, since there's a
4165 breakpoint at PC - 1. We'd then report a hit on B1, although
4166 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4167 behaviour. */
4168 if (execution_direction == EXEC_REVERSE)
4169 return;
4170
4171 /* If the target can tell whether the thread hit a SW breakpoint,
4172 trust it. Targets that can tell also adjust the PC
4173 themselves. */
4174 if (target_supports_stopped_by_sw_breakpoint ())
4175 return;
4176
4177 /* Note that relying on whether a breakpoint is planted in memory to
4178 determine this can fail. E.g,. the breakpoint could have been
4179 removed since. Or the thread could have been told to step an
4180 instruction the size of a breakpoint instruction, and only
4181 _after_ was a breakpoint inserted at its address. */
4182
4183 /* If this target does not decrement the PC after breakpoints, then
4184 we have nothing to do. */
4185 regcache = get_thread_regcache (thread);
4186 gdbarch = regcache->arch ();
4187
4188 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4189 if (decr_pc == 0)
4190 return;
4191
4192 const address_space *aspace = regcache->aspace ();
4193
4194 /* Find the location where (if we've hit a breakpoint) the
4195 breakpoint would be. */
4196 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4197
4198 /* If the target can't tell whether a software breakpoint triggered,
4199 fallback to figuring it out based on breakpoints we think were
4200 inserted in the target, and on whether the thread was stepped or
4201 continued. */
4202
4203 /* Check whether there actually is a software breakpoint inserted at
4204 that location.
4205
4206 If in non-stop mode, a race condition is possible where we've
4207 removed a breakpoint, but stop events for that breakpoint were
4208 already queued and arrive later. To suppress those spurious
4209 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4210 and retire them after a number of stop events are reported. Note
4211 this is an heuristic and can thus get confused. The real fix is
4212 to get the "stopped by SW BP and needs adjustment" info out of
4213 the target/kernel (and thus never reach here; see above). */
4214 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4215 || (target_is_non_stop_p ()
4216 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4217 {
4218 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4219
4220 if (record_full_is_used ())
4221 restore_operation_disable.emplace
4222 (record_full_gdb_operation_disable_set ());
4223
4224 /* When using hardware single-step, a SIGTRAP is reported for both
4225 a completed single-step and a software breakpoint. Need to
4226 differentiate between the two, as the latter needs adjusting
4227 but the former does not.
4228
4229 The SIGTRAP can be due to a completed hardware single-step only if
4230 - we didn't insert software single-step breakpoints
4231 - this thread is currently being stepped
4232
4233 If any of these events did not occur, we must have stopped due
4234 to hitting a software breakpoint, and have to back up to the
4235 breakpoint address.
4236
4237 As a special case, we could have hardware single-stepped a
4238 software breakpoint. In this case (prev_pc == breakpoint_pc),
4239 we also need to back up to the breakpoint address. */
4240
4241 if (thread_has_single_step_breakpoints_set (thread)
4242 || !currently_stepping (thread)
4243 || (thread->stepped_breakpoint
4244 && thread->prev_pc == breakpoint_pc))
4245 regcache_write_pc (regcache, breakpoint_pc);
4246 }
4247 }
4248
4249 static int
4250 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4251 {
4252 for (frame = get_prev_frame (frame);
4253 frame != NULL;
4254 frame = get_prev_frame (frame))
4255 {
4256 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4257 return 1;
4258 if (get_frame_type (frame) != INLINE_FRAME)
4259 break;
4260 }
4261
4262 return 0;
4263 }
4264
4265 /* Look for an inline frame that is marked for skip.
4266 If PREV_FRAME is TRUE start at the previous frame,
4267 otherwise start at the current frame. Stop at the
4268 first non-inline frame, or at the frame where the
4269 step started. */
4270
4271 static bool
4272 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4273 {
4274 struct frame_info *frame = get_current_frame ();
4275
4276 if (prev_frame)
4277 frame = get_prev_frame (frame);
4278
4279 for (; frame != NULL; frame = get_prev_frame (frame))
4280 {
4281 const char *fn = NULL;
4282 symtab_and_line sal;
4283 struct symbol *sym;
4284
4285 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4286 break;
4287 if (get_frame_type (frame) != INLINE_FRAME)
4288 break;
4289
4290 sal = find_frame_sal (frame);
4291 sym = get_frame_function (frame);
4292
4293 if (sym != NULL)
4294 fn = sym->print_name ();
4295
4296 if (sal.line != 0
4297 && function_name_is_marked_for_skip (fn, sal))
4298 return true;
4299 }
4300
4301 return false;
4302 }
4303
4304 /* If the event thread has the stop requested flag set, pretend it
4305 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4306 target_stop). */
4307
4308 static bool
4309 handle_stop_requested (struct execution_control_state *ecs)
4310 {
4311 if (ecs->event_thread->stop_requested)
4312 {
4313 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4314 ecs->ws.value.sig = GDB_SIGNAL_0;
4315 handle_signal_stop (ecs);
4316 return true;
4317 }
4318 return false;
4319 }
4320
4321 /* Auxiliary function that handles syscall entry/return events.
4322 It returns 1 if the inferior should keep going (and GDB
4323 should ignore the event), or 0 if the event deserves to be
4324 processed. */
4325
4326 static int
4327 handle_syscall_event (struct execution_control_state *ecs)
4328 {
4329 struct regcache *regcache;
4330 int syscall_number;
4331
4332 context_switch (ecs);
4333
4334 regcache = get_thread_regcache (ecs->event_thread);
4335 syscall_number = ecs->ws.value.syscall_number;
4336 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4337
4338 if (catch_syscall_enabled () > 0
4339 && catching_syscall_number (syscall_number) > 0)
4340 {
4341 infrun_log_debug ("syscall number=%d", syscall_number);
4342
4343 ecs->event_thread->control.stop_bpstat
4344 = bpstat_stop_status (regcache->aspace (),
4345 ecs->event_thread->suspend.stop_pc,
4346 ecs->event_thread, &ecs->ws);
4347
4348 if (handle_stop_requested (ecs))
4349 return 0;
4350
4351 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4352 {
4353 /* Catchpoint hit. */
4354 return 0;
4355 }
4356 }
4357
4358 if (handle_stop_requested (ecs))
4359 return 0;
4360
4361 /* If no catchpoint triggered for this, then keep going. */
4362 keep_going (ecs);
4363 return 1;
4364 }
4365
4366 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4367
4368 static void
4369 fill_in_stop_func (struct gdbarch *gdbarch,
4370 struct execution_control_state *ecs)
4371 {
4372 if (!ecs->stop_func_filled_in)
4373 {
4374 const block *block;
4375
4376 /* Don't care about return value; stop_func_start and stop_func_name
4377 will both be 0 if it doesn't work. */
4378 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4379 &ecs->stop_func_name,
4380 &ecs->stop_func_start,
4381 &ecs->stop_func_end,
4382 &block);
4383
4384 /* The call to find_pc_partial_function, above, will set
4385 stop_func_start and stop_func_end to the start and end
4386 of the range containing the stop pc. If this range
4387 contains the entry pc for the block (which is always the
4388 case for contiguous blocks), advance stop_func_start past
4389 the function's start offset and entrypoint. Note that
4390 stop_func_start is NOT advanced when in a range of a
4391 non-contiguous block that does not contain the entry pc. */
4392 if (block != nullptr
4393 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4394 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4395 {
4396 ecs->stop_func_start
4397 += gdbarch_deprecated_function_start_offset (gdbarch);
4398
4399 if (gdbarch_skip_entrypoint_p (gdbarch))
4400 ecs->stop_func_start
4401 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4402 }
4403
4404 ecs->stop_func_filled_in = 1;
4405 }
4406 }
4407
4408
4409 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4410
4411 static enum stop_kind
4412 get_inferior_stop_soon (execution_control_state *ecs)
4413 {
4414 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4415
4416 gdb_assert (inf != NULL);
4417 return inf->control.stop_soon;
4418 }
4419
4420 /* Poll for one event out of the current target. Store the resulting
4421 waitstatus in WS, and return the event ptid. Does not block. */
4422
4423 static ptid_t
4424 poll_one_curr_target (struct target_waitstatus *ws)
4425 {
4426 ptid_t event_ptid;
4427
4428 overlay_cache_invalid = 1;
4429
4430 /* Flush target cache before starting to handle each event.
4431 Target was running and cache could be stale. This is just a
4432 heuristic. Running threads may modify target memory, but we
4433 don't get any event. */
4434 target_dcache_invalidate ();
4435
4436 if (deprecated_target_wait_hook)
4437 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4438 else
4439 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4440
4441 if (debug_infrun)
4442 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4443
4444 return event_ptid;
4445 }
4446
4447 /* An event reported by wait_one. */
4448
4449 struct wait_one_event
4450 {
4451 /* The target the event came out of. */
4452 process_stratum_target *target;
4453
4454 /* The PTID the event was for. */
4455 ptid_t ptid;
4456
4457 /* The waitstatus. */
4458 target_waitstatus ws;
4459 };
4460
4461 /* Wait for one event out of any target. */
4462
4463 static wait_one_event
4464 wait_one ()
4465 {
4466 while (1)
4467 {
4468 for (inferior *inf : all_inferiors ())
4469 {
4470 process_stratum_target *target = inf->process_target ();
4471 if (target == NULL
4472 || !target->is_async_p ()
4473 || !target->threads_executing)
4474 continue;
4475
4476 switch_to_inferior_no_thread (inf);
4477
4478 wait_one_event event;
4479 event.target = target;
4480 event.ptid = poll_one_curr_target (&event.ws);
4481
4482 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4483 {
4484 /* If nothing is resumed, remove the target from the
4485 event loop. */
4486 target_async (0);
4487 }
4488 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4489 return event;
4490 }
4491
4492 /* Block waiting for some event. */
4493
4494 fd_set readfds;
4495 int nfds = 0;
4496
4497 FD_ZERO (&readfds);
4498
4499 for (inferior *inf : all_inferiors ())
4500 {
4501 process_stratum_target *target = inf->process_target ();
4502 if (target == NULL
4503 || !target->is_async_p ()
4504 || !target->threads_executing)
4505 continue;
4506
4507 int fd = target->async_wait_fd ();
4508 FD_SET (fd, &readfds);
4509 if (nfds <= fd)
4510 nfds = fd + 1;
4511 }
4512
4513 if (nfds == 0)
4514 {
4515 /* No waitable targets left. All must be stopped. */
4516 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4517 }
4518
4519 QUIT;
4520
4521 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4522 if (numfds < 0)
4523 {
4524 if (errno == EINTR)
4525 continue;
4526 else
4527 perror_with_name ("interruptible_select");
4528 }
4529 }
4530 }
4531
4532 /* Save the thread's event and stop reason to process it later. */
4533
4534 static void
4535 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4536 {
4537 infrun_log_debug ("saving status %s for %d.%ld.%ld",
4538 target_waitstatus_to_string (ws).c_str (),
4539 tp->ptid.pid (),
4540 tp->ptid.lwp (),
4541 tp->ptid.tid ());
4542
4543 /* Record for later. */
4544 tp->suspend.waitstatus = *ws;
4545 tp->suspend.waitstatus_pending_p = 1;
4546
4547 struct regcache *regcache = get_thread_regcache (tp);
4548 const address_space *aspace = regcache->aspace ();
4549
4550 if (ws->kind == TARGET_WAITKIND_STOPPED
4551 && ws->value.sig == GDB_SIGNAL_TRAP)
4552 {
4553 CORE_ADDR pc = regcache_read_pc (regcache);
4554
4555 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4556
4557 scoped_restore_current_thread restore_thread;
4558 switch_to_thread (tp);
4559
4560 if (target_stopped_by_watchpoint ())
4561 {
4562 tp->suspend.stop_reason
4563 = TARGET_STOPPED_BY_WATCHPOINT;
4564 }
4565 else if (target_supports_stopped_by_sw_breakpoint ()
4566 && target_stopped_by_sw_breakpoint ())
4567 {
4568 tp->suspend.stop_reason
4569 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4570 }
4571 else if (target_supports_stopped_by_hw_breakpoint ()
4572 && target_stopped_by_hw_breakpoint ())
4573 {
4574 tp->suspend.stop_reason
4575 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4576 }
4577 else if (!target_supports_stopped_by_hw_breakpoint ()
4578 && hardware_breakpoint_inserted_here_p (aspace,
4579 pc))
4580 {
4581 tp->suspend.stop_reason
4582 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4583 }
4584 else if (!target_supports_stopped_by_sw_breakpoint ()
4585 && software_breakpoint_inserted_here_p (aspace,
4586 pc))
4587 {
4588 tp->suspend.stop_reason
4589 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4590 }
4591 else if (!thread_has_single_step_breakpoints_set (tp)
4592 && currently_stepping (tp))
4593 {
4594 tp->suspend.stop_reason
4595 = TARGET_STOPPED_BY_SINGLE_STEP;
4596 }
4597 }
4598 }
4599
4600 /* Mark the non-executing threads accordingly. In all-stop, all
4601 threads of all processes are stopped when we get any event
4602 reported. In non-stop mode, only the event thread stops. */
4603
4604 static void
4605 mark_non_executing_threads (process_stratum_target *target,
4606 ptid_t event_ptid,
4607 struct target_waitstatus ws)
4608 {
4609 ptid_t mark_ptid;
4610
4611 if (!target_is_non_stop_p ())
4612 mark_ptid = minus_one_ptid;
4613 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4614 || ws.kind == TARGET_WAITKIND_EXITED)
4615 {
4616 /* If we're handling a process exit in non-stop mode, even
4617 though threads haven't been deleted yet, one would think
4618 that there is nothing to do, as threads of the dead process
4619 will be soon deleted, and threads of any other process were
4620 left running. However, on some targets, threads survive a
4621 process exit event. E.g., for the "checkpoint" command,
4622 when the current checkpoint/fork exits, linux-fork.c
4623 automatically switches to another fork from within
4624 target_mourn_inferior, by associating the same
4625 inferior/thread to another fork. We haven't mourned yet at
4626 this point, but we must mark any threads left in the
4627 process as not-executing so that finish_thread_state marks
4628 them stopped (in the user's perspective) if/when we present
4629 the stop to the user. */
4630 mark_ptid = ptid_t (event_ptid.pid ());
4631 }
4632 else
4633 mark_ptid = event_ptid;
4634
4635 set_executing (target, mark_ptid, false);
4636
4637 /* Likewise the resumed flag. */
4638 set_resumed (target, mark_ptid, false);
4639 }
4640
4641 /* See infrun.h. */
4642
4643 void
4644 stop_all_threads (void)
4645 {
4646 /* We may need multiple passes to discover all threads. */
4647 int pass;
4648 int iterations = 0;
4649
4650 gdb_assert (exists_non_stop_target ());
4651
4652 infrun_log_debug ("stop_all_threads");
4653
4654 scoped_restore_current_thread restore_thread;
4655
4656 /* Enable thread events of all targets. */
4657 for (auto *target : all_non_exited_process_targets ())
4658 {
4659 switch_to_target_no_thread (target);
4660 target_thread_events (true);
4661 }
4662
4663 SCOPE_EXIT
4664 {
4665 /* Disable thread events of all targets. */
4666 for (auto *target : all_non_exited_process_targets ())
4667 {
4668 switch_to_target_no_thread (target);
4669 target_thread_events (false);
4670 }
4671
4672
4673 infrun_log_debug ("stop_all_threads done");
4674 };
4675
4676 /* Request threads to stop, and then wait for the stops. Because
4677 threads we already know about can spawn more threads while we're
4678 trying to stop them, and we only learn about new threads when we
4679 update the thread list, do this in a loop, and keep iterating
4680 until two passes find no threads that need to be stopped. */
4681 for (pass = 0; pass < 2; pass++, iterations++)
4682 {
4683 infrun_log_debug ("stop_all_threads, pass=%d, iterations=%d",
4684 pass, iterations);
4685 while (1)
4686 {
4687 int waits_needed = 0;
4688
4689 for (auto *target : all_non_exited_process_targets ())
4690 {
4691 switch_to_target_no_thread (target);
4692 update_thread_list ();
4693 }
4694
4695 /* Go through all threads looking for threads that we need
4696 to tell the target to stop. */
4697 for (thread_info *t : all_non_exited_threads ())
4698 {
4699 /* For a single-target setting with an all-stop target,
4700 we would not even arrive here. For a multi-target
4701 setting, until GDB is able to handle a mixture of
4702 all-stop and non-stop targets, simply skip all-stop
4703 targets' threads. This should be fine due to the
4704 protection of 'check_multi_target_resumption'. */
4705
4706 switch_to_thread_no_regs (t);
4707 if (!target_is_non_stop_p ())
4708 continue;
4709
4710 if (t->executing)
4711 {
4712 /* If already stopping, don't request a stop again.
4713 We just haven't seen the notification yet. */
4714 if (!t->stop_requested)
4715 {
4716 infrun_log_debug (" %s executing, need stop",
4717 target_pid_to_str (t->ptid).c_str ());
4718 target_stop (t->ptid);
4719 t->stop_requested = 1;
4720 }
4721 else
4722 {
4723 infrun_log_debug (" %s executing, already stopping",
4724 target_pid_to_str (t->ptid).c_str ());
4725 }
4726
4727 if (t->stop_requested)
4728 waits_needed++;
4729 }
4730 else
4731 {
4732 infrun_log_debug (" %s not executing",
4733 target_pid_to_str (t->ptid).c_str ());
4734
4735 /* The thread may be not executing, but still be
4736 resumed with a pending status to process. */
4737 t->resumed = false;
4738 }
4739 }
4740
4741 if (waits_needed == 0)
4742 break;
4743
4744 /* If we find new threads on the second iteration, restart
4745 over. We want to see two iterations in a row with all
4746 threads stopped. */
4747 if (pass > 0)
4748 pass = -1;
4749
4750 for (int i = 0; i < waits_needed; i++)
4751 {
4752 wait_one_event event = wait_one ();
4753
4754 infrun_log_debug ("%s %s\n",
4755 target_waitstatus_to_string (&event.ws).c_str (),
4756 target_pid_to_str (event.ptid).c_str ());
4757
4758 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4759 {
4760 /* All resumed threads exited. */
4761 break;
4762 }
4763 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4764 || event.ws.kind == TARGET_WAITKIND_EXITED
4765 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4766 {
4767 /* One thread/process exited/signalled. */
4768
4769 thread_info *t = nullptr;
4770
4771 /* The target may have reported just a pid. If so, try
4772 the first non-exited thread. */
4773 if (event.ptid.is_pid ())
4774 {
4775 int pid = event.ptid.pid ();
4776 inferior *inf = find_inferior_pid (event.target, pid);
4777 for (thread_info *tp : inf->non_exited_threads ())
4778 {
4779 t = tp;
4780 break;
4781 }
4782
4783 /* If there is no available thread, the event would
4784 have to be appended to a per-inferior event list,
4785 which does not exist (and if it did, we'd have
4786 to adjust run control command to be able to
4787 resume such an inferior). We assert here instead
4788 of going into an infinite loop. */
4789 gdb_assert (t != nullptr);
4790
4791 infrun_log_debug ("using %s\n",
4792 target_pid_to_str (t->ptid).c_str ());
4793 }
4794 else
4795 {
4796 t = find_thread_ptid (event.target, event.ptid);
4797 /* Check if this is the first time we see this thread.
4798 Don't bother adding if it individually exited. */
4799 if (t == nullptr
4800 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4801 t = add_thread (event.target, event.ptid);
4802 }
4803
4804 if (t != nullptr)
4805 {
4806 /* Set the threads as non-executing to avoid
4807 another stop attempt on them. */
4808 switch_to_thread_no_regs (t);
4809 mark_non_executing_threads (event.target, event.ptid,
4810 event.ws);
4811 save_waitstatus (t, &event.ws);
4812 t->stop_requested = false;
4813 }
4814 }
4815 else
4816 {
4817 thread_info *t = find_thread_ptid (event.target, event.ptid);
4818 if (t == NULL)
4819 t = add_thread (event.target, event.ptid);
4820
4821 t->stop_requested = 0;
4822 t->executing = 0;
4823 t->resumed = false;
4824 t->control.may_range_step = 0;
4825
4826 /* This may be the first time we see the inferior report
4827 a stop. */
4828 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4829 if (inf->needs_setup)
4830 {
4831 switch_to_thread_no_regs (t);
4832 setup_inferior (0);
4833 }
4834
4835 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4836 && event.ws.value.sig == GDB_SIGNAL_0)
4837 {
4838 /* We caught the event that we intended to catch, so
4839 there's no event pending. */
4840 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4841 t->suspend.waitstatus_pending_p = 0;
4842
4843 if (displaced_step_finish (t, GDB_SIGNAL_0) < 0)
4844 {
4845 /* Add it back to the step-over queue. */
4846 infrun_log_debug ("displaced-step of %s "
4847 "canceled: adding back to the "
4848 "step-over queue\n",
4849 target_pid_to_str (t->ptid).c_str ());
4850
4851 t->control.trap_expected = 0;
4852 global_thread_step_over_chain_enqueue (t);
4853 }
4854 }
4855 else
4856 {
4857 enum gdb_signal sig;
4858 struct regcache *regcache;
4859
4860 if (debug_infrun)
4861 {
4862 std::string statstr = target_waitstatus_to_string (&event.ws);
4863
4864 infrun_log_debug ("target_wait %s, saving "
4865 "status for %d.%ld.%ld\n",
4866 statstr.c_str (),
4867 t->ptid.pid (),
4868 t->ptid.lwp (),
4869 t->ptid.tid ());
4870 }
4871
4872 /* Record for later. */
4873 save_waitstatus (t, &event.ws);
4874
4875 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4876 ? event.ws.value.sig : GDB_SIGNAL_0);
4877
4878 if (displaced_step_finish (t, sig) < 0)
4879 {
4880 /* Add it back to the step-over queue. */
4881 t->control.trap_expected = 0;
4882 global_thread_step_over_chain_enqueue (t);
4883 }
4884
4885 regcache = get_thread_regcache (t);
4886 t->suspend.stop_pc = regcache_read_pc (regcache);
4887
4888 infrun_log_debug ("saved stop_pc=%s for %s "
4889 "(currently_stepping=%d)\n",
4890 paddress (target_gdbarch (),
4891 t->suspend.stop_pc),
4892 target_pid_to_str (t->ptid).c_str (),
4893 currently_stepping (t));
4894 }
4895 }
4896 }
4897 }
4898 }
4899 }
4900
4901 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4902
4903 static int
4904 handle_no_resumed (struct execution_control_state *ecs)
4905 {
4906 if (target_can_async_p ())
4907 {
4908 int any_sync = 0;
4909
4910 for (ui *ui : all_uis ())
4911 {
4912 if (ui->prompt_state == PROMPT_BLOCKED)
4913 {
4914 any_sync = 1;
4915 break;
4916 }
4917 }
4918 if (!any_sync)
4919 {
4920 /* There were no unwaited-for children left in the target, but,
4921 we're not synchronously waiting for events either. Just
4922 ignore. */
4923
4924 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4925 prepare_to_wait (ecs);
4926 return 1;
4927 }
4928 }
4929
4930 /* Otherwise, if we were running a synchronous execution command, we
4931 may need to cancel it and give the user back the terminal.
4932
4933 In non-stop mode, the target can't tell whether we've already
4934 consumed previous stop events, so it can end up sending us a
4935 no-resumed event like so:
4936
4937 #0 - thread 1 is left stopped
4938
4939 #1 - thread 2 is resumed and hits breakpoint
4940 -> TARGET_WAITKIND_STOPPED
4941
4942 #2 - thread 3 is resumed and exits
4943 this is the last resumed thread, so
4944 -> TARGET_WAITKIND_NO_RESUMED
4945
4946 #3 - gdb processes stop for thread 2 and decides to re-resume
4947 it.
4948
4949 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4950 thread 2 is now resumed, so the event should be ignored.
4951
4952 IOW, if the stop for thread 2 doesn't end a foreground command,
4953 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4954 event. But it could be that the event meant that thread 2 itself
4955 (or whatever other thread was the last resumed thread) exited.
4956
4957 To address this we refresh the thread list and check whether we
4958 have resumed threads _now_. In the example above, this removes
4959 thread 3 from the thread list. If thread 2 was re-resumed, we
4960 ignore this event. If we find no thread resumed, then we cancel
4961 the synchronous command and show "no unwaited-for " to the
4962 user. */
4963
4964 inferior *curr_inf = current_inferior ();
4965
4966 scoped_restore_current_thread restore_thread;
4967
4968 for (auto *target : all_non_exited_process_targets ())
4969 {
4970 switch_to_target_no_thread (target);
4971 update_thread_list ();
4972 }
4973
4974 /* If:
4975
4976 - the current target has no thread executing, and
4977 - the current inferior is native, and
4978 - the current inferior is the one which has the terminal, and
4979 - we did nothing,
4980
4981 then a Ctrl-C from this point on would remain stuck in the
4982 kernel, until a thread resumes and dequeues it. That would
4983 result in the GDB CLI not reacting to Ctrl-C, not able to
4984 interrupt the program. To address this, if the current inferior
4985 no longer has any thread executing, we give the terminal to some
4986 other inferior that has at least one thread executing. */
4987 bool swap_terminal = true;
4988
4989 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4990 whether to report it to the user. */
4991 bool ignore_event = false;
4992
4993 for (thread_info *thread : all_non_exited_threads ())
4994 {
4995 if (swap_terminal && thread->executing)
4996 {
4997 if (thread->inf != curr_inf)
4998 {
4999 target_terminal::ours ();
5000
5001 switch_to_thread (thread);
5002 target_terminal::inferior ();
5003 }
5004 swap_terminal = false;
5005 }
5006
5007 if (!ignore_event
5008 && (thread->executing
5009 || thread->suspend.waitstatus_pending_p))
5010 {
5011 /* Either there were no unwaited-for children left in the
5012 target at some point, but there are now, or some target
5013 other than the eventing one has unwaited-for children
5014 left. Just ignore. */
5015 infrun_log_debug ("TARGET_WAITKIND_NO_RESUMED "
5016 "(ignoring: found resumed)\n");
5017
5018 ignore_event = true;
5019 }
5020
5021 if (ignore_event && !swap_terminal)
5022 break;
5023 }
5024
5025 if (ignore_event)
5026 {
5027 switch_to_inferior_no_thread (curr_inf);
5028 prepare_to_wait (ecs);
5029 return 1;
5030 }
5031
5032 /* Go ahead and report the event. */
5033 return 0;
5034 }
5035
5036 /* Given an execution control state that has been freshly filled in by
5037 an event from the inferior, figure out what it means and take
5038 appropriate action.
5039
5040 The alternatives are:
5041
5042 1) stop_waiting and return; to really stop and return to the
5043 debugger.
5044
5045 2) keep_going and return; to wait for the next event (set
5046 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5047 once). */
5048
5049 static void
5050 handle_inferior_event (struct execution_control_state *ecs)
5051 {
5052 /* Make sure that all temporary struct value objects that were
5053 created during the handling of the event get deleted at the
5054 end. */
5055 scoped_value_mark free_values;
5056
5057 enum stop_kind stop_soon;
5058
5059 infrun_log_debug ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5060
5061 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5062 {
5063 /* We had an event in the inferior, but we are not interested in
5064 handling it at this level. The lower layers have already
5065 done what needs to be done, if anything.
5066
5067 One of the possible circumstances for this is when the
5068 inferior produces output for the console. The inferior has
5069 not stopped, and we are ignoring the event. Another possible
5070 circumstance is any event which the lower level knows will be
5071 reported multiple times without an intervening resume. */
5072 prepare_to_wait (ecs);
5073 return;
5074 }
5075
5076 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5077 {
5078 prepare_to_wait (ecs);
5079 return;
5080 }
5081
5082 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5083 && handle_no_resumed (ecs))
5084 return;
5085
5086 /* Cache the last target/ptid/waitstatus. */
5087 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5088
5089 /* Always clear state belonging to the previous time we stopped. */
5090 stop_stack_dummy = STOP_NONE;
5091
5092 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5093 {
5094 /* No unwaited-for children left. IOW, all resumed children
5095 have exited. */
5096 stop_print_frame = 0;
5097 stop_waiting (ecs);
5098 return;
5099 }
5100
5101 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5102 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5103 {
5104 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5105 /* If it's a new thread, add it to the thread database. */
5106 if (ecs->event_thread == NULL)
5107 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5108
5109 /* Disable range stepping. If the next step request could use a
5110 range, this will be end up re-enabled then. */
5111 ecs->event_thread->control.may_range_step = 0;
5112 }
5113
5114 /* Dependent on valid ECS->EVENT_THREAD. */
5115 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5116
5117 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5118 reinit_frame_cache ();
5119
5120 breakpoint_retire_moribund ();
5121
5122 /* First, distinguish signals caused by the debugger from signals
5123 that have to do with the program's own actions. Note that
5124 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5125 on the operating system version. Here we detect when a SIGILL or
5126 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5127 something similar for SIGSEGV, since a SIGSEGV will be generated
5128 when we're trying to execute a breakpoint instruction on a
5129 non-executable stack. This happens for call dummy breakpoints
5130 for architectures like SPARC that place call dummies on the
5131 stack. */
5132 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5133 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5134 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5135 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5136 {
5137 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5138
5139 if (breakpoint_inserted_here_p (regcache->aspace (),
5140 regcache_read_pc (regcache)))
5141 {
5142 infrun_log_debug ("Treating signal as SIGTRAP");
5143 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5144 }
5145 }
5146
5147 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5148
5149 switch (ecs->ws.kind)
5150 {
5151 case TARGET_WAITKIND_LOADED:
5152 context_switch (ecs);
5153 /* Ignore gracefully during startup of the inferior, as it might
5154 be the shell which has just loaded some objects, otherwise
5155 add the symbols for the newly loaded objects. Also ignore at
5156 the beginning of an attach or remote session; we will query
5157 the full list of libraries once the connection is
5158 established. */
5159
5160 stop_soon = get_inferior_stop_soon (ecs);
5161 if (stop_soon == NO_STOP_QUIETLY)
5162 {
5163 struct regcache *regcache;
5164
5165 regcache = get_thread_regcache (ecs->event_thread);
5166
5167 handle_solib_event ();
5168
5169 ecs->event_thread->control.stop_bpstat
5170 = bpstat_stop_status (regcache->aspace (),
5171 ecs->event_thread->suspend.stop_pc,
5172 ecs->event_thread, &ecs->ws);
5173
5174 if (handle_stop_requested (ecs))
5175 return;
5176
5177 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5178 {
5179 /* A catchpoint triggered. */
5180 process_event_stop_test (ecs);
5181 return;
5182 }
5183
5184 /* If requested, stop when the dynamic linker notifies
5185 gdb of events. This allows the user to get control
5186 and place breakpoints in initializer routines for
5187 dynamically loaded objects (among other things). */
5188 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5189 if (stop_on_solib_events)
5190 {
5191 /* Make sure we print "Stopped due to solib-event" in
5192 normal_stop. */
5193 stop_print_frame = 1;
5194
5195 stop_waiting (ecs);
5196 return;
5197 }
5198 }
5199
5200 /* If we are skipping through a shell, or through shared library
5201 loading that we aren't interested in, resume the program. If
5202 we're running the program normally, also resume. */
5203 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5204 {
5205 /* Loading of shared libraries might have changed breakpoint
5206 addresses. Make sure new breakpoints are inserted. */
5207 if (stop_soon == NO_STOP_QUIETLY)
5208 insert_breakpoints ();
5209 resume (GDB_SIGNAL_0);
5210 prepare_to_wait (ecs);
5211 return;
5212 }
5213
5214 /* But stop if we're attaching or setting up a remote
5215 connection. */
5216 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5217 || stop_soon == STOP_QUIETLY_REMOTE)
5218 {
5219 infrun_log_debug ("quietly stopped");
5220 stop_waiting (ecs);
5221 return;
5222 }
5223
5224 internal_error (__FILE__, __LINE__,
5225 _("unhandled stop_soon: %d"), (int) stop_soon);
5226
5227 case TARGET_WAITKIND_SPURIOUS:
5228 if (handle_stop_requested (ecs))
5229 return;
5230 context_switch (ecs);
5231 resume (GDB_SIGNAL_0);
5232 prepare_to_wait (ecs);
5233 return;
5234
5235 case TARGET_WAITKIND_THREAD_CREATED:
5236 if (handle_stop_requested (ecs))
5237 return;
5238 context_switch (ecs);
5239 if (!switch_back_to_stepped_thread (ecs))
5240 keep_going (ecs);
5241 return;
5242
5243 case TARGET_WAITKIND_EXITED:
5244 case TARGET_WAITKIND_SIGNALLED:
5245 {
5246 /* Depending on the system, ecs->ptid may point to a thread or
5247 to a process. On some targets, target_mourn_inferior may
5248 need to have access to the just-exited thread. That is the
5249 case of GNU/Linux's "checkpoint" support, for example.
5250 Call the switch_to_xxx routine as appropriate. */
5251 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5252 if (thr != nullptr)
5253 switch_to_thread (thr);
5254 else
5255 {
5256 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5257 switch_to_inferior_no_thread (inf);
5258 }
5259 }
5260 handle_vfork_child_exec_or_exit (0);
5261 target_terminal::ours (); /* Must do this before mourn anyway. */
5262
5263 /* Clearing any previous state of convenience variables. */
5264 clear_exit_convenience_vars ();
5265
5266 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5267 {
5268 /* Record the exit code in the convenience variable $_exitcode, so
5269 that the user can inspect this again later. */
5270 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5271 (LONGEST) ecs->ws.value.integer);
5272
5273 /* Also record this in the inferior itself. */
5274 current_inferior ()->has_exit_code = 1;
5275 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5276
5277 /* Support the --return-child-result option. */
5278 return_child_result_value = ecs->ws.value.integer;
5279
5280 gdb::observers::exited.notify (ecs->ws.value.integer);
5281 }
5282 else
5283 {
5284 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5285
5286 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5287 {
5288 /* Set the value of the internal variable $_exitsignal,
5289 which holds the signal uncaught by the inferior. */
5290 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5291 gdbarch_gdb_signal_to_target (gdbarch,
5292 ecs->ws.value.sig));
5293 }
5294 else
5295 {
5296 /* We don't have access to the target's method used for
5297 converting between signal numbers (GDB's internal
5298 representation <-> target's representation).
5299 Therefore, we cannot do a good job at displaying this
5300 information to the user. It's better to just warn
5301 her about it (if infrun debugging is enabled), and
5302 give up. */
5303 infrun_log_debug ("Cannot fill $_exitsignal with the correct "
5304 "signal number.");
5305 }
5306
5307 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5308 }
5309
5310 gdb_flush (gdb_stdout);
5311 target_mourn_inferior (inferior_ptid);
5312 stop_print_frame = 0;
5313 stop_waiting (ecs);
5314 return;
5315
5316 case TARGET_WAITKIND_FORKED:
5317 case TARGET_WAITKIND_VFORKED:
5318 /* Check whether the inferior is displaced stepping. */
5319 {
5320 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5321 struct gdbarch *gdbarch = regcache->arch ();
5322
5323 /* If checking displaced stepping is supported, and thread
5324 ecs->ptid is displaced stepping. */
5325 if (displaced_step_in_progress (ecs->event_thread))
5326 {
5327 struct inferior *parent_inf
5328 = find_inferior_ptid (ecs->target, ecs->ptid);
5329 struct regcache *child_regcache;
5330 CORE_ADDR parent_pc;
5331
5332 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5333 {
5334 // struct displaced_step_inferior_state *displaced
5335 // = get_displaced_stepping_state (parent_inf);
5336
5337 /* Restore scratch pad for child process. */
5338 //displaced_step_restore (displaced, ecs->ws.value.related_pid);
5339 // FIXME: we should restore all the buffers that were currently in use
5340 }
5341
5342 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5343 indicating that the displaced stepping of syscall instruction
5344 has been done. Perform cleanup for parent process here. Note
5345 that this operation also cleans up the child process for vfork,
5346 because their pages are shared. */
5347 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5348 /* Start a new step-over in another thread if there's one
5349 that needs it. */
5350 start_step_over ();
5351
5352 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5353 the child's PC is also within the scratchpad. Set the child's PC
5354 to the parent's PC value, which has already been fixed up.
5355 FIXME: we use the parent's aspace here, although we're touching
5356 the child, because the child hasn't been added to the inferior
5357 list yet at this point. */
5358
5359 child_regcache
5360 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5361 ecs->ws.value.related_pid,
5362 gdbarch,
5363 parent_inf->aspace);
5364 /* Read PC value of parent process. */
5365 parent_pc = regcache_read_pc (regcache);
5366
5367 if (debug_displaced)
5368 fprintf_unfiltered (gdb_stdlog,
5369 "displaced: write child pc from %s to %s\n",
5370 paddress (gdbarch,
5371 regcache_read_pc (child_regcache)),
5372 paddress (gdbarch, parent_pc));
5373
5374 regcache_write_pc (child_regcache, parent_pc);
5375 }
5376 }
5377
5378 context_switch (ecs);
5379
5380 /* Immediately detach breakpoints from the child before there's
5381 any chance of letting the user delete breakpoints from the
5382 breakpoint lists. If we don't do this early, it's easy to
5383 leave left over traps in the child, vis: "break foo; catch
5384 fork; c; <fork>; del; c; <child calls foo>". We only follow
5385 the fork on the last `continue', and by that time the
5386 breakpoint at "foo" is long gone from the breakpoint table.
5387 If we vforked, then we don't need to unpatch here, since both
5388 parent and child are sharing the same memory pages; we'll
5389 need to unpatch at follow/detach time instead to be certain
5390 that new breakpoints added between catchpoint hit time and
5391 vfork follow are detached. */
5392 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5393 {
5394 /* This won't actually modify the breakpoint list, but will
5395 physically remove the breakpoints from the child. */
5396 detach_breakpoints (ecs->ws.value.related_pid);
5397 }
5398
5399 delete_just_stopped_threads_single_step_breakpoints ();
5400
5401 /* In case the event is caught by a catchpoint, remember that
5402 the event is to be followed at the next resume of the thread,
5403 and not immediately. */
5404 ecs->event_thread->pending_follow = ecs->ws;
5405
5406 ecs->event_thread->suspend.stop_pc
5407 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5408
5409 ecs->event_thread->control.stop_bpstat
5410 = bpstat_stop_status (get_current_regcache ()->aspace (),
5411 ecs->event_thread->suspend.stop_pc,
5412 ecs->event_thread, &ecs->ws);
5413
5414 if (handle_stop_requested (ecs))
5415 return;
5416
5417 /* If no catchpoint triggered for this, then keep going. Note
5418 that we're interested in knowing the bpstat actually causes a
5419 stop, not just if it may explain the signal. Software
5420 watchpoints, for example, always appear in the bpstat. */
5421 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5422 {
5423 bool follow_child
5424 = (follow_fork_mode_string == follow_fork_mode_child);
5425
5426 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5427
5428 process_stratum_target *targ
5429 = ecs->event_thread->inf->process_target ();
5430
5431 bool should_resume = follow_fork ();
5432
5433 /* Note that one of these may be an invalid pointer,
5434 depending on detach_fork. */
5435 thread_info *parent = ecs->event_thread;
5436 thread_info *child
5437 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5438
5439 /* At this point, the parent is marked running, and the
5440 child is marked stopped. */
5441
5442 /* If not resuming the parent, mark it stopped. */
5443 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5444 parent->set_running (false);
5445
5446 /* If resuming the child, mark it running. */
5447 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5448 child->set_running (true);
5449
5450 /* In non-stop mode, also resume the other branch. */
5451 if (!detach_fork && (non_stop
5452 || (sched_multi && target_is_non_stop_p ())))
5453 {
5454 if (follow_child)
5455 switch_to_thread (parent);
5456 else
5457 switch_to_thread (child);
5458
5459 ecs->event_thread = inferior_thread ();
5460 ecs->ptid = inferior_ptid;
5461 keep_going (ecs);
5462 }
5463
5464 if (follow_child)
5465 switch_to_thread (child);
5466 else
5467 switch_to_thread (parent);
5468
5469 ecs->event_thread = inferior_thread ();
5470 ecs->ptid = inferior_ptid;
5471
5472 if (should_resume)
5473 keep_going (ecs);
5474 else
5475 stop_waiting (ecs);
5476 return;
5477 }
5478 process_event_stop_test (ecs);
5479 return;
5480
5481 case TARGET_WAITKIND_VFORK_DONE:
5482 /* Done with the shared memory region. Re-insert breakpoints in
5483 the parent, and keep going. */
5484
5485 context_switch (ecs);
5486
5487 current_inferior ()->waiting_for_vfork_done = 0;
5488 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5489
5490 if (handle_stop_requested (ecs))
5491 return;
5492
5493 /* This also takes care of reinserting breakpoints in the
5494 previously locked inferior. */
5495 keep_going (ecs);
5496 return;
5497
5498 case TARGET_WAITKIND_EXECD:
5499
5500 /* Note we can't read registers yet (the stop_pc), because we
5501 don't yet know the inferior's post-exec architecture.
5502 'stop_pc' is explicitly read below instead. */
5503 switch_to_thread_no_regs (ecs->event_thread);
5504
5505 /* Do whatever is necessary to the parent branch of the vfork. */
5506 handle_vfork_child_exec_or_exit (1);
5507
5508 /* This causes the eventpoints and symbol table to be reset.
5509 Must do this now, before trying to determine whether to
5510 stop. */
5511 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5512
5513 /* In follow_exec we may have deleted the original thread and
5514 created a new one. Make sure that the event thread is the
5515 execd thread for that case (this is a nop otherwise). */
5516 ecs->event_thread = inferior_thread ();
5517
5518 ecs->event_thread->suspend.stop_pc
5519 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5520
5521 ecs->event_thread->control.stop_bpstat
5522 = bpstat_stop_status (get_current_regcache ()->aspace (),
5523 ecs->event_thread->suspend.stop_pc,
5524 ecs->event_thread, &ecs->ws);
5525
5526 /* Note that this may be referenced from inside
5527 bpstat_stop_status above, through inferior_has_execd. */
5528 xfree (ecs->ws.value.execd_pathname);
5529 ecs->ws.value.execd_pathname = NULL;
5530
5531 if (handle_stop_requested (ecs))
5532 return;
5533
5534 /* If no catchpoint triggered for this, then keep going. */
5535 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5536 {
5537 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5538 keep_going (ecs);
5539 return;
5540 }
5541 process_event_stop_test (ecs);
5542 return;
5543
5544 /* Be careful not to try to gather much state about a thread
5545 that's in a syscall. It's frequently a losing proposition. */
5546 case TARGET_WAITKIND_SYSCALL_ENTRY:
5547 /* Getting the current syscall number. */
5548 if (handle_syscall_event (ecs) == 0)
5549 process_event_stop_test (ecs);
5550 return;
5551
5552 /* Before examining the threads further, step this thread to
5553 get it entirely out of the syscall. (We get notice of the
5554 event when the thread is just on the verge of exiting a
5555 syscall. Stepping one instruction seems to get it back
5556 into user code.) */
5557 case TARGET_WAITKIND_SYSCALL_RETURN:
5558 if (handle_syscall_event (ecs) == 0)
5559 process_event_stop_test (ecs);
5560 return;
5561
5562 case TARGET_WAITKIND_STOPPED:
5563 handle_signal_stop (ecs);
5564 return;
5565
5566 case TARGET_WAITKIND_NO_HISTORY:
5567 /* Reverse execution: target ran out of history info. */
5568
5569 /* Switch to the stopped thread. */
5570 context_switch (ecs);
5571 infrun_log_debug ("stopped");
5572
5573 delete_just_stopped_threads_single_step_breakpoints ();
5574 ecs->event_thread->suspend.stop_pc
5575 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5576
5577 if (handle_stop_requested (ecs))
5578 return;
5579
5580 gdb::observers::no_history.notify ();
5581 stop_waiting (ecs);
5582 return;
5583 }
5584 }
5585
5586 /* Restart threads back to what they were trying to do back when we
5587 paused them for an in-line step-over. The EVENT_THREAD thread is
5588 ignored. */
5589
5590 static void
5591 restart_threads (struct thread_info *event_thread)
5592 {
5593 /* In case the instruction just stepped spawned a new thread. */
5594 update_thread_list ();
5595
5596 for (thread_info *tp : all_non_exited_threads ())
5597 {
5598 switch_to_thread_no_regs (tp);
5599
5600 if (tp == event_thread)
5601 {
5602 infrun_log_debug ("restart threads: [%s] is event thread",
5603 target_pid_to_str (tp->ptid).c_str ());
5604 continue;
5605 }
5606
5607 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5608 {
5609 infrun_log_debug ("restart threads: [%s] not meant to be running",
5610 target_pid_to_str (tp->ptid).c_str ());
5611 continue;
5612 }
5613
5614 if (tp->resumed)
5615 {
5616 infrun_log_debug ("restart threads: [%s] resumed",
5617 target_pid_to_str (tp->ptid).c_str ());
5618 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5619 continue;
5620 }
5621
5622 if (thread_is_in_step_over_chain (tp))
5623 {
5624 infrun_log_debug ("restart threads: [%s] needs step-over",
5625 target_pid_to_str (tp->ptid).c_str ());
5626 gdb_assert (!tp->resumed);
5627 continue;
5628 }
5629
5630
5631 if (tp->suspend.waitstatus_pending_p)
5632 {
5633 infrun_log_debug ("restart threads: [%s] has pending status",
5634 target_pid_to_str (tp->ptid).c_str ());
5635 tp->resumed = true;
5636 continue;
5637 }
5638
5639 gdb_assert (!tp->stop_requested);
5640
5641 /* If some thread needs to start a step-over at this point, it
5642 should still be in the step-over queue, and thus skipped
5643 above. */
5644 if (thread_still_needs_step_over (tp))
5645 {
5646 internal_error (__FILE__, __LINE__,
5647 "thread [%s] needs a step-over, but not in "
5648 "step-over queue\n",
5649 target_pid_to_str (tp->ptid).c_str ());
5650 }
5651
5652 if (currently_stepping (tp))
5653 {
5654 infrun_log_debug ("restart threads: [%s] was stepping",
5655 target_pid_to_str (tp->ptid).c_str ());
5656 keep_going_stepped_thread (tp);
5657 }
5658 else
5659 {
5660 struct execution_control_state ecss;
5661 struct execution_control_state *ecs = &ecss;
5662
5663 infrun_log_debug ("restart threads: [%s] continuing",
5664 target_pid_to_str (tp->ptid).c_str ());
5665 reset_ecs (ecs, tp);
5666 switch_to_thread (tp);
5667 keep_going_pass_signal (ecs);
5668 }
5669 }
5670 }
5671
5672 /* Callback for iterate_over_threads. Find a resumed thread that has
5673 a pending waitstatus. */
5674
5675 static int
5676 resumed_thread_with_pending_status (struct thread_info *tp,
5677 void *arg)
5678 {
5679 return (tp->resumed
5680 && tp->suspend.waitstatus_pending_p);
5681 }
5682
5683 /* Called when we get an event that may finish an in-line or
5684 out-of-line (displaced stepping) step-over started previously.
5685 Return true if the event is processed and we should go back to the
5686 event loop; false if the caller should continue processing the
5687 event. */
5688
5689 static int
5690 finish_step_over (struct execution_control_state *ecs)
5691 {
5692 int had_step_over_info;
5693
5694 displaced_step_finish (ecs->event_thread,
5695 ecs->event_thread->suspend.stop_signal);
5696
5697 had_step_over_info = step_over_info_valid_p ();
5698
5699 if (had_step_over_info)
5700 {
5701 /* If we're stepping over a breakpoint with all threads locked,
5702 then only the thread that was stepped should be reporting
5703 back an event. */
5704 gdb_assert (ecs->event_thread->control.trap_expected);
5705
5706 clear_step_over_info ();
5707 }
5708
5709 if (!target_is_non_stop_p ())
5710 return 0;
5711
5712 /* Start a new step-over in another thread if there's one that
5713 needs it. */
5714 start_step_over ();
5715
5716 /* If we were stepping over a breakpoint before, and haven't started
5717 a new in-line step-over sequence, then restart all other threads
5718 (except the event thread). We can't do this in all-stop, as then
5719 e.g., we wouldn't be able to issue any other remote packet until
5720 these other threads stop. */
5721 if (had_step_over_info && !step_over_info_valid_p ())
5722 {
5723 struct thread_info *pending;
5724
5725 /* If we only have threads with pending statuses, the restart
5726 below won't restart any thread and so nothing re-inserts the
5727 breakpoint we just stepped over. But we need it inserted
5728 when we later process the pending events, otherwise if
5729 another thread has a pending event for this breakpoint too,
5730 we'd discard its event (because the breakpoint that
5731 originally caused the event was no longer inserted). */
5732 context_switch (ecs);
5733 insert_breakpoints ();
5734
5735 restart_threads (ecs->event_thread);
5736
5737 /* If we have events pending, go through handle_inferior_event
5738 again, picking up a pending event at random. This avoids
5739 thread starvation. */
5740
5741 /* But not if we just stepped over a watchpoint in order to let
5742 the instruction execute so we can evaluate its expression.
5743 The set of watchpoints that triggered is recorded in the
5744 breakpoint objects themselves (see bp->watchpoint_triggered).
5745 If we processed another event first, that other event could
5746 clobber this info. */
5747 if (ecs->event_thread->stepping_over_watchpoint)
5748 return 0;
5749
5750 pending = iterate_over_threads (resumed_thread_with_pending_status,
5751 NULL);
5752 if (pending != NULL)
5753 {
5754 struct thread_info *tp = ecs->event_thread;
5755 struct regcache *regcache;
5756
5757 infrun_log_debug ("found resumed threads with "
5758 "pending events, saving status");
5759
5760 gdb_assert (pending != tp);
5761
5762 /* Record the event thread's event for later. */
5763 save_waitstatus (tp, &ecs->ws);
5764 /* This was cleared early, by handle_inferior_event. Set it
5765 so this pending event is considered by
5766 do_target_wait. */
5767 tp->resumed = true;
5768
5769 gdb_assert (!tp->executing);
5770
5771 regcache = get_thread_regcache (tp);
5772 tp->suspend.stop_pc = regcache_read_pc (regcache);
5773
5774 infrun_log_debug ("saved stop_pc=%s for %s "
5775 "(currently_stepping=%d)\n",
5776 paddress (target_gdbarch (),
5777 tp->suspend.stop_pc),
5778 target_pid_to_str (tp->ptid).c_str (),
5779 currently_stepping (tp));
5780
5781 /* This in-line step-over finished; clear this so we won't
5782 start a new one. This is what handle_signal_stop would
5783 do, if we returned false. */
5784 tp->stepping_over_breakpoint = 0;
5785
5786 /* Wake up the event loop again. */
5787 mark_async_event_handler (infrun_async_inferior_event_token);
5788
5789 prepare_to_wait (ecs);
5790 return 1;
5791 }
5792 }
5793
5794 return 0;
5795 }
5796
5797 /* Come here when the program has stopped with a signal. */
5798
5799 static void
5800 handle_signal_stop (struct execution_control_state *ecs)
5801 {
5802 struct frame_info *frame;
5803 struct gdbarch *gdbarch;
5804 int stopped_by_watchpoint;
5805 enum stop_kind stop_soon;
5806 int random_signal;
5807
5808 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5809
5810 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5811
5812 /* Do we need to clean up the state of a thread that has
5813 completed a displaced single-step? (Doing so usually affects
5814 the PC, so do it here, before we set stop_pc.) */
5815 if (finish_step_over (ecs))
5816 return;
5817
5818 /* If we either finished a single-step or hit a breakpoint, but
5819 the user wanted this thread to be stopped, pretend we got a
5820 SIG0 (generic unsignaled stop). */
5821 if (ecs->event_thread->stop_requested
5822 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5823 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5824
5825 ecs->event_thread->suspend.stop_pc
5826 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5827
5828 if (debug_infrun)
5829 {
5830 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5831 struct gdbarch *reg_gdbarch = regcache->arch ();
5832
5833 switch_to_thread (ecs->event_thread);
5834
5835 infrun_log_debug ("stop_pc=%s",
5836 paddress (reg_gdbarch,
5837 ecs->event_thread->suspend.stop_pc));
5838 if (target_stopped_by_watchpoint ())
5839 {
5840 CORE_ADDR addr;
5841
5842 infrun_log_debug ("stopped by watchpoint");
5843
5844 if (target_stopped_data_address (current_top_target (), &addr))
5845 infrun_log_debug ("stopped data address=%s",
5846 paddress (reg_gdbarch, addr));
5847 else
5848 infrun_log_debug ("(no data address available)");
5849 }
5850 }
5851
5852 /* This is originated from start_remote(), start_inferior() and
5853 shared libraries hook functions. */
5854 stop_soon = get_inferior_stop_soon (ecs);
5855 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5856 {
5857 context_switch (ecs);
5858 infrun_log_debug ("quietly stopped");
5859 stop_print_frame = 1;
5860 stop_waiting (ecs);
5861 return;
5862 }
5863
5864 /* This originates from attach_command(). We need to overwrite
5865 the stop_signal here, because some kernels don't ignore a
5866 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5867 See more comments in inferior.h. On the other hand, if we
5868 get a non-SIGSTOP, report it to the user - assume the backend
5869 will handle the SIGSTOP if it should show up later.
5870
5871 Also consider that the attach is complete when we see a
5872 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5873 target extended-remote report it instead of a SIGSTOP
5874 (e.g. gdbserver). We already rely on SIGTRAP being our
5875 signal, so this is no exception.
5876
5877 Also consider that the attach is complete when we see a
5878 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5879 the target to stop all threads of the inferior, in case the
5880 low level attach operation doesn't stop them implicitly. If
5881 they weren't stopped implicitly, then the stub will report a
5882 GDB_SIGNAL_0, meaning: stopped for no particular reason
5883 other than GDB's request. */
5884 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5885 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5886 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5887 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5888 {
5889 stop_print_frame = 1;
5890 stop_waiting (ecs);
5891 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5892 return;
5893 }
5894
5895 /* See if something interesting happened to the non-current thread. If
5896 so, then switch to that thread. */
5897 if (ecs->ptid != inferior_ptid)
5898 {
5899 infrun_log_debug ("context switch");
5900
5901 context_switch (ecs);
5902
5903 if (deprecated_context_hook)
5904 deprecated_context_hook (ecs->event_thread->global_num);
5905 }
5906
5907 /* At this point, get hold of the now-current thread's frame. */
5908 frame = get_current_frame ();
5909 gdbarch = get_frame_arch (frame);
5910
5911 /* Pull the single step breakpoints out of the target. */
5912 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5913 {
5914 struct regcache *regcache;
5915 CORE_ADDR pc;
5916
5917 regcache = get_thread_regcache (ecs->event_thread);
5918 const address_space *aspace = regcache->aspace ();
5919
5920 pc = regcache_read_pc (regcache);
5921
5922 /* However, before doing so, if this single-step breakpoint was
5923 actually for another thread, set this thread up for moving
5924 past it. */
5925 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5926 aspace, pc))
5927 {
5928 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5929 {
5930 infrun_log_debug ("[%s] hit another thread's single-step "
5931 "breakpoint",
5932 target_pid_to_str (ecs->ptid).c_str ());
5933 ecs->hit_singlestep_breakpoint = 1;
5934 }
5935 }
5936 else
5937 {
5938 infrun_log_debug ("[%s] hit its single-step breakpoint",
5939 target_pid_to_str (ecs->ptid).c_str ());
5940 }
5941 }
5942 delete_just_stopped_threads_single_step_breakpoints ();
5943
5944 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5945 && ecs->event_thread->control.trap_expected
5946 && ecs->event_thread->stepping_over_watchpoint)
5947 stopped_by_watchpoint = 0;
5948 else
5949 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5950
5951 /* If necessary, step over this watchpoint. We'll be back to display
5952 it in a moment. */
5953 if (stopped_by_watchpoint
5954 && (target_have_steppable_watchpoint
5955 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5956 {
5957 /* At this point, we are stopped at an instruction which has
5958 attempted to write to a piece of memory under control of
5959 a watchpoint. The instruction hasn't actually executed
5960 yet. If we were to evaluate the watchpoint expression
5961 now, we would get the old value, and therefore no change
5962 would seem to have occurred.
5963
5964 In order to make watchpoints work `right', we really need
5965 to complete the memory write, and then evaluate the
5966 watchpoint expression. We do this by single-stepping the
5967 target.
5968
5969 It may not be necessary to disable the watchpoint to step over
5970 it. For example, the PA can (with some kernel cooperation)
5971 single step over a watchpoint without disabling the watchpoint.
5972
5973 It is far more common to need to disable a watchpoint to step
5974 the inferior over it. If we have non-steppable watchpoints,
5975 we must disable the current watchpoint; it's simplest to
5976 disable all watchpoints.
5977
5978 Any breakpoint at PC must also be stepped over -- if there's
5979 one, it will have already triggered before the watchpoint
5980 triggered, and we either already reported it to the user, or
5981 it didn't cause a stop and we called keep_going. In either
5982 case, if there was a breakpoint at PC, we must be trying to
5983 step past it. */
5984 ecs->event_thread->stepping_over_watchpoint = 1;
5985 keep_going (ecs);
5986 return;
5987 }
5988
5989 ecs->event_thread->stepping_over_breakpoint = 0;
5990 ecs->event_thread->stepping_over_watchpoint = 0;
5991 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5992 ecs->event_thread->control.stop_step = 0;
5993 stop_print_frame = 1;
5994 stopped_by_random_signal = 0;
5995 bpstat stop_chain = NULL;
5996
5997 /* Hide inlined functions starting here, unless we just performed stepi or
5998 nexti. After stepi and nexti, always show the innermost frame (not any
5999 inline function call sites). */
6000 if (ecs->event_thread->control.step_range_end != 1)
6001 {
6002 const address_space *aspace
6003 = get_thread_regcache (ecs->event_thread)->aspace ();
6004
6005 /* skip_inline_frames is expensive, so we avoid it if we can
6006 determine that the address is one where functions cannot have
6007 been inlined. This improves performance with inferiors that
6008 load a lot of shared libraries, because the solib event
6009 breakpoint is defined as the address of a function (i.e. not
6010 inline). Note that we have to check the previous PC as well
6011 as the current one to catch cases when we have just
6012 single-stepped off a breakpoint prior to reinstating it.
6013 Note that we're assuming that the code we single-step to is
6014 not inline, but that's not definitive: there's nothing
6015 preventing the event breakpoint function from containing
6016 inlined code, and the single-step ending up there. If the
6017 user had set a breakpoint on that inlined code, the missing
6018 skip_inline_frames call would break things. Fortunately
6019 that's an extremely unlikely scenario. */
6020 if (!pc_at_non_inline_function (aspace,
6021 ecs->event_thread->suspend.stop_pc,
6022 &ecs->ws)
6023 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6024 && ecs->event_thread->control.trap_expected
6025 && pc_at_non_inline_function (aspace,
6026 ecs->event_thread->prev_pc,
6027 &ecs->ws)))
6028 {
6029 stop_chain = build_bpstat_chain (aspace,
6030 ecs->event_thread->suspend.stop_pc,
6031 &ecs->ws);
6032 skip_inline_frames (ecs->event_thread, stop_chain);
6033
6034 /* Re-fetch current thread's frame in case that invalidated
6035 the frame cache. */
6036 frame = get_current_frame ();
6037 gdbarch = get_frame_arch (frame);
6038 }
6039 }
6040
6041 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6042 && ecs->event_thread->control.trap_expected
6043 && gdbarch_single_step_through_delay_p (gdbarch)
6044 && currently_stepping (ecs->event_thread))
6045 {
6046 /* We're trying to step off a breakpoint. Turns out that we're
6047 also on an instruction that needs to be stepped multiple
6048 times before it's been fully executing. E.g., architectures
6049 with a delay slot. It needs to be stepped twice, once for
6050 the instruction and once for the delay slot. */
6051 int step_through_delay
6052 = gdbarch_single_step_through_delay (gdbarch, frame);
6053
6054 if (step_through_delay)
6055 infrun_log_debug ("step through delay");
6056
6057 if (ecs->event_thread->control.step_range_end == 0
6058 && step_through_delay)
6059 {
6060 /* The user issued a continue when stopped at a breakpoint.
6061 Set up for another trap and get out of here. */
6062 ecs->event_thread->stepping_over_breakpoint = 1;
6063 keep_going (ecs);
6064 return;
6065 }
6066 else if (step_through_delay)
6067 {
6068 /* The user issued a step when stopped at a breakpoint.
6069 Maybe we should stop, maybe we should not - the delay
6070 slot *might* correspond to a line of source. In any
6071 case, don't decide that here, just set
6072 ecs->stepping_over_breakpoint, making sure we
6073 single-step again before breakpoints are re-inserted. */
6074 ecs->event_thread->stepping_over_breakpoint = 1;
6075 }
6076 }
6077
6078 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6079 handles this event. */
6080 ecs->event_thread->control.stop_bpstat
6081 = bpstat_stop_status (get_current_regcache ()->aspace (),
6082 ecs->event_thread->suspend.stop_pc,
6083 ecs->event_thread, &ecs->ws, stop_chain);
6084
6085 /* Following in case break condition called a
6086 function. */
6087 stop_print_frame = 1;
6088
6089 /* This is where we handle "moribund" watchpoints. Unlike
6090 software breakpoints traps, hardware watchpoint traps are
6091 always distinguishable from random traps. If no high-level
6092 watchpoint is associated with the reported stop data address
6093 anymore, then the bpstat does not explain the signal ---
6094 simply make sure to ignore it if `stopped_by_watchpoint' is
6095 set. */
6096
6097 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6098 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6099 GDB_SIGNAL_TRAP)
6100 && stopped_by_watchpoint)
6101 {
6102 infrun_log_debug ("no user watchpoint explains watchpoint SIGTRAP, "
6103 "ignoring");
6104 }
6105
6106 /* NOTE: cagney/2003-03-29: These checks for a random signal
6107 at one stage in the past included checks for an inferior
6108 function call's call dummy's return breakpoint. The original
6109 comment, that went with the test, read:
6110
6111 ``End of a stack dummy. Some systems (e.g. Sony news) give
6112 another signal besides SIGTRAP, so check here as well as
6113 above.''
6114
6115 If someone ever tries to get call dummys on a
6116 non-executable stack to work (where the target would stop
6117 with something like a SIGSEGV), then those tests might need
6118 to be re-instated. Given, however, that the tests were only
6119 enabled when momentary breakpoints were not being used, I
6120 suspect that it won't be the case.
6121
6122 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6123 be necessary for call dummies on a non-executable stack on
6124 SPARC. */
6125
6126 /* See if the breakpoints module can explain the signal. */
6127 random_signal
6128 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6129 ecs->event_thread->suspend.stop_signal);
6130
6131 /* Maybe this was a trap for a software breakpoint that has since
6132 been removed. */
6133 if (random_signal && target_stopped_by_sw_breakpoint ())
6134 {
6135 if (gdbarch_program_breakpoint_here_p (gdbarch,
6136 ecs->event_thread->suspend.stop_pc))
6137 {
6138 struct regcache *regcache;
6139 int decr_pc;
6140
6141 /* Re-adjust PC to what the program would see if GDB was not
6142 debugging it. */
6143 regcache = get_thread_regcache (ecs->event_thread);
6144 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6145 if (decr_pc != 0)
6146 {
6147 gdb::optional<scoped_restore_tmpl<int>>
6148 restore_operation_disable;
6149
6150 if (record_full_is_used ())
6151 restore_operation_disable.emplace
6152 (record_full_gdb_operation_disable_set ());
6153
6154 regcache_write_pc (regcache,
6155 ecs->event_thread->suspend.stop_pc + decr_pc);
6156 }
6157 }
6158 else
6159 {
6160 /* A delayed software breakpoint event. Ignore the trap. */
6161 infrun_log_debug ("delayed software breakpoint trap, ignoring");
6162 random_signal = 0;
6163 }
6164 }
6165
6166 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6167 has since been removed. */
6168 if (random_signal && target_stopped_by_hw_breakpoint ())
6169 {
6170 /* A delayed hardware breakpoint event. Ignore the trap. */
6171 infrun_log_debug ("delayed hardware breakpoint/watchpoint "
6172 "trap, ignoring");
6173 random_signal = 0;
6174 }
6175
6176 /* If not, perhaps stepping/nexting can. */
6177 if (random_signal)
6178 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6179 && currently_stepping (ecs->event_thread));
6180
6181 /* Perhaps the thread hit a single-step breakpoint of _another_
6182 thread. Single-step breakpoints are transparent to the
6183 breakpoints module. */
6184 if (random_signal)
6185 random_signal = !ecs->hit_singlestep_breakpoint;
6186
6187 /* No? Perhaps we got a moribund watchpoint. */
6188 if (random_signal)
6189 random_signal = !stopped_by_watchpoint;
6190
6191 /* Always stop if the user explicitly requested this thread to
6192 remain stopped. */
6193 if (ecs->event_thread->stop_requested)
6194 {
6195 random_signal = 1;
6196 infrun_log_debug ("user-requested stop");
6197 }
6198
6199 /* For the program's own signals, act according to
6200 the signal handling tables. */
6201
6202 if (random_signal)
6203 {
6204 /* Signal not for debugging purposes. */
6205 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6206 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6207
6208 infrun_log_debug ("random signal (%s)",
6209 gdb_signal_to_symbol_string (stop_signal));
6210
6211 stopped_by_random_signal = 1;
6212
6213 /* Always stop on signals if we're either just gaining control
6214 of the program, or the user explicitly requested this thread
6215 to remain stopped. */
6216 if (stop_soon != NO_STOP_QUIETLY
6217 || ecs->event_thread->stop_requested
6218 || (!inf->detaching
6219 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6220 {
6221 stop_waiting (ecs);
6222 return;
6223 }
6224
6225 /* Notify observers the signal has "handle print" set. Note we
6226 returned early above if stopping; normal_stop handles the
6227 printing in that case. */
6228 if (signal_print[ecs->event_thread->suspend.stop_signal])
6229 {
6230 /* The signal table tells us to print about this signal. */
6231 target_terminal::ours_for_output ();
6232 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6233 target_terminal::inferior ();
6234 }
6235
6236 /* Clear the signal if it should not be passed. */
6237 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6238 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6239
6240 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6241 && ecs->event_thread->control.trap_expected
6242 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6243 {
6244 /* We were just starting a new sequence, attempting to
6245 single-step off of a breakpoint and expecting a SIGTRAP.
6246 Instead this signal arrives. This signal will take us out
6247 of the stepping range so GDB needs to remember to, when
6248 the signal handler returns, resume stepping off that
6249 breakpoint. */
6250 /* To simplify things, "continue" is forced to use the same
6251 code paths as single-step - set a breakpoint at the
6252 signal return address and then, once hit, step off that
6253 breakpoint. */
6254 infrun_log_debug ("signal arrived while stepping over breakpoint");
6255
6256 insert_hp_step_resume_breakpoint_at_frame (frame);
6257 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6258 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6259 ecs->event_thread->control.trap_expected = 0;
6260
6261 /* If we were nexting/stepping some other thread, switch to
6262 it, so that we don't continue it, losing control. */
6263 if (!switch_back_to_stepped_thread (ecs))
6264 keep_going (ecs);
6265 return;
6266 }
6267
6268 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6269 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6270 ecs->event_thread)
6271 || ecs->event_thread->control.step_range_end == 1)
6272 && frame_id_eq (get_stack_frame_id (frame),
6273 ecs->event_thread->control.step_stack_frame_id)
6274 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6275 {
6276 /* The inferior is about to take a signal that will take it
6277 out of the single step range. Set a breakpoint at the
6278 current PC (which is presumably where the signal handler
6279 will eventually return) and then allow the inferior to
6280 run free.
6281
6282 Note that this is only needed for a signal delivered
6283 while in the single-step range. Nested signals aren't a
6284 problem as they eventually all return. */
6285 infrun_log_debug ("signal may take us out of single-step range");
6286
6287 clear_step_over_info ();
6288 insert_hp_step_resume_breakpoint_at_frame (frame);
6289 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6290 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6291 ecs->event_thread->control.trap_expected = 0;
6292 keep_going (ecs);
6293 return;
6294 }
6295
6296 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6297 when either there's a nested signal, or when there's a
6298 pending signal enabled just as the signal handler returns
6299 (leaving the inferior at the step-resume-breakpoint without
6300 actually executing it). Either way continue until the
6301 breakpoint is really hit. */
6302
6303 if (!switch_back_to_stepped_thread (ecs))
6304 {
6305 infrun_log_debug ("random signal, keep going");
6306
6307 keep_going (ecs);
6308 }
6309 return;
6310 }
6311
6312 process_event_stop_test (ecs);
6313 }
6314
6315 /* Come here when we've got some debug event / signal we can explain
6316 (IOW, not a random signal), and test whether it should cause a
6317 stop, or whether we should resume the inferior (transparently).
6318 E.g., could be a breakpoint whose condition evaluates false; we
6319 could be still stepping within the line; etc. */
6320
6321 static void
6322 process_event_stop_test (struct execution_control_state *ecs)
6323 {
6324 struct symtab_and_line stop_pc_sal;
6325 struct frame_info *frame;
6326 struct gdbarch *gdbarch;
6327 CORE_ADDR jmp_buf_pc;
6328 struct bpstat_what what;
6329
6330 /* Handle cases caused by hitting a breakpoint. */
6331
6332 frame = get_current_frame ();
6333 gdbarch = get_frame_arch (frame);
6334
6335 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6336
6337 if (what.call_dummy)
6338 {
6339 stop_stack_dummy = what.call_dummy;
6340 }
6341
6342 /* A few breakpoint types have callbacks associated (e.g.,
6343 bp_jit_event). Run them now. */
6344 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6345
6346 /* If we hit an internal event that triggers symbol changes, the
6347 current frame will be invalidated within bpstat_what (e.g., if we
6348 hit an internal solib event). Re-fetch it. */
6349 frame = get_current_frame ();
6350 gdbarch = get_frame_arch (frame);
6351
6352 switch (what.main_action)
6353 {
6354 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6355 /* If we hit the breakpoint at longjmp while stepping, we
6356 install a momentary breakpoint at the target of the
6357 jmp_buf. */
6358
6359 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6360
6361 ecs->event_thread->stepping_over_breakpoint = 1;
6362
6363 if (what.is_longjmp)
6364 {
6365 struct value *arg_value;
6366
6367 /* If we set the longjmp breakpoint via a SystemTap probe,
6368 then use it to extract the arguments. The destination PC
6369 is the third argument to the probe. */
6370 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6371 if (arg_value)
6372 {
6373 jmp_buf_pc = value_as_address (arg_value);
6374 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6375 }
6376 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6377 || !gdbarch_get_longjmp_target (gdbarch,
6378 frame, &jmp_buf_pc))
6379 {
6380 infrun_log_debug ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6381 "(!gdbarch_get_longjmp_target)");
6382 keep_going (ecs);
6383 return;
6384 }
6385
6386 /* Insert a breakpoint at resume address. */
6387 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6388 }
6389 else
6390 check_exception_resume (ecs, frame);
6391 keep_going (ecs);
6392 return;
6393
6394 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6395 {
6396 struct frame_info *init_frame;
6397
6398 /* There are several cases to consider.
6399
6400 1. The initiating frame no longer exists. In this case we
6401 must stop, because the exception or longjmp has gone too
6402 far.
6403
6404 2. The initiating frame exists, and is the same as the
6405 current frame. We stop, because the exception or longjmp
6406 has been caught.
6407
6408 3. The initiating frame exists and is different from the
6409 current frame. This means the exception or longjmp has
6410 been caught beneath the initiating frame, so keep going.
6411
6412 4. longjmp breakpoint has been placed just to protect
6413 against stale dummy frames and user is not interested in
6414 stopping around longjmps. */
6415
6416 infrun_log_debug ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6417
6418 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6419 != NULL);
6420 delete_exception_resume_breakpoint (ecs->event_thread);
6421
6422 if (what.is_longjmp)
6423 {
6424 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6425
6426 if (!frame_id_p (ecs->event_thread->initiating_frame))
6427 {
6428 /* Case 4. */
6429 keep_going (ecs);
6430 return;
6431 }
6432 }
6433
6434 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6435
6436 if (init_frame)
6437 {
6438 struct frame_id current_id
6439 = get_frame_id (get_current_frame ());
6440 if (frame_id_eq (current_id,
6441 ecs->event_thread->initiating_frame))
6442 {
6443 /* Case 2. Fall through. */
6444 }
6445 else
6446 {
6447 /* Case 3. */
6448 keep_going (ecs);
6449 return;
6450 }
6451 }
6452
6453 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6454 exists. */
6455 delete_step_resume_breakpoint (ecs->event_thread);
6456
6457 end_stepping_range (ecs);
6458 }
6459 return;
6460
6461 case BPSTAT_WHAT_SINGLE:
6462 infrun_log_debug ("BPSTAT_WHAT_SINGLE");
6463 ecs->event_thread->stepping_over_breakpoint = 1;
6464 /* Still need to check other stuff, at least the case where we
6465 are stepping and step out of the right range. */
6466 break;
6467
6468 case BPSTAT_WHAT_STEP_RESUME:
6469 infrun_log_debug ("BPSTAT_WHAT_STEP_RESUME");
6470
6471 delete_step_resume_breakpoint (ecs->event_thread);
6472 if (ecs->event_thread->control.proceed_to_finish
6473 && execution_direction == EXEC_REVERSE)
6474 {
6475 struct thread_info *tp = ecs->event_thread;
6476
6477 /* We are finishing a function in reverse, and just hit the
6478 step-resume breakpoint at the start address of the
6479 function, and we're almost there -- just need to back up
6480 by one more single-step, which should take us back to the
6481 function call. */
6482 tp->control.step_range_start = tp->control.step_range_end = 1;
6483 keep_going (ecs);
6484 return;
6485 }
6486 fill_in_stop_func (gdbarch, ecs);
6487 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6488 && execution_direction == EXEC_REVERSE)
6489 {
6490 /* We are stepping over a function call in reverse, and just
6491 hit the step-resume breakpoint at the start address of
6492 the function. Go back to single-stepping, which should
6493 take us back to the function call. */
6494 ecs->event_thread->stepping_over_breakpoint = 1;
6495 keep_going (ecs);
6496 return;
6497 }
6498 break;
6499
6500 case BPSTAT_WHAT_STOP_NOISY:
6501 infrun_log_debug ("BPSTAT_WHAT_STOP_NOISY");
6502 stop_print_frame = 1;
6503
6504 /* Assume the thread stopped for a breapoint. We'll still check
6505 whether a/the breakpoint is there when the thread is next
6506 resumed. */
6507 ecs->event_thread->stepping_over_breakpoint = 1;
6508
6509 stop_waiting (ecs);
6510 return;
6511
6512 case BPSTAT_WHAT_STOP_SILENT:
6513 infrun_log_debug ("BPSTAT_WHAT_STOP_SILENT");
6514 stop_print_frame = 0;
6515
6516 /* Assume the thread stopped for a breapoint. We'll still check
6517 whether a/the breakpoint is there when the thread is next
6518 resumed. */
6519 ecs->event_thread->stepping_over_breakpoint = 1;
6520 stop_waiting (ecs);
6521 return;
6522
6523 case BPSTAT_WHAT_HP_STEP_RESUME:
6524 infrun_log_debug ("BPSTAT_WHAT_HP_STEP_RESUME");
6525
6526 delete_step_resume_breakpoint (ecs->event_thread);
6527 if (ecs->event_thread->step_after_step_resume_breakpoint)
6528 {
6529 /* Back when the step-resume breakpoint was inserted, we
6530 were trying to single-step off a breakpoint. Go back to
6531 doing that. */
6532 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6533 ecs->event_thread->stepping_over_breakpoint = 1;
6534 keep_going (ecs);
6535 return;
6536 }
6537 break;
6538
6539 case BPSTAT_WHAT_KEEP_CHECKING:
6540 break;
6541 }
6542
6543 /* If we stepped a permanent breakpoint and we had a high priority
6544 step-resume breakpoint for the address we stepped, but we didn't
6545 hit it, then we must have stepped into the signal handler. The
6546 step-resume was only necessary to catch the case of _not_
6547 stepping into the handler, so delete it, and fall through to
6548 checking whether the step finished. */
6549 if (ecs->event_thread->stepped_breakpoint)
6550 {
6551 struct breakpoint *sr_bp
6552 = ecs->event_thread->control.step_resume_breakpoint;
6553
6554 if (sr_bp != NULL
6555 && sr_bp->loc->permanent
6556 && sr_bp->type == bp_hp_step_resume
6557 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6558 {
6559 infrun_log_debug ("stepped permanent breakpoint, stopped in handler");
6560 delete_step_resume_breakpoint (ecs->event_thread);
6561 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6562 }
6563 }
6564
6565 /* We come here if we hit a breakpoint but should not stop for it.
6566 Possibly we also were stepping and should stop for that. So fall
6567 through and test for stepping. But, if not stepping, do not
6568 stop. */
6569
6570 /* In all-stop mode, if we're currently stepping but have stopped in
6571 some other thread, we need to switch back to the stepped thread. */
6572 if (switch_back_to_stepped_thread (ecs))
6573 return;
6574
6575 if (ecs->event_thread->control.step_resume_breakpoint)
6576 {
6577 infrun_log_debug ("step-resume breakpoint is inserted");
6578
6579 /* Having a step-resume breakpoint overrides anything
6580 else having to do with stepping commands until
6581 that breakpoint is reached. */
6582 keep_going (ecs);
6583 return;
6584 }
6585
6586 if (ecs->event_thread->control.step_range_end == 0)
6587 {
6588 infrun_log_debug ("no stepping, continue");
6589 /* Likewise if we aren't even stepping. */
6590 keep_going (ecs);
6591 return;
6592 }
6593
6594 /* Re-fetch current thread's frame in case the code above caused
6595 the frame cache to be re-initialized, making our FRAME variable
6596 a dangling pointer. */
6597 frame = get_current_frame ();
6598 gdbarch = get_frame_arch (frame);
6599 fill_in_stop_func (gdbarch, ecs);
6600
6601 /* If stepping through a line, keep going if still within it.
6602
6603 Note that step_range_end is the address of the first instruction
6604 beyond the step range, and NOT the address of the last instruction
6605 within it!
6606
6607 Note also that during reverse execution, we may be stepping
6608 through a function epilogue and therefore must detect when
6609 the current-frame changes in the middle of a line. */
6610
6611 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6612 ecs->event_thread)
6613 && (execution_direction != EXEC_REVERSE
6614 || frame_id_eq (get_frame_id (frame),
6615 ecs->event_thread->control.step_frame_id)))
6616 {
6617 infrun_log_debug
6618 ("stepping inside range [%s-%s]",
6619 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6620 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6621
6622 /* Tentatively re-enable range stepping; `resume' disables it if
6623 necessary (e.g., if we're stepping over a breakpoint or we
6624 have software watchpoints). */
6625 ecs->event_thread->control.may_range_step = 1;
6626
6627 /* When stepping backward, stop at beginning of line range
6628 (unless it's the function entry point, in which case
6629 keep going back to the call point). */
6630 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6631 if (stop_pc == ecs->event_thread->control.step_range_start
6632 && stop_pc != ecs->stop_func_start
6633 && execution_direction == EXEC_REVERSE)
6634 end_stepping_range (ecs);
6635 else
6636 keep_going (ecs);
6637
6638 return;
6639 }
6640
6641 /* We stepped out of the stepping range. */
6642
6643 /* If we are stepping at the source level and entered the runtime
6644 loader dynamic symbol resolution code...
6645
6646 EXEC_FORWARD: we keep on single stepping until we exit the run
6647 time loader code and reach the callee's address.
6648
6649 EXEC_REVERSE: we've already executed the callee (backward), and
6650 the runtime loader code is handled just like any other
6651 undebuggable function call. Now we need only keep stepping
6652 backward through the trampoline code, and that's handled further
6653 down, so there is nothing for us to do here. */
6654
6655 if (execution_direction != EXEC_REVERSE
6656 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6657 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6658 {
6659 CORE_ADDR pc_after_resolver =
6660 gdbarch_skip_solib_resolver (gdbarch,
6661 ecs->event_thread->suspend.stop_pc);
6662
6663 infrun_log_debug ("stepped into dynsym resolve code");
6664
6665 if (pc_after_resolver)
6666 {
6667 /* Set up a step-resume breakpoint at the address
6668 indicated by SKIP_SOLIB_RESOLVER. */
6669 symtab_and_line sr_sal;
6670 sr_sal.pc = pc_after_resolver;
6671 sr_sal.pspace = get_frame_program_space (frame);
6672
6673 insert_step_resume_breakpoint_at_sal (gdbarch,
6674 sr_sal, null_frame_id);
6675 }
6676
6677 keep_going (ecs);
6678 return;
6679 }
6680
6681 /* Step through an indirect branch thunk. */
6682 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6683 && gdbarch_in_indirect_branch_thunk (gdbarch,
6684 ecs->event_thread->suspend.stop_pc))
6685 {
6686 infrun_log_debug ("stepped into indirect branch thunk");
6687 keep_going (ecs);
6688 return;
6689 }
6690
6691 if (ecs->event_thread->control.step_range_end != 1
6692 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6693 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6694 && get_frame_type (frame) == SIGTRAMP_FRAME)
6695 {
6696 infrun_log_debug ("stepped into signal trampoline");
6697 /* The inferior, while doing a "step" or "next", has ended up in
6698 a signal trampoline (either by a signal being delivered or by
6699 the signal handler returning). Just single-step until the
6700 inferior leaves the trampoline (either by calling the handler
6701 or returning). */
6702 keep_going (ecs);
6703 return;
6704 }
6705
6706 /* If we're in the return path from a shared library trampoline,
6707 we want to proceed through the trampoline when stepping. */
6708 /* macro/2012-04-25: This needs to come before the subroutine
6709 call check below as on some targets return trampolines look
6710 like subroutine calls (MIPS16 return thunks). */
6711 if (gdbarch_in_solib_return_trampoline (gdbarch,
6712 ecs->event_thread->suspend.stop_pc,
6713 ecs->stop_func_name)
6714 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6715 {
6716 /* Determine where this trampoline returns. */
6717 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6718 CORE_ADDR real_stop_pc
6719 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6720
6721 infrun_log_debug ("stepped into solib return tramp");
6722
6723 /* Only proceed through if we know where it's going. */
6724 if (real_stop_pc)
6725 {
6726 /* And put the step-breakpoint there and go until there. */
6727 symtab_and_line sr_sal;
6728 sr_sal.pc = real_stop_pc;
6729 sr_sal.section = find_pc_overlay (sr_sal.pc);
6730 sr_sal.pspace = get_frame_program_space (frame);
6731
6732 /* Do not specify what the fp should be when we stop since
6733 on some machines the prologue is where the new fp value
6734 is established. */
6735 insert_step_resume_breakpoint_at_sal (gdbarch,
6736 sr_sal, null_frame_id);
6737
6738 /* Restart without fiddling with the step ranges or
6739 other state. */
6740 keep_going (ecs);
6741 return;
6742 }
6743 }
6744
6745 /* Check for subroutine calls. The check for the current frame
6746 equalling the step ID is not necessary - the check of the
6747 previous frame's ID is sufficient - but it is a common case and
6748 cheaper than checking the previous frame's ID.
6749
6750 NOTE: frame_id_eq will never report two invalid frame IDs as
6751 being equal, so to get into this block, both the current and
6752 previous frame must have valid frame IDs. */
6753 /* The outer_frame_id check is a heuristic to detect stepping
6754 through startup code. If we step over an instruction which
6755 sets the stack pointer from an invalid value to a valid value,
6756 we may detect that as a subroutine call from the mythical
6757 "outermost" function. This could be fixed by marking
6758 outermost frames as !stack_p,code_p,special_p. Then the
6759 initial outermost frame, before sp was valid, would
6760 have code_addr == &_start. See the comment in frame_id_eq
6761 for more. */
6762 if (!frame_id_eq (get_stack_frame_id (frame),
6763 ecs->event_thread->control.step_stack_frame_id)
6764 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6765 ecs->event_thread->control.step_stack_frame_id)
6766 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6767 outer_frame_id)
6768 || (ecs->event_thread->control.step_start_function
6769 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6770 {
6771 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6772 CORE_ADDR real_stop_pc;
6773
6774 infrun_log_debug ("stepped into subroutine");
6775
6776 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6777 {
6778 /* I presume that step_over_calls is only 0 when we're
6779 supposed to be stepping at the assembly language level
6780 ("stepi"). Just stop. */
6781 /* And this works the same backward as frontward. MVS */
6782 end_stepping_range (ecs);
6783 return;
6784 }
6785
6786 /* Reverse stepping through solib trampolines. */
6787
6788 if (execution_direction == EXEC_REVERSE
6789 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6790 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6791 || (ecs->stop_func_start == 0
6792 && in_solib_dynsym_resolve_code (stop_pc))))
6793 {
6794 /* Any solib trampoline code can be handled in reverse
6795 by simply continuing to single-step. We have already
6796 executed the solib function (backwards), and a few
6797 steps will take us back through the trampoline to the
6798 caller. */
6799 keep_going (ecs);
6800 return;
6801 }
6802
6803 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6804 {
6805 /* We're doing a "next".
6806
6807 Normal (forward) execution: set a breakpoint at the
6808 callee's return address (the address at which the caller
6809 will resume).
6810
6811 Reverse (backward) execution. set the step-resume
6812 breakpoint at the start of the function that we just
6813 stepped into (backwards), and continue to there. When we
6814 get there, we'll need to single-step back to the caller. */
6815
6816 if (execution_direction == EXEC_REVERSE)
6817 {
6818 /* If we're already at the start of the function, we've either
6819 just stepped backward into a single instruction function,
6820 or stepped back out of a signal handler to the first instruction
6821 of the function. Just keep going, which will single-step back
6822 to the caller. */
6823 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6824 {
6825 /* Normal function call return (static or dynamic). */
6826 symtab_and_line sr_sal;
6827 sr_sal.pc = ecs->stop_func_start;
6828 sr_sal.pspace = get_frame_program_space (frame);
6829 insert_step_resume_breakpoint_at_sal (gdbarch,
6830 sr_sal, null_frame_id);
6831 }
6832 }
6833 else
6834 insert_step_resume_breakpoint_at_caller (frame);
6835
6836 keep_going (ecs);
6837 return;
6838 }
6839
6840 /* If we are in a function call trampoline (a stub between the
6841 calling routine and the real function), locate the real
6842 function. That's what tells us (a) whether we want to step
6843 into it at all, and (b) what prologue we want to run to the
6844 end of, if we do step into it. */
6845 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6846 if (real_stop_pc == 0)
6847 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6848 if (real_stop_pc != 0)
6849 ecs->stop_func_start = real_stop_pc;
6850
6851 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6852 {
6853 symtab_and_line sr_sal;
6854 sr_sal.pc = ecs->stop_func_start;
6855 sr_sal.pspace = get_frame_program_space (frame);
6856
6857 insert_step_resume_breakpoint_at_sal (gdbarch,
6858 sr_sal, null_frame_id);
6859 keep_going (ecs);
6860 return;
6861 }
6862
6863 /* If we have line number information for the function we are
6864 thinking of stepping into and the function isn't on the skip
6865 list, step into it.
6866
6867 If there are several symtabs at that PC (e.g. with include
6868 files), just want to know whether *any* of them have line
6869 numbers. find_pc_line handles this. */
6870 {
6871 struct symtab_and_line tmp_sal;
6872
6873 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6874 if (tmp_sal.line != 0
6875 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6876 tmp_sal)
6877 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6878 {
6879 if (execution_direction == EXEC_REVERSE)
6880 handle_step_into_function_backward (gdbarch, ecs);
6881 else
6882 handle_step_into_function (gdbarch, ecs);
6883 return;
6884 }
6885 }
6886
6887 /* If we have no line number and the step-stop-if-no-debug is
6888 set, we stop the step so that the user has a chance to switch
6889 in assembly mode. */
6890 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6891 && step_stop_if_no_debug)
6892 {
6893 end_stepping_range (ecs);
6894 return;
6895 }
6896
6897 if (execution_direction == EXEC_REVERSE)
6898 {
6899 /* If we're already at the start of the function, we've either just
6900 stepped backward into a single instruction function without line
6901 number info, or stepped back out of a signal handler to the first
6902 instruction of the function without line number info. Just keep
6903 going, which will single-step back to the caller. */
6904 if (ecs->stop_func_start != stop_pc)
6905 {
6906 /* Set a breakpoint at callee's start address.
6907 From there we can step once and be back in the caller. */
6908 symtab_and_line sr_sal;
6909 sr_sal.pc = ecs->stop_func_start;
6910 sr_sal.pspace = get_frame_program_space (frame);
6911 insert_step_resume_breakpoint_at_sal (gdbarch,
6912 sr_sal, null_frame_id);
6913 }
6914 }
6915 else
6916 /* Set a breakpoint at callee's return address (the address
6917 at which the caller will resume). */
6918 insert_step_resume_breakpoint_at_caller (frame);
6919
6920 keep_going (ecs);
6921 return;
6922 }
6923
6924 /* Reverse stepping through solib trampolines. */
6925
6926 if (execution_direction == EXEC_REVERSE
6927 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6928 {
6929 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6930
6931 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6932 || (ecs->stop_func_start == 0
6933 && in_solib_dynsym_resolve_code (stop_pc)))
6934 {
6935 /* Any solib trampoline code can be handled in reverse
6936 by simply continuing to single-step. We have already
6937 executed the solib function (backwards), and a few
6938 steps will take us back through the trampoline to the
6939 caller. */
6940 keep_going (ecs);
6941 return;
6942 }
6943 else if (in_solib_dynsym_resolve_code (stop_pc))
6944 {
6945 /* Stepped backward into the solib dynsym resolver.
6946 Set a breakpoint at its start and continue, then
6947 one more step will take us out. */
6948 symtab_and_line sr_sal;
6949 sr_sal.pc = ecs->stop_func_start;
6950 sr_sal.pspace = get_frame_program_space (frame);
6951 insert_step_resume_breakpoint_at_sal (gdbarch,
6952 sr_sal, null_frame_id);
6953 keep_going (ecs);
6954 return;
6955 }
6956 }
6957
6958 /* This always returns the sal for the inner-most frame when we are in a
6959 stack of inlined frames, even if GDB actually believes that it is in a
6960 more outer frame. This is checked for below by calls to
6961 inline_skipped_frames. */
6962 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6963
6964 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6965 the trampoline processing logic, however, there are some trampolines
6966 that have no names, so we should do trampoline handling first. */
6967 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6968 && ecs->stop_func_name == NULL
6969 && stop_pc_sal.line == 0)
6970 {
6971 infrun_log_debug ("stepped into undebuggable function");
6972
6973 /* The inferior just stepped into, or returned to, an
6974 undebuggable function (where there is no debugging information
6975 and no line number corresponding to the address where the
6976 inferior stopped). Since we want to skip this kind of code,
6977 we keep going until the inferior returns from this
6978 function - unless the user has asked us not to (via
6979 set step-mode) or we no longer know how to get back
6980 to the call site. */
6981 if (step_stop_if_no_debug
6982 || !frame_id_p (frame_unwind_caller_id (frame)))
6983 {
6984 /* If we have no line number and the step-stop-if-no-debug
6985 is set, we stop the step so that the user has a chance to
6986 switch in assembly mode. */
6987 end_stepping_range (ecs);
6988 return;
6989 }
6990 else
6991 {
6992 /* Set a breakpoint at callee's return address (the address
6993 at which the caller will resume). */
6994 insert_step_resume_breakpoint_at_caller (frame);
6995 keep_going (ecs);
6996 return;
6997 }
6998 }
6999
7000 if (ecs->event_thread->control.step_range_end == 1)
7001 {
7002 /* It is stepi or nexti. We always want to stop stepping after
7003 one instruction. */
7004 infrun_log_debug ("stepi/nexti");
7005 end_stepping_range (ecs);
7006 return;
7007 }
7008
7009 if (stop_pc_sal.line == 0)
7010 {
7011 /* We have no line number information. That means to stop
7012 stepping (does this always happen right after one instruction,
7013 when we do "s" in a function with no line numbers,
7014 or can this happen as a result of a return or longjmp?). */
7015 infrun_log_debug ("line number info");
7016 end_stepping_range (ecs);
7017 return;
7018 }
7019
7020 /* Look for "calls" to inlined functions, part one. If the inline
7021 frame machinery detected some skipped call sites, we have entered
7022 a new inline function. */
7023
7024 if (frame_id_eq (get_frame_id (get_current_frame ()),
7025 ecs->event_thread->control.step_frame_id)
7026 && inline_skipped_frames (ecs->event_thread))
7027 {
7028 infrun_log_debug ("stepped into inlined function");
7029
7030 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7031
7032 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7033 {
7034 /* For "step", we're going to stop. But if the call site
7035 for this inlined function is on the same source line as
7036 we were previously stepping, go down into the function
7037 first. Otherwise stop at the call site. */
7038
7039 if (call_sal.line == ecs->event_thread->current_line
7040 && call_sal.symtab == ecs->event_thread->current_symtab)
7041 {
7042 step_into_inline_frame (ecs->event_thread);
7043 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7044 {
7045 keep_going (ecs);
7046 return;
7047 }
7048 }
7049
7050 end_stepping_range (ecs);
7051 return;
7052 }
7053 else
7054 {
7055 /* For "next", we should stop at the call site if it is on a
7056 different source line. Otherwise continue through the
7057 inlined function. */
7058 if (call_sal.line == ecs->event_thread->current_line
7059 && call_sal.symtab == ecs->event_thread->current_symtab)
7060 keep_going (ecs);
7061 else
7062 end_stepping_range (ecs);
7063 return;
7064 }
7065 }
7066
7067 /* Look for "calls" to inlined functions, part two. If we are still
7068 in the same real function we were stepping through, but we have
7069 to go further up to find the exact frame ID, we are stepping
7070 through a more inlined call beyond its call site. */
7071
7072 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7073 && !frame_id_eq (get_frame_id (get_current_frame ()),
7074 ecs->event_thread->control.step_frame_id)
7075 && stepped_in_from (get_current_frame (),
7076 ecs->event_thread->control.step_frame_id))
7077 {
7078 infrun_log_debug ("stepping through inlined function");
7079
7080 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7081 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7082 keep_going (ecs);
7083 else
7084 end_stepping_range (ecs);
7085 return;
7086 }
7087
7088 bool refresh_step_info = true;
7089 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7090 && (ecs->event_thread->current_line != stop_pc_sal.line
7091 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7092 {
7093 if (stop_pc_sal.is_stmt)
7094 {
7095 /* We are at the start of a different line. So stop. Note that
7096 we don't stop if we step into the middle of a different line.
7097 That is said to make things like for (;;) statements work
7098 better. */
7099 infrun_log_debug ("infrun: stepped to a different line\n");
7100 end_stepping_range (ecs);
7101 return;
7102 }
7103 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7104 ecs->event_thread->control.step_frame_id))
7105 {
7106 /* We are at the start of a different line, however, this line is
7107 not marked as a statement, and we have not changed frame. We
7108 ignore this line table entry, and continue stepping forward,
7109 looking for a better place to stop. */
7110 refresh_step_info = false;
7111 infrun_log_debug ("infrun: stepped to a different line, but "
7112 "it's not the start of a statement\n");
7113 }
7114 }
7115
7116 /* We aren't done stepping.
7117
7118 Optimize by setting the stepping range to the line.
7119 (We might not be in the original line, but if we entered a
7120 new line in mid-statement, we continue stepping. This makes
7121 things like for(;;) statements work better.)
7122
7123 If we entered a SAL that indicates a non-statement line table entry,
7124 then we update the stepping range, but we don't update the step info,
7125 which includes things like the line number we are stepping away from.
7126 This means we will stop when we find a line table entry that is marked
7127 as is-statement, even if it matches the non-statement one we just
7128 stepped into. */
7129
7130 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7131 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7132 ecs->event_thread->control.may_range_step = 1;
7133 if (refresh_step_info)
7134 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7135
7136 infrun_log_debug ("keep going");
7137 keep_going (ecs);
7138 }
7139
7140 /* In all-stop mode, if we're currently stepping but have stopped in
7141 some other thread, we may need to switch back to the stepped
7142 thread. Returns true we set the inferior running, false if we left
7143 it stopped (and the event needs further processing). */
7144
7145 static int
7146 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7147 {
7148 if (!target_is_non_stop_p ())
7149 {
7150 struct thread_info *stepping_thread;
7151
7152 /* If any thread is blocked on some internal breakpoint, and we
7153 simply need to step over that breakpoint to get it going
7154 again, do that first. */
7155
7156 /* However, if we see an event for the stepping thread, then we
7157 know all other threads have been moved past their breakpoints
7158 already. Let the caller check whether the step is finished,
7159 etc., before deciding to move it past a breakpoint. */
7160 if (ecs->event_thread->control.step_range_end != 0)
7161 return 0;
7162
7163 /* Check if the current thread is blocked on an incomplete
7164 step-over, interrupted by a random signal. */
7165 if (ecs->event_thread->control.trap_expected
7166 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7167 {
7168 infrun_log_debug ("need to finish step-over of [%s]",
7169 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7170 keep_going (ecs);
7171 return 1;
7172 }
7173
7174 /* Check if the current thread is blocked by a single-step
7175 breakpoint of another thread. */
7176 if (ecs->hit_singlestep_breakpoint)
7177 {
7178 infrun_log_debug ("need to step [%s] over single-step breakpoint",
7179 target_pid_to_str (ecs->ptid).c_str ());
7180 keep_going (ecs);
7181 return 1;
7182 }
7183
7184 /* If this thread needs yet another step-over (e.g., stepping
7185 through a delay slot), do it first before moving on to
7186 another thread. */
7187 if (thread_still_needs_step_over (ecs->event_thread))
7188 {
7189 infrun_log_debug
7190 ("thread [%s] still needs step-over",
7191 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7192 keep_going (ecs);
7193 return 1;
7194 }
7195
7196 /* If scheduler locking applies even if not stepping, there's no
7197 need to walk over threads. Above we've checked whether the
7198 current thread is stepping. If some other thread not the
7199 event thread is stepping, then it must be that scheduler
7200 locking is not in effect. */
7201 if (schedlock_applies (ecs->event_thread))
7202 return 0;
7203
7204 /* Otherwise, we no longer expect a trap in the current thread.
7205 Clear the trap_expected flag before switching back -- this is
7206 what keep_going does as well, if we call it. */
7207 ecs->event_thread->control.trap_expected = 0;
7208
7209 /* Likewise, clear the signal if it should not be passed. */
7210 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7211 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7212
7213 /* Do all pending step-overs before actually proceeding with
7214 step/next/etc. */
7215 if (start_step_over ())
7216 {
7217 prepare_to_wait (ecs);
7218 return 1;
7219 }
7220
7221 /* Look for the stepping/nexting thread. */
7222 stepping_thread = NULL;
7223
7224 for (thread_info *tp : all_non_exited_threads ())
7225 {
7226 switch_to_thread_no_regs (tp);
7227
7228 /* Ignore threads of processes the caller is not
7229 resuming. */
7230 if (!sched_multi
7231 && (tp->inf->process_target () != ecs->target
7232 || tp->inf->pid != ecs->ptid.pid ()))
7233 continue;
7234
7235 /* When stepping over a breakpoint, we lock all threads
7236 except the one that needs to move past the breakpoint.
7237 If a non-event thread has this set, the "incomplete
7238 step-over" check above should have caught it earlier. */
7239 if (tp->control.trap_expected)
7240 {
7241 internal_error (__FILE__, __LINE__,
7242 "[%s] has inconsistent state: "
7243 "trap_expected=%d\n",
7244 target_pid_to_str (tp->ptid).c_str (),
7245 tp->control.trap_expected);
7246 }
7247
7248 /* Did we find the stepping thread? */
7249 if (tp->control.step_range_end)
7250 {
7251 /* Yep. There should only one though. */
7252 gdb_assert (stepping_thread == NULL);
7253
7254 /* The event thread is handled at the top, before we
7255 enter this loop. */
7256 gdb_assert (tp != ecs->event_thread);
7257
7258 /* If some thread other than the event thread is
7259 stepping, then scheduler locking can't be in effect,
7260 otherwise we wouldn't have resumed the current event
7261 thread in the first place. */
7262 gdb_assert (!schedlock_applies (tp));
7263
7264 stepping_thread = tp;
7265 }
7266 }
7267
7268 if (stepping_thread != NULL)
7269 {
7270 infrun_log_debug ("switching back to stepped thread");
7271
7272 if (keep_going_stepped_thread (stepping_thread))
7273 {
7274 prepare_to_wait (ecs);
7275 return 1;
7276 }
7277 }
7278
7279 switch_to_thread (ecs->event_thread);
7280 }
7281
7282 return 0;
7283 }
7284
7285 /* Set a previously stepped thread back to stepping. Returns true on
7286 success, false if the resume is not possible (e.g., the thread
7287 vanished). */
7288
7289 static int
7290 keep_going_stepped_thread (struct thread_info *tp)
7291 {
7292 struct frame_info *frame;
7293 struct execution_control_state ecss;
7294 struct execution_control_state *ecs = &ecss;
7295
7296 /* If the stepping thread exited, then don't try to switch back and
7297 resume it, which could fail in several different ways depending
7298 on the target. Instead, just keep going.
7299
7300 We can find a stepping dead thread in the thread list in two
7301 cases:
7302
7303 - The target supports thread exit events, and when the target
7304 tries to delete the thread from the thread list, inferior_ptid
7305 pointed at the exiting thread. In such case, calling
7306 delete_thread does not really remove the thread from the list;
7307 instead, the thread is left listed, with 'exited' state.
7308
7309 - The target's debug interface does not support thread exit
7310 events, and so we have no idea whatsoever if the previously
7311 stepping thread is still alive. For that reason, we need to
7312 synchronously query the target now. */
7313
7314 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7315 {
7316 infrun_log_debug ("not resuming previously stepped thread, it has "
7317 "vanished");
7318
7319 delete_thread (tp);
7320 return 0;
7321 }
7322
7323 infrun_log_debug ("resuming previously stepped thread");
7324
7325 reset_ecs (ecs, tp);
7326 switch_to_thread (tp);
7327
7328 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7329 frame = get_current_frame ();
7330
7331 /* If the PC of the thread we were trying to single-step has
7332 changed, then that thread has trapped or been signaled, but the
7333 event has not been reported to GDB yet. Re-poll the target
7334 looking for this particular thread's event (i.e. temporarily
7335 enable schedlock) by:
7336
7337 - setting a break at the current PC
7338 - resuming that particular thread, only (by setting trap
7339 expected)
7340
7341 This prevents us continuously moving the single-step breakpoint
7342 forward, one instruction at a time, overstepping. */
7343
7344 if (tp->suspend.stop_pc != tp->prev_pc)
7345 {
7346 ptid_t resume_ptid;
7347
7348 infrun_log_debug ("expected thread advanced also (%s -> %s)",
7349 paddress (target_gdbarch (), tp->prev_pc),
7350 paddress (target_gdbarch (), tp->suspend.stop_pc));
7351
7352 /* Clear the info of the previous step-over, as it's no longer
7353 valid (if the thread was trying to step over a breakpoint, it
7354 has already succeeded). It's what keep_going would do too,
7355 if we called it. Do this before trying to insert the sss
7356 breakpoint, otherwise if we were previously trying to step
7357 over this exact address in another thread, the breakpoint is
7358 skipped. */
7359 clear_step_over_info ();
7360 tp->control.trap_expected = 0;
7361
7362 insert_single_step_breakpoint (get_frame_arch (frame),
7363 get_frame_address_space (frame),
7364 tp->suspend.stop_pc);
7365
7366 tp->resumed = true;
7367 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7368 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7369 }
7370 else
7371 {
7372 infrun_log_debug ("expected thread still hasn't advanced");
7373
7374 keep_going_pass_signal (ecs);
7375 }
7376 return 1;
7377 }
7378
7379 /* Is thread TP in the middle of (software or hardware)
7380 single-stepping? (Note the result of this function must never be
7381 passed directly as target_resume's STEP parameter.) */
7382
7383 static int
7384 currently_stepping (struct thread_info *tp)
7385 {
7386 return ((tp->control.step_range_end
7387 && tp->control.step_resume_breakpoint == NULL)
7388 || tp->control.trap_expected
7389 || tp->stepped_breakpoint
7390 || bpstat_should_step ());
7391 }
7392
7393 /* Inferior has stepped into a subroutine call with source code that
7394 we should not step over. Do step to the first line of code in
7395 it. */
7396
7397 static void
7398 handle_step_into_function (struct gdbarch *gdbarch,
7399 struct execution_control_state *ecs)
7400 {
7401 fill_in_stop_func (gdbarch, ecs);
7402
7403 compunit_symtab *cust
7404 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7405 if (cust != NULL && compunit_language (cust) != language_asm)
7406 ecs->stop_func_start
7407 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7408
7409 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7410 /* Use the step_resume_break to step until the end of the prologue,
7411 even if that involves jumps (as it seems to on the vax under
7412 4.2). */
7413 /* If the prologue ends in the middle of a source line, continue to
7414 the end of that source line (if it is still within the function).
7415 Otherwise, just go to end of prologue. */
7416 if (stop_func_sal.end
7417 && stop_func_sal.pc != ecs->stop_func_start
7418 && stop_func_sal.end < ecs->stop_func_end)
7419 ecs->stop_func_start = stop_func_sal.end;
7420
7421 /* Architectures which require breakpoint adjustment might not be able
7422 to place a breakpoint at the computed address. If so, the test
7423 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7424 ecs->stop_func_start to an address at which a breakpoint may be
7425 legitimately placed.
7426
7427 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7428 made, GDB will enter an infinite loop when stepping through
7429 optimized code consisting of VLIW instructions which contain
7430 subinstructions corresponding to different source lines. On
7431 FR-V, it's not permitted to place a breakpoint on any but the
7432 first subinstruction of a VLIW instruction. When a breakpoint is
7433 set, GDB will adjust the breakpoint address to the beginning of
7434 the VLIW instruction. Thus, we need to make the corresponding
7435 adjustment here when computing the stop address. */
7436
7437 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7438 {
7439 ecs->stop_func_start
7440 = gdbarch_adjust_breakpoint_address (gdbarch,
7441 ecs->stop_func_start);
7442 }
7443
7444 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7445 {
7446 /* We are already there: stop now. */
7447 end_stepping_range (ecs);
7448 return;
7449 }
7450 else
7451 {
7452 /* Put the step-breakpoint there and go until there. */
7453 symtab_and_line sr_sal;
7454 sr_sal.pc = ecs->stop_func_start;
7455 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7456 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7457
7458 /* Do not specify what the fp should be when we stop since on
7459 some machines the prologue is where the new fp value is
7460 established. */
7461 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7462
7463 /* And make sure stepping stops right away then. */
7464 ecs->event_thread->control.step_range_end
7465 = ecs->event_thread->control.step_range_start;
7466 }
7467 keep_going (ecs);
7468 }
7469
7470 /* Inferior has stepped backward into a subroutine call with source
7471 code that we should not step over. Do step to the beginning of the
7472 last line of code in it. */
7473
7474 static void
7475 handle_step_into_function_backward (struct gdbarch *gdbarch,
7476 struct execution_control_state *ecs)
7477 {
7478 struct compunit_symtab *cust;
7479 struct symtab_and_line stop_func_sal;
7480
7481 fill_in_stop_func (gdbarch, ecs);
7482
7483 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7484 if (cust != NULL && compunit_language (cust) != language_asm)
7485 ecs->stop_func_start
7486 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7487
7488 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7489
7490 /* OK, we're just going to keep stepping here. */
7491 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7492 {
7493 /* We're there already. Just stop stepping now. */
7494 end_stepping_range (ecs);
7495 }
7496 else
7497 {
7498 /* Else just reset the step range and keep going.
7499 No step-resume breakpoint, they don't work for
7500 epilogues, which can have multiple entry paths. */
7501 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7502 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7503 keep_going (ecs);
7504 }
7505 return;
7506 }
7507
7508 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7509 This is used to both functions and to skip over code. */
7510
7511 static void
7512 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7513 struct symtab_and_line sr_sal,
7514 struct frame_id sr_id,
7515 enum bptype sr_type)
7516 {
7517 /* There should never be more than one step-resume or longjmp-resume
7518 breakpoint per thread, so we should never be setting a new
7519 step_resume_breakpoint when one is already active. */
7520 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7521 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7522
7523 infrun_log_debug ("inserting step-resume breakpoint at %s",
7524 paddress (gdbarch, sr_sal.pc));
7525
7526 inferior_thread ()->control.step_resume_breakpoint
7527 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7528 }
7529
7530 void
7531 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7532 struct symtab_and_line sr_sal,
7533 struct frame_id sr_id)
7534 {
7535 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7536 sr_sal, sr_id,
7537 bp_step_resume);
7538 }
7539
7540 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7541 This is used to skip a potential signal handler.
7542
7543 This is called with the interrupted function's frame. The signal
7544 handler, when it returns, will resume the interrupted function at
7545 RETURN_FRAME.pc. */
7546
7547 static void
7548 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7549 {
7550 gdb_assert (return_frame != NULL);
7551
7552 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7553
7554 symtab_and_line sr_sal;
7555 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7556 sr_sal.section = find_pc_overlay (sr_sal.pc);
7557 sr_sal.pspace = get_frame_program_space (return_frame);
7558
7559 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7560 get_stack_frame_id (return_frame),
7561 bp_hp_step_resume);
7562 }
7563
7564 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7565 is used to skip a function after stepping into it (for "next" or if
7566 the called function has no debugging information).
7567
7568 The current function has almost always been reached by single
7569 stepping a call or return instruction. NEXT_FRAME belongs to the
7570 current function, and the breakpoint will be set at the caller's
7571 resume address.
7572
7573 This is a separate function rather than reusing
7574 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7575 get_prev_frame, which may stop prematurely (see the implementation
7576 of frame_unwind_caller_id for an example). */
7577
7578 static void
7579 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7580 {
7581 /* We shouldn't have gotten here if we don't know where the call site
7582 is. */
7583 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7584
7585 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7586
7587 symtab_and_line sr_sal;
7588 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7589 frame_unwind_caller_pc (next_frame));
7590 sr_sal.section = find_pc_overlay (sr_sal.pc);
7591 sr_sal.pspace = frame_unwind_program_space (next_frame);
7592
7593 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7594 frame_unwind_caller_id (next_frame));
7595 }
7596
7597 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7598 new breakpoint at the target of a jmp_buf. The handling of
7599 longjmp-resume uses the same mechanisms used for handling
7600 "step-resume" breakpoints. */
7601
7602 static void
7603 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7604 {
7605 /* There should never be more than one longjmp-resume breakpoint per
7606 thread, so we should never be setting a new
7607 longjmp_resume_breakpoint when one is already active. */
7608 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7609
7610 infrun_log_debug ("inserting longjmp-resume breakpoint at %s",
7611 paddress (gdbarch, pc));
7612
7613 inferior_thread ()->control.exception_resume_breakpoint =
7614 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7615 }
7616
7617 /* Insert an exception resume breakpoint. TP is the thread throwing
7618 the exception. The block B is the block of the unwinder debug hook
7619 function. FRAME is the frame corresponding to the call to this
7620 function. SYM is the symbol of the function argument holding the
7621 target PC of the exception. */
7622
7623 static void
7624 insert_exception_resume_breakpoint (struct thread_info *tp,
7625 const struct block *b,
7626 struct frame_info *frame,
7627 struct symbol *sym)
7628 {
7629 try
7630 {
7631 struct block_symbol vsym;
7632 struct value *value;
7633 CORE_ADDR handler;
7634 struct breakpoint *bp;
7635
7636 vsym = lookup_symbol_search_name (sym->search_name (),
7637 b, VAR_DOMAIN);
7638 value = read_var_value (vsym.symbol, vsym.block, frame);
7639 /* If the value was optimized out, revert to the old behavior. */
7640 if (! value_optimized_out (value))
7641 {
7642 handler = value_as_address (value);
7643
7644 infrun_log_debug ("exception resume at %lx",
7645 (unsigned long) handler);
7646
7647 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7648 handler,
7649 bp_exception_resume).release ();
7650
7651 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7652 frame = NULL;
7653
7654 bp->thread = tp->global_num;
7655 inferior_thread ()->control.exception_resume_breakpoint = bp;
7656 }
7657 }
7658 catch (const gdb_exception_error &e)
7659 {
7660 /* We want to ignore errors here. */
7661 }
7662 }
7663
7664 /* A helper for check_exception_resume that sets an
7665 exception-breakpoint based on a SystemTap probe. */
7666
7667 static void
7668 insert_exception_resume_from_probe (struct thread_info *tp,
7669 const struct bound_probe *probe,
7670 struct frame_info *frame)
7671 {
7672 struct value *arg_value;
7673 CORE_ADDR handler;
7674 struct breakpoint *bp;
7675
7676 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7677 if (!arg_value)
7678 return;
7679
7680 handler = value_as_address (arg_value);
7681
7682 infrun_log_debug ("exception resume at %s",
7683 paddress (probe->objfile->arch (), handler));
7684
7685 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7686 handler, bp_exception_resume).release ();
7687 bp->thread = tp->global_num;
7688 inferior_thread ()->control.exception_resume_breakpoint = bp;
7689 }
7690
7691 /* This is called when an exception has been intercepted. Check to
7692 see whether the exception's destination is of interest, and if so,
7693 set an exception resume breakpoint there. */
7694
7695 static void
7696 check_exception_resume (struct execution_control_state *ecs,
7697 struct frame_info *frame)
7698 {
7699 struct bound_probe probe;
7700 struct symbol *func;
7701
7702 /* First see if this exception unwinding breakpoint was set via a
7703 SystemTap probe point. If so, the probe has two arguments: the
7704 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7705 set a breakpoint there. */
7706 probe = find_probe_by_pc (get_frame_pc (frame));
7707 if (probe.prob)
7708 {
7709 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7710 return;
7711 }
7712
7713 func = get_frame_function (frame);
7714 if (!func)
7715 return;
7716
7717 try
7718 {
7719 const struct block *b;
7720 struct block_iterator iter;
7721 struct symbol *sym;
7722 int argno = 0;
7723
7724 /* The exception breakpoint is a thread-specific breakpoint on
7725 the unwinder's debug hook, declared as:
7726
7727 void _Unwind_DebugHook (void *cfa, void *handler);
7728
7729 The CFA argument indicates the frame to which control is
7730 about to be transferred. HANDLER is the destination PC.
7731
7732 We ignore the CFA and set a temporary breakpoint at HANDLER.
7733 This is not extremely efficient but it avoids issues in gdb
7734 with computing the DWARF CFA, and it also works even in weird
7735 cases such as throwing an exception from inside a signal
7736 handler. */
7737
7738 b = SYMBOL_BLOCK_VALUE (func);
7739 ALL_BLOCK_SYMBOLS (b, iter, sym)
7740 {
7741 if (!SYMBOL_IS_ARGUMENT (sym))
7742 continue;
7743
7744 if (argno == 0)
7745 ++argno;
7746 else
7747 {
7748 insert_exception_resume_breakpoint (ecs->event_thread,
7749 b, frame, sym);
7750 break;
7751 }
7752 }
7753 }
7754 catch (const gdb_exception_error &e)
7755 {
7756 }
7757 }
7758
7759 static void
7760 stop_waiting (struct execution_control_state *ecs)
7761 {
7762 infrun_log_debug ("stop_waiting");
7763
7764 /* Let callers know we don't want to wait for the inferior anymore. */
7765 ecs->wait_some_more = 0;
7766
7767 /* If all-stop, but there exists a non-stop target, stop all
7768 threads now that we're presenting the stop to the user. */
7769 if (!non_stop && exists_non_stop_target ())
7770 stop_all_threads ();
7771 }
7772
7773 /* Like keep_going, but passes the signal to the inferior, even if the
7774 signal is set to nopass. */
7775
7776 static void
7777 keep_going_pass_signal (struct execution_control_state *ecs)
7778 {
7779 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7780 gdb_assert (!ecs->event_thread->resumed);
7781
7782 /* Save the pc before execution, to compare with pc after stop. */
7783 ecs->event_thread->prev_pc
7784 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7785
7786 if (ecs->event_thread->control.trap_expected)
7787 {
7788 struct thread_info *tp = ecs->event_thread;
7789
7790 infrun_log_debug ("%s has trap_expected set, "
7791 "resuming to collect trap",
7792 target_pid_to_str (tp->ptid).c_str ());
7793
7794 /* We haven't yet gotten our trap, and either: intercepted a
7795 non-signal event (e.g., a fork); or took a signal which we
7796 are supposed to pass through to the inferior. Simply
7797 continue. */
7798 resume (ecs->event_thread->suspend.stop_signal);
7799 }
7800 else if (step_over_info_valid_p ())
7801 {
7802 /* Another thread is stepping over a breakpoint in-line. If
7803 this thread needs a step-over too, queue the request. In
7804 either case, this resume must be deferred for later. */
7805 struct thread_info *tp = ecs->event_thread;
7806
7807 if (ecs->hit_singlestep_breakpoint
7808 || thread_still_needs_step_over (tp))
7809 {
7810 infrun_log_debug ("step-over already in progress: "
7811 "step-over for %s deferred",
7812 target_pid_to_str (tp->ptid).c_str ());
7813 global_thread_step_over_chain_enqueue (tp);
7814 }
7815 else
7816 {
7817 infrun_log_debug ("step-over in progress: resume of %s deferred",
7818 target_pid_to_str (tp->ptid).c_str ());
7819 }
7820 }
7821 else
7822 {
7823 struct regcache *regcache = get_current_regcache ();
7824 int remove_bp;
7825 int remove_wps;
7826 step_over_what step_what;
7827
7828 /* Either the trap was not expected, but we are continuing
7829 anyway (if we got a signal, the user asked it be passed to
7830 the child)
7831 -- or --
7832 We got our expected trap, but decided we should resume from
7833 it.
7834
7835 We're going to run this baby now!
7836
7837 Note that insert_breakpoints won't try to re-insert
7838 already inserted breakpoints. Therefore, we don't
7839 care if breakpoints were already inserted, or not. */
7840
7841 /* If we need to step over a breakpoint, and we're not using
7842 displaced stepping to do so, insert all breakpoints
7843 (watchpoints, etc.) but the one we're stepping over, step one
7844 instruction, and then re-insert the breakpoint when that step
7845 is finished. */
7846
7847 step_what = thread_still_needs_step_over (ecs->event_thread);
7848
7849 remove_bp = (ecs->hit_singlestep_breakpoint
7850 || (step_what & STEP_OVER_BREAKPOINT));
7851 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7852
7853 /* We can't use displaced stepping if we need to step past a
7854 watchpoint. The instruction copied to the scratch pad would
7855 still trigger the watchpoint. */
7856 if (remove_bp
7857 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7858 {
7859 set_step_over_info (regcache->aspace (),
7860 regcache_read_pc (regcache), remove_wps,
7861 ecs->event_thread->global_num);
7862 }
7863 else if (remove_wps)
7864 set_step_over_info (NULL, 0, remove_wps, -1);
7865
7866 /* If we now need to do an in-line step-over, we need to stop
7867 all other threads. Note this must be done before
7868 insert_breakpoints below, because that removes the breakpoint
7869 we're about to step over, otherwise other threads could miss
7870 it. */
7871 if (step_over_info_valid_p () && target_is_non_stop_p ())
7872 stop_all_threads ();
7873
7874 /* Stop stepping if inserting breakpoints fails. */
7875 try
7876 {
7877 insert_breakpoints ();
7878 }
7879 catch (const gdb_exception_error &e)
7880 {
7881 exception_print (gdb_stderr, e);
7882 stop_waiting (ecs);
7883 clear_step_over_info ();
7884 return;
7885 }
7886
7887 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7888
7889 resume (ecs->event_thread->suspend.stop_signal);
7890 }
7891
7892 prepare_to_wait (ecs);
7893 }
7894
7895 /* Called when we should continue running the inferior, because the
7896 current event doesn't cause a user visible stop. This does the
7897 resuming part; waiting for the next event is done elsewhere. */
7898
7899 static void
7900 keep_going (struct execution_control_state *ecs)
7901 {
7902 if (ecs->event_thread->control.trap_expected
7903 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7904 ecs->event_thread->control.trap_expected = 0;
7905
7906 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7907 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7908 keep_going_pass_signal (ecs);
7909 }
7910
7911 /* This function normally comes after a resume, before
7912 handle_inferior_event exits. It takes care of any last bits of
7913 housekeeping, and sets the all-important wait_some_more flag. */
7914
7915 static void
7916 prepare_to_wait (struct execution_control_state *ecs)
7917 {
7918 infrun_log_debug ("prepare_to_wait");
7919
7920 ecs->wait_some_more = 1;
7921
7922 /* If the target can't async, emulate it by marking the infrun event
7923 handler such that as soon as we get back to the event-loop, we
7924 immediately end up in fetch_inferior_event again calling
7925 target_wait. */
7926 if (!target_can_async_p ())
7927 mark_infrun_async_event_handler ();
7928 }
7929
7930 /* We are done with the step range of a step/next/si/ni command.
7931 Called once for each n of a "step n" operation. */
7932
7933 static void
7934 end_stepping_range (struct execution_control_state *ecs)
7935 {
7936 ecs->event_thread->control.stop_step = 1;
7937 stop_waiting (ecs);
7938 }
7939
7940 /* Several print_*_reason functions to print why the inferior has stopped.
7941 We always print something when the inferior exits, or receives a signal.
7942 The rest of the cases are dealt with later on in normal_stop and
7943 print_it_typical. Ideally there should be a call to one of these
7944 print_*_reason functions functions from handle_inferior_event each time
7945 stop_waiting is called.
7946
7947 Note that we don't call these directly, instead we delegate that to
7948 the interpreters, through observers. Interpreters then call these
7949 with whatever uiout is right. */
7950
7951 void
7952 print_end_stepping_range_reason (struct ui_out *uiout)
7953 {
7954 /* For CLI-like interpreters, print nothing. */
7955
7956 if (uiout->is_mi_like_p ())
7957 {
7958 uiout->field_string ("reason",
7959 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7960 }
7961 }
7962
7963 void
7964 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7965 {
7966 annotate_signalled ();
7967 if (uiout->is_mi_like_p ())
7968 uiout->field_string
7969 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7970 uiout->text ("\nProgram terminated with signal ");
7971 annotate_signal_name ();
7972 uiout->field_string ("signal-name",
7973 gdb_signal_to_name (siggnal));
7974 annotate_signal_name_end ();
7975 uiout->text (", ");
7976 annotate_signal_string ();
7977 uiout->field_string ("signal-meaning",
7978 gdb_signal_to_string (siggnal));
7979 annotate_signal_string_end ();
7980 uiout->text (".\n");
7981 uiout->text ("The program no longer exists.\n");
7982 }
7983
7984 void
7985 print_exited_reason (struct ui_out *uiout, int exitstatus)
7986 {
7987 struct inferior *inf = current_inferior ();
7988 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7989
7990 annotate_exited (exitstatus);
7991 if (exitstatus)
7992 {
7993 if (uiout->is_mi_like_p ())
7994 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7995 std::string exit_code_str
7996 = string_printf ("0%o", (unsigned int) exitstatus);
7997 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7998 plongest (inf->num), pidstr.c_str (),
7999 string_field ("exit-code", exit_code_str.c_str ()));
8000 }
8001 else
8002 {
8003 if (uiout->is_mi_like_p ())
8004 uiout->field_string
8005 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8006 uiout->message ("[Inferior %s (%s) exited normally]\n",
8007 plongest (inf->num), pidstr.c_str ());
8008 }
8009 }
8010
8011 /* Some targets/architectures can do extra processing/display of
8012 segmentation faults. E.g., Intel MPX boundary faults.
8013 Call the architecture dependent function to handle the fault. */
8014
8015 static void
8016 handle_segmentation_fault (struct ui_out *uiout)
8017 {
8018 struct regcache *regcache = get_current_regcache ();
8019 struct gdbarch *gdbarch = regcache->arch ();
8020
8021 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8022 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8023 }
8024
8025 void
8026 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8027 {
8028 struct thread_info *thr = inferior_thread ();
8029
8030 annotate_signal ();
8031
8032 if (uiout->is_mi_like_p ())
8033 ;
8034 else if (show_thread_that_caused_stop ())
8035 {
8036 const char *name;
8037
8038 uiout->text ("\nThread ");
8039 uiout->field_string ("thread-id", print_thread_id (thr));
8040
8041 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8042 if (name != NULL)
8043 {
8044 uiout->text (" \"");
8045 uiout->field_string ("name", name);
8046 uiout->text ("\"");
8047 }
8048 }
8049 else
8050 uiout->text ("\nProgram");
8051
8052 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8053 uiout->text (" stopped");
8054 else
8055 {
8056 uiout->text (" received signal ");
8057 annotate_signal_name ();
8058 if (uiout->is_mi_like_p ())
8059 uiout->field_string
8060 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8061 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8062 annotate_signal_name_end ();
8063 uiout->text (", ");
8064 annotate_signal_string ();
8065 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8066
8067 if (siggnal == GDB_SIGNAL_SEGV)
8068 handle_segmentation_fault (uiout);
8069
8070 annotate_signal_string_end ();
8071 }
8072 uiout->text (".\n");
8073 }
8074
8075 void
8076 print_no_history_reason (struct ui_out *uiout)
8077 {
8078 uiout->text ("\nNo more reverse-execution history.\n");
8079 }
8080
8081 /* Print current location without a level number, if we have changed
8082 functions or hit a breakpoint. Print source line if we have one.
8083 bpstat_print contains the logic deciding in detail what to print,
8084 based on the event(s) that just occurred. */
8085
8086 static void
8087 print_stop_location (struct target_waitstatus *ws)
8088 {
8089 int bpstat_ret;
8090 enum print_what source_flag;
8091 int do_frame_printing = 1;
8092 struct thread_info *tp = inferior_thread ();
8093
8094 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8095 switch (bpstat_ret)
8096 {
8097 case PRINT_UNKNOWN:
8098 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8099 should) carry around the function and does (or should) use
8100 that when doing a frame comparison. */
8101 if (tp->control.stop_step
8102 && frame_id_eq (tp->control.step_frame_id,
8103 get_frame_id (get_current_frame ()))
8104 && (tp->control.step_start_function
8105 == find_pc_function (tp->suspend.stop_pc)))
8106 {
8107 /* Finished step, just print source line. */
8108 source_flag = SRC_LINE;
8109 }
8110 else
8111 {
8112 /* Print location and source line. */
8113 source_flag = SRC_AND_LOC;
8114 }
8115 break;
8116 case PRINT_SRC_AND_LOC:
8117 /* Print location and source line. */
8118 source_flag = SRC_AND_LOC;
8119 break;
8120 case PRINT_SRC_ONLY:
8121 source_flag = SRC_LINE;
8122 break;
8123 case PRINT_NOTHING:
8124 /* Something bogus. */
8125 source_flag = SRC_LINE;
8126 do_frame_printing = 0;
8127 break;
8128 default:
8129 internal_error (__FILE__, __LINE__, _("Unknown value."));
8130 }
8131
8132 /* The behavior of this routine with respect to the source
8133 flag is:
8134 SRC_LINE: Print only source line
8135 LOCATION: Print only location
8136 SRC_AND_LOC: Print location and source line. */
8137 if (do_frame_printing)
8138 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8139 }
8140
8141 /* See infrun.h. */
8142
8143 void
8144 print_stop_event (struct ui_out *uiout, bool displays)
8145 {
8146 struct target_waitstatus last;
8147 struct thread_info *tp;
8148
8149 get_last_target_status (nullptr, nullptr, &last);
8150
8151 {
8152 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8153
8154 print_stop_location (&last);
8155
8156 /* Display the auto-display expressions. */
8157 if (displays)
8158 do_displays ();
8159 }
8160
8161 tp = inferior_thread ();
8162 if (tp->thread_fsm != NULL
8163 && tp->thread_fsm->finished_p ())
8164 {
8165 struct return_value_info *rv;
8166
8167 rv = tp->thread_fsm->return_value ();
8168 if (rv != NULL)
8169 print_return_value (uiout, rv);
8170 }
8171 }
8172
8173 /* See infrun.h. */
8174
8175 void
8176 maybe_remove_breakpoints (void)
8177 {
8178 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8179 {
8180 if (remove_breakpoints ())
8181 {
8182 target_terminal::ours_for_output ();
8183 printf_filtered (_("Cannot remove breakpoints because "
8184 "program is no longer writable.\nFurther "
8185 "execution is probably impossible.\n"));
8186 }
8187 }
8188 }
8189
8190 /* The execution context that just caused a normal stop. */
8191
8192 struct stop_context
8193 {
8194 stop_context ();
8195 ~stop_context ();
8196
8197 DISABLE_COPY_AND_ASSIGN (stop_context);
8198
8199 bool changed () const;
8200
8201 /* The stop ID. */
8202 ULONGEST stop_id;
8203
8204 /* The event PTID. */
8205
8206 ptid_t ptid;
8207
8208 /* If stopp for a thread event, this is the thread that caused the
8209 stop. */
8210 struct thread_info *thread;
8211
8212 /* The inferior that caused the stop. */
8213 int inf_num;
8214 };
8215
8216 /* Initializes a new stop context. If stopped for a thread event, this
8217 takes a strong reference to the thread. */
8218
8219 stop_context::stop_context ()
8220 {
8221 stop_id = get_stop_id ();
8222 ptid = inferior_ptid;
8223 inf_num = current_inferior ()->num;
8224
8225 if (inferior_ptid != null_ptid)
8226 {
8227 /* Take a strong reference so that the thread can't be deleted
8228 yet. */
8229 thread = inferior_thread ();
8230 thread->incref ();
8231 }
8232 else
8233 thread = NULL;
8234 }
8235
8236 /* Release a stop context previously created with save_stop_context.
8237 Releases the strong reference to the thread as well. */
8238
8239 stop_context::~stop_context ()
8240 {
8241 if (thread != NULL)
8242 thread->decref ();
8243 }
8244
8245 /* Return true if the current context no longer matches the saved stop
8246 context. */
8247
8248 bool
8249 stop_context::changed () const
8250 {
8251 if (ptid != inferior_ptid)
8252 return true;
8253 if (inf_num != current_inferior ()->num)
8254 return true;
8255 if (thread != NULL && thread->state != THREAD_STOPPED)
8256 return true;
8257 if (get_stop_id () != stop_id)
8258 return true;
8259 return false;
8260 }
8261
8262 /* See infrun.h. */
8263
8264 int
8265 normal_stop (void)
8266 {
8267 struct target_waitstatus last;
8268
8269 get_last_target_status (nullptr, nullptr, &last);
8270
8271 new_stop_id ();
8272
8273 /* If an exception is thrown from this point on, make sure to
8274 propagate GDB's knowledge of the executing state to the
8275 frontend/user running state. A QUIT is an easy exception to see
8276 here, so do this before any filtered output. */
8277
8278 ptid_t finish_ptid = null_ptid;
8279
8280 if (!non_stop)
8281 finish_ptid = minus_one_ptid;
8282 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8283 || last.kind == TARGET_WAITKIND_EXITED)
8284 {
8285 /* On some targets, we may still have live threads in the
8286 inferior when we get a process exit event. E.g., for
8287 "checkpoint", when the current checkpoint/fork exits,
8288 linux-fork.c automatically switches to another fork from
8289 within target_mourn_inferior. */
8290 if (inferior_ptid != null_ptid)
8291 finish_ptid = ptid_t (inferior_ptid.pid ());
8292 }
8293 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8294 finish_ptid = inferior_ptid;
8295
8296 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8297 if (finish_ptid != null_ptid)
8298 {
8299 maybe_finish_thread_state.emplace
8300 (user_visible_resume_target (finish_ptid), finish_ptid);
8301 }
8302
8303 /* As we're presenting a stop, and potentially removing breakpoints,
8304 update the thread list so we can tell whether there are threads
8305 running on the target. With target remote, for example, we can
8306 only learn about new threads when we explicitly update the thread
8307 list. Do this before notifying the interpreters about signal
8308 stops, end of stepping ranges, etc., so that the "new thread"
8309 output is emitted before e.g., "Program received signal FOO",
8310 instead of after. */
8311 update_thread_list ();
8312
8313 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8314 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8315
8316 /* As with the notification of thread events, we want to delay
8317 notifying the user that we've switched thread context until
8318 the inferior actually stops.
8319
8320 There's no point in saying anything if the inferior has exited.
8321 Note that SIGNALLED here means "exited with a signal", not
8322 "received a signal".
8323
8324 Also skip saying anything in non-stop mode. In that mode, as we
8325 don't want GDB to switch threads behind the user's back, to avoid
8326 races where the user is typing a command to apply to thread x,
8327 but GDB switches to thread y before the user finishes entering
8328 the command, fetch_inferior_event installs a cleanup to restore
8329 the current thread back to the thread the user had selected right
8330 after this event is handled, so we're not really switching, only
8331 informing of a stop. */
8332 if (!non_stop
8333 && previous_inferior_ptid != inferior_ptid
8334 && target_has_execution
8335 && last.kind != TARGET_WAITKIND_SIGNALLED
8336 && last.kind != TARGET_WAITKIND_EXITED
8337 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8338 {
8339 SWITCH_THRU_ALL_UIS ()
8340 {
8341 target_terminal::ours_for_output ();
8342 printf_filtered (_("[Switching to %s]\n"),
8343 target_pid_to_str (inferior_ptid).c_str ());
8344 annotate_thread_changed ();
8345 }
8346 previous_inferior_ptid = inferior_ptid;
8347 }
8348
8349 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8350 {
8351 SWITCH_THRU_ALL_UIS ()
8352 if (current_ui->prompt_state == PROMPT_BLOCKED)
8353 {
8354 target_terminal::ours_for_output ();
8355 printf_filtered (_("No unwaited-for children left.\n"));
8356 }
8357 }
8358
8359 /* Note: this depends on the update_thread_list call above. */
8360 maybe_remove_breakpoints ();
8361
8362 /* If an auto-display called a function and that got a signal,
8363 delete that auto-display to avoid an infinite recursion. */
8364
8365 if (stopped_by_random_signal)
8366 disable_current_display ();
8367
8368 SWITCH_THRU_ALL_UIS ()
8369 {
8370 async_enable_stdin ();
8371 }
8372
8373 /* Let the user/frontend see the threads as stopped. */
8374 maybe_finish_thread_state.reset ();
8375
8376 /* Select innermost stack frame - i.e., current frame is frame 0,
8377 and current location is based on that. Handle the case where the
8378 dummy call is returning after being stopped. E.g. the dummy call
8379 previously hit a breakpoint. (If the dummy call returns
8380 normally, we won't reach here.) Do this before the stop hook is
8381 run, so that it doesn't get to see the temporary dummy frame,
8382 which is not where we'll present the stop. */
8383 if (has_stack_frames ())
8384 {
8385 if (stop_stack_dummy == STOP_STACK_DUMMY)
8386 {
8387 /* Pop the empty frame that contains the stack dummy. This
8388 also restores inferior state prior to the call (struct
8389 infcall_suspend_state). */
8390 struct frame_info *frame = get_current_frame ();
8391
8392 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8393 frame_pop (frame);
8394 /* frame_pop calls reinit_frame_cache as the last thing it
8395 does which means there's now no selected frame. */
8396 }
8397
8398 select_frame (get_current_frame ());
8399
8400 /* Set the current source location. */
8401 set_current_sal_from_frame (get_current_frame ());
8402 }
8403
8404 /* Look up the hook_stop and run it (CLI internally handles problem
8405 of stop_command's pre-hook not existing). */
8406 if (stop_command != NULL)
8407 {
8408 stop_context saved_context;
8409
8410 try
8411 {
8412 execute_cmd_pre_hook (stop_command);
8413 }
8414 catch (const gdb_exception &ex)
8415 {
8416 exception_fprintf (gdb_stderr, ex,
8417 "Error while running hook_stop:\n");
8418 }
8419
8420 /* If the stop hook resumes the target, then there's no point in
8421 trying to notify about the previous stop; its context is
8422 gone. Likewise if the command switches thread or inferior --
8423 the observers would print a stop for the wrong
8424 thread/inferior. */
8425 if (saved_context.changed ())
8426 return 1;
8427 }
8428
8429 /* Notify observers about the stop. This is where the interpreters
8430 print the stop event. */
8431 if (inferior_ptid != null_ptid)
8432 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8433 stop_print_frame);
8434 else
8435 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8436
8437 annotate_stopped ();
8438
8439 if (target_has_execution)
8440 {
8441 if (last.kind != TARGET_WAITKIND_SIGNALLED
8442 && last.kind != TARGET_WAITKIND_EXITED
8443 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8444 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8445 Delete any breakpoint that is to be deleted at the next stop. */
8446 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8447 }
8448
8449 /* Try to get rid of automatically added inferiors that are no
8450 longer needed. Keeping those around slows down things linearly.
8451 Note that this never removes the current inferior. */
8452 prune_inferiors ();
8453
8454 return 0;
8455 }
8456 \f
8457 int
8458 signal_stop_state (int signo)
8459 {
8460 return signal_stop[signo];
8461 }
8462
8463 int
8464 signal_print_state (int signo)
8465 {
8466 return signal_print[signo];
8467 }
8468
8469 int
8470 signal_pass_state (int signo)
8471 {
8472 return signal_program[signo];
8473 }
8474
8475 static void
8476 signal_cache_update (int signo)
8477 {
8478 if (signo == -1)
8479 {
8480 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8481 signal_cache_update (signo);
8482
8483 return;
8484 }
8485
8486 signal_pass[signo] = (signal_stop[signo] == 0
8487 && signal_print[signo] == 0
8488 && signal_program[signo] == 1
8489 && signal_catch[signo] == 0);
8490 }
8491
8492 int
8493 signal_stop_update (int signo, int state)
8494 {
8495 int ret = signal_stop[signo];
8496
8497 signal_stop[signo] = state;
8498 signal_cache_update (signo);
8499 return ret;
8500 }
8501
8502 int
8503 signal_print_update (int signo, int state)
8504 {
8505 int ret = signal_print[signo];
8506
8507 signal_print[signo] = state;
8508 signal_cache_update (signo);
8509 return ret;
8510 }
8511
8512 int
8513 signal_pass_update (int signo, int state)
8514 {
8515 int ret = signal_program[signo];
8516
8517 signal_program[signo] = state;
8518 signal_cache_update (signo);
8519 return ret;
8520 }
8521
8522 /* Update the global 'signal_catch' from INFO and notify the
8523 target. */
8524
8525 void
8526 signal_catch_update (const unsigned int *info)
8527 {
8528 int i;
8529
8530 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8531 signal_catch[i] = info[i] > 0;
8532 signal_cache_update (-1);
8533 target_pass_signals (signal_pass);
8534 }
8535
8536 static void
8537 sig_print_header (void)
8538 {
8539 printf_filtered (_("Signal Stop\tPrint\tPass "
8540 "to program\tDescription\n"));
8541 }
8542
8543 static void
8544 sig_print_info (enum gdb_signal oursig)
8545 {
8546 const char *name = gdb_signal_to_name (oursig);
8547 int name_padding = 13 - strlen (name);
8548
8549 if (name_padding <= 0)
8550 name_padding = 0;
8551
8552 printf_filtered ("%s", name);
8553 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8554 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8555 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8556 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8557 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8558 }
8559
8560 /* Specify how various signals in the inferior should be handled. */
8561
8562 static void
8563 handle_command (const char *args, int from_tty)
8564 {
8565 int digits, wordlen;
8566 int sigfirst, siglast;
8567 enum gdb_signal oursig;
8568 int allsigs;
8569
8570 if (args == NULL)
8571 {
8572 error_no_arg (_("signal to handle"));
8573 }
8574
8575 /* Allocate and zero an array of flags for which signals to handle. */
8576
8577 const size_t nsigs = GDB_SIGNAL_LAST;
8578 unsigned char sigs[nsigs] {};
8579
8580 /* Break the command line up into args. */
8581
8582 gdb_argv built_argv (args);
8583
8584 /* Walk through the args, looking for signal oursigs, signal names, and
8585 actions. Signal numbers and signal names may be interspersed with
8586 actions, with the actions being performed for all signals cumulatively
8587 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8588
8589 for (char *arg : built_argv)
8590 {
8591 wordlen = strlen (arg);
8592 for (digits = 0; isdigit (arg[digits]); digits++)
8593 {;
8594 }
8595 allsigs = 0;
8596 sigfirst = siglast = -1;
8597
8598 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8599 {
8600 /* Apply action to all signals except those used by the
8601 debugger. Silently skip those. */
8602 allsigs = 1;
8603 sigfirst = 0;
8604 siglast = nsigs - 1;
8605 }
8606 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8607 {
8608 SET_SIGS (nsigs, sigs, signal_stop);
8609 SET_SIGS (nsigs, sigs, signal_print);
8610 }
8611 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8612 {
8613 UNSET_SIGS (nsigs, sigs, signal_program);
8614 }
8615 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8616 {
8617 SET_SIGS (nsigs, sigs, signal_print);
8618 }
8619 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8620 {
8621 SET_SIGS (nsigs, sigs, signal_program);
8622 }
8623 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8624 {
8625 UNSET_SIGS (nsigs, sigs, signal_stop);
8626 }
8627 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8628 {
8629 SET_SIGS (nsigs, sigs, signal_program);
8630 }
8631 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8632 {
8633 UNSET_SIGS (nsigs, sigs, signal_print);
8634 UNSET_SIGS (nsigs, sigs, signal_stop);
8635 }
8636 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8637 {
8638 UNSET_SIGS (nsigs, sigs, signal_program);
8639 }
8640 else if (digits > 0)
8641 {
8642 /* It is numeric. The numeric signal refers to our own
8643 internal signal numbering from target.h, not to host/target
8644 signal number. This is a feature; users really should be
8645 using symbolic names anyway, and the common ones like
8646 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8647
8648 sigfirst = siglast = (int)
8649 gdb_signal_from_command (atoi (arg));
8650 if (arg[digits] == '-')
8651 {
8652 siglast = (int)
8653 gdb_signal_from_command (atoi (arg + digits + 1));
8654 }
8655 if (sigfirst > siglast)
8656 {
8657 /* Bet he didn't figure we'd think of this case... */
8658 std::swap (sigfirst, siglast);
8659 }
8660 }
8661 else
8662 {
8663 oursig = gdb_signal_from_name (arg);
8664 if (oursig != GDB_SIGNAL_UNKNOWN)
8665 {
8666 sigfirst = siglast = (int) oursig;
8667 }
8668 else
8669 {
8670 /* Not a number and not a recognized flag word => complain. */
8671 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8672 }
8673 }
8674
8675 /* If any signal numbers or symbol names were found, set flags for
8676 which signals to apply actions to. */
8677
8678 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8679 {
8680 switch ((enum gdb_signal) signum)
8681 {
8682 case GDB_SIGNAL_TRAP:
8683 case GDB_SIGNAL_INT:
8684 if (!allsigs && !sigs[signum])
8685 {
8686 if (query (_("%s is used by the debugger.\n\
8687 Are you sure you want to change it? "),
8688 gdb_signal_to_name ((enum gdb_signal) signum)))
8689 {
8690 sigs[signum] = 1;
8691 }
8692 else
8693 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8694 }
8695 break;
8696 case GDB_SIGNAL_0:
8697 case GDB_SIGNAL_DEFAULT:
8698 case GDB_SIGNAL_UNKNOWN:
8699 /* Make sure that "all" doesn't print these. */
8700 break;
8701 default:
8702 sigs[signum] = 1;
8703 break;
8704 }
8705 }
8706 }
8707
8708 for (int signum = 0; signum < nsigs; signum++)
8709 if (sigs[signum])
8710 {
8711 signal_cache_update (-1);
8712 target_pass_signals (signal_pass);
8713 target_program_signals (signal_program);
8714
8715 if (from_tty)
8716 {
8717 /* Show the results. */
8718 sig_print_header ();
8719 for (; signum < nsigs; signum++)
8720 if (sigs[signum])
8721 sig_print_info ((enum gdb_signal) signum);
8722 }
8723
8724 break;
8725 }
8726 }
8727
8728 /* Complete the "handle" command. */
8729
8730 static void
8731 handle_completer (struct cmd_list_element *ignore,
8732 completion_tracker &tracker,
8733 const char *text, const char *word)
8734 {
8735 static const char * const keywords[] =
8736 {
8737 "all",
8738 "stop",
8739 "ignore",
8740 "print",
8741 "pass",
8742 "nostop",
8743 "noignore",
8744 "noprint",
8745 "nopass",
8746 NULL,
8747 };
8748
8749 signal_completer (ignore, tracker, text, word);
8750 complete_on_enum (tracker, keywords, word, word);
8751 }
8752
8753 enum gdb_signal
8754 gdb_signal_from_command (int num)
8755 {
8756 if (num >= 1 && num <= 15)
8757 return (enum gdb_signal) num;
8758 error (_("Only signals 1-15 are valid as numeric signals.\n\
8759 Use \"info signals\" for a list of symbolic signals."));
8760 }
8761
8762 /* Print current contents of the tables set by the handle command.
8763 It is possible we should just be printing signals actually used
8764 by the current target (but for things to work right when switching
8765 targets, all signals should be in the signal tables). */
8766
8767 static void
8768 info_signals_command (const char *signum_exp, int from_tty)
8769 {
8770 enum gdb_signal oursig;
8771
8772 sig_print_header ();
8773
8774 if (signum_exp)
8775 {
8776 /* First see if this is a symbol name. */
8777 oursig = gdb_signal_from_name (signum_exp);
8778 if (oursig == GDB_SIGNAL_UNKNOWN)
8779 {
8780 /* No, try numeric. */
8781 oursig =
8782 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8783 }
8784 sig_print_info (oursig);
8785 return;
8786 }
8787
8788 printf_filtered ("\n");
8789 /* These ugly casts brought to you by the native VAX compiler. */
8790 for (oursig = GDB_SIGNAL_FIRST;
8791 (int) oursig < (int) GDB_SIGNAL_LAST;
8792 oursig = (enum gdb_signal) ((int) oursig + 1))
8793 {
8794 QUIT;
8795
8796 if (oursig != GDB_SIGNAL_UNKNOWN
8797 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8798 sig_print_info (oursig);
8799 }
8800
8801 printf_filtered (_("\nUse the \"handle\" command "
8802 "to change these tables.\n"));
8803 }
8804
8805 /* The $_siginfo convenience variable is a bit special. We don't know
8806 for sure the type of the value until we actually have a chance to
8807 fetch the data. The type can change depending on gdbarch, so it is
8808 also dependent on which thread you have selected.
8809
8810 1. making $_siginfo be an internalvar that creates a new value on
8811 access.
8812
8813 2. making the value of $_siginfo be an lval_computed value. */
8814
8815 /* This function implements the lval_computed support for reading a
8816 $_siginfo value. */
8817
8818 static void
8819 siginfo_value_read (struct value *v)
8820 {
8821 LONGEST transferred;
8822
8823 /* If we can access registers, so can we access $_siginfo. Likewise
8824 vice versa. */
8825 validate_registers_access ();
8826
8827 transferred =
8828 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8829 NULL,
8830 value_contents_all_raw (v),
8831 value_offset (v),
8832 TYPE_LENGTH (value_type (v)));
8833
8834 if (transferred != TYPE_LENGTH (value_type (v)))
8835 error (_("Unable to read siginfo"));
8836 }
8837
8838 /* This function implements the lval_computed support for writing a
8839 $_siginfo value. */
8840
8841 static void
8842 siginfo_value_write (struct value *v, struct value *fromval)
8843 {
8844 LONGEST transferred;
8845
8846 /* If we can access registers, so can we access $_siginfo. Likewise
8847 vice versa. */
8848 validate_registers_access ();
8849
8850 transferred = target_write (current_top_target (),
8851 TARGET_OBJECT_SIGNAL_INFO,
8852 NULL,
8853 value_contents_all_raw (fromval),
8854 value_offset (v),
8855 TYPE_LENGTH (value_type (fromval)));
8856
8857 if (transferred != TYPE_LENGTH (value_type (fromval)))
8858 error (_("Unable to write siginfo"));
8859 }
8860
8861 static const struct lval_funcs siginfo_value_funcs =
8862 {
8863 siginfo_value_read,
8864 siginfo_value_write
8865 };
8866
8867 /* Return a new value with the correct type for the siginfo object of
8868 the current thread using architecture GDBARCH. Return a void value
8869 if there's no object available. */
8870
8871 static struct value *
8872 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8873 void *ignore)
8874 {
8875 if (target_has_stack
8876 && inferior_ptid != null_ptid
8877 && gdbarch_get_siginfo_type_p (gdbarch))
8878 {
8879 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8880
8881 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8882 }
8883
8884 return allocate_value (builtin_type (gdbarch)->builtin_void);
8885 }
8886
8887 \f
8888 /* infcall_suspend_state contains state about the program itself like its
8889 registers and any signal it received when it last stopped.
8890 This state must be restored regardless of how the inferior function call
8891 ends (either successfully, or after it hits a breakpoint or signal)
8892 if the program is to properly continue where it left off. */
8893
8894 class infcall_suspend_state
8895 {
8896 public:
8897 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8898 once the inferior function call has finished. */
8899 infcall_suspend_state (struct gdbarch *gdbarch,
8900 const struct thread_info *tp,
8901 struct regcache *regcache)
8902 : m_thread_suspend (tp->suspend),
8903 m_registers (new readonly_detached_regcache (*regcache))
8904 {
8905 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8906
8907 if (gdbarch_get_siginfo_type_p (gdbarch))
8908 {
8909 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8910 size_t len = TYPE_LENGTH (type);
8911
8912 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8913
8914 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8915 siginfo_data.get (), 0, len) != len)
8916 {
8917 /* Errors ignored. */
8918 siginfo_data.reset (nullptr);
8919 }
8920 }
8921
8922 if (siginfo_data)
8923 {
8924 m_siginfo_gdbarch = gdbarch;
8925 m_siginfo_data = std::move (siginfo_data);
8926 }
8927 }
8928
8929 /* Return a pointer to the stored register state. */
8930
8931 readonly_detached_regcache *registers () const
8932 {
8933 return m_registers.get ();
8934 }
8935
8936 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8937
8938 void restore (struct gdbarch *gdbarch,
8939 struct thread_info *tp,
8940 struct regcache *regcache) const
8941 {
8942 tp->suspend = m_thread_suspend;
8943
8944 if (m_siginfo_gdbarch == gdbarch)
8945 {
8946 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8947
8948 /* Errors ignored. */
8949 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8950 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8951 }
8952
8953 /* The inferior can be gone if the user types "print exit(0)"
8954 (and perhaps other times). */
8955 if (target_has_execution)
8956 /* NB: The register write goes through to the target. */
8957 regcache->restore (registers ());
8958 }
8959
8960 private:
8961 /* How the current thread stopped before the inferior function call was
8962 executed. */
8963 struct thread_suspend_state m_thread_suspend;
8964
8965 /* The registers before the inferior function call was executed. */
8966 std::unique_ptr<readonly_detached_regcache> m_registers;
8967
8968 /* Format of SIGINFO_DATA or NULL if it is not present. */
8969 struct gdbarch *m_siginfo_gdbarch = nullptr;
8970
8971 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8972 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8973 content would be invalid. */
8974 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8975 };
8976
8977 infcall_suspend_state_up
8978 save_infcall_suspend_state ()
8979 {
8980 struct thread_info *tp = inferior_thread ();
8981 struct regcache *regcache = get_current_regcache ();
8982 struct gdbarch *gdbarch = regcache->arch ();
8983
8984 infcall_suspend_state_up inf_state
8985 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8986
8987 /* Having saved the current state, adjust the thread state, discarding
8988 any stop signal information. The stop signal is not useful when
8989 starting an inferior function call, and run_inferior_call will not use
8990 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8991 tp->suspend.stop_signal = GDB_SIGNAL_0;
8992
8993 return inf_state;
8994 }
8995
8996 /* Restore inferior session state to INF_STATE. */
8997
8998 void
8999 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9000 {
9001 struct thread_info *tp = inferior_thread ();
9002 struct regcache *regcache = get_current_regcache ();
9003 struct gdbarch *gdbarch = regcache->arch ();
9004
9005 inf_state->restore (gdbarch, tp, regcache);
9006 discard_infcall_suspend_state (inf_state);
9007 }
9008
9009 void
9010 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9011 {
9012 delete inf_state;
9013 }
9014
9015 readonly_detached_regcache *
9016 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9017 {
9018 return inf_state->registers ();
9019 }
9020
9021 /* infcall_control_state contains state regarding gdb's control of the
9022 inferior itself like stepping control. It also contains session state like
9023 the user's currently selected frame. */
9024
9025 struct infcall_control_state
9026 {
9027 struct thread_control_state thread_control;
9028 struct inferior_control_state inferior_control;
9029
9030 /* Other fields: */
9031 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9032 int stopped_by_random_signal = 0;
9033
9034 /* ID if the selected frame when the inferior function call was made. */
9035 struct frame_id selected_frame_id {};
9036 };
9037
9038 /* Save all of the information associated with the inferior<==>gdb
9039 connection. */
9040
9041 infcall_control_state_up
9042 save_infcall_control_state ()
9043 {
9044 infcall_control_state_up inf_status (new struct infcall_control_state);
9045 struct thread_info *tp = inferior_thread ();
9046 struct inferior *inf = current_inferior ();
9047
9048 inf_status->thread_control = tp->control;
9049 inf_status->inferior_control = inf->control;
9050
9051 tp->control.step_resume_breakpoint = NULL;
9052 tp->control.exception_resume_breakpoint = NULL;
9053
9054 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9055 chain. If caller's caller is walking the chain, they'll be happier if we
9056 hand them back the original chain when restore_infcall_control_state is
9057 called. */
9058 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9059
9060 /* Other fields: */
9061 inf_status->stop_stack_dummy = stop_stack_dummy;
9062 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9063
9064 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9065
9066 return inf_status;
9067 }
9068
9069 static void
9070 restore_selected_frame (const frame_id &fid)
9071 {
9072 frame_info *frame = frame_find_by_id (fid);
9073
9074 /* If inf_status->selected_frame_id is NULL, there was no previously
9075 selected frame. */
9076 if (frame == NULL)
9077 {
9078 warning (_("Unable to restore previously selected frame."));
9079 return;
9080 }
9081
9082 select_frame (frame);
9083 }
9084
9085 /* Restore inferior session state to INF_STATUS. */
9086
9087 void
9088 restore_infcall_control_state (struct infcall_control_state *inf_status)
9089 {
9090 struct thread_info *tp = inferior_thread ();
9091 struct inferior *inf = current_inferior ();
9092
9093 if (tp->control.step_resume_breakpoint)
9094 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9095
9096 if (tp->control.exception_resume_breakpoint)
9097 tp->control.exception_resume_breakpoint->disposition
9098 = disp_del_at_next_stop;
9099
9100 /* Handle the bpstat_copy of the chain. */
9101 bpstat_clear (&tp->control.stop_bpstat);
9102
9103 tp->control = inf_status->thread_control;
9104 inf->control = inf_status->inferior_control;
9105
9106 /* Other fields: */
9107 stop_stack_dummy = inf_status->stop_stack_dummy;
9108 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9109
9110 if (target_has_stack)
9111 {
9112 /* The point of the try/catch is that if the stack is clobbered,
9113 walking the stack might encounter a garbage pointer and
9114 error() trying to dereference it. */
9115 try
9116 {
9117 restore_selected_frame (inf_status->selected_frame_id);
9118 }
9119 catch (const gdb_exception_error &ex)
9120 {
9121 exception_fprintf (gdb_stderr, ex,
9122 "Unable to restore previously selected frame:\n");
9123 /* Error in restoring the selected frame. Select the
9124 innermost frame. */
9125 select_frame (get_current_frame ());
9126 }
9127 }
9128
9129 delete inf_status;
9130 }
9131
9132 void
9133 discard_infcall_control_state (struct infcall_control_state *inf_status)
9134 {
9135 if (inf_status->thread_control.step_resume_breakpoint)
9136 inf_status->thread_control.step_resume_breakpoint->disposition
9137 = disp_del_at_next_stop;
9138
9139 if (inf_status->thread_control.exception_resume_breakpoint)
9140 inf_status->thread_control.exception_resume_breakpoint->disposition
9141 = disp_del_at_next_stop;
9142
9143 /* See save_infcall_control_state for info on stop_bpstat. */
9144 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9145
9146 delete inf_status;
9147 }
9148 \f
9149 /* See infrun.h. */
9150
9151 void
9152 clear_exit_convenience_vars (void)
9153 {
9154 clear_internalvar (lookup_internalvar ("_exitsignal"));
9155 clear_internalvar (lookup_internalvar ("_exitcode"));
9156 }
9157 \f
9158
9159 /* User interface for reverse debugging:
9160 Set exec-direction / show exec-direction commands
9161 (returns error unless target implements to_set_exec_direction method). */
9162
9163 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9164 static const char exec_forward[] = "forward";
9165 static const char exec_reverse[] = "reverse";
9166 static const char *exec_direction = exec_forward;
9167 static const char *const exec_direction_names[] = {
9168 exec_forward,
9169 exec_reverse,
9170 NULL
9171 };
9172
9173 static void
9174 set_exec_direction_func (const char *args, int from_tty,
9175 struct cmd_list_element *cmd)
9176 {
9177 if (target_can_execute_reverse)
9178 {
9179 if (!strcmp (exec_direction, exec_forward))
9180 execution_direction = EXEC_FORWARD;
9181 else if (!strcmp (exec_direction, exec_reverse))
9182 execution_direction = EXEC_REVERSE;
9183 }
9184 else
9185 {
9186 exec_direction = exec_forward;
9187 error (_("Target does not support this operation."));
9188 }
9189 }
9190
9191 static void
9192 show_exec_direction_func (struct ui_file *out, int from_tty,
9193 struct cmd_list_element *cmd, const char *value)
9194 {
9195 switch (execution_direction) {
9196 case EXEC_FORWARD:
9197 fprintf_filtered (out, _("Forward.\n"));
9198 break;
9199 case EXEC_REVERSE:
9200 fprintf_filtered (out, _("Reverse.\n"));
9201 break;
9202 default:
9203 internal_error (__FILE__, __LINE__,
9204 _("bogus execution_direction value: %d"),
9205 (int) execution_direction);
9206 }
9207 }
9208
9209 static void
9210 show_schedule_multiple (struct ui_file *file, int from_tty,
9211 struct cmd_list_element *c, const char *value)
9212 {
9213 fprintf_filtered (file, _("Resuming the execution of threads "
9214 "of all processes is %s.\n"), value);
9215 }
9216
9217 /* Implementation of `siginfo' variable. */
9218
9219 static const struct internalvar_funcs siginfo_funcs =
9220 {
9221 siginfo_make_value,
9222 NULL,
9223 NULL
9224 };
9225
9226 /* Callback for infrun's target events source. This is marked when a
9227 thread has a pending status to process. */
9228
9229 static void
9230 infrun_async_inferior_event_handler (gdb_client_data data)
9231 {
9232 inferior_event_handler (INF_REG_EVENT);
9233 }
9234
9235 void _initialize_infrun ();
9236 void
9237 _initialize_infrun ()
9238 {
9239 struct cmd_list_element *c;
9240
9241 /* Register extra event sources in the event loop. */
9242 infrun_async_inferior_event_token
9243 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9244
9245 add_info ("signals", info_signals_command, _("\
9246 What debugger does when program gets various signals.\n\
9247 Specify a signal as argument to print info on that signal only."));
9248 add_info_alias ("handle", "signals", 0);
9249
9250 c = add_com ("handle", class_run, handle_command, _("\
9251 Specify how to handle signals.\n\
9252 Usage: handle SIGNAL [ACTIONS]\n\
9253 Args are signals and actions to apply to those signals.\n\
9254 If no actions are specified, the current settings for the specified signals\n\
9255 will be displayed instead.\n\
9256 \n\
9257 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9258 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9259 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9260 The special arg \"all\" is recognized to mean all signals except those\n\
9261 used by the debugger, typically SIGTRAP and SIGINT.\n\
9262 \n\
9263 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9264 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9265 Stop means reenter debugger if this signal happens (implies print).\n\
9266 Print means print a message if this signal happens.\n\
9267 Pass means let program see this signal; otherwise program doesn't know.\n\
9268 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9269 Pass and Stop may be combined.\n\
9270 \n\
9271 Multiple signals may be specified. Signal numbers and signal names\n\
9272 may be interspersed with actions, with the actions being performed for\n\
9273 all signals cumulatively specified."));
9274 set_cmd_completer (c, handle_completer);
9275
9276 if (!dbx_commands)
9277 stop_command = add_cmd ("stop", class_obscure,
9278 not_just_help_class_command, _("\
9279 There is no `stop' command, but you can set a hook on `stop'.\n\
9280 This allows you to set a list of commands to be run each time execution\n\
9281 of the program stops."), &cmdlist);
9282
9283 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9284 Set inferior debugging."), _("\
9285 Show inferior debugging."), _("\
9286 When non-zero, inferior specific debugging is enabled."),
9287 NULL,
9288 show_debug_infrun,
9289 &setdebuglist, &showdebuglist);
9290
9291 add_setshow_boolean_cmd ("displaced", class_maintenance,
9292 &debug_displaced, _("\
9293 Set displaced stepping debugging."), _("\
9294 Show displaced stepping debugging."), _("\
9295 When non-zero, displaced stepping specific debugging is enabled."),
9296 NULL,
9297 show_debug_displaced,
9298 &setdebuglist, &showdebuglist);
9299
9300 add_setshow_boolean_cmd ("non-stop", no_class,
9301 &non_stop_1, _("\
9302 Set whether gdb controls the inferior in non-stop mode."), _("\
9303 Show whether gdb controls the inferior in non-stop mode."), _("\
9304 When debugging a multi-threaded program and this setting is\n\
9305 off (the default, also called all-stop mode), when one thread stops\n\
9306 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9307 all other threads in the program while you interact with the thread of\n\
9308 interest. When you continue or step a thread, you can allow the other\n\
9309 threads to run, or have them remain stopped, but while you inspect any\n\
9310 thread's state, all threads stop.\n\
9311 \n\
9312 In non-stop mode, when one thread stops, other threads can continue\n\
9313 to run freely. You'll be able to step each thread independently,\n\
9314 leave it stopped or free to run as needed."),
9315 set_non_stop,
9316 show_non_stop,
9317 &setlist,
9318 &showlist);
9319
9320 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9321 {
9322 signal_stop[i] = 1;
9323 signal_print[i] = 1;
9324 signal_program[i] = 1;
9325 signal_catch[i] = 0;
9326 }
9327
9328 /* Signals caused by debugger's own actions should not be given to
9329 the program afterwards.
9330
9331 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9332 explicitly specifies that it should be delivered to the target
9333 program. Typically, that would occur when a user is debugging a
9334 target monitor on a simulator: the target monitor sets a
9335 breakpoint; the simulator encounters this breakpoint and halts
9336 the simulation handing control to GDB; GDB, noting that the stop
9337 address doesn't map to any known breakpoint, returns control back
9338 to the simulator; the simulator then delivers the hardware
9339 equivalent of a GDB_SIGNAL_TRAP to the program being
9340 debugged. */
9341 signal_program[GDB_SIGNAL_TRAP] = 0;
9342 signal_program[GDB_SIGNAL_INT] = 0;
9343
9344 /* Signals that are not errors should not normally enter the debugger. */
9345 signal_stop[GDB_SIGNAL_ALRM] = 0;
9346 signal_print[GDB_SIGNAL_ALRM] = 0;
9347 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9348 signal_print[GDB_SIGNAL_VTALRM] = 0;
9349 signal_stop[GDB_SIGNAL_PROF] = 0;
9350 signal_print[GDB_SIGNAL_PROF] = 0;
9351 signal_stop[GDB_SIGNAL_CHLD] = 0;
9352 signal_print[GDB_SIGNAL_CHLD] = 0;
9353 signal_stop[GDB_SIGNAL_IO] = 0;
9354 signal_print[GDB_SIGNAL_IO] = 0;
9355 signal_stop[GDB_SIGNAL_POLL] = 0;
9356 signal_print[GDB_SIGNAL_POLL] = 0;
9357 signal_stop[GDB_SIGNAL_URG] = 0;
9358 signal_print[GDB_SIGNAL_URG] = 0;
9359 signal_stop[GDB_SIGNAL_WINCH] = 0;
9360 signal_print[GDB_SIGNAL_WINCH] = 0;
9361 signal_stop[GDB_SIGNAL_PRIO] = 0;
9362 signal_print[GDB_SIGNAL_PRIO] = 0;
9363
9364 /* These signals are used internally by user-level thread
9365 implementations. (See signal(5) on Solaris.) Like the above
9366 signals, a healthy program receives and handles them as part of
9367 its normal operation. */
9368 signal_stop[GDB_SIGNAL_LWP] = 0;
9369 signal_print[GDB_SIGNAL_LWP] = 0;
9370 signal_stop[GDB_SIGNAL_WAITING] = 0;
9371 signal_print[GDB_SIGNAL_WAITING] = 0;
9372 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9373 signal_print[GDB_SIGNAL_CANCEL] = 0;
9374 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9375 signal_print[GDB_SIGNAL_LIBRT] = 0;
9376
9377 /* Update cached state. */
9378 signal_cache_update (-1);
9379
9380 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9381 &stop_on_solib_events, _("\
9382 Set stopping for shared library events."), _("\
9383 Show stopping for shared library events."), _("\
9384 If nonzero, gdb will give control to the user when the dynamic linker\n\
9385 notifies gdb of shared library events. The most common event of interest\n\
9386 to the user would be loading/unloading of a new library."),
9387 set_stop_on_solib_events,
9388 show_stop_on_solib_events,
9389 &setlist, &showlist);
9390
9391 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9392 follow_fork_mode_kind_names,
9393 &follow_fork_mode_string, _("\
9394 Set debugger response to a program call of fork or vfork."), _("\
9395 Show debugger response to a program call of fork or vfork."), _("\
9396 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9397 parent - the original process is debugged after a fork\n\
9398 child - the new process is debugged after a fork\n\
9399 The unfollowed process will continue to run.\n\
9400 By default, the debugger will follow the parent process."),
9401 NULL,
9402 show_follow_fork_mode_string,
9403 &setlist, &showlist);
9404
9405 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9406 follow_exec_mode_names,
9407 &follow_exec_mode_string, _("\
9408 Set debugger response to a program call of exec."), _("\
9409 Show debugger response to a program call of exec."), _("\
9410 An exec call replaces the program image of a process.\n\
9411 \n\
9412 follow-exec-mode can be:\n\
9413 \n\
9414 new - the debugger creates a new inferior and rebinds the process\n\
9415 to this new inferior. The program the process was running before\n\
9416 the exec call can be restarted afterwards by restarting the original\n\
9417 inferior.\n\
9418 \n\
9419 same - the debugger keeps the process bound to the same inferior.\n\
9420 The new executable image replaces the previous executable loaded in\n\
9421 the inferior. Restarting the inferior after the exec call restarts\n\
9422 the executable the process was running after the exec call.\n\
9423 \n\
9424 By default, the debugger will use the same inferior."),
9425 NULL,
9426 show_follow_exec_mode_string,
9427 &setlist, &showlist);
9428
9429 add_setshow_enum_cmd ("scheduler-locking", class_run,
9430 scheduler_enums, &scheduler_mode, _("\
9431 Set mode for locking scheduler during execution."), _("\
9432 Show mode for locking scheduler during execution."), _("\
9433 off == no locking (threads may preempt at any time)\n\
9434 on == full locking (no thread except the current thread may run)\n\
9435 This applies to both normal execution and replay mode.\n\
9436 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9437 In this mode, other threads may run during other commands.\n\
9438 This applies to both normal execution and replay mode.\n\
9439 replay == scheduler locked in replay mode and unlocked during normal execution."),
9440 set_schedlock_func, /* traps on target vector */
9441 show_scheduler_mode,
9442 &setlist, &showlist);
9443
9444 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9445 Set mode for resuming threads of all processes."), _("\
9446 Show mode for resuming threads of all processes."), _("\
9447 When on, execution commands (such as 'continue' or 'next') resume all\n\
9448 threads of all processes. When off (which is the default), execution\n\
9449 commands only resume the threads of the current process. The set of\n\
9450 threads that are resumed is further refined by the scheduler-locking\n\
9451 mode (see help set scheduler-locking)."),
9452 NULL,
9453 show_schedule_multiple,
9454 &setlist, &showlist);
9455
9456 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9457 Set mode of the step operation."), _("\
9458 Show mode of the step operation."), _("\
9459 When set, doing a step over a function without debug line information\n\
9460 will stop at the first instruction of that function. Otherwise, the\n\
9461 function is skipped and the step command stops at a different source line."),
9462 NULL,
9463 show_step_stop_if_no_debug,
9464 &setlist, &showlist);
9465
9466 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9467 &can_use_displaced_stepping, _("\
9468 Set debugger's willingness to use displaced stepping."), _("\
9469 Show debugger's willingness to use displaced stepping."), _("\
9470 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9471 supported by the target architecture. If off, gdb will not use displaced\n\
9472 stepping to step over breakpoints, even if such is supported by the target\n\
9473 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9474 if the target architecture supports it and non-stop mode is active, but will not\n\
9475 use it in all-stop mode (see help set non-stop)."),
9476 NULL,
9477 show_can_use_displaced_stepping,
9478 &setlist, &showlist);
9479
9480 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9481 &exec_direction, _("Set direction of execution.\n\
9482 Options are 'forward' or 'reverse'."),
9483 _("Show direction of execution (forward/reverse)."),
9484 _("Tells gdb whether to execute forward or backward."),
9485 set_exec_direction_func, show_exec_direction_func,
9486 &setlist, &showlist);
9487
9488 /* Set/show detach-on-fork: user-settable mode. */
9489
9490 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9491 Set whether gdb will detach the child of a fork."), _("\
9492 Show whether gdb will detach the child of a fork."), _("\
9493 Tells gdb whether to detach the child of a fork."),
9494 NULL, NULL, &setlist, &showlist);
9495
9496 /* Set/show disable address space randomization mode. */
9497
9498 add_setshow_boolean_cmd ("disable-randomization", class_support,
9499 &disable_randomization, _("\
9500 Set disabling of debuggee's virtual address space randomization."), _("\
9501 Show disabling of debuggee's virtual address space randomization."), _("\
9502 When this mode is on (which is the default), randomization of the virtual\n\
9503 address space is disabled. Standalone programs run with the randomization\n\
9504 enabled by default on some platforms."),
9505 &set_disable_randomization,
9506 &show_disable_randomization,
9507 &setlist, &showlist);
9508
9509 /* ptid initializations */
9510 inferior_ptid = null_ptid;
9511 target_last_wait_ptid = minus_one_ptid;
9512
9513 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9514 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9515 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9516 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9517
9518 /* Explicitly create without lookup, since that tries to create a
9519 value with a void typed value, and when we get here, gdbarch
9520 isn't initialized yet. At this point, we're quite sure there
9521 isn't another convenience variable of the same name. */
9522 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9523
9524 add_setshow_boolean_cmd ("observer", no_class,
9525 &observer_mode_1, _("\
9526 Set whether gdb controls the inferior in observer mode."), _("\
9527 Show whether gdb controls the inferior in observer mode."), _("\
9528 In observer mode, GDB can get data from the inferior, but not\n\
9529 affect its execution. Registers and memory may not be changed,\n\
9530 breakpoints may not be set, and the program cannot be interrupted\n\
9531 or signalled."),
9532 set_observer_mode,
9533 show_observer_mode,
9534 &setlist,
9535 &showlist);
9536 }
This page took 0.228768 seconds and 4 git commands to generate.