Make gdb/linux-nat.c consider a waitstatus pending on the infrun side
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 /* Does the current host support PTRACE_GETREGSET? */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191
192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
193 the use of the multi-threaded target. */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
196
197 /* The method to call, if any, when a new thread is attached. */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
199
200 /* The method to call, if any, when a new fork is attached. */
201 static linux_nat_new_fork_ftype *linux_nat_new_fork;
202
203 /* The method to call, if any, when a process is no longer
204 attached. */
205 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
206
207 /* Hook to call prior to resuming a thread. */
208 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
209
210 /* The method to call, if any, when the siginfo object needs to be
211 converted between the layout returned by ptrace, and the layout in
212 the architecture of the inferior. */
213 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
214 gdb_byte *,
215 int);
216
217 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
218 Called by our to_xfer_partial. */
219 static target_xfer_partial_ftype *super_xfer_partial;
220
221 /* The saved to_close method, inherited from inf-ptrace.c.
222 Called by our to_close. */
223 static void (*super_close) (struct target_ops *);
224
225 static unsigned int debug_linux_nat;
226 static void
227 show_debug_linux_nat (struct ui_file *file, int from_tty,
228 struct cmd_list_element *c, const char *value)
229 {
230 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
231 value);
232 }
233
234 struct simple_pid_list
235 {
236 int pid;
237 int status;
238 struct simple_pid_list *next;
239 };
240 struct simple_pid_list *stopped_pids;
241
242 /* Whether target_thread_events is in effect. */
243 static int report_thread_events;
244
245 /* Async mode support. */
246
247 /* The read/write ends of the pipe registered as waitable file in the
248 event loop. */
249 static int linux_nat_event_pipe[2] = { -1, -1 };
250
251 /* True if we're currently in async mode. */
252 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
253
254 /* Flush the event pipe. */
255
256 static void
257 async_file_flush (void)
258 {
259 int ret;
260 char buf;
261
262 do
263 {
264 ret = read (linux_nat_event_pipe[0], &buf, 1);
265 }
266 while (ret >= 0 || (ret == -1 && errno == EINTR));
267 }
268
269 /* Put something (anything, doesn't matter what, or how much) in event
270 pipe, so that the select/poll in the event-loop realizes we have
271 something to process. */
272
273 static void
274 async_file_mark (void)
275 {
276 int ret;
277
278 /* It doesn't really matter what the pipe contains, as long we end
279 up with something in it. Might as well flush the previous
280 left-overs. */
281 async_file_flush ();
282
283 do
284 {
285 ret = write (linux_nat_event_pipe[1], "+", 1);
286 }
287 while (ret == -1 && errno == EINTR);
288
289 /* Ignore EAGAIN. If the pipe is full, the event loop will already
290 be awakened anyway. */
291 }
292
293 static int kill_lwp (int lwpid, int signo);
294
295 static int stop_callback (struct lwp_info *lp, void *data);
296 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
297
298 static void block_child_signals (sigset_t *prev_mask);
299 static void restore_child_signals_mask (sigset_t *prev_mask);
300
301 struct lwp_info;
302 static struct lwp_info *add_lwp (ptid_t ptid);
303 static void purge_lwp_list (int pid);
304 static void delete_lwp (ptid_t ptid);
305 static struct lwp_info *find_lwp_pid (ptid_t ptid);
306
307 static int lwp_status_pending_p (struct lwp_info *lp);
308
309 static int sigtrap_is_event (int status);
310 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
311
312 static void save_stop_reason (struct lwp_info *lp);
313
314 \f
315 /* LWP accessors. */
316
317 /* See nat/linux-nat.h. */
318
319 ptid_t
320 ptid_of_lwp (struct lwp_info *lwp)
321 {
322 return lwp->ptid;
323 }
324
325 /* See nat/linux-nat.h. */
326
327 void
328 lwp_set_arch_private_info (struct lwp_info *lwp,
329 struct arch_lwp_info *info)
330 {
331 lwp->arch_private = info;
332 }
333
334 /* See nat/linux-nat.h. */
335
336 struct arch_lwp_info *
337 lwp_arch_private_info (struct lwp_info *lwp)
338 {
339 return lwp->arch_private;
340 }
341
342 /* See nat/linux-nat.h. */
343
344 int
345 lwp_is_stopped (struct lwp_info *lwp)
346 {
347 return lwp->stopped;
348 }
349
350 /* See nat/linux-nat.h. */
351
352 enum target_stop_reason
353 lwp_stop_reason (struct lwp_info *lwp)
354 {
355 return lwp->stop_reason;
356 }
357
358 \f
359 /* Trivial list manipulation functions to keep track of a list of
360 new stopped processes. */
361 static void
362 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
363 {
364 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
365
366 new_pid->pid = pid;
367 new_pid->status = status;
368 new_pid->next = *listp;
369 *listp = new_pid;
370 }
371
372 static int
373 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
374 {
375 struct simple_pid_list **p;
376
377 for (p = listp; *p != NULL; p = &(*p)->next)
378 if ((*p)->pid == pid)
379 {
380 struct simple_pid_list *next = (*p)->next;
381
382 *statusp = (*p)->status;
383 xfree (*p);
384 *p = next;
385 return 1;
386 }
387 return 0;
388 }
389
390 /* Return the ptrace options that we want to try to enable. */
391
392 static int
393 linux_nat_ptrace_options (int attached)
394 {
395 int options = 0;
396
397 if (!attached)
398 options |= PTRACE_O_EXITKILL;
399
400 options |= (PTRACE_O_TRACESYSGOOD
401 | PTRACE_O_TRACEVFORKDONE
402 | PTRACE_O_TRACEVFORK
403 | PTRACE_O_TRACEFORK
404 | PTRACE_O_TRACEEXEC);
405
406 return options;
407 }
408
409 /* Initialize ptrace warnings and check for supported ptrace
410 features given PID.
411
412 ATTACHED should be nonzero iff we attached to the inferior. */
413
414 static void
415 linux_init_ptrace (pid_t pid, int attached)
416 {
417 int options = linux_nat_ptrace_options (attached);
418
419 linux_enable_event_reporting (pid, options);
420 linux_ptrace_init_warnings ();
421 }
422
423 static void
424 linux_child_post_attach (struct target_ops *self, int pid)
425 {
426 linux_init_ptrace (pid, 1);
427 }
428
429 static void
430 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
431 {
432 linux_init_ptrace (ptid_get_pid (ptid), 0);
433 }
434
435 /* Return the number of known LWPs in the tgid given by PID. */
436
437 static int
438 num_lwps (int pid)
439 {
440 int count = 0;
441 struct lwp_info *lp;
442
443 for (lp = lwp_list; lp; lp = lp->next)
444 if (ptid_get_pid (lp->ptid) == pid)
445 count++;
446
447 return count;
448 }
449
450 /* Call delete_lwp with prototype compatible for make_cleanup. */
451
452 static void
453 delete_lwp_cleanup (void *lp_voidp)
454 {
455 struct lwp_info *lp = (struct lwp_info *) lp_voidp;
456
457 delete_lwp (lp->ptid);
458 }
459
460 /* Target hook for follow_fork. On entry inferior_ptid must be the
461 ptid of the followed inferior. At return, inferior_ptid will be
462 unchanged. */
463
464 static int
465 linux_child_follow_fork (struct target_ops *ops, int follow_child,
466 int detach_fork)
467 {
468 if (!follow_child)
469 {
470 struct lwp_info *child_lp = NULL;
471 int status = W_STOPCODE (0);
472 struct cleanup *old_chain;
473 int has_vforked;
474 ptid_t parent_ptid, child_ptid;
475 int parent_pid, child_pid;
476
477 has_vforked = (inferior_thread ()->pending_follow.kind
478 == TARGET_WAITKIND_VFORKED);
479 parent_ptid = inferior_ptid;
480 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
481 parent_pid = ptid_get_lwp (parent_ptid);
482 child_pid = ptid_get_lwp (child_ptid);
483
484 /* We're already attached to the parent, by default. */
485 old_chain = save_inferior_ptid ();
486 inferior_ptid = child_ptid;
487 child_lp = add_lwp (inferior_ptid);
488 child_lp->stopped = 1;
489 child_lp->last_resume_kind = resume_stop;
490
491 /* Detach new forked process? */
492 if (detach_fork)
493 {
494 make_cleanup (delete_lwp_cleanup, child_lp);
495
496 if (linux_nat_prepare_to_resume != NULL)
497 linux_nat_prepare_to_resume (child_lp);
498
499 /* When debugging an inferior in an architecture that supports
500 hardware single stepping on a kernel without commit
501 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
502 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
503 set if the parent process had them set.
504 To work around this, single step the child process
505 once before detaching to clear the flags. */
506
507 if (!gdbarch_software_single_step_p (target_thread_architecture
508 (child_lp->ptid)))
509 {
510 linux_disable_event_reporting (child_pid);
511 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
512 perror_with_name (_("Couldn't do single step"));
513 if (my_waitpid (child_pid, &status, 0) < 0)
514 perror_with_name (_("Couldn't wait vfork process"));
515 }
516
517 if (WIFSTOPPED (status))
518 {
519 int signo;
520
521 signo = WSTOPSIG (status);
522 if (signo != 0
523 && !signal_pass_state (gdb_signal_from_host (signo)))
524 signo = 0;
525 ptrace (PTRACE_DETACH, child_pid, 0, signo);
526 }
527
528 /* Resets value of inferior_ptid to parent ptid. */
529 do_cleanups (old_chain);
530 }
531 else
532 {
533 /* Let the thread_db layer learn about this new process. */
534 check_for_thread_db ();
535 }
536
537 do_cleanups (old_chain);
538
539 if (has_vforked)
540 {
541 struct lwp_info *parent_lp;
542
543 parent_lp = find_lwp_pid (parent_ptid);
544 gdb_assert (linux_supports_tracefork () >= 0);
545
546 if (linux_supports_tracevforkdone ())
547 {
548 if (debug_linux_nat)
549 fprintf_unfiltered (gdb_stdlog,
550 "LCFF: waiting for VFORK_DONE on %d\n",
551 parent_pid);
552 parent_lp->stopped = 1;
553
554 /* We'll handle the VFORK_DONE event like any other
555 event, in target_wait. */
556 }
557 else
558 {
559 /* We can't insert breakpoints until the child has
560 finished with the shared memory region. We need to
561 wait until that happens. Ideal would be to just
562 call:
563 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
564 - waitpid (parent_pid, &status, __WALL);
565 However, most architectures can't handle a syscall
566 being traced on the way out if it wasn't traced on
567 the way in.
568
569 We might also think to loop, continuing the child
570 until it exits or gets a SIGTRAP. One problem is
571 that the child might call ptrace with PTRACE_TRACEME.
572
573 There's no simple and reliable way to figure out when
574 the vforked child will be done with its copy of the
575 shared memory. We could step it out of the syscall,
576 two instructions, let it go, and then single-step the
577 parent once. When we have hardware single-step, this
578 would work; with software single-step it could still
579 be made to work but we'd have to be able to insert
580 single-step breakpoints in the child, and we'd have
581 to insert -just- the single-step breakpoint in the
582 parent. Very awkward.
583
584 In the end, the best we can do is to make sure it
585 runs for a little while. Hopefully it will be out of
586 range of any breakpoints we reinsert. Usually this
587 is only the single-step breakpoint at vfork's return
588 point. */
589
590 if (debug_linux_nat)
591 fprintf_unfiltered (gdb_stdlog,
592 "LCFF: no VFORK_DONE "
593 "support, sleeping a bit\n");
594
595 usleep (10000);
596
597 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
598 and leave it pending. The next linux_nat_resume call
599 will notice a pending event, and bypasses actually
600 resuming the inferior. */
601 parent_lp->status = 0;
602 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
603 parent_lp->stopped = 1;
604
605 /* If we're in async mode, need to tell the event loop
606 there's something here to process. */
607 if (target_is_async_p ())
608 async_file_mark ();
609 }
610 }
611 }
612 else
613 {
614 struct lwp_info *child_lp;
615
616 child_lp = add_lwp (inferior_ptid);
617 child_lp->stopped = 1;
618 child_lp->last_resume_kind = resume_stop;
619
620 /* Let the thread_db layer learn about this new process. */
621 check_for_thread_db ();
622 }
623
624 return 0;
625 }
626
627 \f
628 static int
629 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
630 {
631 return !linux_supports_tracefork ();
632 }
633
634 static int
635 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
636 {
637 return 0;
638 }
639
640 static int
641 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
642 {
643 return !linux_supports_tracefork ();
644 }
645
646 static int
647 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
648 {
649 return 0;
650 }
651
652 static int
653 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
654 {
655 return !linux_supports_tracefork ();
656 }
657
658 static int
659 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
660 {
661 return 0;
662 }
663
664 static int
665 linux_child_set_syscall_catchpoint (struct target_ops *self,
666 int pid, int needed, int any_count,
667 int table_size, int *table)
668 {
669 if (!linux_supports_tracesysgood ())
670 return 1;
671
672 /* On GNU/Linux, we ignore the arguments. It means that we only
673 enable the syscall catchpoints, but do not disable them.
674
675 Also, we do not use the `table' information because we do not
676 filter system calls here. We let GDB do the logic for us. */
677 return 0;
678 }
679
680 /* List of known LWPs, keyed by LWP PID. This speeds up the common
681 case of mapping a PID returned from the kernel to our corresponding
682 lwp_info data structure. */
683 static htab_t lwp_lwpid_htab;
684
685 /* Calculate a hash from a lwp_info's LWP PID. */
686
687 static hashval_t
688 lwp_info_hash (const void *ap)
689 {
690 const struct lwp_info *lp = (struct lwp_info *) ap;
691 pid_t pid = ptid_get_lwp (lp->ptid);
692
693 return iterative_hash_object (pid, 0);
694 }
695
696 /* Equality function for the lwp_info hash table. Compares the LWP's
697 PID. */
698
699 static int
700 lwp_lwpid_htab_eq (const void *a, const void *b)
701 {
702 const struct lwp_info *entry = (const struct lwp_info *) a;
703 const struct lwp_info *element = (const struct lwp_info *) b;
704
705 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
706 }
707
708 /* Create the lwp_lwpid_htab hash table. */
709
710 static void
711 lwp_lwpid_htab_create (void)
712 {
713 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
714 }
715
716 /* Add LP to the hash table. */
717
718 static void
719 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
720 {
721 void **slot;
722
723 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
724 gdb_assert (slot != NULL && *slot == NULL);
725 *slot = lp;
726 }
727
728 /* Head of doubly-linked list of known LWPs. Sorted by reverse
729 creation order. This order is assumed in some cases. E.g.,
730 reaping status after killing alls lwps of a process: the leader LWP
731 must be reaped last. */
732 struct lwp_info *lwp_list;
733
734 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
735
736 static void
737 lwp_list_add (struct lwp_info *lp)
738 {
739 lp->next = lwp_list;
740 if (lwp_list != NULL)
741 lwp_list->prev = lp;
742 lwp_list = lp;
743 }
744
745 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
746 list. */
747
748 static void
749 lwp_list_remove (struct lwp_info *lp)
750 {
751 /* Remove from sorted-by-creation-order list. */
752 if (lp->next != NULL)
753 lp->next->prev = lp->prev;
754 if (lp->prev != NULL)
755 lp->prev->next = lp->next;
756 if (lp == lwp_list)
757 lwp_list = lp->next;
758 }
759
760 \f
761
762 /* Original signal mask. */
763 static sigset_t normal_mask;
764
765 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
766 _initialize_linux_nat. */
767 static sigset_t suspend_mask;
768
769 /* Signals to block to make that sigsuspend work. */
770 static sigset_t blocked_mask;
771
772 /* SIGCHLD action. */
773 struct sigaction sigchld_action;
774
775 /* Block child signals (SIGCHLD and linux threads signals), and store
776 the previous mask in PREV_MASK. */
777
778 static void
779 block_child_signals (sigset_t *prev_mask)
780 {
781 /* Make sure SIGCHLD is blocked. */
782 if (!sigismember (&blocked_mask, SIGCHLD))
783 sigaddset (&blocked_mask, SIGCHLD);
784
785 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
786 }
787
788 /* Restore child signals mask, previously returned by
789 block_child_signals. */
790
791 static void
792 restore_child_signals_mask (sigset_t *prev_mask)
793 {
794 sigprocmask (SIG_SETMASK, prev_mask, NULL);
795 }
796
797 /* Mask of signals to pass directly to the inferior. */
798 static sigset_t pass_mask;
799
800 /* Update signals to pass to the inferior. */
801 static void
802 linux_nat_pass_signals (struct target_ops *self,
803 int numsigs, unsigned char *pass_signals)
804 {
805 int signo;
806
807 sigemptyset (&pass_mask);
808
809 for (signo = 1; signo < NSIG; signo++)
810 {
811 int target_signo = gdb_signal_from_host (signo);
812 if (target_signo < numsigs && pass_signals[target_signo])
813 sigaddset (&pass_mask, signo);
814 }
815 }
816
817 \f
818
819 /* Prototypes for local functions. */
820 static int stop_wait_callback (struct lwp_info *lp, void *data);
821 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
822 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
823
824 \f
825
826 /* Destroy and free LP. */
827
828 static void
829 lwp_free (struct lwp_info *lp)
830 {
831 xfree (lp->arch_private);
832 xfree (lp);
833 }
834
835 /* Traversal function for purge_lwp_list. */
836
837 static int
838 lwp_lwpid_htab_remove_pid (void **slot, void *info)
839 {
840 struct lwp_info *lp = (struct lwp_info *) *slot;
841 int pid = *(int *) info;
842
843 if (ptid_get_pid (lp->ptid) == pid)
844 {
845 htab_clear_slot (lwp_lwpid_htab, slot);
846 lwp_list_remove (lp);
847 lwp_free (lp);
848 }
849
850 return 1;
851 }
852
853 /* Remove all LWPs belong to PID from the lwp list. */
854
855 static void
856 purge_lwp_list (int pid)
857 {
858 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
859 }
860
861 /* Add the LWP specified by PTID to the list. PTID is the first LWP
862 in the process. Return a pointer to the structure describing the
863 new LWP.
864
865 This differs from add_lwp in that we don't let the arch specific
866 bits know about this new thread. Current clients of this callback
867 take the opportunity to install watchpoints in the new thread, and
868 we shouldn't do that for the first thread. If we're spawning a
869 child ("run"), the thread executes the shell wrapper first, and we
870 shouldn't touch it until it execs the program we want to debug.
871 For "attach", it'd be okay to call the callback, but it's not
872 necessary, because watchpoints can't yet have been inserted into
873 the inferior. */
874
875 static struct lwp_info *
876 add_initial_lwp (ptid_t ptid)
877 {
878 struct lwp_info *lp;
879
880 gdb_assert (ptid_lwp_p (ptid));
881
882 lp = XNEW (struct lwp_info);
883
884 memset (lp, 0, sizeof (struct lwp_info));
885
886 lp->last_resume_kind = resume_continue;
887 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
888
889 lp->ptid = ptid;
890 lp->core = -1;
891
892 /* Add to sorted-by-reverse-creation-order list. */
893 lwp_list_add (lp);
894
895 /* Add to keyed-by-pid htab. */
896 lwp_lwpid_htab_add_lwp (lp);
897
898 return lp;
899 }
900
901 /* Add the LWP specified by PID to the list. Return a pointer to the
902 structure describing the new LWP. The LWP should already be
903 stopped. */
904
905 static struct lwp_info *
906 add_lwp (ptid_t ptid)
907 {
908 struct lwp_info *lp;
909
910 lp = add_initial_lwp (ptid);
911
912 /* Let the arch specific bits know about this new thread. Current
913 clients of this callback take the opportunity to install
914 watchpoints in the new thread. We don't do this for the first
915 thread though. See add_initial_lwp. */
916 if (linux_nat_new_thread != NULL)
917 linux_nat_new_thread (lp);
918
919 return lp;
920 }
921
922 /* Remove the LWP specified by PID from the list. */
923
924 static void
925 delete_lwp (ptid_t ptid)
926 {
927 struct lwp_info *lp;
928 void **slot;
929 struct lwp_info dummy;
930
931 dummy.ptid = ptid;
932 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
933 if (slot == NULL)
934 return;
935
936 lp = *(struct lwp_info **) slot;
937 gdb_assert (lp != NULL);
938
939 htab_clear_slot (lwp_lwpid_htab, slot);
940
941 /* Remove from sorted-by-creation-order list. */
942 lwp_list_remove (lp);
943
944 /* Release. */
945 lwp_free (lp);
946 }
947
948 /* Return a pointer to the structure describing the LWP corresponding
949 to PID. If no corresponding LWP could be found, return NULL. */
950
951 static struct lwp_info *
952 find_lwp_pid (ptid_t ptid)
953 {
954 struct lwp_info *lp;
955 int lwp;
956 struct lwp_info dummy;
957
958 if (ptid_lwp_p (ptid))
959 lwp = ptid_get_lwp (ptid);
960 else
961 lwp = ptid_get_pid (ptid);
962
963 dummy.ptid = ptid_build (0, lwp, 0);
964 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
965 return lp;
966 }
967
968 /* See nat/linux-nat.h. */
969
970 struct lwp_info *
971 iterate_over_lwps (ptid_t filter,
972 iterate_over_lwps_ftype callback,
973 void *data)
974 {
975 struct lwp_info *lp, *lpnext;
976
977 for (lp = lwp_list; lp; lp = lpnext)
978 {
979 lpnext = lp->next;
980
981 if (ptid_match (lp->ptid, filter))
982 {
983 if ((*callback) (lp, data) != 0)
984 return lp;
985 }
986 }
987
988 return NULL;
989 }
990
991 /* Update our internal state when changing from one checkpoint to
992 another indicated by NEW_PTID. We can only switch single-threaded
993 applications, so we only create one new LWP, and the previous list
994 is discarded. */
995
996 void
997 linux_nat_switch_fork (ptid_t new_ptid)
998 {
999 struct lwp_info *lp;
1000
1001 purge_lwp_list (ptid_get_pid (inferior_ptid));
1002
1003 lp = add_lwp (new_ptid);
1004 lp->stopped = 1;
1005
1006 /* This changes the thread's ptid while preserving the gdb thread
1007 num. Also changes the inferior pid, while preserving the
1008 inferior num. */
1009 thread_change_ptid (inferior_ptid, new_ptid);
1010
1011 /* We've just told GDB core that the thread changed target id, but,
1012 in fact, it really is a different thread, with different register
1013 contents. */
1014 registers_changed ();
1015 }
1016
1017 /* Handle the exit of a single thread LP. */
1018
1019 static void
1020 exit_lwp (struct lwp_info *lp)
1021 {
1022 struct thread_info *th = find_thread_ptid (lp->ptid);
1023
1024 if (th)
1025 {
1026 if (print_thread_events)
1027 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1028
1029 delete_thread (lp->ptid);
1030 }
1031
1032 delete_lwp (lp->ptid);
1033 }
1034
1035 /* Wait for the LWP specified by LP, which we have just attached to.
1036 Returns a wait status for that LWP, to cache. */
1037
1038 static int
1039 linux_nat_post_attach_wait (ptid_t ptid, int first, int *signalled)
1040 {
1041 pid_t new_pid, pid = ptid_get_lwp (ptid);
1042 int status;
1043
1044 if (linux_proc_pid_is_stopped (pid))
1045 {
1046 if (debug_linux_nat)
1047 fprintf_unfiltered (gdb_stdlog,
1048 "LNPAW: Attaching to a stopped process\n");
1049
1050 /* The process is definitely stopped. It is in a job control
1051 stop, unless the kernel predates the TASK_STOPPED /
1052 TASK_TRACED distinction, in which case it might be in a
1053 ptrace stop. Make sure it is in a ptrace stop; from there we
1054 can kill it, signal it, et cetera.
1055
1056 First make sure there is a pending SIGSTOP. Since we are
1057 already attached, the process can not transition from stopped
1058 to running without a PTRACE_CONT; so we know this signal will
1059 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1060 probably already in the queue (unless this kernel is old
1061 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1062 is not an RT signal, it can only be queued once. */
1063 kill_lwp (pid, SIGSTOP);
1064
1065 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1066 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1067 ptrace (PTRACE_CONT, pid, 0, 0);
1068 }
1069
1070 /* Make sure the initial process is stopped. The user-level threads
1071 layer might want to poke around in the inferior, and that won't
1072 work if things haven't stabilized yet. */
1073 new_pid = my_waitpid (pid, &status, __WALL);
1074 gdb_assert (pid == new_pid);
1075
1076 if (!WIFSTOPPED (status))
1077 {
1078 /* The pid we tried to attach has apparently just exited. */
1079 if (debug_linux_nat)
1080 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1081 pid, status_to_str (status));
1082 return status;
1083 }
1084
1085 if (WSTOPSIG (status) != SIGSTOP)
1086 {
1087 *signalled = 1;
1088 if (debug_linux_nat)
1089 fprintf_unfiltered (gdb_stdlog,
1090 "LNPAW: Received %s after attaching\n",
1091 status_to_str (status));
1092 }
1093
1094 return status;
1095 }
1096
1097 static void
1098 linux_nat_create_inferior (struct target_ops *ops,
1099 char *exec_file, char *allargs, char **env,
1100 int from_tty)
1101 {
1102 struct cleanup *restore_personality
1103 = maybe_disable_address_space_randomization (disable_randomization);
1104
1105 /* The fork_child mechanism is synchronous and calls target_wait, so
1106 we have to mask the async mode. */
1107
1108 /* Make sure we report all signals during startup. */
1109 linux_nat_pass_signals (ops, 0, NULL);
1110
1111 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1112
1113 do_cleanups (restore_personality);
1114 }
1115
1116 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1117 already attached. Returns true if a new LWP is found, false
1118 otherwise. */
1119
1120 static int
1121 attach_proc_task_lwp_callback (ptid_t ptid)
1122 {
1123 struct lwp_info *lp;
1124
1125 /* Ignore LWPs we're already attached to. */
1126 lp = find_lwp_pid (ptid);
1127 if (lp == NULL)
1128 {
1129 int lwpid = ptid_get_lwp (ptid);
1130
1131 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1132 {
1133 int err = errno;
1134
1135 /* Be quiet if we simply raced with the thread exiting.
1136 EPERM is returned if the thread's task still exists, and
1137 is marked as exited or zombie, as well as other
1138 conditions, so in that case, confirm the status in
1139 /proc/PID/status. */
1140 if (err == ESRCH
1141 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1142 {
1143 if (debug_linux_nat)
1144 {
1145 fprintf_unfiltered (gdb_stdlog,
1146 "Cannot attach to lwp %d: "
1147 "thread is gone (%d: %s)\n",
1148 lwpid, err, safe_strerror (err));
1149 }
1150 }
1151 else
1152 {
1153 warning (_("Cannot attach to lwp %d: %s"),
1154 lwpid,
1155 linux_ptrace_attach_fail_reason_string (ptid,
1156 err));
1157 }
1158 }
1159 else
1160 {
1161 if (debug_linux_nat)
1162 fprintf_unfiltered (gdb_stdlog,
1163 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1164 target_pid_to_str (ptid));
1165
1166 lp = add_lwp (ptid);
1167
1168 /* The next time we wait for this LWP we'll see a SIGSTOP as
1169 PTRACE_ATTACH brings it to a halt. */
1170 lp->signalled = 1;
1171
1172 /* We need to wait for a stop before being able to make the
1173 next ptrace call on this LWP. */
1174 lp->must_set_ptrace_flags = 1;
1175 }
1176
1177 return 1;
1178 }
1179 return 0;
1180 }
1181
1182 static void
1183 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1184 {
1185 struct lwp_info *lp;
1186 int status;
1187 ptid_t ptid;
1188
1189 /* Make sure we report all signals during attach. */
1190 linux_nat_pass_signals (ops, 0, NULL);
1191
1192 TRY
1193 {
1194 linux_ops->to_attach (ops, args, from_tty);
1195 }
1196 CATCH (ex, RETURN_MASK_ERROR)
1197 {
1198 pid_t pid = parse_pid_to_attach (args);
1199 struct buffer buffer;
1200 char *message, *buffer_s;
1201
1202 message = xstrdup (ex.message);
1203 make_cleanup (xfree, message);
1204
1205 buffer_init (&buffer);
1206 linux_ptrace_attach_fail_reason (pid, &buffer);
1207
1208 buffer_grow_str0 (&buffer, "");
1209 buffer_s = buffer_finish (&buffer);
1210 make_cleanup (xfree, buffer_s);
1211
1212 if (*buffer_s != '\0')
1213 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1214 else
1215 throw_error (ex.error, "%s", message);
1216 }
1217 END_CATCH
1218
1219 /* The ptrace base target adds the main thread with (pid,0,0)
1220 format. Decorate it with lwp info. */
1221 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1222 ptid_get_pid (inferior_ptid),
1223 0);
1224 thread_change_ptid (inferior_ptid, ptid);
1225
1226 /* Add the initial process as the first LWP to the list. */
1227 lp = add_initial_lwp (ptid);
1228
1229 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->signalled);
1230 if (!WIFSTOPPED (status))
1231 {
1232 if (WIFEXITED (status))
1233 {
1234 int exit_code = WEXITSTATUS (status);
1235
1236 target_terminal_ours ();
1237 target_mourn_inferior ();
1238 if (exit_code == 0)
1239 error (_("Unable to attach: program exited normally."));
1240 else
1241 error (_("Unable to attach: program exited with code %d."),
1242 exit_code);
1243 }
1244 else if (WIFSIGNALED (status))
1245 {
1246 enum gdb_signal signo;
1247
1248 target_terminal_ours ();
1249 target_mourn_inferior ();
1250
1251 signo = gdb_signal_from_host (WTERMSIG (status));
1252 error (_("Unable to attach: program terminated with signal "
1253 "%s, %s."),
1254 gdb_signal_to_name (signo),
1255 gdb_signal_to_string (signo));
1256 }
1257
1258 internal_error (__FILE__, __LINE__,
1259 _("unexpected status %d for PID %ld"),
1260 status, (long) ptid_get_lwp (ptid));
1261 }
1262
1263 lp->stopped = 1;
1264
1265 /* Save the wait status to report later. */
1266 lp->resumed = 1;
1267 if (debug_linux_nat)
1268 fprintf_unfiltered (gdb_stdlog,
1269 "LNA: waitpid %ld, saving status %s\n",
1270 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1271
1272 lp->status = status;
1273
1274 /* We must attach to every LWP. If /proc is mounted, use that to
1275 find them now. The inferior may be using raw clone instead of
1276 using pthreads. But even if it is using pthreads, thread_db
1277 walks structures in the inferior's address space to find the list
1278 of threads/LWPs, and those structures may well be corrupted.
1279 Note that once thread_db is loaded, we'll still use it to list
1280 threads and associate pthread info with each LWP. */
1281 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1282 attach_proc_task_lwp_callback);
1283
1284 if (target_can_async_p ())
1285 target_async (1);
1286 }
1287
1288 /* Get pending status of LP. */
1289 static int
1290 get_pending_status (struct lwp_info *lp, int *status)
1291 {
1292 enum gdb_signal signo = GDB_SIGNAL_0;
1293
1294 /* If we paused threads momentarily, we may have stored pending
1295 events in lp->status or lp->waitstatus (see stop_wait_callback),
1296 and GDB core hasn't seen any signal for those threads.
1297 Otherwise, the last signal reported to the core is found in the
1298 thread object's stop_signal.
1299
1300 There's a corner case that isn't handled here at present. Only
1301 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1302 stop_signal make sense as a real signal to pass to the inferior.
1303 Some catchpoint related events, like
1304 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1305 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1306 those traps are debug API (ptrace in our case) related and
1307 induced; the inferior wouldn't see them if it wasn't being
1308 traced. Hence, we should never pass them to the inferior, even
1309 when set to pass state. Since this corner case isn't handled by
1310 infrun.c when proceeding with a signal, for consistency, neither
1311 do we handle it here (or elsewhere in the file we check for
1312 signal pass state). Normally SIGTRAP isn't set to pass state, so
1313 this is really a corner case. */
1314
1315 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1316 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1317 else if (lp->status)
1318 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1319 else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1320 {
1321 struct thread_info *tp = find_thread_ptid (lp->ptid);
1322
1323 if (tp->suspend.waitstatus_pending_p)
1324 signo = tp->suspend.waitstatus.value.sig;
1325 else
1326 signo = tp->suspend.stop_signal;
1327 }
1328 else if (!target_is_non_stop_p ())
1329 {
1330 struct target_waitstatus last;
1331 ptid_t last_ptid;
1332
1333 get_last_target_status (&last_ptid, &last);
1334
1335 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1336 {
1337 struct thread_info *tp = find_thread_ptid (lp->ptid);
1338
1339 signo = tp->suspend.stop_signal;
1340 }
1341 }
1342
1343 *status = 0;
1344
1345 if (signo == GDB_SIGNAL_0)
1346 {
1347 if (debug_linux_nat)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "GPT: lwp %s has no pending signal\n",
1350 target_pid_to_str (lp->ptid));
1351 }
1352 else if (!signal_pass_state (signo))
1353 {
1354 if (debug_linux_nat)
1355 fprintf_unfiltered (gdb_stdlog,
1356 "GPT: lwp %s had signal %s, "
1357 "but it is in no pass state\n",
1358 target_pid_to_str (lp->ptid),
1359 gdb_signal_to_string (signo));
1360 }
1361 else
1362 {
1363 *status = W_STOPCODE (gdb_signal_to_host (signo));
1364
1365 if (debug_linux_nat)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "GPT: lwp %s has pending signal %s\n",
1368 target_pid_to_str (lp->ptid),
1369 gdb_signal_to_string (signo));
1370 }
1371
1372 return 0;
1373 }
1374
1375 static int
1376 detach_callback (struct lwp_info *lp, void *data)
1377 {
1378 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1379
1380 if (debug_linux_nat && lp->status)
1381 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1382 strsignal (WSTOPSIG (lp->status)),
1383 target_pid_to_str (lp->ptid));
1384
1385 /* If there is a pending SIGSTOP, get rid of it. */
1386 if (lp->signalled)
1387 {
1388 if (debug_linux_nat)
1389 fprintf_unfiltered (gdb_stdlog,
1390 "DC: Sending SIGCONT to %s\n",
1391 target_pid_to_str (lp->ptid));
1392
1393 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1394 lp->signalled = 0;
1395 }
1396
1397 /* We don't actually detach from the LWP that has an id equal to the
1398 overall process id just yet. */
1399 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1400 {
1401 int status = 0;
1402
1403 /* Pass on any pending signal for this LWP. */
1404 get_pending_status (lp, &status);
1405
1406 if (linux_nat_prepare_to_resume != NULL)
1407 linux_nat_prepare_to_resume (lp);
1408 errno = 0;
1409 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1410 WSTOPSIG (status)) < 0)
1411 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1412 safe_strerror (errno));
1413
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1417 target_pid_to_str (lp->ptid),
1418 strsignal (WSTOPSIG (status)));
1419
1420 delete_lwp (lp->ptid);
1421 }
1422
1423 return 0;
1424 }
1425
1426 static void
1427 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1428 {
1429 int pid;
1430 int status;
1431 struct lwp_info *main_lwp;
1432
1433 pid = ptid_get_pid (inferior_ptid);
1434
1435 /* Don't unregister from the event loop, as there may be other
1436 inferiors running. */
1437
1438 /* Stop all threads before detaching. ptrace requires that the
1439 thread is stopped to sucessfully detach. */
1440 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1441 /* ... and wait until all of them have reported back that
1442 they're no longer running. */
1443 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1444
1445 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1446
1447 /* Only the initial process should be left right now. */
1448 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1449
1450 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1451
1452 /* Pass on any pending signal for the last LWP. */
1453 if ((args == NULL || *args == '\0')
1454 && get_pending_status (main_lwp, &status) != -1
1455 && WIFSTOPPED (status))
1456 {
1457 char *tem;
1458
1459 /* Put the signal number in ARGS so that inf_ptrace_detach will
1460 pass it along with PTRACE_DETACH. */
1461 tem = (char *) alloca (8);
1462 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1463 args = tem;
1464 if (debug_linux_nat)
1465 fprintf_unfiltered (gdb_stdlog,
1466 "LND: Sending signal %s to %s\n",
1467 args,
1468 target_pid_to_str (main_lwp->ptid));
1469 }
1470
1471 if (linux_nat_prepare_to_resume != NULL)
1472 linux_nat_prepare_to_resume (main_lwp);
1473 delete_lwp (main_lwp->ptid);
1474
1475 if (forks_exist_p ())
1476 {
1477 /* Multi-fork case. The current inferior_ptid is being detached
1478 from, but there are other viable forks to debug. Detach from
1479 the current fork, and context-switch to the first
1480 available. */
1481 linux_fork_detach (args, from_tty);
1482 }
1483 else
1484 linux_ops->to_detach (ops, args, from_tty);
1485 }
1486
1487 /* Resume execution of the inferior process. If STEP is nonzero,
1488 single-step it. If SIGNAL is nonzero, give it that signal. */
1489
1490 static void
1491 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1492 enum gdb_signal signo)
1493 {
1494 lp->step = step;
1495
1496 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1497 We only presently need that if the LWP is stepped though (to
1498 handle the case of stepping a breakpoint instruction). */
1499 if (step)
1500 {
1501 struct regcache *regcache = get_thread_regcache (lp->ptid);
1502
1503 lp->stop_pc = regcache_read_pc (regcache);
1504 }
1505 else
1506 lp->stop_pc = 0;
1507
1508 if (linux_nat_prepare_to_resume != NULL)
1509 linux_nat_prepare_to_resume (lp);
1510 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1511
1512 /* Successfully resumed. Clear state that no longer makes sense,
1513 and mark the LWP as running. Must not do this before resuming
1514 otherwise if that fails other code will be confused. E.g., we'd
1515 later try to stop the LWP and hang forever waiting for a stop
1516 status. Note that we must not throw after this is cleared,
1517 otherwise handle_zombie_lwp_error would get confused. */
1518 lp->stopped = 0;
1519 lp->core = -1;
1520 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1521 registers_changed_ptid (lp->ptid);
1522 }
1523
1524 /* Called when we try to resume a stopped LWP and that errors out. If
1525 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1526 or about to become), discard the error, clear any pending status
1527 the LWP may have, and return true (we'll collect the exit status
1528 soon enough). Otherwise, return false. */
1529
1530 static int
1531 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1532 {
1533 /* If we get an error after resuming the LWP successfully, we'd
1534 confuse !T state for the LWP being gone. */
1535 gdb_assert (lp->stopped);
1536
1537 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1538 because even if ptrace failed with ESRCH, the tracee may be "not
1539 yet fully dead", but already refusing ptrace requests. In that
1540 case the tracee has 'R (Running)' state for a little bit
1541 (observed in Linux 3.18). See also the note on ESRCH in the
1542 ptrace(2) man page. Instead, check whether the LWP has any state
1543 other than ptrace-stopped. */
1544
1545 /* Don't assume anything if /proc/PID/status can't be read. */
1546 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1547 {
1548 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1549 lp->status = 0;
1550 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1551 return 1;
1552 }
1553 return 0;
1554 }
1555
1556 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1557 disappears while we try to resume it. */
1558
1559 static void
1560 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1561 {
1562 TRY
1563 {
1564 linux_resume_one_lwp_throw (lp, step, signo);
1565 }
1566 CATCH (ex, RETURN_MASK_ERROR)
1567 {
1568 if (!check_ptrace_stopped_lwp_gone (lp))
1569 throw_exception (ex);
1570 }
1571 END_CATCH
1572 }
1573
1574 /* Resume LP. */
1575
1576 static void
1577 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1578 {
1579 if (lp->stopped)
1580 {
1581 struct inferior *inf = find_inferior_ptid (lp->ptid);
1582
1583 if (inf->vfork_child != NULL)
1584 {
1585 if (debug_linux_nat)
1586 fprintf_unfiltered (gdb_stdlog,
1587 "RC: Not resuming %s (vfork parent)\n",
1588 target_pid_to_str (lp->ptid));
1589 }
1590 else if (!lwp_status_pending_p (lp))
1591 {
1592 if (debug_linux_nat)
1593 fprintf_unfiltered (gdb_stdlog,
1594 "RC: Resuming sibling %s, %s, %s\n",
1595 target_pid_to_str (lp->ptid),
1596 (signo != GDB_SIGNAL_0
1597 ? strsignal (gdb_signal_to_host (signo))
1598 : "0"),
1599 step ? "step" : "resume");
1600
1601 linux_resume_one_lwp (lp, step, signo);
1602 }
1603 else
1604 {
1605 if (debug_linux_nat)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "RC: Not resuming sibling %s (has pending)\n",
1608 target_pid_to_str (lp->ptid));
1609 }
1610 }
1611 else
1612 {
1613 if (debug_linux_nat)
1614 fprintf_unfiltered (gdb_stdlog,
1615 "RC: Not resuming sibling %s (not stopped)\n",
1616 target_pid_to_str (lp->ptid));
1617 }
1618 }
1619
1620 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1621 Resume LWP with the last stop signal, if it is in pass state. */
1622
1623 static int
1624 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1625 {
1626 enum gdb_signal signo = GDB_SIGNAL_0;
1627
1628 if (lp == except)
1629 return 0;
1630
1631 if (lp->stopped)
1632 {
1633 struct thread_info *thread;
1634
1635 thread = find_thread_ptid (lp->ptid);
1636 if (thread != NULL)
1637 {
1638 signo = thread->suspend.stop_signal;
1639 thread->suspend.stop_signal = GDB_SIGNAL_0;
1640 }
1641 }
1642
1643 resume_lwp (lp, 0, signo);
1644 return 0;
1645 }
1646
1647 static int
1648 resume_clear_callback (struct lwp_info *lp, void *data)
1649 {
1650 lp->resumed = 0;
1651 lp->last_resume_kind = resume_stop;
1652 return 0;
1653 }
1654
1655 static int
1656 resume_set_callback (struct lwp_info *lp, void *data)
1657 {
1658 lp->resumed = 1;
1659 lp->last_resume_kind = resume_continue;
1660 return 0;
1661 }
1662
1663 static void
1664 linux_nat_resume (struct target_ops *ops,
1665 ptid_t ptid, int step, enum gdb_signal signo)
1666 {
1667 struct lwp_info *lp;
1668 int resume_many;
1669
1670 if (debug_linux_nat)
1671 fprintf_unfiltered (gdb_stdlog,
1672 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1673 step ? "step" : "resume",
1674 target_pid_to_str (ptid),
1675 (signo != GDB_SIGNAL_0
1676 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1677 target_pid_to_str (inferior_ptid));
1678
1679 /* A specific PTID means `step only this process id'. */
1680 resume_many = (ptid_equal (minus_one_ptid, ptid)
1681 || ptid_is_pid (ptid));
1682
1683 /* Mark the lwps we're resuming as resumed. */
1684 iterate_over_lwps (ptid, resume_set_callback, NULL);
1685
1686 /* See if it's the current inferior that should be handled
1687 specially. */
1688 if (resume_many)
1689 lp = find_lwp_pid (inferior_ptid);
1690 else
1691 lp = find_lwp_pid (ptid);
1692 gdb_assert (lp != NULL);
1693
1694 /* Remember if we're stepping. */
1695 lp->last_resume_kind = step ? resume_step : resume_continue;
1696
1697 /* If we have a pending wait status for this thread, there is no
1698 point in resuming the process. But first make sure that
1699 linux_nat_wait won't preemptively handle the event - we
1700 should never take this short-circuit if we are going to
1701 leave LP running, since we have skipped resuming all the
1702 other threads. This bit of code needs to be synchronized
1703 with linux_nat_wait. */
1704
1705 if (lp->status && WIFSTOPPED (lp->status))
1706 {
1707 if (!lp->step
1708 && WSTOPSIG (lp->status)
1709 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1710 {
1711 if (debug_linux_nat)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "LLR: Not short circuiting for ignored "
1714 "status 0x%x\n", lp->status);
1715
1716 /* FIXME: What should we do if we are supposed to continue
1717 this thread with a signal? */
1718 gdb_assert (signo == GDB_SIGNAL_0);
1719 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1720 lp->status = 0;
1721 }
1722 }
1723
1724 if (lwp_status_pending_p (lp))
1725 {
1726 /* FIXME: What should we do if we are supposed to continue
1727 this thread with a signal? */
1728 gdb_assert (signo == GDB_SIGNAL_0);
1729
1730 if (debug_linux_nat)
1731 fprintf_unfiltered (gdb_stdlog,
1732 "LLR: Short circuiting for status 0x%x\n",
1733 lp->status);
1734
1735 if (target_can_async_p ())
1736 {
1737 target_async (1);
1738 /* Tell the event loop we have something to process. */
1739 async_file_mark ();
1740 }
1741 return;
1742 }
1743
1744 if (resume_many)
1745 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1746
1747 if (debug_linux_nat)
1748 fprintf_unfiltered (gdb_stdlog,
1749 "LLR: %s %s, %s (resume event thread)\n",
1750 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1751 target_pid_to_str (lp->ptid),
1752 (signo != GDB_SIGNAL_0
1753 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1754
1755 linux_resume_one_lwp (lp, step, signo);
1756
1757 if (target_can_async_p ())
1758 target_async (1);
1759 }
1760
1761 /* Send a signal to an LWP. */
1762
1763 static int
1764 kill_lwp (int lwpid, int signo)
1765 {
1766 int ret;
1767
1768 errno = 0;
1769 ret = syscall (__NR_tkill, lwpid, signo);
1770 if (errno == ENOSYS)
1771 {
1772 /* If tkill fails, then we are not using nptl threads, a
1773 configuration we no longer support. */
1774 perror_with_name (("tkill"));
1775 }
1776 return ret;
1777 }
1778
1779 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1780 event, check if the core is interested in it: if not, ignore the
1781 event, and keep waiting; otherwise, we need to toggle the LWP's
1782 syscall entry/exit status, since the ptrace event itself doesn't
1783 indicate it, and report the trap to higher layers. */
1784
1785 static int
1786 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1787 {
1788 struct target_waitstatus *ourstatus = &lp->waitstatus;
1789 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1790 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1791
1792 if (stopping)
1793 {
1794 /* If we're stopping threads, there's a SIGSTOP pending, which
1795 makes it so that the LWP reports an immediate syscall return,
1796 followed by the SIGSTOP. Skip seeing that "return" using
1797 PTRACE_CONT directly, and let stop_wait_callback collect the
1798 SIGSTOP. Later when the thread is resumed, a new syscall
1799 entry event. If we didn't do this (and returned 0), we'd
1800 leave a syscall entry pending, and our caller, by using
1801 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1802 itself. Later, when the user re-resumes this LWP, we'd see
1803 another syscall entry event and we'd mistake it for a return.
1804
1805 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1806 (leaving immediately with LWP->signalled set, without issuing
1807 a PTRACE_CONT), it would still be problematic to leave this
1808 syscall enter pending, as later when the thread is resumed,
1809 it would then see the same syscall exit mentioned above,
1810 followed by the delayed SIGSTOP, while the syscall didn't
1811 actually get to execute. It seems it would be even more
1812 confusing to the user. */
1813
1814 if (debug_linux_nat)
1815 fprintf_unfiltered (gdb_stdlog,
1816 "LHST: ignoring syscall %d "
1817 "for LWP %ld (stopping threads), "
1818 "resuming with PTRACE_CONT for SIGSTOP\n",
1819 syscall_number,
1820 ptid_get_lwp (lp->ptid));
1821
1822 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1823 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1824 lp->stopped = 0;
1825 return 1;
1826 }
1827
1828 /* Always update the entry/return state, even if this particular
1829 syscall isn't interesting to the core now. In async mode,
1830 the user could install a new catchpoint for this syscall
1831 between syscall enter/return, and we'll need to know to
1832 report a syscall return if that happens. */
1833 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1834 ? TARGET_WAITKIND_SYSCALL_RETURN
1835 : TARGET_WAITKIND_SYSCALL_ENTRY);
1836
1837 if (catch_syscall_enabled ())
1838 {
1839 if (catching_syscall_number (syscall_number))
1840 {
1841 /* Alright, an event to report. */
1842 ourstatus->kind = lp->syscall_state;
1843 ourstatus->value.syscall_number = syscall_number;
1844
1845 if (debug_linux_nat)
1846 fprintf_unfiltered (gdb_stdlog,
1847 "LHST: stopping for %s of syscall %d"
1848 " for LWP %ld\n",
1849 lp->syscall_state
1850 == TARGET_WAITKIND_SYSCALL_ENTRY
1851 ? "entry" : "return",
1852 syscall_number,
1853 ptid_get_lwp (lp->ptid));
1854 return 0;
1855 }
1856
1857 if (debug_linux_nat)
1858 fprintf_unfiltered (gdb_stdlog,
1859 "LHST: ignoring %s of syscall %d "
1860 "for LWP %ld\n",
1861 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1862 ? "entry" : "return",
1863 syscall_number,
1864 ptid_get_lwp (lp->ptid));
1865 }
1866 else
1867 {
1868 /* If we had been syscall tracing, and hence used PT_SYSCALL
1869 before on this LWP, it could happen that the user removes all
1870 syscall catchpoints before we get to process this event.
1871 There are two noteworthy issues here:
1872
1873 - When stopped at a syscall entry event, resuming with
1874 PT_STEP still resumes executing the syscall and reports a
1875 syscall return.
1876
1877 - Only PT_SYSCALL catches syscall enters. If we last
1878 single-stepped this thread, then this event can't be a
1879 syscall enter. If we last single-stepped this thread, this
1880 has to be a syscall exit.
1881
1882 The points above mean that the next resume, be it PT_STEP or
1883 PT_CONTINUE, can not trigger a syscall trace event. */
1884 if (debug_linux_nat)
1885 fprintf_unfiltered (gdb_stdlog,
1886 "LHST: caught syscall event "
1887 "with no syscall catchpoints."
1888 " %d for LWP %ld, ignoring\n",
1889 syscall_number,
1890 ptid_get_lwp (lp->ptid));
1891 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1892 }
1893
1894 /* The core isn't interested in this event. For efficiency, avoid
1895 stopping all threads only to have the core resume them all again.
1896 Since we're not stopping threads, if we're still syscall tracing
1897 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1898 subsequent syscall. Simply resume using the inf-ptrace layer,
1899 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1900
1901 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1902 return 1;
1903 }
1904
1905 /* Handle a GNU/Linux extended wait response. If we see a clone
1906 event, we need to add the new LWP to our list (and not report the
1907 trap to higher layers). This function returns non-zero if the
1908 event should be ignored and we should wait again. If STOPPING is
1909 true, the new LWP remains stopped, otherwise it is continued. */
1910
1911 static int
1912 linux_handle_extended_wait (struct lwp_info *lp, int status)
1913 {
1914 int pid = ptid_get_lwp (lp->ptid);
1915 struct target_waitstatus *ourstatus = &lp->waitstatus;
1916 int event = linux_ptrace_get_extended_event (status);
1917
1918 /* All extended events we currently use are mid-syscall. Only
1919 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1920 you have to be using PTRACE_SEIZE to get that. */
1921 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1922
1923 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1924 || event == PTRACE_EVENT_CLONE)
1925 {
1926 unsigned long new_pid;
1927 int ret;
1928
1929 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1930
1931 /* If we haven't already seen the new PID stop, wait for it now. */
1932 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1933 {
1934 /* The new child has a pending SIGSTOP. We can't affect it until it
1935 hits the SIGSTOP, but we're already attached. */
1936 ret = my_waitpid (new_pid, &status, __WALL);
1937 if (ret == -1)
1938 perror_with_name (_("waiting for new child"));
1939 else if (ret != new_pid)
1940 internal_error (__FILE__, __LINE__,
1941 _("wait returned unexpected PID %d"), ret);
1942 else if (!WIFSTOPPED (status))
1943 internal_error (__FILE__, __LINE__,
1944 _("wait returned unexpected status 0x%x"), status);
1945 }
1946
1947 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1948
1949 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1950 {
1951 /* The arch-specific native code may need to know about new
1952 forks even if those end up never mapped to an
1953 inferior. */
1954 if (linux_nat_new_fork != NULL)
1955 linux_nat_new_fork (lp, new_pid);
1956 }
1957
1958 if (event == PTRACE_EVENT_FORK
1959 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
1960 {
1961 /* Handle checkpointing by linux-fork.c here as a special
1962 case. We don't want the follow-fork-mode or 'catch fork'
1963 to interfere with this. */
1964
1965 /* This won't actually modify the breakpoint list, but will
1966 physically remove the breakpoints from the child. */
1967 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
1968
1969 /* Retain child fork in ptrace (stopped) state. */
1970 if (!find_fork_pid (new_pid))
1971 add_fork (new_pid);
1972
1973 /* Report as spurious, so that infrun doesn't want to follow
1974 this fork. We're actually doing an infcall in
1975 linux-fork.c. */
1976 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1977
1978 /* Report the stop to the core. */
1979 return 0;
1980 }
1981
1982 if (event == PTRACE_EVENT_FORK)
1983 ourstatus->kind = TARGET_WAITKIND_FORKED;
1984 else if (event == PTRACE_EVENT_VFORK)
1985 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1986 else if (event == PTRACE_EVENT_CLONE)
1987 {
1988 struct lwp_info *new_lp;
1989
1990 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1991
1992 if (debug_linux_nat)
1993 fprintf_unfiltered (gdb_stdlog,
1994 "LHEW: Got clone event "
1995 "from LWP %d, new child is LWP %ld\n",
1996 pid, new_pid);
1997
1998 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
1999 new_lp->stopped = 1;
2000 new_lp->resumed = 1;
2001
2002 /* If the thread_db layer is active, let it record the user
2003 level thread id and status, and add the thread to GDB's
2004 list. */
2005 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2006 {
2007 /* The process is not using thread_db. Add the LWP to
2008 GDB's list. */
2009 target_post_attach (ptid_get_lwp (new_lp->ptid));
2010 add_thread (new_lp->ptid);
2011 }
2012
2013 /* Even if we're stopping the thread for some reason
2014 internal to this module, from the perspective of infrun
2015 and the user/frontend, this new thread is running until
2016 it next reports a stop. */
2017 set_running (new_lp->ptid, 1);
2018 set_executing (new_lp->ptid, 1);
2019
2020 if (WSTOPSIG (status) != SIGSTOP)
2021 {
2022 /* This can happen if someone starts sending signals to
2023 the new thread before it gets a chance to run, which
2024 have a lower number than SIGSTOP (e.g. SIGUSR1).
2025 This is an unlikely case, and harder to handle for
2026 fork / vfork than for clone, so we do not try - but
2027 we handle it for clone events here. */
2028
2029 new_lp->signalled = 1;
2030
2031 /* We created NEW_LP so it cannot yet contain STATUS. */
2032 gdb_assert (new_lp->status == 0);
2033
2034 /* Save the wait status to report later. */
2035 if (debug_linux_nat)
2036 fprintf_unfiltered (gdb_stdlog,
2037 "LHEW: waitpid of new LWP %ld, "
2038 "saving status %s\n",
2039 (long) ptid_get_lwp (new_lp->ptid),
2040 status_to_str (status));
2041 new_lp->status = status;
2042 }
2043 else if (report_thread_events)
2044 {
2045 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2046 new_lp->status = status;
2047 }
2048
2049 return 1;
2050 }
2051
2052 return 0;
2053 }
2054
2055 if (event == PTRACE_EVENT_EXEC)
2056 {
2057 if (debug_linux_nat)
2058 fprintf_unfiltered (gdb_stdlog,
2059 "LHEW: Got exec event from LWP %ld\n",
2060 ptid_get_lwp (lp->ptid));
2061
2062 ourstatus->kind = TARGET_WAITKIND_EXECD;
2063 ourstatus->value.execd_pathname
2064 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2065
2066 /* The thread that execed must have been resumed, but, when a
2067 thread execs, it changes its tid to the tgid, and the old
2068 tgid thread might have not been resumed. */
2069 lp->resumed = 1;
2070 return 0;
2071 }
2072
2073 if (event == PTRACE_EVENT_VFORK_DONE)
2074 {
2075 if (current_inferior ()->waiting_for_vfork_done)
2076 {
2077 if (debug_linux_nat)
2078 fprintf_unfiltered (gdb_stdlog,
2079 "LHEW: Got expected PTRACE_EVENT_"
2080 "VFORK_DONE from LWP %ld: stopping\n",
2081 ptid_get_lwp (lp->ptid));
2082
2083 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2084 return 0;
2085 }
2086
2087 if (debug_linux_nat)
2088 fprintf_unfiltered (gdb_stdlog,
2089 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2090 "from LWP %ld: ignoring\n",
2091 ptid_get_lwp (lp->ptid));
2092 return 1;
2093 }
2094
2095 internal_error (__FILE__, __LINE__,
2096 _("unknown ptrace event %d"), event);
2097 }
2098
2099 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2100 exited. */
2101
2102 static int
2103 wait_lwp (struct lwp_info *lp)
2104 {
2105 pid_t pid;
2106 int status = 0;
2107 int thread_dead = 0;
2108 sigset_t prev_mask;
2109
2110 gdb_assert (!lp->stopped);
2111 gdb_assert (lp->status == 0);
2112
2113 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2114 block_child_signals (&prev_mask);
2115
2116 for (;;)
2117 {
2118 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2119 if (pid == -1 && errno == ECHILD)
2120 {
2121 /* The thread has previously exited. We need to delete it
2122 now because if this was a non-leader thread execing, we
2123 won't get an exit event. See comments on exec events at
2124 the top of the file. */
2125 thread_dead = 1;
2126 if (debug_linux_nat)
2127 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2128 target_pid_to_str (lp->ptid));
2129 }
2130 if (pid != 0)
2131 break;
2132
2133 /* Bugs 10970, 12702.
2134 Thread group leader may have exited in which case we'll lock up in
2135 waitpid if there are other threads, even if they are all zombies too.
2136 Basically, we're not supposed to use waitpid this way.
2137 tkill(pid,0) cannot be used here as it gets ESRCH for both
2138 for zombie and running processes.
2139
2140 As a workaround, check if we're waiting for the thread group leader and
2141 if it's a zombie, and avoid calling waitpid if it is.
2142
2143 This is racy, what if the tgl becomes a zombie right after we check?
2144 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2145 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2146
2147 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2148 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2149 {
2150 thread_dead = 1;
2151 if (debug_linux_nat)
2152 fprintf_unfiltered (gdb_stdlog,
2153 "WL: Thread group leader %s vanished.\n",
2154 target_pid_to_str (lp->ptid));
2155 break;
2156 }
2157
2158 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2159 get invoked despite our caller had them intentionally blocked by
2160 block_child_signals. This is sensitive only to the loop of
2161 linux_nat_wait_1 and there if we get called my_waitpid gets called
2162 again before it gets to sigsuspend so we can safely let the handlers
2163 get executed here. */
2164
2165 if (debug_linux_nat)
2166 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2167 sigsuspend (&suspend_mask);
2168 }
2169
2170 restore_child_signals_mask (&prev_mask);
2171
2172 if (!thread_dead)
2173 {
2174 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2175
2176 if (debug_linux_nat)
2177 {
2178 fprintf_unfiltered (gdb_stdlog,
2179 "WL: waitpid %s received %s\n",
2180 target_pid_to_str (lp->ptid),
2181 status_to_str (status));
2182 }
2183
2184 /* Check if the thread has exited. */
2185 if (WIFEXITED (status) || WIFSIGNALED (status))
2186 {
2187 if (report_thread_events
2188 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2189 {
2190 if (debug_linux_nat)
2191 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2192 ptid_get_pid (lp->ptid));
2193
2194 /* If this is the leader exiting, it means the whole
2195 process is gone. Store the status to report to the
2196 core. Store it in lp->waitstatus, because lp->status
2197 would be ambiguous (W_EXITCODE(0,0) == 0). */
2198 store_waitstatus (&lp->waitstatus, status);
2199 return 0;
2200 }
2201
2202 thread_dead = 1;
2203 if (debug_linux_nat)
2204 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2205 target_pid_to_str (lp->ptid));
2206 }
2207 }
2208
2209 if (thread_dead)
2210 {
2211 exit_lwp (lp);
2212 return 0;
2213 }
2214
2215 gdb_assert (WIFSTOPPED (status));
2216 lp->stopped = 1;
2217
2218 if (lp->must_set_ptrace_flags)
2219 {
2220 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2221 int options = linux_nat_ptrace_options (inf->attach_flag);
2222
2223 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2224 lp->must_set_ptrace_flags = 0;
2225 }
2226
2227 /* Handle GNU/Linux's syscall SIGTRAPs. */
2228 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2229 {
2230 /* No longer need the sysgood bit. The ptrace event ends up
2231 recorded in lp->waitstatus if we care for it. We can carry
2232 on handling the event like a regular SIGTRAP from here
2233 on. */
2234 status = W_STOPCODE (SIGTRAP);
2235 if (linux_handle_syscall_trap (lp, 1))
2236 return wait_lwp (lp);
2237 }
2238 else
2239 {
2240 /* Almost all other ptrace-stops are known to be outside of system
2241 calls, with further exceptions in linux_handle_extended_wait. */
2242 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2243 }
2244
2245 /* Handle GNU/Linux's extended waitstatus for trace events. */
2246 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2247 && linux_is_extended_waitstatus (status))
2248 {
2249 if (debug_linux_nat)
2250 fprintf_unfiltered (gdb_stdlog,
2251 "WL: Handling extended status 0x%06x\n",
2252 status);
2253 linux_handle_extended_wait (lp, status);
2254 return 0;
2255 }
2256
2257 return status;
2258 }
2259
2260 /* Send a SIGSTOP to LP. */
2261
2262 static int
2263 stop_callback (struct lwp_info *lp, void *data)
2264 {
2265 if (!lp->stopped && !lp->signalled)
2266 {
2267 int ret;
2268
2269 if (debug_linux_nat)
2270 {
2271 fprintf_unfiltered (gdb_stdlog,
2272 "SC: kill %s **<SIGSTOP>**\n",
2273 target_pid_to_str (lp->ptid));
2274 }
2275 errno = 0;
2276 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2277 if (debug_linux_nat)
2278 {
2279 fprintf_unfiltered (gdb_stdlog,
2280 "SC: lwp kill %d %s\n",
2281 ret,
2282 errno ? safe_strerror (errno) : "ERRNO-OK");
2283 }
2284
2285 lp->signalled = 1;
2286 gdb_assert (lp->status == 0);
2287 }
2288
2289 return 0;
2290 }
2291
2292 /* Request a stop on LWP. */
2293
2294 void
2295 linux_stop_lwp (struct lwp_info *lwp)
2296 {
2297 stop_callback (lwp, NULL);
2298 }
2299
2300 /* See linux-nat.h */
2301
2302 void
2303 linux_stop_and_wait_all_lwps (void)
2304 {
2305 /* Stop all LWP's ... */
2306 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2307
2308 /* ... and wait until all of them have reported back that
2309 they're no longer running. */
2310 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2311 }
2312
2313 /* See linux-nat.h */
2314
2315 void
2316 linux_unstop_all_lwps (void)
2317 {
2318 iterate_over_lwps (minus_one_ptid,
2319 resume_stopped_resumed_lwps, &minus_one_ptid);
2320 }
2321
2322 /* Return non-zero if LWP PID has a pending SIGINT. */
2323
2324 static int
2325 linux_nat_has_pending_sigint (int pid)
2326 {
2327 sigset_t pending, blocked, ignored;
2328
2329 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2330
2331 if (sigismember (&pending, SIGINT)
2332 && !sigismember (&ignored, SIGINT))
2333 return 1;
2334
2335 return 0;
2336 }
2337
2338 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2339
2340 static int
2341 set_ignore_sigint (struct lwp_info *lp, void *data)
2342 {
2343 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2344 flag to consume the next one. */
2345 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2346 && WSTOPSIG (lp->status) == SIGINT)
2347 lp->status = 0;
2348 else
2349 lp->ignore_sigint = 1;
2350
2351 return 0;
2352 }
2353
2354 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2355 This function is called after we know the LWP has stopped; if the LWP
2356 stopped before the expected SIGINT was delivered, then it will never have
2357 arrived. Also, if the signal was delivered to a shared queue and consumed
2358 by a different thread, it will never be delivered to this LWP. */
2359
2360 static void
2361 maybe_clear_ignore_sigint (struct lwp_info *lp)
2362 {
2363 if (!lp->ignore_sigint)
2364 return;
2365
2366 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2367 {
2368 if (debug_linux_nat)
2369 fprintf_unfiltered (gdb_stdlog,
2370 "MCIS: Clearing bogus flag for %s\n",
2371 target_pid_to_str (lp->ptid));
2372 lp->ignore_sigint = 0;
2373 }
2374 }
2375
2376 /* Fetch the possible triggered data watchpoint info and store it in
2377 LP.
2378
2379 On some archs, like x86, that use debug registers to set
2380 watchpoints, it's possible that the way to know which watched
2381 address trapped, is to check the register that is used to select
2382 which address to watch. Problem is, between setting the watchpoint
2383 and reading back which data address trapped, the user may change
2384 the set of watchpoints, and, as a consequence, GDB changes the
2385 debug registers in the inferior. To avoid reading back a stale
2386 stopped-data-address when that happens, we cache in LP the fact
2387 that a watchpoint trapped, and the corresponding data address, as
2388 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2389 registers meanwhile, we have the cached data we can rely on. */
2390
2391 static int
2392 check_stopped_by_watchpoint (struct lwp_info *lp)
2393 {
2394 struct cleanup *old_chain;
2395
2396 if (linux_ops->to_stopped_by_watchpoint == NULL)
2397 return 0;
2398
2399 old_chain = save_inferior_ptid ();
2400 inferior_ptid = lp->ptid;
2401
2402 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2403 {
2404 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2405
2406 if (linux_ops->to_stopped_data_address != NULL)
2407 lp->stopped_data_address_p =
2408 linux_ops->to_stopped_data_address (&current_target,
2409 &lp->stopped_data_address);
2410 else
2411 lp->stopped_data_address_p = 0;
2412 }
2413
2414 do_cleanups (old_chain);
2415
2416 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2417 }
2418
2419 /* Returns true if the LWP had stopped for a watchpoint. */
2420
2421 static int
2422 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2423 {
2424 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2425
2426 gdb_assert (lp != NULL);
2427
2428 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2429 }
2430
2431 static int
2432 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2433 {
2434 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2435
2436 gdb_assert (lp != NULL);
2437
2438 *addr_p = lp->stopped_data_address;
2439
2440 return lp->stopped_data_address_p;
2441 }
2442
2443 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2444
2445 static int
2446 sigtrap_is_event (int status)
2447 {
2448 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2449 }
2450
2451 /* Set alternative SIGTRAP-like events recognizer. If
2452 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2453 applied. */
2454
2455 void
2456 linux_nat_set_status_is_event (struct target_ops *t,
2457 int (*status_is_event) (int status))
2458 {
2459 linux_nat_status_is_event = status_is_event;
2460 }
2461
2462 /* Wait until LP is stopped. */
2463
2464 static int
2465 stop_wait_callback (struct lwp_info *lp, void *data)
2466 {
2467 struct inferior *inf = find_inferior_ptid (lp->ptid);
2468
2469 /* If this is a vfork parent, bail out, it is not going to report
2470 any SIGSTOP until the vfork is done with. */
2471 if (inf->vfork_child != NULL)
2472 return 0;
2473
2474 if (!lp->stopped)
2475 {
2476 int status;
2477
2478 status = wait_lwp (lp);
2479 if (status == 0)
2480 return 0;
2481
2482 if (lp->ignore_sigint && WIFSTOPPED (status)
2483 && WSTOPSIG (status) == SIGINT)
2484 {
2485 lp->ignore_sigint = 0;
2486
2487 errno = 0;
2488 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2489 lp->stopped = 0;
2490 if (debug_linux_nat)
2491 fprintf_unfiltered (gdb_stdlog,
2492 "PTRACE_CONT %s, 0, 0 (%s) "
2493 "(discarding SIGINT)\n",
2494 target_pid_to_str (lp->ptid),
2495 errno ? safe_strerror (errno) : "OK");
2496
2497 return stop_wait_callback (lp, NULL);
2498 }
2499
2500 maybe_clear_ignore_sigint (lp);
2501
2502 if (WSTOPSIG (status) != SIGSTOP)
2503 {
2504 /* The thread was stopped with a signal other than SIGSTOP. */
2505
2506 if (debug_linux_nat)
2507 fprintf_unfiltered (gdb_stdlog,
2508 "SWC: Pending event %s in %s\n",
2509 status_to_str ((int) status),
2510 target_pid_to_str (lp->ptid));
2511
2512 /* Save the sigtrap event. */
2513 lp->status = status;
2514 gdb_assert (lp->signalled);
2515 save_stop_reason (lp);
2516 }
2517 else
2518 {
2519 /* We caught the SIGSTOP that we intended to catch, so
2520 there's no SIGSTOP pending. */
2521
2522 if (debug_linux_nat)
2523 fprintf_unfiltered (gdb_stdlog,
2524 "SWC: Expected SIGSTOP caught for %s.\n",
2525 target_pid_to_str (lp->ptid));
2526
2527 /* Reset SIGNALLED only after the stop_wait_callback call
2528 above as it does gdb_assert on SIGNALLED. */
2529 lp->signalled = 0;
2530 }
2531 }
2532
2533 return 0;
2534 }
2535
2536 /* Return non-zero if LP has a wait status pending. Discard the
2537 pending event and resume the LWP if the event that originally
2538 caused the stop became uninteresting. */
2539
2540 static int
2541 status_callback (struct lwp_info *lp, void *data)
2542 {
2543 /* Only report a pending wait status if we pretend that this has
2544 indeed been resumed. */
2545 if (!lp->resumed)
2546 return 0;
2547
2548 if (!lwp_status_pending_p (lp))
2549 return 0;
2550
2551 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2552 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2553 {
2554 struct regcache *regcache = get_thread_regcache (lp->ptid);
2555 CORE_ADDR pc;
2556 int discard = 0;
2557
2558 pc = regcache_read_pc (regcache);
2559
2560 if (pc != lp->stop_pc)
2561 {
2562 if (debug_linux_nat)
2563 fprintf_unfiltered (gdb_stdlog,
2564 "SC: PC of %s changed. was=%s, now=%s\n",
2565 target_pid_to_str (lp->ptid),
2566 paddress (target_gdbarch (), lp->stop_pc),
2567 paddress (target_gdbarch (), pc));
2568 discard = 1;
2569 }
2570
2571 #if !USE_SIGTRAP_SIGINFO
2572 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2573 {
2574 if (debug_linux_nat)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "SC: previous breakpoint of %s, at %s gone\n",
2577 target_pid_to_str (lp->ptid),
2578 paddress (target_gdbarch (), lp->stop_pc));
2579
2580 discard = 1;
2581 }
2582 #endif
2583
2584 if (discard)
2585 {
2586 if (debug_linux_nat)
2587 fprintf_unfiltered (gdb_stdlog,
2588 "SC: pending event of %s cancelled.\n",
2589 target_pid_to_str (lp->ptid));
2590
2591 lp->status = 0;
2592 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2593 return 0;
2594 }
2595 }
2596
2597 return 1;
2598 }
2599
2600 /* Count the LWP's that have had events. */
2601
2602 static int
2603 count_events_callback (struct lwp_info *lp, void *data)
2604 {
2605 int *count = (int *) data;
2606
2607 gdb_assert (count != NULL);
2608
2609 /* Select only resumed LWPs that have an event pending. */
2610 if (lp->resumed && lwp_status_pending_p (lp))
2611 (*count)++;
2612
2613 return 0;
2614 }
2615
2616 /* Select the LWP (if any) that is currently being single-stepped. */
2617
2618 static int
2619 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2620 {
2621 if (lp->last_resume_kind == resume_step
2622 && lp->status != 0)
2623 return 1;
2624 else
2625 return 0;
2626 }
2627
2628 /* Returns true if LP has a status pending. */
2629
2630 static int
2631 lwp_status_pending_p (struct lwp_info *lp)
2632 {
2633 /* We check for lp->waitstatus in addition to lp->status, because we
2634 can have pending process exits recorded in lp->status and
2635 W_EXITCODE(0,0) happens to be 0. */
2636 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2637 }
2638
2639 /* Select the Nth LWP that has had an event. */
2640
2641 static int
2642 select_event_lwp_callback (struct lwp_info *lp, void *data)
2643 {
2644 int *selector = (int *) data;
2645
2646 gdb_assert (selector != NULL);
2647
2648 /* Select only resumed LWPs that have an event pending. */
2649 if (lp->resumed && lwp_status_pending_p (lp))
2650 if ((*selector)-- == 0)
2651 return 1;
2652
2653 return 0;
2654 }
2655
2656 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2657 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2658 and save the result in the LWP's stop_reason field. If it stopped
2659 for a breakpoint, decrement the PC if necessary on the lwp's
2660 architecture. */
2661
2662 static void
2663 save_stop_reason (struct lwp_info *lp)
2664 {
2665 struct regcache *regcache;
2666 struct gdbarch *gdbarch;
2667 CORE_ADDR pc;
2668 CORE_ADDR sw_bp_pc;
2669 #if USE_SIGTRAP_SIGINFO
2670 siginfo_t siginfo;
2671 #endif
2672
2673 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2674 gdb_assert (lp->status != 0);
2675
2676 if (!linux_nat_status_is_event (lp->status))
2677 return;
2678
2679 regcache = get_thread_regcache (lp->ptid);
2680 gdbarch = get_regcache_arch (regcache);
2681
2682 pc = regcache_read_pc (regcache);
2683 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2684
2685 #if USE_SIGTRAP_SIGINFO
2686 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2687 {
2688 if (siginfo.si_signo == SIGTRAP)
2689 {
2690 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2691 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2692 {
2693 /* The si_code is ambiguous on this arch -- check debug
2694 registers. */
2695 if (!check_stopped_by_watchpoint (lp))
2696 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2697 }
2698 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2699 {
2700 /* If we determine the LWP stopped for a SW breakpoint,
2701 trust it. Particularly don't check watchpoint
2702 registers, because at least on s390, we'd find
2703 stopped-by-watchpoint as long as there's a watchpoint
2704 set. */
2705 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2706 }
2707 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2708 {
2709 /* This can indicate either a hardware breakpoint or
2710 hardware watchpoint. Check debug registers. */
2711 if (!check_stopped_by_watchpoint (lp))
2712 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2713 }
2714 else if (siginfo.si_code == TRAP_TRACE)
2715 {
2716 if (debug_linux_nat)
2717 fprintf_unfiltered (gdb_stdlog,
2718 "CSBB: %s stopped by trace\n",
2719 target_pid_to_str (lp->ptid));
2720
2721 /* We may have single stepped an instruction that
2722 triggered a watchpoint. In that case, on some
2723 architectures (such as x86), instead of TRAP_HWBKPT,
2724 si_code indicates TRAP_TRACE, and we need to check
2725 the debug registers separately. */
2726 check_stopped_by_watchpoint (lp);
2727 }
2728 }
2729 }
2730 #else
2731 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2732 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2733 sw_bp_pc))
2734 {
2735 /* The LWP was either continued, or stepped a software
2736 breakpoint instruction. */
2737 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2738 }
2739
2740 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2741 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2742
2743 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2744 check_stopped_by_watchpoint (lp);
2745 #endif
2746
2747 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2748 {
2749 if (debug_linux_nat)
2750 fprintf_unfiltered (gdb_stdlog,
2751 "CSBB: %s stopped by software breakpoint\n",
2752 target_pid_to_str (lp->ptid));
2753
2754 /* Back up the PC if necessary. */
2755 if (pc != sw_bp_pc)
2756 regcache_write_pc (regcache, sw_bp_pc);
2757
2758 /* Update this so we record the correct stop PC below. */
2759 pc = sw_bp_pc;
2760 }
2761 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2762 {
2763 if (debug_linux_nat)
2764 fprintf_unfiltered (gdb_stdlog,
2765 "CSBB: %s stopped by hardware breakpoint\n",
2766 target_pid_to_str (lp->ptid));
2767 }
2768 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2769 {
2770 if (debug_linux_nat)
2771 fprintf_unfiltered (gdb_stdlog,
2772 "CSBB: %s stopped by hardware watchpoint\n",
2773 target_pid_to_str (lp->ptid));
2774 }
2775
2776 lp->stop_pc = pc;
2777 }
2778
2779
2780 /* Returns true if the LWP had stopped for a software breakpoint. */
2781
2782 static int
2783 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2784 {
2785 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2786
2787 gdb_assert (lp != NULL);
2788
2789 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2790 }
2791
2792 /* Implement the supports_stopped_by_sw_breakpoint method. */
2793
2794 static int
2795 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2796 {
2797 return USE_SIGTRAP_SIGINFO;
2798 }
2799
2800 /* Returns true if the LWP had stopped for a hardware
2801 breakpoint/watchpoint. */
2802
2803 static int
2804 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2805 {
2806 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2807
2808 gdb_assert (lp != NULL);
2809
2810 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2811 }
2812
2813 /* Implement the supports_stopped_by_hw_breakpoint method. */
2814
2815 static int
2816 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2817 {
2818 return USE_SIGTRAP_SIGINFO;
2819 }
2820
2821 /* Select one LWP out of those that have events pending. */
2822
2823 static void
2824 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2825 {
2826 int num_events = 0;
2827 int random_selector;
2828 struct lwp_info *event_lp = NULL;
2829
2830 /* Record the wait status for the original LWP. */
2831 (*orig_lp)->status = *status;
2832
2833 /* In all-stop, give preference to the LWP that is being
2834 single-stepped. There will be at most one, and it will be the
2835 LWP that the core is most interested in. If we didn't do this,
2836 then we'd have to handle pending step SIGTRAPs somehow in case
2837 the core later continues the previously-stepped thread, as
2838 otherwise we'd report the pending SIGTRAP then, and the core, not
2839 having stepped the thread, wouldn't understand what the trap was
2840 for, and therefore would report it to the user as a random
2841 signal. */
2842 if (!target_is_non_stop_p ())
2843 {
2844 event_lp = iterate_over_lwps (filter,
2845 select_singlestep_lwp_callback, NULL);
2846 if (event_lp != NULL)
2847 {
2848 if (debug_linux_nat)
2849 fprintf_unfiltered (gdb_stdlog,
2850 "SEL: Select single-step %s\n",
2851 target_pid_to_str (event_lp->ptid));
2852 }
2853 }
2854
2855 if (event_lp == NULL)
2856 {
2857 /* Pick one at random, out of those which have had events. */
2858
2859 /* First see how many events we have. */
2860 iterate_over_lwps (filter, count_events_callback, &num_events);
2861 gdb_assert (num_events > 0);
2862
2863 /* Now randomly pick a LWP out of those that have had
2864 events. */
2865 random_selector = (int)
2866 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2867
2868 if (debug_linux_nat && num_events > 1)
2869 fprintf_unfiltered (gdb_stdlog,
2870 "SEL: Found %d events, selecting #%d\n",
2871 num_events, random_selector);
2872
2873 event_lp = iterate_over_lwps (filter,
2874 select_event_lwp_callback,
2875 &random_selector);
2876 }
2877
2878 if (event_lp != NULL)
2879 {
2880 /* Switch the event LWP. */
2881 *orig_lp = event_lp;
2882 *status = event_lp->status;
2883 }
2884
2885 /* Flush the wait status for the event LWP. */
2886 (*orig_lp)->status = 0;
2887 }
2888
2889 /* Return non-zero if LP has been resumed. */
2890
2891 static int
2892 resumed_callback (struct lwp_info *lp, void *data)
2893 {
2894 return lp->resumed;
2895 }
2896
2897 /* Check if we should go on and pass this event to common code.
2898 Return the affected lwp if we are, or NULL otherwise. */
2899
2900 static struct lwp_info *
2901 linux_nat_filter_event (int lwpid, int status)
2902 {
2903 struct lwp_info *lp;
2904 int event = linux_ptrace_get_extended_event (status);
2905
2906 lp = find_lwp_pid (pid_to_ptid (lwpid));
2907
2908 /* Check for stop events reported by a process we didn't already
2909 know about - anything not already in our LWP list.
2910
2911 If we're expecting to receive stopped processes after
2912 fork, vfork, and clone events, then we'll just add the
2913 new one to our list and go back to waiting for the event
2914 to be reported - the stopped process might be returned
2915 from waitpid before or after the event is.
2916
2917 But note the case of a non-leader thread exec'ing after the
2918 leader having exited, and gone from our lists. The non-leader
2919 thread changes its tid to the tgid. */
2920
2921 if (WIFSTOPPED (status) && lp == NULL
2922 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2923 {
2924 /* A multi-thread exec after we had seen the leader exiting. */
2925 if (debug_linux_nat)
2926 fprintf_unfiltered (gdb_stdlog,
2927 "LLW: Re-adding thread group leader LWP %d.\n",
2928 lwpid);
2929
2930 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2931 lp->stopped = 1;
2932 lp->resumed = 1;
2933 add_thread (lp->ptid);
2934 }
2935
2936 if (WIFSTOPPED (status) && !lp)
2937 {
2938 if (debug_linux_nat)
2939 fprintf_unfiltered (gdb_stdlog,
2940 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2941 (long) lwpid, status_to_str (status));
2942 add_to_pid_list (&stopped_pids, lwpid, status);
2943 return NULL;
2944 }
2945
2946 /* Make sure we don't report an event for the exit of an LWP not in
2947 our list, i.e. not part of the current process. This can happen
2948 if we detach from a program we originally forked and then it
2949 exits. */
2950 if (!WIFSTOPPED (status) && !lp)
2951 return NULL;
2952
2953 /* This LWP is stopped now. (And if dead, this prevents it from
2954 ever being continued.) */
2955 lp->stopped = 1;
2956
2957 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2958 {
2959 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2960 int options = linux_nat_ptrace_options (inf->attach_flag);
2961
2962 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2963 lp->must_set_ptrace_flags = 0;
2964 }
2965
2966 /* Handle GNU/Linux's syscall SIGTRAPs. */
2967 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2968 {
2969 /* No longer need the sysgood bit. The ptrace event ends up
2970 recorded in lp->waitstatus if we care for it. We can carry
2971 on handling the event like a regular SIGTRAP from here
2972 on. */
2973 status = W_STOPCODE (SIGTRAP);
2974 if (linux_handle_syscall_trap (lp, 0))
2975 return NULL;
2976 }
2977 else
2978 {
2979 /* Almost all other ptrace-stops are known to be outside of system
2980 calls, with further exceptions in linux_handle_extended_wait. */
2981 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2982 }
2983
2984 /* Handle GNU/Linux's extended waitstatus for trace events. */
2985 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2986 && linux_is_extended_waitstatus (status))
2987 {
2988 if (debug_linux_nat)
2989 fprintf_unfiltered (gdb_stdlog,
2990 "LLW: Handling extended status 0x%06x\n",
2991 status);
2992 if (linux_handle_extended_wait (lp, status))
2993 return NULL;
2994 }
2995
2996 /* Check if the thread has exited. */
2997 if (WIFEXITED (status) || WIFSIGNALED (status))
2998 {
2999 if (!report_thread_events
3000 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3001 {
3002 if (debug_linux_nat)
3003 fprintf_unfiltered (gdb_stdlog,
3004 "LLW: %s exited.\n",
3005 target_pid_to_str (lp->ptid));
3006
3007 /* If there is at least one more LWP, then the exit signal
3008 was not the end of the debugged application and should be
3009 ignored. */
3010 exit_lwp (lp);
3011 return NULL;
3012 }
3013
3014 /* Note that even if the leader was ptrace-stopped, it can still
3015 exit, if e.g., some other thread brings down the whole
3016 process (calls `exit'). So don't assert that the lwp is
3017 resumed. */
3018 if (debug_linux_nat)
3019 fprintf_unfiltered (gdb_stdlog,
3020 "LWP %ld exited (resumed=%d)\n",
3021 ptid_get_lwp (lp->ptid), lp->resumed);
3022
3023 /* Dead LWP's aren't expected to reported a pending sigstop. */
3024 lp->signalled = 0;
3025
3026 /* Store the pending event in the waitstatus, because
3027 W_EXITCODE(0,0) == 0. */
3028 store_waitstatus (&lp->waitstatus, status);
3029 return lp;
3030 }
3031
3032 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3033 an attempt to stop an LWP. */
3034 if (lp->signalled
3035 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3036 {
3037 lp->signalled = 0;
3038
3039 if (lp->last_resume_kind == resume_stop)
3040 {
3041 if (debug_linux_nat)
3042 fprintf_unfiltered (gdb_stdlog,
3043 "LLW: resume_stop SIGSTOP caught for %s.\n",
3044 target_pid_to_str (lp->ptid));
3045 }
3046 else
3047 {
3048 /* This is a delayed SIGSTOP. Filter out the event. */
3049
3050 if (debug_linux_nat)
3051 fprintf_unfiltered (gdb_stdlog,
3052 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3053 lp->step ?
3054 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3055 target_pid_to_str (lp->ptid));
3056
3057 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3058 gdb_assert (lp->resumed);
3059 return NULL;
3060 }
3061 }
3062
3063 /* Make sure we don't report a SIGINT that we have already displayed
3064 for another thread. */
3065 if (lp->ignore_sigint
3066 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3067 {
3068 if (debug_linux_nat)
3069 fprintf_unfiltered (gdb_stdlog,
3070 "LLW: Delayed SIGINT caught for %s.\n",
3071 target_pid_to_str (lp->ptid));
3072
3073 /* This is a delayed SIGINT. */
3074 lp->ignore_sigint = 0;
3075
3076 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3077 if (debug_linux_nat)
3078 fprintf_unfiltered (gdb_stdlog,
3079 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3080 lp->step ?
3081 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3082 target_pid_to_str (lp->ptid));
3083 gdb_assert (lp->resumed);
3084
3085 /* Discard the event. */
3086 return NULL;
3087 }
3088
3089 /* Don't report signals that GDB isn't interested in, such as
3090 signals that are neither printed nor stopped upon. Stopping all
3091 threads can be a bit time-consuming so if we want decent
3092 performance with heavily multi-threaded programs, especially when
3093 they're using a high frequency timer, we'd better avoid it if we
3094 can. */
3095 if (WIFSTOPPED (status))
3096 {
3097 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3098
3099 if (!target_is_non_stop_p ())
3100 {
3101 /* Only do the below in all-stop, as we currently use SIGSTOP
3102 to implement target_stop (see linux_nat_stop) in
3103 non-stop. */
3104 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3105 {
3106 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3107 forwarded to the entire process group, that is, all LWPs
3108 will receive it - unless they're using CLONE_THREAD to
3109 share signals. Since we only want to report it once, we
3110 mark it as ignored for all LWPs except this one. */
3111 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3112 set_ignore_sigint, NULL);
3113 lp->ignore_sigint = 0;
3114 }
3115 else
3116 maybe_clear_ignore_sigint (lp);
3117 }
3118
3119 /* When using hardware single-step, we need to report every signal.
3120 Otherwise, signals in pass_mask may be short-circuited
3121 except signals that might be caused by a breakpoint. */
3122 if (!lp->step
3123 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3124 && !linux_wstatus_maybe_breakpoint (status))
3125 {
3126 linux_resume_one_lwp (lp, lp->step, signo);
3127 if (debug_linux_nat)
3128 fprintf_unfiltered (gdb_stdlog,
3129 "LLW: %s %s, %s (preempt 'handle')\n",
3130 lp->step ?
3131 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3132 target_pid_to_str (lp->ptid),
3133 (signo != GDB_SIGNAL_0
3134 ? strsignal (gdb_signal_to_host (signo))
3135 : "0"));
3136 return NULL;
3137 }
3138 }
3139
3140 /* An interesting event. */
3141 gdb_assert (lp);
3142 lp->status = status;
3143 save_stop_reason (lp);
3144 return lp;
3145 }
3146
3147 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3148 their exits until all other threads in the group have exited. */
3149
3150 static void
3151 check_zombie_leaders (void)
3152 {
3153 struct inferior *inf;
3154
3155 ALL_INFERIORS (inf)
3156 {
3157 struct lwp_info *leader_lp;
3158
3159 if (inf->pid == 0)
3160 continue;
3161
3162 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3163 if (leader_lp != NULL
3164 /* Check if there are other threads in the group, as we may
3165 have raced with the inferior simply exiting. */
3166 && num_lwps (inf->pid) > 1
3167 && linux_proc_pid_is_zombie (inf->pid))
3168 {
3169 if (debug_linux_nat)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "CZL: Thread group leader %d zombie "
3172 "(it exited, or another thread execd).\n",
3173 inf->pid);
3174
3175 /* A leader zombie can mean one of two things:
3176
3177 - It exited, and there's an exit status pending
3178 available, or only the leader exited (not the whole
3179 program). In the latter case, we can't waitpid the
3180 leader's exit status until all other threads are gone.
3181
3182 - There are 3 or more threads in the group, and a thread
3183 other than the leader exec'd. See comments on exec
3184 events at the top of the file. We could try
3185 distinguishing the exit and exec cases, by waiting once
3186 more, and seeing if something comes out, but it doesn't
3187 sound useful. The previous leader _does_ go away, and
3188 we'll re-add the new one once we see the exec event
3189 (which is just the same as what would happen if the
3190 previous leader did exit voluntarily before some other
3191 thread execs). */
3192
3193 if (debug_linux_nat)
3194 fprintf_unfiltered (gdb_stdlog,
3195 "CZL: Thread group leader %d vanished.\n",
3196 inf->pid);
3197 exit_lwp (leader_lp);
3198 }
3199 }
3200 }
3201
3202 /* Convenience function that is called when the kernel reports an exit
3203 event. This decides whether to report the event to GDB as a
3204 process exit event, a thread exit event, or to suppress the
3205 event. */
3206
3207 static ptid_t
3208 filter_exit_event (struct lwp_info *event_child,
3209 struct target_waitstatus *ourstatus)
3210 {
3211 ptid_t ptid = event_child->ptid;
3212
3213 if (num_lwps (ptid_get_pid (ptid)) > 1)
3214 {
3215 if (report_thread_events)
3216 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3217 else
3218 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3219
3220 exit_lwp (event_child);
3221 }
3222
3223 return ptid;
3224 }
3225
3226 static ptid_t
3227 linux_nat_wait_1 (struct target_ops *ops,
3228 ptid_t ptid, struct target_waitstatus *ourstatus,
3229 int target_options)
3230 {
3231 sigset_t prev_mask;
3232 enum resume_kind last_resume_kind;
3233 struct lwp_info *lp;
3234 int status;
3235
3236 if (debug_linux_nat)
3237 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3238
3239 /* The first time we get here after starting a new inferior, we may
3240 not have added it to the LWP list yet - this is the earliest
3241 moment at which we know its PID. */
3242 if (ptid_is_pid (inferior_ptid))
3243 {
3244 /* Upgrade the main thread's ptid. */
3245 thread_change_ptid (inferior_ptid,
3246 ptid_build (ptid_get_pid (inferior_ptid),
3247 ptid_get_pid (inferior_ptid), 0));
3248
3249 lp = add_initial_lwp (inferior_ptid);
3250 lp->resumed = 1;
3251 }
3252
3253 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3254 block_child_signals (&prev_mask);
3255
3256 /* First check if there is a LWP with a wait status pending. */
3257 lp = iterate_over_lwps (ptid, status_callback, NULL);
3258 if (lp != NULL)
3259 {
3260 if (debug_linux_nat)
3261 fprintf_unfiltered (gdb_stdlog,
3262 "LLW: Using pending wait status %s for %s.\n",
3263 status_to_str (lp->status),
3264 target_pid_to_str (lp->ptid));
3265 }
3266
3267 /* But if we don't find a pending event, we'll have to wait. Always
3268 pull all events out of the kernel. We'll randomly select an
3269 event LWP out of all that have events, to prevent starvation. */
3270
3271 while (lp == NULL)
3272 {
3273 pid_t lwpid;
3274
3275 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3276 quirks:
3277
3278 - If the thread group leader exits while other threads in the
3279 thread group still exist, waitpid(TGID, ...) hangs. That
3280 waitpid won't return an exit status until the other threads
3281 in the group are reapped.
3282
3283 - When a non-leader thread execs, that thread just vanishes
3284 without reporting an exit (so we'd hang if we waited for it
3285 explicitly in that case). The exec event is reported to
3286 the TGID pid. */
3287
3288 errno = 0;
3289 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3290
3291 if (debug_linux_nat)
3292 fprintf_unfiltered (gdb_stdlog,
3293 "LNW: waitpid(-1, ...) returned %d, %s\n",
3294 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3295
3296 if (lwpid > 0)
3297 {
3298 if (debug_linux_nat)
3299 {
3300 fprintf_unfiltered (gdb_stdlog,
3301 "LLW: waitpid %ld received %s\n",
3302 (long) lwpid, status_to_str (status));
3303 }
3304
3305 linux_nat_filter_event (lwpid, status);
3306 /* Retry until nothing comes out of waitpid. A single
3307 SIGCHLD can indicate more than one child stopped. */
3308 continue;
3309 }
3310
3311 /* Now that we've pulled all events out of the kernel, resume
3312 LWPs that don't have an interesting event to report. */
3313 iterate_over_lwps (minus_one_ptid,
3314 resume_stopped_resumed_lwps, &minus_one_ptid);
3315
3316 /* ... and find an LWP with a status to report to the core, if
3317 any. */
3318 lp = iterate_over_lwps (ptid, status_callback, NULL);
3319 if (lp != NULL)
3320 break;
3321
3322 /* Check for zombie thread group leaders. Those can't be reaped
3323 until all other threads in the thread group are. */
3324 check_zombie_leaders ();
3325
3326 /* If there are no resumed children left, bail. We'd be stuck
3327 forever in the sigsuspend call below otherwise. */
3328 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3329 {
3330 if (debug_linux_nat)
3331 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3332
3333 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3334
3335 restore_child_signals_mask (&prev_mask);
3336 return minus_one_ptid;
3337 }
3338
3339 /* No interesting event to report to the core. */
3340
3341 if (target_options & TARGET_WNOHANG)
3342 {
3343 if (debug_linux_nat)
3344 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3345
3346 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3347 restore_child_signals_mask (&prev_mask);
3348 return minus_one_ptid;
3349 }
3350
3351 /* We shouldn't end up here unless we want to try again. */
3352 gdb_assert (lp == NULL);
3353
3354 /* Block until we get an event reported with SIGCHLD. */
3355 if (debug_linux_nat)
3356 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3357 sigsuspend (&suspend_mask);
3358 }
3359
3360 gdb_assert (lp);
3361
3362 status = lp->status;
3363 lp->status = 0;
3364
3365 if (!target_is_non_stop_p ())
3366 {
3367 /* Now stop all other LWP's ... */
3368 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3369
3370 /* ... and wait until all of them have reported back that
3371 they're no longer running. */
3372 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3373 }
3374
3375 /* If we're not waiting for a specific LWP, choose an event LWP from
3376 among those that have had events. Giving equal priority to all
3377 LWPs that have had events helps prevent starvation. */
3378 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3379 select_event_lwp (ptid, &lp, &status);
3380
3381 gdb_assert (lp != NULL);
3382
3383 /* Now that we've selected our final event LWP, un-adjust its PC if
3384 it was a software breakpoint, and we can't reliably support the
3385 "stopped by software breakpoint" stop reason. */
3386 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3387 && !USE_SIGTRAP_SIGINFO)
3388 {
3389 struct regcache *regcache = get_thread_regcache (lp->ptid);
3390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3391 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3392
3393 if (decr_pc != 0)
3394 {
3395 CORE_ADDR pc;
3396
3397 pc = regcache_read_pc (regcache);
3398 regcache_write_pc (regcache, pc + decr_pc);
3399 }
3400 }
3401
3402 /* We'll need this to determine whether to report a SIGSTOP as
3403 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3404 clears it. */
3405 last_resume_kind = lp->last_resume_kind;
3406
3407 if (!target_is_non_stop_p ())
3408 {
3409 /* In all-stop, from the core's perspective, all LWPs are now
3410 stopped until a new resume action is sent over. */
3411 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3412 }
3413 else
3414 {
3415 resume_clear_callback (lp, NULL);
3416 }
3417
3418 if (linux_nat_status_is_event (status))
3419 {
3420 if (debug_linux_nat)
3421 fprintf_unfiltered (gdb_stdlog,
3422 "LLW: trap ptid is %s.\n",
3423 target_pid_to_str (lp->ptid));
3424 }
3425
3426 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3427 {
3428 *ourstatus = lp->waitstatus;
3429 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3430 }
3431 else
3432 store_waitstatus (ourstatus, status);
3433
3434 if (debug_linux_nat)
3435 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3436
3437 restore_child_signals_mask (&prev_mask);
3438
3439 if (last_resume_kind == resume_stop
3440 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3441 && WSTOPSIG (status) == SIGSTOP)
3442 {
3443 /* A thread that has been requested to stop by GDB with
3444 target_stop, and it stopped cleanly, so report as SIG0. The
3445 use of SIGSTOP is an implementation detail. */
3446 ourstatus->value.sig = GDB_SIGNAL_0;
3447 }
3448
3449 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3450 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3451 lp->core = -1;
3452 else
3453 lp->core = linux_common_core_of_thread (lp->ptid);
3454
3455 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3456 return filter_exit_event (lp, ourstatus);
3457
3458 return lp->ptid;
3459 }
3460
3461 /* Resume LWPs that are currently stopped without any pending status
3462 to report, but are resumed from the core's perspective. */
3463
3464 static int
3465 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3466 {
3467 ptid_t *wait_ptid_p = (ptid_t *) data;
3468
3469 if (!lp->stopped)
3470 {
3471 if (debug_linux_nat)
3472 fprintf_unfiltered (gdb_stdlog,
3473 "RSRL: NOT resuming LWP %s, not stopped\n",
3474 target_pid_to_str (lp->ptid));
3475 }
3476 else if (!lp->resumed)
3477 {
3478 if (debug_linux_nat)
3479 fprintf_unfiltered (gdb_stdlog,
3480 "RSRL: NOT resuming LWP %s, not resumed\n",
3481 target_pid_to_str (lp->ptid));
3482 }
3483 else if (lwp_status_pending_p (lp))
3484 {
3485 if (debug_linux_nat)
3486 fprintf_unfiltered (gdb_stdlog,
3487 "RSRL: NOT resuming LWP %s, has pending status\n",
3488 target_pid_to_str (lp->ptid));
3489 }
3490 else
3491 {
3492 struct regcache *regcache = get_thread_regcache (lp->ptid);
3493 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3494
3495 TRY
3496 {
3497 CORE_ADDR pc = regcache_read_pc (regcache);
3498 int leave_stopped = 0;
3499
3500 /* Don't bother if there's a breakpoint at PC that we'd hit
3501 immediately, and we're not waiting for this LWP. */
3502 if (!ptid_match (lp->ptid, *wait_ptid_p))
3503 {
3504 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3505 leave_stopped = 1;
3506 }
3507
3508 if (!leave_stopped)
3509 {
3510 if (debug_linux_nat)
3511 fprintf_unfiltered (gdb_stdlog,
3512 "RSRL: resuming stopped-resumed LWP %s at "
3513 "%s: step=%d\n",
3514 target_pid_to_str (lp->ptid),
3515 paddress (gdbarch, pc),
3516 lp->step);
3517
3518 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3519 }
3520 }
3521 CATCH (ex, RETURN_MASK_ERROR)
3522 {
3523 if (!check_ptrace_stopped_lwp_gone (lp))
3524 throw_exception (ex);
3525 }
3526 END_CATCH
3527 }
3528
3529 return 0;
3530 }
3531
3532 static ptid_t
3533 linux_nat_wait (struct target_ops *ops,
3534 ptid_t ptid, struct target_waitstatus *ourstatus,
3535 int target_options)
3536 {
3537 ptid_t event_ptid;
3538
3539 if (debug_linux_nat)
3540 {
3541 char *options_string;
3542
3543 options_string = target_options_to_string (target_options);
3544 fprintf_unfiltered (gdb_stdlog,
3545 "linux_nat_wait: [%s], [%s]\n",
3546 target_pid_to_str (ptid),
3547 options_string);
3548 xfree (options_string);
3549 }
3550
3551 /* Flush the async file first. */
3552 if (target_is_async_p ())
3553 async_file_flush ();
3554
3555 /* Resume LWPs that are currently stopped without any pending status
3556 to report, but are resumed from the core's perspective. LWPs get
3557 in this state if we find them stopping at a time we're not
3558 interested in reporting the event (target_wait on a
3559 specific_process, for example, see linux_nat_wait_1), and
3560 meanwhile the event became uninteresting. Don't bother resuming
3561 LWPs we're not going to wait for if they'd stop immediately. */
3562 if (target_is_non_stop_p ())
3563 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3564
3565 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3566
3567 /* If we requested any event, and something came out, assume there
3568 may be more. If we requested a specific lwp or process, also
3569 assume there may be more. */
3570 if (target_is_async_p ()
3571 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3572 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3573 || !ptid_equal (ptid, minus_one_ptid)))
3574 async_file_mark ();
3575
3576 return event_ptid;
3577 }
3578
3579 /* Kill one LWP. */
3580
3581 static void
3582 kill_one_lwp (pid_t pid)
3583 {
3584 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3585
3586 errno = 0;
3587 kill_lwp (pid, SIGKILL);
3588 if (debug_linux_nat)
3589 {
3590 int save_errno = errno;
3591
3592 fprintf_unfiltered (gdb_stdlog,
3593 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3594 save_errno ? safe_strerror (save_errno) : "OK");
3595 }
3596
3597 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3598
3599 errno = 0;
3600 ptrace (PTRACE_KILL, pid, 0, 0);
3601 if (debug_linux_nat)
3602 {
3603 int save_errno = errno;
3604
3605 fprintf_unfiltered (gdb_stdlog,
3606 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3607 save_errno ? safe_strerror (save_errno) : "OK");
3608 }
3609 }
3610
3611 /* Wait for an LWP to die. */
3612
3613 static void
3614 kill_wait_one_lwp (pid_t pid)
3615 {
3616 pid_t res;
3617
3618 /* We must make sure that there are no pending events (delayed
3619 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3620 program doesn't interfere with any following debugging session. */
3621
3622 do
3623 {
3624 res = my_waitpid (pid, NULL, __WALL);
3625 if (res != (pid_t) -1)
3626 {
3627 if (debug_linux_nat)
3628 fprintf_unfiltered (gdb_stdlog,
3629 "KWC: wait %ld received unknown.\n",
3630 (long) pid);
3631 /* The Linux kernel sometimes fails to kill a thread
3632 completely after PTRACE_KILL; that goes from the stop
3633 point in do_fork out to the one in get_signal_to_deliver
3634 and waits again. So kill it again. */
3635 kill_one_lwp (pid);
3636 }
3637 }
3638 while (res == pid);
3639
3640 gdb_assert (res == -1 && errno == ECHILD);
3641 }
3642
3643 /* Callback for iterate_over_lwps. */
3644
3645 static int
3646 kill_callback (struct lwp_info *lp, void *data)
3647 {
3648 kill_one_lwp (ptid_get_lwp (lp->ptid));
3649 return 0;
3650 }
3651
3652 /* Callback for iterate_over_lwps. */
3653
3654 static int
3655 kill_wait_callback (struct lwp_info *lp, void *data)
3656 {
3657 kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3658 return 0;
3659 }
3660
3661 /* Kill the fork children of any threads of inferior INF that are
3662 stopped at a fork event. */
3663
3664 static void
3665 kill_unfollowed_fork_children (struct inferior *inf)
3666 {
3667 struct thread_info *thread;
3668
3669 ALL_NON_EXITED_THREADS (thread)
3670 if (thread->inf == inf)
3671 {
3672 struct target_waitstatus *ws = &thread->pending_follow;
3673
3674 if (ws->kind == TARGET_WAITKIND_FORKED
3675 || ws->kind == TARGET_WAITKIND_VFORKED)
3676 {
3677 ptid_t child_ptid = ws->value.related_pid;
3678 int child_pid = ptid_get_pid (child_ptid);
3679 int child_lwp = ptid_get_lwp (child_ptid);
3680
3681 kill_one_lwp (child_lwp);
3682 kill_wait_one_lwp (child_lwp);
3683
3684 /* Let the arch-specific native code know this process is
3685 gone. */
3686 linux_nat_forget_process (child_pid);
3687 }
3688 }
3689 }
3690
3691 static void
3692 linux_nat_kill (struct target_ops *ops)
3693 {
3694 /* If we're stopped while forking and we haven't followed yet,
3695 kill the other task. We need to do this first because the
3696 parent will be sleeping if this is a vfork. */
3697 kill_unfollowed_fork_children (current_inferior ());
3698
3699 if (forks_exist_p ())
3700 linux_fork_killall ();
3701 else
3702 {
3703 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3704
3705 /* Stop all threads before killing them, since ptrace requires
3706 that the thread is stopped to sucessfully PTRACE_KILL. */
3707 iterate_over_lwps (ptid, stop_callback, NULL);
3708 /* ... and wait until all of them have reported back that
3709 they're no longer running. */
3710 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3711
3712 /* Kill all LWP's ... */
3713 iterate_over_lwps (ptid, kill_callback, NULL);
3714
3715 /* ... and wait until we've flushed all events. */
3716 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3717 }
3718
3719 target_mourn_inferior ();
3720 }
3721
3722 static void
3723 linux_nat_mourn_inferior (struct target_ops *ops)
3724 {
3725 int pid = ptid_get_pid (inferior_ptid);
3726
3727 purge_lwp_list (pid);
3728
3729 if (! forks_exist_p ())
3730 /* Normal case, no other forks available. */
3731 linux_ops->to_mourn_inferior (ops);
3732 else
3733 /* Multi-fork case. The current inferior_ptid has exited, but
3734 there are other viable forks to debug. Delete the exiting
3735 one and context-switch to the first available. */
3736 linux_fork_mourn_inferior ();
3737
3738 /* Let the arch-specific native code know this process is gone. */
3739 linux_nat_forget_process (pid);
3740 }
3741
3742 /* Convert a native/host siginfo object, into/from the siginfo in the
3743 layout of the inferiors' architecture. */
3744
3745 static void
3746 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3747 {
3748 int done = 0;
3749
3750 if (linux_nat_siginfo_fixup != NULL)
3751 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3752
3753 /* If there was no callback, or the callback didn't do anything,
3754 then just do a straight memcpy. */
3755 if (!done)
3756 {
3757 if (direction == 1)
3758 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3759 else
3760 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3761 }
3762 }
3763
3764 static enum target_xfer_status
3765 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3766 const char *annex, gdb_byte *readbuf,
3767 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3768 ULONGEST *xfered_len)
3769 {
3770 int pid;
3771 siginfo_t siginfo;
3772 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3773
3774 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3775 gdb_assert (readbuf || writebuf);
3776
3777 pid = ptid_get_lwp (inferior_ptid);
3778 if (pid == 0)
3779 pid = ptid_get_pid (inferior_ptid);
3780
3781 if (offset > sizeof (siginfo))
3782 return TARGET_XFER_E_IO;
3783
3784 errno = 0;
3785 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3786 if (errno != 0)
3787 return TARGET_XFER_E_IO;
3788
3789 /* When GDB is built as a 64-bit application, ptrace writes into
3790 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3791 inferior with a 64-bit GDB should look the same as debugging it
3792 with a 32-bit GDB, we need to convert it. GDB core always sees
3793 the converted layout, so any read/write will have to be done
3794 post-conversion. */
3795 siginfo_fixup (&siginfo, inf_siginfo, 0);
3796
3797 if (offset + len > sizeof (siginfo))
3798 len = sizeof (siginfo) - offset;
3799
3800 if (readbuf != NULL)
3801 memcpy (readbuf, inf_siginfo + offset, len);
3802 else
3803 {
3804 memcpy (inf_siginfo + offset, writebuf, len);
3805
3806 /* Convert back to ptrace layout before flushing it out. */
3807 siginfo_fixup (&siginfo, inf_siginfo, 1);
3808
3809 errno = 0;
3810 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3811 if (errno != 0)
3812 return TARGET_XFER_E_IO;
3813 }
3814
3815 *xfered_len = len;
3816 return TARGET_XFER_OK;
3817 }
3818
3819 static enum target_xfer_status
3820 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3821 const char *annex, gdb_byte *readbuf,
3822 const gdb_byte *writebuf,
3823 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3824 {
3825 struct cleanup *old_chain;
3826 enum target_xfer_status xfer;
3827
3828 if (object == TARGET_OBJECT_SIGNAL_INFO)
3829 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3830 offset, len, xfered_len);
3831
3832 /* The target is connected but no live inferior is selected. Pass
3833 this request down to a lower stratum (e.g., the executable
3834 file). */
3835 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3836 return TARGET_XFER_EOF;
3837
3838 old_chain = save_inferior_ptid ();
3839
3840 if (ptid_lwp_p (inferior_ptid))
3841 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3842
3843 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3844 offset, len, xfered_len);
3845
3846 do_cleanups (old_chain);
3847 return xfer;
3848 }
3849
3850 static int
3851 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3852 {
3853 /* As long as a PTID is in lwp list, consider it alive. */
3854 return find_lwp_pid (ptid) != NULL;
3855 }
3856
3857 /* Implement the to_update_thread_list target method for this
3858 target. */
3859
3860 static void
3861 linux_nat_update_thread_list (struct target_ops *ops)
3862 {
3863 struct lwp_info *lwp;
3864
3865 /* We add/delete threads from the list as clone/exit events are
3866 processed, so just try deleting exited threads still in the
3867 thread list. */
3868 delete_exited_threads ();
3869
3870 /* Update the processor core that each lwp/thread was last seen
3871 running on. */
3872 ALL_LWPS (lwp)
3873 {
3874 /* Avoid accessing /proc if the thread hasn't run since we last
3875 time we fetched the thread's core. Accessing /proc becomes
3876 noticeably expensive when we have thousands of LWPs. */
3877 if (lwp->core == -1)
3878 lwp->core = linux_common_core_of_thread (lwp->ptid);
3879 }
3880 }
3881
3882 static char *
3883 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3884 {
3885 static char buf[64];
3886
3887 if (ptid_lwp_p (ptid)
3888 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3889 || num_lwps (ptid_get_pid (ptid)) > 1))
3890 {
3891 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3892 return buf;
3893 }
3894
3895 return normal_pid_to_str (ptid);
3896 }
3897
3898 static const char *
3899 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3900 {
3901 return linux_proc_tid_get_name (thr->ptid);
3902 }
3903
3904 /* Accepts an integer PID; Returns a string representing a file that
3905 can be opened to get the symbols for the child process. */
3906
3907 static char *
3908 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3909 {
3910 return linux_proc_pid_to_exec_file (pid);
3911 }
3912
3913 /* Implement the to_xfer_partial interface for memory reads using the /proc
3914 filesystem. Because we can use a single read() call for /proc, this
3915 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3916 but it doesn't support writes. */
3917
3918 static enum target_xfer_status
3919 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3920 const char *annex, gdb_byte *readbuf,
3921 const gdb_byte *writebuf,
3922 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3923 {
3924 LONGEST ret;
3925 int fd;
3926 char filename[64];
3927
3928 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3929 return TARGET_XFER_EOF;
3930
3931 /* Don't bother for one word. */
3932 if (len < 3 * sizeof (long))
3933 return TARGET_XFER_EOF;
3934
3935 /* We could keep this file open and cache it - possibly one per
3936 thread. That requires some juggling, but is even faster. */
3937 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
3938 ptid_get_pid (inferior_ptid));
3939 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
3940 if (fd == -1)
3941 return TARGET_XFER_EOF;
3942
3943 /* If pread64 is available, use it. It's faster if the kernel
3944 supports it (only one syscall), and it's 64-bit safe even on
3945 32-bit platforms (for instance, SPARC debugging a SPARC64
3946 application). */
3947 #ifdef HAVE_PREAD64
3948 if (pread64 (fd, readbuf, len, offset) != len)
3949 #else
3950 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3951 #endif
3952 ret = 0;
3953 else
3954 ret = len;
3955
3956 close (fd);
3957
3958 if (ret == 0)
3959 return TARGET_XFER_EOF;
3960 else
3961 {
3962 *xfered_len = ret;
3963 return TARGET_XFER_OK;
3964 }
3965 }
3966
3967
3968 /* Enumerate spufs IDs for process PID. */
3969 static LONGEST
3970 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
3971 {
3972 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3973 LONGEST pos = 0;
3974 LONGEST written = 0;
3975 char path[128];
3976 DIR *dir;
3977 struct dirent *entry;
3978
3979 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
3980 dir = opendir (path);
3981 if (!dir)
3982 return -1;
3983
3984 rewinddir (dir);
3985 while ((entry = readdir (dir)) != NULL)
3986 {
3987 struct stat st;
3988 struct statfs stfs;
3989 int fd;
3990
3991 fd = atoi (entry->d_name);
3992 if (!fd)
3993 continue;
3994
3995 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
3996 if (stat (path, &st) != 0)
3997 continue;
3998 if (!S_ISDIR (st.st_mode))
3999 continue;
4000
4001 if (statfs (path, &stfs) != 0)
4002 continue;
4003 if (stfs.f_type != SPUFS_MAGIC)
4004 continue;
4005
4006 if (pos >= offset && pos + 4 <= offset + len)
4007 {
4008 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4009 written += 4;
4010 }
4011 pos += 4;
4012 }
4013
4014 closedir (dir);
4015 return written;
4016 }
4017
4018 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4019 object type, using the /proc file system. */
4020
4021 static enum target_xfer_status
4022 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4023 const char *annex, gdb_byte *readbuf,
4024 const gdb_byte *writebuf,
4025 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4026 {
4027 char buf[128];
4028 int fd = 0;
4029 int ret = -1;
4030 int pid = ptid_get_pid (inferior_ptid);
4031
4032 if (!annex)
4033 {
4034 if (!readbuf)
4035 return TARGET_XFER_E_IO;
4036 else
4037 {
4038 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4039
4040 if (l < 0)
4041 return TARGET_XFER_E_IO;
4042 else if (l == 0)
4043 return TARGET_XFER_EOF;
4044 else
4045 {
4046 *xfered_len = (ULONGEST) l;
4047 return TARGET_XFER_OK;
4048 }
4049 }
4050 }
4051
4052 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4053 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4054 if (fd <= 0)
4055 return TARGET_XFER_E_IO;
4056
4057 if (offset != 0
4058 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4059 {
4060 close (fd);
4061 return TARGET_XFER_EOF;
4062 }
4063
4064 if (writebuf)
4065 ret = write (fd, writebuf, (size_t) len);
4066 else if (readbuf)
4067 ret = read (fd, readbuf, (size_t) len);
4068
4069 close (fd);
4070
4071 if (ret < 0)
4072 return TARGET_XFER_E_IO;
4073 else if (ret == 0)
4074 return TARGET_XFER_EOF;
4075 else
4076 {
4077 *xfered_len = (ULONGEST) ret;
4078 return TARGET_XFER_OK;
4079 }
4080 }
4081
4082
4083 /* Parse LINE as a signal set and add its set bits to SIGS. */
4084
4085 static void
4086 add_line_to_sigset (const char *line, sigset_t *sigs)
4087 {
4088 int len = strlen (line) - 1;
4089 const char *p;
4090 int signum;
4091
4092 if (line[len] != '\n')
4093 error (_("Could not parse signal set: %s"), line);
4094
4095 p = line;
4096 signum = len * 4;
4097 while (len-- > 0)
4098 {
4099 int digit;
4100
4101 if (*p >= '0' && *p <= '9')
4102 digit = *p - '0';
4103 else if (*p >= 'a' && *p <= 'f')
4104 digit = *p - 'a' + 10;
4105 else
4106 error (_("Could not parse signal set: %s"), line);
4107
4108 signum -= 4;
4109
4110 if (digit & 1)
4111 sigaddset (sigs, signum + 1);
4112 if (digit & 2)
4113 sigaddset (sigs, signum + 2);
4114 if (digit & 4)
4115 sigaddset (sigs, signum + 3);
4116 if (digit & 8)
4117 sigaddset (sigs, signum + 4);
4118
4119 p++;
4120 }
4121 }
4122
4123 /* Find process PID's pending signals from /proc/pid/status and set
4124 SIGS to match. */
4125
4126 void
4127 linux_proc_pending_signals (int pid, sigset_t *pending,
4128 sigset_t *blocked, sigset_t *ignored)
4129 {
4130 FILE *procfile;
4131 char buffer[PATH_MAX], fname[PATH_MAX];
4132 struct cleanup *cleanup;
4133
4134 sigemptyset (pending);
4135 sigemptyset (blocked);
4136 sigemptyset (ignored);
4137 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4138 procfile = gdb_fopen_cloexec (fname, "r");
4139 if (procfile == NULL)
4140 error (_("Could not open %s"), fname);
4141 cleanup = make_cleanup_fclose (procfile);
4142
4143 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4144 {
4145 /* Normal queued signals are on the SigPnd line in the status
4146 file. However, 2.6 kernels also have a "shared" pending
4147 queue for delivering signals to a thread group, so check for
4148 a ShdPnd line also.
4149
4150 Unfortunately some Red Hat kernels include the shared pending
4151 queue but not the ShdPnd status field. */
4152
4153 if (startswith (buffer, "SigPnd:\t"))
4154 add_line_to_sigset (buffer + 8, pending);
4155 else if (startswith (buffer, "ShdPnd:\t"))
4156 add_line_to_sigset (buffer + 8, pending);
4157 else if (startswith (buffer, "SigBlk:\t"))
4158 add_line_to_sigset (buffer + 8, blocked);
4159 else if (startswith (buffer, "SigIgn:\t"))
4160 add_line_to_sigset (buffer + 8, ignored);
4161 }
4162
4163 do_cleanups (cleanup);
4164 }
4165
4166 static enum target_xfer_status
4167 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4168 const char *annex, gdb_byte *readbuf,
4169 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4170 ULONGEST *xfered_len)
4171 {
4172 gdb_assert (object == TARGET_OBJECT_OSDATA);
4173
4174 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4175 if (*xfered_len == 0)
4176 return TARGET_XFER_EOF;
4177 else
4178 return TARGET_XFER_OK;
4179 }
4180
4181 static enum target_xfer_status
4182 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4183 const char *annex, gdb_byte *readbuf,
4184 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4185 ULONGEST *xfered_len)
4186 {
4187 enum target_xfer_status xfer;
4188
4189 if (object == TARGET_OBJECT_AUXV)
4190 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4191 offset, len, xfered_len);
4192
4193 if (object == TARGET_OBJECT_OSDATA)
4194 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4195 offset, len, xfered_len);
4196
4197 if (object == TARGET_OBJECT_SPU)
4198 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4199 offset, len, xfered_len);
4200
4201 /* GDB calculates all the addresses in possibly larget width of the address.
4202 Address width needs to be masked before its final use - either by
4203 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4204
4205 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4206
4207 if (object == TARGET_OBJECT_MEMORY)
4208 {
4209 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4210
4211 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4212 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4213 }
4214
4215 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4216 offset, len, xfered_len);
4217 if (xfer != TARGET_XFER_EOF)
4218 return xfer;
4219
4220 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4221 offset, len, xfered_len);
4222 }
4223
4224 static void
4225 cleanup_target_stop (void *arg)
4226 {
4227 ptid_t *ptid = (ptid_t *) arg;
4228
4229 gdb_assert (arg != NULL);
4230
4231 /* Unpause all */
4232 target_resume (*ptid, 0, GDB_SIGNAL_0);
4233 }
4234
4235 static VEC(static_tracepoint_marker_p) *
4236 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4237 const char *strid)
4238 {
4239 char s[IPA_CMD_BUF_SIZE];
4240 struct cleanup *old_chain;
4241 int pid = ptid_get_pid (inferior_ptid);
4242 VEC(static_tracepoint_marker_p) *markers = NULL;
4243 struct static_tracepoint_marker *marker = NULL;
4244 char *p = s;
4245 ptid_t ptid = ptid_build (pid, 0, 0);
4246
4247 /* Pause all */
4248 target_stop (ptid);
4249
4250 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4251 s[sizeof ("qTfSTM")] = 0;
4252
4253 agent_run_command (pid, s, strlen (s) + 1);
4254
4255 old_chain = make_cleanup (free_current_marker, &marker);
4256 make_cleanup (cleanup_target_stop, &ptid);
4257
4258 while (*p++ == 'm')
4259 {
4260 if (marker == NULL)
4261 marker = XCNEW (struct static_tracepoint_marker);
4262
4263 do
4264 {
4265 parse_static_tracepoint_marker_definition (p, &p, marker);
4266
4267 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4268 {
4269 VEC_safe_push (static_tracepoint_marker_p,
4270 markers, marker);
4271 marker = NULL;
4272 }
4273 else
4274 {
4275 release_static_tracepoint_marker (marker);
4276 memset (marker, 0, sizeof (*marker));
4277 }
4278 }
4279 while (*p++ == ','); /* comma-separated list */
4280
4281 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4282 s[sizeof ("qTsSTM")] = 0;
4283 agent_run_command (pid, s, strlen (s) + 1);
4284 p = s;
4285 }
4286
4287 do_cleanups (old_chain);
4288
4289 return markers;
4290 }
4291
4292 /* Create a prototype generic GNU/Linux target. The client can override
4293 it with local methods. */
4294
4295 static void
4296 linux_target_install_ops (struct target_ops *t)
4297 {
4298 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4299 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4300 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4301 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4302 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4303 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4304 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4305 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4306 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4307 t->to_post_attach = linux_child_post_attach;
4308 t->to_follow_fork = linux_child_follow_fork;
4309
4310 super_xfer_partial = t->to_xfer_partial;
4311 t->to_xfer_partial = linux_xfer_partial;
4312
4313 t->to_static_tracepoint_markers_by_strid
4314 = linux_child_static_tracepoint_markers_by_strid;
4315 }
4316
4317 struct target_ops *
4318 linux_target (void)
4319 {
4320 struct target_ops *t;
4321
4322 t = inf_ptrace_target ();
4323 linux_target_install_ops (t);
4324
4325 return t;
4326 }
4327
4328 struct target_ops *
4329 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4330 {
4331 struct target_ops *t;
4332
4333 t = inf_ptrace_trad_target (register_u_offset);
4334 linux_target_install_ops (t);
4335
4336 return t;
4337 }
4338
4339 /* target_is_async_p implementation. */
4340
4341 static int
4342 linux_nat_is_async_p (struct target_ops *ops)
4343 {
4344 return linux_is_async_p ();
4345 }
4346
4347 /* target_can_async_p implementation. */
4348
4349 static int
4350 linux_nat_can_async_p (struct target_ops *ops)
4351 {
4352 /* NOTE: palves 2008-03-21: We're only async when the user requests
4353 it explicitly with the "set target-async" command.
4354 Someday, linux will always be async. */
4355 return target_async_permitted;
4356 }
4357
4358 static int
4359 linux_nat_supports_non_stop (struct target_ops *self)
4360 {
4361 return 1;
4362 }
4363
4364 /* to_always_non_stop_p implementation. */
4365
4366 static int
4367 linux_nat_always_non_stop_p (struct target_ops *self)
4368 {
4369 return 1;
4370 }
4371
4372 /* True if we want to support multi-process. To be removed when GDB
4373 supports multi-exec. */
4374
4375 int linux_multi_process = 1;
4376
4377 static int
4378 linux_nat_supports_multi_process (struct target_ops *self)
4379 {
4380 return linux_multi_process;
4381 }
4382
4383 static int
4384 linux_nat_supports_disable_randomization (struct target_ops *self)
4385 {
4386 #ifdef HAVE_PERSONALITY
4387 return 1;
4388 #else
4389 return 0;
4390 #endif
4391 }
4392
4393 static int async_terminal_is_ours = 1;
4394
4395 /* target_terminal_inferior implementation.
4396
4397 This is a wrapper around child_terminal_inferior to add async support. */
4398
4399 static void
4400 linux_nat_terminal_inferior (struct target_ops *self)
4401 {
4402 child_terminal_inferior (self);
4403
4404 /* Calls to target_terminal_*() are meant to be idempotent. */
4405 if (!async_terminal_is_ours)
4406 return;
4407
4408 delete_file_handler (input_fd);
4409 async_terminal_is_ours = 0;
4410 set_sigint_trap ();
4411 }
4412
4413 /* target_terminal_ours implementation.
4414
4415 This is a wrapper around child_terminal_ours to add async support (and
4416 implement the target_terminal_ours vs target_terminal_ours_for_output
4417 distinction). child_terminal_ours is currently no different than
4418 child_terminal_ours_for_output.
4419 We leave target_terminal_ours_for_output alone, leaving it to
4420 child_terminal_ours_for_output. */
4421
4422 static void
4423 linux_nat_terminal_ours (struct target_ops *self)
4424 {
4425 /* GDB should never give the terminal to the inferior if the
4426 inferior is running in the background (run&, continue&, etc.),
4427 but claiming it sure should. */
4428 child_terminal_ours (self);
4429
4430 if (async_terminal_is_ours)
4431 return;
4432
4433 clear_sigint_trap ();
4434 add_file_handler (input_fd, stdin_event_handler, 0);
4435 async_terminal_is_ours = 1;
4436 }
4437
4438 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4439 so we notice when any child changes state, and notify the
4440 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4441 above to wait for the arrival of a SIGCHLD. */
4442
4443 static void
4444 sigchld_handler (int signo)
4445 {
4446 int old_errno = errno;
4447
4448 if (debug_linux_nat)
4449 ui_file_write_async_safe (gdb_stdlog,
4450 "sigchld\n", sizeof ("sigchld\n") - 1);
4451
4452 if (signo == SIGCHLD
4453 && linux_nat_event_pipe[0] != -1)
4454 async_file_mark (); /* Let the event loop know that there are
4455 events to handle. */
4456
4457 errno = old_errno;
4458 }
4459
4460 /* Callback registered with the target events file descriptor. */
4461
4462 static void
4463 handle_target_event (int error, gdb_client_data client_data)
4464 {
4465 inferior_event_handler (INF_REG_EVENT, NULL);
4466 }
4467
4468 /* Create/destroy the target events pipe. Returns previous state. */
4469
4470 static int
4471 linux_async_pipe (int enable)
4472 {
4473 int previous = linux_is_async_p ();
4474
4475 if (previous != enable)
4476 {
4477 sigset_t prev_mask;
4478
4479 /* Block child signals while we create/destroy the pipe, as
4480 their handler writes to it. */
4481 block_child_signals (&prev_mask);
4482
4483 if (enable)
4484 {
4485 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4486 internal_error (__FILE__, __LINE__,
4487 "creating event pipe failed.");
4488
4489 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4490 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4491 }
4492 else
4493 {
4494 close (linux_nat_event_pipe[0]);
4495 close (linux_nat_event_pipe[1]);
4496 linux_nat_event_pipe[0] = -1;
4497 linux_nat_event_pipe[1] = -1;
4498 }
4499
4500 restore_child_signals_mask (&prev_mask);
4501 }
4502
4503 return previous;
4504 }
4505
4506 /* target_async implementation. */
4507
4508 static void
4509 linux_nat_async (struct target_ops *ops, int enable)
4510 {
4511 if (enable)
4512 {
4513 if (!linux_async_pipe (1))
4514 {
4515 add_file_handler (linux_nat_event_pipe[0],
4516 handle_target_event, NULL);
4517 /* There may be pending events to handle. Tell the event loop
4518 to poll them. */
4519 async_file_mark ();
4520 }
4521 }
4522 else
4523 {
4524 delete_file_handler (linux_nat_event_pipe[0]);
4525 linux_async_pipe (0);
4526 }
4527 return;
4528 }
4529
4530 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4531 event came out. */
4532
4533 static int
4534 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4535 {
4536 if (!lwp->stopped)
4537 {
4538 if (debug_linux_nat)
4539 fprintf_unfiltered (gdb_stdlog,
4540 "LNSL: running -> suspending %s\n",
4541 target_pid_to_str (lwp->ptid));
4542
4543
4544 if (lwp->last_resume_kind == resume_stop)
4545 {
4546 if (debug_linux_nat)
4547 fprintf_unfiltered (gdb_stdlog,
4548 "linux-nat: already stopping LWP %ld at "
4549 "GDB's request\n",
4550 ptid_get_lwp (lwp->ptid));
4551 return 0;
4552 }
4553
4554 stop_callback (lwp, NULL);
4555 lwp->last_resume_kind = resume_stop;
4556 }
4557 else
4558 {
4559 /* Already known to be stopped; do nothing. */
4560
4561 if (debug_linux_nat)
4562 {
4563 if (find_thread_ptid (lwp->ptid)->stop_requested)
4564 fprintf_unfiltered (gdb_stdlog,
4565 "LNSL: already stopped/stop_requested %s\n",
4566 target_pid_to_str (lwp->ptid));
4567 else
4568 fprintf_unfiltered (gdb_stdlog,
4569 "LNSL: already stopped/no "
4570 "stop_requested yet %s\n",
4571 target_pid_to_str (lwp->ptid));
4572 }
4573 }
4574 return 0;
4575 }
4576
4577 static void
4578 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4579 {
4580 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4581 }
4582
4583 static void
4584 linux_nat_close (struct target_ops *self)
4585 {
4586 /* Unregister from the event loop. */
4587 if (linux_nat_is_async_p (self))
4588 linux_nat_async (self, 0);
4589
4590 if (linux_ops->to_close)
4591 linux_ops->to_close (linux_ops);
4592
4593 super_close (self);
4594 }
4595
4596 /* When requests are passed down from the linux-nat layer to the
4597 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4598 used. The address space pointer is stored in the inferior object,
4599 but the common code that is passed such ptid can't tell whether
4600 lwpid is a "main" process id or not (it assumes so). We reverse
4601 look up the "main" process id from the lwp here. */
4602
4603 static struct address_space *
4604 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4605 {
4606 struct lwp_info *lwp;
4607 struct inferior *inf;
4608 int pid;
4609
4610 if (ptid_get_lwp (ptid) == 0)
4611 {
4612 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4613 tgid. */
4614 lwp = find_lwp_pid (ptid);
4615 pid = ptid_get_pid (lwp->ptid);
4616 }
4617 else
4618 {
4619 /* A (pid,lwpid,0) ptid. */
4620 pid = ptid_get_pid (ptid);
4621 }
4622
4623 inf = find_inferior_pid (pid);
4624 gdb_assert (inf != NULL);
4625 return inf->aspace;
4626 }
4627
4628 /* Return the cached value of the processor core for thread PTID. */
4629
4630 static int
4631 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4632 {
4633 struct lwp_info *info = find_lwp_pid (ptid);
4634
4635 if (info)
4636 return info->core;
4637 return -1;
4638 }
4639
4640 /* Implementation of to_filesystem_is_local. */
4641
4642 static int
4643 linux_nat_filesystem_is_local (struct target_ops *ops)
4644 {
4645 struct inferior *inf = current_inferior ();
4646
4647 if (inf->fake_pid_p || inf->pid == 0)
4648 return 1;
4649
4650 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4651 }
4652
4653 /* Convert the INF argument passed to a to_fileio_* method
4654 to a process ID suitable for passing to its corresponding
4655 linux_mntns_* function. If INF is non-NULL then the
4656 caller is requesting the filesystem seen by INF. If INF
4657 is NULL then the caller is requesting the filesystem seen
4658 by the GDB. We fall back to GDB's filesystem in the case
4659 that INF is non-NULL but its PID is unknown. */
4660
4661 static pid_t
4662 linux_nat_fileio_pid_of (struct inferior *inf)
4663 {
4664 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4665 return getpid ();
4666 else
4667 return inf->pid;
4668 }
4669
4670 /* Implementation of to_fileio_open. */
4671
4672 static int
4673 linux_nat_fileio_open (struct target_ops *self,
4674 struct inferior *inf, const char *filename,
4675 int flags, int mode, int warn_if_slow,
4676 int *target_errno)
4677 {
4678 int nat_flags;
4679 mode_t nat_mode;
4680 int fd;
4681
4682 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4683 || fileio_to_host_mode (mode, &nat_mode) == -1)
4684 {
4685 *target_errno = FILEIO_EINVAL;
4686 return -1;
4687 }
4688
4689 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4690 filename, nat_flags, nat_mode);
4691 if (fd == -1)
4692 *target_errno = host_to_fileio_error (errno);
4693
4694 return fd;
4695 }
4696
4697 /* Implementation of to_fileio_readlink. */
4698
4699 static char *
4700 linux_nat_fileio_readlink (struct target_ops *self,
4701 struct inferior *inf, const char *filename,
4702 int *target_errno)
4703 {
4704 char buf[PATH_MAX];
4705 int len;
4706 char *ret;
4707
4708 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4709 filename, buf, sizeof (buf));
4710 if (len < 0)
4711 {
4712 *target_errno = host_to_fileio_error (errno);
4713 return NULL;
4714 }
4715
4716 ret = (char *) xmalloc (len + 1);
4717 memcpy (ret, buf, len);
4718 ret[len] = '\0';
4719 return ret;
4720 }
4721
4722 /* Implementation of to_fileio_unlink. */
4723
4724 static int
4725 linux_nat_fileio_unlink (struct target_ops *self,
4726 struct inferior *inf, const char *filename,
4727 int *target_errno)
4728 {
4729 int ret;
4730
4731 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4732 filename);
4733 if (ret == -1)
4734 *target_errno = host_to_fileio_error (errno);
4735
4736 return ret;
4737 }
4738
4739 /* Implementation of the to_thread_events method. */
4740
4741 static void
4742 linux_nat_thread_events (struct target_ops *ops, int enable)
4743 {
4744 report_thread_events = enable;
4745 }
4746
4747 void
4748 linux_nat_add_target (struct target_ops *t)
4749 {
4750 /* Save the provided single-threaded target. We save this in a separate
4751 variable because another target we've inherited from (e.g. inf-ptrace)
4752 may have saved a pointer to T; we want to use it for the final
4753 process stratum target. */
4754 linux_ops_saved = *t;
4755 linux_ops = &linux_ops_saved;
4756
4757 /* Override some methods for multithreading. */
4758 t->to_create_inferior = linux_nat_create_inferior;
4759 t->to_attach = linux_nat_attach;
4760 t->to_detach = linux_nat_detach;
4761 t->to_resume = linux_nat_resume;
4762 t->to_wait = linux_nat_wait;
4763 t->to_pass_signals = linux_nat_pass_signals;
4764 t->to_xfer_partial = linux_nat_xfer_partial;
4765 t->to_kill = linux_nat_kill;
4766 t->to_mourn_inferior = linux_nat_mourn_inferior;
4767 t->to_thread_alive = linux_nat_thread_alive;
4768 t->to_update_thread_list = linux_nat_update_thread_list;
4769 t->to_pid_to_str = linux_nat_pid_to_str;
4770 t->to_thread_name = linux_nat_thread_name;
4771 t->to_has_thread_control = tc_schedlock;
4772 t->to_thread_address_space = linux_nat_thread_address_space;
4773 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4774 t->to_stopped_data_address = linux_nat_stopped_data_address;
4775 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4776 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4777 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4778 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4779 t->to_thread_events = linux_nat_thread_events;
4780
4781 t->to_can_async_p = linux_nat_can_async_p;
4782 t->to_is_async_p = linux_nat_is_async_p;
4783 t->to_supports_non_stop = linux_nat_supports_non_stop;
4784 t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4785 t->to_async = linux_nat_async;
4786 t->to_terminal_inferior = linux_nat_terminal_inferior;
4787 t->to_terminal_ours = linux_nat_terminal_ours;
4788
4789 super_close = t->to_close;
4790 t->to_close = linux_nat_close;
4791
4792 t->to_stop = linux_nat_stop;
4793
4794 t->to_supports_multi_process = linux_nat_supports_multi_process;
4795
4796 t->to_supports_disable_randomization
4797 = linux_nat_supports_disable_randomization;
4798
4799 t->to_core_of_thread = linux_nat_core_of_thread;
4800
4801 t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4802 t->to_fileio_open = linux_nat_fileio_open;
4803 t->to_fileio_readlink = linux_nat_fileio_readlink;
4804 t->to_fileio_unlink = linux_nat_fileio_unlink;
4805
4806 /* We don't change the stratum; this target will sit at
4807 process_stratum and thread_db will set at thread_stratum. This
4808 is a little strange, since this is a multi-threaded-capable
4809 target, but we want to be on the stack below thread_db, and we
4810 also want to be used for single-threaded processes. */
4811
4812 add_target (t);
4813 }
4814
4815 /* Register a method to call whenever a new thread is attached. */
4816 void
4817 linux_nat_set_new_thread (struct target_ops *t,
4818 void (*new_thread) (struct lwp_info *))
4819 {
4820 /* Save the pointer. We only support a single registered instance
4821 of the GNU/Linux native target, so we do not need to map this to
4822 T. */
4823 linux_nat_new_thread = new_thread;
4824 }
4825
4826 /* See declaration in linux-nat.h. */
4827
4828 void
4829 linux_nat_set_new_fork (struct target_ops *t,
4830 linux_nat_new_fork_ftype *new_fork)
4831 {
4832 /* Save the pointer. */
4833 linux_nat_new_fork = new_fork;
4834 }
4835
4836 /* See declaration in linux-nat.h. */
4837
4838 void
4839 linux_nat_set_forget_process (struct target_ops *t,
4840 linux_nat_forget_process_ftype *fn)
4841 {
4842 /* Save the pointer. */
4843 linux_nat_forget_process_hook = fn;
4844 }
4845
4846 /* See declaration in linux-nat.h. */
4847
4848 void
4849 linux_nat_forget_process (pid_t pid)
4850 {
4851 if (linux_nat_forget_process_hook != NULL)
4852 linux_nat_forget_process_hook (pid);
4853 }
4854
4855 /* Register a method that converts a siginfo object between the layout
4856 that ptrace returns, and the layout in the architecture of the
4857 inferior. */
4858 void
4859 linux_nat_set_siginfo_fixup (struct target_ops *t,
4860 int (*siginfo_fixup) (siginfo_t *,
4861 gdb_byte *,
4862 int))
4863 {
4864 /* Save the pointer. */
4865 linux_nat_siginfo_fixup = siginfo_fixup;
4866 }
4867
4868 /* Register a method to call prior to resuming a thread. */
4869
4870 void
4871 linux_nat_set_prepare_to_resume (struct target_ops *t,
4872 void (*prepare_to_resume) (struct lwp_info *))
4873 {
4874 /* Save the pointer. */
4875 linux_nat_prepare_to_resume = prepare_to_resume;
4876 }
4877
4878 /* See linux-nat.h. */
4879
4880 int
4881 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4882 {
4883 int pid;
4884
4885 pid = ptid_get_lwp (ptid);
4886 if (pid == 0)
4887 pid = ptid_get_pid (ptid);
4888
4889 errno = 0;
4890 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4891 if (errno != 0)
4892 {
4893 memset (siginfo, 0, sizeof (*siginfo));
4894 return 0;
4895 }
4896 return 1;
4897 }
4898
4899 /* See nat/linux-nat.h. */
4900
4901 ptid_t
4902 current_lwp_ptid (void)
4903 {
4904 gdb_assert (ptid_lwp_p (inferior_ptid));
4905 return inferior_ptid;
4906 }
4907
4908 /* Provide a prototype to silence -Wmissing-prototypes. */
4909 extern initialize_file_ftype _initialize_linux_nat;
4910
4911 void
4912 _initialize_linux_nat (void)
4913 {
4914 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4915 &debug_linux_nat, _("\
4916 Set debugging of GNU/Linux lwp module."), _("\
4917 Show debugging of GNU/Linux lwp module."), _("\
4918 Enables printf debugging output."),
4919 NULL,
4920 show_debug_linux_nat,
4921 &setdebuglist, &showdebuglist);
4922
4923 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4924 &debug_linux_namespaces, _("\
4925 Set debugging of GNU/Linux namespaces module."), _("\
4926 Show debugging of GNU/Linux namespaces module."), _("\
4927 Enables printf debugging output."),
4928 NULL,
4929 NULL,
4930 &setdebuglist, &showdebuglist);
4931
4932 /* Save this mask as the default. */
4933 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4934
4935 /* Install a SIGCHLD handler. */
4936 sigchld_action.sa_handler = sigchld_handler;
4937 sigemptyset (&sigchld_action.sa_mask);
4938 sigchld_action.sa_flags = SA_RESTART;
4939
4940 /* Make it the default. */
4941 sigaction (SIGCHLD, &sigchld_action, NULL);
4942
4943 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4944 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4945 sigdelset (&suspend_mask, SIGCHLD);
4946
4947 sigemptyset (&blocked_mask);
4948
4949 lwp_lwpid_htab_create ();
4950 }
4951 \f
4952
4953 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4954 the GNU/Linux Threads library and therefore doesn't really belong
4955 here. */
4956
4957 /* Return the set of signals used by the threads library in *SET. */
4958
4959 void
4960 lin_thread_get_thread_signals (sigset_t *set)
4961 {
4962 sigemptyset (set);
4963
4964 /* NPTL reserves the first two RT signals, but does not provide any
4965 way for the debugger to query the signal numbers - fortunately
4966 they don't change. */
4967 sigaddset (set, __SIGRTMIN);
4968 sigaddset (set, __SIGRTMIN + 1);
4969 }
This page took 0.122422 seconds and 5 git commands to generate.