Keep objfile original filename
[deliverable/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observer.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdb-dlfcn.h"
40 #include "gdb_stat.h"
41 #include "exceptions.h"
42 #include "gdb_bfd.h"
43
44 static const char *jit_reader_dir = NULL;
45
46 static const struct objfile_data *jit_objfile_data;
47
48 static const char *const jit_break_name = "__jit_debug_register_code";
49
50 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
51
52 static const struct program_space_data *jit_program_space_data = NULL;
53
54 static void jit_inferior_init (struct gdbarch *gdbarch);
55
56 /* An unwinder is registered for every gdbarch. This key is used to
57 remember if the unwinder has been registered for a particular
58 gdbarch. */
59
60 static struct gdbarch_data *jit_gdbarch_data;
61
62 /* Non-zero if we want to see trace of jit level stuff. */
63
64 static unsigned int jit_debug = 0;
65
66 static void
67 show_jit_debug (struct ui_file *file, int from_tty,
68 struct cmd_list_element *c, const char *value)
69 {
70 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
71 }
72
73 struct target_buffer
74 {
75 CORE_ADDR base;
76 ULONGEST size;
77 };
78
79 /* Openning the file is a no-op. */
80
81 static void *
82 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
83 {
84 return open_closure;
85 }
86
87 /* Closing the file is just freeing the base/size pair on our side. */
88
89 static int
90 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
91 {
92 xfree (stream);
93
94 /* Zero means success. */
95 return 0;
96 }
97
98 /* For reading the file, we just need to pass through to target_read_memory and
99 fix up the arguments and return values. */
100
101 static file_ptr
102 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
103 file_ptr nbytes, file_ptr offset)
104 {
105 int err;
106 struct target_buffer *buffer = (struct target_buffer *) stream;
107
108 /* If this read will read all of the file, limit it to just the rest. */
109 if (offset + nbytes > buffer->size)
110 nbytes = buffer->size - offset;
111
112 /* If there are no more bytes left, we've reached EOF. */
113 if (nbytes == 0)
114 return 0;
115
116 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
117 if (err)
118 return -1;
119
120 return nbytes;
121 }
122
123 /* For statting the file, we only support the st_size attribute. */
124
125 static int
126 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
127 {
128 struct target_buffer *buffer = (struct target_buffer*) stream;
129
130 sb->st_size = buffer->size;
131 return 0;
132 }
133
134 /* Open a BFD from the target's memory. */
135
136 static struct bfd *
137 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size, char *target)
138 {
139 struct target_buffer *buffer = xmalloc (sizeof (struct target_buffer));
140
141 buffer->base = addr;
142 buffer->size = size;
143 return gdb_bfd_openr_iovec ("<in-memory>", target,
144 mem_bfd_iovec_open,
145 buffer,
146 mem_bfd_iovec_pread,
147 mem_bfd_iovec_close,
148 mem_bfd_iovec_stat);
149 }
150
151 /* One reader that has been loaded successfully, and can potentially be used to
152 parse debug info. */
153
154 static struct jit_reader
155 {
156 struct gdb_reader_funcs *functions;
157 void *handle;
158 } *loaded_jit_reader = NULL;
159
160 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
161 static const char *reader_init_fn_sym = "gdb_init_reader";
162
163 /* Try to load FILE_NAME as a JIT debug info reader. */
164
165 static struct jit_reader *
166 jit_reader_load (const char *file_name)
167 {
168 void *so;
169 reader_init_fn_type *init_fn;
170 struct jit_reader *new_reader = NULL;
171 struct gdb_reader_funcs *funcs = NULL;
172 struct cleanup *old_cleanups;
173
174 if (jit_debug)
175 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
176 file_name);
177 so = gdb_dlopen (file_name);
178 old_cleanups = make_cleanup_dlclose (so);
179
180 init_fn = gdb_dlsym (so, reader_init_fn_sym);
181 if (!init_fn)
182 error (_("Could not locate initialization function: %s."),
183 reader_init_fn_sym);
184
185 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
186 error (_("Reader not GPL compatible."));
187
188 funcs = init_fn ();
189 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
190 error (_("Reader version does not match GDB version."));
191
192 new_reader = XZALLOC (struct jit_reader);
193 new_reader->functions = funcs;
194 new_reader->handle = so;
195
196 discard_cleanups (old_cleanups);
197 return new_reader;
198 }
199
200 /* Provides the jit-reader-load command. */
201
202 static void
203 jit_reader_load_command (char *args, int from_tty)
204 {
205 char *so_name;
206 struct cleanup *prev_cleanup;
207
208 if (args == NULL)
209 error (_("No reader name provided."));
210
211 if (loaded_jit_reader != NULL)
212 error (_("JIT reader already loaded. Run jit-reader-unload first."));
213
214 if (IS_ABSOLUTE_PATH (args))
215 so_name = xstrdup (args);
216 else
217 so_name = xstrprintf ("%s%s%s", SLASH_STRING, jit_reader_dir, args);
218 prev_cleanup = make_cleanup (xfree, so_name);
219
220 loaded_jit_reader = jit_reader_load (so_name);
221 do_cleanups (prev_cleanup);
222 }
223
224 /* Provides the jit-reader-unload command. */
225
226 static void
227 jit_reader_unload_command (char *args, int from_tty)
228 {
229 if (!loaded_jit_reader)
230 error (_("No JIT reader loaded."));
231
232 loaded_jit_reader->functions->destroy (loaded_jit_reader->functions);
233
234 gdb_dlclose (loaded_jit_reader->handle);
235 xfree (loaded_jit_reader);
236 loaded_jit_reader = NULL;
237 }
238
239 /* Per-program space structure recording which objfile has the JIT
240 symbols. */
241
242 struct jit_program_space_data
243 {
244 /* The objfile. This is NULL if no objfile holds the JIT
245 symbols. */
246
247 struct objfile *objfile;
248
249 /* If this program space has __jit_debug_register_code, this is the
250 cached address from the minimal symbol. This is used to detect
251 relocations requiring the breakpoint to be re-created. */
252
253 CORE_ADDR cached_code_address;
254
255 /* This is the JIT event breakpoint, or NULL if it has not been
256 set. */
257
258 struct breakpoint *jit_breakpoint;
259 };
260
261 /* Per-objfile structure recording the addresses in the program space.
262 This object serves two purposes: for ordinary objfiles, it may
263 cache some symbols related to the JIT interface; and for
264 JIT-created objfiles, it holds some information about the
265 jit_code_entry. */
266
267 struct jit_objfile_data
268 {
269 /* Symbol for __jit_debug_register_code. */
270 struct minimal_symbol *register_code;
271
272 /* Symbol for __jit_debug_descriptor. */
273 struct minimal_symbol *descriptor;
274
275 /* Address of struct jit_code_entry in this objfile. This is only
276 non-zero for objfiles that represent code created by the JIT. */
277 CORE_ADDR addr;
278 };
279
280 /* Fetch the jit_objfile_data associated with OBJF. If no data exists
281 yet, make a new structure and attach it. */
282
283 static struct jit_objfile_data *
284 get_jit_objfile_data (struct objfile *objf)
285 {
286 struct jit_objfile_data *objf_data;
287
288 objf_data = objfile_data (objf, jit_objfile_data);
289 if (objf_data == NULL)
290 {
291 objf_data = XZALLOC (struct jit_objfile_data);
292 set_objfile_data (objf, jit_objfile_data, objf_data);
293 }
294
295 return objf_data;
296 }
297
298 /* Remember OBJFILE has been created for struct jit_code_entry located
299 at inferior address ENTRY. */
300
301 static void
302 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
303 {
304 struct jit_objfile_data *objf_data;
305
306 objf_data = get_jit_objfile_data (objfile);
307 objf_data->addr = entry;
308 }
309
310 /* Return jit_program_space_data for current program space. Allocate
311 if not already present. */
312
313 static struct jit_program_space_data *
314 get_jit_program_space_data (void)
315 {
316 struct jit_program_space_data *ps_data;
317
318 ps_data = program_space_data (current_program_space, jit_program_space_data);
319 if (ps_data == NULL)
320 {
321 ps_data = XZALLOC (struct jit_program_space_data);
322 set_program_space_data (current_program_space, jit_program_space_data,
323 ps_data);
324 }
325
326 return ps_data;
327 }
328
329 static void
330 jit_program_space_data_cleanup (struct program_space *ps, void *arg)
331 {
332 xfree (arg);
333 }
334
335 /* Helper function for reading the global JIT descriptor from remote
336 memory. Returns 1 if all went well, 0 otherwise. */
337
338 static int
339 jit_read_descriptor (struct gdbarch *gdbarch,
340 struct jit_descriptor *descriptor,
341 struct jit_program_space_data *ps_data)
342 {
343 int err;
344 struct type *ptr_type;
345 int ptr_size;
346 int desc_size;
347 gdb_byte *desc_buf;
348 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
349 struct jit_objfile_data *objf_data;
350
351 if (ps_data->objfile == NULL)
352 return 0;
353 objf_data = get_jit_objfile_data (ps_data->objfile);
354 if (objf_data->descriptor == NULL)
355 return 0;
356
357 if (jit_debug)
358 fprintf_unfiltered (gdb_stdlog,
359 "jit_read_descriptor, descriptor_addr = %s\n",
360 paddress (gdbarch, SYMBOL_VALUE_ADDRESS (objf_data->descriptor)));
361
362 /* Figure out how big the descriptor is on the remote and how to read it. */
363 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
364 ptr_size = TYPE_LENGTH (ptr_type);
365 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
366 desc_buf = alloca (desc_size);
367
368 /* Read the descriptor. */
369 err = target_read_memory (SYMBOL_VALUE_ADDRESS (objf_data->descriptor),
370 desc_buf, desc_size);
371 if (err)
372 {
373 printf_unfiltered (_("Unable to read JIT descriptor from "
374 "remote memory\n"));
375 return 0;
376 }
377
378 /* Fix the endianness to match the host. */
379 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
380 descriptor->action_flag =
381 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
382 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
383 descriptor->first_entry =
384 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
385
386 return 1;
387 }
388
389 /* Helper function for reading a JITed code entry from remote memory. */
390
391 static void
392 jit_read_code_entry (struct gdbarch *gdbarch,
393 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
394 {
395 int err, off;
396 struct type *ptr_type;
397 int ptr_size;
398 int entry_size;
399 int align_bytes;
400 gdb_byte *entry_buf;
401 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
402
403 /* Figure out how big the entry is on the remote and how to read it. */
404 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
405 ptr_size = TYPE_LENGTH (ptr_type);
406
407 /* Figure out where the longlong value will be. */
408 align_bytes = gdbarch_long_long_align_bit (gdbarch) / 8;
409 off = 3 * ptr_size;
410 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
411
412 entry_size = off + 8; /* Three pointers and one 64-bit int. */
413 entry_buf = alloca (entry_size);
414
415 /* Read the entry. */
416 err = target_read_memory (code_addr, entry_buf, entry_size);
417 if (err)
418 error (_("Unable to read JIT code entry from remote memory!"));
419
420 /* Fix the endianness to match the host. */
421 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
422 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
423 code_entry->prev_entry =
424 extract_typed_address (&entry_buf[ptr_size], ptr_type);
425 code_entry->symfile_addr =
426 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
427 code_entry->symfile_size =
428 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
429 }
430
431 /* Proxy object for building a block. */
432
433 struct gdb_block
434 {
435 /* gdb_blocks are linked into a tree structure. Next points to the
436 next node at the same depth as this block and parent to the
437 parent gdb_block. */
438 struct gdb_block *next, *parent;
439
440 /* Points to the "real" block that is being built out of this
441 instance. This block will be added to a blockvector, which will
442 then be added to a symtab. */
443 struct block *real_block;
444
445 /* The first and last code address corresponding to this block. */
446 CORE_ADDR begin, end;
447
448 /* The name of this block (if any). If this is non-NULL, the
449 FUNCTION symbol symbol is set to this value. */
450 const char *name;
451 };
452
453 /* Proxy object for building a symtab. */
454
455 struct gdb_symtab
456 {
457 /* The list of blocks in this symtab. These will eventually be
458 converted to real blocks. */
459 struct gdb_block *blocks;
460
461 /* The number of blocks inserted. */
462 int nblocks;
463
464 /* A mapping between line numbers to PC. */
465 struct linetable *linetable;
466
467 /* The source file for this symtab. */
468 const char *file_name;
469 struct gdb_symtab *next;
470 };
471
472 /* Proxy object for building an object. */
473
474 struct gdb_object
475 {
476 struct gdb_symtab *symtabs;
477 };
478
479 /* The type of the `private' data passed around by the callback
480 functions. */
481
482 typedef CORE_ADDR jit_dbg_reader_data;
483
484 /* The reader calls into this function to read data off the targets
485 address space. */
486
487 static enum gdb_status
488 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
489 {
490 int result = target_read_memory ((CORE_ADDR) target_mem, gdb_buf, len);
491 if (result == 0)
492 return GDB_SUCCESS;
493 else
494 return GDB_FAIL;
495 }
496
497 /* The reader calls into this function to create a new gdb_object
498 which it can then pass around to the other callbacks. Right now,
499 all that is required is allocating the memory. */
500
501 static struct gdb_object *
502 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
503 {
504 /* CB is not required right now, but sometime in the future we might
505 need a handle to it, and we'd like to do that without breaking
506 the ABI. */
507 return XZALLOC (struct gdb_object);
508 }
509
510 /* Readers call into this function to open a new gdb_symtab, which,
511 again, is passed around to other callbacks. */
512
513 static struct gdb_symtab *
514 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
515 struct gdb_object *object,
516 const char *file_name)
517 {
518 struct gdb_symtab *ret;
519
520 /* CB stays unused. See comment in jit_object_open_impl. */
521
522 ret = XZALLOC (struct gdb_symtab);
523 ret->file_name = file_name ? xstrdup (file_name) : xstrdup ("");
524 ret->next = object->symtabs;
525 object->symtabs = ret;
526 return ret;
527 }
528
529 /* Returns true if the block corresponding to old should be placed
530 before the block corresponding to new in the final blockvector. */
531
532 static int
533 compare_block (const struct gdb_block *const old,
534 const struct gdb_block *const new)
535 {
536 if (old == NULL)
537 return 1;
538 if (old->begin < new->begin)
539 return 1;
540 else if (old->begin == new->begin)
541 {
542 if (old->end > new->end)
543 return 1;
544 else
545 return 0;
546 }
547 else
548 return 0;
549 }
550
551 /* Called by readers to open a new gdb_block. This function also
552 inserts the new gdb_block in the correct place in the corresponding
553 gdb_symtab. */
554
555 static struct gdb_block *
556 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
557 struct gdb_symtab *symtab, struct gdb_block *parent,
558 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
559 {
560 struct gdb_block *block = XZALLOC (struct gdb_block);
561
562 block->next = symtab->blocks;
563 block->begin = (CORE_ADDR) begin;
564 block->end = (CORE_ADDR) end;
565 block->name = name ? xstrdup (name) : NULL;
566 block->parent = parent;
567
568 /* Ensure that the blocks are inserted in the correct (reverse of
569 the order expected by blockvector). */
570 if (compare_block (symtab->blocks, block))
571 {
572 symtab->blocks = block;
573 }
574 else
575 {
576 struct gdb_block *i = symtab->blocks;
577
578 for (;; i = i->next)
579 {
580 /* Guaranteed to terminate, since compare_block (NULL, _)
581 returns 1. */
582 if (compare_block (i->next, block))
583 {
584 block->next = i->next;
585 i->next = block;
586 break;
587 }
588 }
589 }
590 symtab->nblocks++;
591
592 return block;
593 }
594
595 /* Readers call this to add a line mapping (from PC to line number) to
596 a gdb_symtab. */
597
598 static void
599 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
600 struct gdb_symtab *stab, int nlines,
601 struct gdb_line_mapping *map)
602 {
603 int i;
604
605 if (nlines < 1)
606 return;
607
608 stab->linetable = xmalloc (sizeof (struct linetable)
609 + (nlines - 1) * sizeof (struct linetable_entry));
610 stab->linetable->nitems = nlines;
611 for (i = 0; i < nlines; i++)
612 {
613 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
614 stab->linetable->item[i].line = map[i].line;
615 }
616 }
617
618 /* Called by readers to close a gdb_symtab. Does not need to do
619 anything as of now. */
620
621 static void
622 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
623 struct gdb_symtab *stab)
624 {
625 /* Right now nothing needs to be done here. We may need to do some
626 cleanup here in the future (again, without breaking the plugin
627 ABI). */
628 }
629
630 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
631
632 static void
633 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
634 {
635 struct symtab *symtab;
636 struct gdb_block *gdb_block_iter, *gdb_block_iter_tmp;
637 struct block *block_iter;
638 int actual_nblocks, i, blockvector_size;
639 CORE_ADDR begin, end;
640
641 actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
642
643 symtab = allocate_symtab (stab->file_name, objfile);
644 /* JIT compilers compile in memory. */
645 symtab->dirname = NULL;
646
647 /* Copy over the linetable entry if one was provided. */
648 if (stab->linetable)
649 {
650 int size = ((stab->linetable->nitems - 1)
651 * sizeof (struct linetable_entry)
652 + sizeof (struct linetable));
653 LINETABLE (symtab) = obstack_alloc (&objfile->objfile_obstack, size);
654 memcpy (LINETABLE (symtab), stab->linetable, size);
655 }
656 else
657 {
658 LINETABLE (symtab) = NULL;
659 }
660
661 blockvector_size = (sizeof (struct blockvector)
662 + (actual_nblocks - 1) * sizeof (struct block *));
663 symtab->blockvector = obstack_alloc (&objfile->objfile_obstack,
664 blockvector_size);
665
666 /* (begin, end) will contain the PC range this entire blockvector
667 spans. */
668 symtab->primary = 1;
669 BLOCKVECTOR_MAP (symtab->blockvector) = NULL;
670 begin = stab->blocks->begin;
671 end = stab->blocks->end;
672 BLOCKVECTOR_NBLOCKS (symtab->blockvector) = actual_nblocks;
673
674 /* First run over all the gdb_block objects, creating a real block
675 object for each. Simultaneously, keep setting the real_block
676 fields. */
677 for (i = (actual_nblocks - 1), gdb_block_iter = stab->blocks;
678 i >= FIRST_LOCAL_BLOCK;
679 i--, gdb_block_iter = gdb_block_iter->next)
680 {
681 struct block *new_block = allocate_block (&objfile->objfile_obstack);
682 struct symbol *block_name = allocate_symbol (objfile);
683 struct type *block_type = arch_type (get_objfile_arch (objfile),
684 TYPE_CODE_VOID,
685 1,
686 "void");
687
688 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
689 NULL);
690 /* The address range. */
691 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter->begin;
692 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter->end;
693
694 /* The name. */
695 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
696 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
697 SYMBOL_SYMTAB (block_name) = symtab;
698 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
699 SYMBOL_BLOCK_VALUE (block_name) = new_block;
700
701 block_name->ginfo.name = obstack_copy0 (&objfile->objfile_obstack,
702 gdb_block_iter->name,
703 strlen (gdb_block_iter->name));
704
705 BLOCK_FUNCTION (new_block) = block_name;
706
707 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
708 if (begin > BLOCK_START (new_block))
709 begin = BLOCK_START (new_block);
710 if (end < BLOCK_END (new_block))
711 end = BLOCK_END (new_block);
712
713 gdb_block_iter->real_block = new_block;
714 }
715
716 /* Now add the special blocks. */
717 block_iter = NULL;
718 for (i = 0; i < FIRST_LOCAL_BLOCK; i++)
719 {
720 struct block *new_block;
721
722 new_block = (i == GLOBAL_BLOCK
723 ? allocate_global_block (&objfile->objfile_obstack)
724 : allocate_block (&objfile->objfile_obstack));
725 BLOCK_DICT (new_block) = dict_create_linear (&objfile->objfile_obstack,
726 NULL);
727 BLOCK_SUPERBLOCK (new_block) = block_iter;
728 block_iter = new_block;
729
730 BLOCK_START (new_block) = (CORE_ADDR) begin;
731 BLOCK_END (new_block) = (CORE_ADDR) end;
732
733 BLOCKVECTOR_BLOCK (symtab->blockvector, i) = new_block;
734
735 if (i == GLOBAL_BLOCK)
736 set_block_symtab (new_block, symtab);
737 }
738
739 /* Fill up the superblock fields for the real blocks, using the
740 real_block fields populated earlier. */
741 for (gdb_block_iter = stab->blocks;
742 gdb_block_iter;
743 gdb_block_iter = gdb_block_iter->next)
744 {
745 if (gdb_block_iter->parent != NULL)
746 {
747 /* If the plugin specifically mentioned a parent block, we
748 use that. */
749 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
750 gdb_block_iter->parent->real_block;
751 }
752 else
753 {
754 /* And if not, we set a default parent block. */
755 BLOCK_SUPERBLOCK (gdb_block_iter->real_block) =
756 BLOCKVECTOR_BLOCK (symtab->blockvector, STATIC_BLOCK);
757 }
758 }
759
760 /* Free memory. */
761 gdb_block_iter = stab->blocks;
762
763 for (gdb_block_iter = stab->blocks, gdb_block_iter_tmp = gdb_block_iter->next;
764 gdb_block_iter;
765 gdb_block_iter = gdb_block_iter_tmp)
766 {
767 xfree ((void *) gdb_block_iter->name);
768 xfree (gdb_block_iter);
769 }
770 xfree (stab->linetable);
771 xfree ((char *) stab->file_name);
772 xfree (stab);
773 }
774
775 /* Called when closing a gdb_objfile. Converts OBJ to a proper
776 objfile. */
777
778 static void
779 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
780 struct gdb_object *obj)
781 {
782 struct gdb_symtab *i, *j;
783 struct objfile *objfile;
784 jit_dbg_reader_data *priv_data;
785
786 priv_data = cb->priv_data;
787
788 objfile = allocate_objfile (NULL, "<< JIT compiled code >>", 0);
789 objfile->per_bfd->gdbarch = target_gdbarch ();
790
791 terminate_minimal_symbol_table (objfile);
792
793 j = NULL;
794 for (i = obj->symtabs; i; i = j)
795 {
796 j = i->next;
797 finalize_symtab (i, objfile);
798 }
799 add_objfile_entry (objfile, *priv_data);
800 xfree (obj);
801 }
802
803 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
804 ENTRY_ADDR is the address of the struct jit_code_entry in the
805 inferior address space. */
806
807 static int
808 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
809 CORE_ADDR entry_addr)
810 {
811 void *gdb_mem;
812 int status;
813 jit_dbg_reader_data priv_data;
814 struct gdb_reader_funcs *funcs;
815 volatile struct gdb_exception e;
816 struct gdb_symbol_callbacks callbacks =
817 {
818 jit_object_open_impl,
819 jit_symtab_open_impl,
820 jit_block_open_impl,
821 jit_symtab_close_impl,
822 jit_object_close_impl,
823
824 jit_symtab_line_mapping_add_impl,
825 jit_target_read_impl,
826
827 &priv_data
828 };
829
830 priv_data = entry_addr;
831
832 if (!loaded_jit_reader)
833 return 0;
834
835 gdb_mem = xmalloc (code_entry->symfile_size);
836
837 status = 1;
838 TRY_CATCH (e, RETURN_MASK_ALL)
839 if (target_read_memory (code_entry->symfile_addr, gdb_mem,
840 code_entry->symfile_size))
841 status = 0;
842 if (e.reason < 0)
843 status = 0;
844
845 if (status)
846 {
847 funcs = loaded_jit_reader->functions;
848 if (funcs->read (funcs, &callbacks, gdb_mem, code_entry->symfile_size)
849 != GDB_SUCCESS)
850 status = 0;
851 }
852
853 xfree (gdb_mem);
854 if (jit_debug && status == 0)
855 fprintf_unfiltered (gdb_stdlog,
856 "Could not read symtab using the loaded JIT reader.\n");
857 return status;
858 }
859
860 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
861 struct jit_code_entry in the inferior address space. */
862
863 static void
864 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
865 CORE_ADDR entry_addr,
866 struct gdbarch *gdbarch)
867 {
868 bfd *nbfd;
869 struct section_addr_info *sai;
870 struct bfd_section *sec;
871 struct objfile *objfile;
872 struct cleanup *old_cleanups;
873 int i;
874 const struct bfd_arch_info *b;
875
876 if (jit_debug)
877 fprintf_unfiltered (gdb_stdlog,
878 "jit_register_code, symfile_addr = %s, "
879 "symfile_size = %s\n",
880 paddress (gdbarch, code_entry->symfile_addr),
881 pulongest (code_entry->symfile_size));
882
883 nbfd = bfd_open_from_target_memory (code_entry->symfile_addr,
884 code_entry->symfile_size, gnutarget);
885 if (nbfd == NULL)
886 {
887 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
888 return;
889 }
890
891 /* Check the format. NOTE: This initializes important data that GDB uses!
892 We would segfault later without this line. */
893 if (!bfd_check_format (nbfd, bfd_object))
894 {
895 printf_unfiltered (_("\
896 JITed symbol file is not an object file, ignoring it.\n"));
897 gdb_bfd_unref (nbfd);
898 return;
899 }
900
901 /* Check bfd arch. */
902 b = gdbarch_bfd_arch_info (gdbarch);
903 if (b->compatible (b, bfd_get_arch_info (nbfd)) != b)
904 warning (_("JITed object file architecture %s is not compatible "
905 "with target architecture %s."), bfd_get_arch_info
906 (nbfd)->printable_name, b->printable_name);
907
908 /* Read the section address information out of the symbol file. Since the
909 file is generated by the JIT at runtime, it should all of the absolute
910 addresses that we care about. */
911 sai = alloc_section_addr_info (bfd_count_sections (nbfd));
912 old_cleanups = make_cleanup_free_section_addr_info (sai);
913 i = 0;
914 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
915 if ((bfd_get_section_flags (nbfd, sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
916 {
917 /* We assume that these virtual addresses are absolute, and do not
918 treat them as offsets. */
919 sai->other[i].addr = bfd_get_section_vma (nbfd, sec);
920 sai->other[i].name = xstrdup (bfd_get_section_name (nbfd, sec));
921 sai->other[i].sectindex = sec->index;
922 ++i;
923 }
924 sai->num_sections = i;
925
926 /* This call does not take ownership of SAI. */
927 make_cleanup_bfd_unref (nbfd);
928 objfile = symbol_file_add_from_bfd (nbfd, bfd_get_filename (nbfd), 0, sai,
929 OBJF_SHARED, NULL);
930
931 do_cleanups (old_cleanups);
932 add_objfile_entry (objfile, entry_addr);
933 }
934
935 /* This function registers code associated with a JIT code entry. It uses the
936 pointer and size pair in the entry to read the symbol file from the remote
937 and then calls symbol_file_add_from_local_memory to add it as though it were
938 a symbol file added by the user. */
939
940 static void
941 jit_register_code (struct gdbarch *gdbarch,
942 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
943 {
944 int success;
945
946 if (jit_debug)
947 fprintf_unfiltered (gdb_stdlog,
948 "jit_register_code, symfile_addr = %s, "
949 "symfile_size = %s\n",
950 paddress (gdbarch, code_entry->symfile_addr),
951 pulongest (code_entry->symfile_size));
952
953 success = jit_reader_try_read_symtab (code_entry, entry_addr);
954
955 if (!success)
956 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
957 }
958
959 /* This function unregisters JITed code and frees the corresponding
960 objfile. */
961
962 static void
963 jit_unregister_code (struct objfile *objfile)
964 {
965 free_objfile (objfile);
966 }
967
968 /* Look up the objfile with this code entry address. */
969
970 static struct objfile *
971 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
972 {
973 struct objfile *objf;
974
975 ALL_OBJFILES (objf)
976 {
977 struct jit_objfile_data *objf_data;
978
979 objf_data = objfile_data (objf, jit_objfile_data);
980 if (objf_data != NULL && objf_data->addr == entry_addr)
981 return objf;
982 }
983 return NULL;
984 }
985
986 /* This is called when a breakpoint is deleted. It updates the
987 inferior's cache, if needed. */
988
989 static void
990 jit_breakpoint_deleted (struct breakpoint *b)
991 {
992 struct bp_location *iter;
993
994 if (b->type != bp_jit_event)
995 return;
996
997 for (iter = b->loc; iter != NULL; iter = iter->next)
998 {
999 struct jit_program_space_data *ps_data;
1000
1001 ps_data = program_space_data (iter->pspace, jit_program_space_data);
1002 if (ps_data != NULL && ps_data->jit_breakpoint == iter->owner)
1003 {
1004 ps_data->cached_code_address = 0;
1005 ps_data->jit_breakpoint = NULL;
1006 }
1007 }
1008 }
1009
1010 /* (Re-)Initialize the jit breakpoint if necessary.
1011 Return 0 on success. */
1012
1013 static int
1014 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch,
1015 struct jit_program_space_data *ps_data)
1016 {
1017 struct bound_minimal_symbol reg_symbol;
1018 struct minimal_symbol *desc_symbol;
1019 struct jit_objfile_data *objf_data;
1020 CORE_ADDR addr;
1021
1022 if (ps_data->objfile == NULL)
1023 {
1024 /* Lookup the registration symbol. If it is missing, then we
1025 assume we are not attached to a JIT. */
1026 reg_symbol = lookup_minimal_symbol_and_objfile (jit_break_name);
1027 if (reg_symbol.minsym == NULL
1028 || SYMBOL_VALUE_ADDRESS (reg_symbol.minsym) == 0)
1029 return 1;
1030
1031 desc_symbol = lookup_minimal_symbol (jit_descriptor_name, NULL,
1032 reg_symbol.objfile);
1033 if (desc_symbol == NULL || SYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
1034 return 1;
1035
1036 objf_data = get_jit_objfile_data (reg_symbol.objfile);
1037 objf_data->register_code = reg_symbol.minsym;
1038 objf_data->descriptor = desc_symbol;
1039
1040 ps_data->objfile = reg_symbol.objfile;
1041 }
1042 else
1043 objf_data = get_jit_objfile_data (ps_data->objfile);
1044
1045 addr = SYMBOL_VALUE_ADDRESS (objf_data->register_code);
1046
1047 if (jit_debug)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "jit_breakpoint_re_set_internal, "
1050 "breakpoint_addr = %s\n",
1051 paddress (gdbarch, addr));
1052
1053 if (ps_data->cached_code_address == addr)
1054 return 1;
1055
1056 /* Delete the old breakpoint. */
1057 if (ps_data->jit_breakpoint != NULL)
1058 delete_breakpoint (ps_data->jit_breakpoint);
1059
1060 /* Put a breakpoint in the registration symbol. */
1061 ps_data->cached_code_address = addr;
1062 ps_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
1063
1064 return 0;
1065 }
1066
1067 /* The private data passed around in the frame unwind callback
1068 functions. */
1069
1070 struct jit_unwind_private
1071 {
1072 /* Cached register values. See jit_frame_sniffer to see how this
1073 works. */
1074 struct gdb_reg_value **registers;
1075
1076 /* The frame being unwound. */
1077 struct frame_info *this_frame;
1078 };
1079
1080 /* Sets the value of a particular register in this frame. */
1081
1082 static void
1083 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
1084 struct gdb_reg_value *value)
1085 {
1086 struct jit_unwind_private *priv;
1087 int gdb_reg;
1088
1089 priv = cb->priv_data;
1090
1091 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
1092 dwarf_regnum);
1093 if (gdb_reg == -1)
1094 {
1095 if (jit_debug)
1096 fprintf_unfiltered (gdb_stdlog,
1097 _("Could not recognize DWARF regnum %d"),
1098 dwarf_regnum);
1099 return;
1100 }
1101
1102 gdb_assert (priv->registers);
1103 priv->registers[gdb_reg] = value;
1104 }
1105
1106 static void
1107 reg_value_free_impl (struct gdb_reg_value *value)
1108 {
1109 xfree (value);
1110 }
1111
1112 /* Get the value of register REGNUM in the previous frame. */
1113
1114 static struct gdb_reg_value *
1115 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
1116 {
1117 struct jit_unwind_private *priv;
1118 struct gdb_reg_value *value;
1119 int gdb_reg, size;
1120 struct gdbarch *frame_arch;
1121
1122 priv = cb->priv_data;
1123 frame_arch = get_frame_arch (priv->this_frame);
1124
1125 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1126 size = register_size (frame_arch, gdb_reg);
1127 value = xmalloc (sizeof (struct gdb_reg_value) + size - 1);
1128 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1129 value->value);
1130 value->size = size;
1131 value->free = reg_value_free_impl;
1132 return value;
1133 }
1134
1135 /* gdb_reg_value has a free function, which must be called on each
1136 saved register value. */
1137
1138 static void
1139 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1140 {
1141 struct jit_unwind_private *priv_data = cache;
1142 struct gdbarch *frame_arch;
1143 int i;
1144
1145 gdb_assert (priv_data->registers);
1146 frame_arch = get_frame_arch (priv_data->this_frame);
1147
1148 for (i = 0; i < gdbarch_num_regs (frame_arch); i++)
1149 if (priv_data->registers[i] && priv_data->registers[i]->free)
1150 priv_data->registers[i]->free (priv_data->registers[i]);
1151
1152 xfree (priv_data->registers);
1153 xfree (priv_data);
1154 }
1155
1156 /* The frame sniffer for the pseudo unwinder.
1157
1158 While this is nominally a frame sniffer, in the case where the JIT
1159 reader actually recognizes the frame, it does a lot more work -- it
1160 unwinds the frame and saves the corresponding register values in
1161 the cache. jit_frame_prev_register simply returns the saved
1162 register values. */
1163
1164 static int
1165 jit_frame_sniffer (const struct frame_unwind *self,
1166 struct frame_info *this_frame, void **cache)
1167 {
1168 struct jit_unwind_private *priv_data;
1169 struct gdb_unwind_callbacks callbacks;
1170 struct gdb_reader_funcs *funcs;
1171
1172 callbacks.reg_get = jit_unwind_reg_get_impl;
1173 callbacks.reg_set = jit_unwind_reg_set_impl;
1174 callbacks.target_read = jit_target_read_impl;
1175
1176 if (loaded_jit_reader == NULL)
1177 return 0;
1178
1179 funcs = loaded_jit_reader->functions;
1180
1181 gdb_assert (!*cache);
1182
1183 *cache = XZALLOC (struct jit_unwind_private);
1184 priv_data = *cache;
1185 priv_data->registers =
1186 XCALLOC (gdbarch_num_regs (get_frame_arch (this_frame)),
1187 struct gdb_reg_value *);
1188 priv_data->this_frame = this_frame;
1189
1190 callbacks.priv_data = priv_data;
1191
1192 /* Try to coax the provided unwinder to unwind the stack */
1193 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1194 {
1195 if (jit_debug)
1196 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1197 "JIT reader.\n"));
1198 return 1;
1199 }
1200 if (jit_debug)
1201 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1202 "JIT reader.\n"));
1203
1204 jit_dealloc_cache (this_frame, *cache);
1205 *cache = NULL;
1206
1207 return 0;
1208 }
1209
1210
1211 /* The frame_id function for the pseudo unwinder. Relays the call to
1212 the loaded plugin. */
1213
1214 static void
1215 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1216 struct frame_id *this_id)
1217 {
1218 struct jit_unwind_private private;
1219 struct gdb_frame_id frame_id;
1220 struct gdb_reader_funcs *funcs;
1221 struct gdb_unwind_callbacks callbacks;
1222
1223 private.registers = NULL;
1224 private.this_frame = this_frame;
1225
1226 /* We don't expect the frame_id function to set any registers, so we
1227 set reg_set to NULL. */
1228 callbacks.reg_get = jit_unwind_reg_get_impl;
1229 callbacks.reg_set = NULL;
1230 callbacks.target_read = jit_target_read_impl;
1231 callbacks.priv_data = &private;
1232
1233 gdb_assert (loaded_jit_reader);
1234 funcs = loaded_jit_reader->functions;
1235
1236 frame_id = funcs->get_frame_id (funcs, &callbacks);
1237 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1238 }
1239
1240 /* Pseudo unwinder function. Reads the previously fetched value for
1241 the register from the cache. */
1242
1243 static struct value *
1244 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1245 {
1246 struct jit_unwind_private *priv = *cache;
1247 struct gdb_reg_value *value;
1248
1249 if (priv == NULL)
1250 return frame_unwind_got_optimized (this_frame, reg);
1251
1252 gdb_assert (priv->registers);
1253 value = priv->registers[reg];
1254 if (value && value->defined)
1255 return frame_unwind_got_bytes (this_frame, reg, value->value);
1256 else
1257 return frame_unwind_got_optimized (this_frame, reg);
1258 }
1259
1260 /* Relay everything back to the unwinder registered by the JIT debug
1261 info reader.*/
1262
1263 static const struct frame_unwind jit_frame_unwind =
1264 {
1265 NORMAL_FRAME,
1266 default_frame_unwind_stop_reason,
1267 jit_frame_this_id,
1268 jit_frame_prev_register,
1269 NULL,
1270 jit_frame_sniffer,
1271 jit_dealloc_cache
1272 };
1273
1274
1275 /* This is the information that is stored at jit_gdbarch_data for each
1276 architecture. */
1277
1278 struct jit_gdbarch_data_type
1279 {
1280 /* Has the (pseudo) unwinder been prepended? */
1281 int unwinder_registered;
1282 };
1283
1284 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1285
1286 static void
1287 jit_prepend_unwinder (struct gdbarch *gdbarch)
1288 {
1289 struct jit_gdbarch_data_type *data;
1290
1291 data = gdbarch_data (gdbarch, jit_gdbarch_data);
1292 if (!data->unwinder_registered)
1293 {
1294 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1295 data->unwinder_registered = 1;
1296 }
1297 }
1298
1299 /* Register any already created translations. */
1300
1301 static void
1302 jit_inferior_init (struct gdbarch *gdbarch)
1303 {
1304 struct jit_descriptor descriptor;
1305 struct jit_code_entry cur_entry;
1306 struct jit_program_space_data *ps_data;
1307 CORE_ADDR cur_entry_addr;
1308
1309 if (jit_debug)
1310 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1311
1312 jit_prepend_unwinder (gdbarch);
1313
1314 ps_data = get_jit_program_space_data ();
1315 if (jit_breakpoint_re_set_internal (gdbarch, ps_data) != 0)
1316 return;
1317
1318 /* Read the descriptor so we can check the version number and load
1319 any already JITed functions. */
1320 if (!jit_read_descriptor (gdbarch, &descriptor, ps_data))
1321 return;
1322
1323 /* Check that the version number agrees with that we support. */
1324 if (descriptor.version != 1)
1325 {
1326 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1327 "in descriptor (expected 1)\n"),
1328 (long) descriptor.version);
1329 return;
1330 }
1331
1332 /* If we've attached to a running program, we need to check the descriptor
1333 to register any functions that were already generated. */
1334 for (cur_entry_addr = descriptor.first_entry;
1335 cur_entry_addr != 0;
1336 cur_entry_addr = cur_entry.next_entry)
1337 {
1338 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1339
1340 /* This hook may be called many times during setup, so make sure we don't
1341 add the same symbol file twice. */
1342 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1343 continue;
1344
1345 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1346 }
1347 }
1348
1349 /* Exported routine to call when an inferior has been created. */
1350
1351 void
1352 jit_inferior_created_hook (void)
1353 {
1354 jit_inferior_init (target_gdbarch ());
1355 }
1356
1357 /* Exported routine to call to re-set the jit breakpoints,
1358 e.g. when a program is rerun. */
1359
1360 void
1361 jit_breakpoint_re_set (void)
1362 {
1363 jit_breakpoint_re_set_internal (target_gdbarch (),
1364 get_jit_program_space_data ());
1365 }
1366
1367 /* This function cleans up any code entries left over when the
1368 inferior exits. We get left over code when the inferior exits
1369 without unregistering its code, for example when it crashes. */
1370
1371 static void
1372 jit_inferior_exit_hook (struct inferior *inf)
1373 {
1374 struct objfile *objf;
1375 struct objfile *temp;
1376
1377 ALL_OBJFILES_SAFE (objf, temp)
1378 {
1379 struct jit_objfile_data *objf_data = objfile_data (objf,
1380 jit_objfile_data);
1381
1382 if (objf_data != NULL && objf_data->addr != 0)
1383 jit_unregister_code (objf);
1384 }
1385 }
1386
1387 void
1388 jit_event_handler (struct gdbarch *gdbarch)
1389 {
1390 struct jit_descriptor descriptor;
1391 struct jit_code_entry code_entry;
1392 CORE_ADDR entry_addr;
1393 struct objfile *objf;
1394
1395 /* Read the descriptor from remote memory. */
1396 if (!jit_read_descriptor (gdbarch, &descriptor,
1397 get_jit_program_space_data ()))
1398 return;
1399 entry_addr = descriptor.relevant_entry;
1400
1401 /* Do the corresponding action. */
1402 switch (descriptor.action_flag)
1403 {
1404 case JIT_NOACTION:
1405 break;
1406 case JIT_REGISTER:
1407 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1408 jit_register_code (gdbarch, entry_addr, &code_entry);
1409 break;
1410 case JIT_UNREGISTER:
1411 objf = jit_find_objf_with_entry_addr (entry_addr);
1412 if (objf == NULL)
1413 printf_unfiltered (_("Unable to find JITed code "
1414 "entry at address: %s\n"),
1415 paddress (gdbarch, entry_addr));
1416 else
1417 jit_unregister_code (objf);
1418
1419 break;
1420 default:
1421 error (_("Unknown action_flag value in JIT descriptor!"));
1422 break;
1423 }
1424 }
1425
1426 /* Called to free the data allocated to the jit_program_space_data slot. */
1427
1428 static void
1429 free_objfile_data (struct objfile *objfile, void *data)
1430 {
1431 struct jit_objfile_data *objf_data = data;
1432
1433 if (objf_data->register_code != NULL)
1434 {
1435 struct jit_program_space_data *ps_data;
1436
1437 ps_data = program_space_data (objfile->pspace, jit_program_space_data);
1438 if (ps_data != NULL && ps_data->objfile == objfile)
1439 ps_data->objfile = NULL;
1440 }
1441
1442 xfree (data);
1443 }
1444
1445 /* Initialize the jit_gdbarch_data slot with an instance of struct
1446 jit_gdbarch_data_type */
1447
1448 static void *
1449 jit_gdbarch_data_init (struct obstack *obstack)
1450 {
1451 struct jit_gdbarch_data_type *data;
1452
1453 data = obstack_alloc (obstack, sizeof (struct jit_gdbarch_data_type));
1454 data->unwinder_registered = 0;
1455 return data;
1456 }
1457
1458 /* Provide a prototype to silence -Wmissing-prototypes. */
1459
1460 extern void _initialize_jit (void);
1461
1462 void
1463 _initialize_jit (void)
1464 {
1465 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1466 JIT_READER_DIR_RELOCATABLE);
1467 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1468 _("Set JIT debugging."),
1469 _("Show JIT debugging."),
1470 _("When non-zero, JIT debugging is enabled."),
1471 NULL,
1472 show_jit_debug,
1473 &setdebuglist, &showdebuglist);
1474
1475 observer_attach_inferior_exit (jit_inferior_exit_hook);
1476 observer_attach_breakpoint_deleted (jit_breakpoint_deleted);
1477
1478 jit_objfile_data =
1479 register_objfile_data_with_cleanup (NULL, free_objfile_data);
1480 jit_program_space_data =
1481 register_program_space_data_with_cleanup (NULL,
1482 jit_program_space_data_cleanup);
1483 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1484 if (is_dl_available ())
1485 {
1486 add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1487 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1488 Usage: jit-reader-load FILE\n\
1489 Try to load file FILE as a debug info reader (and unwinder) for\n\
1490 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1491 relocated relative to the GDB executable if required."));
1492 add_com ("jit-reader-unload", no_class, jit_reader_unload_command, _("\
1493 Unload the currently loaded JIT debug info reader.\n\
1494 Usage: jit-reader-unload FILE\n\n\
1495 Do \"help jit-reader-load\" for info on loading debug info readers."));
1496 }
1497 }
This page took 0.058796 seconds and 5 git commands to generate.