Some get_last_target_status tweaks
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/gdb-sigmask.h"
71
72 /* This comment documents high-level logic of this file.
73
74 Waiting for events in sync mode
75 ===============================
76
77 When waiting for an event in a specific thread, we just use waitpid,
78 passing the specific pid, and not passing WNOHANG.
79
80 When waiting for an event in all threads, waitpid is not quite good:
81
82 - If the thread group leader exits while other threads in the thread
83 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
84 return an exit status until the other threads in the group are
85 reaped.
86
87 - When a non-leader thread execs, that thread just vanishes without
88 reporting an exit (so we'd hang if we waited for it explicitly in
89 that case). The exec event is instead reported to the TGID pid.
90
91 The solution is to always use -1 and WNOHANG, together with
92 sigsuspend.
93
94 First, we use non-blocking waitpid to check for events. If nothing is
95 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
96 it means something happened to a child process. As soon as we know
97 there's an event, we get back to calling nonblocking waitpid.
98
99 Note that SIGCHLD should be blocked between waitpid and sigsuspend
100 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
101 when it's blocked, the signal becomes pending and sigsuspend
102 immediately notices it and returns.
103
104 Waiting for events in async mode (TARGET_WNOHANG)
105 =================================================
106
107 In async mode, GDB should always be ready to handle both user input
108 and target events, so neither blocking waitpid nor sigsuspend are
109 viable options. Instead, we should asynchronously notify the GDB main
110 event loop whenever there's an unprocessed event from the target. We
111 detect asynchronous target events by handling SIGCHLD signals. To
112 notify the event loop about target events, the self-pipe trick is used
113 --- a pipe is registered as waitable event source in the event loop,
114 the event loop select/poll's on the read end of this pipe (as well on
115 other event sources, e.g., stdin), and the SIGCHLD handler writes a
116 byte to this pipe. This is more portable than relying on
117 pselect/ppoll, since on kernels that lack those syscalls, libc
118 emulates them with select/poll+sigprocmask, and that is racy
119 (a.k.a. plain broken).
120
121 Obviously, if we fail to notify the event loop if there's a target
122 event, it's bad. OTOH, if we notify the event loop when there's no
123 event from the target, linux_nat_wait will detect that there's no real
124 event to report, and return event of type TARGET_WAITKIND_IGNORE.
125 This is mostly harmless, but it will waste time and is better avoided.
126
127 The main design point is that every time GDB is outside linux-nat.c,
128 we have a SIGCHLD handler installed that is called when something
129 happens to the target and notifies the GDB event loop. Whenever GDB
130 core decides to handle the event, and calls into linux-nat.c, we
131 process things as in sync mode, except that the we never block in
132 sigsuspend.
133
134 While processing an event, we may end up momentarily blocked in
135 waitpid calls. Those waitpid calls, while blocking, are guarantied to
136 return quickly. E.g., in all-stop mode, before reporting to the core
137 that an LWP hit a breakpoint, all LWPs are stopped by sending them
138 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
139 Note that this is different from blocking indefinitely waiting for the
140 next event --- here, we're already handling an event.
141
142 Use of signals
143 ==============
144
145 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
146 signal is not entirely significant; we just need for a signal to be delivered,
147 so that we can intercept it. SIGSTOP's advantage is that it can not be
148 blocked. A disadvantage is that it is not a real-time signal, so it can only
149 be queued once; we do not keep track of other sources of SIGSTOP.
150
151 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
152 use them, because they have special behavior when the signal is generated -
153 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
154 kills the entire thread group.
155
156 A delivered SIGSTOP would stop the entire thread group, not just the thread we
157 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
158 cancel it (by PTRACE_CONT without passing SIGSTOP).
159
160 We could use a real-time signal instead. This would solve those problems; we
161 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
162 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
163 generates it, and there are races with trying to find a signal that is not
164 blocked.
165
166 Exec events
167 ===========
168
169 The case of a thread group (process) with 3 or more threads, and a
170 thread other than the leader execs is worth detailing:
171
172 On an exec, the Linux kernel destroys all threads except the execing
173 one in the thread group, and resets the execing thread's tid to the
174 tgid. No exit notification is sent for the execing thread -- from the
175 ptracer's perspective, it appears as though the execing thread just
176 vanishes. Until we reap all other threads except the leader and the
177 execing thread, the leader will be zombie, and the execing thread will
178 be in `D (disc sleep)' state. As soon as all other threads are
179 reaped, the execing thread changes its tid to the tgid, and the
180 previous (zombie) leader vanishes, giving place to the "new"
181 leader. */
182
183 #ifndef O_LARGEFILE
184 #define O_LARGEFILE 0
185 #endif
186
187 struct linux_nat_target *linux_target;
188
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191
192 static unsigned int debug_linux_nat;
193 static void
194 show_debug_linux_nat (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
198 value);
199 }
200
201 struct simple_pid_list
202 {
203 int pid;
204 int status;
205 struct simple_pid_list *next;
206 };
207 struct simple_pid_list *stopped_pids;
208
209 /* Whether target_thread_events is in effect. */
210 static int report_thread_events;
211
212 /* Async mode support. */
213
214 /* The read/write ends of the pipe registered as waitable file in the
215 event loop. */
216 static int linux_nat_event_pipe[2] = { -1, -1 };
217
218 /* True if we're currently in async mode. */
219 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
220
221 /* Flush the event pipe. */
222
223 static void
224 async_file_flush (void)
225 {
226 int ret;
227 char buf;
228
229 do
230 {
231 ret = read (linux_nat_event_pipe[0], &buf, 1);
232 }
233 while (ret >= 0 || (ret == -1 && errno == EINTR));
234 }
235
236 /* Put something (anything, doesn't matter what, or how much) in event
237 pipe, so that the select/poll in the event-loop realizes we have
238 something to process. */
239
240 static void
241 async_file_mark (void)
242 {
243 int ret;
244
245 /* It doesn't really matter what the pipe contains, as long we end
246 up with something in it. Might as well flush the previous
247 left-overs. */
248 async_file_flush ();
249
250 do
251 {
252 ret = write (linux_nat_event_pipe[1], "+", 1);
253 }
254 while (ret == -1 && errno == EINTR);
255
256 /* Ignore EAGAIN. If the pipe is full, the event loop will already
257 be awakened anyway. */
258 }
259
260 static int kill_lwp (int lwpid, int signo);
261
262 static int stop_callback (struct lwp_info *lp);
263
264 static void block_child_signals (sigset_t *prev_mask);
265 static void restore_child_signals_mask (sigset_t *prev_mask);
266
267 struct lwp_info;
268 static struct lwp_info *add_lwp (ptid_t ptid);
269 static void purge_lwp_list (int pid);
270 static void delete_lwp (ptid_t ptid);
271 static struct lwp_info *find_lwp_pid (ptid_t ptid);
272
273 static int lwp_status_pending_p (struct lwp_info *lp);
274
275 static void save_stop_reason (struct lwp_info *lp);
276
277 \f
278 /* LWP accessors. */
279
280 /* See nat/linux-nat.h. */
281
282 ptid_t
283 ptid_of_lwp (struct lwp_info *lwp)
284 {
285 return lwp->ptid;
286 }
287
288 /* See nat/linux-nat.h. */
289
290 void
291 lwp_set_arch_private_info (struct lwp_info *lwp,
292 struct arch_lwp_info *info)
293 {
294 lwp->arch_private = info;
295 }
296
297 /* See nat/linux-nat.h. */
298
299 struct arch_lwp_info *
300 lwp_arch_private_info (struct lwp_info *lwp)
301 {
302 return lwp->arch_private;
303 }
304
305 /* See nat/linux-nat.h. */
306
307 int
308 lwp_is_stopped (struct lwp_info *lwp)
309 {
310 return lwp->stopped;
311 }
312
313 /* See nat/linux-nat.h. */
314
315 enum target_stop_reason
316 lwp_stop_reason (struct lwp_info *lwp)
317 {
318 return lwp->stop_reason;
319 }
320
321 /* See nat/linux-nat.h. */
322
323 int
324 lwp_is_stepping (struct lwp_info *lwp)
325 {
326 return lwp->step;
327 }
328
329 \f
330 /* Trivial list manipulation functions to keep track of a list of
331 new stopped processes. */
332 static void
333 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
334 {
335 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
336
337 new_pid->pid = pid;
338 new_pid->status = status;
339 new_pid->next = *listp;
340 *listp = new_pid;
341 }
342
343 static int
344 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
345 {
346 struct simple_pid_list **p;
347
348 for (p = listp; *p != NULL; p = &(*p)->next)
349 if ((*p)->pid == pid)
350 {
351 struct simple_pid_list *next = (*p)->next;
352
353 *statusp = (*p)->status;
354 xfree (*p);
355 *p = next;
356 return 1;
357 }
358 return 0;
359 }
360
361 /* Return the ptrace options that we want to try to enable. */
362
363 static int
364 linux_nat_ptrace_options (int attached)
365 {
366 int options = 0;
367
368 if (!attached)
369 options |= PTRACE_O_EXITKILL;
370
371 options |= (PTRACE_O_TRACESYSGOOD
372 | PTRACE_O_TRACEVFORKDONE
373 | PTRACE_O_TRACEVFORK
374 | PTRACE_O_TRACEFORK
375 | PTRACE_O_TRACEEXEC);
376
377 return options;
378 }
379
380 /* Initialize ptrace and procfs warnings and check for supported
381 ptrace features given PID.
382
383 ATTACHED should be nonzero iff we attached to the inferior. */
384
385 static void
386 linux_init_ptrace_procfs (pid_t pid, int attached)
387 {
388 int options = linux_nat_ptrace_options (attached);
389
390 linux_enable_event_reporting (pid, options);
391 linux_ptrace_init_warnings ();
392 linux_proc_init_warnings ();
393 }
394
395 linux_nat_target::~linux_nat_target ()
396 {}
397
398 void
399 linux_nat_target::post_attach (int pid)
400 {
401 linux_init_ptrace_procfs (pid, 1);
402 }
403
404 void
405 linux_nat_target::post_startup_inferior (ptid_t ptid)
406 {
407 linux_init_ptrace_procfs (ptid.pid (), 0);
408 }
409
410 /* Return the number of known LWPs in the tgid given by PID. */
411
412 static int
413 num_lwps (int pid)
414 {
415 int count = 0;
416 struct lwp_info *lp;
417
418 for (lp = lwp_list; lp; lp = lp->next)
419 if (lp->ptid.pid () == pid)
420 count++;
421
422 return count;
423 }
424
425 /* Deleter for lwp_info unique_ptr specialisation. */
426
427 struct lwp_deleter
428 {
429 void operator() (struct lwp_info *lwp) const
430 {
431 delete_lwp (lwp->ptid);
432 }
433 };
434
435 /* A unique_ptr specialisation for lwp_info. */
436
437 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
438
439 /* Target hook for follow_fork. On entry inferior_ptid must be the
440 ptid of the followed inferior. At return, inferior_ptid will be
441 unchanged. */
442
443 int
444 linux_nat_target::follow_fork (int follow_child, int detach_fork)
445 {
446 if (!follow_child)
447 {
448 struct lwp_info *child_lp = NULL;
449 int has_vforked;
450 ptid_t parent_ptid, child_ptid;
451 int parent_pid, child_pid;
452
453 has_vforked = (inferior_thread ()->pending_follow.kind
454 == TARGET_WAITKIND_VFORKED);
455 parent_ptid = inferior_ptid;
456 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
457 parent_pid = parent_ptid.lwp ();
458 child_pid = child_ptid.lwp ();
459
460 /* We're already attached to the parent, by default. */
461 child_lp = add_lwp (child_ptid);
462 child_lp->stopped = 1;
463 child_lp->last_resume_kind = resume_stop;
464
465 /* Detach new forked process? */
466 if (detach_fork)
467 {
468 int child_stop_signal = 0;
469 bool detach_child = true;
470
471 /* Move CHILD_LP into a unique_ptr and clear the source pointer
472 to prevent us doing anything stupid with it. */
473 lwp_info_up child_lp_ptr (child_lp);
474 child_lp = nullptr;
475
476 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
477
478 /* When debugging an inferior in an architecture that supports
479 hardware single stepping on a kernel without commit
480 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
481 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
482 set if the parent process had them set.
483 To work around this, single step the child process
484 once before detaching to clear the flags. */
485
486 /* Note that we consult the parent's architecture instead of
487 the child's because there's no inferior for the child at
488 this point. */
489 if (!gdbarch_software_single_step_p (target_thread_architecture
490 (parent_ptid)))
491 {
492 int status;
493
494 linux_disable_event_reporting (child_pid);
495 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
496 perror_with_name (_("Couldn't do single step"));
497 if (my_waitpid (child_pid, &status, 0) < 0)
498 perror_with_name (_("Couldn't wait vfork process"));
499 else
500 {
501 detach_child = WIFSTOPPED (status);
502 child_stop_signal = WSTOPSIG (status);
503 }
504 }
505
506 if (detach_child)
507 {
508 int signo = child_stop_signal;
509
510 if (signo != 0
511 && !signal_pass_state (gdb_signal_from_host (signo)))
512 signo = 0;
513 ptrace (PTRACE_DETACH, child_pid, 0, signo);
514 }
515 }
516 else
517 {
518 scoped_restore save_inferior_ptid
519 = make_scoped_restore (&inferior_ptid);
520 inferior_ptid = child_ptid;
521
522 /* Let the thread_db layer learn about this new process. */
523 check_for_thread_db ();
524 }
525
526 if (has_vforked)
527 {
528 struct lwp_info *parent_lp;
529
530 parent_lp = find_lwp_pid (parent_ptid);
531 gdb_assert (linux_supports_tracefork () >= 0);
532
533 if (linux_supports_tracevforkdone ())
534 {
535 if (debug_linux_nat)
536 fprintf_unfiltered (gdb_stdlog,
537 "LCFF: waiting for VFORK_DONE on %d\n",
538 parent_pid);
539 parent_lp->stopped = 1;
540
541 /* We'll handle the VFORK_DONE event like any other
542 event, in target_wait. */
543 }
544 else
545 {
546 /* We can't insert breakpoints until the child has
547 finished with the shared memory region. We need to
548 wait until that happens. Ideal would be to just
549 call:
550 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
551 - waitpid (parent_pid, &status, __WALL);
552 However, most architectures can't handle a syscall
553 being traced on the way out if it wasn't traced on
554 the way in.
555
556 We might also think to loop, continuing the child
557 until it exits or gets a SIGTRAP. One problem is
558 that the child might call ptrace with PTRACE_TRACEME.
559
560 There's no simple and reliable way to figure out when
561 the vforked child will be done with its copy of the
562 shared memory. We could step it out of the syscall,
563 two instructions, let it go, and then single-step the
564 parent once. When we have hardware single-step, this
565 would work; with software single-step it could still
566 be made to work but we'd have to be able to insert
567 single-step breakpoints in the child, and we'd have
568 to insert -just- the single-step breakpoint in the
569 parent. Very awkward.
570
571 In the end, the best we can do is to make sure it
572 runs for a little while. Hopefully it will be out of
573 range of any breakpoints we reinsert. Usually this
574 is only the single-step breakpoint at vfork's return
575 point. */
576
577 if (debug_linux_nat)
578 fprintf_unfiltered (gdb_stdlog,
579 "LCFF: no VFORK_DONE "
580 "support, sleeping a bit\n");
581
582 usleep (10000);
583
584 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
585 and leave it pending. The next linux_nat_resume call
586 will notice a pending event, and bypasses actually
587 resuming the inferior. */
588 parent_lp->status = 0;
589 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
590 parent_lp->stopped = 1;
591
592 /* If we're in async mode, need to tell the event loop
593 there's something here to process. */
594 if (target_is_async_p ())
595 async_file_mark ();
596 }
597 }
598 }
599 else
600 {
601 struct lwp_info *child_lp;
602
603 child_lp = add_lwp (inferior_ptid);
604 child_lp->stopped = 1;
605 child_lp->last_resume_kind = resume_stop;
606
607 /* Let the thread_db layer learn about this new process. */
608 check_for_thread_db ();
609 }
610
611 return 0;
612 }
613
614 \f
615 int
616 linux_nat_target::insert_fork_catchpoint (int pid)
617 {
618 return !linux_supports_tracefork ();
619 }
620
621 int
622 linux_nat_target::remove_fork_catchpoint (int pid)
623 {
624 return 0;
625 }
626
627 int
628 linux_nat_target::insert_vfork_catchpoint (int pid)
629 {
630 return !linux_supports_tracefork ();
631 }
632
633 int
634 linux_nat_target::remove_vfork_catchpoint (int pid)
635 {
636 return 0;
637 }
638
639 int
640 linux_nat_target::insert_exec_catchpoint (int pid)
641 {
642 return !linux_supports_tracefork ();
643 }
644
645 int
646 linux_nat_target::remove_exec_catchpoint (int pid)
647 {
648 return 0;
649 }
650
651 int
652 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
653 gdb::array_view<const int> syscall_counts)
654 {
655 if (!linux_supports_tracesysgood ())
656 return 1;
657
658 /* On GNU/Linux, we ignore the arguments. It means that we only
659 enable the syscall catchpoints, but do not disable them.
660
661 Also, we do not use the `syscall_counts' information because we do not
662 filter system calls here. We let GDB do the logic for us. */
663 return 0;
664 }
665
666 /* List of known LWPs, keyed by LWP PID. This speeds up the common
667 case of mapping a PID returned from the kernel to our corresponding
668 lwp_info data structure. */
669 static htab_t lwp_lwpid_htab;
670
671 /* Calculate a hash from a lwp_info's LWP PID. */
672
673 static hashval_t
674 lwp_info_hash (const void *ap)
675 {
676 const struct lwp_info *lp = (struct lwp_info *) ap;
677 pid_t pid = lp->ptid.lwp ();
678
679 return iterative_hash_object (pid, 0);
680 }
681
682 /* Equality function for the lwp_info hash table. Compares the LWP's
683 PID. */
684
685 static int
686 lwp_lwpid_htab_eq (const void *a, const void *b)
687 {
688 const struct lwp_info *entry = (const struct lwp_info *) a;
689 const struct lwp_info *element = (const struct lwp_info *) b;
690
691 return entry->ptid.lwp () == element->ptid.lwp ();
692 }
693
694 /* Create the lwp_lwpid_htab hash table. */
695
696 static void
697 lwp_lwpid_htab_create (void)
698 {
699 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
700 }
701
702 /* Add LP to the hash table. */
703
704 static void
705 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
706 {
707 void **slot;
708
709 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
710 gdb_assert (slot != NULL && *slot == NULL);
711 *slot = lp;
712 }
713
714 /* Head of doubly-linked list of known LWPs. Sorted by reverse
715 creation order. This order is assumed in some cases. E.g.,
716 reaping status after killing alls lwps of a process: the leader LWP
717 must be reaped last. */
718 struct lwp_info *lwp_list;
719
720 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
721
722 static void
723 lwp_list_add (struct lwp_info *lp)
724 {
725 lp->next = lwp_list;
726 if (lwp_list != NULL)
727 lwp_list->prev = lp;
728 lwp_list = lp;
729 }
730
731 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
732 list. */
733
734 static void
735 lwp_list_remove (struct lwp_info *lp)
736 {
737 /* Remove from sorted-by-creation-order list. */
738 if (lp->next != NULL)
739 lp->next->prev = lp->prev;
740 if (lp->prev != NULL)
741 lp->prev->next = lp->next;
742 if (lp == lwp_list)
743 lwp_list = lp->next;
744 }
745
746 \f
747
748 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
749 _initialize_linux_nat. */
750 static sigset_t suspend_mask;
751
752 /* Signals to block to make that sigsuspend work. */
753 static sigset_t blocked_mask;
754
755 /* SIGCHLD action. */
756 struct sigaction sigchld_action;
757
758 /* Block child signals (SIGCHLD and linux threads signals), and store
759 the previous mask in PREV_MASK. */
760
761 static void
762 block_child_signals (sigset_t *prev_mask)
763 {
764 /* Make sure SIGCHLD is blocked. */
765 if (!sigismember (&blocked_mask, SIGCHLD))
766 sigaddset (&blocked_mask, SIGCHLD);
767
768 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
769 }
770
771 /* Restore child signals mask, previously returned by
772 block_child_signals. */
773
774 static void
775 restore_child_signals_mask (sigset_t *prev_mask)
776 {
777 gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
778 }
779
780 /* Mask of signals to pass directly to the inferior. */
781 static sigset_t pass_mask;
782
783 /* Update signals to pass to the inferior. */
784 void
785 linux_nat_target::pass_signals
786 (gdb::array_view<const unsigned char> pass_signals)
787 {
788 int signo;
789
790 sigemptyset (&pass_mask);
791
792 for (signo = 1; signo < NSIG; signo++)
793 {
794 int target_signo = gdb_signal_from_host (signo);
795 if (target_signo < pass_signals.size () && pass_signals[target_signo])
796 sigaddset (&pass_mask, signo);
797 }
798 }
799
800 \f
801
802 /* Prototypes for local functions. */
803 static int stop_wait_callback (struct lwp_info *lp);
804 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
805 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
806
807 \f
808
809 /* Destroy and free LP. */
810
811 static void
812 lwp_free (struct lwp_info *lp)
813 {
814 /* Let the arch specific bits release arch_lwp_info. */
815 linux_target->low_delete_thread (lp->arch_private);
816
817 xfree (lp);
818 }
819
820 /* Traversal function for purge_lwp_list. */
821
822 static int
823 lwp_lwpid_htab_remove_pid (void **slot, void *info)
824 {
825 struct lwp_info *lp = (struct lwp_info *) *slot;
826 int pid = *(int *) info;
827
828 if (lp->ptid.pid () == pid)
829 {
830 htab_clear_slot (lwp_lwpid_htab, slot);
831 lwp_list_remove (lp);
832 lwp_free (lp);
833 }
834
835 return 1;
836 }
837
838 /* Remove all LWPs belong to PID from the lwp list. */
839
840 static void
841 purge_lwp_list (int pid)
842 {
843 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
844 }
845
846 /* Add the LWP specified by PTID to the list. PTID is the first LWP
847 in the process. Return a pointer to the structure describing the
848 new LWP.
849
850 This differs from add_lwp in that we don't let the arch specific
851 bits know about this new thread. Current clients of this callback
852 take the opportunity to install watchpoints in the new thread, and
853 we shouldn't do that for the first thread. If we're spawning a
854 child ("run"), the thread executes the shell wrapper first, and we
855 shouldn't touch it until it execs the program we want to debug.
856 For "attach", it'd be okay to call the callback, but it's not
857 necessary, because watchpoints can't yet have been inserted into
858 the inferior. */
859
860 static struct lwp_info *
861 add_initial_lwp (ptid_t ptid)
862 {
863 struct lwp_info *lp;
864
865 gdb_assert (ptid.lwp_p ());
866
867 lp = XNEW (struct lwp_info);
868
869 memset (lp, 0, sizeof (struct lwp_info));
870
871 lp->last_resume_kind = resume_continue;
872 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
873
874 lp->ptid = ptid;
875 lp->core = -1;
876
877 /* Add to sorted-by-reverse-creation-order list. */
878 lwp_list_add (lp);
879
880 /* Add to keyed-by-pid htab. */
881 lwp_lwpid_htab_add_lwp (lp);
882
883 return lp;
884 }
885
886 /* Add the LWP specified by PID to the list. Return a pointer to the
887 structure describing the new LWP. The LWP should already be
888 stopped. */
889
890 static struct lwp_info *
891 add_lwp (ptid_t ptid)
892 {
893 struct lwp_info *lp;
894
895 lp = add_initial_lwp (ptid);
896
897 /* Let the arch specific bits know about this new thread. Current
898 clients of this callback take the opportunity to install
899 watchpoints in the new thread. We don't do this for the first
900 thread though. See add_initial_lwp. */
901 linux_target->low_new_thread (lp);
902
903 return lp;
904 }
905
906 /* Remove the LWP specified by PID from the list. */
907
908 static void
909 delete_lwp (ptid_t ptid)
910 {
911 struct lwp_info *lp;
912 void **slot;
913 struct lwp_info dummy;
914
915 dummy.ptid = ptid;
916 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
917 if (slot == NULL)
918 return;
919
920 lp = *(struct lwp_info **) slot;
921 gdb_assert (lp != NULL);
922
923 htab_clear_slot (lwp_lwpid_htab, slot);
924
925 /* Remove from sorted-by-creation-order list. */
926 lwp_list_remove (lp);
927
928 /* Release. */
929 lwp_free (lp);
930 }
931
932 /* Return a pointer to the structure describing the LWP corresponding
933 to PID. If no corresponding LWP could be found, return NULL. */
934
935 static struct lwp_info *
936 find_lwp_pid (ptid_t ptid)
937 {
938 struct lwp_info *lp;
939 int lwp;
940 struct lwp_info dummy;
941
942 if (ptid.lwp_p ())
943 lwp = ptid.lwp ();
944 else
945 lwp = ptid.pid ();
946
947 dummy.ptid = ptid_t (0, lwp, 0);
948 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
949 return lp;
950 }
951
952 /* See nat/linux-nat.h. */
953
954 struct lwp_info *
955 iterate_over_lwps (ptid_t filter,
956 gdb::function_view<iterate_over_lwps_ftype> callback)
957 {
958 struct lwp_info *lp, *lpnext;
959
960 for (lp = lwp_list; lp; lp = lpnext)
961 {
962 lpnext = lp->next;
963
964 if (lp->ptid.matches (filter))
965 {
966 if (callback (lp) != 0)
967 return lp;
968 }
969 }
970
971 return NULL;
972 }
973
974 /* Update our internal state when changing from one checkpoint to
975 another indicated by NEW_PTID. We can only switch single-threaded
976 applications, so we only create one new LWP, and the previous list
977 is discarded. */
978
979 void
980 linux_nat_switch_fork (ptid_t new_ptid)
981 {
982 struct lwp_info *lp;
983
984 purge_lwp_list (inferior_ptid.pid ());
985
986 lp = add_lwp (new_ptid);
987 lp->stopped = 1;
988
989 /* This changes the thread's ptid while preserving the gdb thread
990 num. Also changes the inferior pid, while preserving the
991 inferior num. */
992 thread_change_ptid (inferior_ptid, new_ptid);
993
994 /* We've just told GDB core that the thread changed target id, but,
995 in fact, it really is a different thread, with different register
996 contents. */
997 registers_changed ();
998 }
999
1000 /* Handle the exit of a single thread LP. */
1001
1002 static void
1003 exit_lwp (struct lwp_info *lp)
1004 {
1005 struct thread_info *th = find_thread_ptid (lp->ptid);
1006
1007 if (th)
1008 {
1009 if (print_thread_events)
1010 printf_unfiltered (_("[%s exited]\n"),
1011 target_pid_to_str (lp->ptid).c_str ());
1012
1013 delete_thread (th);
1014 }
1015
1016 delete_lwp (lp->ptid);
1017 }
1018
1019 /* Wait for the LWP specified by LP, which we have just attached to.
1020 Returns a wait status for that LWP, to cache. */
1021
1022 static int
1023 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1024 {
1025 pid_t new_pid, pid = ptid.lwp ();
1026 int status;
1027
1028 if (linux_proc_pid_is_stopped (pid))
1029 {
1030 if (debug_linux_nat)
1031 fprintf_unfiltered (gdb_stdlog,
1032 "LNPAW: Attaching to a stopped process\n");
1033
1034 /* The process is definitely stopped. It is in a job control
1035 stop, unless the kernel predates the TASK_STOPPED /
1036 TASK_TRACED distinction, in which case it might be in a
1037 ptrace stop. Make sure it is in a ptrace stop; from there we
1038 can kill it, signal it, et cetera.
1039
1040 First make sure there is a pending SIGSTOP. Since we are
1041 already attached, the process can not transition from stopped
1042 to running without a PTRACE_CONT; so we know this signal will
1043 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1044 probably already in the queue (unless this kernel is old
1045 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1046 is not an RT signal, it can only be queued once. */
1047 kill_lwp (pid, SIGSTOP);
1048
1049 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1050 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1051 ptrace (PTRACE_CONT, pid, 0, 0);
1052 }
1053
1054 /* Make sure the initial process is stopped. The user-level threads
1055 layer might want to poke around in the inferior, and that won't
1056 work if things haven't stabilized yet. */
1057 new_pid = my_waitpid (pid, &status, __WALL);
1058 gdb_assert (pid == new_pid);
1059
1060 if (!WIFSTOPPED (status))
1061 {
1062 /* The pid we tried to attach has apparently just exited. */
1063 if (debug_linux_nat)
1064 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1065 pid, status_to_str (status));
1066 return status;
1067 }
1068
1069 if (WSTOPSIG (status) != SIGSTOP)
1070 {
1071 *signalled = 1;
1072 if (debug_linux_nat)
1073 fprintf_unfiltered (gdb_stdlog,
1074 "LNPAW: Received %s after attaching\n",
1075 status_to_str (status));
1076 }
1077
1078 return status;
1079 }
1080
1081 void
1082 linux_nat_target::create_inferior (const char *exec_file,
1083 const std::string &allargs,
1084 char **env, int from_tty)
1085 {
1086 maybe_disable_address_space_randomization restore_personality
1087 (disable_randomization);
1088
1089 /* The fork_child mechanism is synchronous and calls target_wait, so
1090 we have to mask the async mode. */
1091
1092 /* Make sure we report all signals during startup. */
1093 pass_signals ({});
1094
1095 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1096 }
1097
1098 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1099 already attached. Returns true if a new LWP is found, false
1100 otherwise. */
1101
1102 static int
1103 attach_proc_task_lwp_callback (ptid_t ptid)
1104 {
1105 struct lwp_info *lp;
1106
1107 /* Ignore LWPs we're already attached to. */
1108 lp = find_lwp_pid (ptid);
1109 if (lp == NULL)
1110 {
1111 int lwpid = ptid.lwp ();
1112
1113 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1114 {
1115 int err = errno;
1116
1117 /* Be quiet if we simply raced with the thread exiting.
1118 EPERM is returned if the thread's task still exists, and
1119 is marked as exited or zombie, as well as other
1120 conditions, so in that case, confirm the status in
1121 /proc/PID/status. */
1122 if (err == ESRCH
1123 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1124 {
1125 if (debug_linux_nat)
1126 {
1127 fprintf_unfiltered (gdb_stdlog,
1128 "Cannot attach to lwp %d: "
1129 "thread is gone (%d: %s)\n",
1130 lwpid, err, safe_strerror (err));
1131 }
1132 }
1133 else
1134 {
1135 std::string reason
1136 = linux_ptrace_attach_fail_reason_string (ptid, err);
1137
1138 warning (_("Cannot attach to lwp %d: %s"),
1139 lwpid, reason.c_str ());
1140 }
1141 }
1142 else
1143 {
1144 if (debug_linux_nat)
1145 fprintf_unfiltered (gdb_stdlog,
1146 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1147 target_pid_to_str (ptid).c_str ());
1148
1149 lp = add_lwp (ptid);
1150
1151 /* The next time we wait for this LWP we'll see a SIGSTOP as
1152 PTRACE_ATTACH brings it to a halt. */
1153 lp->signalled = 1;
1154
1155 /* We need to wait for a stop before being able to make the
1156 next ptrace call on this LWP. */
1157 lp->must_set_ptrace_flags = 1;
1158
1159 /* So that wait collects the SIGSTOP. */
1160 lp->resumed = 1;
1161
1162 /* Also add the LWP to gdb's thread list, in case a
1163 matching libthread_db is not found (or the process uses
1164 raw clone). */
1165 add_thread (lp->ptid);
1166 set_running (lp->ptid, 1);
1167 set_executing (lp->ptid, 1);
1168 }
1169
1170 return 1;
1171 }
1172 return 0;
1173 }
1174
1175 void
1176 linux_nat_target::attach (const char *args, int from_tty)
1177 {
1178 struct lwp_info *lp;
1179 int status;
1180 ptid_t ptid;
1181
1182 /* Make sure we report all signals during attach. */
1183 pass_signals ({});
1184
1185 try
1186 {
1187 inf_ptrace_target::attach (args, from_tty);
1188 }
1189 catch (const gdb_exception_error &ex)
1190 {
1191 pid_t pid = parse_pid_to_attach (args);
1192 std::string reason = linux_ptrace_attach_fail_reason (pid);
1193
1194 if (!reason.empty ())
1195 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1196 ex.what ());
1197 else
1198 throw_error (ex.error, "%s", ex.what ());
1199 }
1200
1201 /* The ptrace base target adds the main thread with (pid,0,0)
1202 format. Decorate it with lwp info. */
1203 ptid = ptid_t (inferior_ptid.pid (),
1204 inferior_ptid.pid (),
1205 0);
1206 thread_change_ptid (inferior_ptid, ptid);
1207
1208 /* Add the initial process as the first LWP to the list. */
1209 lp = add_initial_lwp (ptid);
1210
1211 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1212 if (!WIFSTOPPED (status))
1213 {
1214 if (WIFEXITED (status))
1215 {
1216 int exit_code = WEXITSTATUS (status);
1217
1218 target_terminal::ours ();
1219 target_mourn_inferior (inferior_ptid);
1220 if (exit_code == 0)
1221 error (_("Unable to attach: program exited normally."));
1222 else
1223 error (_("Unable to attach: program exited with code %d."),
1224 exit_code);
1225 }
1226 else if (WIFSIGNALED (status))
1227 {
1228 enum gdb_signal signo;
1229
1230 target_terminal::ours ();
1231 target_mourn_inferior (inferior_ptid);
1232
1233 signo = gdb_signal_from_host (WTERMSIG (status));
1234 error (_("Unable to attach: program terminated with signal "
1235 "%s, %s."),
1236 gdb_signal_to_name (signo),
1237 gdb_signal_to_string (signo));
1238 }
1239
1240 internal_error (__FILE__, __LINE__,
1241 _("unexpected status %d for PID %ld"),
1242 status, (long) ptid.lwp ());
1243 }
1244
1245 lp->stopped = 1;
1246
1247 /* Save the wait status to report later. */
1248 lp->resumed = 1;
1249 if (debug_linux_nat)
1250 fprintf_unfiltered (gdb_stdlog,
1251 "LNA: waitpid %ld, saving status %s\n",
1252 (long) lp->ptid.pid (), status_to_str (status));
1253
1254 lp->status = status;
1255
1256 /* We must attach to every LWP. If /proc is mounted, use that to
1257 find them now. The inferior may be using raw clone instead of
1258 using pthreads. But even if it is using pthreads, thread_db
1259 walks structures in the inferior's address space to find the list
1260 of threads/LWPs, and those structures may well be corrupted.
1261 Note that once thread_db is loaded, we'll still use it to list
1262 threads and associate pthread info with each LWP. */
1263 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1264 attach_proc_task_lwp_callback);
1265
1266 if (target_can_async_p ())
1267 target_async (1);
1268 }
1269
1270 /* Get pending signal of THREAD as a host signal number, for detaching
1271 purposes. This is the signal the thread last stopped for, which we
1272 need to deliver to the thread when detaching, otherwise, it'd be
1273 suppressed/lost. */
1274
1275 static int
1276 get_detach_signal (struct lwp_info *lp)
1277 {
1278 enum gdb_signal signo = GDB_SIGNAL_0;
1279
1280 /* If we paused threads momentarily, we may have stored pending
1281 events in lp->status or lp->waitstatus (see stop_wait_callback),
1282 and GDB core hasn't seen any signal for those threads.
1283 Otherwise, the last signal reported to the core is found in the
1284 thread object's stop_signal.
1285
1286 There's a corner case that isn't handled here at present. Only
1287 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1288 stop_signal make sense as a real signal to pass to the inferior.
1289 Some catchpoint related events, like
1290 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1291 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1292 those traps are debug API (ptrace in our case) related and
1293 induced; the inferior wouldn't see them if it wasn't being
1294 traced. Hence, we should never pass them to the inferior, even
1295 when set to pass state. Since this corner case isn't handled by
1296 infrun.c when proceeding with a signal, for consistency, neither
1297 do we handle it here (or elsewhere in the file we check for
1298 signal pass state). Normally SIGTRAP isn't set to pass state, so
1299 this is really a corner case. */
1300
1301 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1302 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1303 else if (lp->status)
1304 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1305 else
1306 {
1307 struct thread_info *tp = find_thread_ptid (lp->ptid);
1308
1309 if (target_is_non_stop_p () && !tp->executing)
1310 {
1311 if (tp->suspend.waitstatus_pending_p)
1312 signo = tp->suspend.waitstatus.value.sig;
1313 else
1314 signo = tp->suspend.stop_signal;
1315 }
1316 else if (!target_is_non_stop_p ())
1317 {
1318 ptid_t last_ptid;
1319
1320 get_last_target_status (&last_ptid, nullptr);
1321
1322 if (lp->ptid.lwp () == last_ptid.lwp ())
1323 signo = tp->suspend.stop_signal;
1324 }
1325 }
1326
1327 if (signo == GDB_SIGNAL_0)
1328 {
1329 if (debug_linux_nat)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "GPT: lwp %s has no pending signal\n",
1332 target_pid_to_str (lp->ptid).c_str ());
1333 }
1334 else if (!signal_pass_state (signo))
1335 {
1336 if (debug_linux_nat)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "GPT: lwp %s had signal %s, "
1339 "but it is in no pass state\n",
1340 target_pid_to_str (lp->ptid).c_str (),
1341 gdb_signal_to_string (signo));
1342 }
1343 else
1344 {
1345 if (debug_linux_nat)
1346 fprintf_unfiltered (gdb_stdlog,
1347 "GPT: lwp %s has pending signal %s\n",
1348 target_pid_to_str (lp->ptid).c_str (),
1349 gdb_signal_to_string (signo));
1350
1351 return gdb_signal_to_host (signo);
1352 }
1353
1354 return 0;
1355 }
1356
1357 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1358 signal number that should be passed to the LWP when detaching.
1359 Otherwise pass any pending signal the LWP may have, if any. */
1360
1361 static void
1362 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1363 {
1364 int lwpid = lp->ptid.lwp ();
1365 int signo;
1366
1367 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1368
1369 if (debug_linux_nat && lp->status)
1370 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1371 strsignal (WSTOPSIG (lp->status)),
1372 target_pid_to_str (lp->ptid).c_str ());
1373
1374 /* If there is a pending SIGSTOP, get rid of it. */
1375 if (lp->signalled)
1376 {
1377 if (debug_linux_nat)
1378 fprintf_unfiltered (gdb_stdlog,
1379 "DC: Sending SIGCONT to %s\n",
1380 target_pid_to_str (lp->ptid).c_str ());
1381
1382 kill_lwp (lwpid, SIGCONT);
1383 lp->signalled = 0;
1384 }
1385
1386 if (signo_p == NULL)
1387 {
1388 /* Pass on any pending signal for this LWP. */
1389 signo = get_detach_signal (lp);
1390 }
1391 else
1392 signo = *signo_p;
1393
1394 /* Preparing to resume may try to write registers, and fail if the
1395 lwp is zombie. If that happens, ignore the error. We'll handle
1396 it below, when detach fails with ESRCH. */
1397 try
1398 {
1399 linux_target->low_prepare_to_resume (lp);
1400 }
1401 catch (const gdb_exception_error &ex)
1402 {
1403 if (!check_ptrace_stopped_lwp_gone (lp))
1404 throw;
1405 }
1406
1407 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1408 {
1409 int save_errno = errno;
1410
1411 /* We know the thread exists, so ESRCH must mean the lwp is
1412 zombie. This can happen if one of the already-detached
1413 threads exits the whole thread group. In that case we're
1414 still attached, and must reap the lwp. */
1415 if (save_errno == ESRCH)
1416 {
1417 int ret, status;
1418
1419 ret = my_waitpid (lwpid, &status, __WALL);
1420 if (ret == -1)
1421 {
1422 warning (_("Couldn't reap LWP %d while detaching: %s"),
1423 lwpid, safe_strerror (errno));
1424 }
1425 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1426 {
1427 warning (_("Reaping LWP %d while detaching "
1428 "returned unexpected status 0x%x"),
1429 lwpid, status);
1430 }
1431 }
1432 else
1433 {
1434 error (_("Can't detach %s: %s"),
1435 target_pid_to_str (lp->ptid).c_str (),
1436 safe_strerror (save_errno));
1437 }
1438 }
1439 else if (debug_linux_nat)
1440 {
1441 fprintf_unfiltered (gdb_stdlog,
1442 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1443 target_pid_to_str (lp->ptid).c_str (),
1444 strsignal (signo));
1445 }
1446
1447 delete_lwp (lp->ptid);
1448 }
1449
1450 static int
1451 detach_callback (struct lwp_info *lp)
1452 {
1453 /* We don't actually detach from the thread group leader just yet.
1454 If the thread group exits, we must reap the zombie clone lwps
1455 before we're able to reap the leader. */
1456 if (lp->ptid.lwp () != lp->ptid.pid ())
1457 detach_one_lwp (lp, NULL);
1458 return 0;
1459 }
1460
1461 void
1462 linux_nat_target::detach (inferior *inf, int from_tty)
1463 {
1464 struct lwp_info *main_lwp;
1465 int pid = inf->pid;
1466
1467 /* Don't unregister from the event loop, as there may be other
1468 inferiors running. */
1469
1470 /* Stop all threads before detaching. ptrace requires that the
1471 thread is stopped to successfully detach. */
1472 iterate_over_lwps (ptid_t (pid), stop_callback);
1473 /* ... and wait until all of them have reported back that
1474 they're no longer running. */
1475 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1476
1477 iterate_over_lwps (ptid_t (pid), detach_callback);
1478
1479 /* Only the initial process should be left right now. */
1480 gdb_assert (num_lwps (pid) == 1);
1481
1482 main_lwp = find_lwp_pid (ptid_t (pid));
1483
1484 if (forks_exist_p ())
1485 {
1486 /* Multi-fork case. The current inferior_ptid is being detached
1487 from, but there are other viable forks to debug. Detach from
1488 the current fork, and context-switch to the first
1489 available. */
1490 linux_fork_detach (from_tty);
1491 }
1492 else
1493 {
1494 target_announce_detach (from_tty);
1495
1496 /* Pass on any pending signal for the last LWP. */
1497 int signo = get_detach_signal (main_lwp);
1498
1499 detach_one_lwp (main_lwp, &signo);
1500
1501 detach_success (inf);
1502 }
1503 }
1504
1505 /* Resume execution of the inferior process. If STEP is nonzero,
1506 single-step it. If SIGNAL is nonzero, give it that signal. */
1507
1508 static void
1509 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1510 enum gdb_signal signo)
1511 {
1512 lp->step = step;
1513
1514 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1515 We only presently need that if the LWP is stepped though (to
1516 handle the case of stepping a breakpoint instruction). */
1517 if (step)
1518 {
1519 struct regcache *regcache = get_thread_regcache (lp->ptid);
1520
1521 lp->stop_pc = regcache_read_pc (regcache);
1522 }
1523 else
1524 lp->stop_pc = 0;
1525
1526 linux_target->low_prepare_to_resume (lp);
1527 linux_target->low_resume (lp->ptid, step, signo);
1528
1529 /* Successfully resumed. Clear state that no longer makes sense,
1530 and mark the LWP as running. Must not do this before resuming
1531 otherwise if that fails other code will be confused. E.g., we'd
1532 later try to stop the LWP and hang forever waiting for a stop
1533 status. Note that we must not throw after this is cleared,
1534 otherwise handle_zombie_lwp_error would get confused. */
1535 lp->stopped = 0;
1536 lp->core = -1;
1537 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1538 registers_changed_ptid (lp->ptid);
1539 }
1540
1541 /* Called when we try to resume a stopped LWP and that errors out. If
1542 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1543 or about to become), discard the error, clear any pending status
1544 the LWP may have, and return true (we'll collect the exit status
1545 soon enough). Otherwise, return false. */
1546
1547 static int
1548 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1549 {
1550 /* If we get an error after resuming the LWP successfully, we'd
1551 confuse !T state for the LWP being gone. */
1552 gdb_assert (lp->stopped);
1553
1554 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1555 because even if ptrace failed with ESRCH, the tracee may be "not
1556 yet fully dead", but already refusing ptrace requests. In that
1557 case the tracee has 'R (Running)' state for a little bit
1558 (observed in Linux 3.18). See also the note on ESRCH in the
1559 ptrace(2) man page. Instead, check whether the LWP has any state
1560 other than ptrace-stopped. */
1561
1562 /* Don't assume anything if /proc/PID/status can't be read. */
1563 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1564 {
1565 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1566 lp->status = 0;
1567 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1568 return 1;
1569 }
1570 return 0;
1571 }
1572
1573 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1574 disappears while we try to resume it. */
1575
1576 static void
1577 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1578 {
1579 try
1580 {
1581 linux_resume_one_lwp_throw (lp, step, signo);
1582 }
1583 catch (const gdb_exception_error &ex)
1584 {
1585 if (!check_ptrace_stopped_lwp_gone (lp))
1586 throw;
1587 }
1588 }
1589
1590 /* Resume LP. */
1591
1592 static void
1593 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1594 {
1595 if (lp->stopped)
1596 {
1597 struct inferior *inf = find_inferior_ptid (lp->ptid);
1598
1599 if (inf->vfork_child != NULL)
1600 {
1601 if (debug_linux_nat)
1602 fprintf_unfiltered (gdb_stdlog,
1603 "RC: Not resuming %s (vfork parent)\n",
1604 target_pid_to_str (lp->ptid).c_str ());
1605 }
1606 else if (!lwp_status_pending_p (lp))
1607 {
1608 if (debug_linux_nat)
1609 fprintf_unfiltered (gdb_stdlog,
1610 "RC: Resuming sibling %s, %s, %s\n",
1611 target_pid_to_str (lp->ptid).c_str (),
1612 (signo != GDB_SIGNAL_0
1613 ? strsignal (gdb_signal_to_host (signo))
1614 : "0"),
1615 step ? "step" : "resume");
1616
1617 linux_resume_one_lwp (lp, step, signo);
1618 }
1619 else
1620 {
1621 if (debug_linux_nat)
1622 fprintf_unfiltered (gdb_stdlog,
1623 "RC: Not resuming sibling %s (has pending)\n",
1624 target_pid_to_str (lp->ptid).c_str ());
1625 }
1626 }
1627 else
1628 {
1629 if (debug_linux_nat)
1630 fprintf_unfiltered (gdb_stdlog,
1631 "RC: Not resuming sibling %s (not stopped)\n",
1632 target_pid_to_str (lp->ptid).c_str ());
1633 }
1634 }
1635
1636 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1637 Resume LWP with the last stop signal, if it is in pass state. */
1638
1639 static int
1640 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1641 {
1642 enum gdb_signal signo = GDB_SIGNAL_0;
1643
1644 if (lp == except)
1645 return 0;
1646
1647 if (lp->stopped)
1648 {
1649 struct thread_info *thread;
1650
1651 thread = find_thread_ptid (lp->ptid);
1652 if (thread != NULL)
1653 {
1654 signo = thread->suspend.stop_signal;
1655 thread->suspend.stop_signal = GDB_SIGNAL_0;
1656 }
1657 }
1658
1659 resume_lwp (lp, 0, signo);
1660 return 0;
1661 }
1662
1663 static int
1664 resume_clear_callback (struct lwp_info *lp)
1665 {
1666 lp->resumed = 0;
1667 lp->last_resume_kind = resume_stop;
1668 return 0;
1669 }
1670
1671 static int
1672 resume_set_callback (struct lwp_info *lp)
1673 {
1674 lp->resumed = 1;
1675 lp->last_resume_kind = resume_continue;
1676 return 0;
1677 }
1678
1679 void
1680 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1681 {
1682 struct lwp_info *lp;
1683 int resume_many;
1684
1685 if (debug_linux_nat)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1688 step ? "step" : "resume",
1689 target_pid_to_str (ptid).c_str (),
1690 (signo != GDB_SIGNAL_0
1691 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1692 target_pid_to_str (inferior_ptid).c_str ());
1693
1694 /* A specific PTID means `step only this process id'. */
1695 resume_many = (minus_one_ptid == ptid
1696 || ptid.is_pid ());
1697
1698 /* Mark the lwps we're resuming as resumed. */
1699 iterate_over_lwps (ptid, resume_set_callback);
1700
1701 /* See if it's the current inferior that should be handled
1702 specially. */
1703 if (resume_many)
1704 lp = find_lwp_pid (inferior_ptid);
1705 else
1706 lp = find_lwp_pid (ptid);
1707 gdb_assert (lp != NULL);
1708
1709 /* Remember if we're stepping. */
1710 lp->last_resume_kind = step ? resume_step : resume_continue;
1711
1712 /* If we have a pending wait status for this thread, there is no
1713 point in resuming the process. But first make sure that
1714 linux_nat_wait won't preemptively handle the event - we
1715 should never take this short-circuit if we are going to
1716 leave LP running, since we have skipped resuming all the
1717 other threads. This bit of code needs to be synchronized
1718 with linux_nat_wait. */
1719
1720 if (lp->status && WIFSTOPPED (lp->status))
1721 {
1722 if (!lp->step
1723 && WSTOPSIG (lp->status)
1724 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1725 {
1726 if (debug_linux_nat)
1727 fprintf_unfiltered (gdb_stdlog,
1728 "LLR: Not short circuiting for ignored "
1729 "status 0x%x\n", lp->status);
1730
1731 /* FIXME: What should we do if we are supposed to continue
1732 this thread with a signal? */
1733 gdb_assert (signo == GDB_SIGNAL_0);
1734 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1735 lp->status = 0;
1736 }
1737 }
1738
1739 if (lwp_status_pending_p (lp))
1740 {
1741 /* FIXME: What should we do if we are supposed to continue
1742 this thread with a signal? */
1743 gdb_assert (signo == GDB_SIGNAL_0);
1744
1745 if (debug_linux_nat)
1746 fprintf_unfiltered (gdb_stdlog,
1747 "LLR: Short circuiting for status 0x%x\n",
1748 lp->status);
1749
1750 if (target_can_async_p ())
1751 {
1752 target_async (1);
1753 /* Tell the event loop we have something to process. */
1754 async_file_mark ();
1755 }
1756 return;
1757 }
1758
1759 if (resume_many)
1760 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1761 {
1762 return linux_nat_resume_callback (info, lp);
1763 });
1764
1765 if (debug_linux_nat)
1766 fprintf_unfiltered (gdb_stdlog,
1767 "LLR: %s %s, %s (resume event thread)\n",
1768 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1769 target_pid_to_str (lp->ptid).c_str (),
1770 (signo != GDB_SIGNAL_0
1771 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1772
1773 linux_resume_one_lwp (lp, step, signo);
1774
1775 if (target_can_async_p ())
1776 target_async (1);
1777 }
1778
1779 /* Send a signal to an LWP. */
1780
1781 static int
1782 kill_lwp (int lwpid, int signo)
1783 {
1784 int ret;
1785
1786 errno = 0;
1787 ret = syscall (__NR_tkill, lwpid, signo);
1788 if (errno == ENOSYS)
1789 {
1790 /* If tkill fails, then we are not using nptl threads, a
1791 configuration we no longer support. */
1792 perror_with_name (("tkill"));
1793 }
1794 return ret;
1795 }
1796
1797 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1798 event, check if the core is interested in it: if not, ignore the
1799 event, and keep waiting; otherwise, we need to toggle the LWP's
1800 syscall entry/exit status, since the ptrace event itself doesn't
1801 indicate it, and report the trap to higher layers. */
1802
1803 static int
1804 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1805 {
1806 struct target_waitstatus *ourstatus = &lp->waitstatus;
1807 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1808 thread_info *thread = find_thread_ptid (lp->ptid);
1809 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1810
1811 if (stopping)
1812 {
1813 /* If we're stopping threads, there's a SIGSTOP pending, which
1814 makes it so that the LWP reports an immediate syscall return,
1815 followed by the SIGSTOP. Skip seeing that "return" using
1816 PTRACE_CONT directly, and let stop_wait_callback collect the
1817 SIGSTOP. Later when the thread is resumed, a new syscall
1818 entry event. If we didn't do this (and returned 0), we'd
1819 leave a syscall entry pending, and our caller, by using
1820 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1821 itself. Later, when the user re-resumes this LWP, we'd see
1822 another syscall entry event and we'd mistake it for a return.
1823
1824 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1825 (leaving immediately with LWP->signalled set, without issuing
1826 a PTRACE_CONT), it would still be problematic to leave this
1827 syscall enter pending, as later when the thread is resumed,
1828 it would then see the same syscall exit mentioned above,
1829 followed by the delayed SIGSTOP, while the syscall didn't
1830 actually get to execute. It seems it would be even more
1831 confusing to the user. */
1832
1833 if (debug_linux_nat)
1834 fprintf_unfiltered (gdb_stdlog,
1835 "LHST: ignoring syscall %d "
1836 "for LWP %ld (stopping threads), "
1837 "resuming with PTRACE_CONT for SIGSTOP\n",
1838 syscall_number,
1839 lp->ptid.lwp ());
1840
1841 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1842 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1843 lp->stopped = 0;
1844 return 1;
1845 }
1846
1847 /* Always update the entry/return state, even if this particular
1848 syscall isn't interesting to the core now. In async mode,
1849 the user could install a new catchpoint for this syscall
1850 between syscall enter/return, and we'll need to know to
1851 report a syscall return if that happens. */
1852 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1853 ? TARGET_WAITKIND_SYSCALL_RETURN
1854 : TARGET_WAITKIND_SYSCALL_ENTRY);
1855
1856 if (catch_syscall_enabled ())
1857 {
1858 if (catching_syscall_number (syscall_number))
1859 {
1860 /* Alright, an event to report. */
1861 ourstatus->kind = lp->syscall_state;
1862 ourstatus->value.syscall_number = syscall_number;
1863
1864 if (debug_linux_nat)
1865 fprintf_unfiltered (gdb_stdlog,
1866 "LHST: stopping for %s of syscall %d"
1867 " for LWP %ld\n",
1868 lp->syscall_state
1869 == TARGET_WAITKIND_SYSCALL_ENTRY
1870 ? "entry" : "return",
1871 syscall_number,
1872 lp->ptid.lwp ());
1873 return 0;
1874 }
1875
1876 if (debug_linux_nat)
1877 fprintf_unfiltered (gdb_stdlog,
1878 "LHST: ignoring %s of syscall %d "
1879 "for LWP %ld\n",
1880 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1881 ? "entry" : "return",
1882 syscall_number,
1883 lp->ptid.lwp ());
1884 }
1885 else
1886 {
1887 /* If we had been syscall tracing, and hence used PT_SYSCALL
1888 before on this LWP, it could happen that the user removes all
1889 syscall catchpoints before we get to process this event.
1890 There are two noteworthy issues here:
1891
1892 - When stopped at a syscall entry event, resuming with
1893 PT_STEP still resumes executing the syscall and reports a
1894 syscall return.
1895
1896 - Only PT_SYSCALL catches syscall enters. If we last
1897 single-stepped this thread, then this event can't be a
1898 syscall enter. If we last single-stepped this thread, this
1899 has to be a syscall exit.
1900
1901 The points above mean that the next resume, be it PT_STEP or
1902 PT_CONTINUE, can not trigger a syscall trace event. */
1903 if (debug_linux_nat)
1904 fprintf_unfiltered (gdb_stdlog,
1905 "LHST: caught syscall event "
1906 "with no syscall catchpoints."
1907 " %d for LWP %ld, ignoring\n",
1908 syscall_number,
1909 lp->ptid.lwp ());
1910 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1911 }
1912
1913 /* The core isn't interested in this event. For efficiency, avoid
1914 stopping all threads only to have the core resume them all again.
1915 Since we're not stopping threads, if we're still syscall tracing
1916 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1917 subsequent syscall. Simply resume using the inf-ptrace layer,
1918 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1919
1920 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1921 return 1;
1922 }
1923
1924 /* Handle a GNU/Linux extended wait response. If we see a clone
1925 event, we need to add the new LWP to our list (and not report the
1926 trap to higher layers). This function returns non-zero if the
1927 event should be ignored and we should wait again. If STOPPING is
1928 true, the new LWP remains stopped, otherwise it is continued. */
1929
1930 static int
1931 linux_handle_extended_wait (struct lwp_info *lp, int status)
1932 {
1933 int pid = lp->ptid.lwp ();
1934 struct target_waitstatus *ourstatus = &lp->waitstatus;
1935 int event = linux_ptrace_get_extended_event (status);
1936
1937 /* All extended events we currently use are mid-syscall. Only
1938 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1939 you have to be using PTRACE_SEIZE to get that. */
1940 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1941
1942 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1943 || event == PTRACE_EVENT_CLONE)
1944 {
1945 unsigned long new_pid;
1946 int ret;
1947
1948 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1949
1950 /* If we haven't already seen the new PID stop, wait for it now. */
1951 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1952 {
1953 /* The new child has a pending SIGSTOP. We can't affect it until it
1954 hits the SIGSTOP, but we're already attached. */
1955 ret = my_waitpid (new_pid, &status, __WALL);
1956 if (ret == -1)
1957 perror_with_name (_("waiting for new child"));
1958 else if (ret != new_pid)
1959 internal_error (__FILE__, __LINE__,
1960 _("wait returned unexpected PID %d"), ret);
1961 else if (!WIFSTOPPED (status))
1962 internal_error (__FILE__, __LINE__,
1963 _("wait returned unexpected status 0x%x"), status);
1964 }
1965
1966 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1967
1968 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1969 {
1970 /* The arch-specific native code may need to know about new
1971 forks even if those end up never mapped to an
1972 inferior. */
1973 linux_target->low_new_fork (lp, new_pid);
1974 }
1975
1976 if (event == PTRACE_EVENT_FORK
1977 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1978 {
1979 /* Handle checkpointing by linux-fork.c here as a special
1980 case. We don't want the follow-fork-mode or 'catch fork'
1981 to interfere with this. */
1982
1983 /* This won't actually modify the breakpoint list, but will
1984 physically remove the breakpoints from the child. */
1985 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1986
1987 /* Retain child fork in ptrace (stopped) state. */
1988 if (!find_fork_pid (new_pid))
1989 add_fork (new_pid);
1990
1991 /* Report as spurious, so that infrun doesn't want to follow
1992 this fork. We're actually doing an infcall in
1993 linux-fork.c. */
1994 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1995
1996 /* Report the stop to the core. */
1997 return 0;
1998 }
1999
2000 if (event == PTRACE_EVENT_FORK)
2001 ourstatus->kind = TARGET_WAITKIND_FORKED;
2002 else if (event == PTRACE_EVENT_VFORK)
2003 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2004 else if (event == PTRACE_EVENT_CLONE)
2005 {
2006 struct lwp_info *new_lp;
2007
2008 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2009
2010 if (debug_linux_nat)
2011 fprintf_unfiltered (gdb_stdlog,
2012 "LHEW: Got clone event "
2013 "from LWP %d, new child is LWP %ld\n",
2014 pid, new_pid);
2015
2016 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
2017 new_lp->stopped = 1;
2018 new_lp->resumed = 1;
2019
2020 /* If the thread_db layer is active, let it record the user
2021 level thread id and status, and add the thread to GDB's
2022 list. */
2023 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2024 {
2025 /* The process is not using thread_db. Add the LWP to
2026 GDB's list. */
2027 target_post_attach (new_lp->ptid.lwp ());
2028 add_thread (new_lp->ptid);
2029 }
2030
2031 /* Even if we're stopping the thread for some reason
2032 internal to this module, from the perspective of infrun
2033 and the user/frontend, this new thread is running until
2034 it next reports a stop. */
2035 set_running (new_lp->ptid, 1);
2036 set_executing (new_lp->ptid, 1);
2037
2038 if (WSTOPSIG (status) != SIGSTOP)
2039 {
2040 /* This can happen if someone starts sending signals to
2041 the new thread before it gets a chance to run, which
2042 have a lower number than SIGSTOP (e.g. SIGUSR1).
2043 This is an unlikely case, and harder to handle for
2044 fork / vfork than for clone, so we do not try - but
2045 we handle it for clone events here. */
2046
2047 new_lp->signalled = 1;
2048
2049 /* We created NEW_LP so it cannot yet contain STATUS. */
2050 gdb_assert (new_lp->status == 0);
2051
2052 /* Save the wait status to report later. */
2053 if (debug_linux_nat)
2054 fprintf_unfiltered (gdb_stdlog,
2055 "LHEW: waitpid of new LWP %ld, "
2056 "saving status %s\n",
2057 (long) new_lp->ptid.lwp (),
2058 status_to_str (status));
2059 new_lp->status = status;
2060 }
2061 else if (report_thread_events)
2062 {
2063 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2064 new_lp->status = status;
2065 }
2066
2067 return 1;
2068 }
2069
2070 return 0;
2071 }
2072
2073 if (event == PTRACE_EVENT_EXEC)
2074 {
2075 if (debug_linux_nat)
2076 fprintf_unfiltered (gdb_stdlog,
2077 "LHEW: Got exec event from LWP %ld\n",
2078 lp->ptid.lwp ());
2079
2080 ourstatus->kind = TARGET_WAITKIND_EXECD;
2081 ourstatus->value.execd_pathname
2082 = xstrdup (linux_proc_pid_to_exec_file (pid));
2083
2084 /* The thread that execed must have been resumed, but, when a
2085 thread execs, it changes its tid to the tgid, and the old
2086 tgid thread might have not been resumed. */
2087 lp->resumed = 1;
2088 return 0;
2089 }
2090
2091 if (event == PTRACE_EVENT_VFORK_DONE)
2092 {
2093 if (current_inferior ()->waiting_for_vfork_done)
2094 {
2095 if (debug_linux_nat)
2096 fprintf_unfiltered (gdb_stdlog,
2097 "LHEW: Got expected PTRACE_EVENT_"
2098 "VFORK_DONE from LWP %ld: stopping\n",
2099 lp->ptid.lwp ());
2100
2101 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2102 return 0;
2103 }
2104
2105 if (debug_linux_nat)
2106 fprintf_unfiltered (gdb_stdlog,
2107 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2108 "from LWP %ld: ignoring\n",
2109 lp->ptid.lwp ());
2110 return 1;
2111 }
2112
2113 internal_error (__FILE__, __LINE__,
2114 _("unknown ptrace event %d"), event);
2115 }
2116
2117 /* Suspend waiting for a signal. We're mostly interested in
2118 SIGCHLD/SIGINT. */
2119
2120 static void
2121 wait_for_signal ()
2122 {
2123 if (debug_linux_nat)
2124 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2125 sigsuspend (&suspend_mask);
2126
2127 /* If the quit flag is set, it means that the user pressed Ctrl-C
2128 and we're debugging a process that is running on a separate
2129 terminal, so we must forward the Ctrl-C to the inferior. (If the
2130 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2131 inferior directly.) We must do this here because functions that
2132 need to block waiting for a signal loop forever until there's an
2133 event to report before returning back to the event loop. */
2134 if (!target_terminal::is_ours ())
2135 {
2136 if (check_quit_flag ())
2137 target_pass_ctrlc ();
2138 }
2139 }
2140
2141 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2142 exited. */
2143
2144 static int
2145 wait_lwp (struct lwp_info *lp)
2146 {
2147 pid_t pid;
2148 int status = 0;
2149 int thread_dead = 0;
2150 sigset_t prev_mask;
2151
2152 gdb_assert (!lp->stopped);
2153 gdb_assert (lp->status == 0);
2154
2155 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2156 block_child_signals (&prev_mask);
2157
2158 for (;;)
2159 {
2160 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2161 if (pid == -1 && errno == ECHILD)
2162 {
2163 /* The thread has previously exited. We need to delete it
2164 now because if this was a non-leader thread execing, we
2165 won't get an exit event. See comments on exec events at
2166 the top of the file. */
2167 thread_dead = 1;
2168 if (debug_linux_nat)
2169 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2170 target_pid_to_str (lp->ptid).c_str ());
2171 }
2172 if (pid != 0)
2173 break;
2174
2175 /* Bugs 10970, 12702.
2176 Thread group leader may have exited in which case we'll lock up in
2177 waitpid if there are other threads, even if they are all zombies too.
2178 Basically, we're not supposed to use waitpid this way.
2179 tkill(pid,0) cannot be used here as it gets ESRCH for both
2180 for zombie and running processes.
2181
2182 As a workaround, check if we're waiting for the thread group leader and
2183 if it's a zombie, and avoid calling waitpid if it is.
2184
2185 This is racy, what if the tgl becomes a zombie right after we check?
2186 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2187 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2188
2189 if (lp->ptid.pid () == lp->ptid.lwp ()
2190 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2191 {
2192 thread_dead = 1;
2193 if (debug_linux_nat)
2194 fprintf_unfiltered (gdb_stdlog,
2195 "WL: Thread group leader %s vanished.\n",
2196 target_pid_to_str (lp->ptid).c_str ());
2197 break;
2198 }
2199
2200 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2201 get invoked despite our caller had them intentionally blocked by
2202 block_child_signals. This is sensitive only to the loop of
2203 linux_nat_wait_1 and there if we get called my_waitpid gets called
2204 again before it gets to sigsuspend so we can safely let the handlers
2205 get executed here. */
2206 wait_for_signal ();
2207 }
2208
2209 restore_child_signals_mask (&prev_mask);
2210
2211 if (!thread_dead)
2212 {
2213 gdb_assert (pid == lp->ptid.lwp ());
2214
2215 if (debug_linux_nat)
2216 {
2217 fprintf_unfiltered (gdb_stdlog,
2218 "WL: waitpid %s received %s\n",
2219 target_pid_to_str (lp->ptid).c_str (),
2220 status_to_str (status));
2221 }
2222
2223 /* Check if the thread has exited. */
2224 if (WIFEXITED (status) || WIFSIGNALED (status))
2225 {
2226 if (report_thread_events
2227 || lp->ptid.pid () == lp->ptid.lwp ())
2228 {
2229 if (debug_linux_nat)
2230 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2231 lp->ptid.pid ());
2232
2233 /* If this is the leader exiting, it means the whole
2234 process is gone. Store the status to report to the
2235 core. Store it in lp->waitstatus, because lp->status
2236 would be ambiguous (W_EXITCODE(0,0) == 0). */
2237 store_waitstatus (&lp->waitstatus, status);
2238 return 0;
2239 }
2240
2241 thread_dead = 1;
2242 if (debug_linux_nat)
2243 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2244 target_pid_to_str (lp->ptid).c_str ());
2245 }
2246 }
2247
2248 if (thread_dead)
2249 {
2250 exit_lwp (lp);
2251 return 0;
2252 }
2253
2254 gdb_assert (WIFSTOPPED (status));
2255 lp->stopped = 1;
2256
2257 if (lp->must_set_ptrace_flags)
2258 {
2259 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2260 int options = linux_nat_ptrace_options (inf->attach_flag);
2261
2262 linux_enable_event_reporting (lp->ptid.lwp (), options);
2263 lp->must_set_ptrace_flags = 0;
2264 }
2265
2266 /* Handle GNU/Linux's syscall SIGTRAPs. */
2267 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2268 {
2269 /* No longer need the sysgood bit. The ptrace event ends up
2270 recorded in lp->waitstatus if we care for it. We can carry
2271 on handling the event like a regular SIGTRAP from here
2272 on. */
2273 status = W_STOPCODE (SIGTRAP);
2274 if (linux_handle_syscall_trap (lp, 1))
2275 return wait_lwp (lp);
2276 }
2277 else
2278 {
2279 /* Almost all other ptrace-stops are known to be outside of system
2280 calls, with further exceptions in linux_handle_extended_wait. */
2281 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2282 }
2283
2284 /* Handle GNU/Linux's extended waitstatus for trace events. */
2285 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2286 && linux_is_extended_waitstatus (status))
2287 {
2288 if (debug_linux_nat)
2289 fprintf_unfiltered (gdb_stdlog,
2290 "WL: Handling extended status 0x%06x\n",
2291 status);
2292 linux_handle_extended_wait (lp, status);
2293 return 0;
2294 }
2295
2296 return status;
2297 }
2298
2299 /* Send a SIGSTOP to LP. */
2300
2301 static int
2302 stop_callback (struct lwp_info *lp)
2303 {
2304 if (!lp->stopped && !lp->signalled)
2305 {
2306 int ret;
2307
2308 if (debug_linux_nat)
2309 {
2310 fprintf_unfiltered (gdb_stdlog,
2311 "SC: kill %s **<SIGSTOP>**\n",
2312 target_pid_to_str (lp->ptid).c_str ());
2313 }
2314 errno = 0;
2315 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2316 if (debug_linux_nat)
2317 {
2318 fprintf_unfiltered (gdb_stdlog,
2319 "SC: lwp kill %d %s\n",
2320 ret,
2321 errno ? safe_strerror (errno) : "ERRNO-OK");
2322 }
2323
2324 lp->signalled = 1;
2325 gdb_assert (lp->status == 0);
2326 }
2327
2328 return 0;
2329 }
2330
2331 /* Request a stop on LWP. */
2332
2333 void
2334 linux_stop_lwp (struct lwp_info *lwp)
2335 {
2336 stop_callback (lwp);
2337 }
2338
2339 /* See linux-nat.h */
2340
2341 void
2342 linux_stop_and_wait_all_lwps (void)
2343 {
2344 /* Stop all LWP's ... */
2345 iterate_over_lwps (minus_one_ptid, stop_callback);
2346
2347 /* ... and wait until all of them have reported back that
2348 they're no longer running. */
2349 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2350 }
2351
2352 /* See linux-nat.h */
2353
2354 void
2355 linux_unstop_all_lwps (void)
2356 {
2357 iterate_over_lwps (minus_one_ptid,
2358 [] (struct lwp_info *info)
2359 {
2360 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2361 });
2362 }
2363
2364 /* Return non-zero if LWP PID has a pending SIGINT. */
2365
2366 static int
2367 linux_nat_has_pending_sigint (int pid)
2368 {
2369 sigset_t pending, blocked, ignored;
2370
2371 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2372
2373 if (sigismember (&pending, SIGINT)
2374 && !sigismember (&ignored, SIGINT))
2375 return 1;
2376
2377 return 0;
2378 }
2379
2380 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2381
2382 static int
2383 set_ignore_sigint (struct lwp_info *lp)
2384 {
2385 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2386 flag to consume the next one. */
2387 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2388 && WSTOPSIG (lp->status) == SIGINT)
2389 lp->status = 0;
2390 else
2391 lp->ignore_sigint = 1;
2392
2393 return 0;
2394 }
2395
2396 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2397 This function is called after we know the LWP has stopped; if the LWP
2398 stopped before the expected SIGINT was delivered, then it will never have
2399 arrived. Also, if the signal was delivered to a shared queue and consumed
2400 by a different thread, it will never be delivered to this LWP. */
2401
2402 static void
2403 maybe_clear_ignore_sigint (struct lwp_info *lp)
2404 {
2405 if (!lp->ignore_sigint)
2406 return;
2407
2408 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2409 {
2410 if (debug_linux_nat)
2411 fprintf_unfiltered (gdb_stdlog,
2412 "MCIS: Clearing bogus flag for %s\n",
2413 target_pid_to_str (lp->ptid).c_str ());
2414 lp->ignore_sigint = 0;
2415 }
2416 }
2417
2418 /* Fetch the possible triggered data watchpoint info and store it in
2419 LP.
2420
2421 On some archs, like x86, that use debug registers to set
2422 watchpoints, it's possible that the way to know which watched
2423 address trapped, is to check the register that is used to select
2424 which address to watch. Problem is, between setting the watchpoint
2425 and reading back which data address trapped, the user may change
2426 the set of watchpoints, and, as a consequence, GDB changes the
2427 debug registers in the inferior. To avoid reading back a stale
2428 stopped-data-address when that happens, we cache in LP the fact
2429 that a watchpoint trapped, and the corresponding data address, as
2430 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2431 registers meanwhile, we have the cached data we can rely on. */
2432
2433 static int
2434 check_stopped_by_watchpoint (struct lwp_info *lp)
2435 {
2436 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2437 inferior_ptid = lp->ptid;
2438
2439 if (linux_target->low_stopped_by_watchpoint ())
2440 {
2441 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2442 lp->stopped_data_address_p
2443 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2444 }
2445
2446 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2447 }
2448
2449 /* Returns true if the LWP had stopped for a watchpoint. */
2450
2451 bool
2452 linux_nat_target::stopped_by_watchpoint ()
2453 {
2454 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2455
2456 gdb_assert (lp != NULL);
2457
2458 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2459 }
2460
2461 bool
2462 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2463 {
2464 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2465
2466 gdb_assert (lp != NULL);
2467
2468 *addr_p = lp->stopped_data_address;
2469
2470 return lp->stopped_data_address_p;
2471 }
2472
2473 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2474
2475 bool
2476 linux_nat_target::low_status_is_event (int status)
2477 {
2478 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2479 }
2480
2481 /* Wait until LP is stopped. */
2482
2483 static int
2484 stop_wait_callback (struct lwp_info *lp)
2485 {
2486 struct inferior *inf = find_inferior_ptid (lp->ptid);
2487
2488 /* If this is a vfork parent, bail out, it is not going to report
2489 any SIGSTOP until the vfork is done with. */
2490 if (inf->vfork_child != NULL)
2491 return 0;
2492
2493 if (!lp->stopped)
2494 {
2495 int status;
2496
2497 status = wait_lwp (lp);
2498 if (status == 0)
2499 return 0;
2500
2501 if (lp->ignore_sigint && WIFSTOPPED (status)
2502 && WSTOPSIG (status) == SIGINT)
2503 {
2504 lp->ignore_sigint = 0;
2505
2506 errno = 0;
2507 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2508 lp->stopped = 0;
2509 if (debug_linux_nat)
2510 fprintf_unfiltered (gdb_stdlog,
2511 "PTRACE_CONT %s, 0, 0 (%s) "
2512 "(discarding SIGINT)\n",
2513 target_pid_to_str (lp->ptid).c_str (),
2514 errno ? safe_strerror (errno) : "OK");
2515
2516 return stop_wait_callback (lp);
2517 }
2518
2519 maybe_clear_ignore_sigint (lp);
2520
2521 if (WSTOPSIG (status) != SIGSTOP)
2522 {
2523 /* The thread was stopped with a signal other than SIGSTOP. */
2524
2525 if (debug_linux_nat)
2526 fprintf_unfiltered (gdb_stdlog,
2527 "SWC: Pending event %s in %s\n",
2528 status_to_str ((int) status),
2529 target_pid_to_str (lp->ptid).c_str ());
2530
2531 /* Save the sigtrap event. */
2532 lp->status = status;
2533 gdb_assert (lp->signalled);
2534 save_stop_reason (lp);
2535 }
2536 else
2537 {
2538 /* We caught the SIGSTOP that we intended to catch. */
2539
2540 if (debug_linux_nat)
2541 fprintf_unfiltered (gdb_stdlog,
2542 "SWC: Expected SIGSTOP caught for %s.\n",
2543 target_pid_to_str (lp->ptid).c_str ());
2544
2545 lp->signalled = 0;
2546
2547 /* If we are waiting for this stop so we can report the thread
2548 stopped then we need to record this status. Otherwise, we can
2549 now discard this stop event. */
2550 if (lp->last_resume_kind == resume_stop)
2551 {
2552 lp->status = status;
2553 save_stop_reason (lp);
2554 }
2555 }
2556 }
2557
2558 return 0;
2559 }
2560
2561 /* Return non-zero if LP has a wait status pending. Discard the
2562 pending event and resume the LWP if the event that originally
2563 caused the stop became uninteresting. */
2564
2565 static int
2566 status_callback (struct lwp_info *lp)
2567 {
2568 /* Only report a pending wait status if we pretend that this has
2569 indeed been resumed. */
2570 if (!lp->resumed)
2571 return 0;
2572
2573 if (!lwp_status_pending_p (lp))
2574 return 0;
2575
2576 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2577 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2578 {
2579 struct regcache *regcache = get_thread_regcache (lp->ptid);
2580 CORE_ADDR pc;
2581 int discard = 0;
2582
2583 pc = regcache_read_pc (regcache);
2584
2585 if (pc != lp->stop_pc)
2586 {
2587 if (debug_linux_nat)
2588 fprintf_unfiltered (gdb_stdlog,
2589 "SC: PC of %s changed. was=%s, now=%s\n",
2590 target_pid_to_str (lp->ptid).c_str (),
2591 paddress (target_gdbarch (), lp->stop_pc),
2592 paddress (target_gdbarch (), pc));
2593 discard = 1;
2594 }
2595
2596 #if !USE_SIGTRAP_SIGINFO
2597 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2598 {
2599 if (debug_linux_nat)
2600 fprintf_unfiltered (gdb_stdlog,
2601 "SC: previous breakpoint of %s, at %s gone\n",
2602 target_pid_to_str (lp->ptid).c_str (),
2603 paddress (target_gdbarch (), lp->stop_pc));
2604
2605 discard = 1;
2606 }
2607 #endif
2608
2609 if (discard)
2610 {
2611 if (debug_linux_nat)
2612 fprintf_unfiltered (gdb_stdlog,
2613 "SC: pending event of %s cancelled.\n",
2614 target_pid_to_str (lp->ptid).c_str ());
2615
2616 lp->status = 0;
2617 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2618 return 0;
2619 }
2620 }
2621
2622 return 1;
2623 }
2624
2625 /* Count the LWP's that have had events. */
2626
2627 static int
2628 count_events_callback (struct lwp_info *lp, int *count)
2629 {
2630 gdb_assert (count != NULL);
2631
2632 /* Select only resumed LWPs that have an event pending. */
2633 if (lp->resumed && lwp_status_pending_p (lp))
2634 (*count)++;
2635
2636 return 0;
2637 }
2638
2639 /* Select the LWP (if any) that is currently being single-stepped. */
2640
2641 static int
2642 select_singlestep_lwp_callback (struct lwp_info *lp)
2643 {
2644 if (lp->last_resume_kind == resume_step
2645 && lp->status != 0)
2646 return 1;
2647 else
2648 return 0;
2649 }
2650
2651 /* Returns true if LP has a status pending. */
2652
2653 static int
2654 lwp_status_pending_p (struct lwp_info *lp)
2655 {
2656 /* We check for lp->waitstatus in addition to lp->status, because we
2657 can have pending process exits recorded in lp->status and
2658 W_EXITCODE(0,0) happens to be 0. */
2659 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2660 }
2661
2662 /* Select the Nth LWP that has had an event. */
2663
2664 static int
2665 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2666 {
2667 gdb_assert (selector != NULL);
2668
2669 /* Select only resumed LWPs that have an event pending. */
2670 if (lp->resumed && lwp_status_pending_p (lp))
2671 if ((*selector)-- == 0)
2672 return 1;
2673
2674 return 0;
2675 }
2676
2677 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2678 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2679 and save the result in the LWP's stop_reason field. If it stopped
2680 for a breakpoint, decrement the PC if necessary on the lwp's
2681 architecture. */
2682
2683 static void
2684 save_stop_reason (struct lwp_info *lp)
2685 {
2686 struct regcache *regcache;
2687 struct gdbarch *gdbarch;
2688 CORE_ADDR pc;
2689 CORE_ADDR sw_bp_pc;
2690 #if USE_SIGTRAP_SIGINFO
2691 siginfo_t siginfo;
2692 #endif
2693
2694 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2695 gdb_assert (lp->status != 0);
2696
2697 if (!linux_target->low_status_is_event (lp->status))
2698 return;
2699
2700 regcache = get_thread_regcache (lp->ptid);
2701 gdbarch = regcache->arch ();
2702
2703 pc = regcache_read_pc (regcache);
2704 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2705
2706 #if USE_SIGTRAP_SIGINFO
2707 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2708 {
2709 if (siginfo.si_signo == SIGTRAP)
2710 {
2711 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2712 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2713 {
2714 /* The si_code is ambiguous on this arch -- check debug
2715 registers. */
2716 if (!check_stopped_by_watchpoint (lp))
2717 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2718 }
2719 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2720 {
2721 /* If we determine the LWP stopped for a SW breakpoint,
2722 trust it. Particularly don't check watchpoint
2723 registers, because at least on s390, we'd find
2724 stopped-by-watchpoint as long as there's a watchpoint
2725 set. */
2726 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2727 }
2728 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2729 {
2730 /* This can indicate either a hardware breakpoint or
2731 hardware watchpoint. Check debug registers. */
2732 if (!check_stopped_by_watchpoint (lp))
2733 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2734 }
2735 else if (siginfo.si_code == TRAP_TRACE)
2736 {
2737 if (debug_linux_nat)
2738 fprintf_unfiltered (gdb_stdlog,
2739 "CSBB: %s stopped by trace\n",
2740 target_pid_to_str (lp->ptid).c_str ());
2741
2742 /* We may have single stepped an instruction that
2743 triggered a watchpoint. In that case, on some
2744 architectures (such as x86), instead of TRAP_HWBKPT,
2745 si_code indicates TRAP_TRACE, and we need to check
2746 the debug registers separately. */
2747 check_stopped_by_watchpoint (lp);
2748 }
2749 }
2750 }
2751 #else
2752 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2753 && software_breakpoint_inserted_here_p (regcache->aspace (),
2754 sw_bp_pc))
2755 {
2756 /* The LWP was either continued, or stepped a software
2757 breakpoint instruction. */
2758 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2759 }
2760
2761 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2762 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2763
2764 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2765 check_stopped_by_watchpoint (lp);
2766 #endif
2767
2768 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2769 {
2770 if (debug_linux_nat)
2771 fprintf_unfiltered (gdb_stdlog,
2772 "CSBB: %s stopped by software breakpoint\n",
2773 target_pid_to_str (lp->ptid).c_str ());
2774
2775 /* Back up the PC if necessary. */
2776 if (pc != sw_bp_pc)
2777 regcache_write_pc (regcache, sw_bp_pc);
2778
2779 /* Update this so we record the correct stop PC below. */
2780 pc = sw_bp_pc;
2781 }
2782 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2783 {
2784 if (debug_linux_nat)
2785 fprintf_unfiltered (gdb_stdlog,
2786 "CSBB: %s stopped by hardware breakpoint\n",
2787 target_pid_to_str (lp->ptid).c_str ());
2788 }
2789 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2790 {
2791 if (debug_linux_nat)
2792 fprintf_unfiltered (gdb_stdlog,
2793 "CSBB: %s stopped by hardware watchpoint\n",
2794 target_pid_to_str (lp->ptid).c_str ());
2795 }
2796
2797 lp->stop_pc = pc;
2798 }
2799
2800
2801 /* Returns true if the LWP had stopped for a software breakpoint. */
2802
2803 bool
2804 linux_nat_target::stopped_by_sw_breakpoint ()
2805 {
2806 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2807
2808 gdb_assert (lp != NULL);
2809
2810 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2811 }
2812
2813 /* Implement the supports_stopped_by_sw_breakpoint method. */
2814
2815 bool
2816 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2817 {
2818 return USE_SIGTRAP_SIGINFO;
2819 }
2820
2821 /* Returns true if the LWP had stopped for a hardware
2822 breakpoint/watchpoint. */
2823
2824 bool
2825 linux_nat_target::stopped_by_hw_breakpoint ()
2826 {
2827 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2828
2829 gdb_assert (lp != NULL);
2830
2831 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2832 }
2833
2834 /* Implement the supports_stopped_by_hw_breakpoint method. */
2835
2836 bool
2837 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2838 {
2839 return USE_SIGTRAP_SIGINFO;
2840 }
2841
2842 /* Select one LWP out of those that have events pending. */
2843
2844 static void
2845 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2846 {
2847 int num_events = 0;
2848 int random_selector;
2849 struct lwp_info *event_lp = NULL;
2850
2851 /* Record the wait status for the original LWP. */
2852 (*orig_lp)->status = *status;
2853
2854 /* In all-stop, give preference to the LWP that is being
2855 single-stepped. There will be at most one, and it will be the
2856 LWP that the core is most interested in. If we didn't do this,
2857 then we'd have to handle pending step SIGTRAPs somehow in case
2858 the core later continues the previously-stepped thread, as
2859 otherwise we'd report the pending SIGTRAP then, and the core, not
2860 having stepped the thread, wouldn't understand what the trap was
2861 for, and therefore would report it to the user as a random
2862 signal. */
2863 if (!target_is_non_stop_p ())
2864 {
2865 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2866 if (event_lp != NULL)
2867 {
2868 if (debug_linux_nat)
2869 fprintf_unfiltered (gdb_stdlog,
2870 "SEL: Select single-step %s\n",
2871 target_pid_to_str (event_lp->ptid).c_str ());
2872 }
2873 }
2874
2875 if (event_lp == NULL)
2876 {
2877 /* Pick one at random, out of those which have had events. */
2878
2879 /* First see how many events we have. */
2880 iterate_over_lwps (filter,
2881 [&] (struct lwp_info *info)
2882 {
2883 return count_events_callback (info, &num_events);
2884 });
2885 gdb_assert (num_events > 0);
2886
2887 /* Now randomly pick a LWP out of those that have had
2888 events. */
2889 random_selector = (int)
2890 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2891
2892 if (debug_linux_nat && num_events > 1)
2893 fprintf_unfiltered (gdb_stdlog,
2894 "SEL: Found %d events, selecting #%d\n",
2895 num_events, random_selector);
2896
2897 event_lp
2898 = (iterate_over_lwps
2899 (filter,
2900 [&] (struct lwp_info *info)
2901 {
2902 return select_event_lwp_callback (info,
2903 &random_selector);
2904 }));
2905 }
2906
2907 if (event_lp != NULL)
2908 {
2909 /* Switch the event LWP. */
2910 *orig_lp = event_lp;
2911 *status = event_lp->status;
2912 }
2913
2914 /* Flush the wait status for the event LWP. */
2915 (*orig_lp)->status = 0;
2916 }
2917
2918 /* Return non-zero if LP has been resumed. */
2919
2920 static int
2921 resumed_callback (struct lwp_info *lp)
2922 {
2923 return lp->resumed;
2924 }
2925
2926 /* Check if we should go on and pass this event to common code.
2927 Return the affected lwp if we are, or NULL otherwise. */
2928
2929 static struct lwp_info *
2930 linux_nat_filter_event (int lwpid, int status)
2931 {
2932 struct lwp_info *lp;
2933 int event = linux_ptrace_get_extended_event (status);
2934
2935 lp = find_lwp_pid (ptid_t (lwpid));
2936
2937 /* Check for stop events reported by a process we didn't already
2938 know about - anything not already in our LWP list.
2939
2940 If we're expecting to receive stopped processes after
2941 fork, vfork, and clone events, then we'll just add the
2942 new one to our list and go back to waiting for the event
2943 to be reported - the stopped process might be returned
2944 from waitpid before or after the event is.
2945
2946 But note the case of a non-leader thread exec'ing after the
2947 leader having exited, and gone from our lists. The non-leader
2948 thread changes its tid to the tgid. */
2949
2950 if (WIFSTOPPED (status) && lp == NULL
2951 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2952 {
2953 /* A multi-thread exec after we had seen the leader exiting. */
2954 if (debug_linux_nat)
2955 fprintf_unfiltered (gdb_stdlog,
2956 "LLW: Re-adding thread group leader LWP %d.\n",
2957 lwpid);
2958
2959 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2960 lp->stopped = 1;
2961 lp->resumed = 1;
2962 add_thread (lp->ptid);
2963 }
2964
2965 if (WIFSTOPPED (status) && !lp)
2966 {
2967 if (debug_linux_nat)
2968 fprintf_unfiltered (gdb_stdlog,
2969 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2970 (long) lwpid, status_to_str (status));
2971 add_to_pid_list (&stopped_pids, lwpid, status);
2972 return NULL;
2973 }
2974
2975 /* Make sure we don't report an event for the exit of an LWP not in
2976 our list, i.e. not part of the current process. This can happen
2977 if we detach from a program we originally forked and then it
2978 exits. */
2979 if (!WIFSTOPPED (status) && !lp)
2980 return NULL;
2981
2982 /* This LWP is stopped now. (And if dead, this prevents it from
2983 ever being continued.) */
2984 lp->stopped = 1;
2985
2986 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2987 {
2988 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2989 int options = linux_nat_ptrace_options (inf->attach_flag);
2990
2991 linux_enable_event_reporting (lp->ptid.lwp (), options);
2992 lp->must_set_ptrace_flags = 0;
2993 }
2994
2995 /* Handle GNU/Linux's syscall SIGTRAPs. */
2996 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2997 {
2998 /* No longer need the sysgood bit. The ptrace event ends up
2999 recorded in lp->waitstatus if we care for it. We can carry
3000 on handling the event like a regular SIGTRAP from here
3001 on. */
3002 status = W_STOPCODE (SIGTRAP);
3003 if (linux_handle_syscall_trap (lp, 0))
3004 return NULL;
3005 }
3006 else
3007 {
3008 /* Almost all other ptrace-stops are known to be outside of system
3009 calls, with further exceptions in linux_handle_extended_wait. */
3010 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3011 }
3012
3013 /* Handle GNU/Linux's extended waitstatus for trace events. */
3014 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3015 && linux_is_extended_waitstatus (status))
3016 {
3017 if (debug_linux_nat)
3018 fprintf_unfiltered (gdb_stdlog,
3019 "LLW: Handling extended status 0x%06x\n",
3020 status);
3021 if (linux_handle_extended_wait (lp, status))
3022 return NULL;
3023 }
3024
3025 /* Check if the thread has exited. */
3026 if (WIFEXITED (status) || WIFSIGNALED (status))
3027 {
3028 if (!report_thread_events
3029 && num_lwps (lp->ptid.pid ()) > 1)
3030 {
3031 if (debug_linux_nat)
3032 fprintf_unfiltered (gdb_stdlog,
3033 "LLW: %s exited.\n",
3034 target_pid_to_str (lp->ptid).c_str ());
3035
3036 /* If there is at least one more LWP, then the exit signal
3037 was not the end of the debugged application and should be
3038 ignored. */
3039 exit_lwp (lp);
3040 return NULL;
3041 }
3042
3043 /* Note that even if the leader was ptrace-stopped, it can still
3044 exit, if e.g., some other thread brings down the whole
3045 process (calls `exit'). So don't assert that the lwp is
3046 resumed. */
3047 if (debug_linux_nat)
3048 fprintf_unfiltered (gdb_stdlog,
3049 "LWP %ld exited (resumed=%d)\n",
3050 lp->ptid.lwp (), lp->resumed);
3051
3052 /* Dead LWP's aren't expected to reported a pending sigstop. */
3053 lp->signalled = 0;
3054
3055 /* Store the pending event in the waitstatus, because
3056 W_EXITCODE(0,0) == 0. */
3057 store_waitstatus (&lp->waitstatus, status);
3058 return lp;
3059 }
3060
3061 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3062 an attempt to stop an LWP. */
3063 if (lp->signalled
3064 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3065 {
3066 lp->signalled = 0;
3067
3068 if (lp->last_resume_kind == resume_stop)
3069 {
3070 if (debug_linux_nat)
3071 fprintf_unfiltered (gdb_stdlog,
3072 "LLW: resume_stop SIGSTOP caught for %s.\n",
3073 target_pid_to_str (lp->ptid).c_str ());
3074 }
3075 else
3076 {
3077 /* This is a delayed SIGSTOP. Filter out the event. */
3078
3079 if (debug_linux_nat)
3080 fprintf_unfiltered (gdb_stdlog,
3081 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3082 lp->step ?
3083 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3084 target_pid_to_str (lp->ptid).c_str ());
3085
3086 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3087 gdb_assert (lp->resumed);
3088 return NULL;
3089 }
3090 }
3091
3092 /* Make sure we don't report a SIGINT that we have already displayed
3093 for another thread. */
3094 if (lp->ignore_sigint
3095 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3096 {
3097 if (debug_linux_nat)
3098 fprintf_unfiltered (gdb_stdlog,
3099 "LLW: Delayed SIGINT caught for %s.\n",
3100 target_pid_to_str (lp->ptid).c_str ());
3101
3102 /* This is a delayed SIGINT. */
3103 lp->ignore_sigint = 0;
3104
3105 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3106 if (debug_linux_nat)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3109 lp->step ?
3110 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3111 target_pid_to_str (lp->ptid).c_str ());
3112 gdb_assert (lp->resumed);
3113
3114 /* Discard the event. */
3115 return NULL;
3116 }
3117
3118 /* Don't report signals that GDB isn't interested in, such as
3119 signals that are neither printed nor stopped upon. Stopping all
3120 threads can be a bit time-consuming so if we want decent
3121 performance with heavily multi-threaded programs, especially when
3122 they're using a high frequency timer, we'd better avoid it if we
3123 can. */
3124 if (WIFSTOPPED (status))
3125 {
3126 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3127
3128 if (!target_is_non_stop_p ())
3129 {
3130 /* Only do the below in all-stop, as we currently use SIGSTOP
3131 to implement target_stop (see linux_nat_stop) in
3132 non-stop. */
3133 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3134 {
3135 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3136 forwarded to the entire process group, that is, all LWPs
3137 will receive it - unless they're using CLONE_THREAD to
3138 share signals. Since we only want to report it once, we
3139 mark it as ignored for all LWPs except this one. */
3140 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3141 lp->ignore_sigint = 0;
3142 }
3143 else
3144 maybe_clear_ignore_sigint (lp);
3145 }
3146
3147 /* When using hardware single-step, we need to report every signal.
3148 Otherwise, signals in pass_mask may be short-circuited
3149 except signals that might be caused by a breakpoint, or SIGSTOP
3150 if we sent the SIGSTOP and are waiting for it to arrive. */
3151 if (!lp->step
3152 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3153 && (WSTOPSIG (status) != SIGSTOP
3154 || !find_thread_ptid (lp->ptid)->stop_requested)
3155 && !linux_wstatus_maybe_breakpoint (status))
3156 {
3157 linux_resume_one_lwp (lp, lp->step, signo);
3158 if (debug_linux_nat)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "LLW: %s %s, %s (preempt 'handle')\n",
3161 lp->step ?
3162 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3163 target_pid_to_str (lp->ptid).c_str (),
3164 (signo != GDB_SIGNAL_0
3165 ? strsignal (gdb_signal_to_host (signo))
3166 : "0"));
3167 return NULL;
3168 }
3169 }
3170
3171 /* An interesting event. */
3172 gdb_assert (lp);
3173 lp->status = status;
3174 save_stop_reason (lp);
3175 return lp;
3176 }
3177
3178 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3179 their exits until all other threads in the group have exited. */
3180
3181 static void
3182 check_zombie_leaders (void)
3183 {
3184 for (inferior *inf : all_inferiors ())
3185 {
3186 struct lwp_info *leader_lp;
3187
3188 if (inf->pid == 0)
3189 continue;
3190
3191 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3192 if (leader_lp != NULL
3193 /* Check if there are other threads in the group, as we may
3194 have raced with the inferior simply exiting. */
3195 && num_lwps (inf->pid) > 1
3196 && linux_proc_pid_is_zombie (inf->pid))
3197 {
3198 if (debug_linux_nat)
3199 fprintf_unfiltered (gdb_stdlog,
3200 "CZL: Thread group leader %d zombie "
3201 "(it exited, or another thread execd).\n",
3202 inf->pid);
3203
3204 /* A leader zombie can mean one of two things:
3205
3206 - It exited, and there's an exit status pending
3207 available, or only the leader exited (not the whole
3208 program). In the latter case, we can't waitpid the
3209 leader's exit status until all other threads are gone.
3210
3211 - There are 3 or more threads in the group, and a thread
3212 other than the leader exec'd. See comments on exec
3213 events at the top of the file. We could try
3214 distinguishing the exit and exec cases, by waiting once
3215 more, and seeing if something comes out, but it doesn't
3216 sound useful. The previous leader _does_ go away, and
3217 we'll re-add the new one once we see the exec event
3218 (which is just the same as what would happen if the
3219 previous leader did exit voluntarily before some other
3220 thread execs). */
3221
3222 if (debug_linux_nat)
3223 fprintf_unfiltered (gdb_stdlog,
3224 "CZL: Thread group leader %d vanished.\n",
3225 inf->pid);
3226 exit_lwp (leader_lp);
3227 }
3228 }
3229 }
3230
3231 /* Convenience function that is called when the kernel reports an exit
3232 event. This decides whether to report the event to GDB as a
3233 process exit event, a thread exit event, or to suppress the
3234 event. */
3235
3236 static ptid_t
3237 filter_exit_event (struct lwp_info *event_child,
3238 struct target_waitstatus *ourstatus)
3239 {
3240 ptid_t ptid = event_child->ptid;
3241
3242 if (num_lwps (ptid.pid ()) > 1)
3243 {
3244 if (report_thread_events)
3245 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3246 else
3247 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3248
3249 exit_lwp (event_child);
3250 }
3251
3252 return ptid;
3253 }
3254
3255 static ptid_t
3256 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3257 int target_options)
3258 {
3259 sigset_t prev_mask;
3260 enum resume_kind last_resume_kind;
3261 struct lwp_info *lp;
3262 int status;
3263
3264 if (debug_linux_nat)
3265 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3266
3267 /* The first time we get here after starting a new inferior, we may
3268 not have added it to the LWP list yet - this is the earliest
3269 moment at which we know its PID. */
3270 if (inferior_ptid.is_pid ())
3271 {
3272 /* Upgrade the main thread's ptid. */
3273 thread_change_ptid (inferior_ptid,
3274 ptid_t (inferior_ptid.pid (),
3275 inferior_ptid.pid (), 0));
3276
3277 lp = add_initial_lwp (inferior_ptid);
3278 lp->resumed = 1;
3279 }
3280
3281 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3282 block_child_signals (&prev_mask);
3283
3284 /* First check if there is a LWP with a wait status pending. */
3285 lp = iterate_over_lwps (ptid, status_callback);
3286 if (lp != NULL)
3287 {
3288 if (debug_linux_nat)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "LLW: Using pending wait status %s for %s.\n",
3291 status_to_str (lp->status),
3292 target_pid_to_str (lp->ptid).c_str ());
3293 }
3294
3295 /* But if we don't find a pending event, we'll have to wait. Always
3296 pull all events out of the kernel. We'll randomly select an
3297 event LWP out of all that have events, to prevent starvation. */
3298
3299 while (lp == NULL)
3300 {
3301 pid_t lwpid;
3302
3303 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3304 quirks:
3305
3306 - If the thread group leader exits while other threads in the
3307 thread group still exist, waitpid(TGID, ...) hangs. That
3308 waitpid won't return an exit status until the other threads
3309 in the group are reaped.
3310
3311 - When a non-leader thread execs, that thread just vanishes
3312 without reporting an exit (so we'd hang if we waited for it
3313 explicitly in that case). The exec event is reported to
3314 the TGID pid. */
3315
3316 errno = 0;
3317 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3318
3319 if (debug_linux_nat)
3320 fprintf_unfiltered (gdb_stdlog,
3321 "LNW: waitpid(-1, ...) returned %d, %s\n",
3322 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3323
3324 if (lwpid > 0)
3325 {
3326 if (debug_linux_nat)
3327 {
3328 fprintf_unfiltered (gdb_stdlog,
3329 "LLW: waitpid %ld received %s\n",
3330 (long) lwpid, status_to_str (status));
3331 }
3332
3333 linux_nat_filter_event (lwpid, status);
3334 /* Retry until nothing comes out of waitpid. A single
3335 SIGCHLD can indicate more than one child stopped. */
3336 continue;
3337 }
3338
3339 /* Now that we've pulled all events out of the kernel, resume
3340 LWPs that don't have an interesting event to report. */
3341 iterate_over_lwps (minus_one_ptid,
3342 [] (struct lwp_info *info)
3343 {
3344 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3345 });
3346
3347 /* ... and find an LWP with a status to report to the core, if
3348 any. */
3349 lp = iterate_over_lwps (ptid, status_callback);
3350 if (lp != NULL)
3351 break;
3352
3353 /* Check for zombie thread group leaders. Those can't be reaped
3354 until all other threads in the thread group are. */
3355 check_zombie_leaders ();
3356
3357 /* If there are no resumed children left, bail. We'd be stuck
3358 forever in the sigsuspend call below otherwise. */
3359 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3360 {
3361 if (debug_linux_nat)
3362 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3363
3364 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3365
3366 restore_child_signals_mask (&prev_mask);
3367 return minus_one_ptid;
3368 }
3369
3370 /* No interesting event to report to the core. */
3371
3372 if (target_options & TARGET_WNOHANG)
3373 {
3374 if (debug_linux_nat)
3375 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3376
3377 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3378 restore_child_signals_mask (&prev_mask);
3379 return minus_one_ptid;
3380 }
3381
3382 /* We shouldn't end up here unless we want to try again. */
3383 gdb_assert (lp == NULL);
3384
3385 /* Block until we get an event reported with SIGCHLD. */
3386 wait_for_signal ();
3387 }
3388
3389 gdb_assert (lp);
3390
3391 status = lp->status;
3392 lp->status = 0;
3393
3394 if (!target_is_non_stop_p ())
3395 {
3396 /* Now stop all other LWP's ... */
3397 iterate_over_lwps (minus_one_ptid, stop_callback);
3398
3399 /* ... and wait until all of them have reported back that
3400 they're no longer running. */
3401 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3402 }
3403
3404 /* If we're not waiting for a specific LWP, choose an event LWP from
3405 among those that have had events. Giving equal priority to all
3406 LWPs that have had events helps prevent starvation. */
3407 if (ptid == minus_one_ptid || ptid.is_pid ())
3408 select_event_lwp (ptid, &lp, &status);
3409
3410 gdb_assert (lp != NULL);
3411
3412 /* Now that we've selected our final event LWP, un-adjust its PC if
3413 it was a software breakpoint, and we can't reliably support the
3414 "stopped by software breakpoint" stop reason. */
3415 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3416 && !USE_SIGTRAP_SIGINFO)
3417 {
3418 struct regcache *regcache = get_thread_regcache (lp->ptid);
3419 struct gdbarch *gdbarch = regcache->arch ();
3420 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3421
3422 if (decr_pc != 0)
3423 {
3424 CORE_ADDR pc;
3425
3426 pc = regcache_read_pc (regcache);
3427 regcache_write_pc (regcache, pc + decr_pc);
3428 }
3429 }
3430
3431 /* We'll need this to determine whether to report a SIGSTOP as
3432 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3433 clears it. */
3434 last_resume_kind = lp->last_resume_kind;
3435
3436 if (!target_is_non_stop_p ())
3437 {
3438 /* In all-stop, from the core's perspective, all LWPs are now
3439 stopped until a new resume action is sent over. */
3440 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3441 }
3442 else
3443 {
3444 resume_clear_callback (lp);
3445 }
3446
3447 if (linux_target->low_status_is_event (status))
3448 {
3449 if (debug_linux_nat)
3450 fprintf_unfiltered (gdb_stdlog,
3451 "LLW: trap ptid is %s.\n",
3452 target_pid_to_str (lp->ptid).c_str ());
3453 }
3454
3455 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3456 {
3457 *ourstatus = lp->waitstatus;
3458 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3459 }
3460 else
3461 store_waitstatus (ourstatus, status);
3462
3463 if (debug_linux_nat)
3464 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3465
3466 restore_child_signals_mask (&prev_mask);
3467
3468 if (last_resume_kind == resume_stop
3469 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3470 && WSTOPSIG (status) == SIGSTOP)
3471 {
3472 /* A thread that has been requested to stop by GDB with
3473 target_stop, and it stopped cleanly, so report as SIG0. The
3474 use of SIGSTOP is an implementation detail. */
3475 ourstatus->value.sig = GDB_SIGNAL_0;
3476 }
3477
3478 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3479 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3480 lp->core = -1;
3481 else
3482 lp->core = linux_common_core_of_thread (lp->ptid);
3483
3484 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3485 return filter_exit_event (lp, ourstatus);
3486
3487 return lp->ptid;
3488 }
3489
3490 /* Resume LWPs that are currently stopped without any pending status
3491 to report, but are resumed from the core's perspective. */
3492
3493 static int
3494 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3495 {
3496 if (!lp->stopped)
3497 {
3498 if (debug_linux_nat)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "RSRL: NOT resuming LWP %s, not stopped\n",
3501 target_pid_to_str (lp->ptid).c_str ());
3502 }
3503 else if (!lp->resumed)
3504 {
3505 if (debug_linux_nat)
3506 fprintf_unfiltered (gdb_stdlog,
3507 "RSRL: NOT resuming LWP %s, not resumed\n",
3508 target_pid_to_str (lp->ptid).c_str ());
3509 }
3510 else if (lwp_status_pending_p (lp))
3511 {
3512 if (debug_linux_nat)
3513 fprintf_unfiltered (gdb_stdlog,
3514 "RSRL: NOT resuming LWP %s, has pending status\n",
3515 target_pid_to_str (lp->ptid).c_str ());
3516 }
3517 else
3518 {
3519 struct regcache *regcache = get_thread_regcache (lp->ptid);
3520 struct gdbarch *gdbarch = regcache->arch ();
3521
3522 try
3523 {
3524 CORE_ADDR pc = regcache_read_pc (regcache);
3525 int leave_stopped = 0;
3526
3527 /* Don't bother if there's a breakpoint at PC that we'd hit
3528 immediately, and we're not waiting for this LWP. */
3529 if (!lp->ptid.matches (wait_ptid))
3530 {
3531 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3532 leave_stopped = 1;
3533 }
3534
3535 if (!leave_stopped)
3536 {
3537 if (debug_linux_nat)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "RSRL: resuming stopped-resumed LWP %s at "
3540 "%s: step=%d\n",
3541 target_pid_to_str (lp->ptid).c_str (),
3542 paddress (gdbarch, pc),
3543 lp->step);
3544
3545 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3546 }
3547 }
3548 catch (const gdb_exception_error &ex)
3549 {
3550 if (!check_ptrace_stopped_lwp_gone (lp))
3551 throw;
3552 }
3553 }
3554
3555 return 0;
3556 }
3557
3558 ptid_t
3559 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3560 int target_options)
3561 {
3562 ptid_t event_ptid;
3563
3564 if (debug_linux_nat)
3565 {
3566 std::string options_string = target_options_to_string (target_options);
3567 fprintf_unfiltered (gdb_stdlog,
3568 "linux_nat_wait: [%s], [%s]\n",
3569 target_pid_to_str (ptid).c_str (),
3570 options_string.c_str ());
3571 }
3572
3573 /* Flush the async file first. */
3574 if (target_is_async_p ())
3575 async_file_flush ();
3576
3577 /* Resume LWPs that are currently stopped without any pending status
3578 to report, but are resumed from the core's perspective. LWPs get
3579 in this state if we find them stopping at a time we're not
3580 interested in reporting the event (target_wait on a
3581 specific_process, for example, see linux_nat_wait_1), and
3582 meanwhile the event became uninteresting. Don't bother resuming
3583 LWPs we're not going to wait for if they'd stop immediately. */
3584 if (target_is_non_stop_p ())
3585 iterate_over_lwps (minus_one_ptid,
3586 [=] (struct lwp_info *info)
3587 {
3588 return resume_stopped_resumed_lwps (info, ptid);
3589 });
3590
3591 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3592
3593 /* If we requested any event, and something came out, assume there
3594 may be more. If we requested a specific lwp or process, also
3595 assume there may be more. */
3596 if (target_is_async_p ()
3597 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3598 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3599 || ptid != minus_one_ptid))
3600 async_file_mark ();
3601
3602 return event_ptid;
3603 }
3604
3605 /* Kill one LWP. */
3606
3607 static void
3608 kill_one_lwp (pid_t pid)
3609 {
3610 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3611
3612 errno = 0;
3613 kill_lwp (pid, SIGKILL);
3614 if (debug_linux_nat)
3615 {
3616 int save_errno = errno;
3617
3618 fprintf_unfiltered (gdb_stdlog,
3619 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3620 save_errno ? safe_strerror (save_errno) : "OK");
3621 }
3622
3623 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3624
3625 errno = 0;
3626 ptrace (PTRACE_KILL, pid, 0, 0);
3627 if (debug_linux_nat)
3628 {
3629 int save_errno = errno;
3630
3631 fprintf_unfiltered (gdb_stdlog,
3632 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3633 save_errno ? safe_strerror (save_errno) : "OK");
3634 }
3635 }
3636
3637 /* Wait for an LWP to die. */
3638
3639 static void
3640 kill_wait_one_lwp (pid_t pid)
3641 {
3642 pid_t res;
3643
3644 /* We must make sure that there are no pending events (delayed
3645 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3646 program doesn't interfere with any following debugging session. */
3647
3648 do
3649 {
3650 res = my_waitpid (pid, NULL, __WALL);
3651 if (res != (pid_t) -1)
3652 {
3653 if (debug_linux_nat)
3654 fprintf_unfiltered (gdb_stdlog,
3655 "KWC: wait %ld received unknown.\n",
3656 (long) pid);
3657 /* The Linux kernel sometimes fails to kill a thread
3658 completely after PTRACE_KILL; that goes from the stop
3659 point in do_fork out to the one in get_signal_to_deliver
3660 and waits again. So kill it again. */
3661 kill_one_lwp (pid);
3662 }
3663 }
3664 while (res == pid);
3665
3666 gdb_assert (res == -1 && errno == ECHILD);
3667 }
3668
3669 /* Callback for iterate_over_lwps. */
3670
3671 static int
3672 kill_callback (struct lwp_info *lp)
3673 {
3674 kill_one_lwp (lp->ptid.lwp ());
3675 return 0;
3676 }
3677
3678 /* Callback for iterate_over_lwps. */
3679
3680 static int
3681 kill_wait_callback (struct lwp_info *lp)
3682 {
3683 kill_wait_one_lwp (lp->ptid.lwp ());
3684 return 0;
3685 }
3686
3687 /* Kill the fork children of any threads of inferior INF that are
3688 stopped at a fork event. */
3689
3690 static void
3691 kill_unfollowed_fork_children (struct inferior *inf)
3692 {
3693 for (thread_info *thread : inf->non_exited_threads ())
3694 {
3695 struct target_waitstatus *ws = &thread->pending_follow;
3696
3697 if (ws->kind == TARGET_WAITKIND_FORKED
3698 || ws->kind == TARGET_WAITKIND_VFORKED)
3699 {
3700 ptid_t child_ptid = ws->value.related_pid;
3701 int child_pid = child_ptid.pid ();
3702 int child_lwp = child_ptid.lwp ();
3703
3704 kill_one_lwp (child_lwp);
3705 kill_wait_one_lwp (child_lwp);
3706
3707 /* Let the arch-specific native code know this process is
3708 gone. */
3709 linux_target->low_forget_process (child_pid);
3710 }
3711 }
3712 }
3713
3714 void
3715 linux_nat_target::kill ()
3716 {
3717 /* If we're stopped while forking and we haven't followed yet,
3718 kill the other task. We need to do this first because the
3719 parent will be sleeping if this is a vfork. */
3720 kill_unfollowed_fork_children (current_inferior ());
3721
3722 if (forks_exist_p ())
3723 linux_fork_killall ();
3724 else
3725 {
3726 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3727
3728 /* Stop all threads before killing them, since ptrace requires
3729 that the thread is stopped to successfully PTRACE_KILL. */
3730 iterate_over_lwps (ptid, stop_callback);
3731 /* ... and wait until all of them have reported back that
3732 they're no longer running. */
3733 iterate_over_lwps (ptid, stop_wait_callback);
3734
3735 /* Kill all LWP's ... */
3736 iterate_over_lwps (ptid, kill_callback);
3737
3738 /* ... and wait until we've flushed all events. */
3739 iterate_over_lwps (ptid, kill_wait_callback);
3740 }
3741
3742 target_mourn_inferior (inferior_ptid);
3743 }
3744
3745 void
3746 linux_nat_target::mourn_inferior ()
3747 {
3748 int pid = inferior_ptid.pid ();
3749
3750 purge_lwp_list (pid);
3751
3752 if (! forks_exist_p ())
3753 /* Normal case, no other forks available. */
3754 inf_ptrace_target::mourn_inferior ();
3755 else
3756 /* Multi-fork case. The current inferior_ptid has exited, but
3757 there are other viable forks to debug. Delete the exiting
3758 one and context-switch to the first available. */
3759 linux_fork_mourn_inferior ();
3760
3761 /* Let the arch-specific native code know this process is gone. */
3762 linux_target->low_forget_process (pid);
3763 }
3764
3765 /* Convert a native/host siginfo object, into/from the siginfo in the
3766 layout of the inferiors' architecture. */
3767
3768 static void
3769 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3770 {
3771 /* If the low target didn't do anything, then just do a straight
3772 memcpy. */
3773 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3774 {
3775 if (direction == 1)
3776 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3777 else
3778 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3779 }
3780 }
3781
3782 static enum target_xfer_status
3783 linux_xfer_siginfo (enum target_object object,
3784 const char *annex, gdb_byte *readbuf,
3785 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3786 ULONGEST *xfered_len)
3787 {
3788 int pid;
3789 siginfo_t siginfo;
3790 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3791
3792 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3793 gdb_assert (readbuf || writebuf);
3794
3795 pid = inferior_ptid.lwp ();
3796 if (pid == 0)
3797 pid = inferior_ptid.pid ();
3798
3799 if (offset > sizeof (siginfo))
3800 return TARGET_XFER_E_IO;
3801
3802 errno = 0;
3803 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3804 if (errno != 0)
3805 return TARGET_XFER_E_IO;
3806
3807 /* When GDB is built as a 64-bit application, ptrace writes into
3808 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3809 inferior with a 64-bit GDB should look the same as debugging it
3810 with a 32-bit GDB, we need to convert it. GDB core always sees
3811 the converted layout, so any read/write will have to be done
3812 post-conversion. */
3813 siginfo_fixup (&siginfo, inf_siginfo, 0);
3814
3815 if (offset + len > sizeof (siginfo))
3816 len = sizeof (siginfo) - offset;
3817
3818 if (readbuf != NULL)
3819 memcpy (readbuf, inf_siginfo + offset, len);
3820 else
3821 {
3822 memcpy (inf_siginfo + offset, writebuf, len);
3823
3824 /* Convert back to ptrace layout before flushing it out. */
3825 siginfo_fixup (&siginfo, inf_siginfo, 1);
3826
3827 errno = 0;
3828 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3829 if (errno != 0)
3830 return TARGET_XFER_E_IO;
3831 }
3832
3833 *xfered_len = len;
3834 return TARGET_XFER_OK;
3835 }
3836
3837 static enum target_xfer_status
3838 linux_nat_xfer_osdata (enum target_object object,
3839 const char *annex, gdb_byte *readbuf,
3840 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3841 ULONGEST *xfered_len);
3842
3843 static enum target_xfer_status
3844 linux_proc_xfer_partial (enum target_object object,
3845 const char *annex, gdb_byte *readbuf,
3846 const gdb_byte *writebuf,
3847 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3848
3849 enum target_xfer_status
3850 linux_nat_target::xfer_partial (enum target_object object,
3851 const char *annex, gdb_byte *readbuf,
3852 const gdb_byte *writebuf,
3853 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3854 {
3855 enum target_xfer_status xfer;
3856
3857 if (object == TARGET_OBJECT_SIGNAL_INFO)
3858 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3859 offset, len, xfered_len);
3860
3861 /* The target is connected but no live inferior is selected. Pass
3862 this request down to a lower stratum (e.g., the executable
3863 file). */
3864 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3865 return TARGET_XFER_EOF;
3866
3867 if (object == TARGET_OBJECT_AUXV)
3868 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3869 offset, len, xfered_len);
3870
3871 if (object == TARGET_OBJECT_OSDATA)
3872 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3873 offset, len, xfered_len);
3874
3875 /* GDB calculates all addresses in the largest possible address
3876 width.
3877 The address width must be masked before its final use - either by
3878 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3879
3880 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3881
3882 if (object == TARGET_OBJECT_MEMORY)
3883 {
3884 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3885
3886 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3887 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3888 }
3889
3890 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3891 offset, len, xfered_len);
3892 if (xfer != TARGET_XFER_EOF)
3893 return xfer;
3894
3895 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3896 offset, len, xfered_len);
3897 }
3898
3899 bool
3900 linux_nat_target::thread_alive (ptid_t ptid)
3901 {
3902 /* As long as a PTID is in lwp list, consider it alive. */
3903 return find_lwp_pid (ptid) != NULL;
3904 }
3905
3906 /* Implement the to_update_thread_list target method for this
3907 target. */
3908
3909 void
3910 linux_nat_target::update_thread_list ()
3911 {
3912 struct lwp_info *lwp;
3913
3914 /* We add/delete threads from the list as clone/exit events are
3915 processed, so just try deleting exited threads still in the
3916 thread list. */
3917 delete_exited_threads ();
3918
3919 /* Update the processor core that each lwp/thread was last seen
3920 running on. */
3921 ALL_LWPS (lwp)
3922 {
3923 /* Avoid accessing /proc if the thread hasn't run since we last
3924 time we fetched the thread's core. Accessing /proc becomes
3925 noticeably expensive when we have thousands of LWPs. */
3926 if (lwp->core == -1)
3927 lwp->core = linux_common_core_of_thread (lwp->ptid);
3928 }
3929 }
3930
3931 std::string
3932 linux_nat_target::pid_to_str (ptid_t ptid)
3933 {
3934 if (ptid.lwp_p ()
3935 && (ptid.pid () != ptid.lwp ()
3936 || num_lwps (ptid.pid ()) > 1))
3937 return string_printf ("LWP %ld", ptid.lwp ());
3938
3939 return normal_pid_to_str (ptid);
3940 }
3941
3942 const char *
3943 linux_nat_target::thread_name (struct thread_info *thr)
3944 {
3945 return linux_proc_tid_get_name (thr->ptid);
3946 }
3947
3948 /* Accepts an integer PID; Returns a string representing a file that
3949 can be opened to get the symbols for the child process. */
3950
3951 char *
3952 linux_nat_target::pid_to_exec_file (int pid)
3953 {
3954 return linux_proc_pid_to_exec_file (pid);
3955 }
3956
3957 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3958 Because we can use a single read/write call, this can be much more
3959 efficient than banging away at PTRACE_PEEKTEXT. */
3960
3961 static enum target_xfer_status
3962 linux_proc_xfer_partial (enum target_object object,
3963 const char *annex, gdb_byte *readbuf,
3964 const gdb_byte *writebuf,
3965 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3966 {
3967 LONGEST ret;
3968 int fd;
3969 char filename[64];
3970
3971 if (object != TARGET_OBJECT_MEMORY)
3972 return TARGET_XFER_EOF;
3973
3974 /* Don't bother for one word. */
3975 if (len < 3 * sizeof (long))
3976 return TARGET_XFER_EOF;
3977
3978 /* We could keep this file open and cache it - possibly one per
3979 thread. That requires some juggling, but is even faster. */
3980 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3981 inferior_ptid.lwp ());
3982 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3983 | O_LARGEFILE), 0);
3984 if (fd == -1)
3985 return TARGET_XFER_EOF;
3986
3987 /* Use pread64/pwrite64 if available, since they save a syscall and can
3988 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3989 debugging a SPARC64 application). */
3990 #ifdef HAVE_PREAD64
3991 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3992 : pwrite64 (fd, writebuf, len, offset));
3993 #else
3994 ret = lseek (fd, offset, SEEK_SET);
3995 if (ret != -1)
3996 ret = (readbuf ? read (fd, readbuf, len)
3997 : write (fd, writebuf, len));
3998 #endif
3999
4000 close (fd);
4001
4002 if (ret == -1 || ret == 0)
4003 return TARGET_XFER_EOF;
4004 else
4005 {
4006 *xfered_len = ret;
4007 return TARGET_XFER_OK;
4008 }
4009 }
4010
4011
4012 /* Parse LINE as a signal set and add its set bits to SIGS. */
4013
4014 static void
4015 add_line_to_sigset (const char *line, sigset_t *sigs)
4016 {
4017 int len = strlen (line) - 1;
4018 const char *p;
4019 int signum;
4020
4021 if (line[len] != '\n')
4022 error (_("Could not parse signal set: %s"), line);
4023
4024 p = line;
4025 signum = len * 4;
4026 while (len-- > 0)
4027 {
4028 int digit;
4029
4030 if (*p >= '0' && *p <= '9')
4031 digit = *p - '0';
4032 else if (*p >= 'a' && *p <= 'f')
4033 digit = *p - 'a' + 10;
4034 else
4035 error (_("Could not parse signal set: %s"), line);
4036
4037 signum -= 4;
4038
4039 if (digit & 1)
4040 sigaddset (sigs, signum + 1);
4041 if (digit & 2)
4042 sigaddset (sigs, signum + 2);
4043 if (digit & 4)
4044 sigaddset (sigs, signum + 3);
4045 if (digit & 8)
4046 sigaddset (sigs, signum + 4);
4047
4048 p++;
4049 }
4050 }
4051
4052 /* Find process PID's pending signals from /proc/pid/status and set
4053 SIGS to match. */
4054
4055 void
4056 linux_proc_pending_signals (int pid, sigset_t *pending,
4057 sigset_t *blocked, sigset_t *ignored)
4058 {
4059 char buffer[PATH_MAX], fname[PATH_MAX];
4060
4061 sigemptyset (pending);
4062 sigemptyset (blocked);
4063 sigemptyset (ignored);
4064 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4065 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4066 if (procfile == NULL)
4067 error (_("Could not open %s"), fname);
4068
4069 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4070 {
4071 /* Normal queued signals are on the SigPnd line in the status
4072 file. However, 2.6 kernels also have a "shared" pending
4073 queue for delivering signals to a thread group, so check for
4074 a ShdPnd line also.
4075
4076 Unfortunately some Red Hat kernels include the shared pending
4077 queue but not the ShdPnd status field. */
4078
4079 if (startswith (buffer, "SigPnd:\t"))
4080 add_line_to_sigset (buffer + 8, pending);
4081 else if (startswith (buffer, "ShdPnd:\t"))
4082 add_line_to_sigset (buffer + 8, pending);
4083 else if (startswith (buffer, "SigBlk:\t"))
4084 add_line_to_sigset (buffer + 8, blocked);
4085 else if (startswith (buffer, "SigIgn:\t"))
4086 add_line_to_sigset (buffer + 8, ignored);
4087 }
4088 }
4089
4090 static enum target_xfer_status
4091 linux_nat_xfer_osdata (enum target_object object,
4092 const char *annex, gdb_byte *readbuf,
4093 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4094 ULONGEST *xfered_len)
4095 {
4096 gdb_assert (object == TARGET_OBJECT_OSDATA);
4097
4098 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4099 if (*xfered_len == 0)
4100 return TARGET_XFER_EOF;
4101 else
4102 return TARGET_XFER_OK;
4103 }
4104
4105 std::vector<static_tracepoint_marker>
4106 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4107 {
4108 char s[IPA_CMD_BUF_SIZE];
4109 int pid = inferior_ptid.pid ();
4110 std::vector<static_tracepoint_marker> markers;
4111 const char *p = s;
4112 ptid_t ptid = ptid_t (pid, 0, 0);
4113 static_tracepoint_marker marker;
4114
4115 /* Pause all */
4116 target_stop (ptid);
4117
4118 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4119 s[sizeof ("qTfSTM")] = 0;
4120
4121 agent_run_command (pid, s, strlen (s) + 1);
4122
4123 /* Unpause all. */
4124 SCOPE_EXIT { target_continue_no_signal (ptid); };
4125
4126 while (*p++ == 'm')
4127 {
4128 do
4129 {
4130 parse_static_tracepoint_marker_definition (p, &p, &marker);
4131
4132 if (strid == NULL || marker.str_id == strid)
4133 markers.push_back (std::move (marker));
4134 }
4135 while (*p++ == ','); /* comma-separated list */
4136
4137 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4138 s[sizeof ("qTsSTM")] = 0;
4139 agent_run_command (pid, s, strlen (s) + 1);
4140 p = s;
4141 }
4142
4143 return markers;
4144 }
4145
4146 /* target_is_async_p implementation. */
4147
4148 bool
4149 linux_nat_target::is_async_p ()
4150 {
4151 return linux_is_async_p ();
4152 }
4153
4154 /* target_can_async_p implementation. */
4155
4156 bool
4157 linux_nat_target::can_async_p ()
4158 {
4159 /* We're always async, unless the user explicitly prevented it with the
4160 "maint set target-async" command. */
4161 return target_async_permitted;
4162 }
4163
4164 bool
4165 linux_nat_target::supports_non_stop ()
4166 {
4167 return 1;
4168 }
4169
4170 /* to_always_non_stop_p implementation. */
4171
4172 bool
4173 linux_nat_target::always_non_stop_p ()
4174 {
4175 return 1;
4176 }
4177
4178 /* True if we want to support multi-process. To be removed when GDB
4179 supports multi-exec. */
4180
4181 int linux_multi_process = 1;
4182
4183 bool
4184 linux_nat_target::supports_multi_process ()
4185 {
4186 return linux_multi_process;
4187 }
4188
4189 bool
4190 linux_nat_target::supports_disable_randomization ()
4191 {
4192 #ifdef HAVE_PERSONALITY
4193 return 1;
4194 #else
4195 return 0;
4196 #endif
4197 }
4198
4199 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4200 so we notice when any child changes state, and notify the
4201 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4202 above to wait for the arrival of a SIGCHLD. */
4203
4204 static void
4205 sigchld_handler (int signo)
4206 {
4207 int old_errno = errno;
4208
4209 if (debug_linux_nat)
4210 ui_file_write_async_safe (gdb_stdlog,
4211 "sigchld\n", sizeof ("sigchld\n") - 1);
4212
4213 if (signo == SIGCHLD
4214 && linux_nat_event_pipe[0] != -1)
4215 async_file_mark (); /* Let the event loop know that there are
4216 events to handle. */
4217
4218 errno = old_errno;
4219 }
4220
4221 /* Callback registered with the target events file descriptor. */
4222
4223 static void
4224 handle_target_event (int error, gdb_client_data client_data)
4225 {
4226 inferior_event_handler (INF_REG_EVENT, NULL);
4227 }
4228
4229 /* Create/destroy the target events pipe. Returns previous state. */
4230
4231 static int
4232 linux_async_pipe (int enable)
4233 {
4234 int previous = linux_is_async_p ();
4235
4236 if (previous != enable)
4237 {
4238 sigset_t prev_mask;
4239
4240 /* Block child signals while we create/destroy the pipe, as
4241 their handler writes to it. */
4242 block_child_signals (&prev_mask);
4243
4244 if (enable)
4245 {
4246 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4247 internal_error (__FILE__, __LINE__,
4248 "creating event pipe failed.");
4249
4250 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4251 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4252 }
4253 else
4254 {
4255 close (linux_nat_event_pipe[0]);
4256 close (linux_nat_event_pipe[1]);
4257 linux_nat_event_pipe[0] = -1;
4258 linux_nat_event_pipe[1] = -1;
4259 }
4260
4261 restore_child_signals_mask (&prev_mask);
4262 }
4263
4264 return previous;
4265 }
4266
4267 /* target_async implementation. */
4268
4269 void
4270 linux_nat_target::async (int enable)
4271 {
4272 if (enable)
4273 {
4274 if (!linux_async_pipe (1))
4275 {
4276 add_file_handler (linux_nat_event_pipe[0],
4277 handle_target_event, NULL);
4278 /* There may be pending events to handle. Tell the event loop
4279 to poll them. */
4280 async_file_mark ();
4281 }
4282 }
4283 else
4284 {
4285 delete_file_handler (linux_nat_event_pipe[0]);
4286 linux_async_pipe (0);
4287 }
4288 return;
4289 }
4290
4291 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4292 event came out. */
4293
4294 static int
4295 linux_nat_stop_lwp (struct lwp_info *lwp)
4296 {
4297 if (!lwp->stopped)
4298 {
4299 if (debug_linux_nat)
4300 fprintf_unfiltered (gdb_stdlog,
4301 "LNSL: running -> suspending %s\n",
4302 target_pid_to_str (lwp->ptid).c_str ());
4303
4304
4305 if (lwp->last_resume_kind == resume_stop)
4306 {
4307 if (debug_linux_nat)
4308 fprintf_unfiltered (gdb_stdlog,
4309 "linux-nat: already stopping LWP %ld at "
4310 "GDB's request\n",
4311 lwp->ptid.lwp ());
4312 return 0;
4313 }
4314
4315 stop_callback (lwp);
4316 lwp->last_resume_kind = resume_stop;
4317 }
4318 else
4319 {
4320 /* Already known to be stopped; do nothing. */
4321
4322 if (debug_linux_nat)
4323 {
4324 if (find_thread_ptid (lwp->ptid)->stop_requested)
4325 fprintf_unfiltered (gdb_stdlog,
4326 "LNSL: already stopped/stop_requested %s\n",
4327 target_pid_to_str (lwp->ptid).c_str ());
4328 else
4329 fprintf_unfiltered (gdb_stdlog,
4330 "LNSL: already stopped/no "
4331 "stop_requested yet %s\n",
4332 target_pid_to_str (lwp->ptid).c_str ());
4333 }
4334 }
4335 return 0;
4336 }
4337
4338 void
4339 linux_nat_target::stop (ptid_t ptid)
4340 {
4341 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4342 }
4343
4344 void
4345 linux_nat_target::close ()
4346 {
4347 /* Unregister from the event loop. */
4348 if (is_async_p ())
4349 async (0);
4350
4351 inf_ptrace_target::close ();
4352 }
4353
4354 /* When requests are passed down from the linux-nat layer to the
4355 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4356 used. The address space pointer is stored in the inferior object,
4357 but the common code that is passed such ptid can't tell whether
4358 lwpid is a "main" process id or not (it assumes so). We reverse
4359 look up the "main" process id from the lwp here. */
4360
4361 struct address_space *
4362 linux_nat_target::thread_address_space (ptid_t ptid)
4363 {
4364 struct lwp_info *lwp;
4365 struct inferior *inf;
4366 int pid;
4367
4368 if (ptid.lwp () == 0)
4369 {
4370 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4371 tgid. */
4372 lwp = find_lwp_pid (ptid);
4373 pid = lwp->ptid.pid ();
4374 }
4375 else
4376 {
4377 /* A (pid,lwpid,0) ptid. */
4378 pid = ptid.pid ();
4379 }
4380
4381 inf = find_inferior_pid (pid);
4382 gdb_assert (inf != NULL);
4383 return inf->aspace;
4384 }
4385
4386 /* Return the cached value of the processor core for thread PTID. */
4387
4388 int
4389 linux_nat_target::core_of_thread (ptid_t ptid)
4390 {
4391 struct lwp_info *info = find_lwp_pid (ptid);
4392
4393 if (info)
4394 return info->core;
4395 return -1;
4396 }
4397
4398 /* Implementation of to_filesystem_is_local. */
4399
4400 bool
4401 linux_nat_target::filesystem_is_local ()
4402 {
4403 struct inferior *inf = current_inferior ();
4404
4405 if (inf->fake_pid_p || inf->pid == 0)
4406 return true;
4407
4408 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4409 }
4410
4411 /* Convert the INF argument passed to a to_fileio_* method
4412 to a process ID suitable for passing to its corresponding
4413 linux_mntns_* function. If INF is non-NULL then the
4414 caller is requesting the filesystem seen by INF. If INF
4415 is NULL then the caller is requesting the filesystem seen
4416 by the GDB. We fall back to GDB's filesystem in the case
4417 that INF is non-NULL but its PID is unknown. */
4418
4419 static pid_t
4420 linux_nat_fileio_pid_of (struct inferior *inf)
4421 {
4422 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4423 return getpid ();
4424 else
4425 return inf->pid;
4426 }
4427
4428 /* Implementation of to_fileio_open. */
4429
4430 int
4431 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4432 int flags, int mode, int warn_if_slow,
4433 int *target_errno)
4434 {
4435 int nat_flags;
4436 mode_t nat_mode;
4437 int fd;
4438
4439 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4440 || fileio_to_host_mode (mode, &nat_mode) == -1)
4441 {
4442 *target_errno = FILEIO_EINVAL;
4443 return -1;
4444 }
4445
4446 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4447 filename, nat_flags, nat_mode);
4448 if (fd == -1)
4449 *target_errno = host_to_fileio_error (errno);
4450
4451 return fd;
4452 }
4453
4454 /* Implementation of to_fileio_readlink. */
4455
4456 gdb::optional<std::string>
4457 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4458 int *target_errno)
4459 {
4460 char buf[PATH_MAX];
4461 int len;
4462
4463 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4464 filename, buf, sizeof (buf));
4465 if (len < 0)
4466 {
4467 *target_errno = host_to_fileio_error (errno);
4468 return {};
4469 }
4470
4471 return std::string (buf, len);
4472 }
4473
4474 /* Implementation of to_fileio_unlink. */
4475
4476 int
4477 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4478 int *target_errno)
4479 {
4480 int ret;
4481
4482 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4483 filename);
4484 if (ret == -1)
4485 *target_errno = host_to_fileio_error (errno);
4486
4487 return ret;
4488 }
4489
4490 /* Implementation of the to_thread_events method. */
4491
4492 void
4493 linux_nat_target::thread_events (int enable)
4494 {
4495 report_thread_events = enable;
4496 }
4497
4498 linux_nat_target::linux_nat_target ()
4499 {
4500 /* We don't change the stratum; this target will sit at
4501 process_stratum and thread_db will set at thread_stratum. This
4502 is a little strange, since this is a multi-threaded-capable
4503 target, but we want to be on the stack below thread_db, and we
4504 also want to be used for single-threaded processes. */
4505 }
4506
4507 /* See linux-nat.h. */
4508
4509 int
4510 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4511 {
4512 int pid;
4513
4514 pid = ptid.lwp ();
4515 if (pid == 0)
4516 pid = ptid.pid ();
4517
4518 errno = 0;
4519 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4520 if (errno != 0)
4521 {
4522 memset (siginfo, 0, sizeof (*siginfo));
4523 return 0;
4524 }
4525 return 1;
4526 }
4527
4528 /* See nat/linux-nat.h. */
4529
4530 ptid_t
4531 current_lwp_ptid (void)
4532 {
4533 gdb_assert (inferior_ptid.lwp_p ());
4534 return inferior_ptid;
4535 }
4536
4537 void
4538 _initialize_linux_nat (void)
4539 {
4540 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4541 &debug_linux_nat, _("\
4542 Set debugging of GNU/Linux lwp module."), _("\
4543 Show debugging of GNU/Linux lwp module."), _("\
4544 Enables printf debugging output."),
4545 NULL,
4546 show_debug_linux_nat,
4547 &setdebuglist, &showdebuglist);
4548
4549 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4550 &debug_linux_namespaces, _("\
4551 Set debugging of GNU/Linux namespaces module."), _("\
4552 Show debugging of GNU/Linux namespaces module."), _("\
4553 Enables printf debugging output."),
4554 NULL,
4555 NULL,
4556 &setdebuglist, &showdebuglist);
4557
4558 /* Install a SIGCHLD handler. */
4559 sigchld_action.sa_handler = sigchld_handler;
4560 sigemptyset (&sigchld_action.sa_mask);
4561 sigchld_action.sa_flags = SA_RESTART;
4562
4563 /* Make it the default. */
4564 sigaction (SIGCHLD, &sigchld_action, NULL);
4565
4566 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4567 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4568 sigdelset (&suspend_mask, SIGCHLD);
4569
4570 sigemptyset (&blocked_mask);
4571
4572 lwp_lwpid_htab_create ();
4573 }
4574 \f
4575
4576 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4577 the GNU/Linux Threads library and therefore doesn't really belong
4578 here. */
4579
4580 /* Return the set of signals used by the threads library in *SET. */
4581
4582 void
4583 lin_thread_get_thread_signals (sigset_t *set)
4584 {
4585 sigemptyset (set);
4586
4587 /* NPTL reserves the first two RT signals, but does not provide any
4588 way for the debugger to query the signal numbers - fortunately
4589 they don't change. */
4590 sigaddset (set, __SIGRTMIN);
4591 sigaddset (set, __SIGRTMIN + 1);
4592 }
This page took 0.235931 seconds and 4 git commands to generate.