jit: make gdb_symtab::blocks an std::forward_list
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observable.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdbsupport/gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44 #include <forward_list>
45
46 static std::string jit_reader_dir;
47
48 static const struct objfile_data *jit_objfile_data;
49
50 static const char *const jit_break_name = "__jit_debug_register_code";
51
52 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
53
54 static void jit_inferior_init (struct gdbarch *gdbarch);
55 static void jit_inferior_exit_hook (struct inferior *inf);
56
57 /* An unwinder is registered for every gdbarch. This key is used to
58 remember if the unwinder has been registered for a particular
59 gdbarch. */
60
61 static struct gdbarch_data *jit_gdbarch_data;
62
63 /* Non-zero if we want to see trace of jit level stuff. */
64
65 static unsigned int jit_debug = 0;
66
67 static void
68 show_jit_debug (struct ui_file *file, int from_tty,
69 struct cmd_list_element *c, const char *value)
70 {
71 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
72 }
73
74 struct target_buffer
75 {
76 CORE_ADDR base;
77 ULONGEST size;
78 };
79
80 /* Opening the file is a no-op. */
81
82 static void *
83 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
84 {
85 return open_closure;
86 }
87
88 /* Closing the file is just freeing the base/size pair on our side. */
89
90 static int
91 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
92 {
93 xfree (stream);
94
95 /* Zero means success. */
96 return 0;
97 }
98
99 /* For reading the file, we just need to pass through to target_read_memory and
100 fix up the arguments and return values. */
101
102 static file_ptr
103 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
104 file_ptr nbytes, file_ptr offset)
105 {
106 int err;
107 struct target_buffer *buffer = (struct target_buffer *) stream;
108
109 /* If this read will read all of the file, limit it to just the rest. */
110 if (offset + nbytes > buffer->size)
111 nbytes = buffer->size - offset;
112
113 /* If there are no more bytes left, we've reached EOF. */
114 if (nbytes == 0)
115 return 0;
116
117 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
118 if (err)
119 return -1;
120
121 return nbytes;
122 }
123
124 /* For statting the file, we only support the st_size attribute. */
125
126 static int
127 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
128 {
129 struct target_buffer *buffer = (struct target_buffer*) stream;
130
131 memset (sb, 0, sizeof (struct stat));
132 sb->st_size = buffer->size;
133 return 0;
134 }
135
136 /* Open a BFD from the target's memory. */
137
138 static gdb_bfd_ref_ptr
139 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
140 {
141 struct target_buffer *buffer = XNEW (struct target_buffer);
142
143 buffer->base = addr;
144 buffer->size = size;
145 return gdb_bfd_openr_iovec ("<in-memory>", target,
146 mem_bfd_iovec_open,
147 buffer,
148 mem_bfd_iovec_pread,
149 mem_bfd_iovec_close,
150 mem_bfd_iovec_stat);
151 }
152
153 struct jit_reader
154 {
155 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
156 : functions (f), handle (std::move (h))
157 {
158 }
159
160 ~jit_reader ()
161 {
162 functions->destroy (functions);
163 }
164
165 DISABLE_COPY_AND_ASSIGN (jit_reader);
166
167 struct gdb_reader_funcs *functions;
168 gdb_dlhandle_up handle;
169 };
170
171 /* One reader that has been loaded successfully, and can potentially be used to
172 parse debug info. */
173
174 static struct jit_reader *loaded_jit_reader = NULL;
175
176 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
177 static const char *reader_init_fn_sym = "gdb_init_reader";
178
179 /* Try to load FILE_NAME as a JIT debug info reader. */
180
181 static struct jit_reader *
182 jit_reader_load (const char *file_name)
183 {
184 reader_init_fn_type *init_fn;
185 struct gdb_reader_funcs *funcs = NULL;
186
187 if (jit_debug)
188 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
189 file_name);
190 gdb_dlhandle_up so = gdb_dlopen (file_name);
191
192 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
193 if (!init_fn)
194 error (_("Could not locate initialization function: %s."),
195 reader_init_fn_sym);
196
197 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
198 error (_("Reader not GPL compatible."));
199
200 funcs = init_fn ();
201 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
202 error (_("Reader version does not match GDB version."));
203
204 return new jit_reader (funcs, std::move (so));
205 }
206
207 /* Provides the jit-reader-load command. */
208
209 static void
210 jit_reader_load_command (const char *args, int from_tty)
211 {
212 if (args == NULL)
213 error (_("No reader name provided."));
214 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
215
216 if (loaded_jit_reader != NULL)
217 error (_("JIT reader already loaded. Run jit-reader-unload first."));
218
219 if (!IS_ABSOLUTE_PATH (file.get ()))
220 file.reset (xstrprintf ("%s%s%s", jit_reader_dir.c_str (), SLASH_STRING,
221 file.get ()));
222
223 loaded_jit_reader = jit_reader_load (file.get ());
224 reinit_frame_cache ();
225 jit_inferior_created_hook ();
226 }
227
228 /* Provides the jit-reader-unload command. */
229
230 static void
231 jit_reader_unload_command (const char *args, int from_tty)
232 {
233 if (!loaded_jit_reader)
234 error (_("No JIT reader loaded."));
235
236 reinit_frame_cache ();
237 jit_inferior_exit_hook (current_inferior ());
238
239 delete loaded_jit_reader;
240 loaded_jit_reader = NULL;
241 }
242
243 /* Per-program space structure recording which objfile has the JIT
244 symbols. */
245
246 struct jit_program_space_data
247 {
248 /* The objfile. This is NULL if no objfile holds the JIT
249 symbols. */
250
251 struct objfile *objfile = nullptr;
252
253 /* If this program space has __jit_debug_register_code, this is the
254 cached address from the minimal symbol. This is used to detect
255 relocations requiring the breakpoint to be re-created. */
256
257 CORE_ADDR cached_code_address = 0;
258
259 /* This is the JIT event breakpoint, or NULL if it has not been
260 set. */
261
262 struct breakpoint *jit_breakpoint = nullptr;
263 };
264
265 static program_space_key<jit_program_space_data> jit_program_space_key;
266
267 /* Per-objfile structure recording the addresses in the program space.
268 This object serves two purposes: for ordinary objfiles, it may
269 cache some symbols related to the JIT interface; and for
270 JIT-created objfiles, it holds some information about the
271 jit_code_entry. */
272
273 struct jit_objfile_data
274 {
275 /* Symbol for __jit_debug_register_code. */
276 struct minimal_symbol *register_code;
277
278 /* Symbol for __jit_debug_descriptor. */
279 struct minimal_symbol *descriptor;
280
281 /* Address of struct jit_code_entry in this objfile. This is only
282 non-zero for objfiles that represent code created by the JIT. */
283 CORE_ADDR addr;
284 };
285
286 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
287 yet, make a new structure and attach it. */
288
289 static struct jit_objfile_data *
290 get_jit_objfile_data (struct objfile *objf)
291 {
292 struct jit_objfile_data *objf_data;
293
294 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
295 if (objf_data == NULL)
296 {
297 objf_data = XCNEW (struct jit_objfile_data);
298 set_objfile_data (objf, jit_objfile_data, objf_data);
299 }
300
301 return objf_data;
302 }
303
304 /* Remember OBJFILE has been created for struct jit_code_entry located
305 at inferior address ENTRY. */
306
307 static void
308 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
309 {
310 struct jit_objfile_data *objf_data;
311
312 objf_data = get_jit_objfile_data (objfile);
313 objf_data->addr = entry;
314 }
315
316 /* Return jit_program_space_data for current program space. Allocate
317 if not already present. */
318
319 static struct jit_program_space_data *
320 get_jit_program_space_data ()
321 {
322 struct jit_program_space_data *ps_data;
323
324 ps_data = jit_program_space_key.get (current_program_space);
325 if (ps_data == NULL)
326 ps_data = jit_program_space_key.emplace (current_program_space);
327 return ps_data;
328 }
329
330 /* Helper function for reading the global JIT descriptor from remote
331 memory. Returns 1 if all went well, 0 otherwise. */
332
333 static int
334 jit_read_descriptor (struct gdbarch *gdbarch,
335 struct jit_descriptor *descriptor,
336 struct jit_program_space_data *ps_data)
337 {
338 int err;
339 struct type *ptr_type;
340 int ptr_size;
341 int desc_size;
342 gdb_byte *desc_buf;
343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
344 struct jit_objfile_data *objf_data;
345
346 if (ps_data->objfile == NULL)
347 return 0;
348 objf_data = get_jit_objfile_data (ps_data->objfile);
349 if (objf_data->descriptor == NULL)
350 return 0;
351
352 if (jit_debug)
353 fprintf_unfiltered (gdb_stdlog,
354 "jit_read_descriptor, descriptor_addr = %s\n",
355 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
356 objf_data->descriptor)));
357
358 /* Figure out how big the descriptor is on the remote and how to read it. */
359 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
360 ptr_size = TYPE_LENGTH (ptr_type);
361 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
362 desc_buf = (gdb_byte *) alloca (desc_size);
363
364 /* Read the descriptor. */
365 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
366 objf_data->descriptor),
367 desc_buf, desc_size);
368 if (err)
369 {
370 printf_unfiltered (_("Unable to read JIT descriptor from "
371 "remote memory\n"));
372 return 0;
373 }
374
375 /* Fix the endianness to match the host. */
376 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
377 descriptor->action_flag =
378 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
379 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
380 descriptor->first_entry =
381 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
382
383 return 1;
384 }
385
386 /* Helper function for reading a JITed code entry from remote memory. */
387
388 static void
389 jit_read_code_entry (struct gdbarch *gdbarch,
390 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
391 {
392 int err, off;
393 struct type *ptr_type;
394 int ptr_size;
395 int entry_size;
396 int align_bytes;
397 gdb_byte *entry_buf;
398 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
399
400 /* Figure out how big the entry is on the remote and how to read it. */
401 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
402 ptr_size = TYPE_LENGTH (ptr_type);
403
404 /* Figure out where the uint64_t value will be. */
405 align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
406 off = 3 * ptr_size;
407 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
408
409 entry_size = off + 8; /* Three pointers and one 64-bit int. */
410 entry_buf = (gdb_byte *) alloca (entry_size);
411
412 /* Read the entry. */
413 err = target_read_memory (code_addr, entry_buf, entry_size);
414 if (err)
415 error (_("Unable to read JIT code entry from remote memory!"));
416
417 /* Fix the endianness to match the host. */
418 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
419 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
420 code_entry->prev_entry =
421 extract_typed_address (&entry_buf[ptr_size], ptr_type);
422 code_entry->symfile_addr =
423 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
424 code_entry->symfile_size =
425 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
426 }
427
428 /* Proxy object for building a block. */
429
430 struct gdb_block
431 {
432 gdb_block (gdb_block *parent, CORE_ADDR begin, CORE_ADDR end,
433 const char *name)
434 : parent (parent),
435 begin (begin),
436 end (end),
437 name (name != nullptr ? xstrdup (name) : nullptr)
438 {}
439
440 /* The parent of this block. */
441 struct gdb_block *parent;
442
443 /* Points to the "real" block that is being built out of this
444 instance. This block will be added to a blockvector, which will
445 then be added to a symtab. */
446 struct block *real_block = nullptr;
447
448 /* The first and last code address corresponding to this block. */
449 CORE_ADDR begin, end;
450
451 /* The name of this block (if any). If this is non-NULL, the
452 FUNCTION symbol symbol is set to this value. */
453 gdb::unique_xmalloc_ptr<char> name;
454 };
455
456 /* Proxy object for building a symtab. */
457
458 struct gdb_symtab
459 {
460 explicit gdb_symtab (const char *file_name)
461 : file_name (file_name != nullptr ? file_name : "")
462 {}
463
464 /* The list of blocks in this symtab. These will eventually be
465 converted to real blocks.
466
467 This is specifically a linked list, instead of, for example, a vector,
468 because the pointers are returned to the user's debug info reader. So
469 it's important that the objects don't change location during their
470 lifetime (which would happen with a vector of objects getting resized). */
471 std::forward_list<gdb_block> blocks;
472
473 /* The number of blocks inserted. */
474 int nblocks = 0;
475
476 /* A mapping between line numbers to PC. */
477 gdb::unique_xmalloc_ptr<struct linetable> linetable;
478
479 /* The source file for this symtab. */
480 std::string file_name;
481 };
482
483 /* Proxy object for building an object. */
484
485 struct gdb_object
486 {
487 /* Symtabs of this object.
488
489 This is specifically a linked list, instead of, for example, a vector,
490 because the pointers are returned to the user's debug info reader. So
491 it's important that the objects don't change location during their
492 lifetime (which would happen with a vector of objects getting resized). */
493 std::forward_list<gdb_symtab> symtabs;
494 };
495
496 /* The type of the `private' data passed around by the callback
497 functions. */
498
499 typedef CORE_ADDR jit_dbg_reader_data;
500
501 /* The reader calls into this function to read data off the targets
502 address space. */
503
504 static enum gdb_status
505 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
506 {
507 int result = target_read_memory ((CORE_ADDR) target_mem,
508 (gdb_byte *) gdb_buf, len);
509 if (result == 0)
510 return GDB_SUCCESS;
511 else
512 return GDB_FAIL;
513 }
514
515 /* The reader calls into this function to create a new gdb_object
516 which it can then pass around to the other callbacks. Right now,
517 all that is required is allocating the memory. */
518
519 static struct gdb_object *
520 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
521 {
522 /* CB is not required right now, but sometime in the future we might
523 need a handle to it, and we'd like to do that without breaking
524 the ABI. */
525 return new gdb_object;
526 }
527
528 /* Readers call into this function to open a new gdb_symtab, which,
529 again, is passed around to other callbacks. */
530
531 static struct gdb_symtab *
532 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
533 struct gdb_object *object,
534 const char *file_name)
535 {
536 /* CB stays unused. See comment in jit_object_open_impl. */
537
538 object->symtabs.emplace_front (file_name);
539 return &object->symtabs.front ();
540 }
541
542 /* Called by readers to open a new gdb_block. This function also
543 inserts the new gdb_block in the correct place in the corresponding
544 gdb_symtab. */
545
546 static struct gdb_block *
547 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
548 struct gdb_symtab *symtab, struct gdb_block *parent,
549 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
550 {
551 /* Place the block at the beginning of the list, it will be sorted when the
552 symtab is finalized. */
553 symtab->blocks.emplace_front (parent, begin, end, name);
554 symtab->nblocks++;
555
556 return &symtab->blocks.front ();
557 }
558
559 /* Readers call this to add a line mapping (from PC to line number) to
560 a gdb_symtab. */
561
562 static void
563 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
564 struct gdb_symtab *stab, int nlines,
565 struct gdb_line_mapping *map)
566 {
567 int i;
568 int alloc_len;
569
570 if (nlines < 1)
571 return;
572
573 alloc_len = sizeof (struct linetable)
574 + (nlines - 1) * sizeof (struct linetable_entry);
575 stab->linetable.reset (XNEWVAR (struct linetable, alloc_len));
576 stab->linetable->nitems = nlines;
577 for (i = 0; i < nlines; i++)
578 {
579 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
580 stab->linetable->item[i].line = map[i].line;
581 }
582 }
583
584 /* Called by readers to close a gdb_symtab. Does not need to do
585 anything as of now. */
586
587 static void
588 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
589 struct gdb_symtab *stab)
590 {
591 /* Right now nothing needs to be done here. We may need to do some
592 cleanup here in the future (again, without breaking the plugin
593 ABI). */
594 }
595
596 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
597
598 static void
599 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
600 {
601 struct compunit_symtab *cust;
602 size_t blockvector_size;
603 CORE_ADDR begin, end;
604 struct blockvector *bv;
605
606 int actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
607
608 /* Sort the blocks in the order they should appear in the blockvector. */
609 stab->blocks.sort([] (const gdb_block &a, const gdb_block &b)
610 {
611 if (a.begin != b.begin)
612 return a.begin < b.begin;
613
614 return a.end > b.end;
615 });
616
617 cust = allocate_compunit_symtab (objfile, stab->file_name.c_str ());
618 allocate_symtab (cust, stab->file_name.c_str ());
619 add_compunit_symtab_to_objfile (cust);
620
621 /* JIT compilers compile in memory. */
622 COMPUNIT_DIRNAME (cust) = NULL;
623
624 /* Copy over the linetable entry if one was provided. */
625 if (stab->linetable)
626 {
627 size_t size = ((stab->linetable->nitems - 1)
628 * sizeof (struct linetable_entry)
629 + sizeof (struct linetable));
630 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
631 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
632 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)),
633 stab->linetable.get (), size);
634 }
635
636 blockvector_size = (sizeof (struct blockvector)
637 + (actual_nblocks - 1) * sizeof (struct block *));
638 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
639 blockvector_size);
640 COMPUNIT_BLOCKVECTOR (cust) = bv;
641
642 /* At the end of this function, (begin, end) will contain the PC range this
643 entire blockvector spans. */
644 BLOCKVECTOR_MAP (bv) = NULL;
645 begin = stab->blocks.front ().begin;
646 end = stab->blocks.front ().end;
647 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
648
649 /* First run over all the gdb_block objects, creating a real block
650 object for each. Simultaneously, keep setting the real_block
651 fields. */
652 int block_idx = FIRST_LOCAL_BLOCK;
653 for (gdb_block &gdb_block_iter : stab->blocks)
654 {
655 struct block *new_block = allocate_block (&objfile->objfile_obstack);
656 struct symbol *block_name = allocate_symbol (objfile);
657 struct type *block_type = arch_type (get_objfile_arch (objfile),
658 TYPE_CODE_VOID,
659 TARGET_CHAR_BIT,
660 "void");
661
662 BLOCK_MULTIDICT (new_block)
663 = mdict_create_linear (&objfile->objfile_obstack, NULL);
664 /* The address range. */
665 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter.begin;
666 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter.end;
667
668 /* The name. */
669 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
670 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
671 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
672 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
673 SYMBOL_BLOCK_VALUE (block_name) = new_block;
674
675 block_name->name = obstack_strdup (&objfile->objfile_obstack,
676 gdb_block_iter.name.get ());
677
678 BLOCK_FUNCTION (new_block) = block_name;
679
680 BLOCKVECTOR_BLOCK (bv, block_idx) = new_block;
681 if (begin > BLOCK_START (new_block))
682 begin = BLOCK_START (new_block);
683 if (end < BLOCK_END (new_block))
684 end = BLOCK_END (new_block);
685
686 gdb_block_iter.real_block = new_block;
687
688 block_idx++;
689 }
690
691 /* Now add the special blocks. */
692 struct block *block_iter = NULL;
693 for (enum block_enum i : { GLOBAL_BLOCK, STATIC_BLOCK })
694 {
695 struct block *new_block;
696
697 new_block = (i == GLOBAL_BLOCK
698 ? allocate_global_block (&objfile->objfile_obstack)
699 : allocate_block (&objfile->objfile_obstack));
700 BLOCK_MULTIDICT (new_block)
701 = mdict_create_linear (&objfile->objfile_obstack, NULL);
702 BLOCK_SUPERBLOCK (new_block) = block_iter;
703 block_iter = new_block;
704
705 BLOCK_START (new_block) = (CORE_ADDR) begin;
706 BLOCK_END (new_block) = (CORE_ADDR) end;
707
708 BLOCKVECTOR_BLOCK (bv, i) = new_block;
709
710 if (i == GLOBAL_BLOCK)
711 set_block_compunit_symtab (new_block, cust);
712 }
713
714 /* Fill up the superblock fields for the real blocks, using the
715 real_block fields populated earlier. */
716 for (gdb_block &gdb_block_iter : stab->blocks)
717 {
718 if (gdb_block_iter.parent != NULL)
719 {
720 /* If the plugin specifically mentioned a parent block, we
721 use that. */
722 BLOCK_SUPERBLOCK (gdb_block_iter.real_block) =
723 gdb_block_iter.parent->real_block;
724 }
725 else
726 {
727 /* And if not, we set a default parent block. */
728 BLOCK_SUPERBLOCK (gdb_block_iter.real_block) =
729 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
730 }
731 }
732 }
733
734 /* Called when closing a gdb_objfile. Converts OBJ to a proper
735 objfile. */
736
737 static void
738 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
739 struct gdb_object *obj)
740 {
741 struct objfile *objfile;
742 jit_dbg_reader_data *priv_data;
743
744 priv_data = (jit_dbg_reader_data *) cb->priv_data;
745
746 objfile = objfile::make (nullptr, "<< JIT compiled code >>",
747 OBJF_NOT_FILENAME);
748 objfile->per_bfd->gdbarch = target_gdbarch ();
749
750 for (gdb_symtab &symtab : obj->symtabs)
751 finalize_symtab (&symtab, objfile);
752
753 add_objfile_entry (objfile, *priv_data);
754
755 delete obj;
756 }
757
758 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
759 ENTRY_ADDR is the address of the struct jit_code_entry in the
760 inferior address space. */
761
762 static int
763 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
764 CORE_ADDR entry_addr)
765 {
766 int status;
767 jit_dbg_reader_data priv_data;
768 struct gdb_reader_funcs *funcs;
769 struct gdb_symbol_callbacks callbacks =
770 {
771 jit_object_open_impl,
772 jit_symtab_open_impl,
773 jit_block_open_impl,
774 jit_symtab_close_impl,
775 jit_object_close_impl,
776
777 jit_symtab_line_mapping_add_impl,
778 jit_target_read_impl,
779
780 &priv_data
781 };
782
783 priv_data = entry_addr;
784
785 if (!loaded_jit_reader)
786 return 0;
787
788 gdb::byte_vector gdb_mem (code_entry->symfile_size);
789
790 status = 1;
791 try
792 {
793 if (target_read_memory (code_entry->symfile_addr, gdb_mem.data (),
794 code_entry->symfile_size))
795 status = 0;
796 }
797 catch (const gdb_exception &e)
798 {
799 status = 0;
800 }
801
802 if (status)
803 {
804 funcs = loaded_jit_reader->functions;
805 if (funcs->read (funcs, &callbacks, gdb_mem.data (),
806 code_entry->symfile_size)
807 != GDB_SUCCESS)
808 status = 0;
809 }
810
811 if (jit_debug && status == 0)
812 fprintf_unfiltered (gdb_stdlog,
813 "Could not read symtab using the loaded JIT reader.\n");
814 return status;
815 }
816
817 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
818 struct jit_code_entry in the inferior address space. */
819
820 static void
821 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
822 CORE_ADDR entry_addr,
823 struct gdbarch *gdbarch)
824 {
825 struct bfd_section *sec;
826 struct objfile *objfile;
827 const struct bfd_arch_info *b;
828
829 if (jit_debug)
830 fprintf_unfiltered (gdb_stdlog,
831 "jit_bfd_try_read_symtab, symfile_addr = %s, "
832 "symfile_size = %s\n",
833 paddress (gdbarch, code_entry->symfile_addr),
834 pulongest (code_entry->symfile_size));
835
836 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
837 code_entry->symfile_size,
838 gnutarget));
839 if (nbfd == NULL)
840 {
841 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
842 return;
843 }
844
845 /* Check the format. NOTE: This initializes important data that GDB uses!
846 We would segfault later without this line. */
847 if (!bfd_check_format (nbfd.get (), bfd_object))
848 {
849 printf_unfiltered (_("\
850 JITed symbol file is not an object file, ignoring it.\n"));
851 return;
852 }
853
854 /* Check bfd arch. */
855 b = gdbarch_bfd_arch_info (gdbarch);
856 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
857 warning (_("JITed object file architecture %s is not compatible "
858 "with target architecture %s."),
859 bfd_get_arch_info (nbfd.get ())->printable_name,
860 b->printable_name);
861
862 /* Read the section address information out of the symbol file. Since the
863 file is generated by the JIT at runtime, it should all of the absolute
864 addresses that we care about. */
865 section_addr_info sai;
866 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
867 if ((bfd_section_flags (sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
868 {
869 /* We assume that these virtual addresses are absolute, and do not
870 treat them as offsets. */
871 sai.emplace_back (bfd_section_vma (sec),
872 bfd_section_name (sec),
873 sec->index);
874 }
875
876 /* This call does not take ownership of SAI. */
877 objfile = symbol_file_add_from_bfd (nbfd.get (),
878 bfd_get_filename (nbfd.get ()), 0,
879 &sai,
880 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
881
882 add_objfile_entry (objfile, entry_addr);
883 }
884
885 /* This function registers code associated with a JIT code entry. It uses the
886 pointer and size pair in the entry to read the symbol file from the remote
887 and then calls symbol_file_add_from_local_memory to add it as though it were
888 a symbol file added by the user. */
889
890 static void
891 jit_register_code (struct gdbarch *gdbarch,
892 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
893 {
894 int success;
895
896 if (jit_debug)
897 fprintf_unfiltered (gdb_stdlog,
898 "jit_register_code, symfile_addr = %s, "
899 "symfile_size = %s\n",
900 paddress (gdbarch, code_entry->symfile_addr),
901 pulongest (code_entry->symfile_size));
902
903 success = jit_reader_try_read_symtab (code_entry, entry_addr);
904
905 if (!success)
906 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
907 }
908
909 /* Look up the objfile with this code entry address. */
910
911 static struct objfile *
912 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
913 {
914 for (objfile *objf : current_program_space->objfiles ())
915 {
916 struct jit_objfile_data *objf_data;
917
918 objf_data
919 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
920 if (objf_data != NULL && objf_data->addr == entry_addr)
921 return objf;
922 }
923 return NULL;
924 }
925
926 /* This is called when a breakpoint is deleted. It updates the
927 inferior's cache, if needed. */
928
929 static void
930 jit_breakpoint_deleted (struct breakpoint *b)
931 {
932 struct bp_location *iter;
933
934 if (b->type != bp_jit_event)
935 return;
936
937 for (iter = b->loc; iter != NULL; iter = iter->next)
938 {
939 struct jit_program_space_data *ps_data;
940
941 ps_data = jit_program_space_key.get (iter->pspace);
942 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
943 {
944 ps_data->cached_code_address = 0;
945 ps_data->jit_breakpoint = NULL;
946 }
947 }
948 }
949
950 /* (Re-)Initialize the jit breakpoint if necessary.
951 Return 0 if the jit breakpoint has been successfully initialized. */
952
953 static int
954 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
955 struct jit_program_space_data *ps_data)
956 {
957 struct bound_minimal_symbol reg_symbol;
958 struct bound_minimal_symbol desc_symbol;
959 struct jit_objfile_data *objf_data;
960 CORE_ADDR addr;
961
962 if (ps_data->objfile == NULL)
963 {
964 /* Lookup the registration symbol. If it is missing, then we
965 assume we are not attached to a JIT. */
966 reg_symbol = lookup_bound_minimal_symbol (jit_break_name);
967 if (reg_symbol.minsym == NULL
968 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
969 return 1;
970
971 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
972 reg_symbol.objfile);
973 if (desc_symbol.minsym == NULL
974 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
975 return 1;
976
977 objf_data = get_jit_objfile_data (reg_symbol.objfile);
978 objf_data->register_code = reg_symbol.minsym;
979 objf_data->descriptor = desc_symbol.minsym;
980
981 ps_data->objfile = reg_symbol.objfile;
982 }
983 else
984 objf_data = get_jit_objfile_data (ps_data->objfile);
985
986 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
987
988 if (jit_debug)
989 fprintf_unfiltered (gdb_stdlog,
990 "jit_breakpoint_re_set_internal, "
991 "breakpoint_addr = %s\n",
992 paddress (gdbarch, addr));
993
994 if (ps_data->cached_code_address == addr)
995 return 0;
996
997 /* Delete the old breakpoint. */
998 if (ps_data->jit_breakpoint != NULL)
999 delete_breakpoint (ps_data->jit_breakpoint);
1000
1001 /* Put a breakpoint in the registration symbol. */
1002 ps_data->cached_code_address = addr;
1003 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1004
1005 return 0;
1006 }
1007
1008 /* The private data passed around in the frame unwind callback
1009 functions. */
1010
1011 struct jit_unwind_private
1012 {
1013 /* Cached register values. See jit_frame_sniffer to see how this
1014 works. */
1015 detached_regcache *regcache;
1016
1017 /* The frame being unwound. */
1018 struct frame_info *this_frame;
1019 };
1020
1021 /* Sets the value of a particular register in this frame. */
1022
1023 static void
1024 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1025 struct gdb_reg_value *value)
1026 {
1027 struct jit_unwind_private *priv;
1028 int gdb_reg;
1029
1030 priv = (struct jit_unwind_private *) cb->priv_data;
1031
1032 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1033 dwarf_regnum);
1034 if (gdb_reg == -1)
1035 {
1036 if (jit_debug)
1037 fprintf_unfiltered (gdb_stdlog,
1038 _("Could not recognize DWARF regnum %d"),
1039 dwarf_regnum);
1040 value->free (value);
1041 return;
1042 }
1043
1044 priv->regcache->raw_supply (gdb_reg, value->value);
1045 value->free (value);
1046 }
1047
1048 static void
1049 reg_value_free_impl (struct gdb_reg_value *value)
1050 {
1051 xfree (value);
1052 }
1053
1054 /* Get the value of register REGNUM in the previous frame. */
1055
1056 static struct gdb_reg_value *
1057 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1058 {
1059 struct jit_unwind_private *priv;
1060 struct gdb_reg_value *value;
1061 int gdb_reg, size;
1062 struct gdbarch *frame_arch;
1063
1064 priv = (struct jit_unwind_private *) cb->priv_data;
1065 frame_arch = get_frame_arch (priv->this_frame);
1066
1067 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1068 size = register_size (frame_arch, gdb_reg);
1069 value = ((struct gdb_reg_value *)
1070 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1071 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1072 value->value);
1073 value->size = size;
1074 value->free = reg_value_free_impl;
1075 return value;
1076 }
1077
1078 /* gdb_reg_value has a free function, which must be called on each
1079 saved register value. */
1080
1081 static void
1082 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1083 {
1084 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1085
1086 gdb_assert (priv_data->regcache != NULL);
1087 delete priv_data->regcache;
1088 xfree (priv_data);
1089 }
1090
1091 /* The frame sniffer for the pseudo unwinder.
1092
1093 While this is nominally a frame sniffer, in the case where the JIT
1094 reader actually recognizes the frame, it does a lot more work -- it
1095 unwinds the frame and saves the corresponding register values in
1096 the cache. jit_frame_prev_register simply returns the saved
1097 register values. */
1098
1099 static int
1100 jit_frame_sniffer (const struct frame_unwind *self,
1101 struct frame_info *this_frame, void **cache)
1102 {
1103 struct jit_unwind_private *priv_data;
1104 struct gdb_unwind_callbacks callbacks;
1105 struct gdb_reader_funcs *funcs;
1106
1107 callbacks.reg_get = jit_unwind_reg_get_impl;
1108 callbacks.reg_set = jit_unwind_reg_set_impl;
1109 callbacks.target_read = jit_target_read_impl;
1110
1111 if (loaded_jit_reader == NULL)
1112 return 0;
1113
1114 funcs = loaded_jit_reader->functions;
1115
1116 gdb_assert (!*cache);
1117
1118 *cache = XCNEW (struct jit_unwind_private);
1119 priv_data = (struct jit_unwind_private *) *cache;
1120 /* Take a snapshot of current regcache. */
1121 priv_data->regcache = new detached_regcache (get_frame_arch (this_frame),
1122 true);
1123 priv_data->this_frame = this_frame;
1124
1125 callbacks.priv_data = priv_data;
1126
1127 /* Try to coax the provided unwinder to unwind the stack */
1128 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1129 {
1130 if (jit_debug)
1131 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1132 "JIT reader.\n"));
1133 return 1;
1134 }
1135 if (jit_debug)
1136 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1137 "JIT reader.\n"));
1138
1139 jit_dealloc_cache (this_frame, *cache);
1140 *cache = NULL;
1141
1142 return 0;
1143 }
1144
1145
1146 /* The frame_id function for the pseudo unwinder. Relays the call to
1147 the loaded plugin. */
1148
1149 static void
1150 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1151 struct frame_id *this_id)
1152 {
1153 struct jit_unwind_private priv;
1154 struct gdb_frame_id frame_id;
1155 struct gdb_reader_funcs *funcs;
1156 struct gdb_unwind_callbacks callbacks;
1157
1158 priv.regcache = NULL;
1159 priv.this_frame = this_frame;
1160
1161 /* We don't expect the frame_id function to set any registers, so we
1162 set reg_set to NULL. */
1163 callbacks.reg_get = jit_unwind_reg_get_impl;
1164 callbacks.reg_set = NULL;
1165 callbacks.target_read = jit_target_read_impl;
1166 callbacks.priv_data = &priv;
1167
1168 gdb_assert (loaded_jit_reader);
1169 funcs = loaded_jit_reader->functions;
1170
1171 frame_id = funcs->get_frame_id (funcs, &callbacks);
1172 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1173 }
1174
1175 /* Pseudo unwinder function. Reads the previously fetched value for
1176 the register from the cache. */
1177
1178 static struct value *
1179 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1180 {
1181 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1182 struct gdbarch *gdbarch;
1183
1184 if (priv == NULL)
1185 return frame_unwind_got_optimized (this_frame, reg);
1186
1187 gdbarch = priv->regcache->arch ();
1188 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1189 enum register_status status = priv->regcache->cooked_read (reg, buf);
1190
1191 if (status == REG_VALID)
1192 return frame_unwind_got_bytes (this_frame, reg, buf);
1193 else
1194 return frame_unwind_got_optimized (this_frame, reg);
1195 }
1196
1197 /* Relay everything back to the unwinder registered by the JIT debug
1198 info reader.*/
1199
1200 static const struct frame_unwind jit_frame_unwind =
1201 {
1202 NORMAL_FRAME,
1203 default_frame_unwind_stop_reason,
1204 jit_frame_this_id,
1205 jit_frame_prev_register,
1206 NULL,
1207 jit_frame_sniffer,
1208 jit_dealloc_cache
1209 };
1210
1211
1212 /* This is the information that is stored at jit_gdbarch_data for each
1213 architecture. */
1214
1215 struct jit_gdbarch_data_type
1216 {
1217 /* Has the (pseudo) unwinder been prepended? */
1218 int unwinder_registered;
1219 };
1220
1221 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1222
1223 static void
1224 jit_prepend_unwinder (struct gdbarch *gdbarch)
1225 {
1226 struct jit_gdbarch_data_type *data;
1227
1228 data
1229 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1230 if (!data->unwinder_registered)
1231 {
1232 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1233 data->unwinder_registered = 1;
1234 }
1235 }
1236
1237 /* Register any already created translations. */
1238
1239 static void
1240 jit_inferior_init (struct gdbarch *gdbarch)
1241 {
1242 struct jit_descriptor descriptor;
1243 struct jit_code_entry cur_entry;
1244 struct jit_program_space_data *ps_data;
1245 CORE_ADDR cur_entry_addr;
1246
1247 if (jit_debug)
1248 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1249
1250 jit_prepend_unwinder (gdbarch);
1251
1252 ps_data = get_jit_program_space_data ();
1253 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1254 return;
1255
1256 /* Read the descriptor so we can check the version number and load
1257 any already JITed functions. */
1258 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1259 return;
1260
1261 /* Check that the version number agrees with that we support. */
1262 if (descriptor.version != 1)
1263 {
1264 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1265 "in descriptor (expected 1)\n"),
1266 (long) descriptor.version);
1267 return;
1268 }
1269
1270 /* If we've attached to a running program, we need to check the descriptor
1271 to register any functions that were already generated. */
1272 for (cur_entry_addr = descriptor.first_entry;
1273 cur_entry_addr != 0;
1274 cur_entry_addr = cur_entry.next_entry)
1275 {
1276 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1277
1278 /* This hook may be called many times during setup, so make sure we don't
1279 add the same symbol file twice. */
1280 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1281 continue;
1282
1283 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1284 }
1285 }
1286
1287 /* inferior_created observer. */
1288
1289 static void
1290 jit_inferior_created (struct target_ops *ops, int from_tty)
1291 {
1292 jit_inferior_created_hook ();
1293 }
1294
1295 /* Exported routine to call when an inferior has been created. */
1296
1297 void
1298 jit_inferior_created_hook (void)
1299 {
1300 jit_inferior_init (target_gdbarch ());
1301 }
1302
1303 /* Exported routine to call to re-set the jit breakpoints,
1304 e.g. when a program is rerun. */
1305
1306 void
1307 jit_breakpoint_re_set (void)
1308 {
1309 jit_breakpoint_re_set_internal (target_gdbarch (),
1310 get_jit_program_space_data ());
1311 }
1312
1313 /* This function cleans up any code entries left over when the
1314 inferior exits. We get left over code when the inferior exits
1315 without unregistering its code, for example when it crashes. */
1316
1317 static void
1318 jit_inferior_exit_hook (struct inferior *inf)
1319 {
1320 for (objfile *objf : current_program_space->objfiles_safe ())
1321 {
1322 struct jit_objfile_data *objf_data
1323 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1324
1325 if (objf_data != NULL && objf_data->addr != 0)
1326 objf->unlink ();
1327 }
1328 }
1329
1330 void
1331 jit_event_handler (struct gdbarch *gdbarch)
1332 {
1333 struct jit_descriptor descriptor;
1334 struct jit_code_entry code_entry;
1335 CORE_ADDR entry_addr;
1336 struct objfile *objf;
1337
1338 /* Read the descriptor from remote memory. */
1339 if (!jit_read_descriptor (gdbarch, &descriptor,
1340 get_jit_program_space_data ()))
1341 return;
1342 entry_addr = descriptor.relevant_entry;
1343
1344 /* Do the corresponding action. */
1345 switch (descriptor.action_flag)
1346 {
1347 case JIT_NOACTION:
1348 break;
1349 case JIT_REGISTER:
1350 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1351 jit_register_code (gdbarch, entry_addr, &code_entry);
1352 break;
1353 case JIT_UNREGISTER:
1354 objf = jit_find_objf_with_entry_addr (entry_addr);
1355 if (objf == NULL)
1356 printf_unfiltered (_("Unable to find JITed code "
1357 "entry at address: %s\n"),
1358 paddress (gdbarch, entry_addr));
1359 else
1360 objf->unlink ();
1361
1362 break;
1363 default:
1364 error (_("Unknown action_flag value in JIT descriptor!"));
1365 break;
1366 }
1367 }
1368
1369 /* Called to free the data allocated to the jit_program_space_data slot. */
1370
1371 static void
1372 free_objfile_data (struct objfile *objfile, void *data)
1373 {
1374 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1375
1376 if (objf_data->register_code != NULL)
1377 {
1378 struct jit_program_space_data *ps_data;
1379
1380 ps_data = jit_program_space_key.get (objfile->pspace);
1381 if (ps_data != NULL && ps_data->objfile == objfile)
1382 {
1383 ps_data->objfile = NULL;
1384 if (ps_data->jit_breakpoint != NULL)
1385 delete_breakpoint (ps_data->jit_breakpoint);
1386 ps_data->cached_code_address = 0;
1387 }
1388 }
1389
1390 xfree (data);
1391 }
1392
1393 /* Initialize the jit_gdbarch_data slot with an instance of struct
1394 jit_gdbarch_data_type */
1395
1396 static void *
1397 jit_gdbarch_data_init (struct obstack *obstack)
1398 {
1399 struct jit_gdbarch_data_type *data =
1400 XOBNEW (obstack, struct jit_gdbarch_data_type);
1401
1402 data->unwinder_registered = 0;
1403
1404 return data;
1405 }
1406
1407 void
1408 _initialize_jit (void)
1409 {
1410 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1411 JIT_READER_DIR_RELOCATABLE);
1412 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1413 _("Set JIT debugging."),
1414 _("Show JIT debugging."),
1415 _("When non-zero, JIT debugging is enabled."),
1416 NULL,
1417 show_jit_debug,
1418 &setdebuglist, &showdebuglist);
1419
1420 gdb::observers::inferior_created.attach (jit_inferior_created);
1421 gdb::observers::inferior_exit.attach (jit_inferior_exit_hook);
1422 gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted);
1423
1424 jit_objfile_data =
1425 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1426 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1427 if (is_dl_available ())
1428 {
1429 struct cmd_list_element *c;
1430
1431 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1432 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1433 Usage: jit-reader-load FILE\n\
1434 Try to load file FILE as a debug info reader (and unwinder) for\n\
1435 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1436 relocated relative to the GDB executable if required."));
1437 set_cmd_completer (c, filename_completer);
1438
1439 c = add_com ("jit-reader-unload", no_class,
1440 jit_reader_unload_command, _("\
1441 Unload the currently loaded JIT debug info reader.\n\
1442 Usage: jit-reader-unload\n\n\
1443 Do \"help jit-reader-load\" for info on loading debug info readers."));
1444 set_cmd_completer (c, noop_completer);
1445 }
1446 }
This page took 0.059626 seconds and 4 git commands to generate.