gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "gdbsupport/enum-flags.h"
41 #include "gdbsupport/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static bool use_coredump_filter = true;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static bool dump_excluded_mappings = false;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189 struct linux_info
190 {
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
196 struct mem_range vsyscall_range {};
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
201 int vsyscall_range_p = 0;
202 };
203
204 /* Per-inferior data key. */
205 static const struct inferior_key<linux_info> linux_inferior_data;
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 linux_inferior_data.clear (inf);
214 }
215
216 /* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219 static struct linux_info *
220 get_linux_inferior_data (void)
221 {
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
225 info = linux_inferior_data.get (inf);
226 if (info == NULL)
227 info = linux_inferior_data.emplace (inf);
228
229 return info;
230 }
231
232 /* See linux-tdep.h. */
233
234 struct type *
235 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
237 {
238 struct linux_gdbarch_data *linux_gdbarch_data;
239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
261 sigval_type->set_name (xstrdup ("sigval_t"));
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
268 TYPE_TARGET_TYPE (pid_type) = int_type;
269 TYPE_TARGET_STUB (pid_type) = 1;
270
271 /* __uid_t */
272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
274 TYPE_TARGET_TYPE (uid_type) = uint_type;
275 TYPE_TARGET_STUB (uid_type) = 1;
276
277 /* __clock_t */
278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
281 TYPE_TARGET_TYPE (clock_type) = long_type;
282 TYPE_TARGET_STUB (clock_type) = 1;
283
284 /* _sifields */
285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
332 append_composite_type_field (type, "si_addr", void_ptr_type);
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 siginfo_type->set_name (xstrdup ("siginfo"));
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
365 return siginfo_type;
366 }
367
368 /* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371 static struct type *
372 linux_get_siginfo_type (struct gdbarch *gdbarch)
373 {
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375 }
376
377 /* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380 int
381 linux_is_uclinux (void)
382 {
383 CORE_ADDR dummy;
384
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
387 }
388
389 static int
390 linux_has_shared_address_space (struct gdbarch *gdbarch)
391 {
392 return linux_is_uclinux ();
393 }
394
395 /* This is how we want PTIDs from core files to be printed. */
396
397 static std::string
398 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399 {
400 if (ptid.lwp () != 0)
401 return string_printf ("LWP %ld", ptid.lwp ());
402
403 return normal_pid_to_str (ptid);
404 }
405
406 /* Service function for corefiles and info proc. */
407
408 static void
409 read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416 {
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
424 p = skip_spaces (p);
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
432 p = skip_spaces (p);
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
440 p = skip_spaces (p);
441 *filename = p;
442 }
443
444 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453 static void
454 decode_vmflags (char *p, struct smaps_vmflags *v)
455 {
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476 }
477
478 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481 struct mapping_regexes
482 {
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514 };
515
516 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526 static int
527 mapping_is_anonymous_p (const char *filename)
528 {
529 static gdb::optional<mapping_regexes> regexes;
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
538 regexes.emplace ();
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
563 return 1;
564
565 return 0;
566 }
567
568 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
614
615 static int
616 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
618 const char *filename, ULONGEST addr, ULONGEST offset)
619 {
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
628 int dump_p;
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
644 if (!dump_excluded_mappings && v->exclude_coredump)
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
671 }
672 else if (mapping_anon_p)
673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
674 else
675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
686 }
687 else if (mapping_anon_p)
688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
689 else
690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
691 }
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
704 /* Let's check if we have an ELF header. */
705 gdb::unique_xmalloc_ptr<char> header;
706 int errcode;
707
708 /* Useful define specifying the size of the ELF magical
709 header. */
710 #ifndef SELFMAG
711 #define SELFMAG 4
712 #endif
713
714 /* Read the first SELFMAG bytes and check if it is ELFMAG. */
715 if (target_read_string (addr, &header, SELFMAG, &errcode) == SELFMAG
716 && errcode == 0)
717 {
718 const char *h = header.get ();
719
720 /* The EI_MAG* and ELFMAG* constants come from
721 <elf/common.h>. */
722 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
723 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
724 {
725 /* This mapping contains an ELF header, so we
726 should dump it. */
727 dump_p = 1;
728 }
729 }
730 }
731
732 return dump_p;
733 }
734
735 /* Implement the "info proc" command. */
736
737 static void
738 linux_info_proc (struct gdbarch *gdbarch, const char *args,
739 enum info_proc_what what)
740 {
741 /* A long is used for pid instead of an int to avoid a loss of precision
742 compiler warning from the output of strtoul. */
743 long pid;
744 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
745 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
746 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
747 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
748 int status_f = (what == IP_STATUS || what == IP_ALL);
749 int stat_f = (what == IP_STAT || what == IP_ALL);
750 char filename[100];
751 int target_errno;
752
753 if (args && isdigit (args[0]))
754 {
755 char *tem;
756
757 pid = strtoul (args, &tem, 10);
758 args = tem;
759 }
760 else
761 {
762 if (!target_has_execution)
763 error (_("No current process: you must name one."));
764 if (current_inferior ()->fake_pid_p)
765 error (_("Can't determine the current process's PID: you must name one."));
766
767 pid = current_inferior ()->pid;
768 }
769
770 args = skip_spaces (args);
771 if (args && args[0])
772 error (_("Too many parameters: %s"), args);
773
774 printf_filtered (_("process %ld\n"), pid);
775 if (cmdline_f)
776 {
777 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
778 gdb_byte *buffer;
779 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
780
781 if (len > 0)
782 {
783 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
784 ssize_t pos;
785
786 for (pos = 0; pos < len - 1; pos++)
787 {
788 if (buffer[pos] == '\0')
789 buffer[pos] = ' ';
790 }
791 buffer[len - 1] = '\0';
792 printf_filtered ("cmdline = '%s'\n", buffer);
793 }
794 else
795 warning (_("unable to open /proc file '%s'"), filename);
796 }
797 if (cwd_f)
798 {
799 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
800 gdb::optional<std::string> contents
801 = target_fileio_readlink (NULL, filename, &target_errno);
802 if (contents.has_value ())
803 printf_filtered ("cwd = '%s'\n", contents->c_str ());
804 else
805 warning (_("unable to read link '%s'"), filename);
806 }
807 if (exe_f)
808 {
809 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
810 gdb::optional<std::string> contents
811 = target_fileio_readlink (NULL, filename, &target_errno);
812 if (contents.has_value ())
813 printf_filtered ("exe = '%s'\n", contents->c_str ());
814 else
815 warning (_("unable to read link '%s'"), filename);
816 }
817 if (mappings_f)
818 {
819 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
820 gdb::unique_xmalloc_ptr<char> map
821 = target_fileio_read_stralloc (NULL, filename);
822 if (map != NULL)
823 {
824 char *line;
825
826 printf_filtered (_("Mapped address spaces:\n\n"));
827 if (gdbarch_addr_bit (gdbarch) == 32)
828 {
829 printf_filtered ("\t%10s %10s %10s %10s %s\n",
830 "Start Addr",
831 " End Addr",
832 " Size", " Offset", "objfile");
833 }
834 else
835 {
836 printf_filtered (" %18s %18s %10s %10s %s\n",
837 "Start Addr",
838 " End Addr",
839 " Size", " Offset", "objfile");
840 }
841
842 char *saveptr;
843 for (line = strtok_r (map.get (), "\n", &saveptr);
844 line;
845 line = strtok_r (NULL, "\n", &saveptr))
846 {
847 ULONGEST addr, endaddr, offset, inode;
848 const char *permissions, *device, *mapping_filename;
849 size_t permissions_len, device_len;
850
851 read_mapping (line, &addr, &endaddr,
852 &permissions, &permissions_len,
853 &offset, &device, &device_len,
854 &inode, &mapping_filename);
855
856 if (gdbarch_addr_bit (gdbarch) == 32)
857 {
858 printf_filtered ("\t%10s %10s %10s %10s %s\n",
859 paddress (gdbarch, addr),
860 paddress (gdbarch, endaddr),
861 hex_string (endaddr - addr),
862 hex_string (offset),
863 *mapping_filename ? mapping_filename : "");
864 }
865 else
866 {
867 printf_filtered (" %18s %18s %10s %10s %s\n",
868 paddress (gdbarch, addr),
869 paddress (gdbarch, endaddr),
870 hex_string (endaddr - addr),
871 hex_string (offset),
872 *mapping_filename ? mapping_filename : "");
873 }
874 }
875 }
876 else
877 warning (_("unable to open /proc file '%s'"), filename);
878 }
879 if (status_f)
880 {
881 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
882 gdb::unique_xmalloc_ptr<char> status
883 = target_fileio_read_stralloc (NULL, filename);
884 if (status)
885 puts_filtered (status.get ());
886 else
887 warning (_("unable to open /proc file '%s'"), filename);
888 }
889 if (stat_f)
890 {
891 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
892 gdb::unique_xmalloc_ptr<char> statstr
893 = target_fileio_read_stralloc (NULL, filename);
894 if (statstr)
895 {
896 const char *p = statstr.get ();
897
898 printf_filtered (_("Process: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900
901 p = skip_spaces (p);
902 if (*p == '(')
903 {
904 /* ps command also relies on no trailing fields
905 ever contain ')'. */
906 const char *ep = strrchr (p, ')');
907 if (ep != NULL)
908 {
909 printf_filtered ("Exec file: %.*s\n",
910 (int) (ep - p - 1), p + 1);
911 p = ep + 1;
912 }
913 }
914
915 p = skip_spaces (p);
916 if (*p)
917 printf_filtered (_("State: %c\n"), *p++);
918
919 if (*p)
920 printf_filtered (_("Parent process: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("Process group: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("Session id: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("TTY: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("TTY owner process group: %s\n"),
933 pulongest (strtoulst (p, &p, 10)));
934
935 if (*p)
936 printf_filtered (_("Flags: %s\n"),
937 hex_string (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("Minor faults (no memory page): %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("Minor faults, children: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("Major faults (memory page faults): %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("Major faults, children: %s\n"),
949 pulongest (strtoulst (p, &p, 10)));
950 if (*p)
951 printf_filtered (_("utime: %s\n"),
952 pulongest (strtoulst (p, &p, 10)));
953 if (*p)
954 printf_filtered (_("stime: %s\n"),
955 pulongest (strtoulst (p, &p, 10)));
956 if (*p)
957 printf_filtered (_("utime, children: %s\n"),
958 pulongest (strtoulst (p, &p, 10)));
959 if (*p)
960 printf_filtered (_("stime, children: %s\n"),
961 pulongest (strtoulst (p, &p, 10)));
962 if (*p)
963 printf_filtered (_("jiffies remaining in current "
964 "time slice: %s\n"),
965 pulongest (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("'nice' value: %s\n"),
968 pulongest (strtoulst (p, &p, 10)));
969 if (*p)
970 printf_filtered (_("jiffies until next timeout: %s\n"),
971 pulongest (strtoulst (p, &p, 10)));
972 if (*p)
973 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
974 pulongest (strtoulst (p, &p, 10)));
975 if (*p)
976 printf_filtered (_("start time (jiffies since "
977 "system boot): %s\n"),
978 pulongest (strtoulst (p, &p, 10)));
979 if (*p)
980 printf_filtered (_("Virtual memory size: %s\n"),
981 pulongest (strtoulst (p, &p, 10)));
982 if (*p)
983 printf_filtered (_("Resident set size: %s\n"),
984 pulongest (strtoulst (p, &p, 10)));
985 if (*p)
986 printf_filtered (_("rlim: %s\n"),
987 pulongest (strtoulst (p, &p, 10)));
988 if (*p)
989 printf_filtered (_("Start of text: %s\n"),
990 hex_string (strtoulst (p, &p, 10)));
991 if (*p)
992 printf_filtered (_("End of text: %s\n"),
993 hex_string (strtoulst (p, &p, 10)));
994 if (*p)
995 printf_filtered (_("Start of stack: %s\n"),
996 hex_string (strtoulst (p, &p, 10)));
997 #if 0 /* Don't know how architecture-dependent the rest is...
998 Anyway the signal bitmap info is available from "status". */
999 if (*p)
1000 printf_filtered (_("Kernel stack pointer: %s\n"),
1001 hex_string (strtoulst (p, &p, 10)));
1002 if (*p)
1003 printf_filtered (_("Kernel instr pointer: %s\n"),
1004 hex_string (strtoulst (p, &p, 10)));
1005 if (*p)
1006 printf_filtered (_("Pending signals bitmap: %s\n"),
1007 hex_string (strtoulst (p, &p, 10)));
1008 if (*p)
1009 printf_filtered (_("Blocked signals bitmap: %s\n"),
1010 hex_string (strtoulst (p, &p, 10)));
1011 if (*p)
1012 printf_filtered (_("Ignored signals bitmap: %s\n"),
1013 hex_string (strtoulst (p, &p, 10)));
1014 if (*p)
1015 printf_filtered (_("Catched signals bitmap: %s\n"),
1016 hex_string (strtoulst (p, &p, 10)));
1017 if (*p)
1018 printf_filtered (_("wchan (system call): %s\n"),
1019 hex_string (strtoulst (p, &p, 10)));
1020 #endif
1021 }
1022 else
1023 warning (_("unable to open /proc file '%s'"), filename);
1024 }
1025 }
1026
1027 /* Implement "info proc mappings" for a corefile. */
1028
1029 static void
1030 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1031 {
1032 asection *section;
1033 ULONGEST count, page_size;
1034 unsigned char *descdata, *filenames, *descend;
1035 size_t note_size;
1036 unsigned int addr_size_bits, addr_size;
1037 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1038 /* We assume this for reading 64-bit core files. */
1039 gdb_static_assert (sizeof (ULONGEST) >= 8);
1040
1041 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1042 if (section == NULL)
1043 {
1044 warning (_("unable to find mappings in core file"));
1045 return;
1046 }
1047
1048 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1049 addr_size = addr_size_bits / 8;
1050 note_size = bfd_section_size (section);
1051
1052 if (note_size < 2 * addr_size)
1053 error (_("malformed core note - too short for header"));
1054
1055 gdb::def_vector<unsigned char> contents (note_size);
1056 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1057 0, note_size))
1058 error (_("could not get core note contents"));
1059
1060 descdata = contents.data ();
1061 descend = descdata + note_size;
1062
1063 if (descdata[note_size - 1] != '\0')
1064 error (_("malformed note - does not end with \\0"));
1065
1066 count = bfd_get (addr_size_bits, core_bfd, descdata);
1067 descdata += addr_size;
1068
1069 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1070 descdata += addr_size;
1071
1072 if (note_size < 2 * addr_size + count * 3 * addr_size)
1073 error (_("malformed note - too short for supplied file count"));
1074
1075 printf_filtered (_("Mapped address spaces:\n\n"));
1076 if (gdbarch_addr_bit (gdbarch) == 32)
1077 {
1078 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1079 "Start Addr",
1080 " End Addr",
1081 " Size", " Offset", "objfile");
1082 }
1083 else
1084 {
1085 printf_filtered (" %18s %18s %10s %10s %s\n",
1086 "Start Addr",
1087 " End Addr",
1088 " Size", " Offset", "objfile");
1089 }
1090
1091 filenames = descdata + count * 3 * addr_size;
1092 while (--count > 0)
1093 {
1094 ULONGEST start, end, file_ofs;
1095
1096 if (filenames == descend)
1097 error (_("malformed note - filenames end too early"));
1098
1099 start = bfd_get (addr_size_bits, core_bfd, descdata);
1100 descdata += addr_size;
1101 end = bfd_get (addr_size_bits, core_bfd, descdata);
1102 descdata += addr_size;
1103 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1104 descdata += addr_size;
1105
1106 file_ofs *= page_size;
1107
1108 if (gdbarch_addr_bit (gdbarch) == 32)
1109 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1110 paddress (gdbarch, start),
1111 paddress (gdbarch, end),
1112 hex_string (end - start),
1113 hex_string (file_ofs),
1114 filenames);
1115 else
1116 printf_filtered (" %18s %18s %10s %10s %s\n",
1117 paddress (gdbarch, start),
1118 paddress (gdbarch, end),
1119 hex_string (end - start),
1120 hex_string (file_ofs),
1121 filenames);
1122
1123 filenames += 1 + strlen ((char *) filenames);
1124 }
1125 }
1126
1127 /* Implement "info proc" for a corefile. */
1128
1129 static void
1130 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1131 enum info_proc_what what)
1132 {
1133 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1134 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1135
1136 if (exe_f)
1137 {
1138 const char *exe;
1139
1140 exe = bfd_core_file_failing_command (core_bfd);
1141 if (exe != NULL)
1142 printf_filtered ("exe = '%s'\n", exe);
1143 else
1144 warning (_("unable to find command name in core file"));
1145 }
1146
1147 if (mappings_f)
1148 linux_core_info_proc_mappings (gdbarch, args);
1149
1150 if (!exe_f && !mappings_f)
1151 error (_("unable to handle request"));
1152 }
1153
1154 /* Read siginfo data from the core, if possible. Returns -1 on
1155 failure. Otherwise, returns the number of bytes read. READBUF,
1156 OFFSET, and LEN are all as specified by the to_xfer_partial
1157 interface. */
1158
1159 static LONGEST
1160 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1161 ULONGEST offset, ULONGEST len)
1162 {
1163 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1164 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1165 if (section == NULL)
1166 return -1;
1167
1168 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1169 return -1;
1170
1171 return len;
1172 }
1173
1174 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1175 ULONGEST offset, ULONGEST inode,
1176 int read, int write,
1177 int exec, int modified,
1178 const char *filename,
1179 void *data);
1180
1181 /* List memory regions in the inferior for a corefile. */
1182
1183 static int
1184 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1185 linux_find_memory_region_ftype *func,
1186 void *obfd)
1187 {
1188 char mapsfilename[100];
1189 char coredumpfilter_name[100];
1190 pid_t pid;
1191 /* Default dump behavior of coredump_filter (0x33), according to
1192 Documentation/filesystems/proc.txt from the Linux kernel
1193 tree. */
1194 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1195 | COREFILTER_ANON_SHARED
1196 | COREFILTER_ELF_HEADERS
1197 | COREFILTER_HUGETLB_PRIVATE);
1198
1199 /* We need to know the real target PID to access /proc. */
1200 if (current_inferior ()->fake_pid_p)
1201 return 1;
1202
1203 pid = current_inferior ()->pid;
1204
1205 if (use_coredump_filter)
1206 {
1207 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1208 "/proc/%d/coredump_filter", pid);
1209 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1210 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1211 if (coredumpfilterdata != NULL)
1212 {
1213 unsigned int flags;
1214
1215 sscanf (coredumpfilterdata.get (), "%x", &flags);
1216 filterflags = (enum filter_flag) flags;
1217 }
1218 }
1219
1220 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1221 gdb::unique_xmalloc_ptr<char> data
1222 = target_fileio_read_stralloc (NULL, mapsfilename);
1223 if (data == NULL)
1224 {
1225 /* Older Linux kernels did not support /proc/PID/smaps. */
1226 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1227 data = target_fileio_read_stralloc (NULL, mapsfilename);
1228 }
1229
1230 if (data != NULL)
1231 {
1232 char *line, *t;
1233
1234 line = strtok_r (data.get (), "\n", &t);
1235 while (line != NULL)
1236 {
1237 ULONGEST addr, endaddr, offset, inode;
1238 const char *permissions, *device, *filename;
1239 struct smaps_vmflags v;
1240 size_t permissions_len, device_len;
1241 int read, write, exec, priv;
1242 int has_anonymous = 0;
1243 int should_dump_p = 0;
1244 int mapping_anon_p;
1245 int mapping_file_p;
1246
1247 memset (&v, 0, sizeof (v));
1248 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1249 &offset, &device, &device_len, &inode, &filename);
1250 mapping_anon_p = mapping_is_anonymous_p (filename);
1251 /* If the mapping is not anonymous, then we can consider it
1252 to be file-backed. These two states (anonymous or
1253 file-backed) seem to be exclusive, but they can actually
1254 coexist. For example, if a file-backed mapping has
1255 "Anonymous:" pages (see more below), then the Linux
1256 kernel will dump this mapping when the user specified
1257 that she only wants anonymous mappings in the corefile
1258 (*even* when she explicitly disabled the dumping of
1259 file-backed mappings). */
1260 mapping_file_p = !mapping_anon_p;
1261
1262 /* Decode permissions. */
1263 read = (memchr (permissions, 'r', permissions_len) != 0);
1264 write = (memchr (permissions, 'w', permissions_len) != 0);
1265 exec = (memchr (permissions, 'x', permissions_len) != 0);
1266 /* 'private' here actually means VM_MAYSHARE, and not
1267 VM_SHARED. In order to know if a mapping is really
1268 private or not, we must check the flag "sh" in the
1269 VmFlags field. This is done by decode_vmflags. However,
1270 if we are using a Linux kernel released before the commit
1271 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1272 not have the VmFlags there. In this case, there is
1273 really no way to know if we are dealing with VM_SHARED,
1274 so we just assume that VM_MAYSHARE is enough. */
1275 priv = memchr (permissions, 'p', permissions_len) != 0;
1276
1277 /* Try to detect if region should be dumped by parsing smaps
1278 counters. */
1279 for (line = strtok_r (NULL, "\n", &t);
1280 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1281 line = strtok_r (NULL, "\n", &t))
1282 {
1283 char keyword[64 + 1];
1284
1285 if (sscanf (line, "%64s", keyword) != 1)
1286 {
1287 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1288 break;
1289 }
1290
1291 if (strcmp (keyword, "Anonymous:") == 0)
1292 {
1293 /* Older Linux kernels did not support the
1294 "Anonymous:" counter. Check it here. */
1295 has_anonymous = 1;
1296 }
1297 else if (strcmp (keyword, "VmFlags:") == 0)
1298 decode_vmflags (line, &v);
1299
1300 if (strcmp (keyword, "AnonHugePages:") == 0
1301 || strcmp (keyword, "Anonymous:") == 0)
1302 {
1303 unsigned long number;
1304
1305 if (sscanf (line, "%*s%lu", &number) != 1)
1306 {
1307 warning (_("Error parsing {s,}maps file '%s' number"),
1308 mapsfilename);
1309 break;
1310 }
1311 if (number > 0)
1312 {
1313 /* Even if we are dealing with a file-backed
1314 mapping, if it contains anonymous pages we
1315 consider it to be *also* an anonymous
1316 mapping, because this is what the Linux
1317 kernel does:
1318
1319 // Dump segments that have been written to.
1320 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1321 goto whole;
1322
1323 Note that if the mapping is already marked as
1324 file-backed (i.e., mapping_file_p is
1325 non-zero), then this is a special case, and
1326 this mapping will be dumped either when the
1327 user wants to dump file-backed *or* anonymous
1328 mappings. */
1329 mapping_anon_p = 1;
1330 }
1331 }
1332 }
1333
1334 if (has_anonymous)
1335 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1336 mapping_anon_p, mapping_file_p,
1337 filename, addr, offset);
1338 else
1339 {
1340 /* Older Linux kernels did not support the "Anonymous:" counter.
1341 If it is missing, we can't be sure - dump all the pages. */
1342 should_dump_p = 1;
1343 }
1344
1345 /* Invoke the callback function to create the corefile segment. */
1346 if (should_dump_p)
1347 func (addr, endaddr - addr, offset, inode,
1348 read, write, exec, 1, /* MODIFIED is true because we
1349 want to dump the mapping. */
1350 filename, obfd);
1351 }
1352
1353 return 0;
1354 }
1355
1356 return 1;
1357 }
1358
1359 /* A structure for passing information through
1360 linux_find_memory_regions_full. */
1361
1362 struct linux_find_memory_regions_data
1363 {
1364 /* The original callback. */
1365
1366 find_memory_region_ftype func;
1367
1368 /* The original datum. */
1369
1370 void *obfd;
1371 };
1372
1373 /* A callback for linux_find_memory_regions that converts between the
1374 "full"-style callback and find_memory_region_ftype. */
1375
1376 static int
1377 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1378 ULONGEST offset, ULONGEST inode,
1379 int read, int write, int exec, int modified,
1380 const char *filename, void *arg)
1381 {
1382 struct linux_find_memory_regions_data *data
1383 = (struct linux_find_memory_regions_data *) arg;
1384
1385 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1386 }
1387
1388 /* A variant of linux_find_memory_regions_full that is suitable as the
1389 gdbarch find_memory_regions method. */
1390
1391 static int
1392 linux_find_memory_regions (struct gdbarch *gdbarch,
1393 find_memory_region_ftype func, void *obfd)
1394 {
1395 struct linux_find_memory_regions_data data;
1396
1397 data.func = func;
1398 data.obfd = obfd;
1399
1400 return linux_find_memory_regions_full (gdbarch,
1401 linux_find_memory_regions_thunk,
1402 &data);
1403 }
1404
1405 /* Determine which signal stopped execution. */
1406
1407 static int
1408 find_signalled_thread (struct thread_info *info, void *data)
1409 {
1410 if (info->suspend.stop_signal != GDB_SIGNAL_0
1411 && info->ptid.pid () == inferior_ptid.pid ())
1412 return 1;
1413
1414 return 0;
1415 }
1416
1417 /* This is used to pass information from
1418 linux_make_mappings_corefile_notes through
1419 linux_find_memory_regions_full. */
1420
1421 struct linux_make_mappings_data
1422 {
1423 /* Number of files mapped. */
1424 ULONGEST file_count;
1425
1426 /* The obstack for the main part of the data. */
1427 struct obstack *data_obstack;
1428
1429 /* The filename obstack. */
1430 struct obstack *filename_obstack;
1431
1432 /* The architecture's "long" type. */
1433 struct type *long_type;
1434 };
1435
1436 static linux_find_memory_region_ftype linux_make_mappings_callback;
1437
1438 /* A callback for linux_find_memory_regions_full that updates the
1439 mappings data for linux_make_mappings_corefile_notes. */
1440
1441 static int
1442 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1443 ULONGEST offset, ULONGEST inode,
1444 int read, int write, int exec, int modified,
1445 const char *filename, void *data)
1446 {
1447 struct linux_make_mappings_data *map_data
1448 = (struct linux_make_mappings_data *) data;
1449 gdb_byte buf[sizeof (ULONGEST)];
1450
1451 if (*filename == '\0' || inode == 0)
1452 return 0;
1453
1454 ++map_data->file_count;
1455
1456 pack_long (buf, map_data->long_type, vaddr);
1457 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1458 pack_long (buf, map_data->long_type, vaddr + size);
1459 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1460 pack_long (buf, map_data->long_type, offset);
1461 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1462
1463 obstack_grow_str0 (map_data->filename_obstack, filename);
1464
1465 return 0;
1466 }
1467
1468 /* Write the file mapping data to the core file, if possible. OBFD is
1469 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1470 is a pointer to the note size. Returns the new NOTE_DATA and
1471 updates NOTE_SIZE. */
1472
1473 static char *
1474 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1475 char *note_data, int *note_size)
1476 {
1477 struct linux_make_mappings_data mapping_data;
1478 struct type *long_type
1479 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1480 gdb_byte buf[sizeof (ULONGEST)];
1481
1482 auto_obstack data_obstack, filename_obstack;
1483
1484 mapping_data.file_count = 0;
1485 mapping_data.data_obstack = &data_obstack;
1486 mapping_data.filename_obstack = &filename_obstack;
1487 mapping_data.long_type = long_type;
1488
1489 /* Reserve space for the count. */
1490 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1491 /* We always write the page size as 1 since we have no good way to
1492 determine the correct value. */
1493 pack_long (buf, long_type, 1);
1494 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1495
1496 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1497 &mapping_data);
1498
1499 if (mapping_data.file_count != 0)
1500 {
1501 /* Write the count to the obstack. */
1502 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1503 long_type, mapping_data.file_count);
1504
1505 /* Copy the filenames to the data obstack. */
1506 int size = obstack_object_size (&filename_obstack);
1507 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1508 size);
1509
1510 note_data = elfcore_write_note (obfd, note_data, note_size,
1511 "CORE", NT_FILE,
1512 obstack_base (&data_obstack),
1513 obstack_object_size (&data_obstack));
1514 }
1515
1516 return note_data;
1517 }
1518
1519 /* Structure for passing information from
1520 linux_collect_thread_registers via an iterator to
1521 linux_collect_regset_section_cb. */
1522
1523 struct linux_collect_regset_section_cb_data
1524 {
1525 struct gdbarch *gdbarch;
1526 const struct regcache *regcache;
1527 bfd *obfd;
1528 char *note_data;
1529 int *note_size;
1530 unsigned long lwp;
1531 enum gdb_signal stop_signal;
1532 int abort_iteration;
1533 };
1534
1535 /* Callback for iterate_over_regset_sections that records a single
1536 regset in the corefile note section. */
1537
1538 static void
1539 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1540 int collect_size, const struct regset *regset,
1541 const char *human_name, void *cb_data)
1542 {
1543 struct linux_collect_regset_section_cb_data *data
1544 = (struct linux_collect_regset_section_cb_data *) cb_data;
1545 bool variable_size_section = (regset != NULL
1546 && regset->flags & REGSET_VARIABLE_SIZE);
1547
1548 if (!variable_size_section)
1549 gdb_assert (supply_size == collect_size);
1550
1551 if (data->abort_iteration)
1552 return;
1553
1554 gdb_assert (regset && regset->collect_regset);
1555
1556 /* This is intentionally zero-initialized by using std::vector, so
1557 that any padding bytes in the core file will show as 0. */
1558 std::vector<gdb_byte> buf (collect_size);
1559
1560 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1561 collect_size);
1562
1563 /* PRSTATUS still needs to be treated specially. */
1564 if (strcmp (sect_name, ".reg") == 0)
1565 data->note_data = (char *) elfcore_write_prstatus
1566 (data->obfd, data->note_data, data->note_size, data->lwp,
1567 gdb_signal_to_host (data->stop_signal), buf.data ());
1568 else
1569 data->note_data = (char *) elfcore_write_register_note
1570 (data->obfd, data->note_data, data->note_size,
1571 sect_name, buf.data (), collect_size);
1572
1573 if (data->note_data == NULL)
1574 data->abort_iteration = 1;
1575 }
1576
1577 /* Records the thread's register state for the corefile note
1578 section. */
1579
1580 static char *
1581 linux_collect_thread_registers (const struct regcache *regcache,
1582 ptid_t ptid, bfd *obfd,
1583 char *note_data, int *note_size,
1584 enum gdb_signal stop_signal)
1585 {
1586 struct gdbarch *gdbarch = regcache->arch ();
1587 struct linux_collect_regset_section_cb_data data;
1588
1589 data.gdbarch = gdbarch;
1590 data.regcache = regcache;
1591 data.obfd = obfd;
1592 data.note_data = note_data;
1593 data.note_size = note_size;
1594 data.stop_signal = stop_signal;
1595 data.abort_iteration = 0;
1596
1597 /* For remote targets the LWP may not be available, so use the TID. */
1598 data.lwp = ptid.lwp ();
1599 if (!data.lwp)
1600 data.lwp = ptid.tid ();
1601
1602 gdbarch_iterate_over_regset_sections (gdbarch,
1603 linux_collect_regset_section_cb,
1604 &data, regcache);
1605 return data.note_data;
1606 }
1607
1608 /* Fetch the siginfo data for the specified thread, if it exists. If
1609 there is no data, or we could not read it, return an empty
1610 buffer. */
1611
1612 static gdb::byte_vector
1613 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1614 {
1615 struct type *siginfo_type;
1616 LONGEST bytes_read;
1617
1618 if (!gdbarch_get_siginfo_type_p (gdbarch))
1619 return gdb::byte_vector ();
1620
1621 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1622 inferior_ptid = thread->ptid;
1623
1624 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1625
1626 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1627
1628 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1629 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1630 if (bytes_read != TYPE_LENGTH (siginfo_type))
1631 buf.clear ();
1632
1633 return buf;
1634 }
1635
1636 struct linux_corefile_thread_data
1637 {
1638 struct gdbarch *gdbarch;
1639 bfd *obfd;
1640 char *note_data;
1641 int *note_size;
1642 enum gdb_signal stop_signal;
1643 };
1644
1645 /* Records the thread's register state for the corefile note
1646 section. */
1647
1648 static void
1649 linux_corefile_thread (struct thread_info *info,
1650 struct linux_corefile_thread_data *args)
1651 {
1652 struct regcache *regcache;
1653
1654 regcache = get_thread_arch_regcache (info->inf->process_target (),
1655 info->ptid, args->gdbarch);
1656
1657 target_fetch_registers (regcache, -1);
1658 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1659
1660 args->note_data = linux_collect_thread_registers
1661 (regcache, info->ptid, args->obfd, args->note_data,
1662 args->note_size, args->stop_signal);
1663
1664 /* Don't return anything if we got no register information above,
1665 such a core file is useless. */
1666 if (args->note_data != NULL)
1667 if (!siginfo_data.empty ())
1668 args->note_data = elfcore_write_note (args->obfd,
1669 args->note_data,
1670 args->note_size,
1671 "CORE", NT_SIGINFO,
1672 siginfo_data.data (),
1673 siginfo_data.size ());
1674 }
1675
1676 /* Fill the PRPSINFO structure with information about the process being
1677 debugged. Returns 1 in case of success, 0 for failures. Please note that
1678 even if the structure cannot be entirely filled (e.g., GDB was unable to
1679 gather information about the process UID/GID), this function will still
1680 return 1 since some information was already recorded. It will only return
1681 0 iff nothing can be gathered. */
1682
1683 static int
1684 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1685 {
1686 /* The filename which we will use to obtain some info about the process.
1687 We will basically use this to store the `/proc/PID/FILENAME' file. */
1688 char filename[100];
1689 /* The basename of the executable. */
1690 const char *basename;
1691 const char *infargs;
1692 /* Temporary buffer. */
1693 char *tmpstr;
1694 /* The valid states of a process, according to the Linux kernel. */
1695 const char valid_states[] = "RSDTZW";
1696 /* The program state. */
1697 const char *prog_state;
1698 /* The state of the process. */
1699 char pr_sname;
1700 /* The PID of the program which generated the corefile. */
1701 pid_t pid;
1702 /* Process flags. */
1703 unsigned int pr_flag;
1704 /* Process nice value. */
1705 long pr_nice;
1706 /* The number of fields read by `sscanf'. */
1707 int n_fields = 0;
1708
1709 gdb_assert (p != NULL);
1710
1711 /* Obtaining PID and filename. */
1712 pid = inferior_ptid.pid ();
1713 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1714 /* The full name of the program which generated the corefile. */
1715 gdb::unique_xmalloc_ptr<char> fname
1716 = target_fileio_read_stralloc (NULL, filename);
1717
1718 if (fname == NULL || fname.get ()[0] == '\0')
1719 {
1720 /* No program name was read, so we won't be able to retrieve more
1721 information about the process. */
1722 return 0;
1723 }
1724
1725 memset (p, 0, sizeof (*p));
1726
1727 /* Defining the PID. */
1728 p->pr_pid = pid;
1729
1730 /* Copying the program name. Only the basename matters. */
1731 basename = lbasename (fname.get ());
1732 strncpy (p->pr_fname, basename, sizeof (p->pr_fname) - 1);
1733 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1734
1735 infargs = get_inferior_args ();
1736
1737 /* The arguments of the program. */
1738 std::string psargs = fname.get ();
1739 if (infargs != NULL)
1740 psargs = psargs + " " + infargs;
1741
1742 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs) - 1);
1743 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1744
1745 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1746 /* The contents of `/proc/PID/stat'. */
1747 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1748 = target_fileio_read_stralloc (NULL, filename);
1749 char *proc_stat = proc_stat_contents.get ();
1750
1751 if (proc_stat == NULL || *proc_stat == '\0')
1752 {
1753 /* Despite being unable to read more information about the
1754 process, we return 1 here because at least we have its
1755 command line, PID and arguments. */
1756 return 1;
1757 }
1758
1759 /* Ok, we have the stats. It's time to do a little parsing of the
1760 contents of the buffer, so that we end up reading what we want.
1761
1762 The following parsing mechanism is strongly based on the
1763 information generated by the `fs/proc/array.c' file, present in
1764 the Linux kernel tree. More details about how the information is
1765 displayed can be obtained by seeing the manpage of proc(5),
1766 specifically under the entry of `/proc/[pid]/stat'. */
1767
1768 /* Getting rid of the PID, since we already have it. */
1769 while (isdigit (*proc_stat))
1770 ++proc_stat;
1771
1772 proc_stat = skip_spaces (proc_stat);
1773
1774 /* ps command also relies on no trailing fields ever contain ')'. */
1775 proc_stat = strrchr (proc_stat, ')');
1776 if (proc_stat == NULL)
1777 return 1;
1778 proc_stat++;
1779
1780 proc_stat = skip_spaces (proc_stat);
1781
1782 n_fields = sscanf (proc_stat,
1783 "%c" /* Process state. */
1784 "%d%d%d" /* Parent PID, group ID, session ID. */
1785 "%*d%*d" /* tty_nr, tpgid (not used). */
1786 "%u" /* Flags. */
1787 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1788 cmajflt (not used). */
1789 "%*s%*s%*s%*s" /* utime, stime, cutime,
1790 cstime (not used). */
1791 "%*s" /* Priority (not used). */
1792 "%ld", /* Nice. */
1793 &pr_sname,
1794 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1795 &pr_flag,
1796 &pr_nice);
1797
1798 if (n_fields != 6)
1799 {
1800 /* Again, we couldn't read the complementary information about
1801 the process state. However, we already have minimal
1802 information, so we just return 1 here. */
1803 return 1;
1804 }
1805
1806 /* Filling the structure fields. */
1807 prog_state = strchr (valid_states, pr_sname);
1808 if (prog_state != NULL)
1809 p->pr_state = prog_state - valid_states;
1810 else
1811 {
1812 /* Zero means "Running". */
1813 p->pr_state = 0;
1814 }
1815
1816 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1817 p->pr_zomb = p->pr_sname == 'Z';
1818 p->pr_nice = pr_nice;
1819 p->pr_flag = pr_flag;
1820
1821 /* Finally, obtaining the UID and GID. For that, we read and parse the
1822 contents of the `/proc/PID/status' file. */
1823 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1824 /* The contents of `/proc/PID/status'. */
1825 gdb::unique_xmalloc_ptr<char> proc_status_contents
1826 = target_fileio_read_stralloc (NULL, filename);
1827 char *proc_status = proc_status_contents.get ();
1828
1829 if (proc_status == NULL || *proc_status == '\0')
1830 {
1831 /* Returning 1 since we already have a bunch of information. */
1832 return 1;
1833 }
1834
1835 /* Extracting the UID. */
1836 tmpstr = strstr (proc_status, "Uid:");
1837 if (tmpstr != NULL)
1838 {
1839 /* Advancing the pointer to the beginning of the UID. */
1840 tmpstr += sizeof ("Uid:");
1841 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1842 ++tmpstr;
1843
1844 if (isdigit (*tmpstr))
1845 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1846 }
1847
1848 /* Extracting the GID. */
1849 tmpstr = strstr (proc_status, "Gid:");
1850 if (tmpstr != NULL)
1851 {
1852 /* Advancing the pointer to the beginning of the GID. */
1853 tmpstr += sizeof ("Gid:");
1854 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1855 ++tmpstr;
1856
1857 if (isdigit (*tmpstr))
1858 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1859 }
1860
1861 return 1;
1862 }
1863
1864 /* Build the note section for a corefile, and return it in a malloc
1865 buffer. */
1866
1867 static char *
1868 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1869 {
1870 struct linux_corefile_thread_data thread_args;
1871 struct elf_internal_linux_prpsinfo prpsinfo;
1872 char *note_data = NULL;
1873 struct thread_info *curr_thr, *signalled_thr;
1874
1875 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1876 return NULL;
1877
1878 if (linux_fill_prpsinfo (&prpsinfo))
1879 {
1880 if (gdbarch_ptr_bit (gdbarch) == 64)
1881 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1882 note_data, note_size,
1883 &prpsinfo);
1884 else
1885 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1886 note_data, note_size,
1887 &prpsinfo);
1888 }
1889
1890 /* Thread register information. */
1891 try
1892 {
1893 update_thread_list ();
1894 }
1895 catch (const gdb_exception_error &e)
1896 {
1897 exception_print (gdb_stderr, e);
1898 }
1899
1900 /* Like the kernel, prefer dumping the signalled thread first.
1901 "First thread" is what tools use to infer the signalled thread.
1902 In case there's more than one signalled thread, prefer the
1903 current thread, if it is signalled. */
1904 curr_thr = inferior_thread ();
1905 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1906 signalled_thr = curr_thr;
1907 else
1908 {
1909 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1910 if (signalled_thr == NULL)
1911 signalled_thr = curr_thr;
1912 }
1913
1914 thread_args.gdbarch = gdbarch;
1915 thread_args.obfd = obfd;
1916 thread_args.note_data = note_data;
1917 thread_args.note_size = note_size;
1918 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1919
1920 linux_corefile_thread (signalled_thr, &thread_args);
1921 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1922 {
1923 if (thr == signalled_thr)
1924 continue;
1925
1926 linux_corefile_thread (thr, &thread_args);
1927 }
1928
1929 note_data = thread_args.note_data;
1930 if (!note_data)
1931 return NULL;
1932
1933 /* Auxillary vector. */
1934 gdb::optional<gdb::byte_vector> auxv =
1935 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
1936 if (auxv && !auxv->empty ())
1937 {
1938 note_data = elfcore_write_note (obfd, note_data, note_size,
1939 "CORE", NT_AUXV, auxv->data (),
1940 auxv->size ());
1941
1942 if (!note_data)
1943 return NULL;
1944 }
1945
1946 /* File mappings. */
1947 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1948 note_data, note_size);
1949
1950 return note_data;
1951 }
1952
1953 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1954 gdbarch.h. This function is not static because it is exported to
1955 other -tdep files. */
1956
1957 enum gdb_signal
1958 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1959 {
1960 switch (signal)
1961 {
1962 case 0:
1963 return GDB_SIGNAL_0;
1964
1965 case LINUX_SIGHUP:
1966 return GDB_SIGNAL_HUP;
1967
1968 case LINUX_SIGINT:
1969 return GDB_SIGNAL_INT;
1970
1971 case LINUX_SIGQUIT:
1972 return GDB_SIGNAL_QUIT;
1973
1974 case LINUX_SIGILL:
1975 return GDB_SIGNAL_ILL;
1976
1977 case LINUX_SIGTRAP:
1978 return GDB_SIGNAL_TRAP;
1979
1980 case LINUX_SIGABRT:
1981 return GDB_SIGNAL_ABRT;
1982
1983 case LINUX_SIGBUS:
1984 return GDB_SIGNAL_BUS;
1985
1986 case LINUX_SIGFPE:
1987 return GDB_SIGNAL_FPE;
1988
1989 case LINUX_SIGKILL:
1990 return GDB_SIGNAL_KILL;
1991
1992 case LINUX_SIGUSR1:
1993 return GDB_SIGNAL_USR1;
1994
1995 case LINUX_SIGSEGV:
1996 return GDB_SIGNAL_SEGV;
1997
1998 case LINUX_SIGUSR2:
1999 return GDB_SIGNAL_USR2;
2000
2001 case LINUX_SIGPIPE:
2002 return GDB_SIGNAL_PIPE;
2003
2004 case LINUX_SIGALRM:
2005 return GDB_SIGNAL_ALRM;
2006
2007 case LINUX_SIGTERM:
2008 return GDB_SIGNAL_TERM;
2009
2010 case LINUX_SIGCHLD:
2011 return GDB_SIGNAL_CHLD;
2012
2013 case LINUX_SIGCONT:
2014 return GDB_SIGNAL_CONT;
2015
2016 case LINUX_SIGSTOP:
2017 return GDB_SIGNAL_STOP;
2018
2019 case LINUX_SIGTSTP:
2020 return GDB_SIGNAL_TSTP;
2021
2022 case LINUX_SIGTTIN:
2023 return GDB_SIGNAL_TTIN;
2024
2025 case LINUX_SIGTTOU:
2026 return GDB_SIGNAL_TTOU;
2027
2028 case LINUX_SIGURG:
2029 return GDB_SIGNAL_URG;
2030
2031 case LINUX_SIGXCPU:
2032 return GDB_SIGNAL_XCPU;
2033
2034 case LINUX_SIGXFSZ:
2035 return GDB_SIGNAL_XFSZ;
2036
2037 case LINUX_SIGVTALRM:
2038 return GDB_SIGNAL_VTALRM;
2039
2040 case LINUX_SIGPROF:
2041 return GDB_SIGNAL_PROF;
2042
2043 case LINUX_SIGWINCH:
2044 return GDB_SIGNAL_WINCH;
2045
2046 /* No way to differentiate between SIGIO and SIGPOLL.
2047 Therefore, we just handle the first one. */
2048 case LINUX_SIGIO:
2049 return GDB_SIGNAL_IO;
2050
2051 case LINUX_SIGPWR:
2052 return GDB_SIGNAL_PWR;
2053
2054 case LINUX_SIGSYS:
2055 return GDB_SIGNAL_SYS;
2056
2057 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2058 therefore we have to handle them here. */
2059 case LINUX_SIGRTMIN:
2060 return GDB_SIGNAL_REALTIME_32;
2061
2062 case LINUX_SIGRTMAX:
2063 return GDB_SIGNAL_REALTIME_64;
2064 }
2065
2066 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2067 {
2068 int offset = signal - LINUX_SIGRTMIN + 1;
2069
2070 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2071 }
2072
2073 return GDB_SIGNAL_UNKNOWN;
2074 }
2075
2076 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2077 gdbarch.h. This function is not static because it is exported to
2078 other -tdep files. */
2079
2080 int
2081 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2082 enum gdb_signal signal)
2083 {
2084 switch (signal)
2085 {
2086 case GDB_SIGNAL_0:
2087 return 0;
2088
2089 case GDB_SIGNAL_HUP:
2090 return LINUX_SIGHUP;
2091
2092 case GDB_SIGNAL_INT:
2093 return LINUX_SIGINT;
2094
2095 case GDB_SIGNAL_QUIT:
2096 return LINUX_SIGQUIT;
2097
2098 case GDB_SIGNAL_ILL:
2099 return LINUX_SIGILL;
2100
2101 case GDB_SIGNAL_TRAP:
2102 return LINUX_SIGTRAP;
2103
2104 case GDB_SIGNAL_ABRT:
2105 return LINUX_SIGABRT;
2106
2107 case GDB_SIGNAL_FPE:
2108 return LINUX_SIGFPE;
2109
2110 case GDB_SIGNAL_KILL:
2111 return LINUX_SIGKILL;
2112
2113 case GDB_SIGNAL_BUS:
2114 return LINUX_SIGBUS;
2115
2116 case GDB_SIGNAL_SEGV:
2117 return LINUX_SIGSEGV;
2118
2119 case GDB_SIGNAL_SYS:
2120 return LINUX_SIGSYS;
2121
2122 case GDB_SIGNAL_PIPE:
2123 return LINUX_SIGPIPE;
2124
2125 case GDB_SIGNAL_ALRM:
2126 return LINUX_SIGALRM;
2127
2128 case GDB_SIGNAL_TERM:
2129 return LINUX_SIGTERM;
2130
2131 case GDB_SIGNAL_URG:
2132 return LINUX_SIGURG;
2133
2134 case GDB_SIGNAL_STOP:
2135 return LINUX_SIGSTOP;
2136
2137 case GDB_SIGNAL_TSTP:
2138 return LINUX_SIGTSTP;
2139
2140 case GDB_SIGNAL_CONT:
2141 return LINUX_SIGCONT;
2142
2143 case GDB_SIGNAL_CHLD:
2144 return LINUX_SIGCHLD;
2145
2146 case GDB_SIGNAL_TTIN:
2147 return LINUX_SIGTTIN;
2148
2149 case GDB_SIGNAL_TTOU:
2150 return LINUX_SIGTTOU;
2151
2152 case GDB_SIGNAL_IO:
2153 return LINUX_SIGIO;
2154
2155 case GDB_SIGNAL_XCPU:
2156 return LINUX_SIGXCPU;
2157
2158 case GDB_SIGNAL_XFSZ:
2159 return LINUX_SIGXFSZ;
2160
2161 case GDB_SIGNAL_VTALRM:
2162 return LINUX_SIGVTALRM;
2163
2164 case GDB_SIGNAL_PROF:
2165 return LINUX_SIGPROF;
2166
2167 case GDB_SIGNAL_WINCH:
2168 return LINUX_SIGWINCH;
2169
2170 case GDB_SIGNAL_USR1:
2171 return LINUX_SIGUSR1;
2172
2173 case GDB_SIGNAL_USR2:
2174 return LINUX_SIGUSR2;
2175
2176 case GDB_SIGNAL_PWR:
2177 return LINUX_SIGPWR;
2178
2179 case GDB_SIGNAL_POLL:
2180 return LINUX_SIGPOLL;
2181
2182 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2183 therefore we have to handle it here. */
2184 case GDB_SIGNAL_REALTIME_32:
2185 return LINUX_SIGRTMIN;
2186
2187 /* Same comment applies to _64. */
2188 case GDB_SIGNAL_REALTIME_64:
2189 return LINUX_SIGRTMAX;
2190 }
2191
2192 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2193 if (signal >= GDB_SIGNAL_REALTIME_33
2194 && signal <= GDB_SIGNAL_REALTIME_63)
2195 {
2196 int offset = signal - GDB_SIGNAL_REALTIME_33;
2197
2198 return LINUX_SIGRTMIN + 1 + offset;
2199 }
2200
2201 return -1;
2202 }
2203
2204 /* Helper for linux_vsyscall_range that does the real work of finding
2205 the vsyscall's address range. */
2206
2207 static int
2208 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2209 {
2210 char filename[100];
2211 long pid;
2212
2213 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2214 return 0;
2215
2216 /* It doesn't make sense to access the host's /proc when debugging a
2217 core file. Instead, look for the PT_LOAD segment that matches
2218 the vDSO. */
2219 if (!target_has_execution)
2220 {
2221 long phdrs_size;
2222 int num_phdrs, i;
2223
2224 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2225 if (phdrs_size == -1)
2226 return 0;
2227
2228 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2229 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2230 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
2231 if (num_phdrs == -1)
2232 return 0;
2233
2234 for (i = 0; i < num_phdrs; i++)
2235 if (phdrs.get ()[i].p_type == PT_LOAD
2236 && phdrs.get ()[i].p_vaddr == range->start)
2237 {
2238 range->length = phdrs.get ()[i].p_memsz;
2239 return 1;
2240 }
2241
2242 return 0;
2243 }
2244
2245 /* We need to know the real target PID to access /proc. */
2246 if (current_inferior ()->fake_pid_p)
2247 return 0;
2248
2249 pid = current_inferior ()->pid;
2250
2251 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2252 reading /proc/PID/maps (2). The later identifies thread stacks
2253 in the output, which requires scanning every thread in the thread
2254 group to check whether a VMA is actually a thread's stack. With
2255 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2256 a few thousand threads, (1) takes a few miliseconds, while (2)
2257 takes several seconds. Also note that "smaps", what we read for
2258 determining core dump mappings, is even slower than "maps". */
2259 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2260 gdb::unique_xmalloc_ptr<char> data
2261 = target_fileio_read_stralloc (NULL, filename);
2262 if (data != NULL)
2263 {
2264 char *line;
2265 char *saveptr = NULL;
2266
2267 for (line = strtok_r (data.get (), "\n", &saveptr);
2268 line != NULL;
2269 line = strtok_r (NULL, "\n", &saveptr))
2270 {
2271 ULONGEST addr, endaddr;
2272 const char *p = line;
2273
2274 addr = strtoulst (p, &p, 16);
2275 if (addr == range->start)
2276 {
2277 if (*p == '-')
2278 p++;
2279 endaddr = strtoulst (p, &p, 16);
2280 range->length = endaddr - addr;
2281 return 1;
2282 }
2283 }
2284 }
2285 else
2286 warning (_("unable to open /proc file '%s'"), filename);
2287
2288 return 0;
2289 }
2290
2291 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2292 caching, and defers the real work to linux_vsyscall_range_raw. */
2293
2294 static int
2295 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2296 {
2297 struct linux_info *info = get_linux_inferior_data ();
2298
2299 if (info->vsyscall_range_p == 0)
2300 {
2301 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2302 info->vsyscall_range_p = 1;
2303 else
2304 info->vsyscall_range_p = -1;
2305 }
2306
2307 if (info->vsyscall_range_p < 0)
2308 return 0;
2309
2310 *range = info->vsyscall_range;
2311 return 1;
2312 }
2313
2314 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2315 definitions would be dependent on compilation host. */
2316 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2317 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2318
2319 /* See gdbarch.sh 'infcall_mmap'. */
2320
2321 static CORE_ADDR
2322 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2323 {
2324 struct objfile *objf;
2325 /* Do there still exist any Linux systems without "mmap64"?
2326 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2327 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2328 struct value *addr_val;
2329 struct gdbarch *gdbarch = objf->arch ();
2330 CORE_ADDR retval;
2331 enum
2332 {
2333 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2334 };
2335 struct value *arg[ARG_LAST];
2336
2337 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2338 0);
2339 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2340 arg[ARG_LENGTH] = value_from_ulongest
2341 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2342 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2343 | GDB_MMAP_PROT_EXEC))
2344 == 0);
2345 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2346 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2347 GDB_MMAP_MAP_PRIVATE
2348 | GDB_MMAP_MAP_ANONYMOUS);
2349 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2350 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2351 0);
2352 addr_val = call_function_by_hand (mmap_val, NULL, arg);
2353 retval = value_as_address (addr_val);
2354 if (retval == (CORE_ADDR) -1)
2355 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2356 pulongest (size));
2357 return retval;
2358 }
2359
2360 /* See gdbarch.sh 'infcall_munmap'. */
2361
2362 static void
2363 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2364 {
2365 struct objfile *objf;
2366 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2367 struct value *retval_val;
2368 struct gdbarch *gdbarch = objf->arch ();
2369 LONGEST retval;
2370 enum
2371 {
2372 ARG_ADDR, ARG_LENGTH, ARG_LAST
2373 };
2374 struct value *arg[ARG_LAST];
2375
2376 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2377 addr);
2378 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2379 arg[ARG_LENGTH] = value_from_ulongest
2380 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2381 retval_val = call_function_by_hand (munmap_val, NULL, arg);
2382 retval = value_as_long (retval_val);
2383 if (retval != 0)
2384 warning (_("Failed inferior munmap call at %s for %s bytes, "
2385 "errno is changed."),
2386 hex_string (addr), pulongest (size));
2387 }
2388
2389 /* See linux-tdep.h. */
2390
2391 CORE_ADDR
2392 linux_displaced_step_location (struct gdbarch *gdbarch)
2393 {
2394 CORE_ADDR addr;
2395 int bp_len;
2396
2397 /* Determine entry point from target auxiliary vector. This avoids
2398 the need for symbols. Also, when debugging a stand-alone SPU
2399 executable, entry_point_address () will point to an SPU
2400 local-store address and is thus not usable as displaced stepping
2401 location. The auxiliary vector gets us the PowerPC-side entry
2402 point address instead. */
2403 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2404 throw_error (NOT_SUPPORTED_ERROR,
2405 _("Cannot find AT_ENTRY auxiliary vector entry."));
2406
2407 /* Make certain that the address points at real code, and not a
2408 function descriptor. */
2409 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2410 current_top_target ());
2411
2412 /* Inferior calls also use the entry point as a breakpoint location.
2413 We don't want displaced stepping to interfere with those
2414 breakpoints, so leave space. */
2415 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2416 addr += bp_len * 2;
2417
2418 return addr;
2419 }
2420
2421 /* See linux-tdep.h. */
2422
2423 CORE_ADDR
2424 linux_get_hwcap (struct target_ops *target)
2425 {
2426 CORE_ADDR field;
2427 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2428 return 0;
2429 return field;
2430 }
2431
2432 /* See linux-tdep.h. */
2433
2434 CORE_ADDR
2435 linux_get_hwcap2 (struct target_ops *target)
2436 {
2437 CORE_ADDR field;
2438 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2439 return 0;
2440 return field;
2441 }
2442
2443 /* Display whether the gcore command is using the
2444 /proc/PID/coredump_filter file. */
2445
2446 static void
2447 show_use_coredump_filter (struct ui_file *file, int from_tty,
2448 struct cmd_list_element *c, const char *value)
2449 {
2450 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2451 " corefiles is %s.\n"), value);
2452 }
2453
2454 /* Display whether the gcore command is dumping mappings marked with
2455 the VM_DONTDUMP flag. */
2456
2457 static void
2458 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2459 struct cmd_list_element *c, const char *value)
2460 {
2461 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2462 " flag is %s.\n"), value);
2463 }
2464
2465 /* To be called from the various GDB_OSABI_LINUX handlers for the
2466 various GNU/Linux architectures and machine types. */
2467
2468 void
2469 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2470 {
2471 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2472 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2473 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2474 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2475 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2476 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2477 set_gdbarch_has_shared_address_space (gdbarch,
2478 linux_has_shared_address_space);
2479 set_gdbarch_gdb_signal_from_target (gdbarch,
2480 linux_gdb_signal_from_target);
2481 set_gdbarch_gdb_signal_to_target (gdbarch,
2482 linux_gdb_signal_to_target);
2483 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2484 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2485 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2486 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2487 }
2488
2489 void _initialize_linux_tdep ();
2490 void
2491 _initialize_linux_tdep ()
2492 {
2493 linux_gdbarch_data_handle =
2494 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2495
2496 /* Observers used to invalidate the cache when needed. */
2497 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2498 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2499
2500 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2501 &use_coredump_filter, _("\
2502 Set whether gcore should consider /proc/PID/coredump_filter."),
2503 _("\
2504 Show whether gcore should consider /proc/PID/coredump_filter."),
2505 _("\
2506 Use this command to set whether gcore should consider the contents\n\
2507 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2508 about this file, refer to the manpage of core(5)."),
2509 NULL, show_use_coredump_filter,
2510 &setlist, &showlist);
2511
2512 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2513 &dump_excluded_mappings, _("\
2514 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2515 _("\
2516 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2517 _("\
2518 Use this command to set whether gcore should dump mappings marked with the\n\
2519 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2520 more information about this file, refer to the manpage of proc(5) and core(5)."),
2521 NULL, show_dump_excluded_mappings,
2522 &setlist, &showlist);
2523 }
This page took 0.083046 seconds and 4 git commands to generate.