Preserve selected thread in all-stop w/ background execution
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "gdbthread.h"
32 #include "annotate.h"
33 #include "symfile.h"
34 #include "top.h"
35 #include "inf-loop.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "observable.h"
39 #include "language.h"
40 #include "solib.h"
41 #include "main.h"
42 #include "block.h"
43 #include "mi/mi-common.h"
44 #include "event-top.h"
45 #include "record.h"
46 #include "record-full.h"
47 #include "inline-frame.h"
48 #include "jit.h"
49 #include "tracepoint.h"
50 #include "skip.h"
51 #include "probe.h"
52 #include "objfiles.h"
53 #include "completer.h"
54 #include "target-descriptions.h"
55 #include "target-dcache.h"
56 #include "terminal.h"
57 #include "solist.h"
58 #include "event-loop.h"
59 #include "thread-fsm.h"
60 #include "gdbsupport/enum-flags.h"
61 #include "progspace-and-thread.h"
62 #include "gdbsupport/gdb_optional.h"
63 #include "arch-utils.h"
64 #include "gdbsupport/scope-exit.h"
65 #include "gdbsupport/forward-scope-exit.h"
66
67 /* Prototypes for local functions */
68
69 static void sig_print_info (enum gdb_signal);
70
71 static void sig_print_header (void);
72
73 static int follow_fork (void);
74
75 static int follow_fork_inferior (int follow_child, int detach_fork);
76
77 static void follow_inferior_reset_breakpoints (void);
78
79 static int currently_stepping (struct thread_info *tp);
80
81 void nullify_last_target_wait_ptid (void);
82
83 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
84
85 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
86
87 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
88
89 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
90
91 static void resume (gdb_signal sig);
92
93 /* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95 static struct async_event_handler *infrun_async_inferior_event_token;
96
97 /* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99 static int infrun_is_async = -1;
100
101 /* See infrun.h. */
102
103 void
104 infrun_async (int enable)
105 {
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120 }
121
122 /* See infrun.h. */
123
124 void
125 mark_infrun_async_event_handler (void)
126 {
127 mark_async_event_handler (infrun_async_inferior_event_token);
128 }
129
130 /* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
133 bool step_stop_if_no_debug = false;
134 static void
135 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139 }
140
141 /* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
144
145 static ptid_t previous_inferior_ptid;
146
147 /* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
152 static bool detach_fork = true;
153
154 bool debug_displaced = false;
155 static void
156 show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160 }
161
162 unsigned int debug_infrun = 0;
163 static void
164 show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168 }
169
170
171 /* Support for disabling address space randomization. */
172
173 bool disable_randomization = true;
174
175 static void
176 show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188 }
189
190 static void
191 set_disable_randomization (const char *args, int from_tty,
192 struct cmd_list_element *c)
193 {
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198 }
199
200 /* User interface for non-stop mode. */
201
202 bool non_stop = false;
203 static bool non_stop_1 = false;
204
205 static void
206 set_non_stop (const char *args, int from_tty,
207 struct cmd_list_element *c)
208 {
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216 }
217
218 static void
219 show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225 }
226
227 /* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
231 bool observer_mode = false;
232 static bool observer_mode_1 = false;
233
234 static void
235 set_observer_mode (const char *args, int from_tty,
236 struct cmd_list_element *c)
237 {
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
253 may_insert_fast_tracepoints = true;
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
261 pagination_enabled = 0;
262 non_stop = non_stop_1 = true;
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268 }
269
270 static void
271 show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275 }
276
277 /* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283 void
284 update_observer_mode (void)
285 {
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298 }
299
300 /* Tables of how to react to signals; the user sets them. */
301
302 static unsigned char signal_stop[GDB_SIGNAL_LAST];
303 static unsigned char signal_print[GDB_SIGNAL_LAST];
304 static unsigned char signal_program[GDB_SIGNAL_LAST];
305
306 /* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
308 signal" command. */
309 static unsigned char signal_catch[GDB_SIGNAL_LAST];
310
311 /* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
314 static unsigned char signal_pass[GDB_SIGNAL_LAST];
315
316 #define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324 #define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
332 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335 void
336 update_signals_program_target (void)
337 {
338 target_program_signals (signal_program);
339 }
340
341 /* Value to pass to target_resume() to cause all threads to resume. */
342
343 #define RESUME_ALL minus_one_ptid
344
345 /* Command list pointer for the "stop" placeholder. */
346
347 static struct cmd_list_element *stop_command;
348
349 /* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
351 int stop_on_solib_events;
352
353 /* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356 static void
357 set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
359 {
360 update_solib_breakpoints ();
361 }
362
363 static void
364 show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366 {
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369 }
370
371 /* Nonzero after stop if current stack frame should be printed. */
372
373 static int stop_print_frame;
374
375 /* This is a cached copy of the pid/waitstatus of the last event
376 returned by target_wait()/deprecated_target_wait_hook(). This
377 information is returned by get_last_target_status(). */
378 static ptid_t target_last_wait_ptid;
379 static struct target_waitstatus target_last_waitstatus;
380
381 void init_thread_stepping_state (struct thread_info *tss);
382
383 static const char follow_fork_mode_child[] = "child";
384 static const char follow_fork_mode_parent[] = "parent";
385
386 static const char *const follow_fork_mode_kind_names[] = {
387 follow_fork_mode_child,
388 follow_fork_mode_parent,
389 NULL
390 };
391
392 static const char *follow_fork_mode_string = follow_fork_mode_parent;
393 static void
394 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
395 struct cmd_list_element *c, const char *value)
396 {
397 fprintf_filtered (file,
398 _("Debugger response to a program "
399 "call of fork or vfork is \"%s\".\n"),
400 value);
401 }
402 \f
403
404 /* Handle changes to the inferior list based on the type of fork,
405 which process is being followed, and whether the other process
406 should be detached. On entry inferior_ptid must be the ptid of
407 the fork parent. At return inferior_ptid is the ptid of the
408 followed inferior. */
409
410 static int
411 follow_fork_inferior (int follow_child, int detach_fork)
412 {
413 int has_vforked;
414 ptid_t parent_ptid, child_ptid;
415
416 has_vforked = (inferior_thread ()->pending_follow.kind
417 == TARGET_WAITKIND_VFORKED);
418 parent_ptid = inferior_ptid;
419 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && current_ui->prompt_state == PROMPT_BLOCKED
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432 Can not resume the parent process over vfork in the foreground while\n\
433 holding the child stopped. Try \"set detach-on-fork\" or \
434 \"set schedule-multiple\".\n"));
435 return 1;
436 }
437
438 if (!follow_child)
439 {
440 /* Detach new forked process? */
441 if (detach_fork)
442 {
443 /* Before detaching from the child, remove all breakpoints
444 from it. If we forked, then this has already been taken
445 care of by infrun.c. If we vforked however, any
446 breakpoint inserted in the parent is visible in the
447 child, even those added while stopped in a vfork
448 catchpoint. This will remove the breakpoints from the
449 parent also, but they'll be reinserted below. */
450 if (has_vforked)
451 {
452 /* Keep breakpoints list in sync. */
453 remove_breakpoints_inf (current_inferior ());
454 }
455
456 if (print_inferior_events)
457 {
458 /* Ensure that we have a process ptid. */
459 ptid_t process_ptid = ptid_t (child_ptid.pid ());
460
461 target_terminal::ours_for_output ();
462 fprintf_filtered (gdb_stdlog,
463 _("[Detaching after %s from child %s]\n"),
464 has_vforked ? "vfork" : "fork",
465 target_pid_to_str (process_ptid).c_str ());
466 }
467 }
468 else
469 {
470 struct inferior *parent_inf, *child_inf;
471
472 /* Add process to GDB's tables. */
473 child_inf = add_inferior (child_ptid.pid ());
474
475 parent_inf = current_inferior ();
476 child_inf->attach_flag = parent_inf->attach_flag;
477 copy_terminal_info (child_inf, parent_inf);
478 child_inf->gdbarch = parent_inf->gdbarch;
479 copy_inferior_target_desc_info (child_inf, parent_inf);
480
481 scoped_restore_current_pspace_and_thread restore_pspace_thread;
482
483 inferior_ptid = child_ptid;
484 add_thread_silent (inferior_ptid);
485 set_current_inferior (child_inf);
486 child_inf->symfile_flags = SYMFILE_NO_READ;
487
488 /* If this is a vfork child, then the address-space is
489 shared with the parent. */
490 if (has_vforked)
491 {
492 child_inf->pspace = parent_inf->pspace;
493 child_inf->aspace = parent_inf->aspace;
494
495 /* The parent will be frozen until the child is done
496 with the shared region. Keep track of the
497 parent. */
498 child_inf->vfork_parent = parent_inf;
499 child_inf->pending_detach = 0;
500 parent_inf->vfork_child = child_inf;
501 parent_inf->pending_detach = 0;
502 }
503 else
504 {
505 child_inf->aspace = new_address_space ();
506 child_inf->pspace = new program_space (child_inf->aspace);
507 child_inf->removable = 1;
508 set_current_program_space (child_inf->pspace);
509 clone_program_space (child_inf->pspace, parent_inf->pspace);
510
511 /* Let the shared library layer (e.g., solib-svr4) learn
512 about this new process, relocate the cloned exec, pull
513 in shared libraries, and install the solib event
514 breakpoint. If a "cloned-VM" event was propagated
515 better throughout the core, this wouldn't be
516 required. */
517 solib_create_inferior_hook (0);
518 }
519 }
520
521 if (has_vforked)
522 {
523 struct inferior *parent_inf;
524
525 parent_inf = current_inferior ();
526
527 /* If we detached from the child, then we have to be careful
528 to not insert breakpoints in the parent until the child
529 is done with the shared memory region. However, if we're
530 staying attached to the child, then we can and should
531 insert breakpoints, so that we can debug it. A
532 subsequent child exec or exit is enough to know when does
533 the child stops using the parent's address space. */
534 parent_inf->waiting_for_vfork_done = detach_fork;
535 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
536 }
537 }
538 else
539 {
540 /* Follow the child. */
541 struct inferior *parent_inf, *child_inf;
542 struct program_space *parent_pspace;
543
544 if (print_inferior_events)
545 {
546 std::string parent_pid = target_pid_to_str (parent_ptid);
547 std::string child_pid = target_pid_to_str (child_ptid);
548
549 target_terminal::ours_for_output ();
550 fprintf_filtered (gdb_stdlog,
551 _("[Attaching after %s %s to child %s]\n"),
552 parent_pid.c_str (),
553 has_vforked ? "vfork" : "fork",
554 child_pid.c_str ());
555 }
556
557 /* Add the new inferior first, so that the target_detach below
558 doesn't unpush the target. */
559
560 child_inf = add_inferior (child_ptid.pid ());
561
562 parent_inf = current_inferior ();
563 child_inf->attach_flag = parent_inf->attach_flag;
564 copy_terminal_info (child_inf, parent_inf);
565 child_inf->gdbarch = parent_inf->gdbarch;
566 copy_inferior_target_desc_info (child_inf, parent_inf);
567
568 parent_pspace = parent_inf->pspace;
569
570 /* If we're vforking, we want to hold on to the parent until the
571 child exits or execs. At child exec or exit time we can
572 remove the old breakpoints from the parent and detach or
573 resume debugging it. Otherwise, detach the parent now; we'll
574 want to reuse it's program/address spaces, but we can't set
575 them to the child before removing breakpoints from the
576 parent, otherwise, the breakpoints module could decide to
577 remove breakpoints from the wrong process (since they'd be
578 assigned to the same address space). */
579
580 if (has_vforked)
581 {
582 gdb_assert (child_inf->vfork_parent == NULL);
583 gdb_assert (parent_inf->vfork_child == NULL);
584 child_inf->vfork_parent = parent_inf;
585 child_inf->pending_detach = 0;
586 parent_inf->vfork_child = child_inf;
587 parent_inf->pending_detach = detach_fork;
588 parent_inf->waiting_for_vfork_done = 0;
589 }
590 else if (detach_fork)
591 {
592 if (print_inferior_events)
593 {
594 /* Ensure that we have a process ptid. */
595 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
596
597 target_terminal::ours_for_output ();
598 fprintf_filtered (gdb_stdlog,
599 _("[Detaching after fork from "
600 "parent %s]\n"),
601 target_pid_to_str (process_ptid).c_str ());
602 }
603
604 target_detach (parent_inf, 0);
605 }
606
607 /* Note that the detach above makes PARENT_INF dangling. */
608
609 /* Add the child thread to the appropriate lists, and switch to
610 this new thread, before cloning the program space, and
611 informing the solib layer about this new process. */
612
613 inferior_ptid = child_ptid;
614 add_thread_silent (inferior_ptid);
615 set_current_inferior (child_inf);
616
617 /* If this is a vfork child, then the address-space is shared
618 with the parent. If we detached from the parent, then we can
619 reuse the parent's program/address spaces. */
620 if (has_vforked || detach_fork)
621 {
622 child_inf->pspace = parent_pspace;
623 child_inf->aspace = child_inf->pspace->aspace;
624 }
625 else
626 {
627 child_inf->aspace = new_address_space ();
628 child_inf->pspace = new program_space (child_inf->aspace);
629 child_inf->removable = 1;
630 child_inf->symfile_flags = SYMFILE_NO_READ;
631 set_current_program_space (child_inf->pspace);
632 clone_program_space (child_inf->pspace, parent_pspace);
633
634 /* Let the shared library layer (e.g., solib-svr4) learn
635 about this new process, relocate the cloned exec, pull in
636 shared libraries, and install the solib event breakpoint.
637 If a "cloned-VM" event was propagated better throughout
638 the core, this wouldn't be required. */
639 solib_create_inferior_hook (0);
640 }
641 }
642
643 return target_follow_fork (follow_child, detach_fork);
644 }
645
646 /* Tell the target to follow the fork we're stopped at. Returns true
647 if the inferior should be resumed; false, if the target for some
648 reason decided it's best not to resume. */
649
650 static int
651 follow_fork (void)
652 {
653 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
654 int should_resume = 1;
655 struct thread_info *tp;
656
657 /* Copy user stepping state to the new inferior thread. FIXME: the
658 followed fork child thread should have a copy of most of the
659 parent thread structure's run control related fields, not just these.
660 Initialized to avoid "may be used uninitialized" warnings from gcc. */
661 struct breakpoint *step_resume_breakpoint = NULL;
662 struct breakpoint *exception_resume_breakpoint = NULL;
663 CORE_ADDR step_range_start = 0;
664 CORE_ADDR step_range_end = 0;
665 struct frame_id step_frame_id = { 0 };
666 struct thread_fsm *thread_fsm = NULL;
667
668 if (!non_stop)
669 {
670 ptid_t wait_ptid;
671 struct target_waitstatus wait_status;
672
673 /* Get the last target status returned by target_wait(). */
674 get_last_target_status (&wait_ptid, &wait_status);
675
676 /* If not stopped at a fork event, then there's nothing else to
677 do. */
678 if (wait_status.kind != TARGET_WAITKIND_FORKED
679 && wait_status.kind != TARGET_WAITKIND_VFORKED)
680 return 1;
681
682 /* Check if we switched over from WAIT_PTID, since the event was
683 reported. */
684 if (wait_ptid != minus_one_ptid
685 && inferior_ptid != wait_ptid)
686 {
687 /* We did. Switch back to WAIT_PTID thread, to tell the
688 target to follow it (in either direction). We'll
689 afterwards refuse to resume, and inform the user what
690 happened. */
691 thread_info *wait_thread
692 = find_thread_ptid (wait_ptid);
693 switch_to_thread (wait_thread);
694 should_resume = 0;
695 }
696 }
697
698 tp = inferior_thread ();
699
700 /* If there were any forks/vforks that were caught and are now to be
701 followed, then do so now. */
702 switch (tp->pending_follow.kind)
703 {
704 case TARGET_WAITKIND_FORKED:
705 case TARGET_WAITKIND_VFORKED:
706 {
707 ptid_t parent, child;
708
709 /* If the user did a next/step, etc, over a fork call,
710 preserve the stepping state in the fork child. */
711 if (follow_child && should_resume)
712 {
713 step_resume_breakpoint = clone_momentary_breakpoint
714 (tp->control.step_resume_breakpoint);
715 step_range_start = tp->control.step_range_start;
716 step_range_end = tp->control.step_range_end;
717 step_frame_id = tp->control.step_frame_id;
718 exception_resume_breakpoint
719 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
720 thread_fsm = tp->thread_fsm;
721
722 /* For now, delete the parent's sr breakpoint, otherwise,
723 parent/child sr breakpoints are considered duplicates,
724 and the child version will not be installed. Remove
725 this when the breakpoints module becomes aware of
726 inferiors and address spaces. */
727 delete_step_resume_breakpoint (tp);
728 tp->control.step_range_start = 0;
729 tp->control.step_range_end = 0;
730 tp->control.step_frame_id = null_frame_id;
731 delete_exception_resume_breakpoint (tp);
732 tp->thread_fsm = NULL;
733 }
734
735 parent = inferior_ptid;
736 child = tp->pending_follow.value.related_pid;
737
738 /* Set up inferior(s) as specified by the caller, and tell the
739 target to do whatever is necessary to follow either parent
740 or child. */
741 if (follow_fork_inferior (follow_child, detach_fork))
742 {
743 /* Target refused to follow, or there's some other reason
744 we shouldn't resume. */
745 should_resume = 0;
746 }
747 else
748 {
749 /* This pending follow fork event is now handled, one way
750 or another. The previous selected thread may be gone
751 from the lists by now, but if it is still around, need
752 to clear the pending follow request. */
753 tp = find_thread_ptid (parent);
754 if (tp)
755 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
756
757 /* This makes sure we don't try to apply the "Switched
758 over from WAIT_PID" logic above. */
759 nullify_last_target_wait_ptid ();
760
761 /* If we followed the child, switch to it... */
762 if (follow_child)
763 {
764 thread_info *child_thr = find_thread_ptid (child);
765 switch_to_thread (child_thr);
766
767 /* ... and preserve the stepping state, in case the
768 user was stepping over the fork call. */
769 if (should_resume)
770 {
771 tp = inferior_thread ();
772 tp->control.step_resume_breakpoint
773 = step_resume_breakpoint;
774 tp->control.step_range_start = step_range_start;
775 tp->control.step_range_end = step_range_end;
776 tp->control.step_frame_id = step_frame_id;
777 tp->control.exception_resume_breakpoint
778 = exception_resume_breakpoint;
779 tp->thread_fsm = thread_fsm;
780 }
781 else
782 {
783 /* If we get here, it was because we're trying to
784 resume from a fork catchpoint, but, the user
785 has switched threads away from the thread that
786 forked. In that case, the resume command
787 issued is most likely not applicable to the
788 child, so just warn, and refuse to resume. */
789 warning (_("Not resuming: switched threads "
790 "before following fork child."));
791 }
792
793 /* Reset breakpoints in the child as appropriate. */
794 follow_inferior_reset_breakpoints ();
795 }
796 }
797 }
798 break;
799 case TARGET_WAITKIND_SPURIOUS:
800 /* Nothing to follow. */
801 break;
802 default:
803 internal_error (__FILE__, __LINE__,
804 "Unexpected pending_follow.kind %d\n",
805 tp->pending_follow.kind);
806 break;
807 }
808
809 return should_resume;
810 }
811
812 static void
813 follow_inferior_reset_breakpoints (void)
814 {
815 struct thread_info *tp = inferior_thread ();
816
817 /* Was there a step_resume breakpoint? (There was if the user
818 did a "next" at the fork() call.) If so, explicitly reset its
819 thread number. Cloned step_resume breakpoints are disabled on
820 creation, so enable it here now that it is associated with the
821 correct thread.
822
823 step_resumes are a form of bp that are made to be per-thread.
824 Since we created the step_resume bp when the parent process
825 was being debugged, and now are switching to the child process,
826 from the breakpoint package's viewpoint, that's a switch of
827 "threads". We must update the bp's notion of which thread
828 it is for, or it'll be ignored when it triggers. */
829
830 if (tp->control.step_resume_breakpoint)
831 {
832 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
833 tp->control.step_resume_breakpoint->loc->enabled = 1;
834 }
835
836 /* Treat exception_resume breakpoints like step_resume breakpoints. */
837 if (tp->control.exception_resume_breakpoint)
838 {
839 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
840 tp->control.exception_resume_breakpoint->loc->enabled = 1;
841 }
842
843 /* Reinsert all breakpoints in the child. The user may have set
844 breakpoints after catching the fork, in which case those
845 were never set in the child, but only in the parent. This makes
846 sure the inserted breakpoints match the breakpoint list. */
847
848 breakpoint_re_set ();
849 insert_breakpoints ();
850 }
851
852 /* The child has exited or execed: resume threads of the parent the
853 user wanted to be executing. */
854
855 static int
856 proceed_after_vfork_done (struct thread_info *thread,
857 void *arg)
858 {
859 int pid = * (int *) arg;
860
861 if (thread->ptid.pid () == pid
862 && thread->state == THREAD_RUNNING
863 && !thread->executing
864 && !thread->stop_requested
865 && thread->suspend.stop_signal == GDB_SIGNAL_0)
866 {
867 if (debug_infrun)
868 fprintf_unfiltered (gdb_stdlog,
869 "infrun: resuming vfork parent thread %s\n",
870 target_pid_to_str (thread->ptid).c_str ());
871
872 switch_to_thread (thread);
873 clear_proceed_status (0);
874 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
875 }
876
877 return 0;
878 }
879
880 /* Save/restore inferior_ptid, current program space and current
881 inferior. Only use this if the current context points at an exited
882 inferior (and therefore there's no current thread to save). */
883 class scoped_restore_exited_inferior
884 {
885 public:
886 scoped_restore_exited_inferior ()
887 : m_saved_ptid (&inferior_ptid)
888 {}
889
890 private:
891 scoped_restore_tmpl<ptid_t> m_saved_ptid;
892 scoped_restore_current_program_space m_pspace;
893 scoped_restore_current_inferior m_inferior;
894 };
895
896 /* Called whenever we notice an exec or exit event, to handle
897 detaching or resuming a vfork parent. */
898
899 static void
900 handle_vfork_child_exec_or_exit (int exec)
901 {
902 struct inferior *inf = current_inferior ();
903
904 if (inf->vfork_parent)
905 {
906 int resume_parent = -1;
907
908 /* This exec or exit marks the end of the shared memory region
909 between the parent and the child. Break the bonds. */
910 inferior *vfork_parent = inf->vfork_parent;
911 inf->vfork_parent->vfork_child = NULL;
912 inf->vfork_parent = NULL;
913
914 /* If the user wanted to detach from the parent, now is the
915 time. */
916 if (vfork_parent->pending_detach)
917 {
918 struct thread_info *tp;
919 struct program_space *pspace;
920 struct address_space *aspace;
921
922 /* follow-fork child, detach-on-fork on. */
923
924 vfork_parent->pending_detach = 0;
925
926 gdb::optional<scoped_restore_exited_inferior>
927 maybe_restore_inferior;
928 gdb::optional<scoped_restore_current_pspace_and_thread>
929 maybe_restore_thread;
930
931 /* If we're handling a child exit, then inferior_ptid points
932 at the inferior's pid, not to a thread. */
933 if (!exec)
934 maybe_restore_inferior.emplace ();
935 else
936 maybe_restore_thread.emplace ();
937
938 /* We're letting loose of the parent. */
939 tp = any_live_thread_of_inferior (vfork_parent);
940 switch_to_thread (tp);
941
942 /* We're about to detach from the parent, which implicitly
943 removes breakpoints from its address space. There's a
944 catch here: we want to reuse the spaces for the child,
945 but, parent/child are still sharing the pspace at this
946 point, although the exec in reality makes the kernel give
947 the child a fresh set of new pages. The problem here is
948 that the breakpoints module being unaware of this, would
949 likely chose the child process to write to the parent
950 address space. Swapping the child temporarily away from
951 the spaces has the desired effect. Yes, this is "sort
952 of" a hack. */
953
954 pspace = inf->pspace;
955 aspace = inf->aspace;
956 inf->aspace = NULL;
957 inf->pspace = NULL;
958
959 if (print_inferior_events)
960 {
961 std::string pidstr
962 = target_pid_to_str (ptid_t (vfork_parent->pid));
963
964 target_terminal::ours_for_output ();
965
966 if (exec)
967 {
968 fprintf_filtered (gdb_stdlog,
969 _("[Detaching vfork parent %s "
970 "after child exec]\n"), pidstr.c_str ());
971 }
972 else
973 {
974 fprintf_filtered (gdb_stdlog,
975 _("[Detaching vfork parent %s "
976 "after child exit]\n"), pidstr.c_str ());
977 }
978 }
979
980 target_detach (vfork_parent, 0);
981
982 /* Put it back. */
983 inf->pspace = pspace;
984 inf->aspace = aspace;
985 }
986 else if (exec)
987 {
988 /* We're staying attached to the parent, so, really give the
989 child a new address space. */
990 inf->pspace = new program_space (maybe_new_address_space ());
991 inf->aspace = inf->pspace->aspace;
992 inf->removable = 1;
993 set_current_program_space (inf->pspace);
994
995 resume_parent = vfork_parent->pid;
996 }
997 else
998 {
999 struct program_space *pspace;
1000
1001 /* If this is a vfork child exiting, then the pspace and
1002 aspaces were shared with the parent. Since we're
1003 reporting the process exit, we'll be mourning all that is
1004 found in the address space, and switching to null_ptid,
1005 preparing to start a new inferior. But, since we don't
1006 want to clobber the parent's address/program spaces, we
1007 go ahead and create a new one for this exiting
1008 inferior. */
1009
1010 /* Switch to null_ptid while running clone_program_space, so
1011 that clone_program_space doesn't want to read the
1012 selected frame of a dead process. */
1013 scoped_restore restore_ptid
1014 = make_scoped_restore (&inferior_ptid, null_ptid);
1015
1016 /* This inferior is dead, so avoid giving the breakpoints
1017 module the option to write through to it (cloning a
1018 program space resets breakpoints). */
1019 inf->aspace = NULL;
1020 inf->pspace = NULL;
1021 pspace = new program_space (maybe_new_address_space ());
1022 set_current_program_space (pspace);
1023 inf->removable = 1;
1024 inf->symfile_flags = SYMFILE_NO_READ;
1025 clone_program_space (pspace, vfork_parent->pspace);
1026 inf->pspace = pspace;
1027 inf->aspace = pspace->aspace;
1028
1029 resume_parent = vfork_parent->pid;
1030 }
1031
1032 gdb_assert (current_program_space == inf->pspace);
1033
1034 if (non_stop && resume_parent != -1)
1035 {
1036 /* If the user wanted the parent to be running, let it go
1037 free now. */
1038 scoped_restore_current_thread restore_thread;
1039
1040 if (debug_infrun)
1041 fprintf_unfiltered (gdb_stdlog,
1042 "infrun: resuming vfork parent process %d\n",
1043 resume_parent);
1044
1045 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1046 }
1047 }
1048 }
1049
1050 /* Enum strings for "set|show follow-exec-mode". */
1051
1052 static const char follow_exec_mode_new[] = "new";
1053 static const char follow_exec_mode_same[] = "same";
1054 static const char *const follow_exec_mode_names[] =
1055 {
1056 follow_exec_mode_new,
1057 follow_exec_mode_same,
1058 NULL,
1059 };
1060
1061 static const char *follow_exec_mode_string = follow_exec_mode_same;
1062 static void
1063 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1064 struct cmd_list_element *c, const char *value)
1065 {
1066 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1067 }
1068
1069 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1070
1071 static void
1072 follow_exec (ptid_t ptid, const char *exec_file_target)
1073 {
1074 struct inferior *inf = current_inferior ();
1075 int pid = ptid.pid ();
1076 ptid_t process_ptid;
1077
1078 /* Switch terminal for any messages produced e.g. by
1079 breakpoint_re_set. */
1080 target_terminal::ours_for_output ();
1081
1082 /* This is an exec event that we actually wish to pay attention to.
1083 Refresh our symbol table to the newly exec'd program, remove any
1084 momentary bp's, etc.
1085
1086 If there are breakpoints, they aren't really inserted now,
1087 since the exec() transformed our inferior into a fresh set
1088 of instructions.
1089
1090 We want to preserve symbolic breakpoints on the list, since
1091 we have hopes that they can be reset after the new a.out's
1092 symbol table is read.
1093
1094 However, any "raw" breakpoints must be removed from the list
1095 (e.g., the solib bp's), since their address is probably invalid
1096 now.
1097
1098 And, we DON'T want to call delete_breakpoints() here, since
1099 that may write the bp's "shadow contents" (the instruction
1100 value that was overwritten with a TRAP instruction). Since
1101 we now have a new a.out, those shadow contents aren't valid. */
1102
1103 mark_breakpoints_out ();
1104
1105 /* The target reports the exec event to the main thread, even if
1106 some other thread does the exec, and even if the main thread was
1107 stopped or already gone. We may still have non-leader threads of
1108 the process on our list. E.g., on targets that don't have thread
1109 exit events (like remote); or on native Linux in non-stop mode if
1110 there were only two threads in the inferior and the non-leader
1111 one is the one that execs (and nothing forces an update of the
1112 thread list up to here). When debugging remotely, it's best to
1113 avoid extra traffic, when possible, so avoid syncing the thread
1114 list with the target, and instead go ahead and delete all threads
1115 of the process but one that reported the event. Note this must
1116 be done before calling update_breakpoints_after_exec, as
1117 otherwise clearing the threads' resources would reference stale
1118 thread breakpoints -- it may have been one of these threads that
1119 stepped across the exec. We could just clear their stepping
1120 states, but as long as we're iterating, might as well delete
1121 them. Deleting them now rather than at the next user-visible
1122 stop provides a nicer sequence of events for user and MI
1123 notifications. */
1124 for (thread_info *th : all_threads_safe ())
1125 if (th->ptid.pid () == pid && th->ptid != ptid)
1126 delete_thread (th);
1127
1128 /* We also need to clear any left over stale state for the
1129 leader/event thread. E.g., if there was any step-resume
1130 breakpoint or similar, it's gone now. We cannot truly
1131 step-to-next statement through an exec(). */
1132 thread_info *th = inferior_thread ();
1133 th->control.step_resume_breakpoint = NULL;
1134 th->control.exception_resume_breakpoint = NULL;
1135 th->control.single_step_breakpoints = NULL;
1136 th->control.step_range_start = 0;
1137 th->control.step_range_end = 0;
1138
1139 /* The user may have had the main thread held stopped in the
1140 previous image (e.g., schedlock on, or non-stop). Release
1141 it now. */
1142 th->stop_requested = 0;
1143
1144 update_breakpoints_after_exec ();
1145
1146 /* What is this a.out's name? */
1147 process_ptid = ptid_t (pid);
1148 printf_unfiltered (_("%s is executing new program: %s\n"),
1149 target_pid_to_str (process_ptid).c_str (),
1150 exec_file_target);
1151
1152 /* We've followed the inferior through an exec. Therefore, the
1153 inferior has essentially been killed & reborn. */
1154
1155 breakpoint_init_inferior (inf_execd);
1156
1157 gdb::unique_xmalloc_ptr<char> exec_file_host
1158 = exec_file_find (exec_file_target, NULL);
1159
1160 /* If we were unable to map the executable target pathname onto a host
1161 pathname, tell the user that. Otherwise GDB's subsequent behavior
1162 is confusing. Maybe it would even be better to stop at this point
1163 so that the user can specify a file manually before continuing. */
1164 if (exec_file_host == NULL)
1165 warning (_("Could not load symbols for executable %s.\n"
1166 "Do you need \"set sysroot\"?"),
1167 exec_file_target);
1168
1169 /* Reset the shared library package. This ensures that we get a
1170 shlib event when the child reaches "_start", at which point the
1171 dld will have had a chance to initialize the child. */
1172 /* Also, loading a symbol file below may trigger symbol lookups, and
1173 we don't want those to be satisfied by the libraries of the
1174 previous incarnation of this process. */
1175 no_shared_libraries (NULL, 0);
1176
1177 if (follow_exec_mode_string == follow_exec_mode_new)
1178 {
1179 /* The user wants to keep the old inferior and program spaces
1180 around. Create a new fresh one, and switch to it. */
1181
1182 /* Do exit processing for the original inferior before setting the new
1183 inferior's pid. Having two inferiors with the same pid would confuse
1184 find_inferior_p(t)id. Transfer the terminal state and info from the
1185 old to the new inferior. */
1186 inf = add_inferior_with_spaces ();
1187 swap_terminal_info (inf, current_inferior ());
1188 exit_inferior_silent (current_inferior ());
1189
1190 inf->pid = pid;
1191 target_follow_exec (inf, exec_file_target);
1192
1193 set_current_inferior (inf);
1194 set_current_program_space (inf->pspace);
1195 add_thread (ptid);
1196 }
1197 else
1198 {
1199 /* The old description may no longer be fit for the new image.
1200 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1201 old description; we'll read a new one below. No need to do
1202 this on "follow-exec-mode new", as the old inferior stays
1203 around (its description is later cleared/refetched on
1204 restart). */
1205 target_clear_description ();
1206 }
1207
1208 gdb_assert (current_program_space == inf->pspace);
1209
1210 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1211 because the proper displacement for a PIE (Position Independent
1212 Executable) main symbol file will only be computed by
1213 solib_create_inferior_hook below. breakpoint_re_set would fail
1214 to insert the breakpoints with the zero displacement. */
1215 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1216
1217 /* If the target can specify a description, read it. Must do this
1218 after flipping to the new executable (because the target supplied
1219 description must be compatible with the executable's
1220 architecture, and the old executable may e.g., be 32-bit, while
1221 the new one 64-bit), and before anything involving memory or
1222 registers. */
1223 target_find_description ();
1224
1225 solib_create_inferior_hook (0);
1226
1227 jit_inferior_created_hook ();
1228
1229 breakpoint_re_set ();
1230
1231 /* Reinsert all breakpoints. (Those which were symbolic have
1232 been reset to the proper address in the new a.out, thanks
1233 to symbol_file_command...). */
1234 insert_breakpoints ();
1235
1236 /* The next resume of this inferior should bring it to the shlib
1237 startup breakpoints. (If the user had also set bp's on
1238 "main" from the old (parent) process, then they'll auto-
1239 matically get reset there in the new process.). */
1240 }
1241
1242 /* The queue of threads that need to do a step-over operation to get
1243 past e.g., a breakpoint. What technique is used to step over the
1244 breakpoint/watchpoint does not matter -- all threads end up in the
1245 same queue, to maintain rough temporal order of execution, in order
1246 to avoid starvation, otherwise, we could e.g., find ourselves
1247 constantly stepping the same couple threads past their breakpoints
1248 over and over, if the single-step finish fast enough. */
1249 struct thread_info *step_over_queue_head;
1250
1251 /* Bit flags indicating what the thread needs to step over. */
1252
1253 enum step_over_what_flag
1254 {
1255 /* Step over a breakpoint. */
1256 STEP_OVER_BREAKPOINT = 1,
1257
1258 /* Step past a non-continuable watchpoint, in order to let the
1259 instruction execute so we can evaluate the watchpoint
1260 expression. */
1261 STEP_OVER_WATCHPOINT = 2
1262 };
1263 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1264
1265 /* Info about an instruction that is being stepped over. */
1266
1267 struct step_over_info
1268 {
1269 /* If we're stepping past a breakpoint, this is the address space
1270 and address of the instruction the breakpoint is set at. We'll
1271 skip inserting all breakpoints here. Valid iff ASPACE is
1272 non-NULL. */
1273 const address_space *aspace;
1274 CORE_ADDR address;
1275
1276 /* The instruction being stepped over triggers a nonsteppable
1277 watchpoint. If true, we'll skip inserting watchpoints. */
1278 int nonsteppable_watchpoint_p;
1279
1280 /* The thread's global number. */
1281 int thread;
1282 };
1283
1284 /* The step-over info of the location that is being stepped over.
1285
1286 Note that with async/breakpoint always-inserted mode, a user might
1287 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1288 being stepped over. As setting a new breakpoint inserts all
1289 breakpoints, we need to make sure the breakpoint being stepped over
1290 isn't inserted then. We do that by only clearing the step-over
1291 info when the step-over is actually finished (or aborted).
1292
1293 Presently GDB can only step over one breakpoint at any given time.
1294 Given threads that can't run code in the same address space as the
1295 breakpoint's can't really miss the breakpoint, GDB could be taught
1296 to step-over at most one breakpoint per address space (so this info
1297 could move to the address space object if/when GDB is extended).
1298 The set of breakpoints being stepped over will normally be much
1299 smaller than the set of all breakpoints, so a flag in the
1300 breakpoint location structure would be wasteful. A separate list
1301 also saves complexity and run-time, as otherwise we'd have to go
1302 through all breakpoint locations clearing their flag whenever we
1303 start a new sequence. Similar considerations weigh against storing
1304 this info in the thread object. Plus, not all step overs actually
1305 have breakpoint locations -- e.g., stepping past a single-step
1306 breakpoint, or stepping to complete a non-continuable
1307 watchpoint. */
1308 static struct step_over_info step_over_info;
1309
1310 /* Record the address of the breakpoint/instruction we're currently
1311 stepping over.
1312 N.B. We record the aspace and address now, instead of say just the thread,
1313 because when we need the info later the thread may be running. */
1314
1315 static void
1316 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1317 int nonsteppable_watchpoint_p,
1318 int thread)
1319 {
1320 step_over_info.aspace = aspace;
1321 step_over_info.address = address;
1322 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1323 step_over_info.thread = thread;
1324 }
1325
1326 /* Called when we're not longer stepping over a breakpoint / an
1327 instruction, so all breakpoints are free to be (re)inserted. */
1328
1329 static void
1330 clear_step_over_info (void)
1331 {
1332 if (debug_infrun)
1333 fprintf_unfiltered (gdb_stdlog,
1334 "infrun: clear_step_over_info\n");
1335 step_over_info.aspace = NULL;
1336 step_over_info.address = 0;
1337 step_over_info.nonsteppable_watchpoint_p = 0;
1338 step_over_info.thread = -1;
1339 }
1340
1341 /* See infrun.h. */
1342
1343 int
1344 stepping_past_instruction_at (struct address_space *aspace,
1345 CORE_ADDR address)
1346 {
1347 return (step_over_info.aspace != NULL
1348 && breakpoint_address_match (aspace, address,
1349 step_over_info.aspace,
1350 step_over_info.address));
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 thread_is_stepping_over_breakpoint (int thread)
1357 {
1358 return (step_over_info.thread != -1
1359 && thread == step_over_info.thread);
1360 }
1361
1362 /* See infrun.h. */
1363
1364 int
1365 stepping_past_nonsteppable_watchpoint (void)
1366 {
1367 return step_over_info.nonsteppable_watchpoint_p;
1368 }
1369
1370 /* Returns true if step-over info is valid. */
1371
1372 static int
1373 step_over_info_valid_p (void)
1374 {
1375 return (step_over_info.aspace != NULL
1376 || stepping_past_nonsteppable_watchpoint ());
1377 }
1378
1379 \f
1380 /* Displaced stepping. */
1381
1382 /* In non-stop debugging mode, we must take special care to manage
1383 breakpoints properly; in particular, the traditional strategy for
1384 stepping a thread past a breakpoint it has hit is unsuitable.
1385 'Displaced stepping' is a tactic for stepping one thread past a
1386 breakpoint it has hit while ensuring that other threads running
1387 concurrently will hit the breakpoint as they should.
1388
1389 The traditional way to step a thread T off a breakpoint in a
1390 multi-threaded program in all-stop mode is as follows:
1391
1392 a0) Initially, all threads are stopped, and breakpoints are not
1393 inserted.
1394 a1) We single-step T, leaving breakpoints uninserted.
1395 a2) We insert breakpoints, and resume all threads.
1396
1397 In non-stop debugging, however, this strategy is unsuitable: we
1398 don't want to have to stop all threads in the system in order to
1399 continue or step T past a breakpoint. Instead, we use displaced
1400 stepping:
1401
1402 n0) Initially, T is stopped, other threads are running, and
1403 breakpoints are inserted.
1404 n1) We copy the instruction "under" the breakpoint to a separate
1405 location, outside the main code stream, making any adjustments
1406 to the instruction, register, and memory state as directed by
1407 T's architecture.
1408 n2) We single-step T over the instruction at its new location.
1409 n3) We adjust the resulting register and memory state as directed
1410 by T's architecture. This includes resetting T's PC to point
1411 back into the main instruction stream.
1412 n4) We resume T.
1413
1414 This approach depends on the following gdbarch methods:
1415
1416 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1417 indicate where to copy the instruction, and how much space must
1418 be reserved there. We use these in step n1.
1419
1420 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1421 address, and makes any necessary adjustments to the instruction,
1422 register contents, and memory. We use this in step n1.
1423
1424 - gdbarch_displaced_step_fixup adjusts registers and memory after
1425 we have successfully single-stepped the instruction, to yield the
1426 same effect the instruction would have had if we had executed it
1427 at its original address. We use this in step n3.
1428
1429 The gdbarch_displaced_step_copy_insn and
1430 gdbarch_displaced_step_fixup functions must be written so that
1431 copying an instruction with gdbarch_displaced_step_copy_insn,
1432 single-stepping across the copied instruction, and then applying
1433 gdbarch_displaced_insn_fixup should have the same effects on the
1434 thread's memory and registers as stepping the instruction in place
1435 would have. Exactly which responsibilities fall to the copy and
1436 which fall to the fixup is up to the author of those functions.
1437
1438 See the comments in gdbarch.sh for details.
1439
1440 Note that displaced stepping and software single-step cannot
1441 currently be used in combination, although with some care I think
1442 they could be made to. Software single-step works by placing
1443 breakpoints on all possible subsequent instructions; if the
1444 displaced instruction is a PC-relative jump, those breakpoints
1445 could fall in very strange places --- on pages that aren't
1446 executable, or at addresses that are not proper instruction
1447 boundaries. (We do generally let other threads run while we wait
1448 to hit the software single-step breakpoint, and they might
1449 encounter such a corrupted instruction.) One way to work around
1450 this would be to have gdbarch_displaced_step_copy_insn fully
1451 simulate the effect of PC-relative instructions (and return NULL)
1452 on architectures that use software single-stepping.
1453
1454 In non-stop mode, we can have independent and simultaneous step
1455 requests, so more than one thread may need to simultaneously step
1456 over a breakpoint. The current implementation assumes there is
1457 only one scratch space per process. In this case, we have to
1458 serialize access to the scratch space. If thread A wants to step
1459 over a breakpoint, but we are currently waiting for some other
1460 thread to complete a displaced step, we leave thread A stopped and
1461 place it in the displaced_step_request_queue. Whenever a displaced
1462 step finishes, we pick the next thread in the queue and start a new
1463 displaced step operation on it. See displaced_step_prepare and
1464 displaced_step_fixup for details. */
1465
1466 /* Default destructor for displaced_step_closure. */
1467
1468 displaced_step_closure::~displaced_step_closure () = default;
1469
1470 /* Get the displaced stepping state of process PID. */
1471
1472 static displaced_step_inferior_state *
1473 get_displaced_stepping_state (inferior *inf)
1474 {
1475 return &inf->displaced_step_state;
1476 }
1477
1478 /* Returns true if any inferior has a thread doing a displaced
1479 step. */
1480
1481 static bool
1482 displaced_step_in_progress_any_inferior ()
1483 {
1484 for (inferior *i : all_inferiors ())
1485 {
1486 if (i->displaced_step_state.step_thread != nullptr)
1487 return true;
1488 }
1489
1490 return false;
1491 }
1492
1493 /* Return true if thread represented by PTID is doing a displaced
1494 step. */
1495
1496 static int
1497 displaced_step_in_progress_thread (thread_info *thread)
1498 {
1499 gdb_assert (thread != NULL);
1500
1501 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1502 }
1503
1504 /* Return true if process PID has a thread doing a displaced step. */
1505
1506 static int
1507 displaced_step_in_progress (inferior *inf)
1508 {
1509 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1510 }
1511
1512 /* If inferior is in displaced stepping, and ADDR equals to starting address
1513 of copy area, return corresponding displaced_step_closure. Otherwise,
1514 return NULL. */
1515
1516 struct displaced_step_closure*
1517 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1518 {
1519 displaced_step_inferior_state *displaced
1520 = get_displaced_stepping_state (current_inferior ());
1521
1522 /* If checking the mode of displaced instruction in copy area. */
1523 if (displaced->step_thread != nullptr
1524 && displaced->step_copy == addr)
1525 return displaced->step_closure;
1526
1527 return NULL;
1528 }
1529
1530 static void
1531 infrun_inferior_exit (struct inferior *inf)
1532 {
1533 inf->displaced_step_state.reset ();
1534 }
1535
1536 /* If ON, and the architecture supports it, GDB will use displaced
1537 stepping to step over breakpoints. If OFF, or if the architecture
1538 doesn't support it, GDB will instead use the traditional
1539 hold-and-step approach. If AUTO (which is the default), GDB will
1540 decide which technique to use to step over breakpoints depending on
1541 which of all-stop or non-stop mode is active --- displaced stepping
1542 in non-stop mode; hold-and-step in all-stop mode. */
1543
1544 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1545
1546 static void
1547 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1548 struct cmd_list_element *c,
1549 const char *value)
1550 {
1551 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1552 fprintf_filtered (file,
1553 _("Debugger's willingness to use displaced stepping "
1554 "to step over breakpoints is %s (currently %s).\n"),
1555 value, target_is_non_stop_p () ? "on" : "off");
1556 else
1557 fprintf_filtered (file,
1558 _("Debugger's willingness to use displaced stepping "
1559 "to step over breakpoints is %s.\n"), value);
1560 }
1561
1562 /* Return non-zero if displaced stepping can/should be used to step
1563 over breakpoints of thread TP. */
1564
1565 static int
1566 use_displaced_stepping (struct thread_info *tp)
1567 {
1568 struct regcache *regcache = get_thread_regcache (tp);
1569 struct gdbarch *gdbarch = regcache->arch ();
1570 displaced_step_inferior_state *displaced_state
1571 = get_displaced_stepping_state (tp->inf);
1572
1573 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1574 && target_is_non_stop_p ())
1575 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1576 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1577 && find_record_target () == NULL
1578 && !displaced_state->failed_before);
1579 }
1580
1581 /* Clean out any stray displaced stepping state. */
1582 static void
1583 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1584 {
1585 /* Indicate that there is no cleanup pending. */
1586 displaced->step_thread = nullptr;
1587
1588 delete displaced->step_closure;
1589 displaced->step_closure = NULL;
1590 }
1591
1592 /* A cleanup that wraps displaced_step_clear. */
1593 using displaced_step_clear_cleanup
1594 = FORWARD_SCOPE_EXIT (displaced_step_clear);
1595
1596 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1597 void
1598 displaced_step_dump_bytes (struct ui_file *file,
1599 const gdb_byte *buf,
1600 size_t len)
1601 {
1602 int i;
1603
1604 for (i = 0; i < len; i++)
1605 fprintf_unfiltered (file, "%02x ", buf[i]);
1606 fputs_unfiltered ("\n", file);
1607 }
1608
1609 /* Prepare to single-step, using displaced stepping.
1610
1611 Note that we cannot use displaced stepping when we have a signal to
1612 deliver. If we have a signal to deliver and an instruction to step
1613 over, then after the step, there will be no indication from the
1614 target whether the thread entered a signal handler or ignored the
1615 signal and stepped over the instruction successfully --- both cases
1616 result in a simple SIGTRAP. In the first case we mustn't do a
1617 fixup, and in the second case we must --- but we can't tell which.
1618 Comments in the code for 'random signals' in handle_inferior_event
1619 explain how we handle this case instead.
1620
1621 Returns 1 if preparing was successful -- this thread is going to be
1622 stepped now; 0 if displaced stepping this thread got queued; or -1
1623 if this instruction can't be displaced stepped. */
1624
1625 static int
1626 displaced_step_prepare_throw (thread_info *tp)
1627 {
1628 regcache *regcache = get_thread_regcache (tp);
1629 struct gdbarch *gdbarch = regcache->arch ();
1630 const address_space *aspace = regcache->aspace ();
1631 CORE_ADDR original, copy;
1632 ULONGEST len;
1633 struct displaced_step_closure *closure;
1634 int status;
1635
1636 /* We should never reach this function if the architecture does not
1637 support displaced stepping. */
1638 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1639
1640 /* Nor if the thread isn't meant to step over a breakpoint. */
1641 gdb_assert (tp->control.trap_expected);
1642
1643 /* Disable range stepping while executing in the scratch pad. We
1644 want a single-step even if executing the displaced instruction in
1645 the scratch buffer lands within the stepping range (e.g., a
1646 jump/branch). */
1647 tp->control.may_range_step = 0;
1648
1649 /* We have to displaced step one thread at a time, as we only have
1650 access to a single scratch space per inferior. */
1651
1652 displaced_step_inferior_state *displaced
1653 = get_displaced_stepping_state (tp->inf);
1654
1655 if (displaced->step_thread != nullptr)
1656 {
1657 /* Already waiting for a displaced step to finish. Defer this
1658 request and place in queue. */
1659
1660 if (debug_displaced)
1661 fprintf_unfiltered (gdb_stdlog,
1662 "displaced: deferring step of %s\n",
1663 target_pid_to_str (tp->ptid).c_str ());
1664
1665 thread_step_over_chain_enqueue (tp);
1666 return 0;
1667 }
1668 else
1669 {
1670 if (debug_displaced)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "displaced: stepping %s now\n",
1673 target_pid_to_str (tp->ptid).c_str ());
1674 }
1675
1676 displaced_step_clear (displaced);
1677
1678 scoped_restore_current_thread restore_thread;
1679
1680 switch_to_thread (tp);
1681
1682 original = regcache_read_pc (regcache);
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
1687 if (breakpoint_in_range_p (aspace, copy, len))
1688 {
1689 /* There's a breakpoint set in the scratch pad location range
1690 (which is usually around the entry point). We'd either
1691 install it before resuming, which would overwrite/corrupt the
1692 scratch pad, or if it was already inserted, this displaced
1693 step would overwrite it. The latter is OK in the sense that
1694 we already assume that no thread is going to execute the code
1695 in the scratch pad range (after initial startup) anyway, but
1696 the former is unacceptable. Simply punt and fallback to
1697 stepping over this breakpoint in-line. */
1698 if (debug_displaced)
1699 {
1700 fprintf_unfiltered (gdb_stdlog,
1701 "displaced: breakpoint set in scratch pad. "
1702 "Stepping over breakpoint in-line instead.\n");
1703 }
1704
1705 return -1;
1706 }
1707
1708 /* Save the original contents of the copy area. */
1709 displaced->step_saved_copy.resize (len);
1710 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1711 if (status != 0)
1712 throw_error (MEMORY_ERROR,
1713 _("Error accessing memory address %s (%s) for "
1714 "displaced-stepping scratch space."),
1715 paddress (gdbarch, copy), safe_strerror (status));
1716 if (debug_displaced)
1717 {
1718 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1719 paddress (gdbarch, copy));
1720 displaced_step_dump_bytes (gdb_stdlog,
1721 displaced->step_saved_copy.data (),
1722 len);
1723 };
1724
1725 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1726 original, copy, regcache);
1727 if (closure == NULL)
1728 {
1729 /* The architecture doesn't know how or want to displaced step
1730 this instruction or instruction sequence. Fallback to
1731 stepping over the breakpoint in-line. */
1732 return -1;
1733 }
1734
1735 /* Save the information we need to fix things up if the step
1736 succeeds. */
1737 displaced->step_thread = tp;
1738 displaced->step_gdbarch = gdbarch;
1739 displaced->step_closure = closure;
1740 displaced->step_original = original;
1741 displaced->step_copy = copy;
1742
1743 {
1744 displaced_step_clear_cleanup cleanup (displaced);
1745
1746 /* Resume execution at the copy. */
1747 regcache_write_pc (regcache, copy);
1748
1749 cleanup.release ();
1750 }
1751
1752 if (debug_displaced)
1753 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1754 paddress (gdbarch, copy));
1755
1756 return 1;
1757 }
1758
1759 /* Wrapper for displaced_step_prepare_throw that disabled further
1760 attempts at displaced stepping if we get a memory error. */
1761
1762 static int
1763 displaced_step_prepare (thread_info *thread)
1764 {
1765 int prepared = -1;
1766
1767 try
1768 {
1769 prepared = displaced_step_prepare_throw (thread);
1770 }
1771 catch (const gdb_exception_error &ex)
1772 {
1773 struct displaced_step_inferior_state *displaced_state;
1774
1775 if (ex.error != MEMORY_ERROR
1776 && ex.error != NOT_SUPPORTED_ERROR)
1777 throw;
1778
1779 if (debug_infrun)
1780 {
1781 fprintf_unfiltered (gdb_stdlog,
1782 "infrun: disabling displaced stepping: %s\n",
1783 ex.what ());
1784 }
1785
1786 /* Be verbose if "set displaced-stepping" is "on", silent if
1787 "auto". */
1788 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1789 {
1790 warning (_("disabling displaced stepping: %s"),
1791 ex.what ());
1792 }
1793
1794 /* Disable further displaced stepping attempts. */
1795 displaced_state
1796 = get_displaced_stepping_state (thread->inf);
1797 displaced_state->failed_before = 1;
1798 }
1799
1800 return prepared;
1801 }
1802
1803 static void
1804 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1805 const gdb_byte *myaddr, int len)
1806 {
1807 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1808
1809 inferior_ptid = ptid;
1810 write_memory (memaddr, myaddr, len);
1811 }
1812
1813 /* Restore the contents of the copy area for thread PTID. */
1814
1815 static void
1816 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1817 ptid_t ptid)
1818 {
1819 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1820
1821 write_memory_ptid (ptid, displaced->step_copy,
1822 displaced->step_saved_copy.data (), len);
1823 if (debug_displaced)
1824 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1825 target_pid_to_str (ptid).c_str (),
1826 paddress (displaced->step_gdbarch,
1827 displaced->step_copy));
1828 }
1829
1830 /* If we displaced stepped an instruction successfully, adjust
1831 registers and memory to yield the same effect the instruction would
1832 have had if we had executed it at its original address, and return
1833 1. If the instruction didn't complete, relocate the PC and return
1834 -1. If the thread wasn't displaced stepping, return 0. */
1835
1836 static int
1837 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1838 {
1839 struct displaced_step_inferior_state *displaced
1840 = get_displaced_stepping_state (event_thread->inf);
1841 int ret;
1842
1843 /* Was this event for the thread we displaced? */
1844 if (displaced->step_thread != event_thread)
1845 return 0;
1846
1847 displaced_step_clear_cleanup cleanup (displaced);
1848
1849 displaced_step_restore (displaced, displaced->step_thread->ptid);
1850
1851 /* Fixup may need to read memory/registers. Switch to the thread
1852 that we're fixing up. Also, target_stopped_by_watchpoint checks
1853 the current thread. */
1854 switch_to_thread (event_thread);
1855
1856 /* Did the instruction complete successfully? */
1857 if (signal == GDB_SIGNAL_TRAP
1858 && !(target_stopped_by_watchpoint ()
1859 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1860 || target_have_steppable_watchpoint)))
1861 {
1862 /* Fix up the resulting state. */
1863 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1864 displaced->step_closure,
1865 displaced->step_original,
1866 displaced->step_copy,
1867 get_thread_regcache (displaced->step_thread));
1868 ret = 1;
1869 }
1870 else
1871 {
1872 /* Since the instruction didn't complete, all we can do is
1873 relocate the PC. */
1874 struct regcache *regcache = get_thread_regcache (event_thread);
1875 CORE_ADDR pc = regcache_read_pc (regcache);
1876
1877 pc = displaced->step_original + (pc - displaced->step_copy);
1878 regcache_write_pc (regcache, pc);
1879 ret = -1;
1880 }
1881
1882 return ret;
1883 }
1884
1885 /* Data to be passed around while handling an event. This data is
1886 discarded between events. */
1887 struct execution_control_state
1888 {
1889 ptid_t ptid;
1890 /* The thread that got the event, if this was a thread event; NULL
1891 otherwise. */
1892 struct thread_info *event_thread;
1893
1894 struct target_waitstatus ws;
1895 int stop_func_filled_in;
1896 CORE_ADDR stop_func_start;
1897 CORE_ADDR stop_func_end;
1898 const char *stop_func_name;
1899 int wait_some_more;
1900
1901 /* True if the event thread hit the single-step breakpoint of
1902 another thread. Thus the event doesn't cause a stop, the thread
1903 needs to be single-stepped past the single-step breakpoint before
1904 we can switch back to the original stepping thread. */
1905 int hit_singlestep_breakpoint;
1906 };
1907
1908 /* Clear ECS and set it to point at TP. */
1909
1910 static void
1911 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1912 {
1913 memset (ecs, 0, sizeof (*ecs));
1914 ecs->event_thread = tp;
1915 ecs->ptid = tp->ptid;
1916 }
1917
1918 static void keep_going_pass_signal (struct execution_control_state *ecs);
1919 static void prepare_to_wait (struct execution_control_state *ecs);
1920 static int keep_going_stepped_thread (struct thread_info *tp);
1921 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1922
1923 /* Are there any pending step-over requests? If so, run all we can
1924 now and return true. Otherwise, return false. */
1925
1926 static int
1927 start_step_over (void)
1928 {
1929 struct thread_info *tp, *next;
1930
1931 /* Don't start a new step-over if we already have an in-line
1932 step-over operation ongoing. */
1933 if (step_over_info_valid_p ())
1934 return 0;
1935
1936 for (tp = step_over_queue_head; tp != NULL; tp = next)
1937 {
1938 struct execution_control_state ecss;
1939 struct execution_control_state *ecs = &ecss;
1940 step_over_what step_what;
1941 int must_be_in_line;
1942
1943 gdb_assert (!tp->stop_requested);
1944
1945 next = thread_step_over_chain_next (tp);
1946
1947 /* If this inferior already has a displaced step in process,
1948 don't start a new one. */
1949 if (displaced_step_in_progress (tp->inf))
1950 continue;
1951
1952 step_what = thread_still_needs_step_over (tp);
1953 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1954 || ((step_what & STEP_OVER_BREAKPOINT)
1955 && !use_displaced_stepping (tp)));
1956
1957 /* We currently stop all threads of all processes to step-over
1958 in-line. If we need to start a new in-line step-over, let
1959 any pending displaced steps finish first. */
1960 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1961 return 0;
1962
1963 thread_step_over_chain_remove (tp);
1964
1965 if (step_over_queue_head == NULL)
1966 {
1967 if (debug_infrun)
1968 fprintf_unfiltered (gdb_stdlog,
1969 "infrun: step-over queue now empty\n");
1970 }
1971
1972 if (tp->control.trap_expected
1973 || tp->resumed
1974 || tp->executing)
1975 {
1976 internal_error (__FILE__, __LINE__,
1977 "[%s] has inconsistent state: "
1978 "trap_expected=%d, resumed=%d, executing=%d\n",
1979 target_pid_to_str (tp->ptid).c_str (),
1980 tp->control.trap_expected,
1981 tp->resumed,
1982 tp->executing);
1983 }
1984
1985 if (debug_infrun)
1986 fprintf_unfiltered (gdb_stdlog,
1987 "infrun: resuming [%s] for step-over\n",
1988 target_pid_to_str (tp->ptid).c_str ());
1989
1990 /* keep_going_pass_signal skips the step-over if the breakpoint
1991 is no longer inserted. In all-stop, we want to keep looking
1992 for a thread that needs a step-over instead of resuming TP,
1993 because we wouldn't be able to resume anything else until the
1994 target stops again. In non-stop, the resume always resumes
1995 only TP, so it's OK to let the thread resume freely. */
1996 if (!target_is_non_stop_p () && !step_what)
1997 continue;
1998
1999 switch_to_thread (tp);
2000 reset_ecs (ecs, tp);
2001 keep_going_pass_signal (ecs);
2002
2003 if (!ecs->wait_some_more)
2004 error (_("Command aborted."));
2005
2006 gdb_assert (tp->resumed);
2007
2008 /* If we started a new in-line step-over, we're done. */
2009 if (step_over_info_valid_p ())
2010 {
2011 gdb_assert (tp->control.trap_expected);
2012 return 1;
2013 }
2014
2015 if (!target_is_non_stop_p ())
2016 {
2017 /* On all-stop, shouldn't have resumed unless we needed a
2018 step over. */
2019 gdb_assert (tp->control.trap_expected
2020 || tp->step_after_step_resume_breakpoint);
2021
2022 /* With remote targets (at least), in all-stop, we can't
2023 issue any further remote commands until the program stops
2024 again. */
2025 return 1;
2026 }
2027
2028 /* Either the thread no longer needed a step-over, or a new
2029 displaced stepping sequence started. Even in the latter
2030 case, continue looking. Maybe we can also start another
2031 displaced step on a thread of other process. */
2032 }
2033
2034 return 0;
2035 }
2036
2037 /* Update global variables holding ptids to hold NEW_PTID if they were
2038 holding OLD_PTID. */
2039 static void
2040 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2041 {
2042 if (inferior_ptid == old_ptid)
2043 inferior_ptid = new_ptid;
2044 }
2045
2046 \f
2047
2048 static const char schedlock_off[] = "off";
2049 static const char schedlock_on[] = "on";
2050 static const char schedlock_step[] = "step";
2051 static const char schedlock_replay[] = "replay";
2052 static const char *const scheduler_enums[] = {
2053 schedlock_off,
2054 schedlock_on,
2055 schedlock_step,
2056 schedlock_replay,
2057 NULL
2058 };
2059 static const char *scheduler_mode = schedlock_replay;
2060 static void
2061 show_scheduler_mode (struct ui_file *file, int from_tty,
2062 struct cmd_list_element *c, const char *value)
2063 {
2064 fprintf_filtered (file,
2065 _("Mode for locking scheduler "
2066 "during execution is \"%s\".\n"),
2067 value);
2068 }
2069
2070 static void
2071 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2072 {
2073 if (!target_can_lock_scheduler)
2074 {
2075 scheduler_mode = schedlock_off;
2076 error (_("Target '%s' cannot support this command."), target_shortname);
2077 }
2078 }
2079
2080 /* True if execution commands resume all threads of all processes by
2081 default; otherwise, resume only threads of the current inferior
2082 process. */
2083 bool sched_multi = false;
2084
2085 /* Try to setup for software single stepping over the specified location.
2086 Return 1 if target_resume() should use hardware single step.
2087
2088 GDBARCH the current gdbarch.
2089 PC the location to step over. */
2090
2091 static int
2092 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2093 {
2094 int hw_step = 1;
2095
2096 if (execution_direction == EXEC_FORWARD
2097 && gdbarch_software_single_step_p (gdbarch))
2098 hw_step = !insert_single_step_breakpoints (gdbarch);
2099
2100 return hw_step;
2101 }
2102
2103 /* See infrun.h. */
2104
2105 ptid_t
2106 user_visible_resume_ptid (int step)
2107 {
2108 ptid_t resume_ptid;
2109
2110 if (non_stop)
2111 {
2112 /* With non-stop mode on, threads are always handled
2113 individually. */
2114 resume_ptid = inferior_ptid;
2115 }
2116 else if ((scheduler_mode == schedlock_on)
2117 || (scheduler_mode == schedlock_step && step))
2118 {
2119 /* User-settable 'scheduler' mode requires solo thread
2120 resume. */
2121 resume_ptid = inferior_ptid;
2122 }
2123 else if ((scheduler_mode == schedlock_replay)
2124 && target_record_will_replay (minus_one_ptid, execution_direction))
2125 {
2126 /* User-settable 'scheduler' mode requires solo thread resume in replay
2127 mode. */
2128 resume_ptid = inferior_ptid;
2129 }
2130 else if (!sched_multi && target_supports_multi_process ())
2131 {
2132 /* Resume all threads of the current process (and none of other
2133 processes). */
2134 resume_ptid = ptid_t (inferior_ptid.pid ());
2135 }
2136 else
2137 {
2138 /* Resume all threads of all processes. */
2139 resume_ptid = RESUME_ALL;
2140 }
2141
2142 return resume_ptid;
2143 }
2144
2145 /* Return a ptid representing the set of threads that we will resume,
2146 in the perspective of the target, assuming run control handling
2147 does not require leaving some threads stopped (e.g., stepping past
2148 breakpoint). USER_STEP indicates whether we're about to start the
2149 target for a stepping command. */
2150
2151 static ptid_t
2152 internal_resume_ptid (int user_step)
2153 {
2154 /* In non-stop, we always control threads individually. Note that
2155 the target may always work in non-stop mode even with "set
2156 non-stop off", in which case user_visible_resume_ptid could
2157 return a wildcard ptid. */
2158 if (target_is_non_stop_p ())
2159 return inferior_ptid;
2160 else
2161 return user_visible_resume_ptid (user_step);
2162 }
2163
2164 /* Wrapper for target_resume, that handles infrun-specific
2165 bookkeeping. */
2166
2167 static void
2168 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2169 {
2170 struct thread_info *tp = inferior_thread ();
2171
2172 gdb_assert (!tp->stop_requested);
2173
2174 /* Install inferior's terminal modes. */
2175 target_terminal::inferior ();
2176
2177 /* Avoid confusing the next resume, if the next stop/resume
2178 happens to apply to another thread. */
2179 tp->suspend.stop_signal = GDB_SIGNAL_0;
2180
2181 /* Advise target which signals may be handled silently.
2182
2183 If we have removed breakpoints because we are stepping over one
2184 in-line (in any thread), we need to receive all signals to avoid
2185 accidentally skipping a breakpoint during execution of a signal
2186 handler.
2187
2188 Likewise if we're displaced stepping, otherwise a trap for a
2189 breakpoint in a signal handler might be confused with the
2190 displaced step finishing. We don't make the displaced_step_fixup
2191 step distinguish the cases instead, because:
2192
2193 - a backtrace while stopped in the signal handler would show the
2194 scratch pad as frame older than the signal handler, instead of
2195 the real mainline code.
2196
2197 - when the thread is later resumed, the signal handler would
2198 return to the scratch pad area, which would no longer be
2199 valid. */
2200 if (step_over_info_valid_p ()
2201 || displaced_step_in_progress (tp->inf))
2202 target_pass_signals ({});
2203 else
2204 target_pass_signals (signal_pass);
2205
2206 target_resume (resume_ptid, step, sig);
2207
2208 target_commit_resume ();
2209 }
2210
2211 /* Resume the inferior. SIG is the signal to give the inferior
2212 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2213 call 'resume', which handles exceptions. */
2214
2215 static void
2216 resume_1 (enum gdb_signal sig)
2217 {
2218 struct regcache *regcache = get_current_regcache ();
2219 struct gdbarch *gdbarch = regcache->arch ();
2220 struct thread_info *tp = inferior_thread ();
2221 CORE_ADDR pc = regcache_read_pc (regcache);
2222 const address_space *aspace = regcache->aspace ();
2223 ptid_t resume_ptid;
2224 /* This represents the user's step vs continue request. When
2225 deciding whether "set scheduler-locking step" applies, it's the
2226 user's intention that counts. */
2227 const int user_step = tp->control.stepping_command;
2228 /* This represents what we'll actually request the target to do.
2229 This can decay from a step to a continue, if e.g., we need to
2230 implement single-stepping with breakpoints (software
2231 single-step). */
2232 int step;
2233
2234 gdb_assert (!tp->stop_requested);
2235 gdb_assert (!thread_is_in_step_over_chain (tp));
2236
2237 if (tp->suspend.waitstatus_pending_p)
2238 {
2239 if (debug_infrun)
2240 {
2241 std::string statstr
2242 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2243
2244 fprintf_unfiltered (gdb_stdlog,
2245 "infrun: resume: thread %s has pending wait "
2246 "status %s (currently_stepping=%d).\n",
2247 target_pid_to_str (tp->ptid).c_str (),
2248 statstr.c_str (),
2249 currently_stepping (tp));
2250 }
2251
2252 tp->resumed = 1;
2253
2254 /* FIXME: What should we do if we are supposed to resume this
2255 thread with a signal? Maybe we should maintain a queue of
2256 pending signals to deliver. */
2257 if (sig != GDB_SIGNAL_0)
2258 {
2259 warning (_("Couldn't deliver signal %s to %s."),
2260 gdb_signal_to_name (sig),
2261 target_pid_to_str (tp->ptid).c_str ());
2262 }
2263
2264 tp->suspend.stop_signal = GDB_SIGNAL_0;
2265
2266 if (target_can_async_p ())
2267 {
2268 target_async (1);
2269 /* Tell the event loop we have an event to process. */
2270 mark_async_event_handler (infrun_async_inferior_event_token);
2271 }
2272 return;
2273 }
2274
2275 tp->stepped_breakpoint = 0;
2276
2277 /* Depends on stepped_breakpoint. */
2278 step = currently_stepping (tp);
2279
2280 if (current_inferior ()->waiting_for_vfork_done)
2281 {
2282 /* Don't try to single-step a vfork parent that is waiting for
2283 the child to get out of the shared memory region (by exec'ing
2284 or exiting). This is particularly important on software
2285 single-step archs, as the child process would trip on the
2286 software single step breakpoint inserted for the parent
2287 process. Since the parent will not actually execute any
2288 instruction until the child is out of the shared region (such
2289 are vfork's semantics), it is safe to simply continue it.
2290 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2291 the parent, and tell it to `keep_going', which automatically
2292 re-sets it stepping. */
2293 if (debug_infrun)
2294 fprintf_unfiltered (gdb_stdlog,
2295 "infrun: resume : clear step\n");
2296 step = 0;
2297 }
2298
2299 if (debug_infrun)
2300 fprintf_unfiltered (gdb_stdlog,
2301 "infrun: resume (step=%d, signal=%s), "
2302 "trap_expected=%d, current thread [%s] at %s\n",
2303 step, gdb_signal_to_symbol_string (sig),
2304 tp->control.trap_expected,
2305 target_pid_to_str (inferior_ptid).c_str (),
2306 paddress (gdbarch, pc));
2307
2308 /* Normally, by the time we reach `resume', the breakpoints are either
2309 removed or inserted, as appropriate. The exception is if we're sitting
2310 at a permanent breakpoint; we need to step over it, but permanent
2311 breakpoints can't be removed. So we have to test for it here. */
2312 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2313 {
2314 if (sig != GDB_SIGNAL_0)
2315 {
2316 /* We have a signal to pass to the inferior. The resume
2317 may, or may not take us to the signal handler. If this
2318 is a step, we'll need to stop in the signal handler, if
2319 there's one, (if the target supports stepping into
2320 handlers), or in the next mainline instruction, if
2321 there's no handler. If this is a continue, we need to be
2322 sure to run the handler with all breakpoints inserted.
2323 In all cases, set a breakpoint at the current address
2324 (where the handler returns to), and once that breakpoint
2325 is hit, resume skipping the permanent breakpoint. If
2326 that breakpoint isn't hit, then we've stepped into the
2327 signal handler (or hit some other event). We'll delete
2328 the step-resume breakpoint then. */
2329
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "infrun: resume: skipping permanent breakpoint, "
2333 "deliver signal first\n");
2334
2335 clear_step_over_info ();
2336 tp->control.trap_expected = 0;
2337
2338 if (tp->control.step_resume_breakpoint == NULL)
2339 {
2340 /* Set a "high-priority" step-resume, as we don't want
2341 user breakpoints at PC to trigger (again) when this
2342 hits. */
2343 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2344 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2345
2346 tp->step_after_step_resume_breakpoint = step;
2347 }
2348
2349 insert_breakpoints ();
2350 }
2351 else
2352 {
2353 /* There's no signal to pass, we can go ahead and skip the
2354 permanent breakpoint manually. */
2355 if (debug_infrun)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "infrun: resume: skipping permanent breakpoint\n");
2358 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2359 /* Update pc to reflect the new address from which we will
2360 execute instructions. */
2361 pc = regcache_read_pc (regcache);
2362
2363 if (step)
2364 {
2365 /* We've already advanced the PC, so the stepping part
2366 is done. Now we need to arrange for a trap to be
2367 reported to handle_inferior_event. Set a breakpoint
2368 at the current PC, and run to it. Don't update
2369 prev_pc, because if we end in
2370 switch_back_to_stepped_thread, we want the "expected
2371 thread advanced also" branch to be taken. IOW, we
2372 don't want this thread to step further from PC
2373 (overstep). */
2374 gdb_assert (!step_over_info_valid_p ());
2375 insert_single_step_breakpoint (gdbarch, aspace, pc);
2376 insert_breakpoints ();
2377
2378 resume_ptid = internal_resume_ptid (user_step);
2379 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2380 tp->resumed = 1;
2381 return;
2382 }
2383 }
2384 }
2385
2386 /* If we have a breakpoint to step over, make sure to do a single
2387 step only. Same if we have software watchpoints. */
2388 if (tp->control.trap_expected || bpstat_should_step ())
2389 tp->control.may_range_step = 0;
2390
2391 /* If enabled, step over breakpoints by executing a copy of the
2392 instruction at a different address.
2393
2394 We can't use displaced stepping when we have a signal to deliver;
2395 the comments for displaced_step_prepare explain why. The
2396 comments in the handle_inferior event for dealing with 'random
2397 signals' explain what we do instead.
2398
2399 We can't use displaced stepping when we are waiting for vfork_done
2400 event, displaced stepping breaks the vfork child similarly as single
2401 step software breakpoint. */
2402 if (tp->control.trap_expected
2403 && use_displaced_stepping (tp)
2404 && !step_over_info_valid_p ()
2405 && sig == GDB_SIGNAL_0
2406 && !current_inferior ()->waiting_for_vfork_done)
2407 {
2408 int prepared = displaced_step_prepare (tp);
2409
2410 if (prepared == 0)
2411 {
2412 if (debug_infrun)
2413 fprintf_unfiltered (gdb_stdlog,
2414 "Got placed in step-over queue\n");
2415
2416 tp->control.trap_expected = 0;
2417 return;
2418 }
2419 else if (prepared < 0)
2420 {
2421 /* Fallback to stepping over the breakpoint in-line. */
2422
2423 if (target_is_non_stop_p ())
2424 stop_all_threads ();
2425
2426 set_step_over_info (regcache->aspace (),
2427 regcache_read_pc (regcache), 0, tp->global_num);
2428
2429 step = maybe_software_singlestep (gdbarch, pc);
2430
2431 insert_breakpoints ();
2432 }
2433 else if (prepared > 0)
2434 {
2435 struct displaced_step_inferior_state *displaced;
2436
2437 /* Update pc to reflect the new address from which we will
2438 execute instructions due to displaced stepping. */
2439 pc = regcache_read_pc (get_thread_regcache (tp));
2440
2441 displaced = get_displaced_stepping_state (tp->inf);
2442 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2443 displaced->step_closure);
2444 }
2445 }
2446
2447 /* Do we need to do it the hard way, w/temp breakpoints? */
2448 else if (step)
2449 step = maybe_software_singlestep (gdbarch, pc);
2450
2451 /* Currently, our software single-step implementation leads to different
2452 results than hardware single-stepping in one situation: when stepping
2453 into delivering a signal which has an associated signal handler,
2454 hardware single-step will stop at the first instruction of the handler,
2455 while software single-step will simply skip execution of the handler.
2456
2457 For now, this difference in behavior is accepted since there is no
2458 easy way to actually implement single-stepping into a signal handler
2459 without kernel support.
2460
2461 However, there is one scenario where this difference leads to follow-on
2462 problems: if we're stepping off a breakpoint by removing all breakpoints
2463 and then single-stepping. In this case, the software single-step
2464 behavior means that even if there is a *breakpoint* in the signal
2465 handler, GDB still would not stop.
2466
2467 Fortunately, we can at least fix this particular issue. We detect
2468 here the case where we are about to deliver a signal while software
2469 single-stepping with breakpoints removed. In this situation, we
2470 revert the decisions to remove all breakpoints and insert single-
2471 step breakpoints, and instead we install a step-resume breakpoint
2472 at the current address, deliver the signal without stepping, and
2473 once we arrive back at the step-resume breakpoint, actually step
2474 over the breakpoint we originally wanted to step over. */
2475 if (thread_has_single_step_breakpoints_set (tp)
2476 && sig != GDB_SIGNAL_0
2477 && step_over_info_valid_p ())
2478 {
2479 /* If we have nested signals or a pending signal is delivered
2480 immediately after a handler returns, might might already have
2481 a step-resume breakpoint set on the earlier handler. We cannot
2482 set another step-resume breakpoint; just continue on until the
2483 original breakpoint is hit. */
2484 if (tp->control.step_resume_breakpoint == NULL)
2485 {
2486 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2487 tp->step_after_step_resume_breakpoint = 1;
2488 }
2489
2490 delete_single_step_breakpoints (tp);
2491
2492 clear_step_over_info ();
2493 tp->control.trap_expected = 0;
2494
2495 insert_breakpoints ();
2496 }
2497
2498 /* If STEP is set, it's a request to use hardware stepping
2499 facilities. But in that case, we should never
2500 use singlestep breakpoint. */
2501 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2502
2503 /* Decide the set of threads to ask the target to resume. */
2504 if (tp->control.trap_expected)
2505 {
2506 /* We're allowing a thread to run past a breakpoint it has
2507 hit, either by single-stepping the thread with the breakpoint
2508 removed, or by displaced stepping, with the breakpoint inserted.
2509 In the former case, we need to single-step only this thread,
2510 and keep others stopped, as they can miss this breakpoint if
2511 allowed to run. That's not really a problem for displaced
2512 stepping, but, we still keep other threads stopped, in case
2513 another thread is also stopped for a breakpoint waiting for
2514 its turn in the displaced stepping queue. */
2515 resume_ptid = inferior_ptid;
2516 }
2517 else
2518 resume_ptid = internal_resume_ptid (user_step);
2519
2520 if (execution_direction != EXEC_REVERSE
2521 && step && breakpoint_inserted_here_p (aspace, pc))
2522 {
2523 /* There are two cases where we currently need to step a
2524 breakpoint instruction when we have a signal to deliver:
2525
2526 - See handle_signal_stop where we handle random signals that
2527 could take out us out of the stepping range. Normally, in
2528 that case we end up continuing (instead of stepping) over the
2529 signal handler with a breakpoint at PC, but there are cases
2530 where we should _always_ single-step, even if we have a
2531 step-resume breakpoint, like when a software watchpoint is
2532 set. Assuming single-stepping and delivering a signal at the
2533 same time would takes us to the signal handler, then we could
2534 have removed the breakpoint at PC to step over it. However,
2535 some hardware step targets (like e.g., Mac OS) can't step
2536 into signal handlers, and for those, we need to leave the
2537 breakpoint at PC inserted, as otherwise if the handler
2538 recurses and executes PC again, it'll miss the breakpoint.
2539 So we leave the breakpoint inserted anyway, but we need to
2540 record that we tried to step a breakpoint instruction, so
2541 that adjust_pc_after_break doesn't end up confused.
2542
2543 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2544 in one thread after another thread that was stepping had been
2545 momentarily paused for a step-over. When we re-resume the
2546 stepping thread, it may be resumed from that address with a
2547 breakpoint that hasn't trapped yet. Seen with
2548 gdb.threads/non-stop-fair-events.exp, on targets that don't
2549 do displaced stepping. */
2550
2551 if (debug_infrun)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "infrun: resume: [%s] stepped breakpoint\n",
2554 target_pid_to_str (tp->ptid).c_str ());
2555
2556 tp->stepped_breakpoint = 1;
2557
2558 /* Most targets can step a breakpoint instruction, thus
2559 executing it normally. But if this one cannot, just
2560 continue and we will hit it anyway. */
2561 if (gdbarch_cannot_step_breakpoint (gdbarch))
2562 step = 0;
2563 }
2564
2565 if (debug_displaced
2566 && tp->control.trap_expected
2567 && use_displaced_stepping (tp)
2568 && !step_over_info_valid_p ())
2569 {
2570 struct regcache *resume_regcache = get_thread_regcache (tp);
2571 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2572 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2573 gdb_byte buf[4];
2574
2575 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2576 paddress (resume_gdbarch, actual_pc));
2577 read_memory (actual_pc, buf, sizeof (buf));
2578 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2579 }
2580
2581 if (tp->control.may_range_step)
2582 {
2583 /* If we're resuming a thread with the PC out of the step
2584 range, then we're doing some nested/finer run control
2585 operation, like stepping the thread out of the dynamic
2586 linker or the displaced stepping scratch pad. We
2587 shouldn't have allowed a range step then. */
2588 gdb_assert (pc_in_thread_step_range (pc, tp));
2589 }
2590
2591 do_target_resume (resume_ptid, step, sig);
2592 tp->resumed = 1;
2593 }
2594
2595 /* Resume the inferior. SIG is the signal to give the inferior
2596 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2597 rolls back state on error. */
2598
2599 static void
2600 resume (gdb_signal sig)
2601 {
2602 try
2603 {
2604 resume_1 (sig);
2605 }
2606 catch (const gdb_exception &ex)
2607 {
2608 /* If resuming is being aborted for any reason, delete any
2609 single-step breakpoint resume_1 may have created, to avoid
2610 confusing the following resumption, and to avoid leaving
2611 single-step breakpoints perturbing other threads, in case
2612 we're running in non-stop mode. */
2613 if (inferior_ptid != null_ptid)
2614 delete_single_step_breakpoints (inferior_thread ());
2615 throw;
2616 }
2617 }
2618
2619 \f
2620 /* Proceeding. */
2621
2622 /* See infrun.h. */
2623
2624 /* Counter that tracks number of user visible stops. This can be used
2625 to tell whether a command has proceeded the inferior past the
2626 current location. This allows e.g., inferior function calls in
2627 breakpoint commands to not interrupt the command list. When the
2628 call finishes successfully, the inferior is standing at the same
2629 breakpoint as if nothing happened (and so we don't call
2630 normal_stop). */
2631 static ULONGEST current_stop_id;
2632
2633 /* See infrun.h. */
2634
2635 ULONGEST
2636 get_stop_id (void)
2637 {
2638 return current_stop_id;
2639 }
2640
2641 /* Called when we report a user visible stop. */
2642
2643 static void
2644 new_stop_id (void)
2645 {
2646 current_stop_id++;
2647 }
2648
2649 /* Clear out all variables saying what to do when inferior is continued.
2650 First do this, then set the ones you want, then call `proceed'. */
2651
2652 static void
2653 clear_proceed_status_thread (struct thread_info *tp)
2654 {
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "infrun: clear_proceed_status_thread (%s)\n",
2658 target_pid_to_str (tp->ptid).c_str ());
2659
2660 /* If we're starting a new sequence, then the previous finished
2661 single-step is no longer relevant. */
2662 if (tp->suspend.waitstatus_pending_p)
2663 {
2664 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2665 {
2666 if (debug_infrun)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "infrun: clear_proceed_status: pending "
2669 "event of %s was a finished step. "
2670 "Discarding.\n",
2671 target_pid_to_str (tp->ptid).c_str ());
2672
2673 tp->suspend.waitstatus_pending_p = 0;
2674 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2675 }
2676 else if (debug_infrun)
2677 {
2678 std::string statstr
2679 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2680
2681 fprintf_unfiltered (gdb_stdlog,
2682 "infrun: clear_proceed_status_thread: thread %s "
2683 "has pending wait status %s "
2684 "(currently_stepping=%d).\n",
2685 target_pid_to_str (tp->ptid).c_str (),
2686 statstr.c_str (),
2687 currently_stepping (tp));
2688 }
2689 }
2690
2691 /* If this signal should not be seen by program, give it zero.
2692 Used for debugging signals. */
2693 if (!signal_pass_state (tp->suspend.stop_signal))
2694 tp->suspend.stop_signal = GDB_SIGNAL_0;
2695
2696 delete tp->thread_fsm;
2697 tp->thread_fsm = NULL;
2698
2699 tp->control.trap_expected = 0;
2700 tp->control.step_range_start = 0;
2701 tp->control.step_range_end = 0;
2702 tp->control.may_range_step = 0;
2703 tp->control.step_frame_id = null_frame_id;
2704 tp->control.step_stack_frame_id = null_frame_id;
2705 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2706 tp->control.step_start_function = NULL;
2707 tp->stop_requested = 0;
2708
2709 tp->control.stop_step = 0;
2710
2711 tp->control.proceed_to_finish = 0;
2712
2713 tp->control.stepping_command = 0;
2714
2715 /* Discard any remaining commands or status from previous stop. */
2716 bpstat_clear (&tp->control.stop_bpstat);
2717 }
2718
2719 void
2720 clear_proceed_status (int step)
2721 {
2722 /* With scheduler-locking replay, stop replaying other threads if we're
2723 not replaying the user-visible resume ptid.
2724
2725 This is a convenience feature to not require the user to explicitly
2726 stop replaying the other threads. We're assuming that the user's
2727 intent is to resume tracing the recorded process. */
2728 if (!non_stop && scheduler_mode == schedlock_replay
2729 && target_record_is_replaying (minus_one_ptid)
2730 && !target_record_will_replay (user_visible_resume_ptid (step),
2731 execution_direction))
2732 target_record_stop_replaying ();
2733
2734 if (!non_stop && inferior_ptid != null_ptid)
2735 {
2736 ptid_t resume_ptid = user_visible_resume_ptid (step);
2737
2738 /* In all-stop mode, delete the per-thread status of all threads
2739 we're about to resume, implicitly and explicitly. */
2740 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2741 clear_proceed_status_thread (tp);
2742 }
2743
2744 if (inferior_ptid != null_ptid)
2745 {
2746 struct inferior *inferior;
2747
2748 if (non_stop)
2749 {
2750 /* If in non-stop mode, only delete the per-thread status of
2751 the current thread. */
2752 clear_proceed_status_thread (inferior_thread ());
2753 }
2754
2755 inferior = current_inferior ();
2756 inferior->control.stop_soon = NO_STOP_QUIETLY;
2757 }
2758
2759 gdb::observers::about_to_proceed.notify ();
2760 }
2761
2762 /* Returns true if TP is still stopped at a breakpoint that needs
2763 stepping-over in order to make progress. If the breakpoint is gone
2764 meanwhile, we can skip the whole step-over dance. */
2765
2766 static int
2767 thread_still_needs_step_over_bp (struct thread_info *tp)
2768 {
2769 if (tp->stepping_over_breakpoint)
2770 {
2771 struct regcache *regcache = get_thread_regcache (tp);
2772
2773 if (breakpoint_here_p (regcache->aspace (),
2774 regcache_read_pc (regcache))
2775 == ordinary_breakpoint_here)
2776 return 1;
2777
2778 tp->stepping_over_breakpoint = 0;
2779 }
2780
2781 return 0;
2782 }
2783
2784 /* Check whether thread TP still needs to start a step-over in order
2785 to make progress when resumed. Returns an bitwise or of enum
2786 step_over_what bits, indicating what needs to be stepped over. */
2787
2788 static step_over_what
2789 thread_still_needs_step_over (struct thread_info *tp)
2790 {
2791 step_over_what what = 0;
2792
2793 if (thread_still_needs_step_over_bp (tp))
2794 what |= STEP_OVER_BREAKPOINT;
2795
2796 if (tp->stepping_over_watchpoint
2797 && !target_have_steppable_watchpoint)
2798 what |= STEP_OVER_WATCHPOINT;
2799
2800 return what;
2801 }
2802
2803 /* Returns true if scheduler locking applies. STEP indicates whether
2804 we're about to do a step/next-like command to a thread. */
2805
2806 static int
2807 schedlock_applies (struct thread_info *tp)
2808 {
2809 return (scheduler_mode == schedlock_on
2810 || (scheduler_mode == schedlock_step
2811 && tp->control.stepping_command)
2812 || (scheduler_mode == schedlock_replay
2813 && target_record_will_replay (minus_one_ptid,
2814 execution_direction)));
2815 }
2816
2817 /* Basic routine for continuing the program in various fashions.
2818
2819 ADDR is the address to resume at, or -1 for resume where stopped.
2820 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2821 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2822
2823 You should call clear_proceed_status before calling proceed. */
2824
2825 void
2826 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2827 {
2828 struct regcache *regcache;
2829 struct gdbarch *gdbarch;
2830 CORE_ADDR pc;
2831 ptid_t resume_ptid;
2832 struct execution_control_state ecss;
2833 struct execution_control_state *ecs = &ecss;
2834 int started;
2835
2836 /* If we're stopped at a fork/vfork, follow the branch set by the
2837 "set follow-fork-mode" command; otherwise, we'll just proceed
2838 resuming the current thread. */
2839 if (!follow_fork ())
2840 {
2841 /* The target for some reason decided not to resume. */
2842 normal_stop ();
2843 if (target_can_async_p ())
2844 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2845 return;
2846 }
2847
2848 /* We'll update this if & when we switch to a new thread. */
2849 previous_inferior_ptid = inferior_ptid;
2850
2851 regcache = get_current_regcache ();
2852 gdbarch = regcache->arch ();
2853 const address_space *aspace = regcache->aspace ();
2854
2855 pc = regcache_read_pc (regcache);
2856 thread_info *cur_thr = inferior_thread ();
2857
2858 /* Fill in with reasonable starting values. */
2859 init_thread_stepping_state (cur_thr);
2860
2861 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2862
2863 if (addr == (CORE_ADDR) -1)
2864 {
2865 if (pc == cur_thr->suspend.stop_pc
2866 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2867 && execution_direction != EXEC_REVERSE)
2868 /* There is a breakpoint at the address we will resume at,
2869 step one instruction before inserting breakpoints so that
2870 we do not stop right away (and report a second hit at this
2871 breakpoint).
2872
2873 Note, we don't do this in reverse, because we won't
2874 actually be executing the breakpoint insn anyway.
2875 We'll be (un-)executing the previous instruction. */
2876 cur_thr->stepping_over_breakpoint = 1;
2877 else if (gdbarch_single_step_through_delay_p (gdbarch)
2878 && gdbarch_single_step_through_delay (gdbarch,
2879 get_current_frame ()))
2880 /* We stepped onto an instruction that needs to be stepped
2881 again before re-inserting the breakpoint, do so. */
2882 cur_thr->stepping_over_breakpoint = 1;
2883 }
2884 else
2885 {
2886 regcache_write_pc (regcache, addr);
2887 }
2888
2889 if (siggnal != GDB_SIGNAL_DEFAULT)
2890 cur_thr->suspend.stop_signal = siggnal;
2891
2892 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
2893
2894 /* If an exception is thrown from this point on, make sure to
2895 propagate GDB's knowledge of the executing state to the
2896 frontend/user running state. */
2897 scoped_finish_thread_state finish_state (resume_ptid);
2898
2899 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2900 threads (e.g., we might need to set threads stepping over
2901 breakpoints first), from the user/frontend's point of view, all
2902 threads in RESUME_PTID are now running. Unless we're calling an
2903 inferior function, as in that case we pretend the inferior
2904 doesn't run at all. */
2905 if (!cur_thr->control.in_infcall)
2906 set_running (resume_ptid, 1);
2907
2908 if (debug_infrun)
2909 fprintf_unfiltered (gdb_stdlog,
2910 "infrun: proceed (addr=%s, signal=%s)\n",
2911 paddress (gdbarch, addr),
2912 gdb_signal_to_symbol_string (siggnal));
2913
2914 annotate_starting ();
2915
2916 /* Make sure that output from GDB appears before output from the
2917 inferior. */
2918 gdb_flush (gdb_stdout);
2919
2920 /* Since we've marked the inferior running, give it the terminal. A
2921 QUIT/Ctrl-C from here on is forwarded to the target (which can
2922 still detect attempts to unblock a stuck connection with repeated
2923 Ctrl-C from within target_pass_ctrlc). */
2924 target_terminal::inferior ();
2925
2926 /* In a multi-threaded task we may select another thread and
2927 then continue or step.
2928
2929 But if a thread that we're resuming had stopped at a breakpoint,
2930 it will immediately cause another breakpoint stop without any
2931 execution (i.e. it will report a breakpoint hit incorrectly). So
2932 we must step over it first.
2933
2934 Look for threads other than the current (TP) that reported a
2935 breakpoint hit and haven't been resumed yet since. */
2936
2937 /* If scheduler locking applies, we can avoid iterating over all
2938 threads. */
2939 if (!non_stop && !schedlock_applies (cur_thr))
2940 {
2941 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2942 {
2943 /* Ignore the current thread here. It's handled
2944 afterwards. */
2945 if (tp == cur_thr)
2946 continue;
2947
2948 if (!thread_still_needs_step_over (tp))
2949 continue;
2950
2951 gdb_assert (!thread_is_in_step_over_chain (tp));
2952
2953 if (debug_infrun)
2954 fprintf_unfiltered (gdb_stdlog,
2955 "infrun: need to step-over [%s] first\n",
2956 target_pid_to_str (tp->ptid).c_str ());
2957
2958 thread_step_over_chain_enqueue (tp);
2959 }
2960 }
2961
2962 /* Enqueue the current thread last, so that we move all other
2963 threads over their breakpoints first. */
2964 if (cur_thr->stepping_over_breakpoint)
2965 thread_step_over_chain_enqueue (cur_thr);
2966
2967 /* If the thread isn't started, we'll still need to set its prev_pc,
2968 so that switch_back_to_stepped_thread knows the thread hasn't
2969 advanced. Must do this before resuming any thread, as in
2970 all-stop/remote, once we resume we can't send any other packet
2971 until the target stops again. */
2972 cur_thr->prev_pc = regcache_read_pc (regcache);
2973
2974 {
2975 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
2976
2977 started = start_step_over ();
2978
2979 if (step_over_info_valid_p ())
2980 {
2981 /* Either this thread started a new in-line step over, or some
2982 other thread was already doing one. In either case, don't
2983 resume anything else until the step-over is finished. */
2984 }
2985 else if (started && !target_is_non_stop_p ())
2986 {
2987 /* A new displaced stepping sequence was started. In all-stop,
2988 we can't talk to the target anymore until it next stops. */
2989 }
2990 else if (!non_stop && target_is_non_stop_p ())
2991 {
2992 /* In all-stop, but the target is always in non-stop mode.
2993 Start all other threads that are implicitly resumed too. */
2994 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2995 {
2996 if (tp->resumed)
2997 {
2998 if (debug_infrun)
2999 fprintf_unfiltered (gdb_stdlog,
3000 "infrun: proceed: [%s] resumed\n",
3001 target_pid_to_str (tp->ptid).c_str ());
3002 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3003 continue;
3004 }
3005
3006 if (thread_is_in_step_over_chain (tp))
3007 {
3008 if (debug_infrun)
3009 fprintf_unfiltered (gdb_stdlog,
3010 "infrun: proceed: [%s] needs step-over\n",
3011 target_pid_to_str (tp->ptid).c_str ());
3012 continue;
3013 }
3014
3015 if (debug_infrun)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "infrun: proceed: resuming %s\n",
3018 target_pid_to_str (tp->ptid).c_str ());
3019
3020 reset_ecs (ecs, tp);
3021 switch_to_thread (tp);
3022 keep_going_pass_signal (ecs);
3023 if (!ecs->wait_some_more)
3024 error (_("Command aborted."));
3025 }
3026 }
3027 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3028 {
3029 /* The thread wasn't started, and isn't queued, run it now. */
3030 reset_ecs (ecs, cur_thr);
3031 switch_to_thread (cur_thr);
3032 keep_going_pass_signal (ecs);
3033 if (!ecs->wait_some_more)
3034 error (_("Command aborted."));
3035 }
3036 }
3037
3038 target_commit_resume ();
3039
3040 finish_state.release ();
3041
3042 /* If we've switched threads above, switch back to the previously
3043 current thread. We don't want the user to see a different
3044 selected thread. */
3045 switch_to_thread (cur_thr);
3046
3047 /* Tell the event loop to wait for it to stop. If the target
3048 supports asynchronous execution, it'll do this from within
3049 target_resume. */
3050 if (!target_can_async_p ())
3051 mark_async_event_handler (infrun_async_inferior_event_token);
3052 }
3053 \f
3054
3055 /* Start remote-debugging of a machine over a serial link. */
3056
3057 void
3058 start_remote (int from_tty)
3059 {
3060 struct inferior *inferior;
3061
3062 inferior = current_inferior ();
3063 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3064
3065 /* Always go on waiting for the target, regardless of the mode. */
3066 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3067 indicate to wait_for_inferior that a target should timeout if
3068 nothing is returned (instead of just blocking). Because of this,
3069 targets expecting an immediate response need to, internally, set
3070 things up so that the target_wait() is forced to eventually
3071 timeout. */
3072 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3073 differentiate to its caller what the state of the target is after
3074 the initial open has been performed. Here we're assuming that
3075 the target has stopped. It should be possible to eventually have
3076 target_open() return to the caller an indication that the target
3077 is currently running and GDB state should be set to the same as
3078 for an async run. */
3079 wait_for_inferior ();
3080
3081 /* Now that the inferior has stopped, do any bookkeeping like
3082 loading shared libraries. We want to do this before normal_stop,
3083 so that the displayed frame is up to date. */
3084 post_create_inferior (current_top_target (), from_tty);
3085
3086 normal_stop ();
3087 }
3088
3089 /* Initialize static vars when a new inferior begins. */
3090
3091 void
3092 init_wait_for_inferior (void)
3093 {
3094 /* These are meaningless until the first time through wait_for_inferior. */
3095
3096 breakpoint_init_inferior (inf_starting);
3097
3098 clear_proceed_status (0);
3099
3100 target_last_wait_ptid = minus_one_ptid;
3101
3102 previous_inferior_ptid = inferior_ptid;
3103 }
3104
3105 \f
3106
3107 static void handle_inferior_event (struct execution_control_state *ecs);
3108
3109 static void handle_step_into_function (struct gdbarch *gdbarch,
3110 struct execution_control_state *ecs);
3111 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3112 struct execution_control_state *ecs);
3113 static void handle_signal_stop (struct execution_control_state *ecs);
3114 static void check_exception_resume (struct execution_control_state *,
3115 struct frame_info *);
3116
3117 static void end_stepping_range (struct execution_control_state *ecs);
3118 static void stop_waiting (struct execution_control_state *ecs);
3119 static void keep_going (struct execution_control_state *ecs);
3120 static void process_event_stop_test (struct execution_control_state *ecs);
3121 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3122
3123 /* This function is attached as a "thread_stop_requested" observer.
3124 Cleanup local state that assumed the PTID was to be resumed, and
3125 report the stop to the frontend. */
3126
3127 static void
3128 infrun_thread_stop_requested (ptid_t ptid)
3129 {
3130 /* PTID was requested to stop. If the thread was already stopped,
3131 but the user/frontend doesn't know about that yet (e.g., the
3132 thread had been temporarily paused for some step-over), set up
3133 for reporting the stop now. */
3134 for (thread_info *tp : all_threads (ptid))
3135 {
3136 if (tp->state != THREAD_RUNNING)
3137 continue;
3138 if (tp->executing)
3139 continue;
3140
3141 /* Remove matching threads from the step-over queue, so
3142 start_step_over doesn't try to resume them
3143 automatically. */
3144 if (thread_is_in_step_over_chain (tp))
3145 thread_step_over_chain_remove (tp);
3146
3147 /* If the thread is stopped, but the user/frontend doesn't
3148 know about that yet, queue a pending event, as if the
3149 thread had just stopped now. Unless the thread already had
3150 a pending event. */
3151 if (!tp->suspend.waitstatus_pending_p)
3152 {
3153 tp->suspend.waitstatus_pending_p = 1;
3154 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3155 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3156 }
3157
3158 /* Clear the inline-frame state, since we're re-processing the
3159 stop. */
3160 clear_inline_frame_state (tp->ptid);
3161
3162 /* If this thread was paused because some other thread was
3163 doing an inline-step over, let that finish first. Once
3164 that happens, we'll restart all threads and consume pending
3165 stop events then. */
3166 if (step_over_info_valid_p ())
3167 continue;
3168
3169 /* Otherwise we can process the (new) pending event now. Set
3170 it so this pending event is considered by
3171 do_target_wait. */
3172 tp->resumed = 1;
3173 }
3174 }
3175
3176 static void
3177 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3178 {
3179 if (target_last_wait_ptid == tp->ptid)
3180 nullify_last_target_wait_ptid ();
3181 }
3182
3183 /* Delete the step resume, single-step and longjmp/exception resume
3184 breakpoints of TP. */
3185
3186 static void
3187 delete_thread_infrun_breakpoints (struct thread_info *tp)
3188 {
3189 delete_step_resume_breakpoint (tp);
3190 delete_exception_resume_breakpoint (tp);
3191 delete_single_step_breakpoints (tp);
3192 }
3193
3194 /* If the target still has execution, call FUNC for each thread that
3195 just stopped. In all-stop, that's all the non-exited threads; in
3196 non-stop, that's the current thread, only. */
3197
3198 typedef void (*for_each_just_stopped_thread_callback_func)
3199 (struct thread_info *tp);
3200
3201 static void
3202 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3203 {
3204 if (!target_has_execution || inferior_ptid == null_ptid)
3205 return;
3206
3207 if (target_is_non_stop_p ())
3208 {
3209 /* If in non-stop mode, only the current thread stopped. */
3210 func (inferior_thread ());
3211 }
3212 else
3213 {
3214 /* In all-stop mode, all threads have stopped. */
3215 for (thread_info *tp : all_non_exited_threads ())
3216 func (tp);
3217 }
3218 }
3219
3220 /* Delete the step resume and longjmp/exception resume breakpoints of
3221 the threads that just stopped. */
3222
3223 static void
3224 delete_just_stopped_threads_infrun_breakpoints (void)
3225 {
3226 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3227 }
3228
3229 /* Delete the single-step breakpoints of the threads that just
3230 stopped. */
3231
3232 static void
3233 delete_just_stopped_threads_single_step_breakpoints (void)
3234 {
3235 for_each_just_stopped_thread (delete_single_step_breakpoints);
3236 }
3237
3238 /* See infrun.h. */
3239
3240 void
3241 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3242 const struct target_waitstatus *ws)
3243 {
3244 std::string status_string = target_waitstatus_to_string (ws);
3245 string_file stb;
3246
3247 /* The text is split over several lines because it was getting too long.
3248 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3249 output as a unit; we want only one timestamp printed if debug_timestamp
3250 is set. */
3251
3252 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3253 waiton_ptid.pid (),
3254 waiton_ptid.lwp (),
3255 waiton_ptid.tid ());
3256 if (waiton_ptid.pid () != -1)
3257 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3258 stb.printf (", status) =\n");
3259 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3260 result_ptid.pid (),
3261 result_ptid.lwp (),
3262 result_ptid.tid (),
3263 target_pid_to_str (result_ptid).c_str ());
3264 stb.printf ("infrun: %s\n", status_string.c_str ());
3265
3266 /* This uses %s in part to handle %'s in the text, but also to avoid
3267 a gcc error: the format attribute requires a string literal. */
3268 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3269 }
3270
3271 /* Select a thread at random, out of those which are resumed and have
3272 had events. */
3273
3274 static struct thread_info *
3275 random_pending_event_thread (ptid_t waiton_ptid)
3276 {
3277 int num_events = 0;
3278
3279 auto has_event = [] (thread_info *tp)
3280 {
3281 return (tp->resumed
3282 && tp->suspend.waitstatus_pending_p);
3283 };
3284
3285 /* First see how many events we have. Count only resumed threads
3286 that have an event pending. */
3287 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3288 if (has_event (tp))
3289 num_events++;
3290
3291 if (num_events == 0)
3292 return NULL;
3293
3294 /* Now randomly pick a thread out of those that have had events. */
3295 int random_selector = (int) ((num_events * (double) rand ())
3296 / (RAND_MAX + 1.0));
3297
3298 if (debug_infrun && num_events > 1)
3299 fprintf_unfiltered (gdb_stdlog,
3300 "infrun: Found %d events, selecting #%d\n",
3301 num_events, random_selector);
3302
3303 /* Select the Nth thread that has had an event. */
3304 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3305 if (has_event (tp))
3306 if (random_selector-- == 0)
3307 return tp;
3308
3309 gdb_assert_not_reached ("event thread not found");
3310 }
3311
3312 /* Wrapper for target_wait that first checks whether threads have
3313 pending statuses to report before actually asking the target for
3314 more events. */
3315
3316 static ptid_t
3317 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3318 {
3319 ptid_t event_ptid;
3320 struct thread_info *tp;
3321
3322 /* First check if there is a resumed thread with a wait status
3323 pending. */
3324 if (ptid == minus_one_ptid || ptid.is_pid ())
3325 {
3326 tp = random_pending_event_thread (ptid);
3327 }
3328 else
3329 {
3330 if (debug_infrun)
3331 fprintf_unfiltered (gdb_stdlog,
3332 "infrun: Waiting for specific thread %s.\n",
3333 target_pid_to_str (ptid).c_str ());
3334
3335 /* We have a specific thread to check. */
3336 tp = find_thread_ptid (ptid);
3337 gdb_assert (tp != NULL);
3338 if (!tp->suspend.waitstatus_pending_p)
3339 tp = NULL;
3340 }
3341
3342 if (tp != NULL
3343 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3344 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3345 {
3346 struct regcache *regcache = get_thread_regcache (tp);
3347 struct gdbarch *gdbarch = regcache->arch ();
3348 CORE_ADDR pc;
3349 int discard = 0;
3350
3351 pc = regcache_read_pc (regcache);
3352
3353 if (pc != tp->suspend.stop_pc)
3354 {
3355 if (debug_infrun)
3356 fprintf_unfiltered (gdb_stdlog,
3357 "infrun: PC of %s changed. was=%s, now=%s\n",
3358 target_pid_to_str (tp->ptid).c_str (),
3359 paddress (gdbarch, tp->suspend.stop_pc),
3360 paddress (gdbarch, pc));
3361 discard = 1;
3362 }
3363 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3364 {
3365 if (debug_infrun)
3366 fprintf_unfiltered (gdb_stdlog,
3367 "infrun: previous breakpoint of %s, at %s gone\n",
3368 target_pid_to_str (tp->ptid).c_str (),
3369 paddress (gdbarch, pc));
3370
3371 discard = 1;
3372 }
3373
3374 if (discard)
3375 {
3376 if (debug_infrun)
3377 fprintf_unfiltered (gdb_stdlog,
3378 "infrun: pending event of %s cancelled.\n",
3379 target_pid_to_str (tp->ptid).c_str ());
3380
3381 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3382 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3383 }
3384 }
3385
3386 if (tp != NULL)
3387 {
3388 if (debug_infrun)
3389 {
3390 std::string statstr
3391 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3392
3393 fprintf_unfiltered (gdb_stdlog,
3394 "infrun: Using pending wait status %s for %s.\n",
3395 statstr.c_str (),
3396 target_pid_to_str (tp->ptid).c_str ());
3397 }
3398
3399 /* Now that we've selected our final event LWP, un-adjust its PC
3400 if it was a software breakpoint (and the target doesn't
3401 always adjust the PC itself). */
3402 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3403 && !target_supports_stopped_by_sw_breakpoint ())
3404 {
3405 struct regcache *regcache;
3406 struct gdbarch *gdbarch;
3407 int decr_pc;
3408
3409 regcache = get_thread_regcache (tp);
3410 gdbarch = regcache->arch ();
3411
3412 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3413 if (decr_pc != 0)
3414 {
3415 CORE_ADDR pc;
3416
3417 pc = regcache_read_pc (regcache);
3418 regcache_write_pc (regcache, pc + decr_pc);
3419 }
3420 }
3421
3422 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3423 *status = tp->suspend.waitstatus;
3424 tp->suspend.waitstatus_pending_p = 0;
3425
3426 /* Wake up the event loop again, until all pending events are
3427 processed. */
3428 if (target_is_async_p ())
3429 mark_async_event_handler (infrun_async_inferior_event_token);
3430 return tp->ptid;
3431 }
3432
3433 /* But if we don't find one, we'll have to wait. */
3434
3435 if (deprecated_target_wait_hook)
3436 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3437 else
3438 event_ptid = target_wait (ptid, status, options);
3439
3440 return event_ptid;
3441 }
3442
3443 /* Prepare and stabilize the inferior for detaching it. E.g.,
3444 detaching while a thread is displaced stepping is a recipe for
3445 crashing it, as nothing would readjust the PC out of the scratch
3446 pad. */
3447
3448 void
3449 prepare_for_detach (void)
3450 {
3451 struct inferior *inf = current_inferior ();
3452 ptid_t pid_ptid = ptid_t (inf->pid);
3453
3454 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3455
3456 /* Is any thread of this process displaced stepping? If not,
3457 there's nothing else to do. */
3458 if (displaced->step_thread == nullptr)
3459 return;
3460
3461 if (debug_infrun)
3462 fprintf_unfiltered (gdb_stdlog,
3463 "displaced-stepping in-process while detaching");
3464
3465 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3466
3467 while (displaced->step_thread != nullptr)
3468 {
3469 struct execution_control_state ecss;
3470 struct execution_control_state *ecs;
3471
3472 ecs = &ecss;
3473 memset (ecs, 0, sizeof (*ecs));
3474
3475 overlay_cache_invalid = 1;
3476 /* Flush target cache before starting to handle each event.
3477 Target was running and cache could be stale. This is just a
3478 heuristic. Running threads may modify target memory, but we
3479 don't get any event. */
3480 target_dcache_invalidate ();
3481
3482 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3483
3484 if (debug_infrun)
3485 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3486
3487 /* If an error happens while handling the event, propagate GDB's
3488 knowledge of the executing state to the frontend/user running
3489 state. */
3490 scoped_finish_thread_state finish_state (minus_one_ptid);
3491
3492 /* Now figure out what to do with the result of the result. */
3493 handle_inferior_event (ecs);
3494
3495 /* No error, don't finish the state yet. */
3496 finish_state.release ();
3497
3498 /* Breakpoints and watchpoints are not installed on the target
3499 at this point, and signals are passed directly to the
3500 inferior, so this must mean the process is gone. */
3501 if (!ecs->wait_some_more)
3502 {
3503 restore_detaching.release ();
3504 error (_("Program exited while detaching"));
3505 }
3506 }
3507
3508 restore_detaching.release ();
3509 }
3510
3511 /* Wait for control to return from inferior to debugger.
3512
3513 If inferior gets a signal, we may decide to start it up again
3514 instead of returning. That is why there is a loop in this function.
3515 When this function actually returns it means the inferior
3516 should be left stopped and GDB should read more commands. */
3517
3518 void
3519 wait_for_inferior (void)
3520 {
3521 if (debug_infrun)
3522 fprintf_unfiltered
3523 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3524
3525 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3526
3527 /* If an error happens while handling the event, propagate GDB's
3528 knowledge of the executing state to the frontend/user running
3529 state. */
3530 scoped_finish_thread_state finish_state (minus_one_ptid);
3531
3532 while (1)
3533 {
3534 struct execution_control_state ecss;
3535 struct execution_control_state *ecs = &ecss;
3536 ptid_t waiton_ptid = minus_one_ptid;
3537
3538 memset (ecs, 0, sizeof (*ecs));
3539
3540 overlay_cache_invalid = 1;
3541
3542 /* Flush target cache before starting to handle each event.
3543 Target was running and cache could be stale. This is just a
3544 heuristic. Running threads may modify target memory, but we
3545 don't get any event. */
3546 target_dcache_invalidate ();
3547
3548 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3549
3550 if (debug_infrun)
3551 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3552
3553 /* Now figure out what to do with the result of the result. */
3554 handle_inferior_event (ecs);
3555
3556 if (!ecs->wait_some_more)
3557 break;
3558 }
3559
3560 /* No error, don't finish the state yet. */
3561 finish_state.release ();
3562 }
3563
3564 /* Cleanup that reinstalls the readline callback handler, if the
3565 target is running in the background. If while handling the target
3566 event something triggered a secondary prompt, like e.g., a
3567 pagination prompt, we'll have removed the callback handler (see
3568 gdb_readline_wrapper_line). Need to do this as we go back to the
3569 event loop, ready to process further input. Note this has no
3570 effect if the handler hasn't actually been removed, because calling
3571 rl_callback_handler_install resets the line buffer, thus losing
3572 input. */
3573
3574 static void
3575 reinstall_readline_callback_handler_cleanup ()
3576 {
3577 struct ui *ui = current_ui;
3578
3579 if (!ui->async)
3580 {
3581 /* We're not going back to the top level event loop yet. Don't
3582 install the readline callback, as it'd prep the terminal,
3583 readline-style (raw, noecho) (e.g., --batch). We'll install
3584 it the next time the prompt is displayed, when we're ready
3585 for input. */
3586 return;
3587 }
3588
3589 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3590 gdb_rl_callback_handler_reinstall ();
3591 }
3592
3593 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3594 that's just the event thread. In all-stop, that's all threads. */
3595
3596 static void
3597 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3598 {
3599 if (ecs->event_thread != NULL
3600 && ecs->event_thread->thread_fsm != NULL)
3601 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3602
3603 if (!non_stop)
3604 {
3605 for (thread_info *thr : all_non_exited_threads ())
3606 {
3607 if (thr->thread_fsm == NULL)
3608 continue;
3609 if (thr == ecs->event_thread)
3610 continue;
3611
3612 switch_to_thread (thr);
3613 thr->thread_fsm->clean_up (thr);
3614 }
3615
3616 if (ecs->event_thread != NULL)
3617 switch_to_thread (ecs->event_thread);
3618 }
3619 }
3620
3621 /* Helper for all_uis_check_sync_execution_done that works on the
3622 current UI. */
3623
3624 static void
3625 check_curr_ui_sync_execution_done (void)
3626 {
3627 struct ui *ui = current_ui;
3628
3629 if (ui->prompt_state == PROMPT_NEEDED
3630 && ui->async
3631 && !gdb_in_secondary_prompt_p (ui))
3632 {
3633 target_terminal::ours ();
3634 gdb::observers::sync_execution_done.notify ();
3635 ui_register_input_event_handler (ui);
3636 }
3637 }
3638
3639 /* See infrun.h. */
3640
3641 void
3642 all_uis_check_sync_execution_done (void)
3643 {
3644 SWITCH_THRU_ALL_UIS ()
3645 {
3646 check_curr_ui_sync_execution_done ();
3647 }
3648 }
3649
3650 /* See infrun.h. */
3651
3652 void
3653 all_uis_on_sync_execution_starting (void)
3654 {
3655 SWITCH_THRU_ALL_UIS ()
3656 {
3657 if (current_ui->prompt_state == PROMPT_NEEDED)
3658 async_disable_stdin ();
3659 }
3660 }
3661
3662 /* Asynchronous version of wait_for_inferior. It is called by the
3663 event loop whenever a change of state is detected on the file
3664 descriptor corresponding to the target. It can be called more than
3665 once to complete a single execution command. In such cases we need
3666 to keep the state in a global variable ECSS. If it is the last time
3667 that this function is called for a single execution command, then
3668 report to the user that the inferior has stopped, and do the
3669 necessary cleanups. */
3670
3671 void
3672 fetch_inferior_event (void *client_data)
3673 {
3674 struct execution_control_state ecss;
3675 struct execution_control_state *ecs = &ecss;
3676 int cmd_done = 0;
3677 ptid_t waiton_ptid = minus_one_ptid;
3678
3679 memset (ecs, 0, sizeof (*ecs));
3680
3681 /* Events are always processed with the main UI as current UI. This
3682 way, warnings, debug output, etc. are always consistently sent to
3683 the main console. */
3684 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3685
3686 /* End up with readline processing input, if necessary. */
3687 {
3688 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3689
3690 /* We're handling a live event, so make sure we're doing live
3691 debugging. If we're looking at traceframes while the target is
3692 running, we're going to need to get back to that mode after
3693 handling the event. */
3694 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3695 if (non_stop)
3696 {
3697 maybe_restore_traceframe.emplace ();
3698 set_current_traceframe (-1);
3699 }
3700
3701 /* The user/frontend should not notice a thread switch due to
3702 internal events. Make sure we revert to the user selected
3703 thread and frame after handling the event and running any
3704 breakpoint commands. */
3705 scoped_restore_current_thread restore_thread;
3706
3707 overlay_cache_invalid = 1;
3708 /* Flush target cache before starting to handle each event. Target
3709 was running and cache could be stale. This is just a heuristic.
3710 Running threads may modify target memory, but we don't get any
3711 event. */
3712 target_dcache_invalidate ();
3713
3714 scoped_restore save_exec_dir
3715 = make_scoped_restore (&execution_direction,
3716 target_execution_direction ());
3717
3718 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3719 target_can_async_p () ? TARGET_WNOHANG : 0);
3720
3721 if (debug_infrun)
3722 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3723
3724 /* If an error happens while handling the event, propagate GDB's
3725 knowledge of the executing state to the frontend/user running
3726 state. */
3727 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3728 scoped_finish_thread_state finish_state (finish_ptid);
3729
3730 /* Get executed before scoped_restore_current_thread above to apply
3731 still for the thread which has thrown the exception. */
3732 auto defer_bpstat_clear
3733 = make_scope_exit (bpstat_clear_actions);
3734 auto defer_delete_threads
3735 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3736
3737 /* Now figure out what to do with the result of the result. */
3738 handle_inferior_event (ecs);
3739
3740 if (!ecs->wait_some_more)
3741 {
3742 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3743 int should_stop = 1;
3744 struct thread_info *thr = ecs->event_thread;
3745
3746 delete_just_stopped_threads_infrun_breakpoints ();
3747
3748 if (thr != NULL)
3749 {
3750 struct thread_fsm *thread_fsm = thr->thread_fsm;
3751
3752 if (thread_fsm != NULL)
3753 should_stop = thread_fsm->should_stop (thr);
3754 }
3755
3756 if (!should_stop)
3757 {
3758 keep_going (ecs);
3759 }
3760 else
3761 {
3762 bool should_notify_stop = true;
3763 int proceeded = 0;
3764
3765 clean_up_just_stopped_threads_fsms (ecs);
3766
3767 if (thr != NULL && thr->thread_fsm != NULL)
3768 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3769
3770 if (should_notify_stop)
3771 {
3772 /* We may not find an inferior if this was a process exit. */
3773 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3774 proceeded = normal_stop ();
3775 }
3776
3777 if (!proceeded)
3778 {
3779 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3780 cmd_done = 1;
3781 }
3782
3783 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3784 previously selected thread is gone. We have two
3785 choices - switch to no thread selected, or restore the
3786 previously selected thread (now exited). We chose the
3787 later, just because that's what GDB used to do. After
3788 this, "info threads" says "The current thread <Thread
3789 ID 2> has terminated." instead of "No thread
3790 selected.". */
3791 if (!non_stop
3792 && cmd_done
3793 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3794 restore_thread.dont_restore ();
3795 }
3796 }
3797
3798 defer_delete_threads.release ();
3799 defer_bpstat_clear.release ();
3800
3801 /* No error, don't finish the thread states yet. */
3802 finish_state.release ();
3803
3804 /* This scope is used to ensure that readline callbacks are
3805 reinstalled here. */
3806 }
3807
3808 /* If a UI was in sync execution mode, and now isn't, restore its
3809 prompt (a synchronous execution command has finished, and we're
3810 ready for input). */
3811 all_uis_check_sync_execution_done ();
3812
3813 if (cmd_done
3814 && exec_done_display_p
3815 && (inferior_ptid == null_ptid
3816 || inferior_thread ()->state != THREAD_RUNNING))
3817 printf_unfiltered (_("completed.\n"));
3818 }
3819
3820 /* Record the frame and location we're currently stepping through. */
3821 void
3822 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3823 {
3824 struct thread_info *tp = inferior_thread ();
3825
3826 tp->control.step_frame_id = get_frame_id (frame);
3827 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3828
3829 tp->current_symtab = sal.symtab;
3830 tp->current_line = sal.line;
3831 }
3832
3833 /* Clear context switchable stepping state. */
3834
3835 void
3836 init_thread_stepping_state (struct thread_info *tss)
3837 {
3838 tss->stepped_breakpoint = 0;
3839 tss->stepping_over_breakpoint = 0;
3840 tss->stepping_over_watchpoint = 0;
3841 tss->step_after_step_resume_breakpoint = 0;
3842 }
3843
3844 /* Set the cached copy of the last ptid/waitstatus. */
3845
3846 void
3847 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3848 {
3849 target_last_wait_ptid = ptid;
3850 target_last_waitstatus = status;
3851 }
3852
3853 /* Return the cached copy of the last pid/waitstatus returned by
3854 target_wait()/deprecated_target_wait_hook(). The data is actually
3855 cached by handle_inferior_event(), which gets called immediately
3856 after target_wait()/deprecated_target_wait_hook(). */
3857
3858 void
3859 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3860 {
3861 *ptidp = target_last_wait_ptid;
3862 *status = target_last_waitstatus;
3863 }
3864
3865 void
3866 nullify_last_target_wait_ptid (void)
3867 {
3868 target_last_wait_ptid = minus_one_ptid;
3869 }
3870
3871 /* Switch thread contexts. */
3872
3873 static void
3874 context_switch (execution_control_state *ecs)
3875 {
3876 if (debug_infrun
3877 && ecs->ptid != inferior_ptid
3878 && ecs->event_thread != inferior_thread ())
3879 {
3880 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3881 target_pid_to_str (inferior_ptid).c_str ());
3882 fprintf_unfiltered (gdb_stdlog, "to %s\n",
3883 target_pid_to_str (ecs->ptid).c_str ());
3884 }
3885
3886 switch_to_thread (ecs->event_thread);
3887 }
3888
3889 /* If the target can't tell whether we've hit breakpoints
3890 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3891 check whether that could have been caused by a breakpoint. If so,
3892 adjust the PC, per gdbarch_decr_pc_after_break. */
3893
3894 static void
3895 adjust_pc_after_break (struct thread_info *thread,
3896 struct target_waitstatus *ws)
3897 {
3898 struct regcache *regcache;
3899 struct gdbarch *gdbarch;
3900 CORE_ADDR breakpoint_pc, decr_pc;
3901
3902 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3903 we aren't, just return.
3904
3905 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3906 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3907 implemented by software breakpoints should be handled through the normal
3908 breakpoint layer.
3909
3910 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3911 different signals (SIGILL or SIGEMT for instance), but it is less
3912 clear where the PC is pointing afterwards. It may not match
3913 gdbarch_decr_pc_after_break. I don't know any specific target that
3914 generates these signals at breakpoints (the code has been in GDB since at
3915 least 1992) so I can not guess how to handle them here.
3916
3917 In earlier versions of GDB, a target with
3918 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3919 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3920 target with both of these set in GDB history, and it seems unlikely to be
3921 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
3922
3923 if (ws->kind != TARGET_WAITKIND_STOPPED)
3924 return;
3925
3926 if (ws->value.sig != GDB_SIGNAL_TRAP)
3927 return;
3928
3929 /* In reverse execution, when a breakpoint is hit, the instruction
3930 under it has already been de-executed. The reported PC always
3931 points at the breakpoint address, so adjusting it further would
3932 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3933 architecture:
3934
3935 B1 0x08000000 : INSN1
3936 B2 0x08000001 : INSN2
3937 0x08000002 : INSN3
3938 PC -> 0x08000003 : INSN4
3939
3940 Say you're stopped at 0x08000003 as above. Reverse continuing
3941 from that point should hit B2 as below. Reading the PC when the
3942 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3943 been de-executed already.
3944
3945 B1 0x08000000 : INSN1
3946 B2 PC -> 0x08000001 : INSN2
3947 0x08000002 : INSN3
3948 0x08000003 : INSN4
3949
3950 We can't apply the same logic as for forward execution, because
3951 we would wrongly adjust the PC to 0x08000000, since there's a
3952 breakpoint at PC - 1. We'd then report a hit on B1, although
3953 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3954 behaviour. */
3955 if (execution_direction == EXEC_REVERSE)
3956 return;
3957
3958 /* If the target can tell whether the thread hit a SW breakpoint,
3959 trust it. Targets that can tell also adjust the PC
3960 themselves. */
3961 if (target_supports_stopped_by_sw_breakpoint ())
3962 return;
3963
3964 /* Note that relying on whether a breakpoint is planted in memory to
3965 determine this can fail. E.g,. the breakpoint could have been
3966 removed since. Or the thread could have been told to step an
3967 instruction the size of a breakpoint instruction, and only
3968 _after_ was a breakpoint inserted at its address. */
3969
3970 /* If this target does not decrement the PC after breakpoints, then
3971 we have nothing to do. */
3972 regcache = get_thread_regcache (thread);
3973 gdbarch = regcache->arch ();
3974
3975 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3976 if (decr_pc == 0)
3977 return;
3978
3979 const address_space *aspace = regcache->aspace ();
3980
3981 /* Find the location where (if we've hit a breakpoint) the
3982 breakpoint would be. */
3983 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3984
3985 /* If the target can't tell whether a software breakpoint triggered,
3986 fallback to figuring it out based on breakpoints we think were
3987 inserted in the target, and on whether the thread was stepped or
3988 continued. */
3989
3990 /* Check whether there actually is a software breakpoint inserted at
3991 that location.
3992
3993 If in non-stop mode, a race condition is possible where we've
3994 removed a breakpoint, but stop events for that breakpoint were
3995 already queued and arrive later. To suppress those spurious
3996 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3997 and retire them after a number of stop events are reported. Note
3998 this is an heuristic and can thus get confused. The real fix is
3999 to get the "stopped by SW BP and needs adjustment" info out of
4000 the target/kernel (and thus never reach here; see above). */
4001 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4002 || (target_is_non_stop_p ()
4003 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4004 {
4005 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4006
4007 if (record_full_is_used ())
4008 restore_operation_disable.emplace
4009 (record_full_gdb_operation_disable_set ());
4010
4011 /* When using hardware single-step, a SIGTRAP is reported for both
4012 a completed single-step and a software breakpoint. Need to
4013 differentiate between the two, as the latter needs adjusting
4014 but the former does not.
4015
4016 The SIGTRAP can be due to a completed hardware single-step only if
4017 - we didn't insert software single-step breakpoints
4018 - this thread is currently being stepped
4019
4020 If any of these events did not occur, we must have stopped due
4021 to hitting a software breakpoint, and have to back up to the
4022 breakpoint address.
4023
4024 As a special case, we could have hardware single-stepped a
4025 software breakpoint. In this case (prev_pc == breakpoint_pc),
4026 we also need to back up to the breakpoint address. */
4027
4028 if (thread_has_single_step_breakpoints_set (thread)
4029 || !currently_stepping (thread)
4030 || (thread->stepped_breakpoint
4031 && thread->prev_pc == breakpoint_pc))
4032 regcache_write_pc (regcache, breakpoint_pc);
4033 }
4034 }
4035
4036 static int
4037 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4038 {
4039 for (frame = get_prev_frame (frame);
4040 frame != NULL;
4041 frame = get_prev_frame (frame))
4042 {
4043 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4044 return 1;
4045 if (get_frame_type (frame) != INLINE_FRAME)
4046 break;
4047 }
4048
4049 return 0;
4050 }
4051
4052 /* Look for an inline frame that is marked for skip.
4053 If PREV_FRAME is TRUE start at the previous frame,
4054 otherwise start at the current frame. Stop at the
4055 first non-inline frame, or at the frame where the
4056 step started. */
4057
4058 static bool
4059 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4060 {
4061 struct frame_info *frame = get_current_frame ();
4062
4063 if (prev_frame)
4064 frame = get_prev_frame (frame);
4065
4066 for (; frame != NULL; frame = get_prev_frame (frame))
4067 {
4068 const char *fn = NULL;
4069 symtab_and_line sal;
4070 struct symbol *sym;
4071
4072 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4073 break;
4074 if (get_frame_type (frame) != INLINE_FRAME)
4075 break;
4076
4077 sal = find_frame_sal (frame);
4078 sym = get_frame_function (frame);
4079
4080 if (sym != NULL)
4081 fn = sym->print_name ();
4082
4083 if (sal.line != 0
4084 && function_name_is_marked_for_skip (fn, sal))
4085 return true;
4086 }
4087
4088 return false;
4089 }
4090
4091 /* If the event thread has the stop requested flag set, pretend it
4092 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4093 target_stop). */
4094
4095 static bool
4096 handle_stop_requested (struct execution_control_state *ecs)
4097 {
4098 if (ecs->event_thread->stop_requested)
4099 {
4100 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4101 ecs->ws.value.sig = GDB_SIGNAL_0;
4102 handle_signal_stop (ecs);
4103 return true;
4104 }
4105 return false;
4106 }
4107
4108 /* Auxiliary function that handles syscall entry/return events.
4109 It returns 1 if the inferior should keep going (and GDB
4110 should ignore the event), or 0 if the event deserves to be
4111 processed. */
4112
4113 static int
4114 handle_syscall_event (struct execution_control_state *ecs)
4115 {
4116 struct regcache *regcache;
4117 int syscall_number;
4118
4119 context_switch (ecs);
4120
4121 regcache = get_thread_regcache (ecs->event_thread);
4122 syscall_number = ecs->ws.value.syscall_number;
4123 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4124
4125 if (catch_syscall_enabled () > 0
4126 && catching_syscall_number (syscall_number) > 0)
4127 {
4128 if (debug_infrun)
4129 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4130 syscall_number);
4131
4132 ecs->event_thread->control.stop_bpstat
4133 = bpstat_stop_status (regcache->aspace (),
4134 ecs->event_thread->suspend.stop_pc,
4135 ecs->event_thread, &ecs->ws);
4136
4137 if (handle_stop_requested (ecs))
4138 return 0;
4139
4140 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4141 {
4142 /* Catchpoint hit. */
4143 return 0;
4144 }
4145 }
4146
4147 if (handle_stop_requested (ecs))
4148 return 0;
4149
4150 /* If no catchpoint triggered for this, then keep going. */
4151 keep_going (ecs);
4152 return 1;
4153 }
4154
4155 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4156
4157 static void
4158 fill_in_stop_func (struct gdbarch *gdbarch,
4159 struct execution_control_state *ecs)
4160 {
4161 if (!ecs->stop_func_filled_in)
4162 {
4163 const block *block;
4164
4165 /* Don't care about return value; stop_func_start and stop_func_name
4166 will both be 0 if it doesn't work. */
4167 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4168 &ecs->stop_func_name,
4169 &ecs->stop_func_start,
4170 &ecs->stop_func_end,
4171 &block);
4172
4173 /* The call to find_pc_partial_function, above, will set
4174 stop_func_start and stop_func_end to the start and end
4175 of the range containing the stop pc. If this range
4176 contains the entry pc for the block (which is always the
4177 case for contiguous blocks), advance stop_func_start past
4178 the function's start offset and entrypoint. Note that
4179 stop_func_start is NOT advanced when in a range of a
4180 non-contiguous block that does not contain the entry pc. */
4181 if (block != nullptr
4182 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4183 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4184 {
4185 ecs->stop_func_start
4186 += gdbarch_deprecated_function_start_offset (gdbarch);
4187
4188 if (gdbarch_skip_entrypoint_p (gdbarch))
4189 ecs->stop_func_start
4190 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4191 }
4192
4193 ecs->stop_func_filled_in = 1;
4194 }
4195 }
4196
4197
4198 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4199
4200 static enum stop_kind
4201 get_inferior_stop_soon (execution_control_state *ecs)
4202 {
4203 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4204
4205 gdb_assert (inf != NULL);
4206 return inf->control.stop_soon;
4207 }
4208
4209 /* Wait for one event. Store the resulting waitstatus in WS, and
4210 return the event ptid. */
4211
4212 static ptid_t
4213 wait_one (struct target_waitstatus *ws)
4214 {
4215 ptid_t event_ptid;
4216 ptid_t wait_ptid = minus_one_ptid;
4217
4218 overlay_cache_invalid = 1;
4219
4220 /* Flush target cache before starting to handle each event.
4221 Target was running and cache could be stale. This is just a
4222 heuristic. Running threads may modify target memory, but we
4223 don't get any event. */
4224 target_dcache_invalidate ();
4225
4226 if (deprecated_target_wait_hook)
4227 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4228 else
4229 event_ptid = target_wait (wait_ptid, ws, 0);
4230
4231 if (debug_infrun)
4232 print_target_wait_results (wait_ptid, event_ptid, ws);
4233
4234 return event_ptid;
4235 }
4236
4237 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4238 instead of the current thread. */
4239 #define THREAD_STOPPED_BY(REASON) \
4240 static int \
4241 thread_stopped_by_ ## REASON (ptid_t ptid) \
4242 { \
4243 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4244 inferior_ptid = ptid; \
4245 \
4246 return target_stopped_by_ ## REASON (); \
4247 }
4248
4249 /* Generate thread_stopped_by_watchpoint. */
4250 THREAD_STOPPED_BY (watchpoint)
4251 /* Generate thread_stopped_by_sw_breakpoint. */
4252 THREAD_STOPPED_BY (sw_breakpoint)
4253 /* Generate thread_stopped_by_hw_breakpoint. */
4254 THREAD_STOPPED_BY (hw_breakpoint)
4255
4256 /* Save the thread's event and stop reason to process it later. */
4257
4258 static void
4259 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4260 {
4261 if (debug_infrun)
4262 {
4263 std::string statstr = target_waitstatus_to_string (ws);
4264
4265 fprintf_unfiltered (gdb_stdlog,
4266 "infrun: saving status %s for %d.%ld.%ld\n",
4267 statstr.c_str (),
4268 tp->ptid.pid (),
4269 tp->ptid.lwp (),
4270 tp->ptid.tid ());
4271 }
4272
4273 /* Record for later. */
4274 tp->suspend.waitstatus = *ws;
4275 tp->suspend.waitstatus_pending_p = 1;
4276
4277 struct regcache *regcache = get_thread_regcache (tp);
4278 const address_space *aspace = regcache->aspace ();
4279
4280 if (ws->kind == TARGET_WAITKIND_STOPPED
4281 && ws->value.sig == GDB_SIGNAL_TRAP)
4282 {
4283 CORE_ADDR pc = regcache_read_pc (regcache);
4284
4285 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4286
4287 if (thread_stopped_by_watchpoint (tp->ptid))
4288 {
4289 tp->suspend.stop_reason
4290 = TARGET_STOPPED_BY_WATCHPOINT;
4291 }
4292 else if (target_supports_stopped_by_sw_breakpoint ()
4293 && thread_stopped_by_sw_breakpoint (tp->ptid))
4294 {
4295 tp->suspend.stop_reason
4296 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4297 }
4298 else if (target_supports_stopped_by_hw_breakpoint ()
4299 && thread_stopped_by_hw_breakpoint (tp->ptid))
4300 {
4301 tp->suspend.stop_reason
4302 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4303 }
4304 else if (!target_supports_stopped_by_hw_breakpoint ()
4305 && hardware_breakpoint_inserted_here_p (aspace,
4306 pc))
4307 {
4308 tp->suspend.stop_reason
4309 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4310 }
4311 else if (!target_supports_stopped_by_sw_breakpoint ()
4312 && software_breakpoint_inserted_here_p (aspace,
4313 pc))
4314 {
4315 tp->suspend.stop_reason
4316 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4317 }
4318 else if (!thread_has_single_step_breakpoints_set (tp)
4319 && currently_stepping (tp))
4320 {
4321 tp->suspend.stop_reason
4322 = TARGET_STOPPED_BY_SINGLE_STEP;
4323 }
4324 }
4325 }
4326
4327 /* See infrun.h. */
4328
4329 void
4330 stop_all_threads (void)
4331 {
4332 /* We may need multiple passes to discover all threads. */
4333 int pass;
4334 int iterations = 0;
4335
4336 gdb_assert (target_is_non_stop_p ());
4337
4338 if (debug_infrun)
4339 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4340
4341 scoped_restore_current_thread restore_thread;
4342
4343 target_thread_events (1);
4344 SCOPE_EXIT { target_thread_events (0); };
4345
4346 /* Request threads to stop, and then wait for the stops. Because
4347 threads we already know about can spawn more threads while we're
4348 trying to stop them, and we only learn about new threads when we
4349 update the thread list, do this in a loop, and keep iterating
4350 until two passes find no threads that need to be stopped. */
4351 for (pass = 0; pass < 2; pass++, iterations++)
4352 {
4353 if (debug_infrun)
4354 fprintf_unfiltered (gdb_stdlog,
4355 "infrun: stop_all_threads, pass=%d, "
4356 "iterations=%d\n", pass, iterations);
4357 while (1)
4358 {
4359 ptid_t event_ptid;
4360 struct target_waitstatus ws;
4361 int need_wait = 0;
4362
4363 update_thread_list ();
4364
4365 /* Go through all threads looking for threads that we need
4366 to tell the target to stop. */
4367 for (thread_info *t : all_non_exited_threads ())
4368 {
4369 if (t->executing)
4370 {
4371 /* If already stopping, don't request a stop again.
4372 We just haven't seen the notification yet. */
4373 if (!t->stop_requested)
4374 {
4375 if (debug_infrun)
4376 fprintf_unfiltered (gdb_stdlog,
4377 "infrun: %s executing, "
4378 "need stop\n",
4379 target_pid_to_str (t->ptid).c_str ());
4380 target_stop (t->ptid);
4381 t->stop_requested = 1;
4382 }
4383 else
4384 {
4385 if (debug_infrun)
4386 fprintf_unfiltered (gdb_stdlog,
4387 "infrun: %s executing, "
4388 "already stopping\n",
4389 target_pid_to_str (t->ptid).c_str ());
4390 }
4391
4392 if (t->stop_requested)
4393 need_wait = 1;
4394 }
4395 else
4396 {
4397 if (debug_infrun)
4398 fprintf_unfiltered (gdb_stdlog,
4399 "infrun: %s not executing\n",
4400 target_pid_to_str (t->ptid).c_str ());
4401
4402 /* The thread may be not executing, but still be
4403 resumed with a pending status to process. */
4404 t->resumed = 0;
4405 }
4406 }
4407
4408 if (!need_wait)
4409 break;
4410
4411 /* If we find new threads on the second iteration, restart
4412 over. We want to see two iterations in a row with all
4413 threads stopped. */
4414 if (pass > 0)
4415 pass = -1;
4416
4417 event_ptid = wait_one (&ws);
4418 if (debug_infrun)
4419 {
4420 fprintf_unfiltered (gdb_stdlog,
4421 "infrun: stop_all_threads %s %s\n",
4422 target_waitstatus_to_string (&ws).c_str (),
4423 target_pid_to_str (event_ptid).c_str ());
4424 }
4425
4426 if (ws.kind == TARGET_WAITKIND_NO_RESUMED
4427 || ws.kind == TARGET_WAITKIND_THREAD_EXITED
4428 || ws.kind == TARGET_WAITKIND_EXITED
4429 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4430 {
4431 /* All resumed threads exited
4432 or one thread/process exited/signalled. */
4433 }
4434 else
4435 {
4436 thread_info *t = find_thread_ptid (event_ptid);
4437 if (t == NULL)
4438 t = add_thread (event_ptid);
4439
4440 t->stop_requested = 0;
4441 t->executing = 0;
4442 t->resumed = 0;
4443 t->control.may_range_step = 0;
4444
4445 /* This may be the first time we see the inferior report
4446 a stop. */
4447 inferior *inf = find_inferior_ptid (event_ptid);
4448 if (inf->needs_setup)
4449 {
4450 switch_to_thread_no_regs (t);
4451 setup_inferior (0);
4452 }
4453
4454 if (ws.kind == TARGET_WAITKIND_STOPPED
4455 && ws.value.sig == GDB_SIGNAL_0)
4456 {
4457 /* We caught the event that we intended to catch, so
4458 there's no event pending. */
4459 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4460 t->suspend.waitstatus_pending_p = 0;
4461
4462 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4463 {
4464 /* Add it back to the step-over queue. */
4465 if (debug_infrun)
4466 {
4467 fprintf_unfiltered (gdb_stdlog,
4468 "infrun: displaced-step of %s "
4469 "canceled: adding back to the "
4470 "step-over queue\n",
4471 target_pid_to_str (t->ptid).c_str ());
4472 }
4473 t->control.trap_expected = 0;
4474 thread_step_over_chain_enqueue (t);
4475 }
4476 }
4477 else
4478 {
4479 enum gdb_signal sig;
4480 struct regcache *regcache;
4481
4482 if (debug_infrun)
4483 {
4484 std::string statstr = target_waitstatus_to_string (&ws);
4485
4486 fprintf_unfiltered (gdb_stdlog,
4487 "infrun: target_wait %s, saving "
4488 "status for %d.%ld.%ld\n",
4489 statstr.c_str (),
4490 t->ptid.pid (),
4491 t->ptid.lwp (),
4492 t->ptid.tid ());
4493 }
4494
4495 /* Record for later. */
4496 save_waitstatus (t, &ws);
4497
4498 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4499 ? ws.value.sig : GDB_SIGNAL_0);
4500
4501 if (displaced_step_fixup (t, sig) < 0)
4502 {
4503 /* Add it back to the step-over queue. */
4504 t->control.trap_expected = 0;
4505 thread_step_over_chain_enqueue (t);
4506 }
4507
4508 regcache = get_thread_regcache (t);
4509 t->suspend.stop_pc = regcache_read_pc (regcache);
4510
4511 if (debug_infrun)
4512 {
4513 fprintf_unfiltered (gdb_stdlog,
4514 "infrun: saved stop_pc=%s for %s "
4515 "(currently_stepping=%d)\n",
4516 paddress (target_gdbarch (),
4517 t->suspend.stop_pc),
4518 target_pid_to_str (t->ptid).c_str (),
4519 currently_stepping (t));
4520 }
4521 }
4522 }
4523 }
4524 }
4525
4526 if (debug_infrun)
4527 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4528 }
4529
4530 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4531
4532 static int
4533 handle_no_resumed (struct execution_control_state *ecs)
4534 {
4535 if (target_can_async_p ())
4536 {
4537 struct ui *ui;
4538 int any_sync = 0;
4539
4540 ALL_UIS (ui)
4541 {
4542 if (ui->prompt_state == PROMPT_BLOCKED)
4543 {
4544 any_sync = 1;
4545 break;
4546 }
4547 }
4548 if (!any_sync)
4549 {
4550 /* There were no unwaited-for children left in the target, but,
4551 we're not synchronously waiting for events either. Just
4552 ignore. */
4553
4554 if (debug_infrun)
4555 fprintf_unfiltered (gdb_stdlog,
4556 "infrun: TARGET_WAITKIND_NO_RESUMED "
4557 "(ignoring: bg)\n");
4558 prepare_to_wait (ecs);
4559 return 1;
4560 }
4561 }
4562
4563 /* Otherwise, if we were running a synchronous execution command, we
4564 may need to cancel it and give the user back the terminal.
4565
4566 In non-stop mode, the target can't tell whether we've already
4567 consumed previous stop events, so it can end up sending us a
4568 no-resumed event like so:
4569
4570 #0 - thread 1 is left stopped
4571
4572 #1 - thread 2 is resumed and hits breakpoint
4573 -> TARGET_WAITKIND_STOPPED
4574
4575 #2 - thread 3 is resumed and exits
4576 this is the last resumed thread, so
4577 -> TARGET_WAITKIND_NO_RESUMED
4578
4579 #3 - gdb processes stop for thread 2 and decides to re-resume
4580 it.
4581
4582 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4583 thread 2 is now resumed, so the event should be ignored.
4584
4585 IOW, if the stop for thread 2 doesn't end a foreground command,
4586 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4587 event. But it could be that the event meant that thread 2 itself
4588 (or whatever other thread was the last resumed thread) exited.
4589
4590 To address this we refresh the thread list and check whether we
4591 have resumed threads _now_. In the example above, this removes
4592 thread 3 from the thread list. If thread 2 was re-resumed, we
4593 ignore this event. If we find no thread resumed, then we cancel
4594 the synchronous command show "no unwaited-for " to the user. */
4595 update_thread_list ();
4596
4597 for (thread_info *thread : all_non_exited_threads ())
4598 {
4599 if (thread->executing
4600 || thread->suspend.waitstatus_pending_p)
4601 {
4602 /* There were no unwaited-for children left in the target at
4603 some point, but there are now. Just ignore. */
4604 if (debug_infrun)
4605 fprintf_unfiltered (gdb_stdlog,
4606 "infrun: TARGET_WAITKIND_NO_RESUMED "
4607 "(ignoring: found resumed)\n");
4608 prepare_to_wait (ecs);
4609 return 1;
4610 }
4611 }
4612
4613 /* Note however that we may find no resumed thread because the whole
4614 process exited meanwhile (thus updating the thread list results
4615 in an empty thread list). In this case we know we'll be getting
4616 a process exit event shortly. */
4617 for (inferior *inf : all_inferiors ())
4618 {
4619 if (inf->pid == 0)
4620 continue;
4621
4622 thread_info *thread = any_live_thread_of_inferior (inf);
4623 if (thread == NULL)
4624 {
4625 if (debug_infrun)
4626 fprintf_unfiltered (gdb_stdlog,
4627 "infrun: TARGET_WAITKIND_NO_RESUMED "
4628 "(expect process exit)\n");
4629 prepare_to_wait (ecs);
4630 return 1;
4631 }
4632 }
4633
4634 /* Go ahead and report the event. */
4635 return 0;
4636 }
4637
4638 /* Given an execution control state that has been freshly filled in by
4639 an event from the inferior, figure out what it means and take
4640 appropriate action.
4641
4642 The alternatives are:
4643
4644 1) stop_waiting and return; to really stop and return to the
4645 debugger.
4646
4647 2) keep_going and return; to wait for the next event (set
4648 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4649 once). */
4650
4651 static void
4652 handle_inferior_event (struct execution_control_state *ecs)
4653 {
4654 /* Make sure that all temporary struct value objects that were
4655 created during the handling of the event get deleted at the
4656 end. */
4657 scoped_value_mark free_values;
4658
4659 enum stop_kind stop_soon;
4660
4661 if (debug_infrun)
4662 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
4663 target_waitstatus_to_string (&ecs->ws).c_str ());
4664
4665 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4666 {
4667 /* We had an event in the inferior, but we are not interested in
4668 handling it at this level. The lower layers have already
4669 done what needs to be done, if anything.
4670
4671 One of the possible circumstances for this is when the
4672 inferior produces output for the console. The inferior has
4673 not stopped, and we are ignoring the event. Another possible
4674 circumstance is any event which the lower level knows will be
4675 reported multiple times without an intervening resume. */
4676 prepare_to_wait (ecs);
4677 return;
4678 }
4679
4680 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4681 {
4682 prepare_to_wait (ecs);
4683 return;
4684 }
4685
4686 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4687 && handle_no_resumed (ecs))
4688 return;
4689
4690 /* Cache the last pid/waitstatus. */
4691 set_last_target_status (ecs->ptid, ecs->ws);
4692
4693 /* Always clear state belonging to the previous time we stopped. */
4694 stop_stack_dummy = STOP_NONE;
4695
4696 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4697 {
4698 /* No unwaited-for children left. IOW, all resumed children
4699 have exited. */
4700 stop_print_frame = 0;
4701 stop_waiting (ecs);
4702 return;
4703 }
4704
4705 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4706 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4707 {
4708 ecs->event_thread = find_thread_ptid (ecs->ptid);
4709 /* If it's a new thread, add it to the thread database. */
4710 if (ecs->event_thread == NULL)
4711 ecs->event_thread = add_thread (ecs->ptid);
4712
4713 /* Disable range stepping. If the next step request could use a
4714 range, this will be end up re-enabled then. */
4715 ecs->event_thread->control.may_range_step = 0;
4716 }
4717
4718 /* Dependent on valid ECS->EVENT_THREAD. */
4719 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4720
4721 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4722 reinit_frame_cache ();
4723
4724 breakpoint_retire_moribund ();
4725
4726 /* First, distinguish signals caused by the debugger from signals
4727 that have to do with the program's own actions. Note that
4728 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4729 on the operating system version. Here we detect when a SIGILL or
4730 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4731 something similar for SIGSEGV, since a SIGSEGV will be generated
4732 when we're trying to execute a breakpoint instruction on a
4733 non-executable stack. This happens for call dummy breakpoints
4734 for architectures like SPARC that place call dummies on the
4735 stack. */
4736 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4737 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4738 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4739 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4740 {
4741 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4742
4743 if (breakpoint_inserted_here_p (regcache->aspace (),
4744 regcache_read_pc (regcache)))
4745 {
4746 if (debug_infrun)
4747 fprintf_unfiltered (gdb_stdlog,
4748 "infrun: Treating signal as SIGTRAP\n");
4749 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4750 }
4751 }
4752
4753 /* Mark the non-executing threads accordingly. In all-stop, all
4754 threads of all processes are stopped when we get any event
4755 reported. In non-stop mode, only the event thread stops. */
4756 {
4757 ptid_t mark_ptid;
4758
4759 if (!target_is_non_stop_p ())
4760 mark_ptid = minus_one_ptid;
4761 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4762 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4763 {
4764 /* If we're handling a process exit in non-stop mode, even
4765 though threads haven't been deleted yet, one would think
4766 that there is nothing to do, as threads of the dead process
4767 will be soon deleted, and threads of any other process were
4768 left running. However, on some targets, threads survive a
4769 process exit event. E.g., for the "checkpoint" command,
4770 when the current checkpoint/fork exits, linux-fork.c
4771 automatically switches to another fork from within
4772 target_mourn_inferior, by associating the same
4773 inferior/thread to another fork. We haven't mourned yet at
4774 this point, but we must mark any threads left in the
4775 process as not-executing so that finish_thread_state marks
4776 them stopped (in the user's perspective) if/when we present
4777 the stop to the user. */
4778 mark_ptid = ptid_t (ecs->ptid.pid ());
4779 }
4780 else
4781 mark_ptid = ecs->ptid;
4782
4783 set_executing (mark_ptid, 0);
4784
4785 /* Likewise the resumed flag. */
4786 set_resumed (mark_ptid, 0);
4787 }
4788
4789 switch (ecs->ws.kind)
4790 {
4791 case TARGET_WAITKIND_LOADED:
4792 context_switch (ecs);
4793 /* Ignore gracefully during startup of the inferior, as it might
4794 be the shell which has just loaded some objects, otherwise
4795 add the symbols for the newly loaded objects. Also ignore at
4796 the beginning of an attach or remote session; we will query
4797 the full list of libraries once the connection is
4798 established. */
4799
4800 stop_soon = get_inferior_stop_soon (ecs);
4801 if (stop_soon == NO_STOP_QUIETLY)
4802 {
4803 struct regcache *regcache;
4804
4805 regcache = get_thread_regcache (ecs->event_thread);
4806
4807 handle_solib_event ();
4808
4809 ecs->event_thread->control.stop_bpstat
4810 = bpstat_stop_status (regcache->aspace (),
4811 ecs->event_thread->suspend.stop_pc,
4812 ecs->event_thread, &ecs->ws);
4813
4814 if (handle_stop_requested (ecs))
4815 return;
4816
4817 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4818 {
4819 /* A catchpoint triggered. */
4820 process_event_stop_test (ecs);
4821 return;
4822 }
4823
4824 /* If requested, stop when the dynamic linker notifies
4825 gdb of events. This allows the user to get control
4826 and place breakpoints in initializer routines for
4827 dynamically loaded objects (among other things). */
4828 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4829 if (stop_on_solib_events)
4830 {
4831 /* Make sure we print "Stopped due to solib-event" in
4832 normal_stop. */
4833 stop_print_frame = 1;
4834
4835 stop_waiting (ecs);
4836 return;
4837 }
4838 }
4839
4840 /* If we are skipping through a shell, or through shared library
4841 loading that we aren't interested in, resume the program. If
4842 we're running the program normally, also resume. */
4843 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4844 {
4845 /* Loading of shared libraries might have changed breakpoint
4846 addresses. Make sure new breakpoints are inserted. */
4847 if (stop_soon == NO_STOP_QUIETLY)
4848 insert_breakpoints ();
4849 resume (GDB_SIGNAL_0);
4850 prepare_to_wait (ecs);
4851 return;
4852 }
4853
4854 /* But stop if we're attaching or setting up a remote
4855 connection. */
4856 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4857 || stop_soon == STOP_QUIETLY_REMOTE)
4858 {
4859 if (debug_infrun)
4860 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4861 stop_waiting (ecs);
4862 return;
4863 }
4864
4865 internal_error (__FILE__, __LINE__,
4866 _("unhandled stop_soon: %d"), (int) stop_soon);
4867
4868 case TARGET_WAITKIND_SPURIOUS:
4869 if (handle_stop_requested (ecs))
4870 return;
4871 context_switch (ecs);
4872 resume (GDB_SIGNAL_0);
4873 prepare_to_wait (ecs);
4874 return;
4875
4876 case TARGET_WAITKIND_THREAD_CREATED:
4877 if (handle_stop_requested (ecs))
4878 return;
4879 context_switch (ecs);
4880 if (!switch_back_to_stepped_thread (ecs))
4881 keep_going (ecs);
4882 return;
4883
4884 case TARGET_WAITKIND_EXITED:
4885 case TARGET_WAITKIND_SIGNALLED:
4886 inferior_ptid = ecs->ptid;
4887 set_current_inferior (find_inferior_ptid (ecs->ptid));
4888 set_current_program_space (current_inferior ()->pspace);
4889 handle_vfork_child_exec_or_exit (0);
4890 target_terminal::ours (); /* Must do this before mourn anyway. */
4891
4892 /* Clearing any previous state of convenience variables. */
4893 clear_exit_convenience_vars ();
4894
4895 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4896 {
4897 /* Record the exit code in the convenience variable $_exitcode, so
4898 that the user can inspect this again later. */
4899 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4900 (LONGEST) ecs->ws.value.integer);
4901
4902 /* Also record this in the inferior itself. */
4903 current_inferior ()->has_exit_code = 1;
4904 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
4905
4906 /* Support the --return-child-result option. */
4907 return_child_result_value = ecs->ws.value.integer;
4908
4909 gdb::observers::exited.notify (ecs->ws.value.integer);
4910 }
4911 else
4912 {
4913 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
4914
4915 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4916 {
4917 /* Set the value of the internal variable $_exitsignal,
4918 which holds the signal uncaught by the inferior. */
4919 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4920 gdbarch_gdb_signal_to_target (gdbarch,
4921 ecs->ws.value.sig));
4922 }
4923 else
4924 {
4925 /* We don't have access to the target's method used for
4926 converting between signal numbers (GDB's internal
4927 representation <-> target's representation).
4928 Therefore, we cannot do a good job at displaying this
4929 information to the user. It's better to just warn
4930 her about it (if infrun debugging is enabled), and
4931 give up. */
4932 if (debug_infrun)
4933 fprintf_filtered (gdb_stdlog, _("\
4934 Cannot fill $_exitsignal with the correct signal number.\n"));
4935 }
4936
4937 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
4938 }
4939
4940 gdb_flush (gdb_stdout);
4941 target_mourn_inferior (inferior_ptid);
4942 stop_print_frame = 0;
4943 stop_waiting (ecs);
4944 return;
4945
4946 /* The following are the only cases in which we keep going;
4947 the above cases end in a continue or goto. */
4948 case TARGET_WAITKIND_FORKED:
4949 case TARGET_WAITKIND_VFORKED:
4950 /* Check whether the inferior is displaced stepping. */
4951 {
4952 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4953 struct gdbarch *gdbarch = regcache->arch ();
4954
4955 /* If checking displaced stepping is supported, and thread
4956 ecs->ptid is displaced stepping. */
4957 if (displaced_step_in_progress_thread (ecs->event_thread))
4958 {
4959 struct inferior *parent_inf
4960 = find_inferior_ptid (ecs->ptid);
4961 struct regcache *child_regcache;
4962 CORE_ADDR parent_pc;
4963
4964 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4965 indicating that the displaced stepping of syscall instruction
4966 has been done. Perform cleanup for parent process here. Note
4967 that this operation also cleans up the child process for vfork,
4968 because their pages are shared. */
4969 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
4970 /* Start a new step-over in another thread if there's one
4971 that needs it. */
4972 start_step_over ();
4973
4974 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4975 {
4976 struct displaced_step_inferior_state *displaced
4977 = get_displaced_stepping_state (parent_inf);
4978
4979 /* Restore scratch pad for child process. */
4980 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4981 }
4982
4983 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4984 the child's PC is also within the scratchpad. Set the child's PC
4985 to the parent's PC value, which has already been fixed up.
4986 FIXME: we use the parent's aspace here, although we're touching
4987 the child, because the child hasn't been added to the inferior
4988 list yet at this point. */
4989
4990 child_regcache
4991 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4992 gdbarch,
4993 parent_inf->aspace);
4994 /* Read PC value of parent process. */
4995 parent_pc = regcache_read_pc (regcache);
4996
4997 if (debug_displaced)
4998 fprintf_unfiltered (gdb_stdlog,
4999 "displaced: write child pc from %s to %s\n",
5000 paddress (gdbarch,
5001 regcache_read_pc (child_regcache)),
5002 paddress (gdbarch, parent_pc));
5003
5004 regcache_write_pc (child_regcache, parent_pc);
5005 }
5006 }
5007
5008 context_switch (ecs);
5009
5010 /* Immediately detach breakpoints from the child before there's
5011 any chance of letting the user delete breakpoints from the
5012 breakpoint lists. If we don't do this early, it's easy to
5013 leave left over traps in the child, vis: "break foo; catch
5014 fork; c; <fork>; del; c; <child calls foo>". We only follow
5015 the fork on the last `continue', and by that time the
5016 breakpoint at "foo" is long gone from the breakpoint table.
5017 If we vforked, then we don't need to unpatch here, since both
5018 parent and child are sharing the same memory pages; we'll
5019 need to unpatch at follow/detach time instead to be certain
5020 that new breakpoints added between catchpoint hit time and
5021 vfork follow are detached. */
5022 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5023 {
5024 /* This won't actually modify the breakpoint list, but will
5025 physically remove the breakpoints from the child. */
5026 detach_breakpoints (ecs->ws.value.related_pid);
5027 }
5028
5029 delete_just_stopped_threads_single_step_breakpoints ();
5030
5031 /* In case the event is caught by a catchpoint, remember that
5032 the event is to be followed at the next resume of the thread,
5033 and not immediately. */
5034 ecs->event_thread->pending_follow = ecs->ws;
5035
5036 ecs->event_thread->suspend.stop_pc
5037 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5038
5039 ecs->event_thread->control.stop_bpstat
5040 = bpstat_stop_status (get_current_regcache ()->aspace (),
5041 ecs->event_thread->suspend.stop_pc,
5042 ecs->event_thread, &ecs->ws);
5043
5044 if (handle_stop_requested (ecs))
5045 return;
5046
5047 /* If no catchpoint triggered for this, then keep going. Note
5048 that we're interested in knowing the bpstat actually causes a
5049 stop, not just if it may explain the signal. Software
5050 watchpoints, for example, always appear in the bpstat. */
5051 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5052 {
5053 int should_resume;
5054 int follow_child
5055 = (follow_fork_mode_string == follow_fork_mode_child);
5056
5057 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5058
5059 should_resume = follow_fork ();
5060
5061 thread_info *parent = ecs->event_thread;
5062 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5063
5064 /* At this point, the parent is marked running, and the
5065 child is marked stopped. */
5066
5067 /* If not resuming the parent, mark it stopped. */
5068 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5069 parent->set_running (false);
5070
5071 /* If resuming the child, mark it running. */
5072 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5073 child->set_running (true);
5074
5075 /* In non-stop mode, also resume the other branch. */
5076 if (!detach_fork && (non_stop
5077 || (sched_multi && target_is_non_stop_p ())))
5078 {
5079 if (follow_child)
5080 switch_to_thread (parent);
5081 else
5082 switch_to_thread (child);
5083
5084 ecs->event_thread = inferior_thread ();
5085 ecs->ptid = inferior_ptid;
5086 keep_going (ecs);
5087 }
5088
5089 if (follow_child)
5090 switch_to_thread (child);
5091 else
5092 switch_to_thread (parent);
5093
5094 ecs->event_thread = inferior_thread ();
5095 ecs->ptid = inferior_ptid;
5096
5097 if (should_resume)
5098 keep_going (ecs);
5099 else
5100 stop_waiting (ecs);
5101 return;
5102 }
5103 process_event_stop_test (ecs);
5104 return;
5105
5106 case TARGET_WAITKIND_VFORK_DONE:
5107 /* Done with the shared memory region. Re-insert breakpoints in
5108 the parent, and keep going. */
5109
5110 context_switch (ecs);
5111
5112 current_inferior ()->waiting_for_vfork_done = 0;
5113 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5114
5115 if (handle_stop_requested (ecs))
5116 return;
5117
5118 /* This also takes care of reinserting breakpoints in the
5119 previously locked inferior. */
5120 keep_going (ecs);
5121 return;
5122
5123 case TARGET_WAITKIND_EXECD:
5124
5125 /* Note we can't read registers yet (the stop_pc), because we
5126 don't yet know the inferior's post-exec architecture.
5127 'stop_pc' is explicitly read below instead. */
5128 switch_to_thread_no_regs (ecs->event_thread);
5129
5130 /* Do whatever is necessary to the parent branch of the vfork. */
5131 handle_vfork_child_exec_or_exit (1);
5132
5133 /* This causes the eventpoints and symbol table to be reset.
5134 Must do this now, before trying to determine whether to
5135 stop. */
5136 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5137
5138 /* In follow_exec we may have deleted the original thread and
5139 created a new one. Make sure that the event thread is the
5140 execd thread for that case (this is a nop otherwise). */
5141 ecs->event_thread = inferior_thread ();
5142
5143 ecs->event_thread->suspend.stop_pc
5144 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5145
5146 ecs->event_thread->control.stop_bpstat
5147 = bpstat_stop_status (get_current_regcache ()->aspace (),
5148 ecs->event_thread->suspend.stop_pc,
5149 ecs->event_thread, &ecs->ws);
5150
5151 /* Note that this may be referenced from inside
5152 bpstat_stop_status above, through inferior_has_execd. */
5153 xfree (ecs->ws.value.execd_pathname);
5154 ecs->ws.value.execd_pathname = NULL;
5155
5156 if (handle_stop_requested (ecs))
5157 return;
5158
5159 /* If no catchpoint triggered for this, then keep going. */
5160 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5161 {
5162 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5163 keep_going (ecs);
5164 return;
5165 }
5166 process_event_stop_test (ecs);
5167 return;
5168
5169 /* Be careful not to try to gather much state about a thread
5170 that's in a syscall. It's frequently a losing proposition. */
5171 case TARGET_WAITKIND_SYSCALL_ENTRY:
5172 /* Getting the current syscall number. */
5173 if (handle_syscall_event (ecs) == 0)
5174 process_event_stop_test (ecs);
5175 return;
5176
5177 /* Before examining the threads further, step this thread to
5178 get it entirely out of the syscall. (We get notice of the
5179 event when the thread is just on the verge of exiting a
5180 syscall. Stepping one instruction seems to get it back
5181 into user code.) */
5182 case TARGET_WAITKIND_SYSCALL_RETURN:
5183 if (handle_syscall_event (ecs) == 0)
5184 process_event_stop_test (ecs);
5185 return;
5186
5187 case TARGET_WAITKIND_STOPPED:
5188 handle_signal_stop (ecs);
5189 return;
5190
5191 case TARGET_WAITKIND_NO_HISTORY:
5192 /* Reverse execution: target ran out of history info. */
5193
5194 /* Switch to the stopped thread. */
5195 context_switch (ecs);
5196 if (debug_infrun)
5197 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5198
5199 delete_just_stopped_threads_single_step_breakpoints ();
5200 ecs->event_thread->suspend.stop_pc
5201 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5202
5203 if (handle_stop_requested (ecs))
5204 return;
5205
5206 gdb::observers::no_history.notify ();
5207 stop_waiting (ecs);
5208 return;
5209 }
5210 }
5211
5212 /* Restart threads back to what they were trying to do back when we
5213 paused them for an in-line step-over. The EVENT_THREAD thread is
5214 ignored. */
5215
5216 static void
5217 restart_threads (struct thread_info *event_thread)
5218 {
5219 /* In case the instruction just stepped spawned a new thread. */
5220 update_thread_list ();
5221
5222 for (thread_info *tp : all_non_exited_threads ())
5223 {
5224 if (tp == event_thread)
5225 {
5226 if (debug_infrun)
5227 fprintf_unfiltered (gdb_stdlog,
5228 "infrun: restart threads: "
5229 "[%s] is event thread\n",
5230 target_pid_to_str (tp->ptid).c_str ());
5231 continue;
5232 }
5233
5234 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5235 {
5236 if (debug_infrun)
5237 fprintf_unfiltered (gdb_stdlog,
5238 "infrun: restart threads: "
5239 "[%s] not meant to be running\n",
5240 target_pid_to_str (tp->ptid).c_str ());
5241 continue;
5242 }
5243
5244 if (tp->resumed)
5245 {
5246 if (debug_infrun)
5247 fprintf_unfiltered (gdb_stdlog,
5248 "infrun: restart threads: [%s] resumed\n",
5249 target_pid_to_str (tp->ptid).c_str ());
5250 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5251 continue;
5252 }
5253
5254 if (thread_is_in_step_over_chain (tp))
5255 {
5256 if (debug_infrun)
5257 fprintf_unfiltered (gdb_stdlog,
5258 "infrun: restart threads: "
5259 "[%s] needs step-over\n",
5260 target_pid_to_str (tp->ptid).c_str ());
5261 gdb_assert (!tp->resumed);
5262 continue;
5263 }
5264
5265
5266 if (tp->suspend.waitstatus_pending_p)
5267 {
5268 if (debug_infrun)
5269 fprintf_unfiltered (gdb_stdlog,
5270 "infrun: restart threads: "
5271 "[%s] has pending status\n",
5272 target_pid_to_str (tp->ptid).c_str ());
5273 tp->resumed = 1;
5274 continue;
5275 }
5276
5277 gdb_assert (!tp->stop_requested);
5278
5279 /* If some thread needs to start a step-over at this point, it
5280 should still be in the step-over queue, and thus skipped
5281 above. */
5282 if (thread_still_needs_step_over (tp))
5283 {
5284 internal_error (__FILE__, __LINE__,
5285 "thread [%s] needs a step-over, but not in "
5286 "step-over queue\n",
5287 target_pid_to_str (tp->ptid).c_str ());
5288 }
5289
5290 if (currently_stepping (tp))
5291 {
5292 if (debug_infrun)
5293 fprintf_unfiltered (gdb_stdlog,
5294 "infrun: restart threads: [%s] was stepping\n",
5295 target_pid_to_str (tp->ptid).c_str ());
5296 keep_going_stepped_thread (tp);
5297 }
5298 else
5299 {
5300 struct execution_control_state ecss;
5301 struct execution_control_state *ecs = &ecss;
5302
5303 if (debug_infrun)
5304 fprintf_unfiltered (gdb_stdlog,
5305 "infrun: restart threads: [%s] continuing\n",
5306 target_pid_to_str (tp->ptid).c_str ());
5307 reset_ecs (ecs, tp);
5308 switch_to_thread (tp);
5309 keep_going_pass_signal (ecs);
5310 }
5311 }
5312 }
5313
5314 /* Callback for iterate_over_threads. Find a resumed thread that has
5315 a pending waitstatus. */
5316
5317 static int
5318 resumed_thread_with_pending_status (struct thread_info *tp,
5319 void *arg)
5320 {
5321 return (tp->resumed
5322 && tp->suspend.waitstatus_pending_p);
5323 }
5324
5325 /* Called when we get an event that may finish an in-line or
5326 out-of-line (displaced stepping) step-over started previously.
5327 Return true if the event is processed and we should go back to the
5328 event loop; false if the caller should continue processing the
5329 event. */
5330
5331 static int
5332 finish_step_over (struct execution_control_state *ecs)
5333 {
5334 int had_step_over_info;
5335
5336 displaced_step_fixup (ecs->event_thread,
5337 ecs->event_thread->suspend.stop_signal);
5338
5339 had_step_over_info = step_over_info_valid_p ();
5340
5341 if (had_step_over_info)
5342 {
5343 /* If we're stepping over a breakpoint with all threads locked,
5344 then only the thread that was stepped should be reporting
5345 back an event. */
5346 gdb_assert (ecs->event_thread->control.trap_expected);
5347
5348 clear_step_over_info ();
5349 }
5350
5351 if (!target_is_non_stop_p ())
5352 return 0;
5353
5354 /* Start a new step-over in another thread if there's one that
5355 needs it. */
5356 start_step_over ();
5357
5358 /* If we were stepping over a breakpoint before, and haven't started
5359 a new in-line step-over sequence, then restart all other threads
5360 (except the event thread). We can't do this in all-stop, as then
5361 e.g., we wouldn't be able to issue any other remote packet until
5362 these other threads stop. */
5363 if (had_step_over_info && !step_over_info_valid_p ())
5364 {
5365 struct thread_info *pending;
5366
5367 /* If we only have threads with pending statuses, the restart
5368 below won't restart any thread and so nothing re-inserts the
5369 breakpoint we just stepped over. But we need it inserted
5370 when we later process the pending events, otherwise if
5371 another thread has a pending event for this breakpoint too,
5372 we'd discard its event (because the breakpoint that
5373 originally caused the event was no longer inserted). */
5374 context_switch (ecs);
5375 insert_breakpoints ();
5376
5377 restart_threads (ecs->event_thread);
5378
5379 /* If we have events pending, go through handle_inferior_event
5380 again, picking up a pending event at random. This avoids
5381 thread starvation. */
5382
5383 /* But not if we just stepped over a watchpoint in order to let
5384 the instruction execute so we can evaluate its expression.
5385 The set of watchpoints that triggered is recorded in the
5386 breakpoint objects themselves (see bp->watchpoint_triggered).
5387 If we processed another event first, that other event could
5388 clobber this info. */
5389 if (ecs->event_thread->stepping_over_watchpoint)
5390 return 0;
5391
5392 pending = iterate_over_threads (resumed_thread_with_pending_status,
5393 NULL);
5394 if (pending != NULL)
5395 {
5396 struct thread_info *tp = ecs->event_thread;
5397 struct regcache *regcache;
5398
5399 if (debug_infrun)
5400 {
5401 fprintf_unfiltered (gdb_stdlog,
5402 "infrun: found resumed threads with "
5403 "pending events, saving status\n");
5404 }
5405
5406 gdb_assert (pending != tp);
5407
5408 /* Record the event thread's event for later. */
5409 save_waitstatus (tp, &ecs->ws);
5410 /* This was cleared early, by handle_inferior_event. Set it
5411 so this pending event is considered by
5412 do_target_wait. */
5413 tp->resumed = 1;
5414
5415 gdb_assert (!tp->executing);
5416
5417 regcache = get_thread_regcache (tp);
5418 tp->suspend.stop_pc = regcache_read_pc (regcache);
5419
5420 if (debug_infrun)
5421 {
5422 fprintf_unfiltered (gdb_stdlog,
5423 "infrun: saved stop_pc=%s for %s "
5424 "(currently_stepping=%d)\n",
5425 paddress (target_gdbarch (),
5426 tp->suspend.stop_pc),
5427 target_pid_to_str (tp->ptid).c_str (),
5428 currently_stepping (tp));
5429 }
5430
5431 /* This in-line step-over finished; clear this so we won't
5432 start a new one. This is what handle_signal_stop would
5433 do, if we returned false. */
5434 tp->stepping_over_breakpoint = 0;
5435
5436 /* Wake up the event loop again. */
5437 mark_async_event_handler (infrun_async_inferior_event_token);
5438
5439 prepare_to_wait (ecs);
5440 return 1;
5441 }
5442 }
5443
5444 return 0;
5445 }
5446
5447 /* Come here when the program has stopped with a signal. */
5448
5449 static void
5450 handle_signal_stop (struct execution_control_state *ecs)
5451 {
5452 struct frame_info *frame;
5453 struct gdbarch *gdbarch;
5454 int stopped_by_watchpoint;
5455 enum stop_kind stop_soon;
5456 int random_signal;
5457
5458 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5459
5460 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5461
5462 /* Do we need to clean up the state of a thread that has
5463 completed a displaced single-step? (Doing so usually affects
5464 the PC, so do it here, before we set stop_pc.) */
5465 if (finish_step_over (ecs))
5466 return;
5467
5468 /* If we either finished a single-step or hit a breakpoint, but
5469 the user wanted this thread to be stopped, pretend we got a
5470 SIG0 (generic unsignaled stop). */
5471 if (ecs->event_thread->stop_requested
5472 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5473 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5474
5475 ecs->event_thread->suspend.stop_pc
5476 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5477
5478 if (debug_infrun)
5479 {
5480 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5481 struct gdbarch *reg_gdbarch = regcache->arch ();
5482 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5483
5484 inferior_ptid = ecs->ptid;
5485
5486 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5487 paddress (reg_gdbarch,
5488 ecs->event_thread->suspend.stop_pc));
5489 if (target_stopped_by_watchpoint ())
5490 {
5491 CORE_ADDR addr;
5492
5493 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5494
5495 if (target_stopped_data_address (current_top_target (), &addr))
5496 fprintf_unfiltered (gdb_stdlog,
5497 "infrun: stopped data address = %s\n",
5498 paddress (reg_gdbarch, addr));
5499 else
5500 fprintf_unfiltered (gdb_stdlog,
5501 "infrun: (no data address available)\n");
5502 }
5503 }
5504
5505 /* This is originated from start_remote(), start_inferior() and
5506 shared libraries hook functions. */
5507 stop_soon = get_inferior_stop_soon (ecs);
5508 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5509 {
5510 context_switch (ecs);
5511 if (debug_infrun)
5512 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5513 stop_print_frame = 1;
5514 stop_waiting (ecs);
5515 return;
5516 }
5517
5518 /* This originates from attach_command(). We need to overwrite
5519 the stop_signal here, because some kernels don't ignore a
5520 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5521 See more comments in inferior.h. On the other hand, if we
5522 get a non-SIGSTOP, report it to the user - assume the backend
5523 will handle the SIGSTOP if it should show up later.
5524
5525 Also consider that the attach is complete when we see a
5526 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5527 target extended-remote report it instead of a SIGSTOP
5528 (e.g. gdbserver). We already rely on SIGTRAP being our
5529 signal, so this is no exception.
5530
5531 Also consider that the attach is complete when we see a
5532 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5533 the target to stop all threads of the inferior, in case the
5534 low level attach operation doesn't stop them implicitly. If
5535 they weren't stopped implicitly, then the stub will report a
5536 GDB_SIGNAL_0, meaning: stopped for no particular reason
5537 other than GDB's request. */
5538 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5539 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5540 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5541 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5542 {
5543 stop_print_frame = 1;
5544 stop_waiting (ecs);
5545 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5546 return;
5547 }
5548
5549 /* See if something interesting happened to the non-current thread. If
5550 so, then switch to that thread. */
5551 if (ecs->ptid != inferior_ptid)
5552 {
5553 if (debug_infrun)
5554 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5555
5556 context_switch (ecs);
5557
5558 if (deprecated_context_hook)
5559 deprecated_context_hook (ecs->event_thread->global_num);
5560 }
5561
5562 /* At this point, get hold of the now-current thread's frame. */
5563 frame = get_current_frame ();
5564 gdbarch = get_frame_arch (frame);
5565
5566 /* Pull the single step breakpoints out of the target. */
5567 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5568 {
5569 struct regcache *regcache;
5570 CORE_ADDR pc;
5571
5572 regcache = get_thread_regcache (ecs->event_thread);
5573 const address_space *aspace = regcache->aspace ();
5574
5575 pc = regcache_read_pc (regcache);
5576
5577 /* However, before doing so, if this single-step breakpoint was
5578 actually for another thread, set this thread up for moving
5579 past it. */
5580 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5581 aspace, pc))
5582 {
5583 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5584 {
5585 if (debug_infrun)
5586 {
5587 fprintf_unfiltered (gdb_stdlog,
5588 "infrun: [%s] hit another thread's "
5589 "single-step breakpoint\n",
5590 target_pid_to_str (ecs->ptid).c_str ());
5591 }
5592 ecs->hit_singlestep_breakpoint = 1;
5593 }
5594 }
5595 else
5596 {
5597 if (debug_infrun)
5598 {
5599 fprintf_unfiltered (gdb_stdlog,
5600 "infrun: [%s] hit its "
5601 "single-step breakpoint\n",
5602 target_pid_to_str (ecs->ptid).c_str ());
5603 }
5604 }
5605 }
5606 delete_just_stopped_threads_single_step_breakpoints ();
5607
5608 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5609 && ecs->event_thread->control.trap_expected
5610 && ecs->event_thread->stepping_over_watchpoint)
5611 stopped_by_watchpoint = 0;
5612 else
5613 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5614
5615 /* If necessary, step over this watchpoint. We'll be back to display
5616 it in a moment. */
5617 if (stopped_by_watchpoint
5618 && (target_have_steppable_watchpoint
5619 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5620 {
5621 /* At this point, we are stopped at an instruction which has
5622 attempted to write to a piece of memory under control of
5623 a watchpoint. The instruction hasn't actually executed
5624 yet. If we were to evaluate the watchpoint expression
5625 now, we would get the old value, and therefore no change
5626 would seem to have occurred.
5627
5628 In order to make watchpoints work `right', we really need
5629 to complete the memory write, and then evaluate the
5630 watchpoint expression. We do this by single-stepping the
5631 target.
5632
5633 It may not be necessary to disable the watchpoint to step over
5634 it. For example, the PA can (with some kernel cooperation)
5635 single step over a watchpoint without disabling the watchpoint.
5636
5637 It is far more common to need to disable a watchpoint to step
5638 the inferior over it. If we have non-steppable watchpoints,
5639 we must disable the current watchpoint; it's simplest to
5640 disable all watchpoints.
5641
5642 Any breakpoint at PC must also be stepped over -- if there's
5643 one, it will have already triggered before the watchpoint
5644 triggered, and we either already reported it to the user, or
5645 it didn't cause a stop and we called keep_going. In either
5646 case, if there was a breakpoint at PC, we must be trying to
5647 step past it. */
5648 ecs->event_thread->stepping_over_watchpoint = 1;
5649 keep_going (ecs);
5650 return;
5651 }
5652
5653 ecs->event_thread->stepping_over_breakpoint = 0;
5654 ecs->event_thread->stepping_over_watchpoint = 0;
5655 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5656 ecs->event_thread->control.stop_step = 0;
5657 stop_print_frame = 1;
5658 stopped_by_random_signal = 0;
5659 bpstat stop_chain = NULL;
5660
5661 /* Hide inlined functions starting here, unless we just performed stepi or
5662 nexti. After stepi and nexti, always show the innermost frame (not any
5663 inline function call sites). */
5664 if (ecs->event_thread->control.step_range_end != 1)
5665 {
5666 const address_space *aspace
5667 = get_thread_regcache (ecs->event_thread)->aspace ();
5668
5669 /* skip_inline_frames is expensive, so we avoid it if we can
5670 determine that the address is one where functions cannot have
5671 been inlined. This improves performance with inferiors that
5672 load a lot of shared libraries, because the solib event
5673 breakpoint is defined as the address of a function (i.e. not
5674 inline). Note that we have to check the previous PC as well
5675 as the current one to catch cases when we have just
5676 single-stepped off a breakpoint prior to reinstating it.
5677 Note that we're assuming that the code we single-step to is
5678 not inline, but that's not definitive: there's nothing
5679 preventing the event breakpoint function from containing
5680 inlined code, and the single-step ending up there. If the
5681 user had set a breakpoint on that inlined code, the missing
5682 skip_inline_frames call would break things. Fortunately
5683 that's an extremely unlikely scenario. */
5684 if (!pc_at_non_inline_function (aspace,
5685 ecs->event_thread->suspend.stop_pc,
5686 &ecs->ws)
5687 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5688 && ecs->event_thread->control.trap_expected
5689 && pc_at_non_inline_function (aspace,
5690 ecs->event_thread->prev_pc,
5691 &ecs->ws)))
5692 {
5693 stop_chain = build_bpstat_chain (aspace,
5694 ecs->event_thread->suspend.stop_pc,
5695 &ecs->ws);
5696 skip_inline_frames (ecs->event_thread, stop_chain);
5697
5698 /* Re-fetch current thread's frame in case that invalidated
5699 the frame cache. */
5700 frame = get_current_frame ();
5701 gdbarch = get_frame_arch (frame);
5702 }
5703 }
5704
5705 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5706 && ecs->event_thread->control.trap_expected
5707 && gdbarch_single_step_through_delay_p (gdbarch)
5708 && currently_stepping (ecs->event_thread))
5709 {
5710 /* We're trying to step off a breakpoint. Turns out that we're
5711 also on an instruction that needs to be stepped multiple
5712 times before it's been fully executing. E.g., architectures
5713 with a delay slot. It needs to be stepped twice, once for
5714 the instruction and once for the delay slot. */
5715 int step_through_delay
5716 = gdbarch_single_step_through_delay (gdbarch, frame);
5717
5718 if (debug_infrun && step_through_delay)
5719 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5720 if (ecs->event_thread->control.step_range_end == 0
5721 && step_through_delay)
5722 {
5723 /* The user issued a continue when stopped at a breakpoint.
5724 Set up for another trap and get out of here. */
5725 ecs->event_thread->stepping_over_breakpoint = 1;
5726 keep_going (ecs);
5727 return;
5728 }
5729 else if (step_through_delay)
5730 {
5731 /* The user issued a step when stopped at a breakpoint.
5732 Maybe we should stop, maybe we should not - the delay
5733 slot *might* correspond to a line of source. In any
5734 case, don't decide that here, just set
5735 ecs->stepping_over_breakpoint, making sure we
5736 single-step again before breakpoints are re-inserted. */
5737 ecs->event_thread->stepping_over_breakpoint = 1;
5738 }
5739 }
5740
5741 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5742 handles this event. */
5743 ecs->event_thread->control.stop_bpstat
5744 = bpstat_stop_status (get_current_regcache ()->aspace (),
5745 ecs->event_thread->suspend.stop_pc,
5746 ecs->event_thread, &ecs->ws, stop_chain);
5747
5748 /* Following in case break condition called a
5749 function. */
5750 stop_print_frame = 1;
5751
5752 /* This is where we handle "moribund" watchpoints. Unlike
5753 software breakpoints traps, hardware watchpoint traps are
5754 always distinguishable from random traps. If no high-level
5755 watchpoint is associated with the reported stop data address
5756 anymore, then the bpstat does not explain the signal ---
5757 simply make sure to ignore it if `stopped_by_watchpoint' is
5758 set. */
5759
5760 if (debug_infrun
5761 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5762 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5763 GDB_SIGNAL_TRAP)
5764 && stopped_by_watchpoint)
5765 fprintf_unfiltered (gdb_stdlog,
5766 "infrun: no user watchpoint explains "
5767 "watchpoint SIGTRAP, ignoring\n");
5768
5769 /* NOTE: cagney/2003-03-29: These checks for a random signal
5770 at one stage in the past included checks for an inferior
5771 function call's call dummy's return breakpoint. The original
5772 comment, that went with the test, read:
5773
5774 ``End of a stack dummy. Some systems (e.g. Sony news) give
5775 another signal besides SIGTRAP, so check here as well as
5776 above.''
5777
5778 If someone ever tries to get call dummys on a
5779 non-executable stack to work (where the target would stop
5780 with something like a SIGSEGV), then those tests might need
5781 to be re-instated. Given, however, that the tests were only
5782 enabled when momentary breakpoints were not being used, I
5783 suspect that it won't be the case.
5784
5785 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5786 be necessary for call dummies on a non-executable stack on
5787 SPARC. */
5788
5789 /* See if the breakpoints module can explain the signal. */
5790 random_signal
5791 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5792 ecs->event_thread->suspend.stop_signal);
5793
5794 /* Maybe this was a trap for a software breakpoint that has since
5795 been removed. */
5796 if (random_signal && target_stopped_by_sw_breakpoint ())
5797 {
5798 if (program_breakpoint_here_p (gdbarch,
5799 ecs->event_thread->suspend.stop_pc))
5800 {
5801 struct regcache *regcache;
5802 int decr_pc;
5803
5804 /* Re-adjust PC to what the program would see if GDB was not
5805 debugging it. */
5806 regcache = get_thread_regcache (ecs->event_thread);
5807 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5808 if (decr_pc != 0)
5809 {
5810 gdb::optional<scoped_restore_tmpl<int>>
5811 restore_operation_disable;
5812
5813 if (record_full_is_used ())
5814 restore_operation_disable.emplace
5815 (record_full_gdb_operation_disable_set ());
5816
5817 regcache_write_pc (regcache,
5818 ecs->event_thread->suspend.stop_pc + decr_pc);
5819 }
5820 }
5821 else
5822 {
5823 /* A delayed software breakpoint event. Ignore the trap. */
5824 if (debug_infrun)
5825 fprintf_unfiltered (gdb_stdlog,
5826 "infrun: delayed software breakpoint "
5827 "trap, ignoring\n");
5828 random_signal = 0;
5829 }
5830 }
5831
5832 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5833 has since been removed. */
5834 if (random_signal && target_stopped_by_hw_breakpoint ())
5835 {
5836 /* A delayed hardware breakpoint event. Ignore the trap. */
5837 if (debug_infrun)
5838 fprintf_unfiltered (gdb_stdlog,
5839 "infrun: delayed hardware breakpoint/watchpoint "
5840 "trap, ignoring\n");
5841 random_signal = 0;
5842 }
5843
5844 /* If not, perhaps stepping/nexting can. */
5845 if (random_signal)
5846 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5847 && currently_stepping (ecs->event_thread));
5848
5849 /* Perhaps the thread hit a single-step breakpoint of _another_
5850 thread. Single-step breakpoints are transparent to the
5851 breakpoints module. */
5852 if (random_signal)
5853 random_signal = !ecs->hit_singlestep_breakpoint;
5854
5855 /* No? Perhaps we got a moribund watchpoint. */
5856 if (random_signal)
5857 random_signal = !stopped_by_watchpoint;
5858
5859 /* Always stop if the user explicitly requested this thread to
5860 remain stopped. */
5861 if (ecs->event_thread->stop_requested)
5862 {
5863 random_signal = 1;
5864 if (debug_infrun)
5865 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5866 }
5867
5868 /* For the program's own signals, act according to
5869 the signal handling tables. */
5870
5871 if (random_signal)
5872 {
5873 /* Signal not for debugging purposes. */
5874 struct inferior *inf = find_inferior_ptid (ecs->ptid);
5875 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
5876
5877 if (debug_infrun)
5878 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5879 gdb_signal_to_symbol_string (stop_signal));
5880
5881 stopped_by_random_signal = 1;
5882
5883 /* Always stop on signals if we're either just gaining control
5884 of the program, or the user explicitly requested this thread
5885 to remain stopped. */
5886 if (stop_soon != NO_STOP_QUIETLY
5887 || ecs->event_thread->stop_requested
5888 || (!inf->detaching
5889 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
5890 {
5891 stop_waiting (ecs);
5892 return;
5893 }
5894
5895 /* Notify observers the signal has "handle print" set. Note we
5896 returned early above if stopping; normal_stop handles the
5897 printing in that case. */
5898 if (signal_print[ecs->event_thread->suspend.stop_signal])
5899 {
5900 /* The signal table tells us to print about this signal. */
5901 target_terminal::ours_for_output ();
5902 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
5903 target_terminal::inferior ();
5904 }
5905
5906 /* Clear the signal if it should not be passed. */
5907 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
5908 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5909
5910 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
5911 && ecs->event_thread->control.trap_expected
5912 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5913 {
5914 /* We were just starting a new sequence, attempting to
5915 single-step off of a breakpoint and expecting a SIGTRAP.
5916 Instead this signal arrives. This signal will take us out
5917 of the stepping range so GDB needs to remember to, when
5918 the signal handler returns, resume stepping off that
5919 breakpoint. */
5920 /* To simplify things, "continue" is forced to use the same
5921 code paths as single-step - set a breakpoint at the
5922 signal return address and then, once hit, step off that
5923 breakpoint. */
5924 if (debug_infrun)
5925 fprintf_unfiltered (gdb_stdlog,
5926 "infrun: signal arrived while stepping over "
5927 "breakpoint\n");
5928
5929 insert_hp_step_resume_breakpoint_at_frame (frame);
5930 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5931 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5932 ecs->event_thread->control.trap_expected = 0;
5933
5934 /* If we were nexting/stepping some other thread, switch to
5935 it, so that we don't continue it, losing control. */
5936 if (!switch_back_to_stepped_thread (ecs))
5937 keep_going (ecs);
5938 return;
5939 }
5940
5941 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5942 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5943 ecs->event_thread)
5944 || ecs->event_thread->control.step_range_end == 1)
5945 && frame_id_eq (get_stack_frame_id (frame),
5946 ecs->event_thread->control.step_stack_frame_id)
5947 && ecs->event_thread->control.step_resume_breakpoint == NULL)
5948 {
5949 /* The inferior is about to take a signal that will take it
5950 out of the single step range. Set a breakpoint at the
5951 current PC (which is presumably where the signal handler
5952 will eventually return) and then allow the inferior to
5953 run free.
5954
5955 Note that this is only needed for a signal delivered
5956 while in the single-step range. Nested signals aren't a
5957 problem as they eventually all return. */
5958 if (debug_infrun)
5959 fprintf_unfiltered (gdb_stdlog,
5960 "infrun: signal may take us out of "
5961 "single-step range\n");
5962
5963 clear_step_over_info ();
5964 insert_hp_step_resume_breakpoint_at_frame (frame);
5965 ecs->event_thread->step_after_step_resume_breakpoint = 1;
5966 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5967 ecs->event_thread->control.trap_expected = 0;
5968 keep_going (ecs);
5969 return;
5970 }
5971
5972 /* Note: step_resume_breakpoint may be non-NULL. This occurs
5973 when either there's a nested signal, or when there's a
5974 pending signal enabled just as the signal handler returns
5975 (leaving the inferior at the step-resume-breakpoint without
5976 actually executing it). Either way continue until the
5977 breakpoint is really hit. */
5978
5979 if (!switch_back_to_stepped_thread (ecs))
5980 {
5981 if (debug_infrun)
5982 fprintf_unfiltered (gdb_stdlog,
5983 "infrun: random signal, keep going\n");
5984
5985 keep_going (ecs);
5986 }
5987 return;
5988 }
5989
5990 process_event_stop_test (ecs);
5991 }
5992
5993 /* Come here when we've got some debug event / signal we can explain
5994 (IOW, not a random signal), and test whether it should cause a
5995 stop, or whether we should resume the inferior (transparently).
5996 E.g., could be a breakpoint whose condition evaluates false; we
5997 could be still stepping within the line; etc. */
5998
5999 static void
6000 process_event_stop_test (struct execution_control_state *ecs)
6001 {
6002 struct symtab_and_line stop_pc_sal;
6003 struct frame_info *frame;
6004 struct gdbarch *gdbarch;
6005 CORE_ADDR jmp_buf_pc;
6006 struct bpstat_what what;
6007
6008 /* Handle cases caused by hitting a breakpoint. */
6009
6010 frame = get_current_frame ();
6011 gdbarch = get_frame_arch (frame);
6012
6013 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6014
6015 if (what.call_dummy)
6016 {
6017 stop_stack_dummy = what.call_dummy;
6018 }
6019
6020 /* A few breakpoint types have callbacks associated (e.g.,
6021 bp_jit_event). Run them now. */
6022 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6023
6024 /* If we hit an internal event that triggers symbol changes, the
6025 current frame will be invalidated within bpstat_what (e.g., if we
6026 hit an internal solib event). Re-fetch it. */
6027 frame = get_current_frame ();
6028 gdbarch = get_frame_arch (frame);
6029
6030 switch (what.main_action)
6031 {
6032 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6033 /* If we hit the breakpoint at longjmp while stepping, we
6034 install a momentary breakpoint at the target of the
6035 jmp_buf. */
6036
6037 if (debug_infrun)
6038 fprintf_unfiltered (gdb_stdlog,
6039 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6040
6041 ecs->event_thread->stepping_over_breakpoint = 1;
6042
6043 if (what.is_longjmp)
6044 {
6045 struct value *arg_value;
6046
6047 /* If we set the longjmp breakpoint via a SystemTap probe,
6048 then use it to extract the arguments. The destination PC
6049 is the third argument to the probe. */
6050 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6051 if (arg_value)
6052 {
6053 jmp_buf_pc = value_as_address (arg_value);
6054 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6055 }
6056 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6057 || !gdbarch_get_longjmp_target (gdbarch,
6058 frame, &jmp_buf_pc))
6059 {
6060 if (debug_infrun)
6061 fprintf_unfiltered (gdb_stdlog,
6062 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6063 "(!gdbarch_get_longjmp_target)\n");
6064 keep_going (ecs);
6065 return;
6066 }
6067
6068 /* Insert a breakpoint at resume address. */
6069 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6070 }
6071 else
6072 check_exception_resume (ecs, frame);
6073 keep_going (ecs);
6074 return;
6075
6076 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6077 {
6078 struct frame_info *init_frame;
6079
6080 /* There are several cases to consider.
6081
6082 1. The initiating frame no longer exists. In this case we
6083 must stop, because the exception or longjmp has gone too
6084 far.
6085
6086 2. The initiating frame exists, and is the same as the
6087 current frame. We stop, because the exception or longjmp
6088 has been caught.
6089
6090 3. The initiating frame exists and is different from the
6091 current frame. This means the exception or longjmp has
6092 been caught beneath the initiating frame, so keep going.
6093
6094 4. longjmp breakpoint has been placed just to protect
6095 against stale dummy frames and user is not interested in
6096 stopping around longjmps. */
6097
6098 if (debug_infrun)
6099 fprintf_unfiltered (gdb_stdlog,
6100 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6101
6102 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6103 != NULL);
6104 delete_exception_resume_breakpoint (ecs->event_thread);
6105
6106 if (what.is_longjmp)
6107 {
6108 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6109
6110 if (!frame_id_p (ecs->event_thread->initiating_frame))
6111 {
6112 /* Case 4. */
6113 keep_going (ecs);
6114 return;
6115 }
6116 }
6117
6118 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6119
6120 if (init_frame)
6121 {
6122 struct frame_id current_id
6123 = get_frame_id (get_current_frame ());
6124 if (frame_id_eq (current_id,
6125 ecs->event_thread->initiating_frame))
6126 {
6127 /* Case 2. Fall through. */
6128 }
6129 else
6130 {
6131 /* Case 3. */
6132 keep_going (ecs);
6133 return;
6134 }
6135 }
6136
6137 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6138 exists. */
6139 delete_step_resume_breakpoint (ecs->event_thread);
6140
6141 end_stepping_range (ecs);
6142 }
6143 return;
6144
6145 case BPSTAT_WHAT_SINGLE:
6146 if (debug_infrun)
6147 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6148 ecs->event_thread->stepping_over_breakpoint = 1;
6149 /* Still need to check other stuff, at least the case where we
6150 are stepping and step out of the right range. */
6151 break;
6152
6153 case BPSTAT_WHAT_STEP_RESUME:
6154 if (debug_infrun)
6155 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6156
6157 delete_step_resume_breakpoint (ecs->event_thread);
6158 if (ecs->event_thread->control.proceed_to_finish
6159 && execution_direction == EXEC_REVERSE)
6160 {
6161 struct thread_info *tp = ecs->event_thread;
6162
6163 /* We are finishing a function in reverse, and just hit the
6164 step-resume breakpoint at the start address of the
6165 function, and we're almost there -- just need to back up
6166 by one more single-step, which should take us back to the
6167 function call. */
6168 tp->control.step_range_start = tp->control.step_range_end = 1;
6169 keep_going (ecs);
6170 return;
6171 }
6172 fill_in_stop_func (gdbarch, ecs);
6173 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6174 && execution_direction == EXEC_REVERSE)
6175 {
6176 /* We are stepping over a function call in reverse, and just
6177 hit the step-resume breakpoint at the start address of
6178 the function. Go back to single-stepping, which should
6179 take us back to the function call. */
6180 ecs->event_thread->stepping_over_breakpoint = 1;
6181 keep_going (ecs);
6182 return;
6183 }
6184 break;
6185
6186 case BPSTAT_WHAT_STOP_NOISY:
6187 if (debug_infrun)
6188 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6189 stop_print_frame = 1;
6190
6191 /* Assume the thread stopped for a breapoint. We'll still check
6192 whether a/the breakpoint is there when the thread is next
6193 resumed. */
6194 ecs->event_thread->stepping_over_breakpoint = 1;
6195
6196 stop_waiting (ecs);
6197 return;
6198
6199 case BPSTAT_WHAT_STOP_SILENT:
6200 if (debug_infrun)
6201 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6202 stop_print_frame = 0;
6203
6204 /* Assume the thread stopped for a breapoint. We'll still check
6205 whether a/the breakpoint is there when the thread is next
6206 resumed. */
6207 ecs->event_thread->stepping_over_breakpoint = 1;
6208 stop_waiting (ecs);
6209 return;
6210
6211 case BPSTAT_WHAT_HP_STEP_RESUME:
6212 if (debug_infrun)
6213 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6214
6215 delete_step_resume_breakpoint (ecs->event_thread);
6216 if (ecs->event_thread->step_after_step_resume_breakpoint)
6217 {
6218 /* Back when the step-resume breakpoint was inserted, we
6219 were trying to single-step off a breakpoint. Go back to
6220 doing that. */
6221 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6222 ecs->event_thread->stepping_over_breakpoint = 1;
6223 keep_going (ecs);
6224 return;
6225 }
6226 break;
6227
6228 case BPSTAT_WHAT_KEEP_CHECKING:
6229 break;
6230 }
6231
6232 /* If we stepped a permanent breakpoint and we had a high priority
6233 step-resume breakpoint for the address we stepped, but we didn't
6234 hit it, then we must have stepped into the signal handler. The
6235 step-resume was only necessary to catch the case of _not_
6236 stepping into the handler, so delete it, and fall through to
6237 checking whether the step finished. */
6238 if (ecs->event_thread->stepped_breakpoint)
6239 {
6240 struct breakpoint *sr_bp
6241 = ecs->event_thread->control.step_resume_breakpoint;
6242
6243 if (sr_bp != NULL
6244 && sr_bp->loc->permanent
6245 && sr_bp->type == bp_hp_step_resume
6246 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6247 {
6248 if (debug_infrun)
6249 fprintf_unfiltered (gdb_stdlog,
6250 "infrun: stepped permanent breakpoint, stopped in "
6251 "handler\n");
6252 delete_step_resume_breakpoint (ecs->event_thread);
6253 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6254 }
6255 }
6256
6257 /* We come here if we hit a breakpoint but should not stop for it.
6258 Possibly we also were stepping and should stop for that. So fall
6259 through and test for stepping. But, if not stepping, do not
6260 stop. */
6261
6262 /* In all-stop mode, if we're currently stepping but have stopped in
6263 some other thread, we need to switch back to the stepped thread. */
6264 if (switch_back_to_stepped_thread (ecs))
6265 return;
6266
6267 if (ecs->event_thread->control.step_resume_breakpoint)
6268 {
6269 if (debug_infrun)
6270 fprintf_unfiltered (gdb_stdlog,
6271 "infrun: step-resume breakpoint is inserted\n");
6272
6273 /* Having a step-resume breakpoint overrides anything
6274 else having to do with stepping commands until
6275 that breakpoint is reached. */
6276 keep_going (ecs);
6277 return;
6278 }
6279
6280 if (ecs->event_thread->control.step_range_end == 0)
6281 {
6282 if (debug_infrun)
6283 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6284 /* Likewise if we aren't even stepping. */
6285 keep_going (ecs);
6286 return;
6287 }
6288
6289 /* Re-fetch current thread's frame in case the code above caused
6290 the frame cache to be re-initialized, making our FRAME variable
6291 a dangling pointer. */
6292 frame = get_current_frame ();
6293 gdbarch = get_frame_arch (frame);
6294 fill_in_stop_func (gdbarch, ecs);
6295
6296 /* If stepping through a line, keep going if still within it.
6297
6298 Note that step_range_end is the address of the first instruction
6299 beyond the step range, and NOT the address of the last instruction
6300 within it!
6301
6302 Note also that during reverse execution, we may be stepping
6303 through a function epilogue and therefore must detect when
6304 the current-frame changes in the middle of a line. */
6305
6306 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6307 ecs->event_thread)
6308 && (execution_direction != EXEC_REVERSE
6309 || frame_id_eq (get_frame_id (frame),
6310 ecs->event_thread->control.step_frame_id)))
6311 {
6312 if (debug_infrun)
6313 fprintf_unfiltered
6314 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6315 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6316 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6317
6318 /* Tentatively re-enable range stepping; `resume' disables it if
6319 necessary (e.g., if we're stepping over a breakpoint or we
6320 have software watchpoints). */
6321 ecs->event_thread->control.may_range_step = 1;
6322
6323 /* When stepping backward, stop at beginning of line range
6324 (unless it's the function entry point, in which case
6325 keep going back to the call point). */
6326 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6327 if (stop_pc == ecs->event_thread->control.step_range_start
6328 && stop_pc != ecs->stop_func_start
6329 && execution_direction == EXEC_REVERSE)
6330 end_stepping_range (ecs);
6331 else
6332 keep_going (ecs);
6333
6334 return;
6335 }
6336
6337 /* We stepped out of the stepping range. */
6338
6339 /* If we are stepping at the source level and entered the runtime
6340 loader dynamic symbol resolution code...
6341
6342 EXEC_FORWARD: we keep on single stepping until we exit the run
6343 time loader code and reach the callee's address.
6344
6345 EXEC_REVERSE: we've already executed the callee (backward), and
6346 the runtime loader code is handled just like any other
6347 undebuggable function call. Now we need only keep stepping
6348 backward through the trampoline code, and that's handled further
6349 down, so there is nothing for us to do here. */
6350
6351 if (execution_direction != EXEC_REVERSE
6352 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6353 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6354 {
6355 CORE_ADDR pc_after_resolver =
6356 gdbarch_skip_solib_resolver (gdbarch,
6357 ecs->event_thread->suspend.stop_pc);
6358
6359 if (debug_infrun)
6360 fprintf_unfiltered (gdb_stdlog,
6361 "infrun: stepped into dynsym resolve code\n");
6362
6363 if (pc_after_resolver)
6364 {
6365 /* Set up a step-resume breakpoint at the address
6366 indicated by SKIP_SOLIB_RESOLVER. */
6367 symtab_and_line sr_sal;
6368 sr_sal.pc = pc_after_resolver;
6369 sr_sal.pspace = get_frame_program_space (frame);
6370
6371 insert_step_resume_breakpoint_at_sal (gdbarch,
6372 sr_sal, null_frame_id);
6373 }
6374
6375 keep_going (ecs);
6376 return;
6377 }
6378
6379 /* Step through an indirect branch thunk. */
6380 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6381 && gdbarch_in_indirect_branch_thunk (gdbarch,
6382 ecs->event_thread->suspend.stop_pc))
6383 {
6384 if (debug_infrun)
6385 fprintf_unfiltered (gdb_stdlog,
6386 "infrun: stepped into indirect branch thunk\n");
6387 keep_going (ecs);
6388 return;
6389 }
6390
6391 if (ecs->event_thread->control.step_range_end != 1
6392 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6393 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6394 && get_frame_type (frame) == SIGTRAMP_FRAME)
6395 {
6396 if (debug_infrun)
6397 fprintf_unfiltered (gdb_stdlog,
6398 "infrun: stepped into signal trampoline\n");
6399 /* The inferior, while doing a "step" or "next", has ended up in
6400 a signal trampoline (either by a signal being delivered or by
6401 the signal handler returning). Just single-step until the
6402 inferior leaves the trampoline (either by calling the handler
6403 or returning). */
6404 keep_going (ecs);
6405 return;
6406 }
6407
6408 /* If we're in the return path from a shared library trampoline,
6409 we want to proceed through the trampoline when stepping. */
6410 /* macro/2012-04-25: This needs to come before the subroutine
6411 call check below as on some targets return trampolines look
6412 like subroutine calls (MIPS16 return thunks). */
6413 if (gdbarch_in_solib_return_trampoline (gdbarch,
6414 ecs->event_thread->suspend.stop_pc,
6415 ecs->stop_func_name)
6416 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6417 {
6418 /* Determine where this trampoline returns. */
6419 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6420 CORE_ADDR real_stop_pc
6421 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6422
6423 if (debug_infrun)
6424 fprintf_unfiltered (gdb_stdlog,
6425 "infrun: stepped into solib return tramp\n");
6426
6427 /* Only proceed through if we know where it's going. */
6428 if (real_stop_pc)
6429 {
6430 /* And put the step-breakpoint there and go until there. */
6431 symtab_and_line sr_sal;
6432 sr_sal.pc = real_stop_pc;
6433 sr_sal.section = find_pc_overlay (sr_sal.pc);
6434 sr_sal.pspace = get_frame_program_space (frame);
6435
6436 /* Do not specify what the fp should be when we stop since
6437 on some machines the prologue is where the new fp value
6438 is established. */
6439 insert_step_resume_breakpoint_at_sal (gdbarch,
6440 sr_sal, null_frame_id);
6441
6442 /* Restart without fiddling with the step ranges or
6443 other state. */
6444 keep_going (ecs);
6445 return;
6446 }
6447 }
6448
6449 /* Check for subroutine calls. The check for the current frame
6450 equalling the step ID is not necessary - the check of the
6451 previous frame's ID is sufficient - but it is a common case and
6452 cheaper than checking the previous frame's ID.
6453
6454 NOTE: frame_id_eq will never report two invalid frame IDs as
6455 being equal, so to get into this block, both the current and
6456 previous frame must have valid frame IDs. */
6457 /* The outer_frame_id check is a heuristic to detect stepping
6458 through startup code. If we step over an instruction which
6459 sets the stack pointer from an invalid value to a valid value,
6460 we may detect that as a subroutine call from the mythical
6461 "outermost" function. This could be fixed by marking
6462 outermost frames as !stack_p,code_p,special_p. Then the
6463 initial outermost frame, before sp was valid, would
6464 have code_addr == &_start. See the comment in frame_id_eq
6465 for more. */
6466 if (!frame_id_eq (get_stack_frame_id (frame),
6467 ecs->event_thread->control.step_stack_frame_id)
6468 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6469 ecs->event_thread->control.step_stack_frame_id)
6470 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6471 outer_frame_id)
6472 || (ecs->event_thread->control.step_start_function
6473 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6474 {
6475 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6476 CORE_ADDR real_stop_pc;
6477
6478 if (debug_infrun)
6479 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6480
6481 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6482 {
6483 /* I presume that step_over_calls is only 0 when we're
6484 supposed to be stepping at the assembly language level
6485 ("stepi"). Just stop. */
6486 /* And this works the same backward as frontward. MVS */
6487 end_stepping_range (ecs);
6488 return;
6489 }
6490
6491 /* Reverse stepping through solib trampolines. */
6492
6493 if (execution_direction == EXEC_REVERSE
6494 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6495 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6496 || (ecs->stop_func_start == 0
6497 && in_solib_dynsym_resolve_code (stop_pc))))
6498 {
6499 /* Any solib trampoline code can be handled in reverse
6500 by simply continuing to single-step. We have already
6501 executed the solib function (backwards), and a few
6502 steps will take us back through the trampoline to the
6503 caller. */
6504 keep_going (ecs);
6505 return;
6506 }
6507
6508 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6509 {
6510 /* We're doing a "next".
6511
6512 Normal (forward) execution: set a breakpoint at the
6513 callee's return address (the address at which the caller
6514 will resume).
6515
6516 Reverse (backward) execution. set the step-resume
6517 breakpoint at the start of the function that we just
6518 stepped into (backwards), and continue to there. When we
6519 get there, we'll need to single-step back to the caller. */
6520
6521 if (execution_direction == EXEC_REVERSE)
6522 {
6523 /* If we're already at the start of the function, we've either
6524 just stepped backward into a single instruction function,
6525 or stepped back out of a signal handler to the first instruction
6526 of the function. Just keep going, which will single-step back
6527 to the caller. */
6528 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6529 {
6530 /* Normal function call return (static or dynamic). */
6531 symtab_and_line sr_sal;
6532 sr_sal.pc = ecs->stop_func_start;
6533 sr_sal.pspace = get_frame_program_space (frame);
6534 insert_step_resume_breakpoint_at_sal (gdbarch,
6535 sr_sal, null_frame_id);
6536 }
6537 }
6538 else
6539 insert_step_resume_breakpoint_at_caller (frame);
6540
6541 keep_going (ecs);
6542 return;
6543 }
6544
6545 /* If we are in a function call trampoline (a stub between the
6546 calling routine and the real function), locate the real
6547 function. That's what tells us (a) whether we want to step
6548 into it at all, and (b) what prologue we want to run to the
6549 end of, if we do step into it. */
6550 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6551 if (real_stop_pc == 0)
6552 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6553 if (real_stop_pc != 0)
6554 ecs->stop_func_start = real_stop_pc;
6555
6556 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6557 {
6558 symtab_and_line sr_sal;
6559 sr_sal.pc = ecs->stop_func_start;
6560 sr_sal.pspace = get_frame_program_space (frame);
6561
6562 insert_step_resume_breakpoint_at_sal (gdbarch,
6563 sr_sal, null_frame_id);
6564 keep_going (ecs);
6565 return;
6566 }
6567
6568 /* If we have line number information for the function we are
6569 thinking of stepping into and the function isn't on the skip
6570 list, step into it.
6571
6572 If there are several symtabs at that PC (e.g. with include
6573 files), just want to know whether *any* of them have line
6574 numbers. find_pc_line handles this. */
6575 {
6576 struct symtab_and_line tmp_sal;
6577
6578 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6579 if (tmp_sal.line != 0
6580 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6581 tmp_sal)
6582 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6583 {
6584 if (execution_direction == EXEC_REVERSE)
6585 handle_step_into_function_backward (gdbarch, ecs);
6586 else
6587 handle_step_into_function (gdbarch, ecs);
6588 return;
6589 }
6590 }
6591
6592 /* If we have no line number and the step-stop-if-no-debug is
6593 set, we stop the step so that the user has a chance to switch
6594 in assembly mode. */
6595 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6596 && step_stop_if_no_debug)
6597 {
6598 end_stepping_range (ecs);
6599 return;
6600 }
6601
6602 if (execution_direction == EXEC_REVERSE)
6603 {
6604 /* If we're already at the start of the function, we've either just
6605 stepped backward into a single instruction function without line
6606 number info, or stepped back out of a signal handler to the first
6607 instruction of the function without line number info. Just keep
6608 going, which will single-step back to the caller. */
6609 if (ecs->stop_func_start != stop_pc)
6610 {
6611 /* Set a breakpoint at callee's start address.
6612 From there we can step once and be back in the caller. */
6613 symtab_and_line sr_sal;
6614 sr_sal.pc = ecs->stop_func_start;
6615 sr_sal.pspace = get_frame_program_space (frame);
6616 insert_step_resume_breakpoint_at_sal (gdbarch,
6617 sr_sal, null_frame_id);
6618 }
6619 }
6620 else
6621 /* Set a breakpoint at callee's return address (the address
6622 at which the caller will resume). */
6623 insert_step_resume_breakpoint_at_caller (frame);
6624
6625 keep_going (ecs);
6626 return;
6627 }
6628
6629 /* Reverse stepping through solib trampolines. */
6630
6631 if (execution_direction == EXEC_REVERSE
6632 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6633 {
6634 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6635
6636 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6637 || (ecs->stop_func_start == 0
6638 && in_solib_dynsym_resolve_code (stop_pc)))
6639 {
6640 /* Any solib trampoline code can be handled in reverse
6641 by simply continuing to single-step. We have already
6642 executed the solib function (backwards), and a few
6643 steps will take us back through the trampoline to the
6644 caller. */
6645 keep_going (ecs);
6646 return;
6647 }
6648 else if (in_solib_dynsym_resolve_code (stop_pc))
6649 {
6650 /* Stepped backward into the solib dynsym resolver.
6651 Set a breakpoint at its start and continue, then
6652 one more step will take us out. */
6653 symtab_and_line sr_sal;
6654 sr_sal.pc = ecs->stop_func_start;
6655 sr_sal.pspace = get_frame_program_space (frame);
6656 insert_step_resume_breakpoint_at_sal (gdbarch,
6657 sr_sal, null_frame_id);
6658 keep_going (ecs);
6659 return;
6660 }
6661 }
6662
6663 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6664
6665 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6666 the trampoline processing logic, however, there are some trampolines
6667 that have no names, so we should do trampoline handling first. */
6668 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6669 && ecs->stop_func_name == NULL
6670 && stop_pc_sal.line == 0)
6671 {
6672 if (debug_infrun)
6673 fprintf_unfiltered (gdb_stdlog,
6674 "infrun: stepped into undebuggable function\n");
6675
6676 /* The inferior just stepped into, or returned to, an
6677 undebuggable function (where there is no debugging information
6678 and no line number corresponding to the address where the
6679 inferior stopped). Since we want to skip this kind of code,
6680 we keep going until the inferior returns from this
6681 function - unless the user has asked us not to (via
6682 set step-mode) or we no longer know how to get back
6683 to the call site. */
6684 if (step_stop_if_no_debug
6685 || !frame_id_p (frame_unwind_caller_id (frame)))
6686 {
6687 /* If we have no line number and the step-stop-if-no-debug
6688 is set, we stop the step so that the user has a chance to
6689 switch in assembly mode. */
6690 end_stepping_range (ecs);
6691 return;
6692 }
6693 else
6694 {
6695 /* Set a breakpoint at callee's return address (the address
6696 at which the caller will resume). */
6697 insert_step_resume_breakpoint_at_caller (frame);
6698 keep_going (ecs);
6699 return;
6700 }
6701 }
6702
6703 if (ecs->event_thread->control.step_range_end == 1)
6704 {
6705 /* It is stepi or nexti. We always want to stop stepping after
6706 one instruction. */
6707 if (debug_infrun)
6708 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6709 end_stepping_range (ecs);
6710 return;
6711 }
6712
6713 if (stop_pc_sal.line == 0)
6714 {
6715 /* We have no line number information. That means to stop
6716 stepping (does this always happen right after one instruction,
6717 when we do "s" in a function with no line numbers,
6718 or can this happen as a result of a return or longjmp?). */
6719 if (debug_infrun)
6720 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6721 end_stepping_range (ecs);
6722 return;
6723 }
6724
6725 /* Look for "calls" to inlined functions, part one. If the inline
6726 frame machinery detected some skipped call sites, we have entered
6727 a new inline function. */
6728
6729 if (frame_id_eq (get_frame_id (get_current_frame ()),
6730 ecs->event_thread->control.step_frame_id)
6731 && inline_skipped_frames (ecs->event_thread))
6732 {
6733 if (debug_infrun)
6734 fprintf_unfiltered (gdb_stdlog,
6735 "infrun: stepped into inlined function\n");
6736
6737 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6738
6739 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6740 {
6741 /* For "step", we're going to stop. But if the call site
6742 for this inlined function is on the same source line as
6743 we were previously stepping, go down into the function
6744 first. Otherwise stop at the call site. */
6745
6746 if (call_sal.line == ecs->event_thread->current_line
6747 && call_sal.symtab == ecs->event_thread->current_symtab)
6748 {
6749 step_into_inline_frame (ecs->event_thread);
6750 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
6751 {
6752 keep_going (ecs);
6753 return;
6754 }
6755 }
6756
6757 end_stepping_range (ecs);
6758 return;
6759 }
6760 else
6761 {
6762 /* For "next", we should stop at the call site if it is on a
6763 different source line. Otherwise continue through the
6764 inlined function. */
6765 if (call_sal.line == ecs->event_thread->current_line
6766 && call_sal.symtab == ecs->event_thread->current_symtab)
6767 keep_going (ecs);
6768 else
6769 end_stepping_range (ecs);
6770 return;
6771 }
6772 }
6773
6774 /* Look for "calls" to inlined functions, part two. If we are still
6775 in the same real function we were stepping through, but we have
6776 to go further up to find the exact frame ID, we are stepping
6777 through a more inlined call beyond its call site. */
6778
6779 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6780 && !frame_id_eq (get_frame_id (get_current_frame ()),
6781 ecs->event_thread->control.step_frame_id)
6782 && stepped_in_from (get_current_frame (),
6783 ecs->event_thread->control.step_frame_id))
6784 {
6785 if (debug_infrun)
6786 fprintf_unfiltered (gdb_stdlog,
6787 "infrun: stepping through inlined function\n");
6788
6789 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
6790 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
6791 keep_going (ecs);
6792 else
6793 end_stepping_range (ecs);
6794 return;
6795 }
6796
6797 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6798 && (ecs->event_thread->current_line != stop_pc_sal.line
6799 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6800 {
6801 /* We are at the start of a different line. So stop. Note that
6802 we don't stop if we step into the middle of a different line.
6803 That is said to make things like for (;;) statements work
6804 better. */
6805 if (debug_infrun)
6806 fprintf_unfiltered (gdb_stdlog,
6807 "infrun: stepped to a different line\n");
6808 end_stepping_range (ecs);
6809 return;
6810 }
6811
6812 /* We aren't done stepping.
6813
6814 Optimize by setting the stepping range to the line.
6815 (We might not be in the original line, but if we entered a
6816 new line in mid-statement, we continue stepping. This makes
6817 things like for(;;) statements work better.) */
6818
6819 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6820 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6821 ecs->event_thread->control.may_range_step = 1;
6822 set_step_info (frame, stop_pc_sal);
6823
6824 if (debug_infrun)
6825 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6826 keep_going (ecs);
6827 }
6828
6829 /* In all-stop mode, if we're currently stepping but have stopped in
6830 some other thread, we may need to switch back to the stepped
6831 thread. Returns true we set the inferior running, false if we left
6832 it stopped (and the event needs further processing). */
6833
6834 static int
6835 switch_back_to_stepped_thread (struct execution_control_state *ecs)
6836 {
6837 if (!target_is_non_stop_p ())
6838 {
6839 struct thread_info *stepping_thread;
6840
6841 /* If any thread is blocked on some internal breakpoint, and we
6842 simply need to step over that breakpoint to get it going
6843 again, do that first. */
6844
6845 /* However, if we see an event for the stepping thread, then we
6846 know all other threads have been moved past their breakpoints
6847 already. Let the caller check whether the step is finished,
6848 etc., before deciding to move it past a breakpoint. */
6849 if (ecs->event_thread->control.step_range_end != 0)
6850 return 0;
6851
6852 /* Check if the current thread is blocked on an incomplete
6853 step-over, interrupted by a random signal. */
6854 if (ecs->event_thread->control.trap_expected
6855 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6856 {
6857 if (debug_infrun)
6858 {
6859 fprintf_unfiltered (gdb_stdlog,
6860 "infrun: need to finish step-over of [%s]\n",
6861 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6862 }
6863 keep_going (ecs);
6864 return 1;
6865 }
6866
6867 /* Check if the current thread is blocked by a single-step
6868 breakpoint of another thread. */
6869 if (ecs->hit_singlestep_breakpoint)
6870 {
6871 if (debug_infrun)
6872 {
6873 fprintf_unfiltered (gdb_stdlog,
6874 "infrun: need to step [%s] over single-step "
6875 "breakpoint\n",
6876 target_pid_to_str (ecs->ptid).c_str ());
6877 }
6878 keep_going (ecs);
6879 return 1;
6880 }
6881
6882 /* If this thread needs yet another step-over (e.g., stepping
6883 through a delay slot), do it first before moving on to
6884 another thread. */
6885 if (thread_still_needs_step_over (ecs->event_thread))
6886 {
6887 if (debug_infrun)
6888 {
6889 fprintf_unfiltered (gdb_stdlog,
6890 "infrun: thread [%s] still needs step-over\n",
6891 target_pid_to_str (ecs->event_thread->ptid).c_str ());
6892 }
6893 keep_going (ecs);
6894 return 1;
6895 }
6896
6897 /* If scheduler locking applies even if not stepping, there's no
6898 need to walk over threads. Above we've checked whether the
6899 current thread is stepping. If some other thread not the
6900 event thread is stepping, then it must be that scheduler
6901 locking is not in effect. */
6902 if (schedlock_applies (ecs->event_thread))
6903 return 0;
6904
6905 /* Otherwise, we no longer expect a trap in the current thread.
6906 Clear the trap_expected flag before switching back -- this is
6907 what keep_going does as well, if we call it. */
6908 ecs->event_thread->control.trap_expected = 0;
6909
6910 /* Likewise, clear the signal if it should not be passed. */
6911 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6912 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6913
6914 /* Do all pending step-overs before actually proceeding with
6915 step/next/etc. */
6916 if (start_step_over ())
6917 {
6918 prepare_to_wait (ecs);
6919 return 1;
6920 }
6921
6922 /* Look for the stepping/nexting thread. */
6923 stepping_thread = NULL;
6924
6925 for (thread_info *tp : all_non_exited_threads ())
6926 {
6927 /* Ignore threads of processes the caller is not
6928 resuming. */
6929 if (!sched_multi
6930 && tp->ptid.pid () != ecs->ptid.pid ())
6931 continue;
6932
6933 /* When stepping over a breakpoint, we lock all threads
6934 except the one that needs to move past the breakpoint.
6935 If a non-event thread has this set, the "incomplete
6936 step-over" check above should have caught it earlier. */
6937 if (tp->control.trap_expected)
6938 {
6939 internal_error (__FILE__, __LINE__,
6940 "[%s] has inconsistent state: "
6941 "trap_expected=%d\n",
6942 target_pid_to_str (tp->ptid).c_str (),
6943 tp->control.trap_expected);
6944 }
6945
6946 /* Did we find the stepping thread? */
6947 if (tp->control.step_range_end)
6948 {
6949 /* Yep. There should only one though. */
6950 gdb_assert (stepping_thread == NULL);
6951
6952 /* The event thread is handled at the top, before we
6953 enter this loop. */
6954 gdb_assert (tp != ecs->event_thread);
6955
6956 /* If some thread other than the event thread is
6957 stepping, then scheduler locking can't be in effect,
6958 otherwise we wouldn't have resumed the current event
6959 thread in the first place. */
6960 gdb_assert (!schedlock_applies (tp));
6961
6962 stepping_thread = tp;
6963 }
6964 }
6965
6966 if (stepping_thread != NULL)
6967 {
6968 if (debug_infrun)
6969 fprintf_unfiltered (gdb_stdlog,
6970 "infrun: switching back to stepped thread\n");
6971
6972 if (keep_going_stepped_thread (stepping_thread))
6973 {
6974 prepare_to_wait (ecs);
6975 return 1;
6976 }
6977 }
6978 }
6979
6980 return 0;
6981 }
6982
6983 /* Set a previously stepped thread back to stepping. Returns true on
6984 success, false if the resume is not possible (e.g., the thread
6985 vanished). */
6986
6987 static int
6988 keep_going_stepped_thread (struct thread_info *tp)
6989 {
6990 struct frame_info *frame;
6991 struct execution_control_state ecss;
6992 struct execution_control_state *ecs = &ecss;
6993
6994 /* If the stepping thread exited, then don't try to switch back and
6995 resume it, which could fail in several different ways depending
6996 on the target. Instead, just keep going.
6997
6998 We can find a stepping dead thread in the thread list in two
6999 cases:
7000
7001 - The target supports thread exit events, and when the target
7002 tries to delete the thread from the thread list, inferior_ptid
7003 pointed at the exiting thread. In such case, calling
7004 delete_thread does not really remove the thread from the list;
7005 instead, the thread is left listed, with 'exited' state.
7006
7007 - The target's debug interface does not support thread exit
7008 events, and so we have no idea whatsoever if the previously
7009 stepping thread is still alive. For that reason, we need to
7010 synchronously query the target now. */
7011
7012 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7013 {
7014 if (debug_infrun)
7015 fprintf_unfiltered (gdb_stdlog,
7016 "infrun: not resuming previously "
7017 "stepped thread, it has vanished\n");
7018
7019 delete_thread (tp);
7020 return 0;
7021 }
7022
7023 if (debug_infrun)
7024 fprintf_unfiltered (gdb_stdlog,
7025 "infrun: resuming previously stepped thread\n");
7026
7027 reset_ecs (ecs, tp);
7028 switch_to_thread (tp);
7029
7030 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7031 frame = get_current_frame ();
7032
7033 /* If the PC of the thread we were trying to single-step has
7034 changed, then that thread has trapped or been signaled, but the
7035 event has not been reported to GDB yet. Re-poll the target
7036 looking for this particular thread's event (i.e. temporarily
7037 enable schedlock) by:
7038
7039 - setting a break at the current PC
7040 - resuming that particular thread, only (by setting trap
7041 expected)
7042
7043 This prevents us continuously moving the single-step breakpoint
7044 forward, one instruction at a time, overstepping. */
7045
7046 if (tp->suspend.stop_pc != tp->prev_pc)
7047 {
7048 ptid_t resume_ptid;
7049
7050 if (debug_infrun)
7051 fprintf_unfiltered (gdb_stdlog,
7052 "infrun: expected thread advanced also (%s -> %s)\n",
7053 paddress (target_gdbarch (), tp->prev_pc),
7054 paddress (target_gdbarch (), tp->suspend.stop_pc));
7055
7056 /* Clear the info of the previous step-over, as it's no longer
7057 valid (if the thread was trying to step over a breakpoint, it
7058 has already succeeded). It's what keep_going would do too,
7059 if we called it. Do this before trying to insert the sss
7060 breakpoint, otherwise if we were previously trying to step
7061 over this exact address in another thread, the breakpoint is
7062 skipped. */
7063 clear_step_over_info ();
7064 tp->control.trap_expected = 0;
7065
7066 insert_single_step_breakpoint (get_frame_arch (frame),
7067 get_frame_address_space (frame),
7068 tp->suspend.stop_pc);
7069
7070 tp->resumed = 1;
7071 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7072 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7073 }
7074 else
7075 {
7076 if (debug_infrun)
7077 fprintf_unfiltered (gdb_stdlog,
7078 "infrun: expected thread still hasn't advanced\n");
7079
7080 keep_going_pass_signal (ecs);
7081 }
7082 return 1;
7083 }
7084
7085 /* Is thread TP in the middle of (software or hardware)
7086 single-stepping? (Note the result of this function must never be
7087 passed directly as target_resume's STEP parameter.) */
7088
7089 static int
7090 currently_stepping (struct thread_info *tp)
7091 {
7092 return ((tp->control.step_range_end
7093 && tp->control.step_resume_breakpoint == NULL)
7094 || tp->control.trap_expected
7095 || tp->stepped_breakpoint
7096 || bpstat_should_step ());
7097 }
7098
7099 /* Inferior has stepped into a subroutine call with source code that
7100 we should not step over. Do step to the first line of code in
7101 it. */
7102
7103 static void
7104 handle_step_into_function (struct gdbarch *gdbarch,
7105 struct execution_control_state *ecs)
7106 {
7107 fill_in_stop_func (gdbarch, ecs);
7108
7109 compunit_symtab *cust
7110 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7111 if (cust != NULL && compunit_language (cust) != language_asm)
7112 ecs->stop_func_start
7113 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7114
7115 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7116 /* Use the step_resume_break to step until the end of the prologue,
7117 even if that involves jumps (as it seems to on the vax under
7118 4.2). */
7119 /* If the prologue ends in the middle of a source line, continue to
7120 the end of that source line (if it is still within the function).
7121 Otherwise, just go to end of prologue. */
7122 if (stop_func_sal.end
7123 && stop_func_sal.pc != ecs->stop_func_start
7124 && stop_func_sal.end < ecs->stop_func_end)
7125 ecs->stop_func_start = stop_func_sal.end;
7126
7127 /* Architectures which require breakpoint adjustment might not be able
7128 to place a breakpoint at the computed address. If so, the test
7129 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7130 ecs->stop_func_start to an address at which a breakpoint may be
7131 legitimately placed.
7132
7133 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7134 made, GDB will enter an infinite loop when stepping through
7135 optimized code consisting of VLIW instructions which contain
7136 subinstructions corresponding to different source lines. On
7137 FR-V, it's not permitted to place a breakpoint on any but the
7138 first subinstruction of a VLIW instruction. When a breakpoint is
7139 set, GDB will adjust the breakpoint address to the beginning of
7140 the VLIW instruction. Thus, we need to make the corresponding
7141 adjustment here when computing the stop address. */
7142
7143 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7144 {
7145 ecs->stop_func_start
7146 = gdbarch_adjust_breakpoint_address (gdbarch,
7147 ecs->stop_func_start);
7148 }
7149
7150 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7151 {
7152 /* We are already there: stop now. */
7153 end_stepping_range (ecs);
7154 return;
7155 }
7156 else
7157 {
7158 /* Put the step-breakpoint there and go until there. */
7159 symtab_and_line sr_sal;
7160 sr_sal.pc = ecs->stop_func_start;
7161 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7162 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7163
7164 /* Do not specify what the fp should be when we stop since on
7165 some machines the prologue is where the new fp value is
7166 established. */
7167 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7168
7169 /* And make sure stepping stops right away then. */
7170 ecs->event_thread->control.step_range_end
7171 = ecs->event_thread->control.step_range_start;
7172 }
7173 keep_going (ecs);
7174 }
7175
7176 /* Inferior has stepped backward into a subroutine call with source
7177 code that we should not step over. Do step to the beginning of the
7178 last line of code in it. */
7179
7180 static void
7181 handle_step_into_function_backward (struct gdbarch *gdbarch,
7182 struct execution_control_state *ecs)
7183 {
7184 struct compunit_symtab *cust;
7185 struct symtab_and_line stop_func_sal;
7186
7187 fill_in_stop_func (gdbarch, ecs);
7188
7189 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7190 if (cust != NULL && compunit_language (cust) != language_asm)
7191 ecs->stop_func_start
7192 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7193
7194 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7195
7196 /* OK, we're just going to keep stepping here. */
7197 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7198 {
7199 /* We're there already. Just stop stepping now. */
7200 end_stepping_range (ecs);
7201 }
7202 else
7203 {
7204 /* Else just reset the step range and keep going.
7205 No step-resume breakpoint, they don't work for
7206 epilogues, which can have multiple entry paths. */
7207 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7208 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7209 keep_going (ecs);
7210 }
7211 return;
7212 }
7213
7214 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7215 This is used to both functions and to skip over code. */
7216
7217 static void
7218 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7219 struct symtab_and_line sr_sal,
7220 struct frame_id sr_id,
7221 enum bptype sr_type)
7222 {
7223 /* There should never be more than one step-resume or longjmp-resume
7224 breakpoint per thread, so we should never be setting a new
7225 step_resume_breakpoint when one is already active. */
7226 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7227 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7228
7229 if (debug_infrun)
7230 fprintf_unfiltered (gdb_stdlog,
7231 "infrun: inserting step-resume breakpoint at %s\n",
7232 paddress (gdbarch, sr_sal.pc));
7233
7234 inferior_thread ()->control.step_resume_breakpoint
7235 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7236 }
7237
7238 void
7239 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7240 struct symtab_and_line sr_sal,
7241 struct frame_id sr_id)
7242 {
7243 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7244 sr_sal, sr_id,
7245 bp_step_resume);
7246 }
7247
7248 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7249 This is used to skip a potential signal handler.
7250
7251 This is called with the interrupted function's frame. The signal
7252 handler, when it returns, will resume the interrupted function at
7253 RETURN_FRAME.pc. */
7254
7255 static void
7256 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7257 {
7258 gdb_assert (return_frame != NULL);
7259
7260 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7261
7262 symtab_and_line sr_sal;
7263 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7264 sr_sal.section = find_pc_overlay (sr_sal.pc);
7265 sr_sal.pspace = get_frame_program_space (return_frame);
7266
7267 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7268 get_stack_frame_id (return_frame),
7269 bp_hp_step_resume);
7270 }
7271
7272 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7273 is used to skip a function after stepping into it (for "next" or if
7274 the called function has no debugging information).
7275
7276 The current function has almost always been reached by single
7277 stepping a call or return instruction. NEXT_FRAME belongs to the
7278 current function, and the breakpoint will be set at the caller's
7279 resume address.
7280
7281 This is a separate function rather than reusing
7282 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7283 get_prev_frame, which may stop prematurely (see the implementation
7284 of frame_unwind_caller_id for an example). */
7285
7286 static void
7287 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7288 {
7289 /* We shouldn't have gotten here if we don't know where the call site
7290 is. */
7291 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7292
7293 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7294
7295 symtab_and_line sr_sal;
7296 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7297 frame_unwind_caller_pc (next_frame));
7298 sr_sal.section = find_pc_overlay (sr_sal.pc);
7299 sr_sal.pspace = frame_unwind_program_space (next_frame);
7300
7301 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7302 frame_unwind_caller_id (next_frame));
7303 }
7304
7305 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7306 new breakpoint at the target of a jmp_buf. The handling of
7307 longjmp-resume uses the same mechanisms used for handling
7308 "step-resume" breakpoints. */
7309
7310 static void
7311 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7312 {
7313 /* There should never be more than one longjmp-resume breakpoint per
7314 thread, so we should never be setting a new
7315 longjmp_resume_breakpoint when one is already active. */
7316 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7317
7318 if (debug_infrun)
7319 fprintf_unfiltered (gdb_stdlog,
7320 "infrun: inserting longjmp-resume breakpoint at %s\n",
7321 paddress (gdbarch, pc));
7322
7323 inferior_thread ()->control.exception_resume_breakpoint =
7324 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7325 }
7326
7327 /* Insert an exception resume breakpoint. TP is the thread throwing
7328 the exception. The block B is the block of the unwinder debug hook
7329 function. FRAME is the frame corresponding to the call to this
7330 function. SYM is the symbol of the function argument holding the
7331 target PC of the exception. */
7332
7333 static void
7334 insert_exception_resume_breakpoint (struct thread_info *tp,
7335 const struct block *b,
7336 struct frame_info *frame,
7337 struct symbol *sym)
7338 {
7339 try
7340 {
7341 struct block_symbol vsym;
7342 struct value *value;
7343 CORE_ADDR handler;
7344 struct breakpoint *bp;
7345
7346 vsym = lookup_symbol_search_name (sym->search_name (),
7347 b, VAR_DOMAIN);
7348 value = read_var_value (vsym.symbol, vsym.block, frame);
7349 /* If the value was optimized out, revert to the old behavior. */
7350 if (! value_optimized_out (value))
7351 {
7352 handler = value_as_address (value);
7353
7354 if (debug_infrun)
7355 fprintf_unfiltered (gdb_stdlog,
7356 "infrun: exception resume at %lx\n",
7357 (unsigned long) handler);
7358
7359 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7360 handler,
7361 bp_exception_resume).release ();
7362
7363 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7364 frame = NULL;
7365
7366 bp->thread = tp->global_num;
7367 inferior_thread ()->control.exception_resume_breakpoint = bp;
7368 }
7369 }
7370 catch (const gdb_exception_error &e)
7371 {
7372 /* We want to ignore errors here. */
7373 }
7374 }
7375
7376 /* A helper for check_exception_resume that sets an
7377 exception-breakpoint based on a SystemTap probe. */
7378
7379 static void
7380 insert_exception_resume_from_probe (struct thread_info *tp,
7381 const struct bound_probe *probe,
7382 struct frame_info *frame)
7383 {
7384 struct value *arg_value;
7385 CORE_ADDR handler;
7386 struct breakpoint *bp;
7387
7388 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7389 if (!arg_value)
7390 return;
7391
7392 handler = value_as_address (arg_value);
7393
7394 if (debug_infrun)
7395 fprintf_unfiltered (gdb_stdlog,
7396 "infrun: exception resume at %s\n",
7397 paddress (get_objfile_arch (probe->objfile),
7398 handler));
7399
7400 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7401 handler, bp_exception_resume).release ();
7402 bp->thread = tp->global_num;
7403 inferior_thread ()->control.exception_resume_breakpoint = bp;
7404 }
7405
7406 /* This is called when an exception has been intercepted. Check to
7407 see whether the exception's destination is of interest, and if so,
7408 set an exception resume breakpoint there. */
7409
7410 static void
7411 check_exception_resume (struct execution_control_state *ecs,
7412 struct frame_info *frame)
7413 {
7414 struct bound_probe probe;
7415 struct symbol *func;
7416
7417 /* First see if this exception unwinding breakpoint was set via a
7418 SystemTap probe point. If so, the probe has two arguments: the
7419 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7420 set a breakpoint there. */
7421 probe = find_probe_by_pc (get_frame_pc (frame));
7422 if (probe.prob)
7423 {
7424 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7425 return;
7426 }
7427
7428 func = get_frame_function (frame);
7429 if (!func)
7430 return;
7431
7432 try
7433 {
7434 const struct block *b;
7435 struct block_iterator iter;
7436 struct symbol *sym;
7437 int argno = 0;
7438
7439 /* The exception breakpoint is a thread-specific breakpoint on
7440 the unwinder's debug hook, declared as:
7441
7442 void _Unwind_DebugHook (void *cfa, void *handler);
7443
7444 The CFA argument indicates the frame to which control is
7445 about to be transferred. HANDLER is the destination PC.
7446
7447 We ignore the CFA and set a temporary breakpoint at HANDLER.
7448 This is not extremely efficient but it avoids issues in gdb
7449 with computing the DWARF CFA, and it also works even in weird
7450 cases such as throwing an exception from inside a signal
7451 handler. */
7452
7453 b = SYMBOL_BLOCK_VALUE (func);
7454 ALL_BLOCK_SYMBOLS (b, iter, sym)
7455 {
7456 if (!SYMBOL_IS_ARGUMENT (sym))
7457 continue;
7458
7459 if (argno == 0)
7460 ++argno;
7461 else
7462 {
7463 insert_exception_resume_breakpoint (ecs->event_thread,
7464 b, frame, sym);
7465 break;
7466 }
7467 }
7468 }
7469 catch (const gdb_exception_error &e)
7470 {
7471 }
7472 }
7473
7474 static void
7475 stop_waiting (struct execution_control_state *ecs)
7476 {
7477 if (debug_infrun)
7478 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7479
7480 /* Let callers know we don't want to wait for the inferior anymore. */
7481 ecs->wait_some_more = 0;
7482
7483 /* If all-stop, but the target is always in non-stop mode, stop all
7484 threads now that we're presenting the stop to the user. */
7485 if (!non_stop && target_is_non_stop_p ())
7486 stop_all_threads ();
7487 }
7488
7489 /* Like keep_going, but passes the signal to the inferior, even if the
7490 signal is set to nopass. */
7491
7492 static void
7493 keep_going_pass_signal (struct execution_control_state *ecs)
7494 {
7495 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7496 gdb_assert (!ecs->event_thread->resumed);
7497
7498 /* Save the pc before execution, to compare with pc after stop. */
7499 ecs->event_thread->prev_pc
7500 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7501
7502 if (ecs->event_thread->control.trap_expected)
7503 {
7504 struct thread_info *tp = ecs->event_thread;
7505
7506 if (debug_infrun)
7507 fprintf_unfiltered (gdb_stdlog,
7508 "infrun: %s has trap_expected set, "
7509 "resuming to collect trap\n",
7510 target_pid_to_str (tp->ptid).c_str ());
7511
7512 /* We haven't yet gotten our trap, and either: intercepted a
7513 non-signal event (e.g., a fork); or took a signal which we
7514 are supposed to pass through to the inferior. Simply
7515 continue. */
7516 resume (ecs->event_thread->suspend.stop_signal);
7517 }
7518 else if (step_over_info_valid_p ())
7519 {
7520 /* Another thread is stepping over a breakpoint in-line. If
7521 this thread needs a step-over too, queue the request. In
7522 either case, this resume must be deferred for later. */
7523 struct thread_info *tp = ecs->event_thread;
7524
7525 if (ecs->hit_singlestep_breakpoint
7526 || thread_still_needs_step_over (tp))
7527 {
7528 if (debug_infrun)
7529 fprintf_unfiltered (gdb_stdlog,
7530 "infrun: step-over already in progress: "
7531 "step-over for %s deferred\n",
7532 target_pid_to_str (tp->ptid).c_str ());
7533 thread_step_over_chain_enqueue (tp);
7534 }
7535 else
7536 {
7537 if (debug_infrun)
7538 fprintf_unfiltered (gdb_stdlog,
7539 "infrun: step-over in progress: "
7540 "resume of %s deferred\n",
7541 target_pid_to_str (tp->ptid).c_str ());
7542 }
7543 }
7544 else
7545 {
7546 struct regcache *regcache = get_current_regcache ();
7547 int remove_bp;
7548 int remove_wps;
7549 step_over_what step_what;
7550
7551 /* Either the trap was not expected, but we are continuing
7552 anyway (if we got a signal, the user asked it be passed to
7553 the child)
7554 -- or --
7555 We got our expected trap, but decided we should resume from
7556 it.
7557
7558 We're going to run this baby now!
7559
7560 Note that insert_breakpoints won't try to re-insert
7561 already inserted breakpoints. Therefore, we don't
7562 care if breakpoints were already inserted, or not. */
7563
7564 /* If we need to step over a breakpoint, and we're not using
7565 displaced stepping to do so, insert all breakpoints
7566 (watchpoints, etc.) but the one we're stepping over, step one
7567 instruction, and then re-insert the breakpoint when that step
7568 is finished. */
7569
7570 step_what = thread_still_needs_step_over (ecs->event_thread);
7571
7572 remove_bp = (ecs->hit_singlestep_breakpoint
7573 || (step_what & STEP_OVER_BREAKPOINT));
7574 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7575
7576 /* We can't use displaced stepping if we need to step past a
7577 watchpoint. The instruction copied to the scratch pad would
7578 still trigger the watchpoint. */
7579 if (remove_bp
7580 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7581 {
7582 set_step_over_info (regcache->aspace (),
7583 regcache_read_pc (regcache), remove_wps,
7584 ecs->event_thread->global_num);
7585 }
7586 else if (remove_wps)
7587 set_step_over_info (NULL, 0, remove_wps, -1);
7588
7589 /* If we now need to do an in-line step-over, we need to stop
7590 all other threads. Note this must be done before
7591 insert_breakpoints below, because that removes the breakpoint
7592 we're about to step over, otherwise other threads could miss
7593 it. */
7594 if (step_over_info_valid_p () && target_is_non_stop_p ())
7595 stop_all_threads ();
7596
7597 /* Stop stepping if inserting breakpoints fails. */
7598 try
7599 {
7600 insert_breakpoints ();
7601 }
7602 catch (const gdb_exception_error &e)
7603 {
7604 exception_print (gdb_stderr, e);
7605 stop_waiting (ecs);
7606 clear_step_over_info ();
7607 return;
7608 }
7609
7610 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7611
7612 resume (ecs->event_thread->suspend.stop_signal);
7613 }
7614
7615 prepare_to_wait (ecs);
7616 }
7617
7618 /* Called when we should continue running the inferior, because the
7619 current event doesn't cause a user visible stop. This does the
7620 resuming part; waiting for the next event is done elsewhere. */
7621
7622 static void
7623 keep_going (struct execution_control_state *ecs)
7624 {
7625 if (ecs->event_thread->control.trap_expected
7626 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7627 ecs->event_thread->control.trap_expected = 0;
7628
7629 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7630 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7631 keep_going_pass_signal (ecs);
7632 }
7633
7634 /* This function normally comes after a resume, before
7635 handle_inferior_event exits. It takes care of any last bits of
7636 housekeeping, and sets the all-important wait_some_more flag. */
7637
7638 static void
7639 prepare_to_wait (struct execution_control_state *ecs)
7640 {
7641 if (debug_infrun)
7642 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7643
7644 ecs->wait_some_more = 1;
7645
7646 if (!target_is_async_p ())
7647 mark_infrun_async_event_handler ();
7648 }
7649
7650 /* We are done with the step range of a step/next/si/ni command.
7651 Called once for each n of a "step n" operation. */
7652
7653 static void
7654 end_stepping_range (struct execution_control_state *ecs)
7655 {
7656 ecs->event_thread->control.stop_step = 1;
7657 stop_waiting (ecs);
7658 }
7659
7660 /* Several print_*_reason functions to print why the inferior has stopped.
7661 We always print something when the inferior exits, or receives a signal.
7662 The rest of the cases are dealt with later on in normal_stop and
7663 print_it_typical. Ideally there should be a call to one of these
7664 print_*_reason functions functions from handle_inferior_event each time
7665 stop_waiting is called.
7666
7667 Note that we don't call these directly, instead we delegate that to
7668 the interpreters, through observers. Interpreters then call these
7669 with whatever uiout is right. */
7670
7671 void
7672 print_end_stepping_range_reason (struct ui_out *uiout)
7673 {
7674 /* For CLI-like interpreters, print nothing. */
7675
7676 if (uiout->is_mi_like_p ())
7677 {
7678 uiout->field_string ("reason",
7679 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7680 }
7681 }
7682
7683 void
7684 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7685 {
7686 annotate_signalled ();
7687 if (uiout->is_mi_like_p ())
7688 uiout->field_string
7689 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7690 uiout->text ("\nProgram terminated with signal ");
7691 annotate_signal_name ();
7692 uiout->field_string ("signal-name",
7693 gdb_signal_to_name (siggnal));
7694 annotate_signal_name_end ();
7695 uiout->text (", ");
7696 annotate_signal_string ();
7697 uiout->field_string ("signal-meaning",
7698 gdb_signal_to_string (siggnal));
7699 annotate_signal_string_end ();
7700 uiout->text (".\n");
7701 uiout->text ("The program no longer exists.\n");
7702 }
7703
7704 void
7705 print_exited_reason (struct ui_out *uiout, int exitstatus)
7706 {
7707 struct inferior *inf = current_inferior ();
7708 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7709
7710 annotate_exited (exitstatus);
7711 if (exitstatus)
7712 {
7713 if (uiout->is_mi_like_p ())
7714 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7715 std::string exit_code_str
7716 = string_printf ("0%o", (unsigned int) exitstatus);
7717 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7718 plongest (inf->num), pidstr.c_str (),
7719 string_field ("exit-code", exit_code_str.c_str ()));
7720 }
7721 else
7722 {
7723 if (uiout->is_mi_like_p ())
7724 uiout->field_string
7725 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7726 uiout->message ("[Inferior %s (%s) exited normally]\n",
7727 plongest (inf->num), pidstr.c_str ());
7728 }
7729 }
7730
7731 /* Some targets/architectures can do extra processing/display of
7732 segmentation faults. E.g., Intel MPX boundary faults.
7733 Call the architecture dependent function to handle the fault. */
7734
7735 static void
7736 handle_segmentation_fault (struct ui_out *uiout)
7737 {
7738 struct regcache *regcache = get_current_regcache ();
7739 struct gdbarch *gdbarch = regcache->arch ();
7740
7741 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7742 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7743 }
7744
7745 void
7746 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7747 {
7748 struct thread_info *thr = inferior_thread ();
7749
7750 annotate_signal ();
7751
7752 if (uiout->is_mi_like_p ())
7753 ;
7754 else if (show_thread_that_caused_stop ())
7755 {
7756 const char *name;
7757
7758 uiout->text ("\nThread ");
7759 uiout->field_string ("thread-id", print_thread_id (thr));
7760
7761 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7762 if (name != NULL)
7763 {
7764 uiout->text (" \"");
7765 uiout->field_string ("name", name);
7766 uiout->text ("\"");
7767 }
7768 }
7769 else
7770 uiout->text ("\nProgram");
7771
7772 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7773 uiout->text (" stopped");
7774 else
7775 {
7776 uiout->text (" received signal ");
7777 annotate_signal_name ();
7778 if (uiout->is_mi_like_p ())
7779 uiout->field_string
7780 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7781 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7782 annotate_signal_name_end ();
7783 uiout->text (", ");
7784 annotate_signal_string ();
7785 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7786
7787 if (siggnal == GDB_SIGNAL_SEGV)
7788 handle_segmentation_fault (uiout);
7789
7790 annotate_signal_string_end ();
7791 }
7792 uiout->text (".\n");
7793 }
7794
7795 void
7796 print_no_history_reason (struct ui_out *uiout)
7797 {
7798 uiout->text ("\nNo more reverse-execution history.\n");
7799 }
7800
7801 /* Print current location without a level number, if we have changed
7802 functions or hit a breakpoint. Print source line if we have one.
7803 bpstat_print contains the logic deciding in detail what to print,
7804 based on the event(s) that just occurred. */
7805
7806 static void
7807 print_stop_location (struct target_waitstatus *ws)
7808 {
7809 int bpstat_ret;
7810 enum print_what source_flag;
7811 int do_frame_printing = 1;
7812 struct thread_info *tp = inferior_thread ();
7813
7814 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7815 switch (bpstat_ret)
7816 {
7817 case PRINT_UNKNOWN:
7818 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7819 should) carry around the function and does (or should) use
7820 that when doing a frame comparison. */
7821 if (tp->control.stop_step
7822 && frame_id_eq (tp->control.step_frame_id,
7823 get_frame_id (get_current_frame ()))
7824 && (tp->control.step_start_function
7825 == find_pc_function (tp->suspend.stop_pc)))
7826 {
7827 /* Finished step, just print source line. */
7828 source_flag = SRC_LINE;
7829 }
7830 else
7831 {
7832 /* Print location and source line. */
7833 source_flag = SRC_AND_LOC;
7834 }
7835 break;
7836 case PRINT_SRC_AND_LOC:
7837 /* Print location and source line. */
7838 source_flag = SRC_AND_LOC;
7839 break;
7840 case PRINT_SRC_ONLY:
7841 source_flag = SRC_LINE;
7842 break;
7843 case PRINT_NOTHING:
7844 /* Something bogus. */
7845 source_flag = SRC_LINE;
7846 do_frame_printing = 0;
7847 break;
7848 default:
7849 internal_error (__FILE__, __LINE__, _("Unknown value."));
7850 }
7851
7852 /* The behavior of this routine with respect to the source
7853 flag is:
7854 SRC_LINE: Print only source line
7855 LOCATION: Print only location
7856 SRC_AND_LOC: Print location and source line. */
7857 if (do_frame_printing)
7858 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
7859 }
7860
7861 /* See infrun.h. */
7862
7863 void
7864 print_stop_event (struct ui_out *uiout, bool displays)
7865 {
7866 struct target_waitstatus last;
7867 ptid_t last_ptid;
7868 struct thread_info *tp;
7869
7870 get_last_target_status (&last_ptid, &last);
7871
7872 {
7873 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
7874
7875 print_stop_location (&last);
7876
7877 /* Display the auto-display expressions. */
7878 if (displays)
7879 do_displays ();
7880 }
7881
7882 tp = inferior_thread ();
7883 if (tp->thread_fsm != NULL
7884 && tp->thread_fsm->finished_p ())
7885 {
7886 struct return_value_info *rv;
7887
7888 rv = tp->thread_fsm->return_value ();
7889 if (rv != NULL)
7890 print_return_value (uiout, rv);
7891 }
7892 }
7893
7894 /* See infrun.h. */
7895
7896 void
7897 maybe_remove_breakpoints (void)
7898 {
7899 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7900 {
7901 if (remove_breakpoints ())
7902 {
7903 target_terminal::ours_for_output ();
7904 printf_filtered (_("Cannot remove breakpoints because "
7905 "program is no longer writable.\nFurther "
7906 "execution is probably impossible.\n"));
7907 }
7908 }
7909 }
7910
7911 /* The execution context that just caused a normal stop. */
7912
7913 struct stop_context
7914 {
7915 stop_context ();
7916 ~stop_context ();
7917
7918 DISABLE_COPY_AND_ASSIGN (stop_context);
7919
7920 bool changed () const;
7921
7922 /* The stop ID. */
7923 ULONGEST stop_id;
7924
7925 /* The event PTID. */
7926
7927 ptid_t ptid;
7928
7929 /* If stopp for a thread event, this is the thread that caused the
7930 stop. */
7931 struct thread_info *thread;
7932
7933 /* The inferior that caused the stop. */
7934 int inf_num;
7935 };
7936
7937 /* Initializes a new stop context. If stopped for a thread event, this
7938 takes a strong reference to the thread. */
7939
7940 stop_context::stop_context ()
7941 {
7942 stop_id = get_stop_id ();
7943 ptid = inferior_ptid;
7944 inf_num = current_inferior ()->num;
7945
7946 if (inferior_ptid != null_ptid)
7947 {
7948 /* Take a strong reference so that the thread can't be deleted
7949 yet. */
7950 thread = inferior_thread ();
7951 thread->incref ();
7952 }
7953 else
7954 thread = NULL;
7955 }
7956
7957 /* Release a stop context previously created with save_stop_context.
7958 Releases the strong reference to the thread as well. */
7959
7960 stop_context::~stop_context ()
7961 {
7962 if (thread != NULL)
7963 thread->decref ();
7964 }
7965
7966 /* Return true if the current context no longer matches the saved stop
7967 context. */
7968
7969 bool
7970 stop_context::changed () const
7971 {
7972 if (ptid != inferior_ptid)
7973 return true;
7974 if (inf_num != current_inferior ()->num)
7975 return true;
7976 if (thread != NULL && thread->state != THREAD_STOPPED)
7977 return true;
7978 if (get_stop_id () != stop_id)
7979 return true;
7980 return false;
7981 }
7982
7983 /* See infrun.h. */
7984
7985 int
7986 normal_stop (void)
7987 {
7988 struct target_waitstatus last;
7989 ptid_t last_ptid;
7990
7991 get_last_target_status (&last_ptid, &last);
7992
7993 new_stop_id ();
7994
7995 /* If an exception is thrown from this point on, make sure to
7996 propagate GDB's knowledge of the executing state to the
7997 frontend/user running state. A QUIT is an easy exception to see
7998 here, so do this before any filtered output. */
7999
8000 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8001
8002 if (!non_stop)
8003 maybe_finish_thread_state.emplace (minus_one_ptid);
8004 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8005 || last.kind == TARGET_WAITKIND_EXITED)
8006 {
8007 /* On some targets, we may still have live threads in the
8008 inferior when we get a process exit event. E.g., for
8009 "checkpoint", when the current checkpoint/fork exits,
8010 linux-fork.c automatically switches to another fork from
8011 within target_mourn_inferior. */
8012 if (inferior_ptid != null_ptid)
8013 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8014 }
8015 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8016 maybe_finish_thread_state.emplace (inferior_ptid);
8017
8018 /* As we're presenting a stop, and potentially removing breakpoints,
8019 update the thread list so we can tell whether there are threads
8020 running on the target. With target remote, for example, we can
8021 only learn about new threads when we explicitly update the thread
8022 list. Do this before notifying the interpreters about signal
8023 stops, end of stepping ranges, etc., so that the "new thread"
8024 output is emitted before e.g., "Program received signal FOO",
8025 instead of after. */
8026 update_thread_list ();
8027
8028 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8029 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8030
8031 /* As with the notification of thread events, we want to delay
8032 notifying the user that we've switched thread context until
8033 the inferior actually stops.
8034
8035 There's no point in saying anything if the inferior has exited.
8036 Note that SIGNALLED here means "exited with a signal", not
8037 "received a signal".
8038
8039 Also skip saying anything in non-stop mode. In that mode, as we
8040 don't want GDB to switch threads behind the user's back, to avoid
8041 races where the user is typing a command to apply to thread x,
8042 but GDB switches to thread y before the user finishes entering
8043 the command, fetch_inferior_event installs a cleanup to restore
8044 the current thread back to the thread the user had selected right
8045 after this event is handled, so we're not really switching, only
8046 informing of a stop. */
8047 if (!non_stop
8048 && previous_inferior_ptid != inferior_ptid
8049 && target_has_execution
8050 && last.kind != TARGET_WAITKIND_SIGNALLED
8051 && last.kind != TARGET_WAITKIND_EXITED
8052 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8053 {
8054 SWITCH_THRU_ALL_UIS ()
8055 {
8056 target_terminal::ours_for_output ();
8057 printf_filtered (_("[Switching to %s]\n"),
8058 target_pid_to_str (inferior_ptid).c_str ());
8059 annotate_thread_changed ();
8060 }
8061 previous_inferior_ptid = inferior_ptid;
8062 }
8063
8064 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8065 {
8066 SWITCH_THRU_ALL_UIS ()
8067 if (current_ui->prompt_state == PROMPT_BLOCKED)
8068 {
8069 target_terminal::ours_for_output ();
8070 printf_filtered (_("No unwaited-for children left.\n"));
8071 }
8072 }
8073
8074 /* Note: this depends on the update_thread_list call above. */
8075 maybe_remove_breakpoints ();
8076
8077 /* If an auto-display called a function and that got a signal,
8078 delete that auto-display to avoid an infinite recursion. */
8079
8080 if (stopped_by_random_signal)
8081 disable_current_display ();
8082
8083 SWITCH_THRU_ALL_UIS ()
8084 {
8085 async_enable_stdin ();
8086 }
8087
8088 /* Let the user/frontend see the threads as stopped. */
8089 maybe_finish_thread_state.reset ();
8090
8091 /* Select innermost stack frame - i.e., current frame is frame 0,
8092 and current location is based on that. Handle the case where the
8093 dummy call is returning after being stopped. E.g. the dummy call
8094 previously hit a breakpoint. (If the dummy call returns
8095 normally, we won't reach here.) Do this before the stop hook is
8096 run, so that it doesn't get to see the temporary dummy frame,
8097 which is not where we'll present the stop. */
8098 if (has_stack_frames ())
8099 {
8100 if (stop_stack_dummy == STOP_STACK_DUMMY)
8101 {
8102 /* Pop the empty frame that contains the stack dummy. This
8103 also restores inferior state prior to the call (struct
8104 infcall_suspend_state). */
8105 struct frame_info *frame = get_current_frame ();
8106
8107 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8108 frame_pop (frame);
8109 /* frame_pop calls reinit_frame_cache as the last thing it
8110 does which means there's now no selected frame. */
8111 }
8112
8113 select_frame (get_current_frame ());
8114
8115 /* Set the current source location. */
8116 set_current_sal_from_frame (get_current_frame ());
8117 }
8118
8119 /* Look up the hook_stop and run it (CLI internally handles problem
8120 of stop_command's pre-hook not existing). */
8121 if (stop_command != NULL)
8122 {
8123 stop_context saved_context;
8124
8125 try
8126 {
8127 execute_cmd_pre_hook (stop_command);
8128 }
8129 catch (const gdb_exception &ex)
8130 {
8131 exception_fprintf (gdb_stderr, ex,
8132 "Error while running hook_stop:\n");
8133 }
8134
8135 /* If the stop hook resumes the target, then there's no point in
8136 trying to notify about the previous stop; its context is
8137 gone. Likewise if the command switches thread or inferior --
8138 the observers would print a stop for the wrong
8139 thread/inferior. */
8140 if (saved_context.changed ())
8141 return 1;
8142 }
8143
8144 /* Notify observers about the stop. This is where the interpreters
8145 print the stop event. */
8146 if (inferior_ptid != null_ptid)
8147 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8148 stop_print_frame);
8149 else
8150 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8151
8152 annotate_stopped ();
8153
8154 if (target_has_execution)
8155 {
8156 if (last.kind != TARGET_WAITKIND_SIGNALLED
8157 && last.kind != TARGET_WAITKIND_EXITED
8158 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8159 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8160 Delete any breakpoint that is to be deleted at the next stop. */
8161 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8162 }
8163
8164 /* Try to get rid of automatically added inferiors that are no
8165 longer needed. Keeping those around slows down things linearly.
8166 Note that this never removes the current inferior. */
8167 prune_inferiors ();
8168
8169 return 0;
8170 }
8171 \f
8172 int
8173 signal_stop_state (int signo)
8174 {
8175 return signal_stop[signo];
8176 }
8177
8178 int
8179 signal_print_state (int signo)
8180 {
8181 return signal_print[signo];
8182 }
8183
8184 int
8185 signal_pass_state (int signo)
8186 {
8187 return signal_program[signo];
8188 }
8189
8190 static void
8191 signal_cache_update (int signo)
8192 {
8193 if (signo == -1)
8194 {
8195 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8196 signal_cache_update (signo);
8197
8198 return;
8199 }
8200
8201 signal_pass[signo] = (signal_stop[signo] == 0
8202 && signal_print[signo] == 0
8203 && signal_program[signo] == 1
8204 && signal_catch[signo] == 0);
8205 }
8206
8207 int
8208 signal_stop_update (int signo, int state)
8209 {
8210 int ret = signal_stop[signo];
8211
8212 signal_stop[signo] = state;
8213 signal_cache_update (signo);
8214 return ret;
8215 }
8216
8217 int
8218 signal_print_update (int signo, int state)
8219 {
8220 int ret = signal_print[signo];
8221
8222 signal_print[signo] = state;
8223 signal_cache_update (signo);
8224 return ret;
8225 }
8226
8227 int
8228 signal_pass_update (int signo, int state)
8229 {
8230 int ret = signal_program[signo];
8231
8232 signal_program[signo] = state;
8233 signal_cache_update (signo);
8234 return ret;
8235 }
8236
8237 /* Update the global 'signal_catch' from INFO and notify the
8238 target. */
8239
8240 void
8241 signal_catch_update (const unsigned int *info)
8242 {
8243 int i;
8244
8245 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8246 signal_catch[i] = info[i] > 0;
8247 signal_cache_update (-1);
8248 target_pass_signals (signal_pass);
8249 }
8250
8251 static void
8252 sig_print_header (void)
8253 {
8254 printf_filtered (_("Signal Stop\tPrint\tPass "
8255 "to program\tDescription\n"));
8256 }
8257
8258 static void
8259 sig_print_info (enum gdb_signal oursig)
8260 {
8261 const char *name = gdb_signal_to_name (oursig);
8262 int name_padding = 13 - strlen (name);
8263
8264 if (name_padding <= 0)
8265 name_padding = 0;
8266
8267 printf_filtered ("%s", name);
8268 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8269 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8270 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8271 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8272 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8273 }
8274
8275 /* Specify how various signals in the inferior should be handled. */
8276
8277 static void
8278 handle_command (const char *args, int from_tty)
8279 {
8280 int digits, wordlen;
8281 int sigfirst, siglast;
8282 enum gdb_signal oursig;
8283 int allsigs;
8284
8285 if (args == NULL)
8286 {
8287 error_no_arg (_("signal to handle"));
8288 }
8289
8290 /* Allocate and zero an array of flags for which signals to handle. */
8291
8292 const size_t nsigs = GDB_SIGNAL_LAST;
8293 unsigned char sigs[nsigs] {};
8294
8295 /* Break the command line up into args. */
8296
8297 gdb_argv built_argv (args);
8298
8299 /* Walk through the args, looking for signal oursigs, signal names, and
8300 actions. Signal numbers and signal names may be interspersed with
8301 actions, with the actions being performed for all signals cumulatively
8302 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8303
8304 for (char *arg : built_argv)
8305 {
8306 wordlen = strlen (arg);
8307 for (digits = 0; isdigit (arg[digits]); digits++)
8308 {;
8309 }
8310 allsigs = 0;
8311 sigfirst = siglast = -1;
8312
8313 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8314 {
8315 /* Apply action to all signals except those used by the
8316 debugger. Silently skip those. */
8317 allsigs = 1;
8318 sigfirst = 0;
8319 siglast = nsigs - 1;
8320 }
8321 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8322 {
8323 SET_SIGS (nsigs, sigs, signal_stop);
8324 SET_SIGS (nsigs, sigs, signal_print);
8325 }
8326 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8327 {
8328 UNSET_SIGS (nsigs, sigs, signal_program);
8329 }
8330 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8331 {
8332 SET_SIGS (nsigs, sigs, signal_print);
8333 }
8334 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8335 {
8336 SET_SIGS (nsigs, sigs, signal_program);
8337 }
8338 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8339 {
8340 UNSET_SIGS (nsigs, sigs, signal_stop);
8341 }
8342 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8343 {
8344 SET_SIGS (nsigs, sigs, signal_program);
8345 }
8346 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8347 {
8348 UNSET_SIGS (nsigs, sigs, signal_print);
8349 UNSET_SIGS (nsigs, sigs, signal_stop);
8350 }
8351 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8352 {
8353 UNSET_SIGS (nsigs, sigs, signal_program);
8354 }
8355 else if (digits > 0)
8356 {
8357 /* It is numeric. The numeric signal refers to our own
8358 internal signal numbering from target.h, not to host/target
8359 signal number. This is a feature; users really should be
8360 using symbolic names anyway, and the common ones like
8361 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8362
8363 sigfirst = siglast = (int)
8364 gdb_signal_from_command (atoi (arg));
8365 if (arg[digits] == '-')
8366 {
8367 siglast = (int)
8368 gdb_signal_from_command (atoi (arg + digits + 1));
8369 }
8370 if (sigfirst > siglast)
8371 {
8372 /* Bet he didn't figure we'd think of this case... */
8373 std::swap (sigfirst, siglast);
8374 }
8375 }
8376 else
8377 {
8378 oursig = gdb_signal_from_name (arg);
8379 if (oursig != GDB_SIGNAL_UNKNOWN)
8380 {
8381 sigfirst = siglast = (int) oursig;
8382 }
8383 else
8384 {
8385 /* Not a number and not a recognized flag word => complain. */
8386 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8387 }
8388 }
8389
8390 /* If any signal numbers or symbol names were found, set flags for
8391 which signals to apply actions to. */
8392
8393 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8394 {
8395 switch ((enum gdb_signal) signum)
8396 {
8397 case GDB_SIGNAL_TRAP:
8398 case GDB_SIGNAL_INT:
8399 if (!allsigs && !sigs[signum])
8400 {
8401 if (query (_("%s is used by the debugger.\n\
8402 Are you sure you want to change it? "),
8403 gdb_signal_to_name ((enum gdb_signal) signum)))
8404 {
8405 sigs[signum] = 1;
8406 }
8407 else
8408 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8409 }
8410 break;
8411 case GDB_SIGNAL_0:
8412 case GDB_SIGNAL_DEFAULT:
8413 case GDB_SIGNAL_UNKNOWN:
8414 /* Make sure that "all" doesn't print these. */
8415 break;
8416 default:
8417 sigs[signum] = 1;
8418 break;
8419 }
8420 }
8421 }
8422
8423 for (int signum = 0; signum < nsigs; signum++)
8424 if (sigs[signum])
8425 {
8426 signal_cache_update (-1);
8427 target_pass_signals (signal_pass);
8428 target_program_signals (signal_program);
8429
8430 if (from_tty)
8431 {
8432 /* Show the results. */
8433 sig_print_header ();
8434 for (; signum < nsigs; signum++)
8435 if (sigs[signum])
8436 sig_print_info ((enum gdb_signal) signum);
8437 }
8438
8439 break;
8440 }
8441 }
8442
8443 /* Complete the "handle" command. */
8444
8445 static void
8446 handle_completer (struct cmd_list_element *ignore,
8447 completion_tracker &tracker,
8448 const char *text, const char *word)
8449 {
8450 static const char * const keywords[] =
8451 {
8452 "all",
8453 "stop",
8454 "ignore",
8455 "print",
8456 "pass",
8457 "nostop",
8458 "noignore",
8459 "noprint",
8460 "nopass",
8461 NULL,
8462 };
8463
8464 signal_completer (ignore, tracker, text, word);
8465 complete_on_enum (tracker, keywords, word, word);
8466 }
8467
8468 enum gdb_signal
8469 gdb_signal_from_command (int num)
8470 {
8471 if (num >= 1 && num <= 15)
8472 return (enum gdb_signal) num;
8473 error (_("Only signals 1-15 are valid as numeric signals.\n\
8474 Use \"info signals\" for a list of symbolic signals."));
8475 }
8476
8477 /* Print current contents of the tables set by the handle command.
8478 It is possible we should just be printing signals actually used
8479 by the current target (but for things to work right when switching
8480 targets, all signals should be in the signal tables). */
8481
8482 static void
8483 info_signals_command (const char *signum_exp, int from_tty)
8484 {
8485 enum gdb_signal oursig;
8486
8487 sig_print_header ();
8488
8489 if (signum_exp)
8490 {
8491 /* First see if this is a symbol name. */
8492 oursig = gdb_signal_from_name (signum_exp);
8493 if (oursig == GDB_SIGNAL_UNKNOWN)
8494 {
8495 /* No, try numeric. */
8496 oursig =
8497 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8498 }
8499 sig_print_info (oursig);
8500 return;
8501 }
8502
8503 printf_filtered ("\n");
8504 /* These ugly casts brought to you by the native VAX compiler. */
8505 for (oursig = GDB_SIGNAL_FIRST;
8506 (int) oursig < (int) GDB_SIGNAL_LAST;
8507 oursig = (enum gdb_signal) ((int) oursig + 1))
8508 {
8509 QUIT;
8510
8511 if (oursig != GDB_SIGNAL_UNKNOWN
8512 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8513 sig_print_info (oursig);
8514 }
8515
8516 printf_filtered (_("\nUse the \"handle\" command "
8517 "to change these tables.\n"));
8518 }
8519
8520 /* The $_siginfo convenience variable is a bit special. We don't know
8521 for sure the type of the value until we actually have a chance to
8522 fetch the data. The type can change depending on gdbarch, so it is
8523 also dependent on which thread you have selected.
8524
8525 1. making $_siginfo be an internalvar that creates a new value on
8526 access.
8527
8528 2. making the value of $_siginfo be an lval_computed value. */
8529
8530 /* This function implements the lval_computed support for reading a
8531 $_siginfo value. */
8532
8533 static void
8534 siginfo_value_read (struct value *v)
8535 {
8536 LONGEST transferred;
8537
8538 /* If we can access registers, so can we access $_siginfo. Likewise
8539 vice versa. */
8540 validate_registers_access ();
8541
8542 transferred =
8543 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8544 NULL,
8545 value_contents_all_raw (v),
8546 value_offset (v),
8547 TYPE_LENGTH (value_type (v)));
8548
8549 if (transferred != TYPE_LENGTH (value_type (v)))
8550 error (_("Unable to read siginfo"));
8551 }
8552
8553 /* This function implements the lval_computed support for writing a
8554 $_siginfo value. */
8555
8556 static void
8557 siginfo_value_write (struct value *v, struct value *fromval)
8558 {
8559 LONGEST transferred;
8560
8561 /* If we can access registers, so can we access $_siginfo. Likewise
8562 vice versa. */
8563 validate_registers_access ();
8564
8565 transferred = target_write (current_top_target (),
8566 TARGET_OBJECT_SIGNAL_INFO,
8567 NULL,
8568 value_contents_all_raw (fromval),
8569 value_offset (v),
8570 TYPE_LENGTH (value_type (fromval)));
8571
8572 if (transferred != TYPE_LENGTH (value_type (fromval)))
8573 error (_("Unable to write siginfo"));
8574 }
8575
8576 static const struct lval_funcs siginfo_value_funcs =
8577 {
8578 siginfo_value_read,
8579 siginfo_value_write
8580 };
8581
8582 /* Return a new value with the correct type for the siginfo object of
8583 the current thread using architecture GDBARCH. Return a void value
8584 if there's no object available. */
8585
8586 static struct value *
8587 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8588 void *ignore)
8589 {
8590 if (target_has_stack
8591 && inferior_ptid != null_ptid
8592 && gdbarch_get_siginfo_type_p (gdbarch))
8593 {
8594 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8595
8596 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8597 }
8598
8599 return allocate_value (builtin_type (gdbarch)->builtin_void);
8600 }
8601
8602 \f
8603 /* infcall_suspend_state contains state about the program itself like its
8604 registers and any signal it received when it last stopped.
8605 This state must be restored regardless of how the inferior function call
8606 ends (either successfully, or after it hits a breakpoint or signal)
8607 if the program is to properly continue where it left off. */
8608
8609 class infcall_suspend_state
8610 {
8611 public:
8612 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8613 once the inferior function call has finished. */
8614 infcall_suspend_state (struct gdbarch *gdbarch,
8615 const struct thread_info *tp,
8616 struct regcache *regcache)
8617 : m_thread_suspend (tp->suspend),
8618 m_registers (new readonly_detached_regcache (*regcache))
8619 {
8620 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8621
8622 if (gdbarch_get_siginfo_type_p (gdbarch))
8623 {
8624 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8625 size_t len = TYPE_LENGTH (type);
8626
8627 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8628
8629 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8630 siginfo_data.get (), 0, len) != len)
8631 {
8632 /* Errors ignored. */
8633 siginfo_data.reset (nullptr);
8634 }
8635 }
8636
8637 if (siginfo_data)
8638 {
8639 m_siginfo_gdbarch = gdbarch;
8640 m_siginfo_data = std::move (siginfo_data);
8641 }
8642 }
8643
8644 /* Return a pointer to the stored register state. */
8645
8646 readonly_detached_regcache *registers () const
8647 {
8648 return m_registers.get ();
8649 }
8650
8651 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8652
8653 void restore (struct gdbarch *gdbarch,
8654 struct thread_info *tp,
8655 struct regcache *regcache) const
8656 {
8657 tp->suspend = m_thread_suspend;
8658
8659 if (m_siginfo_gdbarch == gdbarch)
8660 {
8661 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8662
8663 /* Errors ignored. */
8664 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8665 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8666 }
8667
8668 /* The inferior can be gone if the user types "print exit(0)"
8669 (and perhaps other times). */
8670 if (target_has_execution)
8671 /* NB: The register write goes through to the target. */
8672 regcache->restore (registers ());
8673 }
8674
8675 private:
8676 /* How the current thread stopped before the inferior function call was
8677 executed. */
8678 struct thread_suspend_state m_thread_suspend;
8679
8680 /* The registers before the inferior function call was executed. */
8681 std::unique_ptr<readonly_detached_regcache> m_registers;
8682
8683 /* Format of SIGINFO_DATA or NULL if it is not present. */
8684 struct gdbarch *m_siginfo_gdbarch = nullptr;
8685
8686 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8687 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8688 content would be invalid. */
8689 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8690 };
8691
8692 infcall_suspend_state_up
8693 save_infcall_suspend_state ()
8694 {
8695 struct thread_info *tp = inferior_thread ();
8696 struct regcache *regcache = get_current_regcache ();
8697 struct gdbarch *gdbarch = regcache->arch ();
8698
8699 infcall_suspend_state_up inf_state
8700 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8701
8702 /* Having saved the current state, adjust the thread state, discarding
8703 any stop signal information. The stop signal is not useful when
8704 starting an inferior function call, and run_inferior_call will not use
8705 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8706 tp->suspend.stop_signal = GDB_SIGNAL_0;
8707
8708 return inf_state;
8709 }
8710
8711 /* Restore inferior session state to INF_STATE. */
8712
8713 void
8714 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8715 {
8716 struct thread_info *tp = inferior_thread ();
8717 struct regcache *regcache = get_current_regcache ();
8718 struct gdbarch *gdbarch = regcache->arch ();
8719
8720 inf_state->restore (gdbarch, tp, regcache);
8721 discard_infcall_suspend_state (inf_state);
8722 }
8723
8724 void
8725 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8726 {
8727 delete inf_state;
8728 }
8729
8730 readonly_detached_regcache *
8731 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8732 {
8733 return inf_state->registers ();
8734 }
8735
8736 /* infcall_control_state contains state regarding gdb's control of the
8737 inferior itself like stepping control. It also contains session state like
8738 the user's currently selected frame. */
8739
8740 struct infcall_control_state
8741 {
8742 struct thread_control_state thread_control;
8743 struct inferior_control_state inferior_control;
8744
8745 /* Other fields: */
8746 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8747 int stopped_by_random_signal = 0;
8748
8749 /* ID if the selected frame when the inferior function call was made. */
8750 struct frame_id selected_frame_id {};
8751 };
8752
8753 /* Save all of the information associated with the inferior<==>gdb
8754 connection. */
8755
8756 infcall_control_state_up
8757 save_infcall_control_state ()
8758 {
8759 infcall_control_state_up inf_status (new struct infcall_control_state);
8760 struct thread_info *tp = inferior_thread ();
8761 struct inferior *inf = current_inferior ();
8762
8763 inf_status->thread_control = tp->control;
8764 inf_status->inferior_control = inf->control;
8765
8766 tp->control.step_resume_breakpoint = NULL;
8767 tp->control.exception_resume_breakpoint = NULL;
8768
8769 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8770 chain. If caller's caller is walking the chain, they'll be happier if we
8771 hand them back the original chain when restore_infcall_control_state is
8772 called. */
8773 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8774
8775 /* Other fields: */
8776 inf_status->stop_stack_dummy = stop_stack_dummy;
8777 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8778
8779 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8780
8781 return inf_status;
8782 }
8783
8784 static void
8785 restore_selected_frame (const frame_id &fid)
8786 {
8787 frame_info *frame = frame_find_by_id (fid);
8788
8789 /* If inf_status->selected_frame_id is NULL, there was no previously
8790 selected frame. */
8791 if (frame == NULL)
8792 {
8793 warning (_("Unable to restore previously selected frame."));
8794 return;
8795 }
8796
8797 select_frame (frame);
8798 }
8799
8800 /* Restore inferior session state to INF_STATUS. */
8801
8802 void
8803 restore_infcall_control_state (struct infcall_control_state *inf_status)
8804 {
8805 struct thread_info *tp = inferior_thread ();
8806 struct inferior *inf = current_inferior ();
8807
8808 if (tp->control.step_resume_breakpoint)
8809 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8810
8811 if (tp->control.exception_resume_breakpoint)
8812 tp->control.exception_resume_breakpoint->disposition
8813 = disp_del_at_next_stop;
8814
8815 /* Handle the bpstat_copy of the chain. */
8816 bpstat_clear (&tp->control.stop_bpstat);
8817
8818 tp->control = inf_status->thread_control;
8819 inf->control = inf_status->inferior_control;
8820
8821 /* Other fields: */
8822 stop_stack_dummy = inf_status->stop_stack_dummy;
8823 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8824
8825 if (target_has_stack)
8826 {
8827 /* The point of the try/catch is that if the stack is clobbered,
8828 walking the stack might encounter a garbage pointer and
8829 error() trying to dereference it. */
8830 try
8831 {
8832 restore_selected_frame (inf_status->selected_frame_id);
8833 }
8834 catch (const gdb_exception_error &ex)
8835 {
8836 exception_fprintf (gdb_stderr, ex,
8837 "Unable to restore previously selected frame:\n");
8838 /* Error in restoring the selected frame. Select the
8839 innermost frame. */
8840 select_frame (get_current_frame ());
8841 }
8842 }
8843
8844 delete inf_status;
8845 }
8846
8847 void
8848 discard_infcall_control_state (struct infcall_control_state *inf_status)
8849 {
8850 if (inf_status->thread_control.step_resume_breakpoint)
8851 inf_status->thread_control.step_resume_breakpoint->disposition
8852 = disp_del_at_next_stop;
8853
8854 if (inf_status->thread_control.exception_resume_breakpoint)
8855 inf_status->thread_control.exception_resume_breakpoint->disposition
8856 = disp_del_at_next_stop;
8857
8858 /* See save_infcall_control_state for info on stop_bpstat. */
8859 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8860
8861 delete inf_status;
8862 }
8863 \f
8864 /* See infrun.h. */
8865
8866 void
8867 clear_exit_convenience_vars (void)
8868 {
8869 clear_internalvar (lookup_internalvar ("_exitsignal"));
8870 clear_internalvar (lookup_internalvar ("_exitcode"));
8871 }
8872 \f
8873
8874 /* User interface for reverse debugging:
8875 Set exec-direction / show exec-direction commands
8876 (returns error unless target implements to_set_exec_direction method). */
8877
8878 enum exec_direction_kind execution_direction = EXEC_FORWARD;
8879 static const char exec_forward[] = "forward";
8880 static const char exec_reverse[] = "reverse";
8881 static const char *exec_direction = exec_forward;
8882 static const char *const exec_direction_names[] = {
8883 exec_forward,
8884 exec_reverse,
8885 NULL
8886 };
8887
8888 static void
8889 set_exec_direction_func (const char *args, int from_tty,
8890 struct cmd_list_element *cmd)
8891 {
8892 if (target_can_execute_reverse)
8893 {
8894 if (!strcmp (exec_direction, exec_forward))
8895 execution_direction = EXEC_FORWARD;
8896 else if (!strcmp (exec_direction, exec_reverse))
8897 execution_direction = EXEC_REVERSE;
8898 }
8899 else
8900 {
8901 exec_direction = exec_forward;
8902 error (_("Target does not support this operation."));
8903 }
8904 }
8905
8906 static void
8907 show_exec_direction_func (struct ui_file *out, int from_tty,
8908 struct cmd_list_element *cmd, const char *value)
8909 {
8910 switch (execution_direction) {
8911 case EXEC_FORWARD:
8912 fprintf_filtered (out, _("Forward.\n"));
8913 break;
8914 case EXEC_REVERSE:
8915 fprintf_filtered (out, _("Reverse.\n"));
8916 break;
8917 default:
8918 internal_error (__FILE__, __LINE__,
8919 _("bogus execution_direction value: %d"),
8920 (int) execution_direction);
8921 }
8922 }
8923
8924 static void
8925 show_schedule_multiple (struct ui_file *file, int from_tty,
8926 struct cmd_list_element *c, const char *value)
8927 {
8928 fprintf_filtered (file, _("Resuming the execution of threads "
8929 "of all processes is %s.\n"), value);
8930 }
8931
8932 /* Implementation of `siginfo' variable. */
8933
8934 static const struct internalvar_funcs siginfo_funcs =
8935 {
8936 siginfo_make_value,
8937 NULL,
8938 NULL
8939 };
8940
8941 /* Callback for infrun's target events source. This is marked when a
8942 thread has a pending status to process. */
8943
8944 static void
8945 infrun_async_inferior_event_handler (gdb_client_data data)
8946 {
8947 inferior_event_handler (INF_REG_EVENT, NULL);
8948 }
8949
8950 void
8951 _initialize_infrun (void)
8952 {
8953 struct cmd_list_element *c;
8954
8955 /* Register extra event sources in the event loop. */
8956 infrun_async_inferior_event_token
8957 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8958
8959 add_info ("signals", info_signals_command, _("\
8960 What debugger does when program gets various signals.\n\
8961 Specify a signal as argument to print info on that signal only."));
8962 add_info_alias ("handle", "signals", 0);
8963
8964 c = add_com ("handle", class_run, handle_command, _("\
8965 Specify how to handle signals.\n\
8966 Usage: handle SIGNAL [ACTIONS]\n\
8967 Args are signals and actions to apply to those signals.\n\
8968 If no actions are specified, the current settings for the specified signals\n\
8969 will be displayed instead.\n\
8970 \n\
8971 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8972 from 1-15 are allowed for compatibility with old versions of GDB.\n\
8973 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8974 The special arg \"all\" is recognized to mean all signals except those\n\
8975 used by the debugger, typically SIGTRAP and SIGINT.\n\
8976 \n\
8977 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
8978 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8979 Stop means reenter debugger if this signal happens (implies print).\n\
8980 Print means print a message if this signal happens.\n\
8981 Pass means let program see this signal; otherwise program doesn't know.\n\
8982 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
8983 Pass and Stop may be combined.\n\
8984 \n\
8985 Multiple signals may be specified. Signal numbers and signal names\n\
8986 may be interspersed with actions, with the actions being performed for\n\
8987 all signals cumulatively specified."));
8988 set_cmd_completer (c, handle_completer);
8989
8990 if (!dbx_commands)
8991 stop_command = add_cmd ("stop", class_obscure,
8992 not_just_help_class_command, _("\
8993 There is no `stop' command, but you can set a hook on `stop'.\n\
8994 This allows you to set a list of commands to be run each time execution\n\
8995 of the program stops."), &cmdlist);
8996
8997 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
8998 Set inferior debugging."), _("\
8999 Show inferior debugging."), _("\
9000 When non-zero, inferior specific debugging is enabled."),
9001 NULL,
9002 show_debug_infrun,
9003 &setdebuglist, &showdebuglist);
9004
9005 add_setshow_boolean_cmd ("displaced", class_maintenance,
9006 &debug_displaced, _("\
9007 Set displaced stepping debugging."), _("\
9008 Show displaced stepping debugging."), _("\
9009 When non-zero, displaced stepping specific debugging is enabled."),
9010 NULL,
9011 show_debug_displaced,
9012 &setdebuglist, &showdebuglist);
9013
9014 add_setshow_boolean_cmd ("non-stop", no_class,
9015 &non_stop_1, _("\
9016 Set whether gdb controls the inferior in non-stop mode."), _("\
9017 Show whether gdb controls the inferior in non-stop mode."), _("\
9018 When debugging a multi-threaded program and this setting is\n\
9019 off (the default, also called all-stop mode), when one thread stops\n\
9020 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9021 all other threads in the program while you interact with the thread of\n\
9022 interest. When you continue or step a thread, you can allow the other\n\
9023 threads to run, or have them remain stopped, but while you inspect any\n\
9024 thread's state, all threads stop.\n\
9025 \n\
9026 In non-stop mode, when one thread stops, other threads can continue\n\
9027 to run freely. You'll be able to step each thread independently,\n\
9028 leave it stopped or free to run as needed."),
9029 set_non_stop,
9030 show_non_stop,
9031 &setlist,
9032 &showlist);
9033
9034 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9035 {
9036 signal_stop[i] = 1;
9037 signal_print[i] = 1;
9038 signal_program[i] = 1;
9039 signal_catch[i] = 0;
9040 }
9041
9042 /* Signals caused by debugger's own actions should not be given to
9043 the program afterwards.
9044
9045 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9046 explicitly specifies that it should be delivered to the target
9047 program. Typically, that would occur when a user is debugging a
9048 target monitor on a simulator: the target monitor sets a
9049 breakpoint; the simulator encounters this breakpoint and halts
9050 the simulation handing control to GDB; GDB, noting that the stop
9051 address doesn't map to any known breakpoint, returns control back
9052 to the simulator; the simulator then delivers the hardware
9053 equivalent of a GDB_SIGNAL_TRAP to the program being
9054 debugged. */
9055 signal_program[GDB_SIGNAL_TRAP] = 0;
9056 signal_program[GDB_SIGNAL_INT] = 0;
9057
9058 /* Signals that are not errors should not normally enter the debugger. */
9059 signal_stop[GDB_SIGNAL_ALRM] = 0;
9060 signal_print[GDB_SIGNAL_ALRM] = 0;
9061 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9062 signal_print[GDB_SIGNAL_VTALRM] = 0;
9063 signal_stop[GDB_SIGNAL_PROF] = 0;
9064 signal_print[GDB_SIGNAL_PROF] = 0;
9065 signal_stop[GDB_SIGNAL_CHLD] = 0;
9066 signal_print[GDB_SIGNAL_CHLD] = 0;
9067 signal_stop[GDB_SIGNAL_IO] = 0;
9068 signal_print[GDB_SIGNAL_IO] = 0;
9069 signal_stop[GDB_SIGNAL_POLL] = 0;
9070 signal_print[GDB_SIGNAL_POLL] = 0;
9071 signal_stop[GDB_SIGNAL_URG] = 0;
9072 signal_print[GDB_SIGNAL_URG] = 0;
9073 signal_stop[GDB_SIGNAL_WINCH] = 0;
9074 signal_print[GDB_SIGNAL_WINCH] = 0;
9075 signal_stop[GDB_SIGNAL_PRIO] = 0;
9076 signal_print[GDB_SIGNAL_PRIO] = 0;
9077
9078 /* These signals are used internally by user-level thread
9079 implementations. (See signal(5) on Solaris.) Like the above
9080 signals, a healthy program receives and handles them as part of
9081 its normal operation. */
9082 signal_stop[GDB_SIGNAL_LWP] = 0;
9083 signal_print[GDB_SIGNAL_LWP] = 0;
9084 signal_stop[GDB_SIGNAL_WAITING] = 0;
9085 signal_print[GDB_SIGNAL_WAITING] = 0;
9086 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9087 signal_print[GDB_SIGNAL_CANCEL] = 0;
9088 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9089 signal_print[GDB_SIGNAL_LIBRT] = 0;
9090
9091 /* Update cached state. */
9092 signal_cache_update (-1);
9093
9094 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9095 &stop_on_solib_events, _("\
9096 Set stopping for shared library events."), _("\
9097 Show stopping for shared library events."), _("\
9098 If nonzero, gdb will give control to the user when the dynamic linker\n\
9099 notifies gdb of shared library events. The most common event of interest\n\
9100 to the user would be loading/unloading of a new library."),
9101 set_stop_on_solib_events,
9102 show_stop_on_solib_events,
9103 &setlist, &showlist);
9104
9105 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9106 follow_fork_mode_kind_names,
9107 &follow_fork_mode_string, _("\
9108 Set debugger response to a program call of fork or vfork."), _("\
9109 Show debugger response to a program call of fork or vfork."), _("\
9110 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9111 parent - the original process is debugged after a fork\n\
9112 child - the new process is debugged after a fork\n\
9113 The unfollowed process will continue to run.\n\
9114 By default, the debugger will follow the parent process."),
9115 NULL,
9116 show_follow_fork_mode_string,
9117 &setlist, &showlist);
9118
9119 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9120 follow_exec_mode_names,
9121 &follow_exec_mode_string, _("\
9122 Set debugger response to a program call of exec."), _("\
9123 Show debugger response to a program call of exec."), _("\
9124 An exec call replaces the program image of a process.\n\
9125 \n\
9126 follow-exec-mode can be:\n\
9127 \n\
9128 new - the debugger creates a new inferior and rebinds the process\n\
9129 to this new inferior. The program the process was running before\n\
9130 the exec call can be restarted afterwards by restarting the original\n\
9131 inferior.\n\
9132 \n\
9133 same - the debugger keeps the process bound to the same inferior.\n\
9134 The new executable image replaces the previous executable loaded in\n\
9135 the inferior. Restarting the inferior after the exec call restarts\n\
9136 the executable the process was running after the exec call.\n\
9137 \n\
9138 By default, the debugger will use the same inferior."),
9139 NULL,
9140 show_follow_exec_mode_string,
9141 &setlist, &showlist);
9142
9143 add_setshow_enum_cmd ("scheduler-locking", class_run,
9144 scheduler_enums, &scheduler_mode, _("\
9145 Set mode for locking scheduler during execution."), _("\
9146 Show mode for locking scheduler during execution."), _("\
9147 off == no locking (threads may preempt at any time)\n\
9148 on == full locking (no thread except the current thread may run)\n\
9149 This applies to both normal execution and replay mode.\n\
9150 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9151 In this mode, other threads may run during other commands.\n\
9152 This applies to both normal execution and replay mode.\n\
9153 replay == scheduler locked in replay mode and unlocked during normal execution."),
9154 set_schedlock_func, /* traps on target vector */
9155 show_scheduler_mode,
9156 &setlist, &showlist);
9157
9158 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9159 Set mode for resuming threads of all processes."), _("\
9160 Show mode for resuming threads of all processes."), _("\
9161 When on, execution commands (such as 'continue' or 'next') resume all\n\
9162 threads of all processes. When off (which is the default), execution\n\
9163 commands only resume the threads of the current process. The set of\n\
9164 threads that are resumed is further refined by the scheduler-locking\n\
9165 mode (see help set scheduler-locking)."),
9166 NULL,
9167 show_schedule_multiple,
9168 &setlist, &showlist);
9169
9170 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9171 Set mode of the step operation."), _("\
9172 Show mode of the step operation."), _("\
9173 When set, doing a step over a function without debug line information\n\
9174 will stop at the first instruction of that function. Otherwise, the\n\
9175 function is skipped and the step command stops at a different source line."),
9176 NULL,
9177 show_step_stop_if_no_debug,
9178 &setlist, &showlist);
9179
9180 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9181 &can_use_displaced_stepping, _("\
9182 Set debugger's willingness to use displaced stepping."), _("\
9183 Show debugger's willingness to use displaced stepping."), _("\
9184 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9185 supported by the target architecture. If off, gdb will not use displaced\n\
9186 stepping to step over breakpoints, even if such is supported by the target\n\
9187 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9188 if the target architecture supports it and non-stop mode is active, but will not\n\
9189 use it in all-stop mode (see help set non-stop)."),
9190 NULL,
9191 show_can_use_displaced_stepping,
9192 &setlist, &showlist);
9193
9194 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9195 &exec_direction, _("Set direction of execution.\n\
9196 Options are 'forward' or 'reverse'."),
9197 _("Show direction of execution (forward/reverse)."),
9198 _("Tells gdb whether to execute forward or backward."),
9199 set_exec_direction_func, show_exec_direction_func,
9200 &setlist, &showlist);
9201
9202 /* Set/show detach-on-fork: user-settable mode. */
9203
9204 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9205 Set whether gdb will detach the child of a fork."), _("\
9206 Show whether gdb will detach the child of a fork."), _("\
9207 Tells gdb whether to detach the child of a fork."),
9208 NULL, NULL, &setlist, &showlist);
9209
9210 /* Set/show disable address space randomization mode. */
9211
9212 add_setshow_boolean_cmd ("disable-randomization", class_support,
9213 &disable_randomization, _("\
9214 Set disabling of debuggee's virtual address space randomization."), _("\
9215 Show disabling of debuggee's virtual address space randomization."), _("\
9216 When this mode is on (which is the default), randomization of the virtual\n\
9217 address space is disabled. Standalone programs run with the randomization\n\
9218 enabled by default on some platforms."),
9219 &set_disable_randomization,
9220 &show_disable_randomization,
9221 &setlist, &showlist);
9222
9223 /* ptid initializations */
9224 inferior_ptid = null_ptid;
9225 target_last_wait_ptid = minus_one_ptid;
9226
9227 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9228 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9229 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9230 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9231
9232 /* Explicitly create without lookup, since that tries to create a
9233 value with a void typed value, and when we get here, gdbarch
9234 isn't initialized yet. At this point, we're quite sure there
9235 isn't another convenience variable of the same name. */
9236 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9237
9238 add_setshow_boolean_cmd ("observer", no_class,
9239 &observer_mode_1, _("\
9240 Set whether gdb controls the inferior in observer mode."), _("\
9241 Show whether gdb controls the inferior in observer mode."), _("\
9242 In observer mode, GDB can get data from the inferior, but not\n\
9243 affect its execution. Registers and memory may not be changed,\n\
9244 breakpoints may not be set, and the program cannot be interrupted\n\
9245 or signalled."),
9246 set_observer_mode,
9247 show_observer_mode,
9248 &setlist,
9249 &showlist);
9250 }
This page took 0.293815 seconds and 4 git commands to generate.