gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "gdbsupport/event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/gdb-sigmask.h"
71
72 /* This comment documents high-level logic of this file.
73
74 Waiting for events in sync mode
75 ===============================
76
77 When waiting for an event in a specific thread, we just use waitpid,
78 passing the specific pid, and not passing WNOHANG.
79
80 When waiting for an event in all threads, waitpid is not quite good:
81
82 - If the thread group leader exits while other threads in the thread
83 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
84 return an exit status until the other threads in the group are
85 reaped.
86
87 - When a non-leader thread execs, that thread just vanishes without
88 reporting an exit (so we'd hang if we waited for it explicitly in
89 that case). The exec event is instead reported to the TGID pid.
90
91 The solution is to always use -1 and WNOHANG, together with
92 sigsuspend.
93
94 First, we use non-blocking waitpid to check for events. If nothing is
95 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
96 it means something happened to a child process. As soon as we know
97 there's an event, we get back to calling nonblocking waitpid.
98
99 Note that SIGCHLD should be blocked between waitpid and sigsuspend
100 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
101 when it's blocked, the signal becomes pending and sigsuspend
102 immediately notices it and returns.
103
104 Waiting for events in async mode (TARGET_WNOHANG)
105 =================================================
106
107 In async mode, GDB should always be ready to handle both user input
108 and target events, so neither blocking waitpid nor sigsuspend are
109 viable options. Instead, we should asynchronously notify the GDB main
110 event loop whenever there's an unprocessed event from the target. We
111 detect asynchronous target events by handling SIGCHLD signals. To
112 notify the event loop about target events, the self-pipe trick is used
113 --- a pipe is registered as waitable event source in the event loop,
114 the event loop select/poll's on the read end of this pipe (as well on
115 other event sources, e.g., stdin), and the SIGCHLD handler writes a
116 byte to this pipe. This is more portable than relying on
117 pselect/ppoll, since on kernels that lack those syscalls, libc
118 emulates them with select/poll+sigprocmask, and that is racy
119 (a.k.a. plain broken).
120
121 Obviously, if we fail to notify the event loop if there's a target
122 event, it's bad. OTOH, if we notify the event loop when there's no
123 event from the target, linux_nat_wait will detect that there's no real
124 event to report, and return event of type TARGET_WAITKIND_IGNORE.
125 This is mostly harmless, but it will waste time and is better avoided.
126
127 The main design point is that every time GDB is outside linux-nat.c,
128 we have a SIGCHLD handler installed that is called when something
129 happens to the target and notifies the GDB event loop. Whenever GDB
130 core decides to handle the event, and calls into linux-nat.c, we
131 process things as in sync mode, except that the we never block in
132 sigsuspend.
133
134 While processing an event, we may end up momentarily blocked in
135 waitpid calls. Those waitpid calls, while blocking, are guarantied to
136 return quickly. E.g., in all-stop mode, before reporting to the core
137 that an LWP hit a breakpoint, all LWPs are stopped by sending them
138 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
139 Note that this is different from blocking indefinitely waiting for the
140 next event --- here, we're already handling an event.
141
142 Use of signals
143 ==============
144
145 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
146 signal is not entirely significant; we just need for a signal to be delivered,
147 so that we can intercept it. SIGSTOP's advantage is that it can not be
148 blocked. A disadvantage is that it is not a real-time signal, so it can only
149 be queued once; we do not keep track of other sources of SIGSTOP.
150
151 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
152 use them, because they have special behavior when the signal is generated -
153 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
154 kills the entire thread group.
155
156 A delivered SIGSTOP would stop the entire thread group, not just the thread we
157 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
158 cancel it (by PTRACE_CONT without passing SIGSTOP).
159
160 We could use a real-time signal instead. This would solve those problems; we
161 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
162 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
163 generates it, and there are races with trying to find a signal that is not
164 blocked.
165
166 Exec events
167 ===========
168
169 The case of a thread group (process) with 3 or more threads, and a
170 thread other than the leader execs is worth detailing:
171
172 On an exec, the Linux kernel destroys all threads except the execing
173 one in the thread group, and resets the execing thread's tid to the
174 tgid. No exit notification is sent for the execing thread -- from the
175 ptracer's perspective, it appears as though the execing thread just
176 vanishes. Until we reap all other threads except the leader and the
177 execing thread, the leader will be zombie, and the execing thread will
178 be in `D (disc sleep)' state. As soon as all other threads are
179 reaped, the execing thread changes its tid to the tgid, and the
180 previous (zombie) leader vanishes, giving place to the "new"
181 leader. */
182
183 #ifndef O_LARGEFILE
184 #define O_LARGEFILE 0
185 #endif
186
187 struct linux_nat_target *linux_target;
188
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191
192 static unsigned int debug_linux_nat;
193 static void
194 show_debug_linux_nat (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
198 value);
199 }
200
201 struct simple_pid_list
202 {
203 int pid;
204 int status;
205 struct simple_pid_list *next;
206 };
207 struct simple_pid_list *stopped_pids;
208
209 /* Whether target_thread_events is in effect. */
210 static int report_thread_events;
211
212 /* Async mode support. */
213
214 /* The read/write ends of the pipe registered as waitable file in the
215 event loop. */
216 static int linux_nat_event_pipe[2] = { -1, -1 };
217
218 /* True if we're currently in async mode. */
219 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
220
221 /* Flush the event pipe. */
222
223 static void
224 async_file_flush (void)
225 {
226 int ret;
227 char buf;
228
229 do
230 {
231 ret = read (linux_nat_event_pipe[0], &buf, 1);
232 }
233 while (ret >= 0 || (ret == -1 && errno == EINTR));
234 }
235
236 /* Put something (anything, doesn't matter what, or how much) in event
237 pipe, so that the select/poll in the event-loop realizes we have
238 something to process. */
239
240 static void
241 async_file_mark (void)
242 {
243 int ret;
244
245 /* It doesn't really matter what the pipe contains, as long we end
246 up with something in it. Might as well flush the previous
247 left-overs. */
248 async_file_flush ();
249
250 do
251 {
252 ret = write (linux_nat_event_pipe[1], "+", 1);
253 }
254 while (ret == -1 && errno == EINTR);
255
256 /* Ignore EAGAIN. If the pipe is full, the event loop will already
257 be awakened anyway. */
258 }
259
260 static int kill_lwp (int lwpid, int signo);
261
262 static int stop_callback (struct lwp_info *lp);
263
264 static void block_child_signals (sigset_t *prev_mask);
265 static void restore_child_signals_mask (sigset_t *prev_mask);
266
267 struct lwp_info;
268 static struct lwp_info *add_lwp (ptid_t ptid);
269 static void purge_lwp_list (int pid);
270 static void delete_lwp (ptid_t ptid);
271 static struct lwp_info *find_lwp_pid (ptid_t ptid);
272
273 static int lwp_status_pending_p (struct lwp_info *lp);
274
275 static void save_stop_reason (struct lwp_info *lp);
276
277 \f
278 /* LWP accessors. */
279
280 /* See nat/linux-nat.h. */
281
282 ptid_t
283 ptid_of_lwp (struct lwp_info *lwp)
284 {
285 return lwp->ptid;
286 }
287
288 /* See nat/linux-nat.h. */
289
290 void
291 lwp_set_arch_private_info (struct lwp_info *lwp,
292 struct arch_lwp_info *info)
293 {
294 lwp->arch_private = info;
295 }
296
297 /* See nat/linux-nat.h. */
298
299 struct arch_lwp_info *
300 lwp_arch_private_info (struct lwp_info *lwp)
301 {
302 return lwp->arch_private;
303 }
304
305 /* See nat/linux-nat.h. */
306
307 int
308 lwp_is_stopped (struct lwp_info *lwp)
309 {
310 return lwp->stopped;
311 }
312
313 /* See nat/linux-nat.h. */
314
315 enum target_stop_reason
316 lwp_stop_reason (struct lwp_info *lwp)
317 {
318 return lwp->stop_reason;
319 }
320
321 /* See nat/linux-nat.h. */
322
323 int
324 lwp_is_stepping (struct lwp_info *lwp)
325 {
326 return lwp->step;
327 }
328
329 \f
330 /* Trivial list manipulation functions to keep track of a list of
331 new stopped processes. */
332 static void
333 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
334 {
335 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
336
337 new_pid->pid = pid;
338 new_pid->status = status;
339 new_pid->next = *listp;
340 *listp = new_pid;
341 }
342
343 static int
344 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
345 {
346 struct simple_pid_list **p;
347
348 for (p = listp; *p != NULL; p = &(*p)->next)
349 if ((*p)->pid == pid)
350 {
351 struct simple_pid_list *next = (*p)->next;
352
353 *statusp = (*p)->status;
354 xfree (*p);
355 *p = next;
356 return 1;
357 }
358 return 0;
359 }
360
361 /* Return the ptrace options that we want to try to enable. */
362
363 static int
364 linux_nat_ptrace_options (int attached)
365 {
366 int options = 0;
367
368 if (!attached)
369 options |= PTRACE_O_EXITKILL;
370
371 options |= (PTRACE_O_TRACESYSGOOD
372 | PTRACE_O_TRACEVFORKDONE
373 | PTRACE_O_TRACEVFORK
374 | PTRACE_O_TRACEFORK
375 | PTRACE_O_TRACEEXEC);
376
377 return options;
378 }
379
380 /* Initialize ptrace and procfs warnings and check for supported
381 ptrace features given PID.
382
383 ATTACHED should be nonzero iff we attached to the inferior. */
384
385 static void
386 linux_init_ptrace_procfs (pid_t pid, int attached)
387 {
388 int options = linux_nat_ptrace_options (attached);
389
390 linux_enable_event_reporting (pid, options);
391 linux_ptrace_init_warnings ();
392 linux_proc_init_warnings ();
393 }
394
395 linux_nat_target::~linux_nat_target ()
396 {}
397
398 void
399 linux_nat_target::post_attach (int pid)
400 {
401 linux_init_ptrace_procfs (pid, 1);
402 }
403
404 void
405 linux_nat_target::post_startup_inferior (ptid_t ptid)
406 {
407 linux_init_ptrace_procfs (ptid.pid (), 0);
408 }
409
410 /* Return the number of known LWPs in the tgid given by PID. */
411
412 static int
413 num_lwps (int pid)
414 {
415 int count = 0;
416 struct lwp_info *lp;
417
418 for (lp = lwp_list; lp; lp = lp->next)
419 if (lp->ptid.pid () == pid)
420 count++;
421
422 return count;
423 }
424
425 /* Deleter for lwp_info unique_ptr specialisation. */
426
427 struct lwp_deleter
428 {
429 void operator() (struct lwp_info *lwp) const
430 {
431 delete_lwp (lwp->ptid);
432 }
433 };
434
435 /* A unique_ptr specialisation for lwp_info. */
436
437 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
438
439 /* Target hook for follow_fork. On entry inferior_ptid must be the
440 ptid of the followed inferior. At return, inferior_ptid will be
441 unchanged. */
442
443 bool
444 linux_nat_target::follow_fork (bool follow_child, bool detach_fork)
445 {
446 if (!follow_child)
447 {
448 struct lwp_info *child_lp = NULL;
449 int has_vforked;
450 ptid_t parent_ptid, child_ptid;
451 int parent_pid, child_pid;
452
453 has_vforked = (inferior_thread ()->pending_follow.kind
454 == TARGET_WAITKIND_VFORKED);
455 parent_ptid = inferior_ptid;
456 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
457 parent_pid = parent_ptid.lwp ();
458 child_pid = child_ptid.lwp ();
459
460 /* We're already attached to the parent, by default. */
461 child_lp = add_lwp (child_ptid);
462 child_lp->stopped = 1;
463 child_lp->last_resume_kind = resume_stop;
464
465 /* Detach new forked process? */
466 if (detach_fork)
467 {
468 int child_stop_signal = 0;
469 bool detach_child = true;
470
471 /* Move CHILD_LP into a unique_ptr and clear the source pointer
472 to prevent us doing anything stupid with it. */
473 lwp_info_up child_lp_ptr (child_lp);
474 child_lp = nullptr;
475
476 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
477
478 /* When debugging an inferior in an architecture that supports
479 hardware single stepping on a kernel without commit
480 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
481 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
482 set if the parent process had them set.
483 To work around this, single step the child process
484 once before detaching to clear the flags. */
485
486 /* Note that we consult the parent's architecture instead of
487 the child's because there's no inferior for the child at
488 this point. */
489 if (!gdbarch_software_single_step_p (target_thread_architecture
490 (parent_ptid)))
491 {
492 int status;
493
494 linux_disable_event_reporting (child_pid);
495 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
496 perror_with_name (_("Couldn't do single step"));
497 if (my_waitpid (child_pid, &status, 0) < 0)
498 perror_with_name (_("Couldn't wait vfork process"));
499 else
500 {
501 detach_child = WIFSTOPPED (status);
502 child_stop_signal = WSTOPSIG (status);
503 }
504 }
505
506 if (detach_child)
507 {
508 int signo = child_stop_signal;
509
510 if (signo != 0
511 && !signal_pass_state (gdb_signal_from_host (signo)))
512 signo = 0;
513 ptrace (PTRACE_DETACH, child_pid, 0, signo);
514 }
515 }
516 else
517 {
518 /* Switching inferior_ptid is not enough, because then
519 inferior_thread () would crash by not finding the thread
520 in the current inferior. */
521 scoped_restore_current_thread restore_current_thread;
522 thread_info *child = find_thread_ptid (this, child_ptid);
523 switch_to_thread (child);
524
525 /* Let the thread_db layer learn about this new process. */
526 check_for_thread_db ();
527 }
528
529 if (has_vforked)
530 {
531 struct lwp_info *parent_lp;
532
533 parent_lp = find_lwp_pid (parent_ptid);
534 gdb_assert (linux_supports_tracefork () >= 0);
535
536 if (linux_supports_tracevforkdone ())
537 {
538 if (debug_linux_nat)
539 fprintf_unfiltered (gdb_stdlog,
540 "LCFF: waiting for VFORK_DONE on %d\n",
541 parent_pid);
542 parent_lp->stopped = 1;
543
544 /* We'll handle the VFORK_DONE event like any other
545 event, in target_wait. */
546 }
547 else
548 {
549 /* We can't insert breakpoints until the child has
550 finished with the shared memory region. We need to
551 wait until that happens. Ideal would be to just
552 call:
553 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
554 - waitpid (parent_pid, &status, __WALL);
555 However, most architectures can't handle a syscall
556 being traced on the way out if it wasn't traced on
557 the way in.
558
559 We might also think to loop, continuing the child
560 until it exits or gets a SIGTRAP. One problem is
561 that the child might call ptrace with PTRACE_TRACEME.
562
563 There's no simple and reliable way to figure out when
564 the vforked child will be done with its copy of the
565 shared memory. We could step it out of the syscall,
566 two instructions, let it go, and then single-step the
567 parent once. When we have hardware single-step, this
568 would work; with software single-step it could still
569 be made to work but we'd have to be able to insert
570 single-step breakpoints in the child, and we'd have
571 to insert -just- the single-step breakpoint in the
572 parent. Very awkward.
573
574 In the end, the best we can do is to make sure it
575 runs for a little while. Hopefully it will be out of
576 range of any breakpoints we reinsert. Usually this
577 is only the single-step breakpoint at vfork's return
578 point. */
579
580 if (debug_linux_nat)
581 fprintf_unfiltered (gdb_stdlog,
582 "LCFF: no VFORK_DONE "
583 "support, sleeping a bit\n");
584
585 usleep (10000);
586
587 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
588 and leave it pending. The next linux_nat_resume call
589 will notice a pending event, and bypasses actually
590 resuming the inferior. */
591 parent_lp->status = 0;
592 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
593 parent_lp->stopped = 1;
594
595 /* If we're in async mode, need to tell the event loop
596 there's something here to process. */
597 if (target_is_async_p ())
598 async_file_mark ();
599 }
600 }
601 }
602 else
603 {
604 struct lwp_info *child_lp;
605
606 child_lp = add_lwp (inferior_ptid);
607 child_lp->stopped = 1;
608 child_lp->last_resume_kind = resume_stop;
609
610 /* Let the thread_db layer learn about this new process. */
611 check_for_thread_db ();
612 }
613
614 return false;
615 }
616
617 \f
618 int
619 linux_nat_target::insert_fork_catchpoint (int pid)
620 {
621 return !linux_supports_tracefork ();
622 }
623
624 int
625 linux_nat_target::remove_fork_catchpoint (int pid)
626 {
627 return 0;
628 }
629
630 int
631 linux_nat_target::insert_vfork_catchpoint (int pid)
632 {
633 return !linux_supports_tracefork ();
634 }
635
636 int
637 linux_nat_target::remove_vfork_catchpoint (int pid)
638 {
639 return 0;
640 }
641
642 int
643 linux_nat_target::insert_exec_catchpoint (int pid)
644 {
645 return !linux_supports_tracefork ();
646 }
647
648 int
649 linux_nat_target::remove_exec_catchpoint (int pid)
650 {
651 return 0;
652 }
653
654 int
655 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
656 gdb::array_view<const int> syscall_counts)
657 {
658 if (!linux_supports_tracesysgood ())
659 return 1;
660
661 /* On GNU/Linux, we ignore the arguments. It means that we only
662 enable the syscall catchpoints, but do not disable them.
663
664 Also, we do not use the `syscall_counts' information because we do not
665 filter system calls here. We let GDB do the logic for us. */
666 return 0;
667 }
668
669 /* List of known LWPs, keyed by LWP PID. This speeds up the common
670 case of mapping a PID returned from the kernel to our corresponding
671 lwp_info data structure. */
672 static htab_t lwp_lwpid_htab;
673
674 /* Calculate a hash from a lwp_info's LWP PID. */
675
676 static hashval_t
677 lwp_info_hash (const void *ap)
678 {
679 const struct lwp_info *lp = (struct lwp_info *) ap;
680 pid_t pid = lp->ptid.lwp ();
681
682 return iterative_hash_object (pid, 0);
683 }
684
685 /* Equality function for the lwp_info hash table. Compares the LWP's
686 PID. */
687
688 static int
689 lwp_lwpid_htab_eq (const void *a, const void *b)
690 {
691 const struct lwp_info *entry = (const struct lwp_info *) a;
692 const struct lwp_info *element = (const struct lwp_info *) b;
693
694 return entry->ptid.lwp () == element->ptid.lwp ();
695 }
696
697 /* Create the lwp_lwpid_htab hash table. */
698
699 static void
700 lwp_lwpid_htab_create (void)
701 {
702 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
703 }
704
705 /* Add LP to the hash table. */
706
707 static void
708 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
709 {
710 void **slot;
711
712 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
713 gdb_assert (slot != NULL && *slot == NULL);
714 *slot = lp;
715 }
716
717 /* Head of doubly-linked list of known LWPs. Sorted by reverse
718 creation order. This order is assumed in some cases. E.g.,
719 reaping status after killing alls lwps of a process: the leader LWP
720 must be reaped last. */
721 struct lwp_info *lwp_list;
722
723 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
724
725 static void
726 lwp_list_add (struct lwp_info *lp)
727 {
728 lp->next = lwp_list;
729 if (lwp_list != NULL)
730 lwp_list->prev = lp;
731 lwp_list = lp;
732 }
733
734 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
735 list. */
736
737 static void
738 lwp_list_remove (struct lwp_info *lp)
739 {
740 /* Remove from sorted-by-creation-order list. */
741 if (lp->next != NULL)
742 lp->next->prev = lp->prev;
743 if (lp->prev != NULL)
744 lp->prev->next = lp->next;
745 if (lp == lwp_list)
746 lwp_list = lp->next;
747 }
748
749 \f
750
751 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
752 _initialize_linux_nat. */
753 static sigset_t suspend_mask;
754
755 /* Signals to block to make that sigsuspend work. */
756 static sigset_t blocked_mask;
757
758 /* SIGCHLD action. */
759 struct sigaction sigchld_action;
760
761 /* Block child signals (SIGCHLD and linux threads signals), and store
762 the previous mask in PREV_MASK. */
763
764 static void
765 block_child_signals (sigset_t *prev_mask)
766 {
767 /* Make sure SIGCHLD is blocked. */
768 if (!sigismember (&blocked_mask, SIGCHLD))
769 sigaddset (&blocked_mask, SIGCHLD);
770
771 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
772 }
773
774 /* Restore child signals mask, previously returned by
775 block_child_signals. */
776
777 static void
778 restore_child_signals_mask (sigset_t *prev_mask)
779 {
780 gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
781 }
782
783 /* Mask of signals to pass directly to the inferior. */
784 static sigset_t pass_mask;
785
786 /* Update signals to pass to the inferior. */
787 void
788 linux_nat_target::pass_signals
789 (gdb::array_view<const unsigned char> pass_signals)
790 {
791 int signo;
792
793 sigemptyset (&pass_mask);
794
795 for (signo = 1; signo < NSIG; signo++)
796 {
797 int target_signo = gdb_signal_from_host (signo);
798 if (target_signo < pass_signals.size () && pass_signals[target_signo])
799 sigaddset (&pass_mask, signo);
800 }
801 }
802
803 \f
804
805 /* Prototypes for local functions. */
806 static int stop_wait_callback (struct lwp_info *lp);
807 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
808 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
809
810 \f
811
812 /* Destroy and free LP. */
813
814 static void
815 lwp_free (struct lwp_info *lp)
816 {
817 /* Let the arch specific bits release arch_lwp_info. */
818 linux_target->low_delete_thread (lp->arch_private);
819
820 xfree (lp);
821 }
822
823 /* Traversal function for purge_lwp_list. */
824
825 static int
826 lwp_lwpid_htab_remove_pid (void **slot, void *info)
827 {
828 struct lwp_info *lp = (struct lwp_info *) *slot;
829 int pid = *(int *) info;
830
831 if (lp->ptid.pid () == pid)
832 {
833 htab_clear_slot (lwp_lwpid_htab, slot);
834 lwp_list_remove (lp);
835 lwp_free (lp);
836 }
837
838 return 1;
839 }
840
841 /* Remove all LWPs belong to PID from the lwp list. */
842
843 static void
844 purge_lwp_list (int pid)
845 {
846 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
847 }
848
849 /* Add the LWP specified by PTID to the list. PTID is the first LWP
850 in the process. Return a pointer to the structure describing the
851 new LWP.
852
853 This differs from add_lwp in that we don't let the arch specific
854 bits know about this new thread. Current clients of this callback
855 take the opportunity to install watchpoints in the new thread, and
856 we shouldn't do that for the first thread. If we're spawning a
857 child ("run"), the thread executes the shell wrapper first, and we
858 shouldn't touch it until it execs the program we want to debug.
859 For "attach", it'd be okay to call the callback, but it's not
860 necessary, because watchpoints can't yet have been inserted into
861 the inferior. */
862
863 static struct lwp_info *
864 add_initial_lwp (ptid_t ptid)
865 {
866 struct lwp_info *lp;
867
868 gdb_assert (ptid.lwp_p ());
869
870 lp = XNEW (struct lwp_info);
871
872 memset (lp, 0, sizeof (struct lwp_info));
873
874 lp->last_resume_kind = resume_continue;
875 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
876
877 lp->ptid = ptid;
878 lp->core = -1;
879
880 /* Add to sorted-by-reverse-creation-order list. */
881 lwp_list_add (lp);
882
883 /* Add to keyed-by-pid htab. */
884 lwp_lwpid_htab_add_lwp (lp);
885
886 return lp;
887 }
888
889 /* Add the LWP specified by PID to the list. Return a pointer to the
890 structure describing the new LWP. The LWP should already be
891 stopped. */
892
893 static struct lwp_info *
894 add_lwp (ptid_t ptid)
895 {
896 struct lwp_info *lp;
897
898 lp = add_initial_lwp (ptid);
899
900 /* Let the arch specific bits know about this new thread. Current
901 clients of this callback take the opportunity to install
902 watchpoints in the new thread. We don't do this for the first
903 thread though. See add_initial_lwp. */
904 linux_target->low_new_thread (lp);
905
906 return lp;
907 }
908
909 /* Remove the LWP specified by PID from the list. */
910
911 static void
912 delete_lwp (ptid_t ptid)
913 {
914 struct lwp_info *lp;
915 void **slot;
916 struct lwp_info dummy;
917
918 dummy.ptid = ptid;
919 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
920 if (slot == NULL)
921 return;
922
923 lp = *(struct lwp_info **) slot;
924 gdb_assert (lp != NULL);
925
926 htab_clear_slot (lwp_lwpid_htab, slot);
927
928 /* Remove from sorted-by-creation-order list. */
929 lwp_list_remove (lp);
930
931 /* Release. */
932 lwp_free (lp);
933 }
934
935 /* Return a pointer to the structure describing the LWP corresponding
936 to PID. If no corresponding LWP could be found, return NULL. */
937
938 static struct lwp_info *
939 find_lwp_pid (ptid_t ptid)
940 {
941 struct lwp_info *lp;
942 int lwp;
943 struct lwp_info dummy;
944
945 if (ptid.lwp_p ())
946 lwp = ptid.lwp ();
947 else
948 lwp = ptid.pid ();
949
950 dummy.ptid = ptid_t (0, lwp, 0);
951 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
952 return lp;
953 }
954
955 /* See nat/linux-nat.h. */
956
957 struct lwp_info *
958 iterate_over_lwps (ptid_t filter,
959 gdb::function_view<iterate_over_lwps_ftype> callback)
960 {
961 struct lwp_info *lp, *lpnext;
962
963 for (lp = lwp_list; lp; lp = lpnext)
964 {
965 lpnext = lp->next;
966
967 if (lp->ptid.matches (filter))
968 {
969 if (callback (lp) != 0)
970 return lp;
971 }
972 }
973
974 return NULL;
975 }
976
977 /* Update our internal state when changing from one checkpoint to
978 another indicated by NEW_PTID. We can only switch single-threaded
979 applications, so we only create one new LWP, and the previous list
980 is discarded. */
981
982 void
983 linux_nat_switch_fork (ptid_t new_ptid)
984 {
985 struct lwp_info *lp;
986
987 purge_lwp_list (inferior_ptid.pid ());
988
989 lp = add_lwp (new_ptid);
990 lp->stopped = 1;
991
992 /* This changes the thread's ptid while preserving the gdb thread
993 num. Also changes the inferior pid, while preserving the
994 inferior num. */
995 thread_change_ptid (linux_target, inferior_ptid, new_ptid);
996
997 /* We've just told GDB core that the thread changed target id, but,
998 in fact, it really is a different thread, with different register
999 contents. */
1000 registers_changed ();
1001 }
1002
1003 /* Handle the exit of a single thread LP. */
1004
1005 static void
1006 exit_lwp (struct lwp_info *lp)
1007 {
1008 struct thread_info *th = find_thread_ptid (linux_target, lp->ptid);
1009
1010 if (th)
1011 {
1012 if (print_thread_events)
1013 printf_unfiltered (_("[%s exited]\n"),
1014 target_pid_to_str (lp->ptid).c_str ());
1015
1016 delete_thread (th);
1017 }
1018
1019 delete_lwp (lp->ptid);
1020 }
1021
1022 /* Wait for the LWP specified by LP, which we have just attached to.
1023 Returns a wait status for that LWP, to cache. */
1024
1025 static int
1026 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1027 {
1028 pid_t new_pid, pid = ptid.lwp ();
1029 int status;
1030
1031 if (linux_proc_pid_is_stopped (pid))
1032 {
1033 if (debug_linux_nat)
1034 fprintf_unfiltered (gdb_stdlog,
1035 "LNPAW: Attaching to a stopped process\n");
1036
1037 /* The process is definitely stopped. It is in a job control
1038 stop, unless the kernel predates the TASK_STOPPED /
1039 TASK_TRACED distinction, in which case it might be in a
1040 ptrace stop. Make sure it is in a ptrace stop; from there we
1041 can kill it, signal it, et cetera.
1042
1043 First make sure there is a pending SIGSTOP. Since we are
1044 already attached, the process can not transition from stopped
1045 to running without a PTRACE_CONT; so we know this signal will
1046 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1047 probably already in the queue (unless this kernel is old
1048 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1049 is not an RT signal, it can only be queued once. */
1050 kill_lwp (pid, SIGSTOP);
1051
1052 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1053 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1054 ptrace (PTRACE_CONT, pid, 0, 0);
1055 }
1056
1057 /* Make sure the initial process is stopped. The user-level threads
1058 layer might want to poke around in the inferior, and that won't
1059 work if things haven't stabilized yet. */
1060 new_pid = my_waitpid (pid, &status, __WALL);
1061 gdb_assert (pid == new_pid);
1062
1063 if (!WIFSTOPPED (status))
1064 {
1065 /* The pid we tried to attach has apparently just exited. */
1066 if (debug_linux_nat)
1067 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1068 pid, status_to_str (status));
1069 return status;
1070 }
1071
1072 if (WSTOPSIG (status) != SIGSTOP)
1073 {
1074 *signalled = 1;
1075 if (debug_linux_nat)
1076 fprintf_unfiltered (gdb_stdlog,
1077 "LNPAW: Received %s after attaching\n",
1078 status_to_str (status));
1079 }
1080
1081 return status;
1082 }
1083
1084 void
1085 linux_nat_target::create_inferior (const char *exec_file,
1086 const std::string &allargs,
1087 char **env, int from_tty)
1088 {
1089 maybe_disable_address_space_randomization restore_personality
1090 (disable_randomization);
1091
1092 /* The fork_child mechanism is synchronous and calls target_wait, so
1093 we have to mask the async mode. */
1094
1095 /* Make sure we report all signals during startup. */
1096 pass_signals ({});
1097
1098 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1099 }
1100
1101 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1102 already attached. Returns true if a new LWP is found, false
1103 otherwise. */
1104
1105 static int
1106 attach_proc_task_lwp_callback (ptid_t ptid)
1107 {
1108 struct lwp_info *lp;
1109
1110 /* Ignore LWPs we're already attached to. */
1111 lp = find_lwp_pid (ptid);
1112 if (lp == NULL)
1113 {
1114 int lwpid = ptid.lwp ();
1115
1116 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1117 {
1118 int err = errno;
1119
1120 /* Be quiet if we simply raced with the thread exiting.
1121 EPERM is returned if the thread's task still exists, and
1122 is marked as exited or zombie, as well as other
1123 conditions, so in that case, confirm the status in
1124 /proc/PID/status. */
1125 if (err == ESRCH
1126 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1127 {
1128 if (debug_linux_nat)
1129 {
1130 fprintf_unfiltered (gdb_stdlog,
1131 "Cannot attach to lwp %d: "
1132 "thread is gone (%d: %s)\n",
1133 lwpid, err, safe_strerror (err));
1134 }
1135 }
1136 else
1137 {
1138 std::string reason
1139 = linux_ptrace_attach_fail_reason_string (ptid, err);
1140
1141 warning (_("Cannot attach to lwp %d: %s"),
1142 lwpid, reason.c_str ());
1143 }
1144 }
1145 else
1146 {
1147 if (debug_linux_nat)
1148 fprintf_unfiltered (gdb_stdlog,
1149 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1150 target_pid_to_str (ptid).c_str ());
1151
1152 lp = add_lwp (ptid);
1153
1154 /* The next time we wait for this LWP we'll see a SIGSTOP as
1155 PTRACE_ATTACH brings it to a halt. */
1156 lp->signalled = 1;
1157
1158 /* We need to wait for a stop before being able to make the
1159 next ptrace call on this LWP. */
1160 lp->must_set_ptrace_flags = 1;
1161
1162 /* So that wait collects the SIGSTOP. */
1163 lp->resumed = 1;
1164
1165 /* Also add the LWP to gdb's thread list, in case a
1166 matching libthread_db is not found (or the process uses
1167 raw clone). */
1168 add_thread (linux_target, lp->ptid);
1169 set_running (linux_target, lp->ptid, true);
1170 set_executing (linux_target, lp->ptid, true);
1171 }
1172
1173 return 1;
1174 }
1175 return 0;
1176 }
1177
1178 void
1179 linux_nat_target::attach (const char *args, int from_tty)
1180 {
1181 struct lwp_info *lp;
1182 int status;
1183 ptid_t ptid;
1184
1185 /* Make sure we report all signals during attach. */
1186 pass_signals ({});
1187
1188 try
1189 {
1190 inf_ptrace_target::attach (args, from_tty);
1191 }
1192 catch (const gdb_exception_error &ex)
1193 {
1194 pid_t pid = parse_pid_to_attach (args);
1195 std::string reason = linux_ptrace_attach_fail_reason (pid);
1196
1197 if (!reason.empty ())
1198 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1199 ex.what ());
1200 else
1201 throw_error (ex.error, "%s", ex.what ());
1202 }
1203
1204 /* The ptrace base target adds the main thread with (pid,0,0)
1205 format. Decorate it with lwp info. */
1206 ptid = ptid_t (inferior_ptid.pid (),
1207 inferior_ptid.pid (),
1208 0);
1209 thread_change_ptid (linux_target, inferior_ptid, ptid);
1210
1211 /* Add the initial process as the first LWP to the list. */
1212 lp = add_initial_lwp (ptid);
1213
1214 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1215 if (!WIFSTOPPED (status))
1216 {
1217 if (WIFEXITED (status))
1218 {
1219 int exit_code = WEXITSTATUS (status);
1220
1221 target_terminal::ours ();
1222 target_mourn_inferior (inferior_ptid);
1223 if (exit_code == 0)
1224 error (_("Unable to attach: program exited normally."));
1225 else
1226 error (_("Unable to attach: program exited with code %d."),
1227 exit_code);
1228 }
1229 else if (WIFSIGNALED (status))
1230 {
1231 enum gdb_signal signo;
1232
1233 target_terminal::ours ();
1234 target_mourn_inferior (inferior_ptid);
1235
1236 signo = gdb_signal_from_host (WTERMSIG (status));
1237 error (_("Unable to attach: program terminated with signal "
1238 "%s, %s."),
1239 gdb_signal_to_name (signo),
1240 gdb_signal_to_string (signo));
1241 }
1242
1243 internal_error (__FILE__, __LINE__,
1244 _("unexpected status %d for PID %ld"),
1245 status, (long) ptid.lwp ());
1246 }
1247
1248 lp->stopped = 1;
1249
1250 /* Save the wait status to report later. */
1251 lp->resumed = 1;
1252 if (debug_linux_nat)
1253 fprintf_unfiltered (gdb_stdlog,
1254 "LNA: waitpid %ld, saving status %s\n",
1255 (long) lp->ptid.pid (), status_to_str (status));
1256
1257 lp->status = status;
1258
1259 /* We must attach to every LWP. If /proc is mounted, use that to
1260 find them now. The inferior may be using raw clone instead of
1261 using pthreads. But even if it is using pthreads, thread_db
1262 walks structures in the inferior's address space to find the list
1263 of threads/LWPs, and those structures may well be corrupted.
1264 Note that once thread_db is loaded, we'll still use it to list
1265 threads and associate pthread info with each LWP. */
1266 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1267 attach_proc_task_lwp_callback);
1268
1269 if (target_can_async_p ())
1270 target_async (1);
1271 }
1272
1273 /* Get pending signal of THREAD as a host signal number, for detaching
1274 purposes. This is the signal the thread last stopped for, which we
1275 need to deliver to the thread when detaching, otherwise, it'd be
1276 suppressed/lost. */
1277
1278 static int
1279 get_detach_signal (struct lwp_info *lp)
1280 {
1281 enum gdb_signal signo = GDB_SIGNAL_0;
1282
1283 /* If we paused threads momentarily, we may have stored pending
1284 events in lp->status or lp->waitstatus (see stop_wait_callback),
1285 and GDB core hasn't seen any signal for those threads.
1286 Otherwise, the last signal reported to the core is found in the
1287 thread object's stop_signal.
1288
1289 There's a corner case that isn't handled here at present. Only
1290 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1291 stop_signal make sense as a real signal to pass to the inferior.
1292 Some catchpoint related events, like
1293 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1294 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1295 those traps are debug API (ptrace in our case) related and
1296 induced; the inferior wouldn't see them if it wasn't being
1297 traced. Hence, we should never pass them to the inferior, even
1298 when set to pass state. Since this corner case isn't handled by
1299 infrun.c when proceeding with a signal, for consistency, neither
1300 do we handle it here (or elsewhere in the file we check for
1301 signal pass state). Normally SIGTRAP isn't set to pass state, so
1302 this is really a corner case. */
1303
1304 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1305 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1306 else if (lp->status)
1307 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1308 else
1309 {
1310 struct thread_info *tp = find_thread_ptid (linux_target, lp->ptid);
1311
1312 if (target_is_non_stop_p () && !tp->executing)
1313 {
1314 if (tp->suspend.waitstatus_pending_p)
1315 signo = tp->suspend.waitstatus.value.sig;
1316 else
1317 signo = tp->suspend.stop_signal;
1318 }
1319 else if (!target_is_non_stop_p ())
1320 {
1321 ptid_t last_ptid;
1322 process_stratum_target *last_target;
1323
1324 get_last_target_status (&last_target, &last_ptid, nullptr);
1325
1326 if (last_target == linux_target
1327 && lp->ptid.lwp () == last_ptid.lwp ())
1328 signo = tp->suspend.stop_signal;
1329 }
1330 }
1331
1332 if (signo == GDB_SIGNAL_0)
1333 {
1334 if (debug_linux_nat)
1335 fprintf_unfiltered (gdb_stdlog,
1336 "GPT: lwp %s has no pending signal\n",
1337 target_pid_to_str (lp->ptid).c_str ());
1338 }
1339 else if (!signal_pass_state (signo))
1340 {
1341 if (debug_linux_nat)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "GPT: lwp %s had signal %s, "
1344 "but it is in no pass state\n",
1345 target_pid_to_str (lp->ptid).c_str (),
1346 gdb_signal_to_string (signo));
1347 }
1348 else
1349 {
1350 if (debug_linux_nat)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "GPT: lwp %s has pending signal %s\n",
1353 target_pid_to_str (lp->ptid).c_str (),
1354 gdb_signal_to_string (signo));
1355
1356 return gdb_signal_to_host (signo);
1357 }
1358
1359 return 0;
1360 }
1361
1362 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1363 signal number that should be passed to the LWP when detaching.
1364 Otherwise pass any pending signal the LWP may have, if any. */
1365
1366 static void
1367 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1368 {
1369 int lwpid = lp->ptid.lwp ();
1370 int signo;
1371
1372 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1373
1374 if (debug_linux_nat && lp->status)
1375 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1376 strsignal (WSTOPSIG (lp->status)),
1377 target_pid_to_str (lp->ptid).c_str ());
1378
1379 /* If there is a pending SIGSTOP, get rid of it. */
1380 if (lp->signalled)
1381 {
1382 if (debug_linux_nat)
1383 fprintf_unfiltered (gdb_stdlog,
1384 "DC: Sending SIGCONT to %s\n",
1385 target_pid_to_str (lp->ptid).c_str ());
1386
1387 kill_lwp (lwpid, SIGCONT);
1388 lp->signalled = 0;
1389 }
1390
1391 if (signo_p == NULL)
1392 {
1393 /* Pass on any pending signal for this LWP. */
1394 signo = get_detach_signal (lp);
1395 }
1396 else
1397 signo = *signo_p;
1398
1399 /* Preparing to resume may try to write registers, and fail if the
1400 lwp is zombie. If that happens, ignore the error. We'll handle
1401 it below, when detach fails with ESRCH. */
1402 try
1403 {
1404 linux_target->low_prepare_to_resume (lp);
1405 }
1406 catch (const gdb_exception_error &ex)
1407 {
1408 if (!check_ptrace_stopped_lwp_gone (lp))
1409 throw;
1410 }
1411
1412 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1413 {
1414 int save_errno = errno;
1415
1416 /* We know the thread exists, so ESRCH must mean the lwp is
1417 zombie. This can happen if one of the already-detached
1418 threads exits the whole thread group. In that case we're
1419 still attached, and must reap the lwp. */
1420 if (save_errno == ESRCH)
1421 {
1422 int ret, status;
1423
1424 ret = my_waitpid (lwpid, &status, __WALL);
1425 if (ret == -1)
1426 {
1427 warning (_("Couldn't reap LWP %d while detaching: %s"),
1428 lwpid, safe_strerror (errno));
1429 }
1430 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1431 {
1432 warning (_("Reaping LWP %d while detaching "
1433 "returned unexpected status 0x%x"),
1434 lwpid, status);
1435 }
1436 }
1437 else
1438 {
1439 error (_("Can't detach %s: %s"),
1440 target_pid_to_str (lp->ptid).c_str (),
1441 safe_strerror (save_errno));
1442 }
1443 }
1444 else if (debug_linux_nat)
1445 {
1446 fprintf_unfiltered (gdb_stdlog,
1447 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1448 target_pid_to_str (lp->ptid).c_str (),
1449 strsignal (signo));
1450 }
1451
1452 delete_lwp (lp->ptid);
1453 }
1454
1455 static int
1456 detach_callback (struct lwp_info *lp)
1457 {
1458 /* We don't actually detach from the thread group leader just yet.
1459 If the thread group exits, we must reap the zombie clone lwps
1460 before we're able to reap the leader. */
1461 if (lp->ptid.lwp () != lp->ptid.pid ())
1462 detach_one_lwp (lp, NULL);
1463 return 0;
1464 }
1465
1466 void
1467 linux_nat_target::detach (inferior *inf, int from_tty)
1468 {
1469 struct lwp_info *main_lwp;
1470 int pid = inf->pid;
1471
1472 /* Don't unregister from the event loop, as there may be other
1473 inferiors running. */
1474
1475 /* Stop all threads before detaching. ptrace requires that the
1476 thread is stopped to successfully detach. */
1477 iterate_over_lwps (ptid_t (pid), stop_callback);
1478 /* ... and wait until all of them have reported back that
1479 they're no longer running. */
1480 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1481
1482 iterate_over_lwps (ptid_t (pid), detach_callback);
1483
1484 /* Only the initial process should be left right now. */
1485 gdb_assert (num_lwps (pid) == 1);
1486
1487 main_lwp = find_lwp_pid (ptid_t (pid));
1488
1489 if (forks_exist_p ())
1490 {
1491 /* Multi-fork case. The current inferior_ptid is being detached
1492 from, but there are other viable forks to debug. Detach from
1493 the current fork, and context-switch to the first
1494 available. */
1495 linux_fork_detach (from_tty);
1496 }
1497 else
1498 {
1499 target_announce_detach (from_tty);
1500
1501 /* Pass on any pending signal for the last LWP. */
1502 int signo = get_detach_signal (main_lwp);
1503
1504 detach_one_lwp (main_lwp, &signo);
1505
1506 detach_success (inf);
1507 }
1508 }
1509
1510 /* Resume execution of the inferior process. If STEP is nonzero,
1511 single-step it. If SIGNAL is nonzero, give it that signal. */
1512
1513 static void
1514 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1515 enum gdb_signal signo)
1516 {
1517 lp->step = step;
1518
1519 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1520 We only presently need that if the LWP is stepped though (to
1521 handle the case of stepping a breakpoint instruction). */
1522 if (step)
1523 {
1524 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
1525
1526 lp->stop_pc = regcache_read_pc (regcache);
1527 }
1528 else
1529 lp->stop_pc = 0;
1530
1531 linux_target->low_prepare_to_resume (lp);
1532 linux_target->low_resume (lp->ptid, step, signo);
1533
1534 /* Successfully resumed. Clear state that no longer makes sense,
1535 and mark the LWP as running. Must not do this before resuming
1536 otherwise if that fails other code will be confused. E.g., we'd
1537 later try to stop the LWP and hang forever waiting for a stop
1538 status. Note that we must not throw after this is cleared,
1539 otherwise handle_zombie_lwp_error would get confused. */
1540 lp->stopped = 0;
1541 lp->core = -1;
1542 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1543 registers_changed_ptid (linux_target, lp->ptid);
1544 }
1545
1546 /* Called when we try to resume a stopped LWP and that errors out. If
1547 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1548 or about to become), discard the error, clear any pending status
1549 the LWP may have, and return true (we'll collect the exit status
1550 soon enough). Otherwise, return false. */
1551
1552 static int
1553 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1554 {
1555 /* If we get an error after resuming the LWP successfully, we'd
1556 confuse !T state for the LWP being gone. */
1557 gdb_assert (lp->stopped);
1558
1559 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1560 because even if ptrace failed with ESRCH, the tracee may be "not
1561 yet fully dead", but already refusing ptrace requests. In that
1562 case the tracee has 'R (Running)' state for a little bit
1563 (observed in Linux 3.18). See also the note on ESRCH in the
1564 ptrace(2) man page. Instead, check whether the LWP has any state
1565 other than ptrace-stopped. */
1566
1567 /* Don't assume anything if /proc/PID/status can't be read. */
1568 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1569 {
1570 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1571 lp->status = 0;
1572 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1573 return 1;
1574 }
1575 return 0;
1576 }
1577
1578 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1579 disappears while we try to resume it. */
1580
1581 static void
1582 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1583 {
1584 try
1585 {
1586 linux_resume_one_lwp_throw (lp, step, signo);
1587 }
1588 catch (const gdb_exception_error &ex)
1589 {
1590 if (!check_ptrace_stopped_lwp_gone (lp))
1591 throw;
1592 }
1593 }
1594
1595 /* Resume LP. */
1596
1597 static void
1598 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1599 {
1600 if (lp->stopped)
1601 {
1602 struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
1603
1604 if (inf->vfork_child != NULL)
1605 {
1606 if (debug_linux_nat)
1607 fprintf_unfiltered (gdb_stdlog,
1608 "RC: Not resuming %s (vfork parent)\n",
1609 target_pid_to_str (lp->ptid).c_str ());
1610 }
1611 else if (!lwp_status_pending_p (lp))
1612 {
1613 if (debug_linux_nat)
1614 fprintf_unfiltered (gdb_stdlog,
1615 "RC: Resuming sibling %s, %s, %s\n",
1616 target_pid_to_str (lp->ptid).c_str (),
1617 (signo != GDB_SIGNAL_0
1618 ? strsignal (gdb_signal_to_host (signo))
1619 : "0"),
1620 step ? "step" : "resume");
1621
1622 linux_resume_one_lwp (lp, step, signo);
1623 }
1624 else
1625 {
1626 if (debug_linux_nat)
1627 fprintf_unfiltered (gdb_stdlog,
1628 "RC: Not resuming sibling %s (has pending)\n",
1629 target_pid_to_str (lp->ptid).c_str ());
1630 }
1631 }
1632 else
1633 {
1634 if (debug_linux_nat)
1635 fprintf_unfiltered (gdb_stdlog,
1636 "RC: Not resuming sibling %s (not stopped)\n",
1637 target_pid_to_str (lp->ptid).c_str ());
1638 }
1639 }
1640
1641 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1642 Resume LWP with the last stop signal, if it is in pass state. */
1643
1644 static int
1645 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1646 {
1647 enum gdb_signal signo = GDB_SIGNAL_0;
1648
1649 if (lp == except)
1650 return 0;
1651
1652 if (lp->stopped)
1653 {
1654 struct thread_info *thread;
1655
1656 thread = find_thread_ptid (linux_target, lp->ptid);
1657 if (thread != NULL)
1658 {
1659 signo = thread->suspend.stop_signal;
1660 thread->suspend.stop_signal = GDB_SIGNAL_0;
1661 }
1662 }
1663
1664 resume_lwp (lp, 0, signo);
1665 return 0;
1666 }
1667
1668 static int
1669 resume_clear_callback (struct lwp_info *lp)
1670 {
1671 lp->resumed = 0;
1672 lp->last_resume_kind = resume_stop;
1673 return 0;
1674 }
1675
1676 static int
1677 resume_set_callback (struct lwp_info *lp)
1678 {
1679 lp->resumed = 1;
1680 lp->last_resume_kind = resume_continue;
1681 return 0;
1682 }
1683
1684 void
1685 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1686 {
1687 struct lwp_info *lp;
1688 int resume_many;
1689
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1693 step ? "step" : "resume",
1694 target_pid_to_str (ptid).c_str (),
1695 (signo != GDB_SIGNAL_0
1696 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1697 target_pid_to_str (inferior_ptid).c_str ());
1698
1699 /* A specific PTID means `step only this process id'. */
1700 resume_many = (minus_one_ptid == ptid
1701 || ptid.is_pid ());
1702
1703 /* Mark the lwps we're resuming as resumed and update their
1704 last_resume_kind to resume_continue. */
1705 iterate_over_lwps (ptid, resume_set_callback);
1706
1707 /* See if it's the current inferior that should be handled
1708 specially. */
1709 if (resume_many)
1710 lp = find_lwp_pid (inferior_ptid);
1711 else
1712 lp = find_lwp_pid (ptid);
1713 gdb_assert (lp != NULL);
1714
1715 /* Remember if we're stepping. */
1716 lp->last_resume_kind = step ? resume_step : resume_continue;
1717
1718 /* If we have a pending wait status for this thread, there is no
1719 point in resuming the process. But first make sure that
1720 linux_nat_wait won't preemptively handle the event - we
1721 should never take this short-circuit if we are going to
1722 leave LP running, since we have skipped resuming all the
1723 other threads. This bit of code needs to be synchronized
1724 with linux_nat_wait. */
1725
1726 if (lp->status && WIFSTOPPED (lp->status))
1727 {
1728 if (!lp->step
1729 && WSTOPSIG (lp->status)
1730 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1731 {
1732 if (debug_linux_nat)
1733 fprintf_unfiltered (gdb_stdlog,
1734 "LLR: Not short circuiting for ignored "
1735 "status 0x%x\n", lp->status);
1736
1737 /* FIXME: What should we do if we are supposed to continue
1738 this thread with a signal? */
1739 gdb_assert (signo == GDB_SIGNAL_0);
1740 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1741 lp->status = 0;
1742 }
1743 }
1744
1745 if (lwp_status_pending_p (lp))
1746 {
1747 /* FIXME: What should we do if we are supposed to continue
1748 this thread with a signal? */
1749 gdb_assert (signo == GDB_SIGNAL_0);
1750
1751 if (debug_linux_nat)
1752 fprintf_unfiltered (gdb_stdlog,
1753 "LLR: Short circuiting for status 0x%x\n",
1754 lp->status);
1755
1756 if (target_can_async_p ())
1757 {
1758 target_async (1);
1759 /* Tell the event loop we have something to process. */
1760 async_file_mark ();
1761 }
1762 return;
1763 }
1764
1765 if (resume_many)
1766 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1767 {
1768 return linux_nat_resume_callback (info, lp);
1769 });
1770
1771 if (debug_linux_nat)
1772 fprintf_unfiltered (gdb_stdlog,
1773 "LLR: %s %s, %s (resume event thread)\n",
1774 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1775 target_pid_to_str (lp->ptid).c_str (),
1776 (signo != GDB_SIGNAL_0
1777 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1778
1779 linux_resume_one_lwp (lp, step, signo);
1780
1781 if (target_can_async_p ())
1782 target_async (1);
1783 }
1784
1785 /* Send a signal to an LWP. */
1786
1787 static int
1788 kill_lwp (int lwpid, int signo)
1789 {
1790 int ret;
1791
1792 errno = 0;
1793 ret = syscall (__NR_tkill, lwpid, signo);
1794 if (errno == ENOSYS)
1795 {
1796 /* If tkill fails, then we are not using nptl threads, a
1797 configuration we no longer support. */
1798 perror_with_name (("tkill"));
1799 }
1800 return ret;
1801 }
1802
1803 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1804 event, check if the core is interested in it: if not, ignore the
1805 event, and keep waiting; otherwise, we need to toggle the LWP's
1806 syscall entry/exit status, since the ptrace event itself doesn't
1807 indicate it, and report the trap to higher layers. */
1808
1809 static int
1810 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1811 {
1812 struct target_waitstatus *ourstatus = &lp->waitstatus;
1813 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1814 thread_info *thread = find_thread_ptid (linux_target, lp->ptid);
1815 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1816
1817 if (stopping)
1818 {
1819 /* If we're stopping threads, there's a SIGSTOP pending, which
1820 makes it so that the LWP reports an immediate syscall return,
1821 followed by the SIGSTOP. Skip seeing that "return" using
1822 PTRACE_CONT directly, and let stop_wait_callback collect the
1823 SIGSTOP. Later when the thread is resumed, a new syscall
1824 entry event. If we didn't do this (and returned 0), we'd
1825 leave a syscall entry pending, and our caller, by using
1826 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1827 itself. Later, when the user re-resumes this LWP, we'd see
1828 another syscall entry event and we'd mistake it for a return.
1829
1830 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1831 (leaving immediately with LWP->signalled set, without issuing
1832 a PTRACE_CONT), it would still be problematic to leave this
1833 syscall enter pending, as later when the thread is resumed,
1834 it would then see the same syscall exit mentioned above,
1835 followed by the delayed SIGSTOP, while the syscall didn't
1836 actually get to execute. It seems it would be even more
1837 confusing to the user. */
1838
1839 if (debug_linux_nat)
1840 fprintf_unfiltered (gdb_stdlog,
1841 "LHST: ignoring syscall %d "
1842 "for LWP %ld (stopping threads), "
1843 "resuming with PTRACE_CONT for SIGSTOP\n",
1844 syscall_number,
1845 lp->ptid.lwp ());
1846
1847 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1848 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1849 lp->stopped = 0;
1850 return 1;
1851 }
1852
1853 /* Always update the entry/return state, even if this particular
1854 syscall isn't interesting to the core now. In async mode,
1855 the user could install a new catchpoint for this syscall
1856 between syscall enter/return, and we'll need to know to
1857 report a syscall return if that happens. */
1858 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1859 ? TARGET_WAITKIND_SYSCALL_RETURN
1860 : TARGET_WAITKIND_SYSCALL_ENTRY);
1861
1862 if (catch_syscall_enabled ())
1863 {
1864 if (catching_syscall_number (syscall_number))
1865 {
1866 /* Alright, an event to report. */
1867 ourstatus->kind = lp->syscall_state;
1868 ourstatus->value.syscall_number = syscall_number;
1869
1870 if (debug_linux_nat)
1871 fprintf_unfiltered (gdb_stdlog,
1872 "LHST: stopping for %s of syscall %d"
1873 " for LWP %ld\n",
1874 lp->syscall_state
1875 == TARGET_WAITKIND_SYSCALL_ENTRY
1876 ? "entry" : "return",
1877 syscall_number,
1878 lp->ptid.lwp ());
1879 return 0;
1880 }
1881
1882 if (debug_linux_nat)
1883 fprintf_unfiltered (gdb_stdlog,
1884 "LHST: ignoring %s of syscall %d "
1885 "for LWP %ld\n",
1886 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1887 ? "entry" : "return",
1888 syscall_number,
1889 lp->ptid.lwp ());
1890 }
1891 else
1892 {
1893 /* If we had been syscall tracing, and hence used PT_SYSCALL
1894 before on this LWP, it could happen that the user removes all
1895 syscall catchpoints before we get to process this event.
1896 There are two noteworthy issues here:
1897
1898 - When stopped at a syscall entry event, resuming with
1899 PT_STEP still resumes executing the syscall and reports a
1900 syscall return.
1901
1902 - Only PT_SYSCALL catches syscall enters. If we last
1903 single-stepped this thread, then this event can't be a
1904 syscall enter. If we last single-stepped this thread, this
1905 has to be a syscall exit.
1906
1907 The points above mean that the next resume, be it PT_STEP or
1908 PT_CONTINUE, can not trigger a syscall trace event. */
1909 if (debug_linux_nat)
1910 fprintf_unfiltered (gdb_stdlog,
1911 "LHST: caught syscall event "
1912 "with no syscall catchpoints."
1913 " %d for LWP %ld, ignoring\n",
1914 syscall_number,
1915 lp->ptid.lwp ());
1916 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1917 }
1918
1919 /* The core isn't interested in this event. For efficiency, avoid
1920 stopping all threads only to have the core resume them all again.
1921 Since we're not stopping threads, if we're still syscall tracing
1922 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1923 subsequent syscall. Simply resume using the inf-ptrace layer,
1924 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1925
1926 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1927 return 1;
1928 }
1929
1930 /* Handle a GNU/Linux extended wait response. If we see a clone
1931 event, we need to add the new LWP to our list (and not report the
1932 trap to higher layers). This function returns non-zero if the
1933 event should be ignored and we should wait again. If STOPPING is
1934 true, the new LWP remains stopped, otherwise it is continued. */
1935
1936 static int
1937 linux_handle_extended_wait (struct lwp_info *lp, int status)
1938 {
1939 int pid = lp->ptid.lwp ();
1940 struct target_waitstatus *ourstatus = &lp->waitstatus;
1941 int event = linux_ptrace_get_extended_event (status);
1942
1943 /* All extended events we currently use are mid-syscall. Only
1944 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1945 you have to be using PTRACE_SEIZE to get that. */
1946 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1947
1948 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1949 || event == PTRACE_EVENT_CLONE)
1950 {
1951 unsigned long new_pid;
1952 int ret;
1953
1954 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1955
1956 /* If we haven't already seen the new PID stop, wait for it now. */
1957 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1958 {
1959 /* The new child has a pending SIGSTOP. We can't affect it until it
1960 hits the SIGSTOP, but we're already attached. */
1961 ret = my_waitpid (new_pid, &status, __WALL);
1962 if (ret == -1)
1963 perror_with_name (_("waiting for new child"));
1964 else if (ret != new_pid)
1965 internal_error (__FILE__, __LINE__,
1966 _("wait returned unexpected PID %d"), ret);
1967 else if (!WIFSTOPPED (status))
1968 internal_error (__FILE__, __LINE__,
1969 _("wait returned unexpected status 0x%x"), status);
1970 }
1971
1972 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1973
1974 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1975 {
1976 /* The arch-specific native code may need to know about new
1977 forks even if those end up never mapped to an
1978 inferior. */
1979 linux_target->low_new_fork (lp, new_pid);
1980 }
1981 else if (event == PTRACE_EVENT_CLONE)
1982 {
1983 linux_target->low_new_clone (lp, new_pid);
1984 }
1985
1986 if (event == PTRACE_EVENT_FORK
1987 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1988 {
1989 /* Handle checkpointing by linux-fork.c here as a special
1990 case. We don't want the follow-fork-mode or 'catch fork'
1991 to interfere with this. */
1992
1993 /* This won't actually modify the breakpoint list, but will
1994 physically remove the breakpoints from the child. */
1995 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1996
1997 /* Retain child fork in ptrace (stopped) state. */
1998 if (!find_fork_pid (new_pid))
1999 add_fork (new_pid);
2000
2001 /* Report as spurious, so that infrun doesn't want to follow
2002 this fork. We're actually doing an infcall in
2003 linux-fork.c. */
2004 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2005
2006 /* Report the stop to the core. */
2007 return 0;
2008 }
2009
2010 if (event == PTRACE_EVENT_FORK)
2011 ourstatus->kind = TARGET_WAITKIND_FORKED;
2012 else if (event == PTRACE_EVENT_VFORK)
2013 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2014 else if (event == PTRACE_EVENT_CLONE)
2015 {
2016 struct lwp_info *new_lp;
2017
2018 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2019
2020 if (debug_linux_nat)
2021 fprintf_unfiltered (gdb_stdlog,
2022 "LHEW: Got clone event "
2023 "from LWP %d, new child is LWP %ld\n",
2024 pid, new_pid);
2025
2026 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
2027 new_lp->stopped = 1;
2028 new_lp->resumed = 1;
2029
2030 /* If the thread_db layer is active, let it record the user
2031 level thread id and status, and add the thread to GDB's
2032 list. */
2033 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2034 {
2035 /* The process is not using thread_db. Add the LWP to
2036 GDB's list. */
2037 target_post_attach (new_lp->ptid.lwp ());
2038 add_thread (linux_target, new_lp->ptid);
2039 }
2040
2041 /* Even if we're stopping the thread for some reason
2042 internal to this module, from the perspective of infrun
2043 and the user/frontend, this new thread is running until
2044 it next reports a stop. */
2045 set_running (linux_target, new_lp->ptid, true);
2046 set_executing (linux_target, new_lp->ptid, true);
2047
2048 if (WSTOPSIG (status) != SIGSTOP)
2049 {
2050 /* This can happen if someone starts sending signals to
2051 the new thread before it gets a chance to run, which
2052 have a lower number than SIGSTOP (e.g. SIGUSR1).
2053 This is an unlikely case, and harder to handle for
2054 fork / vfork than for clone, so we do not try - but
2055 we handle it for clone events here. */
2056
2057 new_lp->signalled = 1;
2058
2059 /* We created NEW_LP so it cannot yet contain STATUS. */
2060 gdb_assert (new_lp->status == 0);
2061
2062 /* Save the wait status to report later. */
2063 if (debug_linux_nat)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "LHEW: waitpid of new LWP %ld, "
2066 "saving status %s\n",
2067 (long) new_lp->ptid.lwp (),
2068 status_to_str (status));
2069 new_lp->status = status;
2070 }
2071 else if (report_thread_events)
2072 {
2073 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2074 new_lp->status = status;
2075 }
2076
2077 return 1;
2078 }
2079
2080 return 0;
2081 }
2082
2083 if (event == PTRACE_EVENT_EXEC)
2084 {
2085 if (debug_linux_nat)
2086 fprintf_unfiltered (gdb_stdlog,
2087 "LHEW: Got exec event from LWP %ld\n",
2088 lp->ptid.lwp ());
2089
2090 ourstatus->kind = TARGET_WAITKIND_EXECD;
2091 ourstatus->value.execd_pathname
2092 = xstrdup (linux_proc_pid_to_exec_file (pid));
2093
2094 /* The thread that execed must have been resumed, but, when a
2095 thread execs, it changes its tid to the tgid, and the old
2096 tgid thread might have not been resumed. */
2097 lp->resumed = 1;
2098 return 0;
2099 }
2100
2101 if (event == PTRACE_EVENT_VFORK_DONE)
2102 {
2103 if (current_inferior ()->waiting_for_vfork_done)
2104 {
2105 if (debug_linux_nat)
2106 fprintf_unfiltered (gdb_stdlog,
2107 "LHEW: Got expected PTRACE_EVENT_"
2108 "VFORK_DONE from LWP %ld: stopping\n",
2109 lp->ptid.lwp ());
2110
2111 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2112 return 0;
2113 }
2114
2115 if (debug_linux_nat)
2116 fprintf_unfiltered (gdb_stdlog,
2117 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2118 "from LWP %ld: ignoring\n",
2119 lp->ptid.lwp ());
2120 return 1;
2121 }
2122
2123 internal_error (__FILE__, __LINE__,
2124 _("unknown ptrace event %d"), event);
2125 }
2126
2127 /* Suspend waiting for a signal. We're mostly interested in
2128 SIGCHLD/SIGINT. */
2129
2130 static void
2131 wait_for_signal ()
2132 {
2133 if (debug_linux_nat)
2134 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2135 sigsuspend (&suspend_mask);
2136
2137 /* If the quit flag is set, it means that the user pressed Ctrl-C
2138 and we're debugging a process that is running on a separate
2139 terminal, so we must forward the Ctrl-C to the inferior. (If the
2140 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2141 inferior directly.) We must do this here because functions that
2142 need to block waiting for a signal loop forever until there's an
2143 event to report before returning back to the event loop. */
2144 if (!target_terminal::is_ours ())
2145 {
2146 if (check_quit_flag ())
2147 target_pass_ctrlc ();
2148 }
2149 }
2150
2151 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2152 exited. */
2153
2154 static int
2155 wait_lwp (struct lwp_info *lp)
2156 {
2157 pid_t pid;
2158 int status = 0;
2159 int thread_dead = 0;
2160 sigset_t prev_mask;
2161
2162 gdb_assert (!lp->stopped);
2163 gdb_assert (lp->status == 0);
2164
2165 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2166 block_child_signals (&prev_mask);
2167
2168 for (;;)
2169 {
2170 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2171 if (pid == -1 && errno == ECHILD)
2172 {
2173 /* The thread has previously exited. We need to delete it
2174 now because if this was a non-leader thread execing, we
2175 won't get an exit event. See comments on exec events at
2176 the top of the file. */
2177 thread_dead = 1;
2178 if (debug_linux_nat)
2179 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2180 target_pid_to_str (lp->ptid).c_str ());
2181 }
2182 if (pid != 0)
2183 break;
2184
2185 /* Bugs 10970, 12702.
2186 Thread group leader may have exited in which case we'll lock up in
2187 waitpid if there are other threads, even if they are all zombies too.
2188 Basically, we're not supposed to use waitpid this way.
2189 tkill(pid,0) cannot be used here as it gets ESRCH for both
2190 for zombie and running processes.
2191
2192 As a workaround, check if we're waiting for the thread group leader and
2193 if it's a zombie, and avoid calling waitpid if it is.
2194
2195 This is racy, what if the tgl becomes a zombie right after we check?
2196 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2197 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2198
2199 if (lp->ptid.pid () == lp->ptid.lwp ()
2200 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2201 {
2202 thread_dead = 1;
2203 if (debug_linux_nat)
2204 fprintf_unfiltered (gdb_stdlog,
2205 "WL: Thread group leader %s vanished.\n",
2206 target_pid_to_str (lp->ptid).c_str ());
2207 break;
2208 }
2209
2210 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2211 get invoked despite our caller had them intentionally blocked by
2212 block_child_signals. This is sensitive only to the loop of
2213 linux_nat_wait_1 and there if we get called my_waitpid gets called
2214 again before it gets to sigsuspend so we can safely let the handlers
2215 get executed here. */
2216 wait_for_signal ();
2217 }
2218
2219 restore_child_signals_mask (&prev_mask);
2220
2221 if (!thread_dead)
2222 {
2223 gdb_assert (pid == lp->ptid.lwp ());
2224
2225 if (debug_linux_nat)
2226 {
2227 fprintf_unfiltered (gdb_stdlog,
2228 "WL: waitpid %s received %s\n",
2229 target_pid_to_str (lp->ptid).c_str (),
2230 status_to_str (status));
2231 }
2232
2233 /* Check if the thread has exited. */
2234 if (WIFEXITED (status) || WIFSIGNALED (status))
2235 {
2236 if (report_thread_events
2237 || lp->ptid.pid () == lp->ptid.lwp ())
2238 {
2239 if (debug_linux_nat)
2240 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2241 lp->ptid.pid ());
2242
2243 /* If this is the leader exiting, it means the whole
2244 process is gone. Store the status to report to the
2245 core. Store it in lp->waitstatus, because lp->status
2246 would be ambiguous (W_EXITCODE(0,0) == 0). */
2247 store_waitstatus (&lp->waitstatus, status);
2248 return 0;
2249 }
2250
2251 thread_dead = 1;
2252 if (debug_linux_nat)
2253 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2254 target_pid_to_str (lp->ptid).c_str ());
2255 }
2256 }
2257
2258 if (thread_dead)
2259 {
2260 exit_lwp (lp);
2261 return 0;
2262 }
2263
2264 gdb_assert (WIFSTOPPED (status));
2265 lp->stopped = 1;
2266
2267 if (lp->must_set_ptrace_flags)
2268 {
2269 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2270 int options = linux_nat_ptrace_options (inf->attach_flag);
2271
2272 linux_enable_event_reporting (lp->ptid.lwp (), options);
2273 lp->must_set_ptrace_flags = 0;
2274 }
2275
2276 /* Handle GNU/Linux's syscall SIGTRAPs. */
2277 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2278 {
2279 /* No longer need the sysgood bit. The ptrace event ends up
2280 recorded in lp->waitstatus if we care for it. We can carry
2281 on handling the event like a regular SIGTRAP from here
2282 on. */
2283 status = W_STOPCODE (SIGTRAP);
2284 if (linux_handle_syscall_trap (lp, 1))
2285 return wait_lwp (lp);
2286 }
2287 else
2288 {
2289 /* Almost all other ptrace-stops are known to be outside of system
2290 calls, with further exceptions in linux_handle_extended_wait. */
2291 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2292 }
2293
2294 /* Handle GNU/Linux's extended waitstatus for trace events. */
2295 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2296 && linux_is_extended_waitstatus (status))
2297 {
2298 if (debug_linux_nat)
2299 fprintf_unfiltered (gdb_stdlog,
2300 "WL: Handling extended status 0x%06x\n",
2301 status);
2302 linux_handle_extended_wait (lp, status);
2303 return 0;
2304 }
2305
2306 return status;
2307 }
2308
2309 /* Send a SIGSTOP to LP. */
2310
2311 static int
2312 stop_callback (struct lwp_info *lp)
2313 {
2314 if (!lp->stopped && !lp->signalled)
2315 {
2316 int ret;
2317
2318 if (debug_linux_nat)
2319 {
2320 fprintf_unfiltered (gdb_stdlog,
2321 "SC: kill %s **<SIGSTOP>**\n",
2322 target_pid_to_str (lp->ptid).c_str ());
2323 }
2324 errno = 0;
2325 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2326 if (debug_linux_nat)
2327 {
2328 fprintf_unfiltered (gdb_stdlog,
2329 "SC: lwp kill %d %s\n",
2330 ret,
2331 errno ? safe_strerror (errno) : "ERRNO-OK");
2332 }
2333
2334 lp->signalled = 1;
2335 gdb_assert (lp->status == 0);
2336 }
2337
2338 return 0;
2339 }
2340
2341 /* Request a stop on LWP. */
2342
2343 void
2344 linux_stop_lwp (struct lwp_info *lwp)
2345 {
2346 stop_callback (lwp);
2347 }
2348
2349 /* See linux-nat.h */
2350
2351 void
2352 linux_stop_and_wait_all_lwps (void)
2353 {
2354 /* Stop all LWP's ... */
2355 iterate_over_lwps (minus_one_ptid, stop_callback);
2356
2357 /* ... and wait until all of them have reported back that
2358 they're no longer running. */
2359 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2360 }
2361
2362 /* See linux-nat.h */
2363
2364 void
2365 linux_unstop_all_lwps (void)
2366 {
2367 iterate_over_lwps (minus_one_ptid,
2368 [] (struct lwp_info *info)
2369 {
2370 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2371 });
2372 }
2373
2374 /* Return non-zero if LWP PID has a pending SIGINT. */
2375
2376 static int
2377 linux_nat_has_pending_sigint (int pid)
2378 {
2379 sigset_t pending, blocked, ignored;
2380
2381 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2382
2383 if (sigismember (&pending, SIGINT)
2384 && !sigismember (&ignored, SIGINT))
2385 return 1;
2386
2387 return 0;
2388 }
2389
2390 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2391
2392 static int
2393 set_ignore_sigint (struct lwp_info *lp)
2394 {
2395 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2396 flag to consume the next one. */
2397 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2398 && WSTOPSIG (lp->status) == SIGINT)
2399 lp->status = 0;
2400 else
2401 lp->ignore_sigint = 1;
2402
2403 return 0;
2404 }
2405
2406 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2407 This function is called after we know the LWP has stopped; if the LWP
2408 stopped before the expected SIGINT was delivered, then it will never have
2409 arrived. Also, if the signal was delivered to a shared queue and consumed
2410 by a different thread, it will never be delivered to this LWP. */
2411
2412 static void
2413 maybe_clear_ignore_sigint (struct lwp_info *lp)
2414 {
2415 if (!lp->ignore_sigint)
2416 return;
2417
2418 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2419 {
2420 if (debug_linux_nat)
2421 fprintf_unfiltered (gdb_stdlog,
2422 "MCIS: Clearing bogus flag for %s\n",
2423 target_pid_to_str (lp->ptid).c_str ());
2424 lp->ignore_sigint = 0;
2425 }
2426 }
2427
2428 /* Fetch the possible triggered data watchpoint info and store it in
2429 LP.
2430
2431 On some archs, like x86, that use debug registers to set
2432 watchpoints, it's possible that the way to know which watched
2433 address trapped, is to check the register that is used to select
2434 which address to watch. Problem is, between setting the watchpoint
2435 and reading back which data address trapped, the user may change
2436 the set of watchpoints, and, as a consequence, GDB changes the
2437 debug registers in the inferior. To avoid reading back a stale
2438 stopped-data-address when that happens, we cache in LP the fact
2439 that a watchpoint trapped, and the corresponding data address, as
2440 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2441 registers meanwhile, we have the cached data we can rely on. */
2442
2443 static int
2444 check_stopped_by_watchpoint (struct lwp_info *lp)
2445 {
2446 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2447 inferior_ptid = lp->ptid;
2448
2449 if (linux_target->low_stopped_by_watchpoint ())
2450 {
2451 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2452 lp->stopped_data_address_p
2453 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2454 }
2455
2456 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2457 }
2458
2459 /* Returns true if the LWP had stopped for a watchpoint. */
2460
2461 bool
2462 linux_nat_target::stopped_by_watchpoint ()
2463 {
2464 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2465
2466 gdb_assert (lp != NULL);
2467
2468 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2469 }
2470
2471 bool
2472 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2473 {
2474 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2475
2476 gdb_assert (lp != NULL);
2477
2478 *addr_p = lp->stopped_data_address;
2479
2480 return lp->stopped_data_address_p;
2481 }
2482
2483 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2484
2485 bool
2486 linux_nat_target::low_status_is_event (int status)
2487 {
2488 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2489 }
2490
2491 /* Wait until LP is stopped. */
2492
2493 static int
2494 stop_wait_callback (struct lwp_info *lp)
2495 {
2496 inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2497
2498 /* If this is a vfork parent, bail out, it is not going to report
2499 any SIGSTOP until the vfork is done with. */
2500 if (inf->vfork_child != NULL)
2501 return 0;
2502
2503 if (!lp->stopped)
2504 {
2505 int status;
2506
2507 status = wait_lwp (lp);
2508 if (status == 0)
2509 return 0;
2510
2511 if (lp->ignore_sigint && WIFSTOPPED (status)
2512 && WSTOPSIG (status) == SIGINT)
2513 {
2514 lp->ignore_sigint = 0;
2515
2516 errno = 0;
2517 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2518 lp->stopped = 0;
2519 if (debug_linux_nat)
2520 fprintf_unfiltered (gdb_stdlog,
2521 "PTRACE_CONT %s, 0, 0 (%s) "
2522 "(discarding SIGINT)\n",
2523 target_pid_to_str (lp->ptid).c_str (),
2524 errno ? safe_strerror (errno) : "OK");
2525
2526 return stop_wait_callback (lp);
2527 }
2528
2529 maybe_clear_ignore_sigint (lp);
2530
2531 if (WSTOPSIG (status) != SIGSTOP)
2532 {
2533 /* The thread was stopped with a signal other than SIGSTOP. */
2534
2535 if (debug_linux_nat)
2536 fprintf_unfiltered (gdb_stdlog,
2537 "SWC: Pending event %s in %s\n",
2538 status_to_str ((int) status),
2539 target_pid_to_str (lp->ptid).c_str ());
2540
2541 /* Save the sigtrap event. */
2542 lp->status = status;
2543 gdb_assert (lp->signalled);
2544 save_stop_reason (lp);
2545 }
2546 else
2547 {
2548 /* We caught the SIGSTOP that we intended to catch. */
2549
2550 if (debug_linux_nat)
2551 fprintf_unfiltered (gdb_stdlog,
2552 "SWC: Expected SIGSTOP caught for %s.\n",
2553 target_pid_to_str (lp->ptid).c_str ());
2554
2555 lp->signalled = 0;
2556
2557 /* If we are waiting for this stop so we can report the thread
2558 stopped then we need to record this status. Otherwise, we can
2559 now discard this stop event. */
2560 if (lp->last_resume_kind == resume_stop)
2561 {
2562 lp->status = status;
2563 save_stop_reason (lp);
2564 }
2565 }
2566 }
2567
2568 return 0;
2569 }
2570
2571 /* Return non-zero if LP has a wait status pending. Discard the
2572 pending event and resume the LWP if the event that originally
2573 caused the stop became uninteresting. */
2574
2575 static int
2576 status_callback (struct lwp_info *lp)
2577 {
2578 /* Only report a pending wait status if we pretend that this has
2579 indeed been resumed. */
2580 if (!lp->resumed)
2581 return 0;
2582
2583 if (!lwp_status_pending_p (lp))
2584 return 0;
2585
2586 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2587 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2588 {
2589 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
2590 CORE_ADDR pc;
2591 int discard = 0;
2592
2593 pc = regcache_read_pc (regcache);
2594
2595 if (pc != lp->stop_pc)
2596 {
2597 if (debug_linux_nat)
2598 fprintf_unfiltered (gdb_stdlog,
2599 "SC: PC of %s changed. was=%s, now=%s\n",
2600 target_pid_to_str (lp->ptid).c_str (),
2601 paddress (target_gdbarch (), lp->stop_pc),
2602 paddress (target_gdbarch (), pc));
2603 discard = 1;
2604 }
2605
2606 #if !USE_SIGTRAP_SIGINFO
2607 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2608 {
2609 if (debug_linux_nat)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "SC: previous breakpoint of %s, at %s gone\n",
2612 target_pid_to_str (lp->ptid).c_str (),
2613 paddress (target_gdbarch (), lp->stop_pc));
2614
2615 discard = 1;
2616 }
2617 #endif
2618
2619 if (discard)
2620 {
2621 if (debug_linux_nat)
2622 fprintf_unfiltered (gdb_stdlog,
2623 "SC: pending event of %s cancelled.\n",
2624 target_pid_to_str (lp->ptid).c_str ());
2625
2626 lp->status = 0;
2627 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2628 return 0;
2629 }
2630 }
2631
2632 return 1;
2633 }
2634
2635 /* Count the LWP's that have had events. */
2636
2637 static int
2638 count_events_callback (struct lwp_info *lp, int *count)
2639 {
2640 gdb_assert (count != NULL);
2641
2642 /* Select only resumed LWPs that have an event pending. */
2643 if (lp->resumed && lwp_status_pending_p (lp))
2644 (*count)++;
2645
2646 return 0;
2647 }
2648
2649 /* Select the LWP (if any) that is currently being single-stepped. */
2650
2651 static int
2652 select_singlestep_lwp_callback (struct lwp_info *lp)
2653 {
2654 if (lp->last_resume_kind == resume_step
2655 && lp->status != 0)
2656 return 1;
2657 else
2658 return 0;
2659 }
2660
2661 /* Returns true if LP has a status pending. */
2662
2663 static int
2664 lwp_status_pending_p (struct lwp_info *lp)
2665 {
2666 /* We check for lp->waitstatus in addition to lp->status, because we
2667 can have pending process exits recorded in lp->status and
2668 W_EXITCODE(0,0) happens to be 0. */
2669 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2670 }
2671
2672 /* Select the Nth LWP that has had an event. */
2673
2674 static int
2675 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2676 {
2677 gdb_assert (selector != NULL);
2678
2679 /* Select only resumed LWPs that have an event pending. */
2680 if (lp->resumed && lwp_status_pending_p (lp))
2681 if ((*selector)-- == 0)
2682 return 1;
2683
2684 return 0;
2685 }
2686
2687 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2688 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2689 and save the result in the LWP's stop_reason field. If it stopped
2690 for a breakpoint, decrement the PC if necessary on the lwp's
2691 architecture. */
2692
2693 static void
2694 save_stop_reason (struct lwp_info *lp)
2695 {
2696 struct regcache *regcache;
2697 struct gdbarch *gdbarch;
2698 CORE_ADDR pc;
2699 CORE_ADDR sw_bp_pc;
2700 #if USE_SIGTRAP_SIGINFO
2701 siginfo_t siginfo;
2702 #endif
2703
2704 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2705 gdb_assert (lp->status != 0);
2706
2707 if (!linux_target->low_status_is_event (lp->status))
2708 return;
2709
2710 regcache = get_thread_regcache (linux_target, lp->ptid);
2711 gdbarch = regcache->arch ();
2712
2713 pc = regcache_read_pc (regcache);
2714 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2715
2716 #if USE_SIGTRAP_SIGINFO
2717 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2718 {
2719 if (siginfo.si_signo == SIGTRAP)
2720 {
2721 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2722 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2723 {
2724 /* The si_code is ambiguous on this arch -- check debug
2725 registers. */
2726 if (!check_stopped_by_watchpoint (lp))
2727 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2728 }
2729 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2730 {
2731 /* If we determine the LWP stopped for a SW breakpoint,
2732 trust it. Particularly don't check watchpoint
2733 registers, because, at least on s390, we'd find
2734 stopped-by-watchpoint as long as there's a watchpoint
2735 set. */
2736 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2737 }
2738 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2739 {
2740 /* This can indicate either a hardware breakpoint or
2741 hardware watchpoint. Check debug registers. */
2742 if (!check_stopped_by_watchpoint (lp))
2743 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2744 }
2745 else if (siginfo.si_code == TRAP_TRACE)
2746 {
2747 if (debug_linux_nat)
2748 fprintf_unfiltered (gdb_stdlog,
2749 "CSBB: %s stopped by trace\n",
2750 target_pid_to_str (lp->ptid).c_str ());
2751
2752 /* We may have single stepped an instruction that
2753 triggered a watchpoint. In that case, on some
2754 architectures (such as x86), instead of TRAP_HWBKPT,
2755 si_code indicates TRAP_TRACE, and we need to check
2756 the debug registers separately. */
2757 check_stopped_by_watchpoint (lp);
2758 }
2759 }
2760 }
2761 #else
2762 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2763 && software_breakpoint_inserted_here_p (regcache->aspace (),
2764 sw_bp_pc))
2765 {
2766 /* The LWP was either continued, or stepped a software
2767 breakpoint instruction. */
2768 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2769 }
2770
2771 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2772 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2773
2774 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2775 check_stopped_by_watchpoint (lp);
2776 #endif
2777
2778 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2779 {
2780 if (debug_linux_nat)
2781 fprintf_unfiltered (gdb_stdlog,
2782 "CSBB: %s stopped by software breakpoint\n",
2783 target_pid_to_str (lp->ptid).c_str ());
2784
2785 /* Back up the PC if necessary. */
2786 if (pc != sw_bp_pc)
2787 regcache_write_pc (regcache, sw_bp_pc);
2788
2789 /* Update this so we record the correct stop PC below. */
2790 pc = sw_bp_pc;
2791 }
2792 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2793 {
2794 if (debug_linux_nat)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "CSBB: %s stopped by hardware breakpoint\n",
2797 target_pid_to_str (lp->ptid).c_str ());
2798 }
2799 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2800 {
2801 if (debug_linux_nat)
2802 fprintf_unfiltered (gdb_stdlog,
2803 "CSBB: %s stopped by hardware watchpoint\n",
2804 target_pid_to_str (lp->ptid).c_str ());
2805 }
2806
2807 lp->stop_pc = pc;
2808 }
2809
2810
2811 /* Returns true if the LWP had stopped for a software breakpoint. */
2812
2813 bool
2814 linux_nat_target::stopped_by_sw_breakpoint ()
2815 {
2816 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2817
2818 gdb_assert (lp != NULL);
2819
2820 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2821 }
2822
2823 /* Implement the supports_stopped_by_sw_breakpoint method. */
2824
2825 bool
2826 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2827 {
2828 return USE_SIGTRAP_SIGINFO;
2829 }
2830
2831 /* Returns true if the LWP had stopped for a hardware
2832 breakpoint/watchpoint. */
2833
2834 bool
2835 linux_nat_target::stopped_by_hw_breakpoint ()
2836 {
2837 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2838
2839 gdb_assert (lp != NULL);
2840
2841 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2842 }
2843
2844 /* Implement the supports_stopped_by_hw_breakpoint method. */
2845
2846 bool
2847 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2848 {
2849 return USE_SIGTRAP_SIGINFO;
2850 }
2851
2852 /* Select one LWP out of those that have events pending. */
2853
2854 static void
2855 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2856 {
2857 int num_events = 0;
2858 int random_selector;
2859 struct lwp_info *event_lp = NULL;
2860
2861 /* Record the wait status for the original LWP. */
2862 (*orig_lp)->status = *status;
2863
2864 /* In all-stop, give preference to the LWP that is being
2865 single-stepped. There will be at most one, and it will be the
2866 LWP that the core is most interested in. If we didn't do this,
2867 then we'd have to handle pending step SIGTRAPs somehow in case
2868 the core later continues the previously-stepped thread, as
2869 otherwise we'd report the pending SIGTRAP then, and the core, not
2870 having stepped the thread, wouldn't understand what the trap was
2871 for, and therefore would report it to the user as a random
2872 signal. */
2873 if (!target_is_non_stop_p ())
2874 {
2875 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2876 if (event_lp != NULL)
2877 {
2878 if (debug_linux_nat)
2879 fprintf_unfiltered (gdb_stdlog,
2880 "SEL: Select single-step %s\n",
2881 target_pid_to_str (event_lp->ptid).c_str ());
2882 }
2883 }
2884
2885 if (event_lp == NULL)
2886 {
2887 /* Pick one at random, out of those which have had events. */
2888
2889 /* First see how many events we have. */
2890 iterate_over_lwps (filter,
2891 [&] (struct lwp_info *info)
2892 {
2893 return count_events_callback (info, &num_events);
2894 });
2895 gdb_assert (num_events > 0);
2896
2897 /* Now randomly pick a LWP out of those that have had
2898 events. */
2899 random_selector = (int)
2900 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2901
2902 if (debug_linux_nat && num_events > 1)
2903 fprintf_unfiltered (gdb_stdlog,
2904 "SEL: Found %d events, selecting #%d\n",
2905 num_events, random_selector);
2906
2907 event_lp
2908 = (iterate_over_lwps
2909 (filter,
2910 [&] (struct lwp_info *info)
2911 {
2912 return select_event_lwp_callback (info,
2913 &random_selector);
2914 }));
2915 }
2916
2917 if (event_lp != NULL)
2918 {
2919 /* Switch the event LWP. */
2920 *orig_lp = event_lp;
2921 *status = event_lp->status;
2922 }
2923
2924 /* Flush the wait status for the event LWP. */
2925 (*orig_lp)->status = 0;
2926 }
2927
2928 /* Return non-zero if LP has been resumed. */
2929
2930 static int
2931 resumed_callback (struct lwp_info *lp)
2932 {
2933 return lp->resumed;
2934 }
2935
2936 /* Check if we should go on and pass this event to common code.
2937 Return the affected lwp if we should, or NULL otherwise. */
2938
2939 static struct lwp_info *
2940 linux_nat_filter_event (int lwpid, int status)
2941 {
2942 struct lwp_info *lp;
2943 int event = linux_ptrace_get_extended_event (status);
2944
2945 lp = find_lwp_pid (ptid_t (lwpid));
2946
2947 /* Check for stop events reported by a process we didn't already
2948 know about - anything not already in our LWP list.
2949
2950 If we're expecting to receive stopped processes after
2951 fork, vfork, and clone events, then we'll just add the
2952 new one to our list and go back to waiting for the event
2953 to be reported - the stopped process might be returned
2954 from waitpid before or after the event is.
2955
2956 But note the case of a non-leader thread exec'ing after the
2957 leader having exited, and gone from our lists. The non-leader
2958 thread changes its tid to the tgid. */
2959
2960 if (WIFSTOPPED (status) && lp == NULL
2961 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2962 {
2963 /* A multi-thread exec after we had seen the leader exiting. */
2964 if (debug_linux_nat)
2965 fprintf_unfiltered (gdb_stdlog,
2966 "LLW: Re-adding thread group leader LWP %d.\n",
2967 lwpid);
2968
2969 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2970 lp->stopped = 1;
2971 lp->resumed = 1;
2972 add_thread (linux_target, lp->ptid);
2973 }
2974
2975 if (WIFSTOPPED (status) && !lp)
2976 {
2977 if (debug_linux_nat)
2978 fprintf_unfiltered (gdb_stdlog,
2979 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2980 (long) lwpid, status_to_str (status));
2981 add_to_pid_list (&stopped_pids, lwpid, status);
2982 return NULL;
2983 }
2984
2985 /* Make sure we don't report an event for the exit of an LWP not in
2986 our list, i.e. not part of the current process. This can happen
2987 if we detach from a program we originally forked and then it
2988 exits. */
2989 if (!WIFSTOPPED (status) && !lp)
2990 return NULL;
2991
2992 /* This LWP is stopped now. (And if dead, this prevents it from
2993 ever being continued.) */
2994 lp->stopped = 1;
2995
2996 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2997 {
2998 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2999 int options = linux_nat_ptrace_options (inf->attach_flag);
3000
3001 linux_enable_event_reporting (lp->ptid.lwp (), options);
3002 lp->must_set_ptrace_flags = 0;
3003 }
3004
3005 /* Handle GNU/Linux's syscall SIGTRAPs. */
3006 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3007 {
3008 /* No longer need the sysgood bit. The ptrace event ends up
3009 recorded in lp->waitstatus if we care for it. We can carry
3010 on handling the event like a regular SIGTRAP from here
3011 on. */
3012 status = W_STOPCODE (SIGTRAP);
3013 if (linux_handle_syscall_trap (lp, 0))
3014 return NULL;
3015 }
3016 else
3017 {
3018 /* Almost all other ptrace-stops are known to be outside of system
3019 calls, with further exceptions in linux_handle_extended_wait. */
3020 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3021 }
3022
3023 /* Handle GNU/Linux's extended waitstatus for trace events. */
3024 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3025 && linux_is_extended_waitstatus (status))
3026 {
3027 if (debug_linux_nat)
3028 fprintf_unfiltered (gdb_stdlog,
3029 "LLW: Handling extended status 0x%06x\n",
3030 status);
3031 if (linux_handle_extended_wait (lp, status))
3032 return NULL;
3033 }
3034
3035 /* Check if the thread has exited. */
3036 if (WIFEXITED (status) || WIFSIGNALED (status))
3037 {
3038 if (!report_thread_events
3039 && num_lwps (lp->ptid.pid ()) > 1)
3040 {
3041 if (debug_linux_nat)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "LLW: %s exited.\n",
3044 target_pid_to_str (lp->ptid).c_str ());
3045
3046 /* If there is at least one more LWP, then the exit signal
3047 was not the end of the debugged application and should be
3048 ignored. */
3049 exit_lwp (lp);
3050 return NULL;
3051 }
3052
3053 /* Note that even if the leader was ptrace-stopped, it can still
3054 exit, if e.g., some other thread brings down the whole
3055 process (calls `exit'). So don't assert that the lwp is
3056 resumed. */
3057 if (debug_linux_nat)
3058 fprintf_unfiltered (gdb_stdlog,
3059 "LWP %ld exited (resumed=%d)\n",
3060 lp->ptid.lwp (), lp->resumed);
3061
3062 /* Dead LWP's aren't expected to reported a pending sigstop. */
3063 lp->signalled = 0;
3064
3065 /* Store the pending event in the waitstatus, because
3066 W_EXITCODE(0,0) == 0. */
3067 store_waitstatus (&lp->waitstatus, status);
3068 return lp;
3069 }
3070
3071 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3072 an attempt to stop an LWP. */
3073 if (lp->signalled
3074 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3075 {
3076 lp->signalled = 0;
3077
3078 if (lp->last_resume_kind == resume_stop)
3079 {
3080 if (debug_linux_nat)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "LLW: resume_stop SIGSTOP caught for %s.\n",
3083 target_pid_to_str (lp->ptid).c_str ());
3084 }
3085 else
3086 {
3087 /* This is a delayed SIGSTOP. Filter out the event. */
3088
3089 if (debug_linux_nat)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3092 lp->step ?
3093 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3094 target_pid_to_str (lp->ptid).c_str ());
3095
3096 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3097 gdb_assert (lp->resumed);
3098 return NULL;
3099 }
3100 }
3101
3102 /* Make sure we don't report a SIGINT that we have already displayed
3103 for another thread. */
3104 if (lp->ignore_sigint
3105 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3106 {
3107 if (debug_linux_nat)
3108 fprintf_unfiltered (gdb_stdlog,
3109 "LLW: Delayed SIGINT caught for %s.\n",
3110 target_pid_to_str (lp->ptid).c_str ());
3111
3112 /* This is a delayed SIGINT. */
3113 lp->ignore_sigint = 0;
3114
3115 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3116 if (debug_linux_nat)
3117 fprintf_unfiltered (gdb_stdlog,
3118 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3119 lp->step ?
3120 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3121 target_pid_to_str (lp->ptid).c_str ());
3122 gdb_assert (lp->resumed);
3123
3124 /* Discard the event. */
3125 return NULL;
3126 }
3127
3128 /* Don't report signals that GDB isn't interested in, such as
3129 signals that are neither printed nor stopped upon. Stopping all
3130 threads can be a bit time-consuming, so if we want decent
3131 performance with heavily multi-threaded programs, especially when
3132 they're using a high frequency timer, we'd better avoid it if we
3133 can. */
3134 if (WIFSTOPPED (status))
3135 {
3136 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3137
3138 if (!target_is_non_stop_p ())
3139 {
3140 /* Only do the below in all-stop, as we currently use SIGSTOP
3141 to implement target_stop (see linux_nat_stop) in
3142 non-stop. */
3143 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3144 {
3145 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3146 forwarded to the entire process group, that is, all LWPs
3147 will receive it - unless they're using CLONE_THREAD to
3148 share signals. Since we only want to report it once, we
3149 mark it as ignored for all LWPs except this one. */
3150 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3151 lp->ignore_sigint = 0;
3152 }
3153 else
3154 maybe_clear_ignore_sigint (lp);
3155 }
3156
3157 /* When using hardware single-step, we need to report every signal.
3158 Otherwise, signals in pass_mask may be short-circuited
3159 except signals that might be caused by a breakpoint, or SIGSTOP
3160 if we sent the SIGSTOP and are waiting for it to arrive. */
3161 if (!lp->step
3162 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3163 && (WSTOPSIG (status) != SIGSTOP
3164 || !find_thread_ptid (linux_target, lp->ptid)->stop_requested)
3165 && !linux_wstatus_maybe_breakpoint (status))
3166 {
3167 linux_resume_one_lwp (lp, lp->step, signo);
3168 if (debug_linux_nat)
3169 fprintf_unfiltered (gdb_stdlog,
3170 "LLW: %s %s, %s (preempt 'handle')\n",
3171 lp->step ?
3172 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3173 target_pid_to_str (lp->ptid).c_str (),
3174 (signo != GDB_SIGNAL_0
3175 ? strsignal (gdb_signal_to_host (signo))
3176 : "0"));
3177 return NULL;
3178 }
3179 }
3180
3181 /* An interesting event. */
3182 gdb_assert (lp);
3183 lp->status = status;
3184 save_stop_reason (lp);
3185 return lp;
3186 }
3187
3188 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3189 their exits until all other threads in the group have exited. */
3190
3191 static void
3192 check_zombie_leaders (void)
3193 {
3194 for (inferior *inf : all_inferiors ())
3195 {
3196 struct lwp_info *leader_lp;
3197
3198 if (inf->pid == 0)
3199 continue;
3200
3201 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3202 if (leader_lp != NULL
3203 /* Check if there are other threads in the group, as we may
3204 have raced with the inferior simply exiting. */
3205 && num_lwps (inf->pid) > 1
3206 && linux_proc_pid_is_zombie (inf->pid))
3207 {
3208 if (debug_linux_nat)
3209 fprintf_unfiltered (gdb_stdlog,
3210 "CZL: Thread group leader %d zombie "
3211 "(it exited, or another thread execd).\n",
3212 inf->pid);
3213
3214 /* A leader zombie can mean one of two things:
3215
3216 - It exited, and there's an exit status pending
3217 available, or only the leader exited (not the whole
3218 program). In the latter case, we can't waitpid the
3219 leader's exit status until all other threads are gone.
3220
3221 - There are 3 or more threads in the group, and a thread
3222 other than the leader exec'd. See comments on exec
3223 events at the top of the file. We could try
3224 distinguishing the exit and exec cases, by waiting once
3225 more, and seeing if something comes out, but it doesn't
3226 sound useful. The previous leader _does_ go away, and
3227 we'll re-add the new one once we see the exec event
3228 (which is just the same as what would happen if the
3229 previous leader did exit voluntarily before some other
3230 thread execs). */
3231
3232 if (debug_linux_nat)
3233 fprintf_unfiltered (gdb_stdlog,
3234 "CZL: Thread group leader %d vanished.\n",
3235 inf->pid);
3236 exit_lwp (leader_lp);
3237 }
3238 }
3239 }
3240
3241 /* Convenience function that is called when the kernel reports an exit
3242 event. This decides whether to report the event to GDB as a
3243 process exit event, a thread exit event, or to suppress the
3244 event. */
3245
3246 static ptid_t
3247 filter_exit_event (struct lwp_info *event_child,
3248 struct target_waitstatus *ourstatus)
3249 {
3250 ptid_t ptid = event_child->ptid;
3251
3252 if (num_lwps (ptid.pid ()) > 1)
3253 {
3254 if (report_thread_events)
3255 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3256 else
3257 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3258
3259 exit_lwp (event_child);
3260 }
3261
3262 return ptid;
3263 }
3264
3265 static ptid_t
3266 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3267 int target_options)
3268 {
3269 sigset_t prev_mask;
3270 enum resume_kind last_resume_kind;
3271 struct lwp_info *lp;
3272 int status;
3273
3274 if (debug_linux_nat)
3275 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3276
3277 /* The first time we get here after starting a new inferior, we may
3278 not have added it to the LWP list yet - this is the earliest
3279 moment at which we know its PID. */
3280 if (inferior_ptid.is_pid ())
3281 {
3282 /* Upgrade the main thread's ptid. */
3283 thread_change_ptid (linux_target, inferior_ptid,
3284 ptid_t (inferior_ptid.pid (),
3285 inferior_ptid.pid (), 0));
3286
3287 lp = add_initial_lwp (inferior_ptid);
3288 lp->resumed = 1;
3289 }
3290
3291 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3292 block_child_signals (&prev_mask);
3293
3294 /* First check if there is a LWP with a wait status pending. */
3295 lp = iterate_over_lwps (ptid, status_callback);
3296 if (lp != NULL)
3297 {
3298 if (debug_linux_nat)
3299 fprintf_unfiltered (gdb_stdlog,
3300 "LLW: Using pending wait status %s for %s.\n",
3301 status_to_str (lp->status),
3302 target_pid_to_str (lp->ptid).c_str ());
3303 }
3304
3305 /* But if we don't find a pending event, we'll have to wait. Always
3306 pull all events out of the kernel. We'll randomly select an
3307 event LWP out of all that have events, to prevent starvation. */
3308
3309 while (lp == NULL)
3310 {
3311 pid_t lwpid;
3312
3313 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3314 quirks:
3315
3316 - If the thread group leader exits while other threads in the
3317 thread group still exist, waitpid(TGID, ...) hangs. That
3318 waitpid won't return an exit status until the other threads
3319 in the group are reaped.
3320
3321 - When a non-leader thread execs, that thread just vanishes
3322 without reporting an exit (so we'd hang if we waited for it
3323 explicitly in that case). The exec event is reported to
3324 the TGID pid. */
3325
3326 errno = 0;
3327 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3328
3329 if (debug_linux_nat)
3330 fprintf_unfiltered (gdb_stdlog,
3331 "LNW: waitpid(-1, ...) returned %d, %s\n",
3332 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3333
3334 if (lwpid > 0)
3335 {
3336 if (debug_linux_nat)
3337 {
3338 fprintf_unfiltered (gdb_stdlog,
3339 "LLW: waitpid %ld received %s\n",
3340 (long) lwpid, status_to_str (status));
3341 }
3342
3343 linux_nat_filter_event (lwpid, status);
3344 /* Retry until nothing comes out of waitpid. A single
3345 SIGCHLD can indicate more than one child stopped. */
3346 continue;
3347 }
3348
3349 /* Now that we've pulled all events out of the kernel, resume
3350 LWPs that don't have an interesting event to report. */
3351 iterate_over_lwps (minus_one_ptid,
3352 [] (struct lwp_info *info)
3353 {
3354 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3355 });
3356
3357 /* ... and find an LWP with a status to report to the core, if
3358 any. */
3359 lp = iterate_over_lwps (ptid, status_callback);
3360 if (lp != NULL)
3361 break;
3362
3363 /* Check for zombie thread group leaders. Those can't be reaped
3364 until all other threads in the thread group are. */
3365 check_zombie_leaders ();
3366
3367 /* If there are no resumed children left, bail. We'd be stuck
3368 forever in the sigsuspend call below otherwise. */
3369 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3370 {
3371 if (debug_linux_nat)
3372 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3373
3374 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3375
3376 restore_child_signals_mask (&prev_mask);
3377 return minus_one_ptid;
3378 }
3379
3380 /* No interesting event to report to the core. */
3381
3382 if (target_options & TARGET_WNOHANG)
3383 {
3384 if (debug_linux_nat)
3385 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3386
3387 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3388 restore_child_signals_mask (&prev_mask);
3389 return minus_one_ptid;
3390 }
3391
3392 /* We shouldn't end up here unless we want to try again. */
3393 gdb_assert (lp == NULL);
3394
3395 /* Block until we get an event reported with SIGCHLD. */
3396 wait_for_signal ();
3397 }
3398
3399 gdb_assert (lp);
3400
3401 status = lp->status;
3402 lp->status = 0;
3403
3404 if (!target_is_non_stop_p ())
3405 {
3406 /* Now stop all other LWP's ... */
3407 iterate_over_lwps (minus_one_ptid, stop_callback);
3408
3409 /* ... and wait until all of them have reported back that
3410 they're no longer running. */
3411 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3412 }
3413
3414 /* If we're not waiting for a specific LWP, choose an event LWP from
3415 among those that have had events. Giving equal priority to all
3416 LWPs that have had events helps prevent starvation. */
3417 if (ptid == minus_one_ptid || ptid.is_pid ())
3418 select_event_lwp (ptid, &lp, &status);
3419
3420 gdb_assert (lp != NULL);
3421
3422 /* Now that we've selected our final event LWP, un-adjust its PC if
3423 it was a software breakpoint, and we can't reliably support the
3424 "stopped by software breakpoint" stop reason. */
3425 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3426 && !USE_SIGTRAP_SIGINFO)
3427 {
3428 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3429 struct gdbarch *gdbarch = regcache->arch ();
3430 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3431
3432 if (decr_pc != 0)
3433 {
3434 CORE_ADDR pc;
3435
3436 pc = regcache_read_pc (regcache);
3437 regcache_write_pc (regcache, pc + decr_pc);
3438 }
3439 }
3440
3441 /* We'll need this to determine whether to report a SIGSTOP as
3442 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3443 clears it. */
3444 last_resume_kind = lp->last_resume_kind;
3445
3446 if (!target_is_non_stop_p ())
3447 {
3448 /* In all-stop, from the core's perspective, all LWPs are now
3449 stopped until a new resume action is sent over. */
3450 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3451 }
3452 else
3453 {
3454 resume_clear_callback (lp);
3455 }
3456
3457 if (linux_target->low_status_is_event (status))
3458 {
3459 if (debug_linux_nat)
3460 fprintf_unfiltered (gdb_stdlog,
3461 "LLW: trap ptid is %s.\n",
3462 target_pid_to_str (lp->ptid).c_str ());
3463 }
3464
3465 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3466 {
3467 *ourstatus = lp->waitstatus;
3468 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3469 }
3470 else
3471 store_waitstatus (ourstatus, status);
3472
3473 if (debug_linux_nat)
3474 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3475
3476 restore_child_signals_mask (&prev_mask);
3477
3478 if (last_resume_kind == resume_stop
3479 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3480 && WSTOPSIG (status) == SIGSTOP)
3481 {
3482 /* A thread that has been requested to stop by GDB with
3483 target_stop, and it stopped cleanly, so report as SIG0. The
3484 use of SIGSTOP is an implementation detail. */
3485 ourstatus->value.sig = GDB_SIGNAL_0;
3486 }
3487
3488 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3489 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3490 lp->core = -1;
3491 else
3492 lp->core = linux_common_core_of_thread (lp->ptid);
3493
3494 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3495 return filter_exit_event (lp, ourstatus);
3496
3497 return lp->ptid;
3498 }
3499
3500 /* Resume LWPs that are currently stopped without any pending status
3501 to report, but are resumed from the core's perspective. */
3502
3503 static int
3504 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3505 {
3506 if (!lp->stopped)
3507 {
3508 if (debug_linux_nat)
3509 fprintf_unfiltered (gdb_stdlog,
3510 "RSRL: NOT resuming LWP %s, not stopped\n",
3511 target_pid_to_str (lp->ptid).c_str ());
3512 }
3513 else if (!lp->resumed)
3514 {
3515 if (debug_linux_nat)
3516 fprintf_unfiltered (gdb_stdlog,
3517 "RSRL: NOT resuming LWP %s, not resumed\n",
3518 target_pid_to_str (lp->ptid).c_str ());
3519 }
3520 else if (lwp_status_pending_p (lp))
3521 {
3522 if (debug_linux_nat)
3523 fprintf_unfiltered (gdb_stdlog,
3524 "RSRL: NOT resuming LWP %s, has pending status\n",
3525 target_pid_to_str (lp->ptid).c_str ());
3526 }
3527 else
3528 {
3529 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3530 struct gdbarch *gdbarch = regcache->arch ();
3531
3532 try
3533 {
3534 CORE_ADDR pc = regcache_read_pc (regcache);
3535 int leave_stopped = 0;
3536
3537 /* Don't bother if there's a breakpoint at PC that we'd hit
3538 immediately, and we're not waiting for this LWP. */
3539 if (!lp->ptid.matches (wait_ptid))
3540 {
3541 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3542 leave_stopped = 1;
3543 }
3544
3545 if (!leave_stopped)
3546 {
3547 if (debug_linux_nat)
3548 fprintf_unfiltered (gdb_stdlog,
3549 "RSRL: resuming stopped-resumed LWP %s at "
3550 "%s: step=%d\n",
3551 target_pid_to_str (lp->ptid).c_str (),
3552 paddress (gdbarch, pc),
3553 lp->step);
3554
3555 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3556 }
3557 }
3558 catch (const gdb_exception_error &ex)
3559 {
3560 if (!check_ptrace_stopped_lwp_gone (lp))
3561 throw;
3562 }
3563 }
3564
3565 return 0;
3566 }
3567
3568 ptid_t
3569 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3570 int target_options)
3571 {
3572 ptid_t event_ptid;
3573
3574 if (debug_linux_nat)
3575 {
3576 std::string options_string = target_options_to_string (target_options);
3577 fprintf_unfiltered (gdb_stdlog,
3578 "linux_nat_wait: [%s], [%s]\n",
3579 target_pid_to_str (ptid).c_str (),
3580 options_string.c_str ());
3581 }
3582
3583 /* Flush the async file first. */
3584 if (target_is_async_p ())
3585 async_file_flush ();
3586
3587 /* Resume LWPs that are currently stopped without any pending status
3588 to report, but are resumed from the core's perspective. LWPs get
3589 in this state if we find them stopping at a time we're not
3590 interested in reporting the event (target_wait on a
3591 specific_process, for example, see linux_nat_wait_1), and
3592 meanwhile the event became uninteresting. Don't bother resuming
3593 LWPs we're not going to wait for if they'd stop immediately. */
3594 if (target_is_non_stop_p ())
3595 iterate_over_lwps (minus_one_ptid,
3596 [=] (struct lwp_info *info)
3597 {
3598 return resume_stopped_resumed_lwps (info, ptid);
3599 });
3600
3601 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3602
3603 /* If we requested any event, and something came out, assume there
3604 may be more. If we requested a specific lwp or process, also
3605 assume there may be more. */
3606 if (target_is_async_p ()
3607 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3608 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3609 || ptid != minus_one_ptid))
3610 async_file_mark ();
3611
3612 return event_ptid;
3613 }
3614
3615 /* Kill one LWP. */
3616
3617 static void
3618 kill_one_lwp (pid_t pid)
3619 {
3620 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3621
3622 errno = 0;
3623 kill_lwp (pid, SIGKILL);
3624 if (debug_linux_nat)
3625 {
3626 int save_errno = errno;
3627
3628 fprintf_unfiltered (gdb_stdlog,
3629 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3630 save_errno ? safe_strerror (save_errno) : "OK");
3631 }
3632
3633 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3634
3635 errno = 0;
3636 ptrace (PTRACE_KILL, pid, 0, 0);
3637 if (debug_linux_nat)
3638 {
3639 int save_errno = errno;
3640
3641 fprintf_unfiltered (gdb_stdlog,
3642 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3643 save_errno ? safe_strerror (save_errno) : "OK");
3644 }
3645 }
3646
3647 /* Wait for an LWP to die. */
3648
3649 static void
3650 kill_wait_one_lwp (pid_t pid)
3651 {
3652 pid_t res;
3653
3654 /* We must make sure that there are no pending events (delayed
3655 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3656 program doesn't interfere with any following debugging session. */
3657
3658 do
3659 {
3660 res = my_waitpid (pid, NULL, __WALL);
3661 if (res != (pid_t) -1)
3662 {
3663 if (debug_linux_nat)
3664 fprintf_unfiltered (gdb_stdlog,
3665 "KWC: wait %ld received unknown.\n",
3666 (long) pid);
3667 /* The Linux kernel sometimes fails to kill a thread
3668 completely after PTRACE_KILL; that goes from the stop
3669 point in do_fork out to the one in get_signal_to_deliver
3670 and waits again. So kill it again. */
3671 kill_one_lwp (pid);
3672 }
3673 }
3674 while (res == pid);
3675
3676 gdb_assert (res == -1 && errno == ECHILD);
3677 }
3678
3679 /* Callback for iterate_over_lwps. */
3680
3681 static int
3682 kill_callback (struct lwp_info *lp)
3683 {
3684 kill_one_lwp (lp->ptid.lwp ());
3685 return 0;
3686 }
3687
3688 /* Callback for iterate_over_lwps. */
3689
3690 static int
3691 kill_wait_callback (struct lwp_info *lp)
3692 {
3693 kill_wait_one_lwp (lp->ptid.lwp ());
3694 return 0;
3695 }
3696
3697 /* Kill the fork children of any threads of inferior INF that are
3698 stopped at a fork event. */
3699
3700 static void
3701 kill_unfollowed_fork_children (struct inferior *inf)
3702 {
3703 for (thread_info *thread : inf->non_exited_threads ())
3704 {
3705 struct target_waitstatus *ws = &thread->pending_follow;
3706
3707 if (ws->kind == TARGET_WAITKIND_FORKED
3708 || ws->kind == TARGET_WAITKIND_VFORKED)
3709 {
3710 ptid_t child_ptid = ws->value.related_pid;
3711 int child_pid = child_ptid.pid ();
3712 int child_lwp = child_ptid.lwp ();
3713
3714 kill_one_lwp (child_lwp);
3715 kill_wait_one_lwp (child_lwp);
3716
3717 /* Let the arch-specific native code know this process is
3718 gone. */
3719 linux_target->low_forget_process (child_pid);
3720 }
3721 }
3722 }
3723
3724 void
3725 linux_nat_target::kill ()
3726 {
3727 /* If we're stopped while forking and we haven't followed yet,
3728 kill the other task. We need to do this first because the
3729 parent will be sleeping if this is a vfork. */
3730 kill_unfollowed_fork_children (current_inferior ());
3731
3732 if (forks_exist_p ())
3733 linux_fork_killall ();
3734 else
3735 {
3736 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3737
3738 /* Stop all threads before killing them, since ptrace requires
3739 that the thread is stopped to successfully PTRACE_KILL. */
3740 iterate_over_lwps (ptid, stop_callback);
3741 /* ... and wait until all of them have reported back that
3742 they're no longer running. */
3743 iterate_over_lwps (ptid, stop_wait_callback);
3744
3745 /* Kill all LWP's ... */
3746 iterate_over_lwps (ptid, kill_callback);
3747
3748 /* ... and wait until we've flushed all events. */
3749 iterate_over_lwps (ptid, kill_wait_callback);
3750 }
3751
3752 target_mourn_inferior (inferior_ptid);
3753 }
3754
3755 void
3756 linux_nat_target::mourn_inferior ()
3757 {
3758 int pid = inferior_ptid.pid ();
3759
3760 purge_lwp_list (pid);
3761
3762 if (! forks_exist_p ())
3763 /* Normal case, no other forks available. */
3764 inf_ptrace_target::mourn_inferior ();
3765 else
3766 /* Multi-fork case. The current inferior_ptid has exited, but
3767 there are other viable forks to debug. Delete the exiting
3768 one and context-switch to the first available. */
3769 linux_fork_mourn_inferior ();
3770
3771 /* Let the arch-specific native code know this process is gone. */
3772 linux_target->low_forget_process (pid);
3773 }
3774
3775 /* Convert a native/host siginfo object, into/from the siginfo in the
3776 layout of the inferiors' architecture. */
3777
3778 static void
3779 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3780 {
3781 /* If the low target didn't do anything, then just do a straight
3782 memcpy. */
3783 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3784 {
3785 if (direction == 1)
3786 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3787 else
3788 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3789 }
3790 }
3791
3792 static enum target_xfer_status
3793 linux_xfer_siginfo (enum target_object object,
3794 const char *annex, gdb_byte *readbuf,
3795 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3796 ULONGEST *xfered_len)
3797 {
3798 int pid;
3799 siginfo_t siginfo;
3800 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3801
3802 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3803 gdb_assert (readbuf || writebuf);
3804
3805 pid = inferior_ptid.lwp ();
3806 if (pid == 0)
3807 pid = inferior_ptid.pid ();
3808
3809 if (offset > sizeof (siginfo))
3810 return TARGET_XFER_E_IO;
3811
3812 errno = 0;
3813 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3814 if (errno != 0)
3815 return TARGET_XFER_E_IO;
3816
3817 /* When GDB is built as a 64-bit application, ptrace writes into
3818 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3819 inferior with a 64-bit GDB should look the same as debugging it
3820 with a 32-bit GDB, we need to convert it. GDB core always sees
3821 the converted layout, so any read/write will have to be done
3822 post-conversion. */
3823 siginfo_fixup (&siginfo, inf_siginfo, 0);
3824
3825 if (offset + len > sizeof (siginfo))
3826 len = sizeof (siginfo) - offset;
3827
3828 if (readbuf != NULL)
3829 memcpy (readbuf, inf_siginfo + offset, len);
3830 else
3831 {
3832 memcpy (inf_siginfo + offset, writebuf, len);
3833
3834 /* Convert back to ptrace layout before flushing it out. */
3835 siginfo_fixup (&siginfo, inf_siginfo, 1);
3836
3837 errno = 0;
3838 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3839 if (errno != 0)
3840 return TARGET_XFER_E_IO;
3841 }
3842
3843 *xfered_len = len;
3844 return TARGET_XFER_OK;
3845 }
3846
3847 static enum target_xfer_status
3848 linux_nat_xfer_osdata (enum target_object object,
3849 const char *annex, gdb_byte *readbuf,
3850 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3851 ULONGEST *xfered_len);
3852
3853 static enum target_xfer_status
3854 linux_proc_xfer_partial (enum target_object object,
3855 const char *annex, gdb_byte *readbuf,
3856 const gdb_byte *writebuf,
3857 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3858
3859 enum target_xfer_status
3860 linux_nat_target::xfer_partial (enum target_object object,
3861 const char *annex, gdb_byte *readbuf,
3862 const gdb_byte *writebuf,
3863 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3864 {
3865 enum target_xfer_status xfer;
3866
3867 if (object == TARGET_OBJECT_SIGNAL_INFO)
3868 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3869 offset, len, xfered_len);
3870
3871 /* The target is connected but no live inferior is selected. Pass
3872 this request down to a lower stratum (e.g., the executable
3873 file). */
3874 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3875 return TARGET_XFER_EOF;
3876
3877 if (object == TARGET_OBJECT_AUXV)
3878 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3879 offset, len, xfered_len);
3880
3881 if (object == TARGET_OBJECT_OSDATA)
3882 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3883 offset, len, xfered_len);
3884
3885 /* GDB calculates all addresses in the largest possible address
3886 width.
3887 The address width must be masked before its final use - either by
3888 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3889
3890 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3891
3892 if (object == TARGET_OBJECT_MEMORY)
3893 {
3894 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3895
3896 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3897 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3898 }
3899
3900 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3901 offset, len, xfered_len);
3902 if (xfer != TARGET_XFER_EOF)
3903 return xfer;
3904
3905 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3906 offset, len, xfered_len);
3907 }
3908
3909 bool
3910 linux_nat_target::thread_alive (ptid_t ptid)
3911 {
3912 /* As long as a PTID is in lwp list, consider it alive. */
3913 return find_lwp_pid (ptid) != NULL;
3914 }
3915
3916 /* Implement the to_update_thread_list target method for this
3917 target. */
3918
3919 void
3920 linux_nat_target::update_thread_list ()
3921 {
3922 struct lwp_info *lwp;
3923
3924 /* We add/delete threads from the list as clone/exit events are
3925 processed, so just try deleting exited threads still in the
3926 thread list. */
3927 delete_exited_threads ();
3928
3929 /* Update the processor core that each lwp/thread was last seen
3930 running on. */
3931 ALL_LWPS (lwp)
3932 {
3933 /* Avoid accessing /proc if the thread hasn't run since we last
3934 time we fetched the thread's core. Accessing /proc becomes
3935 noticeably expensive when we have thousands of LWPs. */
3936 if (lwp->core == -1)
3937 lwp->core = linux_common_core_of_thread (lwp->ptid);
3938 }
3939 }
3940
3941 std::string
3942 linux_nat_target::pid_to_str (ptid_t ptid)
3943 {
3944 if (ptid.lwp_p ()
3945 && (ptid.pid () != ptid.lwp ()
3946 || num_lwps (ptid.pid ()) > 1))
3947 return string_printf ("LWP %ld", ptid.lwp ());
3948
3949 return normal_pid_to_str (ptid);
3950 }
3951
3952 const char *
3953 linux_nat_target::thread_name (struct thread_info *thr)
3954 {
3955 return linux_proc_tid_get_name (thr->ptid);
3956 }
3957
3958 /* Accepts an integer PID; Returns a string representing a file that
3959 can be opened to get the symbols for the child process. */
3960
3961 char *
3962 linux_nat_target::pid_to_exec_file (int pid)
3963 {
3964 return linux_proc_pid_to_exec_file (pid);
3965 }
3966
3967 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3968 Because we can use a single read/write call, this can be much more
3969 efficient than banging away at PTRACE_PEEKTEXT. */
3970
3971 static enum target_xfer_status
3972 linux_proc_xfer_partial (enum target_object object,
3973 const char *annex, gdb_byte *readbuf,
3974 const gdb_byte *writebuf,
3975 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3976 {
3977 LONGEST ret;
3978 int fd;
3979 char filename[64];
3980
3981 if (object != TARGET_OBJECT_MEMORY)
3982 return TARGET_XFER_EOF;
3983
3984 /* Don't bother for one word. */
3985 if (len < 3 * sizeof (long))
3986 return TARGET_XFER_EOF;
3987
3988 /* We could keep this file open and cache it - possibly one per
3989 thread. That requires some juggling, but is even faster. */
3990 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3991 inferior_ptid.lwp ());
3992 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3993 | O_LARGEFILE), 0);
3994 if (fd == -1)
3995 return TARGET_XFER_EOF;
3996
3997 /* Use pread64/pwrite64 if available, since they save a syscall and can
3998 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3999 debugging a SPARC64 application). */
4000 #ifdef HAVE_PREAD64
4001 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4002 : pwrite64 (fd, writebuf, len, offset));
4003 #else
4004 ret = lseek (fd, offset, SEEK_SET);
4005 if (ret != -1)
4006 ret = (readbuf ? read (fd, readbuf, len)
4007 : write (fd, writebuf, len));
4008 #endif
4009
4010 close (fd);
4011
4012 if (ret == -1 || ret == 0)
4013 return TARGET_XFER_EOF;
4014 else
4015 {
4016 *xfered_len = ret;
4017 return TARGET_XFER_OK;
4018 }
4019 }
4020
4021
4022 /* Parse LINE as a signal set and add its set bits to SIGS. */
4023
4024 static void
4025 add_line_to_sigset (const char *line, sigset_t *sigs)
4026 {
4027 int len = strlen (line) - 1;
4028 const char *p;
4029 int signum;
4030
4031 if (line[len] != '\n')
4032 error (_("Could not parse signal set: %s"), line);
4033
4034 p = line;
4035 signum = len * 4;
4036 while (len-- > 0)
4037 {
4038 int digit;
4039
4040 if (*p >= '0' && *p <= '9')
4041 digit = *p - '0';
4042 else if (*p >= 'a' && *p <= 'f')
4043 digit = *p - 'a' + 10;
4044 else
4045 error (_("Could not parse signal set: %s"), line);
4046
4047 signum -= 4;
4048
4049 if (digit & 1)
4050 sigaddset (sigs, signum + 1);
4051 if (digit & 2)
4052 sigaddset (sigs, signum + 2);
4053 if (digit & 4)
4054 sigaddset (sigs, signum + 3);
4055 if (digit & 8)
4056 sigaddset (sigs, signum + 4);
4057
4058 p++;
4059 }
4060 }
4061
4062 /* Find process PID's pending signals from /proc/pid/status and set
4063 SIGS to match. */
4064
4065 void
4066 linux_proc_pending_signals (int pid, sigset_t *pending,
4067 sigset_t *blocked, sigset_t *ignored)
4068 {
4069 char buffer[PATH_MAX], fname[PATH_MAX];
4070
4071 sigemptyset (pending);
4072 sigemptyset (blocked);
4073 sigemptyset (ignored);
4074 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4075 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4076 if (procfile == NULL)
4077 error (_("Could not open %s"), fname);
4078
4079 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4080 {
4081 /* Normal queued signals are on the SigPnd line in the status
4082 file. However, 2.6 kernels also have a "shared" pending
4083 queue for delivering signals to a thread group, so check for
4084 a ShdPnd line also.
4085
4086 Unfortunately some Red Hat kernels include the shared pending
4087 queue but not the ShdPnd status field. */
4088
4089 if (startswith (buffer, "SigPnd:\t"))
4090 add_line_to_sigset (buffer + 8, pending);
4091 else if (startswith (buffer, "ShdPnd:\t"))
4092 add_line_to_sigset (buffer + 8, pending);
4093 else if (startswith (buffer, "SigBlk:\t"))
4094 add_line_to_sigset (buffer + 8, blocked);
4095 else if (startswith (buffer, "SigIgn:\t"))
4096 add_line_to_sigset (buffer + 8, ignored);
4097 }
4098 }
4099
4100 static enum target_xfer_status
4101 linux_nat_xfer_osdata (enum target_object object,
4102 const char *annex, gdb_byte *readbuf,
4103 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4104 ULONGEST *xfered_len)
4105 {
4106 gdb_assert (object == TARGET_OBJECT_OSDATA);
4107
4108 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4109 if (*xfered_len == 0)
4110 return TARGET_XFER_EOF;
4111 else
4112 return TARGET_XFER_OK;
4113 }
4114
4115 std::vector<static_tracepoint_marker>
4116 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4117 {
4118 char s[IPA_CMD_BUF_SIZE];
4119 int pid = inferior_ptid.pid ();
4120 std::vector<static_tracepoint_marker> markers;
4121 const char *p = s;
4122 ptid_t ptid = ptid_t (pid, 0, 0);
4123 static_tracepoint_marker marker;
4124
4125 /* Pause all */
4126 target_stop (ptid);
4127
4128 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4129 s[sizeof ("qTfSTM")] = 0;
4130
4131 agent_run_command (pid, s, strlen (s) + 1);
4132
4133 /* Unpause all. */
4134 SCOPE_EXIT { target_continue_no_signal (ptid); };
4135
4136 while (*p++ == 'm')
4137 {
4138 do
4139 {
4140 parse_static_tracepoint_marker_definition (p, &p, &marker);
4141
4142 if (strid == NULL || marker.str_id == strid)
4143 markers.push_back (std::move (marker));
4144 }
4145 while (*p++ == ','); /* comma-separated list */
4146
4147 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4148 s[sizeof ("qTsSTM")] = 0;
4149 agent_run_command (pid, s, strlen (s) + 1);
4150 p = s;
4151 }
4152
4153 return markers;
4154 }
4155
4156 /* target_is_async_p implementation. */
4157
4158 bool
4159 linux_nat_target::is_async_p ()
4160 {
4161 return linux_is_async_p ();
4162 }
4163
4164 /* target_can_async_p implementation. */
4165
4166 bool
4167 linux_nat_target::can_async_p ()
4168 {
4169 /* We're always async, unless the user explicitly prevented it with the
4170 "maint set target-async" command. */
4171 return target_async_permitted;
4172 }
4173
4174 bool
4175 linux_nat_target::supports_non_stop ()
4176 {
4177 return 1;
4178 }
4179
4180 /* to_always_non_stop_p implementation. */
4181
4182 bool
4183 linux_nat_target::always_non_stop_p ()
4184 {
4185 return 1;
4186 }
4187
4188 /* True if we want to support multi-process. To be removed when GDB
4189 supports multi-exec. */
4190
4191 int linux_multi_process = 1;
4192
4193 bool
4194 linux_nat_target::supports_multi_process ()
4195 {
4196 return linux_multi_process;
4197 }
4198
4199 bool
4200 linux_nat_target::supports_disable_randomization ()
4201 {
4202 #ifdef HAVE_PERSONALITY
4203 return 1;
4204 #else
4205 return 0;
4206 #endif
4207 }
4208
4209 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4210 so we notice when any child changes state, and notify the
4211 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4212 above to wait for the arrival of a SIGCHLD. */
4213
4214 static void
4215 sigchld_handler (int signo)
4216 {
4217 int old_errno = errno;
4218
4219 if (debug_linux_nat)
4220 gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1);
4221
4222 if (signo == SIGCHLD
4223 && linux_nat_event_pipe[0] != -1)
4224 async_file_mark (); /* Let the event loop know that there are
4225 events to handle. */
4226
4227 errno = old_errno;
4228 }
4229
4230 /* Callback registered with the target events file descriptor. */
4231
4232 static void
4233 handle_target_event (int error, gdb_client_data client_data)
4234 {
4235 inferior_event_handler (INF_REG_EVENT, NULL);
4236 }
4237
4238 /* Create/destroy the target events pipe. Returns previous state. */
4239
4240 static int
4241 linux_async_pipe (int enable)
4242 {
4243 int previous = linux_is_async_p ();
4244
4245 if (previous != enable)
4246 {
4247 sigset_t prev_mask;
4248
4249 /* Block child signals while we create/destroy the pipe, as
4250 their handler writes to it. */
4251 block_child_signals (&prev_mask);
4252
4253 if (enable)
4254 {
4255 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4256 internal_error (__FILE__, __LINE__,
4257 "creating event pipe failed.");
4258
4259 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4260 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4261 }
4262 else
4263 {
4264 close (linux_nat_event_pipe[0]);
4265 close (linux_nat_event_pipe[1]);
4266 linux_nat_event_pipe[0] = -1;
4267 linux_nat_event_pipe[1] = -1;
4268 }
4269
4270 restore_child_signals_mask (&prev_mask);
4271 }
4272
4273 return previous;
4274 }
4275
4276 int
4277 linux_nat_target::async_wait_fd ()
4278 {
4279 return linux_nat_event_pipe[0];
4280 }
4281
4282 /* target_async implementation. */
4283
4284 void
4285 linux_nat_target::async (int enable)
4286 {
4287 if (enable)
4288 {
4289 if (!linux_async_pipe (1))
4290 {
4291 add_file_handler (linux_nat_event_pipe[0],
4292 handle_target_event, NULL);
4293 /* There may be pending events to handle. Tell the event loop
4294 to poll them. */
4295 async_file_mark ();
4296 }
4297 }
4298 else
4299 {
4300 delete_file_handler (linux_nat_event_pipe[0]);
4301 linux_async_pipe (0);
4302 }
4303 return;
4304 }
4305
4306 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4307 event came out. */
4308
4309 static int
4310 linux_nat_stop_lwp (struct lwp_info *lwp)
4311 {
4312 if (!lwp->stopped)
4313 {
4314 if (debug_linux_nat)
4315 fprintf_unfiltered (gdb_stdlog,
4316 "LNSL: running -> suspending %s\n",
4317 target_pid_to_str (lwp->ptid).c_str ());
4318
4319
4320 if (lwp->last_resume_kind == resume_stop)
4321 {
4322 if (debug_linux_nat)
4323 fprintf_unfiltered (gdb_stdlog,
4324 "linux-nat: already stopping LWP %ld at "
4325 "GDB's request\n",
4326 lwp->ptid.lwp ());
4327 return 0;
4328 }
4329
4330 stop_callback (lwp);
4331 lwp->last_resume_kind = resume_stop;
4332 }
4333 else
4334 {
4335 /* Already known to be stopped; do nothing. */
4336
4337 if (debug_linux_nat)
4338 {
4339 if (find_thread_ptid (linux_target, lwp->ptid)->stop_requested)
4340 fprintf_unfiltered (gdb_stdlog,
4341 "LNSL: already stopped/stop_requested %s\n",
4342 target_pid_to_str (lwp->ptid).c_str ());
4343 else
4344 fprintf_unfiltered (gdb_stdlog,
4345 "LNSL: already stopped/no "
4346 "stop_requested yet %s\n",
4347 target_pid_to_str (lwp->ptid).c_str ());
4348 }
4349 }
4350 return 0;
4351 }
4352
4353 void
4354 linux_nat_target::stop (ptid_t ptid)
4355 {
4356 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4357 }
4358
4359 void
4360 linux_nat_target::close ()
4361 {
4362 /* Unregister from the event loop. */
4363 if (is_async_p ())
4364 async (0);
4365
4366 inf_ptrace_target::close ();
4367 }
4368
4369 /* When requests are passed down from the linux-nat layer to the
4370 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4371 used. The address space pointer is stored in the inferior object,
4372 but the common code that is passed such ptid can't tell whether
4373 lwpid is a "main" process id or not (it assumes so). We reverse
4374 look up the "main" process id from the lwp here. */
4375
4376 struct address_space *
4377 linux_nat_target::thread_address_space (ptid_t ptid)
4378 {
4379 struct lwp_info *lwp;
4380 struct inferior *inf;
4381 int pid;
4382
4383 if (ptid.lwp () == 0)
4384 {
4385 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4386 tgid. */
4387 lwp = find_lwp_pid (ptid);
4388 pid = lwp->ptid.pid ();
4389 }
4390 else
4391 {
4392 /* A (pid,lwpid,0) ptid. */
4393 pid = ptid.pid ();
4394 }
4395
4396 inf = find_inferior_pid (this, pid);
4397 gdb_assert (inf != NULL);
4398 return inf->aspace;
4399 }
4400
4401 /* Return the cached value of the processor core for thread PTID. */
4402
4403 int
4404 linux_nat_target::core_of_thread (ptid_t ptid)
4405 {
4406 struct lwp_info *info = find_lwp_pid (ptid);
4407
4408 if (info)
4409 return info->core;
4410 return -1;
4411 }
4412
4413 /* Implementation of to_filesystem_is_local. */
4414
4415 bool
4416 linux_nat_target::filesystem_is_local ()
4417 {
4418 struct inferior *inf = current_inferior ();
4419
4420 if (inf->fake_pid_p || inf->pid == 0)
4421 return true;
4422
4423 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4424 }
4425
4426 /* Convert the INF argument passed to a to_fileio_* method
4427 to a process ID suitable for passing to its corresponding
4428 linux_mntns_* function. If INF is non-NULL then the
4429 caller is requesting the filesystem seen by INF. If INF
4430 is NULL then the caller is requesting the filesystem seen
4431 by the GDB. We fall back to GDB's filesystem in the case
4432 that INF is non-NULL but its PID is unknown. */
4433
4434 static pid_t
4435 linux_nat_fileio_pid_of (struct inferior *inf)
4436 {
4437 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4438 return getpid ();
4439 else
4440 return inf->pid;
4441 }
4442
4443 /* Implementation of to_fileio_open. */
4444
4445 int
4446 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4447 int flags, int mode, int warn_if_slow,
4448 int *target_errno)
4449 {
4450 int nat_flags;
4451 mode_t nat_mode;
4452 int fd;
4453
4454 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4455 || fileio_to_host_mode (mode, &nat_mode) == -1)
4456 {
4457 *target_errno = FILEIO_EINVAL;
4458 return -1;
4459 }
4460
4461 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4462 filename, nat_flags, nat_mode);
4463 if (fd == -1)
4464 *target_errno = host_to_fileio_error (errno);
4465
4466 return fd;
4467 }
4468
4469 /* Implementation of to_fileio_readlink. */
4470
4471 gdb::optional<std::string>
4472 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4473 int *target_errno)
4474 {
4475 char buf[PATH_MAX];
4476 int len;
4477
4478 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4479 filename, buf, sizeof (buf));
4480 if (len < 0)
4481 {
4482 *target_errno = host_to_fileio_error (errno);
4483 return {};
4484 }
4485
4486 return std::string (buf, len);
4487 }
4488
4489 /* Implementation of to_fileio_unlink. */
4490
4491 int
4492 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4493 int *target_errno)
4494 {
4495 int ret;
4496
4497 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4498 filename);
4499 if (ret == -1)
4500 *target_errno = host_to_fileio_error (errno);
4501
4502 return ret;
4503 }
4504
4505 /* Implementation of the to_thread_events method. */
4506
4507 void
4508 linux_nat_target::thread_events (int enable)
4509 {
4510 report_thread_events = enable;
4511 }
4512
4513 linux_nat_target::linux_nat_target ()
4514 {
4515 /* We don't change the stratum; this target will sit at
4516 process_stratum and thread_db will set at thread_stratum. This
4517 is a little strange, since this is a multi-threaded-capable
4518 target, but we want to be on the stack below thread_db, and we
4519 also want to be used for single-threaded processes. */
4520 }
4521
4522 /* See linux-nat.h. */
4523
4524 int
4525 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4526 {
4527 int pid;
4528
4529 pid = ptid.lwp ();
4530 if (pid == 0)
4531 pid = ptid.pid ();
4532
4533 errno = 0;
4534 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4535 if (errno != 0)
4536 {
4537 memset (siginfo, 0, sizeof (*siginfo));
4538 return 0;
4539 }
4540 return 1;
4541 }
4542
4543 /* See nat/linux-nat.h. */
4544
4545 ptid_t
4546 current_lwp_ptid (void)
4547 {
4548 gdb_assert (inferior_ptid.lwp_p ());
4549 return inferior_ptid;
4550 }
4551
4552 void _initialize_linux_nat ();
4553 void
4554 _initialize_linux_nat ()
4555 {
4556 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4557 &debug_linux_nat, _("\
4558 Set debugging of GNU/Linux lwp module."), _("\
4559 Show debugging of GNU/Linux lwp module."), _("\
4560 Enables printf debugging output."),
4561 NULL,
4562 show_debug_linux_nat,
4563 &setdebuglist, &showdebuglist);
4564
4565 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4566 &debug_linux_namespaces, _("\
4567 Set debugging of GNU/Linux namespaces module."), _("\
4568 Show debugging of GNU/Linux namespaces module."), _("\
4569 Enables printf debugging output."),
4570 NULL,
4571 NULL,
4572 &setdebuglist, &showdebuglist);
4573
4574 /* Install a SIGCHLD handler. */
4575 sigchld_action.sa_handler = sigchld_handler;
4576 sigemptyset (&sigchld_action.sa_mask);
4577 sigchld_action.sa_flags = SA_RESTART;
4578
4579 /* Make it the default. */
4580 sigaction (SIGCHLD, &sigchld_action, NULL);
4581
4582 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4583 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4584 sigdelset (&suspend_mask, SIGCHLD);
4585
4586 sigemptyset (&blocked_mask);
4587
4588 lwp_lwpid_htab_create ();
4589 }
4590 \f
4591
4592 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4593 the GNU/Linux Threads library and therefore doesn't really belong
4594 here. */
4595
4596 /* Return the set of signals used by the threads library in *SET. */
4597
4598 void
4599 lin_thread_get_thread_signals (sigset_t *set)
4600 {
4601 sigemptyset (set);
4602
4603 /* NPTL reserves the first two RT signals, but does not provide any
4604 way for the debugger to query the signal numbers - fortunately
4605 they don't change. */
4606 sigaddset (set, __SIGRTMIN);
4607 sigaddset (set, __SIGRTMIN + 1);
4608 }
This page took 0.125637 seconds and 4 git commands to generate.