bb6b6bacb5d17a5c3218c284e976ac310e071143
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observable.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdbsupport/gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44 #include <forward_list>
45
46 static std::string jit_reader_dir;
47
48 static const struct objfile_data *jit_objfile_data;
49
50 static const char *const jit_break_name = "__jit_debug_register_code";
51
52 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
53
54 static void jit_inferior_init (struct gdbarch *gdbarch);
55 static void jit_inferior_exit_hook (struct inferior *inf);
56
57 /* An unwinder is registered for every gdbarch. This key is used to
58 remember if the unwinder has been registered for a particular
59 gdbarch. */
60
61 static struct gdbarch_data *jit_gdbarch_data;
62
63 /* Non-zero if we want to see trace of jit level stuff. */
64
65 static unsigned int jit_debug = 0;
66
67 static void
68 show_jit_debug (struct ui_file *file, int from_tty,
69 struct cmd_list_element *c, const char *value)
70 {
71 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
72 }
73
74 struct target_buffer
75 {
76 CORE_ADDR base;
77 ULONGEST size;
78 };
79
80 /* Opening the file is a no-op. */
81
82 static void *
83 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
84 {
85 return open_closure;
86 }
87
88 /* Closing the file is just freeing the base/size pair on our side. */
89
90 static int
91 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
92 {
93 xfree (stream);
94
95 /* Zero means success. */
96 return 0;
97 }
98
99 /* For reading the file, we just need to pass through to target_read_memory and
100 fix up the arguments and return values. */
101
102 static file_ptr
103 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
104 file_ptr nbytes, file_ptr offset)
105 {
106 int err;
107 struct target_buffer *buffer = (struct target_buffer *) stream;
108
109 /* If this read will read all of the file, limit it to just the rest. */
110 if (offset + nbytes > buffer->size)
111 nbytes = buffer->size - offset;
112
113 /* If there are no more bytes left, we've reached EOF. */
114 if (nbytes == 0)
115 return 0;
116
117 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
118 if (err)
119 return -1;
120
121 return nbytes;
122 }
123
124 /* For statting the file, we only support the st_size attribute. */
125
126 static int
127 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
128 {
129 struct target_buffer *buffer = (struct target_buffer*) stream;
130
131 memset (sb, 0, sizeof (struct stat));
132 sb->st_size = buffer->size;
133 return 0;
134 }
135
136 /* Open a BFD from the target's memory. */
137
138 static gdb_bfd_ref_ptr
139 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
140 {
141 struct target_buffer *buffer = XNEW (struct target_buffer);
142
143 buffer->base = addr;
144 buffer->size = size;
145 return gdb_bfd_openr_iovec ("<in-memory>", target,
146 mem_bfd_iovec_open,
147 buffer,
148 mem_bfd_iovec_pread,
149 mem_bfd_iovec_close,
150 mem_bfd_iovec_stat);
151 }
152
153 struct jit_reader
154 {
155 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
156 : functions (f), handle (std::move (h))
157 {
158 }
159
160 ~jit_reader ()
161 {
162 functions->destroy (functions);
163 }
164
165 DISABLE_COPY_AND_ASSIGN (jit_reader);
166
167 struct gdb_reader_funcs *functions;
168 gdb_dlhandle_up handle;
169 };
170
171 /* One reader that has been loaded successfully, and can potentially be used to
172 parse debug info. */
173
174 static struct jit_reader *loaded_jit_reader = NULL;
175
176 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
177 static const char *reader_init_fn_sym = "gdb_init_reader";
178
179 /* Try to load FILE_NAME as a JIT debug info reader. */
180
181 static struct jit_reader *
182 jit_reader_load (const char *file_name)
183 {
184 reader_init_fn_type *init_fn;
185 struct gdb_reader_funcs *funcs = NULL;
186
187 if (jit_debug)
188 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
189 file_name);
190 gdb_dlhandle_up so = gdb_dlopen (file_name);
191
192 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
193 if (!init_fn)
194 error (_("Could not locate initialization function: %s."),
195 reader_init_fn_sym);
196
197 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
198 error (_("Reader not GPL compatible."));
199
200 funcs = init_fn ();
201 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
202 error (_("Reader version does not match GDB version."));
203
204 return new jit_reader (funcs, std::move (so));
205 }
206
207 /* Provides the jit-reader-load command. */
208
209 static void
210 jit_reader_load_command (const char *args, int from_tty)
211 {
212 if (args == NULL)
213 error (_("No reader name provided."));
214 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
215
216 if (loaded_jit_reader != NULL)
217 error (_("JIT reader already loaded. Run jit-reader-unload first."));
218
219 if (!IS_ABSOLUTE_PATH (file.get ()))
220 file.reset (xstrprintf ("%s%s%s", jit_reader_dir.c_str (), SLASH_STRING,
221 file.get ()));
222
223 loaded_jit_reader = jit_reader_load (file.get ());
224 reinit_frame_cache ();
225 jit_inferior_created_hook ();
226 }
227
228 /* Provides the jit-reader-unload command. */
229
230 static void
231 jit_reader_unload_command (const char *args, int from_tty)
232 {
233 if (!loaded_jit_reader)
234 error (_("No JIT reader loaded."));
235
236 reinit_frame_cache ();
237 jit_inferior_exit_hook (current_inferior ());
238
239 delete loaded_jit_reader;
240 loaded_jit_reader = NULL;
241 }
242
243 /* Per-program space structure recording which objfile has the JIT
244 symbols. */
245
246 struct jit_program_space_data
247 {
248 /* The objfile. This is NULL if no objfile holds the JIT
249 symbols. */
250
251 struct objfile *objfile = nullptr;
252
253 /* If this program space has __jit_debug_register_code, this is the
254 cached address from the minimal symbol. This is used to detect
255 relocations requiring the breakpoint to be re-created. */
256
257 CORE_ADDR cached_code_address = 0;
258
259 /* This is the JIT event breakpoint, or NULL if it has not been
260 set. */
261
262 struct breakpoint *jit_breakpoint = nullptr;
263 };
264
265 static program_space_key<jit_program_space_data> jit_program_space_key;
266
267 /* Per-objfile structure recording the addresses in the program space.
268 This object serves two purposes: for ordinary objfiles, it may
269 cache some symbols related to the JIT interface; and for
270 JIT-created objfiles, it holds some information about the
271 jit_code_entry. */
272
273 struct jit_objfile_data
274 {
275 /* Symbol for __jit_debug_register_code. */
276 struct minimal_symbol *register_code;
277
278 /* Symbol for __jit_debug_descriptor. */
279 struct minimal_symbol *descriptor;
280
281 /* Address of struct jit_code_entry in this objfile. This is only
282 non-zero for objfiles that represent code created by the JIT. */
283 CORE_ADDR addr;
284 };
285
286 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
287 yet, make a new structure and attach it. */
288
289 static struct jit_objfile_data *
290 get_jit_objfile_data (struct objfile *objf)
291 {
292 struct jit_objfile_data *objf_data;
293
294 objf_data = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
295 if (objf_data == NULL)
296 {
297 objf_data = XCNEW (struct jit_objfile_data);
298 set_objfile_data (objf, jit_objfile_data, objf_data);
299 }
300
301 return objf_data;
302 }
303
304 /* Remember OBJFILE has been created for struct jit_code_entry located
305 at inferior address ENTRY. */
306
307 static void
308 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
309 {
310 struct jit_objfile_data *objf_data;
311
312 objf_data = get_jit_objfile_data (objfile);
313 objf_data->addr = entry;
314 }
315
316 /* Return jit_program_space_data for current program space. Allocate
317 if not already present. */
318
319 static struct jit_program_space_data *
320 get_jit_program_space_data ()
321 {
322 struct jit_program_space_data *ps_data;
323
324 ps_data = jit_program_space_key.get (current_program_space);
325 if (ps_data == NULL)
326 ps_data = jit_program_space_key.emplace (current_program_space);
327 return ps_data;
328 }
329
330 /* Helper function for reading the global JIT descriptor from remote
331 memory. Returns 1 if all went well, 0 otherwise. */
332
333 static int
334 jit_read_descriptor (struct gdbarch *gdbarch,
335 struct jit_descriptor *descriptor,
336 struct jit_program_space_data *ps_data)
337 {
338 int err;
339 struct type *ptr_type;
340 int ptr_size;
341 int desc_size;
342 gdb_byte *desc_buf;
343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
344 struct jit_objfile_data *objf_data;
345
346 if (ps_data->objfile == NULL)
347 return 0;
348 objf_data = get_jit_objfile_data (ps_data->objfile);
349 if (objf_data->descriptor == NULL)
350 return 0;
351
352 if (jit_debug)
353 fprintf_unfiltered (gdb_stdlog,
354 "jit_read_descriptor, descriptor_addr = %s\n",
355 paddress (gdbarch, MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
356 objf_data->descriptor)));
357
358 /* Figure out how big the descriptor is on the remote and how to read it. */
359 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
360 ptr_size = TYPE_LENGTH (ptr_type);
361 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
362 desc_buf = (gdb_byte *) alloca (desc_size);
363
364 /* Read the descriptor. */
365 err = target_read_memory (MSYMBOL_VALUE_ADDRESS (ps_data->objfile,
366 objf_data->descriptor),
367 desc_buf, desc_size);
368 if (err)
369 {
370 printf_unfiltered (_("Unable to read JIT descriptor from "
371 "remote memory\n"));
372 return 0;
373 }
374
375 /* Fix the endianness to match the host. */
376 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
377 descriptor->action_flag =
378 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
379 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
380 descriptor->first_entry =
381 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
382
383 return 1;
384 }
385
386 /* Helper function for reading a JITed code entry from remote memory. */
387
388 static void
389 jit_read_code_entry (struct gdbarch *gdbarch,
390 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
391 {
392 int err, off;
393 struct type *ptr_type;
394 int ptr_size;
395 int entry_size;
396 int align_bytes;
397 gdb_byte *entry_buf;
398 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
399
400 /* Figure out how big the entry is on the remote and how to read it. */
401 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
402 ptr_size = TYPE_LENGTH (ptr_type);
403
404 /* Figure out where the uint64_t value will be. */
405 align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
406 off = 3 * ptr_size;
407 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
408
409 entry_size = off + 8; /* Three pointers and one 64-bit int. */
410 entry_buf = (gdb_byte *) alloca (entry_size);
411
412 /* Read the entry. */
413 err = target_read_memory (code_addr, entry_buf, entry_size);
414 if (err)
415 error (_("Unable to read JIT code entry from remote memory!"));
416
417 /* Fix the endianness to match the host. */
418 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
419 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
420 code_entry->prev_entry =
421 extract_typed_address (&entry_buf[ptr_size], ptr_type);
422 code_entry->symfile_addr =
423 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
424 code_entry->symfile_size =
425 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
426 }
427
428 /* Proxy object for building a block. */
429
430 struct gdb_block
431 {
432 gdb_block (gdb_block *parent, CORE_ADDR begin, CORE_ADDR end,
433 const char *name)
434 : parent (parent),
435 begin (begin),
436 end (end),
437 name (name != nullptr ? xstrdup (name) : nullptr)
438 {}
439
440 /* gdb_blocks are linked into a tree structure. Next points to the
441 next node at the same depth as this block and parent to the
442 parent gdb_block. */
443 struct gdb_block *next = nullptr, *parent;
444
445 /* Points to the "real" block that is being built out of this
446 instance. This block will be added to a blockvector, which will
447 then be added to a symtab. */
448 struct block *real_block = nullptr;
449
450 /* The first and last code address corresponding to this block. */
451 CORE_ADDR begin, end;
452
453 /* The name of this block (if any). If this is non-NULL, the
454 FUNCTION symbol symbol is set to this value. */
455 gdb::unique_xmalloc_ptr<char> name;
456 };
457
458 /* Proxy object for building a symtab. */
459
460 struct gdb_symtab
461 {
462 explicit gdb_symtab (const char *file_name)
463 : file_name (file_name != nullptr ? file_name : "")
464 {}
465
466 ~gdb_symtab ()
467 {
468 gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
469
470 for ((gdb_block_iter = this->blocks,
471 gdb_block_iter_tmp = gdb_block_iter->next);
472 gdb_block_iter;
473 gdb_block_iter = gdb_block_iter_tmp)
474 {
475 gdb_block_iter_tmp = gdb_block_iter->next;
476 delete gdb_block_iter;
477 }
478 }
479
480 /* The list of blocks in this symtab. These will eventually be
481 converted to real blocks. */
482 struct gdb_block *blocks = nullptr;
483
484 /* The number of blocks inserted. */
485 int nblocks = 0;
486
487 /* A mapping between line numbers to PC. */
488 gdb::unique_xmalloc_ptr<struct linetable> linetable;
489
490 /* The source file for this symtab. */
491 std::string file_name;
492 };
493
494 /* Proxy object for building an object. */
495
496 struct gdb_object
497 {
498 /* Symtabs of this object.
499
500 This is specifically a linked list, instead of, for example, a vector,
501 because the pointers are returned to the user's debug info reader. So
502 it's important that the objects don't change location during their
503 lifetime (which would happen with a vector of objects getting resized). */
504 std::forward_list<gdb_symtab> symtabs;
505 };
506
507 /* The type of the `private' data passed around by the callback
508 functions. */
509
510 typedef CORE_ADDR jit_dbg_reader_data;
511
512 /* The reader calls into this function to read data off the targets
513 address space. */
514
515 static enum gdb_status
516 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
517 {
518 int result = target_read_memory ((CORE_ADDR) target_mem,
519 (gdb_byte *) gdb_buf, len);
520 if (result == 0)
521 return GDB_SUCCESS;
522 else
523 return GDB_FAIL;
524 }
525
526 /* The reader calls into this function to create a new gdb_object
527 which it can then pass around to the other callbacks. Right now,
528 all that is required is allocating the memory. */
529
530 static struct gdb_object *
531 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
532 {
533 /* CB is not required right now, but sometime in the future we might
534 need a handle to it, and we'd like to do that without breaking
535 the ABI. */
536 return new gdb_object;
537 }
538
539 /* Readers call into this function to open a new gdb_symtab, which,
540 again, is passed around to other callbacks. */
541
542 static struct gdb_symtab *
543 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
544 struct gdb_object *object,
545 const char *file_name)
546 {
547 /* CB stays unused. See comment in jit_object_open_impl. */
548
549 object->symtabs.emplace_front (file_name);
550 return &object->symtabs.front ();
551 }
552
553 /* Returns true if the block corresponding to old should be placed
554 before the block corresponding to new in the final blockvector. */
555
556 static int
557 compare_block (const struct gdb_block *const old,
558 const struct gdb_block *const newobj)
559 {
560 if (old == NULL)
561 return 1;
562 if (old->begin < newobj->begin)
563 return 1;
564 else if (old->begin == newobj->begin)
565 {
566 if (old->end > newobj->end)
567 return 1;
568 else
569 return 0;
570 }
571 else
572 return 0;
573 }
574
575 /* Called by readers to open a new gdb_block. This function also
576 inserts the new gdb_block in the correct place in the corresponding
577 gdb_symtab. */
578
579 static struct gdb_block *
580 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
581 struct gdb_symtab *symtab, struct gdb_block *parent,
582 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
583 {
584 struct gdb_block *block = new gdb_block (parent, begin, end, name);
585
586 block->next = symtab->blocks;
587
588 /* Ensure that the blocks are inserted in the correct (reverse of
589 the order expected by blockvector). */
590 if (compare_block (symtab->blocks, block))
591 {
592 symtab->blocks = block;
593 }
594 else
595 {
596 struct gdb_block *i = symtab->blocks;
597
598 for (;; i = i->next)
599 {
600 /* Guaranteed to terminate, since compare_block (NULL, _)
601 returns 1. */
602 if (compare_block (i->next, block))
603 {
604 block->next = i->next;
605 i->next = block;
606 break;
607 }
608 }
609 }
610 symtab->nblocks++;
611
612 return block;
613 }
614
615 /* Readers call this to add a line mapping (from PC to line number) to
616 a gdb_symtab. */
617
618 static void
619 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
620 struct gdb_symtab *stab, int nlines,
621 struct gdb_line_mapping *map)
622 {
623 int i;
624 int alloc_len;
625
626 if (nlines < 1)
627 return;
628
629 alloc_len = sizeof (struct linetable)
630 + (nlines - 1) * sizeof (struct linetable_entry);
631 stab->linetable.reset (XNEWVAR (struct linetable, alloc_len));
632 stab->linetable->nitems = nlines;
633 for (i = 0; i < nlines; i++)
634 {
635 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
636 stab->linetable->item[i].line = map[i].line;
637 }
638 }
639
640 /* Called by readers to close a gdb_symtab. Does not need to do
641 anything as of now. */
642
643 static void
644 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
645 struct gdb_symtab *stab)
646 {
647 /* Right now nothing needs to be done here. We may need to do some
648 cleanup here in the future (again, without breaking the plugin
649 ABI). */
650 }
651
652 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
653
654 static void
655 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
656 {
657 struct compunit_symtab *cust;
658 struct gdb_block *gdb_block_iter;
659 struct block *block_iter;
660 int actual_nblocks, i;
661 size_t blockvector_size;
662 CORE_ADDR begin, end;
663 struct blockvector *bv;
664
665 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
666
667 cust = allocate_compunit_symtab (objfile, stab->file_name.c_str ());
668 allocate_symtab (cust, stab->file_name.c_str ());
669 add_compunit_symtab_to_objfile (cust);
670
671 /* JIT compilers compile in memory. */
672 COMPUNIT_DIRNAME (cust) = NULL;
673
674 /* Copy over the linetable entry if one was provided. */
675 if (stab->linetable)
676 {
677 size_t size = ((stab->linetable->nitems - 1)
678 * sizeof (struct linetable_entry)
679 + sizeof (struct linetable));
680 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
681 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
682 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)),
683 stab->linetable.get (), size);
684 }
685
686 blockvector_size = (sizeof (struct blockvector)
687 + (actual_nblocks - 1) * sizeof (struct block *));
688 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
689 blockvector_size);
690 COMPUNIT_BLOCKVECTOR (cust) = bv;
691
692 /* (begin, end) will contain the PC range this entire blockvector
693 spans. */
694 BLOCKVECTOR_MAP (bv) = NULL;
695 begin = stab->blocks->begin;
696 end = stab->blocks->end;
697 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
698
699 /* First run over all the gdb_block objects, creating a real block
700 object for each. Simultaneously, keep setting the real_block
701 fields. */
702 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
703 i >= FIRST_LOCAL_BLOCK;
704 i--, gdb_block_iter = gdb_block_iter->next)
705 {
706 struct block *new_block = allocate_block (&objfile->objfile_obstack);
707 struct symbol *block_name = allocate_symbol (objfile);
708 struct type *block_type = arch_type (get_objfile_arch (objfile),
709 TYPE_CODE_VOID,
710 TARGET_CHAR_BIT,
711 "void");
712
713 BLOCK_MULTIDICT (new_block)
714 = mdict_create_linear (&objfile->objfile_obstack, NULL);
715 /* The address range. */
716 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
717 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
718
719 /* The name. */
720 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
721 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
722 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
723 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
724 SYMBOL_BLOCK_VALUE (block_name) = new_block;
725
726 block_name->name = obstack_strdup (&objfile->objfile_obstack,
727 gdb_block_iter->name.get ());
728
729 BLOCK_FUNCTION (new_block) = block_name;
730
731 BLOCKVECTOR_BLOCK (bv, i) = new_block;
732 if (begin > BLOCK_START (new_block))
733 begin = BLOCK_START (new_block);
734 if (end < BLOCK_END (new_block))
735 end = BLOCK_END (new_block);
736
737 gdb_block_iter->real_block = new_block;
738 }
739
740 /* Now add the special blocks. */
741 block_iter = NULL;
742 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
743 {
744 struct block *new_block;
745
746 new_block = (i == GLOBAL_BLOCK
747 ? allocate_global_block (&objfile->objfile_obstack)
748 : allocate_block (&objfile->objfile_obstack));
749 BLOCK_MULTIDICT (new_block)
750 = mdict_create_linear (&objfile->objfile_obstack, NULL);
751 BLOCK_SUPERBLOCK (new_block) = block_iter;
752 block_iter = new_block;
753
754 BLOCK_START (new_block) = (CORE_ADDR) begin;
755 BLOCK_END (new_block) = (CORE_ADDR) end;
756
757 BLOCKVECTOR_BLOCK (bv, i) = new_block;
758
759 if (i == GLOBAL_BLOCK)
760 set_block_compunit_symtab (new_block, cust);
761 }
762
763 /* Fill up the superblock fields for the real blocks, using the
764 real_block fields populated earlier. */
765 for (gdb_block_iter = stab->blocks;
766 gdb_block_iter;
767 gdb_block_iter = gdb_block_iter->next)
768 {
769 if (gdb_block_iter->parent != NULL)
770 {
771 /* If the plugin specifically mentioned a parent block, we
772 use that. */
773 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
774 gdb_block_iter->parent->real_block;
775 }
776 else
777 {
778 /* And if not, we set a default parent block. */
779 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
780 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
781 }
782 }
783 }
784
785 /* Called when closing a gdb_objfile. Converts OBJ to a proper
786 objfile. */
787
788 static void
789 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
790 struct gdb_object *obj)
791 {
792 struct objfile *objfile;
793 jit_dbg_reader_data *priv_data;
794
795 priv_data = (jit_dbg_reader_data *) cb->priv_data;
796
797 objfile = objfile::make (nullptr, "<< JIT compiled code >>",
798 OBJF_NOT_FILENAME);
799 objfile->per_bfd->gdbarch = target_gdbarch ();
800
801 for (gdb_symtab &symtab : obj->symtabs)
802 finalize_symtab (&symtab, objfile);
803
804 add_objfile_entry (objfile, *priv_data);
805
806 delete obj;
807 }
808
809 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
810 ENTRY_ADDR is the address of the struct jit_code_entry in the
811 inferior address space. */
812
813 static int
814 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
815 CORE_ADDR entry_addr)
816 {
817 int status;
818 jit_dbg_reader_data priv_data;
819 struct gdb_reader_funcs *funcs;
820 struct gdb_symbol_callbacks callbacks =
821 {
822 jit_object_open_impl,
823 jit_symtab_open_impl,
824 jit_block_open_impl,
825 jit_symtab_close_impl,
826 jit_object_close_impl,
827
828 jit_symtab_line_mapping_add_impl,
829 jit_target_read_impl,
830
831 &priv_data
832 };
833
834 priv_data = entry_addr;
835
836 if (!loaded_jit_reader)
837 return 0;
838
839 gdb::byte_vector gdb_mem (code_entry->symfile_size);
840
841 status = 1;
842 try
843 {
844 if (target_read_memory (code_entry->symfile_addr, gdb_mem.data (),
845 code_entry->symfile_size))
846 status = 0;
847 }
848 catch (const gdb_exception &e)
849 {
850 status = 0;
851 }
852
853 if (status)
854 {
855 funcs = loaded_jit_reader->functions;
856 if (funcs->read (funcs, &callbacks, gdb_mem.data (),
857 code_entry->symfile_size)
858 != GDB_SUCCESS)
859 status = 0;
860 }
861
862 if (jit_debug && status == 0)
863 fprintf_unfiltered (gdb_stdlog,
864 "Could not read symtab using the loaded JIT reader.\n");
865 return status;
866 }
867
868 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
869 struct jit_code_entry in the inferior address space. */
870
871 static void
872 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
873 CORE_ADDR entry_addr,
874 struct gdbarch *gdbarch)
875 {
876 struct bfd_section *sec;
877 struct objfile *objfile;
878 const struct bfd_arch_info *b;
879
880 if (jit_debug)
881 fprintf_unfiltered (gdb_stdlog,
882 "jit_bfd_try_read_symtab, symfile_addr = %s, "
883 "symfile_size = %s\n",
884 paddress (gdbarch, code_entry->symfile_addr),
885 pulongest (code_entry->symfile_size));
886
887 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
888 code_entry->symfile_size,
889 gnutarget));
890 if (nbfd == NULL)
891 {
892 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
893 return;
894 }
895
896 /* Check the format. NOTE: This initializes important data that GDB uses!
897 We would segfault later without this line. */
898 if (!bfd_check_format (nbfd.get (), bfd_object))
899 {
900 printf_unfiltered (_("\
901 JITed symbol file is not an object file, ignoring it.\n"));
902 return;
903 }
904
905 /* Check bfd arch. */
906 b = gdbarch_bfd_arch_info (gdbarch);
907 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
908 warning (_("JITed object file architecture %s is not compatible "
909 "with target architecture %s."),
910 bfd_get_arch_info (nbfd.get ())->printable_name,
911 b->printable_name);
912
913 /* Read the section address information out of the symbol file. Since the
914 file is generated by the JIT at runtime, it should all of the absolute
915 addresses that we care about. */
916 section_addr_info sai;
917 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
918 if ((bfd_section_flags (sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
919 {
920 /* We assume that these virtual addresses are absolute, and do not
921 treat them as offsets. */
922 sai.emplace_back (bfd_section_vma (sec),
923 bfd_section_name (sec),
924 sec->index);
925 }
926
927 /* This call does not take ownership of SAI. */
928 objfile = symbol_file_add_from_bfd (nbfd.get (),
929 bfd_get_filename (nbfd.get ()), 0,
930 &sai,
931 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
932
933 add_objfile_entry (objfile, entry_addr);
934 }
935
936 /* This function registers code associated with a JIT code entry. It uses the
937 pointer and size pair in the entry to read the symbol file from the remote
938 and then calls symbol_file_add_from_local_memory to add it as though it were
939 a symbol file added by the user. */
940
941 static void
942 jit_register_code (struct gdbarch *gdbarch,
943 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
944 {
945 int success;
946
947 if (jit_debug)
948 fprintf_unfiltered (gdb_stdlog,
949 "jit_register_code, symfile_addr = %s, "
950 "symfile_size = %s\n",
951 paddress (gdbarch, code_entry->symfile_addr),
952 pulongest (code_entry->symfile_size));
953
954 success = jit_reader_try_read_symtab (code_entry, entry_addr);
955
956 if (!success)
957 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
958 }
959
960 /* Look up the objfile with this code entry address. */
961
962 static struct objfile *
963 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
964 {
965 for (objfile *objf : current_program_space->objfiles ())
966 {
967 struct jit_objfile_data *objf_data;
968
969 objf_data
970 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
971 if (objf_data != NULL && objf_data->addr == entry_addr)
972 return objf;
973 }
974 return NULL;
975 }
976
977 /* This is called when a breakpoint is deleted. It updates the
978 inferior's cache, if needed. */
979
980 static void
981 jit_breakpoint_deleted (struct breakpoint *b)
982 {
983 struct bp_location *iter;
984
985 if (b->type != bp_jit_event)
986 return;
987
988 for (iter = b->loc; iter != NULL; iter = iter->next)
989 {
990 struct jit_program_space_data *ps_data;
991
992 ps_data = jit_program_space_key.get (iter->pspace);
993 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
994 {
995 ps_data->cached_code_address = 0;
996 ps_data->jit_breakpoint = NULL;
997 }
998 }
999 }
1000
1001 /* (Re-)Initialize the jit breakpoint if necessary.
1002 Return 0 if the jit breakpoint has been successfully initialized. */
1003
1004 static int
1005 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1006 struct jit_program_space_data *ps_data)
1007 {
1008 struct bound_minimal_symbol reg_symbol;
1009 struct bound_minimal_symbol desc_symbol;
1010 struct jit_objfile_data *objf_data;
1011 CORE_ADDR addr;
1012
1013 if (ps_data->objfile == NULL)
1014 {
1015 /* Lookup the registration symbol. If it is missing, then we
1016 assume we are not attached to a JIT. */
1017 reg_symbol = lookup_bound_minimal_symbol (jit_break_name);
1018 if (reg_symbol.minsym == NULL
1019 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
1020 return 1;
1021
1022 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1023 reg_symbol.objfile);
1024 if (desc_symbol.minsym == NULL
1025 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1026 return 1;
1027
1028 objf_data = get_jit_objfile_data (reg_symbol.objfile);
1029 objf_data->register_code = reg_symbol.minsym;
1030 objf_data->descriptor = desc_symbol.minsym;
1031
1032 ps_data->objfile = reg_symbol.objfile;
1033 }
1034 else
1035 objf_data = get_jit_objfile_data (ps_data->objfile);
1036
1037 addr = MSYMBOL_VALUE_ADDRESS (ps_data->objfile, objf_data->register_code);
1038
1039 if (jit_debug)
1040 fprintf_unfiltered (gdb_stdlog,
1041 "jit_breakpoint_re_set_internal, "
1042 "breakpoint_addr = %s\n",
1043 paddress (gdbarch, addr));
1044
1045 if (ps_data->cached_code_address == addr)
1046 return 0;
1047
1048 /* Delete the old breakpoint. */
1049 if (ps_data->jit_breakpoint != NULL)
1050 delete_breakpoint (ps_data->jit_breakpoint);
1051
1052 /* Put a breakpoint in the registration symbol. */
1053 ps_data->cached_code_address = addr;
1054 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1055
1056 return 0;
1057 }
1058
1059 /* The private data passed around in the frame unwind callback
1060 functions. */
1061
1062 struct jit_unwind_private
1063 {
1064 /* Cached register values. See jit_frame_sniffer to see how this
1065 works. */
1066 detached_regcache *regcache;
1067
1068 /* The frame being unwound. */
1069 struct frame_info *this_frame;
1070 };
1071
1072 /* Sets the value of a particular register in this frame. */
1073
1074 static void
1075 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1076 struct gdb_reg_value *value)
1077 {
1078 struct jit_unwind_private *priv;
1079 int gdb_reg;
1080
1081 priv = (struct jit_unwind_private *) cb->priv_data;
1082
1083 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1084 dwarf_regnum);
1085 if (gdb_reg == -1)
1086 {
1087 if (jit_debug)
1088 fprintf_unfiltered (gdb_stdlog,
1089 _("Could not recognize DWARF regnum %d"),
1090 dwarf_regnum);
1091 value->free (value);
1092 return;
1093 }
1094
1095 priv->regcache->raw_supply (gdb_reg, value->value);
1096 value->free (value);
1097 }
1098
1099 static void
1100 reg_value_free_impl (struct gdb_reg_value *value)
1101 {
1102 xfree (value);
1103 }
1104
1105 /* Get the value of register REGNUM in the previous frame. */
1106
1107 static struct gdb_reg_value *
1108 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1109 {
1110 struct jit_unwind_private *priv;
1111 struct gdb_reg_value *value;
1112 int gdb_reg, size;
1113 struct gdbarch *frame_arch;
1114
1115 priv = (struct jit_unwind_private *) cb->priv_data;
1116 frame_arch = get_frame_arch (priv->this_frame);
1117
1118 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1119 size = register_size (frame_arch, gdb_reg);
1120 value = ((struct gdb_reg_value *)
1121 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1122 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1123 value->value);
1124 value->size = size;
1125 value->free = reg_value_free_impl;
1126 return value;
1127 }
1128
1129 /* gdb_reg_value has a free function, which must be called on each
1130 saved register value. */
1131
1132 static void
1133 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1134 {
1135 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1136
1137 gdb_assert (priv_data->regcache != NULL);
1138 delete priv_data->regcache;
1139 xfree (priv_data);
1140 }
1141
1142 /* The frame sniffer for the pseudo unwinder.
1143
1144 While this is nominally a frame sniffer, in the case where the JIT
1145 reader actually recognizes the frame, it does a lot more work -- it
1146 unwinds the frame and saves the corresponding register values in
1147 the cache. jit_frame_prev_register simply returns the saved
1148 register values. */
1149
1150 static int
1151 jit_frame_sniffer (const struct frame_unwind *self,
1152 struct frame_info *this_frame, void **cache)
1153 {
1154 struct jit_unwind_private *priv_data;
1155 struct gdb_unwind_callbacks callbacks;
1156 struct gdb_reader_funcs *funcs;
1157
1158 callbacks.reg_get = jit_unwind_reg_get_impl;
1159 callbacks.reg_set = jit_unwind_reg_set_impl;
1160 callbacks.target_read = jit_target_read_impl;
1161
1162 if (loaded_jit_reader == NULL)
1163 return 0;
1164
1165 funcs = loaded_jit_reader->functions;
1166
1167 gdb_assert (!*cache);
1168
1169 *cache = XCNEW (struct jit_unwind_private);
1170 priv_data = (struct jit_unwind_private *) *cache;
1171 /* Take a snapshot of current regcache. */
1172 priv_data->regcache = new detached_regcache (get_frame_arch (this_frame),
1173 true);
1174 priv_data->this_frame = this_frame;
1175
1176 callbacks.priv_data = priv_data;
1177
1178 /* Try to coax the provided unwinder to unwind the stack */
1179 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1180 {
1181 if (jit_debug)
1182 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1183 "JIT reader.\n"));
1184 return 1;
1185 }
1186 if (jit_debug)
1187 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1188 "JIT reader.\n"));
1189
1190 jit_dealloc_cache (this_frame, *cache);
1191 *cache = NULL;
1192
1193 return 0;
1194 }
1195
1196
1197 /* The frame_id function for the pseudo unwinder. Relays the call to
1198 the loaded plugin. */
1199
1200 static void
1201 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1202 struct frame_id *this_id)
1203 {
1204 struct jit_unwind_private priv;
1205 struct gdb_frame_id frame_id;
1206 struct gdb_reader_funcs *funcs;
1207 struct gdb_unwind_callbacks callbacks;
1208
1209 priv.regcache = NULL;
1210 priv.this_frame = this_frame;
1211
1212 /* We don't expect the frame_id function to set any registers, so we
1213 set reg_set to NULL. */
1214 callbacks.reg_get = jit_unwind_reg_get_impl;
1215 callbacks.reg_set = NULL;
1216 callbacks.target_read = jit_target_read_impl;
1217 callbacks.priv_data = &priv;
1218
1219 gdb_assert (loaded_jit_reader);
1220 funcs = loaded_jit_reader->functions;
1221
1222 frame_id = funcs->get_frame_id (funcs, &callbacks);
1223 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1224 }
1225
1226 /* Pseudo unwinder function. Reads the previously fetched value for
1227 the register from the cache. */
1228
1229 static struct value *
1230 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1231 {
1232 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1233 struct gdbarch *gdbarch;
1234
1235 if (priv == NULL)
1236 return frame_unwind_got_optimized (this_frame, reg);
1237
1238 gdbarch = priv->regcache->arch ();
1239 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1240 enum register_status status = priv->regcache->cooked_read (reg, buf);
1241
1242 if (status == REG_VALID)
1243 return frame_unwind_got_bytes (this_frame, reg, buf);
1244 else
1245 return frame_unwind_got_optimized (this_frame, reg);
1246 }
1247
1248 /* Relay everything back to the unwinder registered by the JIT debug
1249 info reader.*/
1250
1251 static const struct frame_unwind jit_frame_unwind =
1252 {
1253 NORMAL_FRAME,
1254 default_frame_unwind_stop_reason,
1255 jit_frame_this_id,
1256 jit_frame_prev_register,
1257 NULL,
1258 jit_frame_sniffer,
1259 jit_dealloc_cache
1260 };
1261
1262
1263 /* This is the information that is stored at jit_gdbarch_data for each
1264 architecture. */
1265
1266 struct jit_gdbarch_data_type
1267 {
1268 /* Has the (pseudo) unwinder been prepended? */
1269 int unwinder_registered;
1270 };
1271
1272 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1273
1274 static void
1275 jit_prepend_unwinder (struct gdbarch *gdbarch)
1276 {
1277 struct jit_gdbarch_data_type *data;
1278
1279 data
1280 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1281 if (!data->unwinder_registered)
1282 {
1283 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1284 data->unwinder_registered = 1;
1285 }
1286 }
1287
1288 /* Register any already created translations. */
1289
1290 static void
1291 jit_inferior_init (struct gdbarch *gdbarch)
1292 {
1293 struct jit_descriptor descriptor;
1294 struct jit_code_entry cur_entry;
1295 struct jit_program_space_data *ps_data;
1296 CORE_ADDR cur_entry_addr;
1297
1298 if (jit_debug)
1299 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1300
1301 jit_prepend_unwinder (gdbarch);
1302
1303 ps_data = get_jit_program_space_data ();
1304 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1305 return;
1306
1307 /* Read the descriptor so we can check the version number and load
1308 any already JITed functions. */
1309 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1310 return;
1311
1312 /* Check that the version number agrees with that we support. */
1313 if (descriptor.version != 1)
1314 {
1315 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1316 "in descriptor (expected 1)\n"),
1317 (long) descriptor.version);
1318 return;
1319 }
1320
1321 /* If we've attached to a running program, we need to check the descriptor
1322 to register any functions that were already generated. */
1323 for (cur_entry_addr = descriptor.first_entry;
1324 cur_entry_addr != 0;
1325 cur_entry_addr = cur_entry.next_entry)
1326 {
1327 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1328
1329 /* This hook may be called many times during setup, so make sure we don't
1330 add the same symbol file twice. */
1331 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1332 continue;
1333
1334 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1335 }
1336 }
1337
1338 /* inferior_created observer. */
1339
1340 static void
1341 jit_inferior_created (struct target_ops *ops, int from_tty)
1342 {
1343 jit_inferior_created_hook ();
1344 }
1345
1346 /* Exported routine to call when an inferior has been created. */
1347
1348 void
1349 jit_inferior_created_hook (void)
1350 {
1351 jit_inferior_init (target_gdbarch ());
1352 }
1353
1354 /* Exported routine to call to re-set the jit breakpoints,
1355 e.g. when a program is rerun. */
1356
1357 void
1358 jit_breakpoint_re_set (void)
1359 {
1360 jit_breakpoint_re_set_internal (target_gdbarch (),
1361 get_jit_program_space_data ());
1362 }
1363
1364 /* This function cleans up any code entries left over when the
1365 inferior exits. We get left over code when the inferior exits
1366 without unregistering its code, for example when it crashes. */
1367
1368 static void
1369 jit_inferior_exit_hook (struct inferior *inf)
1370 {
1371 for (objfile *objf : current_program_space->objfiles_safe ())
1372 {
1373 struct jit_objfile_data *objf_data
1374 = (struct jit_objfile_data *) objfile_data (objf, jit_objfile_data);
1375
1376 if (objf_data != NULL && objf_data->addr != 0)
1377 objf->unlink ();
1378 }
1379 }
1380
1381 void
1382 jit_event_handler (struct gdbarch *gdbarch)
1383 {
1384 struct jit_descriptor descriptor;
1385 struct jit_code_entry code_entry;
1386 CORE_ADDR entry_addr;
1387 struct objfile *objf;
1388
1389 /* Read the descriptor from remote memory. */
1390 if (!jit_read_descriptor (gdbarch, &descriptor,
1391 get_jit_program_space_data ()))
1392 return;
1393 entry_addr = descriptor.relevant_entry;
1394
1395 /* Do the corresponding action. */
1396 switch (descriptor.action_flag)
1397 {
1398 case JIT_NOACTION:
1399 break;
1400 case JIT_REGISTER:
1401 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1402 jit_register_code (gdbarch, entry_addr, &code_entry);
1403 break;
1404 case JIT_UNREGISTER:
1405 objf = jit_find_objf_with_entry_addr (entry_addr);
1406 if (objf == NULL)
1407 printf_unfiltered (_("Unable to find JITed code "
1408 "entry at address: %s\n"),
1409 paddress (gdbarch, entry_addr));
1410 else
1411 objf->unlink ();
1412
1413 break;
1414 default:
1415 error (_("Unknown action_flag value in JIT descriptor!"));
1416 break;
1417 }
1418 }
1419
1420 /* Called to free the data allocated to the jit_program_space_data slot. */
1421
1422 static void
1423 free_objfile_data (struct objfile *objfile, void *data)
1424 {
1425 struct jit_objfile_data *objf_data = (struct jit_objfile_data *) data;
1426
1427 if (objf_data->register_code != NULL)
1428 {
1429 struct jit_program_space_data *ps_data;
1430
1431 ps_data = jit_program_space_key.get (objfile->pspace);
1432 if (ps_data != NULL && ps_data->objfile == objfile)
1433 {
1434 ps_data->objfile = NULL;
1435 if (ps_data->jit_breakpoint != NULL)
1436 delete_breakpoint (ps_data->jit_breakpoint);
1437 ps_data->cached_code_address = 0;
1438 }
1439 }
1440
1441 xfree (data);
1442 }
1443
1444 /* Initialize the jit_gdbarch_data slot with an instance of struct
1445 jit_gdbarch_data_type */
1446
1447 static void *
1448 jit_gdbarch_data_init (struct obstack *obstack)
1449 {
1450 struct jit_gdbarch_data_type *data =
1451 XOBNEW (obstack, struct jit_gdbarch_data_type);
1452
1453 data->unwinder_registered = 0;
1454
1455 return data;
1456 }
1457
1458 void
1459 _initialize_jit (void)
1460 {
1461 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1462 JIT_READER_DIR_RELOCATABLE);
1463 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1464 _("Set JIT debugging."),
1465 _("Show JIT debugging."),
1466 _("When non-zero, JIT debugging is enabled."),
1467 NULL,
1468 show_jit_debug,
1469 &setdebuglist, &showdebuglist);
1470
1471 gdb::observers::inferior_created.attach (jit_inferior_created);
1472 gdb::observers::inferior_exit.attach (jit_inferior_exit_hook);
1473 gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted);
1474
1475 jit_objfile_data =
1476 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1477 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1478 if (is_dl_available ())
1479 {
1480 struct cmd_list_element *c;
1481
1482 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1483 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1484 Usage: jit-reader-load FILE\n\
1485 Try to load file FILE as a debug info reader (and unwinder) for\n\
1486 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1487 relocated relative to the GDB executable if required."));
1488 set_cmd_completer (c, filename_completer);
1489
1490 c = add_com ("jit-reader-unload", no_class,
1491 jit_reader_unload_command, _("\
1492 Unload the currently loaded JIT debug info reader.\n\
1493 Usage: jit-reader-unload\n\n\
1494 Do \"help jit-reader-load\" for info on loading debug info readers."));
1495 set_cmd_completer (c, noop_completer);
1496 }
1497 }
This page took 0.05715 seconds and 3 git commands to generate.