gdb: Add support for tracking the DWARF line table is-stmt field
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdb_select.h"
68 #include <unordered_map>
69
70 /* Prototypes for local functions */
71
72 static void sig_print_info (enum gdb_signal);
73
74 static void sig_print_header (void);
75
76 static int follow_fork (void);
77
78 static int follow_fork_inferior (int follow_child, int detach_fork);
79
80 static void follow_inferior_reset_breakpoints (void);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
85
86 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
88 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
90 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
92 static void resume (gdb_signal sig);
93
94 static void wait_for_inferior (inferior *inf);
95
96 /* Asynchronous signal handler registered as event loop source for
97 when we have pending events ready to be passed to the core. */
98 static struct async_event_handler *infrun_async_inferior_event_token;
99
100 /* Stores whether infrun_async was previously enabled or disabled.
101 Starts off as -1, indicating "never enabled/disabled". */
102 static int infrun_is_async = -1;
103
104 /* See infrun.h. */
105
106 void
107 infrun_async (int enable)
108 {
109 if (infrun_is_async != enable)
110 {
111 infrun_is_async = enable;
112
113 if (debug_infrun)
114 fprintf_unfiltered (gdb_stdlog,
115 "infrun: infrun_async(%d)\n",
116 enable);
117
118 if (enable)
119 mark_async_event_handler (infrun_async_inferior_event_token);
120 else
121 clear_async_event_handler (infrun_async_inferior_event_token);
122 }
123 }
124
125 /* See infrun.h. */
126
127 void
128 mark_infrun_async_event_handler (void)
129 {
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 }
132
133 /* When set, stop the 'step' command if we enter a function which has
134 no line number information. The normal behavior is that we step
135 over such function. */
136 bool step_stop_if_no_debug = false;
137 static void
138 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
142 }
143
144 /* proceed and normal_stop use this to notify the user when the
145 inferior stopped in a different thread than it had been running
146 in. */
147
148 static ptid_t previous_inferior_ptid;
149
150 /* If set (default for legacy reasons), when following a fork, GDB
151 will detach from one of the fork branches, child or parent.
152 Exactly which branch is detached depends on 'set follow-fork-mode'
153 setting. */
154
155 static bool detach_fork = true;
156
157 bool debug_displaced = false;
158 static void
159 show_debug_displaced (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
163 }
164
165 unsigned int debug_infrun = 0;
166 static void
167 show_debug_infrun (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
171 }
172
173
174 /* Support for disabling address space randomization. */
175
176 bool disable_randomization = true;
177
178 static void
179 show_disable_randomization (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 if (target_supports_disable_randomization ())
183 fprintf_filtered (file,
184 _("Disabling randomization of debuggee's "
185 "virtual address space is %s.\n"),
186 value);
187 else
188 fputs_filtered (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform.\n"), file);
191 }
192
193 static void
194 set_disable_randomization (const char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (!target_supports_disable_randomization ())
198 error (_("Disabling randomization of debuggee's "
199 "virtual address space is unsupported on\n"
200 "this platform."));
201 }
202
203 /* User interface for non-stop mode. */
204
205 bool non_stop = false;
206 static bool non_stop_1 = false;
207
208 static void
209 set_non_stop (const char *args, int from_tty,
210 struct cmd_list_element *c)
211 {
212 if (target_has_execution)
213 {
214 non_stop_1 = non_stop;
215 error (_("Cannot change this setting while the inferior is running."));
216 }
217
218 non_stop = non_stop_1;
219 }
220
221 static void
222 show_non_stop (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file,
226 _("Controlling the inferior in non-stop mode is %s.\n"),
227 value);
228 }
229
230 /* "Observer mode" is somewhat like a more extreme version of
231 non-stop, in which all GDB operations that might affect the
232 target's execution have been disabled. */
233
234 bool observer_mode = false;
235 static bool observer_mode_1 = false;
236
237 static void
238 set_observer_mode (const char *args, int from_tty,
239 struct cmd_list_element *c)
240 {
241 if (target_has_execution)
242 {
243 observer_mode_1 = observer_mode;
244 error (_("Cannot change this setting while the inferior is running."));
245 }
246
247 observer_mode = observer_mode_1;
248
249 may_write_registers = !observer_mode;
250 may_write_memory = !observer_mode;
251 may_insert_breakpoints = !observer_mode;
252 may_insert_tracepoints = !observer_mode;
253 /* We can insert fast tracepoints in or out of observer mode,
254 but enable them if we're going into this mode. */
255 if (observer_mode)
256 may_insert_fast_tracepoints = true;
257 may_stop = !observer_mode;
258 update_target_permissions ();
259
260 /* Going *into* observer mode we must force non-stop, then
261 going out we leave it that way. */
262 if (observer_mode)
263 {
264 pagination_enabled = 0;
265 non_stop = non_stop_1 = true;
266 }
267
268 if (from_tty)
269 printf_filtered (_("Observer mode is now %s.\n"),
270 (observer_mode ? "on" : "off"));
271 }
272
273 static void
274 show_observer_mode (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276 {
277 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
278 }
279
280 /* This updates the value of observer mode based on changes in
281 permissions. Note that we are deliberately ignoring the values of
282 may-write-registers and may-write-memory, since the user may have
283 reason to enable these during a session, for instance to turn on a
284 debugging-related global. */
285
286 void
287 update_observer_mode (void)
288 {
289 bool newval = (!may_insert_breakpoints
290 && !may_insert_tracepoints
291 && may_insert_fast_tracepoints
292 && !may_stop
293 && non_stop);
294
295 /* Let the user know if things change. */
296 if (newval != observer_mode)
297 printf_filtered (_("Observer mode is now %s.\n"),
298 (newval ? "on" : "off"));
299
300 observer_mode = observer_mode_1 = newval;
301 }
302
303 /* Tables of how to react to signals; the user sets them. */
304
305 static unsigned char signal_stop[GDB_SIGNAL_LAST];
306 static unsigned char signal_print[GDB_SIGNAL_LAST];
307 static unsigned char signal_program[GDB_SIGNAL_LAST];
308
309 /* Table of signals that are registered with "catch signal". A
310 non-zero entry indicates that the signal is caught by some "catch
311 signal" command. */
312 static unsigned char signal_catch[GDB_SIGNAL_LAST];
313
314 /* Table of signals that the target may silently handle.
315 This is automatically determined from the flags above,
316 and simply cached here. */
317 static unsigned char signal_pass[GDB_SIGNAL_LAST];
318
319 #define SET_SIGS(nsigs,sigs,flags) \
320 do { \
321 int signum = (nsigs); \
322 while (signum-- > 0) \
323 if ((sigs)[signum]) \
324 (flags)[signum] = 1; \
325 } while (0)
326
327 #define UNSET_SIGS(nsigs,sigs,flags) \
328 do { \
329 int signum = (nsigs); \
330 while (signum-- > 0) \
331 if ((sigs)[signum]) \
332 (flags)[signum] = 0; \
333 } while (0)
334
335 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
336 this function is to avoid exporting `signal_program'. */
337
338 void
339 update_signals_program_target (void)
340 {
341 target_program_signals (signal_program);
342 }
343
344 /* Value to pass to target_resume() to cause all threads to resume. */
345
346 #define RESUME_ALL minus_one_ptid
347
348 /* Command list pointer for the "stop" placeholder. */
349
350 static struct cmd_list_element *stop_command;
351
352 /* Nonzero if we want to give control to the user when we're notified
353 of shared library events by the dynamic linker. */
354 int stop_on_solib_events;
355
356 /* Enable or disable optional shared library event breakpoints
357 as appropriate when the above flag is changed. */
358
359 static void
360 set_stop_on_solib_events (const char *args,
361 int from_tty, struct cmd_list_element *c)
362 {
363 update_solib_breakpoints ();
364 }
365
366 static void
367 show_stop_on_solib_events (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369 {
370 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
371 value);
372 }
373
374 /* Nonzero after stop if current stack frame should be printed. */
375
376 static int stop_print_frame;
377
378 /* This is a cached copy of the target/ptid/waitstatus of the last
379 event returned by target_wait()/deprecated_target_wait_hook().
380 This information is returned by get_last_target_status(). */
381 static process_stratum_target *target_last_proc_target;
382 static ptid_t target_last_wait_ptid;
383 static struct target_waitstatus target_last_waitstatus;
384
385 void init_thread_stepping_state (struct thread_info *tss);
386
387 static const char follow_fork_mode_child[] = "child";
388 static const char follow_fork_mode_parent[] = "parent";
389
390 static const char *const follow_fork_mode_kind_names[] = {
391 follow_fork_mode_child,
392 follow_fork_mode_parent,
393 NULL
394 };
395
396 static const char *follow_fork_mode_string = follow_fork_mode_parent;
397 static void
398 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c, const char *value)
400 {
401 fprintf_filtered (file,
402 _("Debugger response to a program "
403 "call of fork or vfork is \"%s\".\n"),
404 value);
405 }
406 \f
407
408 /* Handle changes to the inferior list based on the type of fork,
409 which process is being followed, and whether the other process
410 should be detached. On entry inferior_ptid must be the ptid of
411 the fork parent. At return inferior_ptid is the ptid of the
412 followed inferior. */
413
414 static int
415 follow_fork_inferior (int follow_child, int detach_fork)
416 {
417 int has_vforked;
418 ptid_t parent_ptid, child_ptid;
419
420 has_vforked = (inferior_thread ()->pending_follow.kind
421 == TARGET_WAITKIND_VFORKED);
422 parent_ptid = inferior_ptid;
423 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
424
425 if (has_vforked
426 && !non_stop /* Non-stop always resumes both branches. */
427 && current_ui->prompt_state == PROMPT_BLOCKED
428 && !(follow_child || detach_fork || sched_multi))
429 {
430 /* The parent stays blocked inside the vfork syscall until the
431 child execs or exits. If we don't let the child run, then
432 the parent stays blocked. If we're telling the parent to run
433 in the foreground, the user will not be able to ctrl-c to get
434 back the terminal, effectively hanging the debug session. */
435 fprintf_filtered (gdb_stderr, _("\
436 Can not resume the parent process over vfork in the foreground while\n\
437 holding the child stopped. Try \"set detach-on-fork\" or \
438 \"set schedule-multiple\".\n"));
439 return 1;
440 }
441
442 if (!follow_child)
443 {
444 /* Detach new forked process? */
445 if (detach_fork)
446 {
447 /* Before detaching from the child, remove all breakpoints
448 from it. If we forked, then this has already been taken
449 care of by infrun.c. If we vforked however, any
450 breakpoint inserted in the parent is visible in the
451 child, even those added while stopped in a vfork
452 catchpoint. This will remove the breakpoints from the
453 parent also, but they'll be reinserted below. */
454 if (has_vforked)
455 {
456 /* Keep breakpoints list in sync. */
457 remove_breakpoints_inf (current_inferior ());
458 }
459
460 if (print_inferior_events)
461 {
462 /* Ensure that we have a process ptid. */
463 ptid_t process_ptid = ptid_t (child_ptid.pid ());
464
465 target_terminal::ours_for_output ();
466 fprintf_filtered (gdb_stdlog,
467 _("[Detaching after %s from child %s]\n"),
468 has_vforked ? "vfork" : "fork",
469 target_pid_to_str (process_ptid).c_str ());
470 }
471 }
472 else
473 {
474 struct inferior *parent_inf, *child_inf;
475
476 /* Add process to GDB's tables. */
477 child_inf = add_inferior (child_ptid.pid ());
478
479 parent_inf = current_inferior ();
480 child_inf->attach_flag = parent_inf->attach_flag;
481 copy_terminal_info (child_inf, parent_inf);
482 child_inf->gdbarch = parent_inf->gdbarch;
483 copy_inferior_target_desc_info (child_inf, parent_inf);
484
485 scoped_restore_current_pspace_and_thread restore_pspace_thread;
486
487 set_current_inferior (child_inf);
488 switch_to_no_thread ();
489 child_inf->symfile_flags = SYMFILE_NO_READ;
490 push_target (parent_inf->process_target ());
491 add_thread_silent (child_inf->process_target (), child_ptid);
492 inferior_ptid = child_ptid;
493
494 /* If this is a vfork child, then the address-space is
495 shared with the parent. */
496 if (has_vforked)
497 {
498 child_inf->pspace = parent_inf->pspace;
499 child_inf->aspace = parent_inf->aspace;
500
501 exec_on_vfork ();
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = new program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (print_inferior_events)
553 {
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
557 target_terminal::ours_for_output ();
558 fprintf_filtered (gdb_stdlog,
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
561 has_vforked ? "vfork" : "fork",
562 child_pid.c_str ());
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
568 child_inf = add_inferior (child_ptid.pid ());
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 process_stratum_target *target = parent_inf->process_target ();
579
580 {
581 /* Hold a strong reference to the target while (maybe)
582 detaching the parent. Otherwise detaching could close the
583 target. */
584 auto target_ref = target_ops_ref::new_reference (target);
585
586 /* If we're vforking, we want to hold on to the parent until
587 the child exits or execs. At child exec or exit time we
588 can remove the old breakpoints from the parent and detach
589 or resume debugging it. Otherwise, detach the parent now;
590 we'll want to reuse it's program/address spaces, but we
591 can't set them to the child before removing breakpoints
592 from the parent, otherwise, the breakpoints module could
593 decide to remove breakpoints from the wrong process (since
594 they'd be assigned to the same address space). */
595
596 if (has_vforked)
597 {
598 gdb_assert (child_inf->vfork_parent == NULL);
599 gdb_assert (parent_inf->vfork_child == NULL);
600 child_inf->vfork_parent = parent_inf;
601 child_inf->pending_detach = 0;
602 parent_inf->vfork_child = child_inf;
603 parent_inf->pending_detach = detach_fork;
604 parent_inf->waiting_for_vfork_done = 0;
605 }
606 else if (detach_fork)
607 {
608 if (print_inferior_events)
609 {
610 /* Ensure that we have a process ptid. */
611 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
612
613 target_terminal::ours_for_output ();
614 fprintf_filtered (gdb_stdlog,
615 _("[Detaching after fork from "
616 "parent %s]\n"),
617 target_pid_to_str (process_ptid).c_str ());
618 }
619
620 target_detach (parent_inf, 0);
621 parent_inf = NULL;
622 }
623
624 /* Note that the detach above makes PARENT_INF dangling. */
625
626 /* Add the child thread to the appropriate lists, and switch
627 to this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
629
630 set_current_inferior (child_inf);
631 push_target (target);
632 }
633
634 add_thread_silent (target, child_ptid);
635 inferior_ptid = child_ptid;
636
637 /* If this is a vfork child, then the address-space is shared
638 with the parent. If we detached from the parent, then we can
639 reuse the parent's program/address spaces. */
640 if (has_vforked || detach_fork)
641 {
642 child_inf->pspace = parent_pspace;
643 child_inf->aspace = child_inf->pspace->aspace;
644
645 exec_on_vfork ();
646 }
647 else
648 {
649 child_inf->aspace = new_address_space ();
650 child_inf->pspace = new program_space (child_inf->aspace);
651 child_inf->removable = 1;
652 child_inf->symfile_flags = SYMFILE_NO_READ;
653 set_current_program_space (child_inf->pspace);
654 clone_program_space (child_inf->pspace, parent_pspace);
655
656 /* Let the shared library layer (e.g., solib-svr4) learn
657 about this new process, relocate the cloned exec, pull in
658 shared libraries, and install the solib event breakpoint.
659 If a "cloned-VM" event was propagated better throughout
660 the core, this wouldn't be required. */
661 solib_create_inferior_hook (0);
662 }
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666 }
667
668 /* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
672 static int
673 follow_fork (void)
674 {
675 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 int should_resume = 1;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
684 struct breakpoint *exception_resume_breakpoint = NULL;
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 struct frame_id step_frame_id = { 0 };
688 struct thread_fsm *thread_fsm = NULL;
689
690 if (!non_stop)
691 {
692 process_stratum_target *wait_target;
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
697 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
707 if (wait_ptid != minus_one_ptid
708 && (current_inferior ()->process_target () != wait_target
709 || inferior_ptid != wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
716 switch_to_thread (wait_thread);
717 should_resume = 0;
718 }
719 }
720
721 tp = inferior_thread ();
722
723 /* If there were any forks/vforks that were caught and are now to be
724 followed, then do so now. */
725 switch (tp->pending_follow.kind)
726 {
727 case TARGET_WAITKIND_FORKED:
728 case TARGET_WAITKIND_VFORKED:
729 {
730 ptid_t parent, child;
731
732 /* If the user did a next/step, etc, over a fork call,
733 preserve the stepping state in the fork child. */
734 if (follow_child && should_resume)
735 {
736 step_resume_breakpoint = clone_momentary_breakpoint
737 (tp->control.step_resume_breakpoint);
738 step_range_start = tp->control.step_range_start;
739 step_range_end = tp->control.step_range_end;
740 step_frame_id = tp->control.step_frame_id;
741 exception_resume_breakpoint
742 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
743 thread_fsm = tp->thread_fsm;
744
745 /* For now, delete the parent's sr breakpoint, otherwise,
746 parent/child sr breakpoints are considered duplicates,
747 and the child version will not be installed. Remove
748 this when the breakpoints module becomes aware of
749 inferiors and address spaces. */
750 delete_step_resume_breakpoint (tp);
751 tp->control.step_range_start = 0;
752 tp->control.step_range_end = 0;
753 tp->control.step_frame_id = null_frame_id;
754 delete_exception_resume_breakpoint (tp);
755 tp->thread_fsm = NULL;
756 }
757
758 parent = inferior_ptid;
759 child = tp->pending_follow.value.related_pid;
760
761 process_stratum_target *parent_targ = tp->inf->process_target ();
762 /* Set up inferior(s) as specified by the caller, and tell the
763 target to do whatever is necessary to follow either parent
764 or child. */
765 if (follow_fork_inferior (follow_child, detach_fork))
766 {
767 /* Target refused to follow, or there's some other reason
768 we shouldn't resume. */
769 should_resume = 0;
770 }
771 else
772 {
773 /* This pending follow fork event is now handled, one way
774 or another. The previous selected thread may be gone
775 from the lists by now, but if it is still around, need
776 to clear the pending follow request. */
777 tp = find_thread_ptid (parent_targ, parent);
778 if (tp)
779 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
780
781 /* This makes sure we don't try to apply the "Switched
782 over from WAIT_PID" logic above. */
783 nullify_last_target_wait_ptid ();
784
785 /* If we followed the child, switch to it... */
786 if (follow_child)
787 {
788 thread_info *child_thr = find_thread_ptid (parent_targ, child);
789 switch_to_thread (child_thr);
790
791 /* ... and preserve the stepping state, in case the
792 user was stepping over the fork call. */
793 if (should_resume)
794 {
795 tp = inferior_thread ();
796 tp->control.step_resume_breakpoint
797 = step_resume_breakpoint;
798 tp->control.step_range_start = step_range_start;
799 tp->control.step_range_end = step_range_end;
800 tp->control.step_frame_id = step_frame_id;
801 tp->control.exception_resume_breakpoint
802 = exception_resume_breakpoint;
803 tp->thread_fsm = thread_fsm;
804 }
805 else
806 {
807 /* If we get here, it was because we're trying to
808 resume from a fork catchpoint, but, the user
809 has switched threads away from the thread that
810 forked. In that case, the resume command
811 issued is most likely not applicable to the
812 child, so just warn, and refuse to resume. */
813 warning (_("Not resuming: switched threads "
814 "before following fork child."));
815 }
816
817 /* Reset breakpoints in the child as appropriate. */
818 follow_inferior_reset_breakpoints ();
819 }
820 }
821 }
822 break;
823 case TARGET_WAITKIND_SPURIOUS:
824 /* Nothing to follow. */
825 break;
826 default:
827 internal_error (__FILE__, __LINE__,
828 "Unexpected pending_follow.kind %d\n",
829 tp->pending_follow.kind);
830 break;
831 }
832
833 return should_resume;
834 }
835
836 static void
837 follow_inferior_reset_breakpoints (void)
838 {
839 struct thread_info *tp = inferior_thread ();
840
841 /* Was there a step_resume breakpoint? (There was if the user
842 did a "next" at the fork() call.) If so, explicitly reset its
843 thread number. Cloned step_resume breakpoints are disabled on
844 creation, so enable it here now that it is associated with the
845 correct thread.
846
847 step_resumes are a form of bp that are made to be per-thread.
848 Since we created the step_resume bp when the parent process
849 was being debugged, and now are switching to the child process,
850 from the breakpoint package's viewpoint, that's a switch of
851 "threads". We must update the bp's notion of which thread
852 it is for, or it'll be ignored when it triggers. */
853
854 if (tp->control.step_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
857 tp->control.step_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Treat exception_resume breakpoints like step_resume breakpoints. */
861 if (tp->control.exception_resume_breakpoint)
862 {
863 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
864 tp->control.exception_resume_breakpoint->loc->enabled = 1;
865 }
866
867 /* Reinsert all breakpoints in the child. The user may have set
868 breakpoints after catching the fork, in which case those
869 were never set in the child, but only in the parent. This makes
870 sure the inserted breakpoints match the breakpoint list. */
871
872 breakpoint_re_set ();
873 insert_breakpoints ();
874 }
875
876 /* The child has exited or execed: resume threads of the parent the
877 user wanted to be executing. */
878
879 static int
880 proceed_after_vfork_done (struct thread_info *thread,
881 void *arg)
882 {
883 int pid = * (int *) arg;
884
885 if (thread->ptid.pid () == pid
886 && thread->state == THREAD_RUNNING
887 && !thread->executing
888 && !thread->stop_requested
889 && thread->suspend.stop_signal == GDB_SIGNAL_0)
890 {
891 if (debug_infrun)
892 fprintf_unfiltered (gdb_stdlog,
893 "infrun: resuming vfork parent thread %s\n",
894 target_pid_to_str (thread->ptid).c_str ());
895
896 switch_to_thread (thread);
897 clear_proceed_status (0);
898 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
899 }
900
901 return 0;
902 }
903
904 /* Save/restore inferior_ptid, current program space and current
905 inferior. Only use this if the current context points at an exited
906 inferior (and therefore there's no current thread to save). */
907 class scoped_restore_exited_inferior
908 {
909 public:
910 scoped_restore_exited_inferior ()
911 : m_saved_ptid (&inferior_ptid)
912 {}
913
914 private:
915 scoped_restore_tmpl<ptid_t> m_saved_ptid;
916 scoped_restore_current_program_space m_pspace;
917 scoped_restore_current_inferior m_inferior;
918 };
919
920 /* Called whenever we notice an exec or exit event, to handle
921 detaching or resuming a vfork parent. */
922
923 static void
924 handle_vfork_child_exec_or_exit (int exec)
925 {
926 struct inferior *inf = current_inferior ();
927
928 if (inf->vfork_parent)
929 {
930 int resume_parent = -1;
931
932 /* This exec or exit marks the end of the shared memory region
933 between the parent and the child. Break the bonds. */
934 inferior *vfork_parent = inf->vfork_parent;
935 inf->vfork_parent->vfork_child = NULL;
936 inf->vfork_parent = NULL;
937
938 /* If the user wanted to detach from the parent, now is the
939 time. */
940 if (vfork_parent->pending_detach)
941 {
942 struct thread_info *tp;
943 struct program_space *pspace;
944 struct address_space *aspace;
945
946 /* follow-fork child, detach-on-fork on. */
947
948 vfork_parent->pending_detach = 0;
949
950 gdb::optional<scoped_restore_exited_inferior>
951 maybe_restore_inferior;
952 gdb::optional<scoped_restore_current_pspace_and_thread>
953 maybe_restore_thread;
954
955 /* If we're handling a child exit, then inferior_ptid points
956 at the inferior's pid, not to a thread. */
957 if (!exec)
958 maybe_restore_inferior.emplace ();
959 else
960 maybe_restore_thread.emplace ();
961
962 /* We're letting loose of the parent. */
963 tp = any_live_thread_of_inferior (vfork_parent);
964 switch_to_thread (tp);
965
966 /* We're about to detach from the parent, which implicitly
967 removes breakpoints from its address space. There's a
968 catch here: we want to reuse the spaces for the child,
969 but, parent/child are still sharing the pspace at this
970 point, although the exec in reality makes the kernel give
971 the child a fresh set of new pages. The problem here is
972 that the breakpoints module being unaware of this, would
973 likely chose the child process to write to the parent
974 address space. Swapping the child temporarily away from
975 the spaces has the desired effect. Yes, this is "sort
976 of" a hack. */
977
978 pspace = inf->pspace;
979 aspace = inf->aspace;
980 inf->aspace = NULL;
981 inf->pspace = NULL;
982
983 if (print_inferior_events)
984 {
985 std::string pidstr
986 = target_pid_to_str (ptid_t (vfork_parent->pid));
987
988 target_terminal::ours_for_output ();
989
990 if (exec)
991 {
992 fprintf_filtered (gdb_stdlog,
993 _("[Detaching vfork parent %s "
994 "after child exec]\n"), pidstr.c_str ());
995 }
996 else
997 {
998 fprintf_filtered (gdb_stdlog,
999 _("[Detaching vfork parent %s "
1000 "after child exit]\n"), pidstr.c_str ());
1001 }
1002 }
1003
1004 target_detach (vfork_parent, 0);
1005
1006 /* Put it back. */
1007 inf->pspace = pspace;
1008 inf->aspace = aspace;
1009 }
1010 else if (exec)
1011 {
1012 /* We're staying attached to the parent, so, really give the
1013 child a new address space. */
1014 inf->pspace = new program_space (maybe_new_address_space ());
1015 inf->aspace = inf->pspace->aspace;
1016 inf->removable = 1;
1017 set_current_program_space (inf->pspace);
1018
1019 resume_parent = vfork_parent->pid;
1020 }
1021 else
1022 {
1023 /* If this is a vfork child exiting, then the pspace and
1024 aspaces were shared with the parent. Since we're
1025 reporting the process exit, we'll be mourning all that is
1026 found in the address space, and switching to null_ptid,
1027 preparing to start a new inferior. But, since we don't
1028 want to clobber the parent's address/program spaces, we
1029 go ahead and create a new one for this exiting
1030 inferior. */
1031
1032 /* Switch to null_ptid while running clone_program_space, so
1033 that clone_program_space doesn't want to read the
1034 selected frame of a dead process. */
1035 scoped_restore restore_ptid
1036 = make_scoped_restore (&inferior_ptid, null_ptid);
1037
1038 inf->pspace = new program_space (maybe_new_address_space ());
1039 inf->aspace = inf->pspace->aspace;
1040 set_current_program_space (inf->pspace);
1041 inf->removable = 1;
1042 inf->symfile_flags = SYMFILE_NO_READ;
1043 clone_program_space (inf->pspace, vfork_parent->pspace);
1044
1045 resume_parent = vfork_parent->pid;
1046 }
1047
1048 gdb_assert (current_program_space == inf->pspace);
1049
1050 if (non_stop && resume_parent != -1)
1051 {
1052 /* If the user wanted the parent to be running, let it go
1053 free now. */
1054 scoped_restore_current_thread restore_thread;
1055
1056 if (debug_infrun)
1057 fprintf_unfiltered (gdb_stdlog,
1058 "infrun: resuming vfork parent process %d\n",
1059 resume_parent);
1060
1061 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1062 }
1063 }
1064 }
1065
1066 /* Enum strings for "set|show follow-exec-mode". */
1067
1068 static const char follow_exec_mode_new[] = "new";
1069 static const char follow_exec_mode_same[] = "same";
1070 static const char *const follow_exec_mode_names[] =
1071 {
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075 };
1076
1077 static const char *follow_exec_mode_string = follow_exec_mode_same;
1078 static void
1079 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081 {
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083 }
1084
1085 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1086
1087 static void
1088 follow_exec (ptid_t ptid, const char *exec_file_target)
1089 {
1090 struct inferior *inf = current_inferior ();
1091 int pid = ptid.pid ();
1092 ptid_t process_ptid;
1093
1094 /* Switch terminal for any messages produced e.g. by
1095 breakpoint_re_set. */
1096 target_terminal::ours_for_output ();
1097
1098 /* This is an exec event that we actually wish to pay attention to.
1099 Refresh our symbol table to the newly exec'd program, remove any
1100 momentary bp's, etc.
1101
1102 If there are breakpoints, they aren't really inserted now,
1103 since the exec() transformed our inferior into a fresh set
1104 of instructions.
1105
1106 We want to preserve symbolic breakpoints on the list, since
1107 we have hopes that they can be reset after the new a.out's
1108 symbol table is read.
1109
1110 However, any "raw" breakpoints must be removed from the list
1111 (e.g., the solib bp's), since their address is probably invalid
1112 now.
1113
1114 And, we DON'T want to call delete_breakpoints() here, since
1115 that may write the bp's "shadow contents" (the instruction
1116 value that was overwritten with a TRAP instruction). Since
1117 we now have a new a.out, those shadow contents aren't valid. */
1118
1119 mark_breakpoints_out ();
1120
1121 /* The target reports the exec event to the main thread, even if
1122 some other thread does the exec, and even if the main thread was
1123 stopped or already gone. We may still have non-leader threads of
1124 the process on our list. E.g., on targets that don't have thread
1125 exit events (like remote); or on native Linux in non-stop mode if
1126 there were only two threads in the inferior and the non-leader
1127 one is the one that execs (and nothing forces an update of the
1128 thread list up to here). When debugging remotely, it's best to
1129 avoid extra traffic, when possible, so avoid syncing the thread
1130 list with the target, and instead go ahead and delete all threads
1131 of the process but one that reported the event. Note this must
1132 be done before calling update_breakpoints_after_exec, as
1133 otherwise clearing the threads' resources would reference stale
1134 thread breakpoints -- it may have been one of these threads that
1135 stepped across the exec. We could just clear their stepping
1136 states, but as long as we're iterating, might as well delete
1137 them. Deleting them now rather than at the next user-visible
1138 stop provides a nicer sequence of events for user and MI
1139 notifications. */
1140 for (thread_info *th : all_threads_safe ())
1141 if (th->ptid.pid () == pid && th->ptid != ptid)
1142 delete_thread (th);
1143
1144 /* We also need to clear any left over stale state for the
1145 leader/event thread. E.g., if there was any step-resume
1146 breakpoint or similar, it's gone now. We cannot truly
1147 step-to-next statement through an exec(). */
1148 thread_info *th = inferior_thread ();
1149 th->control.step_resume_breakpoint = NULL;
1150 th->control.exception_resume_breakpoint = NULL;
1151 th->control.single_step_breakpoints = NULL;
1152 th->control.step_range_start = 0;
1153 th->control.step_range_end = 0;
1154
1155 /* The user may have had the main thread held stopped in the
1156 previous image (e.g., schedlock on, or non-stop). Release
1157 it now. */
1158 th->stop_requested = 0;
1159
1160 update_breakpoints_after_exec ();
1161
1162 /* What is this a.out's name? */
1163 process_ptid = ptid_t (pid);
1164 printf_unfiltered (_("%s is executing new program: %s\n"),
1165 target_pid_to_str (process_ptid).c_str (),
1166 exec_file_target);
1167
1168 /* We've followed the inferior through an exec. Therefore, the
1169 inferior has essentially been killed & reborn. */
1170
1171 breakpoint_init_inferior (inf_execd);
1172
1173 gdb::unique_xmalloc_ptr<char> exec_file_host
1174 = exec_file_find (exec_file_target, NULL);
1175
1176 /* If we were unable to map the executable target pathname onto a host
1177 pathname, tell the user that. Otherwise GDB's subsequent behavior
1178 is confusing. Maybe it would even be better to stop at this point
1179 so that the user can specify a file manually before continuing. */
1180 if (exec_file_host == NULL)
1181 warning (_("Could not load symbols for executable %s.\n"
1182 "Do you need \"set sysroot\"?"),
1183 exec_file_target);
1184
1185 /* Reset the shared library package. This ensures that we get a
1186 shlib event when the child reaches "_start", at which point the
1187 dld will have had a chance to initialize the child. */
1188 /* Also, loading a symbol file below may trigger symbol lookups, and
1189 we don't want those to be satisfied by the libraries of the
1190 previous incarnation of this process. */
1191 no_shared_libraries (NULL, 0);
1192
1193 if (follow_exec_mode_string == follow_exec_mode_new)
1194 {
1195 /* The user wants to keep the old inferior and program spaces
1196 around. Create a new fresh one, and switch to it. */
1197
1198 /* Do exit processing for the original inferior before setting the new
1199 inferior's pid. Having two inferiors with the same pid would confuse
1200 find_inferior_p(t)id. Transfer the terminal state and info from the
1201 old to the new inferior. */
1202 inf = add_inferior_with_spaces ();
1203 swap_terminal_info (inf, current_inferior ());
1204 exit_inferior_silent (current_inferior ());
1205
1206 inf->pid = pid;
1207 target_follow_exec (inf, exec_file_target);
1208
1209 inferior *org_inferior = current_inferior ();
1210 switch_to_inferior_no_thread (inf);
1211 push_target (org_inferior->process_target ());
1212 thread_info *thr = add_thread (inf->process_target (), ptid);
1213 switch_to_thread (thr);
1214 }
1215 else
1216 {
1217 /* The old description may no longer be fit for the new image.
1218 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1219 old description; we'll read a new one below. No need to do
1220 this on "follow-exec-mode new", as the old inferior stays
1221 around (its description is later cleared/refetched on
1222 restart). */
1223 target_clear_description ();
1224 }
1225
1226 gdb_assert (current_program_space == inf->pspace);
1227
1228 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1229 because the proper displacement for a PIE (Position Independent
1230 Executable) main symbol file will only be computed by
1231 solib_create_inferior_hook below. breakpoint_re_set would fail
1232 to insert the breakpoints with the zero displacement. */
1233 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1234
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
1243 solib_create_inferior_hook (0);
1244
1245 jit_inferior_created_hook ();
1246
1247 breakpoint_re_set ();
1248
1249 /* Reinsert all breakpoints. (Those which were symbolic have
1250 been reset to the proper address in the new a.out, thanks
1251 to symbol_file_command...). */
1252 insert_breakpoints ();
1253
1254 /* The next resume of this inferior should bring it to the shlib
1255 startup breakpoints. (If the user had also set bp's on
1256 "main" from the old (parent) process, then they'll auto-
1257 matically get reset there in the new process.). */
1258 }
1259
1260 /* The queue of threads that need to do a step-over operation to get
1261 past e.g., a breakpoint. What technique is used to step over the
1262 breakpoint/watchpoint does not matter -- all threads end up in the
1263 same queue, to maintain rough temporal order of execution, in order
1264 to avoid starvation, otherwise, we could e.g., find ourselves
1265 constantly stepping the same couple threads past their breakpoints
1266 over and over, if the single-step finish fast enough. */
1267 struct thread_info *step_over_queue_head;
1268
1269 /* Bit flags indicating what the thread needs to step over. */
1270
1271 enum step_over_what_flag
1272 {
1273 /* Step over a breakpoint. */
1274 STEP_OVER_BREAKPOINT = 1,
1275
1276 /* Step past a non-continuable watchpoint, in order to let the
1277 instruction execute so we can evaluate the watchpoint
1278 expression. */
1279 STEP_OVER_WATCHPOINT = 2
1280 };
1281 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1282
1283 /* Info about an instruction that is being stepped over. */
1284
1285 struct step_over_info
1286 {
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
1291 const address_space *aspace;
1292 CORE_ADDR address;
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
1297
1298 /* The thread's global number. */
1299 int thread;
1300 };
1301
1302 /* The step-over info of the location that is being stepped over.
1303
1304 Note that with async/breakpoint always-inserted mode, a user might
1305 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1306 being stepped over. As setting a new breakpoint inserts all
1307 breakpoints, we need to make sure the breakpoint being stepped over
1308 isn't inserted then. We do that by only clearing the step-over
1309 info when the step-over is actually finished (or aborted).
1310
1311 Presently GDB can only step over one breakpoint at any given time.
1312 Given threads that can't run code in the same address space as the
1313 breakpoint's can't really miss the breakpoint, GDB could be taught
1314 to step-over at most one breakpoint per address space (so this info
1315 could move to the address space object if/when GDB is extended).
1316 The set of breakpoints being stepped over will normally be much
1317 smaller than the set of all breakpoints, so a flag in the
1318 breakpoint location structure would be wasteful. A separate list
1319 also saves complexity and run-time, as otherwise we'd have to go
1320 through all breakpoint locations clearing their flag whenever we
1321 start a new sequence. Similar considerations weigh against storing
1322 this info in the thread object. Plus, not all step overs actually
1323 have breakpoint locations -- e.g., stepping past a single-step
1324 breakpoint, or stepping to complete a non-continuable
1325 watchpoint. */
1326 static struct step_over_info step_over_info;
1327
1328 /* Record the address of the breakpoint/instruction we're currently
1329 stepping over.
1330 N.B. We record the aspace and address now, instead of say just the thread,
1331 because when we need the info later the thread may be running. */
1332
1333 static void
1334 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p,
1336 int thread)
1337 {
1338 step_over_info.aspace = aspace;
1339 step_over_info.address = address;
1340 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1341 step_over_info.thread = thread;
1342 }
1343
1344 /* Called when we're not longer stepping over a breakpoint / an
1345 instruction, so all breakpoints are free to be (re)inserted. */
1346
1347 static void
1348 clear_step_over_info (void)
1349 {
1350 if (debug_infrun)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "infrun: clear_step_over_info\n");
1353 step_over_info.aspace = NULL;
1354 step_over_info.address = 0;
1355 step_over_info.nonsteppable_watchpoint_p = 0;
1356 step_over_info.thread = -1;
1357 }
1358
1359 /* See infrun.h. */
1360
1361 int
1362 stepping_past_instruction_at (struct address_space *aspace,
1363 CORE_ADDR address)
1364 {
1365 return (step_over_info.aspace != NULL
1366 && breakpoint_address_match (aspace, address,
1367 step_over_info.aspace,
1368 step_over_info.address));
1369 }
1370
1371 /* See infrun.h. */
1372
1373 int
1374 thread_is_stepping_over_breakpoint (int thread)
1375 {
1376 return (step_over_info.thread != -1
1377 && thread == step_over_info.thread);
1378 }
1379
1380 /* See infrun.h. */
1381
1382 int
1383 stepping_past_nonsteppable_watchpoint (void)
1384 {
1385 return step_over_info.nonsteppable_watchpoint_p;
1386 }
1387
1388 /* Returns true if step-over info is valid. */
1389
1390 static int
1391 step_over_info_valid_p (void)
1392 {
1393 return (step_over_info.aspace != NULL
1394 || stepping_past_nonsteppable_watchpoint ());
1395 }
1396
1397 \f
1398 /* Displaced stepping. */
1399
1400 /* In non-stop debugging mode, we must take special care to manage
1401 breakpoints properly; in particular, the traditional strategy for
1402 stepping a thread past a breakpoint it has hit is unsuitable.
1403 'Displaced stepping' is a tactic for stepping one thread past a
1404 breakpoint it has hit while ensuring that other threads running
1405 concurrently will hit the breakpoint as they should.
1406
1407 The traditional way to step a thread T off a breakpoint in a
1408 multi-threaded program in all-stop mode is as follows:
1409
1410 a0) Initially, all threads are stopped, and breakpoints are not
1411 inserted.
1412 a1) We single-step T, leaving breakpoints uninserted.
1413 a2) We insert breakpoints, and resume all threads.
1414
1415 In non-stop debugging, however, this strategy is unsuitable: we
1416 don't want to have to stop all threads in the system in order to
1417 continue or step T past a breakpoint. Instead, we use displaced
1418 stepping:
1419
1420 n0) Initially, T is stopped, other threads are running, and
1421 breakpoints are inserted.
1422 n1) We copy the instruction "under" the breakpoint to a separate
1423 location, outside the main code stream, making any adjustments
1424 to the instruction, register, and memory state as directed by
1425 T's architecture.
1426 n2) We single-step T over the instruction at its new location.
1427 n3) We adjust the resulting register and memory state as directed
1428 by T's architecture. This includes resetting T's PC to point
1429 back into the main instruction stream.
1430 n4) We resume T.
1431
1432 This approach depends on the following gdbarch methods:
1433
1434 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1435 indicate where to copy the instruction, and how much space must
1436 be reserved there. We use these in step n1.
1437
1438 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1439 address, and makes any necessary adjustments to the instruction,
1440 register contents, and memory. We use this in step n1.
1441
1442 - gdbarch_displaced_step_fixup adjusts registers and memory after
1443 we have successfully single-stepped the instruction, to yield the
1444 same effect the instruction would have had if we had executed it
1445 at its original address. We use this in step n3.
1446
1447 The gdbarch_displaced_step_copy_insn and
1448 gdbarch_displaced_step_fixup functions must be written so that
1449 copying an instruction with gdbarch_displaced_step_copy_insn,
1450 single-stepping across the copied instruction, and then applying
1451 gdbarch_displaced_insn_fixup should have the same effects on the
1452 thread's memory and registers as stepping the instruction in place
1453 would have. Exactly which responsibilities fall to the copy and
1454 which fall to the fixup is up to the author of those functions.
1455
1456 See the comments in gdbarch.sh for details.
1457
1458 Note that displaced stepping and software single-step cannot
1459 currently be used in combination, although with some care I think
1460 they could be made to. Software single-step works by placing
1461 breakpoints on all possible subsequent instructions; if the
1462 displaced instruction is a PC-relative jump, those breakpoints
1463 could fall in very strange places --- on pages that aren't
1464 executable, or at addresses that are not proper instruction
1465 boundaries. (We do generally let other threads run while we wait
1466 to hit the software single-step breakpoint, and they might
1467 encounter such a corrupted instruction.) One way to work around
1468 this would be to have gdbarch_displaced_step_copy_insn fully
1469 simulate the effect of PC-relative instructions (and return NULL)
1470 on architectures that use software single-stepping.
1471
1472 In non-stop mode, we can have independent and simultaneous step
1473 requests, so more than one thread may need to simultaneously step
1474 over a breakpoint. The current implementation assumes there is
1475 only one scratch space per process. In this case, we have to
1476 serialize access to the scratch space. If thread A wants to step
1477 over a breakpoint, but we are currently waiting for some other
1478 thread to complete a displaced step, we leave thread A stopped and
1479 place it in the displaced_step_request_queue. Whenever a displaced
1480 step finishes, we pick the next thread in the queue and start a new
1481 displaced step operation on it. See displaced_step_prepare and
1482 displaced_step_fixup for details. */
1483
1484 /* Default destructor for displaced_step_closure. */
1485
1486 displaced_step_closure::~displaced_step_closure () = default;
1487
1488 /* Get the displaced stepping state of process PID. */
1489
1490 static displaced_step_inferior_state *
1491 get_displaced_stepping_state (inferior *inf)
1492 {
1493 return &inf->displaced_step_state;
1494 }
1495
1496 /* Returns true if any inferior has a thread doing a displaced
1497 step. */
1498
1499 static bool
1500 displaced_step_in_progress_any_inferior ()
1501 {
1502 for (inferior *i : all_inferiors ())
1503 {
1504 if (i->displaced_step_state.step_thread != nullptr)
1505 return true;
1506 }
1507
1508 return false;
1509 }
1510
1511 /* Return true if thread represented by PTID is doing a displaced
1512 step. */
1513
1514 static int
1515 displaced_step_in_progress_thread (thread_info *thread)
1516 {
1517 gdb_assert (thread != NULL);
1518
1519 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1520 }
1521
1522 /* Return true if process PID has a thread doing a displaced step. */
1523
1524 static int
1525 displaced_step_in_progress (inferior *inf)
1526 {
1527 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1528 }
1529
1530 /* If inferior is in displaced stepping, and ADDR equals to starting address
1531 of copy area, return corresponding displaced_step_closure. Otherwise,
1532 return NULL. */
1533
1534 struct displaced_step_closure*
1535 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1536 {
1537 displaced_step_inferior_state *displaced
1538 = get_displaced_stepping_state (current_inferior ());
1539
1540 /* If checking the mode of displaced instruction in copy area. */
1541 if (displaced->step_thread != nullptr
1542 && displaced->step_copy == addr)
1543 return displaced->step_closure.get ();
1544
1545 return NULL;
1546 }
1547
1548 static void
1549 infrun_inferior_exit (struct inferior *inf)
1550 {
1551 inf->displaced_step_state.reset ();
1552 }
1553
1554 /* If ON, and the architecture supports it, GDB will use displaced
1555 stepping to step over breakpoints. If OFF, or if the architecture
1556 doesn't support it, GDB will instead use the traditional
1557 hold-and-step approach. If AUTO (which is the default), GDB will
1558 decide which technique to use to step over breakpoints depending on
1559 whether the target works in a non-stop way (see use_displaced_stepping). */
1560
1561 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1562
1563 static void
1564 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1569 fprintf_filtered (file,
1570 _("Debugger's willingness to use displaced stepping "
1571 "to step over breakpoints is %s (currently %s).\n"),
1572 value, target_is_non_stop_p () ? "on" : "off");
1573 else
1574 fprintf_filtered (file,
1575 _("Debugger's willingness to use displaced stepping "
1576 "to step over breakpoints is %s.\n"), value);
1577 }
1578
1579 /* Return true if the gdbarch implements the required methods to use
1580 displaced stepping. */
1581
1582 static bool
1583 gdbarch_supports_displaced_stepping (gdbarch *arch)
1584 {
1585 /* Only check for the presence of step_copy_insn. Other required methods
1586 are checked by the gdbarch validation. */
1587 return gdbarch_displaced_step_copy_insn_p (arch);
1588 }
1589
1590 /* Return non-zero if displaced stepping can/should be used to step
1591 over breakpoints of thread TP. */
1592
1593 static bool
1594 use_displaced_stepping (thread_info *tp)
1595 {
1596 /* If the user disabled it explicitly, don't use displaced stepping. */
1597 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1598 return false;
1599
1600 /* If "auto", only use displaced stepping if the target operates in a non-stop
1601 way. */
1602 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1603 && !target_is_non_stop_p ())
1604 return false;
1605
1606 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1607
1608 /* If the architecture doesn't implement displaced stepping, don't use
1609 it. */
1610 if (!gdbarch_supports_displaced_stepping (gdbarch))
1611 return false;
1612
1613 /* If recording, don't use displaced stepping. */
1614 if (find_record_target () != nullptr)
1615 return false;
1616
1617 displaced_step_inferior_state *displaced_state
1618 = get_displaced_stepping_state (tp->inf);
1619
1620 /* If displaced stepping failed before for this inferior, don't bother trying
1621 again. */
1622 if (displaced_state->failed_before)
1623 return false;
1624
1625 return true;
1626 }
1627
1628 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1629
1630 static void
1631 displaced_step_reset (displaced_step_inferior_state *displaced)
1632 {
1633 displaced->reset ();
1634 }
1635
1636 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1637 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1638
1639 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1640
1641 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1642 void
1643 displaced_step_dump_bytes (struct ui_file *file,
1644 const gdb_byte *buf,
1645 size_t len)
1646 {
1647 int i;
1648
1649 for (i = 0; i < len; i++)
1650 fprintf_unfiltered (file, "%02x ", buf[i]);
1651 fputs_unfiltered ("\n", file);
1652 }
1653
1654 /* Prepare to single-step, using displaced stepping.
1655
1656 Note that we cannot use displaced stepping when we have a signal to
1657 deliver. If we have a signal to deliver and an instruction to step
1658 over, then after the step, there will be no indication from the
1659 target whether the thread entered a signal handler or ignored the
1660 signal and stepped over the instruction successfully --- both cases
1661 result in a simple SIGTRAP. In the first case we mustn't do a
1662 fixup, and in the second case we must --- but we can't tell which.
1663 Comments in the code for 'random signals' in handle_inferior_event
1664 explain how we handle this case instead.
1665
1666 Returns 1 if preparing was successful -- this thread is going to be
1667 stepped now; 0 if displaced stepping this thread got queued; or -1
1668 if this instruction can't be displaced stepped. */
1669
1670 static int
1671 displaced_step_prepare_throw (thread_info *tp)
1672 {
1673 regcache *regcache = get_thread_regcache (tp);
1674 struct gdbarch *gdbarch = regcache->arch ();
1675 const address_space *aspace = regcache->aspace ();
1676 CORE_ADDR original, copy;
1677 ULONGEST len;
1678 int status;
1679
1680 /* We should never reach this function if the architecture does not
1681 support displaced stepping. */
1682 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1683
1684 /* Nor if the thread isn't meant to step over a breakpoint. */
1685 gdb_assert (tp->control.trap_expected);
1686
1687 /* Disable range stepping while executing in the scratch pad. We
1688 want a single-step even if executing the displaced instruction in
1689 the scratch buffer lands within the stepping range (e.g., a
1690 jump/branch). */
1691 tp->control.may_range_step = 0;
1692
1693 /* We have to displaced step one thread at a time, as we only have
1694 access to a single scratch space per inferior. */
1695
1696 displaced_step_inferior_state *displaced
1697 = get_displaced_stepping_state (tp->inf);
1698
1699 if (displaced->step_thread != nullptr)
1700 {
1701 /* Already waiting for a displaced step to finish. Defer this
1702 request and place in queue. */
1703
1704 if (debug_displaced)
1705 fprintf_unfiltered (gdb_stdlog,
1706 "displaced: deferring step of %s\n",
1707 target_pid_to_str (tp->ptid).c_str ());
1708
1709 thread_step_over_chain_enqueue (tp);
1710 return 0;
1711 }
1712 else
1713 {
1714 if (debug_displaced)
1715 fprintf_unfiltered (gdb_stdlog,
1716 "displaced: stepping %s now\n",
1717 target_pid_to_str (tp->ptid).c_str ());
1718 }
1719
1720 displaced_step_reset (displaced);
1721
1722 scoped_restore_current_thread restore_thread;
1723
1724 switch_to_thread (tp);
1725
1726 original = regcache_read_pc (regcache);
1727
1728 copy = gdbarch_displaced_step_location (gdbarch);
1729 len = gdbarch_max_insn_length (gdbarch);
1730
1731 if (breakpoint_in_range_p (aspace, copy, len))
1732 {
1733 /* There's a breakpoint set in the scratch pad location range
1734 (which is usually around the entry point). We'd either
1735 install it before resuming, which would overwrite/corrupt the
1736 scratch pad, or if it was already inserted, this displaced
1737 step would overwrite it. The latter is OK in the sense that
1738 we already assume that no thread is going to execute the code
1739 in the scratch pad range (after initial startup) anyway, but
1740 the former is unacceptable. Simply punt and fallback to
1741 stepping over this breakpoint in-line. */
1742 if (debug_displaced)
1743 {
1744 fprintf_unfiltered (gdb_stdlog,
1745 "displaced: breakpoint set in scratch pad. "
1746 "Stepping over breakpoint in-line instead.\n");
1747 }
1748
1749 return -1;
1750 }
1751
1752 /* Save the original contents of the copy area. */
1753 displaced->step_saved_copy.resize (len);
1754 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1755 if (status != 0)
1756 throw_error (MEMORY_ERROR,
1757 _("Error accessing memory address %s (%s) for "
1758 "displaced-stepping scratch space."),
1759 paddress (gdbarch, copy), safe_strerror (status));
1760 if (debug_displaced)
1761 {
1762 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1763 paddress (gdbarch, copy));
1764 displaced_step_dump_bytes (gdb_stdlog,
1765 displaced->step_saved_copy.data (),
1766 len);
1767 };
1768
1769 displaced->step_closure
1770 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1771 if (displaced->step_closure == NULL)
1772 {
1773 /* The architecture doesn't know how or want to displaced step
1774 this instruction or instruction sequence. Fallback to
1775 stepping over the breakpoint in-line. */
1776 return -1;
1777 }
1778
1779 /* Save the information we need to fix things up if the step
1780 succeeds. */
1781 displaced->step_thread = tp;
1782 displaced->step_gdbarch = gdbarch;
1783 displaced->step_original = original;
1784 displaced->step_copy = copy;
1785
1786 {
1787 displaced_step_reset_cleanup cleanup (displaced);
1788
1789 /* Resume execution at the copy. */
1790 regcache_write_pc (regcache, copy);
1791
1792 cleanup.release ();
1793 }
1794
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1797 paddress (gdbarch, copy));
1798
1799 return 1;
1800 }
1801
1802 /* Wrapper for displaced_step_prepare_throw that disabled further
1803 attempts at displaced stepping if we get a memory error. */
1804
1805 static int
1806 displaced_step_prepare (thread_info *thread)
1807 {
1808 int prepared = -1;
1809
1810 try
1811 {
1812 prepared = displaced_step_prepare_throw (thread);
1813 }
1814 catch (const gdb_exception_error &ex)
1815 {
1816 struct displaced_step_inferior_state *displaced_state;
1817
1818 if (ex.error != MEMORY_ERROR
1819 && ex.error != NOT_SUPPORTED_ERROR)
1820 throw;
1821
1822 if (debug_infrun)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "infrun: disabling displaced stepping: %s\n",
1826 ex.what ());
1827 }
1828
1829 /* Be verbose if "set displaced-stepping" is "on", silent if
1830 "auto". */
1831 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1832 {
1833 warning (_("disabling displaced stepping: %s"),
1834 ex.what ());
1835 }
1836
1837 /* Disable further displaced stepping attempts. */
1838 displaced_state
1839 = get_displaced_stepping_state (thread->inf);
1840 displaced_state->failed_before = 1;
1841 }
1842
1843 return prepared;
1844 }
1845
1846 static void
1847 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1848 const gdb_byte *myaddr, int len)
1849 {
1850 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1851
1852 inferior_ptid = ptid;
1853 write_memory (memaddr, myaddr, len);
1854 }
1855
1856 /* Restore the contents of the copy area for thread PTID. */
1857
1858 static void
1859 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1860 ptid_t ptid)
1861 {
1862 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1863
1864 write_memory_ptid (ptid, displaced->step_copy,
1865 displaced->step_saved_copy.data (), len);
1866 if (debug_displaced)
1867 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1868 target_pid_to_str (ptid).c_str (),
1869 paddress (displaced->step_gdbarch,
1870 displaced->step_copy));
1871 }
1872
1873 /* If we displaced stepped an instruction successfully, adjust
1874 registers and memory to yield the same effect the instruction would
1875 have had if we had executed it at its original address, and return
1876 1. If the instruction didn't complete, relocate the PC and return
1877 -1. If the thread wasn't displaced stepping, return 0. */
1878
1879 static int
1880 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1881 {
1882 struct displaced_step_inferior_state *displaced
1883 = get_displaced_stepping_state (event_thread->inf);
1884 int ret;
1885
1886 /* Was this event for the thread we displaced? */
1887 if (displaced->step_thread != event_thread)
1888 return 0;
1889
1890 displaced_step_reset_cleanup cleanup (displaced);
1891
1892 displaced_step_restore (displaced, displaced->step_thread->ptid);
1893
1894 /* Fixup may need to read memory/registers. Switch to the thread
1895 that we're fixing up. Also, target_stopped_by_watchpoint checks
1896 the current thread. */
1897 switch_to_thread (event_thread);
1898
1899 /* Did the instruction complete successfully? */
1900 if (signal == GDB_SIGNAL_TRAP
1901 && !(target_stopped_by_watchpoint ()
1902 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1903 || target_have_steppable_watchpoint)))
1904 {
1905 /* Fix up the resulting state. */
1906 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1907 displaced->step_closure.get (),
1908 displaced->step_original,
1909 displaced->step_copy,
1910 get_thread_regcache (displaced->step_thread));
1911 ret = 1;
1912 }
1913 else
1914 {
1915 /* Since the instruction didn't complete, all we can do is
1916 relocate the PC. */
1917 struct regcache *regcache = get_thread_regcache (event_thread);
1918 CORE_ADDR pc = regcache_read_pc (regcache);
1919
1920 pc = displaced->step_original + (pc - displaced->step_copy);
1921 regcache_write_pc (regcache, pc);
1922 ret = -1;
1923 }
1924
1925 return ret;
1926 }
1927
1928 /* Data to be passed around while handling an event. This data is
1929 discarded between events. */
1930 struct execution_control_state
1931 {
1932 process_stratum_target *target;
1933 ptid_t ptid;
1934 /* The thread that got the event, if this was a thread event; NULL
1935 otherwise. */
1936 struct thread_info *event_thread;
1937
1938 struct target_waitstatus ws;
1939 int stop_func_filled_in;
1940 CORE_ADDR stop_func_start;
1941 CORE_ADDR stop_func_end;
1942 const char *stop_func_name;
1943 int wait_some_more;
1944
1945 /* True if the event thread hit the single-step breakpoint of
1946 another thread. Thus the event doesn't cause a stop, the thread
1947 needs to be single-stepped past the single-step breakpoint before
1948 we can switch back to the original stepping thread. */
1949 int hit_singlestep_breakpoint;
1950 };
1951
1952 /* Clear ECS and set it to point at TP. */
1953
1954 static void
1955 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1956 {
1957 memset (ecs, 0, sizeof (*ecs));
1958 ecs->event_thread = tp;
1959 ecs->ptid = tp->ptid;
1960 }
1961
1962 static void keep_going_pass_signal (struct execution_control_state *ecs);
1963 static void prepare_to_wait (struct execution_control_state *ecs);
1964 static int keep_going_stepped_thread (struct thread_info *tp);
1965 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1966
1967 /* Are there any pending step-over requests? If so, run all we can
1968 now and return true. Otherwise, return false. */
1969
1970 static int
1971 start_step_over (void)
1972 {
1973 struct thread_info *tp, *next;
1974
1975 /* Don't start a new step-over if we already have an in-line
1976 step-over operation ongoing. */
1977 if (step_over_info_valid_p ())
1978 return 0;
1979
1980 for (tp = step_over_queue_head; tp != NULL; tp = next)
1981 {
1982 struct execution_control_state ecss;
1983 struct execution_control_state *ecs = &ecss;
1984 step_over_what step_what;
1985 int must_be_in_line;
1986
1987 gdb_assert (!tp->stop_requested);
1988
1989 next = thread_step_over_chain_next (tp);
1990
1991 /* If this inferior already has a displaced step in process,
1992 don't start a new one. */
1993 if (displaced_step_in_progress (tp->inf))
1994 continue;
1995
1996 step_what = thread_still_needs_step_over (tp);
1997 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1998 || ((step_what & STEP_OVER_BREAKPOINT)
1999 && !use_displaced_stepping (tp)));
2000
2001 /* We currently stop all threads of all processes to step-over
2002 in-line. If we need to start a new in-line step-over, let
2003 any pending displaced steps finish first. */
2004 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2005 return 0;
2006
2007 thread_step_over_chain_remove (tp);
2008
2009 if (step_over_queue_head == NULL)
2010 {
2011 if (debug_infrun)
2012 fprintf_unfiltered (gdb_stdlog,
2013 "infrun: step-over queue now empty\n");
2014 }
2015
2016 if (tp->control.trap_expected
2017 || tp->resumed
2018 || tp->executing)
2019 {
2020 internal_error (__FILE__, __LINE__,
2021 "[%s] has inconsistent state: "
2022 "trap_expected=%d, resumed=%d, executing=%d\n",
2023 target_pid_to_str (tp->ptid).c_str (),
2024 tp->control.trap_expected,
2025 tp->resumed,
2026 tp->executing);
2027 }
2028
2029 if (debug_infrun)
2030 fprintf_unfiltered (gdb_stdlog,
2031 "infrun: resuming [%s] for step-over\n",
2032 target_pid_to_str (tp->ptid).c_str ());
2033
2034 /* keep_going_pass_signal skips the step-over if the breakpoint
2035 is no longer inserted. In all-stop, we want to keep looking
2036 for a thread that needs a step-over instead of resuming TP,
2037 because we wouldn't be able to resume anything else until the
2038 target stops again. In non-stop, the resume always resumes
2039 only TP, so it's OK to let the thread resume freely. */
2040 if (!target_is_non_stop_p () && !step_what)
2041 continue;
2042
2043 switch_to_thread (tp);
2044 reset_ecs (ecs, tp);
2045 keep_going_pass_signal (ecs);
2046
2047 if (!ecs->wait_some_more)
2048 error (_("Command aborted."));
2049
2050 gdb_assert (tp->resumed);
2051
2052 /* If we started a new in-line step-over, we're done. */
2053 if (step_over_info_valid_p ())
2054 {
2055 gdb_assert (tp->control.trap_expected);
2056 return 1;
2057 }
2058
2059 if (!target_is_non_stop_p ())
2060 {
2061 /* On all-stop, shouldn't have resumed unless we needed a
2062 step over. */
2063 gdb_assert (tp->control.trap_expected
2064 || tp->step_after_step_resume_breakpoint);
2065
2066 /* With remote targets (at least), in all-stop, we can't
2067 issue any further remote commands until the program stops
2068 again. */
2069 return 1;
2070 }
2071
2072 /* Either the thread no longer needed a step-over, or a new
2073 displaced stepping sequence started. Even in the latter
2074 case, continue looking. Maybe we can also start another
2075 displaced step on a thread of other process. */
2076 }
2077
2078 return 0;
2079 }
2080
2081 /* Update global variables holding ptids to hold NEW_PTID if they were
2082 holding OLD_PTID. */
2083 static void
2084 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2085 {
2086 if (inferior_ptid == old_ptid)
2087 inferior_ptid = new_ptid;
2088 }
2089
2090 \f
2091
2092 static const char schedlock_off[] = "off";
2093 static const char schedlock_on[] = "on";
2094 static const char schedlock_step[] = "step";
2095 static const char schedlock_replay[] = "replay";
2096 static const char *const scheduler_enums[] = {
2097 schedlock_off,
2098 schedlock_on,
2099 schedlock_step,
2100 schedlock_replay,
2101 NULL
2102 };
2103 static const char *scheduler_mode = schedlock_replay;
2104 static void
2105 show_scheduler_mode (struct ui_file *file, int from_tty,
2106 struct cmd_list_element *c, const char *value)
2107 {
2108 fprintf_filtered (file,
2109 _("Mode for locking scheduler "
2110 "during execution is \"%s\".\n"),
2111 value);
2112 }
2113
2114 static void
2115 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2116 {
2117 if (!target_can_lock_scheduler)
2118 {
2119 scheduler_mode = schedlock_off;
2120 error (_("Target '%s' cannot support this command."), target_shortname);
2121 }
2122 }
2123
2124 /* True if execution commands resume all threads of all processes by
2125 default; otherwise, resume only threads of the current inferior
2126 process. */
2127 bool sched_multi = false;
2128
2129 /* Try to setup for software single stepping over the specified location.
2130 Return 1 if target_resume() should use hardware single step.
2131
2132 GDBARCH the current gdbarch.
2133 PC the location to step over. */
2134
2135 static int
2136 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2137 {
2138 int hw_step = 1;
2139
2140 if (execution_direction == EXEC_FORWARD
2141 && gdbarch_software_single_step_p (gdbarch))
2142 hw_step = !insert_single_step_breakpoints (gdbarch);
2143
2144 return hw_step;
2145 }
2146
2147 /* See infrun.h. */
2148
2149 ptid_t
2150 user_visible_resume_ptid (int step)
2151 {
2152 ptid_t resume_ptid;
2153
2154 if (non_stop)
2155 {
2156 /* With non-stop mode on, threads are always handled
2157 individually. */
2158 resume_ptid = inferior_ptid;
2159 }
2160 else if ((scheduler_mode == schedlock_on)
2161 || (scheduler_mode == schedlock_step && step))
2162 {
2163 /* User-settable 'scheduler' mode requires solo thread
2164 resume. */
2165 resume_ptid = inferior_ptid;
2166 }
2167 else if ((scheduler_mode == schedlock_replay)
2168 && target_record_will_replay (minus_one_ptid, execution_direction))
2169 {
2170 /* User-settable 'scheduler' mode requires solo thread resume in replay
2171 mode. */
2172 resume_ptid = inferior_ptid;
2173 }
2174 else if (!sched_multi && target_supports_multi_process ())
2175 {
2176 /* Resume all threads of the current process (and none of other
2177 processes). */
2178 resume_ptid = ptid_t (inferior_ptid.pid ());
2179 }
2180 else
2181 {
2182 /* Resume all threads of all processes. */
2183 resume_ptid = RESUME_ALL;
2184 }
2185
2186 return resume_ptid;
2187 }
2188
2189 /* See infrun.h. */
2190
2191 process_stratum_target *
2192 user_visible_resume_target (ptid_t resume_ptid)
2193 {
2194 return (resume_ptid == minus_one_ptid && sched_multi
2195 ? NULL
2196 : current_inferior ()->process_target ());
2197 }
2198
2199 /* Return a ptid representing the set of threads that we will resume,
2200 in the perspective of the target, assuming run control handling
2201 does not require leaving some threads stopped (e.g., stepping past
2202 breakpoint). USER_STEP indicates whether we're about to start the
2203 target for a stepping command. */
2204
2205 static ptid_t
2206 internal_resume_ptid (int user_step)
2207 {
2208 /* In non-stop, we always control threads individually. Note that
2209 the target may always work in non-stop mode even with "set
2210 non-stop off", in which case user_visible_resume_ptid could
2211 return a wildcard ptid. */
2212 if (target_is_non_stop_p ())
2213 return inferior_ptid;
2214 else
2215 return user_visible_resume_ptid (user_step);
2216 }
2217
2218 /* Wrapper for target_resume, that handles infrun-specific
2219 bookkeeping. */
2220
2221 static void
2222 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2223 {
2224 struct thread_info *tp = inferior_thread ();
2225
2226 gdb_assert (!tp->stop_requested);
2227
2228 /* Install inferior's terminal modes. */
2229 target_terminal::inferior ();
2230
2231 /* Avoid confusing the next resume, if the next stop/resume
2232 happens to apply to another thread. */
2233 tp->suspend.stop_signal = GDB_SIGNAL_0;
2234
2235 /* Advise target which signals may be handled silently.
2236
2237 If we have removed breakpoints because we are stepping over one
2238 in-line (in any thread), we need to receive all signals to avoid
2239 accidentally skipping a breakpoint during execution of a signal
2240 handler.
2241
2242 Likewise if we're displaced stepping, otherwise a trap for a
2243 breakpoint in a signal handler might be confused with the
2244 displaced step finishing. We don't make the displaced_step_fixup
2245 step distinguish the cases instead, because:
2246
2247 - a backtrace while stopped in the signal handler would show the
2248 scratch pad as frame older than the signal handler, instead of
2249 the real mainline code.
2250
2251 - when the thread is later resumed, the signal handler would
2252 return to the scratch pad area, which would no longer be
2253 valid. */
2254 if (step_over_info_valid_p ()
2255 || displaced_step_in_progress (tp->inf))
2256 target_pass_signals ({});
2257 else
2258 target_pass_signals (signal_pass);
2259
2260 target_resume (resume_ptid, step, sig);
2261
2262 target_commit_resume ();
2263
2264 if (target_can_async_p ())
2265 target_async (1);
2266 }
2267
2268 /* Resume the inferior. SIG is the signal to give the inferior
2269 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2270 call 'resume', which handles exceptions. */
2271
2272 static void
2273 resume_1 (enum gdb_signal sig)
2274 {
2275 struct regcache *regcache = get_current_regcache ();
2276 struct gdbarch *gdbarch = regcache->arch ();
2277 struct thread_info *tp = inferior_thread ();
2278 CORE_ADDR pc = regcache_read_pc (regcache);
2279 const address_space *aspace = regcache->aspace ();
2280 ptid_t resume_ptid;
2281 /* This represents the user's step vs continue request. When
2282 deciding whether "set scheduler-locking step" applies, it's the
2283 user's intention that counts. */
2284 const int user_step = tp->control.stepping_command;
2285 /* This represents what we'll actually request the target to do.
2286 This can decay from a step to a continue, if e.g., we need to
2287 implement single-stepping with breakpoints (software
2288 single-step). */
2289 int step;
2290
2291 gdb_assert (!tp->stop_requested);
2292 gdb_assert (!thread_is_in_step_over_chain (tp));
2293
2294 if (tp->suspend.waitstatus_pending_p)
2295 {
2296 if (debug_infrun)
2297 {
2298 std::string statstr
2299 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2300
2301 fprintf_unfiltered (gdb_stdlog,
2302 "infrun: resume: thread %s has pending wait "
2303 "status %s (currently_stepping=%d).\n",
2304 target_pid_to_str (tp->ptid).c_str (),
2305 statstr.c_str (),
2306 currently_stepping (tp));
2307 }
2308
2309 tp->inf->process_target ()->threads_executing = true;
2310 tp->resumed = true;
2311
2312 /* FIXME: What should we do if we are supposed to resume this
2313 thread with a signal? Maybe we should maintain a queue of
2314 pending signals to deliver. */
2315 if (sig != GDB_SIGNAL_0)
2316 {
2317 warning (_("Couldn't deliver signal %s to %s."),
2318 gdb_signal_to_name (sig),
2319 target_pid_to_str (tp->ptid).c_str ());
2320 }
2321
2322 tp->suspend.stop_signal = GDB_SIGNAL_0;
2323
2324 if (target_can_async_p ())
2325 {
2326 target_async (1);
2327 /* Tell the event loop we have an event to process. */
2328 mark_async_event_handler (infrun_async_inferior_event_token);
2329 }
2330 return;
2331 }
2332
2333 tp->stepped_breakpoint = 0;
2334
2335 /* Depends on stepped_breakpoint. */
2336 step = currently_stepping (tp);
2337
2338 if (current_inferior ()->waiting_for_vfork_done)
2339 {
2340 /* Don't try to single-step a vfork parent that is waiting for
2341 the child to get out of the shared memory region (by exec'ing
2342 or exiting). This is particularly important on software
2343 single-step archs, as the child process would trip on the
2344 software single step breakpoint inserted for the parent
2345 process. Since the parent will not actually execute any
2346 instruction until the child is out of the shared region (such
2347 are vfork's semantics), it is safe to simply continue it.
2348 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2349 the parent, and tell it to `keep_going', which automatically
2350 re-sets it stepping. */
2351 if (debug_infrun)
2352 fprintf_unfiltered (gdb_stdlog,
2353 "infrun: resume : clear step\n");
2354 step = 0;
2355 }
2356
2357 if (debug_infrun)
2358 fprintf_unfiltered (gdb_stdlog,
2359 "infrun: resume (step=%d, signal=%s), "
2360 "trap_expected=%d, current thread [%s] at %s\n",
2361 step, gdb_signal_to_symbol_string (sig),
2362 tp->control.trap_expected,
2363 target_pid_to_str (inferior_ptid).c_str (),
2364 paddress (gdbarch, pc));
2365
2366 /* Normally, by the time we reach `resume', the breakpoints are either
2367 removed or inserted, as appropriate. The exception is if we're sitting
2368 at a permanent breakpoint; we need to step over it, but permanent
2369 breakpoints can't be removed. So we have to test for it here. */
2370 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2371 {
2372 if (sig != GDB_SIGNAL_0)
2373 {
2374 /* We have a signal to pass to the inferior. The resume
2375 may, or may not take us to the signal handler. If this
2376 is a step, we'll need to stop in the signal handler, if
2377 there's one, (if the target supports stepping into
2378 handlers), or in the next mainline instruction, if
2379 there's no handler. If this is a continue, we need to be
2380 sure to run the handler with all breakpoints inserted.
2381 In all cases, set a breakpoint at the current address
2382 (where the handler returns to), and once that breakpoint
2383 is hit, resume skipping the permanent breakpoint. If
2384 that breakpoint isn't hit, then we've stepped into the
2385 signal handler (or hit some other event). We'll delete
2386 the step-resume breakpoint then. */
2387
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: resume: skipping permanent breakpoint, "
2391 "deliver signal first\n");
2392
2393 clear_step_over_info ();
2394 tp->control.trap_expected = 0;
2395
2396 if (tp->control.step_resume_breakpoint == NULL)
2397 {
2398 /* Set a "high-priority" step-resume, as we don't want
2399 user breakpoints at PC to trigger (again) when this
2400 hits. */
2401 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2402 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2403
2404 tp->step_after_step_resume_breakpoint = step;
2405 }
2406
2407 insert_breakpoints ();
2408 }
2409 else
2410 {
2411 /* There's no signal to pass, we can go ahead and skip the
2412 permanent breakpoint manually. */
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "infrun: resume: skipping permanent breakpoint\n");
2416 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2417 /* Update pc to reflect the new address from which we will
2418 execute instructions. */
2419 pc = regcache_read_pc (regcache);
2420
2421 if (step)
2422 {
2423 /* We've already advanced the PC, so the stepping part
2424 is done. Now we need to arrange for a trap to be
2425 reported to handle_inferior_event. Set a breakpoint
2426 at the current PC, and run to it. Don't update
2427 prev_pc, because if we end in
2428 switch_back_to_stepped_thread, we want the "expected
2429 thread advanced also" branch to be taken. IOW, we
2430 don't want this thread to step further from PC
2431 (overstep). */
2432 gdb_assert (!step_over_info_valid_p ());
2433 insert_single_step_breakpoint (gdbarch, aspace, pc);
2434 insert_breakpoints ();
2435
2436 resume_ptid = internal_resume_ptid (user_step);
2437 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2438 tp->resumed = true;
2439 return;
2440 }
2441 }
2442 }
2443
2444 /* If we have a breakpoint to step over, make sure to do a single
2445 step only. Same if we have software watchpoints. */
2446 if (tp->control.trap_expected || bpstat_should_step ())
2447 tp->control.may_range_step = 0;
2448
2449 /* If displaced stepping is enabled, step over breakpoints by executing a
2450 copy of the instruction at a different address.
2451
2452 We can't use displaced stepping when we have a signal to deliver;
2453 the comments for displaced_step_prepare explain why. The
2454 comments in the handle_inferior event for dealing with 'random
2455 signals' explain what we do instead.
2456
2457 We can't use displaced stepping when we are waiting for vfork_done
2458 event, displaced stepping breaks the vfork child similarly as single
2459 step software breakpoint. */
2460 if (tp->control.trap_expected
2461 && use_displaced_stepping (tp)
2462 && !step_over_info_valid_p ()
2463 && sig == GDB_SIGNAL_0
2464 && !current_inferior ()->waiting_for_vfork_done)
2465 {
2466 int prepared = displaced_step_prepare (tp);
2467
2468 if (prepared == 0)
2469 {
2470 if (debug_infrun)
2471 fprintf_unfiltered (gdb_stdlog,
2472 "Got placed in step-over queue\n");
2473
2474 tp->control.trap_expected = 0;
2475 return;
2476 }
2477 else if (prepared < 0)
2478 {
2479 /* Fallback to stepping over the breakpoint in-line. */
2480
2481 if (target_is_non_stop_p ())
2482 stop_all_threads ();
2483
2484 set_step_over_info (regcache->aspace (),
2485 regcache_read_pc (regcache), 0, tp->global_num);
2486
2487 step = maybe_software_singlestep (gdbarch, pc);
2488
2489 insert_breakpoints ();
2490 }
2491 else if (prepared > 0)
2492 {
2493 struct displaced_step_inferior_state *displaced;
2494
2495 /* Update pc to reflect the new address from which we will
2496 execute instructions due to displaced stepping. */
2497 pc = regcache_read_pc (get_thread_regcache (tp));
2498
2499 displaced = get_displaced_stepping_state (tp->inf);
2500 step = gdbarch_displaced_step_hw_singlestep
2501 (gdbarch, displaced->step_closure.get ());
2502 }
2503 }
2504
2505 /* Do we need to do it the hard way, w/temp breakpoints? */
2506 else if (step)
2507 step = maybe_software_singlestep (gdbarch, pc);
2508
2509 /* Currently, our software single-step implementation leads to different
2510 results than hardware single-stepping in one situation: when stepping
2511 into delivering a signal which has an associated signal handler,
2512 hardware single-step will stop at the first instruction of the handler,
2513 while software single-step will simply skip execution of the handler.
2514
2515 For now, this difference in behavior is accepted since there is no
2516 easy way to actually implement single-stepping into a signal handler
2517 without kernel support.
2518
2519 However, there is one scenario where this difference leads to follow-on
2520 problems: if we're stepping off a breakpoint by removing all breakpoints
2521 and then single-stepping. In this case, the software single-step
2522 behavior means that even if there is a *breakpoint* in the signal
2523 handler, GDB still would not stop.
2524
2525 Fortunately, we can at least fix this particular issue. We detect
2526 here the case where we are about to deliver a signal while software
2527 single-stepping with breakpoints removed. In this situation, we
2528 revert the decisions to remove all breakpoints and insert single-
2529 step breakpoints, and instead we install a step-resume breakpoint
2530 at the current address, deliver the signal without stepping, and
2531 once we arrive back at the step-resume breakpoint, actually step
2532 over the breakpoint we originally wanted to step over. */
2533 if (thread_has_single_step_breakpoints_set (tp)
2534 && sig != GDB_SIGNAL_0
2535 && step_over_info_valid_p ())
2536 {
2537 /* If we have nested signals or a pending signal is delivered
2538 immediately after a handler returns, might already have
2539 a step-resume breakpoint set on the earlier handler. We cannot
2540 set another step-resume breakpoint; just continue on until the
2541 original breakpoint is hit. */
2542 if (tp->control.step_resume_breakpoint == NULL)
2543 {
2544 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2545 tp->step_after_step_resume_breakpoint = 1;
2546 }
2547
2548 delete_single_step_breakpoints (tp);
2549
2550 clear_step_over_info ();
2551 tp->control.trap_expected = 0;
2552
2553 insert_breakpoints ();
2554 }
2555
2556 /* If STEP is set, it's a request to use hardware stepping
2557 facilities. But in that case, we should never
2558 use singlestep breakpoint. */
2559 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2560
2561 /* Decide the set of threads to ask the target to resume. */
2562 if (tp->control.trap_expected)
2563 {
2564 /* We're allowing a thread to run past a breakpoint it has
2565 hit, either by single-stepping the thread with the breakpoint
2566 removed, or by displaced stepping, with the breakpoint inserted.
2567 In the former case, we need to single-step only this thread,
2568 and keep others stopped, as they can miss this breakpoint if
2569 allowed to run. That's not really a problem for displaced
2570 stepping, but, we still keep other threads stopped, in case
2571 another thread is also stopped for a breakpoint waiting for
2572 its turn in the displaced stepping queue. */
2573 resume_ptid = inferior_ptid;
2574 }
2575 else
2576 resume_ptid = internal_resume_ptid (user_step);
2577
2578 if (execution_direction != EXEC_REVERSE
2579 && step && breakpoint_inserted_here_p (aspace, pc))
2580 {
2581 /* There are two cases where we currently need to step a
2582 breakpoint instruction when we have a signal to deliver:
2583
2584 - See handle_signal_stop where we handle random signals that
2585 could take out us out of the stepping range. Normally, in
2586 that case we end up continuing (instead of stepping) over the
2587 signal handler with a breakpoint at PC, but there are cases
2588 where we should _always_ single-step, even if we have a
2589 step-resume breakpoint, like when a software watchpoint is
2590 set. Assuming single-stepping and delivering a signal at the
2591 same time would takes us to the signal handler, then we could
2592 have removed the breakpoint at PC to step over it. However,
2593 some hardware step targets (like e.g., Mac OS) can't step
2594 into signal handlers, and for those, we need to leave the
2595 breakpoint at PC inserted, as otherwise if the handler
2596 recurses and executes PC again, it'll miss the breakpoint.
2597 So we leave the breakpoint inserted anyway, but we need to
2598 record that we tried to step a breakpoint instruction, so
2599 that adjust_pc_after_break doesn't end up confused.
2600
2601 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2602 in one thread after another thread that was stepping had been
2603 momentarily paused for a step-over. When we re-resume the
2604 stepping thread, it may be resumed from that address with a
2605 breakpoint that hasn't trapped yet. Seen with
2606 gdb.threads/non-stop-fair-events.exp, on targets that don't
2607 do displaced stepping. */
2608
2609 if (debug_infrun)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "infrun: resume: [%s] stepped breakpoint\n",
2612 target_pid_to_str (tp->ptid).c_str ());
2613
2614 tp->stepped_breakpoint = 1;
2615
2616 /* Most targets can step a breakpoint instruction, thus
2617 executing it normally. But if this one cannot, just
2618 continue and we will hit it anyway. */
2619 if (gdbarch_cannot_step_breakpoint (gdbarch))
2620 step = 0;
2621 }
2622
2623 if (debug_displaced
2624 && tp->control.trap_expected
2625 && use_displaced_stepping (tp)
2626 && !step_over_info_valid_p ())
2627 {
2628 struct regcache *resume_regcache = get_thread_regcache (tp);
2629 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2630 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2631 gdb_byte buf[4];
2632
2633 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2634 paddress (resume_gdbarch, actual_pc));
2635 read_memory (actual_pc, buf, sizeof (buf));
2636 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2637 }
2638
2639 if (tp->control.may_range_step)
2640 {
2641 /* If we're resuming a thread with the PC out of the step
2642 range, then we're doing some nested/finer run control
2643 operation, like stepping the thread out of the dynamic
2644 linker or the displaced stepping scratch pad. We
2645 shouldn't have allowed a range step then. */
2646 gdb_assert (pc_in_thread_step_range (pc, tp));
2647 }
2648
2649 do_target_resume (resume_ptid, step, sig);
2650 tp->resumed = true;
2651 }
2652
2653 /* Resume the inferior. SIG is the signal to give the inferior
2654 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2655 rolls back state on error. */
2656
2657 static void
2658 resume (gdb_signal sig)
2659 {
2660 try
2661 {
2662 resume_1 (sig);
2663 }
2664 catch (const gdb_exception &ex)
2665 {
2666 /* If resuming is being aborted for any reason, delete any
2667 single-step breakpoint resume_1 may have created, to avoid
2668 confusing the following resumption, and to avoid leaving
2669 single-step breakpoints perturbing other threads, in case
2670 we're running in non-stop mode. */
2671 if (inferior_ptid != null_ptid)
2672 delete_single_step_breakpoints (inferior_thread ());
2673 throw;
2674 }
2675 }
2676
2677 \f
2678 /* Proceeding. */
2679
2680 /* See infrun.h. */
2681
2682 /* Counter that tracks number of user visible stops. This can be used
2683 to tell whether a command has proceeded the inferior past the
2684 current location. This allows e.g., inferior function calls in
2685 breakpoint commands to not interrupt the command list. When the
2686 call finishes successfully, the inferior is standing at the same
2687 breakpoint as if nothing happened (and so we don't call
2688 normal_stop). */
2689 static ULONGEST current_stop_id;
2690
2691 /* See infrun.h. */
2692
2693 ULONGEST
2694 get_stop_id (void)
2695 {
2696 return current_stop_id;
2697 }
2698
2699 /* Called when we report a user visible stop. */
2700
2701 static void
2702 new_stop_id (void)
2703 {
2704 current_stop_id++;
2705 }
2706
2707 /* Clear out all variables saying what to do when inferior is continued.
2708 First do this, then set the ones you want, then call `proceed'. */
2709
2710 static void
2711 clear_proceed_status_thread (struct thread_info *tp)
2712 {
2713 if (debug_infrun)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "infrun: clear_proceed_status_thread (%s)\n",
2716 target_pid_to_str (tp->ptid).c_str ());
2717
2718 /* If we're starting a new sequence, then the previous finished
2719 single-step is no longer relevant. */
2720 if (tp->suspend.waitstatus_pending_p)
2721 {
2722 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2723 {
2724 if (debug_infrun)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "infrun: clear_proceed_status: pending "
2727 "event of %s was a finished step. "
2728 "Discarding.\n",
2729 target_pid_to_str (tp->ptid).c_str ());
2730
2731 tp->suspend.waitstatus_pending_p = 0;
2732 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2733 }
2734 else if (debug_infrun)
2735 {
2736 std::string statstr
2737 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2738
2739 fprintf_unfiltered (gdb_stdlog,
2740 "infrun: clear_proceed_status_thread: thread %s "
2741 "has pending wait status %s "
2742 "(currently_stepping=%d).\n",
2743 target_pid_to_str (tp->ptid).c_str (),
2744 statstr.c_str (),
2745 currently_stepping (tp));
2746 }
2747 }
2748
2749 /* If this signal should not be seen by program, give it zero.
2750 Used for debugging signals. */
2751 if (!signal_pass_state (tp->suspend.stop_signal))
2752 tp->suspend.stop_signal = GDB_SIGNAL_0;
2753
2754 delete tp->thread_fsm;
2755 tp->thread_fsm = NULL;
2756
2757 tp->control.trap_expected = 0;
2758 tp->control.step_range_start = 0;
2759 tp->control.step_range_end = 0;
2760 tp->control.may_range_step = 0;
2761 tp->control.step_frame_id = null_frame_id;
2762 tp->control.step_stack_frame_id = null_frame_id;
2763 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2764 tp->control.step_start_function = NULL;
2765 tp->stop_requested = 0;
2766
2767 tp->control.stop_step = 0;
2768
2769 tp->control.proceed_to_finish = 0;
2770
2771 tp->control.stepping_command = 0;
2772
2773 /* Discard any remaining commands or status from previous stop. */
2774 bpstat_clear (&tp->control.stop_bpstat);
2775 }
2776
2777 void
2778 clear_proceed_status (int step)
2779 {
2780 /* With scheduler-locking replay, stop replaying other threads if we're
2781 not replaying the user-visible resume ptid.
2782
2783 This is a convenience feature to not require the user to explicitly
2784 stop replaying the other threads. We're assuming that the user's
2785 intent is to resume tracing the recorded process. */
2786 if (!non_stop && scheduler_mode == schedlock_replay
2787 && target_record_is_replaying (minus_one_ptid)
2788 && !target_record_will_replay (user_visible_resume_ptid (step),
2789 execution_direction))
2790 target_record_stop_replaying ();
2791
2792 if (!non_stop && inferior_ptid != null_ptid)
2793 {
2794 ptid_t resume_ptid = user_visible_resume_ptid (step);
2795 process_stratum_target *resume_target
2796 = user_visible_resume_target (resume_ptid);
2797
2798 /* In all-stop mode, delete the per-thread status of all threads
2799 we're about to resume, implicitly and explicitly. */
2800 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2801 clear_proceed_status_thread (tp);
2802 }
2803
2804 if (inferior_ptid != null_ptid)
2805 {
2806 struct inferior *inferior;
2807
2808 if (non_stop)
2809 {
2810 /* If in non-stop mode, only delete the per-thread status of
2811 the current thread. */
2812 clear_proceed_status_thread (inferior_thread ());
2813 }
2814
2815 inferior = current_inferior ();
2816 inferior->control.stop_soon = NO_STOP_QUIETLY;
2817 }
2818
2819 gdb::observers::about_to_proceed.notify ();
2820 }
2821
2822 /* Returns true if TP is still stopped at a breakpoint that needs
2823 stepping-over in order to make progress. If the breakpoint is gone
2824 meanwhile, we can skip the whole step-over dance. */
2825
2826 static int
2827 thread_still_needs_step_over_bp (struct thread_info *tp)
2828 {
2829 if (tp->stepping_over_breakpoint)
2830 {
2831 struct regcache *regcache = get_thread_regcache (tp);
2832
2833 if (breakpoint_here_p (regcache->aspace (),
2834 regcache_read_pc (regcache))
2835 == ordinary_breakpoint_here)
2836 return 1;
2837
2838 tp->stepping_over_breakpoint = 0;
2839 }
2840
2841 return 0;
2842 }
2843
2844 /* Check whether thread TP still needs to start a step-over in order
2845 to make progress when resumed. Returns an bitwise or of enum
2846 step_over_what bits, indicating what needs to be stepped over. */
2847
2848 static step_over_what
2849 thread_still_needs_step_over (struct thread_info *tp)
2850 {
2851 step_over_what what = 0;
2852
2853 if (thread_still_needs_step_over_bp (tp))
2854 what |= STEP_OVER_BREAKPOINT;
2855
2856 if (tp->stepping_over_watchpoint
2857 && !target_have_steppable_watchpoint)
2858 what |= STEP_OVER_WATCHPOINT;
2859
2860 return what;
2861 }
2862
2863 /* Returns true if scheduler locking applies. STEP indicates whether
2864 we're about to do a step/next-like command to a thread. */
2865
2866 static int
2867 schedlock_applies (struct thread_info *tp)
2868 {
2869 return (scheduler_mode == schedlock_on
2870 || (scheduler_mode == schedlock_step
2871 && tp->control.stepping_command)
2872 || (scheduler_mode == schedlock_replay
2873 && target_record_will_replay (minus_one_ptid,
2874 execution_direction)));
2875 }
2876
2877 /* Calls target_commit_resume on all targets. */
2878
2879 static void
2880 commit_resume_all_targets ()
2881 {
2882 scoped_restore_current_thread restore_thread;
2883
2884 /* Map between process_target and a representative inferior. This
2885 is to avoid committing a resume in the same target more than
2886 once. Resumptions must be idempotent, so this is an
2887 optimization. */
2888 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2889
2890 for (inferior *inf : all_non_exited_inferiors ())
2891 if (inf->has_execution ())
2892 conn_inf[inf->process_target ()] = inf;
2893
2894 for (const auto &ci : conn_inf)
2895 {
2896 inferior *inf = ci.second;
2897 switch_to_inferior_no_thread (inf);
2898 target_commit_resume ();
2899 }
2900 }
2901
2902 /* Check that all the targets we're about to resume are in non-stop
2903 mode. Ideally, we'd only care whether all targets support
2904 target-async, but we're not there yet. E.g., stop_all_threads
2905 doesn't know how to handle all-stop targets. Also, the remote
2906 protocol in all-stop mode is synchronous, irrespective of
2907 target-async, which means that things like a breakpoint re-set
2908 triggered by one target would try to read memory from all targets
2909 and fail. */
2910
2911 static void
2912 check_multi_target_resumption (process_stratum_target *resume_target)
2913 {
2914 if (!non_stop && resume_target == nullptr)
2915 {
2916 scoped_restore_current_thread restore_thread;
2917
2918 /* This is used to track whether we're resuming more than one
2919 target. */
2920 process_stratum_target *first_connection = nullptr;
2921
2922 /* The first inferior we see with a target that does not work in
2923 always-non-stop mode. */
2924 inferior *first_not_non_stop = nullptr;
2925
2926 for (inferior *inf : all_non_exited_inferiors (resume_target))
2927 {
2928 switch_to_inferior_no_thread (inf);
2929
2930 if (!target_has_execution)
2931 continue;
2932
2933 process_stratum_target *proc_target
2934 = current_inferior ()->process_target();
2935
2936 if (!target_is_non_stop_p ())
2937 first_not_non_stop = inf;
2938
2939 if (first_connection == nullptr)
2940 first_connection = proc_target;
2941 else if (first_connection != proc_target
2942 && first_not_non_stop != nullptr)
2943 {
2944 switch_to_inferior_no_thread (first_not_non_stop);
2945
2946 proc_target = current_inferior ()->process_target();
2947
2948 error (_("Connection %d (%s) does not support "
2949 "multi-target resumption."),
2950 proc_target->connection_number,
2951 make_target_connection_string (proc_target).c_str ());
2952 }
2953 }
2954 }
2955 }
2956
2957 /* Basic routine for continuing the program in various fashions.
2958
2959 ADDR is the address to resume at, or -1 for resume where stopped.
2960 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2961 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2962
2963 You should call clear_proceed_status before calling proceed. */
2964
2965 void
2966 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2967 {
2968 struct regcache *regcache;
2969 struct gdbarch *gdbarch;
2970 CORE_ADDR pc;
2971 struct execution_control_state ecss;
2972 struct execution_control_state *ecs = &ecss;
2973 int started;
2974
2975 /* If we're stopped at a fork/vfork, follow the branch set by the
2976 "set follow-fork-mode" command; otherwise, we'll just proceed
2977 resuming the current thread. */
2978 if (!follow_fork ())
2979 {
2980 /* The target for some reason decided not to resume. */
2981 normal_stop ();
2982 if (target_can_async_p ())
2983 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2984 return;
2985 }
2986
2987 /* We'll update this if & when we switch to a new thread. */
2988 previous_inferior_ptid = inferior_ptid;
2989
2990 regcache = get_current_regcache ();
2991 gdbarch = regcache->arch ();
2992 const address_space *aspace = regcache->aspace ();
2993
2994 pc = regcache_read_pc (regcache);
2995 thread_info *cur_thr = inferior_thread ();
2996
2997 /* Fill in with reasonable starting values. */
2998 init_thread_stepping_state (cur_thr);
2999
3000 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3001
3002 ptid_t resume_ptid
3003 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3004 process_stratum_target *resume_target
3005 = user_visible_resume_target (resume_ptid);
3006
3007 check_multi_target_resumption (resume_target);
3008
3009 if (addr == (CORE_ADDR) -1)
3010 {
3011 if (pc == cur_thr->suspend.stop_pc
3012 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3013 && execution_direction != EXEC_REVERSE)
3014 /* There is a breakpoint at the address we will resume at,
3015 step one instruction before inserting breakpoints so that
3016 we do not stop right away (and report a second hit at this
3017 breakpoint).
3018
3019 Note, we don't do this in reverse, because we won't
3020 actually be executing the breakpoint insn anyway.
3021 We'll be (un-)executing the previous instruction. */
3022 cur_thr->stepping_over_breakpoint = 1;
3023 else if (gdbarch_single_step_through_delay_p (gdbarch)
3024 && gdbarch_single_step_through_delay (gdbarch,
3025 get_current_frame ()))
3026 /* We stepped onto an instruction that needs to be stepped
3027 again before re-inserting the breakpoint, do so. */
3028 cur_thr->stepping_over_breakpoint = 1;
3029 }
3030 else
3031 {
3032 regcache_write_pc (regcache, addr);
3033 }
3034
3035 if (siggnal != GDB_SIGNAL_DEFAULT)
3036 cur_thr->suspend.stop_signal = siggnal;
3037
3038 /* If an exception is thrown from this point on, make sure to
3039 propagate GDB's knowledge of the executing state to the
3040 frontend/user running state. */
3041 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3042
3043 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3044 threads (e.g., we might need to set threads stepping over
3045 breakpoints first), from the user/frontend's point of view, all
3046 threads in RESUME_PTID are now running. Unless we're calling an
3047 inferior function, as in that case we pretend the inferior
3048 doesn't run at all. */
3049 if (!cur_thr->control.in_infcall)
3050 set_running (resume_target, resume_ptid, true);
3051
3052 if (debug_infrun)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "infrun: proceed (addr=%s, signal=%s)\n",
3055 paddress (gdbarch, addr),
3056 gdb_signal_to_symbol_string (siggnal));
3057
3058 annotate_starting ();
3059
3060 /* Make sure that output from GDB appears before output from the
3061 inferior. */
3062 gdb_flush (gdb_stdout);
3063
3064 /* Since we've marked the inferior running, give it the terminal. A
3065 QUIT/Ctrl-C from here on is forwarded to the target (which can
3066 still detect attempts to unblock a stuck connection with repeated
3067 Ctrl-C from within target_pass_ctrlc). */
3068 target_terminal::inferior ();
3069
3070 /* In a multi-threaded task we may select another thread and
3071 then continue or step.
3072
3073 But if a thread that we're resuming had stopped at a breakpoint,
3074 it will immediately cause another breakpoint stop without any
3075 execution (i.e. it will report a breakpoint hit incorrectly). So
3076 we must step over it first.
3077
3078 Look for threads other than the current (TP) that reported a
3079 breakpoint hit and haven't been resumed yet since. */
3080
3081 /* If scheduler locking applies, we can avoid iterating over all
3082 threads. */
3083 if (!non_stop && !schedlock_applies (cur_thr))
3084 {
3085 for (thread_info *tp : all_non_exited_threads (resume_target,
3086 resume_ptid))
3087 {
3088 switch_to_thread_no_regs (tp);
3089
3090 /* Ignore the current thread here. It's handled
3091 afterwards. */
3092 if (tp == cur_thr)
3093 continue;
3094
3095 if (!thread_still_needs_step_over (tp))
3096 continue;
3097
3098 gdb_assert (!thread_is_in_step_over_chain (tp));
3099
3100 if (debug_infrun)
3101 fprintf_unfiltered (gdb_stdlog,
3102 "infrun: need to step-over [%s] first\n",
3103 target_pid_to_str (tp->ptid).c_str ());
3104
3105 thread_step_over_chain_enqueue (tp);
3106 }
3107
3108 switch_to_thread (cur_thr);
3109 }
3110
3111 /* Enqueue the current thread last, so that we move all other
3112 threads over their breakpoints first. */
3113 if (cur_thr->stepping_over_breakpoint)
3114 thread_step_over_chain_enqueue (cur_thr);
3115
3116 /* If the thread isn't started, we'll still need to set its prev_pc,
3117 so that switch_back_to_stepped_thread knows the thread hasn't
3118 advanced. Must do this before resuming any thread, as in
3119 all-stop/remote, once we resume we can't send any other packet
3120 until the target stops again. */
3121 cur_thr->prev_pc = regcache_read_pc (regcache);
3122
3123 {
3124 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3125
3126 started = start_step_over ();
3127
3128 if (step_over_info_valid_p ())
3129 {
3130 /* Either this thread started a new in-line step over, or some
3131 other thread was already doing one. In either case, don't
3132 resume anything else until the step-over is finished. */
3133 }
3134 else if (started && !target_is_non_stop_p ())
3135 {
3136 /* A new displaced stepping sequence was started. In all-stop,
3137 we can't talk to the target anymore until it next stops. */
3138 }
3139 else if (!non_stop && target_is_non_stop_p ())
3140 {
3141 /* In all-stop, but the target is always in non-stop mode.
3142 Start all other threads that are implicitly resumed too. */
3143 for (thread_info *tp : all_non_exited_threads (resume_target,
3144 resume_ptid))
3145 {
3146 switch_to_thread_no_regs (tp);
3147
3148 if (!tp->inf->has_execution ())
3149 {
3150 if (debug_infrun)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "infrun: proceed: [%s] target has "
3153 "no execution\n",
3154 target_pid_to_str (tp->ptid).c_str ());
3155 continue;
3156 }
3157
3158 if (tp->resumed)
3159 {
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "infrun: proceed: [%s] resumed\n",
3163 target_pid_to_str (tp->ptid).c_str ());
3164 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3165 continue;
3166 }
3167
3168 if (thread_is_in_step_over_chain (tp))
3169 {
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: [%s] needs step-over\n",
3173 target_pid_to_str (tp->ptid).c_str ());
3174 continue;
3175 }
3176
3177 if (debug_infrun)
3178 fprintf_unfiltered (gdb_stdlog,
3179 "infrun: proceed: resuming %s\n",
3180 target_pid_to_str (tp->ptid).c_str ());
3181
3182 reset_ecs (ecs, tp);
3183 switch_to_thread (tp);
3184 keep_going_pass_signal (ecs);
3185 if (!ecs->wait_some_more)
3186 error (_("Command aborted."));
3187 }
3188 }
3189 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3190 {
3191 /* The thread wasn't started, and isn't queued, run it now. */
3192 reset_ecs (ecs, cur_thr);
3193 switch_to_thread (cur_thr);
3194 keep_going_pass_signal (ecs);
3195 if (!ecs->wait_some_more)
3196 error (_("Command aborted."));
3197 }
3198 }
3199
3200 commit_resume_all_targets ();
3201
3202 finish_state.release ();
3203
3204 /* If we've switched threads above, switch back to the previously
3205 current thread. We don't want the user to see a different
3206 selected thread. */
3207 switch_to_thread (cur_thr);
3208
3209 /* Tell the event loop to wait for it to stop. If the target
3210 supports asynchronous execution, it'll do this from within
3211 target_resume. */
3212 if (!target_can_async_p ())
3213 mark_async_event_handler (infrun_async_inferior_event_token);
3214 }
3215 \f
3216
3217 /* Start remote-debugging of a machine over a serial link. */
3218
3219 void
3220 start_remote (int from_tty)
3221 {
3222 inferior *inf = current_inferior ();
3223 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3224
3225 /* Always go on waiting for the target, regardless of the mode. */
3226 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3227 indicate to wait_for_inferior that a target should timeout if
3228 nothing is returned (instead of just blocking). Because of this,
3229 targets expecting an immediate response need to, internally, set
3230 things up so that the target_wait() is forced to eventually
3231 timeout. */
3232 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3233 differentiate to its caller what the state of the target is after
3234 the initial open has been performed. Here we're assuming that
3235 the target has stopped. It should be possible to eventually have
3236 target_open() return to the caller an indication that the target
3237 is currently running and GDB state should be set to the same as
3238 for an async run. */
3239 wait_for_inferior (inf);
3240
3241 /* Now that the inferior has stopped, do any bookkeeping like
3242 loading shared libraries. We want to do this before normal_stop,
3243 so that the displayed frame is up to date. */
3244 post_create_inferior (current_top_target (), from_tty);
3245
3246 normal_stop ();
3247 }
3248
3249 /* Initialize static vars when a new inferior begins. */
3250
3251 void
3252 init_wait_for_inferior (void)
3253 {
3254 /* These are meaningless until the first time through wait_for_inferior. */
3255
3256 breakpoint_init_inferior (inf_starting);
3257
3258 clear_proceed_status (0);
3259
3260 nullify_last_target_wait_ptid ();
3261
3262 previous_inferior_ptid = inferior_ptid;
3263 }
3264
3265 \f
3266
3267 static void handle_inferior_event (struct execution_control_state *ecs);
3268
3269 static void handle_step_into_function (struct gdbarch *gdbarch,
3270 struct execution_control_state *ecs);
3271 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273 static void handle_signal_stop (struct execution_control_state *ecs);
3274 static void check_exception_resume (struct execution_control_state *,
3275 struct frame_info *);
3276
3277 static void end_stepping_range (struct execution_control_state *ecs);
3278 static void stop_waiting (struct execution_control_state *ecs);
3279 static void keep_going (struct execution_control_state *ecs);
3280 static void process_event_stop_test (struct execution_control_state *ecs);
3281 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3282
3283 /* This function is attached as a "thread_stop_requested" observer.
3284 Cleanup local state that assumed the PTID was to be resumed, and
3285 report the stop to the frontend. */
3286
3287 static void
3288 infrun_thread_stop_requested (ptid_t ptid)
3289 {
3290 process_stratum_target *curr_target = current_inferior ()->process_target ();
3291
3292 /* PTID was requested to stop. If the thread was already stopped,
3293 but the user/frontend doesn't know about that yet (e.g., the
3294 thread had been temporarily paused for some step-over), set up
3295 for reporting the stop now. */
3296 for (thread_info *tp : all_threads (curr_target, ptid))
3297 {
3298 if (tp->state != THREAD_RUNNING)
3299 continue;
3300 if (tp->executing)
3301 continue;
3302
3303 /* Remove matching threads from the step-over queue, so
3304 start_step_over doesn't try to resume them
3305 automatically. */
3306 if (thread_is_in_step_over_chain (tp))
3307 thread_step_over_chain_remove (tp);
3308
3309 /* If the thread is stopped, but the user/frontend doesn't
3310 know about that yet, queue a pending event, as if the
3311 thread had just stopped now. Unless the thread already had
3312 a pending event. */
3313 if (!tp->suspend.waitstatus_pending_p)
3314 {
3315 tp->suspend.waitstatus_pending_p = 1;
3316 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3317 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3318 }
3319
3320 /* Clear the inline-frame state, since we're re-processing the
3321 stop. */
3322 clear_inline_frame_state (tp);
3323
3324 /* If this thread was paused because some other thread was
3325 doing an inline-step over, let that finish first. Once
3326 that happens, we'll restart all threads and consume pending
3327 stop events then. */
3328 if (step_over_info_valid_p ())
3329 continue;
3330
3331 /* Otherwise we can process the (new) pending event now. Set
3332 it so this pending event is considered by
3333 do_target_wait. */
3334 tp->resumed = true;
3335 }
3336 }
3337
3338 static void
3339 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3340 {
3341 if (target_last_proc_target == tp->inf->process_target ()
3342 && target_last_wait_ptid == tp->ptid)
3343 nullify_last_target_wait_ptid ();
3344 }
3345
3346 /* Delete the step resume, single-step and longjmp/exception resume
3347 breakpoints of TP. */
3348
3349 static void
3350 delete_thread_infrun_breakpoints (struct thread_info *tp)
3351 {
3352 delete_step_resume_breakpoint (tp);
3353 delete_exception_resume_breakpoint (tp);
3354 delete_single_step_breakpoints (tp);
3355 }
3356
3357 /* If the target still has execution, call FUNC for each thread that
3358 just stopped. In all-stop, that's all the non-exited threads; in
3359 non-stop, that's the current thread, only. */
3360
3361 typedef void (*for_each_just_stopped_thread_callback_func)
3362 (struct thread_info *tp);
3363
3364 static void
3365 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3366 {
3367 if (!target_has_execution || inferior_ptid == null_ptid)
3368 return;
3369
3370 if (target_is_non_stop_p ())
3371 {
3372 /* If in non-stop mode, only the current thread stopped. */
3373 func (inferior_thread ());
3374 }
3375 else
3376 {
3377 /* In all-stop mode, all threads have stopped. */
3378 for (thread_info *tp : all_non_exited_threads ())
3379 func (tp);
3380 }
3381 }
3382
3383 /* Delete the step resume and longjmp/exception resume breakpoints of
3384 the threads that just stopped. */
3385
3386 static void
3387 delete_just_stopped_threads_infrun_breakpoints (void)
3388 {
3389 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3390 }
3391
3392 /* Delete the single-step breakpoints of the threads that just
3393 stopped. */
3394
3395 static void
3396 delete_just_stopped_threads_single_step_breakpoints (void)
3397 {
3398 for_each_just_stopped_thread (delete_single_step_breakpoints);
3399 }
3400
3401 /* See infrun.h. */
3402
3403 void
3404 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3405 const struct target_waitstatus *ws)
3406 {
3407 std::string status_string = target_waitstatus_to_string (ws);
3408 string_file stb;
3409
3410 /* The text is split over several lines because it was getting too long.
3411 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3412 output as a unit; we want only one timestamp printed if debug_timestamp
3413 is set. */
3414
3415 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3416 waiton_ptid.pid (),
3417 waiton_ptid.lwp (),
3418 waiton_ptid.tid ());
3419 if (waiton_ptid.pid () != -1)
3420 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3421 stb.printf (", status) =\n");
3422 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3423 result_ptid.pid (),
3424 result_ptid.lwp (),
3425 result_ptid.tid (),
3426 target_pid_to_str (result_ptid).c_str ());
3427 stb.printf ("infrun: %s\n", status_string.c_str ());
3428
3429 /* This uses %s in part to handle %'s in the text, but also to avoid
3430 a gcc error: the format attribute requires a string literal. */
3431 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3432 }
3433
3434 /* Select a thread at random, out of those which are resumed and have
3435 had events. */
3436
3437 static struct thread_info *
3438 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3439 {
3440 int num_events = 0;
3441
3442 auto has_event = [&] (thread_info *tp)
3443 {
3444 return (tp->ptid.matches (waiton_ptid)
3445 && tp->resumed
3446 && tp->suspend.waitstatus_pending_p);
3447 };
3448
3449 /* First see how many events we have. Count only resumed threads
3450 that have an event pending. */
3451 for (thread_info *tp : inf->non_exited_threads ())
3452 if (has_event (tp))
3453 num_events++;
3454
3455 if (num_events == 0)
3456 return NULL;
3457
3458 /* Now randomly pick a thread out of those that have had events. */
3459 int random_selector = (int) ((num_events * (double) rand ())
3460 / (RAND_MAX + 1.0));
3461
3462 if (debug_infrun && num_events > 1)
3463 fprintf_unfiltered (gdb_stdlog,
3464 "infrun: Found %d events, selecting #%d\n",
3465 num_events, random_selector);
3466
3467 /* Select the Nth thread that has had an event. */
3468 for (thread_info *tp : inf->non_exited_threads ())
3469 if (has_event (tp))
3470 if (random_selector-- == 0)
3471 return tp;
3472
3473 gdb_assert_not_reached ("event thread not found");
3474 }
3475
3476 /* Wrapper for target_wait that first checks whether threads have
3477 pending statuses to report before actually asking the target for
3478 more events. INF is the inferior we're using to call target_wait
3479 on. */
3480
3481 static ptid_t
3482 do_target_wait_1 (inferior *inf, ptid_t ptid,
3483 target_waitstatus *status, int options)
3484 {
3485 ptid_t event_ptid;
3486 struct thread_info *tp;
3487
3488 /* We know that we are looking for an event in the target of inferior
3489 INF, but we don't know which thread the event might come from. As
3490 such we want to make sure that INFERIOR_PTID is reset so that none of
3491 the wait code relies on it - doing so is always a mistake. */
3492 switch_to_inferior_no_thread (inf);
3493
3494 /* First check if there is a resumed thread with a wait status
3495 pending. */
3496 if (ptid == minus_one_ptid || ptid.is_pid ())
3497 {
3498 tp = random_pending_event_thread (inf, ptid);
3499 }
3500 else
3501 {
3502 if (debug_infrun)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "infrun: Waiting for specific thread %s.\n",
3505 target_pid_to_str (ptid).c_str ());
3506
3507 /* We have a specific thread to check. */
3508 tp = find_thread_ptid (inf, ptid);
3509 gdb_assert (tp != NULL);
3510 if (!tp->suspend.waitstatus_pending_p)
3511 tp = NULL;
3512 }
3513
3514 if (tp != NULL
3515 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3516 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3517 {
3518 struct regcache *regcache = get_thread_regcache (tp);
3519 struct gdbarch *gdbarch = regcache->arch ();
3520 CORE_ADDR pc;
3521 int discard = 0;
3522
3523 pc = regcache_read_pc (regcache);
3524
3525 if (pc != tp->suspend.stop_pc)
3526 {
3527 if (debug_infrun)
3528 fprintf_unfiltered (gdb_stdlog,
3529 "infrun: PC of %s changed. was=%s, now=%s\n",
3530 target_pid_to_str (tp->ptid).c_str (),
3531 paddress (gdbarch, tp->suspend.stop_pc),
3532 paddress (gdbarch, pc));
3533 discard = 1;
3534 }
3535 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: previous breakpoint of %s, at %s gone\n",
3540 target_pid_to_str (tp->ptid).c_str (),
3541 paddress (gdbarch, pc));
3542
3543 discard = 1;
3544 }
3545
3546 if (discard)
3547 {
3548 if (debug_infrun)
3549 fprintf_unfiltered (gdb_stdlog,
3550 "infrun: pending event of %s cancelled.\n",
3551 target_pid_to_str (tp->ptid).c_str ());
3552
3553 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3554 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3555 }
3556 }
3557
3558 if (tp != NULL)
3559 {
3560 if (debug_infrun)
3561 {
3562 std::string statstr
3563 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3564
3565 fprintf_unfiltered (gdb_stdlog,
3566 "infrun: Using pending wait status %s for %s.\n",
3567 statstr.c_str (),
3568 target_pid_to_str (tp->ptid).c_str ());
3569 }
3570
3571 /* Now that we've selected our final event LWP, un-adjust its PC
3572 if it was a software breakpoint (and the target doesn't
3573 always adjust the PC itself). */
3574 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3575 && !target_supports_stopped_by_sw_breakpoint ())
3576 {
3577 struct regcache *regcache;
3578 struct gdbarch *gdbarch;
3579 int decr_pc;
3580
3581 regcache = get_thread_regcache (tp);
3582 gdbarch = regcache->arch ();
3583
3584 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3585 if (decr_pc != 0)
3586 {
3587 CORE_ADDR pc;
3588
3589 pc = regcache_read_pc (regcache);
3590 regcache_write_pc (regcache, pc + decr_pc);
3591 }
3592 }
3593
3594 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3595 *status = tp->suspend.waitstatus;
3596 tp->suspend.waitstatus_pending_p = 0;
3597
3598 /* Wake up the event loop again, until all pending events are
3599 processed. */
3600 if (target_is_async_p ())
3601 mark_async_event_handler (infrun_async_inferior_event_token);
3602 return tp->ptid;
3603 }
3604
3605 /* But if we don't find one, we'll have to wait. */
3606
3607 if (deprecated_target_wait_hook)
3608 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3609 else
3610 event_ptid = target_wait (ptid, status, options);
3611
3612 return event_ptid;
3613 }
3614
3615 /* Returns true if INF has any resumed thread with a status
3616 pending. */
3617
3618 static bool
3619 threads_are_resumed_pending_p (inferior *inf)
3620 {
3621 for (thread_info *tp : inf->non_exited_threads ())
3622 if (tp->resumed
3623 && tp->suspend.waitstatus_pending_p)
3624 return true;
3625
3626 return false;
3627 }
3628
3629 /* Wrapper for target_wait that first checks whether threads have
3630 pending statuses to report before actually asking the target for
3631 more events. Polls for events from all inferiors/targets. */
3632
3633 static bool
3634 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3635 {
3636 int num_inferiors = 0;
3637 int random_selector;
3638
3639 /* For fairness, we pick the first inferior/target to poll at
3640 random, and then continue polling the rest of the inferior list
3641 starting from that one in a circular fashion until the whole list
3642 is polled once. */
3643
3644 auto inferior_matches = [&wait_ptid] (inferior *inf)
3645 {
3646 return (inf->process_target () != NULL
3647 && (threads_are_executing (inf->process_target ())
3648 || threads_are_resumed_pending_p (inf))
3649 && ptid_t (inf->pid).matches (wait_ptid));
3650 };
3651
3652 /* First see how many resumed inferiors we have. */
3653 for (inferior *inf : all_inferiors ())
3654 if (inferior_matches (inf))
3655 num_inferiors++;
3656
3657 if (num_inferiors == 0)
3658 {
3659 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3660 return false;
3661 }
3662
3663 /* Now randomly pick an inferior out of those that were resumed. */
3664 random_selector = (int)
3665 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3666
3667 if (debug_infrun && num_inferiors > 1)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "infrun: Found %d inferiors, starting at #%d\n",
3670 num_inferiors, random_selector);
3671
3672 /* Select the Nth inferior that was resumed. */
3673
3674 inferior *selected = nullptr;
3675
3676 for (inferior *inf : all_inferiors ())
3677 if (inferior_matches (inf))
3678 if (random_selector-- == 0)
3679 {
3680 selected = inf;
3681 break;
3682 }
3683
3684 /* Now poll for events out of each of the resumed inferior's
3685 targets, starting from the selected one. */
3686
3687 auto do_wait = [&] (inferior *inf)
3688 {
3689 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3690 ecs->target = inf->process_target ();
3691 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3692 };
3693
3694 /* Needed in all-stop+target-non-stop mode, because we end up here
3695 spuriously after the target is all stopped and we've already
3696 reported the stop to the user, polling for events. */
3697 scoped_restore_current_thread restore_thread;
3698
3699 int inf_num = selected->num;
3700 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3701 if (inferior_matches (inf))
3702 if (do_wait (inf))
3703 return true;
3704
3705 for (inferior *inf = inferior_list;
3706 inf != NULL && inf->num < inf_num;
3707 inf = inf->next)
3708 if (inferior_matches (inf))
3709 if (do_wait (inf))
3710 return true;
3711
3712 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3713 return false;
3714 }
3715
3716 /* Prepare and stabilize the inferior for detaching it. E.g.,
3717 detaching while a thread is displaced stepping is a recipe for
3718 crashing it, as nothing would readjust the PC out of the scratch
3719 pad. */
3720
3721 void
3722 prepare_for_detach (void)
3723 {
3724 struct inferior *inf = current_inferior ();
3725 ptid_t pid_ptid = ptid_t (inf->pid);
3726
3727 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3728
3729 /* Is any thread of this process displaced stepping? If not,
3730 there's nothing else to do. */
3731 if (displaced->step_thread == nullptr)
3732 return;
3733
3734 if (debug_infrun)
3735 fprintf_unfiltered (gdb_stdlog,
3736 "displaced-stepping in-process while detaching");
3737
3738 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3739
3740 while (displaced->step_thread != nullptr)
3741 {
3742 struct execution_control_state ecss;
3743 struct execution_control_state *ecs;
3744
3745 ecs = &ecss;
3746 memset (ecs, 0, sizeof (*ecs));
3747
3748 overlay_cache_invalid = 1;
3749 /* Flush target cache before starting to handle each event.
3750 Target was running and cache could be stale. This is just a
3751 heuristic. Running threads may modify target memory, but we
3752 don't get any event. */
3753 target_dcache_invalidate ();
3754
3755 do_target_wait (pid_ptid, ecs, 0);
3756
3757 if (debug_infrun)
3758 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3759
3760 /* If an error happens while handling the event, propagate GDB's
3761 knowledge of the executing state to the frontend/user running
3762 state. */
3763 scoped_finish_thread_state finish_state (inf->process_target (),
3764 minus_one_ptid);
3765
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
3768
3769 /* No error, don't finish the state yet. */
3770 finish_state.release ();
3771
3772 /* Breakpoints and watchpoints are not installed on the target
3773 at this point, and signals are passed directly to the
3774 inferior, so this must mean the process is gone. */
3775 if (!ecs->wait_some_more)
3776 {
3777 restore_detaching.release ();
3778 error (_("Program exited while detaching"));
3779 }
3780 }
3781
3782 restore_detaching.release ();
3783 }
3784
3785 /* Wait for control to return from inferior to debugger.
3786
3787 If inferior gets a signal, we may decide to start it up again
3788 instead of returning. That is why there is a loop in this function.
3789 When this function actually returns it means the inferior
3790 should be left stopped and GDB should read more commands. */
3791
3792 static void
3793 wait_for_inferior (inferior *inf)
3794 {
3795 if (debug_infrun)
3796 fprintf_unfiltered
3797 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3798
3799 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3800
3801 /* If an error happens while handling the event, propagate GDB's
3802 knowledge of the executing state to the frontend/user running
3803 state. */
3804 scoped_finish_thread_state finish_state
3805 (inf->process_target (), minus_one_ptid);
3806
3807 while (1)
3808 {
3809 struct execution_control_state ecss;
3810 struct execution_control_state *ecs = &ecss;
3811
3812 memset (ecs, 0, sizeof (*ecs));
3813
3814 overlay_cache_invalid = 1;
3815
3816 /* Flush target cache before starting to handle each event.
3817 Target was running and cache could be stale. This is just a
3818 heuristic. Running threads may modify target memory, but we
3819 don't get any event. */
3820 target_dcache_invalidate ();
3821
3822 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3823 ecs->target = inf->process_target ();
3824
3825 if (debug_infrun)
3826 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3827
3828 /* Now figure out what to do with the result of the result. */
3829 handle_inferior_event (ecs);
3830
3831 if (!ecs->wait_some_more)
3832 break;
3833 }
3834
3835 /* No error, don't finish the state yet. */
3836 finish_state.release ();
3837 }
3838
3839 /* Cleanup that reinstalls the readline callback handler, if the
3840 target is running in the background. If while handling the target
3841 event something triggered a secondary prompt, like e.g., a
3842 pagination prompt, we'll have removed the callback handler (see
3843 gdb_readline_wrapper_line). Need to do this as we go back to the
3844 event loop, ready to process further input. Note this has no
3845 effect if the handler hasn't actually been removed, because calling
3846 rl_callback_handler_install resets the line buffer, thus losing
3847 input. */
3848
3849 static void
3850 reinstall_readline_callback_handler_cleanup ()
3851 {
3852 struct ui *ui = current_ui;
3853
3854 if (!ui->async)
3855 {
3856 /* We're not going back to the top level event loop yet. Don't
3857 install the readline callback, as it'd prep the terminal,
3858 readline-style (raw, noecho) (e.g., --batch). We'll install
3859 it the next time the prompt is displayed, when we're ready
3860 for input. */
3861 return;
3862 }
3863
3864 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3865 gdb_rl_callback_handler_reinstall ();
3866 }
3867
3868 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3869 that's just the event thread. In all-stop, that's all threads. */
3870
3871 static void
3872 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3873 {
3874 if (ecs->event_thread != NULL
3875 && ecs->event_thread->thread_fsm != NULL)
3876 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3877
3878 if (!non_stop)
3879 {
3880 for (thread_info *thr : all_non_exited_threads ())
3881 {
3882 if (thr->thread_fsm == NULL)
3883 continue;
3884 if (thr == ecs->event_thread)
3885 continue;
3886
3887 switch_to_thread (thr);
3888 thr->thread_fsm->clean_up (thr);
3889 }
3890
3891 if (ecs->event_thread != NULL)
3892 switch_to_thread (ecs->event_thread);
3893 }
3894 }
3895
3896 /* Helper for all_uis_check_sync_execution_done that works on the
3897 current UI. */
3898
3899 static void
3900 check_curr_ui_sync_execution_done (void)
3901 {
3902 struct ui *ui = current_ui;
3903
3904 if (ui->prompt_state == PROMPT_NEEDED
3905 && ui->async
3906 && !gdb_in_secondary_prompt_p (ui))
3907 {
3908 target_terminal::ours ();
3909 gdb::observers::sync_execution_done.notify ();
3910 ui_register_input_event_handler (ui);
3911 }
3912 }
3913
3914 /* See infrun.h. */
3915
3916 void
3917 all_uis_check_sync_execution_done (void)
3918 {
3919 SWITCH_THRU_ALL_UIS ()
3920 {
3921 check_curr_ui_sync_execution_done ();
3922 }
3923 }
3924
3925 /* See infrun.h. */
3926
3927 void
3928 all_uis_on_sync_execution_starting (void)
3929 {
3930 SWITCH_THRU_ALL_UIS ()
3931 {
3932 if (current_ui->prompt_state == PROMPT_NEEDED)
3933 async_disable_stdin ();
3934 }
3935 }
3936
3937 /* Asynchronous version of wait_for_inferior. It is called by the
3938 event loop whenever a change of state is detected on the file
3939 descriptor corresponding to the target. It can be called more than
3940 once to complete a single execution command. In such cases we need
3941 to keep the state in a global variable ECSS. If it is the last time
3942 that this function is called for a single execution command, then
3943 report to the user that the inferior has stopped, and do the
3944 necessary cleanups. */
3945
3946 void
3947 fetch_inferior_event (void *client_data)
3948 {
3949 struct execution_control_state ecss;
3950 struct execution_control_state *ecs = &ecss;
3951 int cmd_done = 0;
3952
3953 memset (ecs, 0, sizeof (*ecs));
3954
3955 /* Events are always processed with the main UI as current UI. This
3956 way, warnings, debug output, etc. are always consistently sent to
3957 the main console. */
3958 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3959
3960 /* End up with readline processing input, if necessary. */
3961 {
3962 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3963
3964 /* We're handling a live event, so make sure we're doing live
3965 debugging. If we're looking at traceframes while the target is
3966 running, we're going to need to get back to that mode after
3967 handling the event. */
3968 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3969 if (non_stop)
3970 {
3971 maybe_restore_traceframe.emplace ();
3972 set_current_traceframe (-1);
3973 }
3974
3975 /* The user/frontend should not notice a thread switch due to
3976 internal events. Make sure we revert to the user selected
3977 thread and frame after handling the event and running any
3978 breakpoint commands. */
3979 scoped_restore_current_thread restore_thread;
3980
3981 overlay_cache_invalid = 1;
3982 /* Flush target cache before starting to handle each event. Target
3983 was running and cache could be stale. This is just a heuristic.
3984 Running threads may modify target memory, but we don't get any
3985 event. */
3986 target_dcache_invalidate ();
3987
3988 scoped_restore save_exec_dir
3989 = make_scoped_restore (&execution_direction,
3990 target_execution_direction ());
3991
3992 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3993 return;
3994
3995 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3996
3997 /* Switch to the target that generated the event, so we can do
3998 target calls. Any inferior bound to the target will do, so we
3999 just switch to the first we find. */
4000 for (inferior *inf : all_inferiors (ecs->target))
4001 {
4002 switch_to_inferior_no_thread (inf);
4003 break;
4004 }
4005
4006 if (debug_infrun)
4007 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4008
4009 /* If an error happens while handling the event, propagate GDB's
4010 knowledge of the executing state to the frontend/user running
4011 state. */
4012 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4013 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4014
4015 /* Get executed before scoped_restore_current_thread above to apply
4016 still for the thread which has thrown the exception. */
4017 auto defer_bpstat_clear
4018 = make_scope_exit (bpstat_clear_actions);
4019 auto defer_delete_threads
4020 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4021
4022 /* Now figure out what to do with the result of the result. */
4023 handle_inferior_event (ecs);
4024
4025 if (!ecs->wait_some_more)
4026 {
4027 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4028 int should_stop = 1;
4029 struct thread_info *thr = ecs->event_thread;
4030
4031 delete_just_stopped_threads_infrun_breakpoints ();
4032
4033 if (thr != NULL)
4034 {
4035 struct thread_fsm *thread_fsm = thr->thread_fsm;
4036
4037 if (thread_fsm != NULL)
4038 should_stop = thread_fsm->should_stop (thr);
4039 }
4040
4041 if (!should_stop)
4042 {
4043 keep_going (ecs);
4044 }
4045 else
4046 {
4047 bool should_notify_stop = true;
4048 int proceeded = 0;
4049
4050 clean_up_just_stopped_threads_fsms (ecs);
4051
4052 if (thr != NULL && thr->thread_fsm != NULL)
4053 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4054
4055 if (should_notify_stop)
4056 {
4057 /* We may not find an inferior if this was a process exit. */
4058 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4059 proceeded = normal_stop ();
4060 }
4061
4062 if (!proceeded)
4063 {
4064 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4065 cmd_done = 1;
4066 }
4067
4068 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4069 previously selected thread is gone. We have two
4070 choices - switch to no thread selected, or restore the
4071 previously selected thread (now exited). We chose the
4072 later, just because that's what GDB used to do. After
4073 this, "info threads" says "The current thread <Thread
4074 ID 2> has terminated." instead of "No thread
4075 selected.". */
4076 if (!non_stop
4077 && cmd_done
4078 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4079 restore_thread.dont_restore ();
4080 }
4081 }
4082
4083 defer_delete_threads.release ();
4084 defer_bpstat_clear.release ();
4085
4086 /* No error, don't finish the thread states yet. */
4087 finish_state.release ();
4088
4089 /* This scope is used to ensure that readline callbacks are
4090 reinstalled here. */
4091 }
4092
4093 /* If a UI was in sync execution mode, and now isn't, restore its
4094 prompt (a synchronous execution command has finished, and we're
4095 ready for input). */
4096 all_uis_check_sync_execution_done ();
4097
4098 if (cmd_done
4099 && exec_done_display_p
4100 && (inferior_ptid == null_ptid
4101 || inferior_thread ()->state != THREAD_RUNNING))
4102 printf_unfiltered (_("completed.\n"));
4103 }
4104
4105 /* See infrun.h. */
4106
4107 void
4108 set_step_info (thread_info *tp, struct frame_info *frame,
4109 struct symtab_and_line sal)
4110 {
4111 /* This can be removed once this function no longer implicitly relies on the
4112 inferior_ptid value. */
4113 gdb_assert (inferior_ptid == tp->ptid);
4114
4115 tp->control.step_frame_id = get_frame_id (frame);
4116 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4117
4118 tp->current_symtab = sal.symtab;
4119 tp->current_line = sal.line;
4120 }
4121
4122 /* Clear context switchable stepping state. */
4123
4124 void
4125 init_thread_stepping_state (struct thread_info *tss)
4126 {
4127 tss->stepped_breakpoint = 0;
4128 tss->stepping_over_breakpoint = 0;
4129 tss->stepping_over_watchpoint = 0;
4130 tss->step_after_step_resume_breakpoint = 0;
4131 }
4132
4133 /* See infrun.h. */
4134
4135 void
4136 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4137 target_waitstatus status)
4138 {
4139 target_last_proc_target = target;
4140 target_last_wait_ptid = ptid;
4141 target_last_waitstatus = status;
4142 }
4143
4144 /* See infrun.h. */
4145
4146 void
4147 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4148 target_waitstatus *status)
4149 {
4150 if (target != nullptr)
4151 *target = target_last_proc_target;
4152 if (ptid != nullptr)
4153 *ptid = target_last_wait_ptid;
4154 if (status != nullptr)
4155 *status = target_last_waitstatus;
4156 }
4157
4158 /* See infrun.h. */
4159
4160 void
4161 nullify_last_target_wait_ptid (void)
4162 {
4163 target_last_proc_target = nullptr;
4164 target_last_wait_ptid = minus_one_ptid;
4165 target_last_waitstatus = {};
4166 }
4167
4168 /* Switch thread contexts. */
4169
4170 static void
4171 context_switch (execution_control_state *ecs)
4172 {
4173 if (debug_infrun
4174 && ecs->ptid != inferior_ptid
4175 && (inferior_ptid == null_ptid
4176 || ecs->event_thread != inferior_thread ()))
4177 {
4178 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4179 target_pid_to_str (inferior_ptid).c_str ());
4180 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4181 target_pid_to_str (ecs->ptid).c_str ());
4182 }
4183
4184 switch_to_thread (ecs->event_thread);
4185 }
4186
4187 /* If the target can't tell whether we've hit breakpoints
4188 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4189 check whether that could have been caused by a breakpoint. If so,
4190 adjust the PC, per gdbarch_decr_pc_after_break. */
4191
4192 static void
4193 adjust_pc_after_break (struct thread_info *thread,
4194 struct target_waitstatus *ws)
4195 {
4196 struct regcache *regcache;
4197 struct gdbarch *gdbarch;
4198 CORE_ADDR breakpoint_pc, decr_pc;
4199
4200 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4201 we aren't, just return.
4202
4203 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4204 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4205 implemented by software breakpoints should be handled through the normal
4206 breakpoint layer.
4207
4208 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4209 different signals (SIGILL or SIGEMT for instance), but it is less
4210 clear where the PC is pointing afterwards. It may not match
4211 gdbarch_decr_pc_after_break. I don't know any specific target that
4212 generates these signals at breakpoints (the code has been in GDB since at
4213 least 1992) so I can not guess how to handle them here.
4214
4215 In earlier versions of GDB, a target with
4216 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4217 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4218 target with both of these set in GDB history, and it seems unlikely to be
4219 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4220
4221 if (ws->kind != TARGET_WAITKIND_STOPPED)
4222 return;
4223
4224 if (ws->value.sig != GDB_SIGNAL_TRAP)
4225 return;
4226
4227 /* In reverse execution, when a breakpoint is hit, the instruction
4228 under it has already been de-executed. The reported PC always
4229 points at the breakpoint address, so adjusting it further would
4230 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4231 architecture:
4232
4233 B1 0x08000000 : INSN1
4234 B2 0x08000001 : INSN2
4235 0x08000002 : INSN3
4236 PC -> 0x08000003 : INSN4
4237
4238 Say you're stopped at 0x08000003 as above. Reverse continuing
4239 from that point should hit B2 as below. Reading the PC when the
4240 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4241 been de-executed already.
4242
4243 B1 0x08000000 : INSN1
4244 B2 PC -> 0x08000001 : INSN2
4245 0x08000002 : INSN3
4246 0x08000003 : INSN4
4247
4248 We can't apply the same logic as for forward execution, because
4249 we would wrongly adjust the PC to 0x08000000, since there's a
4250 breakpoint at PC - 1. We'd then report a hit on B1, although
4251 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4252 behaviour. */
4253 if (execution_direction == EXEC_REVERSE)
4254 return;
4255
4256 /* If the target can tell whether the thread hit a SW breakpoint,
4257 trust it. Targets that can tell also adjust the PC
4258 themselves. */
4259 if (target_supports_stopped_by_sw_breakpoint ())
4260 return;
4261
4262 /* Note that relying on whether a breakpoint is planted in memory to
4263 determine this can fail. E.g,. the breakpoint could have been
4264 removed since. Or the thread could have been told to step an
4265 instruction the size of a breakpoint instruction, and only
4266 _after_ was a breakpoint inserted at its address. */
4267
4268 /* If this target does not decrement the PC after breakpoints, then
4269 we have nothing to do. */
4270 regcache = get_thread_regcache (thread);
4271 gdbarch = regcache->arch ();
4272
4273 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4274 if (decr_pc == 0)
4275 return;
4276
4277 const address_space *aspace = regcache->aspace ();
4278
4279 /* Find the location where (if we've hit a breakpoint) the
4280 breakpoint would be. */
4281 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4282
4283 /* If the target can't tell whether a software breakpoint triggered,
4284 fallback to figuring it out based on breakpoints we think were
4285 inserted in the target, and on whether the thread was stepped or
4286 continued. */
4287
4288 /* Check whether there actually is a software breakpoint inserted at
4289 that location.
4290
4291 If in non-stop mode, a race condition is possible where we've
4292 removed a breakpoint, but stop events for that breakpoint were
4293 already queued and arrive later. To suppress those spurious
4294 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4295 and retire them after a number of stop events are reported. Note
4296 this is an heuristic and can thus get confused. The real fix is
4297 to get the "stopped by SW BP and needs adjustment" info out of
4298 the target/kernel (and thus never reach here; see above). */
4299 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4300 || (target_is_non_stop_p ()
4301 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4302 {
4303 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4304
4305 if (record_full_is_used ())
4306 restore_operation_disable.emplace
4307 (record_full_gdb_operation_disable_set ());
4308
4309 /* When using hardware single-step, a SIGTRAP is reported for both
4310 a completed single-step and a software breakpoint. Need to
4311 differentiate between the two, as the latter needs adjusting
4312 but the former does not.
4313
4314 The SIGTRAP can be due to a completed hardware single-step only if
4315 - we didn't insert software single-step breakpoints
4316 - this thread is currently being stepped
4317
4318 If any of these events did not occur, we must have stopped due
4319 to hitting a software breakpoint, and have to back up to the
4320 breakpoint address.
4321
4322 As a special case, we could have hardware single-stepped a
4323 software breakpoint. In this case (prev_pc == breakpoint_pc),
4324 we also need to back up to the breakpoint address. */
4325
4326 if (thread_has_single_step_breakpoints_set (thread)
4327 || !currently_stepping (thread)
4328 || (thread->stepped_breakpoint
4329 && thread->prev_pc == breakpoint_pc))
4330 regcache_write_pc (regcache, breakpoint_pc);
4331 }
4332 }
4333
4334 static int
4335 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4336 {
4337 for (frame = get_prev_frame (frame);
4338 frame != NULL;
4339 frame = get_prev_frame (frame))
4340 {
4341 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4342 return 1;
4343 if (get_frame_type (frame) != INLINE_FRAME)
4344 break;
4345 }
4346
4347 return 0;
4348 }
4349
4350 /* Look for an inline frame that is marked for skip.
4351 If PREV_FRAME is TRUE start at the previous frame,
4352 otherwise start at the current frame. Stop at the
4353 first non-inline frame, or at the frame where the
4354 step started. */
4355
4356 static bool
4357 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4358 {
4359 struct frame_info *frame = get_current_frame ();
4360
4361 if (prev_frame)
4362 frame = get_prev_frame (frame);
4363
4364 for (; frame != NULL; frame = get_prev_frame (frame))
4365 {
4366 const char *fn = NULL;
4367 symtab_and_line sal;
4368 struct symbol *sym;
4369
4370 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4371 break;
4372 if (get_frame_type (frame) != INLINE_FRAME)
4373 break;
4374
4375 sal = find_frame_sal (frame);
4376 sym = get_frame_function (frame);
4377
4378 if (sym != NULL)
4379 fn = sym->print_name ();
4380
4381 if (sal.line != 0
4382 && function_name_is_marked_for_skip (fn, sal))
4383 return true;
4384 }
4385
4386 return false;
4387 }
4388
4389 /* If the event thread has the stop requested flag set, pretend it
4390 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4391 target_stop). */
4392
4393 static bool
4394 handle_stop_requested (struct execution_control_state *ecs)
4395 {
4396 if (ecs->event_thread->stop_requested)
4397 {
4398 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4399 ecs->ws.value.sig = GDB_SIGNAL_0;
4400 handle_signal_stop (ecs);
4401 return true;
4402 }
4403 return false;
4404 }
4405
4406 /* Auxiliary function that handles syscall entry/return events.
4407 It returns 1 if the inferior should keep going (and GDB
4408 should ignore the event), or 0 if the event deserves to be
4409 processed. */
4410
4411 static int
4412 handle_syscall_event (struct execution_control_state *ecs)
4413 {
4414 struct regcache *regcache;
4415 int syscall_number;
4416
4417 context_switch (ecs);
4418
4419 regcache = get_thread_regcache (ecs->event_thread);
4420 syscall_number = ecs->ws.value.syscall_number;
4421 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4422
4423 if (catch_syscall_enabled () > 0
4424 && catching_syscall_number (syscall_number) > 0)
4425 {
4426 if (debug_infrun)
4427 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4428 syscall_number);
4429
4430 ecs->event_thread->control.stop_bpstat
4431 = bpstat_stop_status (regcache->aspace (),
4432 ecs->event_thread->suspend.stop_pc,
4433 ecs->event_thread, &ecs->ws);
4434
4435 if (handle_stop_requested (ecs))
4436 return 0;
4437
4438 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4439 {
4440 /* Catchpoint hit. */
4441 return 0;
4442 }
4443 }
4444
4445 if (handle_stop_requested (ecs))
4446 return 0;
4447
4448 /* If no catchpoint triggered for this, then keep going. */
4449 keep_going (ecs);
4450 return 1;
4451 }
4452
4453 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4454
4455 static void
4456 fill_in_stop_func (struct gdbarch *gdbarch,
4457 struct execution_control_state *ecs)
4458 {
4459 if (!ecs->stop_func_filled_in)
4460 {
4461 const block *block;
4462
4463 /* Don't care about return value; stop_func_start and stop_func_name
4464 will both be 0 if it doesn't work. */
4465 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4466 &ecs->stop_func_name,
4467 &ecs->stop_func_start,
4468 &ecs->stop_func_end,
4469 &block);
4470
4471 /* The call to find_pc_partial_function, above, will set
4472 stop_func_start and stop_func_end to the start and end
4473 of the range containing the stop pc. If this range
4474 contains the entry pc for the block (which is always the
4475 case for contiguous blocks), advance stop_func_start past
4476 the function's start offset and entrypoint. Note that
4477 stop_func_start is NOT advanced when in a range of a
4478 non-contiguous block that does not contain the entry pc. */
4479 if (block != nullptr
4480 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4481 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4482 {
4483 ecs->stop_func_start
4484 += gdbarch_deprecated_function_start_offset (gdbarch);
4485
4486 if (gdbarch_skip_entrypoint_p (gdbarch))
4487 ecs->stop_func_start
4488 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4489 }
4490
4491 ecs->stop_func_filled_in = 1;
4492 }
4493 }
4494
4495
4496 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4497
4498 static enum stop_kind
4499 get_inferior_stop_soon (execution_control_state *ecs)
4500 {
4501 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4502
4503 gdb_assert (inf != NULL);
4504 return inf->control.stop_soon;
4505 }
4506
4507 /* Poll for one event out of the current target. Store the resulting
4508 waitstatus in WS, and return the event ptid. Does not block. */
4509
4510 static ptid_t
4511 poll_one_curr_target (struct target_waitstatus *ws)
4512 {
4513 ptid_t event_ptid;
4514
4515 overlay_cache_invalid = 1;
4516
4517 /* Flush target cache before starting to handle each event.
4518 Target was running and cache could be stale. This is just a
4519 heuristic. Running threads may modify target memory, but we
4520 don't get any event. */
4521 target_dcache_invalidate ();
4522
4523 if (deprecated_target_wait_hook)
4524 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4525 else
4526 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4527
4528 if (debug_infrun)
4529 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4530
4531 return event_ptid;
4532 }
4533
4534 /* An event reported by wait_one. */
4535
4536 struct wait_one_event
4537 {
4538 /* The target the event came out of. */
4539 process_stratum_target *target;
4540
4541 /* The PTID the event was for. */
4542 ptid_t ptid;
4543
4544 /* The waitstatus. */
4545 target_waitstatus ws;
4546 };
4547
4548 /* Wait for one event out of any target. */
4549
4550 static wait_one_event
4551 wait_one ()
4552 {
4553 while (1)
4554 {
4555 for (inferior *inf : all_inferiors ())
4556 {
4557 process_stratum_target *target = inf->process_target ();
4558 if (target == NULL
4559 || !target->is_async_p ()
4560 || !target->threads_executing)
4561 continue;
4562
4563 switch_to_inferior_no_thread (inf);
4564
4565 wait_one_event event;
4566 event.target = target;
4567 event.ptid = poll_one_curr_target (&event.ws);
4568
4569 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4570 {
4571 /* If nothing is resumed, remove the target from the
4572 event loop. */
4573 target_async (0);
4574 }
4575 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4576 return event;
4577 }
4578
4579 /* Block waiting for some event. */
4580
4581 fd_set readfds;
4582 int nfds = 0;
4583
4584 FD_ZERO (&readfds);
4585
4586 for (inferior *inf : all_inferiors ())
4587 {
4588 process_stratum_target *target = inf->process_target ();
4589 if (target == NULL
4590 || !target->is_async_p ()
4591 || !target->threads_executing)
4592 continue;
4593
4594 int fd = target->async_wait_fd ();
4595 FD_SET (fd, &readfds);
4596 if (nfds <= fd)
4597 nfds = fd + 1;
4598 }
4599
4600 if (nfds == 0)
4601 {
4602 /* No waitable targets left. All must be stopped. */
4603 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4604 }
4605
4606 QUIT;
4607
4608 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4609 if (numfds < 0)
4610 {
4611 if (errno == EINTR)
4612 continue;
4613 else
4614 perror_with_name ("interruptible_select");
4615 }
4616 }
4617 }
4618
4619 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4620 instead of the current thread. */
4621 #define THREAD_STOPPED_BY(REASON) \
4622 static int \
4623 thread_stopped_by_ ## REASON (ptid_t ptid) \
4624 { \
4625 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4626 inferior_ptid = ptid; \
4627 \
4628 return target_stopped_by_ ## REASON (); \
4629 }
4630
4631 /* Generate thread_stopped_by_watchpoint. */
4632 THREAD_STOPPED_BY (watchpoint)
4633 /* Generate thread_stopped_by_sw_breakpoint. */
4634 THREAD_STOPPED_BY (sw_breakpoint)
4635 /* Generate thread_stopped_by_hw_breakpoint. */
4636 THREAD_STOPPED_BY (hw_breakpoint)
4637
4638 /* Save the thread's event and stop reason to process it later. */
4639
4640 static void
4641 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4642 {
4643 if (debug_infrun)
4644 {
4645 std::string statstr = target_waitstatus_to_string (ws);
4646
4647 fprintf_unfiltered (gdb_stdlog,
4648 "infrun: saving status %s for %d.%ld.%ld\n",
4649 statstr.c_str (),
4650 tp->ptid.pid (),
4651 tp->ptid.lwp (),
4652 tp->ptid.tid ());
4653 }
4654
4655 /* Record for later. */
4656 tp->suspend.waitstatus = *ws;
4657 tp->suspend.waitstatus_pending_p = 1;
4658
4659 struct regcache *regcache = get_thread_regcache (tp);
4660 const address_space *aspace = regcache->aspace ();
4661
4662 if (ws->kind == TARGET_WAITKIND_STOPPED
4663 && ws->value.sig == GDB_SIGNAL_TRAP)
4664 {
4665 CORE_ADDR pc = regcache_read_pc (regcache);
4666
4667 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4668
4669 if (thread_stopped_by_watchpoint (tp->ptid))
4670 {
4671 tp->suspend.stop_reason
4672 = TARGET_STOPPED_BY_WATCHPOINT;
4673 }
4674 else if (target_supports_stopped_by_sw_breakpoint ()
4675 && thread_stopped_by_sw_breakpoint (tp->ptid))
4676 {
4677 tp->suspend.stop_reason
4678 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4679 }
4680 else if (target_supports_stopped_by_hw_breakpoint ()
4681 && thread_stopped_by_hw_breakpoint (tp->ptid))
4682 {
4683 tp->suspend.stop_reason
4684 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4685 }
4686 else if (!target_supports_stopped_by_hw_breakpoint ()
4687 && hardware_breakpoint_inserted_here_p (aspace,
4688 pc))
4689 {
4690 tp->suspend.stop_reason
4691 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4692 }
4693 else if (!target_supports_stopped_by_sw_breakpoint ()
4694 && software_breakpoint_inserted_here_p (aspace,
4695 pc))
4696 {
4697 tp->suspend.stop_reason
4698 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4699 }
4700 else if (!thread_has_single_step_breakpoints_set (tp)
4701 && currently_stepping (tp))
4702 {
4703 tp->suspend.stop_reason
4704 = TARGET_STOPPED_BY_SINGLE_STEP;
4705 }
4706 }
4707 }
4708
4709 /* See infrun.h. */
4710
4711 void
4712 stop_all_threads (void)
4713 {
4714 /* We may need multiple passes to discover all threads. */
4715 int pass;
4716 int iterations = 0;
4717
4718 gdb_assert (target_is_non_stop_p ());
4719
4720 if (debug_infrun)
4721 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4722
4723 scoped_restore_current_thread restore_thread;
4724
4725 target_thread_events (1);
4726 SCOPE_EXIT { target_thread_events (0); };
4727
4728 /* Request threads to stop, and then wait for the stops. Because
4729 threads we already know about can spawn more threads while we're
4730 trying to stop them, and we only learn about new threads when we
4731 update the thread list, do this in a loop, and keep iterating
4732 until two passes find no threads that need to be stopped. */
4733 for (pass = 0; pass < 2; pass++, iterations++)
4734 {
4735 if (debug_infrun)
4736 fprintf_unfiltered (gdb_stdlog,
4737 "infrun: stop_all_threads, pass=%d, "
4738 "iterations=%d\n", pass, iterations);
4739 while (1)
4740 {
4741 int need_wait = 0;
4742
4743 update_thread_list ();
4744
4745 /* Go through all threads looking for threads that we need
4746 to tell the target to stop. */
4747 for (thread_info *t : all_non_exited_threads ())
4748 {
4749 if (t->executing)
4750 {
4751 /* If already stopping, don't request a stop again.
4752 We just haven't seen the notification yet. */
4753 if (!t->stop_requested)
4754 {
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog,
4757 "infrun: %s executing, "
4758 "need stop\n",
4759 target_pid_to_str (t->ptid).c_str ());
4760 switch_to_thread_no_regs (t);
4761 target_stop (t->ptid);
4762 t->stop_requested = 1;
4763 }
4764 else
4765 {
4766 if (debug_infrun)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "infrun: %s executing, "
4769 "already stopping\n",
4770 target_pid_to_str (t->ptid).c_str ());
4771 }
4772
4773 if (t->stop_requested)
4774 need_wait = 1;
4775 }
4776 else
4777 {
4778 if (debug_infrun)
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: %s not executing\n",
4781 target_pid_to_str (t->ptid).c_str ());
4782
4783 /* The thread may be not executing, but still be
4784 resumed with a pending status to process. */
4785 t->resumed = false;
4786 }
4787 }
4788
4789 if (!need_wait)
4790 break;
4791
4792 /* If we find new threads on the second iteration, restart
4793 over. We want to see two iterations in a row with all
4794 threads stopped. */
4795 if (pass > 0)
4796 pass = -1;
4797
4798 wait_one_event event = wait_one ();
4799
4800 if (debug_infrun)
4801 {
4802 fprintf_unfiltered (gdb_stdlog,
4803 "infrun: stop_all_threads %s %s\n",
4804 target_waitstatus_to_string (&event.ws).c_str (),
4805 target_pid_to_str (event.ptid).c_str ());
4806 }
4807
4808 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4809 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4810 || event.ws.kind == TARGET_WAITKIND_EXITED
4811 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4812 {
4813 /* All resumed threads exited
4814 or one thread/process exited/signalled. */
4815 }
4816 else
4817 {
4818 thread_info *t = find_thread_ptid (event.target, event.ptid);
4819 if (t == NULL)
4820 t = add_thread (event.target, event.ptid);
4821
4822 t->stop_requested = 0;
4823 t->executing = 0;
4824 t->resumed = false;
4825 t->control.may_range_step = 0;
4826
4827 /* This may be the first time we see the inferior report
4828 a stop. */
4829 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4830 if (inf->needs_setup)
4831 {
4832 switch_to_thread_no_regs (t);
4833 setup_inferior (0);
4834 }
4835
4836 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4837 && event.ws.value.sig == GDB_SIGNAL_0)
4838 {
4839 /* We caught the event that we intended to catch, so
4840 there's no event pending. */
4841 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4842 t->suspend.waitstatus_pending_p = 0;
4843
4844 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4845 {
4846 /* Add it back to the step-over queue. */
4847 if (debug_infrun)
4848 {
4849 fprintf_unfiltered (gdb_stdlog,
4850 "infrun: displaced-step of %s "
4851 "canceled: adding back to the "
4852 "step-over queue\n",
4853 target_pid_to_str (t->ptid).c_str ());
4854 }
4855 t->control.trap_expected = 0;
4856 thread_step_over_chain_enqueue (t);
4857 }
4858 }
4859 else
4860 {
4861 enum gdb_signal sig;
4862 struct regcache *regcache;
4863
4864 if (debug_infrun)
4865 {
4866 std::string statstr = target_waitstatus_to_string (&event.ws);
4867
4868 fprintf_unfiltered (gdb_stdlog,
4869 "infrun: target_wait %s, saving "
4870 "status for %d.%ld.%ld\n",
4871 statstr.c_str (),
4872 t->ptid.pid (),
4873 t->ptid.lwp (),
4874 t->ptid.tid ());
4875 }
4876
4877 /* Record for later. */
4878 save_waitstatus (t, &event.ws);
4879
4880 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4881 ? event.ws.value.sig : GDB_SIGNAL_0);
4882
4883 if (displaced_step_fixup (t, sig) < 0)
4884 {
4885 /* Add it back to the step-over queue. */
4886 t->control.trap_expected = 0;
4887 thread_step_over_chain_enqueue (t);
4888 }
4889
4890 regcache = get_thread_regcache (t);
4891 t->suspend.stop_pc = regcache_read_pc (regcache);
4892
4893 if (debug_infrun)
4894 {
4895 fprintf_unfiltered (gdb_stdlog,
4896 "infrun: saved stop_pc=%s for %s "
4897 "(currently_stepping=%d)\n",
4898 paddress (target_gdbarch (),
4899 t->suspend.stop_pc),
4900 target_pid_to_str (t->ptid).c_str (),
4901 currently_stepping (t));
4902 }
4903 }
4904 }
4905 }
4906 }
4907
4908 if (debug_infrun)
4909 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4910 }
4911
4912 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4913
4914 static int
4915 handle_no_resumed (struct execution_control_state *ecs)
4916 {
4917 if (target_can_async_p ())
4918 {
4919 struct ui *ui;
4920 int any_sync = 0;
4921
4922 ALL_UIS (ui)
4923 {
4924 if (ui->prompt_state == PROMPT_BLOCKED)
4925 {
4926 any_sync = 1;
4927 break;
4928 }
4929 }
4930 if (!any_sync)
4931 {
4932 /* There were no unwaited-for children left in the target, but,
4933 we're not synchronously waiting for events either. Just
4934 ignore. */
4935
4936 if (debug_infrun)
4937 fprintf_unfiltered (gdb_stdlog,
4938 "infrun: TARGET_WAITKIND_NO_RESUMED "
4939 "(ignoring: bg)\n");
4940 prepare_to_wait (ecs);
4941 return 1;
4942 }
4943 }
4944
4945 /* Otherwise, if we were running a synchronous execution command, we
4946 may need to cancel it and give the user back the terminal.
4947
4948 In non-stop mode, the target can't tell whether we've already
4949 consumed previous stop events, so it can end up sending us a
4950 no-resumed event like so:
4951
4952 #0 - thread 1 is left stopped
4953
4954 #1 - thread 2 is resumed and hits breakpoint
4955 -> TARGET_WAITKIND_STOPPED
4956
4957 #2 - thread 3 is resumed and exits
4958 this is the last resumed thread, so
4959 -> TARGET_WAITKIND_NO_RESUMED
4960
4961 #3 - gdb processes stop for thread 2 and decides to re-resume
4962 it.
4963
4964 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4965 thread 2 is now resumed, so the event should be ignored.
4966
4967 IOW, if the stop for thread 2 doesn't end a foreground command,
4968 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4969 event. But it could be that the event meant that thread 2 itself
4970 (or whatever other thread was the last resumed thread) exited.
4971
4972 To address this we refresh the thread list and check whether we
4973 have resumed threads _now_. In the example above, this removes
4974 thread 3 from the thread list. If thread 2 was re-resumed, we
4975 ignore this event. If we find no thread resumed, then we cancel
4976 the synchronous command show "no unwaited-for " to the user. */
4977 update_thread_list ();
4978
4979 for (thread_info *thread : all_non_exited_threads (ecs->target))
4980 {
4981 if (thread->executing
4982 || thread->suspend.waitstatus_pending_p)
4983 {
4984 /* There were no unwaited-for children left in the target at
4985 some point, but there are now. Just ignore. */
4986 if (debug_infrun)
4987 fprintf_unfiltered (gdb_stdlog,
4988 "infrun: TARGET_WAITKIND_NO_RESUMED "
4989 "(ignoring: found resumed)\n");
4990 prepare_to_wait (ecs);
4991 return 1;
4992 }
4993 }
4994
4995 /* Note however that we may find no resumed thread because the whole
4996 process exited meanwhile (thus updating the thread list results
4997 in an empty thread list). In this case we know we'll be getting
4998 a process exit event shortly. */
4999 for (inferior *inf : all_non_exited_inferiors (ecs->target))
5000 {
5001 thread_info *thread = any_live_thread_of_inferior (inf);
5002 if (thread == NULL)
5003 {
5004 if (debug_infrun)
5005 fprintf_unfiltered (gdb_stdlog,
5006 "infrun: TARGET_WAITKIND_NO_RESUMED "
5007 "(expect process exit)\n");
5008 prepare_to_wait (ecs);
5009 return 1;
5010 }
5011 }
5012
5013 /* Go ahead and report the event. */
5014 return 0;
5015 }
5016
5017 /* Given an execution control state that has been freshly filled in by
5018 an event from the inferior, figure out what it means and take
5019 appropriate action.
5020
5021 The alternatives are:
5022
5023 1) stop_waiting and return; to really stop and return to the
5024 debugger.
5025
5026 2) keep_going and return; to wait for the next event (set
5027 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5028 once). */
5029
5030 static void
5031 handle_inferior_event (struct execution_control_state *ecs)
5032 {
5033 /* Make sure that all temporary struct value objects that were
5034 created during the handling of the event get deleted at the
5035 end. */
5036 scoped_value_mark free_values;
5037
5038 enum stop_kind stop_soon;
5039
5040 if (debug_infrun)
5041 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5042 target_waitstatus_to_string (&ecs->ws).c_str ());
5043
5044 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5045 {
5046 /* We had an event in the inferior, but we are not interested in
5047 handling it at this level. The lower layers have already
5048 done what needs to be done, if anything.
5049
5050 One of the possible circumstances for this is when the
5051 inferior produces output for the console. The inferior has
5052 not stopped, and we are ignoring the event. Another possible
5053 circumstance is any event which the lower level knows will be
5054 reported multiple times without an intervening resume. */
5055 prepare_to_wait (ecs);
5056 return;
5057 }
5058
5059 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5060 {
5061 prepare_to_wait (ecs);
5062 return;
5063 }
5064
5065 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5066 && handle_no_resumed (ecs))
5067 return;
5068
5069 /* Cache the last target/ptid/waitstatus. */
5070 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5071
5072 /* Always clear state belonging to the previous time we stopped. */
5073 stop_stack_dummy = STOP_NONE;
5074
5075 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5076 {
5077 /* No unwaited-for children left. IOW, all resumed children
5078 have exited. */
5079 stop_print_frame = 0;
5080 stop_waiting (ecs);
5081 return;
5082 }
5083
5084 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5085 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5086 {
5087 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5088 /* If it's a new thread, add it to the thread database. */
5089 if (ecs->event_thread == NULL)
5090 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5091
5092 /* Disable range stepping. If the next step request could use a
5093 range, this will be end up re-enabled then. */
5094 ecs->event_thread->control.may_range_step = 0;
5095 }
5096
5097 /* Dependent on valid ECS->EVENT_THREAD. */
5098 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5099
5100 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5101 reinit_frame_cache ();
5102
5103 breakpoint_retire_moribund ();
5104
5105 /* First, distinguish signals caused by the debugger from signals
5106 that have to do with the program's own actions. Note that
5107 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5108 on the operating system version. Here we detect when a SIGILL or
5109 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5110 something similar for SIGSEGV, since a SIGSEGV will be generated
5111 when we're trying to execute a breakpoint instruction on a
5112 non-executable stack. This happens for call dummy breakpoints
5113 for architectures like SPARC that place call dummies on the
5114 stack. */
5115 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5116 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5117 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5118 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5119 {
5120 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5121
5122 if (breakpoint_inserted_here_p (regcache->aspace (),
5123 regcache_read_pc (regcache)))
5124 {
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: Treating signal as SIGTRAP\n");
5128 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5129 }
5130 }
5131
5132 /* Mark the non-executing threads accordingly. In all-stop, all
5133 threads of all processes are stopped when we get any event
5134 reported. In non-stop mode, only the event thread stops. */
5135 {
5136 ptid_t mark_ptid;
5137
5138 if (!target_is_non_stop_p ())
5139 mark_ptid = minus_one_ptid;
5140 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5141 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5142 {
5143 /* If we're handling a process exit in non-stop mode, even
5144 though threads haven't been deleted yet, one would think
5145 that there is nothing to do, as threads of the dead process
5146 will be soon deleted, and threads of any other process were
5147 left running. However, on some targets, threads survive a
5148 process exit event. E.g., for the "checkpoint" command,
5149 when the current checkpoint/fork exits, linux-fork.c
5150 automatically switches to another fork from within
5151 target_mourn_inferior, by associating the same
5152 inferior/thread to another fork. We haven't mourned yet at
5153 this point, but we must mark any threads left in the
5154 process as not-executing so that finish_thread_state marks
5155 them stopped (in the user's perspective) if/when we present
5156 the stop to the user. */
5157 mark_ptid = ptid_t (ecs->ptid.pid ());
5158 }
5159 else
5160 mark_ptid = ecs->ptid;
5161
5162 set_executing (ecs->target, mark_ptid, false);
5163
5164 /* Likewise the resumed flag. */
5165 set_resumed (ecs->target, mark_ptid, false);
5166 }
5167
5168 switch (ecs->ws.kind)
5169 {
5170 case TARGET_WAITKIND_LOADED:
5171 context_switch (ecs);
5172 /* Ignore gracefully during startup of the inferior, as it might
5173 be the shell which has just loaded some objects, otherwise
5174 add the symbols for the newly loaded objects. Also ignore at
5175 the beginning of an attach or remote session; we will query
5176 the full list of libraries once the connection is
5177 established. */
5178
5179 stop_soon = get_inferior_stop_soon (ecs);
5180 if (stop_soon == NO_STOP_QUIETLY)
5181 {
5182 struct regcache *regcache;
5183
5184 regcache = get_thread_regcache (ecs->event_thread);
5185
5186 handle_solib_event ();
5187
5188 ecs->event_thread->control.stop_bpstat
5189 = bpstat_stop_status (regcache->aspace (),
5190 ecs->event_thread->suspend.stop_pc,
5191 ecs->event_thread, &ecs->ws);
5192
5193 if (handle_stop_requested (ecs))
5194 return;
5195
5196 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5197 {
5198 /* A catchpoint triggered. */
5199 process_event_stop_test (ecs);
5200 return;
5201 }
5202
5203 /* If requested, stop when the dynamic linker notifies
5204 gdb of events. This allows the user to get control
5205 and place breakpoints in initializer routines for
5206 dynamically loaded objects (among other things). */
5207 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5208 if (stop_on_solib_events)
5209 {
5210 /* Make sure we print "Stopped due to solib-event" in
5211 normal_stop. */
5212 stop_print_frame = 1;
5213
5214 stop_waiting (ecs);
5215 return;
5216 }
5217 }
5218
5219 /* If we are skipping through a shell, or through shared library
5220 loading that we aren't interested in, resume the program. If
5221 we're running the program normally, also resume. */
5222 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5223 {
5224 /* Loading of shared libraries might have changed breakpoint
5225 addresses. Make sure new breakpoints are inserted. */
5226 if (stop_soon == NO_STOP_QUIETLY)
5227 insert_breakpoints ();
5228 resume (GDB_SIGNAL_0);
5229 prepare_to_wait (ecs);
5230 return;
5231 }
5232
5233 /* But stop if we're attaching or setting up a remote
5234 connection. */
5235 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5236 || stop_soon == STOP_QUIETLY_REMOTE)
5237 {
5238 if (debug_infrun)
5239 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5240 stop_waiting (ecs);
5241 return;
5242 }
5243
5244 internal_error (__FILE__, __LINE__,
5245 _("unhandled stop_soon: %d"), (int) stop_soon);
5246
5247 case TARGET_WAITKIND_SPURIOUS:
5248 if (handle_stop_requested (ecs))
5249 return;
5250 context_switch (ecs);
5251 resume (GDB_SIGNAL_0);
5252 prepare_to_wait (ecs);
5253 return;
5254
5255 case TARGET_WAITKIND_THREAD_CREATED:
5256 if (handle_stop_requested (ecs))
5257 return;
5258 context_switch (ecs);
5259 if (!switch_back_to_stepped_thread (ecs))
5260 keep_going (ecs);
5261 return;
5262
5263 case TARGET_WAITKIND_EXITED:
5264 case TARGET_WAITKIND_SIGNALLED:
5265 inferior_ptid = ecs->ptid;
5266 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
5267 set_current_program_space (current_inferior ()->pspace);
5268 handle_vfork_child_exec_or_exit (0);
5269 target_terminal::ours (); /* Must do this before mourn anyway. */
5270
5271 /* Clearing any previous state of convenience variables. */
5272 clear_exit_convenience_vars ();
5273
5274 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5275 {
5276 /* Record the exit code in the convenience variable $_exitcode, so
5277 that the user can inspect this again later. */
5278 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5279 (LONGEST) ecs->ws.value.integer);
5280
5281 /* Also record this in the inferior itself. */
5282 current_inferior ()->has_exit_code = 1;
5283 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5284
5285 /* Support the --return-child-result option. */
5286 return_child_result_value = ecs->ws.value.integer;
5287
5288 gdb::observers::exited.notify (ecs->ws.value.integer);
5289 }
5290 else
5291 {
5292 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5293
5294 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5295 {
5296 /* Set the value of the internal variable $_exitsignal,
5297 which holds the signal uncaught by the inferior. */
5298 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5299 gdbarch_gdb_signal_to_target (gdbarch,
5300 ecs->ws.value.sig));
5301 }
5302 else
5303 {
5304 /* We don't have access to the target's method used for
5305 converting between signal numbers (GDB's internal
5306 representation <-> target's representation).
5307 Therefore, we cannot do a good job at displaying this
5308 information to the user. It's better to just warn
5309 her about it (if infrun debugging is enabled), and
5310 give up. */
5311 if (debug_infrun)
5312 fprintf_filtered (gdb_stdlog, _("\
5313 Cannot fill $_exitsignal with the correct signal number.\n"));
5314 }
5315
5316 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5317 }
5318
5319 gdb_flush (gdb_stdout);
5320 target_mourn_inferior (inferior_ptid);
5321 stop_print_frame = 0;
5322 stop_waiting (ecs);
5323 return;
5324
5325 case TARGET_WAITKIND_FORKED:
5326 case TARGET_WAITKIND_VFORKED:
5327 /* Check whether the inferior is displaced stepping. */
5328 {
5329 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5330 struct gdbarch *gdbarch = regcache->arch ();
5331
5332 /* If checking displaced stepping is supported, and thread
5333 ecs->ptid is displaced stepping. */
5334 if (displaced_step_in_progress_thread (ecs->event_thread))
5335 {
5336 struct inferior *parent_inf
5337 = find_inferior_ptid (ecs->target, ecs->ptid);
5338 struct regcache *child_regcache;
5339 CORE_ADDR parent_pc;
5340
5341 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5342 {
5343 struct displaced_step_inferior_state *displaced
5344 = get_displaced_stepping_state (parent_inf);
5345
5346 /* Restore scratch pad for child process. */
5347 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5348 }
5349
5350 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5351 indicating that the displaced stepping of syscall instruction
5352 has been done. Perform cleanup for parent process here. Note
5353 that this operation also cleans up the child process for vfork,
5354 because their pages are shared. */
5355 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5356 /* Start a new step-over in another thread if there's one
5357 that needs it. */
5358 start_step_over ();
5359
5360 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5361 the child's PC is also within the scratchpad. Set the child's PC
5362 to the parent's PC value, which has already been fixed up.
5363 FIXME: we use the parent's aspace here, although we're touching
5364 the child, because the child hasn't been added to the inferior
5365 list yet at this point. */
5366
5367 child_regcache
5368 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5369 ecs->ws.value.related_pid,
5370 gdbarch,
5371 parent_inf->aspace);
5372 /* Read PC value of parent process. */
5373 parent_pc = regcache_read_pc (regcache);
5374
5375 if (debug_displaced)
5376 fprintf_unfiltered (gdb_stdlog,
5377 "displaced: write child pc from %s to %s\n",
5378 paddress (gdbarch,
5379 regcache_read_pc (child_regcache)),
5380 paddress (gdbarch, parent_pc));
5381
5382 regcache_write_pc (child_regcache, parent_pc);
5383 }
5384 }
5385
5386 context_switch (ecs);
5387
5388 /* Immediately detach breakpoints from the child before there's
5389 any chance of letting the user delete breakpoints from the
5390 breakpoint lists. If we don't do this early, it's easy to
5391 leave left over traps in the child, vis: "break foo; catch
5392 fork; c; <fork>; del; c; <child calls foo>". We only follow
5393 the fork on the last `continue', and by that time the
5394 breakpoint at "foo" is long gone from the breakpoint table.
5395 If we vforked, then we don't need to unpatch here, since both
5396 parent and child are sharing the same memory pages; we'll
5397 need to unpatch at follow/detach time instead to be certain
5398 that new breakpoints added between catchpoint hit time and
5399 vfork follow are detached. */
5400 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5401 {
5402 /* This won't actually modify the breakpoint list, but will
5403 physically remove the breakpoints from the child. */
5404 detach_breakpoints (ecs->ws.value.related_pid);
5405 }
5406
5407 delete_just_stopped_threads_single_step_breakpoints ();
5408
5409 /* In case the event is caught by a catchpoint, remember that
5410 the event is to be followed at the next resume of the thread,
5411 and not immediately. */
5412 ecs->event_thread->pending_follow = ecs->ws;
5413
5414 ecs->event_thread->suspend.stop_pc
5415 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5416
5417 ecs->event_thread->control.stop_bpstat
5418 = bpstat_stop_status (get_current_regcache ()->aspace (),
5419 ecs->event_thread->suspend.stop_pc,
5420 ecs->event_thread, &ecs->ws);
5421
5422 if (handle_stop_requested (ecs))
5423 return;
5424
5425 /* If no catchpoint triggered for this, then keep going. Note
5426 that we're interested in knowing the bpstat actually causes a
5427 stop, not just if it may explain the signal. Software
5428 watchpoints, for example, always appear in the bpstat. */
5429 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5430 {
5431 int should_resume;
5432 int follow_child
5433 = (follow_fork_mode_string == follow_fork_mode_child);
5434
5435 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5436
5437 process_stratum_target *targ
5438 = ecs->event_thread->inf->process_target ();
5439
5440 should_resume = follow_fork ();
5441
5442 /* Note that one of these may be an invalid pointer,
5443 depending on detach_fork. */
5444 thread_info *parent = ecs->event_thread;
5445 thread_info *child
5446 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5447
5448 /* At this point, the parent is marked running, and the
5449 child is marked stopped. */
5450
5451 /* If not resuming the parent, mark it stopped. */
5452 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5453 parent->set_running (false);
5454
5455 /* If resuming the child, mark it running. */
5456 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5457 child->set_running (true);
5458
5459 /* In non-stop mode, also resume the other branch. */
5460 if (!detach_fork && (non_stop
5461 || (sched_multi && target_is_non_stop_p ())))
5462 {
5463 if (follow_child)
5464 switch_to_thread (parent);
5465 else
5466 switch_to_thread (child);
5467
5468 ecs->event_thread = inferior_thread ();
5469 ecs->ptid = inferior_ptid;
5470 keep_going (ecs);
5471 }
5472
5473 if (follow_child)
5474 switch_to_thread (child);
5475 else
5476 switch_to_thread (parent);
5477
5478 ecs->event_thread = inferior_thread ();
5479 ecs->ptid = inferior_ptid;
5480
5481 if (should_resume)
5482 keep_going (ecs);
5483 else
5484 stop_waiting (ecs);
5485 return;
5486 }
5487 process_event_stop_test (ecs);
5488 return;
5489
5490 case TARGET_WAITKIND_VFORK_DONE:
5491 /* Done with the shared memory region. Re-insert breakpoints in
5492 the parent, and keep going. */
5493
5494 context_switch (ecs);
5495
5496 current_inferior ()->waiting_for_vfork_done = 0;
5497 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5498
5499 if (handle_stop_requested (ecs))
5500 return;
5501
5502 /* This also takes care of reinserting breakpoints in the
5503 previously locked inferior. */
5504 keep_going (ecs);
5505 return;
5506
5507 case TARGET_WAITKIND_EXECD:
5508
5509 /* Note we can't read registers yet (the stop_pc), because we
5510 don't yet know the inferior's post-exec architecture.
5511 'stop_pc' is explicitly read below instead. */
5512 switch_to_thread_no_regs (ecs->event_thread);
5513
5514 /* Do whatever is necessary to the parent branch of the vfork. */
5515 handle_vfork_child_exec_or_exit (1);
5516
5517 /* This causes the eventpoints and symbol table to be reset.
5518 Must do this now, before trying to determine whether to
5519 stop. */
5520 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5521
5522 /* In follow_exec we may have deleted the original thread and
5523 created a new one. Make sure that the event thread is the
5524 execd thread for that case (this is a nop otherwise). */
5525 ecs->event_thread = inferior_thread ();
5526
5527 ecs->event_thread->suspend.stop_pc
5528 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5529
5530 ecs->event_thread->control.stop_bpstat
5531 = bpstat_stop_status (get_current_regcache ()->aspace (),
5532 ecs->event_thread->suspend.stop_pc,
5533 ecs->event_thread, &ecs->ws);
5534
5535 /* Note that this may be referenced from inside
5536 bpstat_stop_status above, through inferior_has_execd. */
5537 xfree (ecs->ws.value.execd_pathname);
5538 ecs->ws.value.execd_pathname = NULL;
5539
5540 if (handle_stop_requested (ecs))
5541 return;
5542
5543 /* If no catchpoint triggered for this, then keep going. */
5544 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5545 {
5546 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5547 keep_going (ecs);
5548 return;
5549 }
5550 process_event_stop_test (ecs);
5551 return;
5552
5553 /* Be careful not to try to gather much state about a thread
5554 that's in a syscall. It's frequently a losing proposition. */
5555 case TARGET_WAITKIND_SYSCALL_ENTRY:
5556 /* Getting the current syscall number. */
5557 if (handle_syscall_event (ecs) == 0)
5558 process_event_stop_test (ecs);
5559 return;
5560
5561 /* Before examining the threads further, step this thread to
5562 get it entirely out of the syscall. (We get notice of the
5563 event when the thread is just on the verge of exiting a
5564 syscall. Stepping one instruction seems to get it back
5565 into user code.) */
5566 case TARGET_WAITKIND_SYSCALL_RETURN:
5567 if (handle_syscall_event (ecs) == 0)
5568 process_event_stop_test (ecs);
5569 return;
5570
5571 case TARGET_WAITKIND_STOPPED:
5572 handle_signal_stop (ecs);
5573 return;
5574
5575 case TARGET_WAITKIND_NO_HISTORY:
5576 /* Reverse execution: target ran out of history info. */
5577
5578 /* Switch to the stopped thread. */
5579 context_switch (ecs);
5580 if (debug_infrun)
5581 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5582
5583 delete_just_stopped_threads_single_step_breakpoints ();
5584 ecs->event_thread->suspend.stop_pc
5585 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5586
5587 if (handle_stop_requested (ecs))
5588 return;
5589
5590 gdb::observers::no_history.notify ();
5591 stop_waiting (ecs);
5592 return;
5593 }
5594 }
5595
5596 /* Restart threads back to what they were trying to do back when we
5597 paused them for an in-line step-over. The EVENT_THREAD thread is
5598 ignored. */
5599
5600 static void
5601 restart_threads (struct thread_info *event_thread)
5602 {
5603 /* In case the instruction just stepped spawned a new thread. */
5604 update_thread_list ();
5605
5606 for (thread_info *tp : all_non_exited_threads ())
5607 {
5608 switch_to_thread_no_regs (tp);
5609
5610 if (tp == event_thread)
5611 {
5612 if (debug_infrun)
5613 fprintf_unfiltered (gdb_stdlog,
5614 "infrun: restart threads: "
5615 "[%s] is event thread\n",
5616 target_pid_to_str (tp->ptid).c_str ());
5617 continue;
5618 }
5619
5620 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5621 {
5622 if (debug_infrun)
5623 fprintf_unfiltered (gdb_stdlog,
5624 "infrun: restart threads: "
5625 "[%s] not meant to be running\n",
5626 target_pid_to_str (tp->ptid).c_str ());
5627 continue;
5628 }
5629
5630 if (tp->resumed)
5631 {
5632 if (debug_infrun)
5633 fprintf_unfiltered (gdb_stdlog,
5634 "infrun: restart threads: [%s] resumed\n",
5635 target_pid_to_str (tp->ptid).c_str ());
5636 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5637 continue;
5638 }
5639
5640 if (thread_is_in_step_over_chain (tp))
5641 {
5642 if (debug_infrun)
5643 fprintf_unfiltered (gdb_stdlog,
5644 "infrun: restart threads: "
5645 "[%s] needs step-over\n",
5646 target_pid_to_str (tp->ptid).c_str ());
5647 gdb_assert (!tp->resumed);
5648 continue;
5649 }
5650
5651
5652 if (tp->suspend.waitstatus_pending_p)
5653 {
5654 if (debug_infrun)
5655 fprintf_unfiltered (gdb_stdlog,
5656 "infrun: restart threads: "
5657 "[%s] has pending status\n",
5658 target_pid_to_str (tp->ptid).c_str ());
5659 tp->resumed = true;
5660 continue;
5661 }
5662
5663 gdb_assert (!tp->stop_requested);
5664
5665 /* If some thread needs to start a step-over at this point, it
5666 should still be in the step-over queue, and thus skipped
5667 above. */
5668 if (thread_still_needs_step_over (tp))
5669 {
5670 internal_error (__FILE__, __LINE__,
5671 "thread [%s] needs a step-over, but not in "
5672 "step-over queue\n",
5673 target_pid_to_str (tp->ptid).c_str ());
5674 }
5675
5676 if (currently_stepping (tp))
5677 {
5678 if (debug_infrun)
5679 fprintf_unfiltered (gdb_stdlog,
5680 "infrun: restart threads: [%s] was stepping\n",
5681 target_pid_to_str (tp->ptid).c_str ());
5682 keep_going_stepped_thread (tp);
5683 }
5684 else
5685 {
5686 struct execution_control_state ecss;
5687 struct execution_control_state *ecs = &ecss;
5688
5689 if (debug_infrun)
5690 fprintf_unfiltered (gdb_stdlog,
5691 "infrun: restart threads: [%s] continuing\n",
5692 target_pid_to_str (tp->ptid).c_str ());
5693 reset_ecs (ecs, tp);
5694 switch_to_thread (tp);
5695 keep_going_pass_signal (ecs);
5696 }
5697 }
5698 }
5699
5700 /* Callback for iterate_over_threads. Find a resumed thread that has
5701 a pending waitstatus. */
5702
5703 static int
5704 resumed_thread_with_pending_status (struct thread_info *tp,
5705 void *arg)
5706 {
5707 return (tp->resumed
5708 && tp->suspend.waitstatus_pending_p);
5709 }
5710
5711 /* Called when we get an event that may finish an in-line or
5712 out-of-line (displaced stepping) step-over started previously.
5713 Return true if the event is processed and we should go back to the
5714 event loop; false if the caller should continue processing the
5715 event. */
5716
5717 static int
5718 finish_step_over (struct execution_control_state *ecs)
5719 {
5720 int had_step_over_info;
5721
5722 displaced_step_fixup (ecs->event_thread,
5723 ecs->event_thread->suspend.stop_signal);
5724
5725 had_step_over_info = step_over_info_valid_p ();
5726
5727 if (had_step_over_info)
5728 {
5729 /* If we're stepping over a breakpoint with all threads locked,
5730 then only the thread that was stepped should be reporting
5731 back an event. */
5732 gdb_assert (ecs->event_thread->control.trap_expected);
5733
5734 clear_step_over_info ();
5735 }
5736
5737 if (!target_is_non_stop_p ())
5738 return 0;
5739
5740 /* Start a new step-over in another thread if there's one that
5741 needs it. */
5742 start_step_over ();
5743
5744 /* If we were stepping over a breakpoint before, and haven't started
5745 a new in-line step-over sequence, then restart all other threads
5746 (except the event thread). We can't do this in all-stop, as then
5747 e.g., we wouldn't be able to issue any other remote packet until
5748 these other threads stop. */
5749 if (had_step_over_info && !step_over_info_valid_p ())
5750 {
5751 struct thread_info *pending;
5752
5753 /* If we only have threads with pending statuses, the restart
5754 below won't restart any thread and so nothing re-inserts the
5755 breakpoint we just stepped over. But we need it inserted
5756 when we later process the pending events, otherwise if
5757 another thread has a pending event for this breakpoint too,
5758 we'd discard its event (because the breakpoint that
5759 originally caused the event was no longer inserted). */
5760 context_switch (ecs);
5761 insert_breakpoints ();
5762
5763 restart_threads (ecs->event_thread);
5764
5765 /* If we have events pending, go through handle_inferior_event
5766 again, picking up a pending event at random. This avoids
5767 thread starvation. */
5768
5769 /* But not if we just stepped over a watchpoint in order to let
5770 the instruction execute so we can evaluate its expression.
5771 The set of watchpoints that triggered is recorded in the
5772 breakpoint objects themselves (see bp->watchpoint_triggered).
5773 If we processed another event first, that other event could
5774 clobber this info. */
5775 if (ecs->event_thread->stepping_over_watchpoint)
5776 return 0;
5777
5778 pending = iterate_over_threads (resumed_thread_with_pending_status,
5779 NULL);
5780 if (pending != NULL)
5781 {
5782 struct thread_info *tp = ecs->event_thread;
5783 struct regcache *regcache;
5784
5785 if (debug_infrun)
5786 {
5787 fprintf_unfiltered (gdb_stdlog,
5788 "infrun: found resumed threads with "
5789 "pending events, saving status\n");
5790 }
5791
5792 gdb_assert (pending != tp);
5793
5794 /* Record the event thread's event for later. */
5795 save_waitstatus (tp, &ecs->ws);
5796 /* This was cleared early, by handle_inferior_event. Set it
5797 so this pending event is considered by
5798 do_target_wait. */
5799 tp->resumed = true;
5800
5801 gdb_assert (!tp->executing);
5802
5803 regcache = get_thread_regcache (tp);
5804 tp->suspend.stop_pc = regcache_read_pc (regcache);
5805
5806 if (debug_infrun)
5807 {
5808 fprintf_unfiltered (gdb_stdlog,
5809 "infrun: saved stop_pc=%s for %s "
5810 "(currently_stepping=%d)\n",
5811 paddress (target_gdbarch (),
5812 tp->suspend.stop_pc),
5813 target_pid_to_str (tp->ptid).c_str (),
5814 currently_stepping (tp));
5815 }
5816
5817 /* This in-line step-over finished; clear this so we won't
5818 start a new one. This is what handle_signal_stop would
5819 do, if we returned false. */
5820 tp->stepping_over_breakpoint = 0;
5821
5822 /* Wake up the event loop again. */
5823 mark_async_event_handler (infrun_async_inferior_event_token);
5824
5825 prepare_to_wait (ecs);
5826 return 1;
5827 }
5828 }
5829
5830 return 0;
5831 }
5832
5833 /* Come here when the program has stopped with a signal. */
5834
5835 static void
5836 handle_signal_stop (struct execution_control_state *ecs)
5837 {
5838 struct frame_info *frame;
5839 struct gdbarch *gdbarch;
5840 int stopped_by_watchpoint;
5841 enum stop_kind stop_soon;
5842 int random_signal;
5843
5844 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5845
5846 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5847
5848 /* Do we need to clean up the state of a thread that has
5849 completed a displaced single-step? (Doing so usually affects
5850 the PC, so do it here, before we set stop_pc.) */
5851 if (finish_step_over (ecs))
5852 return;
5853
5854 /* If we either finished a single-step or hit a breakpoint, but
5855 the user wanted this thread to be stopped, pretend we got a
5856 SIG0 (generic unsignaled stop). */
5857 if (ecs->event_thread->stop_requested
5858 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5859 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5860
5861 ecs->event_thread->suspend.stop_pc
5862 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5863
5864 if (debug_infrun)
5865 {
5866 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5867 struct gdbarch *reg_gdbarch = regcache->arch ();
5868
5869 switch_to_thread (ecs->event_thread);
5870
5871 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5872 paddress (reg_gdbarch,
5873 ecs->event_thread->suspend.stop_pc));
5874 if (target_stopped_by_watchpoint ())
5875 {
5876 CORE_ADDR addr;
5877
5878 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5879
5880 if (target_stopped_data_address (current_top_target (), &addr))
5881 fprintf_unfiltered (gdb_stdlog,
5882 "infrun: stopped data address = %s\n",
5883 paddress (reg_gdbarch, addr));
5884 else
5885 fprintf_unfiltered (gdb_stdlog,
5886 "infrun: (no data address available)\n");
5887 }
5888 }
5889
5890 /* This is originated from start_remote(), start_inferior() and
5891 shared libraries hook functions. */
5892 stop_soon = get_inferior_stop_soon (ecs);
5893 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5894 {
5895 context_switch (ecs);
5896 if (debug_infrun)
5897 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5898 stop_print_frame = 1;
5899 stop_waiting (ecs);
5900 return;
5901 }
5902
5903 /* This originates from attach_command(). We need to overwrite
5904 the stop_signal here, because some kernels don't ignore a
5905 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5906 See more comments in inferior.h. On the other hand, if we
5907 get a non-SIGSTOP, report it to the user - assume the backend
5908 will handle the SIGSTOP if it should show up later.
5909
5910 Also consider that the attach is complete when we see a
5911 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5912 target extended-remote report it instead of a SIGSTOP
5913 (e.g. gdbserver). We already rely on SIGTRAP being our
5914 signal, so this is no exception.
5915
5916 Also consider that the attach is complete when we see a
5917 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5918 the target to stop all threads of the inferior, in case the
5919 low level attach operation doesn't stop them implicitly. If
5920 they weren't stopped implicitly, then the stub will report a
5921 GDB_SIGNAL_0, meaning: stopped for no particular reason
5922 other than GDB's request. */
5923 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5924 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5925 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5926 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5927 {
5928 stop_print_frame = 1;
5929 stop_waiting (ecs);
5930 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5931 return;
5932 }
5933
5934 /* See if something interesting happened to the non-current thread. If
5935 so, then switch to that thread. */
5936 if (ecs->ptid != inferior_ptid)
5937 {
5938 if (debug_infrun)
5939 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5940
5941 context_switch (ecs);
5942
5943 if (deprecated_context_hook)
5944 deprecated_context_hook (ecs->event_thread->global_num);
5945 }
5946
5947 /* At this point, get hold of the now-current thread's frame. */
5948 frame = get_current_frame ();
5949 gdbarch = get_frame_arch (frame);
5950
5951 /* Pull the single step breakpoints out of the target. */
5952 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5953 {
5954 struct regcache *regcache;
5955 CORE_ADDR pc;
5956
5957 regcache = get_thread_regcache (ecs->event_thread);
5958 const address_space *aspace = regcache->aspace ();
5959
5960 pc = regcache_read_pc (regcache);
5961
5962 /* However, before doing so, if this single-step breakpoint was
5963 actually for another thread, set this thread up for moving
5964 past it. */
5965 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5966 aspace, pc))
5967 {
5968 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5969 {
5970 if (debug_infrun)
5971 {
5972 fprintf_unfiltered (gdb_stdlog,
5973 "infrun: [%s] hit another thread's "
5974 "single-step breakpoint\n",
5975 target_pid_to_str (ecs->ptid).c_str ());
5976 }
5977 ecs->hit_singlestep_breakpoint = 1;
5978 }
5979 }
5980 else
5981 {
5982 if (debug_infrun)
5983 {
5984 fprintf_unfiltered (gdb_stdlog,
5985 "infrun: [%s] hit its "
5986 "single-step breakpoint\n",
5987 target_pid_to_str (ecs->ptid).c_str ());
5988 }
5989 }
5990 }
5991 delete_just_stopped_threads_single_step_breakpoints ();
5992
5993 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5994 && ecs->event_thread->control.trap_expected
5995 && ecs->event_thread->stepping_over_watchpoint)
5996 stopped_by_watchpoint = 0;
5997 else
5998 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5999
6000 /* If necessary, step over this watchpoint. We'll be back to display
6001 it in a moment. */
6002 if (stopped_by_watchpoint
6003 && (target_have_steppable_watchpoint
6004 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6005 {
6006 /* At this point, we are stopped at an instruction which has
6007 attempted to write to a piece of memory under control of
6008 a watchpoint. The instruction hasn't actually executed
6009 yet. If we were to evaluate the watchpoint expression
6010 now, we would get the old value, and therefore no change
6011 would seem to have occurred.
6012
6013 In order to make watchpoints work `right', we really need
6014 to complete the memory write, and then evaluate the
6015 watchpoint expression. We do this by single-stepping the
6016 target.
6017
6018 It may not be necessary to disable the watchpoint to step over
6019 it. For example, the PA can (with some kernel cooperation)
6020 single step over a watchpoint without disabling the watchpoint.
6021
6022 It is far more common to need to disable a watchpoint to step
6023 the inferior over it. If we have non-steppable watchpoints,
6024 we must disable the current watchpoint; it's simplest to
6025 disable all watchpoints.
6026
6027 Any breakpoint at PC must also be stepped over -- if there's
6028 one, it will have already triggered before the watchpoint
6029 triggered, and we either already reported it to the user, or
6030 it didn't cause a stop and we called keep_going. In either
6031 case, if there was a breakpoint at PC, we must be trying to
6032 step past it. */
6033 ecs->event_thread->stepping_over_watchpoint = 1;
6034 keep_going (ecs);
6035 return;
6036 }
6037
6038 ecs->event_thread->stepping_over_breakpoint = 0;
6039 ecs->event_thread->stepping_over_watchpoint = 0;
6040 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6041 ecs->event_thread->control.stop_step = 0;
6042 stop_print_frame = 1;
6043 stopped_by_random_signal = 0;
6044 bpstat stop_chain = NULL;
6045
6046 /* Hide inlined functions starting here, unless we just performed stepi or
6047 nexti. After stepi and nexti, always show the innermost frame (not any
6048 inline function call sites). */
6049 if (ecs->event_thread->control.step_range_end != 1)
6050 {
6051 const address_space *aspace
6052 = get_thread_regcache (ecs->event_thread)->aspace ();
6053
6054 /* skip_inline_frames is expensive, so we avoid it if we can
6055 determine that the address is one where functions cannot have
6056 been inlined. This improves performance with inferiors that
6057 load a lot of shared libraries, because the solib event
6058 breakpoint is defined as the address of a function (i.e. not
6059 inline). Note that we have to check the previous PC as well
6060 as the current one to catch cases when we have just
6061 single-stepped off a breakpoint prior to reinstating it.
6062 Note that we're assuming that the code we single-step to is
6063 not inline, but that's not definitive: there's nothing
6064 preventing the event breakpoint function from containing
6065 inlined code, and the single-step ending up there. If the
6066 user had set a breakpoint on that inlined code, the missing
6067 skip_inline_frames call would break things. Fortunately
6068 that's an extremely unlikely scenario. */
6069 if (!pc_at_non_inline_function (aspace,
6070 ecs->event_thread->suspend.stop_pc,
6071 &ecs->ws)
6072 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6073 && ecs->event_thread->control.trap_expected
6074 && pc_at_non_inline_function (aspace,
6075 ecs->event_thread->prev_pc,
6076 &ecs->ws)))
6077 {
6078 stop_chain = build_bpstat_chain (aspace,
6079 ecs->event_thread->suspend.stop_pc,
6080 &ecs->ws);
6081 skip_inline_frames (ecs->event_thread, stop_chain);
6082
6083 /* Re-fetch current thread's frame in case that invalidated
6084 the frame cache. */
6085 frame = get_current_frame ();
6086 gdbarch = get_frame_arch (frame);
6087 }
6088 }
6089
6090 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6091 && ecs->event_thread->control.trap_expected
6092 && gdbarch_single_step_through_delay_p (gdbarch)
6093 && currently_stepping (ecs->event_thread))
6094 {
6095 /* We're trying to step off a breakpoint. Turns out that we're
6096 also on an instruction that needs to be stepped multiple
6097 times before it's been fully executing. E.g., architectures
6098 with a delay slot. It needs to be stepped twice, once for
6099 the instruction and once for the delay slot. */
6100 int step_through_delay
6101 = gdbarch_single_step_through_delay (gdbarch, frame);
6102
6103 if (debug_infrun && step_through_delay)
6104 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6105 if (ecs->event_thread->control.step_range_end == 0
6106 && step_through_delay)
6107 {
6108 /* The user issued a continue when stopped at a breakpoint.
6109 Set up for another trap and get out of here. */
6110 ecs->event_thread->stepping_over_breakpoint = 1;
6111 keep_going (ecs);
6112 return;
6113 }
6114 else if (step_through_delay)
6115 {
6116 /* The user issued a step when stopped at a breakpoint.
6117 Maybe we should stop, maybe we should not - the delay
6118 slot *might* correspond to a line of source. In any
6119 case, don't decide that here, just set
6120 ecs->stepping_over_breakpoint, making sure we
6121 single-step again before breakpoints are re-inserted. */
6122 ecs->event_thread->stepping_over_breakpoint = 1;
6123 }
6124 }
6125
6126 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6127 handles this event. */
6128 ecs->event_thread->control.stop_bpstat
6129 = bpstat_stop_status (get_current_regcache ()->aspace (),
6130 ecs->event_thread->suspend.stop_pc,
6131 ecs->event_thread, &ecs->ws, stop_chain);
6132
6133 /* Following in case break condition called a
6134 function. */
6135 stop_print_frame = 1;
6136
6137 /* This is where we handle "moribund" watchpoints. Unlike
6138 software breakpoints traps, hardware watchpoint traps are
6139 always distinguishable from random traps. If no high-level
6140 watchpoint is associated with the reported stop data address
6141 anymore, then the bpstat does not explain the signal ---
6142 simply make sure to ignore it if `stopped_by_watchpoint' is
6143 set. */
6144
6145 if (debug_infrun
6146 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6147 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6148 GDB_SIGNAL_TRAP)
6149 && stopped_by_watchpoint)
6150 fprintf_unfiltered (gdb_stdlog,
6151 "infrun: no user watchpoint explains "
6152 "watchpoint SIGTRAP, ignoring\n");
6153
6154 /* NOTE: cagney/2003-03-29: These checks for a random signal
6155 at one stage in the past included checks for an inferior
6156 function call's call dummy's return breakpoint. The original
6157 comment, that went with the test, read:
6158
6159 ``End of a stack dummy. Some systems (e.g. Sony news) give
6160 another signal besides SIGTRAP, so check here as well as
6161 above.''
6162
6163 If someone ever tries to get call dummys on a
6164 non-executable stack to work (where the target would stop
6165 with something like a SIGSEGV), then those tests might need
6166 to be re-instated. Given, however, that the tests were only
6167 enabled when momentary breakpoints were not being used, I
6168 suspect that it won't be the case.
6169
6170 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6171 be necessary for call dummies on a non-executable stack on
6172 SPARC. */
6173
6174 /* See if the breakpoints module can explain the signal. */
6175 random_signal
6176 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6177 ecs->event_thread->suspend.stop_signal);
6178
6179 /* Maybe this was a trap for a software breakpoint that has since
6180 been removed. */
6181 if (random_signal && target_stopped_by_sw_breakpoint ())
6182 {
6183 if (gdbarch_program_breakpoint_here_p (gdbarch,
6184 ecs->event_thread->suspend.stop_pc))
6185 {
6186 struct regcache *regcache;
6187 int decr_pc;
6188
6189 /* Re-adjust PC to what the program would see if GDB was not
6190 debugging it. */
6191 regcache = get_thread_regcache (ecs->event_thread);
6192 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6193 if (decr_pc != 0)
6194 {
6195 gdb::optional<scoped_restore_tmpl<int>>
6196 restore_operation_disable;
6197
6198 if (record_full_is_used ())
6199 restore_operation_disable.emplace
6200 (record_full_gdb_operation_disable_set ());
6201
6202 regcache_write_pc (regcache,
6203 ecs->event_thread->suspend.stop_pc + decr_pc);
6204 }
6205 }
6206 else
6207 {
6208 /* A delayed software breakpoint event. Ignore the trap. */
6209 if (debug_infrun)
6210 fprintf_unfiltered (gdb_stdlog,
6211 "infrun: delayed software breakpoint "
6212 "trap, ignoring\n");
6213 random_signal = 0;
6214 }
6215 }
6216
6217 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6218 has since been removed. */
6219 if (random_signal && target_stopped_by_hw_breakpoint ())
6220 {
6221 /* A delayed hardware breakpoint event. Ignore the trap. */
6222 if (debug_infrun)
6223 fprintf_unfiltered (gdb_stdlog,
6224 "infrun: delayed hardware breakpoint/watchpoint "
6225 "trap, ignoring\n");
6226 random_signal = 0;
6227 }
6228
6229 /* If not, perhaps stepping/nexting can. */
6230 if (random_signal)
6231 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6232 && currently_stepping (ecs->event_thread));
6233
6234 /* Perhaps the thread hit a single-step breakpoint of _another_
6235 thread. Single-step breakpoints are transparent to the
6236 breakpoints module. */
6237 if (random_signal)
6238 random_signal = !ecs->hit_singlestep_breakpoint;
6239
6240 /* No? Perhaps we got a moribund watchpoint. */
6241 if (random_signal)
6242 random_signal = !stopped_by_watchpoint;
6243
6244 /* Always stop if the user explicitly requested this thread to
6245 remain stopped. */
6246 if (ecs->event_thread->stop_requested)
6247 {
6248 random_signal = 1;
6249 if (debug_infrun)
6250 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6251 }
6252
6253 /* For the program's own signals, act according to
6254 the signal handling tables. */
6255
6256 if (random_signal)
6257 {
6258 /* Signal not for debugging purposes. */
6259 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6260 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6261
6262 if (debug_infrun)
6263 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6264 gdb_signal_to_symbol_string (stop_signal));
6265
6266 stopped_by_random_signal = 1;
6267
6268 /* Always stop on signals if we're either just gaining control
6269 of the program, or the user explicitly requested this thread
6270 to remain stopped. */
6271 if (stop_soon != NO_STOP_QUIETLY
6272 || ecs->event_thread->stop_requested
6273 || (!inf->detaching
6274 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6275 {
6276 stop_waiting (ecs);
6277 return;
6278 }
6279
6280 /* Notify observers the signal has "handle print" set. Note we
6281 returned early above if stopping; normal_stop handles the
6282 printing in that case. */
6283 if (signal_print[ecs->event_thread->suspend.stop_signal])
6284 {
6285 /* The signal table tells us to print about this signal. */
6286 target_terminal::ours_for_output ();
6287 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6288 target_terminal::inferior ();
6289 }
6290
6291 /* Clear the signal if it should not be passed. */
6292 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6293 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6294
6295 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6296 && ecs->event_thread->control.trap_expected
6297 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6298 {
6299 /* We were just starting a new sequence, attempting to
6300 single-step off of a breakpoint and expecting a SIGTRAP.
6301 Instead this signal arrives. This signal will take us out
6302 of the stepping range so GDB needs to remember to, when
6303 the signal handler returns, resume stepping off that
6304 breakpoint. */
6305 /* To simplify things, "continue" is forced to use the same
6306 code paths as single-step - set a breakpoint at the
6307 signal return address and then, once hit, step off that
6308 breakpoint. */
6309 if (debug_infrun)
6310 fprintf_unfiltered (gdb_stdlog,
6311 "infrun: signal arrived while stepping over "
6312 "breakpoint\n");
6313
6314 insert_hp_step_resume_breakpoint_at_frame (frame);
6315 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6316 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6317 ecs->event_thread->control.trap_expected = 0;
6318
6319 /* If we were nexting/stepping some other thread, switch to
6320 it, so that we don't continue it, losing control. */
6321 if (!switch_back_to_stepped_thread (ecs))
6322 keep_going (ecs);
6323 return;
6324 }
6325
6326 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6327 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6328 ecs->event_thread)
6329 || ecs->event_thread->control.step_range_end == 1)
6330 && frame_id_eq (get_stack_frame_id (frame),
6331 ecs->event_thread->control.step_stack_frame_id)
6332 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6333 {
6334 /* The inferior is about to take a signal that will take it
6335 out of the single step range. Set a breakpoint at the
6336 current PC (which is presumably where the signal handler
6337 will eventually return) and then allow the inferior to
6338 run free.
6339
6340 Note that this is only needed for a signal delivered
6341 while in the single-step range. Nested signals aren't a
6342 problem as they eventually all return. */
6343 if (debug_infrun)
6344 fprintf_unfiltered (gdb_stdlog,
6345 "infrun: signal may take us out of "
6346 "single-step range\n");
6347
6348 clear_step_over_info ();
6349 insert_hp_step_resume_breakpoint_at_frame (frame);
6350 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6351 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6352 ecs->event_thread->control.trap_expected = 0;
6353 keep_going (ecs);
6354 return;
6355 }
6356
6357 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6358 when either there's a nested signal, or when there's a
6359 pending signal enabled just as the signal handler returns
6360 (leaving the inferior at the step-resume-breakpoint without
6361 actually executing it). Either way continue until the
6362 breakpoint is really hit. */
6363
6364 if (!switch_back_to_stepped_thread (ecs))
6365 {
6366 if (debug_infrun)
6367 fprintf_unfiltered (gdb_stdlog,
6368 "infrun: random signal, keep going\n");
6369
6370 keep_going (ecs);
6371 }
6372 return;
6373 }
6374
6375 process_event_stop_test (ecs);
6376 }
6377
6378 /* Come here when we've got some debug event / signal we can explain
6379 (IOW, not a random signal), and test whether it should cause a
6380 stop, or whether we should resume the inferior (transparently).
6381 E.g., could be a breakpoint whose condition evaluates false; we
6382 could be still stepping within the line; etc. */
6383
6384 static void
6385 process_event_stop_test (struct execution_control_state *ecs)
6386 {
6387 struct symtab_and_line stop_pc_sal;
6388 struct frame_info *frame;
6389 struct gdbarch *gdbarch;
6390 CORE_ADDR jmp_buf_pc;
6391 struct bpstat_what what;
6392
6393 /* Handle cases caused by hitting a breakpoint. */
6394
6395 frame = get_current_frame ();
6396 gdbarch = get_frame_arch (frame);
6397
6398 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6399
6400 if (what.call_dummy)
6401 {
6402 stop_stack_dummy = what.call_dummy;
6403 }
6404
6405 /* A few breakpoint types have callbacks associated (e.g.,
6406 bp_jit_event). Run them now. */
6407 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6408
6409 /* If we hit an internal event that triggers symbol changes, the
6410 current frame will be invalidated within bpstat_what (e.g., if we
6411 hit an internal solib event). Re-fetch it. */
6412 frame = get_current_frame ();
6413 gdbarch = get_frame_arch (frame);
6414
6415 switch (what.main_action)
6416 {
6417 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6418 /* If we hit the breakpoint at longjmp while stepping, we
6419 install a momentary breakpoint at the target of the
6420 jmp_buf. */
6421
6422 if (debug_infrun)
6423 fprintf_unfiltered (gdb_stdlog,
6424 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6425
6426 ecs->event_thread->stepping_over_breakpoint = 1;
6427
6428 if (what.is_longjmp)
6429 {
6430 struct value *arg_value;
6431
6432 /* If we set the longjmp breakpoint via a SystemTap probe,
6433 then use it to extract the arguments. The destination PC
6434 is the third argument to the probe. */
6435 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6436 if (arg_value)
6437 {
6438 jmp_buf_pc = value_as_address (arg_value);
6439 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6440 }
6441 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6442 || !gdbarch_get_longjmp_target (gdbarch,
6443 frame, &jmp_buf_pc))
6444 {
6445 if (debug_infrun)
6446 fprintf_unfiltered (gdb_stdlog,
6447 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6448 "(!gdbarch_get_longjmp_target)\n");
6449 keep_going (ecs);
6450 return;
6451 }
6452
6453 /* Insert a breakpoint at resume address. */
6454 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6455 }
6456 else
6457 check_exception_resume (ecs, frame);
6458 keep_going (ecs);
6459 return;
6460
6461 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6462 {
6463 struct frame_info *init_frame;
6464
6465 /* There are several cases to consider.
6466
6467 1. The initiating frame no longer exists. In this case we
6468 must stop, because the exception or longjmp has gone too
6469 far.
6470
6471 2. The initiating frame exists, and is the same as the
6472 current frame. We stop, because the exception or longjmp
6473 has been caught.
6474
6475 3. The initiating frame exists and is different from the
6476 current frame. This means the exception or longjmp has
6477 been caught beneath the initiating frame, so keep going.
6478
6479 4. longjmp breakpoint has been placed just to protect
6480 against stale dummy frames and user is not interested in
6481 stopping around longjmps. */
6482
6483 if (debug_infrun)
6484 fprintf_unfiltered (gdb_stdlog,
6485 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6486
6487 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6488 != NULL);
6489 delete_exception_resume_breakpoint (ecs->event_thread);
6490
6491 if (what.is_longjmp)
6492 {
6493 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6494
6495 if (!frame_id_p (ecs->event_thread->initiating_frame))
6496 {
6497 /* Case 4. */
6498 keep_going (ecs);
6499 return;
6500 }
6501 }
6502
6503 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6504
6505 if (init_frame)
6506 {
6507 struct frame_id current_id
6508 = get_frame_id (get_current_frame ());
6509 if (frame_id_eq (current_id,
6510 ecs->event_thread->initiating_frame))
6511 {
6512 /* Case 2. Fall through. */
6513 }
6514 else
6515 {
6516 /* Case 3. */
6517 keep_going (ecs);
6518 return;
6519 }
6520 }
6521
6522 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6523 exists. */
6524 delete_step_resume_breakpoint (ecs->event_thread);
6525
6526 end_stepping_range (ecs);
6527 }
6528 return;
6529
6530 case BPSTAT_WHAT_SINGLE:
6531 if (debug_infrun)
6532 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6533 ecs->event_thread->stepping_over_breakpoint = 1;
6534 /* Still need to check other stuff, at least the case where we
6535 are stepping and step out of the right range. */
6536 break;
6537
6538 case BPSTAT_WHAT_STEP_RESUME:
6539 if (debug_infrun)
6540 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6541
6542 delete_step_resume_breakpoint (ecs->event_thread);
6543 if (ecs->event_thread->control.proceed_to_finish
6544 && execution_direction == EXEC_REVERSE)
6545 {
6546 struct thread_info *tp = ecs->event_thread;
6547
6548 /* We are finishing a function in reverse, and just hit the
6549 step-resume breakpoint at the start address of the
6550 function, and we're almost there -- just need to back up
6551 by one more single-step, which should take us back to the
6552 function call. */
6553 tp->control.step_range_start = tp->control.step_range_end = 1;
6554 keep_going (ecs);
6555 return;
6556 }
6557 fill_in_stop_func (gdbarch, ecs);
6558 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6559 && execution_direction == EXEC_REVERSE)
6560 {
6561 /* We are stepping over a function call in reverse, and just
6562 hit the step-resume breakpoint at the start address of
6563 the function. Go back to single-stepping, which should
6564 take us back to the function call. */
6565 ecs->event_thread->stepping_over_breakpoint = 1;
6566 keep_going (ecs);
6567 return;
6568 }
6569 break;
6570
6571 case BPSTAT_WHAT_STOP_NOISY:
6572 if (debug_infrun)
6573 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6574 stop_print_frame = 1;
6575
6576 /* Assume the thread stopped for a breapoint. We'll still check
6577 whether a/the breakpoint is there when the thread is next
6578 resumed. */
6579 ecs->event_thread->stepping_over_breakpoint = 1;
6580
6581 stop_waiting (ecs);
6582 return;
6583
6584 case BPSTAT_WHAT_STOP_SILENT:
6585 if (debug_infrun)
6586 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6587 stop_print_frame = 0;
6588
6589 /* Assume the thread stopped for a breapoint. We'll still check
6590 whether a/the breakpoint is there when the thread is next
6591 resumed. */
6592 ecs->event_thread->stepping_over_breakpoint = 1;
6593 stop_waiting (ecs);
6594 return;
6595
6596 case BPSTAT_WHAT_HP_STEP_RESUME:
6597 if (debug_infrun)
6598 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6599
6600 delete_step_resume_breakpoint (ecs->event_thread);
6601 if (ecs->event_thread->step_after_step_resume_breakpoint)
6602 {
6603 /* Back when the step-resume breakpoint was inserted, we
6604 were trying to single-step off a breakpoint. Go back to
6605 doing that. */
6606 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6607 ecs->event_thread->stepping_over_breakpoint = 1;
6608 keep_going (ecs);
6609 return;
6610 }
6611 break;
6612
6613 case BPSTAT_WHAT_KEEP_CHECKING:
6614 break;
6615 }
6616
6617 /* If we stepped a permanent breakpoint and we had a high priority
6618 step-resume breakpoint for the address we stepped, but we didn't
6619 hit it, then we must have stepped into the signal handler. The
6620 step-resume was only necessary to catch the case of _not_
6621 stepping into the handler, so delete it, and fall through to
6622 checking whether the step finished. */
6623 if (ecs->event_thread->stepped_breakpoint)
6624 {
6625 struct breakpoint *sr_bp
6626 = ecs->event_thread->control.step_resume_breakpoint;
6627
6628 if (sr_bp != NULL
6629 && sr_bp->loc->permanent
6630 && sr_bp->type == bp_hp_step_resume
6631 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6632 {
6633 if (debug_infrun)
6634 fprintf_unfiltered (gdb_stdlog,
6635 "infrun: stepped permanent breakpoint, stopped in "
6636 "handler\n");
6637 delete_step_resume_breakpoint (ecs->event_thread);
6638 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6639 }
6640 }
6641
6642 /* We come here if we hit a breakpoint but should not stop for it.
6643 Possibly we also were stepping and should stop for that. So fall
6644 through and test for stepping. But, if not stepping, do not
6645 stop. */
6646
6647 /* In all-stop mode, if we're currently stepping but have stopped in
6648 some other thread, we need to switch back to the stepped thread. */
6649 if (switch_back_to_stepped_thread (ecs))
6650 return;
6651
6652 if (ecs->event_thread->control.step_resume_breakpoint)
6653 {
6654 if (debug_infrun)
6655 fprintf_unfiltered (gdb_stdlog,
6656 "infrun: step-resume breakpoint is inserted\n");
6657
6658 /* Having a step-resume breakpoint overrides anything
6659 else having to do with stepping commands until
6660 that breakpoint is reached. */
6661 keep_going (ecs);
6662 return;
6663 }
6664
6665 if (ecs->event_thread->control.step_range_end == 0)
6666 {
6667 if (debug_infrun)
6668 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6669 /* Likewise if we aren't even stepping. */
6670 keep_going (ecs);
6671 return;
6672 }
6673
6674 /* Re-fetch current thread's frame in case the code above caused
6675 the frame cache to be re-initialized, making our FRAME variable
6676 a dangling pointer. */
6677 frame = get_current_frame ();
6678 gdbarch = get_frame_arch (frame);
6679 fill_in_stop_func (gdbarch, ecs);
6680
6681 /* If stepping through a line, keep going if still within it.
6682
6683 Note that step_range_end is the address of the first instruction
6684 beyond the step range, and NOT the address of the last instruction
6685 within it!
6686
6687 Note also that during reverse execution, we may be stepping
6688 through a function epilogue and therefore must detect when
6689 the current-frame changes in the middle of a line. */
6690
6691 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6692 ecs->event_thread)
6693 && (execution_direction != EXEC_REVERSE
6694 || frame_id_eq (get_frame_id (frame),
6695 ecs->event_thread->control.step_frame_id)))
6696 {
6697 if (debug_infrun)
6698 fprintf_unfiltered
6699 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6700 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6701 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6702
6703 /* Tentatively re-enable range stepping; `resume' disables it if
6704 necessary (e.g., if we're stepping over a breakpoint or we
6705 have software watchpoints). */
6706 ecs->event_thread->control.may_range_step = 1;
6707
6708 /* When stepping backward, stop at beginning of line range
6709 (unless it's the function entry point, in which case
6710 keep going back to the call point). */
6711 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6712 if (stop_pc == ecs->event_thread->control.step_range_start
6713 && stop_pc != ecs->stop_func_start
6714 && execution_direction == EXEC_REVERSE)
6715 end_stepping_range (ecs);
6716 else
6717 keep_going (ecs);
6718
6719 return;
6720 }
6721
6722 /* We stepped out of the stepping range. */
6723
6724 /* If we are stepping at the source level and entered the runtime
6725 loader dynamic symbol resolution code...
6726
6727 EXEC_FORWARD: we keep on single stepping until we exit the run
6728 time loader code and reach the callee's address.
6729
6730 EXEC_REVERSE: we've already executed the callee (backward), and
6731 the runtime loader code is handled just like any other
6732 undebuggable function call. Now we need only keep stepping
6733 backward through the trampoline code, and that's handled further
6734 down, so there is nothing for us to do here. */
6735
6736 if (execution_direction != EXEC_REVERSE
6737 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6738 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6739 {
6740 CORE_ADDR pc_after_resolver =
6741 gdbarch_skip_solib_resolver (gdbarch,
6742 ecs->event_thread->suspend.stop_pc);
6743
6744 if (debug_infrun)
6745 fprintf_unfiltered (gdb_stdlog,
6746 "infrun: stepped into dynsym resolve code\n");
6747
6748 if (pc_after_resolver)
6749 {
6750 /* Set up a step-resume breakpoint at the address
6751 indicated by SKIP_SOLIB_RESOLVER. */
6752 symtab_and_line sr_sal;
6753 sr_sal.pc = pc_after_resolver;
6754 sr_sal.pspace = get_frame_program_space (frame);
6755
6756 insert_step_resume_breakpoint_at_sal (gdbarch,
6757 sr_sal, null_frame_id);
6758 }
6759
6760 keep_going (ecs);
6761 return;
6762 }
6763
6764 /* Step through an indirect branch thunk. */
6765 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6766 && gdbarch_in_indirect_branch_thunk (gdbarch,
6767 ecs->event_thread->suspend.stop_pc))
6768 {
6769 if (debug_infrun)
6770 fprintf_unfiltered (gdb_stdlog,
6771 "infrun: stepped into indirect branch thunk\n");
6772 keep_going (ecs);
6773 return;
6774 }
6775
6776 if (ecs->event_thread->control.step_range_end != 1
6777 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6778 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6779 && get_frame_type (frame) == SIGTRAMP_FRAME)
6780 {
6781 if (debug_infrun)
6782 fprintf_unfiltered (gdb_stdlog,
6783 "infrun: stepped into signal trampoline\n");
6784 /* The inferior, while doing a "step" or "next", has ended up in
6785 a signal trampoline (either by a signal being delivered or by
6786 the signal handler returning). Just single-step until the
6787 inferior leaves the trampoline (either by calling the handler
6788 or returning). */
6789 keep_going (ecs);
6790 return;
6791 }
6792
6793 /* If we're in the return path from a shared library trampoline,
6794 we want to proceed through the trampoline when stepping. */
6795 /* macro/2012-04-25: This needs to come before the subroutine
6796 call check below as on some targets return trampolines look
6797 like subroutine calls (MIPS16 return thunks). */
6798 if (gdbarch_in_solib_return_trampoline (gdbarch,
6799 ecs->event_thread->suspend.stop_pc,
6800 ecs->stop_func_name)
6801 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6802 {
6803 /* Determine where this trampoline returns. */
6804 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6805 CORE_ADDR real_stop_pc
6806 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6807
6808 if (debug_infrun)
6809 fprintf_unfiltered (gdb_stdlog,
6810 "infrun: stepped into solib return tramp\n");
6811
6812 /* Only proceed through if we know where it's going. */
6813 if (real_stop_pc)
6814 {
6815 /* And put the step-breakpoint there and go until there. */
6816 symtab_and_line sr_sal;
6817 sr_sal.pc = real_stop_pc;
6818 sr_sal.section = find_pc_overlay (sr_sal.pc);
6819 sr_sal.pspace = get_frame_program_space (frame);
6820
6821 /* Do not specify what the fp should be when we stop since
6822 on some machines the prologue is where the new fp value
6823 is established. */
6824 insert_step_resume_breakpoint_at_sal (gdbarch,
6825 sr_sal, null_frame_id);
6826
6827 /* Restart without fiddling with the step ranges or
6828 other state. */
6829 keep_going (ecs);
6830 return;
6831 }
6832 }
6833
6834 /* Check for subroutine calls. The check for the current frame
6835 equalling the step ID is not necessary - the check of the
6836 previous frame's ID is sufficient - but it is a common case and
6837 cheaper than checking the previous frame's ID.
6838
6839 NOTE: frame_id_eq will never report two invalid frame IDs as
6840 being equal, so to get into this block, both the current and
6841 previous frame must have valid frame IDs. */
6842 /* The outer_frame_id check is a heuristic to detect stepping
6843 through startup code. If we step over an instruction which
6844 sets the stack pointer from an invalid value to a valid value,
6845 we may detect that as a subroutine call from the mythical
6846 "outermost" function. This could be fixed by marking
6847 outermost frames as !stack_p,code_p,special_p. Then the
6848 initial outermost frame, before sp was valid, would
6849 have code_addr == &_start. See the comment in frame_id_eq
6850 for more. */
6851 if (!frame_id_eq (get_stack_frame_id (frame),
6852 ecs->event_thread->control.step_stack_frame_id)
6853 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6854 ecs->event_thread->control.step_stack_frame_id)
6855 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6856 outer_frame_id)
6857 || (ecs->event_thread->control.step_start_function
6858 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6859 {
6860 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6861 CORE_ADDR real_stop_pc;
6862
6863 if (debug_infrun)
6864 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6865
6866 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6867 {
6868 /* I presume that step_over_calls is only 0 when we're
6869 supposed to be stepping at the assembly language level
6870 ("stepi"). Just stop. */
6871 /* And this works the same backward as frontward. MVS */
6872 end_stepping_range (ecs);
6873 return;
6874 }
6875
6876 /* Reverse stepping through solib trampolines. */
6877
6878 if (execution_direction == EXEC_REVERSE
6879 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6880 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6881 || (ecs->stop_func_start == 0
6882 && in_solib_dynsym_resolve_code (stop_pc))))
6883 {
6884 /* Any solib trampoline code can be handled in reverse
6885 by simply continuing to single-step. We have already
6886 executed the solib function (backwards), and a few
6887 steps will take us back through the trampoline to the
6888 caller. */
6889 keep_going (ecs);
6890 return;
6891 }
6892
6893 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6894 {
6895 /* We're doing a "next".
6896
6897 Normal (forward) execution: set a breakpoint at the
6898 callee's return address (the address at which the caller
6899 will resume).
6900
6901 Reverse (backward) execution. set the step-resume
6902 breakpoint at the start of the function that we just
6903 stepped into (backwards), and continue to there. When we
6904 get there, we'll need to single-step back to the caller. */
6905
6906 if (execution_direction == EXEC_REVERSE)
6907 {
6908 /* If we're already at the start of the function, we've either
6909 just stepped backward into a single instruction function,
6910 or stepped back out of a signal handler to the first instruction
6911 of the function. Just keep going, which will single-step back
6912 to the caller. */
6913 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6914 {
6915 /* Normal function call return (static or dynamic). */
6916 symtab_and_line sr_sal;
6917 sr_sal.pc = ecs->stop_func_start;
6918 sr_sal.pspace = get_frame_program_space (frame);
6919 insert_step_resume_breakpoint_at_sal (gdbarch,
6920 sr_sal, null_frame_id);
6921 }
6922 }
6923 else
6924 insert_step_resume_breakpoint_at_caller (frame);
6925
6926 keep_going (ecs);
6927 return;
6928 }
6929
6930 /* If we are in a function call trampoline (a stub between the
6931 calling routine and the real function), locate the real
6932 function. That's what tells us (a) whether we want to step
6933 into it at all, and (b) what prologue we want to run to the
6934 end of, if we do step into it. */
6935 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6936 if (real_stop_pc == 0)
6937 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6938 if (real_stop_pc != 0)
6939 ecs->stop_func_start = real_stop_pc;
6940
6941 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6942 {
6943 symtab_and_line sr_sal;
6944 sr_sal.pc = ecs->stop_func_start;
6945 sr_sal.pspace = get_frame_program_space (frame);
6946
6947 insert_step_resume_breakpoint_at_sal (gdbarch,
6948 sr_sal, null_frame_id);
6949 keep_going (ecs);
6950 return;
6951 }
6952
6953 /* If we have line number information for the function we are
6954 thinking of stepping into and the function isn't on the skip
6955 list, step into it.
6956
6957 If there are several symtabs at that PC (e.g. with include
6958 files), just want to know whether *any* of them have line
6959 numbers. find_pc_line handles this. */
6960 {
6961 struct symtab_and_line tmp_sal;
6962
6963 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6964 if (tmp_sal.line != 0
6965 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6966 tmp_sal)
6967 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6968 {
6969 if (execution_direction == EXEC_REVERSE)
6970 handle_step_into_function_backward (gdbarch, ecs);
6971 else
6972 handle_step_into_function (gdbarch, ecs);
6973 return;
6974 }
6975 }
6976
6977 /* If we have no line number and the step-stop-if-no-debug is
6978 set, we stop the step so that the user has a chance to switch
6979 in assembly mode. */
6980 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6981 && step_stop_if_no_debug)
6982 {
6983 end_stepping_range (ecs);
6984 return;
6985 }
6986
6987 if (execution_direction == EXEC_REVERSE)
6988 {
6989 /* If we're already at the start of the function, we've either just
6990 stepped backward into a single instruction function without line
6991 number info, or stepped back out of a signal handler to the first
6992 instruction of the function without line number info. Just keep
6993 going, which will single-step back to the caller. */
6994 if (ecs->stop_func_start != stop_pc)
6995 {
6996 /* Set a breakpoint at callee's start address.
6997 From there we can step once and be back in the caller. */
6998 symtab_and_line sr_sal;
6999 sr_sal.pc = ecs->stop_func_start;
7000 sr_sal.pspace = get_frame_program_space (frame);
7001 insert_step_resume_breakpoint_at_sal (gdbarch,
7002 sr_sal, null_frame_id);
7003 }
7004 }
7005 else
7006 /* Set a breakpoint at callee's return address (the address
7007 at which the caller will resume). */
7008 insert_step_resume_breakpoint_at_caller (frame);
7009
7010 keep_going (ecs);
7011 return;
7012 }
7013
7014 /* Reverse stepping through solib trampolines. */
7015
7016 if (execution_direction == EXEC_REVERSE
7017 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7018 {
7019 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7020
7021 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7022 || (ecs->stop_func_start == 0
7023 && in_solib_dynsym_resolve_code (stop_pc)))
7024 {
7025 /* Any solib trampoline code can be handled in reverse
7026 by simply continuing to single-step. We have already
7027 executed the solib function (backwards), and a few
7028 steps will take us back through the trampoline to the
7029 caller. */
7030 keep_going (ecs);
7031 return;
7032 }
7033 else if (in_solib_dynsym_resolve_code (stop_pc))
7034 {
7035 /* Stepped backward into the solib dynsym resolver.
7036 Set a breakpoint at its start and continue, then
7037 one more step will take us out. */
7038 symtab_and_line sr_sal;
7039 sr_sal.pc = ecs->stop_func_start;
7040 sr_sal.pspace = get_frame_program_space (frame);
7041 insert_step_resume_breakpoint_at_sal (gdbarch,
7042 sr_sal, null_frame_id);
7043 keep_going (ecs);
7044 return;
7045 }
7046 }
7047
7048 /* This always returns the sal for the inner-most frame when we are in a
7049 stack of inlined frames, even if GDB actually believes that it is in a
7050 more outer frame. This is checked for below by calls to
7051 inline_skipped_frames. */
7052 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7053
7054 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7055 the trampoline processing logic, however, there are some trampolines
7056 that have no names, so we should do trampoline handling first. */
7057 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7058 && ecs->stop_func_name == NULL
7059 && stop_pc_sal.line == 0)
7060 {
7061 if (debug_infrun)
7062 fprintf_unfiltered (gdb_stdlog,
7063 "infrun: stepped into undebuggable function\n");
7064
7065 /* The inferior just stepped into, or returned to, an
7066 undebuggable function (where there is no debugging information
7067 and no line number corresponding to the address where the
7068 inferior stopped). Since we want to skip this kind of code,
7069 we keep going until the inferior returns from this
7070 function - unless the user has asked us not to (via
7071 set step-mode) or we no longer know how to get back
7072 to the call site. */
7073 if (step_stop_if_no_debug
7074 || !frame_id_p (frame_unwind_caller_id (frame)))
7075 {
7076 /* If we have no line number and the step-stop-if-no-debug
7077 is set, we stop the step so that the user has a chance to
7078 switch in assembly mode. */
7079 end_stepping_range (ecs);
7080 return;
7081 }
7082 else
7083 {
7084 /* Set a breakpoint at callee's return address (the address
7085 at which the caller will resume). */
7086 insert_step_resume_breakpoint_at_caller (frame);
7087 keep_going (ecs);
7088 return;
7089 }
7090 }
7091
7092 if (ecs->event_thread->control.step_range_end == 1)
7093 {
7094 /* It is stepi or nexti. We always want to stop stepping after
7095 one instruction. */
7096 if (debug_infrun)
7097 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7098 end_stepping_range (ecs);
7099 return;
7100 }
7101
7102 if (stop_pc_sal.line == 0)
7103 {
7104 /* We have no line number information. That means to stop
7105 stepping (does this always happen right after one instruction,
7106 when we do "s" in a function with no line numbers,
7107 or can this happen as a result of a return or longjmp?). */
7108 if (debug_infrun)
7109 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7110 end_stepping_range (ecs);
7111 return;
7112 }
7113
7114 /* Look for "calls" to inlined functions, part one. If the inline
7115 frame machinery detected some skipped call sites, we have entered
7116 a new inline function. */
7117
7118 if (frame_id_eq (get_frame_id (get_current_frame ()),
7119 ecs->event_thread->control.step_frame_id)
7120 && inline_skipped_frames (ecs->event_thread))
7121 {
7122 if (debug_infrun)
7123 fprintf_unfiltered (gdb_stdlog,
7124 "infrun: stepped into inlined function\n");
7125
7126 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7127
7128 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7129 {
7130 /* For "step", we're going to stop. But if the call site
7131 for this inlined function is on the same source line as
7132 we were previously stepping, go down into the function
7133 first. Otherwise stop at the call site. */
7134
7135 if (call_sal.line == ecs->event_thread->current_line
7136 && call_sal.symtab == ecs->event_thread->current_symtab)
7137 {
7138 step_into_inline_frame (ecs->event_thread);
7139 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7140 {
7141 keep_going (ecs);
7142 return;
7143 }
7144 }
7145
7146 end_stepping_range (ecs);
7147 return;
7148 }
7149 else
7150 {
7151 /* For "next", we should stop at the call site if it is on a
7152 different source line. Otherwise continue through the
7153 inlined function. */
7154 if (call_sal.line == ecs->event_thread->current_line
7155 && call_sal.symtab == ecs->event_thread->current_symtab)
7156 keep_going (ecs);
7157 else
7158 end_stepping_range (ecs);
7159 return;
7160 }
7161 }
7162
7163 /* Look for "calls" to inlined functions, part two. If we are still
7164 in the same real function we were stepping through, but we have
7165 to go further up to find the exact frame ID, we are stepping
7166 through a more inlined call beyond its call site. */
7167
7168 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7169 && !frame_id_eq (get_frame_id (get_current_frame ()),
7170 ecs->event_thread->control.step_frame_id)
7171 && stepped_in_from (get_current_frame (),
7172 ecs->event_thread->control.step_frame_id))
7173 {
7174 if (debug_infrun)
7175 fprintf_unfiltered (gdb_stdlog,
7176 "infrun: stepping through inlined function\n");
7177
7178 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7179 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7180 keep_going (ecs);
7181 else
7182 end_stepping_range (ecs);
7183 return;
7184 }
7185
7186 bool refresh_step_info = true;
7187 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7188 && (ecs->event_thread->current_line != stop_pc_sal.line
7189 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7190 {
7191 if (stop_pc_sal.is_stmt)
7192 {
7193 /* We are at the start of a different line. So stop. Note that
7194 we don't stop if we step into the middle of a different line.
7195 That is said to make things like for (;;) statements work
7196 better. */
7197 if (debug_infrun)
7198 fprintf_unfiltered (gdb_stdlog,
7199 "infrun: stepped to a different line\n");
7200 end_stepping_range (ecs);
7201 return;
7202 }
7203 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7204 ecs->event_thread->control.step_frame_id))
7205 {
7206 /* We are at the start of a different line, however, this line is
7207 not marked as a statement, and we have not changed frame. We
7208 ignore this line table entry, and continue stepping forward,
7209 looking for a better place to stop. */
7210 refresh_step_info = false;
7211 if (debug_infrun)
7212 fprintf_unfiltered (gdb_stdlog,
7213 "infrun: stepped to a different line, but "
7214 "it's not the start of a statement\n");
7215 }
7216 }
7217
7218 /* We aren't done stepping.
7219
7220 Optimize by setting the stepping range to the line.
7221 (We might not be in the original line, but if we entered a
7222 new line in mid-statement, we continue stepping. This makes
7223 things like for(;;) statements work better.)
7224
7225 If we entered a SAL that indicates a non-statement line table entry,
7226 then we update the stepping range, but we don't update the step info,
7227 which includes things like the line number we are stepping away from.
7228 This means we will stop when we find a line table entry that is marked
7229 as is-statement, even if it matches the non-statement one we just
7230 stepped into. */
7231
7232 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7233 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7234 ecs->event_thread->control.may_range_step = 1;
7235 if (refresh_step_info)
7236 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7237
7238 if (debug_infrun)
7239 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7240 keep_going (ecs);
7241 }
7242
7243 /* In all-stop mode, if we're currently stepping but have stopped in
7244 some other thread, we may need to switch back to the stepped
7245 thread. Returns true we set the inferior running, false if we left
7246 it stopped (and the event needs further processing). */
7247
7248 static int
7249 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7250 {
7251 if (!target_is_non_stop_p ())
7252 {
7253 struct thread_info *stepping_thread;
7254
7255 /* If any thread is blocked on some internal breakpoint, and we
7256 simply need to step over that breakpoint to get it going
7257 again, do that first. */
7258
7259 /* However, if we see an event for the stepping thread, then we
7260 know all other threads have been moved past their breakpoints
7261 already. Let the caller check whether the step is finished,
7262 etc., before deciding to move it past a breakpoint. */
7263 if (ecs->event_thread->control.step_range_end != 0)
7264 return 0;
7265
7266 /* Check if the current thread is blocked on an incomplete
7267 step-over, interrupted by a random signal. */
7268 if (ecs->event_thread->control.trap_expected
7269 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7270 {
7271 if (debug_infrun)
7272 {
7273 fprintf_unfiltered (gdb_stdlog,
7274 "infrun: need to finish step-over of [%s]\n",
7275 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7276 }
7277 keep_going (ecs);
7278 return 1;
7279 }
7280
7281 /* Check if the current thread is blocked by a single-step
7282 breakpoint of another thread. */
7283 if (ecs->hit_singlestep_breakpoint)
7284 {
7285 if (debug_infrun)
7286 {
7287 fprintf_unfiltered (gdb_stdlog,
7288 "infrun: need to step [%s] over single-step "
7289 "breakpoint\n",
7290 target_pid_to_str (ecs->ptid).c_str ());
7291 }
7292 keep_going (ecs);
7293 return 1;
7294 }
7295
7296 /* If this thread needs yet another step-over (e.g., stepping
7297 through a delay slot), do it first before moving on to
7298 another thread. */
7299 if (thread_still_needs_step_over (ecs->event_thread))
7300 {
7301 if (debug_infrun)
7302 {
7303 fprintf_unfiltered (gdb_stdlog,
7304 "infrun: thread [%s] still needs step-over\n",
7305 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7306 }
7307 keep_going (ecs);
7308 return 1;
7309 }
7310
7311 /* If scheduler locking applies even if not stepping, there's no
7312 need to walk over threads. Above we've checked whether the
7313 current thread is stepping. If some other thread not the
7314 event thread is stepping, then it must be that scheduler
7315 locking is not in effect. */
7316 if (schedlock_applies (ecs->event_thread))
7317 return 0;
7318
7319 /* Otherwise, we no longer expect a trap in the current thread.
7320 Clear the trap_expected flag before switching back -- this is
7321 what keep_going does as well, if we call it. */
7322 ecs->event_thread->control.trap_expected = 0;
7323
7324 /* Likewise, clear the signal if it should not be passed. */
7325 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7326 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7327
7328 /* Do all pending step-overs before actually proceeding with
7329 step/next/etc. */
7330 if (start_step_over ())
7331 {
7332 prepare_to_wait (ecs);
7333 return 1;
7334 }
7335
7336 /* Look for the stepping/nexting thread. */
7337 stepping_thread = NULL;
7338
7339 for (thread_info *tp : all_non_exited_threads ())
7340 {
7341 switch_to_thread_no_regs (tp);
7342
7343 /* Ignore threads of processes the caller is not
7344 resuming. */
7345 if (!sched_multi
7346 && (tp->inf->process_target () != ecs->target
7347 || tp->inf->pid != ecs->ptid.pid ()))
7348 continue;
7349
7350 /* When stepping over a breakpoint, we lock all threads
7351 except the one that needs to move past the breakpoint.
7352 If a non-event thread has this set, the "incomplete
7353 step-over" check above should have caught it earlier. */
7354 if (tp->control.trap_expected)
7355 {
7356 internal_error (__FILE__, __LINE__,
7357 "[%s] has inconsistent state: "
7358 "trap_expected=%d\n",
7359 target_pid_to_str (tp->ptid).c_str (),
7360 tp->control.trap_expected);
7361 }
7362
7363 /* Did we find the stepping thread? */
7364 if (tp->control.step_range_end)
7365 {
7366 /* Yep. There should only one though. */
7367 gdb_assert (stepping_thread == NULL);
7368
7369 /* The event thread is handled at the top, before we
7370 enter this loop. */
7371 gdb_assert (tp != ecs->event_thread);
7372
7373 /* If some thread other than the event thread is
7374 stepping, then scheduler locking can't be in effect,
7375 otherwise we wouldn't have resumed the current event
7376 thread in the first place. */
7377 gdb_assert (!schedlock_applies (tp));
7378
7379 stepping_thread = tp;
7380 }
7381 }
7382
7383 if (stepping_thread != NULL)
7384 {
7385 if (debug_infrun)
7386 fprintf_unfiltered (gdb_stdlog,
7387 "infrun: switching back to stepped thread\n");
7388
7389 if (keep_going_stepped_thread (stepping_thread))
7390 {
7391 prepare_to_wait (ecs);
7392 return 1;
7393 }
7394 }
7395
7396 switch_to_thread (ecs->event_thread);
7397 }
7398
7399 return 0;
7400 }
7401
7402 /* Set a previously stepped thread back to stepping. Returns true on
7403 success, false if the resume is not possible (e.g., the thread
7404 vanished). */
7405
7406 static int
7407 keep_going_stepped_thread (struct thread_info *tp)
7408 {
7409 struct frame_info *frame;
7410 struct execution_control_state ecss;
7411 struct execution_control_state *ecs = &ecss;
7412
7413 /* If the stepping thread exited, then don't try to switch back and
7414 resume it, which could fail in several different ways depending
7415 on the target. Instead, just keep going.
7416
7417 We can find a stepping dead thread in the thread list in two
7418 cases:
7419
7420 - The target supports thread exit events, and when the target
7421 tries to delete the thread from the thread list, inferior_ptid
7422 pointed at the exiting thread. In such case, calling
7423 delete_thread does not really remove the thread from the list;
7424 instead, the thread is left listed, with 'exited' state.
7425
7426 - The target's debug interface does not support thread exit
7427 events, and so we have no idea whatsoever if the previously
7428 stepping thread is still alive. For that reason, we need to
7429 synchronously query the target now. */
7430
7431 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7432 {
7433 if (debug_infrun)
7434 fprintf_unfiltered (gdb_stdlog,
7435 "infrun: not resuming previously "
7436 "stepped thread, it has vanished\n");
7437
7438 delete_thread (tp);
7439 return 0;
7440 }
7441
7442 if (debug_infrun)
7443 fprintf_unfiltered (gdb_stdlog,
7444 "infrun: resuming previously stepped thread\n");
7445
7446 reset_ecs (ecs, tp);
7447 switch_to_thread (tp);
7448
7449 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7450 frame = get_current_frame ();
7451
7452 /* If the PC of the thread we were trying to single-step has
7453 changed, then that thread has trapped or been signaled, but the
7454 event has not been reported to GDB yet. Re-poll the target
7455 looking for this particular thread's event (i.e. temporarily
7456 enable schedlock) by:
7457
7458 - setting a break at the current PC
7459 - resuming that particular thread, only (by setting trap
7460 expected)
7461
7462 This prevents us continuously moving the single-step breakpoint
7463 forward, one instruction at a time, overstepping. */
7464
7465 if (tp->suspend.stop_pc != tp->prev_pc)
7466 {
7467 ptid_t resume_ptid;
7468
7469 if (debug_infrun)
7470 fprintf_unfiltered (gdb_stdlog,
7471 "infrun: expected thread advanced also (%s -> %s)\n",
7472 paddress (target_gdbarch (), tp->prev_pc),
7473 paddress (target_gdbarch (), tp->suspend.stop_pc));
7474
7475 /* Clear the info of the previous step-over, as it's no longer
7476 valid (if the thread was trying to step over a breakpoint, it
7477 has already succeeded). It's what keep_going would do too,
7478 if we called it. Do this before trying to insert the sss
7479 breakpoint, otherwise if we were previously trying to step
7480 over this exact address in another thread, the breakpoint is
7481 skipped. */
7482 clear_step_over_info ();
7483 tp->control.trap_expected = 0;
7484
7485 insert_single_step_breakpoint (get_frame_arch (frame),
7486 get_frame_address_space (frame),
7487 tp->suspend.stop_pc);
7488
7489 tp->resumed = true;
7490 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7491 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7492 }
7493 else
7494 {
7495 if (debug_infrun)
7496 fprintf_unfiltered (gdb_stdlog,
7497 "infrun: expected thread still hasn't advanced\n");
7498
7499 keep_going_pass_signal (ecs);
7500 }
7501 return 1;
7502 }
7503
7504 /* Is thread TP in the middle of (software or hardware)
7505 single-stepping? (Note the result of this function must never be
7506 passed directly as target_resume's STEP parameter.) */
7507
7508 static int
7509 currently_stepping (struct thread_info *tp)
7510 {
7511 return ((tp->control.step_range_end
7512 && tp->control.step_resume_breakpoint == NULL)
7513 || tp->control.trap_expected
7514 || tp->stepped_breakpoint
7515 || bpstat_should_step ());
7516 }
7517
7518 /* Inferior has stepped into a subroutine call with source code that
7519 we should not step over. Do step to the first line of code in
7520 it. */
7521
7522 static void
7523 handle_step_into_function (struct gdbarch *gdbarch,
7524 struct execution_control_state *ecs)
7525 {
7526 fill_in_stop_func (gdbarch, ecs);
7527
7528 compunit_symtab *cust
7529 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7530 if (cust != NULL && compunit_language (cust) != language_asm)
7531 ecs->stop_func_start
7532 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7533
7534 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7535 /* Use the step_resume_break to step until the end of the prologue,
7536 even if that involves jumps (as it seems to on the vax under
7537 4.2). */
7538 /* If the prologue ends in the middle of a source line, continue to
7539 the end of that source line (if it is still within the function).
7540 Otherwise, just go to end of prologue. */
7541 if (stop_func_sal.end
7542 && stop_func_sal.pc != ecs->stop_func_start
7543 && stop_func_sal.end < ecs->stop_func_end)
7544 ecs->stop_func_start = stop_func_sal.end;
7545
7546 /* Architectures which require breakpoint adjustment might not be able
7547 to place a breakpoint at the computed address. If so, the test
7548 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7549 ecs->stop_func_start to an address at which a breakpoint may be
7550 legitimately placed.
7551
7552 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7553 made, GDB will enter an infinite loop when stepping through
7554 optimized code consisting of VLIW instructions which contain
7555 subinstructions corresponding to different source lines. On
7556 FR-V, it's not permitted to place a breakpoint on any but the
7557 first subinstruction of a VLIW instruction. When a breakpoint is
7558 set, GDB will adjust the breakpoint address to the beginning of
7559 the VLIW instruction. Thus, we need to make the corresponding
7560 adjustment here when computing the stop address. */
7561
7562 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7563 {
7564 ecs->stop_func_start
7565 = gdbarch_adjust_breakpoint_address (gdbarch,
7566 ecs->stop_func_start);
7567 }
7568
7569 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7570 {
7571 /* We are already there: stop now. */
7572 end_stepping_range (ecs);
7573 return;
7574 }
7575 else
7576 {
7577 /* Put the step-breakpoint there and go until there. */
7578 symtab_and_line sr_sal;
7579 sr_sal.pc = ecs->stop_func_start;
7580 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7581 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7582
7583 /* Do not specify what the fp should be when we stop since on
7584 some machines the prologue is where the new fp value is
7585 established. */
7586 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7587
7588 /* And make sure stepping stops right away then. */
7589 ecs->event_thread->control.step_range_end
7590 = ecs->event_thread->control.step_range_start;
7591 }
7592 keep_going (ecs);
7593 }
7594
7595 /* Inferior has stepped backward into a subroutine call with source
7596 code that we should not step over. Do step to the beginning of the
7597 last line of code in it. */
7598
7599 static void
7600 handle_step_into_function_backward (struct gdbarch *gdbarch,
7601 struct execution_control_state *ecs)
7602 {
7603 struct compunit_symtab *cust;
7604 struct symtab_and_line stop_func_sal;
7605
7606 fill_in_stop_func (gdbarch, ecs);
7607
7608 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7609 if (cust != NULL && compunit_language (cust) != language_asm)
7610 ecs->stop_func_start
7611 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7612
7613 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7614
7615 /* OK, we're just going to keep stepping here. */
7616 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7617 {
7618 /* We're there already. Just stop stepping now. */
7619 end_stepping_range (ecs);
7620 }
7621 else
7622 {
7623 /* Else just reset the step range and keep going.
7624 No step-resume breakpoint, they don't work for
7625 epilogues, which can have multiple entry paths. */
7626 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7627 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7628 keep_going (ecs);
7629 }
7630 return;
7631 }
7632
7633 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7634 This is used to both functions and to skip over code. */
7635
7636 static void
7637 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7638 struct symtab_and_line sr_sal,
7639 struct frame_id sr_id,
7640 enum bptype sr_type)
7641 {
7642 /* There should never be more than one step-resume or longjmp-resume
7643 breakpoint per thread, so we should never be setting a new
7644 step_resume_breakpoint when one is already active. */
7645 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7646 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7647
7648 if (debug_infrun)
7649 fprintf_unfiltered (gdb_stdlog,
7650 "infrun: inserting step-resume breakpoint at %s\n",
7651 paddress (gdbarch, sr_sal.pc));
7652
7653 inferior_thread ()->control.step_resume_breakpoint
7654 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7655 }
7656
7657 void
7658 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7659 struct symtab_and_line sr_sal,
7660 struct frame_id sr_id)
7661 {
7662 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7663 sr_sal, sr_id,
7664 bp_step_resume);
7665 }
7666
7667 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7668 This is used to skip a potential signal handler.
7669
7670 This is called with the interrupted function's frame. The signal
7671 handler, when it returns, will resume the interrupted function at
7672 RETURN_FRAME.pc. */
7673
7674 static void
7675 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7676 {
7677 gdb_assert (return_frame != NULL);
7678
7679 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7680
7681 symtab_and_line sr_sal;
7682 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7683 sr_sal.section = find_pc_overlay (sr_sal.pc);
7684 sr_sal.pspace = get_frame_program_space (return_frame);
7685
7686 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7687 get_stack_frame_id (return_frame),
7688 bp_hp_step_resume);
7689 }
7690
7691 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7692 is used to skip a function after stepping into it (for "next" or if
7693 the called function has no debugging information).
7694
7695 The current function has almost always been reached by single
7696 stepping a call or return instruction. NEXT_FRAME belongs to the
7697 current function, and the breakpoint will be set at the caller's
7698 resume address.
7699
7700 This is a separate function rather than reusing
7701 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7702 get_prev_frame, which may stop prematurely (see the implementation
7703 of frame_unwind_caller_id for an example). */
7704
7705 static void
7706 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7707 {
7708 /* We shouldn't have gotten here if we don't know where the call site
7709 is. */
7710 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7711
7712 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7713
7714 symtab_and_line sr_sal;
7715 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7716 frame_unwind_caller_pc (next_frame));
7717 sr_sal.section = find_pc_overlay (sr_sal.pc);
7718 sr_sal.pspace = frame_unwind_program_space (next_frame);
7719
7720 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7721 frame_unwind_caller_id (next_frame));
7722 }
7723
7724 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7725 new breakpoint at the target of a jmp_buf. The handling of
7726 longjmp-resume uses the same mechanisms used for handling
7727 "step-resume" breakpoints. */
7728
7729 static void
7730 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7731 {
7732 /* There should never be more than one longjmp-resume breakpoint per
7733 thread, so we should never be setting a new
7734 longjmp_resume_breakpoint when one is already active. */
7735 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7736
7737 if (debug_infrun)
7738 fprintf_unfiltered (gdb_stdlog,
7739 "infrun: inserting longjmp-resume breakpoint at %s\n",
7740 paddress (gdbarch, pc));
7741
7742 inferior_thread ()->control.exception_resume_breakpoint =
7743 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7744 }
7745
7746 /* Insert an exception resume breakpoint. TP is the thread throwing
7747 the exception. The block B is the block of the unwinder debug hook
7748 function. FRAME is the frame corresponding to the call to this
7749 function. SYM is the symbol of the function argument holding the
7750 target PC of the exception. */
7751
7752 static void
7753 insert_exception_resume_breakpoint (struct thread_info *tp,
7754 const struct block *b,
7755 struct frame_info *frame,
7756 struct symbol *sym)
7757 {
7758 try
7759 {
7760 struct block_symbol vsym;
7761 struct value *value;
7762 CORE_ADDR handler;
7763 struct breakpoint *bp;
7764
7765 vsym = lookup_symbol_search_name (sym->search_name (),
7766 b, VAR_DOMAIN);
7767 value = read_var_value (vsym.symbol, vsym.block, frame);
7768 /* If the value was optimized out, revert to the old behavior. */
7769 if (! value_optimized_out (value))
7770 {
7771 handler = value_as_address (value);
7772
7773 if (debug_infrun)
7774 fprintf_unfiltered (gdb_stdlog,
7775 "infrun: exception resume at %lx\n",
7776 (unsigned long) handler);
7777
7778 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7779 handler,
7780 bp_exception_resume).release ();
7781
7782 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7783 frame = NULL;
7784
7785 bp->thread = tp->global_num;
7786 inferior_thread ()->control.exception_resume_breakpoint = bp;
7787 }
7788 }
7789 catch (const gdb_exception_error &e)
7790 {
7791 /* We want to ignore errors here. */
7792 }
7793 }
7794
7795 /* A helper for check_exception_resume that sets an
7796 exception-breakpoint based on a SystemTap probe. */
7797
7798 static void
7799 insert_exception_resume_from_probe (struct thread_info *tp,
7800 const struct bound_probe *probe,
7801 struct frame_info *frame)
7802 {
7803 struct value *arg_value;
7804 CORE_ADDR handler;
7805 struct breakpoint *bp;
7806
7807 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7808 if (!arg_value)
7809 return;
7810
7811 handler = value_as_address (arg_value);
7812
7813 if (debug_infrun)
7814 fprintf_unfiltered (gdb_stdlog,
7815 "infrun: exception resume at %s\n",
7816 paddress (get_objfile_arch (probe->objfile),
7817 handler));
7818
7819 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7820 handler, bp_exception_resume).release ();
7821 bp->thread = tp->global_num;
7822 inferior_thread ()->control.exception_resume_breakpoint = bp;
7823 }
7824
7825 /* This is called when an exception has been intercepted. Check to
7826 see whether the exception's destination is of interest, and if so,
7827 set an exception resume breakpoint there. */
7828
7829 static void
7830 check_exception_resume (struct execution_control_state *ecs,
7831 struct frame_info *frame)
7832 {
7833 struct bound_probe probe;
7834 struct symbol *func;
7835
7836 /* First see if this exception unwinding breakpoint was set via a
7837 SystemTap probe point. If so, the probe has two arguments: the
7838 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7839 set a breakpoint there. */
7840 probe = find_probe_by_pc (get_frame_pc (frame));
7841 if (probe.prob)
7842 {
7843 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7844 return;
7845 }
7846
7847 func = get_frame_function (frame);
7848 if (!func)
7849 return;
7850
7851 try
7852 {
7853 const struct block *b;
7854 struct block_iterator iter;
7855 struct symbol *sym;
7856 int argno = 0;
7857
7858 /* The exception breakpoint is a thread-specific breakpoint on
7859 the unwinder's debug hook, declared as:
7860
7861 void _Unwind_DebugHook (void *cfa, void *handler);
7862
7863 The CFA argument indicates the frame to which control is
7864 about to be transferred. HANDLER is the destination PC.
7865
7866 We ignore the CFA and set a temporary breakpoint at HANDLER.
7867 This is not extremely efficient but it avoids issues in gdb
7868 with computing the DWARF CFA, and it also works even in weird
7869 cases such as throwing an exception from inside a signal
7870 handler. */
7871
7872 b = SYMBOL_BLOCK_VALUE (func);
7873 ALL_BLOCK_SYMBOLS (b, iter, sym)
7874 {
7875 if (!SYMBOL_IS_ARGUMENT (sym))
7876 continue;
7877
7878 if (argno == 0)
7879 ++argno;
7880 else
7881 {
7882 insert_exception_resume_breakpoint (ecs->event_thread,
7883 b, frame, sym);
7884 break;
7885 }
7886 }
7887 }
7888 catch (const gdb_exception_error &e)
7889 {
7890 }
7891 }
7892
7893 static void
7894 stop_waiting (struct execution_control_state *ecs)
7895 {
7896 if (debug_infrun)
7897 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7898
7899 /* Let callers know we don't want to wait for the inferior anymore. */
7900 ecs->wait_some_more = 0;
7901
7902 /* If all-stop, but the target is always in non-stop mode, stop all
7903 threads now that we're presenting the stop to the user. */
7904 if (!non_stop && target_is_non_stop_p ())
7905 stop_all_threads ();
7906 }
7907
7908 /* Like keep_going, but passes the signal to the inferior, even if the
7909 signal is set to nopass. */
7910
7911 static void
7912 keep_going_pass_signal (struct execution_control_state *ecs)
7913 {
7914 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7915 gdb_assert (!ecs->event_thread->resumed);
7916
7917 /* Save the pc before execution, to compare with pc after stop. */
7918 ecs->event_thread->prev_pc
7919 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7920
7921 if (ecs->event_thread->control.trap_expected)
7922 {
7923 struct thread_info *tp = ecs->event_thread;
7924
7925 if (debug_infrun)
7926 fprintf_unfiltered (gdb_stdlog,
7927 "infrun: %s has trap_expected set, "
7928 "resuming to collect trap\n",
7929 target_pid_to_str (tp->ptid).c_str ());
7930
7931 /* We haven't yet gotten our trap, and either: intercepted a
7932 non-signal event (e.g., a fork); or took a signal which we
7933 are supposed to pass through to the inferior. Simply
7934 continue. */
7935 resume (ecs->event_thread->suspend.stop_signal);
7936 }
7937 else if (step_over_info_valid_p ())
7938 {
7939 /* Another thread is stepping over a breakpoint in-line. If
7940 this thread needs a step-over too, queue the request. In
7941 either case, this resume must be deferred for later. */
7942 struct thread_info *tp = ecs->event_thread;
7943
7944 if (ecs->hit_singlestep_breakpoint
7945 || thread_still_needs_step_over (tp))
7946 {
7947 if (debug_infrun)
7948 fprintf_unfiltered (gdb_stdlog,
7949 "infrun: step-over already in progress: "
7950 "step-over for %s deferred\n",
7951 target_pid_to_str (tp->ptid).c_str ());
7952 thread_step_over_chain_enqueue (tp);
7953 }
7954 else
7955 {
7956 if (debug_infrun)
7957 fprintf_unfiltered (gdb_stdlog,
7958 "infrun: step-over in progress: "
7959 "resume of %s deferred\n",
7960 target_pid_to_str (tp->ptid).c_str ());
7961 }
7962 }
7963 else
7964 {
7965 struct regcache *regcache = get_current_regcache ();
7966 int remove_bp;
7967 int remove_wps;
7968 step_over_what step_what;
7969
7970 /* Either the trap was not expected, but we are continuing
7971 anyway (if we got a signal, the user asked it be passed to
7972 the child)
7973 -- or --
7974 We got our expected trap, but decided we should resume from
7975 it.
7976
7977 We're going to run this baby now!
7978
7979 Note that insert_breakpoints won't try to re-insert
7980 already inserted breakpoints. Therefore, we don't
7981 care if breakpoints were already inserted, or not. */
7982
7983 /* If we need to step over a breakpoint, and we're not using
7984 displaced stepping to do so, insert all breakpoints
7985 (watchpoints, etc.) but the one we're stepping over, step one
7986 instruction, and then re-insert the breakpoint when that step
7987 is finished. */
7988
7989 step_what = thread_still_needs_step_over (ecs->event_thread);
7990
7991 remove_bp = (ecs->hit_singlestep_breakpoint
7992 || (step_what & STEP_OVER_BREAKPOINT));
7993 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7994
7995 /* We can't use displaced stepping if we need to step past a
7996 watchpoint. The instruction copied to the scratch pad would
7997 still trigger the watchpoint. */
7998 if (remove_bp
7999 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8000 {
8001 set_step_over_info (regcache->aspace (),
8002 regcache_read_pc (regcache), remove_wps,
8003 ecs->event_thread->global_num);
8004 }
8005 else if (remove_wps)
8006 set_step_over_info (NULL, 0, remove_wps, -1);
8007
8008 /* If we now need to do an in-line step-over, we need to stop
8009 all other threads. Note this must be done before
8010 insert_breakpoints below, because that removes the breakpoint
8011 we're about to step over, otherwise other threads could miss
8012 it. */
8013 if (step_over_info_valid_p () && target_is_non_stop_p ())
8014 stop_all_threads ();
8015
8016 /* Stop stepping if inserting breakpoints fails. */
8017 try
8018 {
8019 insert_breakpoints ();
8020 }
8021 catch (const gdb_exception_error &e)
8022 {
8023 exception_print (gdb_stderr, e);
8024 stop_waiting (ecs);
8025 clear_step_over_info ();
8026 return;
8027 }
8028
8029 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8030
8031 resume (ecs->event_thread->suspend.stop_signal);
8032 }
8033
8034 prepare_to_wait (ecs);
8035 }
8036
8037 /* Called when we should continue running the inferior, because the
8038 current event doesn't cause a user visible stop. This does the
8039 resuming part; waiting for the next event is done elsewhere. */
8040
8041 static void
8042 keep_going (struct execution_control_state *ecs)
8043 {
8044 if (ecs->event_thread->control.trap_expected
8045 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8046 ecs->event_thread->control.trap_expected = 0;
8047
8048 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8049 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8050 keep_going_pass_signal (ecs);
8051 }
8052
8053 /* This function normally comes after a resume, before
8054 handle_inferior_event exits. It takes care of any last bits of
8055 housekeeping, and sets the all-important wait_some_more flag. */
8056
8057 static void
8058 prepare_to_wait (struct execution_control_state *ecs)
8059 {
8060 if (debug_infrun)
8061 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
8062
8063 ecs->wait_some_more = 1;
8064
8065 if (!target_is_async_p ())
8066 mark_infrun_async_event_handler ();
8067 }
8068
8069 /* We are done with the step range of a step/next/si/ni command.
8070 Called once for each n of a "step n" operation. */
8071
8072 static void
8073 end_stepping_range (struct execution_control_state *ecs)
8074 {
8075 ecs->event_thread->control.stop_step = 1;
8076 stop_waiting (ecs);
8077 }
8078
8079 /* Several print_*_reason functions to print why the inferior has stopped.
8080 We always print something when the inferior exits, or receives a signal.
8081 The rest of the cases are dealt with later on in normal_stop and
8082 print_it_typical. Ideally there should be a call to one of these
8083 print_*_reason functions functions from handle_inferior_event each time
8084 stop_waiting is called.
8085
8086 Note that we don't call these directly, instead we delegate that to
8087 the interpreters, through observers. Interpreters then call these
8088 with whatever uiout is right. */
8089
8090 void
8091 print_end_stepping_range_reason (struct ui_out *uiout)
8092 {
8093 /* For CLI-like interpreters, print nothing. */
8094
8095 if (uiout->is_mi_like_p ())
8096 {
8097 uiout->field_string ("reason",
8098 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8099 }
8100 }
8101
8102 void
8103 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8104 {
8105 annotate_signalled ();
8106 if (uiout->is_mi_like_p ())
8107 uiout->field_string
8108 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8109 uiout->text ("\nProgram terminated with signal ");
8110 annotate_signal_name ();
8111 uiout->field_string ("signal-name",
8112 gdb_signal_to_name (siggnal));
8113 annotate_signal_name_end ();
8114 uiout->text (", ");
8115 annotate_signal_string ();
8116 uiout->field_string ("signal-meaning",
8117 gdb_signal_to_string (siggnal));
8118 annotate_signal_string_end ();
8119 uiout->text (".\n");
8120 uiout->text ("The program no longer exists.\n");
8121 }
8122
8123 void
8124 print_exited_reason (struct ui_out *uiout, int exitstatus)
8125 {
8126 struct inferior *inf = current_inferior ();
8127 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8128
8129 annotate_exited (exitstatus);
8130 if (exitstatus)
8131 {
8132 if (uiout->is_mi_like_p ())
8133 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8134 std::string exit_code_str
8135 = string_printf ("0%o", (unsigned int) exitstatus);
8136 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8137 plongest (inf->num), pidstr.c_str (),
8138 string_field ("exit-code", exit_code_str.c_str ()));
8139 }
8140 else
8141 {
8142 if (uiout->is_mi_like_p ())
8143 uiout->field_string
8144 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8145 uiout->message ("[Inferior %s (%s) exited normally]\n",
8146 plongest (inf->num), pidstr.c_str ());
8147 }
8148 }
8149
8150 /* Some targets/architectures can do extra processing/display of
8151 segmentation faults. E.g., Intel MPX boundary faults.
8152 Call the architecture dependent function to handle the fault. */
8153
8154 static void
8155 handle_segmentation_fault (struct ui_out *uiout)
8156 {
8157 struct regcache *regcache = get_current_regcache ();
8158 struct gdbarch *gdbarch = regcache->arch ();
8159
8160 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8161 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8162 }
8163
8164 void
8165 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8166 {
8167 struct thread_info *thr = inferior_thread ();
8168
8169 annotate_signal ();
8170
8171 if (uiout->is_mi_like_p ())
8172 ;
8173 else if (show_thread_that_caused_stop ())
8174 {
8175 const char *name;
8176
8177 uiout->text ("\nThread ");
8178 uiout->field_string ("thread-id", print_thread_id (thr));
8179
8180 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8181 if (name != NULL)
8182 {
8183 uiout->text (" \"");
8184 uiout->field_string ("name", name);
8185 uiout->text ("\"");
8186 }
8187 }
8188 else
8189 uiout->text ("\nProgram");
8190
8191 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8192 uiout->text (" stopped");
8193 else
8194 {
8195 uiout->text (" received signal ");
8196 annotate_signal_name ();
8197 if (uiout->is_mi_like_p ())
8198 uiout->field_string
8199 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8200 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8201 annotate_signal_name_end ();
8202 uiout->text (", ");
8203 annotate_signal_string ();
8204 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8205
8206 if (siggnal == GDB_SIGNAL_SEGV)
8207 handle_segmentation_fault (uiout);
8208
8209 annotate_signal_string_end ();
8210 }
8211 uiout->text (".\n");
8212 }
8213
8214 void
8215 print_no_history_reason (struct ui_out *uiout)
8216 {
8217 uiout->text ("\nNo more reverse-execution history.\n");
8218 }
8219
8220 /* Print current location without a level number, if we have changed
8221 functions or hit a breakpoint. Print source line if we have one.
8222 bpstat_print contains the logic deciding in detail what to print,
8223 based on the event(s) that just occurred. */
8224
8225 static void
8226 print_stop_location (struct target_waitstatus *ws)
8227 {
8228 int bpstat_ret;
8229 enum print_what source_flag;
8230 int do_frame_printing = 1;
8231 struct thread_info *tp = inferior_thread ();
8232
8233 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8234 switch (bpstat_ret)
8235 {
8236 case PRINT_UNKNOWN:
8237 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8238 should) carry around the function and does (or should) use
8239 that when doing a frame comparison. */
8240 if (tp->control.stop_step
8241 && frame_id_eq (tp->control.step_frame_id,
8242 get_frame_id (get_current_frame ()))
8243 && (tp->control.step_start_function
8244 == find_pc_function (tp->suspend.stop_pc)))
8245 {
8246 /* Finished step, just print source line. */
8247 source_flag = SRC_LINE;
8248 }
8249 else
8250 {
8251 /* Print location and source line. */
8252 source_flag = SRC_AND_LOC;
8253 }
8254 break;
8255 case PRINT_SRC_AND_LOC:
8256 /* Print location and source line. */
8257 source_flag = SRC_AND_LOC;
8258 break;
8259 case PRINT_SRC_ONLY:
8260 source_flag = SRC_LINE;
8261 break;
8262 case PRINT_NOTHING:
8263 /* Something bogus. */
8264 source_flag = SRC_LINE;
8265 do_frame_printing = 0;
8266 break;
8267 default:
8268 internal_error (__FILE__, __LINE__, _("Unknown value."));
8269 }
8270
8271 /* The behavior of this routine with respect to the source
8272 flag is:
8273 SRC_LINE: Print only source line
8274 LOCATION: Print only location
8275 SRC_AND_LOC: Print location and source line. */
8276 if (do_frame_printing)
8277 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8278 }
8279
8280 /* See infrun.h. */
8281
8282 void
8283 print_stop_event (struct ui_out *uiout, bool displays)
8284 {
8285 struct target_waitstatus last;
8286 struct thread_info *tp;
8287
8288 get_last_target_status (nullptr, nullptr, &last);
8289
8290 {
8291 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8292
8293 print_stop_location (&last);
8294
8295 /* Display the auto-display expressions. */
8296 if (displays)
8297 do_displays ();
8298 }
8299
8300 tp = inferior_thread ();
8301 if (tp->thread_fsm != NULL
8302 && tp->thread_fsm->finished_p ())
8303 {
8304 struct return_value_info *rv;
8305
8306 rv = tp->thread_fsm->return_value ();
8307 if (rv != NULL)
8308 print_return_value (uiout, rv);
8309 }
8310 }
8311
8312 /* See infrun.h. */
8313
8314 void
8315 maybe_remove_breakpoints (void)
8316 {
8317 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8318 {
8319 if (remove_breakpoints ())
8320 {
8321 target_terminal::ours_for_output ();
8322 printf_filtered (_("Cannot remove breakpoints because "
8323 "program is no longer writable.\nFurther "
8324 "execution is probably impossible.\n"));
8325 }
8326 }
8327 }
8328
8329 /* The execution context that just caused a normal stop. */
8330
8331 struct stop_context
8332 {
8333 stop_context ();
8334 ~stop_context ();
8335
8336 DISABLE_COPY_AND_ASSIGN (stop_context);
8337
8338 bool changed () const;
8339
8340 /* The stop ID. */
8341 ULONGEST stop_id;
8342
8343 /* The event PTID. */
8344
8345 ptid_t ptid;
8346
8347 /* If stopp for a thread event, this is the thread that caused the
8348 stop. */
8349 struct thread_info *thread;
8350
8351 /* The inferior that caused the stop. */
8352 int inf_num;
8353 };
8354
8355 /* Initializes a new stop context. If stopped for a thread event, this
8356 takes a strong reference to the thread. */
8357
8358 stop_context::stop_context ()
8359 {
8360 stop_id = get_stop_id ();
8361 ptid = inferior_ptid;
8362 inf_num = current_inferior ()->num;
8363
8364 if (inferior_ptid != null_ptid)
8365 {
8366 /* Take a strong reference so that the thread can't be deleted
8367 yet. */
8368 thread = inferior_thread ();
8369 thread->incref ();
8370 }
8371 else
8372 thread = NULL;
8373 }
8374
8375 /* Release a stop context previously created with save_stop_context.
8376 Releases the strong reference to the thread as well. */
8377
8378 stop_context::~stop_context ()
8379 {
8380 if (thread != NULL)
8381 thread->decref ();
8382 }
8383
8384 /* Return true if the current context no longer matches the saved stop
8385 context. */
8386
8387 bool
8388 stop_context::changed () const
8389 {
8390 if (ptid != inferior_ptid)
8391 return true;
8392 if (inf_num != current_inferior ()->num)
8393 return true;
8394 if (thread != NULL && thread->state != THREAD_STOPPED)
8395 return true;
8396 if (get_stop_id () != stop_id)
8397 return true;
8398 return false;
8399 }
8400
8401 /* See infrun.h. */
8402
8403 int
8404 normal_stop (void)
8405 {
8406 struct target_waitstatus last;
8407
8408 get_last_target_status (nullptr, nullptr, &last);
8409
8410 new_stop_id ();
8411
8412 /* If an exception is thrown from this point on, make sure to
8413 propagate GDB's knowledge of the executing state to the
8414 frontend/user running state. A QUIT is an easy exception to see
8415 here, so do this before any filtered output. */
8416
8417 ptid_t finish_ptid = null_ptid;
8418
8419 if (!non_stop)
8420 finish_ptid = minus_one_ptid;
8421 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8422 || last.kind == TARGET_WAITKIND_EXITED)
8423 {
8424 /* On some targets, we may still have live threads in the
8425 inferior when we get a process exit event. E.g., for
8426 "checkpoint", when the current checkpoint/fork exits,
8427 linux-fork.c automatically switches to another fork from
8428 within target_mourn_inferior. */
8429 if (inferior_ptid != null_ptid)
8430 finish_ptid = ptid_t (inferior_ptid.pid ());
8431 }
8432 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8433 finish_ptid = inferior_ptid;
8434
8435 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8436 if (finish_ptid != null_ptid)
8437 {
8438 maybe_finish_thread_state.emplace
8439 (user_visible_resume_target (finish_ptid), finish_ptid);
8440 }
8441
8442 /* As we're presenting a stop, and potentially removing breakpoints,
8443 update the thread list so we can tell whether there are threads
8444 running on the target. With target remote, for example, we can
8445 only learn about new threads when we explicitly update the thread
8446 list. Do this before notifying the interpreters about signal
8447 stops, end of stepping ranges, etc., so that the "new thread"
8448 output is emitted before e.g., "Program received signal FOO",
8449 instead of after. */
8450 update_thread_list ();
8451
8452 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8453 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8454
8455 /* As with the notification of thread events, we want to delay
8456 notifying the user that we've switched thread context until
8457 the inferior actually stops.
8458
8459 There's no point in saying anything if the inferior has exited.
8460 Note that SIGNALLED here means "exited with a signal", not
8461 "received a signal".
8462
8463 Also skip saying anything in non-stop mode. In that mode, as we
8464 don't want GDB to switch threads behind the user's back, to avoid
8465 races where the user is typing a command to apply to thread x,
8466 but GDB switches to thread y before the user finishes entering
8467 the command, fetch_inferior_event installs a cleanup to restore
8468 the current thread back to the thread the user had selected right
8469 after this event is handled, so we're not really switching, only
8470 informing of a stop. */
8471 if (!non_stop
8472 && previous_inferior_ptid != inferior_ptid
8473 && target_has_execution
8474 && last.kind != TARGET_WAITKIND_SIGNALLED
8475 && last.kind != TARGET_WAITKIND_EXITED
8476 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8477 {
8478 SWITCH_THRU_ALL_UIS ()
8479 {
8480 target_terminal::ours_for_output ();
8481 printf_filtered (_("[Switching to %s]\n"),
8482 target_pid_to_str (inferior_ptid).c_str ());
8483 annotate_thread_changed ();
8484 }
8485 previous_inferior_ptid = inferior_ptid;
8486 }
8487
8488 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8489 {
8490 SWITCH_THRU_ALL_UIS ()
8491 if (current_ui->prompt_state == PROMPT_BLOCKED)
8492 {
8493 target_terminal::ours_for_output ();
8494 printf_filtered (_("No unwaited-for children left.\n"));
8495 }
8496 }
8497
8498 /* Note: this depends on the update_thread_list call above. */
8499 maybe_remove_breakpoints ();
8500
8501 /* If an auto-display called a function and that got a signal,
8502 delete that auto-display to avoid an infinite recursion. */
8503
8504 if (stopped_by_random_signal)
8505 disable_current_display ();
8506
8507 SWITCH_THRU_ALL_UIS ()
8508 {
8509 async_enable_stdin ();
8510 }
8511
8512 /* Let the user/frontend see the threads as stopped. */
8513 maybe_finish_thread_state.reset ();
8514
8515 /* Select innermost stack frame - i.e., current frame is frame 0,
8516 and current location is based on that. Handle the case where the
8517 dummy call is returning after being stopped. E.g. the dummy call
8518 previously hit a breakpoint. (If the dummy call returns
8519 normally, we won't reach here.) Do this before the stop hook is
8520 run, so that it doesn't get to see the temporary dummy frame,
8521 which is not where we'll present the stop. */
8522 if (has_stack_frames ())
8523 {
8524 if (stop_stack_dummy == STOP_STACK_DUMMY)
8525 {
8526 /* Pop the empty frame that contains the stack dummy. This
8527 also restores inferior state prior to the call (struct
8528 infcall_suspend_state). */
8529 struct frame_info *frame = get_current_frame ();
8530
8531 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8532 frame_pop (frame);
8533 /* frame_pop calls reinit_frame_cache as the last thing it
8534 does which means there's now no selected frame. */
8535 }
8536
8537 select_frame (get_current_frame ());
8538
8539 /* Set the current source location. */
8540 set_current_sal_from_frame (get_current_frame ());
8541 }
8542
8543 /* Look up the hook_stop and run it (CLI internally handles problem
8544 of stop_command's pre-hook not existing). */
8545 if (stop_command != NULL)
8546 {
8547 stop_context saved_context;
8548
8549 try
8550 {
8551 execute_cmd_pre_hook (stop_command);
8552 }
8553 catch (const gdb_exception &ex)
8554 {
8555 exception_fprintf (gdb_stderr, ex,
8556 "Error while running hook_stop:\n");
8557 }
8558
8559 /* If the stop hook resumes the target, then there's no point in
8560 trying to notify about the previous stop; its context is
8561 gone. Likewise if the command switches thread or inferior --
8562 the observers would print a stop for the wrong
8563 thread/inferior. */
8564 if (saved_context.changed ())
8565 return 1;
8566 }
8567
8568 /* Notify observers about the stop. This is where the interpreters
8569 print the stop event. */
8570 if (inferior_ptid != null_ptid)
8571 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8572 stop_print_frame);
8573 else
8574 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8575
8576 annotate_stopped ();
8577
8578 if (target_has_execution)
8579 {
8580 if (last.kind != TARGET_WAITKIND_SIGNALLED
8581 && last.kind != TARGET_WAITKIND_EXITED
8582 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8583 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8584 Delete any breakpoint that is to be deleted at the next stop. */
8585 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8586 }
8587
8588 /* Try to get rid of automatically added inferiors that are no
8589 longer needed. Keeping those around slows down things linearly.
8590 Note that this never removes the current inferior. */
8591 prune_inferiors ();
8592
8593 return 0;
8594 }
8595 \f
8596 int
8597 signal_stop_state (int signo)
8598 {
8599 return signal_stop[signo];
8600 }
8601
8602 int
8603 signal_print_state (int signo)
8604 {
8605 return signal_print[signo];
8606 }
8607
8608 int
8609 signal_pass_state (int signo)
8610 {
8611 return signal_program[signo];
8612 }
8613
8614 static void
8615 signal_cache_update (int signo)
8616 {
8617 if (signo == -1)
8618 {
8619 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8620 signal_cache_update (signo);
8621
8622 return;
8623 }
8624
8625 signal_pass[signo] = (signal_stop[signo] == 0
8626 && signal_print[signo] == 0
8627 && signal_program[signo] == 1
8628 && signal_catch[signo] == 0);
8629 }
8630
8631 int
8632 signal_stop_update (int signo, int state)
8633 {
8634 int ret = signal_stop[signo];
8635
8636 signal_stop[signo] = state;
8637 signal_cache_update (signo);
8638 return ret;
8639 }
8640
8641 int
8642 signal_print_update (int signo, int state)
8643 {
8644 int ret = signal_print[signo];
8645
8646 signal_print[signo] = state;
8647 signal_cache_update (signo);
8648 return ret;
8649 }
8650
8651 int
8652 signal_pass_update (int signo, int state)
8653 {
8654 int ret = signal_program[signo];
8655
8656 signal_program[signo] = state;
8657 signal_cache_update (signo);
8658 return ret;
8659 }
8660
8661 /* Update the global 'signal_catch' from INFO and notify the
8662 target. */
8663
8664 void
8665 signal_catch_update (const unsigned int *info)
8666 {
8667 int i;
8668
8669 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8670 signal_catch[i] = info[i] > 0;
8671 signal_cache_update (-1);
8672 target_pass_signals (signal_pass);
8673 }
8674
8675 static void
8676 sig_print_header (void)
8677 {
8678 printf_filtered (_("Signal Stop\tPrint\tPass "
8679 "to program\tDescription\n"));
8680 }
8681
8682 static void
8683 sig_print_info (enum gdb_signal oursig)
8684 {
8685 const char *name = gdb_signal_to_name (oursig);
8686 int name_padding = 13 - strlen (name);
8687
8688 if (name_padding <= 0)
8689 name_padding = 0;
8690
8691 printf_filtered ("%s", name);
8692 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8693 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8694 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8695 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8696 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8697 }
8698
8699 /* Specify how various signals in the inferior should be handled. */
8700
8701 static void
8702 handle_command (const char *args, int from_tty)
8703 {
8704 int digits, wordlen;
8705 int sigfirst, siglast;
8706 enum gdb_signal oursig;
8707 int allsigs;
8708
8709 if (args == NULL)
8710 {
8711 error_no_arg (_("signal to handle"));
8712 }
8713
8714 /* Allocate and zero an array of flags for which signals to handle. */
8715
8716 const size_t nsigs = GDB_SIGNAL_LAST;
8717 unsigned char sigs[nsigs] {};
8718
8719 /* Break the command line up into args. */
8720
8721 gdb_argv built_argv (args);
8722
8723 /* Walk through the args, looking for signal oursigs, signal names, and
8724 actions. Signal numbers and signal names may be interspersed with
8725 actions, with the actions being performed for all signals cumulatively
8726 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8727
8728 for (char *arg : built_argv)
8729 {
8730 wordlen = strlen (arg);
8731 for (digits = 0; isdigit (arg[digits]); digits++)
8732 {;
8733 }
8734 allsigs = 0;
8735 sigfirst = siglast = -1;
8736
8737 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8738 {
8739 /* Apply action to all signals except those used by the
8740 debugger. Silently skip those. */
8741 allsigs = 1;
8742 sigfirst = 0;
8743 siglast = nsigs - 1;
8744 }
8745 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8746 {
8747 SET_SIGS (nsigs, sigs, signal_stop);
8748 SET_SIGS (nsigs, sigs, signal_print);
8749 }
8750 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8751 {
8752 UNSET_SIGS (nsigs, sigs, signal_program);
8753 }
8754 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8755 {
8756 SET_SIGS (nsigs, sigs, signal_print);
8757 }
8758 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8759 {
8760 SET_SIGS (nsigs, sigs, signal_program);
8761 }
8762 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8763 {
8764 UNSET_SIGS (nsigs, sigs, signal_stop);
8765 }
8766 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8767 {
8768 SET_SIGS (nsigs, sigs, signal_program);
8769 }
8770 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8771 {
8772 UNSET_SIGS (nsigs, sigs, signal_print);
8773 UNSET_SIGS (nsigs, sigs, signal_stop);
8774 }
8775 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8776 {
8777 UNSET_SIGS (nsigs, sigs, signal_program);
8778 }
8779 else if (digits > 0)
8780 {
8781 /* It is numeric. The numeric signal refers to our own
8782 internal signal numbering from target.h, not to host/target
8783 signal number. This is a feature; users really should be
8784 using symbolic names anyway, and the common ones like
8785 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8786
8787 sigfirst = siglast = (int)
8788 gdb_signal_from_command (atoi (arg));
8789 if (arg[digits] == '-')
8790 {
8791 siglast = (int)
8792 gdb_signal_from_command (atoi (arg + digits + 1));
8793 }
8794 if (sigfirst > siglast)
8795 {
8796 /* Bet he didn't figure we'd think of this case... */
8797 std::swap (sigfirst, siglast);
8798 }
8799 }
8800 else
8801 {
8802 oursig = gdb_signal_from_name (arg);
8803 if (oursig != GDB_SIGNAL_UNKNOWN)
8804 {
8805 sigfirst = siglast = (int) oursig;
8806 }
8807 else
8808 {
8809 /* Not a number and not a recognized flag word => complain. */
8810 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8811 }
8812 }
8813
8814 /* If any signal numbers or symbol names were found, set flags for
8815 which signals to apply actions to. */
8816
8817 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8818 {
8819 switch ((enum gdb_signal) signum)
8820 {
8821 case GDB_SIGNAL_TRAP:
8822 case GDB_SIGNAL_INT:
8823 if (!allsigs && !sigs[signum])
8824 {
8825 if (query (_("%s is used by the debugger.\n\
8826 Are you sure you want to change it? "),
8827 gdb_signal_to_name ((enum gdb_signal) signum)))
8828 {
8829 sigs[signum] = 1;
8830 }
8831 else
8832 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8833 }
8834 break;
8835 case GDB_SIGNAL_0:
8836 case GDB_SIGNAL_DEFAULT:
8837 case GDB_SIGNAL_UNKNOWN:
8838 /* Make sure that "all" doesn't print these. */
8839 break;
8840 default:
8841 sigs[signum] = 1;
8842 break;
8843 }
8844 }
8845 }
8846
8847 for (int signum = 0; signum < nsigs; signum++)
8848 if (sigs[signum])
8849 {
8850 signal_cache_update (-1);
8851 target_pass_signals (signal_pass);
8852 target_program_signals (signal_program);
8853
8854 if (from_tty)
8855 {
8856 /* Show the results. */
8857 sig_print_header ();
8858 for (; signum < nsigs; signum++)
8859 if (sigs[signum])
8860 sig_print_info ((enum gdb_signal) signum);
8861 }
8862
8863 break;
8864 }
8865 }
8866
8867 /* Complete the "handle" command. */
8868
8869 static void
8870 handle_completer (struct cmd_list_element *ignore,
8871 completion_tracker &tracker,
8872 const char *text, const char *word)
8873 {
8874 static const char * const keywords[] =
8875 {
8876 "all",
8877 "stop",
8878 "ignore",
8879 "print",
8880 "pass",
8881 "nostop",
8882 "noignore",
8883 "noprint",
8884 "nopass",
8885 NULL,
8886 };
8887
8888 signal_completer (ignore, tracker, text, word);
8889 complete_on_enum (tracker, keywords, word, word);
8890 }
8891
8892 enum gdb_signal
8893 gdb_signal_from_command (int num)
8894 {
8895 if (num >= 1 && num <= 15)
8896 return (enum gdb_signal) num;
8897 error (_("Only signals 1-15 are valid as numeric signals.\n\
8898 Use \"info signals\" for a list of symbolic signals."));
8899 }
8900
8901 /* Print current contents of the tables set by the handle command.
8902 It is possible we should just be printing signals actually used
8903 by the current target (but for things to work right when switching
8904 targets, all signals should be in the signal tables). */
8905
8906 static void
8907 info_signals_command (const char *signum_exp, int from_tty)
8908 {
8909 enum gdb_signal oursig;
8910
8911 sig_print_header ();
8912
8913 if (signum_exp)
8914 {
8915 /* First see if this is a symbol name. */
8916 oursig = gdb_signal_from_name (signum_exp);
8917 if (oursig == GDB_SIGNAL_UNKNOWN)
8918 {
8919 /* No, try numeric. */
8920 oursig =
8921 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8922 }
8923 sig_print_info (oursig);
8924 return;
8925 }
8926
8927 printf_filtered ("\n");
8928 /* These ugly casts brought to you by the native VAX compiler. */
8929 for (oursig = GDB_SIGNAL_FIRST;
8930 (int) oursig < (int) GDB_SIGNAL_LAST;
8931 oursig = (enum gdb_signal) ((int) oursig + 1))
8932 {
8933 QUIT;
8934
8935 if (oursig != GDB_SIGNAL_UNKNOWN
8936 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8937 sig_print_info (oursig);
8938 }
8939
8940 printf_filtered (_("\nUse the \"handle\" command "
8941 "to change these tables.\n"));
8942 }
8943
8944 /* The $_siginfo convenience variable is a bit special. We don't know
8945 for sure the type of the value until we actually have a chance to
8946 fetch the data. The type can change depending on gdbarch, so it is
8947 also dependent on which thread you have selected.
8948
8949 1. making $_siginfo be an internalvar that creates a new value on
8950 access.
8951
8952 2. making the value of $_siginfo be an lval_computed value. */
8953
8954 /* This function implements the lval_computed support for reading a
8955 $_siginfo value. */
8956
8957 static void
8958 siginfo_value_read (struct value *v)
8959 {
8960 LONGEST transferred;
8961
8962 /* If we can access registers, so can we access $_siginfo. Likewise
8963 vice versa. */
8964 validate_registers_access ();
8965
8966 transferred =
8967 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8968 NULL,
8969 value_contents_all_raw (v),
8970 value_offset (v),
8971 TYPE_LENGTH (value_type (v)));
8972
8973 if (transferred != TYPE_LENGTH (value_type (v)))
8974 error (_("Unable to read siginfo"));
8975 }
8976
8977 /* This function implements the lval_computed support for writing a
8978 $_siginfo value. */
8979
8980 static void
8981 siginfo_value_write (struct value *v, struct value *fromval)
8982 {
8983 LONGEST transferred;
8984
8985 /* If we can access registers, so can we access $_siginfo. Likewise
8986 vice versa. */
8987 validate_registers_access ();
8988
8989 transferred = target_write (current_top_target (),
8990 TARGET_OBJECT_SIGNAL_INFO,
8991 NULL,
8992 value_contents_all_raw (fromval),
8993 value_offset (v),
8994 TYPE_LENGTH (value_type (fromval)));
8995
8996 if (transferred != TYPE_LENGTH (value_type (fromval)))
8997 error (_("Unable to write siginfo"));
8998 }
8999
9000 static const struct lval_funcs siginfo_value_funcs =
9001 {
9002 siginfo_value_read,
9003 siginfo_value_write
9004 };
9005
9006 /* Return a new value with the correct type for the siginfo object of
9007 the current thread using architecture GDBARCH. Return a void value
9008 if there's no object available. */
9009
9010 static struct value *
9011 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9012 void *ignore)
9013 {
9014 if (target_has_stack
9015 && inferior_ptid != null_ptid
9016 && gdbarch_get_siginfo_type_p (gdbarch))
9017 {
9018 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9019
9020 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9021 }
9022
9023 return allocate_value (builtin_type (gdbarch)->builtin_void);
9024 }
9025
9026 \f
9027 /* infcall_suspend_state contains state about the program itself like its
9028 registers and any signal it received when it last stopped.
9029 This state must be restored regardless of how the inferior function call
9030 ends (either successfully, or after it hits a breakpoint or signal)
9031 if the program is to properly continue where it left off. */
9032
9033 class infcall_suspend_state
9034 {
9035 public:
9036 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9037 once the inferior function call has finished. */
9038 infcall_suspend_state (struct gdbarch *gdbarch,
9039 const struct thread_info *tp,
9040 struct regcache *regcache)
9041 : m_thread_suspend (tp->suspend),
9042 m_registers (new readonly_detached_regcache (*regcache))
9043 {
9044 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9045
9046 if (gdbarch_get_siginfo_type_p (gdbarch))
9047 {
9048 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9049 size_t len = TYPE_LENGTH (type);
9050
9051 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9052
9053 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9054 siginfo_data.get (), 0, len) != len)
9055 {
9056 /* Errors ignored. */
9057 siginfo_data.reset (nullptr);
9058 }
9059 }
9060
9061 if (siginfo_data)
9062 {
9063 m_siginfo_gdbarch = gdbarch;
9064 m_siginfo_data = std::move (siginfo_data);
9065 }
9066 }
9067
9068 /* Return a pointer to the stored register state. */
9069
9070 readonly_detached_regcache *registers () const
9071 {
9072 return m_registers.get ();
9073 }
9074
9075 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9076
9077 void restore (struct gdbarch *gdbarch,
9078 struct thread_info *tp,
9079 struct regcache *regcache) const
9080 {
9081 tp->suspend = m_thread_suspend;
9082
9083 if (m_siginfo_gdbarch == gdbarch)
9084 {
9085 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9086
9087 /* Errors ignored. */
9088 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9089 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9090 }
9091
9092 /* The inferior can be gone if the user types "print exit(0)"
9093 (and perhaps other times). */
9094 if (target_has_execution)
9095 /* NB: The register write goes through to the target. */
9096 regcache->restore (registers ());
9097 }
9098
9099 private:
9100 /* How the current thread stopped before the inferior function call was
9101 executed. */
9102 struct thread_suspend_state m_thread_suspend;
9103
9104 /* The registers before the inferior function call was executed. */
9105 std::unique_ptr<readonly_detached_regcache> m_registers;
9106
9107 /* Format of SIGINFO_DATA or NULL if it is not present. */
9108 struct gdbarch *m_siginfo_gdbarch = nullptr;
9109
9110 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9111 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9112 content would be invalid. */
9113 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9114 };
9115
9116 infcall_suspend_state_up
9117 save_infcall_suspend_state ()
9118 {
9119 struct thread_info *tp = inferior_thread ();
9120 struct regcache *regcache = get_current_regcache ();
9121 struct gdbarch *gdbarch = regcache->arch ();
9122
9123 infcall_suspend_state_up inf_state
9124 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9125
9126 /* Having saved the current state, adjust the thread state, discarding
9127 any stop signal information. The stop signal is not useful when
9128 starting an inferior function call, and run_inferior_call will not use
9129 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9130 tp->suspend.stop_signal = GDB_SIGNAL_0;
9131
9132 return inf_state;
9133 }
9134
9135 /* Restore inferior session state to INF_STATE. */
9136
9137 void
9138 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9139 {
9140 struct thread_info *tp = inferior_thread ();
9141 struct regcache *regcache = get_current_regcache ();
9142 struct gdbarch *gdbarch = regcache->arch ();
9143
9144 inf_state->restore (gdbarch, tp, regcache);
9145 discard_infcall_suspend_state (inf_state);
9146 }
9147
9148 void
9149 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9150 {
9151 delete inf_state;
9152 }
9153
9154 readonly_detached_regcache *
9155 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9156 {
9157 return inf_state->registers ();
9158 }
9159
9160 /* infcall_control_state contains state regarding gdb's control of the
9161 inferior itself like stepping control. It also contains session state like
9162 the user's currently selected frame. */
9163
9164 struct infcall_control_state
9165 {
9166 struct thread_control_state thread_control;
9167 struct inferior_control_state inferior_control;
9168
9169 /* Other fields: */
9170 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9171 int stopped_by_random_signal = 0;
9172
9173 /* ID if the selected frame when the inferior function call was made. */
9174 struct frame_id selected_frame_id {};
9175 };
9176
9177 /* Save all of the information associated with the inferior<==>gdb
9178 connection. */
9179
9180 infcall_control_state_up
9181 save_infcall_control_state ()
9182 {
9183 infcall_control_state_up inf_status (new struct infcall_control_state);
9184 struct thread_info *tp = inferior_thread ();
9185 struct inferior *inf = current_inferior ();
9186
9187 inf_status->thread_control = tp->control;
9188 inf_status->inferior_control = inf->control;
9189
9190 tp->control.step_resume_breakpoint = NULL;
9191 tp->control.exception_resume_breakpoint = NULL;
9192
9193 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9194 chain. If caller's caller is walking the chain, they'll be happier if we
9195 hand them back the original chain when restore_infcall_control_state is
9196 called. */
9197 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9198
9199 /* Other fields: */
9200 inf_status->stop_stack_dummy = stop_stack_dummy;
9201 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9202
9203 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9204
9205 return inf_status;
9206 }
9207
9208 static void
9209 restore_selected_frame (const frame_id &fid)
9210 {
9211 frame_info *frame = frame_find_by_id (fid);
9212
9213 /* If inf_status->selected_frame_id is NULL, there was no previously
9214 selected frame. */
9215 if (frame == NULL)
9216 {
9217 warning (_("Unable to restore previously selected frame."));
9218 return;
9219 }
9220
9221 select_frame (frame);
9222 }
9223
9224 /* Restore inferior session state to INF_STATUS. */
9225
9226 void
9227 restore_infcall_control_state (struct infcall_control_state *inf_status)
9228 {
9229 struct thread_info *tp = inferior_thread ();
9230 struct inferior *inf = current_inferior ();
9231
9232 if (tp->control.step_resume_breakpoint)
9233 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9234
9235 if (tp->control.exception_resume_breakpoint)
9236 tp->control.exception_resume_breakpoint->disposition
9237 = disp_del_at_next_stop;
9238
9239 /* Handle the bpstat_copy of the chain. */
9240 bpstat_clear (&tp->control.stop_bpstat);
9241
9242 tp->control = inf_status->thread_control;
9243 inf->control = inf_status->inferior_control;
9244
9245 /* Other fields: */
9246 stop_stack_dummy = inf_status->stop_stack_dummy;
9247 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9248
9249 if (target_has_stack)
9250 {
9251 /* The point of the try/catch is that if the stack is clobbered,
9252 walking the stack might encounter a garbage pointer and
9253 error() trying to dereference it. */
9254 try
9255 {
9256 restore_selected_frame (inf_status->selected_frame_id);
9257 }
9258 catch (const gdb_exception_error &ex)
9259 {
9260 exception_fprintf (gdb_stderr, ex,
9261 "Unable to restore previously selected frame:\n");
9262 /* Error in restoring the selected frame. Select the
9263 innermost frame. */
9264 select_frame (get_current_frame ());
9265 }
9266 }
9267
9268 delete inf_status;
9269 }
9270
9271 void
9272 discard_infcall_control_state (struct infcall_control_state *inf_status)
9273 {
9274 if (inf_status->thread_control.step_resume_breakpoint)
9275 inf_status->thread_control.step_resume_breakpoint->disposition
9276 = disp_del_at_next_stop;
9277
9278 if (inf_status->thread_control.exception_resume_breakpoint)
9279 inf_status->thread_control.exception_resume_breakpoint->disposition
9280 = disp_del_at_next_stop;
9281
9282 /* See save_infcall_control_state for info on stop_bpstat. */
9283 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9284
9285 delete inf_status;
9286 }
9287 \f
9288 /* See infrun.h. */
9289
9290 void
9291 clear_exit_convenience_vars (void)
9292 {
9293 clear_internalvar (lookup_internalvar ("_exitsignal"));
9294 clear_internalvar (lookup_internalvar ("_exitcode"));
9295 }
9296 \f
9297
9298 /* User interface for reverse debugging:
9299 Set exec-direction / show exec-direction commands
9300 (returns error unless target implements to_set_exec_direction method). */
9301
9302 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9303 static const char exec_forward[] = "forward";
9304 static const char exec_reverse[] = "reverse";
9305 static const char *exec_direction = exec_forward;
9306 static const char *const exec_direction_names[] = {
9307 exec_forward,
9308 exec_reverse,
9309 NULL
9310 };
9311
9312 static void
9313 set_exec_direction_func (const char *args, int from_tty,
9314 struct cmd_list_element *cmd)
9315 {
9316 if (target_can_execute_reverse)
9317 {
9318 if (!strcmp (exec_direction, exec_forward))
9319 execution_direction = EXEC_FORWARD;
9320 else if (!strcmp (exec_direction, exec_reverse))
9321 execution_direction = EXEC_REVERSE;
9322 }
9323 else
9324 {
9325 exec_direction = exec_forward;
9326 error (_("Target does not support this operation."));
9327 }
9328 }
9329
9330 static void
9331 show_exec_direction_func (struct ui_file *out, int from_tty,
9332 struct cmd_list_element *cmd, const char *value)
9333 {
9334 switch (execution_direction) {
9335 case EXEC_FORWARD:
9336 fprintf_filtered (out, _("Forward.\n"));
9337 break;
9338 case EXEC_REVERSE:
9339 fprintf_filtered (out, _("Reverse.\n"));
9340 break;
9341 default:
9342 internal_error (__FILE__, __LINE__,
9343 _("bogus execution_direction value: %d"),
9344 (int) execution_direction);
9345 }
9346 }
9347
9348 static void
9349 show_schedule_multiple (struct ui_file *file, int from_tty,
9350 struct cmd_list_element *c, const char *value)
9351 {
9352 fprintf_filtered (file, _("Resuming the execution of threads "
9353 "of all processes is %s.\n"), value);
9354 }
9355
9356 /* Implementation of `siginfo' variable. */
9357
9358 static const struct internalvar_funcs siginfo_funcs =
9359 {
9360 siginfo_make_value,
9361 NULL,
9362 NULL
9363 };
9364
9365 /* Callback for infrun's target events source. This is marked when a
9366 thread has a pending status to process. */
9367
9368 static void
9369 infrun_async_inferior_event_handler (gdb_client_data data)
9370 {
9371 inferior_event_handler (INF_REG_EVENT, NULL);
9372 }
9373
9374 void _initialize_infrun ();
9375 void
9376 _initialize_infrun ()
9377 {
9378 struct cmd_list_element *c;
9379
9380 /* Register extra event sources in the event loop. */
9381 infrun_async_inferior_event_token
9382 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9383
9384 add_info ("signals", info_signals_command, _("\
9385 What debugger does when program gets various signals.\n\
9386 Specify a signal as argument to print info on that signal only."));
9387 add_info_alias ("handle", "signals", 0);
9388
9389 c = add_com ("handle", class_run, handle_command, _("\
9390 Specify how to handle signals.\n\
9391 Usage: handle SIGNAL [ACTIONS]\n\
9392 Args are signals and actions to apply to those signals.\n\
9393 If no actions are specified, the current settings for the specified signals\n\
9394 will be displayed instead.\n\
9395 \n\
9396 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9397 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9398 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9399 The special arg \"all\" is recognized to mean all signals except those\n\
9400 used by the debugger, typically SIGTRAP and SIGINT.\n\
9401 \n\
9402 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9403 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9404 Stop means reenter debugger if this signal happens (implies print).\n\
9405 Print means print a message if this signal happens.\n\
9406 Pass means let program see this signal; otherwise program doesn't know.\n\
9407 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9408 Pass and Stop may be combined.\n\
9409 \n\
9410 Multiple signals may be specified. Signal numbers and signal names\n\
9411 may be interspersed with actions, with the actions being performed for\n\
9412 all signals cumulatively specified."));
9413 set_cmd_completer (c, handle_completer);
9414
9415 if (!dbx_commands)
9416 stop_command = add_cmd ("stop", class_obscure,
9417 not_just_help_class_command, _("\
9418 There is no `stop' command, but you can set a hook on `stop'.\n\
9419 This allows you to set a list of commands to be run each time execution\n\
9420 of the program stops."), &cmdlist);
9421
9422 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9423 Set inferior debugging."), _("\
9424 Show inferior debugging."), _("\
9425 When non-zero, inferior specific debugging is enabled."),
9426 NULL,
9427 show_debug_infrun,
9428 &setdebuglist, &showdebuglist);
9429
9430 add_setshow_boolean_cmd ("displaced", class_maintenance,
9431 &debug_displaced, _("\
9432 Set displaced stepping debugging."), _("\
9433 Show displaced stepping debugging."), _("\
9434 When non-zero, displaced stepping specific debugging is enabled."),
9435 NULL,
9436 show_debug_displaced,
9437 &setdebuglist, &showdebuglist);
9438
9439 add_setshow_boolean_cmd ("non-stop", no_class,
9440 &non_stop_1, _("\
9441 Set whether gdb controls the inferior in non-stop mode."), _("\
9442 Show whether gdb controls the inferior in non-stop mode."), _("\
9443 When debugging a multi-threaded program and this setting is\n\
9444 off (the default, also called all-stop mode), when one thread stops\n\
9445 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9446 all other threads in the program while you interact with the thread of\n\
9447 interest. When you continue or step a thread, you can allow the other\n\
9448 threads to run, or have them remain stopped, but while you inspect any\n\
9449 thread's state, all threads stop.\n\
9450 \n\
9451 In non-stop mode, when one thread stops, other threads can continue\n\
9452 to run freely. You'll be able to step each thread independently,\n\
9453 leave it stopped or free to run as needed."),
9454 set_non_stop,
9455 show_non_stop,
9456 &setlist,
9457 &showlist);
9458
9459 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9460 {
9461 signal_stop[i] = 1;
9462 signal_print[i] = 1;
9463 signal_program[i] = 1;
9464 signal_catch[i] = 0;
9465 }
9466
9467 /* Signals caused by debugger's own actions should not be given to
9468 the program afterwards.
9469
9470 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9471 explicitly specifies that it should be delivered to the target
9472 program. Typically, that would occur when a user is debugging a
9473 target monitor on a simulator: the target monitor sets a
9474 breakpoint; the simulator encounters this breakpoint and halts
9475 the simulation handing control to GDB; GDB, noting that the stop
9476 address doesn't map to any known breakpoint, returns control back
9477 to the simulator; the simulator then delivers the hardware
9478 equivalent of a GDB_SIGNAL_TRAP to the program being
9479 debugged. */
9480 signal_program[GDB_SIGNAL_TRAP] = 0;
9481 signal_program[GDB_SIGNAL_INT] = 0;
9482
9483 /* Signals that are not errors should not normally enter the debugger. */
9484 signal_stop[GDB_SIGNAL_ALRM] = 0;
9485 signal_print[GDB_SIGNAL_ALRM] = 0;
9486 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9487 signal_print[GDB_SIGNAL_VTALRM] = 0;
9488 signal_stop[GDB_SIGNAL_PROF] = 0;
9489 signal_print[GDB_SIGNAL_PROF] = 0;
9490 signal_stop[GDB_SIGNAL_CHLD] = 0;
9491 signal_print[GDB_SIGNAL_CHLD] = 0;
9492 signal_stop[GDB_SIGNAL_IO] = 0;
9493 signal_print[GDB_SIGNAL_IO] = 0;
9494 signal_stop[GDB_SIGNAL_POLL] = 0;
9495 signal_print[GDB_SIGNAL_POLL] = 0;
9496 signal_stop[GDB_SIGNAL_URG] = 0;
9497 signal_print[GDB_SIGNAL_URG] = 0;
9498 signal_stop[GDB_SIGNAL_WINCH] = 0;
9499 signal_print[GDB_SIGNAL_WINCH] = 0;
9500 signal_stop[GDB_SIGNAL_PRIO] = 0;
9501 signal_print[GDB_SIGNAL_PRIO] = 0;
9502
9503 /* These signals are used internally by user-level thread
9504 implementations. (See signal(5) on Solaris.) Like the above
9505 signals, a healthy program receives and handles them as part of
9506 its normal operation. */
9507 signal_stop[GDB_SIGNAL_LWP] = 0;
9508 signal_print[GDB_SIGNAL_LWP] = 0;
9509 signal_stop[GDB_SIGNAL_WAITING] = 0;
9510 signal_print[GDB_SIGNAL_WAITING] = 0;
9511 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9512 signal_print[GDB_SIGNAL_CANCEL] = 0;
9513 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9514 signal_print[GDB_SIGNAL_LIBRT] = 0;
9515
9516 /* Update cached state. */
9517 signal_cache_update (-1);
9518
9519 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9520 &stop_on_solib_events, _("\
9521 Set stopping for shared library events."), _("\
9522 Show stopping for shared library events."), _("\
9523 If nonzero, gdb will give control to the user when the dynamic linker\n\
9524 notifies gdb of shared library events. The most common event of interest\n\
9525 to the user would be loading/unloading of a new library."),
9526 set_stop_on_solib_events,
9527 show_stop_on_solib_events,
9528 &setlist, &showlist);
9529
9530 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9531 follow_fork_mode_kind_names,
9532 &follow_fork_mode_string, _("\
9533 Set debugger response to a program call of fork or vfork."), _("\
9534 Show debugger response to a program call of fork or vfork."), _("\
9535 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9536 parent - the original process is debugged after a fork\n\
9537 child - the new process is debugged after a fork\n\
9538 The unfollowed process will continue to run.\n\
9539 By default, the debugger will follow the parent process."),
9540 NULL,
9541 show_follow_fork_mode_string,
9542 &setlist, &showlist);
9543
9544 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9545 follow_exec_mode_names,
9546 &follow_exec_mode_string, _("\
9547 Set debugger response to a program call of exec."), _("\
9548 Show debugger response to a program call of exec."), _("\
9549 An exec call replaces the program image of a process.\n\
9550 \n\
9551 follow-exec-mode can be:\n\
9552 \n\
9553 new - the debugger creates a new inferior and rebinds the process\n\
9554 to this new inferior. The program the process was running before\n\
9555 the exec call can be restarted afterwards by restarting the original\n\
9556 inferior.\n\
9557 \n\
9558 same - the debugger keeps the process bound to the same inferior.\n\
9559 The new executable image replaces the previous executable loaded in\n\
9560 the inferior. Restarting the inferior after the exec call restarts\n\
9561 the executable the process was running after the exec call.\n\
9562 \n\
9563 By default, the debugger will use the same inferior."),
9564 NULL,
9565 show_follow_exec_mode_string,
9566 &setlist, &showlist);
9567
9568 add_setshow_enum_cmd ("scheduler-locking", class_run,
9569 scheduler_enums, &scheduler_mode, _("\
9570 Set mode for locking scheduler during execution."), _("\
9571 Show mode for locking scheduler during execution."), _("\
9572 off == no locking (threads may preempt at any time)\n\
9573 on == full locking (no thread except the current thread may run)\n\
9574 This applies to both normal execution and replay mode.\n\
9575 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9576 In this mode, other threads may run during other commands.\n\
9577 This applies to both normal execution and replay mode.\n\
9578 replay == scheduler locked in replay mode and unlocked during normal execution."),
9579 set_schedlock_func, /* traps on target vector */
9580 show_scheduler_mode,
9581 &setlist, &showlist);
9582
9583 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9584 Set mode for resuming threads of all processes."), _("\
9585 Show mode for resuming threads of all processes."), _("\
9586 When on, execution commands (such as 'continue' or 'next') resume all\n\
9587 threads of all processes. When off (which is the default), execution\n\
9588 commands only resume the threads of the current process. The set of\n\
9589 threads that are resumed is further refined by the scheduler-locking\n\
9590 mode (see help set scheduler-locking)."),
9591 NULL,
9592 show_schedule_multiple,
9593 &setlist, &showlist);
9594
9595 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9596 Set mode of the step operation."), _("\
9597 Show mode of the step operation."), _("\
9598 When set, doing a step over a function without debug line information\n\
9599 will stop at the first instruction of that function. Otherwise, the\n\
9600 function is skipped and the step command stops at a different source line."),
9601 NULL,
9602 show_step_stop_if_no_debug,
9603 &setlist, &showlist);
9604
9605 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9606 &can_use_displaced_stepping, _("\
9607 Set debugger's willingness to use displaced stepping."), _("\
9608 Show debugger's willingness to use displaced stepping."), _("\
9609 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9610 supported by the target architecture. If off, gdb will not use displaced\n\
9611 stepping to step over breakpoints, even if such is supported by the target\n\
9612 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9613 if the target architecture supports it and non-stop mode is active, but will not\n\
9614 use it in all-stop mode (see help set non-stop)."),
9615 NULL,
9616 show_can_use_displaced_stepping,
9617 &setlist, &showlist);
9618
9619 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9620 &exec_direction, _("Set direction of execution.\n\
9621 Options are 'forward' or 'reverse'."),
9622 _("Show direction of execution (forward/reverse)."),
9623 _("Tells gdb whether to execute forward or backward."),
9624 set_exec_direction_func, show_exec_direction_func,
9625 &setlist, &showlist);
9626
9627 /* Set/show detach-on-fork: user-settable mode. */
9628
9629 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9630 Set whether gdb will detach the child of a fork."), _("\
9631 Show whether gdb will detach the child of a fork."), _("\
9632 Tells gdb whether to detach the child of a fork."),
9633 NULL, NULL, &setlist, &showlist);
9634
9635 /* Set/show disable address space randomization mode. */
9636
9637 add_setshow_boolean_cmd ("disable-randomization", class_support,
9638 &disable_randomization, _("\
9639 Set disabling of debuggee's virtual address space randomization."), _("\
9640 Show disabling of debuggee's virtual address space randomization."), _("\
9641 When this mode is on (which is the default), randomization of the virtual\n\
9642 address space is disabled. Standalone programs run with the randomization\n\
9643 enabled by default on some platforms."),
9644 &set_disable_randomization,
9645 &show_disable_randomization,
9646 &setlist, &showlist);
9647
9648 /* ptid initializations */
9649 inferior_ptid = null_ptid;
9650 target_last_wait_ptid = minus_one_ptid;
9651
9652 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9653 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9654 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9655 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9656
9657 /* Explicitly create without lookup, since that tries to create a
9658 value with a void typed value, and when we get here, gdbarch
9659 isn't initialized yet. At this point, we're quite sure there
9660 isn't another convenience variable of the same name. */
9661 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9662
9663 add_setshow_boolean_cmd ("observer", no_class,
9664 &observer_mode_1, _("\
9665 Set whether gdb controls the inferior in observer mode."), _("\
9666 Show whether gdb controls the inferior in observer mode."), _("\
9667 In observer mode, GDB can get data from the inferior, but not\n\
9668 affect its execution. Registers and memory may not be changed,\n\
9669 breakpoints may not be set, and the program cannot be interrupted\n\
9670 or signalled."),
9671 set_observer_mode,
9672 show_observer_mode,
9673 &setlist,
9674 &showlist);
9675 }
This page took 0.230062 seconds and 4 git commands to generate.