480b4596ac544bc4020fcc419c0540a563ef9cc2
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observable.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdbsupport/gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44
45 static std::string jit_reader_dir;
46
47 static const struct objfile_data *jit_objfile_data;
48
49 static const char *const jit_break_name = "__jit_debug_register_code";
50
51 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
52
53 static void jit_inferior_init (struct gdbarch *gdbarch);
54 static void jit_inferior_exit_hook (struct inferior *inf);
55
56 /* An unwinder is registered for every gdbarch. This key is used to
57 remember if the unwinder has been registered for a particular
58 gdbarch. */
59
60 static struct gdbarch_data *jit_gdbarch_data;
61
62 /* Non-zero if we want to see trace of jit level stuff. */
63
64 static unsigned int jit_debug = 0;
65
66 static void
67 show_jit_debug (struct ui_file *file, int from_tty,
68 struct cmd_list_element *c, const char *value)
69 {
70 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
71 }
72
73 struct target_buffer
74 {
75 CORE_ADDR base;
76 ULONGEST size;
77 };
78
79 /* Opening the file is a no-op. */
80
81 static void *
82 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
83 {
84 return open_closure;
85 }
86
87 /* Closing the file is just freeing the base/size pair on our side. */
88
89 static int
90 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
91 {
92 xfree (stream);
93
94 /* Zero means success. */
95 return 0;
96 }
97
98 /* For reading the file, we just need to pass through to target_read_memory and
99 fix up the arguments and return values. */
100
101 static file_ptr
102 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
103 file_ptr nbytes, file_ptr offset)
104 {
105 int err;
106 struct target_buffer *buffer = (struct target_buffer *) stream;
107
108 /* If this read will read all of the file, limit it to just the rest. */
109 if (offset + nbytes > buffer->size)
110 nbytes = buffer->size - offset;
111
112 /* If there are no more bytes left, we've reached EOF. */
113 if (nbytes == 0)
114 return 0;
115
116 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
117 if (err)
118 return -1;
119
120 return nbytes;
121 }
122
123 /* For statting the file, we only support the st_size attribute. */
124
125 static int
126 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
127 {
128 struct target_buffer *buffer = (struct target_buffer*) stream;
129
130 memset (sb, 0, sizeof (struct stat));
131 sb->st_size = buffer->size;
132 return 0;
133 }
134
135 /* Open a BFD from the target's memory. */
136
137 static gdb_bfd_ref_ptr
138 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
139 {
140 struct target_buffer *buffer = XNEW (struct target_buffer);
141
142 buffer->base = addr;
143 buffer->size = size;
144 return gdb_bfd_openr_iovec ("<in-memory>", target,
145 mem_bfd_iovec_open,
146 buffer,
147 mem_bfd_iovec_pread,
148 mem_bfd_iovec_close,
149 mem_bfd_iovec_stat);
150 }
151
152 struct jit_reader
153 {
154 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
155 : functions (f), handle (std::move (h))
156 {
157 }
158
159 ~jit_reader ()
160 {
161 functions->destroy (functions);
162 }
163
164 DISABLE_COPY_AND_ASSIGN (jit_reader);
165
166 struct gdb_reader_funcs *functions;
167 gdb_dlhandle_up handle;
168 };
169
170 /* One reader that has been loaded successfully, and can potentially be used to
171 parse debug info. */
172
173 static struct jit_reader *loaded_jit_reader = NULL;
174
175 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
176 static const char *reader_init_fn_sym = "gdb_init_reader";
177
178 /* Try to load FILE_NAME as a JIT debug info reader. */
179
180 static struct jit_reader *
181 jit_reader_load (const char *file_name)
182 {
183 reader_init_fn_type *init_fn;
184 struct gdb_reader_funcs *funcs = NULL;
185
186 if (jit_debug)
187 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
188 file_name);
189 gdb_dlhandle_up so = gdb_dlopen (file_name);
190
191 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
192 if (!init_fn)
193 error (_("Could not locate initialization function: %s."),
194 reader_init_fn_sym);
195
196 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
197 error (_("Reader not GPL compatible."));
198
199 funcs = init_fn ();
200 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
201 error (_("Reader version does not match GDB version."));
202
203 return new jit_reader (funcs, std::move (so));
204 }
205
206 /* Provides the jit-reader-load command. */
207
208 static void
209 jit_reader_load_command (const char *args, int from_tty)
210 {
211 if (args == NULL)
212 error (_("No reader name provided."));
213 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
214
215 if (loaded_jit_reader != NULL)
216 error (_("JIT reader already loaded. Run jit-reader-unload first."));
217
218 if (!IS_ABSOLUTE_PATH (file.get ()))
219 file.reset (xstrprintf ("%s%s%s", jit_reader_dir.c_str (), SLASH_STRING,
220 file.get ()));
221
222 loaded_jit_reader = jit_reader_load (file.get ());
223 reinit_frame_cache ();
224 jit_inferior_created_hook ();
225 }
226
227 /* Provides the jit-reader-unload command. */
228
229 static void
230 jit_reader_unload_command (const char *args, int from_tty)
231 {
232 if (!loaded_jit_reader)
233 error (_("No JIT reader loaded."));
234
235 reinit_frame_cache ();
236 jit_inferior_exit_hook (current_inferior ());
237
238 delete loaded_jit_reader;
239 loaded_jit_reader = NULL;
240 }
241
242 /* Per-program space structure recording which objfile has the JIT
243 symbols. */
244
245 struct jit_program_space_data
246 {
247 /* The objfile. This is NULL if no objfile holds the JIT
248 symbols. */
249
250 struct objfile *objfile = nullptr;
251
252 /* If this program space has __jit_debug_register_code, this is the
253 cached address from the minimal symbol. This is used to detect
254 relocations requiring the breakpoint to be re-created. */
255
256 CORE_ADDR cached_code_address = 0;
257
258 /* This is the JIT event breakpoint, or NULL if it has not been
259 set. */
260
261 struct breakpoint *jit_breakpoint = nullptr;
262 };
263
264 static program_space_key<jit_program_space_data> jit_program_space_key;
265
266 /* Per-objfile structure recording the addresses in the program space.
267 This object serves two purposes: for ordinary objfiles, it may
268 cache some symbols related to the JIT interface; and for
269 JIT-created objfiles, it holds some information about the
270 jit_code_entry. */
271
272 struct jit_objfile_data
273 {
274 /* Symbol for __jit_debug_register_code. */
275 struct minimal_symbol *register_code;
276
277 /* Symbol for __jit_debug_descriptor. */
278 struct minimal_symbol *descriptor;
279
280 /* Address of struct jit_code_entry in this objfile. This is only
281 non-zero for objfiles that represent code created by the JIT. */
282 CORE_ADDR addr;
283 };
284
285 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
286 yet, make a new structure and attach it. */
287
288 static struct jit_objfile_data *
289 get_jit_objfile_data (struct objfile *objf)
290 {
291 struct jit_objfile_data *objf_data;
292
293 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
294 if (objf_data == NULL)
295 {
296 objf_data = XCNEW (struct jit_objfile_data);
297 set_objfile_data (objf, jit_objfile_data, objf_data);
298 }
299
300 return objf_data;
301 }
302
303 /* Remember OBJFILE has been created for struct jit_code_entry located
304 at inferior address ENTRY. */
305
306 static void
307 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
308 {
309 struct jit_objfile_data *objf_data;
310
311 objf_data = get_jit_objfile_data (objfile);
312 objf_data->addr = entry;
313 }
314
315 /* Return jit_program_space_data for current program space. Allocate
316 if not already present. */
317
318 static struct jit_program_space_data *
319 get_jit_program_space_data ()
320 {
321 struct jit_program_space_data *ps_data;
322
323 ps_data = jit_program_space_key.get (current_program_space);
324 if (ps_data == NULL)
325 ps_data = jit_program_space_key.emplace (current_program_space);
326 return ps_data;
327 }
328
329 /* Helper function for reading the global JIT descriptor from remote
330 memory. Returns 1 if all went well, 0 otherwise. */
331
332 static int
333 jit_read_descriptor (struct gdbarch *gdbarch,
334 struct jit_descriptor *descriptor,
335 struct jit_program_space_data *ps_data)
336 {
337 int err;
338 struct type *ptr_type;
339 int ptr_size;
340 int desc_size;
341 gdb_byte *desc_buf;
342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
343 struct jit_objfile_data *objf_data;
344
345 if (ps_data->objfile == NULL)
346 return 0;
347 objf_data = get_jit_objfile_data (ps_data->objfile);
348 if (objf_data->descriptor == NULL)
349 return 0;
350
351 if (jit_debug)
352 fprintf_unfiltered (gdb_stdlog,
353 "jit_read_descriptor, descriptor_addr = %s\n",
354 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
355 objf_data->descriptor)));
356
357 /* Figure out how big the descriptor is on the remote and how to read it. */
358 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
359 ptr_size = TYPE_LENGTH (ptr_type);
360 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
361 desc_buf = (gdb_byte *) alloca (desc_size);
362
363 /* Read the descriptor. */
364 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
365 objf_data->descriptor),
366 desc_buf, desc_size);
367 if (err)
368 {
369 printf_unfiltered (_("Unable to read JIT descriptor from "
370 "remote memory\n"));
371 return 0;
372 }
373
374 /* Fix the endianness to match the host. */
375 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
376 descriptor->action_flag =
377 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
378 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
379 descriptor->first_entry =
380 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
381
382 return 1;
383 }
384
385 /* Helper function for reading a JITed code entry from remote memory. */
386
387 static void
388 jit_read_code_entry (struct gdbarch *gdbarch,
389 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
390 {
391 int err, off;
392 struct type *ptr_type;
393 int ptr_size;
394 int entry_size;
395 int align_bytes;
396 gdb_byte *entry_buf;
397 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
398
399 /* Figure out how big the entry is on the remote and how to read it. */
400 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
401 ptr_size = TYPE_LENGTH (ptr_type);
402
403 /* Figure out where the uint64_t value will be. */
404 align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
405 off = 3 * ptr_size;
406 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
407
408 entry_size = off + 8; /* Three pointers and one 64-bit int. */
409 entry_buf = (gdb_byte *) alloca (entry_size);
410
411 /* Read the entry. */
412 err = target_read_memory (code_addr, entry_buf, entry_size);
413 if (err)
414 error (_("Unable to read JIT code entry from remote memory!"));
415
416 /* Fix the endianness to match the host. */
417 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
418 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
419 code_entry->prev_entry =
420 extract_typed_address (&entry_buf[ptr_size], ptr_type);
421 code_entry->symfile_addr =
422 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
423 code_entry->symfile_size =
424 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
425 }
426
427 /* Proxy object for building a block. */
428
429 struct gdb_block
430 {
431 /* gdb_blocks are linked into a tree structure. Next points to the
432 next node at the same depth as this block and parent to the
433 parent gdb_block. */
434 struct gdb_block *next, *parent;
435
436 /* Points to the "real" block that is being built out of this
437 instance. This block will be added to a blockvector, which will
438 then be added to a symtab. */
439 struct block *real_block;
440
441 /* The first and last code address corresponding to this block. */
442 CORE_ADDR begin, end;
443
444 /* The name of this block (if any). If this is non-NULL, the
445 FUNCTION symbol symbol is set to this value. */
446 const char *name;
447 };
448
449 /* Proxy object for building a symtab. */
450
451 struct gdb_symtab
452 {
453 /* The list of blocks in this symtab. These will eventually be
454 converted to real blocks. */
455 struct gdb_block *blocks;
456
457 /* The number of blocks inserted. */
458 int nblocks;
459
460 /* A mapping between line numbers to PC. */
461 struct linetable *linetable;
462
463 /* The source file for this symtab. */
464 const char *file_name;
465 struct gdb_symtab *next;
466 };
467
468 /* Proxy object for building an object. */
469
470 struct gdb_object
471 {
472 struct gdb_symtab *symtabs;
473 };
474
475 /* The type of the `private' data passed around by the callback
476 functions. */
477
478 typedef CORE_ADDR jit_dbg_reader_data;
479
480 /* The reader calls into this function to read data off the targets
481 address space. */
482
483 static enum gdb_status
484 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
485 {
486 int result = target_read_memory ((CORE_ADDR) target_mem,
487 (gdb_byte *) gdb_buf, len);
488 if (result == 0)
489 return GDB_SUCCESS;
490 else
491 return GDB_FAIL;
492 }
493
494 /* The reader calls into this function to create a new gdb_object
495 which it can then pass around to the other callbacks. Right now,
496 all that is required is allocating the memory. */
497
498 static struct gdb_object *
499 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
500 {
501 /* CB is not required right now, but sometime in the future we might
502 need a handle to it, and we'd like to do that without breaking
503 the ABI. */
504 return XCNEW (struct gdb_object);
505 }
506
507 /* Readers call into this function to open a new gdb_symtab, which,
508 again, is passed around to other callbacks. */
509
510 static struct gdb_symtab *
511 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
512 struct gdb_object *object,
513 const char *file_name)
514 {
515 struct gdb_symtab *ret;
516
517 /* CB stays unused. See comment in jit_object_open_impl. */
518
519 ret = XCNEW (struct gdb_symtab);
520 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
521 ret->next = object->symtabs;
522 object->symtabs = ret;
523 return ret;
524 }
525
526 /* Returns true if the block corresponding to old should be placed
527 before the block corresponding to new in the final blockvector. */
528
529 static int
530 compare_block (const struct gdb_block *const old,
531 const struct gdb_block *const newobj)
532 {
533 if (old == NULL)
534 return 1;
535 if (old->begin < newobj->begin)
536 return 1;
537 else if (old->begin == newobj->begin)
538 {
539 if (old->end > newobj->end)
540 return 1;
541 else
542 return 0;
543 }
544 else
545 return 0;
546 }
547
548 /* Called by readers to open a new gdb_block. This function also
549 inserts the new gdb_block in the correct place in the corresponding
550 gdb_symtab. */
551
552 static struct gdb_block *
553 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
554 struct gdb_symtab *symtab, struct gdb_block *parent,
555 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
556 {
557 struct gdb_block *block = XCNEW (struct gdb_block);
558
559 block->next = symtab->blocks;
560 block->begin = (CORE_ADDR) begin;
561 block->end = (CORE_ADDR) end;
562 block->name = name ? xstrdup (name) : NULL;
563 block->parent = parent;
564
565 /* Ensure that the blocks are inserted in the correct (reverse of
566 the order expected by blockvector). */
567 if (compare_block (symtab->blocks, block))
568 {
569 symtab->blocks = block;
570 }
571 else
572 {
573 struct gdb_block *i = symtab->blocks;
574
575 for (;; i = i->next)
576 {
577 /* Guaranteed to terminate, since compare_block (NULL, _)
578 returns 1. */
579 if (compare_block (i->next, block))
580 {
581 block->next = i->next;
582 i->next = block;
583 break;
584 }
585 }
586 }
587 symtab->nblocks++;
588
589 return block;
590 }
591
592 /* Readers call this to add a line mapping (from PC to line number) to
593 a gdb_symtab. */
594
595 static void
596 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
597 struct gdb_symtab *stab, int nlines,
598 struct gdb_line_mapping *map)
599 {
600 int i;
601 int alloc_len;
602
603 if (nlines < 1)
604 return;
605
606 alloc_len = sizeof (struct linetable)
607 + (nlines - 1) * sizeof (struct linetable_entry);
608 stab->linetable = (struct linetable *) xmalloc (alloc_len);
609 stab->linetable->nitems = nlines;
610 for (i = 0; i < nlines; i++)
611 {
612 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
613 stab->linetable->item[i].line = map[i].line;
614 }
615 }
616
617 /* Called by readers to close a gdb_symtab. Does not need to do
618 anything as of now. */
619
620 static void
621 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
622 struct gdb_symtab *stab)
623 {
624 /* Right now nothing needs to be done here. We may need to do some
625 cleanup here in the future (again, without breaking the plugin
626 ABI). */
627 }
628
629 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
630
631 static void
632 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
633 {
634 struct compunit_symtab *cust;
635 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
636 struct block *block_iter;
637 int actual_nblocks, i;
638 size_t blockvector_size;
639 CORE_ADDR begin, end;
640 struct blockvector *bv;
641
642 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
643
644 cust = allocate_compunit_symtab (objfile, stab->file_name);
645 allocate_symtab (cust, stab->file_name);
646 add_compunit_symtab_to_objfile (cust);
647
648 /* JIT compilers compile in memory. */
649 COMPUNIT_DIRNAME (cust) = NULL;
650
651 /* Copy over the linetable entry if one was provided. */
652 if (stab->linetable)
653 {
654 size_t size = ((stab->linetable->nitems - 1)
655 * sizeof (struct linetable_entry)
656 + sizeof (struct linetable));
657 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
658 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
659 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)), stab->linetable,
660 size);
661 }
662
663 blockvector_size = (sizeof (struct blockvector)
664 + (actual_nblocks - 1) * sizeof (struct block *));
665 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
666 blockvector_size);
667 COMPUNIT_BLOCKVECTOR (cust) = bv;
668
669 /* (begin, end) will contain the PC range this entire blockvector
670 spans. */
671 BLOCKVECTOR_MAP (bv) = NULL;
672 begin = stab->blocks->begin;
673 end = stab->blocks->end;
674 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
675
676 /* First run over all the gdb_block objects, creating a real block
677 object for each. Simultaneously, keep setting the real_block
678 fields. */
679 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
680 i >= FIRST_LOCAL_BLOCK;
681 i--, gdb_block_iter = gdb_block_iter->next)
682 {
683 struct block *new_block = allocate_block (&objfile->objfile_obstack);
684 struct symbol *block_name = allocate_symbol (objfile);
685 struct type *block_type = arch_type (get_objfile_arch (objfile),
686 TYPE_CODE_VOID,
687 TARGET_CHAR_BIT,
688 "void");
689
690 BLOCK_MULTIDICT (new_block)
691 = mdict_create_linear (&objfile->objfile_obstack, NULL);
692 /* The address range. */
693 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
694 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
695
696 /* The name. */
697 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
698 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
699 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
700 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
701 SYMBOL_BLOCK_VALUE (block_name) = new_block;
702
703 block_name->name = obstack_strdup (&objfile->objfile_obstack,
704 gdb_block_iter->name);
705
706 BLOCK_FUNCTION (new_block) = block_name;
707
708 BLOCKVECTOR_BLOCK (bv, i) = new_block;
709 if (begin > BLOCK_START (new_block))
710 begin = BLOCK_START (new_block);
711 if (end < BLOCK_END (new_block))
712 end = BLOCK_END (new_block);
713
714 gdb_block_iter->real_block = new_block;
715 }
716
717 /* Now add the special blocks. */
718 block_iter = NULL;
719 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
720 {
721 struct block *new_block;
722
723 new_block = (i == GLOBAL_BLOCK
724 ? allocate_global_block (&objfile->objfile_obstack)
725 : allocate_block (&objfile->objfile_obstack));
726 BLOCK_MULTIDICT (new_block)
727 = mdict_create_linear (&objfile->objfile_obstack, NULL);
728 BLOCK_SUPERBLOCK (new_block) = block_iter;
729 block_iter = new_block;
730
731 BLOCK_START (new_block) = (CORE_ADDR) begin;
732 BLOCK_END (new_block) = (CORE_ADDR) end;
733
734 BLOCKVECTOR_BLOCK (bv, i) = new_block;
735
736 if (i == GLOBAL_BLOCK)
737 set_block_compunit_symtab (new_block, cust);
738 }
739
740 /* Fill up the superblock fields for the real blocks, using the
741 real_block fields populated earlier. */
742 for (gdb_block_iter = stab->blocks;
743 gdb_block_iter;
744 gdb_block_iter = gdb_block_iter->next)
745 {
746 if (gdb_block_iter->parent != NULL)
747 {
748 /* If the plugin specifically mentioned a parent block, we
749 use that. */
750 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
751 gdb_block_iter->parent->real_block;
752 }
753 else
754 {
755 /* And if not, we set a default parent block. */
756 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
757 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
758 }
759 }
760
761 /* Free memory. */
762 gdb_block_iter = stab->blocks;
763
764 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
765 gdb_block_iter;
766 gdb_block_iter = gdb_block_iter_tmp)
767 {
768 xfree ((void *) gdb_block_iter->name);
769 xfree (gdb_block_iter);
770 }
771 xfree (stab->linetable);
772 xfree ((char *) stab->file_name);
773 xfree (stab);
774 }
775
776 /* Called when closing a gdb_objfile. Converts OBJ to a proper
777 objfile. */
778
779 static void
780 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
781 struct gdb_object *obj)
782 {
783 struct gdb_symtab *i, *j;
784 struct objfile *objfile;
785 jit_dbg_reader_data *priv_data;
786
787 priv_data = (jit_dbg_reader_data *) cb->priv_data;
788
789 objfile = new struct objfile (NULL, "<< JIT compiled code >>",
790 OBJF_NOT_FILENAME);
791 objfile->per_bfd->gdbarch = target_gdbarch ();
792
793 j = NULL;
794 for (i = obj->symtabs; i; i = j)
795 {
796 j = i->next;
797 finalize_symtab (i, objfile);
798 }
799 add_objfile_entry (objfile, *priv_data);
800 xfree (obj);
801 }
802
803 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
804 ENTRY_ADDR is the address of the struct jit_code_entry in the
805 inferior address space. */
806
807 static int
808 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
809 CORE_ADDR entry_addr)
810 {
811 gdb_byte *gdb_mem;
812 int status;
813 jit_dbg_reader_data priv_data;
814 struct gdb_reader_funcs *funcs;
815 struct gdb_symbol_callbacks callbacks =
816 {
817 jit_object_open_impl,
818 jit_symtab_open_impl,
819 jit_block_open_impl,
820 jit_symtab_close_impl,
821 jit_object_close_impl,
822
823 jit_symtab_line_mapping_add_impl,
824 jit_target_read_impl,
825
826 &priv_data
827 };
828
829 priv_data = entry_addr;
830
831 if (!loaded_jit_reader)
832 return 0;
833
834 gdb_mem = (gdb_byte *) xmalloc (code_entry->symfile_size);
835
836 status = 1;
837 try
838 {
839 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
840 code_entry->symfile_size))
841 status = 0;
842 }
843 catch (const gdb_exception &e)
844 {
845 status = 0;
846 }
847
848 if (status)
849 {
850 funcs = loaded_jit_reader->functions;
851 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
852 != GDB_SUCCESS)
853 status = 0;
854 }
855
856 xfree (gdb_mem);
857 if (jit_debug && status == 0)
858 fprintf_unfiltered (gdb_stdlog,
859 "Could not read symtab using the loaded JIT reader.\n");
860 return status;
861 }
862
863 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
864 struct jit_code_entry in the inferior address space. */
865
866 static void
867 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
868 CORE_ADDR entry_addr,
869 struct gdbarch *gdbarch)
870 {
871 struct bfd_section *sec;
872 struct objfile *objfile;
873 const struct bfd_arch_info *b;
874
875 if (jit_debug)
876 fprintf_unfiltered (gdb_stdlog,
877 "jit_bfd_try_read_symtab, symfile_addr = %s, "
878 "symfile_size = %s\n",
879 paddress (gdbarch, code_entry->symfile_addr),
880 pulongest (code_entry->symfile_size));
881
882 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
883 code_entry->symfile_size,
884 gnutarget));
885 if (nbfd == NULL)
886 {
887 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
888 return;
889 }
890
891 /* Check the format. NOTE: This initializes important data that GDB uses!
892 We would segfault later without this line. */
893 if (!bfd_check_format (nbfd.get (), bfd_object))
894 {
895 printf_unfiltered (_("\
896 JITed symbol file is not an object file, ignoring it.\n"));
897 return;
898 }
899
900 /* Check bfd arch. */
901 b = gdbarch_bfd_arch_info (gdbarch);
902 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
903 warning (_("JITed object file architecture %s is not compatible "
904 "with target architecture %s."),
905 bfd_get_arch_info (nbfd.get ())->printable_name,
906 b->printable_name);
907
908 /* Read the section address information out of the symbol file. Since the
909 file is generated by the JIT at runtime, it should all of the absolute
910 addresses that we care about. */
911 section_addr_info sai;
912 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
913 if ((bfd_section_flags (sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
914 {
915 /* We assume that these virtual addresses are absolute, and do not
916 treat them as offsets. */
917 sai.emplace_back (bfd_section_vma (sec),
918 bfd_section_name (sec),
919 sec->index);
920 }
921
922 /* This call does not take ownership of SAI. */
923 objfile = symbol_file_add_from_bfd (nbfd.get (),
924 bfd_get_filename (nbfd.get ()), 0,
925 &sai,
926 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
927
928 add_objfile_entry (objfile, entry_addr);
929 }
930
931 /* This function registers code associated with a JIT code entry. It uses the
932 pointer and size pair in the entry to read the symbol file from the remote
933 and then calls symbol_file_add_from_local_memory to add it as though it were
934 a symbol file added by the user. */
935
936 static void
937 jit_register_code (struct gdbarch *gdbarch,
938 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
939 {
940 int success;
941
942 if (jit_debug)
943 fprintf_unfiltered (gdb_stdlog,
944 "jit_register_code, symfile_addr = %s, "
945 "symfile_size = %s\n",
946 paddress (gdbarch, code_entry->symfile_addr),
947 pulongest (code_entry->symfile_size));
948
949 success = jit_reader_try_read_symtab (code_entry, entry_addr);
950
951 if (!success)
952 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
953 }
954
955 /* This function unregisters JITed code and frees the corresponding
956 objfile. */
957
958 static void
959 jit_unregister_code (struct objfile *objfile)
960 {
961 if (jit_debug)
962 fprintf_unfiltered (gdb_stdlog, "jit_unregister_code (%s)\n",
963 host_address_to_string (objfile));
964 delete objfile;
965 }
966
967 /* Look up the objfile with this code entry address. */
968
969 static struct objfile *
970 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
971 {
972 for (objfile *objf : current_program_space->objfiles ())
973 {
974 struct jit_objfile_data *objf_data;
975
976 objf_data
977 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
978 if (objf_data != NULL && objf_data->addr == entry_addr)
979 return objf;
980 }
981 return NULL;
982 }
983
984 /* This is called when a breakpoint is deleted. It updates the
985 inferior's cache, if needed. */
986
987 static void
988 jit_breakpoint_deleted (struct breakpoint *b)
989 {
990 struct bp_location *iter;
991
992 if (b->type != bp_jit_event)
993 return;
994
995 for (iter = b->loc; iter != NULL; iter = iter->next)
996 {
997 struct jit_program_space_data *ps_data;
998
999 ps_data = jit_program_space_key.get (iter->pspace);
1000 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1001 {
1002 ps_data->cached_code_address = 0;
1003 ps_data->jit_breakpoint = NULL;
1004 }
1005 }
1006 }
1007
1008 /* (Re-)Initialize the jit breakpoint if necessary.
1009 Return 0 if the jit breakpoint has been successfully initialized. */
1010
1011 static int
1012 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1013 struct jit_program_space_data *ps_data)
1014 {
1015 struct bound_minimal_symbol reg_symbol;
1016 struct bound_minimal_symbol desc_symbol;
1017 struct jit_objfile_data *objf_data;
1018 CORE_ADDR addr;
1019
1020 if (ps_data->objfile == NULL)
1021 {
1022 /* Lookup the registration symbol. If it is missing, then we
1023 assume we are not attached to a JIT. */
1024 reg_symbol = lookup_bound_minimal_symbol (jit_break_name);
1025 if (reg_symbol.minsym == NULL
1026 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1027 return 1;
1028
1029 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1030 reg_symbol.objfile);
1031 if (desc_symbol.minsym == NULL
1032 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1033 return 1;
1034
1035 objf_data = get_jit_objfile_data (reg_symbol.objfile);
1036 objf_data->register_code = reg_symbol.minsym;
1037 objf_data->descriptor = desc_symbol.minsym;
1038
1039 ps_data->objfile = reg_symbol.objfile;
1040 }
1041 else
1042 objf_data = get_jit_objfile_data (ps_data->objfile);
1043
1044 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1045
1046 if (jit_debug)
1047 fprintf_unfiltered (gdb_stdlog,
1048 "jit_breakpoint_re_set_internal, "
1049 "breakpoint_addr = %s\n",
1050 paddress (gdbarch, addr));
1051
1052 if (ps_data->cached_code_address == addr)
1053 return 0;
1054
1055 /* Delete the old breakpoint. */
1056 if (ps_data->jit_breakpoint != NULL)
1057 delete_breakpoint (ps_data->jit_breakpoint);
1058
1059 /* Put a breakpoint in the registration symbol. */
1060 ps_data->cached_code_address = addr;
1061 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1062
1063 return 0;
1064 }
1065
1066 /* The private data passed around in the frame unwind callback
1067 functions. */
1068
1069 struct jit_unwind_private
1070 {
1071 /* Cached register values. See jit_frame_sniffer to see how this
1072 works. */
1073 detached_regcache *regcache;
1074
1075 /* The frame being unwound. */
1076 struct frame_info *this_frame;
1077 };
1078
1079 /* Sets the value of a particular register in this frame. */
1080
1081 static void
1082 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1083 struct gdb_reg_value *value)
1084 {
1085 struct jit_unwind_private *priv;
1086 int gdb_reg;
1087
1088 priv = (struct jit_unwind_private *) cb->priv_data;
1089
1090 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1091 dwarf_regnum);
1092 if (gdb_reg == -1)
1093 {
1094 if (jit_debug)
1095 fprintf_unfiltered (gdb_stdlog,
1096 _("Could not recognize DWARF regnum %d"),
1097 dwarf_regnum);
1098 value->free (value);
1099 return;
1100 }
1101
1102 priv->regcache->raw_supply (gdb_reg, value->value);
1103 value->free (value);
1104 }
1105
1106 static void
1107 reg_value_free_impl (struct gdb_reg_value *value)
1108 {
1109 xfree (value);
1110 }
1111
1112 /* Get the value of register REGNUM in the previous frame. */
1113
1114 static struct gdb_reg_value *
1115 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1116 {
1117 struct jit_unwind_private *priv;
1118 struct gdb_reg_value *value;
1119 int gdb_reg, size;
1120 struct gdbarch *frame_arch;
1121
1122 priv = (struct jit_unwind_private *) cb->priv_data;
1123 frame_arch = get_frame_arch (priv->this_frame);
1124
1125 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1126 size = register_size (frame_arch, gdb_reg);
1127 value = ((struct gdb_reg_value *)
1128 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1129 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1130 value->value);
1131 value->size = size;
1132 value->free = reg_value_free_impl;
1133 return value;
1134 }
1135
1136 /* gdb_reg_value has a free function, which must be called on each
1137 saved register value. */
1138
1139 static void
1140 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1141 {
1142 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1143
1144 gdb_assert (priv_data->regcache != NULL);
1145 delete priv_data->regcache;
1146 xfree (priv_data);
1147 }
1148
1149 /* The frame sniffer for the pseudo unwinder.
1150
1151 While this is nominally a frame sniffer, in the case where the JIT
1152 reader actually recognizes the frame, it does a lot more work -- it
1153 unwinds the frame and saves the corresponding register values in
1154 the cache. jit_frame_prev_register simply returns the saved
1155 register values. */
1156
1157 static int
1158 jit_frame_sniffer (const struct frame_unwind *self,
1159 struct frame_info *this_frame, void **cache)
1160 {
1161 struct jit_unwind_private *priv_data;
1162 struct gdb_unwind_callbacks callbacks;
1163 struct gdb_reader_funcs *funcs;
1164
1165 callbacks.reg_get = jit_unwind_reg_get_impl;
1166 callbacks.reg_set = jit_unwind_reg_set_impl;
1167 callbacks.target_read = jit_target_read_impl;
1168
1169 if (loaded_jit_reader == NULL)
1170 return 0;
1171
1172 funcs = loaded_jit_reader->functions;
1173
1174 gdb_assert (!*cache);
1175
1176 *cache = XCNEW (struct jit_unwind_private);
1177 priv_data = (struct jit_unwind_private *) *cache;
1178 /* Take a snapshot of current regcache. */
1179 priv_data->regcache = new detached_regcache (get_frame_arch (this_frame),
1180 true);
1181 priv_data->this_frame = this_frame;
1182
1183 callbacks.priv_data = priv_data;
1184
1185 /* Try to coax the provided unwinder to unwind the stack */
1186 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1187 {
1188 if (jit_debug)
1189 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1190 "JIT reader.\n"));
1191 return 1;
1192 }
1193 if (jit_debug)
1194 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1195 "JIT reader.\n"));
1196
1197 jit_dealloc_cache (this_frame, *cache);
1198 *cache = NULL;
1199
1200 return 0;
1201 }
1202
1203
1204 /* The frame_id function for the pseudo unwinder. Relays the call to
1205 the loaded plugin. */
1206
1207 static void
1208 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1209 struct frame_id *this_id)
1210 {
1211 struct jit_unwind_private priv;
1212 struct gdb_frame_id frame_id;
1213 struct gdb_reader_funcs *funcs;
1214 struct gdb_unwind_callbacks callbacks;
1215
1216 priv.regcache = NULL;
1217 priv.this_frame = this_frame;
1218
1219 /* We don't expect the frame_id function to set any registers, so we
1220 set reg_set to NULL. */
1221 callbacks.reg_get = jit_unwind_reg_get_impl;
1222 callbacks.reg_set = NULL;
1223 callbacks.target_read = jit_target_read_impl;
1224 callbacks.priv_data = &priv;
1225
1226 gdb_assert (loaded_jit_reader);
1227 funcs = loaded_jit_reader->functions;
1228
1229 frame_id = funcs->get_frame_id (funcs, &callbacks);
1230 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1231 }
1232
1233 /* Pseudo unwinder function. Reads the previously fetched value for
1234 the register from the cache. */
1235
1236 static struct value *
1237 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1238 {
1239 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1240 struct gdbarch *gdbarch;
1241
1242 if (priv == NULL)
1243 return frame_unwind_got_optimized (this_frame, reg);
1244
1245 gdbarch = priv->regcache->arch ();
1246 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1247 enum register_status status = priv->regcache->cooked_read (reg, buf);
1248
1249 if (status == REG_VALID)
1250 return frame_unwind_got_bytes (this_frame, reg, buf);
1251 else
1252 return frame_unwind_got_optimized (this_frame, reg);
1253 }
1254
1255 /* Relay everything back to the unwinder registered by the JIT debug
1256 info reader.*/
1257
1258 static const struct frame_unwind jit_frame_unwind =
1259 {
1260 NORMAL_FRAME,
1261 default_frame_unwind_stop_reason,
1262 jit_frame_this_id,
1263 jit_frame_prev_register,
1264 NULL,
1265 jit_frame_sniffer,
1266 jit_dealloc_cache
1267 };
1268
1269
1270 /* This is the information that is stored at jit_gdbarch_data for each
1271 architecture. */
1272
1273 struct jit_gdbarch_data_type
1274 {
1275 /* Has the (pseudo) unwinder been prepended? */
1276 int unwinder_registered;
1277 };
1278
1279 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1280
1281 static void
1282 jit_prepend_unwinder (struct gdbarch *gdbarch)
1283 {
1284 struct jit_gdbarch_data_type *data;
1285
1286 data
1287 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1288 if (!data->unwinder_registered)
1289 {
1290 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1291 data->unwinder_registered = 1;
1292 }
1293 }
1294
1295 /* Register any already created translations. */
1296
1297 static void
1298 jit_inferior_init (struct gdbarch *gdbarch)
1299 {
1300 struct jit_descriptor descriptor;
1301 struct jit_code_entry cur_entry;
1302 struct jit_program_space_data *ps_data;
1303 CORE_ADDR cur_entry_addr;
1304
1305 if (jit_debug)
1306 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1307
1308 jit_prepend_unwinder (gdbarch);
1309
1310 ps_data = get_jit_program_space_data ();
1311 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1312 return;
1313
1314 /* Read the descriptor so we can check the version number and load
1315 any already JITed functions. */
1316 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1317 return;
1318
1319 /* Check that the version number agrees with that we support. */
1320 if (descriptor.version != 1)
1321 {
1322 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1323 "in descriptor (expected 1)\n"),
1324 (long) descriptor.version);
1325 return;
1326 }
1327
1328 /* If we've attached to a running program, we need to check the descriptor
1329 to register any functions that were already generated. */
1330 for (cur_entry_addr = descriptor.first_entry;
1331 cur_entry_addr != 0;
1332 cur_entry_addr = cur_entry.next_entry)
1333 {
1334 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1335
1336 /* This hook may be called many times during setup, so make sure we don't
1337 add the same symbol file twice. */
1338 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1339 continue;
1340
1341 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1342 }
1343 }
1344
1345 /* inferior_created observer. */
1346
1347 static void
1348 jit_inferior_created (struct target_ops *ops, int from_tty)
1349 {
1350 jit_inferior_created_hook ();
1351 }
1352
1353 /* Exported routine to call when an inferior has been created. */
1354
1355 void
1356 jit_inferior_created_hook (void)
1357 {
1358 jit_inferior_init (target_gdbarch ());
1359 }
1360
1361 /* Exported routine to call to re-set the jit breakpoints,
1362 e.g. when a program is rerun. */
1363
1364 void
1365 jit_breakpoint_re_set (void)
1366 {
1367 jit_breakpoint_re_set_internal (target_gdbarch (),
1368 get_jit_program_space_data ());
1369 }
1370
1371 /* This function cleans up any code entries left over when the
1372 inferior exits. We get left over code when the inferior exits
1373 without unregistering its code, for example when it crashes. */
1374
1375 static void
1376 jit_inferior_exit_hook (struct inferior *inf)
1377 {
1378 for (objfile *objf : current_program_space->objfiles_safe ())
1379 {
1380 struct jit_objfile_data *objf_data
1381 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1382
1383 if (objf_data != NULL && objf_data->addr != 0)
1384 jit_unregister_code (objf);
1385 }
1386 }
1387
1388 void
1389 jit_event_handler (struct gdbarch *gdbarch)
1390 {
1391 struct jit_descriptor descriptor;
1392 struct jit_code_entry code_entry;
1393 CORE_ADDR entry_addr;
1394 struct objfile *objf;
1395
1396 /* Read the descriptor from remote memory. */
1397 if (!jit_read_descriptor (gdbarch, &descriptor,
1398 get_jit_program_space_data ()))
1399 return;
1400 entry_addr = descriptor.relevant_entry;
1401
1402 /* Do the corresponding action. */
1403 switch (descriptor.action_flag)
1404 {
1405 case JIT_NOACTION:
1406 break;
1407 case JIT_REGISTER:
1408 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1409 jit_register_code (gdbarch, entry_addr, &code_entry);
1410 break;
1411 case JIT_UNREGISTER:
1412 objf = jit_find_objf_with_entry_addr (entry_addr);
1413 if (objf == NULL)
1414 printf_unfiltered (_("Unable to find JITed code "
1415 "entry at address: %s\n"),
1416 paddress (gdbarch, entry_addr));
1417 else
1418 jit_unregister_code (objf);
1419
1420 break;
1421 default:
1422 error (_("Unknown action_flag value in JIT descriptor!"));
1423 break;
1424 }
1425 }
1426
1427 /* Called to free the data allocated to the jit_program_space_data slot. */
1428
1429 static void
1430 free_objfile_data (struct objfile *objfile, void *data)
1431 {
1432 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1433
1434 if (objf_data->register_code != NULL)
1435 {
1436 struct jit_program_space_data *ps_data;
1437
1438 ps_data = jit_program_space_key.get (objfile->pspace);
1439 if (ps_data != NULL && ps_data->objfile == objfile)
1440 {
1441 ps_data->objfile = NULL;
1442 if (ps_data->jit_breakpoint != NULL)
1443 delete_breakpoint (ps_data->jit_breakpoint);
1444 ps_data->cached_code_address = 0;
1445 }
1446 }
1447
1448 xfree (data);
1449 }
1450
1451 /* Initialize the jit_gdbarch_data slot with an instance of struct
1452 jit_gdbarch_data_type */
1453
1454 static void *
1455 jit_gdbarch_data_init (struct obstack *obstack)
1456 {
1457 struct jit_gdbarch_data_type *data =
1458 XOBNEW (obstack, struct jit_gdbarch_data_type);
1459
1460 data->unwinder_registered = 0;
1461
1462 return data;
1463 }
1464
1465 void
1466 _initialize_jit (void)
1467 {
1468 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1469 JIT_READER_DIR_RELOCATABLE);
1470 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1471 _("Set JIT debugging."),
1472 _("Show JIT debugging."),
1473 _("When non-zero, JIT debugging is enabled."),
1474 NULL,
1475 show_jit_debug,
1476 &setdebuglist, &showdebuglist);
1477
1478 gdb::observers::inferior_created.attach (jit_inferior_created);
1479 gdb::observers::inferior_exit.attach (jit_inferior_exit_hook);
1480 gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted);
1481
1482 jit_objfile_data =
1483 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1484 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1485 if (is_dl_available ())
1486 {
1487 struct cmd_list_element *c;
1488
1489 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1490 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1491 Usage: jit-reader-load FILE\n\
1492 Try to load file FILE as a debug info reader (and unwinder) for\n\
1493 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1494 relocated relative to the GDB executable if required."));
1495 set_cmd_completer (c, filename_completer);
1496
1497 c = add_com ("jit-reader-unload", no_class,
1498 jit_reader_unload_command, _("\
1499 Unload the currently loaded JIT debug info reader.\n\
1500 Usage: jit-reader-unload\n\n\
1501 Do \"help jit-reader-load\" for info on loading debug info readers."));
1502 set_cmd_completer (c, noop_completer);
1503 }
1504 }
This page took 0.059337 seconds and 3 git commands to generate.