jit: make gdb_object::symtabs an std::forward_list
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observable.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdbsupport/gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44 #include <forward_list>
45
46 static std::string jit_reader_dir;
47
48 static const struct objfile_data *jit_objfile_data;
49
50 static const char *const jit_break_name = "__jit_debug_register_code";
51
52 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
53
54 static void jit_inferior_init (struct gdbarch *gdbarch);
55 static void jit_inferior_exit_hook (struct inferior *inf);
56
57 /* An unwinder is registered for every gdbarch. This key is used to
58 remember if the unwinder has been registered for a particular
59 gdbarch. */
60
61 static struct gdbarch_data *jit_gdbarch_data;
62
63 /* Non-zero if we want to see trace of jit level stuff. */
64
65 static unsigned int jit_debug = 0;
66
67 static void
68 show_jit_debug (struct ui_file *file, int from_tty,
69 struct cmd_list_element *c, const char *value)
70 {
71 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
72 }
73
74 struct target_buffer
75 {
76 CORE_ADDR base;
77 ULONGEST size;
78 };
79
80 /* Opening the file is a no-op. */
81
82 static void *
83 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
84 {
85 return open_closure;
86 }
87
88 /* Closing the file is just freeing the base/size pair on our side. */
89
90 static int
91 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
92 {
93 xfree (stream);
94
95 /* Zero means success. */
96 return 0;
97 }
98
99 /* For reading the file, we just need to pass through to target_read_memory and
100 fix up the arguments and return values. */
101
102 static file_ptr
103 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
104 file_ptr nbytes, file_ptr offset)
105 {
106 int err;
107 struct target_buffer *buffer = (struct target_buffer *) stream;
108
109 /* If this read will read all of the file, limit it to just the rest. */
110 if (offset + nbytes > buffer->size)
111 nbytes = buffer->size - offset;
112
113 /* If there are no more bytes left, we've reached EOF. */
114 if (nbytes == 0)
115 return 0;
116
117 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
118 if (err)
119 return -1;
120
121 return nbytes;
122 }
123
124 /* For statting the file, we only support the st_size attribute. */
125
126 static int
127 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
128 {
129 struct target_buffer *buffer = (struct target_buffer*) stream;
130
131 memset (sb, 0, sizeof (struct stat));
132 sb->st_size = buffer->size;
133 return 0;
134 }
135
136 /* Open a BFD from the target's memory. */
137
138 static gdb_bfd_ref_ptr
139 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
140 {
141 struct target_buffer *buffer = XNEW (struct target_buffer);
142
143 buffer->base = addr;
144 buffer->size = size;
145 return gdb_bfd_openr_iovec ("<in-memory>", target,
146 mem_bfd_iovec_open,
147 buffer,
148 mem_bfd_iovec_pread,
149 mem_bfd_iovec_close,
150 mem_bfd_iovec_stat);
151 }
152
153 struct jit_reader
154 {
155 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
156 : functions (f), handle (std::move (h))
157 {
158 }
159
160 ~jit_reader ()
161 {
162 functions->destroy (functions);
163 }
164
165 DISABLE_COPY_AND_ASSIGN (jit_reader);
166
167 struct gdb_reader_funcs *functions;
168 gdb_dlhandle_up handle;
169 };
170
171 /* One reader that has been loaded successfully, and can potentially be used to
172 parse debug info. */
173
174 static struct jit_reader *loaded_jit_reader = NULL;
175
176 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
177 static const char *reader_init_fn_sym = "gdb_init_reader";
178
179 /* Try to load FILE_NAME as a JIT debug info reader. */
180
181 static struct jit_reader *
182 jit_reader_load (const char *file_name)
183 {
184 reader_init_fn_type *init_fn;
185 struct gdb_reader_funcs *funcs = NULL;
186
187 if (jit_debug)
188 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
189 file_name);
190 gdb_dlhandle_up so = gdb_dlopen (file_name);
191
192 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
193 if (!init_fn)
194 error (_("Could not locate initialization function: %s."),
195 reader_init_fn_sym);
196
197 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
198 error (_("Reader not GPL compatible."));
199
200 funcs = init_fn ();
201 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
202 error (_("Reader version does not match GDB version."));
203
204 return new jit_reader (funcs, std::move (so));
205 }
206
207 /* Provides the jit-reader-load command. */
208
209 static void
210 jit_reader_load_command (const char *args, int from_tty)
211 {
212 if (args == NULL)
213 error (_("No reader name provided."));
214 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
215
216 if (loaded_jit_reader != NULL)
217 error (_("JIT reader already loaded. Run jit-reader-unload first."));
218
219 if (!IS_ABSOLUTE_PATH (file.get ()))
220 file.reset (xstrprintf ("%s%s%s", jit_reader_dir.c_str (), SLASH_STRING,
221 file.get ()));
222
223 loaded_jit_reader = jit_reader_load (file.get ());
224 reinit_frame_cache ();
225 jit_inferior_created_hook ();
226 }
227
228 /* Provides the jit-reader-unload command. */
229
230 static void
231 jit_reader_unload_command (const char *args, int from_tty)
232 {
233 if (!loaded_jit_reader)
234 error (_("No JIT reader loaded."));
235
236 reinit_frame_cache ();
237 jit_inferior_exit_hook (current_inferior ());
238
239 delete loaded_jit_reader;
240 loaded_jit_reader = NULL;
241 }
242
243 /* Per-program space structure recording which objfile has the JIT
244 symbols. */
245
246 struct jit_program_space_data
247 {
248 /* The objfile. This is NULL if no objfile holds the JIT
249 symbols. */
250
251 struct objfile *objfile = nullptr;
252
253 /* If this program space has __jit_debug_register_code, this is the
254 cached address from the minimal symbol. This is used to detect
255 relocations requiring the breakpoint to be re-created. */
256
257 CORE_ADDR cached_code_address = 0;
258
259 /* This is the JIT event breakpoint, or NULL if it has not been
260 set. */
261
262 struct breakpoint *jit_breakpoint = nullptr;
263 };
264
265 static program_space_key<jit_program_space_data> jit_program_space_key;
266
267 /* Per-objfile structure recording the addresses in the program space.
268 This object serves two purposes: for ordinary objfiles, it may
269 cache some symbols related to the JIT interface; and for
270 JIT-created objfiles, it holds some information about the
271 jit_code_entry. */
272
273 struct jit_objfile_data
274 {
275 /* Symbol for __jit_debug_register_code. */
276 struct minimal_symbol *register_code;
277
278 /* Symbol for __jit_debug_descriptor. */
279 struct minimal_symbol *descriptor;
280
281 /* Address of struct jit_code_entry in this objfile. This is only
282 non-zero for objfiles that represent code created by the JIT. */
283 CORE_ADDR addr;
284 };
285
286 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
287 yet, make a new structure and attach it. */
288
289 static struct jit_objfile_data *
290 get_jit_objfile_data (struct objfile *objf)
291 {
292 struct jit_objfile_data *objf_data;
293
294 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
295 if (objf_data == NULL)
296 {
297 objf_data = XCNEW (struct jit_objfile_data);
298 set_objfile_data (objf, jit_objfile_data, objf_data);
299 }
300
301 return objf_data;
302 }
303
304 /* Remember OBJFILE has been created for struct jit_code_entry located
305 at inferior address ENTRY. */
306
307 static void
308 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
309 {
310 struct jit_objfile_data *objf_data;
311
312 objf_data = get_jit_objfile_data (objfile);
313 objf_data->addr = entry;
314 }
315
316 /* Return jit_program_space_data for current program space. Allocate
317 if not already present. */
318
319 static struct jit_program_space_data *
320 get_jit_program_space_data ()
321 {
322 struct jit_program_space_data *ps_data;
323
324 ps_data = jit_program_space_key.get (current_program_space);
325 if (ps_data == NULL)
326 ps_data = jit_program_space_key.emplace (current_program_space);
327 return ps_data;
328 }
329
330 /* Helper function for reading the global JIT descriptor from remote
331 memory. Returns 1 if all went well, 0 otherwise. */
332
333 static int
334 jit_read_descriptor (struct gdbarch *gdbarch,
335 struct jit_descriptor *descriptor,
336 struct jit_program_space_data *ps_data)
337 {
338 int err;
339 struct type *ptr_type;
340 int ptr_size;
341 int desc_size;
342 gdb_byte *desc_buf;
343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
344 struct jit_objfile_data *objf_data;
345
346 if (ps_data->objfile == NULL)
347 return 0;
348 objf_data = get_jit_objfile_data (ps_data->objfile);
349 if (objf_data->descriptor == NULL)
350 return 0;
351
352 if (jit_debug)
353 fprintf_unfiltered (gdb_stdlog,
354 "jit_read_descriptor, descriptor_addr = %s\n",
355 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
356 objf_data->descriptor)));
357
358 /* Figure out how big the descriptor is on the remote and how to read it. */
359 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
360 ptr_size = TYPE_LENGTH (ptr_type);
361 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
362 desc_buf = (gdb_byte *) alloca (desc_size);
363
364 /* Read the descriptor. */
365 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
366 objf_data->descriptor),
367 desc_buf, desc_size);
368 if (err)
369 {
370 printf_unfiltered (_("Unable to read JIT descriptor from "
371 "remote memory\n"));
372 return 0;
373 }
374
375 /* Fix the endianness to match the host. */
376 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
377 descriptor->action_flag =
378 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
379 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
380 descriptor->first_entry =
381 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
382
383 return 1;
384 }
385
386 /* Helper function for reading a JITed code entry from remote memory. */
387
388 static void
389 jit_read_code_entry (struct gdbarch *gdbarch,
390 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
391 {
392 int err, off;
393 struct type *ptr_type;
394 int ptr_size;
395 int entry_size;
396 int align_bytes;
397 gdb_byte *entry_buf;
398 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
399
400 /* Figure out how big the entry is on the remote and how to read it. */
401 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
402 ptr_size = TYPE_LENGTH (ptr_type);
403
404 /* Figure out where the uint64_t value will be. */
405 align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
406 off = 3 * ptr_size;
407 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
408
409 entry_size = off + 8; /* Three pointers and one 64-bit int. */
410 entry_buf = (gdb_byte *) alloca (entry_size);
411
412 /* Read the entry. */
413 err = target_read_memory (code_addr, entry_buf, entry_size);
414 if (err)
415 error (_("Unable to read JIT code entry from remote memory!"));
416
417 /* Fix the endianness to match the host. */
418 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
419 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
420 code_entry->prev_entry =
421 extract_typed_address (&entry_buf[ptr_size], ptr_type);
422 code_entry->symfile_addr =
423 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
424 code_entry->symfile_size =
425 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
426 }
427
428 /* Proxy object for building a block. */
429
430 struct gdb_block
431 {
432 /* gdb_blocks are linked into a tree structure. Next points to the
433 next node at the same depth as this block and parent to the
434 parent gdb_block. */
435 struct gdb_block *next, *parent;
436
437 /* Points to the "real" block that is being built out of this
438 instance. This block will be added to a blockvector, which will
439 then be added to a symtab. */
440 struct block *real_block;
441
442 /* The first and last code address corresponding to this block. */
443 CORE_ADDR begin, end;
444
445 /* The name of this block (if any). If this is non-NULL, the
446 FUNCTION symbol symbol is set to this value. */
447 const char *name;
448 };
449
450 /* Proxy object for building a symtab. */
451
452 struct gdb_symtab
453 {
454 explicit gdb_symtab (const char *file_name)
455 : file_name (file_name != nullptr ? file_name : "")
456 {}
457
458 ~gdb_symtab ()
459 {
460 gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
461
462 for ((gdb_block_iter = this->blocks,
463 gdb_block_iter_tmp = gdb_block_iter->next);
464 gdb_block_iter;
465 gdb_block_iter = gdb_block_iter_tmp)
466 {
467 gdb_block_iter_tmp = gdb_block_iter->next;
468 xfree ((void *) gdb_block_iter->name);
469 xfree (gdb_block_iter);
470 }
471 }
472
473 /* The list of blocks in this symtab. These will eventually be
474 converted to real blocks. */
475 struct gdb_block *blocks = nullptr;
476
477 /* The number of blocks inserted. */
478 int nblocks = 0;
479
480 /* A mapping between line numbers to PC. */
481 gdb::unique_xmalloc_ptr<struct linetable> linetable;
482
483 /* The source file for this symtab. */
484 std::string file_name;
485 };
486
487 /* Proxy object for building an object. */
488
489 struct gdb_object
490 {
491 /* Symtabs of this object.
492
493 This is specifically a linked list, instead of, for example, a vector,
494 because the pointers are returned to the user's debug info reader. So
495 it's important that the objects don't change location during their
496 lifetime (which would happen with a vector of objects getting resized). */
497 std::forward_list<gdb_symtab> symtabs;
498 };
499
500 /* The type of the `private' data passed around by the callback
501 functions. */
502
503 typedef CORE_ADDR jit_dbg_reader_data;
504
505 /* The reader calls into this function to read data off the targets
506 address space. */
507
508 static enum gdb_status
509 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
510 {
511 int result = target_read_memory ((CORE_ADDR) target_mem,
512 (gdb_byte *) gdb_buf, len);
513 if (result == 0)
514 return GDB_SUCCESS;
515 else
516 return GDB_FAIL;
517 }
518
519 /* The reader calls into this function to create a new gdb_object
520 which it can then pass around to the other callbacks. Right now,
521 all that is required is allocating the memory. */
522
523 static struct gdb_object *
524 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
525 {
526 /* CB is not required right now, but sometime in the future we might
527 need a handle to it, and we'd like to do that without breaking
528 the ABI. */
529 return new gdb_object;
530 }
531
532 /* Readers call into this function to open a new gdb_symtab, which,
533 again, is passed around to other callbacks. */
534
535 static struct gdb_symtab *
536 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
537 struct gdb_object *object,
538 const char *file_name)
539 {
540 /* CB stays unused. See comment in jit_object_open_impl. */
541
542 object->symtabs.emplace_front (file_name);
543 return &object->symtabs.front ();
544 }
545
546 /* Returns true if the block corresponding to old should be placed
547 before the block corresponding to new in the final blockvector. */
548
549 static int
550 compare_block (const struct gdb_block *const old,
551 const struct gdb_block *const newobj)
552 {
553 if (old == NULL)
554 return 1;
555 if (old->begin < newobj->begin)
556 return 1;
557 else if (old->begin == newobj->begin)
558 {
559 if (old->end > newobj->end)
560 return 1;
561 else
562 return 0;
563 }
564 else
565 return 0;
566 }
567
568 /* Called by readers to open a new gdb_block. This function also
569 inserts the new gdb_block in the correct place in the corresponding
570 gdb_symtab. */
571
572 static struct gdb_block *
573 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
574 struct gdb_symtab *symtab, struct gdb_block *parent,
575 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
576 {
577 struct gdb_block *block = XCNEW (struct gdb_block);
578
579 block->next = symtab->blocks;
580 block->begin = (CORE_ADDR) begin;
581 block->end = (CORE_ADDR) end;
582 block->name = name ? xstrdup (name) : NULL;
583 block->parent = parent;
584
585 /* Ensure that the blocks are inserted in the correct (reverse of
586 the order expected by blockvector). */
587 if (compare_block (symtab->blocks, block))
588 {
589 symtab->blocks = block;
590 }
591 else
592 {
593 struct gdb_block *i = symtab->blocks;
594
595 for (;; i = i->next)
596 {
597 /* Guaranteed to terminate, since compare_block (NULL, _)
598 returns 1. */
599 if (compare_block (i->next, block))
600 {
601 block->next = i->next;
602 i->next = block;
603 break;
604 }
605 }
606 }
607 symtab->nblocks++;
608
609 return block;
610 }
611
612 /* Readers call this to add a line mapping (from PC to line number) to
613 a gdb_symtab. */
614
615 static void
616 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
617 struct gdb_symtab *stab, int nlines,
618 struct gdb_line_mapping *map)
619 {
620 int i;
621 int alloc_len;
622
623 if (nlines < 1)
624 return;
625
626 alloc_len = sizeof (struct linetable)
627 + (nlines - 1) * sizeof (struct linetable_entry);
628 stab->linetable.reset (XNEWVAR (struct linetable, alloc_len));
629 stab->linetable->nitems = nlines;
630 for (i = 0; i < nlines; i++)
631 {
632 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
633 stab->linetable->item[i].line = map[i].line;
634 }
635 }
636
637 /* Called by readers to close a gdb_symtab. Does not need to do
638 anything as of now. */
639
640 static void
641 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
642 struct gdb_symtab *stab)
643 {
644 /* Right now nothing needs to be done here. We may need to do some
645 cleanup here in the future (again, without breaking the plugin
646 ABI). */
647 }
648
649 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
650
651 static void
652 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
653 {
654 struct compunit_symtab *cust;
655 struct gdb_block *gdb_block_iter;
656 struct block *block_iter;
657 int actual_nblocks, i;
658 size_t blockvector_size;
659 CORE_ADDR begin, end;
660 struct blockvector *bv;
661
662 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
663
664 cust = allocate_compunit_symtab (objfile, stab->file_name.c_str ());
665 allocate_symtab (cust, stab->file_name.c_str ());
666 add_compunit_symtab_to_objfile (cust);
667
668 /* JIT compilers compile in memory. */
669 COMPUNIT_DIRNAME (cust) = NULL;
670
671 /* Copy over the linetable entry if one was provided. */
672 if (stab->linetable)
673 {
674 size_t size = ((stab->linetable->nitems - 1)
675 * sizeof (struct linetable_entry)
676 + sizeof (struct linetable));
677 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
678 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
679 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)),
680 stab->linetable.get (), size);
681 }
682
683 blockvector_size = (sizeof (struct blockvector)
684 + (actual_nblocks - 1) * sizeof (struct block *));
685 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
686 blockvector_size);
687 COMPUNIT_BLOCKVECTOR (cust) = bv;
688
689 /* (begin, end) will contain the PC range this entire blockvector
690 spans. */
691 BLOCKVECTOR_MAP (bv) = NULL;
692 begin = stab->blocks->begin;
693 end = stab->blocks->end;
694 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
695
696 /* First run over all the gdb_block objects, creating a real block
697 object for each. Simultaneously, keep setting the real_block
698 fields. */
699 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
700 i >= FIRST_LOCAL_BLOCK;
701 i--, gdb_block_iter = gdb_block_iter->next)
702 {
703 struct block *new_block = allocate_block (&objfile->objfile_obstack);
704 struct symbol *block_name = allocate_symbol (objfile);
705 struct type *block_type = arch_type (get_objfile_arch (objfile),
706 TYPE_CODE_VOID,
707 TARGET_CHAR_BIT,
708 "void");
709
710 BLOCK_MULTIDICT (new_block)
711 = mdict_create_linear (&objfile->objfile_obstack, NULL);
712 /* The address range. */
713 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
714 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
715
716 /* The name. */
717 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
718 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
719 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
720 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
721 SYMBOL_BLOCK_VALUE (block_name) = new_block;
722
723 block_name->name = obstack_strdup (&objfile->objfile_obstack,
724 gdb_block_iter->name);
725
726 BLOCK_FUNCTION (new_block) = block_name;
727
728 BLOCKVECTOR_BLOCK (bv, i) = new_block;
729 if (begin > BLOCK_START (new_block))
730 begin = BLOCK_START (new_block);
731 if (end < BLOCK_END (new_block))
732 end = BLOCK_END (new_block);
733
734 gdb_block_iter->real_block = new_block;
735 }
736
737 /* Now add the special blocks. */
738 block_iter = NULL;
739 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
740 {
741 struct block *new_block;
742
743 new_block = (i == GLOBAL_BLOCK
744 ? allocate_global_block (&objfile->objfile_obstack)
745 : allocate_block (&objfile->objfile_obstack));
746 BLOCK_MULTIDICT (new_block)
747 = mdict_create_linear (&objfile->objfile_obstack, NULL);
748 BLOCK_SUPERBLOCK (new_block) = block_iter;
749 block_iter = new_block;
750
751 BLOCK_START (new_block) = (CORE_ADDR) begin;
752 BLOCK_END (new_block) = (CORE_ADDR) end;
753
754 BLOCKVECTOR_BLOCK (bv, i) = new_block;
755
756 if (i == GLOBAL_BLOCK)
757 set_block_compunit_symtab (new_block, cust);
758 }
759
760 /* Fill up the superblock fields for the real blocks, using the
761 real_block fields populated earlier. */
762 for (gdb_block_iter = stab->blocks;
763 gdb_block_iter;
764 gdb_block_iter = gdb_block_iter->next)
765 {
766 if (gdb_block_iter->parent != NULL)
767 {
768 /* If the plugin specifically mentioned a parent block, we
769 use that. */
770 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
771 gdb_block_iter->parent->real_block;
772 }
773 else
774 {
775 /* And if not, we set a default parent block. */
776 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
777 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
778 }
779 }
780 }
781
782 /* Called when closing a gdb_objfile. Converts OBJ to a proper
783 objfile. */
784
785 static void
786 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
787 struct gdb_object *obj)
788 {
789 struct objfile *objfile;
790 jit_dbg_reader_data *priv_data;
791
792 priv_data = (jit_dbg_reader_data *) cb->priv_data;
793
794 objfile = objfile::make (nullptr, "<< JIT compiled code >>",
795 OBJF_NOT_FILENAME);
796 objfile->per_bfd->gdbarch = target_gdbarch ();
797
798 for (gdb_symtab &symtab : obj->symtabs)
799 finalize_symtab (&symtab, objfile);
800
801 add_objfile_entry (objfile, *priv_data);
802
803 delete obj;
804 }
805
806 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
807 ENTRY_ADDR is the address of the struct jit_code_entry in the
808 inferior address space. */
809
810 static int
811 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
812 CORE_ADDR entry_addr)
813 {
814 int status;
815 jit_dbg_reader_data priv_data;
816 struct gdb_reader_funcs *funcs;
817 struct gdb_symbol_callbacks callbacks =
818 {
819 jit_object_open_impl,
820 jit_symtab_open_impl,
821 jit_block_open_impl,
822 jit_symtab_close_impl,
823 jit_object_close_impl,
824
825 jit_symtab_line_mapping_add_impl,
826 jit_target_read_impl,
827
828 &priv_data
829 };
830
831 priv_data = entry_addr;
832
833 if (!loaded_jit_reader)
834 return 0;
835
836 gdb::byte_vector gdb_mem (code_entry->symfile_size);
837
838 status = 1;
839 try
840 {
841 if (target_read_memory (code_entry->symfile_addr, gdb_mem.data (),
842 code_entry->symfile_size))
843 status = 0;
844 }
845 catch (const gdb_exception &e)
846 {
847 status = 0;
848 }
849
850 if (status)
851 {
852 funcs = loaded_jit_reader->functions;
853 if (funcs->read (funcs, &callbacks, gdb_mem.data (),
854 code_entry->symfile_size)
855 != GDB_SUCCESS)
856 status = 0;
857 }
858
859 if (jit_debug && status == 0)
860 fprintf_unfiltered (gdb_stdlog,
861 "Could not read symtab using the loaded JIT reader.\n");
862 return status;
863 }
864
865 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
866 struct jit_code_entry in the inferior address space. */
867
868 static void
869 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
870 CORE_ADDR entry_addr,
871 struct gdbarch *gdbarch)
872 {
873 struct bfd_section *sec;
874 struct objfile *objfile;
875 const struct bfd_arch_info *b;
876
877 if (jit_debug)
878 fprintf_unfiltered (gdb_stdlog,
879 "jit_bfd_try_read_symtab, symfile_addr = %s, "
880 "symfile_size = %s\n",
881 paddress (gdbarch, code_entry->symfile_addr),
882 pulongest (code_entry->symfile_size));
883
884 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
885 code_entry->symfile_size,
886 gnutarget));
887 if (nbfd == NULL)
888 {
889 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
890 return;
891 }
892
893 /* Check the format. NOTE: This initializes important data that GDB uses!
894 We would segfault later without this line. */
895 if (!bfd_check_format (nbfd.get (), bfd_object))
896 {
897 printf_unfiltered (_("\
898 JITed symbol file is not an object file, ignoring it.\n"));
899 return;
900 }
901
902 /* Check bfd arch. */
903 b = gdbarch_bfd_arch_info (gdbarch);
904 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
905 warning (_("JITed object file architecture %s is not compatible "
906 "with target architecture %s."),
907 bfd_get_arch_info (nbfd.get ())->printable_name,
908 b->printable_name);
909
910 /* Read the section address information out of the symbol file. Since the
911 file is generated by the JIT at runtime, it should all of the absolute
912 addresses that we care about. */
913 section_addr_info sai;
914 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
915 if ((bfd_section_flags (sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
916 {
917 /* We assume that these virtual addresses are absolute, and do not
918 treat them as offsets. */
919 sai.emplace_back (bfd_section_vma (sec),
920 bfd_section_name (sec),
921 sec->index);
922 }
923
924 /* This call does not take ownership of SAI. */
925 objfile = symbol_file_add_from_bfd (nbfd.get (),
926 bfd_get_filename (nbfd.get ()), 0,
927 &sai,
928 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
929
930 add_objfile_entry (objfile, entry_addr);
931 }
932
933 /* This function registers code associated with a JIT code entry. It uses the
934 pointer and size pair in the entry to read the symbol file from the remote
935 and then calls symbol_file_add_from_local_memory to add it as though it were
936 a symbol file added by the user. */
937
938 static void
939 jit_register_code (struct gdbarch *gdbarch,
940 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
941 {
942 int success;
943
944 if (jit_debug)
945 fprintf_unfiltered (gdb_stdlog,
946 "jit_register_code, symfile_addr = %s, "
947 "symfile_size = %s\n",
948 paddress (gdbarch, code_entry->symfile_addr),
949 pulongest (code_entry->symfile_size));
950
951 success = jit_reader_try_read_symtab (code_entry, entry_addr);
952
953 if (!success)
954 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
955 }
956
957 /* Look up the objfile with this code entry address. */
958
959 static struct objfile *
960 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
961 {
962 for (objfile *objf : current_program_space->objfiles ())
963 {
964 struct jit_objfile_data *objf_data;
965
966 objf_data
967 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
968 if (objf_data != NULL && objf_data->addr == entry_addr)
969 return objf;
970 }
971 return NULL;
972 }
973
974 /* This is called when a breakpoint is deleted. It updates the
975 inferior's cache, if needed. */
976
977 static void
978 jit_breakpoint_deleted (struct breakpoint *b)
979 {
980 struct bp_location *iter;
981
982 if (b->type != bp_jit_event)
983 return;
984
985 for (iter = b->loc; iter != NULL; iter = iter->next)
986 {
987 struct jit_program_space_data *ps_data;
988
989 ps_data = jit_program_space_key.get (iter->pspace);
990 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
991 {
992 ps_data->cached_code_address = 0;
993 ps_data->jit_breakpoint = NULL;
994 }
995 }
996 }
997
998 /* (Re-)Initialize the jit breakpoint if necessary.
999 Return 0 if the jit breakpoint has been successfully initialized. */
1000
1001 static int
1002 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1003 struct jit_program_space_data *ps_data)
1004 {
1005 struct bound_minimal_symbol reg_symbol;
1006 struct bound_minimal_symbol desc_symbol;
1007 struct jit_objfile_data *objf_data;
1008 CORE_ADDR addr;
1009
1010 if (ps_data->objfile == NULL)
1011 {
1012 /* Lookup the registration symbol. If it is missing, then we
1013 assume we are not attached to a JIT. */
1014 reg_symbol = lookup_bound_minimal_symbol (jit_break_name);
1015 if (reg_symbol.minsym == NULL
1016 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1017 return 1;
1018
1019 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1020 reg_symbol.objfile);
1021 if (desc_symbol.minsym == NULL
1022 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1023 return 1;
1024
1025 objf_data = get_jit_objfile_data (reg_symbol.objfile);
1026 objf_data->register_code = reg_symbol.minsym;
1027 objf_data->descriptor = desc_symbol.minsym;
1028
1029 ps_data->objfile = reg_symbol.objfile;
1030 }
1031 else
1032 objf_data = get_jit_objfile_data (ps_data->objfile);
1033
1034 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1035
1036 if (jit_debug)
1037 fprintf_unfiltered (gdb_stdlog,
1038 "jit_breakpoint_re_set_internal, "
1039 "breakpoint_addr = %s\n",
1040 paddress (gdbarch, addr));
1041
1042 if (ps_data->cached_code_address == addr)
1043 return 0;
1044
1045 /* Delete the old breakpoint. */
1046 if (ps_data->jit_breakpoint != NULL)
1047 delete_breakpoint (ps_data->jit_breakpoint);
1048
1049 /* Put a breakpoint in the registration symbol. */
1050 ps_data->cached_code_address = addr;
1051 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1052
1053 return 0;
1054 }
1055
1056 /* The private data passed around in the frame unwind callback
1057 functions. */
1058
1059 struct jit_unwind_private
1060 {
1061 /* Cached register values. See jit_frame_sniffer to see how this
1062 works. */
1063 detached_regcache *regcache;
1064
1065 /* The frame being unwound. */
1066 struct frame_info *this_frame;
1067 };
1068
1069 /* Sets the value of a particular register in this frame. */
1070
1071 static void
1072 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1073 struct gdb_reg_value *value)
1074 {
1075 struct jit_unwind_private *priv;
1076 int gdb_reg;
1077
1078 priv = (struct jit_unwind_private *) cb->priv_data;
1079
1080 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1081 dwarf_regnum);
1082 if (gdb_reg == -1)
1083 {
1084 if (jit_debug)
1085 fprintf_unfiltered (gdb_stdlog,
1086 _("Could not recognize DWARF regnum %d"),
1087 dwarf_regnum);
1088 value->free (value);
1089 return;
1090 }
1091
1092 priv->regcache->raw_supply (gdb_reg, value->value);
1093 value->free (value);
1094 }
1095
1096 static void
1097 reg_value_free_impl (struct gdb_reg_value *value)
1098 {
1099 xfree (value);
1100 }
1101
1102 /* Get the value of register REGNUM in the previous frame. */
1103
1104 static struct gdb_reg_value *
1105 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1106 {
1107 struct jit_unwind_private *priv;
1108 struct gdb_reg_value *value;
1109 int gdb_reg, size;
1110 struct gdbarch *frame_arch;
1111
1112 priv = (struct jit_unwind_private *) cb->priv_data;
1113 frame_arch = get_frame_arch (priv->this_frame);
1114
1115 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1116 size = register_size (frame_arch, gdb_reg);
1117 value = ((struct gdb_reg_value *)
1118 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1119 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1120 value->value);
1121 value->size = size;
1122 value->free = reg_value_free_impl;
1123 return value;
1124 }
1125
1126 /* gdb_reg_value has a free function, which must be called on each
1127 saved register value. */
1128
1129 static void
1130 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1131 {
1132 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1133
1134 gdb_assert (priv_data->regcache != NULL);
1135 delete priv_data->regcache;
1136 xfree (priv_data);
1137 }
1138
1139 /* The frame sniffer for the pseudo unwinder.
1140
1141 While this is nominally a frame sniffer, in the case where the JIT
1142 reader actually recognizes the frame, it does a lot more work -- it
1143 unwinds the frame and saves the corresponding register values in
1144 the cache. jit_frame_prev_register simply returns the saved
1145 register values. */
1146
1147 static int
1148 jit_frame_sniffer (const struct frame_unwind *self,
1149 struct frame_info *this_frame, void **cache)
1150 {
1151 struct jit_unwind_private *priv_data;
1152 struct gdb_unwind_callbacks callbacks;
1153 struct gdb_reader_funcs *funcs;
1154
1155 callbacks.reg_get = jit_unwind_reg_get_impl;
1156 callbacks.reg_set = jit_unwind_reg_set_impl;
1157 callbacks.target_read = jit_target_read_impl;
1158
1159 if (loaded_jit_reader == NULL)
1160 return 0;
1161
1162 funcs = loaded_jit_reader->functions;
1163
1164 gdb_assert (!*cache);
1165
1166 *cache = XCNEW (struct jit_unwind_private);
1167 priv_data = (struct jit_unwind_private *) *cache;
1168 /* Take a snapshot of current regcache. */
1169 priv_data->regcache = new detached_regcache (get_frame_arch (this_frame),
1170 true);
1171 priv_data->this_frame = this_frame;
1172
1173 callbacks.priv_data = priv_data;
1174
1175 /* Try to coax the provided unwinder to unwind the stack */
1176 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1177 {
1178 if (jit_debug)
1179 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1180 "JIT reader.\n"));
1181 return 1;
1182 }
1183 if (jit_debug)
1184 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1185 "JIT reader.\n"));
1186
1187 jit_dealloc_cache (this_frame, *cache);
1188 *cache = NULL;
1189
1190 return 0;
1191 }
1192
1193
1194 /* The frame_id function for the pseudo unwinder. Relays the call to
1195 the loaded plugin. */
1196
1197 static void
1198 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1199 struct frame_id *this_id)
1200 {
1201 struct jit_unwind_private priv;
1202 struct gdb_frame_id frame_id;
1203 struct gdb_reader_funcs *funcs;
1204 struct gdb_unwind_callbacks callbacks;
1205
1206 priv.regcache = NULL;
1207 priv.this_frame = this_frame;
1208
1209 /* We don't expect the frame_id function to set any registers, so we
1210 set reg_set to NULL. */
1211 callbacks.reg_get = jit_unwind_reg_get_impl;
1212 callbacks.reg_set = NULL;
1213 callbacks.target_read = jit_target_read_impl;
1214 callbacks.priv_data = &priv;
1215
1216 gdb_assert (loaded_jit_reader);
1217 funcs = loaded_jit_reader->functions;
1218
1219 frame_id = funcs->get_frame_id (funcs, &callbacks);
1220 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1221 }
1222
1223 /* Pseudo unwinder function. Reads the previously fetched value for
1224 the register from the cache. */
1225
1226 static struct value *
1227 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1228 {
1229 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1230 struct gdbarch *gdbarch;
1231
1232 if (priv == NULL)
1233 return frame_unwind_got_optimized (this_frame, reg);
1234
1235 gdbarch = priv->regcache->arch ();
1236 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1237 enum register_status status = priv->regcache->cooked_read (reg, buf);
1238
1239 if (status == REG_VALID)
1240 return frame_unwind_got_bytes (this_frame, reg, buf);
1241 else
1242 return frame_unwind_got_optimized (this_frame, reg);
1243 }
1244
1245 /* Relay everything back to the unwinder registered by the JIT debug
1246 info reader.*/
1247
1248 static const struct frame_unwind jit_frame_unwind =
1249 {
1250 NORMAL_FRAME,
1251 default_frame_unwind_stop_reason,
1252 jit_frame_this_id,
1253 jit_frame_prev_register,
1254 NULL,
1255 jit_frame_sniffer,
1256 jit_dealloc_cache
1257 };
1258
1259
1260 /* This is the information that is stored at jit_gdbarch_data for each
1261 architecture. */
1262
1263 struct jit_gdbarch_data_type
1264 {
1265 /* Has the (pseudo) unwinder been prepended? */
1266 int unwinder_registered;
1267 };
1268
1269 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1270
1271 static void
1272 jit_prepend_unwinder (struct gdbarch *gdbarch)
1273 {
1274 struct jit_gdbarch_data_type *data;
1275
1276 data
1277 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1278 if (!data->unwinder_registered)
1279 {
1280 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1281 data->unwinder_registered = 1;
1282 }
1283 }
1284
1285 /* Register any already created translations. */
1286
1287 static void
1288 jit_inferior_init (struct gdbarch *gdbarch)
1289 {
1290 struct jit_descriptor descriptor;
1291 struct jit_code_entry cur_entry;
1292 struct jit_program_space_data *ps_data;
1293 CORE_ADDR cur_entry_addr;
1294
1295 if (jit_debug)
1296 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1297
1298 jit_prepend_unwinder (gdbarch);
1299
1300 ps_data = get_jit_program_space_data ();
1301 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1302 return;
1303
1304 /* Read the descriptor so we can check the version number and load
1305 any already JITed functions. */
1306 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1307 return;
1308
1309 /* Check that the version number agrees with that we support. */
1310 if (descriptor.version != 1)
1311 {
1312 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1313 "in descriptor (expected 1)\n"),
1314 (long) descriptor.version);
1315 return;
1316 }
1317
1318 /* If we've attached to a running program, we need to check the descriptor
1319 to register any functions that were already generated. */
1320 for (cur_entry_addr = descriptor.first_entry;
1321 cur_entry_addr != 0;
1322 cur_entry_addr = cur_entry.next_entry)
1323 {
1324 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1325
1326 /* This hook may be called many times during setup, so make sure we don't
1327 add the same symbol file twice. */
1328 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1329 continue;
1330
1331 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1332 }
1333 }
1334
1335 /* inferior_created observer. */
1336
1337 static void
1338 jit_inferior_created (struct target_ops *ops, int from_tty)
1339 {
1340 jit_inferior_created_hook ();
1341 }
1342
1343 /* Exported routine to call when an inferior has been created. */
1344
1345 void
1346 jit_inferior_created_hook (void)
1347 {
1348 jit_inferior_init (target_gdbarch ());
1349 }
1350
1351 /* Exported routine to call to re-set the jit breakpoints,
1352 e.g. when a program is rerun. */
1353
1354 void
1355 jit_breakpoint_re_set (void)
1356 {
1357 jit_breakpoint_re_set_internal (target_gdbarch (),
1358 get_jit_program_space_data ());
1359 }
1360
1361 /* This function cleans up any code entries left over when the
1362 inferior exits. We get left over code when the inferior exits
1363 without unregistering its code, for example when it crashes. */
1364
1365 static void
1366 jit_inferior_exit_hook (struct inferior *inf)
1367 {
1368 for (objfile *objf : current_program_space->objfiles_safe ())
1369 {
1370 struct jit_objfile_data *objf_data
1371 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1372
1373 if (objf_data != NULL && objf_data->addr != 0)
1374 objf->unlink ();
1375 }
1376 }
1377
1378 void
1379 jit_event_handler (struct gdbarch *gdbarch)
1380 {
1381 struct jit_descriptor descriptor;
1382 struct jit_code_entry code_entry;
1383 CORE_ADDR entry_addr;
1384 struct objfile *objf;
1385
1386 /* Read the descriptor from remote memory. */
1387 if (!jit_read_descriptor (gdbarch, &descriptor,
1388 get_jit_program_space_data ()))
1389 return;
1390 entry_addr = descriptor.relevant_entry;
1391
1392 /* Do the corresponding action. */
1393 switch (descriptor.action_flag)
1394 {
1395 case JIT_NOACTION:
1396 break;
1397 case JIT_REGISTER:
1398 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1399 jit_register_code (gdbarch, entry_addr, &code_entry);
1400 break;
1401 case JIT_UNREGISTER:
1402 objf = jit_find_objf_with_entry_addr (entry_addr);
1403 if (objf == NULL)
1404 printf_unfiltered (_("Unable to find JITed code "
1405 "entry at address: %s\n"),
1406 paddress (gdbarch, entry_addr));
1407 else
1408 objf->unlink ();
1409
1410 break;
1411 default:
1412 error (_("Unknown action_flag value in JIT descriptor!"));
1413 break;
1414 }
1415 }
1416
1417 /* Called to free the data allocated to the jit_program_space_data slot. */
1418
1419 static void
1420 free_objfile_data (struct objfile *objfile, void *data)
1421 {
1422 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1423
1424 if (objf_data->register_code != NULL)
1425 {
1426 struct jit_program_space_data *ps_data;
1427
1428 ps_data = jit_program_space_key.get (objfile->pspace);
1429 if (ps_data != NULL && ps_data->objfile == objfile)
1430 {
1431 ps_data->objfile = NULL;
1432 if (ps_data->jit_breakpoint != NULL)
1433 delete_breakpoint (ps_data->jit_breakpoint);
1434 ps_data->cached_code_address = 0;
1435 }
1436 }
1437
1438 xfree (data);
1439 }
1440
1441 /* Initialize the jit_gdbarch_data slot with an instance of struct
1442 jit_gdbarch_data_type */
1443
1444 static void *
1445 jit_gdbarch_data_init (struct obstack *obstack)
1446 {
1447 struct jit_gdbarch_data_type *data =
1448 XOBNEW (obstack, struct jit_gdbarch_data_type);
1449
1450 data->unwinder_registered = 0;
1451
1452 return data;
1453 }
1454
1455 void
1456 _initialize_jit (void)
1457 {
1458 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1459 JIT_READER_DIR_RELOCATABLE);
1460 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1461 _("Set JIT debugging."),
1462 _("Show JIT debugging."),
1463 _("When non-zero, JIT debugging is enabled."),
1464 NULL,
1465 show_jit_debug,
1466 &setdebuglist, &showdebuglist);
1467
1468 gdb::observers::inferior_created.attach (jit_inferior_created);
1469 gdb::observers::inferior_exit.attach (jit_inferior_exit_hook);
1470 gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted);
1471
1472 jit_objfile_data =
1473 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1474 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1475 if (is_dl_available ())
1476 {
1477 struct cmd_list_element *c;
1478
1479 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1480 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1481 Usage: jit-reader-load FILE\n\
1482 Try to load file FILE as a debug info reader (and unwinder) for\n\
1483 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1484 relocated relative to the GDB executable if required."));
1485 set_cmd_completer (c, filename_completer);
1486
1487 c = add_com ("jit-reader-unload", no_class,
1488 jit_reader_unload_command, _("\
1489 Unload the currently loaded JIT debug info reader.\n\
1490 Usage: jit-reader-unload\n\n\
1491 Do \"help jit-reader-load\" for info on loading debug info readers."));
1492 set_cmd_completer (c, noop_completer);
1493 }
1494 }
This page took 0.099671 seconds and 4 git commands to generate.